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Abstract 

 

A sample size estimate for a clinical trial is an important issue as incorrectly estimating it 

could have both ethical and financial implications for the trial.  Calculating the required 

sample size for a trial with a continuous outcome requires an estimate of the population 

variance. A pilot trial can be used to get an estimate of the population variance. However, 

pilot trials are often small and may give imprecise estimates; adjustment methods are 

discussed which allow for this imprecision. 

 

Theoretical minimum values for the overall trial sample size when using an adjustment 

method to design the main trial after an external pilot trial are provided. Using the results 

recommendations for external pilot trial sample size are presented which aim to minimise 

the overall trial sample size. It was found that the optimal pilot trial sample size increases 

with the size of the main trial, therefore stepped rules of thumb are proposed. For a 90% 

powered main trial this method indicates that the sample size for a two-armed pilot trial 

to minimise the overall sample size should be 150, 50, 30 and 20 for standardised effect 

sizes (δ) of δ<0.1, 0.1≤ δ<0.3, 0.3≤ δ<0.7 and δ≥0.7 respectively. 

 

The work is extended to allow for unequal cost per patient between the two trials. The 

results show that when the pilot trial is less expensive per patient than the main trial the 

optimal pilot trial sample size increases, giving more precision for the variance estimate 

and a relatively small main trial. The opposite is true when the main trial is less expensive 

than the pilot trial. For a 90% powered main trial this method indicates that the sample 

size for a two-armed pilot trial to minimise the overall sample size should be between 40-

260, 20-80, 20-40 and 20-30 dependent on the relative cost of the pilot and main trial per 

participant for standardised effect sizes (δ) of δ<0.1, 0.1≤ δ<0.3, 0.3≤ δ<0.7 and δ≥0.7 

respectively. 

 

For internal pilot trials it is shown that the restricted sample size recalculation procedure 

raises the average sample size and power of the main trial. Aiming to minimise the overall 

trial sample size, it was found that the optimal pilot trial sample size rises as the main trial 

size increases. 

 

The work presented aims to help researchers choose sample sizes for pilot trials and to 

assess the impact selected methods have on the power and required sample size of the 

subsequent main trial. 
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Chapter 1 

 

 

Introduction 

 

 

Health service research to assess a new health technology can involve a number of 

investigations including: observational studies, case studies, focus groups, interviews, 

expert opinions, systematic reviews and clinical trials (Evans, 2003). A clinical trial is 

defined by Altman (1990) p. 440 as ‘… a planned experiment on human beings, which is 

designed to evaluate the effectiveness of one or more forms of treatment.’ A series of 

clinical trials from pilot investigations through to large Randomised Controlled Trials (RCTs) 

may be conducted in the evaluation of a health technology. 

 

The aims of this thesis are to: 

 Provide background information on the area of pilot trials, including definitions, 

current sample sizes and analysis methods (Chapter 1, 3 and 6) 

 Investigate how using an estimate of the variance from a pilot trial to plan a main 

trial affects the power and sample size of the main trial (Chapter 4 and 7) 

 Explore methods of setting a sample size for pilot trials (external and internal) 

which aim to minimise the overall trial sample size (Chapter 4 and 7) 

 Examine how the relative cost of the external pilot versus the main trial affects 

the sample sizes of the two trials to minimise the overall trial cost (Chapter 5) 

 

Although the aims are highlighted here further justifications and the development of 

these are presented in Chapters 1, 2, 3 and 6. 
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This chapter provides an introduction to clinical trials, outlining what they are, how they 

are funded, the structure of clinical trials in the publicly funded setting and defines 

associated terminology. Section 1.1 defines the term randomised controlled trial. Section 

1.2 describes the funding for clinical trials. Section 1.3 outlines the organisation and 

structure of publicly funded clinical trials. Section 1.4 compares the terms pilot and 

feasibility, trial and study in order to outline a definition of the term pilot trial to be used 

in this thesis. Section 1.5 describes the importance of sample size calculations.  

 

As part of my role as a teaching assistant during the PhD two student research projects 

were supervised and the results from this work inform the context of the thesis. The first 

project was carried out by a medical student on a six-week research attachment 

investigating the current sample size of pilot trials on the United Kingdom Clinical 

Research Network (UKCRN) database. The results of this work are presented in Section 

1.6. The second project was completed by a Wellcome Trust Summer intern, who I 

supervised on a day-to-day basis. The project looked at how well pilot trials predict 

parameters for the main trial sample size calculation, specifically predicting the dropout 

rate and the ratio of randomised to eligible patients. The results of this study are 

presented in Section 1.7. 

 

There was also additional collaborative complementary research completed during the 

time of the thesis discussing the available methods for analysing the data from an external 

pilot trial (Lee et al., 2014) which is presented in Section 1.8. This research adds to the 

background information of the thesis topic area and is presented here in order to situate 

the thesis into the wider research area. This chapter is then summarised in Section 1.9 to 

provide the rationale for the work presented throughout this thesis, the aims of this thesis 

are also presented in this section. Finally an outline of this thesis is given in Section 1.10. 
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1.1 Randomised Controlled Trials 

 

In a clinical trial the treatment under investigation, an experimental treatment, is usually 

compared to a control treatment. The control treatment allows for the fact that patient 

outcomes can be affected by feelings of enthusiasm, inclusion and expectation. A control 

treatment should be used to ensure that the effect measured is due to the treatment and 

not due to the patient’s involvement in the clinical trial itself, known as the Hawthorne 

effect (Parsons, 1974). The control treatment can be an active control, an existing or usual 

treatment, or a placebo, an inactive treatment made to look exactly the same as the 

experimental treatment (Pocock, 1983). Using a control treatment is one way to try to 

reduce the chance of bias in the trial.  

 

Bias is the unconscious distortion in the selection of patients, collection of data, 

determination of endpoints, and final analyses (Chalmers, 1983). Bias is said to have 

occurred when there is a systematic difference between the results in the trial and the 

true value (Petrie and Sabin, 2013). Therefore, bias can give an incorrect estimate of the 

treatment effect and efforts should be made to lessen its effect (Torgerson and Torgerson, 

2008). There are many types of bias, however the main types of bias we are concerned 

with when designing clinical trials are: the hawthorne effect, allocation bias, assessment 

bias, confounding, attrition bias and issues with inappropriate analysis methods, for 

example, multiple testing procedures (Petrie and Sabin, 2013). 

 

Allocation bias occurs when the allocation of patients to treatment is not random and the 

allocation depends on patient demographics (Pocock, 1983). Randomisation helps to 

reduce the bias of a trial, there are several types of randomisation including: simple, 

blocked and stratified (Torgerson and Torgerson, 2008). Randomisation tries to reduce 

confounding by ensuring that the treatment groups are comparable for any prognostic 

factors so that any difference between the groups can be attributed to the intervention 

under investigation (Torgerson and Torgerson, 2008).  
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Assessment bias occurs when the knowledge of a patients’ treatment allocation affects 

their, the clinicians or other trial staff’s behaviour in a way that affects the results of the 

treatment comparison. Therefore, it is preferable to keep the allocation of treatments to 

patients hidden to as many trial stakeholders as possible in clinical trials; this is known as 

blinding (Pocock, 1983). 

 

During a trial participants can withdraw or be lost to follow up, their data can be missing 

or incomplete. Attrition bias can occur if the pariticpants which dropout of the trial are 

systematically different from those who remain (Petrie and Sabin, 2013). 

 

A confounder is a variable that is related to both another independent variable and the 

outcome variable. Ignoring the effect of a confounding variable can distort the association 

between the independent variable of interest and the outcome variable; perhaps leading 

to finding a spurious effect of an independent variable on the outcome or missing a true 

association (Petrie and Sabin, 2013; Daly and Bourke, 2000).  Confouding can be 

controlled by the design or the analysis of the trial (Daly and Bourke, 2000). 

 

Inappropriate analysis methods can lead to bias being introduced into a trial. For example, 

employing unplanned analyses at the end of a trial. Often subgroup analyses may be 

conducted at the end of trial without having been previously planned or specified. If 

sufficient hypothesis tests are carried out eventually a statistically significant difference 

will be found and the risk of a Type I error increases. If possible all analysis should be pre-

specified or multiple-testing procedures should be employed to control the Type I error 

rate to the appropriate level. 

 

Clinical trials that involve both a control arm and randomisation of patients to treatment 

are referred to as Randomised Controlled Trials (RCTs). RCTs are seen as the gold standard 

for testing the effectiveness of an intervention (Torgerson and Torgerson, 2008). 

 

In a clinical trial where the aim is to prove that one treatment is more effective than 
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another the trial is said to be a superiority trial. Some trials are set up to prove that an 

intervention is either equivalent or at least not inferior to another intervention. 

Equivalence trials or non-inferiority trials may be used in situations where the new 

intervention is say; less toxic, has fewer side effects or maybe costs less than a current 

treatment (Friedman et al., 2010). 

 

The simplest design for a trial in terms of the comparison of treatment groups is for them 

to be run in parallel to each other so that if two treatments are under investigation there 

will be two groups running concurrently each receiving one of the treatments to which 

patients are randomised. Alternatively another popular design is a crossover trial, where 

patients receive both treatments consecutively. Here randomisation determines which 

order each of the trial participants receives the interventions. Other designs include: a 

paired design, where each participant receives both interventions at the same time and 

act as their own control; a matched pairs design, where each case is matched to a control 

across specific confounding variables; a sequential trial, where the results are monitored 

throughout the trial and the trial is stopped when one treatment is shown to be superior 

or if it is unlikely a difference will emerge; a factorial design, allows us to investigate the 

effect of two treatments individually compared to control, compared to each other and 

the effect of the treatments when used in combination; or an adaptive design, the 

definition of an adaptive design is discussed in Chapter 6. 

 

1.2 Funding for Clinical Trials 

 

Research funding for clinical trials can broadly be defined as coming from: industry (e.g. 

Pharmaceutical companies), government (e.g.The Medical Research Council (MRC) or the 

National Institute for Health Research (NIHR)) or charities. The funding streams may not 

be mutually exclusive (i.e. some trials are funded by industry and public money). 
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There are two main public funding bodies for health research in the UK, the MRC and the 

NIHR. Within the NIHR there are four sections which fund or have funded pilot and 

feasibility studies:  

 The Research for Patient Benefit (RfPB) Programme,  

 Programme Grants for Applied Research (PGfAR),  

 Programme Development Grants (PDG) and  

 The NIHR Evaluation, Trials and Studies Coordinating Centre (NETSCC) (NIHR, 

2012a).  

 

The RfPB is interested in regionally derived research with clear potential to benefit 

patients, offer value for money and increase National Health Service (NHS) effectiveness. 

PGfAR funds priority research for the NHS with potentially a short time until the results 

will have a practical application. PDG are for preparatory work prior to funding from the 

PGfAR. Programmes managed by the NETSCC include:  

 The Health Technology Assessment (HTA) Programme,  

 The Public Health Research (PHR) Programme,  

 The Efficacy and Mechanism Evaluation (EME) Programme and  

 Health Services and Delivery Research (HS&DR) (NIHR, 2012d).  

 

The HTA programme funds 'health technology' trials defined as 'any method used to 

promote health, prevent and treat disease and improve rehabilitation and long-term care' 

(NIHR, 2012a). The PHR funds pilot and feasibility trials evaluating public health 

interventions outside the NHS. The EME programme funds pilot and feasibility studies to 

support trials through the early phases. The HS&DR funds a broad range of research 

assessing quality, and efficiency of the NHS. The Systematic Review (SR) programme and 

the Invention for Innovation (i4i) Programme are also funded by the NIHR but they do not 

support pilot trials although i4i may fund a feasibility study as defined by the NIHR (NIHR, 

2012a). 
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A large amount of public money is invested into health research every year. In 2013/14 

the UK government invested £1,858M. As previously discussed the investment is made 

through two main authorities: The MRC (£845.3 million in 2013/14) (MRC, 2015) and the 

NIHR (£1,013.6 million in 2013/14) (NIHR, 2015). The MRC and NIHR fund research 

through research facilities, research centres in partnership with universities and by 

funding researchers (MRC, 2012a). In 2014/15 the MRC employed 2,560 people and 

provided £62.9 million in scholarships and fellowships funding for 1,440 postgraduate 

students and 390 fellows (MRC, 2015). Due to the large amounts of public money involved, 

careful stewardship is required by these authorities to ensure that the money is invested 

appropriately and will be used in the most effective manner in order to improve clinical 

practice and bring health benefits to the population (MRC, 2012b). 

 

1.3 Structure of Publicly Funded Trials 

 

In the private sector a portfolio of evidence for an intervention is built up over phases of 

development (Pocock, 1983): 

 Phase I – performed in healthy volunteers, assessing safety and tolerability 

 Phase II – in patient, first assessment of efficacy and dose finding trials 

 Phase III – in patient, pivotal RCT programme 

 Phase IV – post-marketing surveillance (Julious et al., 2010). 

 

 In the public sector people tend to either launch straight into the main definitive RCT or 

conduct a pilot trial beforehand (McDonald et al., 2006). A reason for this difference could 

be that usually interventions tested in publicly funded research are, drugs which are 

already licensed, a health technology or complex interventions; whereas in the privately 

funded setting (industry) the focus is likely to be on unlicensed drug trials of new chemical 

compounds untested in a clinical setting for safety and efficacy. A health technology is 

‘the application of organised knowledge and skills in the form of devices, medicines, 

vaccines, procedures and systems developed to solve a health problem and improve 

quality of lives’ (WHO, 2015).  
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Some examples of health technology trials that have taken place at the University of 

Sheffield are: 

 CoSMoS: a trial looking at computerised cognitive behavioural therapy for the 

treatment of depression in patients with multiple sclerosis (Cooper et al., 2011). 

 RATPAC: a trial comparing a new diagnostic strategy for suspected myocardial 

infarction patients against current practice (Goodacre et al., 2010). 

 CACTUS: a trial looking at computer based self managed word finding therapy for 

people who experience aphasia (a communication disorder) after stroke (Palmer 

et al., 2011). 

 

Complex interventions are 'made up of various interconnecting parts' (Campbell et al., 

2000) which may act independently or inter-dependently; it is therefore difficult to 

distinguish any specific active ingredient (MRC, 2000). Examples of complex interventions 

that have taken place at the University of Sheffield include: 

 Booster: a trial looking at the effectiveness of motivational interviewing 

techniques to promote and sustain change in physical activity in middle-age 

adults in deprived urban areas. Participants were given a DVD which used 

motivational interviewing to promote increased physical activity, after this they 

were randomised to either control or one of two interventions: motivational 

interviewing techniques via telephone consultations or face-to-face meetings 

(Hind et al., 2010). 

 Lifestyle Matters: a trial determining the benefit of an occupational therapy 

programme for people aged 65 and over. The programme enables the 

participants to become more active, engage in the community and make 

independent choices, thus increasing their health and wellbeing; which is thought 

to be strongly associated with good mental wellbeing (Sprange et al., 2013). 

 

Pilot trials are particularly important for trials of complex interventions compared to drug 

trials. Trials of complex interventions may require long-term commitment from the 
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participant or a major change in lifestyle; thus a good prediction of adherence and 

dropout rates is needed to test if the trial is feasible (MRC, 2000). In addition, due to the 

complicated nature and number of trial processes, it is especially important to test the 

methods that will be used in the main RCT e.g. methods of recruitment, randomisation, 

follow-up etc. as well as obtain estimates in order to calculate the sample size required 

for the main trial (MRC, 2000).  

 

It could be argued that thorough pilot testing is particularly important in publicly funded 

trials as it is important to reduce the amount of public money wasted due to bad planning 

or avoidable mistakes in the main trial. For these reasons this thesis focuses on clinical 

trials in the publicly funded setting. 

 

1.4 Pilot and Feasibility Trials 

 

There is much discussion in the literature surrounding the definition of the term pilot as 

well as another term also used to describe preliminary work, feasibility. This section 

compares the two terms, their similarities and differences, as well as other terms used to 

describe preliminary studies, before concluding with a definition to be used in this thesis. 

 

1.4.1 Definitions from the Literature 

 

A pilot study is defined by Thabane et al. (2010) as a piece of work conducted before a 

more substantive trial to aid in the development of the design for the future trial. Pilot 

studies should assess methodological issues with the trial design rather than concentrate 

on the efficacy or effectiveness of the treatment. 

 

The NETSCC (NIHR Evaluation, Trials and Studies Coordinating Centre), which is 

responsible for managing evaluation research for the NIHR, define a pilot study as 'a 

version of the main study run in miniature to tell whether the components of the main 
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study can all work together'. They suggest that a pilot should focus on how the trial runs 

(i.e. the recruitment process, the randomisation procedures, and the treatment and 

follow up assessments) (NETSCC, 2012). There must also be a plan for further work. This 

definition is comparable to the UK NICE (National Institute for Care and Excellence) 

definition of a pilot study as 'a small scale "test" of a particular approach ... the aim would 

be to highlight any problems or areas of concern and amend it before the full scale study 

begins' (NICE, 2013). The plan for future work is crucial for pilot studies otherwise they 

could be seen as underpowered trials, which are unethical and have limited scientific use. 

 

The National Institutes of Health (NIH) is the main government organisation in the United 

States that is responsible for medical research. Within the NIH sits the National Institute 

of General Medical Sciences (NIGMS) (NIGMS, 2012). NIGMS defines pilot studies as 'trial 

runs designed to improve data collection instruments and procedures before the data 

collection effort is begun' (NIGMS, 2011). 

 

Lancaster et al. (2004) highlight seven examples of reasons for conducting a pilot study: 

1. To guide a later sample size calculation 

2. To test the integrity of study protocol 

3. To test data collection forms or questionnaires 

4. To test the randomisation procedure 

5. To investigate the recruitment and consent rates 

6. To investigate the acceptability of the intervention 

7. To select the most appropriate outcome measure 

 

Thabane et al. (2010) add three more objectives to this list: 

8. To assess time and budgeting issues 

9. To provide data management and staff training 

10. To assess the safety and determine dose levels 
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The aim of the pilot is therefore to provide experience in the running of the trial and to 

highlight any problems, so they may be corrected before the main trial begins (Teijlingen 

and Hundley, 2001). 

 

The NETSCC also define a type of study called a feasibility study which they define as 

'studies used to estimate important parameters that are needed to design the main 

study'. For example this could be, the standard deviation of the outcome measure needed 

to complete the sample size calculation for the main trial, the number of people eligible 

or response rates in order to assess whether it will be possible to meet the sample size 

requirement (NETSCC, 2012). NIGMS offer a slightly different definition of a feasibility 

study, 'a preliminary evaluation aimed at determining the optimal approach for a full scale 

outcome evaluation' (NIGMS, 2011). Therefore, the aim of a feasibility study is to assess 

whether it is possible to perform a full main trial. 

 

A review of papers published in 2004 of seven major journals looked at the objectives of 

pilot studies in the literature to clarify the definition of a pilot study (Lancaster et al., 

2004). This work was extended in 2010 to distinguish between pilot and feasibility studies 

(Arain et al., 2010). Arain et. al (2010) report that studies labelled pilot tend to use stricter 

methodology (i.e. a sample size calculation, randomisation and blinding) and are more 

likely to conclude the need for further work than studies labelled feasibility. This seems 

to suggest that there is some distinction between the usage of the two terms in practice. 

These authors recommend the use of the NETSCC definitions. 

 

Although some authors agree that there is a distinction between a pilot and a feasibility 

study (Arain et al., 2010, Lancaster et al., 2004) several do not distinguish between these 

two terms specifically (Arnold et al., 2009, Thabane et al., 2010). Thabane et al. (2010) 

state that the two terms are equivalent, while Arnold et al. (2009) argue that the term 

feasibility does not reflect the scope of many pilot studies. Arnold et al. (2009) instead use 

three separate terms to describe the development stages of a trial. They define pilot work 

as 'any background research that informs a future study'; a pilot study as ‘a study with a 
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specific hypothesis, objective and methodology’ and a pilot trial as ‘a stand-alone pilot 

study with a randomisation procedure’.  

 

During the PhD I embarked on a project with colleagues to look at the definitions of pilot 

and feasibility studies and consider whether there is a difference from each other and 

from a randomised controlled trial. Following the review of the literature presented above 

and studying example trials, we formed an idea that the term feasibility should be used 

as an overarching term for preliminary studies and the term pilot refers to a specific type 

of study that mimics the definitive trial design (Whitehead, Sully and Campbell, 2014). 

However, a pilot trial although mimicking the definitive trial design should have feasibility 

aims if not, it could be perceived as a small underpowered study with limited scientific 

use and may be deemed unethical. 

 

This was later echoed by the work of Eldridge et al. (2016) who worked to clarify the 

definition of pilot and feasibility while working on an extension of the CONSORT guidelines 

for pilot and feasibility studies. They conducted a large Delphi study (N=93 in round 1 and 

N=79 in round 2) and an international expert consensus meeting as well as a systematic 

review. During the review they found that it was not possible to apply mutually exclusive 

definitions of pilot and feasibility studies that are consistent with the way authors 

describe their studies. This supports the idea that the terms feasibility and pilot are not 

necessarily separate concepts. 

 

They conclude that feasibility is thus an overarching concept within which they describe 

three distinct types of study: randomised pilot studies, non-randomised pilot studies and 

feasibility studies (Eldridge et al., 2016).  

 

1.4.2 Definition for Thesis 

 

From the review of the literature several conclusions can be drawn: a pilot study 

investigates not only the trial processes and procedures to avoid problems in the later 
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trial but also the feasibility of that later main trial. The aim of a pilot study is not to assess 

the superiority of one treatment over the other but can be any of the objectives listed by 

Lancaster et al. (2004) or Thabane et al. (2010) amongst others. By comparison feasibility 

is an overarching term describing many types of preliminary work and pilot studies are a 

special type of feasibility study that mimic the design of the main trial.  

 

The definitions put forward by Arnold et al. (2009) describe the flow of work through the 

whole clinical trial process well, therefore to incorporate these into the definition to be 

used in this thesis, this thesis defines a pilot trial as a pilot study (as described above), 

which also involves randomisation between a control and experimental treatment group. 

 

1.5 The Importance of Sample Size 

 

Despite the thorough and meticulous application procedure for research funding, most 

trials require extensions which cost more money and delay the use of  findings  in clinical 

practice (McDonald et al., 2006). In 2006, McDonald et al. carried out a review of 114 trials 

from the UK MRC and NIHR HTA programme between 1994 and 2002. They found that 

only 55% of reviewed trials recruited to within 80% of the original target. Additionally, 

54% of trials requested an extension to the trial grant in order to complete the original 

trial. In 14 (11%) of the trials enrolment was stopped before the planned end of the 

recruitment period. Of these trials the decision to stop early was due to poor recruitment 

in 11 of them. 

 

This review was updated in 2013 investigating trials which recruited participants between 

2002 and 2008, 73 trials were included in the analysis (Sully et al., 2013). Of these trials 

55% recruited to their original sample size target and 78% recruited 80% of their target 

sample size. This is an improvement over the figures seen in the previous review. 

However, extensions were still common with 45% of trials receiving an extension (Sully et 

al., 2013). These findings are reflected throughout the literature (Relton et al., 2010, 

Watson and Torgerson, 2006). Of multicentre trials published in the BMJ and the Lancet 
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between 2000 and 2001, 51% reported problems with recruitment these included; 

competing trials, problems with ethics, inaccurate incidence information, clinician 

resistance and a narrowly defined trial population (Puffer and Torgerson, 2003). 

 

If a trial sample size is not large enough, results may be less accurate, the power to find a 

difference will be reduced, and the trial results may be inconclusive (Altman, 1980). It is 

clear that a large amount of trials fail not due to lack of treatment efficacy but because of 

poor trial design and unexpected low recruitment rates. The Cooksey Review (2006) 

commissioned by Gordon Brown (the Chancellor of the Exchequer at the time) aimed to 

look at the best institutional arrangement for the new single fund for health research, the 

findings clearly reflect the conclusions of McDonald et al. (2006) and Sully et al. (2013) 

stating that; more work was needed to ensure that publicly funded health research is 

carried out in the most effective and efficient way (Cooksey, 2006). 

 

With large amounts of public money being invested every year, it is important for 

investigators who have been allocated funding to ensure the best use of the money is 

being made. The McDonald review showed over half of the trials which conducted a pilot 

study made changes to their recruitment strategy, demonstrating how pilot trials may 

assist in the design of the main trial. 

 

Having an accurate sample size calculation is important for effective allocation of public 

resources as well as ethical conduct. The results of any trial are subject to the possibility 

of error. At the end of a trial we could conclude that there is a difference between the 

two groups under investigation when in fact there is not; or we could conclude that there 

is no difference when in fact there is. A sample size calculation helps us to compute the 

minimum number of people we need to reduce the risk of these errors to a level we are 

willing to accept (Kirkwood and Sterne, 2003). 
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In order to perform a sample size calculation for a trial with a continuous outcome variable 

the investigator needs to have estimates of: 

 the acceptable level of Type I error, 

 the acceptable level of Type II error, 

 the allocation ratio of patients to the experimental and control group, 

 the variance of the primary outcome measure and,  

 the Minimum Clinically Important Difference (MCID).  

 

A Type I error is the probability of rejecting the null hypothesis when it is in fact true. In a 

superiority trial this would lead to the conclusion that there was a difference between the 

two treatment groups when in fact no difference exists in the true underlying population. 

A Type II error is the probability of not rejecting the null hypothesis when it is in fact false. 

In a superiority trial this would lead to a conclusion that there is no difference between 

the two treatment groups when in fact there is a difference in the overall population 

(Petrie and Sabin, 2013). These errors will be discussed further in Chapter 2. The variance 

is a measure of how spread out the data are from the mean value. The larger the variance 

the more spread out the data are (Petrie and Sabin, 2013). The MCID is: 

 

The smallest difference in score in the domain of interest which patients perceive 

as beneficial and which would mandate, in the absence of troublesome side 

effects and excessive cost, a change in the patient’s management (Jaeschke et al., 

1989, p.408). 

 

More simply, the minimum clinically important difference is the difference in the 

treatment response between the groups, which would cause a change in clinical practice. 

Although there are many methods available to formulate an estimate of the MCID (Rai et 

al., 2015) this value can be based on expert opinion. There are traditionally accepted 

levels of the Type I and II errors, 5% for Type I error and either 10 or 20% for the Type II 

error (Julious, 2009). However, when it comes to estimating the variance data from past 

trials or a pilot trial must be used. 
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A sample size justification is an important consideration in the planning of a clinical trial 

(Julious, 2009, Machin et al., 2008). Journals for example, the British Medical Journal 

(BMJ) (BMJ, 2012) and the Lancet (Lancet, 2012), require that any submission should 

follow the Consolidated Standards of Reporting Trials (CONSORT) guidelines (CONSORT, 

2012). The CONSORT guideline, point 7a, states that authors should provide details of how 

the sample size was determined (CONSORT, 2012). In addition ethical committees, for 

example the National Research Ethics Service (NRES), require a sample size justification 

(NRES, 2012) as well as funding bodies such as the NIHR RfPB (RfPB, 2012) and the HTA 

programme (HTA, 2012). The MRC (MRC, 2012c) in fact states that the requested sample 

structure and size should be sufficient to generate meaningful results, suggesting a power 

calculation could be required. All trials require a sample size justification but it may not 

always be practical to do a sample size calculation, this will be further discussed in Chapter 

3. 

 

It is important to consider why funders, journals and ethical committees require a sample 

size justification. Trials that are too small or too large can cause ethical issues (Altman, 

1980). For example, if there are too few participants you may not be able to answer the 

research question being investigated (Campbell et al., 2010). If the sample size is too small 

the probability that the trial will find a statistically significant result even if one exists (the 

power of the trial) will be low, therefore, patients are involved in a trial, which has little 

chance of having scientific relevance and validity. Secondly, due to the small sample size 

the confidence in the estimate of the interventions effect may be so wide that a difference 

of neither zero nor the MCID can be ruled out hence the results would be inconclusive 

(Halpern et al., 2002). Conversely, if the sample size is too large resources could be being 

wasted, such that more patients than necessary may be given a treatment, which will later 

be shown to be inferior or result in a delay in effective treatment being released on to the 

market (Altman, 1980). 
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Routinely conducting pilot trials could reduce the number of definitive trial failures and 

extensions by helping to identify problems early and therefore save money in the long 

run. More accurate calculation of the required sample size of a trial can help to stop the 

waste of resources that is caused by either inadequate sample size to fulfil the trial aims 

or over recruitment of patients to trials. The focus of this thesis will be on using pilot trials 

to estimate the required sample size of the main trial. 

 

1.6 Current Sample Sizes of Pilot Trials 

 

Section 1.4 looked at the definition of a pilot trial and the reasons why one might be 

conducted. This section will focus on how many people are typically recruited to a pilot 

trial (this topic will also be discussed in more detail in Chapters 2, 3 and 4). To address this 

question this section presents an audit, which investigated the current sizes of pilot and 

feasibility trials registered on the United Kingdom Clinical Research Network (UKCRN) 

database (Billingham et al., 2013). This project was carried out by a medical student whom 

I co-supervised during my PhD, the paper written from the project is presented in 

Appendix E. 

 

The UKCRN database was chosen for this audit as it contains the NIHR portfolio of England 

and the corresponding portfolios for Northern Ireland, Scotland and Wales. It is not 

compulsory for a trial to register on this database, however in doing so a trial receives the 

support of the clinical research network. 

 

The aim of the study was to investigate the sample size of ongoing pilot/ feasibility trials 

in the UK. The decision was made to search for both pilot and feasibility trial due to the 

results of the review presented in Section 1.4, when it was found that there are some 

differences between the two types of investigation. 

 

The UKCRN database was searched using the keywords 'pilot' or 'feasibility'. The inclusion 

criteria for this study were that trials were: 
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 Randomised controlled trials, 

 Currently recruiting participants, 

 Interventional, 

 Not based on healthy volunteers, 

 Not cluster randomised (as these tend to be large compared to individually 

randomised trials). 

 

The search yielded 513 trials, after the eligibility criteria were applied. Duplicates or trials 

with no data or contact information were removed, yielding a total of 79 trials left in the 

study. Of these 79 trials, 25 were labelled as feasibility, 50 were labelled pilot and 4 were 

labelled both pilot and feasibility by the investigators. This heterogenity reflects the 

review in Section 1.4 that while most researchers distinguish between the two terms 

there are researchers who believe them to be equivalent. The CONSORT diagram for this 

trial can be seen in Figure 1.1. 
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Figure 1.1: Flow of Trials Through the Review 

 

 

 

Of the trials analysed (n = 79), most of the trials had two treatment groups (86.1%), the 

majority of trials were of a health technology (75.9%), most of the trials in the review were 

from the public sector (59.5%) and 57.0% of the trials had a continuous outcome measure 

as their primary endpoint. These results can be seen in Table 1.1. 

 

Assessed for Eligibility

(n = 513) 

n = 178 (feasibility)

n = 335 (pilot)

Eligible (n = 84)

No data available  (n = 5)

n = 1 (feasibility)

n = 4 (pilot)

Analysed (n = 79)

n = 25 (feasibility)

n = 50 (pilot)

n = 4 (pilot and feasibility)

Excluded (n = 434) 

 Observational  
(n = 175) 

 Closed (n = 220) 
 Non-Randomised 

(n = 20) 
 Duplicates (n = 4) 
 Surveys (n = 2) 
 Cluster Randomised 

Trials (n = 8) 
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Table 1.1: Characteristics of the Trial in the Review 

Characteristic N (%) 

Number of Arms Two 68 (86.1%) 

 Three 10 (12.7%) 

 Four 1 (1.3%) 

Type of Trial Health Technology 60 (75.9%) 

 Drug 19 (24.1%) 

Type of Endpoint Dichotomous 31 (39.2%) 

 Continuous 45 (57.0%) 

 Time-to-Event 1 (1.3%) 

 Other 2 (2.5%) 

Funder Industry 13 (16.5%) 

 Public 47 (59.5%) 

 Charity 19 (24.1%) 

 

 

Looking at the sample sizes of these studies, the studies labelled pilot had a median 

sample size of 30 (IQR: 20-45) participants per arm, for feasibility studies the median 

sample size per arm was 36 (IQR: 25-50). On average the publicly funded trials were larger 

than industry trials with a median of 36 (IQR: 25-60) compared to 30 (IQR: 16-31) 

participants per arm respectively. The results also show that trials with a dichotomous 

outcome were larger on average than the trials with a continuous outcome measure, with 

36 (IQR: 25-50) compared to 30 (IQR: 20-50) patients per arm respectively. For the publicly 

funded pilot trials the median sample size per arm was 36 (IQR: 30-42) and 30 (IQR: 20-

60) for dichotomous and continuous outcomes respectively. These results along with the 

result for feasibility trials are presented in Table 1.2. 
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Table 1.2: Median Sample Sizes per Arm for Publicly Funded Trials 

Trial Type Type of Endpoint N Median (IQR) 

Pilot Dichotomous 6 36 (30-42) 

 Continuous 21 30 (20-60) 

Feasibility Dichotomous 9 50 (30-70) 

 Continuous 6 43 (15-60) 

 

 

The results of this review are relevant to this thesis as they show that most clinical trials 

have two arms, are investigating health technologies and are based on a continuous 

outcome measure. For the publicly funded trials it also showed that current pilot trial 

sample sizes are on average around 30 people per arm for trials where the primary 

endpoint was a continuous outcome measure, this idea will be revisited in Chapter 4. 

 

1.7 How Predictive of Main Trials are Pilot Trials 

 

In this chapter it has been established that prior to the main trial being conducted a pilot 

trial may be carried out for multiple reasons, one of which is to help with parameter 

predictions for a main trial sample size calculation. Once the initial sample size calculation 

has been completed to give the required number of evaluable patients needed at the end 

of the trial, several adjustments need to be made to this figure. 

 

When a clinical trial is being set up not everyone who is eligible to be entered into the trial 

will end up being randomised. In addition, some patients  entered into the trial will 

dropout before the trial completes. In order to know how many people should be 

approached to be in the trial we also need predictions of the proportion of patients 

eligible that will be randomised and the proportion that are randomised who will provide 

evaluable data. This section presents an audit of main trials and the pilot trials which 

precede them, which investigated how accurately pilot trials predict these quantities for 

the main trial. 
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The study aimed to look at the differences between the dropout rates and the ratio of 

randomised to eligible patients of pilot trials and their respective main trials. An audit of 

main trials with external pilot trials was carried out in two phases. The first phase was 

carried out as part of another PhD project (Knox et al., 2014) and the second part was 

carried out as part of a Wellcome Trust Summer Internship, which I helped to co-supervise 

during my PhD. 

 

Firstly, publicly funded RCTs published between 2004 and 2013 were collected from HTA 

monographs (Knox et al., 2014). HTA monographs are the clinical reports of trials that are 

funded by the HTA. The criteria for inclusion in this part of the study were single or multi-

centre randomised controlled trials that were: 

 Not stopped early, 

 Not an adaptive design (adaptive designs allow changes to be made to the 

design or statistical procedures of ongoing clinical trials) (Chow and Chang, 

2008), 

 Not cluster randomised, 

 Not an influenza trial, 

 Not a pilot trial. 

 

Trials that had a pilot trial then went forward to the next phase of data collection. From 

this initial data collection 561 HTA monographs were identified, 99 of which met the 

inclusion criteria. Of these trials , forty were judged to have a pilot trial at this stage, by 

reviewing the reports for references to a pilot trial. 

 

During the second phase these 41 RCTs and pilot trials were re-investigated; 17 were 

reassessed to not having a pilot trial, 5 had an internal pilot but no external pilot and 2 

had insufficient data. This left 16 trials where there was information on the main trial and 

the external pilot trial. Data was extracted on the dropout rate in the main trial and the 

pilot trial, the number of patients, which were eligible, and the number of patients 
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eventually randomised in each trial. The CONSORT diagram showing the flow of trials 

through this study can be seen in Figure 1.2. 
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561 HTA Monographs title 

and abstracts screened

102 RCTs screened

99 RCTs analysed

41 Pilot trials screened

16 Pilot trials analysed

459 reports excluded: 

Reports are not RCTs or 

are Cluster RCTs. 

3 RCTs excluded 

 1 pilot 

 2 influenza trials 

58 RCTs excluded for 

having no pilot trial 

25 trials excluded: 

 17 had no pilot trial 

 1 cluster RCT 

 5 internal pilot trials 

 2 with insufficient data 

Figure 1.2: Flow of Trials through Phases 1 and 2 of Study 
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There were 13 trials which had data for both the dropout rate in the pilot and the main 

trial. The median dropout rate in the pilot trials was 23.48% (IQR = 5.90-31.90). The 

median dropout rate in the main trials was was 10.79% (IQR = 5.84-28.04). Minimal bias 

was found as the average difference between the dropout rate in the pilot and the main 

trial was 4.40%, where the average dropout rate in the main trial was 4.40 percentage 

points (SD = 16.32) less than in the pilot trial. This can be seen in the Bland Altman plot 

displayed in Figure 1.3 and in Table 1.3. 

 

Figure 1.3: Bland-Altman Plot Comparing Percentage Dropout in the Pilot and Main Trial 

 

The median ratio of randomised to eligible patients for the pilot trials was 48.94% 

(IQR = 30.26 – 61.32%). The median ratio for the main trials was 60.90% (IQR = 45.74 – 

92.47%). Seven trials in the study had information on the ratio of randomised to eligible 

patients for both the pilot and the main trial. The mean of the differences between the 

two ratios was 14.86% (SD = 31.33) where the ratio of patients randomised to patients 

eligible is higher in the main trial than the pilot. This shows that on average main trials in 

the study had a higher rate of converting eligible patients into randomised patients than 
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the corresponding pilot trial. These results are displayed in the plot shown in Figure 1.4 

and Table 1.3. 

 

 

 

Also of interest to the research of this thesis is the ability of pilot trials to predict the 

variance in the main trial. Only three trials had measurements of standard deviation for 

both the pilot and the main trial. Although the sample size is very small an initial 

investigation of how similar the standard deviation is in the pilot and the main trial 

showed that there was very little bias overall. The median in the pilot was 8.74 (IQR = 1.70, 

19.30). The median standard deviation in the main trial was 3.64 (IQR = 1.39, 23.80). The 

mean of the differences between the standard deviations of pilot and main trials was -

0.30 (SD = 4.80) where the standard deviations were slightly higher in the pilot trial 

compared to the main trial. These results can be seen in Figure 1.5 and Table 1.3.  

 

On average there is minimal bias in the prediction of the standard deviation in the main 

trial from the pilot trial. However the results are highly variable and only have data from 
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three trials. This issue of the imprecision of the variance estimate from a pilot trial will be 

further considered and discussed throughout this thesis. 

 

Figure 1.5: Bland-Altman Plot Comparing Standard Deviation between the Pilot and the Main Trial 

 

 

Table 1.3: Results Comparing the Pilot to the Main Trial 

Parameter N Pilot Main Difference 

Dropout 

Rate 

13 Mean = 21.12 

SD = 15.99 

Median = 23.48  

IQR = (5.90, 31.90) 

Mean = 16.72 

SD = 11.66 

Median = 10.79  

IQR = (5.84, 28.04) 

Mean = -4.40  

SD = 16.32 

Median = -1.80 

IQR =(-17.52, 8.49) 

Randomised 

to Eligible 

Ratio 

7 Mean = 50.36 

SD  = 22.39 

Median = 48.94 

IQR = (30.26, 61.32) 

Mean = 65.22 

SD = 23.24 

Median = 60.90 

IQR = (45.74, 92.47) 

Mean = 14.86 

SD = 31.33 

Median =11.96 

IQR = (-11.54, 38.68) 

Standard 

Deviation 

3 Mean = 9.91 

SD = 8.86 

Median = 8.74 

IQR = (1.70, 19.30) 

Mean = 9.61 

SD = 12.34 

Median = 3.64 

IQR =(1.39, 23.80) 

Mean = -0.30 

SD = 4.80 

Median = -0.31 

IQR = (-5.10, 4.50) 
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1.8 Analysing Pilot Trials 

 

Traditionally during the analysis of a trial a hypothesis test is undertaken such that a 

P-value is calculated and compared to the 5% significance level to determine whether the 

difference between the treatments is statistically significant. If the P-value is above 0.05 

we do not reject the null hypothesis; if the P-value is less than 0.05 we reject the null 

hypothesis at the 5% level (hypothesis testing is discussed further in Chapter 2) (Pocock, 

1983).  

 

Some authors have suggested using a hypothesis test for the analysis of a pilot trial but 

with the significance level raised. For example, using a Type I error rate of 0.2 (Stallard et 

al., 2005) or 0.25 (Schoenfeld, 1980), these will be discussed further in Chapter 3. 

 

Authors seem to be willing to accept a higher probability of Type I errors in pilot trials than 

main trials. Type I errors have different implications in pilot trials compared to main trials. 

In the main trial a Type I error would result (for a superiority trial) in an incorrect 

conclusion of experimental treatment superiority over the control treatment. In a pilot 

trial a Type I error would lead to a main trial being carried out unnecessarily, however, 

this mistake can be corrected at the main trial stage (Stallard et al., 2005). 

 

For pilot trials it has been suggested that it may be more informative to present the 

treatment effect and a range of possible responses (a Confidence Interval (CI)) (Lancaster 

et al., 2004, Thabane et al., 2010, Julious and Patterson, 2004). This CI need not be a 

conventional 95% CI and other widths may be considered (Lee et al., 2014). The CI should 

be interpreted in reference to the MCID and the line of no effect. If the CI contains both 

the MCID and the line of no effect then either is possible, there could be no difference 

between the treatments or there could be a difference larger than the MCID (Lee et al., 

2014).  
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This procedure is demonstrated in the work published in Lee et al. (2014), (contibuted to 

during my PhD, journal paper presented in Appendix E) for a trial comparing the effects 

of two different methods of treating leg ulcers on the General Health (GH) dimension of 

the SF-36 questionnaire (The SF-36 is a 36 question tool measuring several quality of life 

dimensions including: physical functioning, role limitations due to physical health, role 

limitations due to emotional problems, energy/fatigue, emotional wellbeing, social 

functioning, pain, general health and perceived change in health) (RAND, 2015). The 

intervention was clinic based four layer compression bandaging and the control was usual 

care provided by district nurses at home. The trial recruited 233 patients with venous leg 

ulcers, 120 to the intervention group and 113 to the control group. The paper used the 

first 40 patients to mimic a pilot trial, 31 of which had complete data for 3-month SF-36 

GH dimension (17 in intervention group and 14 in control group).  

 

Table 1.4 shows the results of the pilot trial, the intervention group (n=17) had a mean 

GH score of 68.0 (SD = 17.6) and the control group had a mean score of 55.1 (SD = 19.8) 

giving a treatment difference of 12.8 in favour of the intervention.  

 

Table 1.4: Mean SF-36 General Health Dimension Score for the Intervention and Control Groups 

Intervention (n = 17) Control (n = 14) Treatment Difference (95% CI) 

68.0 (SD = 17.6) 55.1 (SD = 19.8) 12.8 (-0.8 to 26.6) 

 

 

Figure 1.6 demonstrates how plotting a variety of CIs alongside each other can help to 

display the strength of preliminary evidence, the size and direction of the treatment 

effect. In this example the MCID was assumed to be 5 points difference in the SF-36 GH 

dimension scores three months post randomisation.  
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Figure 1.6: Displaying a Range of Confidence Intervals 

 

Source: (Lee et al., 2014) 

 

 

The 95% CI includes both zero and the MCID giving inconclusive evidence. The 80% and 

90% CIs both exclude zero and contain the MCID therefore, at these levels there is 

evidence of a treatment effect. This style of figure would be useful for decision making at 

the end of the pilot trial stage. The analysis based on confidence intervals would lead to 

the need for a different sample size justification than one based on a power calculation 

this will be discussed in more detail in Chapter 3. 
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1.9 Rationale and Aims 

 

From the work presented in this chapter it can be seen that although randomised 

controlled trials are considered the gold standard for assessing the effectiveness of a 

novel intervention, they can be underpowered for the primary outcome measure if they 

fail to recruit participants. Only 55%  (n = 40) of 73 publicly funded trials in the review by 

Sully et al. (2013) managed to recruit their original target sample size and 45% (n = 33) of 

trials received an extension (Sully et al., 2013).  

 

A pilot trial can help to predict more accurately parameters required for the sample size 

calculation such as the variance of the outcome and the dropout rate (Section 1.7) and 

highlight issues early on in the trial development. Error rates have traditionally used 

acceptable values and the MCID can be derived from expert opinion. One of the main aims 

of a pilot may be to estimate the variance of the outcome measure likely to be observed 

in the main RCT. This could help to stop the waste of resources through either, inadequate 

sample size to fulfil a trials aims or over recruitment of patients to trials. This is especially 

important for publicly funded clinical trials which rely on public money. Effective 

allocation of public resources is of critical concern as well as the ethical conduct of clinical 

trials. While the methodology for confirmatory trials is well established (Pocock, 1983) 

(discussed further in Chapter 2) there is little guidance for conducting pilot trials (Stallard 

et al., 2005). 

 

The lack of guidance is reflected in the results presented in Section 1.6 which show that 

although the average sample size of a pilot trial with a continuous outcome is 30, the 

spread is highly variable (IQR = 20-60). Compared to the work investigating required 

sample sizes for RCTs relatively little has been done to explore required sample sizes for 

pilot trials. Additionally from Section 1.6 it can be seen that 57% of trials in the UKCRN 

database used a continuous outcome measure as their primary endpoint. This thesis will 

focus on methdology for trials with a continuous outcome measure which reflects the 

majority of pilot trials. 
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The focus of this thesis will be to investigate the sample size requirements for publicly 

funded pilot trials of randomised controlled superiority trials with continuous outcome 

measures where the aim of the pilot primarily, is to provide an estimate of the variance 

for use in the main trial sample size calculation. As stated earlier, the thesis addresses the 

following objectives, to 

 Provide background information on the area of pilot trials, including definitions, 

current sample sizes and analysis methods (Chapter 1, 3 and 6) 

 Investigate how using an estimate of the variance from a pilot trial to plan a main 

trial affects the power and sample size of the main trial (Chapter 4 and 7) 

 Explore methods of setting a sample size for pilot trials (external and internal) 

which aim to minimise the overall trial sample size (Chapter 4 and 7) 

 Examine how the relative cost of the external pilot versus the main trial affects 

the sample sizes of the two trials to minimise the overall trial cost (Chapter 5) 

 

The importance of these issues and how they will be addressed is discussed further in the 

literature reviews presented in Chapters 2, 3 and 6. 

 

1.10 Outline of Thesis 

 

This chapter began by covering some of the background information around pilot trials 

and clinical trial design and conduct. Developments in the sample size justifications for 

pilot trials are presented and the effects of pilot trials on main trial power and sample size 

for superiority trials with a Normally distributed continuous outcome measure are 

discussed in the subsequent chapters. 

 

Chapter 2 examines the current methods for calculating the required sample size for the 

main trial. The methods described in this chapter are used throughout the thesis to 

calculate the required sample size for the main trial. The effect of using a pilot trial to 

estimate the parameters in the sample size calculation is also discussed in this chapter 

and investigated further throughout the thesis. 
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Chapter 3 discusses the literature on how to set the sample size for external pilot trials 

and introduces how the main trial sample size depends on the pilot trial sample size. The 

review also identifies the problems with the current methodology and states the intended 

scheme of work for the external pilot trial methodology chapters, Chapters 4 and 5. 

 

Chapter 4 contains methodological work and results surrounding the setting of sample 

sizes for external pilot trials. To begin with the discussion is around how using an estimate 

of the variance from an external pilot trial affects the power and sample size of the main 

trial; before moving on to investigating how to choose an ‘optimal’ pilot trial sample size 

to minimise the overall size of the trial, i.e. the pilot and the main study together. This 

chapter identifies pilot trial sample sizes which minimise the overall sample size of the 

pilot and main trial together, when allowing for the imprecision of predicting the variance 

from a pilot trial. 

 

Chapter 5 examines the effect on the optimal pilot study sample size if we allow for the 

imbalance in the costs between the pilot and the main trial and look to minimise costs 

instead of number of patients. Extending the work presented in Chapter 4 this chapter 

identifies pilot trial sample sizes which minimise the overall financial cost of the pilot and 

main trial together, when allowing for the imprecision of predicting the variance from a 

pilot trial. 

 

Chapter 6 reviews the literature surrounding internal pilot trials. A definition of internal 

pilot trial is given as well as reasons why an internal pilot trial might be conducted. The 

review then focuses on the required size of an internal pilot trial, the proportion of the 

trial, which is required to be included in the internal pilot trial and the various methods 

for conducting a sample size re-estimation at the interim. This review introduces concepts 

which are investigated further in Chapter 7. 

 

Chapter 7 addresses some of the issues surrounding the conduct of an internal pilot trial. 

The chapter investigates the effect conducting an internal pilot trial has on the expected 
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power and sample size of the main trial. Furthermore, the sample size to be used for an 

internal pilot trial is also explored, looking to minimise the overall trial sample size as in 

previous chapters. Addtionally, this chapter looks at the effect of conducting both an 

external pilot trial and an internal pilot trial on the expected power and sample size of the 

main trial. 

 

Chapter 8 provides a summary of the conclusions of this thesis and discusses the results, 

implications and limitations of this work as well as ideas for possible areas of investigation 

for future work. 
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Chapter 2 

 

 

Main Trial Sample Size Calculations 

 

 

2.1 Introduction 

 

It was highlighted in Chapter 1 how a sample size calculation is an important step in the 

design and set up of a clinical trial. A sample size calculation should reflect how the trial 

will be analysed (Campbell et al., 2010). The analysis of a trial depends on the trials 

objective, design and endpoint. For example, sample size calculations would be different 

if the trial is investigating superiority, equivalence or non-inferiority or whether the trial’s 

endpoint is binary, survival or continuous etc. (Lesaffre, 2008). Descriptions of two 

statistical tests commonly used as a basis for sample size calculations, their 

implementation and reasons for choosing between them, can be found in Appendix A. 

Additionally, in context with this PhD the sample size and the analysis would also be 

different depending on whether the trial is a pilot trial or we are actually conducting a 

definitive assessment (Thabane et al., 2010). 

 

The review in this chapter describes sample size calculations for a main clinical trial. 

Initially introducing the ideas, terminology and approaches to hypothesis testing and 

issues surrounding sample size calculations, the review then goes on to focus on methods 

for sample size calculations when the population variance is unknown and will be based 

on a sample estimate. Methods for sample sizes for a main trial are described here as they 

are used in Chapters 4, 5 and 7 in calculating main trial sample sizes in order to enable the 
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investigation of the method to minimise the sample size of the overall trial, the pilot and 

the main trial together. The concentration in this chapter is on sample size calculations 

for individually randomised superiority trials with Normally distributed endpoints and 

independent treatment groups. 

 

The structure of this chapter is as follows: Section 2.2 describes the method of hypothesis 

testing and discusses some parameters which affect the required sample size of a trial; 

Section 2.3 explains the concept of a probability distribution function and discusses the 

types which will be used in this thesis. Section 2.4 discusses sample size formulae for 

superiority trials with a Normally distributed endpoint; Section 2.5 discusses how we 

might derive estimates of the parameters required for the sample size calculation. Finally, 

Section 2.6 provides a summary of this chapter.  

 

2.1.1 Aims of Chapter 

 

This chapter aims to review sample size calculation methods for superiority randomised 

controlled trials with independent parallel groups and a Normally distributed continuous 

outcome measure. In order to do so firstly some terminology and basic statistical ideas 

must be covered including: 

 Hypothesis testing and, 

 Probability distributions. 

 

Before outlining: 

 Sample size calculation formulae and, 

 How to derive parameter estimates for use in the sample size calculation. 

 

The methods reviewed in this chapter will be used throughout the thesis to enable the 

calculation of main trial sample sizes. 
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2.2 Hypothesis Testing 

 

A clinical trial is conducted to facilitate the investigation of a research question. The term 

hypothesis testing describes a set of methods, which are used to analyse the findings from 

clinical trials. The following sections describe the methods of hypothesis testing for a 

superiority trial with a Normally distributed endpoint.  

 

2.2.1 Setting up the Hypotheses 

 

Prior to the start of the trial based on the research question we set up the hypotheses 

that we wish to investigate: the null hypothesis and the alternative hypothesis. The null 

hypothesis is usually what we wish to disprove i.e. that the mean difference between the 

treatment effects is zero. The alternative hypothesis is usually what we are hoping to 

show in our trial i.e. that the difference is not equal to zero. That is, 

 

𝐻0: 𝜇 =  𝜇1 −  𝜇2 = 0    𝑎𝑛𝑑    𝐻1: 𝜇 =  𝜇1 − 𝜇2 ≠ 0,    

 

where 𝜇1  is the population mean outcome in group 1 and 𝜇2  is the population mean 

outcome in group 2 and hence μ is the population treatment effect (this could also be 

extended for cases where there are more than two groups). In fact we hope that the 

difference will be some minimum clinically relevant difference, or greater (Julious, 2009).  

A trial set up with a null and alternative hypothesis of this form is called a superiority trial 

(Gonzalez et al., 2009). 

 

If a direction of the treatment effect is specified in the alternative hypothesis, then the 

test is termed one-tailed. More commonly, no direction of effect is specified in the 

alternative hypothesis this test would be what we call two-tailed (Altman, 1990). 
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2.2.2 Type I and Type II Errors 

 

The null and alternative hypotheses relate to the population values of the mean 

treatment effects. However, the data we collect is only a sample from this larger whole 

population of interest. If we were to collect data from another sample of patients the 

results may differ. We therefore may by chance falsely see a difference greater than zero 

between the groups in our sample even if the actual difference in the whole population is 

zero, conversely we also may see no difference between treatments in the sample when 

one truly exists in the population. 

 

When analysing the results of a trial there are two errors, which may occur, as shown in 

Table 2.1. You may fail to reject the null hypothesis when it is in fact false or you may 

reject the null hypothesis even though it is in fact true. 

 

Table 2.1: Table to Illustrate the Idea of Type I and Type II Errors 

  The Truth 

  𝑯𝟎 true 𝑯𝟏 true 

Decision 

Made 

Fail to Reject 𝑯𝟎  Error II 

Reject 𝑯𝟎 Error I    (Power) 

Source: (Julious, 2009) 

  

Rejecting the null hypothesis even though it is true is what we call a Type I error. The 

probability of a Type I error is denoted by 𝛼. Failing to reject the null hypothesis when it 

is false is what we call a Type II error. This is denoted by, 𝛽. This can be written as, 

 

𝛼 = ℙ(𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0| 𝐻0 𝑡𝑟𝑢𝑒)    𝑎𝑛𝑑    𝛽 = ℙ(𝑓𝑎𝑖𝑙 𝑡𝑜 𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0| 𝐻1 𝑡𝑟𝑢𝑒).     

 

The consequence of a Type I error in a definitive trial is that a new treatment may enter 

the market or have results published, after having been falsely declared superior. (Julious 
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et al., 2010) The result of a Type II error is the failure to identify an effective treatment 

(Chow et al., 2003) 

 

In reality, instead of using the value of the probability of a Type II error, 𝛽 we often refer 

to the value, (1 − 𝛽), which is called the power. The power is the probability of rejecting 

𝐻0 when it is in fact false. Hence, in a superiority trial investigating whether one treatment 

is better than the other, this equates to the probability of finding a difference when one 

truly exists,  

 

 ℙ(𝑟𝑒𝑗𝑒𝑐𝑡 𝐻0| 𝐻1 𝑡𝑟𝑢𝑒) = 1 − 𝛽 . (2.1)  

 

The investigator for a trial can select the values of 𝛼 and 𝛽, which they are willing to 

accept. It is generally desirable to keep the risk of a Type I error low at a level no higher 

than 5% (Wittes, 2002). The risk of a Type II error is usually allowed to be greater than 

that of a Type I error, set at between 0.1 and 0.2 or a power of between 80 - 90% (Julious 

et al., 2010) hence, a high chance of detecting a worthwhile effect if it exists (Altman, 

1990). 

 

Due to the risk of errors our data must show a difference some amount from zero for us 

to conclude there is a difference between the groups in the population (i.e. reject the null 

hypothesis). The difference that is required is defined by the type of test and the 

significance level or the Type I error rate for the main trial. The Type I and Type II errors 

are important as they will influence the size of the main trial and as a consequence, as 

described in Chapters 4, 5 and 7, the size of the pilot trial. 
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2.2.3 The P-value 

 

If the results from our sample (or results more extreme) have a probability of less than 

the significance level of being seen, if the null hypothesis is true and the underlying 

population difference is really zero, we say that the results are statistically significant and 

that there is sufficient evidence to reject the null hypothesis at that significance level. This 

probability, the probability of seeing our results or results more extreme if the null 

hypothesis is true is what we call the P-value (Swinscow and Campbell, 2002). 

 

The smaller the P-value the stronger the evidence against the null hypothesis (Kirkwood 

and Sterne, 2003). The observed results can be summarised by a value called the test 

statistic (to be described further in Section 2.2.4). The conventional cut off for the test 

statistic to be unlikely to be from a distribution under the null hypothesis is usually the 5% 

level. That is if the P-value is less than 0.05 we reject the null hypothesis that there is no 

difference. If the P-value is greater than 0.05 we conclude that the difference could have 

arisen by chance and therefore we do not reject the null hypothesis (Swinscow and 

Campbell, 2002). Hypothesis tests allow us to compute this P-value. 

 

P-values are not always required in a pilot trial though they are frequently reported (Arain 

et al., 2010). Chapter 3 discusses the issues of using P-values in pilot trials, the situations 

when they should or should not be used and the options, which are available for their 

interpretation. 

 

2.2.4 Test Statistics 

 

To calculate the P-value first we calculate what is called a test statistic. When comparing 

two independent treatment groups the test statistic is calculated from (Altman, 1990), 

 

 
test statistic =  

x̅𝐴 −  x̅𝐵

SE(x̅𝐴 −  x̅𝐵)
, 

(2.2)  
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where x̅𝐴 is the sample mean for treatment group A, x̅𝐵 is the sample mean for treatment 

group B and SE(x̅𝐴 − x̅𝐵) is the standard error of the difference between the sample 

means. The standard error of the difference between two means is calculated from the 

following formula, 

 

 
𝑆𝐸(�̅�𝐴 − �̅�𝐵) =   𝑠𝑝√

1

𝑛𝐴
+

1

𝑛𝐵
, 

 

(2.3)  

 

where 𝑠𝑝 is the pooled standard deviation estimate between the two treatment groups 

(defined below), �̅�𝐴  is the mean treatment difference in group A, �̅�𝐵  is the mean 

treatment difference in group B, 𝑛𝐴 is the number of subjects in group A and 𝑛𝐵 is the 

number of subjects in group B. The pooled standard deviation estimate is calculated from, 

 

 
𝑠𝑝 =

(𝑛𝐴 − 1)𝑠𝐴
2 + (𝑛𝐵 − 1)𝑠𝐵

2

(𝑛𝐴 + 𝑛𝐵 − 2)
, 

(2.4)  

 

where 𝑠𝐴
2is the variance estimate from group A and 𝑠𝐵

2 is the variance estimate from 

group B.  

 

The value of the test statistic is compared to the appropriate distribution table (to be 

discussed in Section 2.3) to find the probability of this test statistic occurring under the 

null distribution i.e. when the treatment difference is equal to zero, the P-value (Swinscow 

and Campbell, 2002).  

 

In the context of this PhD it is the estimation of 𝑠𝑝2 which is the main objective of a pilot 

trial.  The imprecision in this estimate is quantified by the degrees of freedom with which 

it is estimated, later it will be described how this imprecision can be accounted for when 

designing a main trial. In Chapters 4, 5 and 7 this approach will be used to investigate the 

required sample size of a pilot trial when the main trial will account for the imprecision in 

the variance estimate from the pilot trial.  



42 
 

 

2.2.5 Confidence Intervals 

 

A confidence interval is a range of plausible values in which the true value of the mean 

difference is likely to lie. Using a 95% confidence interval would mean that under repeated 

sampling 95% of the confidence intervals would contain the unknown population 

parameter value (Swinscow and Campbell, 2002). A confidence interval should be 

presented alongside the result of a hypothesis test (the P-value), to aid in the 

interpretation of the size and direction of the treatment effect and to allow comparison 

to the MCID (du Prel et al., 2009). Although the 95% level is the usual confidence level 

used when calculating confidence intervals it is possible to calculate them using other 

confidence levels as highlighted (in work undertaken while doing this PhD) by Lee et al. 

(2014) and presented in Chapter 1. 

 

2.2.6 Statistical Significance versus Clinical Relevance 

 

Rejecting the null hypothesis and concluding that there is a difference between the two 

groups does not mean that the difference seen between the groups should be considered 

relevant clinically.  Rejecting the null hypothesis in a trial means you have shown the 

difference to be statistically significantly different from zero; however, the actual 

difference may not be different enough to be clinically relevant. It may be that one or 

many of the observed values of the parameters which affect the required sample size 

differ from the predicted values in a way which would reduce the required sample size 

and therefore the trial may have more power than originally planned. Alternatively, the 

trial could have recruited more subjects than the target sample size either through over-

recruitment or through dropout being less than predicted.  

