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Abstract

In this thesis I have studied hydrodynamical models of cometary HII regions and

distributions of UCHII (ultra-compact HII) regions in simulated surveys, for com-

parison with CORNISH (Co-Ordinated Radio ‘N’ Infrared Survey for High-mass

star formation). I present the numerical method used to model the evolution of

cometary HII regions produced by ZAMS stars of O and B spectral types, which are

driving strong winds and are born off-centre from spherically symmetric cores with

power-law (α = 2) density slopes. A model parameter grid was produced that spans

stellar mass, age and core density. Exploring this parameter space I investigated

limb-brightening, a feature commonly seen in cometary HII regions. It was found

that all of the models produce this feature. The models have a cavity, bounded by

a contact discontinuity separating hot shocked wind and ionised ambient gas, that

is similar in size to the surrounding HII region. Due to early pressure confinement,

shocks outside of the contact discontinuity were not seen, but the cavities were found

to continue to grow. The cavity size in each model plateaus as the expansion of

the HII region stagnates, which could be due to the Kelvin-Helmholtz instabilities

at the interface mixing in cooler gas. SEDs (spectral energy distributions) of the

models are similar to those from identical stars evolving in uniform density fields.

The turn-over frequency is lower in the power-law models due to a higher proportion

of low density gas covered by the HII regions.

Following from this I have simulated CORNISH surveys for stars, varying the

local density at the location of stellar birth. I have shown that the models used
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can reproduce the observed size and flux distributions in the CORNISH survey.

Higher density environments generally lead to better fits to the observed size and

flux distributions. A good match between the overall number of UCHII regions in

the simulated surveys for a SFR = 1.5M⊙ yr−1 can be achieved if it is considered

that stars are born in a distribution of local densities rather than a single density.
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Chapter 1

Introduction

Massive stars are an important component of the universe. They are the main sources

of stellar feedback that influences the structure, evolution and chemical composition

of a galaxy. High-mass stars are born in the dense parts of the ISM, erupting with

powerful jets and radiatively driven winds that contribute to not only the chemical

enrichment of the ISM but the destruction of the natal cloud. Extreme ultra-violet

radiation is emitted from high-mass stars, which ionises and heats the surrounding

gas. This produces an overpressure that drives a shock into the ambient medium,

sweeping gas into a shell that ultimately disperses the parent molecular cloud and

may also trigger further star formation (Hoare et al., 2007). When massive stars die

they undergo one of the most explosive and energetic events in the universe: the

supernova. Supernovae cause intense bursts of radiation and expel most of the star’s

current mass. They form shock waves that travel through the ISM, enriching it with

the heavy elements produced by the star and possibly stimulating the formation of a

new generation of stars.

How high-mass stars are formed is still poorly understood. They have short

lifetimes which, along with their relatively low formation rates, indicates that only

a small proportion of stars in the galaxy have very high masses. The scarcity of

observational data is a significant problem for the testing of theoretical models;
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some important phases of evolution pass very quickly. The youngest massive stars,

however, are associated with UCHII regions, a phase that lasts longer than expected

(Wood and Churchwell, 1989b). These objects form tantalizingly regular morpholo-

gies and, as the stars are very young, their relatively undisturbed birth environments

can be studied.

1.1 Structure Formation

1.1.1 The Interstellar Medium

Galaxies are complex gravitationally bound structures. They are composed of dark

matter halos, stars, remnants and the ISM, which itself is made up of dust and various

phases of gas. The ISM may contribute a small fraction of the mass of a galaxy

but in the context of regulating star formation it is important. Stars form in cold

dense molecular regions (with temperatures of ∼ 10 K and densities of 102 cm−3

to 106 cm−3), which are concentrated around the spiral arms of galaxies. After

formation they continuously feed energy, mass and gas enriched in heavy elements

back into the ISM via stellar winds. High-mass stars emit radiation with energies

high enough to ionise hydrogen. Miller and Cox (1993) modelled high-mass stars in

a cloudy interstellar medium and found that the dilute portions of HII regions around

O stars compose the warm ionised phase of the ISM. This phase (with temperatures

of ∼ 8000 K and densities of 0.2 cm−3 to 0.5 cm−3) fills 20 % to 50 % of the volume

of the Milky Way and therefore contributes significantly to the interstellar pressure.

Stellar nucleosynthesis occurs during the life of stars, generating heavier and heavier

elements. Upon a star’s death heavy elements are ejected instantaneously into the

ISM, along with more that are produced by the event itself. Supernovae generate

turbulence in the ISM that contributes to the diversity of structure throughout galaxies.

They produce very hot (106 K to 107 K) superbubbles of ionised gas, which makes
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up the coronal gas phase of the ISM. The distribution of stars, interstellar material,

chemical composition, and pressure all affect the overall dynamics of galaxies.

1.1.2 Giant Molecular Clouds

GMCs are the largest structures in the Galaxy. Star formation in the Galaxy is found

to mostly occur in GMCs. Research on the dynamics of gas in these regions may

therefore lead to an understanding of some galactic-scale statistical properties of star

formation. Most of the mass of the ISM is concentrated in GMCs, which are large

(∼ 20 pc to ∼ 100 pc) gaseous clouds of mass > 104 M⊙ (McKee, 1999). Larson

(1981) found that the clouds he studied are gravitationally bound and that cloud

size is inversely proportional to density. He also found that the internal velocity

dispersions of GMCs are proportional to a power of their size (∼ 0.38), which is

similar to the index predicted by Kolmogorov (1941) turbulence. These results

can therefore be interpreted as evidence that supersonic turbulence is injected by

large-scale kinetic energy cascades from large to small scales. Another piece of

evidence for supersonically turbulent GMCs is that the volume-averaged densities in

these objects are significantly lower than the densities found near star-forming sites,

indicating clumpy media.

Theoretically, turbulence should decay in a time shorter than the lifetime of

GMCs if the lifetime is assumed to be much longer than their freefall times. Turbu-

lence therefore should not be observed as ubiquitously in GMCs as it is. It was first

thought that magnetic fields could hamper the dampening of turbulence. Simulations

of turbulent, self-gravitating, magnetically supercritical clouds were carried out by

Avila-Reese and Vázquez-Semadeni (2001); Biskamp and Müller (2000); Mac Low

et al. (1998); Padoan and Nordlund (1999); Pavlovski et al. (2006, 2002); Stone

et al. (1998). These authors collectively found that magnetic fields cannot cushion

the decay of supersonic turbulence. In order to maintain the view that GMCs are
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quasi-equilibrium structures turbulence must be prolonged by some mechanism.

Maron and Goldreich (2001) and Cho and Lazarian (2003) have shown that MHD

(magneto-hydrodynamic) turbulence can decay slowly if there is strong cross-helicity

(i.e. a high degree of turbulence imbalance) for compressible and incompressible

fluids. Kritsuk et al. (2013) ran MHD simulations of the ISM and found that Larson’s

laws are reproduced via the process of turbulent energy cascade in which large-scale

kinetic energy leads to supersonic turbulence on scales of 0.1 pc to 50 pc. According

to Matzner (2002), other possible sources of turbulence are stellar winds, supernovae

and, dominantly, HII regions. This idea was confirmed by simulations of driven

turbulence via ionising radiation from O stars (Gritschneder et al., 2009; Li and

Nakamura, 2006).

An alternative picture describes GMCs as non-equilibrium transient structures

that form in a turbulent ISM via, for example, colliding flows that produce large-scale

supersonic compressions in the warm neutral phase of the ISM. Colliding flows

can occur between supernovae remnants, superbubbles and HII regions and form

shock-compressed layers where the flows meet. The compressions are subject to

non-linear thin-shell instabilities (Vishniac, 1994) and therefore are theorised to

fragment into molecular clouds with supersonic turbulence (Koyama and Inutsuka,

2000, 2002). Clouds may be destroyed soon after the formation of stars that form on

the order of a sound-crossing time, explaining why we almost always see turbulence

in these clouds (it has not had enough time to decay). A longer discussion of GMC

evolution can be found in Vázquez-Semadeni et al. (2006).

1.1.3 High-Mass Star Formation

High-mass star formation is not simply a scaled-up version of low-mass star for-

mation. Radiative forces do not play a role in low-mass star formation but do for

high-mass stars as they emit an intense rate of photons with a broad range of energies.
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These photons can go on to dissociate molecules or, at even higher energies, ionise

the surrounding gas thereby affecting the stellar environment. Unlike low-mass stars,

emission from high-mass stars can accelerate nearby gas and dust that blow out

cavities. High-mass stars also have a higher tendency to be dynamically ejected

from their birthplace, as inferred by the number of observed runaways (∼ 10 %

to 25 %), something that is rarely observed for low-mass stars. Dense cores have

relatively more turbulent motions than less dense cores; high-mass stars tend to form

in environments where turbulent motions dominate thermal motions (Caselli and

Myers, 1995; Myers and Fuller, 1992). For more thorough reviews of high-mass star

formation see Beuther et al. (2007) and Zinnecker and Yorke (2007).

High-mass stars begin their life in regions of HMSCs (high-mass starless cores)

that are unstable to gravitational collapse. HMCs (high-mass cores) develop in

these regions and accrete gas from the surrounding gas and dust until the growing

protostellar object has mass > 8 M⊙ after which it is termed a HMPO (high-mass

protostellar object). Low-mass stars deviate in their evolutionary sequence here as

they blow away their envelopes to become optically visible PMS (pre-main-sequence)

stars. High-mass stars have no PMS phase; their Kelvin-Helmholtz timescales are

short enough that they start fusing hydrogen atoms (thus starting their main-sequence

phase) before they have finished accreting matter (Kahn, 1974). Stars that have

finished accreting are termed final stars.

1.1.4 Spontaneous Star Formation

It is still not known how high-mass stars gather enough mass to form. These stars

become luminous before they finish accreting and exert enough radiation pressure

on the infalling gas to halt it altogether. This severely limits the upper mass limit

of the IMF (Larson and Starrfield, 1971) and the lower the predicted accretion rate

the higher the discrepancy with observations. There are three major types of models
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that aim to explain the formation mechanism of high-mass stars: monolithic collapse

(core accretion), competitive accretion and stellar collisions.

Core accretion assumes a process that is essentially a scaled-up version of the

mechanism behind low-mass star formation; high-mass stars start as high-mass

gravitationally bound cores. In other words, gas that will be accreted onto the star is

gathered before the accretion phase begins. The mass of gas required to form a high-

mass star is much larger than the Jeans mass, therefore there must be a mechanism

for halting gravitational collapse until there is enough gas in the core. The turbulent

core model proposed by McKee and Tan (2003) assumes that the high pressures in

regions of supersonic turbulence can support a dense core from collapsing as it is

forming. This model predicts that the accretion rate increases linearly with time.

Conservation of angular momentum of infalling gas should imply the formation

of a disk around high-mass stars. Simulations that include multi-frequency contin-

uum radiative transfer show that radiative acceleration is reduced in the plane of disks

due to the “flashlight effect” (Krumholz et al., 2005; Yorke and Bodenheimer, 1999;

Yorke and Sonnhalter, 2002). Krumholz et al. (2005) calculated the radiative transfer

through dense disks accreting onto HMPOs and found that outflows evacuate opti-

cally thin polar cavities through which radiation can escape, significantly increasing

the radiative flux along the polar axis and therefore reducing the radiation pressure

on the disk. These results were backed up by the 3D radiation-hydrodynamic simula-

tions of Cunningham et al. (2011) and by the simulations including self-gravity of

Kuiper et al. (2011).

In the competitive accretion model stars in a cluster are competing for the

available gas in their birth cloud. Accretion in this model is well described by

the Bondi-Hoyle-Lyttleton accretion process (Bondi, 1952; Hoyle and Lyttleton,

1939), which has been studied numerically by Ruffert and Arnett (1994) and Ruffert

(1994). Competitive accretion was analysed by Bonnell et al. (2001) who, via SPH

(smoothed particle hydrodynamics) simulations, found that stars closer to the centre
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of a cluster have higher accretion rates. Stars born close to the centre tend have a

clear advantage in this model as gas from anywhere in the cloud will tend to fall

towards the bottom of the cloud’s potential well. A star that successfully increases

its mass also increases its gravitational attraction and therefore improves its chances

of accreting more gas. Early on in the formation of stars in this model there is a

lot of available gas, and so stars born earlier are more likely to gather a substantial

portion of it.

SPH simulations by Bonnell et al. (2011) show that a single cloud can produce

clustered and distributed populations. Clustered populations formed in gravitationally

bound regions with star formation efficiencies of ∼ 10 % and followed a full IMF.

Competitive accretion was therefore found to be too efficient. However, the effects

of radiative feedback and magnetic fields could suppress fragmentation and lead to

lower efficiencies that are more consistent with observations. Distributed populations

mostly formed in unbound regions with much lower star formation efficiencies

(∼ 1 %) and were missing low and high-mass stars.

Stellar mergers can occur in dense clusters if the population of high-mass stars is

dense enough i.e. if the time between stellar collisions is shorter than the timescale

for stellar evolution (Hills and Day, 1976). In the monolithic collapse model massive

stars are closely packed, so stellar collisions may occur and almost certainly will have

an impact on star formation. This model was proposed before there were solutions

to the radiation pressure problem. Now that there are, the area of research continues

but has focused more on outliers such as blue stragglers (see Glebbeek et al., 2013,

and references therein).

1.1.5 Triggered Star Formation

It was initially proposed by Elmegreen and Lada (1977) that spatially distinct co-

eval OB subgroups in OB associations are the result of sequential self-propagating
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triggered star formation via the collect and collapse model. The collect and collapse

model (Dale et al., 2007; Elmegreen, 1998; Whitworth et al., 1994) starts with an

expanding HII region, wind-blown bubble or supernova that drives a shock, sweeping

up gas (the collect phase) until the shell becomes self-gravitating. At this point (the

collapse phase) the shell becomes gravitationally unstable and shell fragmentation

occurs. There is a lot of observational evidence for this process occurring (Preibisch

and Zinnecker, 2007, and references therein). Massive star forming regions on the

edges of expanding HII regions have also been observed (Deharveng et al., 2003;

Zavagno et al., 2010; Zinnecker and Yorke, 2007, and references therein).

Cores could already exist where these expanding shock fronts are passing. Star

formation can then be triggered by the sudden increase in external pressure introduced

by the shock. Hennebelle et al. (2003) simulated cores that are embedded in a high

pressure environment and found that “outside-in” collapse can ensue. It was also

noted by this author that the increased external pressure is unlikely to be, as in

their model, isotropic. For an anisotropic compression, the complex interaction of

pressure waves within the core could instead lead to multiple systems, in which most

stars are found (Mathieu, 1994). This idea was reinforced by Hennebelle et al. (2004)

who simulated a rotating pre-stellar core. They found that material with high angular

momentum collects at the disk edge faster than it can be redistributed via viscous

torques leading to a Toomre instability. The resulting fragmentation can produce a

few companion stars.

1.2 Ultra-Compact HII Regions

After the collapse of a dense molecular cloud, a high-mass star forms and begins

emitting extreme ultra-violet radiation that ionises and heats the surrounding gas.

The optical and near-infrared emission from such stars is not able to penetrate the

natal clouds due to high column densities of dust. Radio free-free emission can,
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Fig. 1.1 Radio continuum images of cometary CORNISH UCHII regions.
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(a) Shell-like. (b) Spherical.

(c) Irregular/multiply peaked. (d) Unresolved.

Fig. 1.2 Radio continuum images of CORNISH UCHII regions.
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however, be seen right across the Galaxy (Churchwell, 2002). At wavelengths in the

far-infrared, emission coming from warm dust re-emitting the stellar radiation can

also be observed from ionised nebulae (Cesaroni et al., 2015).

UCHII regions were first defined by Wood and Churchwell (1989b) as photo-

ionised nebulae with diameters ≲ 0.1 pc, electron number densities ≳ 104 cm−3

and emission measures ≳ 107 pc cm−6 that have not yet expanded out of their na-

tal molecular cloud. The observed ionisation from such stars indicates that the

ionising photon emission rates lie approximately between 1044 s−1 and 1049 s−1

corresponding to ZAMS stars with spectral types B2–O5. Wood and Churchwell

(1989a) estimated the lifetime of UCHII regions (∼ 4×105 yr) using the fraction

of main-sequence stars observed in the UCHII phase and an adopted value for the

main-sequence lifetime (∼ 2.4×106 yr). This lifetime is an order of magnitude

longer than that predicted by simple Strömgren sphere expansion (∼ 4×104 yr), an

inconsistency known as the lifetime problem. This conclusion was corroborated by

Mottram et al. (2011), who used RMS (Red MSX Source) sources to calculate the

UCHII region lifetime as a function of luminosity.

UCHII regions are interesting to study as they may provide a lot of information

about the early life of massive stars including their properties and, due to a few

morphological classes, their environments. The Wood and Churchwell (1989b) radio

continuum survey included classifications of UCHII regions into morphological

types: cometary (∼ 20 %), core-halo (∼ 16 %), shell (∼ 4 %), irregular or multiple

peaked structures (∼ 17 %) and spherical and unresolved (∼ 43 %). Kurtz et al.

(1994) made radio-continuum observations of 75 UCHII regions for which the

proportions of morphological types agree remarkably well with those in Wood and

Churchwell (1989b). Observed at higher spatial resolution, some apparently spherical

morphologies uncover more ordered morphologies (Felli et al., 1984). The radio

continuum survey of UCHII regions by Walsh et al. (1998) found that most sources

were either cometary or irregular (ignoring the unresolved sources). De Pree et al.
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(2005) revised the morphological scheme by adding the bipolar classification and

removing the core-halo morphology. The latter was due to the fact that essentially all

UCHII regions were observed to be associated with large-scale diffuse emission that

could be separated from the compact cores. The proportions of the morphologies

in this survey compare well with the Wood and Churchwell (1989b) and Kurtz

et al. (1994) surveys except that 28 % of sources were classed as shell-like. Hoare

et al. (2007) reviewed the different morphological surveys and noted that a lot of

morphologies classified as shell-like could also be classified as cometary. Mac Low

et al. (1991) pointed out that the proportion of cometary HII regions may be higher

in reality as some other morphologies (shell-like and spherical) can be classed as a

cometary viewed along the axis of symmetry.

1.3 Cometary UCHII Regions

As UCHII regions have had little time to significantly alter their natal environments,

the morphologies that arise are thought to reflect the ambient density field. Cometary

types in particular are interesting to study and to test numerical models against

because they have a highly regular shape and can overcome the lifetime problem.

In the past there were three major models that aimed to explain how UCHII regions

form cometary shapes: the champagne flow model (Israel, 1978), the bow shock

model (Van Buren and Mac Low, 1992; Mac Low et al., 1991; Reid and Ho, 1985)

and clumpy/mass-loading models (Dyson et al., 1995; Redman et al., 1996; Williams

et al., 1996). A more recent idea says that the situation is probably best described by

a combination of these i.e. hybrid models (Arthur and Hoare, 2006).
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1.3.1 Champagne Flow Model

Cometary HII regions are mostly observed at the edge of molecular clouds (e.g.

the Orion Nebula). Along with the shape, this is the reason they were first named

“blisters” (Israel, 1978). This led to the champagne flow model, a modification of

the simple Strömgren solution in which the ionising star lies in an inhomogeneous

(not a uniform) density field. The ionisation front propagates more rapidly through

lower density gas, which explains the general shape of cometary HII regions. As the

ionised gas is pressurised a shock develops ahead of the front that sweeps up a dense

shell and traps the ionising radiation. At the same time ionised gas begins to flow

down the density gradient, a feature that can be observed as relative Doppler shifts

between lines from ionised and molecular gas.

Early modelling by Bodenheimer et al. (1979), Tenorio-Tagle (1979), Tenorio-

Tagle et al. (1979), Whitworth (1979) and Bedijn and Tenorio-Tagle (1981) included

discontinuities in density separating molecular clouds with the ISM. Bodenheimer

et al. (1979) found that once the ionised gas reaches the edge of the dense cloud, it

accelerates up to ∼ 30 km s−1. More realistically, Icke (1979a), Icke (1979b), Icke

et al. (1980) and Yorke et al. (1983) modelled stars in density gradients, clearly

reproducing cometary morphologies and predicting double peaked spectral line

profiles corresponding to a velocity splitting of up to 50 km s−1 along the symmetry

axis. Henney et al. (2005) carried out simulations of the photo-evaporation of a cloud

with large-scale density gradients. They showed that an ionised flow is set up that

has a transient phase with duration ∼ 104 yr, which then becomes approximately

stationary with respect to the ionisation front (the quasi-stationary phase) for a large

part of its evolution.

Real HII regions cannot be explained entirely in terms of a density gradient. Not

only does the champagne model fail to exhibit limb-brightened morphologies, but

also the lifetime problem is not solved due to the unconstrained expansion of the
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ionisation front. It also does not take into account that OB stars drive stellar winds

that can significantly affect the dynamics of nearby gas.

1.3.2 Bow Shock Model

If an ionising star moves supersonically with respect to a uniform density field, the

strong stellar wind driven by that star balances the ram pressure produced by the

ambient flow, forming a bow shock ahead of the star. This model was introduced

by Van Buren et al. (1990) as an alternative explanation of cometary HII regions

and later analysed numerically by Van Buren and Mac Low (1992). They found

that behind the bow shock neutral material is swept up into a very dense, thin shell

that traps the expanding ionisation front. This was a good result for the bow shock

model as it was known that a confining mechanism was necessary to solve the

lifetime problem. Limb-brightening was also found to occur in this model and can

be explained as ionised gas that has been compressed by the stellar wind into a thin

shell, flowing around the stellar wind cavity.

Both Raga et al. (1997b) and Comeron and Kaper (1998) carried out two-

dimensional axisymmetric hydrodynamical simulations of runaway OB stars that are

driving strong stellar winds and found that bow shocks are unstable for a broad range

of parameters. These stars are moving (30 km s−1 to 100 km s−1) across the Galactic

plane through the ISM and have ionised regions with sizes of ∼ 100 pc, which fully

encompasses the bow shock with sizes of ∼ 1 pc to 5 pc. As the surrounding medium

in these models is a lot less dense than that expected near dense molecular clouds

the ionising radiation is not trapped. These results are therefore not fully applicable

to bow shocks in UCHII regions.

The bow shock model was attractive because the size and shape compared well

with observed cometary UCHII regions and it explained velocity gradients commonly

seen at the head of cometaries.
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1.4 Hybrid Models

Both the bow shock model and the champagne flow model have, however, been found

to be inadequate in explaining the recombination line velocity structures. Lumsden

and Hoare (1996) investigated the validity of both models in reproducing the velocity

structure of the cometary UCHII region G29.96–0.02 and found that individually

they poorly describe the object. Gaume et al. (1994) suggested that by including

stellar winds and non-uniform ambient density fields more realistic models could be

made.

A variety of hybrid models were investigated by Arthur and Hoare (2006) in-

cluding champagne flow plus stellar wind and a combination of bow shock and

champagne flow models in which the density gradient and the strength of the stellar

wind were varied. With the inclusion of a stellar wind, it was discovered that it is

possible for a champagne flow to produce limb-brightened morphologies. This is

due to the fact that the stellar wind creates a dense shell that acts as a barrier to

photo-evaporated flows, which divert around it. Arthur and Hoare (2006) found that

for simple bow shock models the line widths are highest ahead of the massive star

and for simple champagne flow models the widths are highest in the tail. They found

that for hybrid models, a slow moving star in a steep density gradient has larger

velocity widths toward the tail, but a fast moving star in shallow density gradients

has its largest velocity widths nearer the star. Making sure to remove the effect of any

cloud velocity, a hybrid model that matches the line data of a cometary HII region

could be used to gather information about the density structure of the natal cloud.

Three-dimensional simulations of HII regions expanding off-centre in turbulent,

self-gravitating power-law cores were run by Mac Low et al. (2007). They found that

the expanding HII regions were roughly spherical and noted that this is consistent

with the analytical results of Korycansky (1992). These results were also confirmed
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by Arthur (2007) who performed similar simulations for r−2 and r−3 power-law

density cores.

Very recently, deep hydrogen radio recombination line observations of the two

cometary UCHII regions in DR 21 were presented with a detailed analysis of the

velocity structure (Immer et al., 2014). The bow shock model seems to best describe

one of the objects and it is believed a hybrid picture (in which UCHII regions in

density gradient also exhibit stellar motion and/or a stellar wind) is required to

explain the other.

1.5 Radio Continuum Surveys

Recently a huge effort has been made in mapping the Galactic plane to produce

unbiased high-resolution, high-sensitivity surveys in order to understand our Galactic

stellar population. Surveys over a wide range of wavelengths have been compiled so

that massive stars and their environments, which they are interacting with, can be

characterised by their SEDs.

There has been a lack of radio continuum surveys sufficiently high in resolution,

sensitivity and coverage to compliment to these data sets until CORNISH. The

CORNISH survey (Hoare et al., 2012; Purcell et al., 2013) is an arcsecond resolution

5 GHz radio survey of the northern half of the GLIMPSE region (10° < l < 65°,

|b| < 1°) for compact ionised sources. CORNISH aims to provide an unbiased

sample of UCHII regions that is insensitive to HCHII (hyper-compact HII) regions,

which are even younger and more compact. At 5 GHz the survey observes at high

enough frequency that it detects ionised gas that is optically thin, therefore allowing

the structure of HII regions to be probed at high sensitivity. In figures 1.1 and 1.2 I

show radio continuum maps of UCHII regions from the CORNISH sample and give

their morphological classifications.
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For a review on recent IR and radio surveys that have been or are in the process

of being conducted, refer to Hoare et al. (2012) and Purcell et al. (2013).

Thesis Overview

In chapter 2 I describe my full numerical method, in which I detail how I simulated

HII regions and observations of them. Next, in chapter 3, I present simulations of

UCHII regions off-centre in power-law density environments and driving stellar

winds. Chapter 4 contains the work I did on generating a Galactic population of

UCHII regions that would be included in the CORNISH survey, and I compare the

resulting distributions to the CORNISH data. Finally, in chapter 5, I conclude my

thesis and suggest, for this area of research, possible avenues to be explored in the

future.





Chapter 2

Numerical Methods

To simulate the coupled radiation-hydrodynamics (including additional heating and

cooling due to atomic processes around HII regions) I used TORCH. TORCH is

a 3D Eulerian fixed grid fluid dynamics code. The grid is a collection of finite

volumes, called grid cells, that each hold fluid state information. The hydrodynamics

are solved using a rotated hybrid HLL-HLLC Riemann solver to calculate fluxes

on each grid cell face. Ionisation from point source radiation is implicitly solved

and the column densities required for this are calculated via the method of short

characteristics. Heating and cooling from atomic processes are calculated using the

approximate functions in Henney et al. (2009).

To get second-order temporal accuracy while integrating the coupled hydro-

dynamics, radiation and cooling problems I use Strang Splitting (Strang, 1968).

Without splitting the solution would be:

y(⃗x, t +dt) = L (dt)y(⃗x, t) (2.1)

where y(⃗x, t) is the solution at position x⃗ and time t and L (dt) is the solution operator

acting over time-step dt. This problem is hard to solve unless it is decomposed (or

split) into simpler sub-problems that are integrated separately. With the Strang-
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Marchuk splitting scheme the solution is approximately given by:

y(⃗x, t +dt) = LH(dt/2)LR(dt/2)LC(dt)LR(dt/2)LH(dt/2)y(⃗x, t) (2.2)

with subscripts H, R and C denoting hydrodynamics, radiation and cooling respec-

tively. The order of the operators is shuffled each time step to ensure symmetry.

2.1 Hydrodynamics

Equations governing the dynamical behaviour of a fluid are found by first relating

fluxes and conserved variables. The rate of change of a conserved variable in a

volume is equal to its associated flux through the volume’s boundary into or out of

the volume plus any additional source of the variable (for example mass and energy

injected by a star to produce a stellar wind). The equation is written, in integral form,

as ∫∫∫
V

∂U⃗
∂ t

dV +
∮

A
F · n̂dA =

∫∫∫
V

S⃗ dV , (2.3)

where V denotes the volume, A is the bounding surface area, U⃗ is the vector of

conserved variables, F is the flux tensor, n̂ is the unit vector normal to the surface

pointing outwards, and S⃗ is the vector of source terms (the rate of production of each

conserved variable in the volume).

The conserved variables are

U⃗ =



ρ

ρu

ρv

ρw

e

ρ f


, (2.4)
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and the flux tensor is

F =



ρu ρv ρw

p+ρu2 ρuv ρuw

ρuv p+ρv2 ρvw

ρuw ρvw p+ρw2

u(e+ p) v(e+ p) w(e+ p)

ρ f u ρ f v ρ f w


, (2.5)

where fluid density, pressure, velocity, energy density and HII fraction are given by

ρ , p, u⃗, e and f respectively.

Using the divergence theorem we can write equation 2.3 as

∫∫∫
V

(
∂U⃗
∂ t

+∇ ·F − S⃗

)
dV = 0⃗ , (2.6)

where the divergence of the flux tensor is defined as (in Einstein notation):

∇ ·F ≡
∂Fi j

∂x j
. (2.7)

The integral in equation 2.6 is zero over any volume, therefore the integrand must

also equal zero, leading us to the differential form of the conservation laws:

∂U⃗
∂ t

+∇ ·F = S⃗ . (2.8)

2.1.1 Finite Volume Method

The FVM (finite-volume method) is a method by which the governing equations for

a continuum can be solved on a meshed geometry. This method is highly accurate in

modelling physical systems on length scales such that the system can be considered



22 Numerical Methods

continuous. For example, the discrete effects of atoms in a fluid are negligible when

modelling on astronomical length scales.

TORCH uses the FVM to represent and solve equation 2.8 in conservative form.

In 3D the problem domain is generally a cuboid that is discretised into small finite

volumes (grid cells). Given the simple geometry of the grid cells it is far easier to

start with equation 2.3. The surface integral is calculated as fluxes across the faces of

each grid cell. Each grid cell has a constant U⃗ = ⟨U⃗⟩ and S⃗ = ⟨⃗S⟩ across its volume,

which are just volume averages. This means equation 2.3 can be further simplified:

V
∂ ⟨U⃗⟩

∂ t
+
∮

A
F · n̂dA =V ⟨⃗S⟩ , (2.9)

where V is the volume of the cell. Equation 2.9 is then solved for each finite volume

after the fluxes have been calculated.

2.1.2 Godunov’s Scheme

Godunov extended the ideas of section 2.1.1 to develop a first-order upwind finite-

volume method. It is first-order in the sense that the conserved variables in each cell

are uniform and the time integration of equation 2.9 is carried out with the first-order

Forward Euler method. In a mesh containing a piece-wise constant distribution

of data, for every pair of adjacent cells, the problem set-up is identical to that of

the Riemann initial-value problem. Solving the Riemann problem across a cell

interface in the mesh ensures the scheme is upwind because the states used in the

computation of the fluxes are always found upstream. Godunov’s scheme involves

the use of an exact Riemann solver. However, its accuracy comes at the price of

heavy computational load. This is why approximate solvers are prevalent in CFD

(computational fluid dynamics) codes today.
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We start with the one-dimensional scalar conservation equation,

∂u(x, t)
∂ t

+
∂ f (x, t)

∂x
= 0 , (2.10)

which we want to solve on a one-dimensional mesh. The state at the mesh position i

at time-step n in the mesh is given by

u(x, t) = un
i , (2.11)

where t = n∆t. Applying the methodology in section 2.1.1 we get a source-less

scalar one-dimensional version of equation 2.9:

∆x
un+1

i −un
i

∆t
= fi−1/2 − fi+1/2 , (2.12)

where fi−1/2 and fi+1/2 are numerical fluxes that are calculated by a Riemann solver.

The solution is given by

un+1
i = un

i +
∆t
∆x

(
fi−1/2 − fi+1/2

)
. (2.13)

In three dimensions i, j and k are the mesh positions along the x, y and z directions

respectively and if ∆ui = un+1
i − un

i then we solve for split Riemann problems i.e.

we solve in one dimension for all cell interfaces:

un+1
i jk = un

i jk +∆ui +∆u j +∆uk . (2.14)

For this scheme to be stable the time-step ∆t in equation 2.13 must be

∆t ≤Ccfl∆x/Smax (2.15)
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where Smax is the maximum wave speed in the simulation domain, and Ccfl is the

maximum Courant number (for the purposes of my research Ccfl = 1/2 was a reliable

choice). The maximum wave speed is calculated in TORCH as the maximum of bulk

speeds plus the sound speeds in each cell in the simulation domain:

Smax = max{|v|+a} , (2.16)

where v is a bulk velocity component and a is the sound speed in a cell. The physical

interpretation of this constraint on the time-step is that if waves could cross more

than one cell during this time then this information would be lost as only states

to the left and right of an interface between two cells contribute in calculating the

numerical flux.

2.1.3 Approximate Riemann Solvers

Practical computation of fluid dynamics often requires high resolution, spatially and

temporally. Simulating at a sufficient resolution usually requires tens of thousands to

millions of finite volumes and therefore interfaces, across each of which a Riemann

problem is solved each time-step. The computational effort involved in carrying

out this task is usually too high, so approximate solvers are used instead of highly

accurate iterative Riemann solvers. Approximate Riemann solvers aim to reproduce

important aspects of the solution whilst sacrificing some information (and therefore

accuracy in the solution) for speed. These solvers fall into two groups: those that

approximate the solution to the state; and those that approximate the fluxes across

interfaces.
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The Riemann Problem

A Riemann problem is an initial value problem in which there is a discontinuity

between constant left and right states; the states of which are involved in conservation

equations.

Harten–Lax–van Leer

The HLL approximate Riemann solver assumes a two wave configuration separating

three constant states: the left and right Riemann states and the central “Star Region”,

which is the range of influence of the discontinuity via the left and right waves during

a time-step (see figure 2.1). Intermediate waves are averaged out in the “Star Region”

and any information about spatial variations here is lost. Consequently, this scheme

can be very inaccurate when trying to model contact discontinuities, shear waves and

material interfaces, introducing an unacceptable level of dissipation to the resolution

of these features. Despite how diffusive this scheme is, it is robust to non-physical

perturbations (which get smeared out before they can significantly alter the solution).

The entire scheme is given in Toro (1997), so only the flux calculations are shown

here. The resulting flux depends on which direction the left-most and right-most

waves are travelling:

F⃗HLL =



F⃗L, if SL ≥ 0 ,

SRF⃗L −SLF⃗R +SLSR(U⃗R −U⃗L)

SR −SL
, if SL ≤ 0 ≤ SR ,

F⃗R, if SR ≤ 0 .

(2.17)

Harten–Lax–van Leer–Contact

An improvement was made to the HLL Riemann solver by including the contact

wave (Toro, 1997). The HLLC Riemann solver assumes a three-wave structure
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Fig. 2.1 A possible wave configuration that is resolved by the HLL Riemann solver.
The solver assumes a two wave configuration separating three constant states. The
solver calculates the numerical flux along x = 0 in order to update the conservative
variables at an inter-cell boundary. The region between the two waves is called the
Star Region (Toro, 1997) and is assumed to be a uniform average over the wave
structure.

separating four states of which two are intermediate states (see figure 2.2). This

scheme is much less diffusive and resolves contact discontinuities, shear waves and

phase discontinuities accurately. Robustness suffers with this increase in accuracy,

however, with unwanted flow fields (carbuncle instabilities) being produced at shocks

aligned with the numerical grid.

Again, the full scheme is in Toro (1997) and the fluxes are given by

F⃗HLLC =



F⃗L, if SL ≥ 0 ,

F⃗⋆L, if SL ≤ 0 ≤ S⋆ ,

F⃗⋆R, if S⋆ ≤ 0 ≤ SR ,

F⃗R, if SR ≤ 0 ,

(2.18)
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Fig. 2.2 A possible three-wave configuration that is resolved by the HLLC Riemann
solver. The waves separate four constant states. The solver calculates the numerical
flux along x = 0 in order to update the conservative variables at an inter-cell boundary.
The region between the outer two waves is called the Star Region (Toro, 1997) and
is split into two uniform average states by the middle wave S⋆.

with

F⃗⋆K = F⃗K +SK(U⃗⋆K −U⃗K) , (2.19)

where K is L or R and

U⃗⋆K = ρK

(
SK −uK

SK −S⋆

)



1

S⋆

vK

wK

EK
ρK

+(S⋆−uK)
(

S⋆+
pK

ρK(SK−uK)

)
f


. (2.20)

The middle wave speed, S⋆, in the HLLC Riemann solver is obtained by first

using the density component of equation 2.19 to get an equation for the left and right
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star region densities:

ρ⋆K =
SK −uK

SK −S⋆
ρK . (2.21)

We then find the pressures in the left and right star regions by using the linear momen-

tum (in the direction perpendicular to the inter-cell boundary) term in equation 2.19:

p⋆K = pK +(SK −S⋆)ρ⋆KS⋆− (SK −uK)ρKuK , (2.22)

and substituting equation 2.21 to get

p⋆K = pK +ρK(SK −uK)(S⋆−uK) . (2.23)

Finally, we use the fact that the middle wave is a contact discontinuity i.e. p⋆L =

p⋆R = p⋆, eliminate this term from the left and right equations in equation 2.23 and

re-arrange to get the middle wave speed,

S⋆ =
pR − pL +ρLuL(SL −uL)−ρRuR(SR −uR)

ρL(SL −uL)−ρR(SR −uR)
. (2.24)

Rotated Hybrid HLL-HLLC

To solve equation 2.8 I first implemented a HLLC Riemann solver. After testing it

was apparent that this scheme is not robust as unacceptable flow fields can result

called carbuncle instabilities (Quirk, 1994). Schemes such as HLL and Rusanov

(Rusanov, 1962) do not have this problem as they are highly dissipative. There are a

few ways to cure schemes that are prone to the carbuncle phenomenon; the technique

I decided to use was to combine HLL and HLLC schemes into a rotated-hybrid

Riemann solver (Nishikawa and Kitamura, 2008).
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The scheme starts by decomposing the geometric grid cell face normal n⃗ into

two orthogonal directions:

n⃗1 =


∆⃗q
|∆⃗q|

, if |∆⃗q|> ε ,

n⃗⊥, otherwise,

(2.25)

and

n⃗2 =
(⃗n1 × n⃗)× n⃗1

|(⃗n1 × n⃗)× n⃗1|
, (2.26)

where ∆⃗q = (uR − uL,vR − vL) is the velocity difference vector, n⃗⊥ is a direction

tangent to the geometric face and ε is a small number. The second case in equa-

tion 2.25 ensures that only the HLLC solver is used when streamwise velocity fields

are smoothly varying; only at discontinuities will the HLL solver be applied. The

flux across this grid cell face is

F⃗ = n⃗ · n⃗1F⃗HLL(⃗n1)+ n⃗ · n⃗2F⃗HLLC(⃗n2) . (2.27)

~n

~n1

~n2

Fig. 2.3 Visualisation of the geometric grid cell face normal n⃗ decomposed into two
orthogonal directions, n⃗1 and n⃗2, along which the Riemann problem is solved (with
the HLL and HLLC Riemann solvers).

Fluxes F⃗HLL(⃗n1) and F⃗HLLC(⃗n2) are calculated by first finding the velocity in a

new coordinate system:

v⃗ ′ = R⃗v , (2.28)
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where v⃗ is the velocity in the original coordinate system on either the left or right

side of the cell interface and R is the rotation matrix (defined as rotating decomposed

Riemann problem directions, n⃗1 or n⃗2, to align with the geometric cell face normal,

n⃗).

Using the Rodrigues’ rotation formula (Rodrigues, 1840) the rotation matrix R,

which rotates unit vector n⃗i onto unit vector n⃗ is given by:

R = I +[w⃗]×+
1− c

s2 [w⃗]2× , (2.29)

where

w⃗ = n⃗i × n⃗ , (2.30)

c = n⃗i · n⃗ , (2.31)

s = ||w⃗|| , (2.32)

and [w⃗]× is the skew-symmetric cross-product matrix of w⃗,

[w⃗]× =


0 −w3 w2

w3 0 −w1

−w2 w1 0

 . (2.33)

With rotated left and right Riemann states for each decomposed Riemann di-

rection we can now solve the one-dimensional Riemann problem. Solving these

problems leaves us with momentum fluxes L⃗ ′ (calculated using v⃗ ′) that need to be

rotated back onto the original coordinate system:

L⃗ = R−1⃗L ′ . (2.34)
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Along with the rest of the flux components, this gives us F⃗HLL(⃗n1) and F⃗HLLC(⃗n2).