 

For a treatment effect to be considered clinically relevant the effect should be greater 

than or equal to the MCID specified in the trial protocol (Stratford, 2010). This 

consideration of the MCID as well as the value of no difference is similar to the analysis 
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method using the graph in Figure 1.6 in Chapter 1. Figure 2.1 shows an example of using 

CIs to assess the statistical and clinical relevance of a treatment effect. For Trial 1 the CI 

crosses zero which indicates no effect and the dotted line which represents a treatment 

effect of the MCID, therefore for Trial 1 we would conclude that the result is not 

statistically significant but it is potentially clinically relevant. For Trial 2 the CI crosses the 

no effect line and does not cross the MCID line therefore, we would conclude that the 

treatment effect is not statistically significant or clinical relevant. For Trial 3 the line is 

above the no effect line and crosses the MCID line, therefore we would conclude that the 

treatment effect is statistically significant and potentially clinically relevant. For Trial 4 the 

lies wholly above the line of no effect and the MCID line, this implies that the treatment 

effect is both statistically significant and clinically relevant. Trial 5 shows the possibility of 

having a confidence interval, which lies between the line of no difference and the MCID 

so that the results of the trial are considered statistically significant but not clinically 

relevant. By sufficiently powering a trial we hope to avoid situations like Trial 6 where the 

difference between the two groups is estimated to be larger than the MCID however, we 

do not have enough data to show that this difference is statistically significant. 
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Figure 2.1: Using Confidence Intervals to Assess Clinical Relevance 

 

 

Adapted from (Stratford, 2010) 

 

 

2.3 Probability Distributions 

 

If we have a set of events, which are mutually exclusive and contain all possible events, 

the sum of their probabilities is one. The set of these probabilities make up a probability 

distribution called the probability density function (pdf) sometimes denoted 𝑓(𝑦), where 

Y is a random variable and its realisation is denoted y. These distributions tend to follow 

patterns or recognisable distributions (Bland, 2000). Some of the more common 

distributions for continuous data are discussed below. 
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The density is a measure of the probability for a given value; however, due to the infinite 

number of possible values the probability of any single value will be zero. Instead we can 

calculate the probability of an interval in the pdf. The probability of an interval is the area 

under the corresponding part of the pdf (Dalgaard, 2008). Consider for example, a random 

variable Y, the probability of being in the interval (a, b) would be found from, 

 

 
𝑃(𝑎 ≤ 𝑌 ≤ 𝑏) =  ∫ 𝑓(𝑦)𝑑𝑦

𝑏

𝑎

. 
(2.5)  

 

For the random variable Y the probability of being in the interval (- , b) or being b or ∞

less, is called the cumulative density function (cdf) sometimes written 𝐹(𝑦) (Dalgaard, 

2008), 

 

 
𝑃(𝑌 ≤ 𝑏) =  𝐹(𝑦) = ∫ 𝑓(𝑦)𝑑𝑦

𝑏

−∞

. 
(2.6)  

 

2.3.1 The Normal Distribution 

 

The Normal distribution is used to model continuous data that have a symmetric 

distribution (Dobson, 2001). Many variables can be described approximately by the 

Normal distribution; including many health-related measures for example, height, weight 

and blood pressure (Swinscow and Campbell, 2002). 

 

This distribution is relevant to this PhD as it appears in sample size calculations for 

superiority trials where the data are Normally distributed, as such the details given here 

are used in the methodological work presented in Chapters 4, 5 and 7. 

 

The Normal distribution can be described by two parameters: the mean, µ and the 

variance, 𝜎2and is often written as N(µ, 𝜎2). Figure 2.2 shows a diagram of an example of 

a Normal distribution. The shape of it is often described as bell-shaped as it peaks in the 
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middle around the mean and the spread of the distribution depends on the variance 

(Kirkwood and Sterne, 2003).  

 

Figure 2.2: The Normal Distribution Probability Density Function 

 

 

The probability density function of the Normal distribution with mean µ and variance 𝜎2 

is given by, 

 

 
𝑓(𝑦) =

1

√2𝜋𝜎2
 𝑒𝑥𝑝 (

−(𝑦 − 𝜇)2

2𝜎2 ). 
(2.7)  

 

The pdf of the Normal distribution gives the height of the curve, 𝑦 is any value on the 

horizontal axis, exp()  is the exponential function and 𝜋  is the mathematical constant 

(approximately 3.14159) (Kirkwood and Sterne, 2003). The cdf of the Normal distribution 

is commonly denoted as Φ(𝑦). 

 

The Standard Normal distribution has a mean equal to zero and a standard deviation equal 

to one; it has been tabulated in terms of the cdf of the distribution. The one-sided P 

percentage point of the distribution is the value Y such that there is a probability P% of an 
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observation from the distribution being greater than or equal to Y i.e. one minus the cdf 

of the distribution up to the value Y (this idea is used to calculate a one-sided P-value for 

a Z-test). The two-sided P percentage point is the value of Y such that there is a probability 

P% of an observation being greater than or equal to Y or less than or equal to –Y (this idea 

would be used to calculate a two-sided P-value for a Z-test) (Bland, 2000). The details of 

the Z-test are presented in Appendix A. 

 

Changing the mean of a Normal distribution would move the distribution positively or 

negatively along the x-axis. Changing the variance of the Normal distribution would alter 

the width of the distribution; if we decrease the variance the distribution would become 

taller and narrower, whereas if we increase the variance the distribution would become 

shallower and wider (Kirkwood and Sterne, 2003). 

 

We can change any Normal distribution to the Standard Normal distribution by 

subtracting the mean of the distribution from each observation and dividing by the 

standard deviation. For example, 

 
𝑍 =  

𝑦 −  𝜇

𝜎
, 

(2.8)  

 

where 𝑦 is the original data with mean 𝜇 and standard deviation 𝜎, this formula gives the 

corresponding Z-score (position on the x-axis if that data point had arose from the 

Standard Normal distribution). This idea is used in hypothesis testing, discussed in Section 

2.4 where our results are transformed to the Z-score so that the P-value may be calculated 

(Kirkwood and Sterne, 2003). 

 

An important property of the Normal distribution is that a range of plus or minus one 

standard deviation from the mean will include approximately 68% of the observations, a 

range plus or minus two standard deviations from the mean will include about 95% of the 

observations additionally, adding and subtracting three standard deviations from the 

mean will provide a range which includes around 99.7% of the observations (Crawley, 
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2015). This property is essential to the theory behind confidence intervals, as it can be 

shown that the sampling distribution of a mean is Normally distributed (Daly and Bourke, 

2008). 

 

2.3.2 The Chi-squared Distribution 

 

The central chi-squared distribution is formed by the sum of the squares of 𝑛 independent 

random variables which all follow a Standard Normal distribution. If, 

 

𝑍𝑖  ~ 𝑁(0,1), 

then, 

 

 

∑ 𝑍𝑖
2~ 𝜒2(𝑛)

𝑛

𝑖=1

 , 

(2.9)  

 

where 𝜒2(𝑛) denoted the chi-squared distribution with n degrees of freedom (Dobson, 

2001). Degrees of freedom are the number of independent pieces of information we have. 

In general this might be the sample size minus the number of constraints in a calculation, 

which may be the parameters that have to be estimated (Dalgaard, 2008). For example 

the sample variance for a single arm has 𝑛 − 1 degrees of freedom because we have to 

calculate the sample mean in order to estimate it. Once we have calculated the sample 

mean we would only need to know 𝑛 − 1 of the data points to calculate the final value, 

therefore we say there are 𝑛 − 1 degrees of freedom. The sample variance for a two-arm 

trial would have 𝑛 − 2 degrees of freedom, as we would need to calculate the sample 

mean for both groups to estimate the variance. 
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The pdf of the chi-squared distribution is given by, 

 

 

𝑓(𝑦) =
𝑦

𝑘
2⁄ −1 𝑒𝑥𝑝(

−𝑦
2⁄ )

2
𝑘

2 ⁄ Γ (
𝑘
2)

 , 

(2.10)  

 

where Γ (
𝑘

2
) = ∫ 𝑡

𝑘

2
−1exp (−𝑡)

∞

0
 𝑑𝑡 , the Gamma function (Abramowitz  and Stegun, 

1965), 𝑦 is a random variable and 𝑘 the number of degrees of freedom. The shape of the 

chi-squared distribution varies depending on the number of degrees of freedom; this is 

displayed in Figure 2.3. 

 

Figure 2.3: The Chi-squared Distribution Probability Density Function with Varying Degrees of 

Freedom 

 

 

As 𝑛 and hence the number of degrees of freedom increases the distribution tends to a 

Normal distribution, from the central limit theorem (Bland, 2000). 
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If 𝑌𝑖, … , 𝑌𝑛 are independent random variables where, 

 

𝑌𝑖  ~ 𝑁(𝜇𝑖 , 𝜎𝑖), 

then, 

 

 

∑ (
𝑦𝑖 −  𝜇𝑖

𝜎𝑖
)

2

 ~ 𝜒2(𝑛, 𝜆)

𝑛

𝑖=1

, (2.11)  

 

because each of the variables 𝑍𝑖 =
𝑦𝑖− 𝜇𝑖

𝜎𝑖
 ~ 𝑁(0,1). The distribution of the sum of the 

𝑌𝑖 ’s, where 𝑌𝑖 = 𝑍𝑖 +  𝜇𝑖  is called the non-central chi-squared distribution, denoted by 

𝜒2(𝑛, 𝜆)  with n degrees of freedom and non-centrality parameter  𝜆 =  ∑ 𝜇𝑖
2  (Bland, 

2000). 

 

It can be shown that the sampling distribution of the sample variance follows a 

chi-squared distribution on, 𝑘 = (𝑛 − 1) degrees of freedom where 𝑛 is the sample size 

(Hiorns, 1971). Therefore a one-sided upper confidence limit for the variance 𝑠2 can be 

found from, 

 

 
𝑠𝑈𝐶𝐿

2 =  [
𝑘

𝜒1−𝑋,𝑘
2 ] 𝑠2 , 

(2.12)  

 

where 𝑠2 is the (pooled) sample variance estimate with 𝑘 degrees of freedom and 𝜒1−𝑋,𝑘
2  

denotes the 1 − 𝑋 percentile of the chi-squared distribution with 𝑘 degrees of freedom 

(Kieser and Wassmer, 1996). This one-sided confidence interval will be used later in this 

chapter to define a method which recognises the imprecision involved in estimating the 

variance and is also used throughout the calculations presented in Chapter 4, 5 and 7. 
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2.3.3 The t-distribution 

 

The t-distribution is the ratio of two independent random variables where the numerator 

follows a standard Normal distribution and the denominator is the square root of a central 

chi-squared distribution with k degrees of freedom. The t-distribution is also said to have 

𝑘 degrees of freedom. Therefore,  

 

𝑇 =  
𝑍

√𝑌2

𝑘⁄

 ~ 𝑡(𝑘), 

 

when 𝑍~ 𝑁(0,1) and 𝑌2~ 𝜒2(𝑘) and they are independent (Dobson, 2001). The pdf of 

the t-distribution is given by, 

 

 

𝑓(𝑦) =  
Γ [

1
2

(𝑘 + 1)]

√𝑘𝜋 Γ (
1
2 𝑘) (1 +  

𝑦2

𝑘
)

(𝑘+1)
2⁄

 , 

(2.13)  

 

where 𝑘 is the number of degrees of freedom and Γ is the gamma function. 

 

The shape of the t-distribution is also dependent on the number of degrees of freedom 

and as this increases the t-distribution tends to the Normal distribution. The shape of the 

t-distribution can be seen (Figure 2.4) to be very similar to the Normal distribution but it 

is slightly thicker at the tails with a shallower peak. 
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Figure 2.4: The T-distribution Probability Density Function with Varying Degrees of Freedom compared 

to the Normal Distribution 

 

 

The sampling distribution of the mean is Normal and the sampling distribution of the 

variance follows a chi-squared distribution, therefore the ratio of a sample mean and its 

standard error will follow a t-distribution (Bland, 2000). This result is used in the method 

presented as the non-central t-distribution later in this chapter, which is used throughout 

the methodological work presented in Chapters 4, 5 and 7. 

 

The non-central t-distribution is a t-distribution that is not centred around zero which can 

be expressed as, 

 

𝑇 =  
𝑍 +  𝜆

√𝑌2

𝑘⁄

 ~ 𝑡(𝑘, 𝜆), 

 

where 𝜆 is the non-centrality parameter. In figure 2.10 the t-distributions can be seen to 

all be centred around zero. This is achieves by setting the non-centrality parameter, 𝜆 in 



53 
 

the equation above to be zero. Therefore, the non-central t-distribution could be thought 

of as the generalised version of the standard central t-distribution.  

 

From Figure 2.5 it can be seen that by changing the non-centrality parameter we can 

change how much the distribution is shifted along the horizontal axis. Changing the non-

centrality parameter to a positive number moves the distribution to the right along the x-

axis. Changing the non-centrality parameter to be a negative number moves the 

distribution down the x-axis. These are also plotted alongside the corresponding non-

central Normal distribution to show how the shape of the t-distribution varies from that 

of the Normal distribution. 

 

From Figure 2.6 it can be seen how changing the degrees of freedom for the non-central 

t-distribution changes the shape of the distribution. When the distribution is non-central 

and the number of degrees of freedom is small, the distribution can become skewed. As 

the number of degrees of freedom increases the distribution becomes more symmetric 

and is centred around the non-centrality parameter. The corresponding non-central 

Normal distribution is also plotted to show that as the number of degrees of freedom 

increases the t-distribution tends to the Normal distribution. 

 

The Type I error rate can be estimated by rearranging the sample size formula assuming 

the null hypothesis is true therefore assuming no difference between the treatment 

difference. The Type II error rate can be estimated assuming the alternative hypothesis is 

true, therefore that the treatment difference is equal to the minimum clinically important 

difference. Generally, this is done by using the central Normal distribution (mean of zero) 

and non-central Normal distribution to calculate the Type I and II errors respectively. 

However, when there are small numbers involved an approximation to the Normal 

distribution is used, the t-distribution. When this is the case, the estimation of the Type I 

error and the Type II error can be done by using the central and the non-central t-

distribution respectively. 
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Figure 2.5: The Non-Central t-distribution Probability Density Function with Constant Degrees of 

Freedom (k=5) with Varying Non-Centrality Parameters (-5, 0, 5) compared to the Normal Distribution 
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Figure 2.6: The Non-Central t-distribution Probability Density Function with Varying Degrees of 

Freedom (k= 5, 20 and 50) compared to the Normal Distribution 

 

 

2.3.4 The F-distribution 

 

The central F-distribution is the ratio of two independent central chi-squared random 

variables each divided by its degrees of freedom 𝑘1, 𝑘2. Therefore,  

 

𝐹 =  
𝑌1

2

𝑘1 

𝑌2
2

𝑘2
⁄  ~ 𝐹(𝑘1, 𝑘2), 

 

where 𝑌1
2~ 𝜒2(𝑘1) , 𝑌2

2~ 𝜒2(𝑘2)   and these are independent (Dobson, 2001).   The 

shaped of the F-distribution is affected by both 𝑘1 and 𝑘2. Some example distributions 

can be seen in Figure 2.5.  
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Figure 2.7: The F-distribution Probability Density Function  with Varying Degrees of Freedom

  

 

The non-central F-distribution is defined as an F-distribution where the numerator follows 

a non-central chi-squared distribution (Dobson, 2001). This distribution is used in the 

calculations presented as part of the work in Chapter 7 on internal pilot trials, where the 

ratio of the sample variances (both of which are chi-squared distributed) from the 

external pilot and the internal pilot is considered.  

 

2.4 Sample Size Formulae 

 

The following section describes the methods available for calculating the required sample 

size for a definitive trial, where the analysis will be a hypothesis test on the mean 

difference between the two independent treatment arms, and the outcome is continuous 

and Normally distributed for a superiority trial.  

 

A sample size formula tries to strike a balance between the trial sample size being too 

large or too small by calculating the minimum number of participants needed to ensure 
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the required power and control Type I error rate; for a specified treatment difference and 

variance. The factors that affect the required sample size of a superiority trial are: The 

Type I and Type II error levels, the allocation ratio of patients between treatment groups, 

the variance of the outcome measure and the MCID.  

 

2.4.1  Z-test 

 

By using the power statement set out in Equation 2.1 the following formula can be derived 

(full derivation can be found in Ch. 6 of ‘Statistical Methods’ (Snedecor and Cochran, 1989)) 

for calculating the required sample size. 

 

 
𝑛 =  

(𝑟 + 1)

𝑟
 
(𝑍1−𝛽 +  𝑍1−𝛼

2⁄ )2 𝜎2

𝑑2
, 

(2.14)  

 

where, 𝑛 is the sample size per treatment arm, 𝑍1−𝛽 corresponds to the standard Normal 

distribution Z-score of (1 – β) and 𝑍1−𝛼
2⁄  is the Standard Normal Z-score of (1 - α/2), 𝜎2 

is the variance estimate, d is the minimum clinically important difference (MCID) and r 

represents the allocation ratio of participants between the treatment and placebo group 

of r: 1. The sample size 𝑛 is the number of participants in the placebo group, the number 

of participants in the treatment group is given by 𝑛𝑟, where 𝑟 is the allocation ratio. The 

value of 𝑍1−𝛼
2⁄  can be found from using statistical software or from statistical tables. An 

example of a table of the Normal distribution can be found in Appendix B. If for example, 

𝛼 = 0.05 (two-sided) we wish to calculate the value for 𝑍0.975, we look up 0.975 in the 

probability column this gives a Z-score of 1.96, or for a power of 90% (𝛽 = 0.1) 𝑍0.9 =

1.28. For a superiority trial with equal allocation between treatment groups the sample 

size formula would be, 

 

 
𝑛 =   

2(𝑍1−𝛽 +  𝑍1−𝛼
2⁄ )2 𝜎2

𝑑2
. 

(2.15)  
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Using a two-sided significance level of 5% and a required power of 90% this formula 

approximately reduces to, 

 

𝑛 =
2(1.28 + 1.96)2 𝜎2

𝑑2
 

𝑛 =
21𝜎2

𝑑2
. 

(Julious et al., 2010) 

 

Throughout this thesis 𝑟 is assumed to be 1 and the number of treatment arms is assumed 

to be 2. Therefore going forward Equation 2.15 will be used when required and 𝑟 will no 

longer be included in the sample size equations explicitly. Operationally the Z-test is used 

as a large sample approximation to a t-test, however, strictly the Z-test should only be 

used if the population variance is known. In practice the variance used is an estimate 

derived from previous work or, in the context of this PhD, a pilot trial. 

 

2.4.2 t-test 

 

The previously presented method based on a Z-test assumes that the variance of the 

outcome measure is known at the design and analysis stage. However, in reality the 

variance used in the analysis of a trial is an estimate, 𝑠2 from the sample data, of the 

population variance,  𝜎2. Some modification is needed to the analysis and the sample size 

calculation to account for this (Wittes, 2002).  A t-test will be used instead of a Z-test to 

allow for this estimation. The sample size calculation should always reflect the type of 

analysis, which will be carried out, therefore because we are using a sample variance in 

the test statistic rather than the known population variance. The following sample size 

formula assumes the analysis will be based on a t-test, 
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𝑛 ≥  
2𝜎2 (𝑍1−𝛽 +  𝑡1−𝛼

2⁄ ,2𝑛−2)
2

𝑑2
, 

(2.16)  

 

which can be re-arranged to show that, 

 

 𝑛𝑑2

2𝜎2
≥  (𝑍1−𝛽 +  𝑡1−𝛼

2⁄ ,2𝑛−2)
2

 

√
𝑛𝑑2

2𝜎2
≥  𝑍1−𝛽 +  𝑡1−𝛼

2⁄ ,2𝑛−2 

𝑍1−𝛽  ≤ √
𝑛𝑑2

2𝜎2
−  𝑡1−𝛼

2⁄ ,2𝑛−2 

1 − 𝛽 ≤ 𝜙 (√
𝑛𝑑2

2𝜎2
− 𝑡1−𝛼

2⁄ ,2𝑛−2) 

(2.17)  

 

Here the power is estimated from a cumulative Normal distribution.  However, replacing 

 𝜎2 with 𝑠2 Equation 2.17 becomes, 

 

 

1 − 𝛽 =  𝑃 (√
𝑛𝑑2

 2𝑠2
−  𝑡1−𝛼

2⁄ ,2𝑛−2), 

(2.18)  

 

where P(.) denotes a probability which can be shown to follow a t-distribution (Julious, 

2009). Equation 2.17 represents an approximation to Equation 2.18 for when the variance 

is assumed to be known at the start of the trial but the analysis will be based on an 

estimate of the variance from the data at the end of the study. As n appears on both sides 

of the Equation 2.16 it must be solved using iteration. A good starting point is the sample 

size given in Equation 2.15 with 𝑠2 replacing 𝜎2 (Julious, 2009). 
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The test statistic at the end of the trial is calculated using the method described in Section 

2.2.4, however the value is now compared to the tables of the t-distribution along with 

the degrees of freedom (𝑑𝑓), here, 𝑑𝑓 =  𝑛1 +  𝑛2 − 2, to find the P-value (Swinscow and 

Campbell, 2002).  

 

2.4.4 Dropout Rate 

 

The number of participants calculated from the sample size formula is the required 

number of evaluable patients that need to be remaining at the end of the trial. During the 

trial some people will be lost to follow up and therefore the recruitment target at the start 

of the trial will be the number from the sample size calculation plus extra to allow for this 

dropout. The recruitment target at the start of the trial to allow for patient dropouts 𝑁∗ 

can be calculated from, 

 

 
𝑁∗ =  

𝑛

1 − 𝑊
 , 

(2.19)  

 

where 𝑛 is the sample size per group from the sample size calculation formula and 𝑊 is 

the dropout or withdrawal rate (Campbell et al., 2010). We must also remember that not 

all patients who are eligible will consent to be involved in the trial; some estimate of this 

proportion is also needed to calculate the target number of patients to approach, as 

discussed in Chapter 1. 
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2.5 Deriving Parameters for a Main Trial Sample Size Calculation 

 

When planning a trial firstly the question must be defined by setting the scientific 

hypotheses we are trying to test, outlining the objective for the trial and choosing the 

primary endpoint(s), which will be used for the analysis. To further calculate the required 

sample size, the investigator needs to specify the minimum clinically important difference 

(MCID) between the two treatments in the trial, the Type I and Type II error rates and the 

variance of the outcome measure (Friede and Kieser, 2001). 

 

Although it can be a complex procedure (Wright et al., 2012), clinical expertise can be 

used to specify the MCID and there are traditional values used for the Type I and Type II 

error levels (Section 2.2.2). The difficulty comes when trying to specify the variance 

(Friede and Kieser, 2001). Setting the variance estimate at an inappropriate level can have 

a serious effect on the power of the trial (Denne and Jennison, 1999). If the anticipated 

variance before the trial is greater than the true variance, then the trial will be 

overpowered. If the estimate is too low, then the trial will be underpowered to find the 

effect. 

 

Investigators can use several different methods to try to get an accurate estimate of the 

true variance of the outcome measure. They may use historical data to calculate an 

estimate of the variance i.e. past published studies or meta-analyses (Wittes, 2002), 

conduct an external pilot trial prior to the trial (see Chapter 3 and 4) or conduct an internal 

pilot trial (see Chapters 6 and 7). The variance can be difficult to estimate, allowing for 

this difficulty is the focus of Section 2.5.2 and the methodological work in Chapter 4, 5 

and 7. In this thesis the concentration is on conducting pilot trials to estimate the variance 

to be used in the main trial sample size calculation. 
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2.5.1 Issues with using Historical or Pilot Data to Plan the Main Trial 

 

Estimations from historical data can be misleading. Using a large amount of papers from 

the literature to estimate the variance to be seen in a single study is likely to produce an 

underestimate of the variance (Wittes and Brittain, 1990). Published studies are likely to 

underestimate the variance on average, due to publication bias. Underestimated 

variances lead to higher probabilities of statistically significant results hence higher 

chance of publication. (Wittes, 2002) Those studies, which overestimate the variance, are 

less likely to find statistically significant results and hence are less likely to get published 

(Torgerson and Torgerson, 2008); therefore it is likely that the literature underestimates 

the variance parameter.  In addition, the trials may have been conducted in a different 

population from the planned trial and under different trial conditions (Denne and 

Jennison, 1999).  

 

A pilot trial may also differ from the main trial in ways, which affect the variance estimate. 

They may: include very few centres, have different inclusion/exclusion criteria, be 

conducted in different populations, have different primary endpoints or use a surrogate, 

be of shorter duration and the treatment duration may differ from that intended in the 

main trial (Kianifard and Islam, 2011; Wittes and Brittain, 1990). 

 

Even if the pilot trial has the same design as the main trial, by definition pilots are small 

and therefore may be subject to sampling error (Denne and Jennison, 1999) which can in 

turn mislead the sample size calculation (Kraemer et al., 2006). A study conducted by 

Vickers in 2003 found that around 80% of the time an estimate of the standard deviation 

used in the main trial sample size calculation was an under-estimate and hence trials are 

usually underpowered. In the following sections, methods will be described for sample 

size calculations for main trials that account for the imprecision of the variance estimate. 
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2.5.2 Methods for Overcoming the Issues with using Pilot Data 

 

Using previous trial results to estimate the variance introduces a type of imprecision that 

is not allowed for in the sample size calculations described earlier in this chapter. This 

section discusses methods proposed to try to deal with this problem of inaccurate 

estimation of the variance by adjusting the prediction of the variance from a pilot trial for 

use in a main trial sample size calculation. 

 

2.5.2.1 The Upper Confidence Limit Approach 

 

One such method will be referred to as the Upper Confidence Limit (UCL) approach. It was 

proposed by Browne (1995), who carried out simulations, which suggested that using an 

100X% upper confidence limit for the estimated value of the variance from the pilot trial 

to plan the main trial would provide a sample size sufficient to achieve the required power 

in at least 100X% of such trials. Kieser and Wassmer (1996) later proved this method 

mathematically in 1996. Therefore, X is a probability, which is set at a level we are willing 

to accept for achieving the required power. 

 

In order to implement the UCL approach, a variance estimate is obtained and the one-

sided 100X% upper confidence limit for it, 𝑠𝑈𝐶𝐿
2  is calculated, from the equation below as 

stated in Equation 2.12 in Section 2.3.2, where 𝑘 is the number of degrees of freedom. 

This one-sided upper confidence limit can be calculated based on the chi-squared 

distribution as stated earlier from (Kieser and Wassmer, 1996), 

 

𝑠𝑈𝐶𝐿
2 =  [

𝑘

𝜒1−𝑋,𝑘
2 ] 𝑠2 . 

 

This UCL would then be used as the variance estimate in the sample size equation 

(Equation 2.16). Therefore, the power for the main trial would be given by, 
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1 − 𝛽 =  𝑃 (√
𝑛𝑑2

2𝑠𝑈𝐶𝐿
2 −  𝑡1−𝛼

2⁄ ,2𝑛−2). (2.20)  

 

This method will be used later in Chapter 4 when investigating the relationship between 

pilot trial sample size and the main trial sample size when the main trial sample size is 

calculated using this approach. These calculations will also be compared to the sample 

sizes required if the main trial sample size is calculated using the alternative approach 

presented in the next section (Section 2.5.2.2). 

 

Although he recommends an 80% confidence level, Browne gives no explanation or 

justification for this figure and so Browne’s method leaves open the question as to what 

level should be set. Sim and Lewis (2011) set X at the 95% level however it seems sensible 

to question whether this level of rigour is required. 

 

2.5.2.2 The Non-Central T-Distribution Approach 

 

Julious and Owen (2006) proposed an alternative method for the calculation of sample 

size, which accounts for the fact that we are using 𝑠2 (from a sample) instead of 𝜎2 (the 

population value) in the sample size calculation. Using previous trial results to estimate 

the variance introduces a type of imprecision that is not allowed for in Equation 2.16. The 

sample size is inflated dependent on the number of degrees of freedom 𝑘, on which the 

estimate of the variance is based, through Equation 2.21, 

 

 

𝑛 ≥  
2𝑠2[𝑡𝑖𝑛𝑣 (1 − 𝛽, 𝑘, 𝑡1−𝛼

2⁄ ,2𝑛−2)]2

𝑑2
, 

(2.21)  

 

where, 𝑡𝑖𝑛𝑣(∙, k, a) is the inverse function of the cumulative distribution function of a 

t-distribution with a non-centrality parameter, a on k degrees of freedom. Here k is the 

degrees of freedom about the estimate 𝑠2. This method is derived from integrating not 
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only over the Normal distribution centred around the effect size but also over every 

plausible value of the variance (from a chi-squared distribution) to find the expected 

power. As shown by Julious and Owen (2006) this solves to be a non-central t-distribution, 

therefore from here on this method will be referred to as the Non-Central T-distribution 

(NCT) approach.  

 

This must be solved iteratively as 𝑛  appears on both sides of the inequality. A good 

starting point for the iterations can be found from Equation 2.22 as outlined by Julious 

and Owen (2006), 

 

 

𝑛 =  
2𝑠2[𝑡𝑖𝑛𝑣 (1 − 𝛽, 𝑘, 𝑍1−𝛼

2⁄ )]2

𝑑2
. 

(2.22)  

 

If the estimate of the variance is based on only a few degrees of freedom the sample size 

will be increased greatly, as the number of degrees of freedom for the estimate of the 

variance increases the effect of this method on the sample size decreases. As the degrees 

of freedom, 𝑘 increases Equation 2.21 tends to Equation 2.16, furthermore as the number 

of degrees of freedom increases the sample variance will also tend to the population 

variance. Julious and Owen (2006) show that this happens after the degrees of freedom 

reaches 200. This occurs because as the sample size increases the t-distribution tends to 

a Normal distribution. The higher the number of degrees of freedom: the less sensitive 

calculations are to assumptions about the variance (Julious, 2004).  

 

Due to the difficulty involved with specifying a MCID and a variance estimate it is common 

to instead specify the standardised difference, that is, the MCID divided by the standard 

deviation. The standardised difference is denoted by 𝛿 and is given by 𝛿 =  𝑑
𝑠⁄ , therefore, 

𝛿2 =  𝑑2

𝑠2⁄  and 𝑠
2

𝑑2⁄ =  1
𝛿2⁄ . It is therefore possible to replace the 𝑑  and the 𝑠  in 

Equation 2.22 with 𝛿 giving: 
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𝑛 =  
2[𝑡𝑖𝑛𝑣 (1 − 𝛽, 𝑘, 𝑍1−𝛼

2⁄ )]2

𝛿2
. 

 

Cohen (1992) proposed the use of small, medium and large standardised effect sizes of 

0.2, 0.5 and 0.8 respectively in order to allow comparisons of effect sizes across scales. 

This approach also allows the selection of an effect size when there is little information 

about the required difference between two treatments in a trial. This idea will be used in 

Chapter 4, 5 and 7 to aid in the calculation of general sample sizes. 
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2.6 Summary 

 

This chapter summarises the literature on sample size calculations for superiority trials 

with two independent treatment arms and a Normally distributed continuous outcome 

measure. It initially describes the process of hypothesis testing before moving on to 

outline the methods of sample size calculation for main RCTs. The procedures presented 

will be used in Chapters 4, 5 and 7 for the calculation of sample sizes for main trials. 

 

The required sample size for the main trial depends on the allocation ratio of patients 

between the treatment groups, the Type I and Type II error levels, the variance of the 

primary outcome measure and the MCID. Prior to carrying out the sample size calculation 

estimates of these parameters will be needed. Keeping the risk of errors low requires a 

higher number of participants than if the risk of errors was allowed to rise. A tighter 

control over the level of errors will require more trial participants. The most efficient 

allocation ratio of patients between treatment groups is 1:1, which is equal allocation. 

Deviating from this will increase the required sample size for the trial. The sample size 

required is proportional to the variance of the outcome measure. As the variability within 

the data increases we will require more people within the trial. If the variability is low, we 

will require relatively few participants. The larger the MCID the fewer participants are 

needed within the trial. If we reduce the treatment effect size, we are looking for the 

required size of the trial will increase.  

 

Pilot trials can be used to estimate the variance for the main trial sample size calculation; 

the imprecision of these estimates, can impact on the accuracy of the calculation 

(Kraemer et al., 2006). Two methods for adjusting the sample size calculation to allow for 

this uncertainty were presented; the UCL method and the NCT approach. The impact of 

these methods will be investigated in Chapter 4. 

 

The procedures presented in this review are for main trials and may not be applicable for 

pilot trials. However, they are used in further chapters (4, 5 and 7) to investigate the 
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impact the pilot trial sample size has on the sample size of the main trial. Chapter 4 and 5 

investigates the procedures for choosing a sample size for an external pilot trial and the 

review in Chapter 6 looks at the sample size requirements of an internal pilot trial. 
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Chapter 3 

 

 

Pilot Trial Sample Size Justifications 

 

 

3.1 Introduction 

 

The previous chapter outlined methods for hypothesis testing and sample size 

calculations for a main RCT. In Chapter 1 it was discussed how sample size methods based 

on hypothesis testing may not be appropriate for pilot trials and in Chapter 2 methods for 

sample size calculation for a main trial were described.  

 

The sample size calculations described in Chapter 2 assume that the analysis of the trial 

will be based on a hypothesis test where the null hypothesis may or may not be rejected. 

The sample size calculations thus rely on an expression of the power of the trial or the 

probability of rejecting the null if it is false; however, this is not always appropriate for a 

pilot trial.  

 

Extending the work highlighted in Chapters 1 and 2 this chapter discusses methods of 

choosing a sample size for an external pilot trial. The structure of this chapter is as follows: 

Section 3.2 presents reasons why the standard sample size calculation methods may not 

be appropriate for pilot trials; Sections 3.3 and 3.4 discuss the current methods used for 

choosing an external pilot trials sample size. Finally, Section 3.5 provides a summary for 

this chapter and describes the aims for Chapters 4 and 5, which are derived from the 

reviews presented here and in Chapter 2. 
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3.1.1 Aims 

 

This chapter aims to:  

 Identify existing methods for justifying a pilot trial sample size,  

 Establish any weaknesses with the current approaches and therefore,  

 Outline the areas of work for Chapters 4 and 5. 

 

3.2 Standard Sample Size Calculations and Pilot Trials 

 

For a main trial incurring a Type I error would result in a new treatment being falsely 

assessed as superior to the control treatment (Julious et al., 2010) and a Type II error 

would mean that an effective treatment would not be taken forward and would be 

assessed as inferior – or no better - than the control treatment (Schoenfeld, 1980). 

 

As previously highlighted in Chapter 2 for a pilot trial Type I and Type II errors have 

different implications than within a main trial. A Type I error may lead to a large definitive 

trial being incorrectly run and hence could be an expensive mistake for the sponsor. 

However, this consequence is different from that of a Type I error in a definitive trial, a 

Type I error in a pilot trial has the chance to be corrected in the definitive trial so that the 

inferior treatment would not make it to the market (Stallard et al., 2005).  

 

As the consequences are less severe if a Type I error is made in a pilot trial than a main 

trial authors have suggested that the Type I error rate could be increased (Stallard, 2011). 

There could also be scope to reduce power for a pilot trial compared to the formal levels 

used in definitive trials (Stallard, 2011); although it may seem more desirable to leave the 

power high to avoid losing any effective treatments. Methods for powered pilot trial 

sample size calculations are discussed in Section 3.3. 

 

There are a number of arguments against doing a formal sample size calculation for a pilot 

trial.   A main reason is that the decision whether to carry on to the definitive trial at the 
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end of the pilot trial is often based on more than one criterion; for example, the 

acceptability/ safety of the intervention, the recruitment rate estimate, the dropout rate, 

the feasibility of the definitive trial sample size based on the estimated variance from the 

pilot trial (Thabane et al., 2010).  

 

Pilot trials have different aims and objectives to main trials as in the definitions laid out in 

Chapter 1. Pilot trials are not looking to prove superiority of the experimental treatment 

yet, they are looking to test trial procedures and processes and get estimates of 

parameters for the main trial sample size calculation (Lancaster et al., 2004). So the 

traditional sample size determination methods (as seen in Chapter 2) based on hypothesis 

testing seem inappropriate for pilot trials as these focus on getting the required number 

of people to test the superiority of one treatment over the other (Thabane et al., 2010). 

In addition, referring back to the requirement of the CONSORT statement and bodies such 

as NIHR and NRES; all studies do not necessarily need a sample size calculation but they 

do all need a sample size justification, therefore, other criteria have been developed 

which may be used to set an unpowered sample size. These are presented and discussed 

in Section 3.4. 

 

3.3 Powered Calculations 

 

Traditional sample size calculations can be inappropriate for pilot trials however, if at the 

end of the pilot trial the analysis will be to compare the interventions through a 

hypothesis test; then the sample size should be set based on a power calculation, in order 

to ensure that the required sample size to give a specified chance of seeing a difference if 

one exists is known. Labelling the trial a pilot should not be an excuse to run a small 

underpowered trial, which would have little scientific validity and would therefore be 

unethical (Arain et al., 2010, Halpern et al., 2002). However, we may not need to use the 

same error rates as are conventional in definitive trial sample size calculations as 

discussed in Chapter 1 Section 1.8. 
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Situations could arise for example, if perhaps the pilot trial is designed based on a 

surrogate or biomarker endpoint for the true clinical outcome. Here there could be a 

formal powered sample size calculation but it would not be on the primary outcome of 

interest, as would be used in the main trial. Estimates needed for the sample size 

calculation based on the surrogate endpoint could be gained from similar trials with the 

same endpoint or from data about the control treatment. 

 

The International Conference on Harmonisation of Technical Requirements for 

Registration of Pharmaceuticals for Human Use (ICH) guideline E9 defines a surrogate 

endpoint as ‘A variable that provides an indirect measurement of effect in situations 

where direct measurement of clinical effect is not feasible or practical’ (ICH, 1998, p.35). 

Surrogates can be useful if the clinically relevant outcome is long in duration (e.g. the 5 

year survival rate) (DeGruttola et al., 2001), invasive, uncomfortable or expensive 

(Prentice, 1989). Using a surrogate endpoint in a pilot trial can therefore reduce the cost, 

duration and sample size of the trial, compared with using the true clinical outcome 

(Temple, 1999). Conducting a trial based on a surrogate could mean that it is very difficult 

to get accurate estimates of parameters for the main trial sample size calculation, which 

would be based on the clinical endpoint to be used in the main trial. 

 

For pilot trials where the analysis will be based on an hypothesis test Schoenfeld (1980) 

proposed maintaining the rigorous power requirement of 90%, as usual in a main trial, 

but letting the Type I error rate be up to 25%. He commented that a Type II error is more 

serious in a pilot trial as this would mean denying an efficacious treatment from the 

market. However, a Type I error could be corrected in the definitive main trial. Therefore, 

advocating reasonable levels of α and β as 0.25 and 0.1 respectively. As highlighted in 

Chapter 1 Section 1.8, Stallard (2011) recommends to design a pilot trial with a one-sided 

Type I error rate of 0.2 and a power of 40%. His design minimises the average number of 

patients required per successfully identified effective therapy; therefore, reflecting the 

costs involved in conducting a series of pilot studies and definitive trials prior to a 

successful definitive trial. These recommendations are summarised in Table 3.1. 
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Table 3.1: Powered Sample Size Power and Type I Error Recommendations 

Author Power Level Type I Error Level Relative Sample 

Size 

Conventional 90% 5% 1.00 

Schoenfeld (1980) 90% 25% 0.56 

Stallard (2011) 40% 20% 0.10 

 

 

The last column in Table 3.1 gives the relative sample size of the trials designed with 

parameters compared to the conventional levels usually used. Therefore, a trial designed 

to the specifications laid out by Schoenfeld would require 56% of the number of patients 

required for a conventional design with 90% power. The design of Stallard would require 

only 10% of the patients required under the conventional design. 

 

3.4 Unpowered Sample Size Justifications 

 

If the purpose of the pilot is not to give a preliminary assessment of treatment effect to 

show proof of concept, then the sample size provided by the conventional calculations is 

often higher than necessary (Lancaster et al., 2004), however the sample size of the trial 

still needs to be justified. Unpowered sample size justifications may be carried out when 

a sample calculation based on formal considerations is thought to be inappropriate. For 

example, if the purpose is not to give an assessment of efficacy but to estimate, the 

treatment effect, the variance of outcome measure, accrual or attrition etc.  

 

Although not the focus of this thesis, there have been recommendations made for pilot 

trial sample sizes if the outcome is a proportion and in particular around feasibility 

features in trials, for example, the accrual or attrition rates. Examining this question was 

another focus of the paper by collaborators in ScHARR Teare et al. (2014). This work found 

that the relative gain in precision of the variance estimate dropped below the 5% 
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threshold level once the sample size of the pilot trial was between 55 and 60 and dropped 

below the 3% level when the sample size was 100, these sample sizes are per treatment 

group for estimating an event rate. It would also be possible to use the precision based 

methods as presented in Section 3.4.1 using the CI for a proportion (Cocks and Torgerson, 

2013). The recommendations discussed in this chapter for unpowered sample size 

justifications are summarised in Tables 3.2, 3.3 and 3.4. 

 

3.4.1 Precision-Based Calculations 

 

At the beginning of treatment development, estimates of treatment effect may not be 

available and therefore it is not possible to estimate sample size based on a treatment 

difference of interest as in the powered sample size section. For such studies, Julious and 

Patterson (2004) present a way of calculating the necessary sample size by setting the 

required precision for the possible clinical effect. This method is recommended by 

Thabane et al. (2010) in their tutorial on pilot studies for setting sample sizes required to 

establish feasibility. This method also complements the ideas of Lancaster et al. (2004) 

that the analysis of a pilot should be based on confidence interval estimation; referred to 

as the estimation approach. 

 

The formula for a CI for a continuous outcome measure is shown below 

 

 

�̅� ± 𝑡1−𝛼
2⁄ ,𝑘 √

𝜎2

𝑀
, (3.1)  

 

where, 𝑘 is the number of degrees of freedom, 𝑀 is the total pilot trial sample size, �̅� is 

the treatment difference. In order to implement this approach, we must have a 

specification for the required width of the CI. We call the half width of the CI, w. 

 

 

𝑤 =  𝑡1−𝛼
2⁄ ,𝑘 √

𝜎2

𝑀
 , (3.2)  



75 
 

 

The formulas can be re-arranged to calculate the sample size required to give a certain 

precision as shown below (Julious and Patterson, 2004) 

 

𝑀 =   
𝜎2 𝑡1−𝛼

2⁄ ,𝑘
2

𝑤2
 . 

 

Parker and Berman in 2003 wrote that  a different approach would be more appropriate 

for small studies such that, instead of considering the sample size needed for a certain 

amount of information, consideration is given as to how much information we can get for 

a certain sample size. This could be achieved using the Julious and Patterson method by 

considering what precision could be achieved for a given sample size and deciding 

whether this level of precision is appropriate to meet the investigator’s goals (Kianifard 

and Islam, 2011). 
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3.4.2 Flat Rules of Thumb for Selecting Pilot Trial Sample Size  

 

Several rules of thumb have been suggested for use when setting the sample size of pilot 

trials for definitive clinical trials, these are summarised here and presented in Table 3.2. 

 

Table 3.2: Flat Rules of Thumb for External Pilot Trial Sample Sizes (for a Two-Armed Trial) 

Author Type of Calculation Inflation Method 
Recommended 

Sample Size 

Julious (2005) 

 

Precision based  24 

Browne (1995) 

 

Precision based  30 

Teare et al. (2014)  

 

Precision based  70 

Sim and Lewis (2012) Drop in main trial 

power 

 

90% UCL 60 

Sim and Lewis (2012) Drop in main trial 

power 

95% UCL 50 

 

 

Browne (1995) cites a general rule to use at least 30 subjects or greater to estimate a 

parameter, this parameter could be for example, the variance of the outcome measure. 

Julious (2005) presents three reasons for a minimum sample size of 24 (12 subjects per 

treatment arm); feasibility, precision around the mean (based on the width of the CI as 

given in Equation 3.2) and variance estimates and regulatory considerations. In 

anticipation of planning the definitive trial we could also carry out a sensitivity analysis 

for the drop in power for the future trial if the variance turned out to be at the 95th 

percentile from the pilot trial, calculated from, (Diem, 1962) 
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𝑠2(95) <

𝑑𝑓

𝜒0.95,𝑑𝑓
2 𝑠2 (3.3)  

 

Julious (2005) calculated that for a 90% nominal powered trial to ensure you would have 

at least 50% power even with a high plausible value for the variance, for a superiority trial 

you would need at least 9 degrees of freedom for estimating the variance.  

 

Sim and Lewis (2011) base their recommendation about the minimum sample size for a 

pilot trial of 60 on ensuring a 90% chance of no more than a 10% drop in power from the 

nominal value (when using the UCL approach with a 90% UCL). This is different from 

Julious (2005) who allows a drop from an assumed power of 90% to 50% power for the 

high plausible value of the variance, the 95th percentile for the variance.  

 

In the paper which aimed to demonstrate the variation in estimates taken from small 

samples Teare et al. (2014) suggested a total pilot trial sample size of 70. This 

recommendation was based on only a small gain in precision after the sample size exceeds 

this level and the sample size being big enough to minimise the bias in the estimation of 

the variability parameter. 

 

Alternatively, we could increase the size of the main trial to accommodate the uncertainty 

in the variance estimate from the pilot trial, using the methods previously introduced, the 

UCL or NCT approach. From this perspective, using the 95% UCL method, Sim and Lewis 

recommend a sample size of 50 as this equates to a potential under recruitment of 30% 

achieving approximately 65% power in the main trial, when the nominal power is 80%, 

which the authors say is the lowest most investigators would be willing to accept, 

compared to when the pilot sample size is 30 which could lead to an under recruitment 

of 39% and achieving less than 60% power. Another reason Sim and Lewis recommend a 

sample size of 50-60 participants is based on minimising the combined sample size of the 

pilot and the main trial; this will be discussed in Section 3.4.4. 
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3.4.3 Proportional Rules of Thumb for Selecting Pilot Trial Sample Size 

 

As previously discussed in Section 3.3, Stallard (2011) outlined a design which minimises 

the expected total number of patients required to lead to a successful definitive trial, a 

one-sided Type I error rate of 0.2 and a power requirement of 0.4. This method links back 

to the NETSCC definition of a pilot trial and that there must be a plan for future work; as 

Stallard considers the pilot trial as part of a whole programme of clinical evaluation and 

not as a stand-alone trial.  

 

Stallard recommends that the sample size for a pilot trial should be approximately 3% that 

of the main definitive trial. As changing the value of the standardised difference will 

multiplicatively alter both the pilot trial sample size calculation and the calculation for the 

main trial by the same amount this method will always lead to the optimal pilot trial 

sample size being 3% of the main trial sample size. In the paper another example is given 

where the pilot trial sample size under this method is calculated when the standardised 

difference is equal to 0.2. The sample size required is 35 which is compared to the values 

set out by Schoenfeld (1980) and Julious (2005), 25 and 24 respectively. However, the size 

of the pilot recommended by the Stallard approach here is only close to these values 

because the standardised difference was set at 0.2, which is actually considered to be a 

small standardised difference according to the classifications laid out by Cohen (1992). In 

the paper an example is given where the standardised difference is chosen to be equal to 

1. Using this to calculate the pilot trial sample size leads to a trial size of 1.4 and a main 

trial sample size of 42 based on using a one-sided Type I error rate of 0.025 and a power 

of 90% for the main trial. Additionally, for a medium standardised difference of 0.5 the 

Stallard approach leads to a pilot trial sample size of 6 participants and for a standardised 

difference of 0.8 a pilot sample size of 3; both of which are too small to be of any practical 

use. 

 

Cocks and Torgerson (2013) also propose a rule based on setting the sample size of the 

pilot proportionate to the sample size of the main trial. They suggest that 9% of the 



79 
 

sample size of the main trial should be used as the sample size for the pilot trial. Their 

reasoning is different from that of Stallard in that it is based on using a CI approach, 

whereby the sample size is set such that if the observed difference in the pilot trial is zero, 

then the upper confidence limit should exclude the estimate that will be considered the 

MCID in the definitive trial. They calculate the sample size for the main trial for a range of 

standardised effect sizes for a main trial where the Type I error rate is 5% and the power 

80%. Then the CI approach is used with a one-sided 80% confidence interval to calculate 

the required pilot trial sample size, by inverting the formula for the CI it follows that, 

 

𝑀 =  (
𝑍1−𝛼

𝛿 − ∆
)

2

 

 

where 𝑀 is the pilot sample size, 𝑍1−𝛼  is the tabulated value of the standard Normal 

distribution of 1 minus the Type I error rate 𝛼 (as discussed in Section 2.3.1), and (𝛿 − ∆) 

is the standardised effect size minus a small amount; so that the resulting CI would not 

include the required standardised effect size. This rule works out to be approximately 9% 

of the size of the required main trial sample. As opposed to Stallard this paper does 

recommend a minimum sample size of at least 20 participants. This minimum of 20 

participants overall will be used again in Chapters 4, 5 and 7 to stop the sample size of a 

pilot dropping below practical levels. 

 

The methods presented in this section are referred to as proportional external pilot trial 

sample sizes as they use a proportion of the main trial samples size as the sample size for 

the pilot trial. These rules are summarised in Table 3.3. The recommendations will be 

revisited in Chapter 4 to look at their effect on the power and average sample size of the 

trial. 
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Table 3.3: Proportional Rules of Thumb for External Pilot Trial Sample Size 

Author Type of Calculation Recommended Sample Size 

Stallard (2011) Minimising the 

expected sample 

size to a successful 

main trial 

3% 

Cocks and Torgerson (2013) CI approach to 

exclude MCID 

9% 

 

 

3.4.4 Minimising the Overall Trial Sample Size 

 

The NETSCC define pilot trials in the context of a future trial being planned (NETSCC, 2012).  

Consistent with this definition is a method of choosing the sample size of the pilot trial in 

order to minimise the overall trial sample size i.e. the sample size of the pilot and main 

trial together. This is possible because the size of the pilot trial affects the size of the main 

trial when either the UCL approach or the NCT method is used to calculate the sample size 

for the main trial. If the pilot trial is large the main trial will be relatively small and if the 

pilot trial is small the main trial will be relatively large due to the precision around the 

estimate of the variance. The methods, which use this idea to choose an appropriate pilot 

trial sample size, are discussed here and presented in Table 3.4, the sample size presented 

here is the total required for a pilot trial with two treatment arms. 
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Table 3.4: Minimising the Overall Sample Size Rules for External Pilot Trial Sample Size (for a Two-

Armed Trial) 

Author Type of Calculation Inflation Method 
Recommended 

Sample Size 

Kieser and Wassmer 

(1996) 

Minimising the overall 

trial sample size 

80% UCL 20-40 

Sim and Lewis (2012) Minimising the overall 

trial sample size 

95% UCL ≥55 

 

 

In 1996 Kieser and Wassmer proposed this idea in their paper ‘On the Use of the Upper 

Confidence Limit for the Variance from a Pilot Sample for Sample Size Determination’. They 

expressed the expectation of the total sample size 𝑁𝑇 = 𝑀 + 𝑁𝑀
∗ as, 

 
𝔼(𝑁𝑇) =  𝑀 +  𝔼(𝑁𝑀

∗), (3.4)  

 

where, 𝑀 is the pilot trial sample size, 𝑘 is the number of degrees of freedom for the 

variance from the pilot trial and 𝑁𝑀
∗ is the size of the main trial dependent on the size of 

the pilot trial. 𝔼(𝑁𝑀
∗) can be estimated by  

𝑁𝑀𝑘
𝜒1−𝑋,𝑘

2⁄  where 𝑁𝑀  is the total main trial 

sample size based on a standard calculation and therefore, 

 

𝔼(𝑁𝑇) = 𝑀 + 𝑁𝑀  
𝑘

𝜒1−𝑋,𝑘
2 . 

 

They use this formula to calculate a pilot trial sample size to minimise the overall expected 

sample size by setting the size of the main trial (here, 𝑁𝑀) and using 𝑋 =  0.8, where 𝑋 

represents the proportional upper bound of the 100𝑋% UCL for the variance as described 

in Chapter 2 in Browne’s method. They found that a pilot sample size between 20 and 40 

minimised the overall sample size of trials with a main trial sample size of between 80 and 
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250. That is a standardised effect size of between 0.4 and 0.7 (for 90% power based on a 

standard sample size calculation). 

 

Using the same approach but with a 95% UCL for the variance estimate, Sim and Lewis 

(2011) found that a pilot trial of between 35 and 100 would produce the smallest 

combined size of the pilot trial and main RCT, for small to medium standardised effect 

sizes (0.2-0.6), and therefore they recommend a pilot trial sample size of greater than or 

equal to 55. 

 

Both Sim and Lewis (2011) and, Kieser and Wassmer (1996) use Browne’s method (1995) 

of inflating the variance estimate from a pilot trial. This procedure is used to allow for the 

imprecision in the variance estimate from a pilot trial as discussed in Chapter 2. For this 

procedure, Kieser and Wassmer (1996) use an 80% confidence interval as recommended 

by Browne (1995) whereas Sim and Lewis (2011) use a 95% confidence interval, which has 

the effect of increasing their estimate of the required sample size compared to Kieser and 

Wassmer (1996). 

 

3.5 Summary 

 

This chapter reviewed the literature on how to choose an appropriate sample size for an 

external pilot trial. Firstly, we describe why a standard powered calculation with 

traditional power and Type I error levels as presented in Chapter 2 may not be the correct 

choice; before moving on to discuss the possibility of other power and Type I error levels 

in the sample size calculation for an external pilot trial. The chapter then goes on to 

describe the differing views of many authors on how an unpowered sample size could be 

chosen for an external pilot trial. 

 

The suggested levels of Type I error and power level to be used in a sample size calculation 

for a pilot trial are listed in Table 3.1 and the various methods set out as rules of thumb 

for unpowered sample size justifications are laid out in Tables 3.2, 3.3 and 3.4. The rules 
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presented come from different perspectives and ideas for the best way to choose a 

sample size for a pilot trial. The precision based methods look at the gain in precision 

around predicting a parameter value. The methods labelled as drop in main trial power 

either increase the pilot trial or the main trial sample size allowing for a fixed drop in 

power for the main trial if an extreme value of the variance is seen in the main trial. The 

approaches which result in a proportion of the main trial sample size being used as the 

pilot trial sample size are calculated using an approach which minimises the expected 

sample size of participants used in trials until a successful treatment is found (3% 

proportional rule) and using a CI approach to choose the sample size which would result 

in excluding the MCID if a difference of zero was found (9% proportional rule).  

 

The final approach discussed, setting the pilot trial sample size in order to minimise the 

total sample size of the pilot and the main trial together could be argued to be the most 

appropriate method for publicly funded trials, as it recognises that a pilot trial is part of a 

larger clinical development programme; rather than a stand-alone trial.  Other methods 

fail to recognise this issue (aside from Stallard (2011)) and thus aim to minimise both the 

pilot and the main trials separately which could lead to suboptimal overall combined 

sample sizes, this will be investigated further in Chapters 4, 5 and 7. 

 

In Chapter 4 the work of Kieser and Wassmer (1996) and Sim and Lewis (2011), are 

extended by minimising the overall trial sample size that adjusts the main trial sample size 

based on the size of the pilot trial. Chapter 4 will describe the theoretical minimum 

possible overall sample size for the pilot and main trial together and therefore find the 

pilot trial sample size, which leads to this. The work will be extended in Chapter 5 to the 

issue of trial cost; by looking to minimise the financial costs of the main trial and pilot trial 

added together rather than the number of participants. In Chapter 7 these ideas are 

extended to look at how they relate to internal pilot trials that is pilot trials, where the 

participants are from the main trial itself. 
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Chapter 4  

 

 

Calculations for Setting the Pilot Trial Sample Size to Minimise 

the Overall Sample Size 

 

 

4.1 Introduction 

 

The NETSCC state that there must be a plan for further work (among other criteria) for a 

trial to be labelled as a pilot (NETSCC, 2012). This future work should be considered at the 

planning stage of the pilot trial. There are many recommendations for setting the external 

pilot trial sample size as discussed in Chapter 3. This chapter will investigate which are the 

best methods and for different situations, assessing the methods based on the effect the 

pilot trial sample size has on the overall sample size. The size of the pilot affects the size 

of the main trial through the precision of the estimates gathered from the pilot. These are 

then adjusted for imprecision (for which methods were outlined in Chapter 2) and used 

to plan the main trial.  

 

As discussed in Chapter 2 there have been two methods suggested to adjust the estimate 

of the variance for use in the planning of the main trial. The Upper Confidence Limit (UCL) 

method was proposed by Browne (1995) and is based on adjusting the estimate of the 

variance from the observed value in the pilot to its 100𝑋% UCL. The second is the Non-

Central T-distribution (NCT) method (Julious and Owen, 2006), which chooses the main 

trial sample size to give on average the required nominal power, over all plausible values 

for the variance based on the pilot trial estimate and degrees of freedom. 
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As discussed in Chapter 3 the current methods for setting pilot trial sample size are based 

on a set of rules of thumb. Those referred to as flat rules of thumb are set values; fixed no 

matter how large the subsequent main trial will be. The rules of thumb that will be 

investigated further in this chapter are listed in Table 4.1. Kieser and Wassmer (1996) 

suggested the idea of selecting the pilot sample size in order to minimise the overall size 

of the pilot and main trial together. They use the UCL method with 80% UCL for the 

variance giving an 80% probability of achieving at least the planned power. They suggest 

a pilot trial sample size of 20 to 40 for main trial sample sizes between 80 and 250, which 

correspond to standardised effect size of 0.4 to 0.7 (for 90% power based on a standard 

sample size calculation). Sim and Lewis (2012) use the same method but with a 95% UCL 

for the variance. They calculate that a pilot trial of n ≥ 55 would produce the smallest 

combined size of the pilot trial and main RCT, for small to medium standardised effect 

sizes (0.2 - 0.6). 

 

Table 4.1: Flat Rules of Thumb for Pilot Trial Sample Size (for a Two-Armed Trial) 

Author Recommended Pilot Trial Sample Size 

Julious (2005) 24 

Kieser and Wassmer (1996) 20-40 

Browne (1995) 30 

Sim and Lewis (2012) ≥ 55 

Teare et al. (2014) 70 

 

 

As highlighted in Chapter 3 those referred to as proportional rules change dependent on 

the size of the subsequent main trial. The percentages listed in Table 4.2 represent the 

percentage of the main trial sample size to be used as the pilot trial sample size. For 

example, if the main trial was to have 1,500 participants the pilot trial should contain 45 

people based on the 3% rule. 
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Table 4.2: Proportional Rules of Thumb for Pilot Trial Sample Size 

Author Recommended Pilot Trial Sample Size 

Stallard (2011) 3% 

Cocks and Torgerson (2013) 9% 

 

 

The size of the main trial is dependent on the size of the pilot when using either of the 

correction methods. The effect of these methods on the expected power and sample size 

of the main trial and required sample size of the pilot trial is investigated in this chapter. 

 

4.1.1 Aims 

 

This chapter will look to extend the work of Kieser and Wassmer (1996) and Sim and Lewis 

(2012) by looking to: 

 

 Minimise the overall sample size of the pilot and the main trial together using 

the NCT method and the UCL method,  

 Find the theoretical ‘optimal’ values of the overall sample size, which could be 

achieved using these methods,  

 Calculate the pilot trial sample size, which leads to this optimal value, 

 Compare already existing rules of thumb (both flat and proportional) to these 

optimal values to assess how useful the existing methods are, 

 Compare the effects of the UCL and the NCT approaches on trial sample size, 

 Develop new rules of thumb based on the optimal results. 

 



88 
 

This chapter focuses on external pilot trials, which have the primary aim of estimating the 

variance to be used in the main trial sample size calculation. Additionally, this chapter 

concentrates on external pilot trials where it is assumed that there are no changes 

between the pilot and the following main trial, which would affect the variance estimate 

e.g. changing the outcome measure. In an external pilot trial, the data from the pilot 

sample are not included in the final analysis of the main trial. Internal pilot trials where 

the pilot data are included in the final analysis are considered in Chapters 6 and 7. 

 

4.2 Minimising the Overall Sample Size Using the NCT Approach 

 

By planning for further work after the pilot trial we can think of the pilot and main trial as 

one overall trial programme. It is this consideration for further work, which leads to the 

method of minimising the pilot, and the main trial together to produce an ‘optimal’ overall 

sample size, which is proposed in this PhD. This section uses the NCT approach as 

proposed by Julious and Owen (2006) to adjust the sample size for the main trial, based 

on the degrees of freedom for the variance estimate from the pilot trial.  As such the 

minimum overall sample size for a variety of standardised effect sizes are generated. 

 

4.2.1 Deriving the Minimum Overall Sample Size 

 

To find the minimum overall sample size, the size of the pilot trial is varied over a range 

of values (starting at 2 per arm, to prevent the degrees of freedom from equalling zero or 

less, and iterating upwards) and the required main trial sample size calculated, for each 

standardised effect size. This adjusted main trial sample size is added to the pilot trial 

sample size to give the overall sample size (pilot plus main trial) 𝑛𝑇, through Equation 4.1, 

 

 𝑛𝑇 =  𝑚 + 𝑛𝑀. (4.1)  

 

The total sample size for a two arm trial will be denoted by 𝑁𝑇  where 𝑁𝑇 =  2𝑚 +  2𝑛𝑀. 
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For the NCT approach the main trial sample size is calculated based on Equation 2.21. In 

which the required sample size 𝑛𝑀 (the sample size for the main trial) appears on both 

sides of the inequality. It can be solved iteratively until the inequality is satisfied. A starting 

point for these iterations can be found using Equation 2.22 and rounding downwards. 