Using the rotated Riemann solver effectively applies the HLL solver in the direction

normal to shocks (suppressing the carbuncle instability) and applies the HLLC solver

across shear layers in order to minimise dissipation.

Liou (2000) argues that intermediate cells across a shock exchange information

transversely to their neighbours along the shock, which can develop into a carbuncle

instability. Considering a face connecting two neighbouring intermediate cells, any

significant perturbation travelling in a direction normal to this face will lead to a

velocity difference vector oriented in the same direction (Nishikawa and Kitamura,

2008). This means the HLL Riemann solver will introduce dissipation in this

direction, suppressing the instability. The resulting scheme pays for its robustness

with an acceptable drop in accuracy (using a dissipative Riemann solver) and speed

(using two Riemann solvers).

2.1.4 Wave Speed Estimates

Consider the conservation laws in one dimension,

U⃗t + F⃗(U⃗)x = 0⃗ . (2.35)

Using the chain rule this can be written

U⃗t + A⃗(U⃗)U⃗x = 0⃗ , (2.36)

where

A(U⃗) =
∂ F⃗
∂U⃗

(2.37)

is the Jacobian matrix. Roe’s method for approximately solving the Riemann problem

(Roe, 1981) involves linearising equation 2.35 by finding a constant Jacobian matrix,
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Ã(U⃗L,U⃗R), which preserves the hyperbolicity of the system, is consistent with

the conservation laws and ensures conservation across discontinuities. Once the

approximate linearised Riemann problem has been found i.e.

U⃗t + ÃU⃗x = 0⃗ , (2.38)

it can be solved exactly (this is the basis of the Roe solver). The eigenvalues of Ã are

considered to be the wave speeds of this problem. TORCH uses the minimum and

maximum of these wave speeds to approximate SL and SR in the HLL and HLLC

Riemann solvers introduced in section 2.1.3:

SL = ũ− ã

SR = ũ+ ã ,
(2.39)

where ũ is the Roe-average bulk speed,

ũ =

√
ρLuL +

√
ρRuR√

ρL +
√

ρR
, (2.40)

and ã is the Roe-average sound speed,

ã =

[
(γ −1)(H̃ − 1

2
ũ2)

] 1
2

, (2.41)

with the Roe-average of the enthalpy H = (E + p)/ρ given by

H̃ =

√
ρLHL +

√
ρRHR√

ρL +
√

ρR
. (2.42)
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2.1.5 The MUSCL-Hancock Method

Suppose that there are two different initial conditions u0
i and v0

i such that

u0
i ≥ v0

i , ∀i . (2.43)

A scheme has the monotone property if

un
i ≥ vn

i , ∀i and ∀n . (2.44)

Godunov’s theorem (Godunov, 1959) states that a linear monotone scheme can

at most be first-order accurate. Trying to construct higher spatial accuracy while

preserving the monotone property will lead to Gibb’s phenomenon i.e. spurious

oscillations near high gradients (Bocher, 1906, 123–132). In order to get higher

accuracy TORCH relaxes this stability condition such that the scheme does not have

the monotone property but satisfies the TVD condition (Harten, 1983). If a scheme

is written

un+1
i = un

i −Ci−1/2∆ui−1/2 +Di+1/2∆ui+1/2 , (2.45)

where ∆ui+1/2 = ui+1 −ui, then the scheme satisfies the TVD positivity condition if

0 ≤Ci+1/2, 0 ≤ Di+1/2, 0 ≤Ci+1/2 +Di+1/2 ≤ 1 . (2.46)

Satisfying the positivity condition implies that the total variation,

TV (un) = ∑
i

∣∣un
i+1 −un

i
∣∣ , (2.47)

cannot increase,

TV (un+1)≤ TV (un) , (2.48)
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and the TVD condition implies monotonicity preservation:

u0
i+1 ≥ u0

i , ∀i =⇒ un
i+1 ≥ un

i , ∀i and ∀n . (2.49)

A method that is monotonicity-preserving prevents the generation of new local

extrema in the solution and therefore will prevent spurious oscillations. Monotonicity

addresses the stability in monotone solutions, but not in non-monotone solutions,

something that TVD schemes do address (Laney, 1998).

TORCH uses the MUSCL (Monotonic Upstream-Centered Scheme for Conser-

vation Laws) scheme of Van Leer (1979) to achieve second-order spatial accuracy in

the solution. The method starts with the piece-wise constant distribution calculated

in a previous time-step and linearly extrapolates these data to the boundaries where

the Riemann problem is solved. This is done with primitive variables (i.e. density,

pressure, velocities, etc.) because this has a useful consequence of keeping the sound

speed piece-wise constant and leads to 2D (where D is the number of dimensions)

less expensive square root calculations per cell per time-step than if the conservative

variables were extrapolated.

The boundary extrapolated primitive variables are:

qL
i = qn

i −
1
2φ

(
∆ui−1/2
∆ui+1/2

)
∆ui+1/2

∆x ,

qR
i = qn

i +
1
2φ

(
∆ui−1/2
∆ui+1/2

)
∆ui+1/2

∆x ,
(2.50)

where φ(r) is a slope limiter. These are then readily converted to conserved variables

uL
i and uR

i that form the right and left states of the Riemann problems on the left and

right boundaries respectively. The numerical fluxes are

f MUSCL
i−1/2 = f (uR

i−1,u
L
i )

f MUSCL
i+1/2 = f (uR

i ,u
L
i+1) ,

(2.51)
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so that the evolved state is

un+1
i = un

i +
∆t
∆x

(
f MUSCL
i−1/2 − f MUSCL

i+1/2

)
. (2.52)

In order to guarantee the algorithm is TVD it was found by Sweby (1984) that

the slope limiter function in equation 2.50 must be of the form:

φ(r) = 1+θ(r)(r−1) , (2.53)

where 0 ≤ θ(r)≤ 1, and be bounded such that

0 ≤
[

φ(r)
r

,φ(r)
]
≤ 2 . (2.54)

TORCH uses the van Albada slope limiter (Van Albada et al., 1982), which is

TVD and symmetric:

φ(r) =
r2 + r
r2 +1

. (2.55)

The limiter is plotted in a Sweby diagram in figure 2.4 along with the region bounded

by equations 2.53 and 2.54.

2.1.6 Dirichlet Boundary Conditions

When calculating the fluxes across cell faces, a problem presents itself along the

edges of the simulated domain. Equations 2.17 and 2.18 require states on the left

and right of these edges. To deal with this, “ghost” cells have been placed outside

these boundaries and their states calculated according to what boundary condition

is imposed. Considering a boundary on the left side of the computational domain

along the x direction the following give the boundary conditions.
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Fig. 2.4 Sweby diagram showing the region (shaded) within which a slope limiter
must fit if the resulting scheme is to be second-order and TVD. The purple curve is
the van Albada slope limiter used in TORCH.

Free

Free or transmissive boundary conditions allow waves to pass through without

altering them.

U⃗L =



ρR

ρRuR

ρRvR

ρRwR

ER

ρR fR


(2.56)
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Reflective

Reflective boundary conditions are achieved by modelling an identical fluid moving

in the opposite direction. The boundary acts like a mirror, reversing the sign of the

component of velocity parallel to this boundary’s normal.

U⃗L =



ρR

−ρRuR

ρRvR

ρRwR

ER

ρR fR


(2.57)

2.1.7 Symmetry

In an axisymmetric grid the Cartesian coordinates in equation 2.8 are replaced with

polar coordinates and a source term is added breaking the strictly conserved nature

of a Cartesian grid (Falle, 1991). The “vector of conserved variables” will now

include the radial momentum that is not a conserved quantity. The axisymmetric

Euler equations look like
∂U⃗
∂ t

+∇ ·F = S⃗ , (2.58)

where S⃗ is the source term to correct for the radial momentum’s non-conserved

nature:

∂

∂ t



ρ

ρur

ρuz

E

ρ f


+∇ ·



ρur ρuz

p+ρu2
r ρuruz

ρuruz p+ρu2
z

ur(E + p) uz(E + p)

ρ f ur ρ f uz


=



0

p
r

0

0

0


. (2.59)
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The source term comes from the difference between the radial divergence com-

ponent and radial gradient term. For cylindrical coordinate system it is given by

Sr =
∂ (ρur)

∂ t
+

1
r

∂ (rρu2
r + rp)

∂ r
+

∂ (ρuzur)

∂ z

=
∂ (ρur)

∂ t
+

1
r

∂ (rρu2
r )

∂ r
+

∂ (ρuzur)

∂ z
+

∂ p
∂ r

+
p
r
,

(2.60)

and the radial momentum fluid equation is

∂ (ρur)

∂ t
+

1
r

∂ (rρu2
r )

∂ r
+

∂ (ρuzur)

∂ z
+

∂ p
∂ r

= 0 , (2.61)

so that

Sr =
p
r
. (2.62)

Similarly for a spherical coordinate system the source term is

Sr =
∂ (ρur)

∂ t
+

1
r2

∂ (r2ρu2
r + r2 p)

∂ r

=
∂ (ρur)

∂ t
+

1
r2

∂ (r2ρu2
r )

∂ r
+

∂ p
∂ r

+
2p
r

=
2p
r
.

(2.63)

When evaluating the source term for a grid cell it is obvious to note that it varies

across the volume of the cell (it has a dependence on polar radius), therefore we

average it over time and volume. For a cylindrical coordinate system:

⟨⃗S⟩= 1
V ∆t

∫ t=∆t

t=0

∫
φ=2π

φ=0

∫ z=zc+
∆z
2

z=zc−∆z
2

∫ r=rc+
∆r
2

r=rc−∆r
2

S⃗r dr dzdφ dt

=
2π p∆r∆z

π∆z
((

rc +
∆r
2

)2 −
(
rc − ∆r

2

)2
)

=
p
rc
,

(2.64)
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where rc is the radius half-way between the inner and outer radii of the grid cell. The

time and volume averaged source term in a spherical coordinate system is

⟨⃗S⟩= 1
V ∆t

∫ t=∆t

t=0

∫
φ=2π

φ=0

∫
θ=π

θ=0

∫ r=rc+
∆r
2

r=rc−∆r
2

S⃗r2 dr dθ dφ dt

=
4π
[
(rc +

∆r
2 )

2 − (rc − ∆r
2 )

2] p
V

.

(2.65)

2.1.8 Parallelism

TORCH is a parallel code capable of running on many cores. Each core runs a

simulation on a portion of the grid (which is split along one axis) and sends necessary

data each time-step to cores that are simulating neighbouring grids. To integrate the

hydrodynamics on a face the left and right states of a cell are needed to solve the

Riemann problem. Along a boundary with a neighbouring grid, this information

is received from the processing core that is simulating that grid and is copied into

the “ghost” cells on that boundary. For the radiative transfer the processing core

simulating the grid containing the star must ray trace the grid first before sending

optical depth information across boundaries. In this way the cores with grids closer

to the star simulate a time-step before cores with grids further away.

Parallel overhead is attributed to the memory for the extra “ghost” cells and the

time taken to exchange this information. This becomes important (i.e. noticeably

reduces the strong scaling efficiency) when the ratio of number of grid cells to number

of processors is low. Coupling radiative transfer, heating/cooling and hydrodynamics

has a big impact on the scalability of a simulation code. Operator splitting allows the

hydrodynamics to be solved in parallel but the radiative transfer and heating/cooling

is solved in serial because the ray casting scheme forces causal iteration over the

cells. Therefore massive speed-up of simulations involving all these integrators

should not be expected on a high number of processors. However, it can get close to
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three times faster using a few processors, which was good enough for the purposes

of this research.

2.2 Radiative Transfer

As a massive star is born within a dense molecular cloud, it will radiate photons

with energies that lie above the ionisation threshold of hydrogen. The number of

photons arriving at each cell in a numerical grid depends on the sum of the column

densities of all cells between the ionising source and the target cell. Summing

the column densities in this way to find the optical depth is called the method of

long characteristics. This is the most accurate method, but ray tracing this way is

computationally expensive. TORCH uses the short characteristics method, which

is a much faster ray tracing scheme (with O(N) time complexity, where N is the

number of cells in the grid) as each cell derives its column density from the nearest

neighbours between it and the ionising source.

2.2.1 Short Characteristics Ray Tracing

Each grid cell data structure holds a variable for the optical depth to the ionising

source and one for the optical depth over the grid cell. The path length of the ray

passing through the centre of the cell being ionised is given by

∆S =

√
1+

(ti − si)2 +(t j − s j)2

(tk − sk)2 ∆r , (2.66)

where i, j and k are vector components, t⃗ is the target cell centre position vector,

s⃗ is the source position vector and ∆r is the physical width of the grid cell (see

section A.1 for proof of equation 2.66). The kth direction is chosen such that

k̂ =
n̂ · (⃗t − s⃗)
|n̂ · (⃗t − s⃗)|

, (2.67)
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where n̂ is the geometric normal to the grid cell face (pointing into the grid cell) that

the ray crosses, entering the cell. The cell face has a normal parallel to the largest

component of |⃗t − s⃗| (which very simply finds the side of the grid cell the ray enters).

The optical depth over the cell is

∆τ = nHIσν∆S , (2.68)

where nHI is the number density of neutral hydrogen atoms and σν is the photo-

ionisation cross-section. Depending on where the ray enters the target cell, the

s

c

t

1
2

3
4

c

1

2

3

4

δj

δi

Fig. 2.5 This diagram shows a ray passing from the source (the red dot denoted by
‘s’) passing through the interpolation plane (crossing at the green dot, ‘c’) to the
centre of the target grid cell (black dot, ‘t’). Four nearest neighbours are chosen such
that their cell centres (denoted by IDs 1-4) form corners of a square plane that the ray
passes through. A bilinear interpolation is then performed, according to where the
crossing point (green dot ‘c’) is on the square plane, to find the weight each nearest
neighbour contributes to a weighted average of optical depths. The optical depth
from source to target cell is then equal to this weighted average.

optical depth to the cell is given by a weighting of the nearest four neighbours around

the ray just outside the cell (see figure 2.5 and the appendix in Mellema et al. (2006)).
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Each weight is given by

w1 =
δiδ j

max(τ0,τ1+∆τ1)

w2 =
(1−δi)δ j

max(τ0,τ2+∆τ2)

w3 =
δi(1−δ j)

max(τ0,τ3+∆τ3)

w4 =
(1−δi)(1−δ j)

max(τ0,τ4+∆τ4)
,

(2.69)

where τ0 = 0.6, wID are the weightings associated with the neighbouring cells and

δi/ j are shown in figure 2.5. The optical depth to the target grid cell is

τ =
w1(τ1 +∆τ1)+w2(τ2 +∆τ2)+w3(τ3 +∆τ3)+w4(τ4 +∆τ4)

∑
4
i=1 wi

. (2.70)

2.2.2 Implicit Integration Scheme

The explicit method takes the optical depths and therefore the photo-ionisation rate,

Γ, to be constant during a time-step. Accuracy then depends on the time-step being

small enough that the optical depths do not change appreciably, i.e. smaller than the

ionisation front crossing time. The ionisation front can travel up to highly supersonic

speeds so this constraint is much more limiting than the Courant condition. This

means coupling with gas dynamics using this kind of scheme is very impractical.

TORCH uses the implicit integration scheme of Mellema et al. (2006), which

ensures a high level of photon conservation and relaxes the time constraints an

explicit method would have. The implicit scheme uses average values for the optical

depths to work out a constant photo-ionisation rate to use over a time step and gives

the exact solution if recombinations and collisions are not taken into account. If

they are considered, the numerical solution is not exact but only deviates when the

time-step is comparable to the recombination time. This is orders of magnitude

longer than the minimum time-steps required in explicit schemes making this scheme

ideal for coupling to fluid dynamics.
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Photon Conservation

It was realised by Abel et al. (1999) that the spatial discretisation introduced in grid

based simulations leads to a mismatch between photons entering a grid cell and the

sum of the number of ionisations and photons leaving the cell. The local ionisation

rate is given exactly by

Γlocal =
1

4πr2

∞∫
νth

Lνσνe−τν (r)

hν
dν , (2.71)

where r is the distance from the ionising source for hydrogen atoms with photo-

ionisation cross-section σν (Osterbrock, 1989), νth is the Rydberg frequency, Lν is

the source’s rate of energy output and τν(r) is the optical depth from source to the

hydrogen atoms.

Grid cells do not have a single distance to the source; using the distance to the

cell centre in order to calculate ionisation rates will not lead to a photon conserving

scheme unless grid-cells are small enough to be considered optically thin. Abel et al.

(1999) suggested that to deal with the range of distances in a grid cell, the ionisation

rate must equal the photons absorbed by attenuation over the distance the ray travels

through the target cell.

The fractional rate of neutral hydrogen atoms in a grid cell at distance r from the

ionising source and thickness ∆s that are ionised is given by the difference between

the frequency photons enter, Ṅin
cell, and exit, Ṅout

cell, the cell divided by the number of

neutral hydrogen atoms within the cell:

Γ =
Ṅin

cell − Ṅout
cell

nHIVcell
=

Ṅion
cell

nHIVcell
, (2.72)

where Vcell is the volume of the cell and Ṅion
cell is the ionisation rate within the cell. It

is, however, hard to calculate Ṅion
cell explicitly because it depends on the geometric

factor 1/4πr2, which varies across the cell. In order to overcome this a spherical



44 Numerical Methods

shell is imagined centred on the source with radius equal to the distance to the cell

centre and thickness equal to the cell crossing path length. The optical depth along

all rays that reach the inner surface of the shell are equal to the optical depth along

the path to the cell. Assuming the fraction of neutral hydrogen atoms within the shell

is equal to that in the cell, this leads to a useful expression: the ratio of ionisation

rates in the cell and shell are equal to the ratio of volumes respectively,

Vcell

Vshell
=

Ṅion
cell

Ṅion
shell

, (2.73)

where Vshell is given by

Vshell =
4π

3

((
r+

1
2

∆S
)3

−
(

r− 1
2

∆S
)3
)

, (2.74)

and ∆S is the length of the segment of ray passing through the cell.

Using equation 2.73 the fraction of the ionisation rate to the number of neutral

hydrogen atoms can now be written

Γ =
Ṅin

shell − Ṅout
shell

nHIVshell
, (2.75)

and, in terms of the optical depths, this is

Γ =

∞∫
νth

Lν

hν

e−τν (1− e−∆τν )

nHIVshell
dν . (2.76)

The explicit dependence on the geometrical factor is removed but remains implicitly

through the volume of the shell.
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The error in this approximation (for monochromatic photons) is:

∆Γ = Γlocal −Γ (2.77)

=
1

4πr2 QLycσνe−τν −QLyc
e−τν (1− e−∆τν )

nHIVshell
(2.78)

=
QLyce−τν

4πr2∆SnHI

(
1
12

(
∆S
r

)2
∆τ + 1

2∆τ2 − 1
6∆τ3 + ...

1+ 1
12

(
∆S
r

)2

)
, (2.79)

where QLyc is the rate of emission of Lyman continuum photons. The error tends

to zero as ∆τ → 0 and ∆S ≪ r. Even in the optically thick regime, with ∆τ > 1, the

error is negligible as the photo-ionisation rate will be low.

Implicit Scheme Algorithm

The ionisation fraction of hydrogen evolves according to the rate of radiative ionisa-

tion, collisional ionisation and recombinations and is described by

d f
dt

= (1− f )(Γ+neCH)− f neαH , (2.80)

where f is the ionisation fraction, ne is the electron density, CH is the collisional

ionisation coefficient and αH is the recombination coefficient for hydrogen. We still

take CH and αH to be constant as in explicit integration schemes; we also take Γ and

ne to be constant but they represent time-averaged values as opposed to the values at

the start of the time step. In this case, equation 2.80 has an analytical solution:

f (t) = feq +
(

f0 − feq
)

e−t/ti , (2.81)

where

ti =
1

Γ+neCH +neαH
, (2.82)
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and

feq =
Γ+neCH

Γ+neCH +neαH
. (2.83)

The time-averaged ionisation fraction is approximately

⟨ f ⟩= feq +
(

f0 − feq
)(

1− e−∆t/ti
) ti

∆t
. (2.84)

All other time-averaged values can then be calculated by replacing variables with

time-averaged constants. These then go on to iteratively find a new average ionisation

fraction until the value has converged.

The radiative transfer module in TORCH uses the algorithm in the paper by

Mellema et al. (2006). At each time-step the following is carried out:

1. Trace source rays to the cell and calculate the time-averaged and non-time-

averaged optical depths.

2. Initialise the time-averaged and non-time-averaged HII fractions with values

from the previous step (or with initial conditions).

3. Find the updated HII fraction and the time-averaged HII fraction.

(a) Calculate the time-averaged electron density and photo-ionisation rate.

(b) Use equation 2.84 to find the new time-averaged HII fraction.

(c) Compare new time-averaged fraction with the time-averaged fraction

from the previous step.

(d) Repeat step 3 if the time-averaged HII fraction has not converged.

4. Calculate the non-time-averaged HII fraction using equation 2.81 and also the

non-time-averaged and time-averaged cell optical depths.

5. Continue to the next cell in the causal list.
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2.2.3 Causal Iteration

Iteration over cells in the grid data structure must be causal when solving for the HII

fraction because the optical depth to a cell depends on the solved HII fraction of its

contributing nearest neighbours. This means the neighbours that contribute to the

optical depth to the cell must have their HII fraction solved first. If we were to use the

optical depths of nearest neighbours from the previous time-step we would introduce

a time-dependent discrepancy in the solution, which is more noticeable between

cells close to the source and those far away. For explicit schemes this discrepancy

is small because time-steps are small enough that the optical depths don’t change

appreciably.

An Iteration Algorithm

Here I present the way TORCH iterates causally over the grid. Firstly, given that the

star is in the cell located at (is, js,ks), there are eight starting positions: b⃗ = (is, js,ks),

(is − 1, js,ks), (is, js − 1,ks), (is, js,ks − 1), (is − 1, js − 1,ks), (is − 1, js,ks − 1),

(is, js − 1,ks − 1) or (is − 1, js − 1,ks − 1). If any of these starting positions do

not exist then ignore them e.g. in 2D the number of starting positions collapses to

four (or less if the star is placed on a cell that is next to a boundary). Separately then

there are eight sections of the grid that are to be traversed. Whether iteration should

proceed in the positive or negative direction along an axis is determined by the sign

of the corresponding component of

b⃗− (is −0.5, js −0.5, ks −0.5) . (2.85)

The algorithm is then (for all eight starting positions):

1. Start at b⃗ and keep handles h⃗ j and h⃗k that for now both point at b⃗.

2. From h⃗ j iterate along the ith dimension until a grid boundary is reached.
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3. Move h⃗ j once along the jth dimension. If a cell exists there repeat step 2.

4. Move h⃗k once along the kth dimension and move h⃗ j to the same position. If a

cell exists there repeat step 2.

5. Finish.

2.2.4 R-type Expansion and Shadowing

Two tests were carried out to ensure the accuracy of the radiative transfer scheme.

The first test compares the radius of a simulated Strömgren sphere (with no gas

dynamics) with the analytical solution for the Strömgren radius (Strömgren, 1939):

Rst =

(
3QLyc

4πn2
HαH

)1/3(
1− e−t/trec

)1/3
, (2.86)

where nH is the number density of hydrogen atoms, αH is the total recombination

rate and trec is the recombination time, which is given by

trec = 1/nHαH . (2.87)

The results of this test are shown in figure 2.6 along with a comparison between

first-order and second-order explicit schemes and the implicit scheme TORCH

uses. Clearly the implicit scheme outperforms the other schemes, converging to the

analytical solution in a time much smaller than the recombination time.

Simulations of UCHII regions with stellar winds should show trapping of the

ionisation front behind the swept up wind bubble. To see if the code will work

accurately in such a situation, the Strömgren sphere test was repeated but with a

dense square clump positioned near the ionising source. The clump effectively

blocks photo-ionising radiation from propagating into the “shadow” region. There

is, however, some numerical diffusion into the shadow region, which would not be

present if the method of long characteristics was implemented instead. This will
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Fig. 2.6 Expansion of a HII region as a function of time in a uniform density
environment. There is no coupling to the hydrodynamics. The black curve represents
the analytical solution, which is partially obscured by the green curve (simulated
with the implicit scheme).

have a negligible effect on the dynamics of any simulated HII region. Figure 2.7

shows the evolution of the ionised HII fraction in the shadow test.

2.2.5 D-type Expansion

Before developing a non-equilibrium heating/cooling module for TORCH, a simple

thermal equilibrium model was used. Coupling between gas and radiation physics

was achieved for an isothermal equation of state by setting the temperature of a gas
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Fig. 2.7 HII fraction evolution in a uniform density medium with a dense square
clump (in red) nearby. The magenta circle traces the analytical Strömgren sphere,
which approaches the white circle as t → ∞. The snapshots were taken at: 200 yr (top
left); 5000 yr (top right); 10000 yr (bottom left); and 20000 yr (bottom right). The
star was positioned at (0pc,1.5pc) and the centre of the square clump (of side-length
0.6 pc) was positioned at (0pc,2.1pc).

element according to the ionised fraction of hydrogen x in that element:

T = THI +(THII −THI) fHII , (2.88)

where THI is the temperature of fully neutral hydrogen and THII is the temperature

of fully ionised hydrogen. With this scheme, I used the code to simulate D-type

ionisation front expansion into an initially uniform density (nH = 400cm−3) isother-

mal gas. The ionising star in this simulation has a Lyman continuum photon rate
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of QLyc = 1.0×1049 phot s−1, which produces an initial Strömgren sphere of radius

Rst = 1.25pc.

Early on in the evolution (a few recombination times) a weak-R ionisation front

expands according to equation 2.86. The gas is heated to a temperature of 104 K

so that the ionised region is overpressured with respect to the neutral gas. As the

ionisation front slows down it becomes R-critical; the pressure wave overtakes the

front and steepens into a shock wave, compressing the gas behind it. The R-critical

ionisation front transitions into a D-critical front with an isothermal shock ahead of

it. Expansion is then driven by the overpressure on the sound crossing time-scale

ts = Rst/ci, where Rst is the Strömgren radius given in equation 2.86 and ci is the

sound speed of the ionised gas.

Spitzer (1978) found that, if the ionised gas pressure is much higher than the

pressure in the neutral gas and the neutral gas mass in the swept up shell is much

greater than that in the ionised region, the ionisation radius evolves according to

Rspitzer = Rst

(
1+

7
4

t
ts

)4/7

. (2.89)

According to Raga et al. (2012) this solution neglects the inertia of the expanding

neutral material. Once included the solution is

Rraga = Rst

(
1+

7
4

√
4
3

t
ts

)4/7

. (2.90)

A comparison between the simulated HII region expansion, equation 2.89 and

equation 2.90 is shown in figure 2.8, which shows close agreement with the Raga

solution. The relative error quickly drops below 5 % and remains so for the duration

of the simulation.
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Fig. 2.8 Radius (bottom) and the relative error in the radius (top) of a HII region in a
uniform density medium as a function of time in units of the sound crossing time
ts. The analytical solutions to the radius predicted by equations 2.89 and 2.90 are
also plotted. Comparing to the Raga solution the relative error of the radius of the
simulated HII region is below 5 % for 2 ≤ t/ts ≤ 16, and converges to an error of
≃ 2%. The simulation was run on a 1000×1×1 spherically symmetric grid.

2.2.6 Champagne Flow

A final test for the radiation transport module involves simulating a champagne

flow. This model corresponds to Model A in Arthur and Hoare (2006) in which an

ionising star, with an ionising photon rate of QLyc = 2.2×1048 s−1, is embedded

in an exponential density distribution where the density is n0 = 8000cm−3 at the

location of the star and the scale height is H = 0.05pc. The density field is then

nH = n0exp(z/H) , (2.91)
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where z is a polar coordinate and corresponds to the distance along the polar axis.

The temperature of the ambient medium is THI = 300K and the temperature of

fully ionised gas is THII = 104 K. Simulation snapshots are shown in figure 2.9 and

figure 2.10; a photo-evaporated flow is set up and a parabolic-like ionisation front

forms ahead of the star (up the density gradient). The results match those in Arthur

and Hoare (2006) giving further evidence that the code works properly.

Fig. 2.9 Evolution of log10 of the ionised hydrogen number density nHII resulting
from an ionising source, located at the r = 0pc and z = 0.45pc, in an exponential
density gradient that is increasing along the positive z direction (see section 2.2.6.
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Fig. 2.10 Maps of hydrogen number density (top left), pressure (top right), tempera-
ture (bottom left) and hydrogen ionisation fraction (bottom right) of the champagne
flow model described in section 2.2.6. The age of the exciting star is 20 kyr.

2.3 Heating and Cooling

The simple equilibrium heating/cooling code used in the previous section only works

for an isothermal equation of state. In order to deal with general equations of state

a non-equilibrium heating and cooling code was developed for TORCH using the

fitting formulae in Henney et al. (2009). Unless specified otherwise the fitting

formulae given here come from this author. We introduce a source term to the energy

equation in equation 2.8 of ė = H −C. The rate of energy gained by the gas from

processes that heat the gas is

H = HEUV +HFUV +HX +HIR +HCR . (2.92)
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Fig. 2.11 Cooling rates in the hot shocked stellar wind region of model HII regions in
section 3.2. To calculate these it was assumed that nH = 1cm−3 and ne = nHII = nH
in this region.

Using equation 2.76, the heating due to ionising EUV (extreme ultra-violet) photons

is given by

HEUV =

∞∫
νth

(hν −hνth)
Lν

hν

e−τν (1− e−∆τν )

Vshell
dν . (2.93)

Heating due to non-ionising FUV (far ultra-violet) photons via dust absorption is

approximately

HFUV = 1.9×10−26

[
nH

cm−3

]2
G0,he−1.9AV[

nH
cm−3

]
+6.4G0,he−1.9AV

erg s−1 cm−3 , (2.94)

where AV is the extinction of the visual band frequencies in magnitudes and G0,h =

G0
Habing is the unattenuated FUV photon flux in Habing flux units. The visual band



56 Numerical Methods

Fig. 2.12 Cooling rates in the ionised region of model HII regions in section 3.2. To
calculate these it was assumed that nH = 0.1×104 cm−3 and ne = nHII = nH in this
region.

extinction in magnitudes is

AV = 1.086σVNH mag , (2.95)

where σV = 5×10−22 cm2 (Baldwin et al., 1991) and NH is the column density

of hydrogen atoms, which is calculated using the ray tracing scheme described in

section 2.2.1. The unattenuated FUV photon flux is given by

G0 =
QFUV

4π |⃗r− r⃗⋆|2
, (2.96)
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Fig. 2.13 Cooling rates in the ionisation front of model HII regions in section 3.2.
To calculate these it was assumed that nH = 1×104 cm−3 and ne = nHII = 0.5nH in
this region.

where |⃗r− r⃗⋆| is the distance to the star and QFUV is the star’s rate of FUV photon

emission (taken to be QFUV = 0.5QLyc in the simulations carried out by TORCH).

The rate of heating by hard X-rays is approximately

HX = 6×10−23nHFX , (2.97)

where FX is the unattenuated x-ray photon flux from the star. Photons can be degraded

to infra-red frequencies by dust grains and absorbed by the gas further from the star

(this process is most efficient at high densities where the gas and dust grains are well
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coupled):

HIR = 7.7×10−32
[

nH

cm−3

]
G0,h

(
1+

n1

nH

)−2

e−0.05AV erg s−1 cm−3 . (2.98)

The smallest contribution is from cosmic ray heating:

HCR = 5×10−28
[

nH

cm−3

]
erg s−1 cm−3 . (2.99)

The rate of energy removed from the gas by processes that cool is

C =CM+ +CM0 +CH+ +CH0 +CCIE +CPDR . (2.100)

The contribution to cooling from collisionally excited optical lines of ionised metals

is

CM+ = a1zO

[
ne

cm−3

][
nHII

cm−3

]
e
−
(

T1
T +

[
T2
T

]2
)

erg s−1 cm−3 , (2.101)

where a1 = 2.905×10−19, T1 = 33610K and T2 = 2180K. Cooling due to colli-

sionally excited lines of neutral metals is

CM0 = a2zO

[
ne

cm−3

][
nHI

cm−3

]
e
−
(

T3
T +

[
T4
T

]2
)

erg s−1 cm−3 , (2.102)

where a2 = 4.477×10−20, T3 = 28390K and T4 = 1780K. Hydrogen case B re-

combination cooling rates are calculated using cubic spline interpolation on the data

in Hummer (1994):

CH+ = nenHIIkBT βB , (2.103)

where βB is the case B energy-loss coefficient. The collisional excitation cooling

rate of neutral hydrogen is also calculated using cubic spline interpolation but on
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data in Raga et al. (1997a):

CH0 = nenHIkBT q(T ) , (2.104)

where q(T ) is the collisional excitation rate coefficient. The collisional ionization

equilibrium-cooling curve for gas temperatures T > 50000K (mainly from highly

ionized metals) is approximately:

CCIE = a3zO

[
ne

cm−3

][
nHII

cm−3

][
T
K

]−0.63
(

1− e−
[

T
105K

]1.63
)

erg s−1 cm−3 ,

(2.105)

where a3 = 3.485×10−15. The contribution from collisional line cooling of highly

ionised metals and neutral/molecular gas is approximately:

CPDR = 3.981×10−27
[

nH

cm−3

]1.6[T
K

]0.5

e−T0(nHI)/T erg s−1 cm−3 , (2.106)

where

T0(nHI) = 70+220
[

nHI

106 cm−3

]0.2

K . (2.107)

The cooling rates in the hot shocked stellar wind region, the ionised region, and

the ionisation front of a typical HII region are shown in figure 2.11, figure 2.12, and

figure 2.13 respectively. It should be pointed out that the recombination cooling

term, equation 2.103, in figure 2.11 is extrapolated beyond T > 1×107 K as this is

the maximum temperature available from Hummer (1994).

2.3.1 Sub-cycling

Due to the operator split nature of TORCH, the module with the shortest time-step

can bottleneck the integration. The energy gained/lost in a grid cell from heating and

cooling processes is limited to 10 % of the existing energy in the cell. This can end up

being quite a lot smaller than the time-steps calculated from radiation transport and
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hydrodynamics. One remedy is to use sub-cycling: integrate the heating and cooling

in small sub-steps until the minimum time-step from radiation hydrodynamics is

reached. The coupling error will still be higher than if sub-cycling was not used but

the integration will be a lot faster (which is preferable).

The heating/cooling rate at the start of the time-step is

Ė0 =
dE
dt

(t = 0) = H −C(T0) , (2.108)

where T0 is the temperature at the beginning of the time-step and it is assumed that

the neutral and ionised density fields do not evolve throughout this procedure. The

limiting time-step for the heating/cooling sub-problem is

∆tC =
0.1E0

Ė0
. (2.109)

The limiting time-step from the radiation and hydrodynamics sub-problems is ∆tRH

so the number of sub-cycling steps is

N =


⌊

∆tRH
∆tC

⌋
, if ∆tRH

∆tC
−
⌊

∆tRH
∆tC

⌋
= 0 ,⌊

∆tRH
∆tC

⌋
+1 , otherwise .

(2.110)

The sub-cycling time-step is then ∆tsub = ∆tRH/N. Iterating from i = 0 to i = N −1

we carry out these calculations:

Ti = T (Ei) ,

Ėi = H −C(Ti) ,

Ei+1 = Ei +∆tsubĖi ,

(2.111)
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and finally the total heating/cooling rate in the full time-step ∆tRH is

Ė =
EN −E0

∆tRH
. (2.112)

2.3.2 Wind-Blown Bubble

Stellar winds are important to consider when dealing with UCHII regions as they

greatly influence the dynamics. Wind-blown bubbles are useful objects to simulate

as their evolution is well described in the literature and so can highlight possible

problems with the heating/cooling module. The model I used when simulating a

bubble is almost identical to one of the scenarios set out in Strickland and Stevens

(1998). A stellar wind with mass loss rate ṀW = 5×10−5 M⊙ yr−1 and terminal

wind speed vW = 2000 km s−1 was modelled by including source terms ρ̇W and ėW

within a radius of 10 grid cells. The source terms are, respectively, the mass loss rate

and mechanical luminosity LW = 1
2ṀW v2

W both divided by the volume of the region

they are added to.

As was found in Strickland and Stevens (1998) the wind sweeps material into

a shock-heated shell. The shell starts out thick, but rapidly cools and collapses

as it grows. Eventually the shell is so thin that it becomes unstable to thin shell

and Vishniac instabilities (Vishniac, 1983). The evolution of the ionised hydrogen

number density during the simulation is shown in figure 2.14 and agrees well with

the model in Strickland and Stevens (1998).

2.3.3 Shadowing Instability

This final test utilises both the radiation and cooling modules in order to reproduce

the shadowing instability (Williams, 1999). A wind was set-up in the same way as in

section 2.3.2 with wind, star and initial gas parameters taken from the shadowing

instability test in Arthur and Hoare (2006). If the cooling time is too short the



62 Numerical Methods

Fig. 2.14 Snapshots of log10 of the hydrogen number density nH taken during a
simulation of a wind-blown bubble.

dense swept-up shell can collapse while the effects of the staggered grid are still

appreciable (i.e. the shell has a low resolution). For this reason the energy flux from

the heating and cooling module was artificially reduced by a factor of 100 in order to

increase the cooling length and so delay the onset of the cooling instability.

Figure 2.15 shows the evolution of the ionised gas density (similar to figure 2

in Arthur and Hoare, 2006), which behaves as expected. The cooling instability

discussed in section 2.3.2 occurs and produces a variation in the optical depth,

leading to the tell-tale spokes of the shadowing instability.
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Fig. 2.15 Snapshots of log10 of the ionised hydrogen number density nH taken during
a simulation of a photo-ionised wind-blown bubble.

2.4 Simulated Observations

To produce synthetic radio continuum observations the scheme presented in the

appendix of Dougherty et al. (2003) is used, which traces rays through the grid data

TORCH outputs. Emission and absorption coefficients are calculated to accumulate

intensity along a ray that passes through the numerical grid and ends up on an image

plane.