 

Once the overall sample size for each of the pilot trial sample sizes has been calculated, 

the minimum overall sample size for each effect size can be found. This process is 

illustrated in Figure 4.1. 

 

Figure 4.1: Process for Calculating the Minimum Overall Sample Size for the NCT Approach 

 

 

Step 1: Values for Type I (𝛼) and Type II (𝛽) error are selected the standard deviation 

value (𝑠) and the effect size (𝑑) is set, and the starting value of 𝑚 is chosen. Here  

𝛼 = 0.05  (two-sided), 𝛽 = 0.1 , 𝑠  was set to 1, various values of 𝑑 were 

investigated between 0.05 and 1 and the starting value of 𝑚 was chosen to be 2 

participants per treatment group to prevent the degrees of freedom for the 

variance from being less than or equal to zero. Set 𝑖 =  1. 

Step 2: For a pilot trial sample size 𝑚𝑖, where i is the iteration number, estimate the 

main trial sample size, 𝑛𝑆𝑇𝐴𝑅𝑇 from Equation 2.22. 

Step 3: Using 𝑛𝑆𝑇𝐴𝑅𝑇 as a starting point for 𝑛𝑀 in Equation 2.21 iterate 𝑛𝑀 upwards 

until the inequality in Equation 2.21 is satisfied. 

Step 4: Estimate the overall sample size of the pilot and the main trial, 𝑛𝑇 from 

Equation 4.1. 

Step 5: For 𝑖 =  1 go to Step 6, for 𝑖 > 1 go to Step 7. 

Step 6: Add 1 to the previous pilot trial sample size, 𝑚𝑖 and 𝑖, and go to Step 2. 

Step 7: If 𝑛𝑇  for 𝑚𝑖 ≤   𝑛𝑇  for 𝑚𝑖−1  then go to Step 6. If 𝑛𝑇  for 𝑚𝑖 >  𝑛𝑇  for 

𝑚𝑖−1 then go to Step 8. 

Step 8: Take 𝑛𝑇 for 𝑚𝑖−1 as 𝑛𝑂𝑃𝑇 the minimum possible overall sample size. 
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For example, if the Type I error rate is chosen to be 0.05 or 5% (two-sided), the Type II 

error rate is set at 0.1 or 10%, if the chosen standardised effect size is 0.5 and we can start 

from m=2 (M=4) and set i=1. Following the algorithm to step 4 we get the following values: 

 

Iteration M 𝑵𝑴 𝑵𝑻 
1 4 708 712 

 

From this we can follow the rest of the algorithm. The first five loops of this would give 

the following results: 

 

Iteration M 𝑵𝑴 𝑵𝑻 
1 4 708 712 

2 6 334 340 

3 8 264 272 

4 10 236 246 

5 12 220 232 

 

The algorithm would stop when the newly calculated 𝑁𝑇  is larger than the previous value 

of 𝑁𝑇  for the chosen parameter values. In this situation the algorithm would stop at 

iteration 12: 

 

Iteration M 𝑵𝑴 𝑵𝑻 
11 24 190 214 

12 26 190 216 

 

Therefore, we would say that the optimal pilot trial sample size is 24 and optimal overall 

trial sample size is 214 for a two armed trial. 
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4.2.2 Minimum Overall Sample Sizes  

 

Table 4.3 shows the optimal overall sample size for a two-armed trial for the NCT 

approach for both an 80% and 90% powered main trial. The trials with higher power and 

a smaller standardised effect size require a larger trial sample size. Some of the sample 

sizes in Table 4.3 are large and dependent on the trial setting, design or funder may not 

be considered feasible. 

 

Table 4.3: Minimum Overall Sample Size for the NCT Approach for Two-armed Trials 

 

  

Standardised Effect Size 80% Powered Main Trial 90% Powered Main Trial 

0.05 12,854 17,234 

0.10 3,290 4,416 

0.20 862 1,160 

0.25 566 762 

0.30 402 542 

0.40 238 320 

0.50 160 214 

0.60 116 156 

0.70 90 120 

0.75 80 108 

0.80 72 96 

0.90 60 80 

1.00 50 68 
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4.3 Minimising the Overall Sample Size Using the UCL Approach 

 

This section uses the UCL approach to adjust the sample size for the main trial; these 

results will be used in Section 4.4 to compare the NCT (as seen in Section 4.2) and UCL 

methods. 

4.3.1 Deriving the Minimum Overall Sample Size 

 

The same approach as presented in Section 4.2 was used for finding the minimum overall 

sample size in this section, however instead of using the NCT approach the UCL approach 

was employed to adjust the main trial sample sizes. 

 

For the UCL approach the sample size for the main trial is calculated through Equation 4.2 

which is derived by replacing 𝜎2 in Equation 2.15 with 𝑠𝑈𝐶𝐿
2  

 

 

𝑛 =   
2(𝑍1−𝛽 +  𝑍1−𝛼

2⁄ )2 𝑠𝑈𝐶𝐿
2

𝑑2
. 

(4.2)  

 

The required level of Type I error is set as well as the required standardised effect size and 

the probability of achieving the required power, 𝑋 . Where 𝑋  represents the upper 

confidence limit being taken for the UCL approach which gives a 100𝑋 % chance of 

achieving the required power for the trial. This chapter investigates probability levels for 

𝑋 of 0.8 and 0.95. The process of calculating the minimum overall sample sizes is depicted 

in Figure 4.2. 
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For example, if the Type I error rate is chosen to be 0.05 or 5% (two-sided), the Type II 

error rate is set at 0.1 or 10%, if the chosen standardised effect size is 0.5 and X is chosen 

to be 0.8. We can start from m=2 (M=4) and set i=1. Following the algorithm to step 4 we 

get the following values: 

 

Iteration M 𝑵𝑴 𝑵𝑻 
1 4 754 758 

 

Figure 4.2: Process for Calculating the Minimum Overall Trial Sample Size for the UCL Approach 

Step 1: Values for Type I (𝛼) and Type II (𝛽) error are selected the standard deviation 

value (𝑠) and the effect size (𝑑) is set, the required level of X is chosen, and the 

starting value of 𝑚 is chosen. Here  𝛼 = 0.05 (two-sided), 𝛽 = 0.1, 𝑠 was set to 1, 

various values of 𝑑 were investigated between 0.05 and 1 and the starting value of 

𝑚 was chosen to be 2 participants per treatment group to prevent the degrees of 

freedom for the variance from being less than or equal to zero. Set 𝑖 =  1. 

Step 2: For a pilot trial sample size 𝑚𝑖, where i is the iteration number, estimate the 

main trial sample size, 𝑛𝑀 from Equation 4.2. 

Step 3: Estimate the overall sample size of the pilot and the main trial, 𝑛𝑇 from 

Equation 4.1. 

Step 4: For 𝑖 =  1 go to Step 5, for 𝑖 > 1 go to Step 6. 

Step 5: Add 1 to the previous pilot trial sample size, 𝑚𝑖 and 𝑖, and go to Step 2. 

Step 6: If 𝑛𝑇  for 𝑚𝑖 ≤   𝑛𝑇  for 𝑚𝑖−1  then go to Step 5. If 𝑛𝑇  for 𝑚𝑖 >  𝑛𝑇  for 

𝑚𝑖−1 then go to Step 7. 

Step 7: Take 𝑛𝑇 for 𝑚𝑖−1 as 𝑛𝑂𝑃𝑇 the minimum possible overall sample size. 



94 
 

From this we can follow the rest of the algorithm. The first five loops of this would give 

the following results: 

 

Iteration M 𝑵𝑴 𝑵𝑻 
1 4 754 758 

2 6 408 414 

3 8 330 338 

4 10 294 304 

5 12 274 286 

 

The algorithm would stop when the newly calculated 𝑁𝑇  is larger than the previous value 

of 𝑁𝑇  for the chosen parameter values. In this situation the algorithm would stop at 

iteration 15: 

 

Iteration M 𝑵𝑴 𝑵𝑻 

14 30 220 250 

15 32 216 248 

 

Therefore, we would say that the optimal pilot trial sample size is 32 and optimal overall 

trial sample size is 248 for a two armed trial. 

 

4.3.2 Minimum Overall Sample Sizes  

 

Table 4.4 shows the minimum overall sample size for a two-armed trial for the UCL 

approach (with both 80% and 95% confidence levels) for 80% and 90% powered main 

trials. Again the trials with higher powers and smaller standardised effect sizes require a 

higher sample size, additionally the trials, which use the 95% UCL compared to the 80% 

UCL need a larger sample size to maintain this higher probability level of achieving the 

required power. 
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Table 4.4: Minimum Overall Sample Size for the UCL (80 and 95%) Approaches for Two-armed 

Trials 

 

 

 

4.4 Theoretical Optimal Values of Pilot Trial Sample Size 

 

The following section uses the results found in Section 4.2 and 4.3 to find the pilot trial 

sample sizes, which lead to these minimum overall sample sizes. This pilot trial sample 

size will be referred to as the optimal pilot trial sample size, as it is the pilot trial sample 

size, which would lead to the theoretical minimum possible overall sample size. This 

process adds an additional step to the processes shown in Figures 4.1 and 4.2 as shown 

in Figure 4.3. 

  

 80% Powered Main Trial 90% Powered Main Trial 

Standardised 

Effect Size 

80% UCL  95% UCL 80% UCL 95% UCL 

0.05 13,762 14,444 18,266 19,092 

0.10 3,632 3,912 4,796 5,134 

0.20 990 1,108 1,296 1,438 

0.25 658 746 858 966 

0.30 474 544 616 700 

0.40 284 334 368 428 

0.50 194 232 248 294 

0.60 142 174 182 220 

0.70 110 136 140 172 

0.75 100 124 126 154 

0.80 90 112 112 140 

0.90 74 94 94 116 

1.00 64 80 80 100 
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As previously described in Section 4.2 this process was carried out for various values of 

the standardised effect size. Table 4.5 shows the optimal pilot trial sample size, the 

required main trial sample size based on this pilot trial sample size and the resulting 

overall sample size for a two-armed trial for all the adjustment methods. These results are 

calculated for 90% and 80% powered main trials with a two-sided Type I error rate of 5% 

and allocation ratio of 1. 

 

Figure 4.3: Finding the Optimal Pilot Trial Sample Size 

Step 8: Take 𝑚𝑖−1  as 𝑚𝑜𝑝𝑡  the pilot trial sample size that leads to the optimal 

overall sample size, 𝑁𝑜𝑝𝑡. 
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Table 4.5: Theoretical Optimal Values of Pilot Trial Sample Size, Main Trial and Overall Sample Size 

for a Two-armed Trial for each Adjustment Method for 90% and 80% Powered Main Trials  

 80% UCL Approach 95% UCL Approach Non-Central T-distribution 

Standardised 

Effect Size 

Pilot Main Overall Pilot Main Overall Pilot Main Overall 

90% Powered Main Trial 

0.05 506 17,760 18,266 794 18,298 19,092 212 17,022 17,234 

0.10 210 4,586 4,796 332 4,802 5,134 108 4,308 4,416 

0.20 90 1,206 1,296 144 1,294 1,438 56 1,104 1,160 

0.25 70 788 858 110 856 966 44 718 762 

0.30 56 560 616 90 610 700 38 504 542 

0.40 40 328 368 64 364 428 30 290 320 

0.50 32 216 248 50 244 294 24 190 214 

0.60 26 156 182 42 178 220 20 136 156 

0.70 22 118 140 36 136 172 18 102 120 

0.75 20 106 126 34 120 154 16 92 108 

0.80 20 92 112 32 108 140 16 80 96 

0.90 18 76 94 28 88 116 14 66 80 

1.00 16 64 80 26 74 100 14 54 68 

80% Powered Main Trial 

0.05 420 13,342 13,762 660 13,784 14,444 148 12,706 12,854 

0.10 176 3,456 3,632 278 3,634 3,912 76 3,214 3,290 

0.20 76 914 990 120 988 1,108 38 824 862 

0.25 58 600 658 94 652 746 32 534 566 

0.30 48 426 474 76 468 544 26 376 402 

0.40 34 250 284 56 278 334 20 218 238 

0.50 28 166 194 44 188 232 18 142 160 

0.60 22 120 142 36 138 174 14 102 116 

0.70 20 90 110 30 106 136 12 78 90 

0.75 18 82 100 28 96 124 12 68 80 

0.80 18 72 90 28 84 112 12 60 72 

0.90 16 58 74 24 70 94 10 50 60 

1.00 14 50 64 22 58 80 10 40 50 



98 
 

It can be seen that as the standardised effect size increases the optimal pilot trial sample 

size decreases. The same pattern as previously seen can be observed again such that; the 

95% UCL approach results in the largest pilot trial sample sizes followed by the 80% UCL 

and the NCT approaches respectively. 

 

The effect of the adjustment methods can also be depicted graphically. Figures 4.4 to 4.6 

show the effect on the overall sample size the adjustment methods have compared to the 

traditional sample size calculation, which assumes that the variance is known. The figures 

illustrate the results for a clinical trial with two treatment arms. 

 

The black solid line describes a standard sample size calculation with no adjustment 

method applied assuming that the population variance is known, based on Equation 2.15. 

The red dashed curve represents the NCT method as proposed by Julious and Owen (2006). 

The green dotted and dashed line is the UCL method with an 80% UCL for the variance 

estimate. The blue dotted line is the UCL method with a 95% UCL for the variance. The 

overall sample sizes on the graphs are the total for a two-armed trial.
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Figure 4.4: Comparing Overall Sample Sizes for each Adjustment Method and the Traditional Formula for each Pilot Trial Sample Size for a Standardised Effect 

Size of 0.2 for a Two-Armed Trial 
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Figure 4.5: Comparing Overall Sample Sizes for each Adjustment Method and the Traditional Formula for each Pilot Trial Sample Size for a Standardised Effect 

Size of 0.5 for a Two-Armed Trial 
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Figure 4.6: Comparing Overall Sample Sizes for each Adjustment Method and the Traditional Formula for each Pilot Trial Sample Size for a Standardised 

Effect Size of 0.8 for a Two-Armed Trial 
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It is demonstrated in Figures 4.4 to 4.6 that for the three methods, where an adjustment 

method has been used, as the pilot trial sample size initially increases the overall sample 

size decreases since the increase in pilot trial sample size is offset by a larger decrease in 

the main trial adjustment. However, eventually adding more participants into the pilot 

trial is not beneficial and the increase in pilot trial sample size is not offset by the decrease 

in the subsequent main trial sample size and ultimately the overall sample size begins to 

rise again.  

 

There is a trade-off therefore between having a small pilot trial and a large main trial or a 

large pilot trial and a small main trial; the larger the pilot the more accurate the 

information and hence the smaller the inflation applied to the main trial sample size 

calculation. However, eventually the pilot will get too large and the number included in 

the pilot trial will outweigh the reduction in the main trial sample size. It can be seen 

therefore that there is a minimum possible overall sample size and, it is possible to solve 

the function to find the pilot trial sample size, which minimises the overall sample size, 

and these results are presented in Table 4.5.  

 

Table 4.5 shows the results from the graphs in Figures 4.4 to 4.6 for 90% powered main 

trials, plus the results for 80% powered main trials, displaying the pilot sample size for 

which the overall sample size is minimised, the resulting main trial sample size based on 

this pilot trial sample size and the minimum possible overall sample size. These results will 

be referred to as the optimal values as these are the lowest numbers you could 

theoretically achieve and still on average have the required power for the trial. 

 

4.5  Comparing the Optimal Values to the Flat Rules of Thumb 

 

In the previous section Figures 4.4 to 4.6 were used to compare the resulting overall 

sample size of three types of variance adjustment to the unadjusted overall sample size, 

which assumes that the variance is known. In this section the flat rules of thumb 
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presented in Chapter 2 are added to the plots and compared to the theoretical ‘optimal’ 

value of pilot trial sample size (Figures 4.7 to 4.9). 
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Figure 4.7: Comparing Overall Sample Sizes for each Correction Method for Varying Pilot Trial Sample Sizes for a Standardised Difference of 

0.2 for a Two-Armed Trial 
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Figure 4.8: Comparing Overall Sample Sizes for each Correction Method for Varying Pilot Trial Sample Sizes for a Standardised Difference of 

0.5 for a Two-Armed Trial (Sample Size Total for a Two-armed Trial) 
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Figure 4.9: Comparing Overall Sample Sizes for each Correction Method for Varying Pilot Trial Sample Sizes for a Standardised Difference of 

0.8 for a Two-Armed Trial (Sample Size Total for a Two-armed Trial) 
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The black solid line again depicts a standard sample size calculation with no adjustment 

applied hence assuming that the population variance is known. The points on the line 

show the resulting overall sample size if the rules of thumb 24, 30 or 70 were used with 

no adjustment method applied. The red dashed curve represents the NCT method. The 

points show the resulting overall sample size of the rules of thumb if 24 or 30 subjects 

were used for the pilot trial. The green dotted and dashed line is the UCL method with an 

80% UCL for the variance. The points represent the rules of thumb of 20 and 40 as set out 

by Kieser and Wassmer (1996) as well as 24 or 30 rules. The blue dotted line is the UCL 

method with a 95% UCL for the variance. The point for a pilot trial sample size of 55 has 

been added here, as this was the sample size recommended by Sim and Lewis (2012) to 

minimise the overall sample size. The overall sample sizes on the graphs are the total for 

a two-armed trial. 

 

The following table (Table 4.6) displays differences in the number of participants between 

the theoretical optimal values and the inflation methods using the rules of thumb for both 

the pilot trial sample size and the overall sample size used for a 90% powered main trial. 

A negative value indicates the rule of thumb uses fewer participants than the optimal 

value indicates. The results for 80% powered main trials are presented in Table 4.7. 
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Table 4.6: Distances from Optimal Values for the Rules of Thumb for Varying Standardised 

Differences for a Main Trial Power of 90% Based on a Two Armed Trial 

Standardised 

Effect Size 

Pilot Trial  

Sample Size 

Overall Trial  

Sample Size 

Correction  

Method 

Distance from  

Optimal Pilot Trial  

Sample Size 

Distance from  

Optimal Overall 

Trial  

Sample Size 

0.2 20  1,492 80% UCL  -70 196 

24  1,442 80% UCL  -66 146 

30  1,394 80% UCL  -60 98 

40  1,350 80% UCL  -50 54 

55  1,549 95% UCL  -89 111 

24  1,208 NCT -32 48 

30  1,186 NCT -26 26 

0.5 20  256 80% UCL  -12 8 

24  252 80% UCL  -8 4 

30  250 80% UCL  -2 2 

40  250 80% UCL  +8 2 

55  295 95% UCL  +5 1 

24  214 NCT 0 0 

30  216 NCT +6 2 

0.6 20  184 80% UCL  -6 2 

24  182 80% UCL  -2 0 

30  182 80% UCL  +4 0 

40  186 80% UCL  +14 4 

55  221 95% UCL  +13 1 

24  158 NCT +4 2 

30  160 NCT +10 4 

0.8 20  112 80% UCL  0 0 

24  114 80% UCL  +4 2 

30  116 80% UCL  +10 4 

40  122 80% UCL  +20 10 

55  149 95% UCL  +23 9 

24  100 NCT +8 4 

30  104 NCT +14 8 
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From Table 4.6 and Figures 4.7 to 4.9 we can see that for medium standardised effect 

sizes (0.5 and 0.6) the suggested rules of thumb are very close to the optimal pilot sample 

size. However, when the standardised effect size moves away from these values the rules 

of thumb are less useful. For small standardised effect sizes (e.g. 0.2) the rules of thumb 

underestimate the required size of the pilot by as many as 89 participants. For large 

standardised effect sizes (e.g. 0.8) the rules of thumb overestimate the number of 

participants required by as much as 23. These results indicate that the larger the main 

trial the larger the pilot trial should be in order to minimise the overall sample size; 

therefore, one fixed flat pilot trial sample size will not be suitable for all trials. 

 

In relation to the overall sample size, overestimating the pilot sample size is not as costly 

as underestimating in terms of over recruitment of participants, as demonstrated in the 

graphs given that the slope of the right hand side of the graph is flatter than the left hand 

side. Therefore, for the same change in pilot trial sample size overestimation compared 

to underestimation the change in overall sample size will be comparatively less. 

Consequently, for larger standardised effect sizes the difference of the rules of thumbs to 

the optimal size is lower than for the smaller standardised effect sizes.  

 

It can be seen that as the standardised effect size increases the effect of using a 

suboptimal pilot trial sample size decreases. This is due to the smaller numbers already 

involved in the trial due to the larger standardised effect size. 

 

For a small standardised effect size of 0.2 using a pilot of 55 participants and the 95% UCL 

method could lead to an over recruitment beyond the theoretical minimum for this 

approach of 111 additional participants to the overall sample size. Using a pilot trial 

sample size of 20 and the 80% UCL method could lead to increasing the overall sample 

size by up to 196 participants over the theoretical optimal overall sample size for this 

method. If the NCT method is used after a pilot trial with a sample size of 24 this could 

result in an extra 48 people than needed being recruited in the optimal design. For large 

effect sizes these are 9, 10 and 8 extra participants for the 95% UCL method (with a pilot 
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trial sample size of 55), the 80% UCL method (with a pilot trial sample size of 40) and the 

NCT method (with a pilot trial sample size of 30) respectively.  It can also be seen that the 

NCT approach produces consistently lower overall sample sizes than any of the other 

methods. 
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Table 4.7: Distances from Optimal Values for the Rules of Thumb for Two Armed Trials for 

Varying Standardised Differences for a Main Trial Power of 80% Based on a Two Armed 

Trial 

Standardised  

Effect Size 

Pilot Trial 

Sample 

Size 

Overall Trial  

Sample Size 

Correction  

Method 

Distance from  

Optimal Pilot Trial  

Sample Size 

Distance from  

Optimal Overall Trial  

Sample Size 

0.2 20  1,120 80% UCL  -56 130 

24  1,084 80% UCL  -52 94 

30  1,050 80% UCL  -46 60 

40  1,018 80% UCL  -36 28 

55  1,171 95% UCL  -65 63 

24  874 NCT -14 12 

30  866 NCT -8 4 

0.5 20  196 80% UCL  -8 2 

24  194 80% UCL  -4 0 

30  194 80% UCL  2 0 

40  198 80% UCL  12 4 

55  235 95% UCL  11 3 

24  162 NCT 6 2 

30  166 NCT 12 6 

0.6 20  144 80% UCL  -2 2 

24  142 80% UCL  2 0 

30  144 80% UCL  8 2 

40  150 80% UCL  18 8 

55  179 95% UCL  19 5 

24  120 NCT 10 4 

30  124 NCT 16 8 

0.8 20  90 80% UCL  2 0 

24  92 80% UCL  6 2 

30  94 80% UCL  12 4 

40  102 80% UCL  22 12 

55  125 95% UCL  27 13 

24  78 NCT 12 6 

30  84 NCT 18 12 
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Table 4.7 reflects the same pattern for the 80% powered main trial as was seen for the 

90% powered main trial.  It can be seen that for medium standardised effects sizes again 

the suggested rules of thumb are very close to the optimal pilot trial sample sizes. 

 

For small standardised effect sizes, the rules of thumb still underestimate the required 

size of the pilot as with the 90% powered trials however, because in an 80% powered trial 

the main trial will be smaller the underestimation is lower due to the increase in the size 

of the pilot relative to the size of the main trial. For large standardised effect sizes, the 

rules of thumb overestimate how large the pilot trial needs to be, for 80% powered trials 

this is worse because as previously mentioned the relative size of the pilot to the main 

trial is larger than for a 90% powered trial. 

 

It may be noted that for large values of the standardised effect size the suggested pilot 

trial sample size falls to a level which may be considered too low to achieve the other 

objectives of a pilot trial (as outlined in Chapter 1). This is because pilot trials are not only 

used to estimate the variance of the outcome measure, but also to assess objectives such 

as testing the feasibility of trial processes or predicting the likely dropout rate. We must 

consider these other objectives as well as more practical considerations. For these 

reasons the suggestion would be not to use a pilot trial sample size below 10 per arm or 

20 for a two-armed trial, as this is the lowest of all the flat rules of thumb presented in 

Table 4.1. The following table (Table 4.8) represents the optimal results with a cap on the 

lower limit of the pilot trial sample size of 10 per treatment group or 20 overall for a two 

group trial. 
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Table 4.8: Theoretical Optimal Values of Pilot Trial Sample Size, Main Trial and Overall Sample Size 

for a Two-armed Trial for each Adjustment Method for 90% and 80% Powered Main Trials with a Cap 

on the Lower Limit of Pilot Trial Sample Size at 10 participants 

 80% UCL 95% UCL Non-Central T-distribution 

Standardised Effect Size Pilot Main Overall Pilot Main Overall Pilot Main Overall 

90% Powered Main Trial 

0.05 
506 17,760 18,266 794 18,298 19,092 212 17,022 17,234 

0.10 
210 4,586 4,796 332 4,802 5,134 108 4,308 4,416 

0.20 
90 1,206 1,296 144 1,294 1,438 56 1,104 1,160 

0.25 
70 788 858 110 856 966 44 718 762 

0.30 
56 560 616 90 610 700 38 504 542 

0.40 
40 326 368 64 364 428 30 290 320 

0.50 
32 216 248 50 244 294 24 190 214 

0.60 
26 156 182 42 178 220 20 136 156 

0.70 
22 118 140 36 136 172 20 100 120 

0.75 
20 106 126 34 120 154 20 88 108 

0.80 
20 92 112 32 108 140 20 78 98 

0.90 
20 74 94 28 88 116 20 62 82 

1.00 
20 60 80 26 74 100 20 50 70 

80% Powered Main Trial 

0.05 
420 13,342 13,762 660 13,784 14,444 148 12,706 12,854 

0.10 
176 3,456 3,632 278 3,634 3,912 76 3,214 3,290 

0.20 
76 914 990 120 988 1,108 38 824 862 

0.25 
58 600 658 94 652 746 32 534 566 

0.30 
48 426 474 76 468 544 26 376 402 

0.40 
34 250 284 56 278 334 20 218 238 

0.50 
28 166 194 44 188 232 20 140 160 

0.60 
22 120 142 36 138 174 20 98 118 

0.70 
20 90 110 30 106 136 20 72 92 

0.75 
20 80 100 28 96 124 20 62 82 

0.80 
20 70 90 28 84 112 20 56 76 

0.90 
20 56 76 24 70 94 20 44 64 

1.00 
20 44 64 22 58 80 20 36 56 



114 
 

In Table 4.8 a lower cap is placed on the pilot trial sample size so that it cannot drop lower 

than the recommended minimum of 10 participants per treatment arm or 20 participants 

in total. From Table 4.8 (90% powered main trials) it can be seen that for the 80% UCL 

method the optimal pilot trial sample size becomes 10 when the standardised difference 

reaches 0.8 or higher. For the 95% UCL method the optimal pilot trial sample size never 

falls as low as 10 so the cap does not come into effect here. For the NCT method the 

optimal pilot trial sample size reverts to being 10 once the standardised difference 

reaches 0.7 or higher. For 80% powered main trials the caps can be seen to come into 

effect earlier for the 80% UCL method when the standardised difference reaches 0.7 and 

for the NCT method when it reaches 0.5 or more. The cap still has no effect on the results 

from the 95% UCL method. 

 

It should be noted that although the exact calculation for the NCT approach Equation 2.21 

has been used here to gain the most accurate results, in practice using the approximation 

in Equation 2.22 will result in an overall sample size of one subject less than the exact 

calculation at the most as seen in Julious and Owen (2006) 

 

4.6 Comparing the Optimal Values to the Proportional Rules of 

Thumb 

 

This section will extend the work of Stallard (2011), whose paper aims to minimise the 

expected total number of patients required to lead to a successful definitive trial and 

recommends a pilot trial sample size of 3% of the main trial sample size. The objective in 

this section is to compare this proportional rule of thumb to the flat rules of thumb 

presented earlier.  

 

In this section an algorithm is derived which finds the main trial sample size based on a 

chosen proportion for pilot trial sample size and standardised effect size; given the 

restriction that the pilot trial should be a fixed proportion of the main trial sample size. 

From this a pilot trial and main trial sample size is derived for varied standardised effect 
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sizes. Other proportions than 3% are also investigated. The proportions are investigated 

to find out which work well in which situations and if there is a proportion which works in 

all situations. 

 

4.6.1 Deriving the Optimal Pilot Trial Sample Size Methods 

 

In order to calculate the required number of participants for the pilot trial knowledge of 

the required number for the main trial is needed. The argument becomes circular because 

in order to calculate the required number for the main trial you need to know the required 

number for the pilot based on using one of the inflation methods for the variance.  

 

To solve the problem, the following procedure was designed and implemented. The initial 

main trial sample size (𝑛𝑀) was calculated based on the unadjusted formula (Equation 

2.15) the required pilot trial sample size was calculated from this by multiplying 𝑛𝑀 by 𝑝, 

the required sample size proportion for the pilot trial sample. This pilot trial sample size 

(𝑚) was then used to calculate the required 𝑛𝑀 and so on, as described in the following 

algorithm (Figure 4.10) and displayed in Figure 4 .11.  

 

 

  

Step 1: Calculate the main trial sample size n1 from Equation 2.15 based on the 

chosen standardised effect size 

Step 2: Calculate m1 by multiplying n1 by 𝑝 

Step 3: Calculate n2 by using m1 in either the UCL method or the NCT method 

Step 4: Calculate m2 by multiplying n2 by 𝑝 

Step 5: Repeat steps 3 and 4 until the values converge 

Figure 4.10: Algorithm to Calculate Pilot Trial Sample Size to Minimise Overall Trial Sample Size 

Based on Proportional Methods of Setting the Pilot Trial Sample Size 
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Figure 4 .11: Flow Diagram Showing the Algorithm for the Proportional Approach 

 

 

 

 

 

 

 

 

 

During the implementation of this approach a problem was identified. If the required pilot 

trial sample size based on the rule fell below 2 the algorithm could no longer continue as 

the degrees of freedom falls to zero or less. In order to combat this issue, it was decided 

that a lower limit for the pilot trial sample size should be set. A pilot trial sample size of 

20 participants was chosen as the limit as in the flat rules of thumb section, due to this 

being the lowest recommended sample size in Table 4.1.  

 

4.6.2 The 3% Rule 

 

The following table, Table 4.9, shows the results from the procedure for the pilot trial and 

the main trial sample size based on the pilot trial being 3% of the size of the main trial, for 

a given standardised difference. 

 

The restrictive nature of setting the pilot to 3% of the size of the main trial has resulted in 

an overall sample size difference of 56 (1,352 from Table 4.9 compared to 1,296 from   

n1  n2  n3 ... 

      

m1  m2  m3 ... 

      

n1+ m1  n2+ m2  n3+ m3 ... 
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Table 4.4) between this method and method which allows the pilot trial sample size to 

take any value, for the 80% UCL method, a main trial power of 90% and with a 

standardised effect size of 0.2. The increase in the overall sample sizes for the 

standardised differences of 0.5, 0.6 and 0.8 are 4, 1 and 0 respectively. These numbers 

are not as large as they could have been because of the cap on the lower limit for pilot 

trial sample size having been set at 20 participants for the 3% method which is close to 

the optimal pilot trial sample size for the 80% UCL method for standardised differences of 

0.6 and 0.8. 

 

For the NCT method the 3% method has also resulted in a marginal increase in the 

required overall number of participants. For the standardised difference of 0.2 the 

increase is 20, again the lower limit of 20 for the pilot trial from the 3% method means 

that there is little or no difference for the standardised differences of 0.5, 0.6 and 0.8; 2, 

0, 0 respectively. A similar pattern can be seen for a main trial power of 80%. These results 

again emphasise that rules of thumb are suitable when the standardised difference is >0.5 

but for small standardised differences may result in an over recruitment. 
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Table 4.9: Pilot Trial, Main Trial and Overall Sample Size for a Two-Armed Trial Based on 

the 3% Rule with 90% or 80% Power and 5% Type I Error Rate in Main Trial 

 80% UCL 95% UCL  Non-Central T-distribution 

Standardised 

Effect Size 

Pilot Main Overall Pilot Main Overall Pilot Main Overall 

90% Powered Main Trial 

0.05 534 17,736 18,270 560 18,610 19,170 508 16,900 17,408 

0.10 142 4,682 4,824 154 5,132 7,286 130 4,294 4,424 

0.20 40 1,312 1,352 48 1,550 1,598 36 1,150 1,186 

0.25 28 890 918 34 1,086 1,120 24 778 802 

0.30 20 654 674 26 824 850 20 542 562 

0.40 20 368 388 20 504 524 20 306 326 

0.50 20 236 256 20 324 344 20 196 216 

0.60 20 164 184 20 224 244 20 136 156 

0.70 20 122 142 20 166 186 20 100 120 

0.75 20 106 126 20 144 164 20 88 108 

0.80 20 92 112 20 126 146 20 78 98 

0.90 20 74 94 20 100 120 20 62 82 

1.00 20 60 80 20 82 102 20 50 70 

80% Powered Main Trial 

0.05 402 13,362 13,764 424 14,120 14,544 380 12,618 12,998 

0.10 108 3,560 3,668 120 3,952 4,072 96 3,200 3,296 

0.20 32 1,016 1,048 38 1,226 1,264 26 852 878 

0.25 22 698 720 28 870 898 20 554 574 

0.30 20 490 510 22 668 690 20 386 406 

0.40 20 276 296 20 378 398 20 218 238 

0.50 20 176 196 20 242 262 20 140 160 

0.60 20 124 144 20 168 188 20 98 118 

0.70 20 90 110 20 124 144 20 72 92 

0.75 20 80 100 20 108 128 20 62 82 

0.80 20 70 90 20 96 116 20 56 76 

0.90 20 56 76 20 76 96 20 44 64 

1.00 20 44 64 20 62 82 20 36 56 



119 
 

4.6.3 Other Proportional Pilot Trial Rules 

 

As previously discussed pilot trials should increase in size as the sample size of the main 

trial increases. This is one of the flaws of flat rules of thumb. Therefore, the idea of 

proportional pilot trials is worthy of further investigation. A recent paper by Cocks and 

Torgerson (2013) suggested a proportional pilot of 9% of the main trial. This section will 

investigate this and other levels of pilot to main trial proportionality in the same way as 

described for the 3% level in the previous section. 

 

The following table (Table 4.10) shows the results of pilot trial, main trial and minimum 

overall sample size for varying proportionality levels for the pilot trial versus the main trial. 

The algorithm, shown in Figure 4.10 was used again and applied in the same way as in 

Section 4.6.2. 
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Table 4.10: Pilot Trial Sample Size and Overall Sample Size for a Two-Armed Trial Based on Varying 

Proportions of the Main Trial as the Pilot Trial Sample Size for the 80% UCL Correction and the NCT 

Method for a 90% Powered Main Trial 

 80% UCL 95% UCL Non-Central T-distribution 

Standardised 

Effect Size 

Pilot Main Overall Pilot Main Overall Pilot Main Overall 

5% proportional pilot trial 

0.2 64 1,246 1,310 72 1,424 1,496 56 1,108 1,164 

0.5 20 236 256 20 324 344 20 196 216 

0.8 20 92 112 20 126 146 20 78 98 

9% proportional pilot trial 

0.2 108 1,192 1,300 120 1,322 1,442 98 1,082 1,180 

0.5 22 234 256 28 292 320 20 196 216 

0.8 20 92 112 20 126 146 20 78 98 

10% proportional pilot trial 

0.2 120 1,184 1,304 132 1,308 1,440 108 1,080 1,188 

0.5 24 230 254 30 284 314 20 196 216 

0.8 20 92 112 20 126 146 20 78 98 

20% proportional pilot trial 

0.2 230 1,142 1,372 246 1,228 1,474 214 1,066 1,280 

0.5 42 210 252 50 246 296 38 184 222 

0.8 20 92 112 24 118 142 20 78 98 

50% proportional pilot trial 

0.2 554 1,108 1,662 582 1,162 1,744 530 1,058 1,588 

0.5 96 192 288 108 216 324 88 176 264 

0.8 42 82 124 48 96 144 36 72 108 

 

Although the proportional methods are an improvement on the flat rules of thumb in that 

they allow the pilot to be larger for large main trials and smaller for small main trials, they 

still place a restriction on the sample size of the pilot trial, which means that the optimal 

overall sample size may not be achieved. 
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To look at which proportions would be optimal for this kind of rule of thumb Table 4.5 

was used to calculate what percentage of the main trial the optimal pilot trial would be. 

Using the optimal results presented in Table 4.5, the optimal proportional pilot trial 

sample size was calculated by dividing the optimal pilot trial sample size by the main trial 

sample size to give a proportion. These results can be seen in Table 4.11. 
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Table 4.11: Optimal Proportional Pilot Trial Sample Sizes for a Two-Armed Trial for Main Trial Sample 

Sizes with 80% and 90% Power 

 80% UCL 95% UCL Non-Central T-distribution 

Standardised 

Effect Size 

Pilot Main Proportion Pilot Main Proportion Pilot Main Proportion 

90% Powered Main Trial 

0.05 506 17,760 0.03 794 18,298 0.04 212 17,022 0.01 

0.10 210 4,586 0.05 332 4,802 0.07 108 4,308 0.03 

0.20 90 1,206 0.07 144 1,294 0.11 56 1,104 0.05 

0.25 70 788 0.09 110 856 0.13 44 718 0.06 

0.30 56 560 0.10 90 610 0.15 38 504 0.08 

0.40 40 328 0.12 64 364 0.18 30 290 0.10 

0.50 32 216 0.15 50 244 0.20 24 190 0.13 

0.60 26 156 0.17 42 178 0.24 20 136 0.15 

0.70 22 118 0.19 36 136 0.26 20 100 0.20 

0.75 20 106 0.19 34 120 0.28 20 88 0.23 

0.80 20 92 0.22 32 108 0.30 20 78 0.26 

0.90 20 74 0.27 28 88 0.32 20 62 0.32 

1.00 20 60 0.33 26 74 0.35 20 50 0.40 

80% Powered Main Trial 

0.05 420 13,342 0.03 660 13,784 0.05 148 12,706 0.01 

0.10 176 3,456 0.05 278 3,634 0.08 76 3,214 0.02 

0.20 76 9,14 0.08 120 988 0.12 38 824 0.05 

0.25 58 600 0.10 94 652 0.14 32 534 0.06 

0.30 48 426 0.11 76 468 0.16 26 376 0.07 

0.40 34 250 0.14 56 278 0.20 20 218 0.09 

0.50 28 166 0.17 44 188 0.23 20 140 0.14 

0.60 22 120 0.18 36 138 0.26 20 98 0.20 

0.70 20 90 0.22 30 106 0.28 20 72 0.28 

0.75 20 80 0.25 28 96 0.29 20 62 0.32 

0.80 20 70 0.29 28 84 0.33 20 56 0.36 

0.90 20 56 0.36 24 70 0.34 20 44 0.45 

1.00 20 44 0.45 22 58 0.38 20 36 0.56 
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It can be seen that no proportion is optimal for all standardised effect sizes in terms of 

minimising the overall sample size. As with the results looking at the actual numbers 

involved the NCT method results in smaller proportions and hence smaller pilots than the 

other approaches. The resulting proportions increase as the standardised effect size 

increases. The main trial sample size is proportional to 1
𝑑2⁄ . Therefore when the pilot 

trial sample size is divided by the main trial sample size to calculate the proportion, the 

pilot sample size is multiplied by 𝑑2 consequently as the effect size increases the resulting 

proportions increase. For the NCT approach, the optimal proportion for a standardised 

effect size of 0.05 is 1% whereas for a standardised effect size of 1 the optimal proportion 

is 40%, for a 90% powered main trial. 

 

4.7 The Effect of Using the NCT Approach 

 

The 80% UCL method requires fewer trial participants than the 95% UCL method since the 

80% UCL method gives less of a chance of achieving the required power. The NCT method 

consistently requires even fewer subjects for the same fixed parameters. This section 

explores and compares the methods; how they affect the sample size of a trial and their 

effect on the power of the trial, in order to investigate the cost in terms of power of using 

the NCT approach over the UCL approaches. 

 

4.7.1 Inflation Factors 

 

In the paper by Julious and Owen (2006) inflation factors are presented which, if 

multiplied by the sample size given by the standard calculation (Equation 2.15), will result 

in the same sample size as if the calculation was conducted using the NCT approach 

(Equation 2.22). The inflation factor can be calculated from 

 

 

𝐼𝐹 =
(2[𝑡𝑖𝑛𝑣(1 − 𝛽, 𝑘, 𝑍1−𝛼 2⁄ ) ]

2
𝑠2) 𝑑2⁄

(2(𝑍1−𝛽 +  𝑍1−𝛼 2⁄ )
2

𝑠2) 𝑑2⁄
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𝐼𝐹 =  
[𝑡𝑖𝑛𝑣(1 − 𝛽, 𝑘, 𝑍1−𝛼 2⁄ ) ]

2

(𝑍1−𝛽 + 𝑍1−𝛼 2⁄ )
2 . 

 

 

 

These inflation factors depend on the pilot trial sample size, the Type I error rate and the 

Type II error rate. Table 4.12 shows inflation factors based on the NCT approach for 

varying pilot trial sample sizes for a two-sided Type I error rate of 5% and power 

requirements of 80 and 90%. 

 

Table 4.12: Inflation Factors for the Sample Size Calculation for the NCT Approach when the Type I 

Error is 5% 

 Power 

Pilot Trial Sample Size 90% 80% 

20 1.156 1.099 

24 1.125 1.080 

30 1.097 1.062 

40 1.071 1.045 

50 1.055 1.036 

70 1.039 1.025 

100 1.027 1.017 

200 1.013 1.009 

 

 

These inflation factors can also be calculated for the UCL approach. The inflation factor 

represents how much larger the adjusted sample size is compared to the standard 

calculation therefore; they are calculated by dividing Equation 4.2 by Equation 2.15, with 

𝜎2 replaced by 𝑠2. Equation 4.2 is Equation 2.15 where 𝜎2 is replaced by 𝑠𝑈𝐶𝐿
2 , where the 

value of 𝑠𝑈𝐶𝐿
2  can be found using Equation 2.12. This can be seen in Equation 4.3 where 𝑘 

is the degrees of freedom for the variance estimate from the pilot trial and 𝐼𝐹, is the 

inflation factor. 
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𝐼𝐹 =
(2(𝑍1−𝛽 +  𝑍1−𝛼 2⁄ )

2
(𝑘 𝜒1−𝑋,𝑘

2⁄ )𝑠2) 𝑑2⁄

(2(𝑍1−𝛽 +  𝑍1−𝛼 2⁄ )
2

𝑠2) 𝑑2⁄
  

 
𝐼𝐹 =  

𝑘

𝜒1−𝑋,𝑘
2  (4.3)  

 

The inflation factors for the UCL approach can be seen to depend only on the sample size 

of the pilot trial through the degrees of freedom for the variance estimate and the chosen 

level of 𝑋, the chosen level of confidence. Table 4.13 shows inflation factors for the UCL 

approach for varying pilot trial sample size and chosen level of 𝑋, either 0.8 or 0.95, 

relating to 80% and 95% UCL approaches respectively. No power or Type I error rate needs 

to be selected to calculate the inflation factor for the UCL approach, as can be seen above 

in Equation 4.3, the inflation factor for the UCL approach does not depend on the power 

or the Type I error rate. 

 

Table 4.13: Inflation Factors for the Sample Size Calculation Using the UCL Approach 

 

Pilot Trial Sample Size 80% UCL 95% UCL 

20 1.400 1.917 

24 1.349 1.783 

30 1.297 1.654 

40 1.244 1.527 

50 1.211 1.450 

70 1.172 1.359 

100 1.139 1.287 

200 1.093 1.190 
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Table 4.14 investigates for which level of 𝑋 would the UCL method approaches the NCT 

method in terms of the same main trial sample size; the resulting inflation factors are also 

reported. It can be seen that as the pilot trial sample size increases the value of 𝑋 which 

equates the methods tends to 0.5 and the inflation factor tends to 1. 

 

Table 4.14: Inflation Factors and Levels of X for the UCL Approach that give the same Sample Size as 

the NCT Approach 

 

Pilot Trial Sample Size Confidence Level 
Proportion (X) 

Inflation Factor 

90% Powered Main Trial 

20 0.622 1.156 

24 0.611 1.125 

30 0.599 1.097 

40 0.586 1.071 

50 0.577 1.056 

70 0.565 1.039 

100 0.554 1.027 

200 0.538 1.013 

80% Powered Main Trial 

20 0.566 1.099 

24 0.560 1.080 

30 0.553 1.062 

40 0.546 1.045 

50 0.541 1.036 

70 0.534 1.025 

100 0.529 1.017 

200 0.520 1.008 

 

 



127 
 

4.7.2 Power Simulations 

 

It can be seen from Tables 4.12 and 4.13 that the inflation factors for the NCT approach 

are consistently smaller than those for the UCL approach for the same power and alpha 

levels. Hence as observed in the previous section, the NCT approach leads to smaller main 

trial sample sizes for the same pilot trial sample size compared to the UCL approach. This 

section looks at the cost in terms of power of using the NCT approach compared to the 

UCL approaches. 

 

To investigate the effect of using the NCT approach as opposed to the UCL methods 

simulations were carried out to compute the average power of trials, when using the 

adjustment methods. A pilot trial was simulated with two treatment arms – one control 

arm and one experimental treatment arm. For the control arm the results were drawn 

from a Normal distribution with a mean of 0 and a variance of 1. The experimental arm 

results were drawn from a Normal distribution with a mean equal to the required effect 

size and a variance of 1. Depending on the adjustment method under investigation the 

pilot trial sample size was set to the optimal value for that approach and chosen effect 

size. The pilot trial data was then used to produce an estimate of the variance; this 

estimate was then used to calculate the sample size required for the main trial (according 

to the adjustment method selected). The main trial sample size was based on a Type I 

error rate of 5%, a Type II error rate of 10% and equal allocation between the treatment 

groups.   

 

Using the same method as previously detailed for the pilot trial the results for the main 

trial were generated using the sample size estimated. This simulation was repeated 

10,000 times for each situation. The results of the main trial were analysed using a t-test 

and hence the power of the design was estimated by calculating the number of the 

simulated trials, which rejected the null hypothesis of no difference between the groups. 

The results of these simulations can be seen in Table 4.15. 
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Step 1: Values for Type I (𝛼) and Type II (𝛽) error are selected the standard deviation 

value (𝑠), the effect size (𝑑), the pilot trial sample size per treatment group (𝑚) and 

the number of simulations is set. Here  𝛼 = 0.05 (two-sided), 𝛽 = 0.1, 𝑠 was set to 

1, various values of 𝑑 were investigated between 0.05 and 1, 𝑚 was chosen to be 

the optimal value for the selected adjustment method and chosen effect size (from 

Table 4.8) and 10,000 simulations were carried out. 

Step 2: For the pilot trial: Simulate the control arm of sample size 𝑚 from a Normal 

distribution with mean 0 and standard deviation 𝑠. Simulate the experimental arm 

of sample size 𝑚 from a Normal distribution with mean 𝑑 and standard deviation 

𝑠. From this pilot data calculate the sample variance. 

Step 3: Calculate the sample size required for the main trial (𝑛) based on this pilot 

data according to the adjustment method selected (80% UCL approach use 

Equation 4.2 with X=0.8, 95% UCL approach use Equation 4.2 with X=0.95, NCT 

approach use Equation 2.21).  

Step 4: For the main trial: Simulate the control arm of sample size 𝑛 (from Step 3) 

from a Normal distribution with mean 0 and standard deviation 𝑠. Simulate the 

experimental arm of sample size 𝑛 from a Normal distribution with mean 𝑑 and 

standard deviation 𝑠. Perform a t-test on this data and record the results and the 

main trial sample size. 

Step 5: Repeat steps 2 to 4 10,000 times. 

Step 6: Estimate the power of the design by calculating the proportion of trials 

which rejected the null hypothesis. 

Step 7: Calculate the percentage of trials that are larger than the sample size 

required for 90 and 80% power with a known variance. 

Figure 4.12: Process for the Simulation Study Looking at Average Power 
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For example, if the Type I error rate is chosen to be 0.05 or 5% (two-sided), the Type II 

error rate is set at 0.1 or 10%, if the chosen standardised effect size is 0.5 and the NCT 

approach is the chosen adjustment method. The first 5 simulations will give you for 

example: 

 

Simulation P-value<0.05 Total Two-armed 
Sample Size of 

Main Trial 

Greater than 
90% power 

based on the 
true variance 

Greater than 
80% power 

based on the 
true variance 

1 Yes 140 No Yes 

2 Yes 168 No Yes 

3 Yes 108 No No 

4 Yes 198 Yes Yes 

5 Yes 224 Yes Yes 

 

The algorithm would continue until simulation number 10,000 after which the average 

main trial sample size, power, and proportion of trials which are large to have 90 or 80% 

power are calculated. 
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Table 4.15: Average Power for Two-Armed Trials Designed Using Different Adjustment Methods Based 

on 10,000 Simulations Using 90% Power, 5% Type I Error Rate and ‘Optimal’ Pilot Trial Sample Sizes 

Standardised 
Effect Size 

 80% UCL 95% UCL NCT 

0.05 Pilot Trial Sample Size 506 794 212 
 Average Power 91.25 92.31 90.52 
 Percentage of Trials 

with Power above 90% 
81.71 95.31 57.91 

 Percentage of Trials 
with Power above 80% 

100.00 100.00 99.87 

0.1 Pilot Trial Sample Size 210 332 108 
 Average Power 92.23 93.28 90.34 
 Percentage of Trials 

with Power above 90% 
82.38 95.53 60.34 

 Percentage of Trials 
with Power above 80% 

99.99 100.00 99.00 

0.2 Pilot Trial Sample Size 90 144 56 
 Average Power 93.17 94.75 90.36 
 Percentage of Trials 

with Power above 90% 
83.40 95.87 64.2 

 Percentage of Trials 
with Power above 80% 

99.68 100.00 96.15 

0.5 Pilot Trial Sample Size 32 50 24 
 Average Power 94.37 96.56 92.09 
 Percentage of Trials 

with Power above 90% 
84.19 96.26 68.90 

 Percentage of Trials 
with Power above 80% 

97.89 99.85 91.00 

0.8 Pilot Trial Sample Size 20 32 20 
 Average Power 95.37 97.60 92.10 
 Percentage of Trials 

with Power above 90% 
84.73 95.85 69.45 

 Percentage of Trials 
with Power above 80% 

95.33 99.53 89.23 
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The 80% and 95% UCL approaches are more conservative than the NCT approach, and 

their average powers are higher than the 90% nominal level. The NCT approach gives the 

nominal power (of 90%) in >50% of the trials as can be seen in Table 4.15. A large 

proportion of the trials have >80% power for all adjustment methods. The NCT approach 

requires consistently smaller sample sizes than the UCL approaches. The cost (in terms of 

sample size) of the NCT approach is that it only provides the nominal required power on 

average whereas the UCL approaches, provides the nominal power in at least 100𝑋% of 

trials (where an 100𝑋%  UCL is used). Therefore, the UCL approaches are more 

conservative than the NCT approach.  

 

4.8 Stepped Rules of Thumb 

 

In many trials the actual value of the standardised difference to be used in the main trial 

may not be known before the pilot planning stage. This is one of the reasons that the 

existing rules of thumb for pilot trial sample sizes are so attractive. However, an 

investigator may know whether the standardised difference is likely to be small, medium 

or large within some range. 

 

From the results presented, it would seem that any rule of thumb should be stepped and 

not flat so that the pilot is larger for smaller standardised effect sizes and smaller for larger 

standardised effect sizes. Therefore Table 4.8 has been used to formulate new stepped 

rules of thumb for pilot trial sample sizes; these are presented in Table 4.16. They were 

carried out by grouping the standardised effect sizes (𝛿) together into extra small (𝛿 <

0.1 ), small ( 0.1 ≤ 𝛿 < 0.3 ), medium ( 0.3 ≤ 𝛿 < 0.7 ) and large ( 𝛿 ≥ 0.7 ) and 

formulating a sample size roughly applicable to all the effect sizes within the band. These 

offer standard sample sizes for pilot trials which vary depending on whether the 

standardised effect size for the main trial will be extra small, small, medium or large, from 

Cohen’s classifications. An additional category of extra small has been inserted which, 

represents standardised effect sizes of 0.1 or less; this is because the results for these 

trials were many times larger than for a standardised effect size of 0.2. 
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For the NCT method with an 90% powered main trial the stepped rules are; for very small 

standardised differences, use a sample size of 150, for small standardised effect sizes, use 

50 participants, for medium standardised effect sizes use a sample size of 30, and for any 

standardised effect size, use a pilot trial sample size of 20 participants.  

 

It should be noted that if the standardised difference to be used in the main trial is known 

it is still recommended to use the exact calculation. 

 

The recommended stepped rules are based on using the NCT approach to allow for the 

variance being an estimate of the population value, it uses the distribution of the variance 

to ensure that the power is achieved on average and converges more quickly to the 

variance known case than the UCL approaches studied. The UCL approaches are much 

more conservative and require consistently more participants than the NCT approach. 

 

Table 4.16: Stepped Rules of thumb for Pilot Trial Sample Size using the NCT Approach for 

a Two-armed Trial 

Standardised Effect Size 80% Powered Main Trial 90% Powered Main Trial 

Flat Rules   

Extra Small (𝛿 < 0.1) 100 150 

Small (0.1 ≤ 𝛿 < 0.3) 40 50 

Medium (0.3 ≤ 𝛿 < 0.7) 20 30 

Large (𝛿 ≥ 0.7) 20 20 

Proportional Rules   

Extra Small (𝛿 < 0.1) 1% 1% 

Small (0.1 ≤ 𝛿 < 0.3) 5% 6% 

Medium (0.3 ≤ 𝛿 < 0.7) 18% 15% 

Large (𝛿 ≥ 0.7) 42% 30% 

 

 

The distances, shown in Table 4.17, of the stepped rules of thumb from the optimal overall 

sample size (from Table 4.8) are lower than the distances observed when using the 
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existing rules of thumb in Table 4.6. For 90% powered trials with a small standardised 

effect size of 0.2 (using the NCT approach) the existing rules of thumb could lead to an 

extra 48 participants over the minimum possible overall sample size. Using the stepped 

rule of thumb this possible over recruitment is reduced to 26 participants. The stepped 

rules of thumb are very close to the optimal value in the majority of these cases.  

 

Table 4.17: Distances for a Two-armed Trial from Optimal Values for the Stepped Rules of 

Thumb for Varying Standardised Effect Sizes 

Standardised 
Effect Size 

Stepped 
 Rule of 

Thumb Pilot 
Trial 

Overall  
Sample Size  

Optimal 
 Pilot Trial  

Sample Size  

Optimal 
 Overall 

Trial  
Sample  

Size  

Distance  
Between  

Pilot Trial  
Sample 

Sizes  

Distance  
Between  

Overall  
Sample 

Sizes 

90% Powered Main Trial 

0.05 150 17,260 212 17,234 -62 26 

0.2 50 1,162 56 1,160 -6 2 

0.5 30 216 24 214 +6 2 

0.8 20 98 20 98 0 0 

80% Powered Main Trial 

0.05 100 12,878 148 12,854 -48 24 

0.2 40 862 38 862 +2 0 

0.5 20 160 20 160 0 0 

0.8 20 76 20 76 0 0 

 

 

4.9 Summary 

 

The NIHR Evaluation, Trials and Studies Coordinating Centre (NETSCC) define pilot trials in 

context of the planning of a future trial (NETSCC, 2012). Therefore, the method of 

minimising the sample size across trials could be thought to be the most appropriate as it 

treats the pilot trial as part of the whole trial programme rather than a stand-alone trial.  

 

The aims of this chapter were to: find the theoretical minimum overall sample size using 

the NCT and the UCL approaches and hence calculate the optimal pilot trial sample size, 
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which leads to this minimum overall sample size (Sections 4.2, 4.3 and 4.4), compare the 

existing rules of thumb (both flat and proportional) to the optimal results (Section 4.5 and 

4.6, Table 4.8 and Table 4.9); and the use these results to build new stepped rules of 

thumb (Section 4.8, Table 4.16), as well as to compare the effect of the NCT and the UCL 

approaches on the trial power, this was investigated as a simulation study and presented 

in Section 4.7. 

 

In order to achieve the aims, set out in Section 4.1.1, this chapter proposes a method for 

estimating the sample size of a pilot trial in order to minimise the overall sample size, i.e. 

the sample size of the pilot and main trial together, for different adjustment methods. It 

demonstrated how the size of the pilot trial impacts on the size of the overall trial when 

either the UCL approach or the NCT method is used to calculate the sample size for the 

main trial (Figures 4.7 to 4.9).  

 

If the pilot is large the main trial will be relatively small or, if the pilot is small the main 

trial will be relatively large. It can be seen from the results that the NCT approach provides 

lower overall sample sizes than any of the other methods (Section 4.4, Table 4.5) while 

maintaining the average power at the nominal level (Section 4.7, Table 4.15). There are 

situations in which using one of the more conservative methods would add only a few 

more patients to the required sample size in such situations an investigator may choose 

to use the larger sample size to be more sure of achieving the required power and to gain 

a more accurate estimate of the treatment effect. However, there are circumstances as 

have been demonstrated in this chapter where using one of the conservative approaches 

can lead to much larger sample size than would be required to ensure the required power 

on average. For example, if the anticipated standardised effect size for a trial is 0.5 with a 

planned power of 90% the NCT approach would lead to a total overall sample size of 214 

and the 80% UCL approach would lead to a sample size of 248. Here the increase in sample 

size is only 34 participants therefore the investigator might want to be more conservative 

and use the larger sample size. However, for a standardised effect size of 0.3 and 90% 

power the NCT approach would lead to an overall trial sample size of 542, whereas the 
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80% UCL approach would lead to a sample size of 616. Here the difference is 74 

participants, therefore the investigator might be willing to sacrifice some certainty of 

achieving the required power to reduce the sample size requirement of the trial. 

 

The results in the chapter show that as the sample size of the main trial increases, the size 

of the pilot trial should also increase. For medium effect sizes, the existing rules seem 

sufficient (Figure 4.8); however, as we move away from a standardised effect size of 0.5 

the flat rules of thumb can over or underestimate the pilot trial sample size that would 

minimise the overall sample size (Figures 4.7 and 4.9). It was highlighted how when using 

a flat rule or a proportional rule of thumb for justifying a sample size choice for an external 

pilot trial without considering the main trial you could end up using a pilot trial sample 

size we which will result in a suboptimal sample size for the overall trial when using one 

of the adjustment methods in the main trial sample size calculation. Therefore, using 

these flat rules of thumb would lead to more patients than theoretically required being 

recruited to the overall trial; this is especially seen at small standardised effect sizes.  

 

The results in Section 4.6 investigate the use of proportional rules, which use proportional 

pilot trial sample sizes to the main trial sample size. It was found that no one proportion 

is optimal for all standardised effect sizes. Although the proportional methods are an 

improvement on the flat rules of thumb in that they allow the pilot to be larger for large 

main trials and smaller for small main trials. They still place a restriction on the sample 

size of the pilot trial, which means that the optimal overall sample size may not be 

achieved. 

 

To look at which proportions would be optimal for this kind of rule of thumb Table 4.8 

was used to calculate what percentage of the main trial the optimal pilot trial would be, 

these results can be seen in Table 4.11, therefore restricting the pilot to be a certain 

percentage has the same effects as using a flat rule of thumb; it cause an over recruitment 

compared to what is theoretically possible. 
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The NCT approach to set the main trial sample size in conjunction with the method 

presented of calculating a pilot trial sample size is recommended. Doing so will on average 

maintain the nominal power requirement and minimise the overall sample size for the 

pilot and the main trial together. If simpler calculations are to be carried out for a pilot 

trial the stepped rules proposed in this chapter are recommended. However, if the 

standardised effect size to be used in the main trial is known, it is recommended that the 

procedure outlined in Section 4.4 be used to find the optimal pilot trial sample size for the 

study rather than using the flat rules of thumb as a guide. 

 

This chapter focussed on external pilot trials. Chapters 6 and 7 will look at the design of 

internal pilot trials. Minimising the overall sample size does not only have ethical 

advantages for numbers of patients used, but also for the financial cost of trials. However, 

depending on the relative costs between the pilot and the main trial minimising the 

sample size may not necessarily minimise the overall cost of the trial. Hence Chapter 5 

investigates using information about the relative cost of the pilot compared to the main 

trial to minimise the overall financial cost of a trial programme. 
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Chapter 5 

 

 

Minimising the Overall Financial Cost of a Trial 

 

 

5.1 Introduction 

 

In publicly funded research a major concern is to get the best value for money from a trial. 