Defining the source function

Sν ≡ jν
αν

, (2.113)
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where jν and αν are the emission and absorption coefficients, and using the fact that

the optical depth is

τν =
∫

ανds , (2.114)

we have the formal radiative transfer equation:

dIν

dτν

= Sν − Iν . (2.115)

We then multiply equation 2.115 by an integrating factor of eτν to give us

eτν
dIν

dτν

+ eτν Iν =
d(eτν Iν)

dτν

= eτν Sν , (2.116)

which we then integrate over a path segment

Iν = e−∆τν I0 + e−∆τν

∫
∆τν

0
eτSνdτ , (2.117)

where I0 is the intensity at the start of the path segment and ∆τν is the optical depth

across the segment. This integral is simpler for rays that pass through a numerical

grid cell because the source function will be constant over the path. In this case the

change in intensity across a ray segment in a grid cell is

Iν − I0 =
(

1− e−∆τν

)
(Sν − I0) . (2.118)

2.4.1 Radio Continuum

The electric field of a system of many charges moving non-relativistically is given

(ignoring the velocity field contribution and retardation effects) by

E⃗rad(⃗r, t) = ∑
i

qi

4πε0

1
|R⃗i|c2

R̂i ×
(
R̂i × ¨⃗ri

)
, (2.119)
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where qi are the particle charges, R⃗i are the distances between the particle positions

r⃗i and the field position r⃗. As the field-point distance is a lot higher than the r⃗i, the

R⃗i are all approximately equal. Hence, using the definition of the dipole moment

d⃗ = ∑
i

qi⃗ri , (2.120)

the electric and magnetic fields are

E⃗rad(⃗r, t) =
1

4πε0

1
|R⃗|c2

R̂×
(

R̂× ¨⃗di

)
(2.121)

and

B⃗rad(⃗r, t) =
1
c

R̂× E⃗rad(⃗r, t) . (2.122)

The aim is to get the free-free volume emissivity jff
ν = dW/dV dtdν so we start

with the magnitude of the Poynting vector, which is the rate of electromagnetic

energy transfer dW/dt per unit area dA:

dW
dtdA

=
1

µ0c
|E⃗rad|2 =

µ0

16π2c
| ¨⃗d|2

|R⃗|2
sin2

θ , (2.123)

where θ is the angle between R̂ and ˙⃗v. We arrive at the Larmor formula after

integrating equation 2.123 over the surface of a sphere:

dW
dt

=
µ0| ¨⃗d(t)|2

6πc
. (2.124)

Using Parseval’s theorem,

∫ +∞

−∞

| ¨⃗d(t)|2dt =
∫ +∞

−∞

| ¨⃗d(ω)|2dω = 2
∫ +∞

0
| ¨⃗d(ω)|2dω , (2.125)
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and differentiating the Fourier transform twice with respect to time, i.e. ¨⃗d(ω) =

−ω2d⃗(ω), we get

dW
dω

=
µ0

3πc
| ¨⃗d(ω)|2 = µ0

3πc
ω

4|d⃗(ω)|2 . (2.126)

For Bremsstrahlung, consider an electron moving past an ion with an impact

parameter of b in the small-angle scattering regime. We have

d⃗(ω) =
e

2πω2

∫
∞

−∞

˙⃗veiωtdt . (2.127)

The electron interacts with the ion over a brief collision time,

τ =
b
v
, (2.128)

during which either the exponential in equation 2.127 oscillates rapidly (ωt ≫ 1)

and therefore contributes little to the integral or is of order unity (ωt ≪ 1) so that

the integral becomes

d⃗(ω) =


e

(2π)1/2ω2 ∆⃗v, if ωt ≪ 1 ,

0, if ωt ≫ 1 .
(2.129)

The radiation spectrum is therefore

dW
dω

=


µ0e2

6π2cω2 |∆⃗v|2, if ωt ≪ 1 ,

0, if ωt ≫ 1 .
(2.130)
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The strongest component of acceleration is perpendicular to the path of the electron

so the change in velocity is approximately, in the small-angle scattering regime,

∆v ≈ 1
4πε0

Ze2

me

∫ +∞

−∞

b
(b2 + v2t2)3/2 dt =

1
4πε0

Ze2

me

2
bv

, (2.131)

so that

dW
dω

≈


1

(4πε0)3
8Z2e6

3πc3m2
eb2v2 , if ωt ≪ 1 ,

0, if ωt ≫ 1 .
(2.132)

To get the total spectrum for a gas with ion density ni, electron density ne and a

fixed electron speed v we multiply equation 2.132 by the flux of electrons nev and

integrate over the area around ni ions (with element 2πbdb):

dW
dωdV dt

≈ 1
(4πε0)3

16neniZ2e6

3c3m2
ev

ln
(

bmax

bmin

)
, (2.133)

where bmin is the minimum impact parameter for the small-angle scattering regime

to hold and bmax is a value beyond which the approximation made at ωt ≪ 1 is no

longer viable. Re-expressing this in terms of the Gaunt factor,

gC(v,ω) =

√
3

π
ln
(

bmax

bmin

)
, (2.134)

gives us
dW

dωdV dt
≈ 1

(4πε0)3
16πneniZ2e6

33/2c3m2
ev

gff(v,ω) . (2.135)

A photon cannot be produced if v < (2hν/m)1/2 and also dω = 2πdν so the

thermal Bremsstrahlung volume emissivity is equation 2.135 averaged over a thermal

distribution of speeds to give

jν ,C =
dW

dV dtdν
=

1
(4πε0)3

32πe6

3m3/2
e c3

√
2π

3kBT
Z2neni exp

(
−hν

kBT

)
gff(v,ω) . (2.136)
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Finally the source function is the vacuum brightness of a black-body radiator,

Sν ,C = Bν(T ) =
2hν3

c2
1

e
hν

kBT −1
, (2.137)

therefore the thermal free-free volume absorption coefficient is

αν ,C =
1

(4πε0)3
16πe6

3m3/2
e chν3

√
2π

3kBT
Z2neni

(
1− exp

(
− hν

kBT

))
gff(v,ω) .

(2.138)

2.4.2 Radio Recombination Lines

For absorptions causing a transition from state n to m the absorptivity (corrected for

stimulated emission) is

αν ,L =
hν

4π
(NnBnm −NmBmn)φ(ν) , (2.139)

where Bnm and Bmn are Einstein B-coefficients, Nn and Nm are number densities of

atoms in level n and m respectively and φ(ν) is a line profile function. Using the

Einstein relations,

gnBnm = gmBmn (2.140)

and

Amn =
2hν3

c2 Bmn , (2.141)

we can write equation 2.139 as

αν ,L =
c2Nngm

8πν2gnn2
ν

Amn

(
1− gnNm

gmNn

)
φmn(ν) , (2.142)

where gn are the statistical weights of energy level n, nν is the index of refraction

of the gas (∼ 1) and Nn is the population of electrons at level n which, under LTE
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(local thermodynamic equilibrium) conditions, is

NLTE
n =

NeNih3

(2πmekBTe)3/2
gn

2
exp
(
− χn

kBTe

)
, (2.143)

where χn is the energy of level n with sign convention χn < 0. From equation 2.143

we get the useful relation:

gnNLTE
m

gmNLTE
n

= exp
(
− hν0

kBT

)
. (2.144)

An Hα line that has final level number n will have m = n+ 1 therefore, using

equations 2.142 and 2.144, the absorption coefficient can be written

α
LTE
ν ,L =

c2NLTE
n

8πν2 An+1,n

(
1− exp

(
− hν0

kBT

))
φ(ν) , (2.145)

with gn = 2n2 for Hydrogen atoms. To find the Einstein A-coefficient we use the

correspondence principle: in the limit of large quantum numbers, a system reproduces

classical physics. Radio photons are emitted by atomic transitions between high

quantum numbers so, going ahead with this approximation, we can get the time-

averaged power radiated from Larmor’s equation,

⟨P⟩= 2e2

3c3 (ω
2an+1)

2 ⟨cos2(ωt)⟩=
16π4e2ν4a2

n+1

3c3 , (2.146)

where an+1 is the Bohr radius at level n+1 and the dipole moment has been taken as

ean+1. For high quantum numbers ∆n ≪ n the Rydberg formula is approximately

ν = R∞c
(

1
n2 −

1
(n+1)2

)
≈ 2R∞c

n3 . (2.147)

Lastly, using

an+1 ≈
n2h2

4π2mee2 (2.148)
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and

R∞ =
mee4

8ε2
0 h3c

, (2.149)

we have the Einstein A-coefficient:

An+1,n ≈
64π6mee10

3(4πε0)6c3h6n5 . (2.150)

Line Profile

The full line profile can be represented as a convolution of the Doppler broadening

profile, φ D(ν), and the electron pressure profile, φ P(ν) (Brocklehurst and Seaton,

1972). In LTE the atoms in the gas have a Maxwellian speed distribution and,

along with the Doppler formula, the spectral line intensity profile due to Doppler

broadening is given by

φ
D(ν) =

1√
2πσ2

exp
(
(ν −ν0)

2

2σ2

)
. (2.151)

The variance includes thermal and microturbulent broadening:

σ
2 =

1
2

(
ν0

c

)2
(

2kBT
mp

+V 2
turb

)
, (2.152)

where Vturb is the most probable turbulent velocity if the turbulent velocities are

assumed to have a Maxwellian distribution (Lang, 1978, ch. 2.18).

The profile for electron pressure broadening is

φ
P(ν) =

δ

π

1
(ν −ν0)2 +δ 2 , (2.153)
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where, using the results of Brocklehurst and Leeman (1971), δ may be approximated

as

δ = 4.7
(

n
100cm−3

)4.4( T
1.0×104 K

)−0.1( ne

cm−3

)
Hz . (2.154)

Departure Coefficients

The line absorptivity and emissivities under the assumption of LTE are good approx-

imations if the time to thermalise the gas is much shorter than than the recombi-

nation time, i.e. if n ≫ 1 and the electron number densities are high (Gordon and

Sorochenko, 2009).

Departure coefficients parameterise the departures from LTE and are defined

as the ratio of the real population in level k to the population predicted under LTE

conditions:

bk ≡
Nk

NLTE
k

. (2.155)

These coefficients can be calculated using the code of (Gordon and Sorochenko,

2009).

The non-LTE absorptivity is then

αν ,L =
bn −bn+1 exp

(
− hν0

kBT

)
1− exp

(
− hν0

kBT

) α
LTE
ν ,L , (2.156)

and, with Sν ,L = Bν(T ), the corresponding emissivity is

jν ,L = bn+1 jLTE
ν ,L . (2.157)





Chapter 3

Hydrodynamical Models of

Cometary HII Regions

3.1 Introduction

New Galactic plane surveys are revisiting the lifetime problem and providing large,

well selected samples. The Galaxy-wide RMS survey found ∼ 900 mid-IR bright

compact HII regions (Lumsden et al., 2013). Mottram et al. (2011) used the results

of this survey and determined the lifetime of the compact HII phase to be 300 kyr or

∼ 3 % to 10 % of the source’s main-sequence lifetime. Davies et al. (2011) simulated

the RMS results using a particular Galactic gas distribution and different accretion

models and compared with the luminosity distribution of the RMS survey. In this

work each ionising star in the Galaxy was assumed to be producing HII regions in

a uniform density medium and not blowing a stellar wind (i.e. simple Strömgren

expansion).

The aim in this chapter is to produce a grid of more realistic UCHII regions

to include in the galaxy model of Davies et al. (2011) by simulating cometary HII

regions. I explore a parameter space spanning stellar mass, the density of the stellar

environment and the age of the star and note the behaviour of some observables
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across this space. In the next chapter I use this model grid to provide more realistic

HII region sizes and fluxes in an improved galaxy model that is tested against the

CORNISH survey. With such a large unbiased sample of UCHII regions (∼ 240) it

will be possible to test the models in the context of high-mass star formation on the

Galactic scale.

In section 3.2 I introduce the numerical scheme and describe the models I

simulated. The results of the simulations are presented in section 3.3 and I discuss

the behaviour of the hot stellar wind region, the ionisation front, the emission

measures and the spectral indices when stellar mass, age and cloud density are varied.

The chapter is concluded in section 3.4 where I summarise my findings.

3.2 The Model

3.2.1 Numerical Scheme

The simulations of this chapter were produced using TORCH (see chapter 2) on a

two-dimensional axisymmetric grid (Falle, 1991). In this code, three coupled physics

problems (hydrodynamics, radiative transfer, and heating/cooling) are integrated

separately and the result of each is combined to update the solution at each step

using the Strang splitting scheme (Strang, 1968).

The governing hydrodynamic equations are: conservation of mass,

∂ρ

∂ t
+∇ · (ρ u⃗) = ρ̇w(⃗r) ; (3.1)

conservation of momentum,

∂ (ρ u⃗)
∂ t

+∇ · (ρ u⃗⊗ u⃗)+∇p = 0⃗ ; (3.2)
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and conservation of energy,

∂e
∂ t

+∇ · (⃗u(e+ p)) = H −C+ ėw(⃗r) , (3.3)

where ρ is the gas density, u⃗ is the fluid velocity, p is the thermal pressure, e =

1
γ−1 p+ 1

2ρu2 is the total energy density with γ = 5
3 , H and C are respectively the

heating and cooling rates due to atomic/molecular transitions, ėw(⃗r) is the injection

rate of stellar wind energy density and ρ̇w(⃗r) is the injection rate of wind material

density as a function of position.

We also have equations describing the advection of the hydrogen ionisation

fraction,
∂ ( f ρ)

∂ t
+∇ · ( f ρ u⃗) = ρ̇w(⃗r) , (3.4)

and the rate of hydrogen ionisations and recombinations,

d f
dt

= (1− f )(Γ+neCH)− f neαH , (3.5)

where f is the fraction of hydrogen that is ionised, ne is the electron number density,

Γ is the photoionisation rate, CH is the collisional ionisation coefficient and αH is the

recombination coefficient of hydrogen.

Models were simulated on a numerical grid with square cells that have equal side

lengths. The resolution of each grid is given in tables 3.2 and 3.3 along with the

physical dimensions.

3.2.2 The Star’s Environment

The model environment has the same density structure as in Model F in Arthur and

Hoare (2006). Stars in these models are off-centre in a spherically symmetric density
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distribution at a distance of 0.35 pc from the cloud centre. The density is given by

ρ = ρ0

[
1+
(

r
rc

)2
]−α

2

, (3.6)

where r is the distance from the cloud centre, rc = 0.01pc is the cloud core radius,

ρ0 is the density at the cloud centre and the power law index α parameterises the

dependence on r when r ≫ rc. The density at the star’s position is then given by

ρ⋆ = ρ0

[
1+
(

rsc

rc

)2
]−α

2

, (3.7)

where rsc = 0.35pc is the distance of the star from the cloud centre, so that ρ⋆ =

1
1226ρ0 (assuming α = 2).

The power law index, α , has been inferred using a number of different techniques

leading to a wide range of values in the literature. Hatchell and Van der Tak (2003)

found indices between 1.25 and 2.25. Five of the seven dark cloud envelopes that

were investigated by Arquilla and Goldsmith (1985) were best characterized by an

index of α ≃ 2. A range of 1.0 to 1.5 was found by Van der Tak et al. (2000). Pirogov

(2009) found an index of α = 1.6±0.3, which falls more steeply in the outer layers

of the dense core. For the current work a value of α = 2 was adopted.

The initial pressure in a cloud of constant temperature will have the same structure

as the density field. Without gravity, gas will move down the pressure gradient

leading to bulk motion that can interfere with the dynamics of the star’s stellar wind

and ionisation field, especially over the period of 200 kyr each of the simulations

here were run for. Instead the pressure of the environment was taken to be uniform

such that lower temperatures occur towards the cloud core, and higher temperatures

occur away from it (the temperature at the position of the star was 300 K).
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3.2.3 Parameters

Using this model environment key parameters were explored, namely the cloud

density at the position of the star and the mass of the ZAMS star. Values for these are

given in tables 3.2 and 3.3. The stellar wind parameters, mass loss rate and terminal

velocity, were calculated using the predictions of Vink et al. (2001). These depend

on the metallicity (which was assumed to be solar) and also the effective temperature

and luminosity of the star. I took values for these (for certain stellar masses) from

Davies et al. (2011), which were calculated using the hydrostatic models of Meynet

and Maeder (2000). For the same masses, Lyman continuum fluxes were also taken

from Davies et al. (2011) who used calculations from Martins et al. (2005) and Lanz

and Hubeny (2007). Effective temperature, luminosity and Lyman continuum flux

depend only on stellar mass; hence, this is the only free parameter describing the

star.

3.2.4 Stellar Winds

Vink et al. (2001) determined relations for mass-loss rates of O and B stars for a range

of metallicities by using a Monte Carlo radiative transfer method (Vink et al., 1999,

2000) on model atmospheres produced by the Improved Sobolev Approximation

code (De Koter et al., 1997, 1993). This method allowed them to find the radiative

momentum transferred to the wind via photon absorptions and scatterings. Self-

consistent solutions, i.e. models for which the radiative momentum was equal to

the wind momentum of the model atmosphere, were then used to find mass-loss

rates. Strictly speaking, the Vink et al. (2000) model is applicable in the range

15M⊙ ≤ M⋆ ≤ 120M⊙; I am assuming the author’s results can be extended to

predict stellar wind parameters for the model stars with M⋆ < 15M⊙.

Using the recipe in Vink et al. (2001) to find mass-loss rates we first find where the

bi-stability jumps are in effective temperature. We then calculate the mass-loss and
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terminal velocities depending on what side of the jumps the effective temperature

is. Bi-stability jumps are discontinuous changes in the mass-loss as a function

of effective temperature attributed to changes in the ionisation balance of heavy

elements. For the stars used in the simulated models only one jump occurs. At this

jump Fe IV recombines to Fe III, an efficient line driver.

The location of the bi-stability jump depends on the characteristic wind density

at 50 % of the terminal velocity of the wind,

log10

(
< ρ >

g cm−3

)
=−14.94+0.85 log10

(
Z

Z⊙

)
+3.2Γe , (3.8)

which itself depends on the metallicity, Z, and the ratio between the gravitational

and radiative acceleration due to electron scattering,

Γe = 7.66×10−5
σe

(
L

L⊙

)(
M

M⊙

)−1

, (3.9)

with the electron scattering cross-section, σe, taken from Lamers and Leitherer

(1993).

The temperature of the bi-stability jump is given by

T jump1
eff
K

= 61200+2590 log10

(
< ρ >

g cm−3

)
. (3.10)
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Mass-loss rates are then determined by which side of the bi-stability jump the star is

on. On the cold side of the bi-stability jump:

log10

(
Ṁ

M⊙ yr−1

)
=−6.688−1.339log10

(
M

30M⊙

)
−1.601log10

(
v∞

2vesc

)
+2.210log10

(
L

105 L⊙

)
+1.070log10

(
Teff

2×104 K

)
+0.850log10

(
Z

Z⊙

)
,

(3.11)

and on the hot side of the bi-stability jump:

log10

(
Ṁ

M⊙ yr−1

)
=−6.697−1.313log10

(
M

30M⊙

)
−1.226log10

(
v∞

2vesc

)
+2.194log10

(
L

105 L⊙

)
+0.933log10

(
Teff

2×104 K

)
+0.850log10

(
Z

Z⊙

)
.

(3.12)

The ratios of the terminal flow velocity to the escape velocity were determined

by Lamers et al. (1995) to be v∞

vesc
≃ 1.3 on the cold side of the jump and v∞

vesc
≃ 2.6

on the hot side. The escape velocity is given by

vesc =

√
2GMeff

R⋆
, (3.13)

where the effective mass (corrected for the electron scattering radiation pressure) is

Meff = (1−Γe)M⋆ . (3.14)
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Mass-loss rates and terminal velocities were calculated for each of the model

stars using the values in table 3.1 and are plotted in figures 3.1 and 3.2 respectively.

As can be seen in the table the mass injection rate increases for higher-mass stars

except between 6 M⊙ and 9 M⊙ where there is a decrease. This is due to the bi-

stability jump; the star with M⋆ = 6M⊙ is the only one that lies on the cold side of

the bi-stability jump where Fe IV recombines to Fe III, an efficient line driver.

In order to simulate the effects of a stellar wind the thermal energy injection

method developed by Chevalier and Clegg (1985) was used, which has also been

used by Comeron (1997) and Arthur and Hoare (2006). Due to the resolution of the

numerical grid used to simulate the models it was not possible to define a free flowing

wind region around the star (as in Rozyczka, 1985) that is sufficiently resolved (low

resolution regions seed instabilities that grow enough to render the simulation results

unphysical). The stellar wind power is mostly converted to thermal energy at the

reverse shock (Castor et al., 1975) so we do not need to reproduce the structure of

the unshocked wind region. Instead we can inject the wind luminosity as a rate of

mass, Ṁ, and energy, 1
2Ṁv2

∞, into the shocked wind region as it is this power that

determines the evolution and structure of the bubble (Weaver et al., 1977).

Wind material density and energy density are added within the injection radius

each time-step such that their integrated rates over the volume are Ṁ and 1
2Ṁv2

∞

respectively. The rate of injected wind energy density is given by ėw = 1
2 ρ̇wv2

∞, where

ρ̇w is the rate of injected wind material density:

ρ̇w(⃗r) =


Ṁ

4
3 πR3

inj
, if |⃗r|< Rinj ,

0 , otherwise ,

(3.15)

where Rinj is the injection radius, which is given in tables 3.2 and 3.3 for each model.

I tested and confirmed that the evolution of a spherically symmetric wind-blown

bubble in a neutral medium with no radiative cooling is as predicted using this
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method. The size of the injection region (∼ 10 cells) in all the models was chosen

to be large enough that the region is well resolved by the numerical grid and small

enough that the injection region has little effect on the evolution of the bubble. The

injection radius will act as a lower bound for the radius of the wind bubble; bubbles

smaller than this will have the wrong size. Another undesirable effect is that the

injection radius is the radius the wind bubble starts with so that the wind has had a

head-start. It does, however, take time to inject enough pressure in the region to blow

a wind. This is approximately the time it takes to add pressure into the injection

region that is comparable to the ambient pressure i.e.

tstart =
pa

ṗ
=

nakBTa(γ −1)
ėw

, (3.16)

where pa, na and Ta are the pressure, hydrogen number density and temperature of

the ambient gas, kB is the Boltzmann constant and γ = 5
3 is the ratio of heat capacities.

The start times, tstart, are given in tables 3.2 and 3.3 for all the models.

To confirm that the gas in the injection region of the models is adiabatic the

maximum initial radius from which gas parcels can cool radiatively before exiting

the injection region was calculated. The initial radius in units of the injection radius

(Cantó et al., 2000):

ri = exp
(
−
[

Av∞tcool

Rinj

])
, (3.17)

where

A =

(
γ −1
γ +1

)1/2(
γ +1

6γ +2

)(3γ+1)/(5γ+1)

, (3.18)

and the cooling time within the injection radius is

tcool ≈
kBTinj

ninjΛinj
, (3.19)
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where Tinj, ninj, and Λinj are the temperature, the hydrogen number density, and the

cooling function values in the injection region. The cooling times, tcool, for the

models were calculated at snapshots of t = 50kyr and are given in tables 3.2 and 3.3.

I calculated the initial radii in equation 3.17 using these cooling times and found that

they are all tiny fractions of the injection radius, hence the gas within the injection

region is adiabatic for all of the models.

Radiative cooling may dominate the mechanical wind luminosity in the injection

radius leading to the catastrophic cooling (or bi-modal) regime in which a stationary

wind solution does not exist (Silich et al., 2003, 2004). In this regime the stagnation

radius, where the gas velocity is zero, is not located at the centre of the injection

region, but is instead located between the centre and the injection radius. Within the

stagnation radius radiative cooling dominates and therefore mass will accumulate

here. Between the stagnation radius and the injection radius the stationary wind

solution still exists.

Tenorio-Tagle et al. (2007) found that a threshold luminosity, Lcrit, exists above

which the wind is in the bi-modal regime. The semi-analytical treatment by Wünsch

et al. (2007) yielded the following formula for the threshold luminosity:

Lcrit =
6(γ −1)πηα2µ2

i Rinjv4
∞

(γ +1)Λst

(
ηv2

∞

2
− c2

st
γ −1

)
, (3.20)

where η is the fraction of the injected wind power that is transferred to the shocked

wind region, α = 0.28 is a fiducial coefficient (with its best-fit value) and cst and Λst

are the sound speed and cooling function values at the stagnation radius respectively.

Equation 3.20 can be reduced (Pittard 2016, in prep.) to

Lcrit ≈ 4.4×1040
(

Rinj

pc

)(
v∞

1000km s−1

)
erg s−1 . (3.21)
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Fig. 3.1 The mass loss rate of stars plotted against stellar mass.

The threshold luminosity for all of the models, given in tables 3.2 and 3.3, is higher

than the mechanical luminosity. The models are therefore in the stationary wind

regime.

3.2.5 Radiation Field

Ionising radiation from each star was assumed to be monochromatic. Non-ionising

FUV radiation was also included to heat the gas. It was assumed that recombinations

to the ground state of hydrogen are locally reabsorbed i.e. the diffuse field was treated

under the on-the-spot approximation. The recombination coefficient was therefore

calculated using cubic spline interpolation of the case-B recombination coefficient

data in Hummer (1994). Similarly, the collisional ionisation of neutral hydrogen

was calculated by cubic spline interpolation of the data in Raga et al. (1997a). The
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Fig. 3.2 The terminal velocity of stellar winds plotted against the driving star’s mass.

Fig. 3.3 The Lyman continuum photon rate of stars plotted against stellar mass.
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Fig. 3.4 Maps of hydrogen number density (top left), pressure (top right), temperature
(bottom left) and ionised hydrogen number density (bottom right) of a model HII

region around a star of mass M⋆ = 30M⊙ with a local hydrogen number density of
n⋆ = 3.2×104 cm−3 at an age of t = 50kyr. The star is located at z = 0.37pc and
r = 0pc, and the cloud centre is at the top of each frame. The black arrows on the
bottom left plot represent velocities of 3km s−1 < v ≤ 30km s−1 and the red arrows
represent velocities of 30km s−1 < v ≤ 2700km s−1.

cross-section for ionising photons was taken from Osterbrock (1989). Figure 3.3

shows the Lyman continuum flux plotted against stellar mass for the models.

3.3 Results and Discussion

Plots of hydrogen number density, pressure, temperature and ionised hydrogen

number density are given in figure 3.4 for a typical cometary HII region. Nearest

the star is the wind injection region of radius 0.04 pc from which a wind flows

outwards becoming supersonic at its edge. The central temperature is ∼ 108 K and

decreases outside of the injection radius to the wind reverse shock. Gas outside the

injection region is accelerated to supersonic speeds. I refer to the gas between the

wind injection region and the reverse shock as the “unshocked stellar wind region”.

Downstream of the reverse shock is low density shocked stellar wind material, which
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Fig. 3.5 Same as figure 3.4 but the simulation was run at twice the resolution in both
dimensions.

is at a uniform temperature of ∼ 108 K and subsonic. Further downstream lies

the contact discontinuity separating the shocked stellar wind region and the cooler

(∼ 8000 K) ionised ambient gas. Earlier on in the evolution of this HII region I

would expect to see a shock ahead of the contact discontinuity, but pressures either

side of the shock have equilibrated so that the shock no longer exists. Finally, the

ionised region is bounded by an ionisation front that separates ionised gas and the

neutral gas shock. Photo-ionisation has heated the gas in the ionised region and

therefore has created an overpressure with respect to the surrounding ambient gas,

which explains the presence of the shock just outside of the ionisation front.

In figure 3.5 plots of the same HII region in figure 3.4 are shown but at double

the resolution in both dimensions. We see that although there is more smaller-scale

structure in these plots, the large-scale structure is unchanged.
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Table 3.4 Measurements of Di(θ), which is the distance from the star to the edge of
the ionised region along a direction with polar angle θ . The analytical Strömgren
radius, Rraga (see equation 3.24) and the stagnation radius, Rstag (see equation 3.25)
are also given by setting nH equal to the local hydrogen number density, n⋆. These
measurements were made for stars of age of 50 kyr.

M⋆ Dist. n⋆ [104 cm−3]

[M⊙] [pc] 0.8 1.6 3.2 6.4 12.8

6

Di(0) 0.034 0.019 0.010 0.0097 0.0056
Di(

π

2 ) 0.037 0.023 0.014 0.010 0.0062
Di(π) 0.043 0.026 0.016 0.011 0.0076
Rraga 0.078 0.064 0.053 0.043 0.035
Rstag 0.036 0.022 0.014 0.0089 0.0056

9

Di(0) 0.078 0.053 0.039 0.021 0.014
Di(

π

2 ) 0.085 0.060 0.039 0.023 0.014
Di(π) 0.11 0.071 0.042 0.025 0.015
Rraga 0.13 0.10 0.084 0.069 0.057
Rstag 0.11 0.067 0.042 0.027 0.017

12

Di(0) 0.15 0.095 0.077 0.062 0.035
Di(

π

2 ) 0.17 0.12 0.088 0.062 0.040
Di(π) 0.19 0.15 0.11 0.071 0.045
Rraga 0.19 0.16 0.13 0.10 0.086
Rstag 0.28 0.18 0.11 0.070 0.044

15

Di(0) 0.20 0.16 0.14 0.093 0.070
Di(

π

2 ) 0.26 0.20 0.15 0.11 0.079
Di(π) 0.31 0.24 0.18 0.13 0.096
Rraga 0.27 0.22 0.18 0.15 0.12
Rstag 0.61 0.38 0.24 0.15 0.096

20

Di(0) 0.26 0.24 0.19 0.17 0.13
Di(

π

2 ) 0.40 0.32 0.24 0.19 0.15
Di(π) 0.48 0.38 0.30 0.22 0.17
Rraga 0.38 0.31 0.25 0.20 0.17
Rstag 1.3 0.81 0.51 0.32 0.20

30

Di(0) 0.30 0.26 0.23 0.21 0.18
Di(

π

2 ) 0.56 0.43 0.34 0.26 0.21
Di(π) 0.78 0.58 0.42 0.34 0.24
Rraga 0.48 0.39 0.31 0.26 0.21
Rstag 2.2 1.4 0.87 0.55 0.34
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Table 3.5 Same as table 3.4 but for higher masses.

M⋆ Dist. n⋆ [104 cm−3]

[M⊙] [pc] 0.8 1.6 3.2 6.4 12.8

40

Di(0) 0.31 0.30 0.26 0.24 0.20
Di(

π

2 ) 0.74 0.56 0.44 0.34 0.26
Di(π) 1.1 0.75 0.56 0.47 0.33
Rraga 0.56 0.45 0.36 0.29 0.24
Rstag 3.0 1.9 1.2 0.74 0.47

70

Di(0) 0.33 0.32 0.33 0.26 0.24
Di(

π

2 ) 1.2 0.87 0.77 0.48 0.39
Di(π) 1.4 1.0 0.88 0.60 0.47
Rraga 0.66 0.52 0.42 0.34 0.28
Rstag 4.1 2.6 1.6 1.0 0.64

120

Di(0) 1.3 0.39 0.39 0.32 0.28
Di(

π

2 ) 2.0 1.2 1.1 0.71 0.54
Di(π) 2.4 1.6 1.3 0.88 0.75
Rraga 0.75 0.59 0.47 0.38 0.31
Rstag 5.2 3.2 2.0 1.3 0.81

3.3.1 Ionisation Fronts

The sizes of the ionisation fronts are shown in tables 3.4 to 3.7 along with analytical

radii of ionised regions that would evolve around stars with the same stellar parame-

ters but in a uniform density medium. Assuming balance between photo-ionisations

and recombinations, for a star in a uniform medium with no stellar wind we have:

QLyc =
4π

3
n2

i (t)αBR3
IF(t) , (3.22)

where ni is the hydrogen number density inside the ionised region, αB is the case-B

recombination coefficient for hydrogen and R3
IF(t) is the time-dependent radius of

the ionised region. The Strömgren radius is the initial radius of the ionised region:

Rst =

(
3QLyc

4πn2
HαB

)1/3

, (3.23)
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Table 3.6 Measurements of Di(θ), which is the distance from the star to the edge of
the ionised region along a direction with polar angle θ . The analytical Strömgren
radius, Rraga (see equation 3.24) and the stagnation radius, Rstag (see equation 3.25)
are also given by setting nH equal to the local hydrogen number density, n⋆. These
measurements were made for stars in a local number density of 3.2×104 cm−3.

M⋆ Dist. Age [kyr]

[M⊙] [pc] 20 40 60 80 100

6

Di(0) 0.015 0.012 0.012 0.016 0.014
Di(

π

2 ) 0.016 0.014 0.015 0.016 0.016
Di(π) 0.019 0.015 0.019 0.019 0.018
Rraga 0.031 0.046 0.058 0.069 0.078
Rstag 0.014 0.014 0.014 0.014 0.014

9

Di(0) 0.038 0.041 0.041 0.038 0.038
Di(

π

2 ) 0.036 0.041 0.040 0.039 0.038
Di(π) 0.041 0.044 0.043 0.039 0.050
Rraga 0.050 0.074 0.094 0.11 0.13
Rstag 0.042 0.042 0.042 0.042 0.042

12

Di(0) 0.059 0.078 0.085 0.092 0.096
Di(

π

2 ) 0.069 0.087 0.097 0.10 0.11
Di(π) 0.079 0.11 0.12 0.12 0.13
Rraga 0.076 0.11 0.14 0.17 0.19
Rstag 0.11 0.11 0.11 0.11 0.11

15

Di(0) 0.11 0.13 0.15 0.17 0.18
Di(

π

2 ) 0.11 0.15 0.17 0.19 0.21
Di(π) 0.12 0.16 0.19 0.23 0.25
Rraga 0.11 0.16 0.20 0.23 0.27
Rstag 0.24 0.24 0.24 0.24 0.24

20

Di(0) 0.13 0.18 0.21 0.24 0.26
Di(

π

2 ) 0.15 0.22 0.26 0.30 0.33
Di(π) 0.17 0.24 0.31 0.35 0.40
Rraga 0.15 0.22 0.27 0.32 0.37
Rstag 0.51 0.51 0.51 0.51 0.51

30

Di(0) 0.17 0.21 0.24 0.26 0.29
Di(

π

2 ) 0.21 0.30 0.36 0.43 0.47
Di(π) 0.24 0.38 0.45 0.50 0.63
Rraga 0.19 0.28 0.35 0.41 0.46
Rstag 0.87 0.87 0.87 0.87 0.87
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Table 3.7 Same as table 3.6 but for higher masses.

M⋆ Dist. Age [kyr]

[M⊙] [pc] 20 40 60 80 100

40

Di(0) 0.19 0.24 0.26 0.29 0.31
Di(

π

2 ) 0.26 0.24 0.47 0.54 0.61
Di(π) 0.31 0.47 0.59 0.73 0.82
Rraga 0.22 0.32 0.40 0.47 0.53
Rstag 1.2 1.2 1.2 1.2 1.2

70

Di(0) 0.24 0.34 0.29 0.34 0.34
Di(

π

2 ) 0.36 0.67 0.81 1.00 1.1
Di(π) 0.50 0.70 0.87 0.95 1.1
Rraga 0.26 0.37 0.46 0.54 0.61
Rstag 1.6 1.6 1.6 1.6 1.6

120

Di(0) 0.32 0.40 0.44 0.42 0.48
Di(

π

2 ) 0.70 0.96 1.1 1.3 1.5
Di(π) 0.81 1.3 1.3 1.5 1.6
Rraga 0.30 0.42 0.52 0.60 0.68
Rstag 2.0 2.0 2.0 2.0 2.0

where nH is the initial hydrogen number density of the uniform medium. Ionisation

heats the gas, which therefore sets up an overpressure; expansion thereafter is driven

by this overpressure. The analytical radius of the ionised region (Raga et al., 2012)

is given by:

Rraga = Rst

(
1+

7
4

√
4
3

t
ts

)4/7

, (3.24)

where ts = Rst/ci is the sound crossing time-scale and ci is the sound speed of the

ionised gas. The isothermal sound speed in the ionised ambient gas was assumed to

be ci =
√

RT
µH

, where the ionised gas temperature is T ≃ 8000K, the average molar

mass of ionised hydrogen is µH = 0.5g mol−1 and R is the gas constant, giving a

sound speed of ca = 11.5km s−1.

In tables 3.4 and 3.5 the measured ionisation regions show a decrease in size for

higher local densities as expected. The sizes also increase for higher masses due to

higher Lyman continuum photon fluxes. Equation 3.24 is only a good approximation



94 Hydrodynamical Models of Cometary HII Regions

at early times i.e. when the radius is much smaller than the stagnation radius,

Rstag =

(
4
3

)2/3( ci

ca

)4/3

Rst , (3.25)

where ca is the isothermal sound speed of the neutral ambient gas that, assuming the

temperature of this gas is T ≃ 300K, has the value ca ≃ 1.58km s−1. In the models

we therefore have Rstag ≃ 17.2Rst. We can see that for smaller Strömgren radii the

stagnation time occurs earlier. Tables 3.6 and 3.7 show a stagnating ionisation front,

which occurs at earlier ages for smaller-mass stars.

The lower the ratio of the analytical radius (equation 3.24) of the ionised region to

stagnation radius (equation 3.25) the better the analytical radius is at approximating

the measured radius. The analytical radius will over-estimate the measured radius

for ratios that are closer to or larger than one. This effect is seen in tables 3.4 to 3.7.

Higher-mass stars have larger Strömgren radii so their stagnation times occur later

and therefore the analytical to measured radius ratio will be lower for these stars

compared to lower-mass stars in the same density field and at the same age. At

high enough stellar masses, M⋆ ≥ 20M⊙, the analytical radius under-estimates the

ionisation front distance and is worse the higher the mass is. This is due to a number

of factors. Higher-mass stars have more energetic winds and therefore larger regions

of hot stellar wind; recombination rates are lower in these higher temperature regions

meaning ionisation balances will occur at further distances from the star. The wind

injection region is initially fully ionised so the ionisation front has had a head-start.

For these stars the ionisation front (in the “radial” direction) has travelled far enough

that it starts to travel down the density gradient rather than along a density contour.

Most of the simulations did not show the unbounded ionisation front expansion

predicted by Franco et al. (1990) for α > 3/2. Only for stars with masses M⋆ ≥

40M⊙ and local densities n⋆ ≤ 1.6×104 cm−3 did the ionisation front break free of

the cloud and almost always in finger-like structures (a.k.a. the shadowing instability,
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see Williams, 1999). In all other models the regions are bounded approximately by

a sphere, which is consistent with the three-dimensional simulations of off-centre

UCHII regions by Mac Low et al. (2007). The regions are at a roughly constant

density throughout the simulation and grow to a maximum radius that coincides with

when the pressures either side of the ionisation front have equalised.

These results very closely match those in Arthur (2007), in which the condition

necessary for HII regions in power-law density environments to remain bounded

during their initial formation stage was given by:

1
3

y3
sc <

2
(2α −1)(2α −2)(2α −3)

, (3.26)

where ysc = Rst/rsc i.e. the ratio of the Strömgren radius for a star in a uniform

medium to the distance between the star and the cloud centre. Values of this ratio

for each set of model parameters were calculated and are given in tables 3.2 and 3.3

by setting nH in equation 3.23 equal to the local hydrogen number density, n⋆. The

power-law density environments have α = 2, so equation 3.26 reduces to ysc < 1,

which is true for all of the models. Arthur (2007) also found that in α = 2 power-law

environments, if ysc ≲ 0.02 then pressure balance can halt the breakout of the HII

region during the expansion stage. As previously mentioned the pressures do equalise

before the HII regions can become unbounded for most models. However, this is

also seen for models with ysc > 0.02.

3.3.2 Wind Forward Shock

Tables 3.8 to 3.11 list the sizes of the shocked stellar wind regions as a function of

density and time respectively. In tables 3.10 and 3.11 the sizes of the shocked stellar

wind regions show a plateau at early times for low-mass stars. The plateau occurs

at later times for higher-mass stars. This suggests that the bubbles are becoming

pressure confined (plots of the pressure confirm this).
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Table 3.8 Measurements of Ds(θ), which is the distance from the star to the edge of
the shocked stellar wind region along a direction with polar angle θ . The analytical
radius for a radiative bubble at the pressure confinement time, RP (see equation 3.28
and equation 3.29), is also given. These measurements were made for stars of age
50 kyr.

M⋆ Dist. n⋆ [104 cm−3]

[M⊙] [pc] 0.8 1.6 3.2 6.4 12.8

6

Ds(0) 0.018 0.0097 0.0059 0.0062 0.0035
Ds(

π

2 ) 0.024 0.017 0.0088 0.0073 0.0043
Ds(π) 0.032 0.018 0.012 0.0093 0.0062
RP 0.0071 0.0050 0.0033 0.0027 0.0019

9

Ds(0) 0.016 0.024 0.0097 0.0035 0.0029
Ds(

π

2 ) 0.015 0.018 0.017 0.0062 0.0037
Ds(π) 0.085 0.018 0.023 0.014 0.0066
RP 0.0062 0.0047 0.0034 0.0023 0.0016

12

Ds(0) 0.041 0.011 0.022 0.021 0.012
Ds(

π

2 ) 0.037 0.022 0.025 0.022 0.018
Ds(π) 0.14 0.11 0.063 0.038 0.021
RP 0.018 0.014 0.011 0.0083 0.0060

15

Ds(0) 0.031 0.044 0.040 0.026 0.022
Ds(

π

2 ) 0.051 0.044 0.040 0.031 0.020
Ds(π) 0.22 0.16 0.12 0.082 0.066
RP 0.032 0.027 0.021 0.017 0.013

20

Ds(0) 0.040 0.047 0.057 0.065 0.043
Ds(

π

2 ) 0.079 0.074 0.062 0.057 0.050
Ds(π) 0.34 0.26 0.19 0.14 0.11
RP 0.063 0.054 0.044 0.036 0.030

30

Ds(0) 0.074 0.079 0.079 0.071 0.071
Ds(

π

2 ) 0.15 0.14 0.13 0.13 0.14
Ds(π) 0.65 0.38 0.36 0.25 0.17
RP 0.14 0.12 0.098 0.080 0.067
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Table 3.9 Same as table 3.8 but for higher masses.

M⋆ Dist. n⋆ [104 cm−3]

[M⊙] [pc] 0.8 1.6 3.2 6.4 12.8

40

Ds(0) 0.13 0.11 0.15 0.12 0.094
Ds(

π

2 ) 0.28 0.24 0.18 0.27 0.18
Ds(π) 0.94 0.62 0.44 0.40 0.29
RP 0.27 0.22 0.18 0.15 0.12

70

Ds(0) 0.22 0.21 0.22 0.18 0.18
Ds(

π

2 ) 1.1 0.79 0.63 0.43 0.37
Ds(π) 1.1 0.91 0.77 0.56 0.47
RP 0.70 0.55 0.51 0.35 0.30

120

Ds(0) 1.2 0.34 0.31 0.25 0.22
Ds(

π

2 ) 1.9 1.2 1.1 0.63 0.49
Ds(π) 2.2 1.5 1.3 0.81 0.71
RP 1.7 1.2 1.1 0.79 0.64

I use the results of an analysis of stellar wind evolution by Koo and McKee

(1992) to see if this behaviour is physical. The terminal wind velocity in all of the

models is lower than the critical wind velocity defined in Koo and McKee (1992,

see their equation 2.5), indicating that the wind-bubbles are radiative. In this regime

the cooling time of the shocked wind is shorter than the time it takes to accumulate

a significant mass of gas ahead of the shock. I found that the radii of the shocked

stellar wind regions are consistent with pressure-confined fully radiative bubbles.