The cost of a trial is strongly linked to the number of participants recruited. However, the 

cost of entering a patient into a pilot trial may not be equal to the cost of recruiting a 

patient into a main trial. Minimising the number of people within a trial will therefore not 

necessarily minimise the total financial cost of the overall trial. For example, the CACTUS 

trial (a description of which can be found in Appendix C) was a pilot trial with two 

treatment arms and aimed to enrol 30 participants (Palmer et al., 2011). The pilot trial 

cost £279,000, therefore around £9,300 per participant. The main trial (Big Cactus) had a 

sample size requirement of 285 with three treatment arms and cost £1.5 million, a cost 

of £5,264 per participant (Palmer, 2015, CTRU, 2016). 

 

This chapter extends the work on minimising the overall number of participants described 

in Chapter 4 to include a factor representing the relative cost of entering a patient in to 

the main trial compared to the pilot, with the aim of minimising the overall financial cost 

of the trial. The chapter investigates how the balance of sample sizes between the two 

trials affects the overall cost of both the pilot and the main trial together allowing for 

uneven costs between trials.  Rules for pilot trial sample size to minimise the overall trial 

cost will be derived based on the results. 
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5.1.1 Aims 

 

This chapter aims to extend the work presented in Chapter 4 on minimising the overall 

trial sample size by including the relative cost of a pilot and main trial to: 

 

 Minimise the overall cost of the pilot and the main trial together using the NCT 

and the UCL methods, 

 Find the theoretical ‘optimal’ values of the overall trial cost which could be 

achieved using these methods, 

 Calculate the pilot trial sample size, which leads to this optimal value, 

 Develop new rules of thumb which aim to minimise the overall financial cost of 

the trial and, 

 Compare these new rules of thumb to the ones that minimise the overall trial 

sample size. 

 

This chapter similarly to Chapter 4 focuses on external pilot trials, which are primarily 

looking at estimating the variance to be used in the main trial sample size calculation and 

where there are no changes between the pilot and the main trial, which would affect the 

generalizability of the variance estimate. 

 

5.2 Minimising the Overall Financial Cost 

 

If an adjustment method is used to calculate the main trial sample size based on the size 

of the pilot trial, the work in Chapter 4 showed that it is possible to choose the pilot trial 

sample size in order to minimise the overall trial sample size. 
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If the cost of a trial is directly related to the sample size of a trial, then it is also possible 

to minimise the cost of a trial using the same methods. The overall cost of the trial (𝐶) can 

be expressed through the function, 

 

 𝐶 =  𝐶𝑃𝑀 +  𝐶𝑀𝑁𝑀 , (5.1)  

 

where, 𝐶𝑃 is the cost per participant in the pilot trial, 𝐶𝑀 is the cost per participant in the 

main trial, 𝑀 is the sample size of the pilot and 𝑁𝑀 is the sample size of the main trial 

calculated using either Equation 4.2 or Equation 2.21 for the UCL or the NCT approach 

respectively or Equation 2.15 for an unadjusted main trial sample size calculation. 

 

If 𝐶𝑃 𝐶𝑀⁄ = 𝑅 where 𝑅 is the relative cost of a participant in the pilot trial to the main trial 

then, 

 

𝐶 =  𝑅𝐶𝑀𝑀 +  𝐶𝑀𝑁𝑀 , 

 

therefore, 

 

 𝐶 𝐶𝑀⁄ =  𝑅𝑀 + 𝑁𝑀 , (5.2)  

 

thus, by fixing 𝑅 we can minimise the equation to find the minimum overall trial cost 

divided by the main trial cost per participant which is in turn a function of the overall trial 

cost. This is an extension of the methods presented in Chapter 4 when the aim was to 

minimise the overall sample size through Equation 4.1, however, now the aim is the 

minimise the value of the cost ratio. 

 

To find the sample size, which would lead to the minimum of this equation, the size of the 

pilot trial is varied over a range of values and the required main trial sample size is 

calculated, for a given standardised effect size and relative cost ratio. 
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Once the minimum 𝐶 𝐶𝑀⁄  has been found, the pilot trial and main trial sample sizes, which 

produce this minimum, can be derived. This process is shown in Figure 5.1 for when the 

NCT approach is used to adjust the main trial sample size calculation and Figure 5.2 for 

when 80% UCL approach is used. In the previous chapter it was seen that the 95% UCL 

approach led to very conservative results and therefore only the results for the NCT and 

the 80% UCL approaches are presented from this point onwards. Although the methods 

are still applicable to the 95% UCL approach. 
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Step 1: Values for Type I (𝛼 ) and Type II (𝛽 ) error are selected, the standard 

deviation value (𝑠) and the effect size (𝑑) is set, and the starting value of 𝑚 is 

chosen. Here  𝛼 = 0.05 (two-sided), 𝛽 = 0.1 , 𝑠  was set to 1, various values of 

𝑑 were investigated between 0.05 and 1 and the starting value of 𝑚 was chosen to 

be 2 participants per treatment group to prevent the degrees of freedom for the 

variance from being less than or equal to zero. Set 𝑖 =  1. 

Step 2: For a pilot trial sample size 𝑚𝑖, where i is the iteration number, estimate the 

main trial sample size, 𝑛𝑆𝑇𝐴𝑅𝑇 from Equation 2.22. 

Step 3: Using 𝑛𝑆𝑇𝐴𝑅𝑇 as a starting point for 𝑛𝑀 in Equation 2.21 iterate 𝑛𝑀 upwards 

until the inequality in Equation 2.21 is satisfied. 

Step 4: Estimate 𝐶 𝐶𝑀⁄  from Equation 5.2. 

Step 5: For 𝑖 =  1 go to Step 6, for 𝑖 > 1 go to Step 7. 

Step 6: Add 1 to the previous pilot trial sample size, 𝑚𝑖 and 𝑖, and go to Step 2. 

Step 7: If 𝐶 𝐶𝑀⁄ for 𝑚𝑖 ≤  𝐶 𝐶𝑀⁄ for 𝑚𝑖−1  then go to Step 6. If 𝐶 𝐶𝑀⁄ for 𝑚𝑖 >  𝑛𝑇 for 

𝑚𝑖−1 then go to Step 8. 

Step 8: Take 𝑛𝑀 for 𝑚𝑖−1 as the main trial sample size, which minimises the overall 

cost of the trial. 

Step 9: Take 𝑚𝑖−1  for 𝑚𝑂𝑃𝑇 as the pilot trial sample size, which leads to the 

minimum overall cost for the trial. 

 

Figure 5.1: Process for Finding the Sample Size to Minimise the Overall Trial Cost for the NCT 

Approach 
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For example, if the Type I error rate is chosen to be 0.05 or 5% (two-sided), the Type II 

error rate is set at 0.1 or 10%, if the chosen standardised effect size is 0.2 and the NCT 

approach is the chosen adjustment method. The first 5 pilot trial sample sizes will give 

you the following results for a two armed trial: 

 

Pilot Trial Sample Size Main Trial Sample Size Overall Sample Size 

4 4412 4416 

6 2076 2082 

8 1640 1648 

10 1464 1474 

12 1368 1380 

 

This continues over a range of pilot sample sizes, recording the results each time. After a 

large number of sample sizes have been investigated the minimum of the function is 

found and the corresponding pilot trial and main trial sample sizes. In the case presented 

this method would lead to selecting a pilot trial sample size of 78, a main trial sample size 

of 1090 and therefore an overall trial sample size 1168 for a two-armed trial. 
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Figure 5.2: Process for Finding the Sample Sizes, which lead to the Minimum Overall Trial Cost for the 

UCL Approach 

Step 1: Values for Type I (𝛼) and Type II (𝛽) error are selected the standard deviation 

value (𝑠) and the effect size (𝑑) is set, the required level of X is chosen, and the 

starting value of 𝑚 is chosen. Here  𝛼 = 0.05 (two-sided), 𝛽 = 0.1, 𝑠 was set to 1, 

various values of 𝑑 were investigated between 0.05 and 1 and the starting value of 

𝑚 was chosen to be 2 participants per treatment group to prevent the degrees of 

freedom for the variance from being less than or equal to zero. Set 𝑖 =  1. 

Step 2: For a pilot trial sample size 𝑚𝑖, where i is the iteration number, estimate the 

main trial sample size, 𝑛𝑀 from Equation 4.2. 

Step 3: Estimate 𝐶 𝐶𝑀⁄  from Equation 5.2. 

Step 4: For 𝑖 =  1 go to Step 5, for 𝑖 > 1 go to Step 6. 

Step 5: Add 1 to the previous pilot trial sample size, 𝑚𝑖 and 𝑖, and go to Step 2. 

Step 6: If 𝐶 𝐶𝑀⁄ for 𝑚𝑖 ≤   𝐶 𝐶𝑀⁄ for 𝑚𝑖−1  then go to Step 5. If 𝐶 𝐶𝑀⁄ for 𝑚𝑖 >  

𝐶 𝐶𝑀⁄ for 𝑚𝑖−1 then go to Step 7. 

Step 7: Take 𝑛𝑀 for 𝑚𝑖−1 as the main trial sample size, which minimises the overall 

cost of the trial. 

Step 9: Take 𝑚𝑖−1  for 𝑚𝑂𝑃𝑇 as the pilot trial sample size, which leads to the 

minimum overall cost for the trial. 
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5.3 Optimal Values of the Pilot and Main Trial Sample Size 

 

Figures 5.3 to 5.6 display the pilot trial sample size plotted against the function of the trial 

cost 𝐶 𝐶𝑀⁄  for the standardised effect sizes 0.05, 0.2, 0.5 and 0.8 respectively, with 90% 

power for the main trial and using the NCT approach. The lines represent different values 

of the relative cost of the pilot trial to the main trial. The black solid line represents a 

relative cost of 0.5 i.e. the main being twice as expensive as the pilot trial per participant. 

Following on the red dashed line, the green dotted and dashed line, the purple dotted line 

and the light blue dotted and dashed line represent the relative costs of 1, 2, 10 and 50 

respectively. 

 

Figure 5.3: Comparing the Overall Trial Cost for the NCT Approach for Varying Values of Relative Cost and 
a Standardised Effect Size of 0.05 
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Figure 5.4: Comparing the Overall Trial Cost for the NCT Approach for Varying Values of Relative Cost and 
a Standardised Effect Size of 0.2 
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Figure 5.5: Comparing Overall Trial Cost for Varying for the NCT Approach for Varying Values of Relative 
Cost and a Standardised Effect Size of 0.5 
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Figure 5.6: Comparing Overall Trial Cost for Varying for the NCT Approach for Varying Values of Relative 
Cost and a Standardised Effect Size of 0.8 

 

 

It can be seen that we can find a minimum for 𝐶 𝐶𝑀⁄  so that we can derive the pilot trial 

sample size, which leads to the minimum overall trial cost. As the standardised effect size 

increases (and so the required main trial sample size decreases) the optimal pilot trial 

sample size decreases. 𝐶 𝐶𝑀⁄  is a function of the overall cost of the trial, it has no real 

meaning in itself however, by minimising this function we can calculate the sample sizes 

which would lead to the minimum overall cost for the trial. 

 

Tables 5.1 to 5.4 present the results using both the 80% UCL approach and the NCT 

method to adjust the main trial sample size based on the pilot trial sample size to look at 
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how the minimum pilot and minimum overall sample sizes are affected by changing the 

focus from minimising the number of patients to minimising the cost of the trials.  

The results are presented for standardised differences of 0.05, 0.2, 0.5 and 0.8 and also 

for a range of relative costs, where the relative cost is the factor by which the entering 

someone into the pilot trial costs more than entering a patient into the main trial. 

Therefore, a relative cost of less than one would mean that the main trial is more 

expensive per participant than the pilot trial. Likewise, if the relative cost is greater than 

one the cost per participant in the pilot trial is higher than in the main trial. 
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Table 5.1: Optimal Pilot Trial Sample Sizes and Minimum Overall Sample Sizes for both Adjustment 
Methods to Minimise the Overall Trial Cost for a Standardised Effect Size of 0.05 for a Two-armed Trial 

 80% Upper Confidence Limit Approach Non-Central T-distribution Approach 

Relative 

Cost 

Optimal 

Pilot 
Main Trial Overall Trial 

Optimal 

Pilot 
Main Trial Overall Trial 

90% Powered Main Trial     

0.50 752 17,582 18,334 252 16,988 17,240 

1.00 506 17,760 18,266 212 17,022 17,234 

1.25 440 17,836 18,276 190 17,046 17,236 

1.50 392 17,902 18,294 174 17,070 17,244 

2.00 326 18,014 18,340 152 17,108 17,260 

2.50 284 18,110 18,394 136 17,144 17,280 

3.00 254 18,192 18,446 124 17,174 17,298 

5.00 184 18,458 18,642 98 17,278 17,376 

10.00 122 18,900 19,022 70 17,476 17,546 

15.00 96 19,216 19,312 58 17,624 17,682 

20.00 80 19,474 19,554 50 17,746 17,796 

25.00 70 19,698 19,768 46 17,858 17,904 

30.00 64 19,890 19,954 42 17,968 18,010 

40.00 54 20,200 20,254 36 18,146 18,182 

50.00 48 20,512 20,560 34 18,280 18,314 

100.00 32 21,588 21,620 24 18,922 18,946 

80% Powered Main Trial     

0.50 654 13,176 13,830 208 12,664 12,872 

1.00 420 13,342 13,762 148 12,706 12,854 

1.25 366 13,402 13,768 134 12,724 12,858 

1.50 326 13,458 13,784 122 12,738 12,860 

2.00 272 13,552 13,824 106 12,766 12,872 

2.50 236 13,630 13,866 96 12,790 12,886 

3.00 212 13,698 13,910 88 12,812 12,900 

5.00 154 13,918 14,072 68 12,886 12,954 

10.00 102 14,290 14,392 50 13,020 13,070 

15.00 80 14,546 14,626 42 13,116 13,158 

20.00 68 14,772 14,840 36 13,200 13,236 

25.00 60 14,952 15,012 32 13,290 13,322 

30.00 54 15,118 15,172 30 13,344 13,374 

40.00 46 15,360 15,406 26 13,480 13,506 

50.00 40 15,628 15,668 24 13,568 13,592 

100.00 28 16,474 16,502 18 13,970 13,988 
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Table 5.2: Optimal Pilot Trial Sample Sizes and Minimum Overall Sample Sizes for both Adjustment 
Methods to Minimise the Overall Trial Cost for a Standardised Effect Size of 0.2 for a Two-armed Trial 

 80% Upper Confidence Limit Approach Non-Central T-distribution Approach 

Relative 

Cost 
Optimal Pilot Main Trial Overall Trial Optimal Pilot Main Trial Overall Trial 

90% Powered Main Trial     

0.50 138 1,172 1,310 78 1,090 1,168 
1.00 92 1,206 1,298 56 1,104 1,160 
1.25 80 1,218 1,298 50 1,112 1,162 
1.50 72 1,228 1,300 46 1,116 1,162 
2.00 62 1,248 1,310 40 1,128 1,168 
2.50 54 1,264 1,318 36 1,136 1,172 
3.00 48 1,280 1,328 34 1,142 1,176 
5.00 38 1,322 1,360 28 1,168 1,196 
10.00 26 1,408 1,434 20 1,216 1,236 
15.00 22 1,456 1,478 18 1,252 1,270 
20.00 18 1,508 1,526 16 1,288 1,304 
25.00 16 1,554 1,570 14 1,310 1,324 
30.00 16 1,584 1,600 14 1,336 1,350 
40.00 14 1,654 1,668 12 1,368 1,380 
50.00 12 1,702 1,714 12 1,410 1,422 
100.00 10 1,926 1,936 10 1,538 1,548 

80% Powered Main Trial     

0.50 116 886 1,002 54 814 868 
1.00 78 914 992 40 824 864 
1.25 68 924 992 36 828 864 
1.50 62 932 994 34 832 866 
2.00 52 948 1,000 30 838 868 
2.50 46 960 1,006 26 844 870 
3.00 42 974 1,016 24 850 874 
5.00 32 1,014 1,046 20 870 890 
10.00 22 1,078 1,100 16 898 914 
15.00 18 1,128 1,146 12 934 946 
20.00 16 1,162 1,178 12 952 964 
25.00 14 1,208 1,222 10 976 986 
30.00 14 1,236 1,250 10 976 986 
40.00 12 1,272 1,284 10 1,008 1,018 
50.00 12 1,314 1,326 8 1,052 1,180 
100.00 8 1,534 1,542 8 1,116 1,124 
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Table 5.3: Optimal Pilot Trial Sample Sizes and Minimum Overall Sample Sizes for both Adjustment 
Methods to Minimise the Overall Trial Cost for a Standardised Effect Size of 0.5 for a Two-armed Trial 

 80% Upper Confidence Limit Approach Non-Central T-distribution Approach 

Relative 

Cost 
Optimal Pilot Main Trial Overall Trial Optimal Pilot Main Trial Overall Trial 

90% Powered Main Trial     

0.50 48 206 254 34 184 218 
1.00 32 216 248 24 190 214 
1.25 30 220 250 22 194 216 
1.50 26 224 250 20 196 216 
2.00 24 230 254 18 200 218 
2.50 20 236 256 18 202 220 
3.00 20 240 260 16 208 224 
5.00 16 254 270 14 216 230 
10.00 12 282 294 10 236 246 
15.00 10 294 304 10 248 258 
20.00 10 308 318 8 264 272 
25.00 8 330 338 8 264 272 
30.00 8 330 338 8 290 298 
40.00 8 360 368 8 290 298 
50.00 6 408 414 6 334 340 
100.00 6 502 508 6 424 430 

80% Powered Main Trial     

0.50 40 158 198 24 138 162 
1.00 28 166 194 18 142 160 
1.25 26 170 196 16 144 160 
1.50 24 172 196 16 144 160 
2.00 20 176 196 14 148 162 
2.50 18 182 200 12 150 162 
3.00 16 186 202 12 154 166 
5.00 14 198 212 10 158 168 
10.00 10 220 230 8 170 178 
15.00 10 230 240 8 180 188 
20.00 8 246 254 6 198 204 
25.00 8 270 278 6 198 204 
30.00 8 270 278 6 198 204 
40.00 6 306 312 6 230 236 
50.00 6 306 312 6 230 236 
100.00 6 376 382 4 320 324 
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Table 5.4: Optimal Pilot Trial Sample Sizes and Minimum Overall Sample Sizes for both Adjustment 
Methods to Minimise the Overall Trial Cost for a Standardised Effect Size of 0.8 for a Two-armed Trial 

 80% Upper Confidence Limit Approach Non-Central T-distribution Approach 

Relative 

Cost 
Optimal Pilot Main Trial Overall Trial Optimal Pilot Main Trial Overall Trial 

90% Powered Main Trial     

0.50 30 86 116 22 76 98 
1.00 20 92 112 16 80 96 
1.25 18 96 114 16 82 98 
1.50 18 96 114 14 84 98 
2.00 16 100 116 14 84 98 
2.50 14 104 118 12 86 98 
3.00 12 108 120 12 90 102 
5.00 10 116 126 10 98 108 
10.00 8 130 138 8 114 122 
15.00 8 142 150 8 114 122 
20.00 6 160 166 6 132 138 
25.00 6 160 166 6 132 138 
30.00 6 160 166 6 132 138 
40.00 6 198 204 6 166 172 
50.00 6 198 204 6 166 172 
100.00 4 296 300 6 166 172 

80% Powered Main Trial     

0.50 26 66 92 16 56 72 
1.00 18 72 90 12 60 72 
1.25 16 74 90 12 60 72 
1.50 16 74 90 10 62 72 
2.00 14 78 92 10 64 74 
2.50 12 80 92 10 64 74 
3.00 12 84 96 8 68 76 
5.00 10 90 100 8 72 80 
10.00 8 106 114 6 78 84 
15.00 6 120 126 6 90 96 
20.00 6 120 126 6 90 96 
25.00 6 120 126 6 90 96 
30.00 6 148 154 6 90 96 
40.00 6 148 154 4 126 130 
50.00 6 148 154 4 126 130 
100.00 4 220 224 4 126 130 
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Tables 5.1 to 5.4 show, as in Chapter 4, that as the standardised effect size increases the 

required overall sample size and the optimal pilot trial sample size decreases. Additionally, 

as the relative cost of the pilot trial increases the optimal pilot trial sample size decreases 

as the extra cost of entering someone into the pilot trial starts to outweigh the accuracy 

gained in the estimate of the variance and the associated reduction in main trial sample 

size. Furthermore, it can be seen that if the main trial is more expensive than the pilot 

trial per participant then the optimal sample size overall also increases compared to the 

situation where costs are assumed equal. 

 

As in Chapter 4 for some larger standardised effect sizes and for higher relative cost values 

the optimal pilot trial sample size falls below 20. Having such small pilot sample sizes may 

be unrealistic to achieve the other objectives of a pilot trial.  Therefore, the following 

tables (Tables 5.5 to 5.8) present the results with a lower cap of 20 participants for the 

pilot trial. 

 



154 
 

Table 5.5: Optimal Pilot Trial Sample Sizes and Minimum Overall Sample Sizes for both Adjustment 
Methods to Minimise the Overall Trial Cost for a Standardised Effect Size of 0.05 with a Lower Cap of 20 
Participants for Two-armed Trials 

 80% Upper Confidence Limit Approach Non-Central T-distribution Approach 

Relative 

Cost 

Optimal 

Pilot 
Main Trial Overall Trial 

Optimal 

Pilot 
Main Trial Overall Trial 

90% Powered Main Trial     

0.50 752 17,582 18,334 252 16,988 17,240 
1.00 506 17,760 18,266 212 17,022 17,234 
1.25 440 17,836 18,276 190 17,046 17,236 
1.50 392 17,902 18,294 174 17,070 17,244 
2.00 326 18,014 18,340 152 17,108 17,260 
2.50 284 18,110 18,394 136 17,144 17,280 
3.00 254 18,192 18,446 124 17,174 17,298 
5.00 184 18,458 18,642 98 17,278 17,376 
10.00 122 18,900 19,022 70 17,476 17,546 
15.00 96 19,216 19,312 58 17,624 17,682 
20.00 80 19,474 19,554 50 17,746 17,796 
25.00 70 19,698 19,768 46 17,858 17,904 
30.00 64 19,890 19,954 42 17,968 18,010 
40.00 54 20,200 20,254 36 18,146 18,182 
50.00 48 20,512 20,560 34 18,280 18,314 
100.00 32 21,588 21,620 24 18,922 18,946 

80% Powered Main Trial     

0.50 654 13,176 13,830 208 12,664 12,872 
1.00 420 13,342 13,762 148 12,706 12,854 
1.25 366 13,402 13,768 134 12,724 12,858 
1.50 326 13,458 13,784 122 12,738 12,860 
2.00 272 13,552 13,824 106 12,766 12,872 
2.50 236 13,630 13,866 96 12,790 12,886 
3.00 212 13,698 13,910 88 12,812 12,900 
5.00 154 13,918 14,072 68 12,886 12,954 
10.00 102 14,290 14,392 50 13,020 13,070 
15.00 80 14,546 14,626 42 13,116 13,158 
20.00 68 14,772 14,840 36 13,200 13,236 
25.00 60 14,952 15,012 32 13,290 13,322 
30.00 54 15,118 15,172 30 13,344 13,374 
40.00 46 15,360 15,406 26 13,480 13,506 
50.00 40 15,628 15,668 24 13,568 13,592 
100.00 28 16,474 16,502 20 13,804 13,824 
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Table 5.6: Optimal Pilot Trial Sample Sizes and Minimum Overall Sample Sizes for both Adjustment 
Methods to Minimise the Overall Trial Cost for a Standardised Effect Size of 0.2 with a Lower Cap of 20 
Participants for Two-armed Trials 

 80% Upper Confidence Limit Approach Non-Central T-distribution Approach 

Relative 

Cost 
Optimal Pilot Main Trial Overall Trial Optimal Pilot Main Trial Overall Trial 

90% Powered Main Trial     

0.50 138 1,172 1,310 78 1,090 1,168 
1.00 92 1,206 1,298 56 1,104 1,160 
1.25 80 1,218 1,298 50 1,112 1,162 
1.50 72 1,228 1,300 46 1,116 1,162 
2.00 62 1,248 1,310 40 1,128 1,168 
2.50 54 1,264 1,318 36 1,136 1,172 
3.00 48 1,280 1,328 34 1,142 1,176 
5.00 38 1,322 1,360 28 1,168 1,196 
10.00 26 1,408 1,434 20 1,216 1,236 
15.00 22 1,456 1,478 20 1,216 1,236 
20.00 20 1,472 1,492 20 1,216 1,236 
25.00 20 1,472 1,492 20 1,216 1,236 
30.00 20 1,472 1,492 20 1,216 1,236 
40.00 20 1,472 1,492 20 1,216 1,236 
50.00 20 1,472 1,492 20 1,216 1,236 
100.00 20 1,472 1,492 20 1,216 1,236 

80% Powered Main Trial     

0.50 116 886 1,002 54 814 868 
1.00 78 914 992 40 824 864 
1.25 68 924 992 36 828 864 
1.50 62 932 994 34 832 866 
2.00 52 948 1,000 30 838 868 
2.50 46 960 1,006 26 844 870 
3.00 42 974 1,016 24 850 874 
5.00 32 1,014 1,046 20 866 886 
10.00 22 1,078 1,100 20 866 886 
15.00 20 1,100 1,120 20 866 886 
20.00 20 1,100 1,120 20 866 886 
25.00 20 1,100 1,120 20 866 886 
30.00 20 1,100 1,120 20 866 886 
40.00 20 1,100 1,120 20 866 886 
50.00 20 1,100 1,120 20 866 886 
100.00 20 1,100 1,120 20 866 886 
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Table 5.7: Optimal Pilot Trial Sample Sizes and Minimum Overall Sample Sizes for both Adjustment 
Methods to Minimise the Overall Trial Cost for a Standardised Effect Size of 0.5 with a Lower Cap of 20 
Participants for Two-armed Trials 

 80% Upper Confidence Limit Approach Non-Central T-distribution Approach 

Relative 

Cost 
Optimal Pilot Main Trial Overall Trial Optimal Pilot Main Trial Overall Trial 

90% Powered Main Trial     

0.50 48 206 254 34 184 218 
1.00 32 216 248 24 190 214 
1.25 30 220 250 22 194 216 
1.50 26 224 250 20 196 216 
2.00 24 230 254 20 196 216 
2.50 20 236 256 20 196 216 
3.00 20 236 256 20 196 216 
5.00 20 236 256 20 196 216 
10.00 20 236 256 20 196 216 
15.00 20 236 256 20 196 216 
20.00 20 236 256 20 196 216 
25.00 20 236 256 20 196 216 
30.00 20 236 256 20 196 216 
40.00 20 236 256 20 196 216 
50.00 20 236 256 20 196 216 
100.00 20 236 256 20 196 216 

80% Powered Main Trial     

0.50 40 158 198 24 138 162 
1.00 28 166 194 20 140 160 
1.25 26 170 196 20 140 160 
1.50 24 172 196 20 140 160 
2.00 20 176 196 20 140 160 
2.50 20 176 196 20 140 160 
3.00 20 176 196 20 140 160 
5.00 20 176 196 20 140 160 
10.00 20 176 196 20 170 160 
15.00 20 176 196 20 140 160 
20.00 20 176 196 20 140 160 
25.00 20 176 196 20 140 160 
30.00 20 176 196 20 140 160 
40.00 20 176 196 20 140 160 
50.00 20 176 196 20 140 160 
100.00 20 176 196 20 140 160 
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Table 5.8: Optimal Pilot Trial Sample Sizes and Minimum Overall Sample Sizes for both Adjustment 
Methods to Minimise the Overall Trial Cost for a Standardised Effect Size of 0.8 with a Lower Cap of 20 
Participants for Two-armed Trials 

 80% Upper Confidence Limit Approach Non-Central T-distribution Approach 

Relative 

Cost 
Optimal Pilot Main Trial Overall Trial Optimal Pilot Main Trial Overall Trial 

90% Powered Main Trial     

0.50 30 86 116 22 76 98 
1.00 20 92 112 20 78 98 
1.25 20 92 112 20 78 98 
1.50 20 92 112 20 78 98 
2.00 20 92 112 20 78 98 
2.50 20 92 112 20 78 98 
3.00 20 92 112 20 78 98 
5.00 20 92 112 20 78 98 
10.00 20 92 112 20 78 98 
15.00 20 92 112 20 78 98 
20.00 20 92 112 20 78 98 
25.00 20 92 112 20 78 98 
30.00 20 92 112 20 78 98 
40.00 20 92 112 20 78 98 
50.00 20 92 112 20 78 98 
100.00 20 92 112 20 78 98 

80% Powered Main Trial     

0.50 26 66 92 20 56 76 
1.00 20 70 90 20 56 76 
1.25 20 70 90 20 56 76 
1.50 20 70 90 20 56 76 
2.00 20 70 90 20 56 76 
2.50 20 70 90 20 56 76 
3.00 20 70 90 20 56 76 
5.00 20 70 90 20 56 76 
10.00 20 70 90 20 56 76 
15.00 20 70 90 20 56 76 
20.00 20 70 90 20 56 76 
25.00 20 70 90 20 56 76 
30.00 20 70 90 20 56 76 
40.00 20 70 90 20 56 76 
50.00 20 70 90 20 56 76 
100.00 20 70 90 20 56 76 
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It can be seen that the pilot sample sizes become the imposed minimum of 20 quicker for 

larger effect sizes and when using the NCT approach over the 80% UCL approach. The 

table below displays the smallest relative cost for which the NCT approach would result 

in a pilot trial sample size of 20. 

 

Table 5.9: The Smallest Relative Cost for which the NCT Approach leads to a Pilot Trial Sample 
Size of 20  

Standardised Effect Size 80% Powered Main Trial 90% Powered Main Trial 

0.05 100.0 >100.0 

0.2 5.0 10.0 

0.5 1.0 1.5 

0.8 <0.5 1.0 

 

 

5.4 Rules of Thumb 

 

In Chapter 4 rules of thumb were derived that summarised the calculations, which aimed 

to minimise the number of participants in the overall trial, of the combined pilot and main 

trial (Table 4.16). In this section the rules of thumb presented aim to derive approximate 

required pilot trial sample sizes if the aim of the sample size justification is to minimise 

the overall cost of the pilot and the main trial. These rules presented in Table 5.10 allow 

for the cost of the pilot and the main trial per participant to vary as well as the 

standardised effect size. 
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Table 5.10: Rules for Thumb for Pilot Trial Sample Size for a Two-armed Trial to Minimise 
Overall Trial Cost 

Standardised 
Effect Size 

Relative 
Cost 

80% Powered Main Trial 90% Powered Main Trial 

Extra Small R < 1 240 260 
 R = 1 100 150 
 1 < R ≤ 5 90 140 
 5 < R ≤ 20 50 60 
 R > 20 30 40 

Small R < 1 60 80 
 R = 1 40 50 
 1 < R ≤ 5 30 40 
 5 < R ≤ 20 20 20 
 R > 20 20 20 

Medium R < 1 30 40 
 R = 1 20 30 
 1 < R ≤ 5 20 20 
 5 < R ≤ 20 20 20 
 R > 20 20 20 

Large R < 1 20 30 
 R = 1 20 20 
 1 < R ≤ 5 20 20 
 5 < R ≤ 20 20 20 
 R > 20 20 20 

 

 

As may have been expected when the relative cost of the pilot to the main moves away 

from one the optimal sample sizes change. If the pilot is to be less expensive per 

participant than the main trial the rules say to include more people in the pilot trial, 

increasing accuracy of the estimates and thus reducing the required sample size in the 

relatively expensive main trial. If the pilot is to be more expensive than the main trial per 

participant then the rules suggest including fewer people in the relatively expensive pilot 

trial, thus reducing the accuracy of the estimate of the variance and increasing the 

required sample size of the main trial. The more expensive the pilot trial compared to the 

main trial the less people are included in the pilot trial and the bigger the main trial will 

be. These rules to minimise costs require more participants overall than if we were looking 

to minimise the number of participants involved in the overall trial that are required to 

estimate the variance sufficiently well. This effect has more impact on the smaller effect 

sizes. 
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Please note that for R = 1 the rules of thumb in Table 5.10 are the same as the stepped 

rules given in Table 4.16 in Chapter 4. 

 

5.5 Summary 

 

In Chapter 4 work was presented, which aimed to minimise the overall number of 

participants used in a trial. Although this is important for ethical reasons, it also has cost 

implications for the trial. If the cost per participant is not equal between the pilot and the 

main trial, using the optimal results as presented in Chapter 4 to minimise the overall 

number of participants may not minimise the overall cost of your trial. 

 

Minimising the cost of your trial may be an important consideration particularly if the trial 

is publicly funded. Minimising the cost of the overall trial may mean we use a suboptimal 

sample size in terms of the number of participants involved across the trials. When 

applying for funding for a publicly funded trial the investigator must estimate how much 

the trial will cost to run. This has to be done early in the development of the trial and 

therefore it is likely that most investigators would be able to have a good idea or could 

estimate if required the cost of their planned trial. The AcoRD website gives advice on 

costing research in the NHS (http://www.amrc.org.uk/our-work/funding-clinical-

studies/acord-costing-research-in-the-nhs). 

 

The aims of this chapter were to: calculate the values of pilot trial sample size which lead 

to the minimum overall trial cost (Section 5.3); develop new rules of thumb for these 

results (Table 5.10) and to compare to the rules laid out in Chapter 4 (Section 5.4). 

 

In order to achieve these aims the function presented in Equation 5.2 was minimised using 

the processes described for both the UCL and the NCT approach in Figures 5.1 and 5.2. 

The optimal pilot trial sample size, which leads to this minimum, was then calculated and 

the results are presented in Tables 5.1 to 5.4. As in Chapter 4 these results were then 

http://www.amrc.org.uk/our-work/funding-clinical-studies/acord-costing-research-in-the-nhs
http://www.amrc.org.uk/our-work/funding-clinical-studies/acord-costing-research-in-the-nhs
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condensed into stepped rules of thumb. However, in this chapter there is the extra factor 

of relative cost per participant between the pilot and the main trial. 

 

The results show that as the relative cost of the pilot trial increases compared to the main 

trial the pilot sample size, which would lead to the minimum cost decreases. So that it is 

better in terms of cost to reduce the number of people in the pilot trial, accept the lower 

accuracy in the prediction of the variance and increase the main trial sample size 

accordingly. This may not be possible in circumstances were patients are rare or difficult 

to recruit, in which case the investigators may be less concerned about the cost of the 

trial and more concerned about the numbers of participants required. 

 

Moreover, this section of work assumes that the cost of a trial is driven entirely by the 

numbers of patients recruited this is quite simplistic. In reality there is likely to be a certain 

level of fixed cost for both the pilot trial and the main trial. It is these fixed costs, which 

may drive up the cost per patient in the pilot trial. It is likely that most of the time the 

pilot would be more expensive per participant than the main trial due to the fixed costs 

involved in running a study. If we assume for the purpose of this that a CTU will be used 

to help run the trial. When a CTU is used there will be a certain amount of fixed costs 

involved in running the study e.g. for trial staff and database, these will be the same 

regardless of the size of the trial. In which case the cost per patient is likely to be higher 

for a pilot trial compared to a main trial. Nevertheless, there are certain situations where 

the costs for the main are likely to be higher than the cost per patient in the pilot. For 

example, if the pilot is conducted in one centre with the help of some students. Therefore, 

I have considered a situation also where the cost per patient in the main is higher than in 

the pilot trial. 

 

This chapter as well as Chapters 3 and 4 have investigated sample size justifications for 

external pilot trials. Where the pilot is conducted as a separate trial from the main trial 

and analysed separately as a standalone trial. The remaining chapters, 6 and 7 will 
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investigate the use of and the sample size requirements of internal pilot trials, where the 

sample comes from within the main trial and will be analysed as part of the main trial. 
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Chapter 6  

 

 

Internal Pilot Trials and Sample Size Recalculations 

 

 

6.1 Introduction 

 

Clinical trials have a high chance of negative results, however, clinical trials are expensive 

and large trials which end in negative results either through lack of treatment effect or 

bad trial planning and design can be very costly for the investigators. As discussed in 

Chapter 2 it is important to have an adequate sample size in a clinical trial for ethical 

reasons and budgeting purposes, to guarantee sufficient power for a statistical test and 

to accurately estimate the treatment effect (Friede and Kieser, 2006). Any 

underestimation of the population variance of the outcome measure in the planning 

phase of the trial could lead to considerable loss of power in the assessment of treatment 

effect (Posch et al., 2003). In order to address these problems investigators may plan an 

adaptive design.  

 

An adaptive design allows the investigators to use accumulating data to modify the trial 

without undermining the validity and integrity of the trial (Chuang-Stein et al., 2006). 

There are several adaptations, which could be carried out as part of an adaptive design, 

including: assessing for futility, assessing for superiority and sample size recalculation or 

any combination of these. Adaptive designs offer a high amount of flexibility to the 

investigators and it could be argued they are more ethical as they allow a trial to be 

stopped early if it is shown that a treatment is inferior or superior so that no more 

participants than needed are recruited.  
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One of the more common types of adaption in publicly funded trials is a sample size 

recalculation (SSR). In a survey of 30 UK clinical trials units, 7 responded saying that they 

implemented SSR in confirmatory trials and of these the majority (n=4) did so in a 

restricted blinded manner (Dimairo et al., 2015). 

 

The concentration in this thesis is the adapting of the trial design with a sample size 

recalculation. A sample size recalculation allows estimation of parameters for a sample 

size recalculation, from within the main trial but without a hypothesis test taking place 

(Friede and Kieser, 2006). The recalculation could be implemented by using an internal 

pilot trial as part of the main trial design. An internal pilot trial is a mechanism employed 

to gain more accurate predictions of parameters for the sample size calculation amongst 

other things. An internal pilot with an interim analysis design would additionally involve 

an assessment of the treatment effect via hypothesis testing part way through the main 

trial, to offer the chance of early stopping (Friede and Kieser, 2006). If this type of 

assessment is required at the interim then the Type I error rate should be controlled using 

either a group-sequential design (Jennison and Turnbull, 1999, Pocock, 1977, O'Brien and 

Fleming, 1979, Whitehead, 1997) or design based on combining P-values (Bauer and 

Kohne, 1994). 

 

This chapter will expand on this brief definition and outline how the methodology is 

implemented with the implications for a trials design and the sample size requirements 

for the internal pilot trial.  

 

Section 6.2 describes further internal pilot trials and their purpose. Section 6.3 outlines 

the development of internal pilot trial methods and details how the sample size re-

calculation is carried out as part of a clinical trial. Section 6.4 reviews the existing different 

ideas around how to specify the size of an internal pilot trial. Section 6.5 outlines the 

limitations of these methods and Section 6.6 summarises the work presented in this 

chapter and how this is developed further in Chapter 7. 
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6.1.1 Aims 

 

This chapter aims to: 

 Define the meaning of the term internal pilot trial, 

 Discuss the procedure for a sample size recalculation, 

 Outline the difference between a restricted and unrestricted design, 

 Discuss the relative strengths and weaknesses of blinded versus unblinded 

variance re-estimation, 

 Identify existing methods of choosing a sample size for an internal pilot trial, 

 Discuss the current approaches and outline the areas of work for Chapter 7. 

 

6.2 Internal Pilot Trial 

 

As defined in Chapter 1, a pilot trial is a study that is: a smaller version of the main trial, 

focusing on testing trial processes rather than on treatment efficacy, has an intention for 

further work and guides future sample size calculations. A pilot trials aim is to ensure that 

the main trial delivers maximum benefit as highlighted in work published during this PhD 

(Whitehead et al., 2014). 

 

An internal pilot has the same objectives but as opposed to an external pilot trial as 

discussed in previous chapters, the internal pilot sample forms the first part of the main 

RCT. NIHR define an internal pilot as the first phase of a substantive study where the data 

contribute to the final analysis (NETSCC, 2012). 

 

The objective of an internal pilot, which this thesis will be focusing on, is the situation 

where internal pilot allows the adaptation of the trial by allowing the re-calculation of the 

required sample size in order to protect from trial under-powering. Like an external pilot 

an internal pilot trial helps to alleviate the uncertainty involved when estimating the 

parameters for a sample size calculation. To alleviate this uncertainty an initial proportion 
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of the main trial is used to estimate the parameter(s) of interest (Wittes and Brittain, 

1990).  

 

The parameters of interest for continuous outcome variables include the variance of the 

outcome measure and the treatment effect. The variance is considered a ‘nuisance’ 

parameter that must be estimated however, the treatment effect is of direct interest and 

the value used in the original calculation will usually have been specified (i.e. as the 

minimum clinically important difference) rather than estimated (Gallo et al., 2006, 

Proschan et al., 2003).  

 

There are methods for using the observed treatment effect in the sample size 

recalculation both to re-estimate the variance and also for a re-assessment of the effect 

size. Recalculating the required sample size based on the observed treatment effect 

requires the unblinding of trial data midcourse (Proschan et al., 2003), these methods are 

discussed further in Section 6.3.3. This thesis will concentrate on sample size 

recalculations where the variance estimate is re-estimated blind to the treatment effect 

such that the treatment effect is the same as the pre-specified MCID level used in the 

sample size calculation. 

 

An internal pilot therefore allows an investigator to re-estimate the variance part way 

through the trial from the actual trial population; which is an advantage over using 

historical or external pilot trial data. Another advantage of an internal pilot is that unlike 

for an external pilot trial the observations taken are included in the final analysis (Wittes 

and Brittain, 1990). 
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6.3 Sample Size Recalculation 

 

The technique now known as an internal pilot trial was described by Stein in 1945. His 

idea was to use an initial proportion of the samples from the main trial to calculate an 

estimate of the variance from within the trial. After an initial proportion of the responses 

have been collected a new estimate of the required sample size is calculated using the 

variance estimate from this sample (NRECALC). The rationale being that this estimate 

should be closer to the true study variance than an estimate from an external pilot or 

historical data would be. Any additional responses after the internal pilot are then 

collected and a hypothesis test carried out. However, in order to maintain the nominal 

Type I error rate exactly Stein excluded the data after the pilot phase from the variance 

estimate to be used in the hypothesis test.   

 

Zucker et al. (1999) highlighted that this is an inefficient use of data as observations on 

the set of patients after the internal pilot are not fully utilised. The Stein approach is 

therefore not generally used in trial designs. The procedure was labelled an internal pilot 

study by Wittes and Brittain in 1990. They took the method proposed by Stein and 

adapted the technique to allow the inclusion of all the data points in the calculation of the 

final variance estimate.  

 

6.3.1 The Restricted and Unrestricted Design 

 

Wittes and Brittain require that at least the original sample size requirement (N0 ) is 

reached, that is, the sample size needed can only be increased above the pre-specified 

level as a result of the sample size re-calculation. This is referred to as the restricted 

sample size re-calculation approach and is the most common method applied in publicly 

funded clinical trials (Dimairo et al., 2015). The new sample size requirement is taken to 

be, 

 

  N1 = max(N0,  NRECALC), (6.1)  
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so that the final sample size ( N1) is always at least the sample size stated in the initial 

sample size calculation (Wittes and Brittain, 1990).  The inclusion of the data from both 

phases of the trial in the final variance estimate assumes that the data in the two phases 

are independent when in fact they are not, this causes an inflation of the Type I error rate 

(Wittes and Brittain, 1990). However, simulations (Wittes and Brittain, 1990, Birkett and 

Day, 1994) have shown that the increase is very small in most cases; between 0 and 0.002 

for true variance to projected variance estimate ratios of between 0.5 and 2. 

 

Birkett and Day (1994) showed that the rule restricting the sample size to not be reduced 

lower than the pre-planned sample size calculation level can lead to a higher than 

required power and hence an overly large sample size if the original estimate of the 

variance is too high. Therefore, to tackle this problem of increased power they proposed 

not carrying out a sample size calculation upfront but instead only specifying a sample 

size for the internal pilot (𝑀𝐼𝑁𝑇). Then the rule of Wittes and Brittain could still then be 

applied in that the recalculated sample size would be the maximum of the internal pilot 

trial sample size and the recalculated sample size, 

 

 N1 = max(𝑀𝐼𝑁𝑇 ,  NRECALC). (6.2)  

 

Using this rule, the probability of overpowering the trial is lower. However, they recognise 

that in practice it is impractical to have no estimate of the final sample size of the trial and 

perhaps would not be acceptable from a regulators or funders perspective (Birkett and 

Day, 1994). Additionally, the recommendation that the sample size should not be reduced 

allows an investigator to avoid problems with interpretation of results later if the 

difference is not found to be statistically significant but clinically relevant due to an overly 

optimistic interim estimate of treatment effect or variance (Wittes and Brittain, 1990, 

Proschan et al., 2003). It has also been highlighted that the demonstration of effect with 

respect to one outcome is rarely the only objective of a clinical trial (Gould and Shih, 1992) 

so reducing the sample size would impact on the other areas of investigation.  
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The restricted approach also helps to maintain the Type I error level. If the sample size is 

allowed to be reduced then the following situations could arise: if a small variance is 

observed by chance in the internal pilot phase, the overall trial sample size would be 

reduced hence increasing the importance of this chance low; if a large variance is 

observed by chance in the internal pilot phase, the overall trial sample size would be 

increased hence reducing the importance of this chance high; therefore the estimate of 

the variance is biased downwards inflating the Type I error rate (Julious, 2009). 

 

With the sample size recalculation approach described above there is potential for the 

sample size to be increased for trials where if the data were unblinded the treatment 

might not be sufficiently 'promising' to necessitate the increased sample size. For this 

reason, some authors suggest only inflating the sample size in the cases where the results 

are ‘promising’. This assessment is based on calculating the conditional power at the 

interim.  

 

Conditional power is the probability that the test statistic at the end of the trial will be 

greater than the critical value for the test so that the null hypothesis will be rejected, given 

the observed data that has been collected up to the interim analysis (Posch et al., 2003). 

This method however, requires an estimate of the treatment effect to be made at the 

interim and hence the data is unblinded (Mehta and Pocock, 2011). If the intervention is 

doing better compared to what was expected then the conditional power will be high, if 

the conditional power is small then the intervention is not performing as well as was 

predicted (Friedman et al., 2010). 

 

This approach is called the promising zone method, and the sample size is only inflated if 

the conditional power is within a predefined promising zone as described in the example 

below (Mehta and Pocock, 2011). Although rarely implemented in publicly funded trials 

the promising zone method is frequently used in the private sector (Dimairo et al., 2015). 

An example of implementing the promising zone approach could be: if the conditional 

power is ≥ 90% the decision could be to leave the sample size unchanged; whilst if the 
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conditional power is < 50% the trial would continue as planned or be stopped for futility. 

The sample size would only increase if the conditional power is ≥ 50% but < 90% so that 

the conditional power would be equal to 90%.  

 

Due to the early assessment of the treatment effect this procedure can inflate the Type I 

error rate and the analysis should be adjusted accordingly (Friedman et al., 2010). This 

approach involves the handling of unblinded interim data, and the requirement to 

preserve the integrity of the trial suggests that the interim analysis should be carried out 

by someone independent to the study such as the statistician on the data monitoring 

committee. This would require a greater level of practical organisation when compared 

to a fixed sample size trial (Mehta and Pocock, 2011). Using the promising zone approach 

assumes that the observed effect seen at the interim is the true treatment effect. 

Moreover, it could be seen as extending a trial in order to acquire a significant P-value, as 

the sample size is adjusted based on the observed data. This could mean that at the end 

of the trial the treatment effect on which the trial is powered is too small to be of clinical 

relevance (Friedman et al., 2010).  

 

6.3.3 Blinded and Unblinded Variance Estimation 

 

For the above recalculation procedures the pooled variance estimator is used (Friede and 

Kieser, 2006). This estimator requires that the data be unblinded mid-trial, this can reveal 

information on the treatment effect size which could cause bias (Friede and Kieser, 2006).  

Thus, if possible it would be desirable to use a procedure where the data can remain 

blinded. This is the preferred approach from a regulatory point of view, ICH E9 (1998), 

Section 4.4 (Page 19) states that; ‘An interim check conducted on the blinded data may 

reveal that overall response variances, event rates or survival experience are not as 

anticipated’. They suggest that because of this a revised sample size calculation could be 

carried out, however it is stated that; ‘The steps taken to preserve blindness and the 

consequences, if any, for the Type I error and the width of confidence intervals should be 

explained’ (ICH, 1998, p.19) 



171 
 

The European Medicine Agency’s (EMEA) Committee for Medicinal Products for Human 

Use (CHMP) add to this by stating: 

 

Whenever possible, methods for blinded sample size reassessment that properly 

control the Type I error should be used, especially if the sole aim of the interim 

analysis is the re-calculation of sample size. (EMEA, 2007, p.6)  

 

The within group variance can be estimated by the total variance ignoring the treatment 

allocation; this method had been shown to work well as long as the treatment effect is 

not large (Friede and Kieser, 2006). Zucker et al. (1999) however suggested an adjustment 

to the total variance (S1,total
2 ) when using blinded data which would make the estimate of 

the within group variance unbiased if the treatment effect is equal to the level set in the 

alternative hypothesis (𝑑) usually the MCID, 

 

 
s1,adj

2 = s1,total
2 −

𝑀𝐼𝑁𝑇

4(𝑀𝐼𝑁𝑇 −1)
 𝑑2, 

(6.3)  

 

where  𝑀𝐼𝑁𝑇 is the sample size of the internal pilot trial. Equation 6.4 can estimate this, if 

the internal pilot trial is sufficiently large, 

 

 
s1,adj

2 =  s1,total
2 − (

𝑑

2
)

2

. 
(6.4)  
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6.4 Sample Size for an Internal Pilot Trial 

 

The choice of sample size for an internal pilot trial is an important consideration. An 

investigator must balance the practical need to conduct the sample size recalculation 

early in the study with the need to include enough people to get an accurate estimate of 

the variance for the sample size recalculation (Wittes et al., 1999). 

 

For Stein’s procedure (1945) for a single sample, Seelbinder (1953) proposed a method to 

minimise the expected total sample size of the internal pilot trial and the main trial 

together (Moshman, 1958). Moshman then extended the method of Seelbinder by placing 

a bound on the chance of requiring an overly large sample size. By trying to strike a 

balance between minimising the 95th percentage point of the total sample size (internal 

pilot trial and the main trial) and the expectation of the total sample size, to select an 

internal pilot sample size. 

 

Wittes and Brittain (1990) propose to use a sample size of half the initial sample size 

calculation. Nevertheless, Wittes and Brittain stated that they were interested in what 

sample size should be used for the internal pilot trial. Birkett and Day (1994) conducted 

simulations which showed that the expected sample size of the overall trial decreased by 

only small amounts after the internal pilot trial sample size exceeded at least 10 per arm 

for a two-armed design (Birkett and Day, 1994). They suggest however, that this is a 

minimum number and in general the larger the trial the larger the internal pilot trial 

should be (Sandvik et al., 1996) although there may be little to be gained from using more 

than 30-40 degrees of freedom to estimate the variance (Birkett and Day, 1994). Wittes 

et al. (1999) state that choosing a proportion of the study of between 0.25 and 0.75 for 

the internal pilot trial may be considered practical as a compromise between keeping the 

sample size small and including enough data for an accurate re-estimation.  

 

Both of these methods fail to take into account the amount of information on which the 

prior estimate of the variance is based (Sandvik et al., 1996). Sandvik et al. (1996) 
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proposes a method, which takes this into account when calculating the required size of 

the internal pilot trial. They stipulate that the size of the internal pilot trial, 𝑀𝐼𝑁𝑇 is 

proportional to the sample size of the main trial, N𝑀 by some constant A; that is M𝐼𝑁𝑇  =

AN𝑀. In addition, M0 is the amount of information on which the prior estimate of the 

variance is based and they assume that the outcome variable is Normally distributed. If 

s0
2 represents the prior estimate of the variance and σ2 the true population variance and 

if 𝑁 = gs0
2 where g is some constant then a criterion,  

 

Prob[M𝐼𝑁𝑇 > gσ2] < 𝑄, 

 

where gσ2 represents the true sample size required at the true value of the variance. 

Letting M𝐼𝑁𝑇 = Ags0
2  and noting that (𝑀0 − 1) s0

2 σ2⁄  follows a χ2  distribution with 

(𝑀0 − 1) degrees of freedom. It follows that, 

 

Prob[(𝑀0 − 1) s0
2 σ2⁄ > (𝑀0 − 1) A⁄ )] < Q, 

 

makes the internal pilot trial as large as possible but with the chance of the size of the 

internal pilot trial exceeding the actual required sample size based on the population 

standard deviation bounded by some investigator specified probability Q. However, they 

agree with Birkett and Day (1994) that the internal pilot trial should never be less than 20 

participants. Although this is an interesting concept it is not investigated further in this 

thesis. The paper in which this method is discussed makes no suggestion as to what level 

of Q might be acceptable and the PhD does not answer this question per se. However, 

intuitively you would like to keep this small. Related to this question though in the 

proceeding chapter the thesis investigates sample sizes for internal pilot trials to obtain 

the best estimates of the sample size for the main trial. 

 

Singer (1999) comments that the method of Sandvik et al (1996) could be improved by 

considering a problem first raised by Birkett and Day (1994). That is stopping recruitment 

when 𝑀𝐼𝑁𝑇 (internal pilot trial size) is reached until the sample size recalculation has been 
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done is considered impractical and may cost the study participants, however, continuing 

recruitment increases the risk of exceeding the true required sample size (Birkett and Day, 

1994). Singer’s method offers a solution to this problem, allowing recruitment to continue 

without the risk of exceeding the true required sample size increasing. Say the 

recruitment rate is 𝑧 patients per day and the follow up time in the study is t then, zt 

patients could be recruited during the waiting time caused by the internal pilot sample 

size re-estimation. Decreasing the internal pilot sample size by this factor, zt would keep 

the probability of exceeding the true required sample size at the required level,  Q . 

Although this is a valid point raised by Singer this method is not discussed further in this 

work. 

 

6.5 Summary 

 

This chapter reviewed the literature on internal pilot trials and conducting a sample size 

recalculation. An internal pilot trial is a two-stage procedure with no interim hypothesis 

testing, but which allows for a sample size recalculation based on estimating the nuisance 

parameter (the variance) for the sample size calculation from the first stage data (Kairalla 

et al., 2012). This should be done where possible in a blinded manner, as is preferred by 

regulatory agencies (EMEA, 2007, ICH, 1998). It is possible to re-evaluate the sample size 

in a restricted (Wittes and Brittain, 1990) or unrestricted (Birkett and Day, 1994) approach. 

 

Owing to the fact that Wittes and Brittain (1990) procedure is restricted to only 

re-evaluating the sample size upwards; it can produce power and sample sizes much 

higher than really necessary, when the re-estimated variance is less than the original 

estimate (Birkett and Day, 1994). In this situation the trial carries on to the original 

calculated sample size. The achieved power will be greater than the nominal level and an 

unnecessarily large sample size will have been used (Birkett and Day, 1994). In order to 

try to alleviate this problem, Birkett and Day proposed an extreme method where no 

sample size calculation is conducted prior to the start of the trial; only the size of the 

internal pilot trial is specified. This method would prevent unnecessarily large sample 



175 
 

sizes being used when the prior estimate of the variance is greater than the re-estimated 

variance, provided that the size of the internal pilot trial is less than the re-estimated 

sample size (Birkett and Day, 1994).  In practice however, this is impractical and some 

estimate of the study sample size would be required for planning and budgetary purposes.  

 

For these reasons the work in Chapter 7 focuses on looking at the blinded restricted 

procedure; investigating the implications of the Wittes and Brittain (1990) procedure in 

terms of trial power and sample size. Furthermore, in terms of investigating the required 

sample size for an internal pilot trial the intention is to consider the idea of Seelbinder 

(1953) to minimise the size of the overall study (internal pilot trial and main trial) but for 

two groups. 

 

Sample size re-estimation suffers from the same disadvantages as the original power 

analysis prior to the conduct of the trial in that the estimates of the trial parameters are 

treated as the true values when they are in fact estimated based on the interim data 

(Chuang-Stein et al., 2006). It is however, possible to extend the same adjustment 

methods to these estimates as used in Chapters 3, 4 and 5 when considering external pilot 

trials. The effect of using the adjustment methods on the variance estimate from an 

internal pilot trial is examined in Chapter 7.  

 

If conducting an internal pilot trial design, the original sample size calculation will be based 

on a traditional formula with the variance assumed to be known. In practice the estimate 

may come from an external pilot trial therefore, the original main trial sample size 

calculation is also based on a sample estimate of the variance. The effect on the power 

and the optimal sample sizes of a trial, if both an external and internal pilot trial is 

employed in the trial design will also be explored in Chapter 7. 
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Chapter 7 

 

 

The Effect of an Internal Pilot Trial on the Power and Sample 

Size of a Trial 

 

 

7.1 Introduction 

 

A pilot trial is a trial which mimics the design of the main trial but does not aim to prove 

superiority of one treatment over the other, as discussed in Chapter 1, although it may 

have many other objectives including; checking the feasibility of the larger trial, testing 

trial procedures and estimating parameters for the sample size calculation (Lancaster et 

al., 2004, Thabane et al., 2010).  In previous chapters’ pilot trials conducted external to 

the main trial were discussed. An internal pilot trial has many of the same objectives of 

an external pilot trial but, as highlighted in Chapter 6, uses an initial sample of the main 

trial data, which will then still be included in the final analysis.  In this chapter it is 

considered how an internal pilot trial could be used to inform the main trial sample size 

through a sample size recalculation 

 

A sample size recalculation uses an initial portion of the main trial participants to 

re-estimate the variance of the outcome measure used in the initial sample size 

calculation. This re-estimated variance is then used to recalculate the required sample 

size for the main trial (Wittes and Brittain, 1990).  

 

Under a restricted procedure if this recalculated sample size is larger than the original the 

sample size will be increased to this new level. If the recalculated sample size is less than 



178 
 

the original sample size the trial will continue to the originally planned sample size (Wittes 

and Brittain, 1990). 

 

This chapter examines the effect of an internal pilot trial design on the power level of a 

trial and the required sample size. The effects of the adjustment methods described in 

Chapter 2, the UCL approach and the NCT method, are extended to internal pilots.  

 

There are recommendations on the internal pilot trial sample size (Wittes and Brittain, 

1990, Birkett and Day, 1994, Wittes et al., 1999) (shown in Table 7.1, where 𝑁0 is the 

initial sample size estimate at the start of the trial).  However, none of these 

recommendations consider the approach investigated throughout this thesis of 

minimising the overall trial sample size of the pilot and the main trial together for a two-

armed design. In this context this chapter will examine the optimal time point in the trial 

to carry out an internal pilot trial sample size to minimise the sample size of the main trial. 

 

Table 7.1: Sample Size Recommendations for Internal Pilot Trials for a Two-armed Trial 

Author Recommended Sample Size 

Wittes and Brittain (1990) 0.5𝑁0 

Birkett and Day (1994) 20 

Wittes et al. (1999) 0.25𝑁0 to 0.75𝑁0 

 

 

7.1.1 Aims 

 

This chapter aims to:  

 Investigate the effect of undertaking an internal pilot trial on the expected 

power of the main trial;  

 Examine the effect on the main trial power of using the adjustment methods 

(i.e. the UCL and NCT approaches) at the sample size recalculation; 

 Make sample size recommendations for an internal pilot trial; 
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 Explore methods of adjusting the nominal power and power at the sample size 

recalculation to optimise the overall expected power of the trial and, 

 Investigate the effect of assuming the initial value of the variance in the original 

sample size calculation to also be a sample estimate. 

 

7.2 The Power of a Trial When Using an Internal Pilot Trial – 

Assuming the Variance is known 

 

This section investigates how using a sample size recalculation procedure at the end of an 

internal pilot trial affects the power of the whole main trial.  

 

If the variance estimate is assumed known in the initial sample size, 𝑁0, the initial sample 

size requirement is calculated from Equation 7.1 (also Equation 2.15), 

 

 

𝑁0 =  
2𝜎2(𝑍1−𝛼

2⁄ +  𝑍1−𝛽)2

𝑑2
. 

(7.1)  

 

If an internal pilot is also undertaken and the variance, 𝑠2, is re-estimated at the interim.  

The recalculated sample size, 𝑁𝑅𝐸𝐶𝐴𝐿𝐶 will be estimated using the result, 

 

 

𝑁𝑅𝐸𝐶𝐴𝐿𝐶 =  
2𝑠2(𝑍1−𝛼

2⁄ +  𝑍1−𝛽)2

𝑑2
, 

(7.2)  

 

with the procedure described in Figure 7.1.  The percentiles of the distribution of 𝜎2 can 

be calculated from Equation 7.3 (a restatement of Equation 2.12 presented earlier), 

 

 
𝑘

𝜒1−𝑋,𝑘
2  𝑠2, 

(7.3)  
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(as discussed in Chapter 2) where 𝑘 is the degrees of freedom for the estimate of 𝜎2, 𝑠2, 

and 1 − 𝑋 is the percentile value corresponding to the relevant degrees of freedom of the 

chi-squared distribution.  

 

The sample size is re-estimated for where the variance, 𝜎2, used in the initial sample size 

calculation is assumed known.  If the variance is known then all plausible values of 𝑠2 from 

the distribution of 𝜎2 for the internal pilot can be estimated using the percentiles of a chi-

squared distribution. Equation 7.3 is used to obtain plausible values for 𝑠2 from 𝜎2.  Thus, 

by investigating the resulting sample size and power level each for the percentiles of the 

distribution, the average power and sample size which would be achieved through using 

an internal pilot trial design was calculated. 

 

Figure 7.1 shows that if the recalculated sample size is larger than the original sample size 

estimate then the power will be larger than the required power (here 0.9) as here we are 

assuming that the variance is known in the original calculation. If the recalculated sample 

size is smaller than the original estimate the sample size will not change and the power 

will be equal to the original required level. This figure demonstrates that the average 

power will be higher than the original required level as the power will not drop below this 

assuming that the variance is known in the original calculation, when using an internal 

pilot trial design 
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What Figure 7.1 (Table 7.3) is in effect doing is calculating the average power (AP) for a 

given trial from, 

 

𝐴𝑃 = 𝑃(𝑠1
2  ≥  𝜎2) Φ (√

𝑑2 (𝑁1| 𝑠1
2, 𝜎2)

2𝜎2
− 𝑍1−𝛼 2⁄ )

+  𝑃(𝑠1
2 <  𝜎2) Φ (√

𝑑2 (𝑁1| 𝜎2)

2𝜎2
− 𝑍1−𝛼 2⁄ ). 

 

(7.4)  

 

The power for a trial with the sample size (𝑁1| 𝜎2)  (the second term on the right hand 

side) would be equal to 90% (or the specified required power level) as the power here is 

based on the true variance therefore it can be seen that, 

 

Figure 7.1: Resulting Power if the Original Variance Estimate is Equal to the True Variance 
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𝐴𝑃 = 𝑃(𝑠1
2  ≥  𝜎2) Φ (√

𝑑2 (𝑁1| 𝑠1
2, 𝜎2)

2𝜎2
− 𝑍1−𝛼 2⁄ )

+  𝑃(𝑠1
2 <  𝜎2) (0.90) . 

(7.5)  

 

From Equation 7.2 and Figure 7.1 it can be seen that the internal pilot trial procedure 

protects against under-powering a trial but can lead to overpowering. Therefore, the 

Wittes and Brittain (1990) approach can produce powers higher than the nominal level 

chosen in the sample size calculation, even when the anticipated variance is equal to the 

true variance, due to its restricted nature in that the sample size can never be adjusted 

downwards at the interim. 

 

The proportion of times the sample size is increased at the interim can be estimated from 

𝑃(𝑠2 > 𝜎2) because the trial is only increased in size if the newly estimated variance 𝑠2 

is larger than the original estimate 𝜎2.  As, 
𝑘𝑠2

𝜎2 ~ 𝜒𝑘
2 it can be shown that, 

 

𝑃(𝑠2 > 𝜎2) 

=  𝑃 (𝑠2

𝜎2⁄ > 1) 

=  𝑃 ( 𝑘𝑠2

𝜎2⁄ > 𝑘) 

 =  𝑃(𝜒𝑘
2 > 𝑘). (7.6)  

 

From this equation is can be seen why the proportion of trials to be increased in sample 

size tends to 0.5 and increases with the pilot trial sample size. The mean of a chi-squared 

distribution is the degrees of freedom therefore if the mean and the median are equal the 

probability above would be equal to 0.5. Therefore, when the number of degrees of 

freedom is large and the chi-squared distribution tends towards the Normal distribution 

the proportion of trials increased at the interim tends towards 0.5.  
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As the pilot trial sample size decreases the skew of the chi-squared distribution increases 

and the mean will be distorted further towards the right hand tail of the chi-squared 

distribution. Consequently the probability of 𝜒𝑘
2 > 𝑘  decreases and the proportion of 

trials which are increased at the interim can be seen to decrease. If the internal pilot trial 

sample size is fixed no matter the size of the main trial the proportion of the trials to be 

increased at the interim does not depend on the effect size.  For example, where the 

degrees of freedom for the variance estimate is 18 we have, 

 

𝑃(𝜒18
2 > 18) = 0.46. 

 

However, the degrees of freedom for the estimate of the variance depends on the original 

sample size calculation (from Equation 7.1) if the internal pilot trial sample size is set 

proportionate to the size of the main trial. Thus, the probability laid out above depends 

on the original sample size calculation, where, 

 

𝑑𝑓 = 2 ( 
𝜋(2𝜎2(𝑍1−𝛼 2⁄ − 𝑍1− 𝛽)

2

𝑑2
) − 2, 

 

 

and 𝜋 is the proportion of the main trial to be used as the internal pilot trial sample size. 

From this equation the proportion of trials that would be increased at the interim can be 

calculated. If 𝜎2 = 1  and 𝑑 = 0.05  then 𝑁0 =  8406  and if 𝜋 = 0.25  the pilot sample 

size per arm would be 2,102 therefore we would have 4,202 degrees of freedom for the 

variance estimate. It therefore follows that the proportion of trials to be increased at the 

interim will be, 

 

𝑃(𝜒4202
2 > 4202) = 0.50. 
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This method is implemented by the process outlined in Figure 7.2. The complication in the 

re-estimation of the sample size is the fact that the procedure is restricted.  That is for 

plausible values of 𝑠2  where the sample size re-estimation is lower than the original 

calculation we keep the original sample size.  The sample size is changed only for plausible 

values of 𝑠2  where the sample size at the re-estimation is higher than the original 

calculation, and the sample size is increased to the higher level.  This approach is referred 

to in this thesis as the Wittes and Brittain (1990) approach who outlined the restricted 

sample size re-estimation procedure, presented in Section 6.3.1. 

 

The nominal power level and the power at the recalculation are set at the 90% level, the 

Type I error rate was chosen to be a two-sided 5% and the effect size was varied over 0.05, 

0.2, 0.5 and 0.8 based with a unit variance. The initial sample size calculation was found 

based on Equation 7.1, therefore for example 𝑍1−𝛼
2⁄ = 1.96  and 𝑍1−𝛽 = 1.28 . Each 

percentile of, 𝜎2 was calculated using Equation 7.3 based on the variance being known 

and equal to 1 in this situation.  

 

The four options for the size of the internal pilot trial (and hence the degrees of freedom) 

based on those proposed in the literature and presented in Table 7.1 were investigated. 

These are 10, 0.25𝑁0, 0.5𝑁0, and 0.75𝑁0. For each percentile value (0.0001 to 0.9999) of 

the chi-squared distribution the required sample size was recalculated through Equation 

7.2 substituting the percentile for, 𝑠2. The restricted procedure was then applied so that 

the sample size was increased if the new estimate of the sample size was greater than the 

initial estimate. If the new sample size requirement was lower than the initial calculation, 

then the initial sample size was used.  

 

Based on the recalculated sample size after applying the restricted approach (𝑁1) the 

power of the trial for the true variance was calculated using Equation 7.7 (a restatement 

of Equation 2.17).  
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1 −  β = Φ (√
𝑑2 𝑁1

2𝜎2
− 𝑍1−𝛼 2⁄ ) 

(7.7)  

 

Across the percentiles the results were averaged to find an average sample size and an 

average power for that design. Additionally, it was recorded when the sample size was 

increased at the interim, so that it was possible to calculate the overall rate at which the 

sample size was increased. Altering the variance away from 1 (the value used in these 

results) would alter the standardised effect size. I have chosen to present the results in 

terms of the standardised effect size so that the results are more generalizable in practice.  
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For example, if the Type I error rate is chosen to be 0.05 or 5% (two-sided), the Type II 

error rate is set at 0.1 or 10%. If the chosen standardised effect size is 0.5, 𝑁0 would be 

Figure 7.2: Process for Investigating the Effect of an Internal Pilot Trial Design on the Power 

of the Main Trial 

Step 1: Values for Type I (𝛼 ) and Type II (𝛽 ) error are selected, the standard 

deviation value (𝑠) and the effect size (𝑑) is set. Here  𝛼 = 0.05 (two-sided), 𝛽 =

0.1, 𝑠 was set to 1, various values of 𝑑 were investigated (0.05, 0.2, 0.5 and 0.8).  

Additionally different sample sizes for the internal pilot trial were investigated 

namely 20 participants, 0.25𝑁0, , 0.5𝑁0 and , 0.75𝑁0.  

Step 2: Calculate , 𝑁0  based on Equation 7.1. Dependent on the rule for size of 

internal pilot trial being used calculate the sample size for the internal pilot trial. 

Step 3: Set i equal to 0.0001, where i represents the percentiles of the chi-squared 

distribution. 

Step 4: For i calculate the percentile of the distribution of 𝜎2 from Equation 7.3. 

Where the degrees of freedom are calculated from the sample size of the internal 

pilot trial. 

Step 5: Calculate the required sample size, 𝑁1 based on using this percentile for 𝑠2 

through Equation 7.2. 

Step 6: Adjust the main trial sample size to 𝑁1 if 𝑁1 >  𝑁0 else sample size remains 

at 𝑁0.   

Step 7: Calculate the power of the trial based on the new sample size through 

Equation 7.4. 

Step 8: Record the sample size, power and whether the sample size increased at 

the interim. 

Step 9: If i<0.9999 add 0.0001 to i and go back to Step 4. If i=0.9999 go to Step 10. 

Step 10: Find the mean and standard deviation of the sample sizes and powers for 

all percentiles and the percentage of trials, which were increased in size at the 

interim. 
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set at 170 for a two armed trial. We chose an internal pilot sample size of 0.5𝑁0 (hence 

an internal pilot trial sample size of 86 participants) and set i=0.0001. Following the 

algorithm for the first 5 loops we get the following values: 

 

i 𝑵𝟎 𝑵𝟏 Power Sample Size was adjusted 
Upwards at Interim 

0.0001 170 170 0.90 No 

0.0002 170 170 0.90 No 

0.0003 170 170 0.90 No 

0.0004 170 170 0.90 No 

0.0005 170 170 0.90 No 

 

For the first 5 loops of the algorithm the variance estimated from the distribution is 

smaller than the true variance used in the original sample size calculation therefore the 

recalculated sample size at the interim will be smaller than the original calculation. 

Therefore, the sample size will remain at the original level. For the final 5 loops of the 

algorithm the variance estimated from the distribution is larger than the true variance 

used in the original sample size calculation and therefore the sample size at the interim 

will be adjusted upwards, the results of these loops can be seen below: 

 

i 𝑵𝟎 𝑵𝟏 Power Sample Size was adjusted 
Upwards at Interim 

0.9995 170 268 0.98 Yes 

0.9996 170 270 0.98 Yes 

0.9997 170 272 0.98 Yes 

0.9998 170 276 0.99 Yes 

0.9999 170 284 0.99 Yes 

 

After all of the loops of the algorithm have been run we can calculate the average final 

sample size after the sample size recalculation rules have been applied, the average 

power of the trials for the true variance and the proportion of trials that were adjusted 

upwards at the interim sample size recalculation. 

 

The results of this approach are given in Table 7.3, when the size of the internal pilot trial 

is varied over those presented in Table 7.1. Table 7.2 shows the sample sizes needed for 
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a conventional sample size with a power level of 90% and a two tailed Type I error rate of 

0.05. If there is a sample size re-calculation part way through the trial, for a proportion of 

the trials the sample size would remain the same (as using a restricted approach) while 

for some the sample size would increase. Therefore, Table 7.3 gives the impact on the 

average sample size and power due to the internal pilot trial. 

 

The results show that on average the restricted internal pilot design requires more 

participants than the fixed sample size design and results in higher average power levels 

than originally required. This effect is most marked when the sample size of the internal 

pilot is small. As the internal pilot sample size increases the sample size and power level 

tend towards those seen in the fixed sample size designs. As the degrees of freedom for 

the internal pilot variance estimate increase, the results tend to the case where the 

variance is assumed known throughout (the fixed sample size design).  

 
Table 7.2: Sample Size Requirement for a Two-armed Fixed Sample Size Design with 90% Power 

Standardised Effect Size Sample Size 

0.05 16,812 

0.20 1,052 

0.50 170 

0.80 66 
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Table 7.3: Average Power, Sample Size and Percentage of Increases in Sample Size at Interim when 

using the Restricted Internal Pilot Trial Design for a Two Armed Trial 

Effect 

Size 

Average 

Power 

Standard 
Deviation 

Average 

Sample Size 

Standard 
Deviation 

Percentage of Trials which 

Increased at Interim 

20 participants     

0.05 0.92 0.03 19,025.98 3,673.50 0.46 

0.20 0.92 0.03 1,190.23 229.49 0.45 

0.50 0.92 0.03 191.74 36.44 0.44 

0.80 0.92 0.03 74.95 14.58 0.45 

0.25𝑁0      

0.05 0.90 0.00 16,958.69 216.03 0.50 

0.20 0.91 0.01 1,088.46 55.26 0.48 

0.50 0.92 0.02 184.16 22.87 0.45 

0.80 0.92 0.03 75.47 15.54 0.45 

0.5𝑁0      

0.05 0.90 0.00 16,915.86 152.47 0.50 

0.20 0.91 0.01 1,077.75 38.68 0.48 

0.50 0.92 0.02 179.90 15.73 0.45 

0.80 0.92 0.03 72.83 10.71 0.46 

0.75𝑁0      

0.05 0.90 0.00 16,896.87 124.41 0.50 

0.20 0.91 0.01 1,072.98 31.39 0.48 

0.50 0.91 0.02 178.01 12.66 0.45 

0.80 0.92 0.02 71.65 8.66 0.46 

 

It is of interest in Table 7.3 how the power tends to be greater than the nominal power of 

90%.  This is because if the variance at the interim is larger than the original estimate the 

trial sample size will be increased to the recalculated sample size based on the interim 

estimate of the variance. A consequence is that the trial is now overpowered for the true 

variance. If, however, the variance at the interim is less than the original variance estimate 

the trial will carry on with the originally planned sample size. In this situation the power 
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would remain at 90% power for the true variance. In both cases we are assuming that by 

the end of the trial the variance estimate will be equal to the true population variance. 

This idea is also displayed in Figure 7.1. 

 

It is worth noting from Table 7.3 that as the effect size increases the proportion of trials 

where the sample size is increased at the interim decreases. This is because as the effect 

size increases the trial sample size decreases and therefore the pilot trial sample size 

decreases. If the pilot trial sample size used is proportionate to the main trial sample size 

and the chi-squared distribution used to estimate the plausible values for the interim 

variance; then as the effect size increases the distribution of the variance becomes more 

skew this is highlighted below.  

 

7.2.1 Validating the Results through Simulation 

 

To confirm the results simulations were undertaken as follows:  

 For the restricted sample size recalculation procedure, the first step is to collect 

the data in the pilot phase of the trial, 

 Using this data, a new estimate of the variance is found and a new estimate of 

the required sample size is calculated,  

 If the recalculated sample size is bigger than the original estimate the sample 

size for the trial is increased to the new estimate,  

 Or if the recalculated sample size is smaller or equal to the original estimate the 

sample size stays the same as in the original trial sample size calculation.  
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Figure 7.3 presented below illustrates the method used for the following simulation study 

looking at the effect of the internal pilot trial design. Note the estimate of the population 

variance is assumed to be recalculated in a blinded manner as presented in Chapter 6. The 

result below is used to get an estimate of the variance at the interim (𝑠1
2), 

 

𝑠1
2 =  𝑠1,𝑡𝑜𝑡𝑎𝑙

2 − (
𝑑

2
)

2

 

 

where 𝑠1,𝑡𝑜𝑡𝑎𝑙
2  is the estimate of the variance of the trial data ignoring the treatment 

group and 𝑑 is the mean difference assumed in the original sample size calculation.   
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To choose the required number of iterations for the study first of all the method was run 

for an effect size of 0.05, nominal required power 0.9, two sided Type I error rate of 0.05, 

a true variance estimate of 1 and equal allocation of participants between the groups for 

an internal pilot sample size of 0.25𝑁0.  

 

Figure 7.3: Process for Simulating a Trial to Investigate the Effect of the Internal Pilot Trial on the 

Power of the Main Trial 

Step 1: Values for Type I (𝛼 ) and Type II (𝛽 ) error are selected, the standard 

deviation value (𝑠) and the effect size (𝑑) is set. Here  𝛼 = 0.05 (two-sided), 𝛽 =

0.1, 𝑠0 was set to 1, various values of 𝑑 were investigated (0.05, 0.2, 0.5 and 0.8).  

Additionally different sample sizes for the internal pilot trial (𝑚) were investigated 

namely 20, 0.25𝑁0, , 0.5𝑁0 and , 0.75𝑁0.  

Step 2: Calculate 𝑁0 based on Equation 7.1.  

Step 3: Set i equal to 1, where i represents the number of simulations. 

Step 4: For pilot trial sample size, 𝑚, simulate the control group from a Normal 

distribution with variance 𝑠0
2 and a mean of zero in the control group and d in the 

experimental group. 

Step 5: From the simulated data, estimate the blinded variance and recalculate the 

required sample size 𝑁1, based on this new variance estimate through Equation 7.2. 

Step 6: Adjust the main trial sample size to 𝑁1 if 𝑁1 >  𝑁0 else sample size remains 

at 𝑁0.   

Step 7: Calculate the power of the trial based on the new sample size through 

Equation 7.4. 

Step 8: Record the sample size, power and whether the sample size increased at 

the interim. 

Step 9: If i is less than the required number of iterations add 1 to i and repeat steps 

4 to 9 else continue to Step 10. 

Step 10: Find the mean and standard deviation of the sample sizes and powers for 

all the simulations and the percentage of trials, which were increased in size at the 

interim. 
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Initially 10,000 trials were simulated and the simulations were run 5 times to check 

whether the results were stable. The results are shown in Table 7.4. 

 

Table 7.4: Simulations Looking at the Effect of the Internal Pilot Trial Design on the Power and 

Sample Size of a Trial using 10,000 Iterations 

Average 

Power 

Average 

Sample Size 

Standard Deviation Proportion of Trials 

Increased at Interim 

0.90 16,961.02 216.28 0.50 

0.90 16,953.78 211.10 0.49 

0.90 16,959.80 218.44 0.49 

0.90 16,961.96 222.16 0.50 

0.90 16,958.12 215.76 0.50 

  

The results of the simulations seem reasonably stable.  To see if the stability is increased 

the number of iterations is increased to 50,000. The results of these can be seen in Table 

7.5. 

 

Table 7.5: Simulations Looking at the Effect of the Internal Pilot Trial Design on the Power and 

Sample Size of a Trial using 50,000 Iterations 

Average 

Power 

Average 

Sample Size 

Standard Deviation Proportion of Trials 

Increased at Interim 

0.90 16,959.72 216.22 0.50 

0.90 16,958.62 217.14 0.49 

0.90 16,959.64 216.66 0.50 

0.90 16,958.02 216.10 0.50 

0.90 16,958.70 216.16 0.50 

 

With 50,000 iterations the simulations seem to be giving more constant results the 

number of iterations, were increased once again to 100,000 iterations to see if the 

stability of the results improved any further. 
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Table 7.6: Simulations Looking at the Effect of the Internal Pilot Trial Design on the Power and 

Sample Size of a Trial using 100,000 Iterations 

Average 

Power 

Average 

Sample Size 

Standard Deviation Proportion of Trials 

Increased at Interim 

0.90 16,959.00 216.62 0.50 

0.90 16,958.80 216.46 0.50 

0.90 16,957.04 214.84 0.49 

0.90 16,958.30 216.26 0.50 

0.90 16,958.04 215.12 0.50 

 

After 100,000 iterations the results for the average power and the proportion of trials to 

be increased at the interim sample size recalculation were stable and the results for 

average sample size were stable to the integer value. The number of iterations was 

increased again to 150,000 to see if the average sample size could be stabilised further. 

 

Table 7.7: Simulations Looking at the Effect of the Internal Pilot Trial Design on the Power and 

Sample Size of a Trial using 150,000 Iterations 

Average 

Power 

Average 

Sample Size 

Standard Deviation Proportion of Trials 

Increased at Interim 

0.90 16,958.98 215.78 0.50 

0.90 16,959.74 216.82 0.50 

0.90 16,958.70 216.36 0.50 

0.90 16,959.04 217.16 0.50 

0.90 16,958.92 216.90 0.50 

 

Increasing the number of iterations to 150,000 did not increase the stability of the average 

sample size values any further.  Thus, it was chosen that the simulations would be based 

on 100,000 iterations. 
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The simulation study involves using the true variance of the data as the variance in the 

original sample size calculation. Recall that the procedure for the simulations is described 

in Figure 7.3. The parameter values used are α=0.05, β=0.1, 𝑟=1, 𝜎2=1 and 𝑑 is varied over 

a range (0.05, 0.2, 0.5 and 0.8). The results, shown in Table 7.8, demonstrate the 

properties of the internal pilot trial design when the variance used in the sample size 

calculation is the same as the true variance for the varying size of the internal pilot trial 

design which can be seen to match closely to those found using the chi-squared 

distribution presented in Table 7.3. 
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Table 7.8: Simulations to Show the Properties of Internal Pilot Trial Design Sample Sizes for a Two 

Armed Trial 

Effect 

Size 

Average 

Power 

Standard 
Deviation 

Average 

Sample Size 

Standard 
Deviation 

Proportion of Trials 

Increased at the Interim 

20 participants     

0.05 0.92 0.03 18,971.34 3581.96 0.46 

0.20 0.92 0.03 1,187.30 224.96 0.45 

0.50 0.92 0.03 192.60 37.62 0.45 

0.80 0.93 0.03 76.06 16.32 0.45 

0.25𝑁0      

0.05 0.90 0.00 16,959.70 216.98 0.50 

0.20 0.91 0.01 1,088.82 55.86 0.48 

0.50 0.92 0.02 184.98 24.14 0.45 

0.80 0.93 0.03 76.74 17.46 0.45 

0.5𝑁0      

0.05 0.90 0.00 16,916.78 153.30 0.50 

0.20 0.91 0.01 1,078.08 39.08 0.49 

0.50 0.92 0.02 180.52 16.64 0.45 

0.80 0.92 0.03 73.66 12.10 0.46 

0.75𝑁0      

0.05 0.90 0.00 16,897.12 125.00 0.50 

0.20 0.91 0.01 1,073.21 31.72 0.48 

0.50 0.91 0.02 178.49 13.39 0.45 

0.80 0.92 0.03 72.40 9.76 0.46 
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7.2.2 The Effect of Using an Adjustment Method at the Sample Size 

Recalculation 

 

This section aims to investigate the effect in the power and sample size of the adjustment 

methods used at the interim recalculation. The following results are calculated using the 

approach set out in Figure 7.2, however after the variance re-estimation the sample size 

is re-calculated using Equation 4.2 (or Equation 2.15) for the UCL approach and 2.21 for 

the NCT approach. The parameter values used are α=0.05, β=0.1, 𝜎2=1, 𝑑 is varied over a 

range (0.05, 0.2, 0.5 and 0.8), 𝑀𝐼𝑁𝑇 is the sample size of the pilot trial, which is varied over 

those presented in Table 7.1 (20 participants, 0.25𝑁0 ,  0.5𝑁0  and 0.75𝑁0) and where 

required 1-X= 0.2 (for the 80% UCL approach). 
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Table 7.9: Properties of the Internal Pilot Trial Design with the NCT Approach at the Sample Size 

Recalculation Sample Sizes are for a Two-armed Trial 

Effect 

Size 

Average 

Power 

Standard 
Deviation 

Average 

Sample Size 

Standard 
Deviation 

Percentage of Trials which 

Increased at Interim 

20 participants     

0.05 0.94 0.04 20,768.77 5,035.66 0.62 

0.20 0.94 0.03 1,300.24 315.19 0.62 

0.50 0.94 0.03 210.25 50.68 0.62 

0.80 0.94 0.03 83.17 20.45 0.65 

0.25𝑁0      

0.05 0.90 0.00 16,964.53 219.08 0.51 

0.20 0.91 0.01 1,095.06 59.61 0.54 

0.50 0.93 0.03 191.70 28.26 0.58 

0.80 0.94 0.04 84.74 22.29 0.65 

0.5𝑁0      

0.05 0.90 0.00 16,919.18 154.07 0.51 

0.20 0.91 0.01 1,081.47 41.05 0.53 

0.50 0.92 0.02 183.96 18.50 0.56 

0.80 0.93 0.03 77.63 13.87 0.63 

0.75𝑁0      

0.05 0.90 0.00 16,899.37 125.57 0.51 

0.20 0.91 0.01 1,075.76 33.13 0.52 

0.50 0.92 0.02 180.99 14.67 0.55 

0.80 0.93 0.93 75.14 10.83 0.62 
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Table 7.10: Properties of the Internal Pilot Trial Design with the 80% UCL Approach at the Sample 

Size Recalculation Sample Sizes are for a Two-armed Trial 

Effect 

Size 

Average 

Power 

Standard 
Deviation 

Average 

Sample Size 

Standard 
Deviation 

Percentage of Trials which 

Increased at Interim 

20 participants     

0.05 0.95 0.04 28,173.06 15,793.61 0.65 

0.20 0.95 0.04 1,761.88 987.05 0.65 

0.50 0.95 0.04 283.04 157.72 0.64 

0.80 0.95 0.04 110.80 61.83 0.64 

0.25𝑁0      

0.05 0.91 0.01 17,296.69 547.51 0.66 

0.20 0.93 0.03 1,183.37 154.73 0.66 

0.50 0.94 0.04 232.14 80.19 0.64 

0.80 0.95 0.04 115.01 68.68 0.64 

0.5𝑁0      

0.05 0.91 0.01 17,152.27 382.74 0.66 

0.20 0.92 0.02 1,141.86 104.21 0.66 

0.50 0.94 0.03 210.02 49.65 0.64 

0.80 0.95 0.04 95.80 38.67 0.65 

0.75𝑁0      

0.05 0.90 0.00 17,088.98 310.96 0.66 

0.20 0.92 0.02 1,124.21 83.19 0.66 

0.50 0.93 0.03 201.33 38.24 0.64 

0.80 0.94 0.04 88.90 28.72 0.65 

 

 

Both the NCT and the UCL approaches make the average powers from the restricted 

design even higher than when no adjustment method is used given in Table 7.3. A 

consequence is that more of the trials will be adjusted upwards at the sample size 

recalculation and the average sample sizes are now higher. The effect is less pronounced 
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when the pilot trial is larger as the inflation from the adjustment method will be less in 

these situations.  

 

7.3 Sample Sizes for Internal Pilot Trials – Assuming the Variance 

is known 

 

It can be seen (in Table 7.3) that as the sample size of the internal pilot increases the effect 

of the internal pilot trial design on the power of the trial decreases due to the estimate of 

the variance becoming more precise. Chapter 4 investigated the optimal sample size for 

an external pilot trial; in this section the required sample size for an internal pilot trial is 

examined.  

 

Chapter 4 used the overall sample size of the pilot trial and the main trial together to 

choose a pilot trial sample size that minimises the overall trial sample size. This was based 

on using an adjustment method for the sample size calculation of the main trial, so that 

the main trial sample size was dependent on the pilot trial sample size. However, as shown 

in Section 7.2.2 there is no additional benefit to using an adjustment method at the 

sample size recalculation in terms of average power.  

 

Figure 7.4 and 7.5 illustrate the sample size calculations for the main trial for different 

pilot sample sizes (for different effect sizes). Graph A is for an effect size of 0.05. B is for 

0.2, C is for 0.5 and D is for an effect size of 0.8.  Unlike the external pilot trial situation 

given in Chapter 4, there is no minimum to the sample size and so as highlighted the bigger 

the internal pilot the smaller the overall sample size calculation. Additionally, because the 

internal pilot patients are rolled into the main trial there is no cost (in terms of sample 

size) to including all the patients in the internal pilot and getting the most accurate 

prediction of the variance. 

 

For investigators it may not be practical to wait until late into the trial to get the final 

estimate of the sample size. The requirement for the recalculation to be early in the trial 
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such that the internal pilot has large enough sample size to have sufficient precision for 

the re-estimate of the sample size of the main trial needs to be balanced. 

 

Figure 7.4: Average Sample Sizes for the Trial with Varying Internal Pilot Sample Size and Effect Size 

with 90% Power. A: effect size = 0.05, B: effect size = 0.2, C: effect size = 0.5 and D: effect size = 0.8 
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Figure 7.5: Average Sample Sizes for the Trial with Varying Internal Pilot Sample Size and Effect Size 

with 80% Power. A: effect size = 0.05, B: effect size = 0.2, C: effect size = 0.5 and D: effect size = 0.8 

 

 

Figure 7.4 and Figure 7.5 can be used to illustrate how the internal pilot trial could be 

estimated.  It can be seen from the figures that the change in the average sample size 

seems to decrease as the internal pilot trial sample size increases. However, the internal 

pilot trial sample size has less of an effect on the overall trial sample size, after the internal 

pilot trial reaches a specific level.  This could be taken as when we have a sufficiently 

precise estimate of the variance.  

 

Suggested estimates for the required size of an internal pilot trial are given in Table 7.11. 

These were estimated by taking the internal pilot trial sample size to be the point where 

the absolute change in average sample size of the trial from the compared to previous 

internal pilot trial sample size drops below two. Two, it should be noted, is arbitrary.  As 
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in Chapter 4 for the external pilot trial sample sizes the sample size per arm has not been 

allowed to fall below 10 participants. The results in Table 7.11 could be used as the 

minimum sample size required for an internal pilot trial. 

 

Table 7.11: Sample Size Recommendations for Internal Pilot Trials Assuming the Variance is Known 

for a Two-armed Trial 

Standardised Effect Size 80% Powered Trial 90% Powered Trial 

Extra Small (δ < 0.1) 160 190 

Small (0.1 ≤ δ < 0.3)  30 40 

Medium (0.3 ≤ δ < 0.7) 20 20 

Large (δ ≥ 0.7) 20 20 

  

 

7.4 The Power of a Trial When Using an Internal Pilot Trial – 

Anticipated Variance is Assumed Known, but is Incorrectly 

Estimated 

 

The utility of the methods can be investigated for the situation where the assumptions 

around the variance are wrong. In reality the variance is not known in the initial sample 

size calculation and so as a result it is possible to under or over-estimate the parameter 

in the sample size calculation at the start of the trial. This section looks at how the internal 

pilot trial performs in terms of average power and sample size when the anticipated 

variance is an over or an under-estimate in the original calculation and compares this to 

the fixed sample size design. The effects of the adjustment methods are also 

reinvestigated. 

 

Note the calculations used to estimate the initial sample size are still the methods for the 

case where the variance is assumed known.  Here the situation where the anticipated 

variance is actually incorrect is explored. Section 7.5 will examine the situation where the 

population variance is assumed to be known in the initial sample size calculation but is 
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inaccurately estimated and in reality the estimate of the variance is either larger or 

smaller than the true value. 

 

7.4.1 Anticipated Variance less than True Variance 

 

If the anticipated variance at the start of a trial were an underestimate the original sample 

size calculation will be too small hence the trial would be underpowered. Employing an 

internal pilot trial design is one method to try to protect against this misspecification of 

the variance in the original calculation. 

 

Table 7.12 shows the effect on the trial power for the true variance and sample size of a 

fixed trial design if the original variance estimate is 0.75 compared to the true variance of 

1. It shows that the power of the trial for the true variance of 1 drops to around 80% as 

the calculated required sample size falls due to the small estimate of the variance. 

 

Table 7.12: Sample Size Requirement for a Fixed Sample Size Two-armed Design 

Standardised Effect Size Power Sample Size 

0.05 0.80 12,610 

0.20 0.80 790 

0.50 0.81 128 

0.80 0.81 50 

 

In Table 7.12 the sample sizes are smaller than those presented in Table 7.2 which would 

give 90% power for the true variance. The sample sizes in Table 7.12 are underpowered 

for the true variance giving only approximately 80% power. Table 7.13 shows the average 

power of the trials when an internal pilot design is used and the variance is 

underestimated in the original calculation (anticipated variance=0.75 versus true 

variance=1). The results show that on average the internal pilot design protects against 

the under-powering of the trial although the average power can dip slightly below 0.90. 

When compared to Table 7.3 where the anticipated variance was equal to the true 
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variance the average power and the average sample sizes are lower and just protect 

against extreme under-powering on average. Moreover, because the original estimate of 

the variance is an underestimate of the true variance a higher percentage of trials are 

increased in size at the interim than in Table 7.3.  

 

Table 7.13: Average Power, Sample Size and Percentage of Increases in Sample Size at Interim when 

using the Restricted Internal Pilot Trial design with no Adjustment Method for a Two-armed Trial 

Effect 

Size 

Average 

Power 

Standard 
Deviation 

Average 

Sample Size 

Standard 
Deviation 

Percentage of Trials which 

Increased at Interim 

20 participants     

0.05 0.89 0.07 17,375.33 4,875.37 0.76 

0.20 0.89 0.07 1,087.12 304.50 0.76 

0.50 0.89 0.06 174.96 48.54 0.75 

0.80 0.89 0.06 68.81 19.11 0.75 

0.25𝑁0      

0.05 0.90 0.01 16,812.82 421.18 1.00 

0.20 0.90 0.03 1,051.76 105.38 1.00 

0.50 0.90 0.06 172.05 39.03 0.82 

0.80 0.89 0.07 70.06 22.82 0.69 

0.5𝑁0      

0.05 0.90 0.01 16,812.87 297.81 1.00 

0.20 0.90 0.02 1,051.72 74.44 1.00 

0.50 0.89 0.05 169.89 28.67 0.92 

0.80 0.89 0.06 68.13 16.90 0.79 

0.75𝑁0      

0.05 0.90 0.00 16,812.85 243.16 1.00 

0.20 0.90 0.02 1,051.73 60.72 1.00 

0.50 0.90 0.04 169.38 23.87 0.96 

0.80 0.89 0.05 67.45 14.25 0.85 
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If at the interim the recalculated variance is less than the original estimate the sample size 

will remain the same and the trial will be underpowered for the true variance. If at the 

interim the variance estimate is larger than the anticipated estimate and larger than the 

true variance, then the sample size will be increased upwards and the trial will be 

overpowered for the true variance. Additionally, if the variance estimate is larger than the 

original estimate but smaller than the true variance, the sample size will be increased at 

the interim but the trial will still be underpowered. This effect is also displayed in Figure 

7.6, where the green line represents the required sample size to give 90% power for the 

true variance. 

 

Figure 7.6: The Effect of Under-Estimating the Variance in the Original Sample Size Calculation 

 

 

The original sample size estimate is underpowered (for a power requirement of 90%) if 

the variance is originally underestimated. If the recalculated sample size is to the left of 

the red line in Figure 7.6 i.e. smaller than the original sample size, the trial will continue 

to the original sample size so the power of those trials is the power given for the true 

variance from the original sample size requirement. If the recalculation sample size is to 
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the right of the line i.e. larger than the original sample size, the sample size will be 

increased. If the re-estimated variance is still smaller than the true variance the trial will 

still be underpowered. If the re-estimated variance is larger than the true variance, then 

the trial will have >90% power. 

 

In Tables 7.14 and 7.15 it can be seen that the adjustment methods give higher powers 

than when using the internal pilot trial design with no adjustment methods, to protect 

from under-powering. However, they can lead to over-powering and the UCL approach 

gives higher powers than the NCT method.  

 

On average the internal pilot trial design protects against under-powering without the 

adjustment methods, and therefore when the variance is underestimated in the original 

sample size calculation the adjustment methods offer little more than the internal pilot 

trial design alone.  The restricted method seems to protect against under-powering. 
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Table 7.14: Average Power, Sample Size and Percentage of Increases in Sample Size at Interim when 

using the Restricted Internal Pilot Trial design with the NCT Method used at the Sample Size 

Recalculation for a Two-armed Trial 

Effect 

Size 

Average 

Power 

Standard 
Deviation 

Average 

Sample Size 

Standard 
Deviation 

Percentage of Trials which 

Increased at Interim 

20 participants     

0.05 0.91 0.07 19,717.69 6,023.27 0.86 

0.20 0.91 0.06 1,235.03 376.60 0.86 

0.50 0.92 0.06 200.01 60.40 0.86 

0.80 0.92 0.06 79.73 23.87 0.88 

0.25𝑁0      

0.05 0.90 0.01 16,828.58 421.49 1.00 

0.20 0.90 0.03 1,067.62 106.87 1.00 

0.50 0.91 0.06 187.73 44.71 0.90 

0.80 0.93 0.07 85.99 31.34 0.85 

0.5𝑁0      

0.05 0.90 0.01 16,821.70 297.91 1.00 

0.20 0.90 0.02 1,060.63 74.93 1.00 

0.50 0.91 0.04 178.65 30.57 0.95 

0.80 0.92 0.06 76.75 20.08 0.90 

0.75𝑁0      

0.05 0.90 0.00 16,819.42 243.23 1.00 

0.20 0.90 0.02 1,058.31 61.01 1.00 

0.50 0.91 0.04 175.91 24.80 0.98 

0.80 0.91 0.05 73.86 16.01 0.93 
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Table 7.15: Average Power, Sample Size and Percentage of Increases in Sample Size at Interim when 

using the Restricted Internal Pilot Trial design with the 80% UCL Method used at the Sample Size 

Recalculation for a Two-armed Trial 

Effect 

Size 

Average 

Power 

Standard 
Deviation 

Average 

Sample Size 

Standard 
Deviation 

Percentage of Trials which 

Increased at Interim 

20 participants     

0.05 0.92 0.08 26,972.47 16,731.93 0.78 

0.20 0.92 0.08 1,686.92 1,045.61 0.78 

0.50 0.92 0.08 270.91 167.16 0.78 

0.80 0.93 0.08 106.29 65.38 0.78 

0.25𝑁0      

0.05 0.91 0.01 17,188.74 861.22 1.00 

0.20 0.91 0.05 1,164.23 229.44 0.96 

0.50 0.92 0.07 236.76 112.84 0.81 

0.80 0.93 0.08 122.92 93.55 0.75 

0.5𝑁0      

0.05 0.90 0.01 17,074.58 604.90 1.00 

0.20 0.91 0.04 1,125.15 158.74 0.99 

0.50 0.92 0.06 208.54 70.00 0.87 

0.80 0.92 0.07 98.02 52.08 0.79 

0.75𝑁0      

0.05 0.90 0.01 17,025.08 492.46 1.00 

0.20 0.91 0.03 1,109.83 128.16 1.00 

0.50 0.92 0.06 198.52 54.81 0.90 

0.80 0.92 0.07 89.56 38.91 0.82 
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7.4.2 Anticipated Variance larger than True Variance 

 

If the variance estimate at the start of a trial is an overestimate the original sample size 

calculation will be too large hence the trial would be overpowered. Table 7.16 shows the 

effect on the power for the true variance and sample size of a fixed trial design if the 

original variance estimate is 1.5 compared to the variance of 1. It shows that the power 

of the trial for the true variance of 1 rises to around 98% as the calculated required sample 

size increases due to the large estimate of the variance. 

 

Table 7.16: Sample Size Requirement for a Two-armed Trial Fixed Sample Size Design 

Standardised Effect Size Power Sample Size 

0.05 0.98 25,218 

0.20 0.98 1,578 

0.50 0.98 254 

0.80 0.98 100 

 

 

In Table 7.16 the sample sizes are larger than those presented in Table 7.2 which would  

give 90% power for the true variance. The sample sizes in Table 7.16 are overpowered 

for the true variance giving approximately 98% power. Table 7.17 shows the average 

power of the trials when an internal pilot design is used and the variance is overestimated 

in the original calculation. The results show that the restricted internal pilot trial design 

leads to overpowering with an average power of 98%, the same as in Table 7.16.  

 

With the restricted design if the variance at the sample size recalculation is less than the 

original estimate and less than the true variance, the trial will continue with the original 

sample size calculation and it will be overpowered for the true variance. If the variance at 

the sample size recalculation is less than the original estimate and more than the true 

variance the trial will continue and it will be overpowered for the true variance. If the 

variance at the sample size recalculation is more than the original estimate, then the 
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sample size will be increased and the trial will be further overpowered for the true 

variance. This effect is also demonstrated in Figure 7.7. 

 

Figure 7.7: The Effect of Over-Estimating the Variance in the Original Sample Size Calculation 

 

 

The variance in the original calculation is too high therefore because of the restricted 

nature of this internal pilot trial procedure the trials will all be overpowered for the true 

variance. The trials where the re-calculated variance is less than the original estimate will 

carry on to the original sample size level and hence be overpowered. If the recalculated 

sample size is to the right of the line i.e. larger than the original estimate, then the sample 

size will be adjusted upwards and the trial will be over-powered. 
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Table 7.17: Average Power, Sample Size and Percentage of Increases in Sample Size at Interim when 

using the Restricted Internal Pilot Trial Design with no Adjustment Method Applied for a Two-armed 

Trial 

Effect 

Size 

Average 

Power 

Standard 
Deviation 

Average 

Sample Size 

Standard 
Deviation 

Percentage of Trials which 

Increased at Interim 

20 participants     

0.05 0.98 0.00 25,490.56 1,271.24 0.08 

0.20 0.98 0.00 1,594.97 79.27 0.08 

0.50 0.98 0.00 256.66 12.54 0.08 

0.80 0.98 0.00 101.03 4.87 0.07 

0.25𝑁0      

0.05 0.98 0.00 25,218.00 0.00 0.00 

0.20 0.98 0.00 1,578.00 0.00 0.00 

0.50 0.98 0.00 254.06 0.99 0.01 

0.80 0.98 0.00 100.56 3.21 0.05 

0.5𝑁0      

0.05 0.98 0.00 25,218.00 0.00 0.00 

0.20 0.98 0.00 1,578.00 0.00 0.00 

0.50 0.98 0.00 254.00 0.00 0.00 

0.80 0.98 0.00 100.07 0.82 0.02 

0.75𝑁0      

0.05 0.98 0.00 25,218.00 0.00 0.00 

0.20 0.98 0.00 1,578.00 0.00 0.00 

0.50 0.98 0.00 254.00 0.00 0.00 

0.80 0.98 0.00 100.01 0.20 0.00 
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Table 7.18: Average Power, Sample Size and Percentage of Increases in Sample Size at Interim when 

using the Restricted Internal Pilot Trial design with the NCT Method used at the Sample Size 

Recalculation for Two-armed Trials 

Effect 

Size 

Average 

Power 

Standard 
Deviation 

Average 

Sample Size 

Standard 
Deviation 

Percentage of Trials which 

Increased at Interim 

20 participants     

0.05 0.98 0.00 26,013.50 2,395.53 0.18 

0.20 0.98 0.00 1,627.88 149.98 0.17 

0.50 0.98 0.00 262.16 24.26 0.18 

0.80 0.98 0.00 103.38 9.77 0.18 

0.25𝑁0      

0.05 0.98 0.00 25,218.00 0.00 0.00 

0.20 0.98 0.00 1,578.00 0.00 0.00 

0.50 0.98 0.00 254.18 2.00 0.01 

0.80 0.98 0.00 101.78 6.31 0.12 

0.5𝑁0      

0.05 0.98 0.00 25,218.00 0.00 0.00 

0.20 0.98 0.00 1,578.00 0.00 0.00 

0.50 0.98 0.00 254.00 0.00 0.00 

0.80 0.98 0.00 100.23 1.66 0.03 

0.75𝑁0      

0.05 0.98 0.00 25,218.00 0.00 0.00 

0.20 0.98 0.00 1,578.00 0.00 0.00 

0.50 0.98 0.00 254.00 0.00 0.00 

0.80 0.98 0.00 100.04 0.49 0.01 
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Table 7.19: Average Power, Sample Size and Percentage of Increases in Sample Size at Interim when 

using the Restricted Internal Pilot Trial design with the 80% UCL Method used at the Sample Size 

Recalculation for a Two-armed Trials 

Effect 

Size 

Average 

Power 

Standard 
Deviation 

Average 

Sample Size 

Standard 
Deviation 

Percentage of Trials which 

Increased at Interim 

20 participants     

0.05 0.98 0.01 32,161.98 13,382.74 0.41 

0.20 0.98 0.01 2,011.64 836.15 0.41 

0.50 0.99 0.01 323.10 133.59 0.41 

0.80 0.99 0.01 126.90 52.09 0.41 

0.25𝑁0      

0.05 0.98 0.00 25,218.00 0.00 0.00 

0.20 0.98 0.00 1,578.10 5.16 0.01 

0.50 0.98 0.01 267.11 34.74 0.22 

0.80 0.98 0.01 119.06 38.48 0.37 

0.5𝑁0      

0.05 0.98 0.00 25,218.00 0.00 0.00 

0.20 0.98 0.00 1,578.00 0.00 0.00 

0.50 0.98 0.00 257.30 13.16 0.10 

0.80 0.98 0.00 107.56 18.23 0.26 

0.75𝑁0      

0.05 0.98 0.00 25,218.00 0.00 0.00 

0.20 0.98 0.00 1,578.00 0.00 0.00 

0.50 0.98 0.00 255.10 6.32 0.05 

0.80 0.98 0.00 103.77 10.89 0.19 

 

In Tables 7.18 and 7.19 it can be seen that the adjustment methods offer no protection 

against overpowering the trials and require higher average sample sizes than the 

unadjusted approach. 
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After reviewing all of the situations that may arise when estimating the variance at the 

start of a trial and then carrying out a sample size recalculation part way through the trial 

there does not seem to be any benefit in using an adjustment method at the sample size 

recalculation as part of an internal pilot trial design. The internal pilot trial design itself 

protects from under-powering when the original variance estimate is too small compared 

to the true population variance. 

 

7.5 The Sample Size and Power of a Trial When Using an Internal 

Pilot Trial – Allowing for Unknown Variance with Pilot Sample Size 

Fixed 

 

In contradiction to the methods laid out in Section 7.2, where we assume the variance is 

known the initial sample size calculation will most likely be based on some estimate of 

the variance say, 𝑠0
2, which may come from an external pilot trial for example. 

Substituting in 𝑠0
2 for 𝜎2 into the original sample size formula gives, 

 

 

𝑁0 =  
2𝑠0

2(𝑍1−𝛼
2⁄ +  𝑍1−𝛽)2

𝑑2
. 

(7.8)  

 

When the variance is re-estimated at the interim the sample size recalculation will be 

based on, 

 

 

𝑁0 =  
2𝑠1

2(𝑍1−𝛼
2⁄ +  𝑍1−𝛽)2

𝑑2
, 

(7.9)  

 

where 𝑠1
2 is the re-estimated variance from the internal pilot trial. It is known that, 

 

 
𝑘𝑠2

𝜎2
 ~ 𝜒𝑘

2. 

(7.10)  
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Therefore, 𝑘0𝑠0
2 𝜎2⁄  ~ 𝜒𝑘0

2  where 𝑘0 is the degrees of freedom for 𝑠0
2 the initial variance 

estimate and, 𝑘1𝑠1
2 𝜎2⁄  ~ 𝜒𝑘1

2  where 𝑘1  is the degrees of freedom for 𝑠1
2  the variance 

estimate from the internal pilot trial. 

 

The ratio of two chi-squared distributions over their respective degrees of freedom 

follows a F-distribution (Hiorns, 1971) (as discussed in Section 2.3.4) i.e., 

 

𝑘0𝑠0
2

𝜎2⁄

𝑘0

𝑘1𝑠1
2

𝜎2⁄

𝑘1
⁄  ~ 𝐹(𝑘0, 𝑘1)  

⇒  
𝑠0

2

𝜎2

𝑠1
2

𝜎2
⁄  ~ 𝐹(𝑘0, 𝑘1)  

 
⇒  

𝑠0
2

𝑠1
2  ~ 𝐹(𝑘0, 𝑘1) 

(7.11)  

 

The average power of the trial would now be calculated from 

  

 

𝐴𝑃 = 𝑃(𝑠1
2  ≥  𝑠0

2) Φ (√
𝑑2 (𝑁1| 𝑠1

2, 𝑠0
2)

2𝜎2
− 𝑧1−𝛼 2⁄ )

+  𝑃(𝑠1
2 <  𝑠0

2) Φ (√
𝑑2 (𝑁1| 𝑠0

2)

2𝜎2
− 𝑧1−𝛼 2⁄ ),  

 

(7.12)  

 

where, 

𝑃(𝑠1
2  ≥  𝑠0

2) 

= 𝑃 (
𝑠0

2

𝑠1
2  ≤  1) 

= 𝑃(𝐹(𝑘0, 𝑘1)  ≤  1), 

and, 

𝑃(𝑠1
2 <  𝑠0

2) 

= 𝑃 (
𝑠0

2

𝑠1
2 >  1) 
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= 𝑃(𝐹(𝑘0, 𝑘1) >  1) 

= 1 −  𝑃(𝐹(𝑘0, 𝑘1) ≤  1). 

 

 

The average sample size of the trial would now be calculated from: 

 

 𝐴𝑆𝑆 = 𝑃(𝑠1
2  ≥  𝑠0

2) (𝑁1| 𝑠1
2, 𝑠0

2) +  𝑃(𝑠1
2 <  𝑠0

2) (𝑁1| 𝑠0
2) 

 

𝐴𝑆𝑆 = 𝑃(𝐹(𝑘0, 𝑘1) ≤  1) (𝑁1| 𝑠1
2, 𝑠0

2) +  1 −  𝑃(𝐹(𝑘0, 𝑘1) ≤  1) (𝑁1| 𝑠0
2) 

 
 

(7.13)  

 

The next set of calculations presented in Table 7.20 look at the effect of allowing for the 

variance being unknown on the sample size of the trial. These results were obtained by 

the process set out in Figure 7.8; the percentiles were reduced to three decimal places 

to reduce the run time of the computer program compared to the procedure outlined in 

Figure 7.1, which was carried out with the percentiles to four decimal places. 

 

This process is an extension of the process carried out earlier in the Chapter and presented 

in Figure 7.1, which investigated the effect of an internal pilot trial design on the power 

of the main trial. However, previously it was assumed that the variance at the start of the 

trial was known and only the variance at the interim was an estimate. 

 

The extension presented here also allows for the variance to be an estimate at the start 

of the trial in the original sample size calculation as well as at the interim sample size 

recalculation. Therefore, this algorithm has a double loop, one for evaluating over the 

distribution for the prior estimate of the variance (from perhaps an external pilot trial) 

and the other over the distribution for the estimate of the variance form the internal pilot 

trial.  
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For example, if the Type I error rate is chosen to be 0.05 or 5% (two-sided), the Type II 

error rate is set at 0.1 or 10%. If the chosen standardised effect size is 0.5 and we chose 

an external pilot trial of 100 and internal pilot sample size of 20 participants. Using a true 

variance value of 1. Following the algorithm for the final percentile of the distribution of 

the variance based on the prior estimate, the first 5 percentiles for the variance based on 

the internal pilot trial would yield the following values: 

Figure 7.8: Process for Investigating the Effect of an Estimated Variance in the Initial Sample Size 

Calculation 

Step 1: Values for Type I (𝛼) and Type II (𝛽) error are selected, the true variance 

(𝜎2 ) and the effect size (𝑑) is set. Here  𝛼 = 0.05 (two-sided), 𝛽 = 0.1, 𝜎2 was set 

to 1, various values of 𝑑 were investigated (0.05, 0.2, 0.5 and 0.8). Additionally, 

different sample sizes for the external and internal pilot trial can be investigated. 

Step 2: Set j equal to 0.001, this represents the percentile of the distribution of the 

prior estimate of the variance. 

Step 3: For j calculate the percentile of the distribution of 𝜎2 through Equation 7.3. 

Step 4: Calculate the required sample size, 𝑁0 through Equation 7.9 based on the 

percentile calculated in Step 3. 

Step 5: Using this 𝑁0 as the 𝑁0 in step 1 of the process presented in Figure 7.1. Carry 

out the procedure to get an average trial power and average sample size over the 

distribution of the variance in the internal pilot trial, for this percentile of the 

distribution for the prior estimate of the variance. 

Step 6: This should be repeated for each percentile of the distribution of the prior 

estimate of the variance. Therefore, is j<0.999 and 0.001 to j and go back to Step 3. 

Otherwise go to Step 7.   

Step 7: Find the mean and standard deviation of the average sample sizes and 

powers for all the percentiles. 
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Percentile of distribution 
of variance from the 

Internal Pilot Trial 
Average Trial Sample Size Average Trial Power 

0.001 84.56 0.90 

0.002 84.56 0.90 

0.003 84.56 0.90 

0.004 84.56 0.90 

0.005 84.56 0.90 

 

All the percentiles of this distribution are calculated, and this is repeated for al 

percentiles of the distribution of the prior variance. The final 5 percentiles give the 

following results: 

 

Percentile of distribution 
of variance from the 

Internal Pilot Trial 
Average Trial Sample Size Average Trial Power 

0.995 119.00 0.97 

0.996 120.00 0.97 

0.997 121.00 0.97 

0.998 123.00 0.98 

0.999 127.00 0.98 

 

 Running the whole of the procedure would give an average final trial sample size of 

96.53 and an average power of 92%. 

 

The internal pilot trial sample size has been set at the recommended size as given in 

Section 7.3, Table 7.11. The results show that for small sample sizes for the external pilot 

trial a higher sample size on average is required to maintain the same trial power as in the 

variance known case. The results tend to the variance known case as the sample size of 

the external pilot trial increases. 

 

Sample sizes calculations depend on multiple parameters many of which have been 

generalised here in order to inform investigators how the methods they select affect the 

power and sample size of the main trial. The methods described can be generalised to a 
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sample size estimate for a given external pilot variance estimate and a fixed internal pilot 

sample size. 

 

The internal pilot trial sample sizes have been fixed in these investigations to allow the 

degrees of freedom for both 𝑠0
2 and 𝑠1

2 to be known and therefore the properties of the 

𝜒2 distribution to be used to study the effect on the expected power and sample size of 

the main trial. However, using a proportional rule to choose the pilot trial sample size 

would mean that 𝑠1
2 is dependent on 𝑠0

2. It is unknown if or how this would affect the 

distribution of the variances from the pilot trials. 
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Table 7.20: The Effect on the Sample Size and Power of Allowing for the Variance being an Estimate  

External Pilot 

Trial Sample Size 

Internal Pilot 

Trial Sample 

Size 

Average 

Final Trial 

Sample Size 

Standard 

Deviation 

Average 

Power 

Standard 

Deviation 

d=0.05      

Variance Known 95 8,750.39 522.22 0.91 0.01 

10 95 9,559.11 1,796.22 0.92 0.03 

25 95 9,166.55 1,038.32 0.92 0.02 

50 95 8,993.06 698.04 0.91 0.02 

100 95 8,886.28 472.79 0.91 0.01 

1000 95 8,766.33 137.98 0.91 0.00 

d=0.2      

Variance Known 20 573.59 75.70 0.92 0.02 

10 20 609.24 109.42 0.92 0.03 

25 20 589.47 62.52 0.92 0.03 

50 20 581.92 42.08 0.92 0.02 

100 20 577.85 28.84 0.92 0.02 

1000 20 573.97 8.81 0.92 0.00 

d=0.5      

Variance Known 10 95.82 18.04 0.92 0.03 

10 10 100.04 17.27 0.92 0.04 

25 10 97.45 9.92 0.92 0.03 

50 10 96.53 6.75 0.92 0.02 

100 10 96.06 4.66 0.92 0.01 

1000 10 95.62 1.45 0.92 0.00 

d=0.8      

Variance Known 10 37.46 7.22 0.92 0.03 

10 10 39.38 6.75 0.92 0.04 

25 10 38.37 3.88 0.92 0.03 

50 10 38.01 2.64 0.92 0.02 

100 10 37.83 1.83 0.92 0.01 

1000 10 37.66 0.59 0.93 0.00 
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Table 7.21 to 7.24 shows the average sample sizes and powers for trials with an internal 

pilot trial design with standardised effect sizes of 0.05, 0.2, 0.5 and 0.8. When the sample 

sizes for the two internal and external pilot trials are varied over a range. The same 

process as presented above is used however this time the internal pilot sample size is also 

varied over a range. As the two variances are assumed to be independent random samples 

from the population the tables are symmetric along the diagonal.  

 

Table 7.21: Average Sample Size and Power for Trials with an Internal Pilot Trial and Standardised 

Effect Size of 0.05 Allowing for the Variance to be an Estimate in the Original Calculation for a Two-

armed Trial 

  IPT Sample Size 

  20 40 60 100 200 1000 

 

EPT 

Sample 

Size 

20 19,909.32 

0.92 

 

19,480.72 

0.92 

19,331.00 

0.92 

19,207.86 

0.92 

19,113.18 

0.92 

19,035.80 

0.92 

40 19,480.73 

0.92 

 

18,961.45 

0.92 

18,769.92 

0.92 

18,606.52 

0.92 

18,476.26 

0.92 

18,366.10 

0.92 

60 19,331.01 

0.92 

 

18,769.92 

0.92 

18,556.54 

0.92 

18,370.05 

0.92 

18,217.31 

0.92 

18,084.31 

0.92 

100 19,207.87 

0.92 

 

18,606.52 

0.92 

18,370.05 

0.92 

18,157.10 

0.92 

17,975.98 

0.91 

17,810.64 

0.91 

200 19,113.17 

0.92 

 

18,476.26 

0.92 

18,217.31 

0.92 

17,975.98 

0.91 

17,760.08 

0.91 

17,546.77 

0.91 

1000 19,035.79 

0.92 

18,366.10 

0.92 

18,084.31 

0.92 

17,810.64 

0.91 

17,546.77 

0.91 

17,235.38 

0.91 

 



223 
 

 

Table 7.22: Average Sample Size and Power for Trials with an Internal Pilot Trial and Standardised 

Effect Size of 0.2 Allowing for the Variance to be an Estimate in the Original Calculation for a Two-

armed Trial 

  IPT Sample Size 

  20 40 60 100 200 1000 

 

EPT 

Sample 

Size 

20 1,243.38 

0.92 

 

1,216.90 

0.92 

1,207.74 

0.92 

1,200.30 

0.92 

1,194.64 

0.92 

1,190.08 

0.92 

40 1,216.90 

0.92 

 

1,184.56 

0.92 

1,172.72 

0.92 

1,162.70 

0.92 

1,154.78 

0.92 

1,148.16 

0.92 

60 1,207.74 

0.92 

 

1,172.72 

0.92 

1,159.48 

0.92 

1,147.98 

0.92 

1,138.62 

0.92 

1,130.58 

0.92 

100 1,200.30 

0.92 

 

1,162.70 

0.92 

1,147.98 

0.92 

1,134.78 

0.92 

1,123.62 

0.91 

1,113.56 

0.91 

200 1,194.64 

0.92 

 

1,154.78 

0.92 

1,138.62 

0.92 

1,123.62 

0.91 

1,110.24 

0.91 

1,097.14 

0.91 

1000 1,190.08 

0.92 

1,148.16 

0.92 

1,130.58 

0.92 

1,113.56 

0.91 

1,097.14 

0.91 

1,077.82 

0.91 
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Table 7.23: Average Sample Size and Power for Trials with an Internal Pilot Trial and Standardised 

Effect Size of 0.5 Allowing for the Variance to be an Estimate in the Original Calculation for a Two-

armed Trial 

  IPT Sample Size 

  20 40 60 100 200 1000 

 

EPT 

Sample 

Size 

20 200.08 

0.92 

 

195.80 

0.92 

194.29 

0.92 

193.07 

0.92 

192.12 

0.92 

191.35 

0.92 

40 195.80 

0.92 

 

190.61 

0.92 

188.68 

0.92 

187.06 

0.92 

185.75 

0.92 

184.66 

0.92 

60 194.29 

0.92 

 

188.68 

0.92 

186.54 

0.92 

184.69 

0.92 

183.15 

0.92 

181.63 

0.92 

100 193.07 

0.92 

 

187.06 

0.92 

184.69 

0.92 

182.57 

0.92 

180.75 

0.92 

179.10 

0.91 

200 192.12 

0.92 

 

185.75 

0.92 

183.15 

0.92 

180.75 

0.92 

178.58 

0.91 

176.45 

0.91 

1000 191.35 

0.92 

184.66 

0.92 

181.63 

0.92 

179.10 

0.91 

176.45 

0.91 

173.35 

0.91 
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Table 7.24: Average Sample Size and Power for Trials with an Internal Pilot Trial and Standardised 

Effect Size of 0.8 Allowing for the Variance to be an Estimate in the Original Calculation for a Two-

armed Trial 

  IPT Sample Size 

  20 40 60 100 200 1000 

 

EPT 

Sample 

Size 

20 78.77 

0.92 

 

77.09 

0.92 

76.51 

0.92 

76.03 

0.92 

75.66 

0.92 

75.35 

0.93 

40 77.09 

0.92 

 

75.06 

0.92 

74.32 

0.92 

73.68 

0.92 

73.17 

0.92 

72.74 

0.92 

60 76.51 

0.92 

 

74.32 

0.92 

73.49 

0.92 

72.76 

0.92 

72.16 

0.92 

71.64 

0.92 

100 76.03 

0.92 

 

73.68 

0.92 

72.76 

0.92 

71.92 

0.92 

71.21 

0.92 

70.64 

0.92 

200 75.66 

0.92 

 

73.17 

0.92 

72.16 

0.92 

71.21 

0.92 

70.36 

0.92 

69.53 

0.91 

1000 75.35 

0.93 

72.74 

0.92 

71.64 

0.92 

70.64 

0.92 

69.53 

0.91 

68.32 

0.91 
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7.6 Altering the Required Power Levels 

 

As shown in Table 7.20 the internal pilot trial design leads to a slight inflation in the 

average power of the trial. Changing the nominal power in the sample size calculation is 

analogous to over or underestimating the variance in the original calculation, in that it 

would alter the sample size to be required and therefore lead to the situations described 

in Figures 7.6 and 7.7. Reducing the required power would reduce the initial sample size 

requirement and result in a situation like in Figure 7.6. 