Numerical diffusion can cause extra cooling, i.e. the cooling length might not be

sufficiently resolved and therefore intermediate temperatures are found in a higher

volume of the gas. Kelvin-Helmholtz instabilities can also enhance cooling by

increasing the surface area of the contact discontinuity. Increasing the resolution

of the numerical grid increases the growth of these instabilities to further enhance

cooling. Resolution tests were carried out that confirm that the cooling across the

contact discontinuity was not enhanced significantly by numerical effects.
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Table 3.10 Measurements of Ds(θ), i.e. the distance from the star to the edge of
the shocked stellar wind region along a direction with polar angle θ . The analytical
radius for a radiative bubble at the pressure confinement time, RP (see equation 3.28
and equation 3.29), is also given. These measurements were made for stars in a local
number density of 3.2×104 cm−3.

M⋆ Dist. Age [kyr]

[M⊙] [pc] 20 40 60 80 100

6

Ds(0) 0.0088 0.0062 0.0059 0.0094 0.0094
Ds(

π

2 ) 0.011 0.010 0.010 0.011 0.011
Ds(π) 0.013 0.0098 0.013 0.012 0.013
RP 0.0038 0.0035 0.0036 0.0039 0.0038

9

Ds(0) 0.0088 0.011 0.015 0.011 0.018
Ds(

π

2 ) 0.010 0.0086 0.012 0.0082 0.0088
Ds(π) 0.022 0.026 0.022 0.0071 0.0059
RP 0.0032 0.0036 0.0035 0.0034 0.0034

12

Ds(0) 0.018 0.013 0.028 0.022 0.044
Ds(

π

2 ) 0.016 0.018 0.021 0.028 0.028
Ds(π) 0.050 0.078 0.053 0.081 0.066
RP 0.0090 0.011 0.012 0.012 0.012

15

Ds(0) 0.041 0.038 0.035 0.042 0.048
Ds(

π

2 ) 0.033 0.038 0.041 0.039 0.044
Ds(π) 0.049 0.099 0.14 0.18 0.19
RP 0.017 0.021 0.023 0.025 0.027

20

Ds(0) 0.035 0.059 0.057 0.044 0.047
Ds(

π

2 ) 0.041 0.059 0.081 0.065 0.059
Ds(π) 0.11 0.18 0.23 0.28 0.33
RP 0.031 0.041 0.046 0.052 0.055

30

Ds(0) 0.092 0.071 0.079 0.088 0.074
Ds(

π

2 ) 0.088 0.10 0.12 0.12 0.12
Ds(π) 0.18 0.33 0.37 0.41 0.51
RP 0.067 0.088 0.10 0.11 0.12
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Table 3.11 Same as table 3.10 but for higher masses.

M⋆ Dist. Age [kyr]

[M⊙] [pc] 20 40 60 80 100

40

Ds(0) 0.12 0.15 0.15 0.11 0.14
Ds(

π

2 ) 0.21 0.18 0.21 0.21 0.26
Ds(π) 0.28 0.41 0.41 0.65 0.73
RP 0.12 0.12 0.19 0.21 0.23

70

Ds(0) 0.18 0.22 0.19 0.20 0.23
Ds(

π

2 ) 0.32 0.56 0.70 0.64 0.71
Ds(π) 0.47 0.70 0.81 0.88 1.1
RP 0.29 0.46 0.53 0.61 0.68

120

Ds(0) 0.32 0.29 0.26 0.33 0.37
Ds(

π

2 ) 0.36 0.90 1.1 1.2 1.4
Ds(π) 0.58 1.1 1.3 1.4 1.6
RP 0.77 0.98 1.1 1.2 1.3

Figure 3.6 shows a plot of the injected energy and total energy within the shocked

stellar wind region over time for one of the model stars. The total energy is a few

orders of magnitude lower than the total injected energy indicating that most of the

energy is radiated away. We can also see a plateau in the total energy i.e. eventually

energy is lost at the same rate that it is injected, which implies that the wind bubbles

are radiative.

The time it takes for a radiative bubble to transition to the pressure confined stage

is approximately

tP =

(
3L

16πρic4
i v∞

)1/2

, (3.27)

where L = 1
2Ṁv2

∞ is the mechanical wind luminosity, ρa is the ambient density

and ci is the isothermal sound speed in the ambient medium. The ambient density,

ρi, was determined for each snapshot as the density upstream of the shock in the

ionised ambient region in the radial direction. Using equation 3.22 we can get an
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Fig. 3.6 The evolution of the injected energy (dashed blue curve) and the total energy
within the shocked stellar wind region (solid red curve) for a model star of mass
M⋆ = 12M⊙ in a local hydrogen number density of n⋆ = 3.2×104 cm−3.
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approximation for this density:

ρi =

(
Rst

Di(
π

2 )

)3/2

ρ⋆ , (3.28)

where Di(
π

2 ) is the measured radial distance from star to ionisation front given in

tables 3.4 to 3.7 (Di(
π

2 ) gives an “average” value for the bubble radius).

For all of the models the transition time is too short to be seen either because the

earliest data snapshot was taken at 2 kyr or because the bubble is small and therefore

not well resolved. As a result the bubbles quickly stall and consequently are missing

the shock outside of the contact discontinuity that separates shocked stellar wind

material and the ionised ambient medium.

As the shock is missing in all snapshots of all of the models and the wind-blown

bubbles are behaving like radiative bubbles, the radial distance from the star to

the contact discontinuity, Ds(
π

2 ) in tables 3.8 to 3.11, should be comparable to the

analytical radius of the shock at the confinement time given in equation 3.27. The

shell radius for a radiative bubble is given by

Rshell =

(
3L

πρiv∞

)1/4

t1/2 , (3.29)

so that the approximate final radius of the shocked wind region in the radial direction

is

RP = Rshell(tP) =
(

3L

4πρic2
i v∞

)1/2

, (3.30)

which is also given for each model in tables 3.8 to 3.11. Looking at these tables, the

measured transverse distances, Ds(
π

2 ), show close agreement with the confinement

radius, RP, for stars with masses M⋆ ≥ 20. In tables 3.8 and 3.9 and tables 3.10

and 3.11, we can see generally better agreement for stars in lower density environ-

ments and at later times respectively.
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In all the models the contact discontinuity eventually stalls (possible explanations

are given earlier in the text). For stars with mass 6M⊙ ≤ M⋆ ≤ 30M⊙ in tables 3.10

and 3.11 the stellar wind size in the transverse direction, Ds(
π

2 ), plateaus before

they reach an age of 100 kyr. This behaviour is easily seen for the star with mass

M⋆ = 30M⊙ but is harder to see for lower-mass stars because the interface between

the shocked stellar wind region and the ionised ambient region is unstable.

3.3.3 Emission Measures

In order to see what the models would look like if the ionised region were optically

thin the emission measure was calculated:

EM =
∫

n2
e ds , (3.31)

where ne is the number density of free electrons and the integration is along a line of

sight.

To do this integration I used the cylindrically symmetric ray tracing scheme

presented in the appendix of Dougherty et al. (2003). Grids of the resulting emission

measures at a viewing projection angle of 45° are shown spanning two-dimensional

parameter spaces in figures 3.7 to 3.10. In figures 3.7 and 3.8 the effects of varying

stellar mass and the star’s local density were explored at a time of 50 kyr. The

evolution over time of emission measures for different stellar masses is plotted in

figures 3.9 and 3.10 at a local number density of n⋆ = 3.2×104 cm−3.

The figures show that for stars with mass M⋆ ≤ 9M⊙ the morphology of the

cavity blown out by the stellar wind is unstable. This is also seen for M⋆ = 12M⊙

and n⋆ > 3.2×104 cm−3. However, these cavities are very small and would not be

resolved in real radio continuum images. At higher stellar masses, 15M⊙ ≤ M⋆ ≤

40M⊙, the morphology of the HII regions do not change appreciably over a period

of 200 kyr and all show limb-brightening. Stars with masses M⋆ ≥ 70M⊙ also show
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Fig. 3.7 The emission measures (in pc cm−6) of simulated UCHII regions at an age
of t = 50000yr and viewed at a projection angle (see equation 3.32) of θi = 45°.
Each row shows the emission measure for a star of a specified stellar mass (given on
the far left) at increasing local number densities going right (number densities are
given at the top of each column). The axes are in units of arcseconds and the object
is assumed to be at a distance of 1.5 kpc from the observer. Each map also shows
logarithmic contours at

√
2 intervals from the maximum emission measure. The star

marker on each plot shows the position of the star and the diamond marker (where
visible) shows the position of the cloud centre.
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Fig. 3.8 Same as for figure 3.7 but for higher stellar masses.
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Fig. 3.9 The emission measures (in pc cm−6) of simulated UCHII regions in a local
hydrogen number density of n⋆ = 3.2×104 cm−3 and viewed at a projection angle
(see equation 3.32) of θi = 45°. Each row shows the emission measure for a star of a
specified stellar mass (given on the far left) at ages going right (age is given at the
top of each column). The axes are in units of arcseconds and the object is assumed
to be at a distance of 1.5 kpc from the observer. Each map also shows logarithmic
contours at

√
2 intervals from the maximum emission measure. The star marker

on each plot shows the position of the star and the diamond marker (where visible)
shows the position of the cloud centre.
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Fig. 3.10 Same as for figure 3.9 but for higher stellar masses.



3.3 Results and Discussion 107

Fig. 3.11 The emission measures (in pc cm−6) of a simulated HII region around a star
with mass M⋆ = 30M⊙ in a local hydrogen number density of n⋆ = 3.2×104 cm−3

at an age of t = 50kyr viewed at different projection angles (see equation 3.32),
which are given at the top of each plot. The axes are in units of arcseconds and the
object is assumed to be at a distance of 1.5 kpc from the observer.

limb-brightening if n⋆ > 3.2×104 cm−3. The rest have HII regions that expand

past the centre of the dense cloud so that this is the only feature picked up in the

emission measure images. For the HII region in the lower left of figure 3.8 we see

limb-brightening because the high density core is destroyed by the stellar wind.

For one of the models that does exhibit limb-brightening and has a cavity that is

larger than the wind injection region I show in figure 3.11 the effects of changing the

projection angle on the morphology. The projection angle is defined as

θi = arccos
(
ẑ · d̂
)
, (3.32)

where ẑ is a unit vector directed from star to cloud centre and d̂ is a unit vector

directed from star to observer. At projection angles closer to 90° limb-brightening

is more pronounced i.e. the “limbs” wrap further around the centre of the object.

Using the classification scheme of De Pree et al. (2005) the projected morphology is

less cometary and more shell-like the closer the axis of symmetry of the HII region

is oriented towards the observer. These results suggest that HII regions classified

as having a shell-like morphology may be cometaries viewed along their axis of

symmetry (as noted by Mac Low et al., 1991).
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Fig. 3.12 A spectral index map of radio continuum emission from a model HII

region around a star of mass M⋆ = 30M⊙ in a local hydrogen number density
of n⋆ = 3.2×104 cm−3 and at an age of t = 50kyr. The object was viewed at a
projection angle (see equation 3.32) of θi = 45°. Spectral indices for each pixel were
calculated using two flux density images of the model for frequencies of 1.4 GHz
and 5.0 GHz. The axes are in units of arcseconds and the object is assumed to be at
a distance of 1.5 kpc from the observer. The region in white is below the noise level
of the CORNISH survey (∼ 0.4 mJy beam−1) so a spectral index was not calculated.
The integrated spectral index of this image is α = 0.36 (see table 3.12).

3.3.4 Spectral Indices

Synthetic radio continuum maps (including the effects of optical depth) were also

calculated using the emissivity and absorption coefficient in section 2.4.1. A spectral

index map for radio continuum emission is plotted in figure 3.12 for a star in the

centre of the parameter space for frequencies 1.4 GHz and 5.0 GHz. As expected the

intermediate spectral indices (between −0.1 and 2) are found at the head and the

limbs of the HII region, where the emission measure is highest. The cavity blown
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Table 3.12 Spectral indices of model HII regions at an age of 50 kyr and viewing
projection angle (see equation 3.32) of θi = 45°. The spectral indices were calculated
using total fluxes for each model at frequencies of 1.4 GHz and 5.0 GHz.

M⋆ n⋆ [104 cm−3]

[M⊙] 0.8 1.6 3.2 6.4 12.8

6 −0.11 −0.11 −0.10 −0.10 −0.10

9 −0.10 −0.10 −0.10 −0.09 −0.07

12 −0.10 −0.10 −0.09 −0.07 −0.03

15 −0.09 −0.07 −0.05 −0.01 0.07

20 −0.03 0.02 0.10 0.21 0.38

30 0.08 0.20 0.36 0.56 0.83

40 0.15 0.30 0.49 0.76 1.04

70 0.12 0.30 0.36 0.78 1.08

120 0.04 0.16 0.27 0.66 1.05
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Table 3.13 Spectral indices of model HII regions in a local hydrogen number density
of n⋆ = 3.2×104 cm−3 and viewing projection angle (see equation 3.32) of θi = 45°.

M⋆ Age [kyr]

[M⊙] 20 40 60 80 100

6 −0.10 −0.10 −0.10 −0.10 −0.10

9 −0.10 −0.10 −0.10 −0.10 −0.10

12 −0.08 −0.09 −0.09 −0.09 −0.09

15 0.01 −0.04 −0.06 −0.07 −0.07

20 0.35 0.14 0.07 0.03 0.00

30 0.82 0.45 0.29 0.19 0.14

40 1.10 0.62 0.43 0.31 0.23

70 1.13 0.46 0.32 0.22 0.17

120 0.94 0.38 0.21 0.14 0.10
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out by the stellar wind has a spectral index of 0.1 for radiation at radio wavelengths,

which is lower than the head and the limbs.

Table 3.12 shows the spectral indices of models for a range of local densities and

masses. These indices were calculated using the total radio continuum flux of each

model for frequencies of 1.4 GHz and 5.0 GHz. At these frequencies the objects

are more optically thick the higher the stellar mass (this is also seen in table 3.13).

Higher-mass stars have more intense ionising radiation and blow stronger winds

so they ionise deeper into the dense cloud leading to a higher proportion of the

total flux from areas of high density. For masses M⋆ > 40M⊙ the spectral indices

decrease, which is likely due to the competing effect of larger regions having a

higher proportion of flux from optically thin regions. These stars are ionising the

regions around the densest part of the cloud (or through it in the case of the star with

M⋆ = 120M⊙ in a local density of n⋆ = 12.8×104 cm−3).

In table 3.13 spectral indices are shown to decrease over time. HII regions (after

their initial Strömgren expansion phase) expand according to equation 3.24 so that

the pressure and density in this region decrease, and hence the spectral indices should

decrease also.

Figure 3.13 shows the radio spectrum of one of the model HII regions and also a

HII region that is produced by the same star but in a uniform density environment.

Surprisingly, the turn-over frequency is very similar for the power-law case, but

it is slightly lower because the HII region covers more low density gas down the

slope than high density gas up the slope. The total fluxes have a higher proportion

from lower density gas and therefore the integrated spectral indices will lean closer

to indices from lower density regions. The close similarity between the SEDs is

consistent with the fact that the density slope of ionised gas is much shallower than

the initial slope in the neutral ambient gas.
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Fig. 3.13 The radio spectrum of two model HII regions around stars of mass M⋆ =
30M⊙ with a local hydrogen number density of n⋆ = 3.2×104 cm−3 at an age of
t = 50kyr and at a projection angle (see equation 3.32) of θi = 45°. One of the stars
is in a power-law density environment, α = 2, and the other is in a uniform density
environment, α = 0. Both objects were viewed at a projection angle of θi = 45° and
assumed to be at a distance of 1.5 kpc.
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3.4 Conclusions

Cometary HII regions were simulated that result from stars that blow stellar winds

and are placed off-centre from a power-law density gas cloud. All of the models

produce limb-brightening. Some are diminished if the star’s HII region contains the

dense centre of the cloud (which is true for stars with high Lyman output near low

density clouds). There is a cavity blown out by the stellar wind in each model, which

is observed in real cometary HII regions. The morphological class of a HII region

depends on the viewing projection angle. Morphologies are more shell-like the

smaller the angle between the viewing direction and the object’s axis of symmetry.

Spectral indices are higher for higher-mass stars, which can be explained as larger

HII regions covering more of the high density gas near the cloud centre. This effect

turns over at even higher masses as the volume of ionised low density gas increases

more than the volume of ionised high density gas in the cloud centre. Model SEDs for

power-law density models were almost identical to those of the same stars placed in

uniform density surroundings, which is consistent with the shallow density structures

found in the simulated ionised regions. The turn-over frequency in the radio spectrum

for the power-law density models is slightly lower compared to the models with

uniform ambient density. This is because HII regions in a power-law density medium

cover more low density gas than high density gas, which means the proportion of

emission from optically thin regions is higher.

If the effects of the entire spectrum of radiation from the model stars had been

included the temperature structures of the resulting HII regions would be different.

We would see higher temperatures near the ionisation front due to hardening of

the radiation field (Wood and Mathis, 2004). The extra pressure due to these high

temperatures is expected to be ∼ 20 % higher than in the HII regions I modelled.

Another limitation of this model is that the initial thermal pressure of the neutral gas

was taken to be uniform to prevent gas from moving away from the cloud centre



114 Hydrodynamical Models of Cometary HII Regions

(which would happen if the temperature was uniform instead). In a future study the

effects of gravity could be included to better model these environments.

In chapter 4 I use the grid of simulated models presented in this chapter to select

HII regions that correspond to regions generated in a model Milky Way. The ultimate

goal is to compare observables from this simulated survey with the CORNISH survey

in order to investigate how well these models describe HII region evolution.



Chapter 4

Galaxy Population Synthesis

4.1 Introduction

In chapter 3 work on producing a grid of models of HII regions was presented.

This chapter shows the results of incorporating said models into simulations of the

CORNISH survey given prescriptions for the Galactic density distribution (Cordes

and Lazio, 2002) and stellar accretion (McKee and Tan, 2003). This work builds

on that of Davies et al. (2011), who tested different accretion models by comparing

the luminosity distributions of YSOs (young stellar objects) from simulations of the

RMS survey with that of the real RMS survey.

4.2 The Model

The code of Davies et al. (2011) was modified to generate the Galactic high-mass

star population using an updated Galactic electron density distribution. The global

SFR (star formation rate) of the Galaxy was assumed to be at a constant value

of SFR = 1.5M⊙ yr−1. This value lies in the range 1.5 M⊙ yr−1 to 2.0 M⊙ yr−1

predicted by the best-fit models of Davies et al. (2011), which were determined by

reproducing the observed number of YSOs in the RMS survey with their population
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synthesis model. At some point in the evolution of an UCHII region, the ionising

star will have evolved such that it would not be included in the CORNISH survey.

For this reason only stars with MS (main-sequence) age, tMS, below tmax = 800kyr

were selected.

With an assumed constant SFR and maximum MS age we can calculate the total

mass of the distribution of young stars (t < tmax) in the Galaxy as

Mtot = SFR tmax . (4.1)

Stars were generated one at a time, each with a final mass randomly selected from

the IMF of Kroupa (2001), until the total mass of generated stars reached Mtot. Each

star was given a random age selected from a uniform random distribution with range

0kyr < t ≤ tmax. The current mass of each star was then found using the accretion

model by McKee and Tan (2003).

4.2.1 Galactic Gas Distribution

A model for the Galactic free electron density structure, NE2001, was found by

Cordes and Lazio (2002) who used pulsar dispersion measures and distances and

radio-wave scattering measurements. They modelled the distribution of free elec-

trons as a composition of thin disk, thick disk and spiral arm components. In this

work, each generated star was given a specific location in the Galaxy that was ran-

domly sampled to reproduce the Schmidt-Kennicutt law for star-forming galaxies

(Kennicutt, 1998):

SFR ∝ Σ
1.4
dens , (4.2)

where Σdens is the surface density of neutral gas in galaxies. The neutral gas density

in the galaxy was assumed to have the same density structure as the free electrons

and also assumed to be proportional to the surface density, ρ ∝ Σdens. This is a good
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Fig. 4.1 Electron number density map of the z = 0 slice of the spiral arms in the
Galaxy using the scheme in section 4.2.1. The star marker located at (0kpc,8.5kpc)
shows the position of the sun.
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approximation if the scale height is uniform across the Galaxy and is small compared

to the radius of the Galaxy.