 

Figure 7.6 shows that if the original sample size is an underestimate then some of the 

trials will be underpowered. Where the re-estimated variance is higher than the true 

variance some of the trials will be overpowered. Therefore, the underpowered trials 

offset some of the overpowered trials to bring the average power of the trials down. It 

should be possible for a given study to choose the nominal power level such that the 

average power is the required level. 

 

7.6.1 Assuming the Variance is Known 

 

If the variance at the start of the trial is assumed to be known, then the average power 

can be calculated from, 

 

 
𝐴𝑃 = 𝑃(𝑠1

2  ≥  𝜎2) 𝐸(1 − 𝛽|𝑠1
2, (1 − 𝛽)

1
)

+  𝑃(𝑠1
2 <  𝜎2) 𝐸(1 − 𝛽|𝜎2, (1 − 𝛽)

0
), 

(7.14)  

 

and the average sample size can be calculated from, 

 

 
𝐴𝑆𝑆 = 𝑃(𝑠1

2  ≥  𝜎2) 𝐸(𝑁1|𝑠1
2, (1 − 𝛽)

1
)

+  𝑃(𝑠1
2 <  𝜎2) 𝐸(𝑁1|𝜎2, (1 − 𝛽)

0
), 

(7.15)  
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where (1 − 𝛽)1 is the power level set at the sample size recalculation and (1 − 𝛽)0 is the 

power level set at the initial sample size calculation and therefore the results in Table 7.20 

for the variance known case can be derived. 

 

If the standardised effect size is 0.2 and the internal pilot trial sample size is set at 40 

participants across two treatment arms. Then using the chi-squared distribution and the 

degrees of freedom it can be shown that (based on Equation 7.14), 

 

𝐴𝑃 = 𝑃(𝜒𝑘
2  ≥  𝑘) 𝐸(1 − 𝛽|𝑠1

2, 𝜎2, (1 − 𝛽)
1
) +  𝑃(𝜒𝑘

2 <  𝑘) 𝐸(1 − 𝛽|𝜎2, (1 − 𝛽)
0
) 

 

𝐴𝑃 = 𝑃(𝜒𝑘
2  ≥  𝑘) ∫ (1 − 𝛽|𝑠1

2, 𝜎2, (1 − 𝛽)
1
) 𝑑𝑠1

2
1

𝑃(𝑠1
2< 𝜎2)

+ 𝑃(𝜒𝑘
2 <  𝑘) ∫ (1 − 𝛽|𝜎2, (1 − 𝛽)

0
) 𝑑𝜎2

𝑃(𝑠1
2< 𝜎2)

0

  

 

𝐴𝑃 = 0.469 ∫ (1 − 𝛽|𝑠1
2, 𝜎2, (1 − 𝛽)

1
) 𝑑𝑠1

2
1

0.531

+ 0.531 ∫ (1 − 𝛽|𝜎2, (1 − 𝛽)
0
) 𝑑𝜎2

0.531

0

  

 

𝐴𝑃 = 0.469 (0.938) + 0.531 (0.9) 

𝐴𝑃 = 0.440 + 0.478 

𝐴𝑃 = 0.918 ~ 0.92. 

 

This can be seen to match the result displayed in Table 7.20. The average sample size can 

also be calculated from, 

 

𝐴𝑆𝑆 = 𝑃(𝜒𝑘
2  ≥  𝑘) 𝐸(𝑁1|𝑠1

2, 𝜎2, (1 − 𝛽)
1
) +  𝑃(𝜒𝑘

2 <  𝑘) 𝐸(𝑁1|𝜎2, (1 − 𝛽)
0
) 
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𝐴𝑆𝑆 = 0.469 ∫ (𝑁1|𝑠1
2, 𝜎2, (1 − 𝛽)

1
 𝑑𝑠1

2
1

0.531

+ 0.531 ∫ (𝑁1|𝜎2, (1 − 𝛽)
0
) 𝑑𝜎2

0.531

0

  

 

𝐴𝑆𝑆 = 0.469 (627.36) + 0.531 (526) 

𝐴𝑆𝑆 = 294.23 + 279.31 

𝐴𝑆𝑆 = 573.54. 

 

This result approximately (to one decimal place) matches the result in Table 7.20 the 

mismatch is due to rounding and the finite limit of percentile that were investigated. It 

was shown that the internal pilot trial procedure leads to higher power on average than 

originally required. From the equations above it can be seen that if the required average 

power is specified it is possible to alter the nominal or the recalculation power to make 

the average power equal the required level.  For example, if the standardised effect size 

is equal to 0.2, 

 

𝐴𝑃 = 0.469 ∫ (1 − 𝛽|𝑠1
2, 𝜎2, (1 − 𝛽)

1
) 𝑑𝑠1

2
1

0.531

+ 0.531 ∫ (1 − 𝛽|𝜎2, (1 − 𝛽)
0
) 𝑑𝜎2

0.531

0

  

 

𝐴𝑃 = 0.469 (0.938) + 0.531 ((1 − 𝛽)
0
) 

 

Therefore, if the required average power is specified the formula can be re-arranged to 

find the required nominal power to end with this average power overall. For example, if 

the required average power is 0.90 then, 

 

0.90 = 0.469 (0.938) + 0.531 ((1 − 𝛽)0) 

0.90 = 0.440 + 0.531 ((1 − 𝛽)0) 

0.90 − 0.440

0.531
=  (1 − 𝛽)0 

(1 − 𝛽)0 = 0.866. 
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Consequently, if the power in the original sample size calculation had been set at 86.6% 

the average power of the trial would have been 90%. Alternatively, the recalculation 

power could be manipulated to reduce the power of the trials, which are increased in size 

at the interim recalculation. 

 

7.6.2 Allowing the Variance to be Unknown 

 

If the variance at the start of the trial is assumed to be unknown then the average power 

would be calculated from, 

 

 
𝐴𝑃 = 𝑃(𝑠1

2  ≥  𝑠0
2) 𝐸(1 − 𝛽|𝑠0

2, 𝑠1
2, (1 − 𝛽)

1
)

+  𝑃(𝑠1
2 <  𝑠0

2) 𝐸(1 − 𝛽|𝑠0
2, (1 − 𝛽)

0
),  

(7.16)  

 

and the average sample size would be equal to, 

 

 
𝐴𝑆𝑆 = 𝑃(𝑠1

2  ≥  𝑠0
2) 𝐸(𝑁1|𝑠0

2, 𝑠1
2, (1 − 𝛽)

1
)

+  𝑃(𝑠1
2 <  𝑠0

2) 𝐸(𝑁1|𝑠0
2, (1 − 𝛽)

0
). 

(7.17)  

 

These equations become Equations 7.18 and 7.19 when the probability statements about 

𝑠0
2  and 𝑠1

2  (from Section 7.5) are replaced with statements of probability about an F-

distribution, 

 

 𝐴𝑃 = 𝑃(𝐹(𝑘0, 𝑘1) ≤ 1) 𝐸(1 − 𝛽|𝑠0
2, 𝑠1

2, (1 − 𝛽)
1
) +  

(1 −  𝑃(𝐹(𝑘0, 𝑘1) ≤ 1)) 𝐸(1 − 𝛽|𝑠0
2, (1 − 𝛽)

0
),  

(7.18)  

 

and, 
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 𝐴𝑆𝑆 = 𝑃(𝐹(𝑘0, 𝑘1) ≤ 1) 𝐸(𝑁1|𝑠0
2, 𝑠1
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0
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(7.19)  

 

These expectations are derived using the formula presented below with bounds based on 

the probabilities from the F-distribution, 
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(7.20)  

 

and, 
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(7.21)  

 

 

from these formula the rest of the results in Table 7.20 could be calculated. However, in 

the previous section the integrals were bounded by the probability 𝑃(𝑠1
2 <  𝜎2), because 

𝜎2, the true variance is fixed it is possible to calculate this probability which depends on 

a chi-squared distribution and its degrees of freedom. For the variance unknown case the 

integral will be bounded by the probability 𝑃(𝑠1
2 <  𝑠0

2). Because the expectation is being 

taken over both 𝑠0
2 and 𝑠1

2 the probability will change with each percentile of 𝑠0
2 (i.e. for 

every percentile of 𝑠0
2  there will be a different value for 𝑃(𝑠1

2 <  𝑠0
2)) therefore, the 

calculation is iterative and cannot be solved using the same process as in the variance 

known case. 
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7.7 Summary 

 

The internal pilot trial procedure gives trial powers higher than the required level even 

when the variance used in the original calculation is equal to the true variance. When the 

variance in the original sample size calculation is too low the internal pilot trial design on 

average protects against the under-powering, which would normally result. However, if 

the variance in the original sample size calculation is too high the restricted design leads 

to very high average sample sizes and powers. The adjustment methods previously 

discussed in Chapter 4 offer no help to deal with this overpowering. The internal pilot trial 

also deals with the problem of under-powering inherently therefore there is no extra 

benefit to the average power of the trial by using an adjustment method at the interim 

sample size recalculation. 

 

Sample size recommendations were given for when the variance in the original calculation 

is assumed to be known. These were based on selecting a pilot trial sample size where the 

change in overall trial sample size falls below 2 participants when the pilot trial sample 

size is increased any further. This method of selecting the pilot trial sample size was 

necessary due to the fact that unlike in previous chapters regarding external pilot trials 

the overall trial sample size does not have a minimum, there is no penalty in terms of 

numbers of participants required in including all patients in the internal pilot to get the 

best estimate of the variance.  

 

The chapter also investigated how allowing for the fact that the variance is an estimate, 

perhaps from an external pilot trial, affects the power and required sample size of the 

trial. Having an external pilot as well as an internal pilot does increase the average sample 

size.  The sample sizes converge to the case of known variance in the initial sample size 

calculation as the external pilot sample size increases.  

 

Throughout this chapter it has been observed that the internal pilot trial design leads to 

higher than required powers. Finally, the chapter investigated how the nominal or 
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recalculation power might be altered to bring the average power to equal the required 

level; and how this new power level might be calculated if the variance is assumed to be 

known in the initial sample size calculation. 
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Chapter 8 

 

 

Discussion 

 

 

8.1 Introduction 

 

This thesis investigated the required sample size for pilot trials for the situations where 

we have both external and internal pilot designs. It looked to take into account the 

imprecision involved in estimating the variance from a pilot trial to minimise the overall 

sample size of the pilot and the main trial together while maintaining the power and Type 

I error rate.  

 

The sample size is an important consideration when planning a clinical trial. When the 

outcome is a continuous variable, part of the calculation of the sample size requires an 

accurate estimate of the variance of the intended outcome measure. If this estimate is 

imprecise it can impact on the power of the resulting trial. Therefore, in order to gain an 

accurate estimate it would be useful to have a similarly designed trial to aid in the 

estimation of the required parameters to be used in the design of the main trial. Pilot 

trials can be used to not only estimate the variance anticipated to be observed in the main 

trial but also to test the trial processes and procedures before launching in to the full scale 

main trial. 

 

The estimate of the variability achieved from the pilot trial however is estimated with 

uncertainty. The imprecision in this estimate can impact on the sample size calculation 

(Kraemer et al., 2006). Two methods for adjusting the sample size calculation to allow for 
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this uncertainty have been described: the UCL approach (Browne, 1995) and the NCT 

approach (Julious and Owen, 2006). 

 

Having insufficient power to detect a difference between treatments would be a 

potentially costly mistake for an investigator. In an attempt to lower the chance of an 

underpowered trial a sample size recalculation could be carried out at the end of an 

internal pilot trial. This allows the re-estimation of the variance from the actual trial 

population (Friede and Kieser, 2006). An initial proportion of the main trial data is 

collected and the sample size recalculated based on the new observed variance. The 

sample size is increased if the new recalculated sample size is larger than the original 

estimate, this is referred to as the restricted approach (Wittes and Brittain, 1990). The 

participants used in the sample size recalculation are also included in the final analysis of 

the trial.  

 

These methods could impact on the power and required sample size of the main trial but 

also the required sample size of the internal pilot trial and the external pilot trial. 

Therefore, the aims of this thesis were to: 

 

 Provide background information on the area of pilot trials, including definitions, 

current sample sizes and analysis methods (Section 8.2.1, 8.2.3 and 8.2.6), 

 

 Investigate how using an estimate of the variance from a pilot trial (external and 

internal) to plan a main trial affects the power and sample size of the main trial 

(described in Section 8.2.2 and Section 8.2.4 below), 

 

 Explore methods of setting a sample size for pilot trials (external and internal) 

which aim to minimise the overall trial sample size (outlined in Section 8.2.2 and 

Section 8.2.4 below) and, 
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 Examine how the relative cost of the external pilot trial versus the main trial 

affects the sample size of the two trials to minimise the overall trial cost 

(discussed in Section 8.2.3 below). 

 

This chapter starts by summarising the chapters of this thesis (Section 8.2). Before going 

on to discuss in Section 8.3 the limitations of the work and suggestions for ideas of areas 

where further work could be carried out. Finally drawing conclusions from the work 

presented in Section 8.4.  

 

8.2 Summary of Work 

 

This section describes the work conducted and discusses the outcomes of each thesis 

chapter. Section 8.2.1 describes the background information gathered in the literature 

reviews and work presented in Chapter 1. Section 8.2.2 presents the work from Chapter 

2 looking at the traditional methods for calculating the main trial sample size and the 

problems with these approaches. Section 8.2.3 summarises Chapter 3 on sample size 

justifications currently employed to choose a sample size for an external pilot trial. Section 

8.2.4 condenses the work presented in Chapter 4 surrounding sample size requirements 

for an external pilot trial. Section 8.2.5 looks at Chapter 5 which extended this work to 

minimise the overall cost of a trial rather than the overall sample size. Section 8.2.6 

reviews Chapter 6 which looked at internal pilot trial methodology and sample size 

recalculations. Finally 8.2.7 describes the effect that an internal pilot trial has and the 

power of a main trial before finally looking at what sample sizes may be required for 

internal pilot trials.  

 

8.2.1 Background 

 

Chapter 1 gives a brief description of the methodology behind clinical trials. A clinical trial 

that involves using a control treatment, either active or a placebo, as well as the treatment 

under investigation is considered to be controlled (Pocock, 1983). The trial is said to be 
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randomised if the type of treatment or the order of treatment which the participant 

receives is randomly allocated (Torgerson and Torgerson, 2008). A trial that has both a 

control group and involves randomisation is called a randomised controlled trial. The 

discussion in this chapter moves on to explaining how public clinical trials are funded in 

the UK. There are two main public funding bodies for health research in the UK, the 

Medical Research Council and the National Institute for Health Research.  

 

The differences if any, between a pilot and a feasibility trial were discussed and the 

definition of a pilot trial used for this thesis was given in Section 1.4.2. The work in the 

thesis Section 1.4 on comparing the two terms pilot and feasibility has been published 

(Whitehead et al., 2014). The disagreement in the definitions of pilot and feasibility casues 

issues for researchers. Knowing what to call your project when designing a study can be 

difficult. The spurious naming of studies can make conducting audits of previous research 

difficult, searching through trials can be hard. Hence this can be misleading for 

researchers.  

 

It my not be helpful to insist on specific terminology for preliminary studies, it is more 

important that the study has well defined suitable aims and objectives, is well designed 

with sufficient sample size to achieve its aims, has an appropriate analysis and is fully 

reported and published. However, the NIHR distinguish betweeen the terms, the NIHR 

definitions are becoming well used and followed which should be helpful in the future. 

There has recently been a push to improve the reporting of pilot and feasibility trials with 

the development of a CONSORT statement for the reporting of pilot and feasibility trials 

and a journal specifically for pilot and feasibility trials to allow these studies to be 

published. 

 

Chapter 1 highlights the importance of sample size calculation in clincial trials. If a trial has 

too few participants the probability that the trial will find a statistically significant result 

even if one exists will be low (i.e. the power of the trial will be low). If the trial has too 
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many participants, resources are wasted, the treatment could have been shown to be 

inferior or superior with fewer participants (Altman, 1990). 

 

The research results in Section 1.6 have been published (Billingham et al., 2013). This work 

looked at the current sample sizes of pilot trials registered on the UKCRN database. Of the 

79 trials collected 21 were publicly funded pilot trials with a continuous endpoint. For 

these 21 trials the median sample size was 30 with an IQR of 20-60. The average sample 

size of 30 is as recommended by Browne (1995) and would be sufficient for any medium 

standardised effect size for the stepped rules of thumb presented in Chapter 4. The upper 

quartile of 60 is less than the 70 recommended by Teare et al. (2014) for precision around 

an estimate. The lower quartile of 20 matches the lowest recommendation seen 

throughout the thesis that means that in quarter of the trials have a sample size less than 

20, this is worryingly small. A sample size this small would probably be insufficient to meet 

the aims and objectives of the study. In the audit 50% of the trials where larger than 30 

participants these trials would be too large for standardised effect sizes above 0.3 

according to the rules presented in Chapter 4. 

 

Section 1.7 described a study that was carried out by a Wellcome Trust Summer Intern 

supervised during the thesis research, which looked at how predictive pilot trials are of 

main trials. It showed that in terms of the dropout of patients the bias is minimal however, 

the spread of the data is large. For the ratio of randomised to eligible patients less data 

was available again the bias was seen to be minimal with the main trials having a higher 

rate of converting eligible patients to randomised patients than the pilot trials. This may 

be expected as if the recruitment in to the trial was seen to be poor in the pilot trial then 

it is likely that the investigators would put procedures into place to try to remedy this in 

the main trial. This trend was seen in the paper by McDonald et al. (2006) where 53% of 

the trials which had a pilot trial in the review made changes to the recruitment strategy 

for the main trial. 
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Section 1.8 describes a piece of published work undertaken during the thesis (Lee et al., 

2014) and presented at the Royal Statistical Society Conference 2014, which discusses 

how pilot trials are analysed. Pilot trials are usually not powered to detect a clinically 

relevant difference between the treatments under investigation and therefore it may be 

inappropriate to analyse a trial using the traditional hypothesis test and P-value. The 

paper recommends how confidence intervals of  differing widths could be used to help 

display the strength of evidence from the pilot trial and the direction of the treatment 

effect. If this method of estimation is the primary outcome of the trial then the sample 

size should be set using the confidence interval approach, to provide sufficient sample 

size for this evaluation. This idea that pilot trials do not need to be powered in the 

traditional way is discussed further in Chapter 3 and carried through the thesis. 

 

8.2.2 Main Trial Sample Size Calculations 

 

Chapter 2 outlines the approaches to calculating a sample size for a main trial where the 

trial design is a superiority trial with independent groups and the outcome is Normally 

distributed. The sample size required is proportional to the variance of the outcome 

measure i.e. as the variance increases more participants are required. However, this 

variance must be estimated and the precision of this estimate may impact the power of 

the main trial. Methods for adjusting this estimate to preserve power in the main trial 

were discussed, the UCL approach (Browne, 1995) and the NCT approach (Julious and 

Owen, 2006). The UCL approach inflates the variance estimate to the 100𝑋%  upper 

confidence limit to give a probability of 𝑋  of achieving the required power. The NCT 

approach uses the fact that the variance is chi-squared distributed to choose a sample 

size for the main trial which will give the required power on average. The effect of both 

of these methods was studied further in Chapter 4. 

 

As discussed in Chapter 1 traditional sample size calculations are based on the assumption 

that the analysis of the trial will be through hypothesis testing however, a pilot trial may 

not have an hypothesis testing objective of, say, looking for superiority of one treatment 
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over the other.  Instead pilot trials are designed to estimate the variance or other 

parameters, and to test trial procedures. Pilot trials would therefore need a sample size 

justification which is based on its objectives and therefore, the sample size calculations 

presented in Chapter 2 may not always be appropriate when designing a pilot trial. 

 

8.2.3 Pilot Trial Sample Size Justifications 

 

Chapter 3 investigated methods for choosing a sample size for pilot trials that estimate 

the variance of the primary outcome to be used in the main trial. These could be precision 

based, based on maintaining the power in the main trial, proportional to the main trial 

sample size or described based on minimising the overall trial sample size of the pilot and 

the main trial together. This idea of minimising the overall trial sample size forms the basic 

idea, which is expanded in Chapters 4, 5 and 7. The effects of using the other suggested 

sample sizes are also studied in Chapter 4. 

 

Ordinarily using hypothesis testing to test the efficacy of a treatment would not be 

recommended as an objective for a pilot or feasibility trial. This is usually saved for the 

main trial. However, these mat be circumstances in which hypothesis testing is used in a 

pilot or feasibility trial, probably based on a surrogate outcome measure for the true 

desired endpoint. For example, if using the true outcome would lead to a very large 

expensive trial, funders may want some indication that the treatment is having some 

effect i.e. a proof of concept. 

 

The sample size of any study however, should enable you to achieve the aims of the trial 

and therefore if hypothesis testing is being carried out it is essential that a power 

calculation is carried out to calculate the sample size of the trial. This is to prevent small 

underpowered trials form being conducted which have limited scientific validity and are 

thought to be unethical, as discussed in Chapter 2. 
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8.2.4 Sample Sizes for External Pilot Trials to Minimise the Overall Trial 

Sample Size 

 

If an adjustment method is used to allow for the imprecision in the variance estimate 

when the main trial sample size calculation is undertaken then increasing the sample size 

in the pilot trial to improve the precision of the variance estimate may not always be 

outweighed by the subsequent reduction in the sample size of the main trial. 

 

Kieser and Wassmer (1996) and Sim and Lewis (2012) suggested external pilot trial sample 

sizes for minimising the overall trial sample size using the UCL approach, for limited values 

of the standardised effect size. However, in Chapter 4 the UCL approach was shown to be 

overly conservative leading to larger sample size than necessary compared to the NCT 

approach which considers the sampling distribution of the variance to allow for the 

imprecision of the estimate from a small pilot trial. Sample sizes which minimise the 

overall trial sample size for the NCT approach are smaller compared to those calculated 

relating to the UCL method. 

 

Adjusting for the imprecision in the variance estimate helps to protect the trial from 

underpowering due to an inaccurate estimate of the variance. A small sample size for a 

pilot trial means that there will be a large amount of imprecision in the estimate of the 

variance and therefore when using an adjustment method to estimate the main trial 

sample size. Conversely, if the pilot trial sample size is large the estimate of the variance 

will be precise and the inflation to the main trial sample size will be small. However, as 

highlighted in Chapter 4 eventually the increase in the pilot trial sample size will not be 

offset by the subsequent reduction in the main trial sample size and therefore there is a 

pilot trial sample size which leads to a minimum overall trial sample size of the pilot and 

main trial added together. 

 

The current methods for setting the pilot trial sample size are either based on fixed or 

proportional rules. A proportional rule means that the pilot trial size is proportionate to 
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the size of the main trial. The flat rules of thumb are fixed no matter the size of the main 

trial however, it was shown in Chapter 4 that in order to minimise the overall sample size 

of the trial, the larger the main trial the larger the pilot trial should be. Additionally for the 

proportional rules it was again shown in Chapter 4 that the optimal pilot trial sample size 

to minimise the overall trial sample size is not a specific proportion of the main trial and 

changes over the range of effect sizes discussed. Therefore, no one pilot trial sample size 

is optimal for all effect sizes. 

 

In Section 4.2.2 methods for estimating the minimum overall sample sizes using the NCT 

approach were proposed. However, using these values would require the investigator to 

know the required effect size for the main trial before the pilot trial. As this perhaps may 

be unrealistic in some cases further results were proposed where stepped rules of thumb 

for the pilot sample size were introduced.  These steps were based on bands for the 

treatment differences of extra small, small, medium and large standardised effect sizes 

(see Table 8.1).  

 

Table 8.1: Stepped Rules of Thumb for the NCT Approach Sample Sizes are for a Two-armed Trial 

Standardised Effect Size 80% Powered Main Trial 90% Powered Main Trial 

Extra Small (δ < 0.1) 100 150 

Small (0.1 ≤ δ < 0.3)  40 50 

Medium (0.3 ≤ δ < 0.7) 20 30 

Large (δ ≥ 0.7) 20 20 

 

 

By carrying out the method proposed and minimising the required overall trial sample size 

we could reduce the sample size needed to run clinical trials, reduce the cost of trials, 

reduce the trial duration or perhaps increase the feasibility of trials involving populations/ 

conditions where numbers are restricted e.g.in rare conditions. The work presented in 

Chapter 4 is published (Whitehead et al., 2015) and has been presented at Statistics 

Research Student Conferences and the Society for Clinical Trials Conference. 
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8.2.5 Sample Sizes for External Pilot Trials to Minimise the Overall Trial Cost 

 

Minimising the overall trial sample size does not only have ethical advantages for the 

numbers of patients used, but also for the cost of trials. However, depending on the 

relative costs between the pilot and the main trial minimising the sample size may not 

necessarily minimise the overall cost of the trial. Therefore, the pilot trial sample sizes 

which lead to the overall minimum trial sample size may not lead to the overall minimum 

cost for the trial. Chapter 5 looked at how the balance of the costs between the two trials 

affects the sample sizes which result in the minimum cost of the trial overall. 

 

Table 8.2 gives the proposed pilot sample sizes for the same banded effect sizes given in 

Table 8.1.  It can be seen that the optimal sample sizes change as the relative cost (𝑅) 

moves away from a one to one ratio. This reflects the fact that as it becomes cheaper to 

enter a participant into the pilot it is cheaper overall to have a larger pilot and increase 

the precision of estimates for the main trial sample size. Alternatively if the main trial is 

less expensive than the pilot it may be less costly overall to accept the imprecision from a 

smaller pilot trial and have a relatively large main trial. The most likely scemario is that R 

will be larger than 1. There is likely to be an amount of fixed cost involved with every trial.  

For a pilot trial with less patients this fixed cost per patient is likely to be high. For a main 

trial with a larger sample size the fixed cost per patient is likely to be lower, therefore 

leading to an R value greater than 1. It should be noted that in Table 8.2 for R = 1 the 

results are the same as in Table 8.1. 
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Table 8.2: Pilot Trial Sample Sizes for Varying Relative Cost of the Pilot and Main Trial for a Two-

armed Trial 

Standardised 

Effect Size 

Relative 

Cost 

80% Powered Main Trial 90% Powered Main Trial 

Extra Small 𝑹 < 1 240 260 

 𝑹 = 1 100 150 

 1 < 𝑹 ≤ 5 90 140 

 5 < 𝑹 ≤ 20 50 60 

 𝑹 > 20 30 40 

Small 𝑹 < 1 60 80 

 𝑹 = 1 40 50 

 1 < 𝑹 ≤ 5 30 40 

 5 < 𝑹 ≤ 20 20 20 

 𝑹 > 20 20 20 

Medium 𝑹 < 1 30 40 

 𝑹 = 1 20 30 

 1 < 𝑹 ≤ 5 20 20 

 5 < 𝑹 ≤ 20 20 20 

 𝑹 > 20 20 20 

Large 𝑹 < 1 20 30 

 𝑹 = 1 20 20 

 1 < 𝑹 ≤ 5 20 20 

 5 < 𝑹 ≤ 20 20 20 

 𝑹 > 20 20 20 

 

 

8.2.6 Internal Pilot Trials and Sample Size Recalculations 

 

An internal pilot trial is a pilot trial were the sample forms the first part of the main RCT 

and the participants contribute to the final analysis (NETSCC, 2012). A sample size 

recalculation can be carried out at the end of an internal pilot trial to re-estimate the 

variance estimate for the sample size calculation based on the real trial data. The sample 
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size recalculation can be done in a restricted or unrestricted manner. The restricted 

approach is most common in publicly funded research (Dimairo et al., 2015). Although the 

internal pilot trial design protects against under-powering. This restricted approach can 

lead to overpowering if the initial estimate of the variance is too high. Again a minimum 

sample size for an internal pilot trial is suggested to be 20 participants. However, most of 

the sample size recommendations for internal pilot trials are proportional rules (Wittes 

and Brittain, 1990, Wittes at al., 1999). The initial stages of this work have been presented 

at the Statistics Research Students Conference and the Royal Statistical Society 

Conference 2015. 

 

Birkett and Day (1994) suggested only setting the size of the internal pilot trial at the start 

so that the probability of the trial being larger than necessary would be significantly 

reduced. However, this in reality is may be impractical in a public funded setting where 

the funders are likely to require some estimate of the trials size and duration, which would 

additionally impact on the budgeting and cost of the trial. Therefore the sample size of 

the internal pilot trial is a point of interest. 

 

Other than the 10 per arm sample size suggested as a minimum by Birkett and Day (1994) 

several suggestions on internal piot trial sample size have been made, from a quarter to 

three quarters of the planned main trial sample size. A balance needs to be made between 

getting an account estimate of the variance versus conducting the sample size 

recalculation early enough to allow the investigator to plan/run the study effectively. 

 

If the sample size recalculation is early in the trial the sample size can be adjusted if 

necessary  with lots of warning before the extra patients are need to be recruited giving 

the time for the nescessary administrative procedures and funding extensions to be in 

place. However, if this happens early you sacrifice the accuracy of the estimate of the 

variance.  
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Other issues could also affect the decision of what sample size to use for the internal pilot 

trial: the size if the trial, the length of the anticipated recruitment period during the trial 

or the length of time between the intervention and the collection of the outcome data. 

For example, if the recruitment window is short and the follow up time to the data 

collection is long, waiting until a large amount of participants have completed follow up 

could mean that you have already recruited everyone into your trial before your sample 

size recalculation, and reopening recruitment could be problematic. 

 

8.2.7 The Effect of an Internal Pilot Trial on the Main Trial Power and 

Required Sample Sizes 

 

An internal pilot trial design protects against underpowering  when the original estimate 

of the variance is too low when compared to the variance seen in the actual main trial. 

However, in Chapter 7 the restricted design was shown to lead to overpowering if the 

variance estimate was initially too high. Therefore, on average the internal pilot trial 

design leads to achieving a higher power than initally planned. Consequently, on average 

it was shown in Chapter 7 that the restricted design also requires more partcipants than 

the fixed design. However, it was highlighted how altering the nominal or recalculation 

power could combat this effect. 

 

It was shown in Chapter 7 that to get the optimal estimate of the sample size required we 

need to include every participant from the trial in the internal pilot trial to get the most 

accurate prediction of the variance i.e. wait until the end of the trial when we have all 

patients recruited and followed up to estimate the variance. However, this is not probably 

practical in reality.  What needs to be balanced is the need to get an accurate estimate of 

the variance, while performing the internal pilot trial early enough in the trial for it to be 

useful to the investigators and the funders. Suggested sample sizes given in Chapter 7 

which may provide an accurate estimate of the variance from an internal pilot trial are 

presented in Table 8.3. 
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Table 8.3: Sample Size Recommendations for Internal Pilot Trials for a Two-armed Trial 

Standardised Effect Size 80% Powered Trial 90% Powered Trial 

Extra Small (δ < 0.1) 160 190 

Small (0.1 ≤ δ < 0.3)  30 40 

Medium (0.3 ≤ δ < 0.7) 20 20 

Large (δ ≥ 0.7) 20 20 

 

The sample size of the internal pilot was fixed in Section 7.5 to allow the investigation of 

the properties of the designs and the estimation of the effects of the sample size on the 

expected power and sample size of the main trial. Using a proportional rule to choose the 

pilot trial sample size would mean that the variance estimates at end of the internal pilot 

is dependent on the variance estimate from the external pilot. The effect of this on the 

distributions of the variances was not investigated in this thesis, but could be examined 

further in future work 

 

8.3 Limitations and Areas for Further Work 

 

This section outlines some limitations of the work performed in this thesis and aims to 

describe some suggestions for further work, which could arise from these. Section 8.3.1 

discusses using alternative endpoints for the trials outcome measure or aims of the trial. 

Section 8.3.2 considers ideas for ways to improve the estimate of the variance by 

combining data from several trials. Section 8.3.3 describes how adaptive trial designs 

might affect the results given in this thesis. Section 8.3.4 reviews the idea of placing 

bounds on the possible alterations to the sample size at the interim and Section 8.3.5 

considers the way in which dropouts are allowed for. 

 

8.3.1 Alternative Endpoints or Aims 

 

Although this thesis set out to establish the required sample size for pilot trials, it 

concentrated on continuous Normally distributed outcome measures. However, trials 
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may have endpoints which are binary, ordinal or survival outcomes; as discussed in 

Chapter 2. 

 

The sample size requirement for a binary endpoint is calculated using the approximate 

formula, 

 

 
𝑛 =

(𝑍1− 𝛼 2⁄ +  𝑍1− 𝛽)2 (𝑝𝐴(1 −  𝑝𝐴) +  𝑝𝐵(1 − 𝑝𝐵))

𝛿2
 , 

 

(8.1)  

 

this can be used if 𝑝𝐴 and 𝑝𝐵 are larger than 0.05 (Campbell et al., 1995). Where 𝑝𝐴 is the 

proportion of patients in treatment group A that have the event and 𝑝𝐵 is the proportion 

in treatment group B. This thesis concentrates on accurately estimating the variance of 

the outcome measure for a continuous outcome variable, however, the calculation for a 

binary outcome requires different parameters to be estimated. For example, the event 

rate in the control group. Further work could investigate how capable pilot trials are at 

giving a good prediction of the event rate in the control group and what affects their 

ability to predict it. Perhaps looking to recommend sample sizes for pilot trials with a 

binary endpoint which, in Chapter 1 were shown to be currently larger on average (36 

versus 30) compared to pilot trials with continous endpoints (Billingham et al., 2013). 

 

Similarly, the investigations could extend to ordinal or survival data. The sample size 

requirement for ordinal/ categorical outcomes also requires the estimation of the odds 

ratio of a patient being in each category or less compared to the others (Campbell et al., 

1995). Estimating the sample size needed for survival endpoint is a little different from 

the other types of calculation but involves specifying a clinically relevant hazard ratio for 

the event between the groups and estimating the rate of events in each group (Machin et 

al., 2009). 
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For the work in this thesis to be able to be extended to other distributional forms then 

these distributions would need to have a Normal approximation which may not always be 

the case for small pilot studies. 

 

Where the work could be potentially be extended is to trials with objectives other than 

superiority, as was a restriction in the thesis.  Trials with the objective to show non-

inferiority, equivalence trials and/or bioequivalence where the outcome is anticipated to 

take a Normal form could be an extension to the work. In an equivalence trial the null 

hypothesis is that the treatments have different effects i.e. 𝜇𝐴  ≠  𝜇𝐵. In an equivalence 

trial the aim of the trial is the opposite to a superioirity trial now instead of wishing to 

prove that the teo treatments are different in terms of their effect on the outcome 

measure, we want to prove that they are the same. An estimate for the required sample 

size for this kind of trial can be calculated from the following formula (Julious, 2009), 

 

𝑛 =  
2𝜎2(𝑍1−𝛽 +  𝑍1−𝛼)

2

((𝜇𝐴 − 𝜇𝐵) − 𝑑)
2 . 

 

Where 𝜇𝐴  is the expected mean in treatment group A, 𝜇𝐵  is the espected mean in 

treatment group B, the largest clinically acceptable effect for which equivalence can be 

declared is given by 𝑑 and the population variance 𝜎2 is estimated in the same way as 

discussed thoroughout this thesis. The equation presented here is the equivalent of 

Equation 2.14 but for equivalence trials. 

 

Moreover, the pilot trial could use a surrogate endpoint for the full clinical outcome 

measure to reduce the duration of the trial. In such a case it could be studied not only 

how the surrogate outcome predicts the clinical outcome, but also how the variance of 

the surrogate outcome predicts the variance of the clinical outcome if at all. Therefore 

investigating how the sample size calculation for the main trial could be based on 

predictions from a pilot trial which uses a surrogate endpoint. This would however, vary 

between disease area and outcome measures and so may be difficult to explore. 
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In this work only trials where the randomisation is between individual participants have 

been discussed but there may be occasions when this is not possible or logistically 

practical (Pocock, 1983). In these situations cluster randomisation might be possible 

where groups of people for example;  a school or clinic, or a person responsible for a group 

of participants for example; a physiotherapist or a surgeon, are randomised to the 

interventions rather than the individuals (Campbell and Walters, 2014, Eldridge and Kerry, 

2012). 

 

For cluster randomised trials the sample size calculation is adjusted by, 

 

 1 + (𝑛′ −  1)  ×  𝐼𝐶𝐶, 

 

(8.2)  

where 𝑛′ is the average cluster size and the 𝐼𝐶𝐶 is the intraclass correlation. The 𝐼𝐶𝐶 is a 

measure of how similar to each other participants are within a cluster. 

 

8.3.2 Combining Variance Estimates 

 

The main aim of an internal pilot trial is to protect against underpowering in the main trial 

therefore, the restricted procedure which is the most common method allows us to re-

estimate the variance mid-trial and adjust the sample size upwards if the re-estimated 

variance is higher than the original estimate. In a way this procedure replaces the original 

estimate with the new value. This could be regarded as a waste of information, especially 

if work has been carried out beforehand, for example, in cases where there is an external 

and an internal pilot trial. 

 

Ways in which to combine variance estimates from previous trials with the current 

estimate could be investigated and their effect on the power and sample size required for 

the main and overall trial. This could involve taking weighted average of the variances, or 

perhaps weighting the estimate towards the more recent trials or the internal pilot trial.  
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Alternatively, the estimate of the variance could be updated using a Bayesian 

methodology to combine the prior information we might have with the internal pilot data, 

furthermore the Bayesian method could also be weighted (De Santis, 2006).  

 

8.3.3 Adaptive Designs 

 

In this thesis the only adaptive feature of a trial which has been investigated is a sample 

size recalculation at an interim. There are many other adaptations including early stopping 

for futility or superioirity of the experimental treatment, which could be applied in a trial 

as discussed in Chapter 6, Section 6.1.   

 

It could also be interesting to extend the work in the thesis to look at the effect of the 

methods proposed in this thesis if for example, the promising zone approach (Mehta and 

Pocock, 2011) was undertaken or perhaps early stopping was allowed for at the interim 

time point. If early stopping was allowed for using an interim efficacy analysis of the 

treatment or the promising zone approach this may reduce the overpowering effect of 

the internal pilot trial design. The method used in Chapter 7 to look at the properties of 

the internal pilot trial design could be extended to investigate the promising zone 

approach by including another decision point in the process  for estimating the trial 

sample size based on the pilot trial data, where it is also possible to stop the trial as well 

as continue as planned or increase the sample size. The effect of these approaches may 

also change the recommended sample sizes for the internal pilot trial design. 

 

8.3.4 Sample Size Recalculation within Bounds 

 

The standard internal pilot trial method allows the sample size to be readjusted upwards 

indefinitely and also when an increase in patient numbers is inconsequential for the trial 

as a whole or would result in minimal loss of power.  
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A simpler adjustment could be made to the sample size at the recalculation. Gould and 

Shih (1992) suggested a slight adaptation of the method so that the sample size 

requirement is only increased to the recalculated figure if it is some factor (𝑓) bigger than 

the original to make the extension worthwhile,  

 

 
if

N𝑅𝐸𝐶𝐴𝐿𝐶

N0
> 𝑓, N1 =  N𝑅𝐸𝐶𝐴𝐿𝐶  

 

else N1 =  N0 

(8.3)  

 

they suggest a value for 𝑓 of 1.25 in which case the sample size will only be increased if 

the new sample size is more than 25% higher than the initial sample size calculation 

requirement. In addition, they propose putting an upper limit on the re-estimated sample 

size of some function of the original sample size, for example, twice the originally planned 

sample size. This cap could be derived arbitrarily or be financially driven in that there is 

an upper limit on how many patients could be recruited due to costs. The idea is to keep 

the sample size of the trial within reasonable limits of what was originally planned. If the 

re-estimated sample size requirement is higher than this upper bound for the sample size 

the trial could either; continue to the upper bound at which the trial would cease and be 

analysed despite the possibility of lower than required power, or the trial could stop after 

the interim and its results summarised without hypothesis testing (Gould and Shih, 1992). 

 

The lower limit for f  also has an intuitive appeal. Operationally it may not be worth 

increasing a sample size for a nominal increase in the sample size and the study team may 

prefer a small loss in power to increasing the sample size by a small amount. 

 

The bounded approach could be applied within the methods evaluated in this thesis. The 

technique would reduce the possibility of large as well as slight overpowering, changing 

the average sample sizes and average powers of the internal pilot trial design as presented 

in Chapter 7. 
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8.3.5 Accounting for Dropout 

 

A major limitation of sample size calculations is that after the complicated statistical 

procedures are employed to get the best estimate of the required sample size of evaluable 

participants to achieve the specified power for a certain level of Type I error and MCID, 

the number is inflated by an estimate of the dropout rate to give the required number of 

people which need to be recruited into the trial. The number of people approached to be 

involved in the trial must also be larger than this new sample size as not everyone who is 

eligible and approached will end up being randomised in to the trial. Further work could 

involve looking in more detail at predicting the dropout from and recruitment in to trials 

to improve the accuracy of these inflations to the sample size. 

 

8.4 Conclusion 

 

It was shown in this thesis how if an adjustment method is to be used at the main trial 

sample size calculation to allow for the imprecision involved in estimating the variance, 

then the sample sizes recommended in the literature are not always optimal when it 

comes to minimising the overall trial sample size of the pilot and the main trial together, 

depending on the minimum clinically inportant difference. Therefore when planning a 

trial thought should be given to the effect of the chosen pilot trial sample size on the 

sample size of the subsequent randomised controlled trial. The investigator should 

consider whether an alternative pilot trial sample size would be more efficient overall in 

terms of the combined sample size of the pilot and main trials. 

 

Sample size recommendations for external and internal pilot trials are made which aim to 

minimise the overall sample size of the trial. It was shown that the optimal pilot trial 

sample size increases with the size of the main trial and solutions were described to 

minimise the overall sample size in this context. To help in the applicability of the results 
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in practice, stepped rules of thumb for the pilot sample sizes were introduced which vary 

depending on the main trial sample size.  

 

Sample sizes for external pilot trials which minimise the overall cost of the trial 

programme were also given. The results generated in this thesis show that when the pilot 

trial is less expensive per patient than the main trial the optimal pilot trial sample size 

increases, giving more precision for the variance estimate and a relatively small main trial. 

Conversely, when the pilot trial is more expensive per patient than the main trial the 

optimal pilot trial sample size decreases, accepting less precision from the pilot and thus 

a relatively larger main trial. Therefore when planning a trial thought should be given to 

the effect of the chosen pilot trial sample size on the cost of the subsequent randomised 

controlled trial. Using the results presented in this thesis the investigator should consider 

whether an alternative pilot trial sample size would be more efficient overall in terms of 

the combined cost of the pilot and main trials together. 

 

Ideally we would gain as accurate estimate of the variance as possible from the pilot trial. 

However, the NHS is an area of limited resources (in terms of patients, money and staff). 

Investigators should make the best use of the resources allocated to them as possible. A 

lack of accuracy in estimating the variance from a pilot trial (small sample size) leads to a 

larger required sample size in the main trial. Conversely, a large amount of accuracy in the 

estimation of the variance from a pilot (large sample size) leads to a smaller required 

sample size in the main trial. There is a balance to be made, this thesis examines the cost/ 

benefit of this trade off of sample sizes between the two trials. Hence presenting a 

method of optimising the number of patients or financial costs used in a trial therefore 

maximising the utility of NHS resources 

 

It is intended that the work in this thesis will help researchers planning and designing 

publicly funded clinical trials to justify their choice of sample size for pilot trials and to 

think about the effect the methods have on the power and required sample size of their 

main randomised controlled trial.
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Appendix A – Statistical Tests 

 

 

There are many statistical tests available for the analysis of data. Choosing the correct 

statistical test to be used for the analysis of data depends on the design or aim of the trial, 

the type of data, the number of covariates and the number of treatment groups.  

 

The concentration in this thesis is on superiority trials with two independent treatment 

groups and a continuous endpoint, which will be assumed to be Normally distributed. The 

statistical tests, which relate to the sample size calculations discussed in Chapter 2 are 

presented here. 

 

A.1 Z-Test 

 

The Z-test allows the comparison of the treatment effect between two groups of Normally 

distributed data when no covariates will be taken into account. This test can be used in 

situations where the standard deviation for the population is known (Kirkwood and Sterne, 

2003).  

 

For the Z-test the test statistic, denoted as, Z is calculated from, 

 

 
𝑍 =  

�̅�𝐴 − �̅�𝐵

𝑆𝐸
, 

(9.1)  
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where �̅�𝐴 is the sample mean from group A with variance 𝑠𝐴
2, �̅�𝐵 is the sample mean of 

group B with variance 𝑠𝐵
2 and the standard error is,  

 

 

𝑆𝐸 =  √(
𝑠𝐴

2

𝑛𝐴
+  

𝑠𝐵
2

𝑛𝐵
). 

(9.2)  

 

where  𝑛𝐴 is the number of participants in group A and 𝑛𝐵 is the number of participants 

in group B. This test statistic will be compared to a Standard Normal distribution table (a 

Normal distribution with a mean of 0 and standard deviation of 1), in order to find the p-

value.  

 

The confidence interval for the treatment effect when using a Z-test is given by the 

formula set out below: 

 

 (�̅�𝐴 − �̅�𝐵) ± 𝑍(1−α
2⁄ )𝑆𝐸, a.  

 

where 𝑍(1−𝛼
2⁄ ) is the standard Normal Z-score of (1 – α/2), α is usually set at 0.05 to 

represent a 95% confidence interval here, 𝑍(1−𝛼
2⁄ ) would equal 1.96. 

 

A.2 Independent Samples T-Test 

 

The independent samples t-test also allows the comparison of the treatment effect 

between two independent groups of Normally distributed data when no covariates will 

be taken into account. This test however is for situations where the standard deviation 

for the population is unknown (Kirkwood and Sterne, 2003). This is most likely to be the 

situation in most cases. 
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For the T-test the test statistic, denoted by t, is calculated from, 

 

 
𝑡 =  

�̅�𝐴 − �̅�𝐵

𝑆𝐸
, 

(9.3)  

 

where �̅�𝐴  is the mean response in group A and �̅�𝐵  is the mean response in group B. 

However, this time the standard error is calculated from the formula 

 

 

𝑆𝐸 = 𝑠√
1

𝑛𝐴
+

1

𝑛𝐵
, 

(9.4)  

where s is the standard deviation estimate based on pooling the data from the two groups 

using the following formula 

 

 

𝑠 =  √[
(𝑛𝐴 − 1)𝑠𝐴

2 +  (𝑛𝐵 − 1)𝑠𝐵
2  

(𝑛𝐴 +  𝑛𝐵 − 2)
], 

(9.5)  

 

This is a weighted average of the two estimates of the standard deviation weighted 

towards the group with the larger sample size.  

 

The test statistic in this case will be compared to a t-distribution dependent on the 

number of degrees of freedom for the test. The degrees of freedom are defined by 

(𝑛1 +  𝑛2 − 2). 

 

The confidence interval for the treatment effect will be given by: 

 

 (�̅�1 − �̅�2) ±  t( 𝑑𝑓,1−𝛼 2⁄ )𝑆𝐸, a.  
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The assumptions of an independent samples t-test are as follows: 

 The standard deviations of the distributions from which the two samples are 

drawn should be equal, 

 The observations should be independent of each other, 

 The data should be Normally distributed within group (Swinscow and Campbell, 

2002). 
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Appendix B – Normal Distribution Table 

 

The table on the following page contains the standard Normal distribution. That is a Normal distribution 

with a mean of zero and a standard deviation of 1. Z is a standard Normal random variable. The tabulated 

values represent the value of the cumulative Normal distribution at z and give P(z < Z) (Team Math Inc., 

2011). 
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z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 

0 0.5 0.504 0.508 0.512 0.516 0.5199 0.5239 0.5279 0.5319 0.5359 

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 

0.2 0.5793 0.5832 0.5871 0.591 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.648 0.6517 

0.4 0.6554 0.6591 0.6628 0.6664 0.67 0.6736 0.6772 0.6808 0.6844 0.6879 

0.5 0.6915 0.695 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.719 0.7224 

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 

0.7 0.758 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 

0.8 0.7881 0.791 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.834 0.8365 0.8389 

1 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.877 0.879 0.881 0.883 

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.898 0.8997 0.9015 

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 

1.5 0.9332 0.9345 0.9357 0.937 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.975 0.9756 0.9761 0.9767 

2 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 

2.1 0.9821 0.9826 0.983 0.9834 0.9838 0.9842 0.9846 0.985 0.9854 0.9857 

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.989 

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 

2.4 0.9918 0.992 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 

2.5 0.9938 0.994 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.996 0.9961 0.9962 0.9963 0.9964 

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.997 0.9971 0.9972 0.9973 0.9974 

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.998 0.9981 

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 

3 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.999 0.999 

3.1 0.999 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 

3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 

3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 

3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 
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Appendix C – The CACTUS Trial 

 

After a stroke some patients develop aphasia, meaning that they have difficulty communicating with 

others. People can show improvements in their ability for many years after the development of aphasia 

and so it is thought that some self-managed computer software could offer long term support for sufferers 

of aphasia. 

 

CACTUS is therefore a pilot trial looking at the feasibility and acceptability of the designed intervention 

and the intervention effect on the word-finding ability of the participant. The intervention was 5 months 

of the self-managed word finding therapy, which was to be tested against the control group that 

continued to receive the usual language stimulation activities. 

 

A total of 28 people completed the study: 13 in the control group and 15 in the intervention group. The 

clinical outcome measure was the number of words the participants were able to name correctly. 

 

The data from the trial suggests that a full randomised controlled trial would be possible and warranted 

as the treatment group showed a statistically significant improvement in the naming of words compared 

to the control group (Palmer et al., 2011). 
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Appendix D – Programming Code  

 

D.1 Function to Calculate the Sample Size per arm according the Non-Central t-distribution  

Approach 

 

# Input Parameters: 
#   a = type I error 
#   b= type II error 
#   d = required difference 
#   s = standard deviation from pilot trial 
#   r = allocation ratio between groups 
#   m = degrees of freedom from the pilot trial 
   
iterative<-function(d,s,r,a,b,m){ 
 
  #Create Matrices 
  mat<-matrix(data=NA,4,1,byrow=T) 
  mat2<-matrix(data=NA,2,1001,byrow=T) 
   
  #m is number of degrees of freedom from pilot study 
  mat[1,1]<-m 
   
  #second row is equal to starting value from normal approximation 
   
  z=qnorm(1-(a/2)) 
   
  brac=qt((1-b),df=m,ncp=z) 
   
  bracsq=(brac^2) 
   
  top=(r+1)*(s^2)*bracsq 
   
  bottom=r*(d^2) 
   
  n1=top/bottom 
   
  x=floor(n1) 
     
  mat[2,1]=x 
   
  if (x<2) {x<-2} 
     
  #iterate n up from the approximation until n>=equation 
   
  j=0 
   
  for (i in seq(x,(x+100),by=0.1)){ 
     
    j=j+1 
     
    mat2[1,j]=i 
     
    degf=(i*(r+1))-2 
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    t=qt((1-(a/2)),df=degf) 
     
     
    brac2=qt((1-b),df=m,ncp=t) 
     
    brac2sq=(brac2^2) 
     
    top2=(r+1)*(s^2)*brac2sq 
     
    bottom2=r*(d^2) 
     
    n2=top2/bottom2 
     
    x2=(n2) 
     
    mat2[2,j]=x2 
     
    mat[3,1]=x2 
     
    mat[4,1]=x2 
     
    #Calculating the power way 
     
    t2=qt((1-(a/2)),df=degf) 
     
     
    squrttop=r*i*(d^2) 
    squrtbottom=(r+1)*(s^2) 
    squrt=sqrt(squrttop/squrtbottom) 
     
    q=pt(squrt,df=m,ncp=t2) 
     
    k=1-q 
     
    if (k>=(1-b)) break 
     
  } 
   
   
  return(mat[4,1]) 
   
} 
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D.2 Example Code to find the Minimum Trial Sample Sizes Based on the NCT Approach 

 

# Input Parameters: 
#   a = type I error 
#   b = type II error 
#   d = required difference 
#   s = standard deviation from pilot trial 
#   r = allocation ratio between groups 
#   i = degrees of freedom from the pilot trial 
 
a<-0.05 
b<-0.1 
d<-0.5 
s<-1 
r<-1 
 
mat<-matrix(data=NA,3,125,byrow=T)             #Set up matrix for the results 
 
j<-0                                             #loop counter 
for(i in seq(2,250,by=2)){                      #loop through the pilot trial degrees of freedom 
  j<-j+1 
  mat[1,j]<-i+2                                 #overall two-arm pilot trial sample size 
  mat[2,j]<-2*ceiling(iterative(d,s,r,a,b,i))  #overall two-arm main trial sample size 
  mat[3,j]<-mat[2,j]+mat[1,j]                   #overall two-arm total trial sample size 
} 
 
 
min<-min(mat[3,])                              #the minimum overall total sample size 
pos<-which.min(mat[3,])                        #which position in the matrix is the minimum 
main<-mat[2,pos]                             #the main trial sample size that leads to the overall minimum sample size 
pilot<-mat[1,pos]                            #the pilot trial sample size that leads to the overall minimum sample size 
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D.3 Example Code to find the Minimum Trial Sample Sizes Based on the UCL Approach 

 

# Input Parameters: 
#   a = type I error 
#   b= type II error 
#   d = required difference 
#   s = standard deviation from pilot trial 
#   r = allocation ratio between groups 
#   i = degrees of freedom from the pilot trial 
#   X = confidence level for the UCL approach 
 
a=0.05 
b=0.1 
d=0.5 
s=1 
r=1 
X=0.8 
 
mat<-matrix(data=NA,3,125,byrow=T)            #Set up matrix for the results 
 
j=0                                           #loop counter 
for(i in seq(2,250,by=2)){                     #loop through the pilot trial degrees of freedom 
  j=j+1 
  mat[1,j]<-i+2                                #overall two-arm pilot trial sample size 
  UCL<-(i*(s^2))/(qchisq((1-X),df=i)) 
  brac<-(qnorm(1-(a/2))+qnorm(1-b))^2 
  top<-(r+1)*(UCL)*brac 
  bot<-r*(d^2) 
  recalss<-ceiling(top/bot)           #sample size recalculation - one-arm sample size 
  mat[2,j]<-recalss*2                     #sample size recalculation - two-arm sample size 
  mat[3,j]<-mat[2,j]+mat[1,j]       #overall two-arm total trial sample size 
   
} 
 
 
min=min(mat[3,])                            #the minimum overall total sample size 
pos=which.min(mat[3,])                 #which position in the matrix is the minimum 
main=mat[2,pos]                             #the main trial sample size that leads to the overall minimum sample size 
pilot=mat[1,pos]                              #the pilot trial sample size that leads to the overall minimum sample size  
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D.4 Example Code to find the Trial Sample Sizes Based on using a Proportional Pilot Trial 

for the NCT Approach 

 

#Input Parameters 
 
#d - treatment difference 
#s - standard deviation 
#r - allocation ratio between treatment groups 
#a - type I error 
#b - type II error 
 
d=0.2 
s=1 
r=1 
a=0.05 
b=0.1 
 
#Create Matrix 
 
mat<-matrix(data=NA,4,16,byrow=T) 
 
#Normal Sample Size Calculation 
 
n=(2*(((r+1)*(s^2)*((qnorm(1-(a/2))+qnorm(1-b))^2))/(r*(d^2)))) 
 
mat[2,1]=n 
 
#Iterative Step 
 
for (i in 1:15){ 
   
  mat[1,i]<-i 
   
  mat[3,i]=max(20,(0.03*mat[2,i])) 
   
  mat[4,i]=mat[2,i]+mat[3,i] 
   
  mat[2,(i+1)]=iterative(d,s,r,a,b,(mat[3,1])-2) 
   
} 
 
mat 
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D.5 Example Code to find the Trial Sample Sizes Based on using a Proportional Pilot Trial 

for the UCL Approach 

 

#Input Parameters 
 
#d - treatment difference 
#s - standard deviation 
#r - allocation ratio between treatment groups 
#a - type I error 
#b - type II error 
 
d=0.05 
s=1 
r=1 
a=0.05 
b=0.1 
 
#Create Matrix 
 
mat<-matrix(data=NA,4,16,byrow=T) 
 
#Normal Sample Size Calculation 
 
n=(2*(((r+1)*(s^2)*((qnorm(1-(a/2))+qnorm(1-b))^2))/(r*(d^2)))) 
 
mat[2,1]=n 
 
#Iterative Step 
 
for (i in 1:15){ 
   
  mat[1,i]<-i 
   
  mat[3,i]=max(20,(0.03*mat[2,i])) 
   
  mat[4,i]=mat[2,i]+mat[3,i] 
   
  ucl80=((mat[3,i]-2)*(s^2))/(qchisq(0.2,df=(mat[3,i]-2))) 
   
  mat[2,(i+1)]=(2*(((r+1)*(ucl80)*((qnorm(1-(a/2))+qnorm(1-b))^2))/(r*(d^2)))) 
   
   
} 
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D.6 Example Code to find Minimum Overall Cost of Trial and Sample Sizes Required using 

NCT Approach 

 

# Input Parameters: 
#   a = type I error 
#   b= type II error 
#   d = required difference 
#   s = standard deviation from pilot trial 
#   r = allocation ratio between groups 
#   R = relative cost of pilot versus main trial 
 
 
d=0.2                    #required difference 
s=1                      #standard deviation 
r=1                      #allocation ratio 
a=0.05                   #type I error rate 
b=0.1                    #type II error rate 
 
 
R<-0.5                     #relative cost 
Y<-c(1:100)               #vector of degrees of freedom for the variance estimate 
 
 
#Set up matrix for results 
  mat2<-matrix(data=NA,4,100,byrow=T) 
  g=0                                            #loop counter 
 
  for(i in seq_along(Y)){ 
    g=g+1                                       #loop counter 
    mat2[1,g]<-i+1                              #pilot sample size per arm 
    mat2[2,g]<-iterative(d,s,r,a,b,(2*i))      #main sample size per arm 
    mat2[3,g]<-(2*mat2[1,g])+(2*mat2[2,g])            #overall sample size - two arms 
    mat2[4,g]<-(R*2*(mat2[1,g]))+(2*mat2[2,g])     #function to be minimised 
   
  } 
   
   
  mini=min(mat2[4,])          #the minimum of row 4 
  pos=which.min(mat2[4,])     #postion of this minimum 
  main=2*ceiling(mat2[2,pos])  #main sample size - 2 arms 
  pilot=2*mat2[1,pos]         #pilot sample size - 2 arms 
  overall=pilot+main          #overall trial size - 2 arms 
   
 
R                           #relative cost 
pilot                        #pilot trial sample size - 2 arms 
main                        #main trial sample size - 2 arms 
overall                     #overall sample size - 2 arms 
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D.7 Example Code to find Minimum Overall Cost of Trial and Sample Sizes Required using 

UCL Approach 

 
# Parameters: 
#   a = type I error 
#   b= type II error 
#   d = required difference 
#   s = standard deviation from pilot trial 
#   r = allocation ratio between groups 
#   R = relative cost of pilot versus main trial 
 
 
d=0.5                    #required difference 
s=1                      #standard deviation 
r=1                      #allocation ratio 
a=0.05                   #type I error rate 
b=0.1                    #type II error rate 
 
 
R<-0.5                     #relative cost 
Y<-c(1:100)              #vector of degrees of freedom for the variance estimate 
 
 
#Set up matrix for results 
mat2<-matrix(data=NA,4,100,byrow=T) 
g=0                                              #loop counter 
 
for(i in seq_along(Y)){ 
  g=g+1                                         #loop counter 
  mat2[1,g]<-i+1                               #pilot sample size per arm 
  ucl80=((2*mat2[1,g])*s)/(qchisq(0.2,df=(2*mat2[1,g])))         #80% UCL value 
  n80<-((r+1)*(ucl80)*((qnorm(1-(a/2))+qnorm(1-b))^2))/(r*(d^2))   #Main trial sample size per arm 
  mat2[2,g]<-2*n80                                  #Main sample size - two arms 
  mat2[3,g]<-(2*mat2[1,g])+mat2[2,g]              #Overall sample size - two arms 
  mat2[4,g]<-(R*2*(mat2[1,g]))+mat2[2,g]           #function to be minimised 
   
} 
 
 
mini=min(mat2[4,])        #The minimum of row 4 
pos=which.min(mat2[4,])    #Postion of this minimum 
main=ceiling(mat2[2,pos])  #Main sample size - 2 arms 
pilot=2*mat2[1,pos]        #Pilot sample size - 2 arms 
overall=pilot+main         #Overall trial size - 2 arms 
 
 
R                           #Relative cost 
pilot                        #Pilot trial sample size - 2 arms 
main                         #Main trial sample size - 2 arms 
overall                      #Overall sample size - 2 arms 
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D.8 Example Code to Investigate the Effect of the Internal Pilot Trial Design on the Power 

of the Main Trial 

 

d=0.8                         #Standardised effect size 
nompower=0.9                 #Original power 
alpha=0.05                   #Type I error 
recalpower=0.9               #Power at sample size recalculation 
nomvar=1                     #Nominal variance estimate 
truevar=1                    #True variance 
r=1                           #Allocation ratio between groups 
 
brac1=(qnorm(1-(alpha/2))+qnorm(nompower))^2 
top1=(r+1)*(nomvar)*brac1 
bot1=r*(d^2) 
nomss=ceiling(top1/bot1)                         #Original sample size calculation 
msdf=(2*nomss)-2                                 #Degrees of freedom for original sample size calculation 
 
#set up matrix 
mat<-matrix(data=NA, 4, 999, byrow=T) 
 
z=0 
 
#for loop for percentiles 
for(i in seq(from=0.001,to=0.999,by=0.001)){           
   
z=z+1 
 
  #IPT sample size 
  IPTss=10                   #One-arm sample size 
  totaldf=(2*IPTss)-2            #Two-arm sample size 
   
  #Estimate variance 
  chi<-qchisq(i,totaldf)       #generate a quantile of the chisq distribution 
  frac<-chi/totaldf                  #calculate the estimate of the sample variance based on this quantile 
  pervar<-frac*truevar 
   
  #Re-estimate sample size 
  brac2=(qnorm(1-(alpha/2))+qnorm(recalpower))^2 
  top2=(r+1)*(pervar)*brac2 
  bot2=r*(d^2) 
  recalss=ceiling(top2/bot2)         #sample size recalculation - one-arm sample size 
  totalss=recalss*2                #sample size recalculation - two-arm sample size 
   
  #Restricted procedure 
  endss<-if (recalss>nomss) recalss else nomss 
   
  #Calculating the power 
  top3<-r*(endss)*(d^2) 
  bot3<-(r+1)*(truevar) 
  power<-pnorm(sqrt(top3/bot3)-1.96)    #power if not adjusted upwards 
 
   
  ind<-if (recalss>nomss) 1 else 0                         #indicator 1 if sample size goes up at interim 
   
  #Results 
  mat[1,z]<-i 
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  mat[2,z]<-power 
  mat[3,z]<-endss 
  mat[4,z]<-ind 
   
} 
 
results<-c(rowMeans(mat[2:4,],na.rm=TRUE,dims=1))         #average power, sample size and indicator value 
results 
 
sd(mat[3,]) 
sd(mat[2,]) 
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D.9 Example Code to Simulate a Trial to Investigate the Effect of the Internal Pilot Trial 

Design on the Power of the Main Trial  

 
d=0.8                       #Standardised effect size 
nompower=0.9        #Original power 
alpha=0.05                #Type I error 
recalpower=0.9        #Power at sample size recalculation 
nomvar=1.5              #Nominal variance estimate 
truevar=1                  #True variance 
r=1                         #Allocation ratio between groups 
 
brac1=(qnorm(1-(alpha/2))+qnorm(nompower))^2 
top1=(r+1)*(nomvar)*brac1 
bot1=r*(d^2) 
nomss=ceiling(top1/bot1)                         #Original sample size calculation 
msdf=(2*nomss)-2                                #Degrees of freedom for original ss calculation 
 
#set up matrix 
mat<-matrix(data=NA, 4, 100000, byrow=T) 
 
#for loop for simulations 
for(i in 1:100000){ 
   
   
  #IPT sample size 
  IPTss=ceiling(0.75*nomss)                      #One-arm sample size 
  totalp=2*IPTss                      #Two-arm sample size 
   
  #simulate pilot 
  pilot0<-rnorm(IPTss,mean=0,sd=sqrt(truevar))   #control arm 
  pilot1<-rnorm(IPTss,mean=d,sd=sqrt(truevar))   #treatment arm 
  PS=c(pilot0,pilot1)                            #combine the data from both arms 
   
  #Estimate blinded variance 
  vari1<-var(PS)            #unadjusted estimate of the variance 
  top<-totalp 
  bot<-4*(totalp-1) 
  frac<-top/bot 
  bias<-frac*(d^2)           #estimate of the bias of the unadjusted variance estimate 
  blindvar=vari1-bias        #blinded estimate of the variance 
   
  #Re-estimate sample size 
  brac2=(qnorm(1-(alpha/2))+qnorm(recalpower))^2 
  top2=(r+1)*(blindvar)*brac2 
  bot2=r*(d^2) 
  recalss=ceiling(top2/bot2)         #sample size recalculation - one-arm sample size 
  totalss=recalss*2                   #sample size recalculation - two-arm sample size 
   
  #Restricted procedure 
  endss<-if (recalss>nomss) recalss else nomss 
   
  #Calculating the power 
  top3<-r*(endss)*(d^2) 
  bot3<-(r+1)*(truevar) 
  power<-pnorm(sqrt(top3/bot3)-1.96)   #power of the trial 
   
  ind<-if (recalss>nomss) 1 else 0                       #indicator 1 if sample size goes up at interim 
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  #Results 
  mat[1,i]<-i 
  mat[2,i]<-power 
  mat[3,i]<-endss 
  mat[4,i]<-ind 
   
} 
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D.10 Example Code to Investigate the Effect of the Internal Pilot Trial Design on the Power 

of the Main Trial Assuming Variance Unknown at both the Sample Size Recalculation and in 

the Original Calculation 

 

d=0.2                        #Standardised effect size 
alpha=0.05               #Type I error 
recalpower=0.9       #Power at sample size recalculation 
nompower=0.9        #Nominal Power 
truevar=1                  #True variance 
r=1                          #Allocation ratio between groups 
 
 
#EPT Sample Size 
EPTss<-10 
EPTdf<-(2*EPTss)-2 
 
mat2<-matrix(data=NA, 3, 999, byrow=T) 
for(j in seq(from=0.1, to=99.9,by=0.1)){ 
   
  #Estimate Initial Variance 
  chi2<-qchisq((j/100),EPTdf) 
  frac2<-chi2/EPTdf 
  var<-frac2*truevar 
   
  ss=pwr.t.test(d=d/var,sig.level=alpha,power=nompower,type="two.sample",alternative="two.sided") 
  nomss=ceiling(ss$n)                         #Original sample size calculation 
  msdf=(2*nomss)-2                                 #Degrees of freedom for original ss calculation 
   
  #set up matrix 
  mat<-matrix(data=NA, 4, 999, byrow=T) 
   
  #for loop for percentiles 
  for(i in seq(from=0.1,to=99.9,by=0.1)){           
     
     
    #IPT sample size 
    IPTss=10                   #One-arm sample size     
    IPTdf=(2*IPTss)-2            #Two-arm sample size 
     
    #Estimate variance 
    chi<-qchisq((i/100),IPTdf)       #generate a quantile of the chisq distribution 
    frac<-chi/IPTdf                   #calculate the estimate of the sample variance based on this  
    pervar<-frac*truevar 
     
    #Re-estimate sample size 
    ss1=pwr.t.test(d=d/pervar,sig.level=alpha,power=recalpower,type="two.sample",alternative="two.sided") 
    recalss=ceiling(ss1$n)        #sample size recalculation - one-arm sample size 
    totalss=recalss*2                  #sample size recalculation - two-arm sample size 
     
    #Restricted procedure 
    endss<-if (recalss>nomss) recalss else nomss 
     
    #Calculating the power 
    power<-pwr.t.test(n=endss,d=d/truevar,sig.level=alpha,type="two.sample",alternative="two.sided")     
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#power if not adjusted upwards 
     
    ind<-if (recalss>nomss) 1 else 0                        #indicator 1 if sample size goes up at interim 
     
    #Results 
    mat[1,i*10]<-i 
    mat[2,i*10]<-power$power 
    mat[3,i*10]<-endss 
    mat[4,i*10]<-ind 
     
  } 
   
  results<-c(rowMeans(mat[2:4,],na.rm=TRUE,dims=1))         #average power, sample size and indicator value 
  results 
   
  mat2[1,(j*10)]<-EPTss 
  mat2[2,(j*10)]<-results[[2]] 
  mat2[3,(j*10)]<-results[[1]] 
   
} 
 
results2<-c(rowMeans(mat2,na.rm=TRUE,dims=1)) 
results2 
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1 Introduction

Sample size is an important consideration when a clinical trial is planned, not only for the main trial
but also for any preliminary pilot trial. A sample size calculation is used to determine the minimum
number of participants needed in a clinical trial in order to be able to answer the research question
under investigation.1 Recruiting too few participants in a main trial means that the probability of
finding a clinically relevant difference statistically significant is low and as a consequence, the chance
of inconclusive results is high.2,3 Conversely, if the sample size is too large, resources may be wasted,
more patients than necessary could be given a treatment which will later be proven to be inferior; or
an effective treatment may be delayed from being released on to the market.4

For the purpose of this work, we are defining a pilot randomised trial as a trial, which mimics the
design of the main trial but is not designed with the aim to prove the superiority of one treatment
over another5 but rather to try out aspects of the proposed main trial. As pilot trials do not have the
same objectives as a main trial, setting the sample size in the same way – using formal power
considerations – is usually not necessary. However, it is still necessary to provide a sample size
justification even when the reasons for choosing a particular size are pragmatic.

The focus of this paper will be deriving pilot trial sample sizes based on a primary aim of the pilot
being to estimate the standard deviation to be used for the main trial sample size calculation. We will
describe a method for estimating the sample size for a pilot trial, which achieves the objective of
minimising the recruitment of patients across the pilot and the main trial overall. The emphasis in
this paper is on two armed superiority trials; however, the results are easily generalisable to trials
with other designs. Furthermore, we will concentrate on external pilot trials where the assumption,
however, is that there are no changes between it and the main trial, so that the standard deviation of
the outcome measurement is unaffected. We are also not considering the situation of an internal
pilot trial where the data are combined from the pilot trial and the main trial for the final analysis.

2 Standard methods

For a continuous normally distributed outcome, in a superiority trial, the sample size per treatment
arm, n, to ensure adequate power (1–!) where ! is the Type II error rate whilst controlling the Type I
error rate, a, for a specified/required treatment difference, d, and standard deviation, s, is given by

n ¼ ðrþ 1Þðz1%! þ z1%"=2Þ2#2

rd2
ð1Þ

where r is the allocation ratio of participants between the two treatment arms, experimental to
control.6

Subjective clinical expertise can be used to specify the required treatment difference and there are
agreed values used for the Type I and II error levels. However, a difficulty arises when trying to
quantify the standard deviation.7 Estimating the standard deviation at an inappropriate level can
have a serious effect on the power of the study.8 If the anticipated standard deviation is estimated to
be too high, the trial will contain more participants than necessary. If the anticipated value is
estimated to be too low, the trial will not contain enough participants to find the required effect,
leading to the problems outlined in Section 1.

One of the methods investigators might use to try to get an accurate prediction of the true
standard deviation (or variance) of the outcome measure is to conduct an external pilot trial
prior to the main trial. Pilot trials are often small; therefore, they tend to imprecisely predict the
true variance. The anticipated distribution of the pilot variance is a chi-squared distribution.9 As a
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consequence, the accuracy of the variance prediction will depend on the pilot sample size and, hence,
the degrees of freedom for the variance. Estimating the main trial sample size from equation (1) can
result in a loss of power when the variance is imprecisely estimated. Using previous trial results to
estimate the variance introduces a type of imprecision that should be allowed for when estimating
the sample size for the main trial.9

2.1 Adjusting the standard deviation estimate from a pilot trial

Two different methods have been developed to try to deal with the issue of imprecise variance
estimates. The first was proposed by Browne10 and will be referred to as the upper confidence
limit (UCL) approach and the second by Julious and Owen9 which will be referred to as the non-
central t-distribution (NCT) approach. In both methods, the sample size is inflated to allow for the
imprecision involved when estimating the variance of an outcome measure from a pilot trial.

2.1.1 UCL approach
The UCL approach uses an 100X% UCL for the estimated value of the variance from the pilot trial
to plan the main trial. Browne10 contended that this provides a sample size sufficient to achieve the
required power in at least 100X% of such trials. Browne recommends an 80% upper confidence
level. However, Sim and Lewis,11 whose results will be discussed later in the paper, set X at 0.95 or
the 95% level.

In order to implement the UCL approach, a variance estimate from the pilot data is obtained and
the one-sided X% UCL for this variance, s2UCL, is calculated. A one-sided 100X% UCL for the
variance can be calculated from

s2UCL ¼
k

$21%X,k

" #

s2 ð2Þ

where s2 is the pooled variance from the pilot trial with k degrees of freedom for the variance
estimate, and $21%X,k denotes the 1% X percentile of the chi-squared distribution with k degrees of
freedom.12 As k increases, the confidence interval for a variance estimate becomes narrower.

Note for a two arm parallel group pilot trial with equal allocation to treatments, k would usually
be k ¼ 2m% 2, where m is the sample size per arm in the pilot trial from which the variance is being
estimated.

This UCL would, therefore, be used as the variance estimate in the traditional sample size
equation given earlier in equation (1). Therefore, the sample size per treatment arm for the main
trial, nM, would be given by

nM ¼
rþ 1ð Þ z1%! þ z1%"=2

! "2
s2UCL

rd2
: ð3Þ

If we investigate how much larger the sample size estimate is from this approach compared to the
standard approach, by dividing equation (3) by equation (1) with s2 used as an estimate of #2, we
find that the UCL approach sample size is larger by a factor of ½ k

$2
1%X,k
'. Therefore, the factor by which

the UCL approach sample size is greater than the standard approach depends only upon the pilot
trial sample size and the value of X. It is possible, therefore, to calculate inflation factors, which can
be used to multiply by the sample size from a standard calculation to give the sample size for the
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UCL approach for a set value of total pilot trial sample size and X; these can be seen in Table 1.
The pilot trial sample sizes used here are total sample sizes across treatment arms – assuming for the
purpose of this paper, the trial is a two armed trial.

2.1.2 NCT approach
Julious and Owen9 suggest an alternative method for the calculation of sample size accounting for
the fact that we are using a sample estimate of the variance rather than the population variance in
the calculation. The sample size inflation is dependent on the number of degrees of freedom on
which the estimate of the variance is based, k; therefore, the sample size per treatment arm for the
main trial, nM, would be given by

nM (
ðrþ 1Þ t%1 1% !, k, t%1 1% "=2, nM rþ 1ð Þ % 2, 0ð Þ

! "# $2
s2

rd2
ð4Þ

where t%1 :, k, að Þ is the inverse function of the cumulative distribution function of a NCT with a non-
centrality parameter, a, on k degrees of freedom. The non-centrality parameter in this case is
t%1 1% "=2, nM rþ 1ð Þ % 2, 0ð Þ which is the inverse function of the cumulative distribution function
of a central t-distribution with nM rþ 1ð Þ % 2 degrees of freedom (as a¼ 0). Here k is the degrees of
freedom for the variance estimate s2. If the estimate of the variance is based on only a few degrees of
freedom, the sample size will be increased. Consequently, as the number of degrees of freedom for the
estimate of the variance increases, the impact of this method on the sample size diminishes. As can be
seen in the paper by Julious and Owen,9 it is also possible to calculate inflation factors for the NCT
approach. The inflation factor represents how much larger the NCT approach sample size would be
compared to the standard sample size calculation. Table 2 shows the inflation factors for this approach
for total pilot trial sample sizes.

The UCL approach inflation depends only on the pilot trial sample size and the chosen level of X,
whereas the NCT inflation factor depends on the pilot trial sample size and the Type I and Type II
error rates. We can see from Tables 1 and 2 that the inflation factors for the UCL approach when X
is 80 or 95% are much higher than the inflation factors for the NCT approach. Table 3 demonstrates
which value of X in the UCL approach would make the inflation factor equal to that of the NCT
method, as well as the resulting inflation factor, the sample sizes presented are total pilot trial sample
sizes.

Table 1. Inflation factors for the sample size calculation using the UCL approach.

Pilot trial
sample size

80% upper
confidence limit

95% upper
confidence limit

20 1.400 1.917
24 1.349 1.783
30 1.297 1.654
40 1.244 1.527
50 1.211 1.450
70 1.172 1.359

100 1.139 1.287
200 1.093 1.190
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It can be seen that as the pilot sample size increases the value for X in the UCL approach, which
would lead to the same sample size as the NCT approach tends towards 0.5 and the inflation factor
tends towards 1.

2.2 Pilot trial sample sizes

So far, we have highlighted how to estimate the sample size for a main trial based on the estimates of
variance from a pilot trial. The question now being considered is how to estimate the sample size for
the pilot trial in the situation where the variance estimate from the pilot trial is being used to design a
main trial.

As highlighted previously, in a pilot trial the objective is not to prove superiority of the treatment
but to test trial procedures and processes and to get estimates of parameters for the main trial sample

Table 3. Inflation factors and levels of X for the UCL approach that give the same sample size as the
NCT approach.

Pilot trial sample size

Power

90% 80%

X Inflation factor X Inflation factor

20 0.622 1.156 0.566 1.099
24 0.611 1.125 0.560 1.080
30 0.599 1.097 0.553 1.062
40 0.586 1.071 0.546 1.045
50 0.577 1.056 0.541 1.036
70 0.565 1.039 0.534 1.025

100 0.554 1.027 0.529 1.017
200 0.538 1.013 0.520 1.008

Table 2. Inflation factors for the sample size calculation for the NCT
approach when the Type I error is 5%.

Pilot trial sample size

Power

90% 80%

20 1.156 1.099
24 1.125 1.080
30 1.097 1.062
40 1.071 1.045
50 1.055 1.036
70 1.039 1.025

100 1.027 1.017
200 1.013 1.009
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size calculation.13–15 Therefore, the sample size formulae which are used for main treatment
assessments are not usually applicable to pilot trials. The Consolidated Standards of Reporting
Trials Group and bodies such as The National Institute for Health Research and The National
Research Ethics Service state that not all studies necessarily need a power-based sample size
calculation but they do all need a sample size justification. Therefore, since the purpose of the
pilot is not to give a formal assessment of efficacy, then the sample size provided by the
conventional calculations may be higher than necessary.13

2.2.1 Rules of thumb
When estimating the sample size for the pilot trial, the simplest methods to apply are sample size
rules of thumb. Browne10 cites a general flat rule to ‘use at least 30 subjects or greater to estimate a
parameter’, whereas Julious16 suggests a minimum sample size of 12 subjects per treatment arm.
Teare et al.17 recommend a pilot trial sample size of 70 in order to reduce the imprecision around the
estimate of the standard deviation. All of these rules have limitations, however, as they are
applied regardless of the size of the main trial being designed. The cost of the simplicity of this
flat approach, is a larger overall sample size when the main trial is large or small, as demonstrated in
Section 4.

2.2.2 Minimising the sample size across studies approach
If one of the adjustment methods described in the previous section to account for imprecision in the
variance estimation is applied to calculate the main trial sample size, it would mean that the pilot
trial sample size would affect the sample size of the main trial. That is, the methods depend on the
degrees of freedom around the variance estimate and hence the pilot sample size.

There is a trade-off, therefore, between having a small pilot study and a larger main trial or a
larger pilot study and a smaller main trial. This is because the larger the pilot the more precisely
estimated the variance will be and, hence, the smaller the inflation factor applied to the main study
sample size calculation. However, eventually the pilot sample size will get too large, and the number
included in the pilot trial will outweigh the reduction in the main trial sample size. Therefore, it may
be appropriate to consider the implications of this relationship when choosing the sample size of the
pilot trial.

The method of setting the pilot trial sample size in order to minimise the overall sample size of the
pilot and the main trial together was described by Kieser and Wassmer.12 They applied the 80%
UCL approach to the sample size calculation and found that a pilot trial sample size between 20 and
40 would minimise the overall sample size for a main study sample size of 80–250 corresponding to
standardised effect sizes of 0.4 and 0.7 (for 90% power based on a standard sample size calculation).
Sim and Lewis11 also applied the UCL approach in their work but with a 95% UCL. They found
that a pilot trial of n( 55 would minimise the overall sample size for small to medium standardised
effect sizes (0.2–0.6). The impact of Sim and Lewis’ use of a 95% UCL is that it has the effect of
increasing their estimate of the required sample size compared to Kieser and Wassmer, for both the
pilot and the main trial.

The current methods for setting pilot trial sample sizes are based on a set of rules, which we will
call flat rules of thumb, these are given in Table 4. These pilot sample sizes are fixed no matter how
large the subsequent main trial will be.

Please note that the sample sizes presented in Tables 1 to 4 and in Figures 2 to 4 are the total
sample size required for a two arm trial. This has been done to allow for comparisons to be made
between the flat rules of thumb: as some rules are based on the numbers of participants required per
arm and some are based on the total number of participants required – for example, Sim and Lewis11
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recommend 55 or more patients in total. The results presented in Figure 1 and Tables 5, 6 and 8 are
per treatment arm. This allows for generalisability to trials with two or more treatment arms.

2.3 Summary of standard methods

Setting the pilot trial sample size in order to minimise the total sample size of the pilot and the main
trial together could be argued to be the most appropriate method of sample size calculation as it
recognises that the pilot trial is part of a larger clinical development programme, rather than a stand-
alone study. Other methods fail to recognise this point and aim to minimise both the pilot and the
main trials separately which could lead to the suboptimal sample size overall.

3 Proposed methods of optimising the sample size across studies

Using standardised differences (% ¼ d=s) and pilot trial sample sizes per treatment group of 1 and
upwards, we can calculate the required main trial sample sizes based on all combinations of these
variables using the NCT approach through equation (4). As nM appears on both sides of equation
(4), it can be solved iteratively. To calculate a starting point for the iterations we can use,

nSTART ¼
rþ 1ð Þs2 t%1 1% !, k, z1%"=2

! "# $2

rd2
ð5Þ

which gives a direct estimate of the sample size without iteration. Once the required main trial
sample size per arm, nM, has been found, it is then added to the specified pilot trial sample size
per arm, m, m ¼ ðkþ 2)/2 for a two armed design, to find the overall study sample size per arm (NO)
if this design is to be used.

NO ¼ mþ nM ð6Þ

For each value of %, the pilot trial sample size per arm, mOPT, which minimises the size of the overall
study, NO, can be found; this is referred to as the optimal pilot trial sample size. Therefore, if the % to
be used in the main trial is known, it is possible to calculate exactly the optimal pilot trial sample size
in order to minimise the overall trial sample size. This process is depicted in Figure 1.

However, the exact % to be used in the main trial may not be known at this early stage. Therefore,
pilot trial sample size rules of thumb have been calculated based on the small, medium or large
standardised effect sizes as set out by Cohen.18

Table 4. The current flat rules of thumb for overall pilot trial sample size of
a two armed trial.

Author
Recommended pilot
trial sample size

Julious16 24
Kieser and Wassmer12 20–40
Browne10 30
Sim and Lewis11 (55
Teare et al.17 70
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Figure 1. Process for calculating the optimal pilot trial sample size.
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4 Results

4.1 Optimal sample sizes

In order to calculate the minimum possible overall sample size for each standardised difference and
adjustment method, the method presented in Figure 1 was used. The total sample size required for a
two armed main trial for standardised differences of 0.2, 0.5 and 0.8 can be seen in Figures 2 to 4,
these were calculated based on a power of 90%, Type I error rate of 5% and an allocation ratio, r,
of 1.

It can be seen from Figures 2 to 4 that it is possible to solve the function and find the pilot trial
sample size, which minimises the overall trial sample size. Table 2 shows the optimal pilot sample
size, the required main trial sample size for the pilot trial and then the resulting overall trial sample

Table 5. Theoretical optimal values of pilot trial, main trial and overall trial sample size per treatment arm for each
inflation method.

Inflation method

Standardised
difference

80% upper confidence limit 95% upper confidence limit Non-central t-distribution

Pilot Main Overall Pilot Main Overall Pilot Main Overall

80% powered main trial
0.05 210 6671 6881 331 6892 7223 74 6353 6427
0.10 88 1728 1816 139 1817 1956 38 1607 1645
0.20 39 457 496 61 493 554 20 412 432
0.25 30 300 330 47 326 373 16 267 283
0.30 24 213 237 38 234 272 14 188 202
0.40 18 125 143 28 139 167 11 108 119
0.50 14 83 97 22 94 116 9 71 80
0.60 12 60 72 18 69 87 8 51 59
0.70 10 45 55 16 53 69 7 38 45
0.75 10 40 50 15 47 62 7 33 40
0.80 9 36 45 14 42 56 6 30 36
0.90 8 29 37 13 35 48 6 24 30
1.00 7 25 32 11 29 40 5 20 25

90% powered main trial
0.05 253 8880 9133 398 9149 9547 106 8511 8617
0.10 106 2292 2398 167 2400 2567 54 2154 2208
0.20 46 603 649 72 647 719 28 552 580
0.25 35 394 429 56 427 483 23 358 381
0.30 29 279 308 45 305 350 19 252 271
0.40 21 163 184 33 181 214 15 145 160
0.50 16 108 124 26 122 148 12 95 107
0.60 14 78 92 21 89 110 11 68 79
0.70 12 59 71 18 68 86 9 51 60
0.75 11 52 63 17 60 77 9 45 54
0.80 10 46 56 16 54 70 8 40 48
0.90 9 38 47 14 44 58 8 32 40
1.00 8 32 40 13 37 50 7 27 34
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size per treatment group for all adjustment methods based on a main trial power of 80%. Table 2
shows the same results but for a main trial power of 90%. The sample sizes presented in the tables
are per treatment group.

The straight line on the graphs depicts a standard sample size calculation with no adjustment
method applied (based on equation (1)). The points on the line show the resulting overall sample size
if the rules of thumb of 24, 30 or 70 were used with no adjustment applied, the population variance is
assumed to be known. The bottom dashed curve represents the NCT method as proposed by Julious
and Owen.9 The points on the line show the resulting overall trial sample size if the rules of thumb of
24 or 30 subjects were used for the pilot trial. The middle curve is the UCL method with an 80%
UCL for the variance. The points represent the rules of thumb of 20 and 40 as set out by Kieser and

Table 6. Theoretical optimal values of pilot trial, main trial and overall trial sample size per treatment arm for each
inflation method with a floor on the lower limit of pilot trial sample size at 10 per arm.

Inflation method

Standardised
difference

80% upper confidence limit 95% upper confidence limit Non-central t-distribution

Pilot Main Overall Pilot Main Overall Pilot Main Overall

80% powered main trial
0.05 210 6671 6881 331 6892 7223 74 6353 6427
0.10 88 1728 1816 139 1817 1956 38 1607 1645
0.20 39 457 496 61 493 554 20 412 432
0.25 30 300 330 47 326 373 16 267 283
0.30 24 213 237 38 234 272 14 188 202
0.40 18 125 143 28 139 167 11 108 119
0.50 14 83 97 22 94 116 10 70 80
0.60 12 60 72 18 69 87 10 49 59
0.70 10 45 55 16 53 69 10 36 46
0.75 10 40 50 15 47 62 10 31 41
0.80 10 35 45 14 42 56 10 28 38
0.90 10 28 38 13 35 48 10 22 32
1.00 10 22 32 11 29 40 10 18 28

90% powered main trial
0.05 253 8880 9133 398 9149 9547 106 8511 8617
0.10 106 2292 2398 167 2400 2567 54 2154 2208
0.20 46 603 649 72 647 719 28 552 580
0.25 35 394 429 56 427 483 23 358 381
0.30 29 279 308 45 305 350 19 252 271
0.40 21 163 184 33 181 214 15 145 160
0.50 16 108 124 26 122 148 12 95 107
0.60 14 78 92 21 89 110 11 68 79
0.70 12 59 71 18 68 86 10 50 60
0.75 11 52 63 17 60 77 10 44 54
0.80 10 46 56 16 54 70 10 39 49
0.90 10 37 47 14 44 58 10 31 41
1.00 10 30 40 13 37 50 10 25 35
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Wassmer12 as well as the 24 and 30 rules. The top dotted curve is the UCL method with a 95% UCL
for the variance. The point for a pilot trial sample size of 55 has been added here, as this was the
sample size recommended by Sim and Lewis11 to minimise the overall trial sample size. The overall
trial sample sizes on the graphs are the total for a two armed trial.

The graphs in Figures 2 to 4 can be used to compare the effects of using the rules of thumb
described in Table 2 to the theoretical optimal solution. For a medium standardised effect size (e.g.,
0.5), the suggested rules of thumb are very close to the optimal pilot sample size. However, when the
standardised effect size moves away from this value, the rules of thumb are less useful. For small
standardised effect sizes (e.g., 0.2), the rules of thumb underestimate the required size of the pilot
trial. For large standardised effect sizes (e.g., 0.8), the rules of thumb overestimate the number of
participants required for the pilot trial. This indicates that the larger the main trial the larger the
pilot trial should be in order to minimise the overall sample size; therefore; one fixed flat pilot trial
sample size will not be suitable for all studies.

In relation to overall trial sample size, overestimating the pilot sample size is not as costly as
underestimation in terms of over recruitment of participants as shown in Figures 2 to 4, given that

Figure 2. Comparing overall total trial sample sizes for each adjustment method over varying pilot trial sample size
for a standardised difference of 0.2.

*Lines from bottom to top: Line 1, Standard sample size calculation with no adjustment method applied (points
represent pilot trial sample sizes of 24, 30 and 70); Line 2, Main trial sample size calculation based on the NCT
approach (points represent pilot trial sample sizes of 24 and 30); Line 3, Main trial sample size calculation based on the
80% UCL approach (points represent pilot trial sample sizes of 20, 24, 30 and 40) and Line 4, Main trial sample size
calculation based on the 95% UCL approach (point represents pilot trial sample size of 55).
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the slope on the right hand side is flatter than on the left. The gradient of the slope on the right hand
side of the minimum value is less than the gradient of the slope to the left side of the minimum;
therefore, for the same change in pilot trial sample size – over estimation compared to underestimation
– the change in overall trial sample size will be comparatively less. It can be seen that the NCT
approach produces consistently lower overall trial sample sizes than any of the UCL methods.

It should be noted that for large values of standardised effect size, the suggested pilot trial sample
size falls to a level, which may be considered too low to achieve the objectives of a pilot trial. This is
because pilot trials are not only used to estimate the standard deviation of the outcome measure but
also to assess objectives such as testing the feasibility of trial processes or predicting the likely
dropout rate. We must consider these other objectives as well as more practical considerations.
For the rest of this paper, a floor will be placed on the minimum pilot trial sample size per arm
of 10 participants; this allows some investigation of these other objectives and is in line with the
minimum sample size for an internal pilot trial sample size as recommended by Birkett and Day.19

Figure 3. Comparing overall trial sample sizes for each adjustment method for varying pilot trial sample sizes for a
standardised difference of 0.5.

*Lines from bottom to top: Line 1, Standard sample size calculation with no adjustment method applied (points
represent pilot trial sample sizes of 24, 30 and 70); Line 2, Main trial sample size calculation based on the NCT
approach (points represent pilot trial sample sizes of 24 and 30); Line 3, Main trial sample size calculation based on the
80% UCL approach (points represent pilot trial sample sizes of 20, 24, 30 and 40) and Line 4, Main trial sample size
calculation based on the 95% UCL approach (point represents pilot trial sample size of 55).
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Table 6 (80% powered main trial and 90% powered main trial) represents the optimal results with a
floor on the lower limit of the pilot study sample size at 10 per treatment group.

It should also be noted that although the exact calculation for the NCT approach (equation 4)
has been used here to gain the most accurate results, in practice using the approximation in equation
5 will result in an overall study sample size of one subject less than the exact calculation at the most.

Table 6 shows again that the NCT method produces smaller overall trial sample sizes than both
the 80% and 95% UCL methods. There is, on average, no loss of power when using the NCT
approach, simulations and the results can be seen in Table 7. In order to calculate the results in
Table 7, a pilot trial was simulated with two treatment arms. The results were drawn from a normal
distribution, the control arm with a mean of 0 and a variance of 1 and the experimental arm with a
mean of the required effect size and variance of 1. Depending on the adjustment method we were
looking at, the pilot trial was set to the optimal sample size for that approach and effect size. The
standard deviation was estimated from the pilot trial, this was then used to calculate the sample size

Figure 4. Comparing overall trial sample sizes for each adjustment method for varying pilot trial sample sizes for a
standardised difference of 0.8.

*Lines from bottom to top: Line 1, Standard sample size calculation with no adjustment method applied (points
represent pilot trial sample sizes of 24, 30 and 70); Line 2, Main trial sample size calculation based on the NCT
approach (points represent pilot trial sample sizes of 24 and 30); Line 3, Main trial sample size calculation based on the
80% UCL approach (points represent pilot trial sample sizes of 20, 24, 30 and 40) and Line 4, Main trial sample size
calculation based on the 95% UCL approach (point represents pilot trial sample size of 55).
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for the main trial (the method depending on the approach under investigation). The main trial
sample size calculations were based on a Type I error rate of 5%, a Type II error rate of 10%
and an allocation ratio between the treatment groups of 1. Using the same method as with the pilot
trial, the main trial was then simulated based on this sample size. The results of the main trial were
then tested using a t-test. This simulation was repeated 10,000 times for each situation. The analysis
was carried out in R 3.1.2.

From the simulations, the NCT approach gives the simulated average power closest to the
nominal power level. When the standardised effect size is large, the 95% UCL approach has an
average power approximately 7% above the nominal value.

4.2 Rules of thumb revisited

In many trials, the actual value of standardised effect size to be used in the main trial may not be
known before the pilot trial planning stage. This is one of the reasons that the existing rules of
thumb for the pilot trial sample size, as introduced earlier in the paper, are so attractive. However,
an investigator is likely to know whether the standardised difference for use in the main trial is likely
to be small, medium or large within a range.

From the results presented, it would seem that any rules of thumb should be stepped – and not
flat – so that the pilot is bigger for smaller standardised effect sizes and smaller for large standardised
effect sizes.

Table 7. Average power for two armed trials designed using different adjustment methods based on 10,000
simulations using 90% power, 5% Type I error rate and ‘optimal’ pilot trial sample sizes.

Standardised
effect size

80% upper
confidence limit

95% upper
confidence limit

Non-central
t-distribution

0.05 Pilot trial sample size 506 796 212
Average power 91.25 92.51 90.52
Percentage of trials with power above 90% 81.71 95.19 57.91
Percentage of trials with power above 80% 100.00 100.00 99.87

0.1 Pilot trial sample size 212 334 108
Average power 92.12 93.21 90.34
Percentage of trials with power above 90% 82.15 95.93 60.34
Percentage of trials with power above 80% 99.98 100.00 99.00

0.2 Pilot trial sample size 92 144 56
Average power 93.17 94.75 90.36
Percentage of trials with power above 90% 83.12 95.87 64.2
Percentage of trials with power above 80% 99.74 100.00 96.15

0.5 Pilot trial sample size 32 52 24
Average power 94.37 96.66 92.09
Percentage of trials with power above 90% 84.19 95.60 68.90
Percentage of trials with power above 80% 97.89 99.86 91.00

0.8 Pilot trial sample size 20 32 20
Average power 95.37 97.60 92.10
Percentage of trials with power above 90% 84.73 95.85 69.45
Percentage of trials with power above 80% 95.33 99.53 89.23
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Table 6 (80% powered main trial and 90% powered main trial) has been used to derive new
stepped rules of thumb for the pilot trial sample size; these are presented in Table 8. These offer (per
arm) sample sizes for pilot trials, which vary depending on whether the standardised effect size for
the main trial is small, medium or large. An additional category of extra small has been inserted into
Cohen’s classifications, which represents standardised effect sizes of 0.1 or less; this is because the
results for these trials were many times larger than for standardised effect sizes of 0.2.

5 A worked example

A two armed parallel group randomised controlled clinical trial is being planned with a two-sided
Type I error rate of 5% and a power of 90%. The primary outcome is anticipated to take a normal
form. As the investigator initially was unsure about design aspects of the main trial such as the
anticipated standard deviation of the outcome measure and the likely recruitment and dropout rates,
a pilot trial was undertaken.

Initially a flat rule of thumb was used, and the pilot sample size was chosen to be 24 evaluable
patients in total as recommended by Julious.16

However, suppose that a priori the standardised effect size for the main trial is 0.25. Using the
NCT approach, the main trial sample size is estimated to be 760 participants, assuming that the pilot
trial of 24 was used to design the trial. This would result in a total sample size for the pilot and main
trial together of 784 participants.

As highlighted previously, if the standardised effect size to be used in the main trial is known to be
0.25 prior to the pilot trial, then based on the method presented in this paper, the optimal pilot trial
sample size for a standardised difference of 0.25 is 46. If a pilot trial of 46 participants was carried
out and the main trial planned based on the estimate of the standard deviation from that pilot study;
then the main trial sample size based on the NCT approach would be 716. This method would result
in a total overall sample size of 762 participants.

Thus, by increasing the sample size for the pilot trial, in this example nearly doubling the sample
size, we have increased the precision around the standard deviation estimate. This has had the effect
of reducing the total trial sample size by 22.

There are many instances where the effect size for the main trial is unlikely to be known prior to
the pilot trial. However, it could be considered reasonable to have an approximate idea of the
sample size of the main trial based on experience of the same population, i.e. it is anticipated that
the effect size will be quite small and the sample size large. Using the stepped rules of thumb (from
Table 8), the sample size would be set at 50 for the pilot trial. Consequently, the main trial sample
size calculation based on a standardised effect size of 0.25 would be for 712 subjects; giving a total
overall trial sample size of 762. In this example due to rounding, the total sample size is the same for
the stepped rules of thumb approach and the optimal solution.

Table 8. Estimated stepped rules of thumb for required pilot trial sample size per
treatment arm when the NCTapproach will be used to calculate the main trial sample size.

Standardised difference 80% powered main trial 90% powered main trial

Extra small (%< 0.1) 50 75
Small (0.1) %< 0.3) 20 25
Medium (0.3) %< 0.7) 10 15
Large (%( 0.7) 10 10
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6 Discussion

The National Institute for Health Research Evaluation, Trials and Studies Coordinating Centre
defines pilot trials in context of the planning of a future trial.20 Therefore, the method of
minimising the sample size across trials could be thought to be the most appropriate as it
treats the pilot trial as part of the whole study programme rather than a stand-alone trial. In
this paper, we propose a method for estimating the sample size for a pilot trial, which uses this
idea. The method introduced describes how to set the sample size of a pilot trial in order to
minimise the overall trial sample size, i.e. the sample size of the pilot and main trial together,
for different correction methods.

We demonstrate how the size of the pilot trial impacts on the size of the overall trial when either
the UCL approach or the NCT method is used to calculate the sample size for the main trial. If the
pilot trial is large, the main trial will be relatively small and if the pilot trial is small, the main trial
will be relatively large. It can be seen from the results in this paper that the NCT approach provides
lower overall trial sample sizes than any other method while maintaining the average power at the
nominal level.

Our results show that as the sample size of a main trial increases, the size of the pilot trial should
also increase. For medium effect sizes, the existing rules seem sufficient; however, as we move away
from a standardised effect size of 0.5, the flat rules of thumb can over or under estimate the pilot trial
sample size that would minimise the overall trial sample size. Therefore, using these flat rules of
thumb would lead to more patients than theoretically required being recruited to the overall trial.
This is especially seen at small standardised effect sizes.

From the results presented in this paper, we recommend using the NCT approach to set the main
trial sample size in conjunction with the method presented of calculating a pilot trial sample size.
Doing so will on average maintain the nominal power requirement and minimise the overall trial
sample size for the pilot and the main trial together.

If simpler calculations are to be undertaken for a pilot trial sample size, we recommend using the
stepped rules of thumb presented in the paper to set the pilot study sample size. However, if the
standardised effect size to be used in the main trial is known, we recommend that the exact
calculation be used.

In the paper, the emphasis is on estimating the sample size for pilot trials to minimize the
overall sample size across both the main and pilot trial combined. However, there could be
other sample size considerations such as obtaining plausible estimates of the clinical effect
through precision of the confidence intervals.21–25 Alternatively, decision science criteria could
be used to optimize the risk discharged in a clinical development prior to the start of a late
phase study.26 In both these instances, a pilot trial is still considered in context with later
definitive trials but there may already – from previous work – be good estimates of the
population variance.

Finally, the methods described in the paper do have limitations. The main assumption is that
the design of the main trial and the pilot trial is ostensibly the same. This may not be the case,
however, which could impact on the applicability of the estimate of the standard deviation from the
pilot trial.

The methods described in the paper provide a way to estimate the optimal pilot trial sample size
that minimises the overall sample size for a given main trial standardised effect size. We recognise
that the situation of knowing the effect size prior to the pilot study is an ideal situation and so we
recommend that the stepped rules of thumb, proposed in this paper, be used and the flat rules of
thumb only used as a last resort.
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Abstract 

Background: A crucial part in the development of any intervention is the preliminary work 

carried out prior to a large scale definitive trial. However, the definitions of these terms are not 

clear cut and many authors redefine them. Because of this, the terms feasibility and pilot are 

often misused.  

Aim: To provide an introduction to the topic area of pilot and feasibility trials and draw together 

the work of others in the area on defining what is a pilot or feasibility study. 

Methods:  A review of definitions and advice from the published literature and from funders’ 

websites. Examples are used to show evidence of good practice and poor practice. 

Results: We found that researchers use different terms to describe the various stages of the 

research process. Some define the terms feasibility and pilot as being different whereas others 

argue that these terms are synonymous. All reflective papers agree that feasibility/pilot studies 

should not test treatment comparisons nor estimate feasible effect sizes. However, this is not 

universally observed in practice. 

Summary: We believe that the term ‘feasibility’ should be used as an overarching term for 

preliminary studies and the term ‘pilot’ refers to a specific type of  study which resembles the 

intended trial in aspects such as, having a control group and randomisation. However, studies 

labelled ‘pilot’ should have different aims and objectives to main trials, and an intention for 

further work in the future. Researchers should not use the title ‘pilot’ for a trial which evaluates a 

treatment effect.  

 

 

Keywords: Pilot; feasibility; terminology; reporting;
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Introduction 

During recent years there has also been an increasing emphasis on the importance of 

preliminary work prior to the organisation of large-scale, publicly-funded randomised 

controlled trials. Many large public funding bodies now expect substantial work to have been 

done prior to the main bid. Some funding streams, such as UK National Institute for Health 

Research (NIHR) Research for Patient Benefit (RfPB) [1], and the US NIH R34 funding 

mechanism [2] recognise this through the provision of substantial sums of money to support 

such work. The value of preliminary work is now recognised and researchers are 

encouraged to publish their pilot work in advance of their main trial, and some publishers are 

willing to publish such results. However there remains much confusion about the purpose of 

preliminary work and also of terminology used. The NIHR use the terms ‘feasibility’ and ‘pilot’ 

to distinguish between different stages in the research process [3]. Although these terms are 

frequently used in the literature they are used inconsistently and interchangeably[4]; while 

other authors choose to use different terms completely to define the stages of development 

[5]. 

There is also the temptation to label a trial ‘pilot’ to excuse a small sample size, or one 

conducted in one locality, but still with the intention of running a study with treatment 

comparison as the main objective. 

 

The aim of this paper is to provide an introduction to the topic area of pilot and feasibility 

trials. We will draw together the work of others that has been done in this area, describing 

current definitions, their overlaps and points of divergence. We use examples to illustrate 

good and poor practice and conclude with some recommendations on the use of the terms. 

This paper adds to our earlier work[4]  by critiquing earlier definitions, and providing 

examples to support our criticism. 
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Current Definitions 

Within the pharmaceutical sector testing drug efficacy has long had a tradition of clearly 

defined stages, from the initial phase 1, first-into-man studies through to the phase 4 post-

marketing studies. However, for large publicly funded trials, particularly of complex 

interventions and modes of care, the definitions and stages of trials have been less well 

defined/clear-cut.  There have been several attempts to provide guidance on the definitions 

of a pilot and feasibility study. A review of papers published in 2001 in seven major journals 

looked at the objectives of pilot studies in the literature [6] to clarify the definition of pilot 

study. This was repeated in 2010 and the work extended to distinguish between pilot and 

feasibility studies in the article search and looking at the components of the studies [4]. The 

authors of these studies found that studies labelled ‘pilot’  generally used stricter 

methodology than studies labelled ‘feasibility’ and that pilot studies mostly reported their 

results as inconclusive and suggested further work, whereas feasibility studies did not state 

the same intention. They argue that the distinction between the two terms is not clear cut. 

However, they suggest the adoption of the NETSCC (NIHR Evaluation, Trials and Studies 

Coordinating Centre) definition which does distinguish between the two types of study [3]. 

 

The NETSCC [3] define feasibility studies as studies used to estimate important parameters 

that are needed to design the main study, e.g. standard deviation of the outcome measure, 

willingness of patients to be randomised, willingness of clinicians to recruit participants, 

number of people eligible, follow-up rates, response rates and adherence/ compliance rates. 

Feasibility studies may have no plan for further work and their aim is to assess whether it is 

possible to perform a full-scale study. 

 

The NETSCC [3] define a pilot study as a version of the main study run in miniature to 

determine whether the components of the main study can all work together. They suggest 

that a pilot should focus on the processes of running the main study i.e. to ensure the 
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mechanisms of recruitment, randomisation, treatment and follow-up assessments. The aim 

of the pilot is to provide training and experience in the running of the trial and to highlight any 

problems, so they may be corrected before the main study begins. There must also be a 

plan for further work. A pilot study can be either external or internal to the main study.  

 

This latter definition is comparable to the UK NICE definition of a pilot study as “a small-

scale ‘test’ of a particular approach … The aim would be to highlight any problems or areas 

of concern and amend it before the full-scale study begins.” [7] 

 

However, in contrast Arnold et al [5] provided three separate definitions for different types of 

pre-clinical work: pilot work, pilot studies and pilot trials. They defined pilot work as “any 

background research that informs a future study”; pilot studies as “studies with a specific 

hypothesis, objective and methodology”; and a pilot trial as “a stand-alone pilot study with a 

randomisation procedure”. Indeed the authors advocated against using the term feasibility 

study, arguing that it “does not reflect the scope of many pilot studies”. These definitions 

differ from most others in that they distinguish between the different possible objectives of 

pilot studies, but do not include the term feasibility whatsoever. The movement through 

development stages is defined by using the words; work, study and trial instead of the terms 

feasibility and pilot.  

 

Thabane et al. [8], in their tutorial on pilot studies, do not distinguish between feasibility and 

pilot studies, and simply note that the terms are used synonymously. They do however note 

that the main focus of a pilot study should be to test the feasibility of conducting a full study, 

rather than statistical significance, and that many pilot studies fail to recognise this. 

Leon et al [9] state that a pilot study can be used to evaluate the feasibility of recruitment, 

randomization, retention, assessment procedures, new methods, and implementation of the 

novel intervention. A pilot study is not a hypothesis testing study. Safety, efficacy and 

effectiveness are not evaluated in a pilot. Contrary to tradition, a pilot study does not provide 
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a meaningful effect size estimate for planning subsequent studies due to the imprecision 

inherent in data from small samples. Thus effect sizes provided by pilot studies should not 

be used to power a subsequent full trial. Instead clinical experience should be used to define 

a clinically meaningful effect. A pilot study is a requisite initial step in exploring a novel 

intervention or an innovative application of an intervention. Pilot results can inform feasibility 

and identify modifications needed in the design of a larger, ensuing hypothesis testing study.  

 

This is similar to the British Medical Research Council’s (MRC’s) complex interventions 

guidelines which urge the reader to exercise caution when using the results of a pilot study 

to make assumptions about the required sample size, likely response rates etc., when the 

evaluation is scaled up [10]. These guidelines do not give an exact definition of a pilot or 

feasibility study, instead focusing on the outcomes of the feasibility and piloting stage. 

Investigators should be confident that the intervention can be delivered as intended and be 

able to make safe assumptions about the effect sizes, variability, recruitment rates and 

retention to aid in the designing of the main study. They do note that “a pilot study need not 

be a ‘scale model’ of the planned main stage evaluation, but should address the main 

uncertainties that have been identified in the development work”. 

 

Examples 

Krarup et al [11] describe a trial, the ExSTroke Pilot trial, to examine the benefits of exercise 

in patients who have had a stroke. They intended to recruit 300 subjects, but this was 

powered on a postulated difference in treatment groups from a surrogate outcome, the 

Physical Activity Scale for the Elderly (PACE). The reason for the term ‘pilot’ in the title could 

be inferred because the study was not powered for recurrent stroke, MI, or mortality.  The 

results were published [12] as a randomised controlled trial. The trial was criticised because 

it did not follow guidelines for the developing of complex interventions such as those of the 

MRC [10] and “we might have expected modelling of active ingredients of the intervention 

(given that it was a pilot study) and testing the feasibility of the approach” [13]. 
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In contrast, the LIFE study [14] is also described as a pilot study. The study intended to 

recruit 400 adults and the aims were: (a) estimate the sample size needed for a full scale 

trial, (b) examine the consistency of the effects of the physical activity intervention on several 

continuous measures of physical function, (c) assess the feasibility of recruitment, (d) 

evaluate study adherence and retention, (d) evaluate the efficacy of a stepped care 

approach for managing intercurrent illness in this at-risk population, and (e) develop a 

comprehensive system for monitoring and ensuring participant safety.  Two points can be 

made, firstly the objectives of the study are consistent with the objectives of a pilot study, 

except (d) since it was not powered to evaluate efficacy. Secondly the size of the projected 

pilot, at 400, exceeds the size of many full studies and is not justified in relation to the 

objectives.  The outcomes of some of these objectives were subsequently published. For 

example the investigators evaluated the longitudinal distributions of four standardized 

outcomes to contrast how they may serve as primary outcomes of future clinical trials: ability 

to walk 400 meters, ability to walk 4 meters in ≤10 seconds, a physical performance battery, 

and a questionnaire focused on physical function. They concluded that the ability to walk 400 

meters as a dichotomous outcome provided the smallest sample size projections and that a 

4-year trial based on the outcome of the 400-meter walk is projected to require n= 962–2234 

to detect an intervention effect of 30%–20% with 90% power[15].   In fact they are now 

running the main study, a trial of 1600 people followed up for 2.7 years [16]. This outcome is 

entirely coherent with that of the pilot study. However, in view of the size of the pilot, they 

could not resist also doing some treatment comparisons [17-18]! It is also of note that the 

size of the pilot was 25% of the main study, which leads one to query the correct ratio in size 

of the pilot and main study.  

 

Discussion 

It can be seen that there is still confusion around the terms. Some use the terms feasibility 

and pilot interchangeably [8] whereas others define the terms separately [3,4,6]. It is 

problematic to look to the literature to find a difference between pilot and feasibility study as 
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a trial may be labelled as a pilot or feasibility study but this doesn’t mean that it is a pilot or 

feasibility study under someone else’s definition. 

 

From the review of the literature we found that the distinguishing features of a pilot study 

from a feasibility study are: 

 Stricter study methodology (e.g. a justification of the sample size) 

 An intention for further work 

 Smaller version of the main study 

 A focus on trial processes  

The stricter methodology may stem from the fact that pilot studies are more likely to mimic 

the design of the main study, in order to test the processes and provide training to trial staff 

and alleviate problems before the larger trial. This restriction does not hold for a feasibility 

study, where a systematic review or meta-analysis may be a feasibility study. A pilot study, 

apart from investigating how the trial procedures will work in the future trial, may also test the 

feasibility of a larger study so it could be said that pilot studies are also feasibility studies. 

However, the inverse cannot be said; that all feasibility studies are pilot studies. From this 

one could conclude that a pilot study is a special type of feasibility study which has a plan for 

further work and mimics the envisioned definitive trial. In addition, we could also define a 

pilot trial as a pilot study which also involves randomisation between treatment groups.  

 

The plan for further work is crucial for pilot studies otherwise the study may be seen as an 

underpowered trial which are deemed unethical and have limited scientific use. As we have 

shown pilot studies and randomised controlled trials (RCTs) have different aims and 

objectives [4]. An RCT will test the efficacy of a new intervention, a pilot study should only 

test other aspects of the trial design in preparation for this definitive assessment of the 

treatment. The term ‘pilot’ implies an intention for further definitive work in the future. 
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It is impossible to legislate on the use of terminology, but we suggest that if journals and 

reviewers adopt a more consistent usage, then it would make the reporting and reviewing of 

such studies much simpler.  

It could be argued that trials which use a surrogate endpoint, such as the ExStroke trial [11] 

are in fact ‘pilot’ studies even if they test for treatment comparisons.  However, to be 

consistent with the previous paragraph, they only deserve this label if there are clear criteria 

to decide on a trial using clinically meaningful outcomes, and a clear intention of conducting 

such a trial if the criteria are met. Otherwise the title should clearly define the trial as one that 

uses surrogate endpoints. Thus the ExStroke trial could have specified what size difference 

in the PACE outcome would have justified further follow up for stroke and death, or an 

extension of the trial to include these outcomes.  
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Conclusion 

The distinction between pilot and feasibility studies is still a very grey area, with various 

definitions having been suggested by clinical trial methodology researchers. We suggest it is 

futile to ascribe a particular meaning to the term ‘feasibility’ and that all preliminary trial work 

could be described as ‘feasibility’ therefore it could be thought of as an overarching term for 

preliminary work. However the term ‘pilot’ could be reserved for a study that mimics the 

definitive trial design in that it may include control groups and randomisation, but whose 

explicit objective is not to compare treatment groups, but rather to ensure the main trial 

delivers maximum benefit. Trials that use surrogate endpoints could be described as pilot 

trials only if they include clear criteria for proceeding to a main trial. 
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parameters from external pilot randomised
controlled trials: a simulation study
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Abstract

Background: External pilot or feasibility studies can be used to estimate key unknown parameters to inform the
design of the definitive randomised controlled trial (RCT). However, there is little consensus on how large pilot
studies need to be, and some suggest inflating estimates to adjust for the lack of precision when planning the
definitive RCT.

Methods: We use a simulation approach to illustrate the sampling distribution of the standard deviation for
continuous outcomes and the event rate for binary outcomes. We present the impact of increasing the pilot
sample size on the precision and bias of these estimates, and predicted power under three realistic scenarios. We
also illustrate the consequences of using a confidence interval argument to inflate estimates so the required power
is achieved with a pre-specified level of confidence. We limit our attention to external pilot and feasibility studies
prior to a two-parallel-balanced-group superiority RCT.

Results: For normally distributed outcomes, the relative gain in precision of the pooled standard deviation (SDp)
is less than 10% (for each five subjects added per group) once the total sample size is 70. For true proportions
between 0.1 and 0.5, we find the gain in precision for each five subjects added to the pilot sample is less than 5%
once the sample size is 60. Adjusting the required sample sizes for the imprecision in the pilot study estimates can
result in excessively large definitive RCTs and also requires a pilot sample size of 60 to 90 for the true effect sizes
considered here.

Conclusions: We recommend that an external pilot study has at least 70 measured subjects (35 per group) when
estimating the SDp for a continuous outcome. If the event rate in an intervention group needs to be estimated by
the pilot then a total of 60 to 100 subjects is required. Hence if the primary outcome is binary a total of at least 120
subjects (60 in each group) may be required in the pilot trial. It is very much more efficient to use a larger pilot
study, than to guard against the lack of precision by using inflated estimates.

Keywords: sample size, feasibility studies, pilot studies, binary outcomes, continuous outcomes, RCTs

Background
In 2012/13, the National Institute for Health Research
(NIHR) funded £208.9 million of research grants across
a broad range of programmes and initiatives to ensure
that patients and the public benefit from the most cost-
effective up-to-date health interventions and treatments
as quickly as possible [1]. A substantial proportion of
these research grants were randomised controlled trials

(RCTs) to assess the clinical effectiveness and cost-
effectiveness of new health technologies. Well-designed
RCTs are widely regarded as the least biased research
design for evaluating new health technologies and decision-
makers, such as the National Institute for Health and Care
Excellence (NICE), are increasingly looking to the results of
RCTs to guide practice and policy.
RCTs aim to provide precise estimates of treatment ef-

fects and therefore need to be well designed to have
good power to answer specific clinically important ques-
tions. Both overpowered and underpowered trials are
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undesirable and each poses different ethical, statistical
and practical problems. Good trial design requires the
magnitude of the clinically important effect size to be
stated in advance. However, some knowledge of the po-
pulation variation of the outcome or the event rate in
the control group is necessary before a robust sample size
calculation can be done. If the outcome is well established,
these key population or control parameters can be esti-
mated from previous studies (RCTs or cohort studies) or
through meta-analyses. However, in some cases finding
robust estimates can pose quite a challenge if reliable data,
for the proposed trial population under investigation, do
not already exist.
A systematic review of published RCTs with continuous

outcomes found evidence that the population variation
was underestimated (in 80% of reported endpoints) in the
sample size calculations compared to the variation ob-
served when the trial was completed [2]. This study also
found that 25% of studies were vastly underpowered and
would have needed five times the sample size if the vari-
ation observed in the trial had been used in the sample
size calculation. A more recent review of trials with both
binary and continuous outcomes [3] found that there was
a 50% chance of underestimating key parameters. How-
ever, they too found large differences between the esti-
mates used in the sample size calculation compared to the
estimates derived from the definitive trial. This suggests
that many RCTs are indeed substantially underpowered or
overpowered. A systematic review of RCT proposals rea-
ching research ethics committees [4] found more than half
of the studies included did not report the basis for the as-
sumed values of the population parameters. So the values
assumed for the key population parameters may be the
weakest part of the RCT design.
A frequently reported problem with publicly funded

RCTs is that the recruitment of participants is often slo-
wer or more difficult than expected, with many trials
failing to reach their planned sample size within the ori-
ginally envisaged trial timescale and trial-funding enve-
lope. A review of a cohort of 122 trials funded by the
United Kingdom (UK) Medical Research Council and
the NIHR Health Technology Assessment programme
found that less than a third (31%) of the trials achieved
their original patient recruitment target, 55/122 (45.1%)
achieved less than 80% of their original target and half
(53%) were awarded an extension [5]. Similar findings
were reported in a recently updated review [6]. Thus,
many trials appear to have unrealistic recruitment rates.
Trials that do not recruit to the target sample size within
the time frame allowed will have reduced power to de-
tect the pre-specified target effect size.
Thus the success of definitive RCTs is mainly dependent

on the availability of robust information to inform the de-
sign. A well-designed, conducted and analysed pilot or

feasibility trial can help inform the design of the definitive
trial and increase the likelihood of the definitive trial
achieving its aims and objectives. There is some confusion
about terminology and what is a feasibility study and what
is a pilot study. UK public funding bodies within the
NIHR portfolio have agreed definitions for pilot and feasi-
bility studies [7]. Other authors have argued against the
use of the term ‘feasibility’ and distinguish three types of
preclinical trial work [8].

Distinguishing features of pilot and feasibility studies
NIHR guidance states:
Feasibility studies are pieces of research done before a

main study in order to answer the question ‘Can this
study be done?’. In this context they can be used to esti-
mate important parameters that are needed to design
the main study [9]. For instance:

i) standard deviation of the outcome measure, which is
needed in some cases to estimate sample size;

ii) willingness of participants to be randomised;
iii) willingness of clinicians to recruit participants;
iv) number of eligible patients over a specific time

frame;
v) characteristics of the proposed outcome measure and

in some cases feasibility studies might involve
designing a suitable outcome measure;

vi) follow-up rates, response rates to questionnaires,
adherence/compliance rates, intracluster correlation
coefficients in cluster trials, etc.

Feasibility studies for randomised controlled trials may
themselves not be randomised. Crucially, feasibility stud-
ies do not evaluate the outcome of interest; that is left to
the main study.
If a feasibility study is a small RCT, it need not have

a primary outcome and the usual sort of power calcu-
lation is not normally undertaken. Instead the sample
size should be adequate to estimate the critical para-
meters (e.g. recruitment rate) to the necessary degree of
precision.
Pilot trials are a version of the main study that is run

in miniature to test whether the components of the main
study can all work together [9]. It will therefore resemble
the main study in many respects, including an assess-
ment of the primary outcome. In some cases this will be
the first phase of the substantive study and data from
the pilot phase may contribute to the final analysis; re-
ferred to as an internal pilot. Or at the end of the pilot
study the data may be analysed and set aside, a so-
called external pilot [10].
For the purposes of this paper we will use the term

pilot study to refer to the pilot work conducted to esti-
mate key parameters for the design of the definitive trial.
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There is extensive but separate literature on two-stage
RCT designs using an internal pilot study [11-14].
There is disagreement over what sample size should

be used for pilot trials to inform the design of definitive
RCTs [15-18]. Some recommendations have been devel-
oped although there is no consensus on the matter. Fur-
thermore, the majority of the recommendations focus
on estimating the variability of a continuous outcome
and relatively little attention is paid to binary outcomes.
The disagreement stems from two competing pressures.
Small studies can be imprecise and biased (as defined
here by comparing the median of the sampling distribu-
tion to the true population value), so larger sample sizes
are required to reduce both the magnitude of the bias
and the imprecision. However, in general participants
measured in an external pilot or feasibility trial do not
contribute to the estimation of the treatment effect in
the final trial, so our aim should be to maintain adequate
power while keeping the total number of subjects stu-
died to a minimum. Recently some authors have pro-
moted the practice of taking account of the imprecision
in the estimate of the variance for a continuous out-
come. Several suggest the use of a one-sided confidence
interval approach to guarantee that power is at least
what is required more than 50% of the time [15,18,19].
This paper aims to provide recommendations and

guidelines with respect to two considerations. Firstly,
what is the number of subjects required in an external
pilot RCT to estimate the uncertain critical parameters
(SD for continuous outcomes; and consent rates, event
rates and attrition rates for binary outcomes) needed to
inform the design of the definitive RCT with a reasonable
degree of precision? Secondly, how should these estimates
from the pilot study be used to inform the sample size
(and design) for the definitive RCT? We shall assume that
the pilot study (and the definitive RCT) is a two-parallel-
balanced-group superiority trial of a new treatment versus
control.
For the purposes of this work we assume that the sam-

ple size of the definitive RCT is calculated using a level
of significance and power argument. This is the ap-
proach that is currently commonly employed in RCTs;
however, alternative methods to calculate sample size
have been proposed, such as using the width of confi-
dence intervals [20] and Bayesian approaches to allow
for uncertainty [21-23].

Methods
Our aim is to demonstrate the variation in estimates of
population parameters taken from small studies. Though
the sampling distributions of these parameters are well
understood from statistical theory, we have chosen to
present the behaviours of the distributions through simu-
lation rather than through the theoretical arguments as

the visual representation of the resulting distributions
makes the results accessible to a wider audience.
Randomisation is not a necessary condition for esti-

mating all parameters of interest. However, it should be
noted that some parameters of interest during the feasi-
bility phase are related to the randomisation procedure
itself, such as the rate of willingness to be randomised,
and the rate of retention or dropout in each randomised
arm. In addition, randomisation ensures the equal distri-
bution of known and unknown covariates on average
across the randomised groups. This ensures that we can
estimate parameters within arms without the need to
worry about confounding factors. In this work we there-
fore decided to allow for the randomisation of partici-
pants to mimic the general setting for estimating all
parameters, although it is acknowledged that some pa-
rameters are independent of randomisation.
We first consider a normally distributed outcome mea-

sured in two groups of equal size. We considered study
groups of from 10 to 80 subjects using increments of five
per group. For each pilot study size, 10,000 simulations
were performed. Without loss of generality, we assumed
the true population mean of the outcome is 0 and the true
population variance is 1 (and that these are the same in
the intervention and control groups). We then use the es-
timate of the SD, along with other information, such as
the minimum clinically important difference in outcomes
between groups, and Type I and Type II errors levels, to
calculate the required sample size (using the significance
thresholds approach) for the definitive RCT.
The target difference or effect size that is regarded as

the minimum clinically important difference is usually
the difference in the means when comparing continuous
outcomes for the intervention with those of the control
group. This difference is then converted to a standardised
effect size by dividing by the population SD. More details
of the statistical hypothesis testing framework in RCTs
can be found in the literature [24,25].
For a two-group pilot RCT we can use the SD estimate

from the new treatment group or the control/usual care
group or combine the two SD estimates from the two
groups and use a pooled standard deviation (SDp) esti-
mated from the two-group specific sample SDs. For
sample size calculations, we generally assume the var-
iability of the outcome is the same or equal in both
groups, although this assumption can be relaxed and
methods are available for calculating sample sizes as-
suming unequal SDs in each group [26,27]. This is
analogous to using the standard t-test with two in-
dependent samples (or multiple linear regression), which
assumes equal variances, to analyse the outcome data
compared with using versions of the t-test that do not
assume equal variances (e.g. Satterthwaite’s or Welch’s
correction).
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We assume binary outcomes are binomially distribu-
ted and consider a number of different true population
proportions as the variation of proportion estimator is a
function of the true proportion. When estimating an
event rate, it may not always be appropriate to pool the
two arms of the study so we study the impact of estimat-
ing a proportion from a single arm where the study size
increases in steps of five subjects. We considered true
proportions in the range 0.1 to 0.5 in increments of 0.05.
For each scenario and sample size, we simulated the
feasibility study at least 10,000 times depending on the
assumed true proportion. For the binary outcomes,
the number of simulations was determined by requiring
the proportion to be estimated within a standard error
of 0.001. Hence, the largest number of simulations re-
quired was 250,000 when the true proportion was equal
to 0.5. Simulations were performed in Stata version 12.1
[28] and R version 13.2 [29].

Normally distributed outcomes
For each simulation, sample variances were calculated
for each group (s21 and s22) and the pooled SD was calcu-
lated as follows:

SDp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s21 þ s22ð Þ
2

� �s
: ð1Þ

We also computed the standard error of the sample
pooled SD which is

se SDp
� � ¼ SDpffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 n−1ð Þp ⋅ ð2Þ

To quantify the relative change in precision, we com-
pared the average width of the 95% confidence intervals
(WCI2n) for the SDp for study sizes of 2n with the aver-
age width when the study size was increased to 2(n + 5).
We use the width of the confidence interval as this pro-
vides a measure of the precision of the estimate.
Given the sampling distribution of the SD, its lower

and upper 95% confidence limits are given by:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 n−1ð Þ

χ0:025;2 n−1ð Þ

s
SDp and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 n−1ð Þ

χ0:975;2 n−1ð Þ

s
SDp

 !
; ð3Þ

and the relative percentage gain in precision is quanti-
fied as the reduction in 95% confidence interval width if
the sample size is increased by five per group:

WCI2n− WCI2 nþ5ð Þ
WCI2n

� �
� 100: ð4Þ

Bias is assessed by subtracting the true value from
each estimate and taking the mean of these differences.

We also consider the impact of adjusting the SD esti-
mate from the pilot as suggested originally by Browne in
1995 [15]. Here a one-sided confidence limit is proposed
to give a corrected value. If we used the 50% one-sided
confidence limit, this would adjust for the bias in the es-
timate, and this correction has also been proposed when
using small pilots [17]. If we specify 50% confidence
then our power will be as required 50% of the time. Sim
and Lewis [18] suggest that it is reasonable to require
that the sample size calculation guarantees the desired
power with a specified level of confidence greater than
50%. For the sake of illustration, we will consider an 80%
confidence level for the inflation factor. So we require
the confidence interval limit associated with 80% confi-
dence above that value. Hence the inflation factor to
apply to the SDp from the pilot is:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 n−1ð Þ
χ0:8;2 n−1ð Þ

⋅

s
ð5Þ

To consider the impact on power and planned sample
size, we need to state reasonable specific alternative hy-
potheses. In trials, it is uncommon to see large dif-
ferences between treatments so we considered small to
medium standardised effect sizes (differences between
the group means) of 0.2, 0.35 and 0.5 [30]. For each true
effect size of 0.2, 0.35 or 0.5, we divide by the SDp esti-
mate for each replicate, and use this value to calculate
the required sample size. For each simulated pilot study,
we calculate the planned sample size for the RCT assum-
ing either the unadjusted or adjusted SDp estimated
from the pilot. Using this planned sample size (where
the SDp has been estimated) we then calculate the true
power of the planned study assuming that we know that
the true population SDp is in fact 1.

Binary outcomes
We consider that the binary outcome will be measured
for one homogeneous group only. The following is re-
peated for each true population success probability. We
examined nine true success probabilities from 0.1 to 0.5
in intervals of 0.05. We considered 41 different pilot
study sizes ranging from 10 to 200 consisting of multi-
ples of five subjects. The subscripts i and j are used to
denote the true proportion and the pilot study size,
respectively. For each simulated pilot study of size nj,
the number of successes (Yij~ Bin(nj, θi)) in the simu-

lation nj are counted. First, the observed proportions, θ̂ i ,
for each of the nine true success probabilities were calcu-
lated by:

θ̂ i ¼ Y ij

nj
: ð6Þ
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The associated 95% confidence interval was calculated
using Wilson’s score [21] given by:

θ̂ i þ z2
α=2

2nj
� zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ̂ i 1−θ̂ ið Þþz2

α=2
4nj

nj

s0
B@

1
CA

1þ z2
α=2

nj

� � ð7Þ

Second, this process was repeated for Ns (the number
of simulations needed to estimate the true success prob-
ability to within 0.1% of its standard error) and the aver-
age observed success probability for each of the nine
true success probabilities (θ) for a given fixed pilot size
were calculated as follows:

�θ i ¼ 1
Ns

XNs

k¼1
θ̂ ik ; ð8Þ

where θ̂ ik is θ̂ i for the kth simulated pilot study. Third,
due to the relatively small sample size of the pilot trials,
we computed the mean width of the 95% confidence
interval of the true success probability averaged over Ns

simulations using the Wilson’s score method [31] for a
fixed sample size, which is given by:

1
Ns

XNs

k¼1

2za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ̂ ik 1−θ̂ ikð Þ þ

z2
a=2
4nj

nj

s0
B@

1
CA

1þ z2
a=2

nj

� � : ð9Þ

The relative percentage gain in precision around the
true binomial proportion per increase of five study par-
ticipants is defined as before:

WCInj− WCInjþ5

WCInj

 !
� 100: ð10Þ

As for the continuous outcomes, bias is assessed by
subtracting the true population value from each estimate
and taking the signed mean of these. We also report the
95% coverage probability [32].

Results and discussion
Normally distributed outcomes
Figure 1 is a multiple box and whisker plot of the result-
ing distributions of the sample SDp. Under our simula-
tions the true SD is equal to 1. Figure 1 clearly shows
that the spread of the estimates reduces as the pooled
sample size increases and the distribution of the esti-
mated SDp also becomes more symmetric as the pooled
sample size increases. So the bias and skew is more
marked for smaller sample sizes. The direction of the
bias means that the SD tends to be underestimated.
Once the total sample size is above 50 the average bias
becomes negligible and is less than 0.005 below the true
value. However, what is more noticeable is the large
variation in the sampling distribution for the smaller
sample sizes and considerable sampling variation re-
mains even with a large sample size.
Figure 2 shows the percentage gain in precision (the

width of the confidence interval for the SDp) when add-
ing ten more participants to the sample (five to each

Figure 1 Multiple box and whisker plot of SDp estimates by pooled sample size of the pilot study. The vertical axis shows the value of
the SDp estimate for 10,000 simulations per pilot study size. The horizontal axis is graduated by the pooled pilot study size.
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group). Precision increases with sample size, however,
the relative gain in precision (while always positive) de-
creases with increasing sample size. With a total sample
size of 70, there is a less than 10% gain in precision
when adding further participants to the study size. So in
terms of good precision and minimal bias (for a continu-
ous outcome) a total sample size of 70 seems desirable
for a pilot study.
Figure 3 shows the distribution of true power for the

planned sample sizes for the specific alternative effect

size of 0.2, assuming we require 90% power at the 5%
two-sided significance level. The true power distribution
for the other effects sizes is very similar (it can be shown
that conditional on the estimated SD from the pilot, the
distributions should be the same but rounding up to in-
tegers causes slight changes at small sample sizes). As
anticipated, this figure shows a large variation in power
for the smaller sample sizes. However, even with the
relatively small pilot sample size of 20, the planned stud-
ies do have at least 80% power to detect the target effect

Figure 2 Percentage gain in precision of SDp on increasing the pooled sample size. This shows the relative reduction in the average width
of the confidence interval when an additional five subjects are added to a group.

Figure 3 Distribution of planned RCT study power when using the SDp estimate derived from the pilot study. The planned study size is
used to calculate the true power if SD = 1 is assumed. The graph shown is for a true effect size of 0.2. The vertical axis is true power. The x-axis
shows the size of the two-arm pilot study.
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Figure 4 (See legend on next page.)
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size (when we have stated we desire 90% power) more
than 75% of the time. Figure 3 also shows that the true
power frequently exceeds 90% but the cost of this higher
power in terms of total participants cannot be quantified
from this figure. By contrast Figure 4 is able to show the
‘cost’ of the higher power translated into the sample size
scale.
Figure 4 shows the distribution of the planned sample

size when using the estimated SDp from the pilot (with
and without inflation of the SDp). It can be seen that the
overall shape of these plots is similar for all three effects
sizes, but the planned sample sizes are proportionately
higher as the effect size reduces. Figure 4a shows the
sample size (for a true difference between the means of
0.2) using the unadjusted SDp (upper plot) and the in-
flated SDp (lower plot). Using the inflated SDp means we
have specified that we want our planned study to have
90% power with 80% confidence or certainty. By com-
paring these two plots and superimposing the sample
size of 1,052, which is what we would actually need to
detect an effect size of 0.2 with 90% power and 5% two-
sided significance when the true SD is known to be
equal to 1, you can readily see the effect of the infla-
tion factor. Figures 4b,c present the same contrasts as
Figure 4a but for a true difference between the means of
0.35 and 0.5, respectively. The main impact of the infla-
tion factor is to guarantee that 80% of the planned stu-
dies are in fact larger than they need to be, and for the
smaller pilots this can be up to 50% larger than neces-
sary. If only the unadjusted crude estimates from the
pilot are used to plan the future study, though we aim
for at least 50% of studies to be powered at 90%, inspec-
tion of the percentiles shows that that the planned sam-
ple size delivers at least 80% power with 90% confidence,
when a pilot study of at least 70 is used. Researchers
need to consider carefully the minimum level of power
they are prepared to tolerate for a worst-case scenario
when the population variance is overestimated.
Figure 5 adds the size of the pilot study to the planned

study size so the distribution of the overall number of
subjects required can be seen. The impact of the infla-
tion factor now depends on the true effect size. If we are
planning to use the inflation factor then when the effect
size is 0.5 a pilot study of around 30 is optimal. How-
ever, the same average number of subjects would result
using unadjusted estimates from a pilot study of size 70,
and this would result in a smaller variation in planned

study size. For the effect size of 0.2 then the optimal
pilot study size if applying the inflation factor is around
90, but this optimal size still results in larger overall
sample sizes than just using unadjusted estimates from
pilot studies of size 150.

Binary outcomes
The sampling distribution when estimating a proportion
is a function of the true population proportion so it
seems unwise to estimate this from a pooled group un-
less it is a measure independent of treatment group and
there is a strong assumption of equality between groups.
We have explored the sampling distributions of the pro-
portions in increments of five rather than ten as we
allow the possibility that this may be estimated from one
arm. As statistical theory predicts the sampling variation
is largest when the true proportion is 0.5 and reduces as
the true proportion becomes more different from 0.5,
we show the results for the two most extreme propor-
tions considered, i.e. 0.1 and 0.5 (Figure 6). When the true
proportion is 0.1 the sampling distribution is slightly
skewed with a tendency to underestimate the true value
even when uneven pilot arm sizes are used. However,
when the true proportion is 0.5 there is no systematic bias
in under- or overestimating the parameters from the pilot.
Most of the fluctuation is due to deriving estimates from a
sample size where the true proportion is not a possible
outcome (e.g., if the true proportion is 0.5 but the sample
size is 25, then the closest you can observe to the true
value is 12/25 or 13/25). Once the pilot sample size is 60
or more then these fluctuations settle down. The relative
percentage gain in the precision of estimates is formally
presented in Figure 7, where the average width of the 95%
confidence intervals for the proportion are compared with
the average confidence interval width if another five sub-
jects were added to the sample. This relative percentage
gain in precision is shown for true proportions 0.1 and
0.5. For the continuous outcomes we suggested a cut-off
of 10% as a threshold. For the binary outcomes we use the
5% threshold as we are moving in steps of five rather than
ten. The relative percentage gain in the precision graph
crosses the 5% threshold when the sample size is 55 to 60
and crosses the 3% threshold when the sample size is 100.
Figure 8 shows the coverage probability for five of the true
proportions as sample size increases. This shows how
frequently the 95% confidence interval contains the true
value. This graph shows considerable fluctuations. Once

(See figure on previous page.)
Figure 4 Distribution of planned sample sizes using crude SDp estimates and adjusting for a specified level of confidence. (a) Effect
size = 0.2. (b) Effect size = 0.35. (c) Effect size = 0.5. The upper part of each graph shows the distribution of planned sample sizes by pilot study
size. The lower part shows the same but using the inflation adjustment to guarantee the specified power with 80% confidence. The x-axis shows
the planned sample size and the vertical axis shows the pilot study size. The dashed vertical line shows the sample size associated with a true
power of 90% and the dotted line for 80%.
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Figure 5 (See legend on next page.)
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the sample size is 100 there is very little perceptible im-
provement in the coverage probability for the true propor-
tions considered here.

Conclusions
Our simulated data visually demonstrate the large sam-
pling variation that is the main weakness when estimating
key parameters from small sample sizes. Small samples

sizes do lead to biased estimates, but the bias is negligible
compared to the sampling variation. When we examine
the relative percentage gain in precision by adding more
subjects to the sample, our data suggest that a total of at
least 70 may be necessary for estimating the standard
deviation of a normally distributed variable with good
precision, and 60 to 100 subjects in a single group for
estimating an event rate seems reasonable. Treatment-

(See figure on previous page.)
Figure 5 Distribution of total sample size required when using pilot sample derived SDp estimated with and without inflation. (a)
Effect size = 0.2. (b) Effect size = 0.35. (c) Effect size = 0.5. This figure is similar to Figure 4; however, now the total sample size includes the pilot
study size. The dashed and dotted vertical lines represent the sample size required for 90% and 80% power, respectively, if the true SD were
known and the pilot study were not necessary.

Figure 6 Distribution of estimated event rates on increasing sample size. Distributions for a true event rate of 0.1 (a) and a true event
rate of 0.5 (b).
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independent parameters may be estimated by pooling the
two groups, so in many cases our recommended sample
size will be the total sample size. On average when the de-
finitive RCT is planned using an estimate from a pilot
study there will be a tendency for the planned study to be
underpowered. However, if the definitive RCT is planned
for a continuous outcome requiring a power of 90% then
the true power will be 80% with at least 76% assurance
provided the estimates come from a pilot with at least 20
subjects. We considered three realistic effect sizes of 0.2,
0.35 and 0.5 of a standard deviation to evaluate the impact

of adjusting for the anticipated uncertainty in the estimate
from the pilot when calculating the sample size for the
planned RCT as was recently suggested [18]. For all of the
effect sizes considered, it is not efficient to use small pilots
and apply the inflation adjustment, as this will result in
larger sample sizes (pilot plus main study) in total. Further,
we only considered sample sizes planned when requiring
90% power, and examine the conditional power assuming
we know the true alternative. On average using imprecise
estimates but requiring high power will result in ac-
ceptable power with much less ‘cost’ as measured by total

Figure 7 Distribution of relative gain in precision for binary outcomes as pilot study size increases. This graph compares the width of the
confidence intervals for n + 5 subjects and n subjects. This is scaled by the width of the interval when there are n subjects.

Figure 8 Distribution of mean coverage probability by true proportion and pilot sample size.
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sample size. Hence, it is actually more efficient to use a
large external pilot study to reduce the variation around
the target power for the definitive RCT.
The implication of using estimates of key parameters

from small pilot studies is the risk of both over- and
underpowered studies. While overpowered studies may
not seem such an acute problem, they are potentially a
costly mistake and may result in a study being judged as
prohibitively large. This would seem to be an argument
in favour of utilising internal pilot studies, but an in-
ternal pilot requires the key design features of the trial
to be fixed, so any change in measurement of the treat-
ment effect following an internal pilot will lead to ana-
lysis difficulties.
A major and well-documented problem with published

trials is under recruitment, where there is a tendency to
recruit fewer subjects than targeted. One reason for un-
der recruitment may well be that event rates such as re-
cruitment and willingness to be randomised cannot be
accurately estimated from small pilots, and in fact in-
creasing the pilot size to between 60 and 100 per group
may give much more reliable data on the critical recruit-
ment parameters.
In reality, when designing external pilot trials, there is

a need to balance two competing issues: maximising the
precision (of the critical parameters you wish to esti-
mate) and minimising the size of the external pilot trial,
which impacts on resources, time and costs. Thus there
is a trade-off between the precision (of the estimates of
the critical parameters) and size (number of subjects) of
the pilot study. When designing external pilot trials, re-
searchers need to understand that they are trading off
the precision of the estimates against the total sample
size of the definitive study when they decide to have an
external pilot study with a small sample size.
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The statistical interpretation of pilot trials: should
significance thresholds be reconsidered?
Ellen C Lee†, Amy L Whitehead†, Richard M Jacques† and Steven A Julious*†

Abstract

Background: In an evaluation of a new health technology, a pilot trial may be undertaken prior to a trial that
makes a definitive assessment of benefit. The objective of pilot studies is to provide sufficient evidence that a larger
definitive trial can be undertaken and, at times, to provide a preliminary assessment of benefit.

Methods: We describe significance thresholds, confidence intervals and surrogate markers in the context of pilot
studies and how Bayesian methods can be used in pilot trials. We use a worked example to illustrate the issues raised.

Results: We show how significance levels other than the traditional 5% should be considered to provide preliminary
evidence for efficacy and how estimation and confidence intervals should be the focus to provide an estimated range
of possible treatment effects. We also illustrate how Bayesian methods could also assist in the early assessment of a
health technology.

Conclusions: We recommend that in pilot trials the focus should be on descriptive statistics and estimation, using
confidence intervals, rather than formal hypothesis testing and that confidence intervals other than 95% confidence
intervals, such as 85% or 75%, be used for the estimation. The confidence interval should then be interpreted with
regards to the minimum clinically important difference. We also recommend that Bayesian methods be used to assist
in the interpretation of pilot trials. Surrogate endpoints can also be used in pilot trials but they must reliably predict the
overall effect on the clinical outcome.

Keywords: Pilot trial, Power, Type I error, Confidence interval, Significance, Bayesian methods

Background
In an evaluation of a new health technology, a pilot trial
may be undertaken prior to a definitive trial that makes
a definitive assessment of benefit. The main objective of
a pilot trial is to provide sufficient assurance to enable a
larger definitive trial to be undertaken. For example, they
may assess aspects such as recruitment rates or whether
the technologies can be implemented.
Pilot studies are more about learning than confirming:

they are not designed to formally assess evidence of
benefit. As such, for clinical endpoints, rather than for-
mal hypothesis testing to prove definitively there is a re-
sponse, it is usually more informative to provide an
estimate of the range of possible responses [1,2]. This es-
timation may not be around the primary endpoint for
the definitive study but could be on a surrogate or an

early assessment of an endpoint which may be assessed
at a later time point in the definitive study [3].
In this paper we present and discuss approaches to-

wards significance thresholds and confidence interval
levels in pilot studies. The methods are divided into
three main sections. In the first, we provide alternatives
to hypothesis testing using the conventional 5% signifi-
cance level. We then discuss the use of surrogate out-
comes in pilot studies. Finally, a Bayesian approach to
significant thresholds is introduced. Throughout the
paper we use a worked example to provide illustration
to the methods discussed.

Methods and results
Significance and confidence levels
Pilot studies are not formally powered to assess effect.
However, it may be of interest to calculate confidence
intervals to describe the range of effects, even if this is
not a conventional 95% confidence interval. In this
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section we give a rational for confidence interval estima-
tion and “hypothesis testing” in pilot studies.

Significance levels and power calculations
Pilot studies are usually underpowered to achieve statis-
tical significance at the commonly used 5% level. Despite
recommendations that formal significance levels are not
provided for pilot studies, [4,5] many still quote and in-
terpret P-values. In a survey of pilot studies published in
2007–8, Arain et al. [6] found that 81% (21/26) of pilot
studies performed hypothesis tests in order to comment
on the statistical significance of results. If the primary
purpose of a pilot study is to provide preliminary evi-
dence of the efficacy of an intervention, then the signifi-
cance level can be increased for hypothesis testing [7].
Stallard [8] recommends that the design for a phase II
trial is based on a one sided Type I error rate of α = 0.2.
Whilst Schoenfeld [9] proposed a higher type I error rate
for preliminary testing in pilot trials; up to a (one sided)
α = 0.25. In studies other than drug trials, setting and
personnel may not be representative of a future main
trial: A pilot trial might see a greater treatment differ-
ence due to protocol adherence and enthusiasm in the
pilot centre, which might not be replicated in a multi-
centre trial. Nevertheless, the pilot may still be under-
powered for a traditional 5% significance threshold.
It should be noted that in the context of a pilot study a

Type I error would have a different impact. For a defini-
tive study, a Type I error would mean therapies or health
technologies falsely being concluded as beneficial. As
such, in this context they would be referred to as societies
risk – such that the wish is to have a Type I error as low
as possible. For a pilot study the impact of a Type I error
is that a definitive study may falsely be undertaken.
Although there is a consequence for patients in the trial –
being randomised to therapies when there is equipoise –
the impact of this false positive error could be in the main
on the sponsor or funder i.e. sponsors spend more money
and resources on the ‘wrong’ study that will not result in a
true effect/benefit from the new technology.
The aim of a pilot study, therefore, is to inform both

the decision whether to conduct a confirmatory study
and the design of the larger confirmatory trial. Any
interpreted P-values in a pilot study should be with a
disclaimer that the study is not adequately powered
[10,11]; and while post hoc power calculations are pos-
sible [11] they are generally not advisable [12]. Instead,
estimation and confidence intervals should be used to
infer the size and direction of treatment effect.

Confidence intervals
It is recommended in pilot trials that the focus is on
descriptive statistics and estimation rather than formal
hypothesis testing [4]. A confidence interval for the

treatment effect will inform the decision, amongst other
factors, whether or not to perform a confirmatory trial.
The confidence interval should be interpreted with
regards to the minimum clinically important difference
(MCID) [12]; this is the difference between treatment
groups that is considered to be clinically meaningful,
specified a priori. If a confidence interval for the treat-
ment difference crosses zero and the MCID, then the re-
sults of the pilot study could be considered to be
equivocal. There could be no difference between treat-
ments, or there could be a difference larger than the
MCID; the results would not preclude either possibility.
This approach is superior to formal hypothesis testing as
there is insufficient power to test hypotheses, and its
focus on the MCID will help inform the main confirma-
tory trial. Interpreting confidence intervals this way also
helps investigators visualise the evidence of effect from
the pilot trial.
It is common to report the 95% confidence interval

which corresponds to a 5% significance level. In a pilot
study, without adequate power, we can consider investi-
gating confidence intervals of different widths to help in-
form our decision making, these can then be displayed
alongside each other to illustrate the strength of prelim-
inary evidence. We suggest setting minimum prior re-
quirement; that the mean treatment difference is above
zero, and that a CI of a certain length includes (or is
above) the MCID.

Worked example
The Leg Ulcer Study was a randomised controlled trial
designed to investigate the relative cost effectiveness of
community leg ulcer clinics that use four layer com-
pression bandaging versus usual care provided by dis-
trict nurses [13,14]. In the trial 233 patients with
venous leg ulcers were allocated at random to the inter-
vention (120) or control (113) group. The SF-36 ques-
tionnaire was completed at baseline, three and twelve
months post randomisation. For this example we inves-
tigate the SF-36 General Health (GH) dimension score.
The GH dimension is scored on a 0 (poor) to 100 (good
health) scale.
We assume that 3 month data for the first 40 patients

is the pilot study data. There were 31 individuals with
complete 3 month SF-36 GH dimension data (17 in
treatment group and 14 in control group).
Note missing data on 22.5% (9/40) patients is quite

high and may be considered unacceptable for a main
study. In actuality for this trial there was just 14% (29/
230) of missing data for the SF-36 data [15]. For our
data we may well have observed a randomly high num-
ber. If this was a true pilot study then a missing data rate
of 22.5% may need some investigation. There are statis-
tical methods for accounting for missing data [16].
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However, the only solution to missing data is not to have
any. After a pilot study, measures to ensure complete
data would need to be investigated to bring the level of
missing data to an acceptable level.
We take the minimum clinically important difference

to be a 5 point difference in SF-36 GH dimension scores
at 3 months post-randomisation; we assume a standard
deviation of 20 points. Without seeing the actual trial re-
sults, with 40 individuals, there would be 20% power to
detect a 5 point or more difference between the groups
if it truly existed which is clearly underpowered by con-
ventional standards. Thus, for such a trial it would be
more appropriate to estimate possible effects rather than
have formal hypothesis tests.
Table 1 displays the results comparing the mean SF-36

GH dimension scores between the home (control) and
clinic (intervention) group. The mean difference was
found to be 12.8, which is statistically significant at the
10% but not 5% level; there is some evidence of a differ-
ence in SF-36 GH dimension between groups. If the sig-
nificance level was set to 10%, there would be sufficient
preliminary evidence of a treatment difference and this
would lead onto a full-scale study.
The leg ulcer randomised controlled trial reported in

1998 obtained appropriate ethics committee approvals
[14]. The use of the data from this trial for the work pre-
sented in this paper has been approved by School of
Health and Related Research (University of Sheffield)
ethics as secondary analysis of anonymised data.
Figure 1 shows a range of confidence intervals for the

mean difference in SF-36 GH scores between the treat-
ment groups. The 95% CI crosses both 0 and the MCID,
this gives inconclusive evidence. The 80% and 90% con-
fidence intervals both exclude 0 and cross the MCID, at
these levels there is evidence of a treatment difference
which is potentially clinically important. A confidence
interval of 75% and smaller would be wholly above or
equal to the MCID, suggesting at this level that there is
a clinically meaningful difference in SF-36 General
Health between the groups.

Outcomes
The NIHR Evaluation, Trials and Studies Coordinating
Centre (NETSCC) describes a pilot study as a smaller
version of the main trial, designed to test whether com-
ponents of the main study can all work together as well
as a preliminary assessment of clinical efficacy. This

screening function of pilot studies requires a preliminary
evaluation of treatments. Therefore, using the definitive
clinical endpoint during a pilot trial may not always be
viable. There may be times when measuring the clinical
endpoint is not efficient [17]. For example, if the clinical
endpoint is the five year survival rate, then an assess-
ment of disease progression or tumour shrinkage may
be assessed in the pilot. Such endpoints would be used
as surrogates for the definitive endpoint. We will now
discuss surrogates in more detail [18].

Surrogate endpoints
In the situations described above an investigator may
consider using an endpoint other than the clinical end-
point; a surrogate endpoint. ICH E9 [19] defines a surro-
gate endpoint as

‘A variable that provides an indirect measurement of
effect in situations where direct measurement of
clinical effect is not feasible or practical’.

Using a surrogate endpoint can reduce the required
sample size or the duration of the trial compared to
using the clinical endpoint. This leads to cost reductions
which may be crucial for trial feasibility [18]. For an
endpoint to be considered a surrogate the relationship
between it and the clinical outcome must be biologically
plausible. In addition, the surrogate must have demon-
strable prognostic value for the clinical outcome and
there must be evidence from clinical trials that treatment
effects on the surrogate outcome correspond to treat-
ments effects on the clinical outcome [19].

The risks involved when using surrogate endpoints
When an aim of a pilot study is to estimate design pa-
rameters, using a surrogate endpoint may mean we do
not get precise estimates. For example, designing the
study based on the surrogate may mean having sub opti-
mal information to estimate the variance of the clinical
endpoint or an assessment at an earlier time point. This
may mean we do not get an accurate estimate of attri-
tion rates.
A surrogate endpoint must reliably predict the overall

effect on the clinical outcome [20]. Otherwise it would
be possible to wrongly reject effective treatments or
take ineffective treatments through to further testing. If
a surrogate does predict clinical benefit it could mean
treatment benefits can be brought to patients earlier
than if clinical outcomes were used and possibly at a
lower cost [21].

Worked example revisited
Using the same data set as in the previous example we
now look at the 12 month SF-36 general health (GH)

Table 1 Results from the pilot study comparing 3-month
SF-36 GH dimension scores

Mean SF-36 GH dimension score

Clinic (n = 17) Home (n = 14) Difference (95% CI) P-value

68.0 (sd = 17.6) 55.1 (sd = 19.8) 12.8 (−0.8 to 26.6) 0.065
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dimension data for the main trial. There were 233
people in the study in total, 155 with complete SF-36
GH dimension data and 78 observations were recorded
as missing. From the 155 observed outcomes 80 were in
the clinic group and 75 were in the home or control
group – note we had 23% attrition at 3 months com-
pared to 31% at 12 months. Such considerations may be
important when trying to design a definitive trial.
Table 2 presents the results from comparing the mean

SF-36 GH dimension scores between home and clinic
groups. The mean difference was 3.33 which is not sig-
nificant at the 5% level. The original presentation of
these results in 1998 stated that they observed a general
deterioration of health status over time, with no differ-
ence between the two groups [14].
In the previous worked example we envisaged that the

pilot trial had 40 patients and measured the 3-month
GH dimension score. Using a significance level of

10% we would have proceeded to the main trial. The
3-month GH dimension score is now considered as a
surrogate endpoint to the clinical outcome of 12-month
GH dimension score. If we used a significance level of
5% to assess the clinical outcome, the difference be-
tween the groups is not statistically significant. Using
the 3-month endpoint in the pilot study and a lower sig-
nificance level would cause us to proceed to the main
trial after the pilot study only to observe no significant
difference between the two groups in the main study. It
could be a Type I error which would lead us to the main
study or it could be due to the treatment having no long
term efficacy – for example the intervention may have a
short term benefit which does not last for 12 months.
The ‘large’ effect of 12.8 points in the first 40 patients at
3 months has not been replicated at 12 months in the
full study.

Bayesian methods
The Bayesian framework offers an alternative approach
to the Frequentist significance levels and confidence in-
tervals discussed in the previous section. It allows prior
beliefs about the intervention to be combined with the
observed data to form posterior responses about the

Figure 1 Mean difference in SF-36 GH dimension scores between treatment and control with confidence intervals (based on
n = 31 patients).

Table 2 Results from main trial comparing 12-month GH
dimension scores

Clinic (n = 80) Home (n = 75) Difference (95% CI) P-value

56.0 (sd = 22.8) 52.7 (sd = 23.9) 3.3 (−4.1 to 10.8) 0.377

Mean SF-36 GH dimension score.
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outcome of interest. These posterior responses can then
be used to inform decisions about whether a larger de-
finitive trial should be undertaken. One approach to
making a decision about the intervention is to use a pre-
specified Go/No-Go criteria.

Go/No-Go criteria
Julious et al. [22] define a Go/No-Go decision as a hur-
dle in a clinical development path to necessitate further
progression or otherwise of a health technology. These
hurdles can be set low or high depending on the stage of
development of the intervention.
At the planning stage of a pilot study there are a num-

ber of decisions that need to be made about how Go/No-
Go criteria are defined. The first concerns the metric that
is going to measure success or failure. Julious and Swank
[23] suggest a method of calculating a probability of suc-
cess for different development plans based on decision
trees and Bayes’ Theorem. They take into account the
study team’s confidence (expressed as a probability) that
the intervention will meet the safety and efficacy targets
for success, and then calculate the probability that each
part of the clinical assessment will correctly indicate that
the health technology works or does not work.
Chuang-Stein et al. [24] suggest that a good metric is

the probability that there will be a successful confirmatory
trial outcome. This is also called assurance by O’Hagan
et al. [25] or average power by Chuang-Stein [26] and is
used in Bayesian sample size calculations for confirmatory
trials. The method that we describe here in detail uses
prior beliefs and the data collected from the pilot study to
calculate the probability of detecting a clinically meaning-
ful difference. This method has previously been described
by Julious et al. [22] for binary and Normal outcomes, and
Parmar et al. [27] for survival outcomes.
The second decision concerns the cut-off or level of

the criteria. For example, do we want to be 70% or 80%
sure that a confirmatory trial will show a minimum clin-
ically meaningful difference? With a pilot study, criteria
could be set to minimise the probability of a false posi-
tive, (i.e. minimising the probability of progressing an
intervention that will fail in a confirmatory trial) but if
the goal is set too high then this will increase the prob-
ability of a false negative (i.e. stopping an intervention
that works from going to a confirmatory trial) [22].
Other factors may also influence the choice of criteria,
for example, the sponsor of a drug trial may be more
willing to accept an incorrect go decision rather than an
incorrect no-go decision if the new treatment is the first
in class rather than one of several drugs in class [24].

Prior distributions
As with all Bayesian methods, prior distributions have to
be specified for the parameters that we are interested in

making inference about and this leads to the question of
how these distributions are defined. The simplest ap-
proach is to use a non-informative prior. In this case the
results will be similar to the Frequentist analysis because
all of the information is coming from the observed re-
sponse. Alternatively, a prior can be elicited based on ex-
pert knowledge of the intervention. This may, for
example, be based on the synthesis of evidence from
previous studies of the same or similar interventions as
suggested by Chuang-Stein et al. [24]. Other elicitation
techniques including the elicitation from multiple ex-
perts are discussed in Spiegelhalter et al. [28].
With a large sample size for the pilot study the poster-

ior distribution will be robust to changes in the prior
[29]. However, sample sizes in pilot studies are typically
small - in a literature survey by Arain et al. [6] the me-
dian number of participants was 76 - and therefore an
informative prior distribution may have a large influence
on the posterior distribution. We illustrate in our ex-
ample that caution should be taken when specifying a
prior distribution for a pilot study, as different priors
may lead to different interpretations of the results.

Probability of detecting a clinically meaningful difference
We now outline one possible method for calculating the
probability of detecting a clinically meaningful difference
for data that are anticipated to take a Normal form. In
the context of a Go/No-Go criteria we need to deter-
mine the probability of observing a difference, di, or
greater given that dpilot has already been observed, i.e.
prob(θ > di | dpilot) where θ is the mean difference.
For Normal data of the form X1,X2,…,Xn ~ N(θ, σ2) we

wish to make inference about θ for given σ2. In this case
the Normal family is conjugate and we have the follow-
ing prior θ ~N(μprior, σprior

2 ). Note that other distribu-
tions may be used for the prior. The Bayesian updating
rules can then be defined as follows.
Prior values for the mean difference and population

standard deviation are defined as dprior and sprior respect-
ively. The observed mean difference and population
standard deviation from the pilot data are defined as

dpilot and spilot respectively. Hence S1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r þ 1ð Þ=rnp

is an
estimate of the standard deviation around the mean
where r is the allocation ratio between groups and n is
the number of individuals per arm.
The posterior distribution is calculated through a

weighted sum of the prior and observed responses. The
posterior estimate of the mean difference, dpost, is de-
fined as

dpost ¼ s2post
dprior

s2prior
þ dpilotrn
s2pilot r þ 1ð Þ

 !
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and the posterior estimate of the variance around the
mean, s2post , is defined as

S2post ¼ rn
s2pilot r þ 1ð Þ þ 1

s2prior

 !−1

:

From these posterior values a density distribution for
prob(θ > di | dpilot) can be defined so that the probability
of observing a difference, di, or greater, for a given dpost
would be

prob θ > di dpilot

�� � ¼ Φ di−dpost

spost

� �
:

�

Worked example revisited with bayesian approach
Using the same leg ulcer data as described previously,
we demonstrate how to calculate the probability that the
mean difference in SF-36 GH dimension scores at
3 months post randomisation is greater than the mini-
mum clinically important difference of five points. This
question may also be stated in terms of a ‘Go’ criteria,
for example:

Are we at least 75% sure of having a mean difference
in SF-36 GH dimension that is greater than the mini-
mum clinically meaningful difference of five points at
3 months post randomisation.

For the expository purpose of this exercise we will
consider the following three Normally distributed priors:

� Non-informative
� Pessimistic prior, with a mean difference of 4 and

90% certainty that the mean difference is within −1
and 9.

� Optimistic prior, with a mean difference of 7 and
90% certainty that the mean difference is within 4
and 10.

Table 3 displays the posterior mean, posterior standard
deviation, and the probability that the mean difference
in SF-36 GH dimension score is greater than the mini-
mum clinically meaningful difference of 5 points for our

examples of a non-informative, pessimistic and optimistic
prior distribution. When using both the non-informative
and the optimistic prior the probability of achieving a clin-
ically meaningful difference is greater than our pre-set
threshold of 75%.
Figure 2 shows the prior, observed, and posterior distribu-

tions for each of our three examples. The non-informative
prior has no influence on the posterior distribution and the
95% credibility interval for the posterior mean difference is

Table 3 Posterior means, standard deviations and the
probability of observing a clinically meaningful effect
size of greater than 5 for non-informative, pessimistic
and optimistic priors

Prior Posterior mean Posterior SD P(>5)

Non-Informative 12.9 6.7 0.88

Pessimistic 5.5 2.8 0.58

Optimistic 7.4 1.8 0.91
Figure 2 Prior, observed and posterior distributions for non-
informative, pessimistic and optimistic priors.
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the same as 95% confidence interval found previously (−0.8
to 26.6). In the case of the pessimistic and optimistic priors
the posterior distribution is heavily influenced by the choice
of prior because the observed data has such a small sample
size. This emphasises that caution is required when specify-
ing a prior distribution for pilot studies.
It could be argued that a Bayesian approach is appeal-

ing as it formally accounts for any related work (and/or
of beliefs held by investigators) by setting priors before
the start of a study [22]. Once the trial has been com-
pleted, the observed data are combined with the priors
to form a posterior distribution for the treatment re-
sponse. The interpretation is then through a measure
that is more easily understood – in our example what is
the probability that the response is greater than 5.

Discussion
This paper has demonstrated a variety of approaches to-
wards significance thresholds in pilot studies. When
undertaking a pilot investigation, it was shown how sig-
nificance levels other than the “traditional” 5% should be
considered to provide preliminary evidence for efficacy.
It was highlighted how estimation and confidence inter-
vals should be focused on in order to provide an esti-
mated range of possible treatment effects.
Interpreting confidence intervals with respect to the

minimum clinically important difference should be con-
sidered. Investigating several confidence intervals of dif-
ferent widths and displaying them as in Figure 1 can aid
decision making and is a helpful way of displaying evi-
dence in pilot studies. Minimum prior requirements
can be set and used in addition to the graphical display
to help illustrate the strength of preliminary evidence.
However, caution must be taken when using a surrogate
outcome in pilot studies as it must reliably predict the
clinical endpoint.
Bayesian methods could also assist in the early assess-

ment of a health technology. Pilot data can be combined
with prior beliefs in order to calculate the probability that
there will be a successful confirmatory trial outcome. This
can be framed into a Go/No-Go hurdle such as; are we at
least 75% sure of having a mean difference larger than the
minimum clinically meaningful difference. We demon-
strated how care must be taken when choosing a prior
distribution; the posterior distribution can be heavily
influenced by the choice of prior as pilot data usually
has a small sample size.

Conclusions
We recommend that in pilot trials the focus should be
on descriptive statistics and estimation, using confidence
intervals, rather than formal hypothesis testing. We fur-
ther recommend that confidence intervals in addition to
95% confidence intervals, such as 85% or 75%, be used

for the estimation. The confidence interval should then be
interpreted with regards to the minimum clinically im-
portant difference and we suggest setting minimum prior
requirements. Although Bayesian methods could assist in
the interpretation of pilot trials, we recommend that they
are used with caution due to small sample sizes.
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Abstract

Background: There is little published guidance as to the sample size required for a pilot or feasibility trial despite
the fact that a sample size justification is a key element in the design of a trial. A sample size justification should
give the minimum number of participants needed in order to meet the objectives of the trial. This paper seeks to
describe the target sample sizes set for pilot and feasibility randomised controlled trials, currently running within
the United Kingdom.

Methods: Data were gathered from the United Kingdom Clinical Research Network (UKCRN) database using the
search terms ‘pilot’ and ‘feasibility’. From this search 513 studies were assessed for eligibility of which 79 met the
inclusion criteria. Where the data summary on the UKCRN Database was incomplete, data were also gathered from:
the International Standardised Randomised Controlled Trial Number (ISRCTN) register; the clinicaltrials.gov website
and the website of the funders. For 62 of the trials, it was necessary to contact members of the research team by
email to ensure completeness.

Results: Of the 79 trials analysed, 50 (63.3%) were labelled as pilot trials, 25 (31.6%) feasibility and 14 were
described as both pilot and feasibility trials. The majority had two arms (n = 68, 86.1%) and the two most common
endpoints were continuous (n = 45, 57.0%) and dichotomous (n = 31, 39.2%). Pilot trials were found to have a
smaller sample size per arm (median = 30, range = 8 to 114 participants) than feasibility trials (median = 36, range =
10 to 300 participants). By type of endpoint, across feasibility and pilot trials, the median sample size per arm was
36 (range = 10 to 300 participants) for trials with a dichotomous endpoint and 30 (range = 8 to 114 participants) for
trials with a continuous endpoint. Publicly funded pilot trials appear to be larger than industry funded pilot trials:
median sample sizes of 33 (range = 15 to 114 participants) and 25 (range = 8 to 100 participants) respectively.

Conclusion: All studies should have a sample size justification. Not all studies however need to have a sample size
calculation. For pilot and feasibility trials, while a sample size justification is important, a formal sample size
calculation may not be appropriate. The results in this paper describe the observed sample sizes in feasibility and
pilot randomised controlled trials on the UKCRN Database.
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Background
The National Institute of Health Research Evaluation,
Trials and Studies Coordinating Centre (NETSCC) de-
fines a pilot trial for a randomised controlled trial (RCT)
as ‘a version of the main study…run in miniature to test
whether the components of the study can all work
together’ and a feasibility study for an RCT as ‘research
done before a main study to answer the question “Can
this study be done?”. [1] However, whilst some authors,
including Arain et al. [2] recommend these definitions,
in truth there is no consensus. Stallard [3] reports a rea-
son for this as being in part, due to the wide variety of
purposes for which pilot trials are undertaken.
Thabane et al. [4] give a number of reasons as to why

pilot trials may be conducted. They state that con-
ducting a pilot trial before a main study can increase the
likelihood that the main study will be a success, and may
potentially help to avoid ‘doomed’ main trials. They also
state that in many cases, pilot trials are performed in
order to generate data for sample size calculations in the
main study.
Prescott and Soeken [5] meanwhile, suggest five pilot

trial aims based on a review of then-current nursing re-
search text books including: a feasibility assessment; ad-
equacy of instrumentation and answering methodological
questions.
To address the aims of a pilot trial a sample size justi-

fication is required. Hertzog [6] highlights that there is
little published guidance on for a pilot trial sample size.
However, when applying for funding for a pilot trial, a
review panels would expect a justification for the
planned sample size. This justification could be based on
a number of methods:

� Hertzog [6] recommends the Julious and Patterson
[7] method of using confidence intervals for a given
precision constructed around the anticipated value
to set the sample size;

� Stallard [3] proposes that the sample size should be
approximately 0.03 times that the sample size
planned to be included in the definitive study;

� Browne [8] gives a general rule is to take a
minimum of 30 patients to estimate a parameter;

� Julious [9] recommends a minimum sample size of
12 per group as a rule of thumb and justifies this
based on rationale about feasibility and precision
about the mean and variance;

� Sim and Lewis [10] suggest a sample size of at least
50 per group.

Setting an appropriate sample size for any study is im-
portant. If a study is too large it may be judged to be un-
ethical as participants may be unnecessarily exposed to
risks and burdens [11]. There is the additional issue that

setting the sample size too high may lead to a prevent-
able failure to reach the recruitment target [12]. While
Julious [9] highlights that a sample size that is too small
will have an imprecisely estimated variance, which could
impact on the design of a future definitive study.
This paper aims to build on the work of Lancaster

et al. [12] who reviewed pilot trials published from 2000
to 2001 in seven major journals and Arain et al. [2] who
revisited the same seven journals from 2007 to 2008 to
see if there had been any change in how pilot trials were
reported.
Arain et al. [2] concluded that pilot trials are poorly

reported and that the authors are often not explicit as to
the purpose of their pilot trial. They also found that
sample size calculations were only performed and
reported in 35% of the trials and that those identified
using the key word ‘pilot’ were more likely to have a
pre-study sample size calculation.
Using data from the United Kingdom Clinical Research

Network (UKCRN) Database we extend the work of
Lancaster et al. [12] and Arain et al. [2] by investigating
the sample size of pilot and feasibility trials for RCTs cur-
rently running in the United Kingdom (UK). The aim was
to investigate on-going sample sizes for pilot/ feasibility
trials in the UK. Although as discussed, there are defini-
tions of pilot and feasibility available, we recognise that in
reality the terms are often used interchangeably. However,
Arain et al. [2] found that there were some differences be-
tween the designs of studies labelled pilot and feasibility.
Therefore, in this investigation we will distinguish between
pilot and feasibility trials in the analysis. We will further
look at whether the sample sizes chosen varies between
the two study types (pilot or feasibility), as defined by the
principal investigator in their UKCRN Database entry.
The paper will also investigate if the sample size

chosen for the trial is influenced by factors such as how
the trial is funded or the type of endpoint.
The three research aims of the paper are:

1 To describe the sample sizes set for trials labelled
pilot versus feasibility

2 To describe the sample sizes set for trials with a
dichotomous compared to a continuous endpoint

3 To describe the sample sizes set in trials funded by
industry, public bodies or charities.

Methods
Trial identification
The UKCRN database, [http://public.ukcrn.org.uk/search/
(data last accessed, 20 March 2013)] [13] was used to
identify pilot and feasibility trials currently ongoing in the
UK. The database comprises of the National Institute for
Health Research (NIHR) portfolio in England, and the cor-
responding portfolios of Northern Ireland, Scotland and
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Wales. The studies benefit from the support given by the
clinical research network (CRN), however, it is not com-
pulsory for researchers to register with the UKCRN [14].
The database is accessible by anyone online through the
URL listed above. The search was conducted on the 17th
May 2012 using the key words ‘Pilot’ or ‘Feasibility’ in the
title or research summary. These were the same key words
used by Lancaster et al. [12] and Arain et al. [2] and were
used here to maintain consistency with previous research.
The search results were exported to Excel and the

studies were sorted first by primary study design in
order to separate the interventional trials from the ob-
servational studies. They were then sorted by active sta-
tus: in order to separate the open from the closed trials.
The open interventional trials were then assessed against

the eligibility criteria as set out below. After the trials had
been assessed against the inclusion criteria the eligible tri-
als were exported into SPSS version 18.0 [15] for analysis.
Trials were eligible for further analysis if:

� They were randomised controlled trials;
� They were currently recruiting participants;
� They were classified as interventional;
� The participants were not healthy volunteers;
� They were not cluster randomised trials.

Trials were only included in the analysis if they were
open in order to get the most up to date picture of sample
sizes being used for pilot trials in the UK. Trials being
conducted on healthy volunteers were not included as
these are not usually efficacy studies. Cluster randomised
trials were excluded from further analysis as they tend to
require much larger target sample sizes (in terms of num-
bers of patients not clusters) than those trials which ran-
domise patients individually. Cluster randomised trials
also have different methodological issues and concerns
when undertaking a pilot trial – for example to estimate
the intra-class correlation (ICC).

Data extraction
Data on the target sample size and components of the
trials that might influence the target sample size such as,
type of end point, funder, number of treatment arms and
disease area were collected.
The information was extracted from the research sum-

mary of the UKCRN database when available. Forty-four of
the trials provided an International Standard Randomised
Controlled Trial Number [ISRCTN, http://isrctn.org/ (Date
last accessed 23rd March 2013)] these were then used to
conduct individual searches of the ISRCTN Register, when
information was missing.
To complement the search of the UKCRN database, an

Internet search was undertaken to find the trial or other
websites when information about the trial was missing from

the UKCRN. Additional websites used included the US
clinicaltrials.gov and the website of the funder of the study.
After conducting all of these searches 62 (75%) of the tri-

als did not have complete information and so, in these
cases, the principal investigator or funder(s) were contacted
by email for the study protocol in question, in all cases re-
sponses were received.

Analysis plan
Medians and ranges were calculated overall for the dif-
ferent types of trial and then broken down by endpoint
and whether the trial was public or industry funded.

Results
The search of the UKCRN database yielded 178 studies
with the search term ‘feasibility’ and 335 studies with the
search term ‘pilot’. After eliminating duplicates, removing
any studies not meeting the inclusion criteria and studies
where no data were available, 83 trials went on to be
analysed. Studies with no data available, means that al-
though the trial was registered, no information regarding
the trial was listed or available from other sources. In these
cases (n = 5) the trial investigators were contacted how-
ever, none of these replied and the trials were assessed as
ineligible. Of those eligible, 26 had been labelled as a feasi-
bility by the investigators, 53 had been labelled a pilot trial
and 4 had received the label of both a pilot and a feasibil-
ity. Figure 1 shows the flow of trials through the review.

Trial characteristics
Table 1 summarises the characteristics of the trials that
met the inclusion criteria. The majority of the trials

Assessed for eligibility
n = 178 (feasibility)

n = 335 (pilot) 
Total = 513 

Excluded (n = 434)
Observational 
n = 46 (feasibility)
n = 129 (pilot)
Closed
n = 88 (feasibility)
n = 132 (pilot)
Non-randomised
n = 8 (feasibility)
n = 12 (pilot) 
Duplicates
n = 4 
Surveys
n = 2 (pilot)
Cluster trials 
n = 1 (pilot) 
n = 7 (feasibility) 

Eligible (n = 84) 
No data available
n = 1 (feasibility)
n = 4 (pilot)

Analysed 
n = 25 (feasibility)

n = 50 (pilot) 
n = 4 (pilot + feasibility)

Total = 79

Figure 1 Flow diagram showing the flow of trials through
the review.
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(n = 68, 86.1%) consisted of two arms: one experimental
treatment and one control treatment, whether that
control be active, a placebo or usual care. The majority
of the trials had either a continuous endpoint (n = 45,
57.0%) or a dichotomous endpoint (n = 31, 39.2%).
The most common disease areas for the trials were,

mental health (n = 18, 22.8%) oncology (n = 8, 10.1%)
and primary care (n = 7, 8.9%). Although there was a
large variety of clinical areas being investigated as shown
in Table 1. Approximately 75% of the trials were health
technology trials (n = 60) with drug trials making up
the remaining percentage (n = 19).
Most of the trials (n = 47, 59.5%) were publicly funded,

with the remaining trials being funded by either a char-
ity (n = 19, 24.1%) or industry (n = 13, 16.5%).

Sample size
The UKCRN database provided a target sample size for
each trial in their research summary. However, there
were no data available to explain why each target sample
size had been chosen.
In approximately 11% of cases (n = 9), the researchers

had recruited more patients to date than they initially

said would be required. These trials ranged from having
a sample size per arm of 15 to 100.
Data were first gathered on the target sample size per

arm for pilot and feasibility trials. Those trials labelled
pilot were found to have a smaller sample size per arm
(median of 30; range 8 to 114 participants) than those
labelled feasibility (median of 36; range 10 to 300 partici-
pants), these results and the inter-quartile ranges (IQR)
are shown in Table 2. Over all, the median sample size
per arm was found to be 30 (range 8 to 300).
Data on the median sample size were then analysed

according to funder. The results are shown in Table 2.
Publicly funded pilot trials have a median sample size of
36 (range 10 to 300 participants) and industry funded
pilot trials have a median sample size of 30 (range 8 to
100 participants).
The data were also analysed with regard to type of

endpoint used. The results are shown in Table 2. Those
studies with a dichotomous endpoint had a median sam-
ple size larger than those with a continuous endpoint.
Finally, the data were broken down by both funder

and endpoint. The results are shown in Table 3. Public
pilot trials with a continuous endpoint were on average

Table 1 Trial characteristics of the studies included in the final analysis

Description of preliminary study

Pilot Feasibility Both Total

n (%) n (%) n (%) n (%)

Number of arms Two 39 78.0 25 100.0 4 100.0 68 86.1

Three 10 20.0 0 0.0 0 0.0 10 12.7

Four 1 2.0 0 0.0 0 0.0 1 1.3

Type of trial Health technology 34 68.0 23 92.0 3 75.0 60 75.9

Drug 16 32.0 2 8.0 1 25.0 19 24.1

Disease area Stroke 4 8.0 1 4.0 0 0.0 5 6.3

Mental health 11 22.0 6 24.0 1 25.0 18 22.8

Oncology 4 8.0 4 16.0 0 0.0 8 10.1

Respiratory 3 6.0 1 4.0 0 0.0 4 5.1

Oral & Gastrointestinal 3 6.0 2 8.0 0 0.0 5 6.3

Dementias 3 6.0 1 4.0 0 0.0 4 5.1

Cardiovascular 2 4.0 2 8.0 1 25.0 5 6.3

Primary care 5 10.0 2 8.0 0 0.0 7 8.9

Musculoskeletal 4 8.0 1 4.0 0 0.0 5 6.3

Other 11 22.0 5 20.0 2 50.0 18 22.8

Type of end point Dichotomous 15 30.0 12 48.0 4 100.0 31 39.2

Continuous 35 70.0 10 40.0 0 0.0 45 57.0

Time-to-event 0 0.0 1 4.0 0 0.0 1 1.3

Other 0 0.0 2 8.0 0 0.0 2 2.5

Funder Industry 11 22.0 1 4.0 1 25.0 13 16.5

Public 27 54.0 17 68.0 3 75.0 47 59.5

Charity 12 24.0 7 28.0 0 0.0 19 24.1
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larger than industry funded pilot trials with a continuous
endpoint (medians of 30 and 23 respectively). The same
applies to the public and industry funded pilot trials with
a dichotomous endpoint (medians of 36 and 25 respect-
ively). Feasibility trials with a dichotomous endpoint in
publicly funded trials are on average larger than the
equivalent continuous endpoint trials.

Discussion
Building on the work of Lancaster et al. [12] and Arain
et al. [2] the trials analysed in this paper were trials cur-
rently running in the United Kingdom on the date the
search was conducted, giving us a wide range of infor-
mation regarding target sample sizes. All the trials that
met the inclusion criteria stated a target sample size for
their trial within their research summary. Although it is
not a requirement in none of the summaries was there a
justification given for the target sample size given.
Moore et al. [16] highlighted that it is not unusual for

study proposal reviewers to come across a statement
such as “No sample size justification is needed because
of the pilot nature of the proposed study”, but they state
that pilot trials are not exempt from needing a clear ra-
tionale for the number of patients to be included.

However, Arain et al. [2] discovered that only a small
proportion of published pilot trials report pre-study
sample size calculations as most journal editors state
that it is not mandatory criterion for publication.
An investigation of the expected benefits, risks and

costs of the study is required to justify a target sample
size [16]. However, it is important to remember that a
target sample size for a pilot or feasibility study is only a
preliminary figure and has a great degree of uncertainty.
For example, the researchers may find that more partici-
pants drop out than first presumed. We have shown that
target sample sizes vary for preliminary trials. Consider-
ing the median sample sizes for pilot and feasibility trials
our data shows that on average feasibility studies are lar-
ger than pilot trials: although there is wide variability in
the sample sizes across all types of trial. The median
sample size per arm across all the types of study was 30.
With regards to target sample size according to funder,

a study of registered drug trials by Bourgeois et al. [17],
across a wide variety of types of trial, found that those
funded by industry were more likely to have a larger
sample size than those funded by government sources.
However, our analysis indicated that publicly funded
pilot trials were larger than industry funded pilot trials.
Campbell et al. [18] describe sample size calculations

for studies that have dichotomous, ordered categorical
and continuous endpoints. They state that approximately
30% fewer patients are required for a study with a con-
tinuous endpoint – in our research we found that for a
dichotomous endpoint compared to a continuous the
median sample size was 20% bigger.
Looking at the differences in sample size according to

type of primary endpoint and funder we found that there
is a larger difference in sample size between trials with a
dichotomous endpoint compared to a continuous end-
point for publicly funded trials compared to industry
funded trials.
It would be beneficial to follow-up the pilot and feasi-

bility trials discussed in this paper to see how many go
on to be published – to see if there is a difference be-
tween those published and not published. Another pos-
sible extension would be to investigate the different
sample sizes of trials dependent on whether the primary
endpoint of the trial is based on efficacy or feasibility.
The limitations of this study include the fact that only

one trial registry was used to collect the data meaning
that it is possible that eligible trials that were not regis-
tered with the UKCRN are missing from the analysis. If
these trials differ in some way from the trials listed on
the UKCRN then this could affect the conclusions made.
The database used only trials being carried out in the
UK, which could also affect the generalisability of the re-
sults. The search was only carried out by one reviewer
and was not repeated to check for accuracy. In addition,

Table 2 Median sample size per arm according to type of
study, funder and endpoint

Sample size per arm

n Median (IQR) [Range]

Trial description Pilot 50 30 (20, 45) [8, 114]

Feasibility 25 36 (25, 50) [10, 300]

Both 4 49 (36, 61) [23, 72]

Type of endpoint Dichotomous 31 36 (25, 50) [10, 300]

Continuous 45 30 (20, 50) [8, 114]

Funder Industry 13 30 (16, 31) [8, 100]

Public 47 36 (25, 60) [10, 300]

Charity 19 30 (20, 45) [15, 52]

Table 3 Median sample sizes per arm of pilot and
feasibility studies by endpoint and funder

Sample size per arm

n Median (IQR) [Range]

Pilot Industry Dichotomous 5 25 (25, 30) [10, 90]

Continuous 6 23 (15, 31) [8, 100]

Public Dichotomous 6 36 (30, 42) [20, 60]

Continuous 21 30 (20, 60) [15, 114]

Feasibility Industry Dichotomous 0 . .

Continuous 1 30 .

Public Dichotomous 9 50 (30, 70) [25, 300]

Continuous 6 43 (15, 60) [10, 60]
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only two search terms were used; pilot and feasibility
therefore, some trials labelled for example, exploratory
or preliminary could have been missed during data ex-
traction. However, these search terms were used to
maintain consistency with previous research [2,12].

Conclusion
All trials should have a sample size justification. Not all
trials however need to have a sample size calculation. For
feasibility and pilot trials, while a sample size justification
is important, a formal calculation may not be appropriate.
In our study we found that the median pilot study sample
sizes for two arm trials were 36 and 30 per arm respect-
fully for dichotomous and continuous endpoints.
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