In the simulations only the spiral arm component was included because this

resulted in distributions of stars with longitudes, latitudes and distances from the sun

that fit best with the UCHII regions in the CORNISH survey (see figure 4.1). The

free electron density of spiral arm j is given by

narm, j (⃗x) = na f j exp

(
−
(

s j (⃗x)
w jwa

)2
)

sech2
(

z
h jha

)
S
(

r−Aa

2kpc

)
, (4.3)

where r and z are the Galactocentric distance and the distance from the Galactic

plane respectively, x⃗ is the Cartesian position in the Galaxy, na f j is the peak electron

number density, w jwa is the half-width, h jha is the scale height, and Aa is the radial

cut-off. Fitted values of these parameters are found in Cordes and Lazio (2002). The

functions S(x) and s j (⃗x) are given by

S(x) =


sech2(x) , if x ≥ 0 ,

1 , if x < 0 ,
(4.4)

and

s j (⃗x) =
[
(x− x0)

2 +(y− y0)
2] 1

2 , (4.5)

where (x0,y0,0) is the position on the spiral arm curve for spiral arm j that is closest

to (x,y,0). The spiral arm curves are, in polar coordinates, given by

θ j = Asp, j log10

(
r j

rmin, j

)
+θ0, j , (4.6)

where θ j are the Galactocentric azimuthal angles, r j are the Galactocentric distances,

and Asp, j and θ0, j are fitted parameters with values from Davies et al. (2011).
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Fig. 4.2 The IMF by Kroupa (2001).

4.2.2 Stellar Population

The masses of each star in the generated population were determined using the

multi-part power-law IMF by Kroupa (2001) with a cut-off at a stellar mass of

m = 120M⊙:

ξ (m) ∝


m−0.3 , 0.01 ≤ m/M⊙ ≤ 0.08 ,

m−1.3 , 0.08 ≤ m/M⊙ ≤ 0.50 ,

m−2.3 , 0.50 ≤ m/M⊙ ≤ 120 ,

(4.7)

where ξ (m)∆m is the probability that a star has a mass in range m to m+∆m within

a specified volume of space. Figure 4.2 shows a plot of this IMF.

To randomly generate a distribution of stars with IMF in equation 4.7 we first find

which mass interval a random star belongs in. For a general multi-part power-law
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distribution,

Pi(m) = Aim−αi , mi ≤ m ≤ mi+1 , (4.8)

where i = 0,1, . . . ,N −1 and N is the number of mass intervals. Using the require-

ment that the distribution is continuous, Pi(mi) = Pi−1(mi), we have

Ai = Ai−1mαi−αi−1
i = A0

i−1

∏
j=0

m
α j+1−α j
j+1 . (4.9)

Given that a star definitely has a mass within the mass intervals of the multi-part

power-law:

N−1

∑
i=0

Pi(mi ≤ m ≤ mi+1) = A0

N−1

∑
i=0

[(
m1−αi

i+1 −m1−αi
i

1−αi

)
i−1

∏
j=0

m
α j+1−α j
j+1

]
= 1 , (4.10)

we have

A0 =
1

∑
N−1
i=0

[(
m1−αi

i+1 −m1−αi
i

1−αi

)
∏

i−1
j=0 m

α j+1−α j
j+1

] , (4.11)

giving us the probabilities that a random mass lies in each interval:

Pi(mi ≤ m ≤ mi+1) = A0

(
m1−αi

i+1 −m1−αi
i

1−αi

)
i−1

∏
j=0

m
α j+1−α j
j+1 . (4.12)

Given the cumulative probabilities,

Ci =
i

∑
j=0

Pj(m j ≤ m ≤ m j+1) , (4.13)

a star has a random mass that lies in mass range mk ≤ m ≤ mk+1 if Ck is the minimum

cumulative probability such that x <Ck, where x is a value from random variable X ,

which is uniformly distributed over [0,1]. Finally, we use inverse transform sampling

to get the random mass within this interval:

m =
[(

m1−αk
k+1 −m1−αk

k

)
y+m1−αk

k

]1/(1−αk)
, (4.14)
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Fig. 4.3 Scatter plot of stars with mass M⋆ > 6M⊙ generated for the model Galaxy.
The colour map represents the logarithm of the population density. The star marker
located at (0kpc,8.5kpc) shows the position of the sun. The region shaded in grey
is the CORNISH survey window (10° < l < 65° and |b|< 1°).

where y is another value from the random variable X .

4.2.3 Accretion

Davies et al. (2011) found that simulations with accretion rates that increase as

the stellar mass grows produced the best qualitative fits with the observed data.

I therefore decided to use the turbulent core model by McKee and Tan (2002).

According to the model an accreting star has an accretion rate given by

Ṁ = 4.6×10−4
(

Mfin

30M⊙

)0.75(
Σcl

g cm−2

)0.75(Mcur

Mfin

)0.5

M⊙ yr−1 , (4.15)
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where Mcur and Mfin are, respectively, the current and final mass of the star and Σcl is

the surface density of a prestellar clump.

Equation 4.15 can be solved to get the stellar mass as a function of time:

Mcur(t) = 1.76×10−9
(

Mfin

30M⊙

)0.5(
Σcl

g cm−2

)1.5( t
yr

)2

M⊙ , (4.16)

where t is the time since the star started accreting. From equation 4.16 we get the

formation time, tform, for which Mcur(tform) = Mfin:

tform = 1.29×105
(

Mfin

30M⊙

)0.25(
Σcl

g cm−2

)−0.75

yr , (4.17)

McKee and Tan (2003) found that high-mass stars join the MS at approximately

20 M⊙. The time it takes for a star to accrete this mass is given by

t20 = 1.07×105
(

Mfin

30M⊙

)−0.25(
Σcl

g cm−2

)−0.75

yr . (4.18)

Using this accretion prescription the current mass of generated stars is given by

M⋆ =


Mcur , for t < tform ,

Mfin , otherwise .
(4.19)

The MS age of the each star is given by,

tms =


t − tform , for t > tform and tform < t20 ,

t − t20 , for t > t20 and t20 < tform ,

0 , otherwise .

(4.20)
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Fig. 4.4 Radio continuum images of a simulated cometary UCHII region included
in the simulated survey with n⋆ = 6.4×104 cm−3. The top plot shows the synthetic
radio image of the model, the middle plot shows the image after being processed by
CASA using the simobserve routine, and the bottom plot shows the CASA image
after cleaning with the CASA’s clean routine.
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Fig. 4.5 Same as for figure 4.4 except the simulated cometary HII region is over-
resolved. The object is too large to be included in the simulated surveys.
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4.3 Results and Discussion

With the stellar population model described above I generated populations for the

Galaxy (figure 4.3) and selected stars within the CORNISH survey window: 10° <

l < 65° and |b|< 1°. For each selected star I calculated two synthetic radio continuum

emission maps, at a random inclination angle, of stars with closest masses available

from the model grid (see chapter 3) above and below the generated star’s mass.

This way values measured using these maps could be used to linearly interpolate

the value corresponding to the generated star. The radio maps were calculated

using the ray tracing scheme of Dougherty et al. (2003) and the emissivity and

absorption coefficient in section 2.4.1. Snapshots of data from each HII region in

the model grid were made at intervals of 2 kyr from 0 kyr to 200 kyr. The snapshot

with the simulation time closest to the MS lifetime of the star was used to generate

the radio maps. I used the snapshot at 200 kyr for stars older than the maximum

available age in the model grid because almost all stars in the higher density surveys,

with n⋆ ≥ 6.4×104 cm−3, produce UCHII regions that stagnate before this time.

Therefore the snapshot data at 200 kyr is a good approximation to the model at later

times. In the lower density surveys most of the stars are below this age anyway so

this approximation was not necessary.

Simulated CORNISH observations were made of these radio maps using CASA

(McMullin et al., 2007). See Hoare et al. (2012) and Purcell et al. (2013) for details

on the observation and imaging parameters. HII regions with σ < 7.0 were removed

(as was done in the CORNISH survey), where σ is the maximum pixel value of the

CASA images divided by the RMS-noise. The RMS-noise was not uniform over the

observation area: RMSouter = 0.25mJy beam−1 for stars at declinations δ > 14.2°

and RMSinner = 0.35mJy beam−1 for stars elsewhere (Purcell et al., 2013). The

lower sensitivity in the inner region during the 2006 season was due to electrical

storms. In the 2007 season weather conditions were better and EVLA (Extended
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VLA) antenna upgrades were utilised that have more sensitive receivers. However,

observations during this time were made at low declinations and therefore through

more atmosphere, which effectively increased the noise level. The outer region was

mapped at higher declinations in overall better weather conditions and used the

EVLA antennas.

For the remaining HII regions in the simulated survey I ran the imfit routine

in CASA to fit Gaussians to the images in a similar way to Purcell et al. (2013).

With these fits, I obtained estimates for the angular size and the integrated fluxes of

the HII regions. Finally, HII regions were removed from the survey if their angular

sizes were too large. In Purcell et al. (2013) the FWHM of fitted Gaussians was

constrained to be ≤ 30′′, so this is also the maximum angular size in these simulated

surveys.

A simulated radio continuum image of a cometary HII that would be included

in the CORNISH survey is shown in figure 4.4 along with simulated observations

of the image using CASA, before and after cleaning. Similarly, images of a HII

region that is too large to be have been included in the CORNISH survey are shown

in figure 4.5.

I simulated five surveys each assuming a different constant local number density,

n⋆, available in the grid of models in chapter 3. In this section I present the results of

simulating CORNISH surveys and compare distributions of UCHII region properties

with those of the real CORNISH survey.

4.3.1 Numbers of UCHII Regions

In table 4.1 the numbers of UCHII regions in each of the five simulated surveys

are shown along with the number of objects detected in CORNISH. We see a

gradual increase in numbers as local density is increased because HII regions have

smaller Strömgren radii and therefore are less likely to be excluded due to their sizes.
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Table 4.1 The total number of UCHII regions, N, included in each of the simulated
surveys of different local number density, n⋆, and the CORNISH survey.

n⋆ [cm−3] N

0.8×104 40
1.6×104 73
3.2×104 124
6.4×104 690

12.8×104 960

CORNISH 240

There is a sudden jump in the number of UCHII regions between the surveys with

n⋆ = 3.2×104 cm−3 and n⋆ = 6.4×104 cm−3. The reason for this is that HII region

stagnation becomes important at densities n⋆ > 3.2×104 cm−3; the limiting sizes of

HII regions in high density lie within the selection bounds of CORNISH.

4.3.2 Flux Distribution

In figure 4.6 integrated flux distributions are shown along with the CORNISH sample

of UCHII regions for comparison. We see a peak in the distributions in the range

50 mJy to 200 mJy. The distributions tail off at low integrated flux as expected

as these UCHII regions are less likely to have peak fluxes above the CORNISH

selection threshold. At high integrated fluxes the distributions also tail off as higher

fluxes tend to have larger angular sizes (see figure 4.8). Therefore, high integrated

fluxes are more likely to come from over-resolved HII regions.

Simulated surveys at higher local densities have a higher overall number of

selected UCHII regions because more stars are resolved due to smaller angular

sizes. There is also a higher proportion of samples with low integrated flux in

the simulated surveys with n⋆ = 6.4×104 cm−3 and n⋆ = 12.8×104 cm−3. This is

probably because UCHII regions in dense enough environments stagnate at angular

sizes small enough to be included in the CORNISH survey.
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Fig. 4.6 Distributions of UCHII regions with integrated flux. The red histograms are
distributions of simulated UCHII regions that would be included in the CORNISH
survey and the blue histograms with error bars show the CORNISH sample. Each
plot shows the simulated distributions for stars that begin in different local densities
(values of which are given in the top left).
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4.3.3 Size Distribution

Figure 4.7 shows the normalised distributions of stars in the simulated surveys at

different local densities compared with the CORNISH sample. The distributions

behave as expected: higher density HII regions have smaller Strömgren radii, leading

to the shift we see in higher density distributions towards smaller sizes. Again, we

see a better fit for distributions of stars in higher local densities. This indicates that,

assuming the model is correct, most of the CORNISH UCHII regions are embedded

in dense environments with n⋆ > 6.4×104 cm−3.

In figure 4.8 scatter plots are shown of angular size against integrated flux of

UCHII regions in each survey. The kernel density estimations, also in this figure,

show a positive correlation between the two variables. We also see a positive

correlation between stellar mass and integrated flux in figure 4.9, due to the fact that

higher-mass stars, with their higher Lyman continuum fluxes, produce larger HII

regions and therefore higher integrated fluxes.

4.3.4 Spatial Distribution

Simulated surveys were run for the densities available in the grid of models for

different combinations of Galactic density components. Surveys that only include

the spiral arm components gave the best fits to the CORNISH spatial distribution.

This is consistent with the results of Davies et al. (2011) and gives yet further

evidence that OB stars trace the spiral arms, which has been known since the 1950s

(see Churchwell, 2002, and references therein).

Normalised distributions of simulated stars with longitude, latitude and distance

from the sun are given in figure 4.10 for different local densities (the density of

the gas near the stars before they start ionising gas and blowing a wind). We can

see qualitatively better fits to the shape of the CORNISH histogram data the higher

the local density. The distribution in longitude broadly matches well with that
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Fig. 4.7 Normalised distributions of UCHII regions with angular size (left) and
physical size (right). The red histograms are distributions of simulated UCHII

regions that would be included in the CORNISH survey and the blue histograms with
error bars show the CORNISH sample. Each row shows the simulated distributions
for stars that begin in different local densities (values of which are given in the top
left of the left-most plots).
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Fig. 4.8 Scatter plots of angular size against integrated flux for simulated surveys
(left column) of stars that begin in different local densities (given in the top left of
each plot) and the CORNISH survey (right). Points are plotted over a kernel density
estimation, which uses Scott’s Rule (Scott, 2010) for bandwidth selection.
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Fig. 4.9 Scatter plots of stellar mass against integrated flux for simulated surveys of
stars that begin in different local densities (given in the top left of each plot). Points
are plotted over a kernel density estimation, which uses Scott’s Rule (Scott, 2010)
for bandwidth selection.
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Fig. 4.10 Normalised distributions of UCHII regions with: galactic longitude, l
(left); galactic latitude, b (middle); and distance from the sun, d (right). The red
histograms are distributions of simulated UCHII regions that would be included in
the CORNISH survey and the blue histograms with error bars show the CORNISH
sample. Each row shows the simulated distributions for stars that begin in different
local densities (values of which are given in the top left of the left-most plots).
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Fig. 4.11 Distributions of UCHII regions with: galactic longitude, l (left); galactic
latitude, b (middle); and distance from the sun, d (right). The red histograms are
distributions of simulated UCHII regions that would be included in the CORNISH
survey and the blue histograms with error bars show the CORNISH sample. The
simulated survey was compiled by sampling from a distribution of local densities as
described in section 4.3.5.

observed however the scale heights of the simulations are higher than that seen in

the CORNISH data.

The distribution of stars with distance from the sun is the most important his-

togram to look at as this is the only of the three in the figure that can affect distribu-

tions of flux and angular size. For the simulated surveys with lower local densities

we do not see relatively many UCHII regions at d = 5kpc probably because even

the low mass stars are producing HII regions that are too large to be selected by

the CORNISH survey. The simulated survey with n⋆ = 12.8×104 cm−3 has the

closest fit to the CORNISH sample except that there are relatively more stars between

5kpc < d < 12kpc.

4.3.5 Density Distribution

Although the simulated survey with the highest density fits the CORNISH data best,

the total number of objects is a lot higher than observed. Reducing the SFR to

SFR ≃ 0.5M⊙ yr−1 would lead to a better fit in normalisation but this value is quite

low compared to the range that is accepted in the community (see Davies et al., 2011,
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Fig. 4.12 Distributions of UCHII regions with angular size (left) and physical size
(right). The red histograms are distributions of simulated UCHII regions that would
be included in the CORNISH survey and the blue histograms with error bars show
the CORNISH sample. The simulated survey was compiled by sampling from a
distribution of local densities as described in section 4.3.5.

and references therein). Also we can see in figure 4.8 that the CORNISH UCHII

regions have a broader range of angular sizes at any particular flux, which is also seen

in the lower density surveys. This indicates that even though most of the CORNISH

UCHII regions are embedded in high density environments, the overall number of

HII regions in the Galaxy in these environments is relatively low compared to those in

lower density environments. HII regions in high density environments are, however,

more likely to be included in the CORNISH sample because they are smaller in size.

I tested this by randomly sampling HII regions from the simulated surveys. The

probability of selecting a star from a survey with local density n⋆ was assumed to be

P(n⋆) ∝ n−q
⋆ , (4.21)

where q is a power-law index. A few values of the index were tried: q = 0, q = 0.5

and q = 1, and q = 0.5 gave the closest fit. The distributions of observables for
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Fig. 4.13 Scatter plots of angular size (top row) and physical size (bottom row)
against integrated flux for simulated UCHII regions (left) and UCHII regions in
the CORNISH survey (right). Points are plotted over a kernel density estimation,
which uses Scott’s Rule (Scott, 2010) for bandwidth selection. The simulated survey
was compiled by sampling from a distribution of local densities as described in
section 4.3.5.

Fig. 4.14 Distribution of UCHII regions with integrated flux. The red histogram is
the distribution of simulated UCHII regions that would be included in the CORNISH
survey and the blue histogram with error bars shows the CORNISH sample. The
simulated survey was compiled by sampling from a distribution of local densities as
described in section 4.3.5.
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this weighted survey are shown in figures 4.11 to 4.14. These figures show that

close agreement between the model and the results of the CORNISH survey can be

achieved by noting that stars are born in environments with a variety of densities.

4.4 Conclusion

In this chapter I have presented the results of simulating the CORNISH survey for

stars in different local densities by assuming a Galactic density distribution, a stellar

accretion model, and a model for the evolution of cometary HII regions.

The Galactic density model is not perfect; we see a narrower latitude distribution

in the CORNISH survey. There are more stars with distances from the sun between

5kpc < d < 12kpc in the simulations than that observed. Even with these issues the

spatial distribution was sufficiently accurate for the rest of the analyses.

It was shown that the models used can reproduce the observed size and flux

distributions in the CORNISH survey. Higher density environments lead to better

fits to the observed size distributions. The same can be said for the flux distributions

except that the fit gets worse for simulations with n⋆ > 6.4×104 cm−3. We can get

the right number of UCHII regions in the simulated surveys for SFR = 1.5M⊙ yr−1

if we consider that stars are born in a distribution of local densities rather than a

single density.





Chapter 5

Conclusions

5.1 Summary

In this thesis I have presented research on the population of UCHII regions in

the Milky Way. I developed TORCH (see chapter 2), a high-performance multi-

physics integration code capable of simulating the coupled evolution of a star’s

radiation field, stellar wind and ambient gas. The code utilises Strang splitting to

reduce the coupling error associated with integrating separate physical sub-problems

concurrently. I have used the work of Nishikawa and Kitamura (2008) to create

a rotated-hybrid HLL-HLLC Riemann solver in an effort to repress non-physical

unstable flow fields (such as the carbuncle instability). To calculate the ionisation

fraction of hydrogen and the change in energy due to photo-ionisations, collisional

ionisations, and recombinations I implemented the C2–Ray method by Mellema

et al. (2006). The C2–Ray method includes a fast interpolative ray-casting scheme to

calculate optical depths and an implicit solver for the ionisation fraction.

With TORCH I produced simulations of ZAMS stars that are off-centre in a

power-law (α = 2) density field (the birth cloud) and are blowing strong stellar

winds. I simulated stars with a variety of masses that span the range that UCHII

regions are associated with. Stars were located at a single distance from the centre
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of their birth clouds (rsc = 0.35pc). Varying this distance would have little effect on

the results (other than mildly affecting morphologies) as there is degeneracy between

stars in higher density clouds that are further from the centre and stars in lower

density clouds that are closer to the centre. The hydrostatic models of Meynet and

Maeder (2000) provided each star’s effective temperature and luminosity, which

were used to calculate the mass-loss rates and terminal velocities of the stellar wind

via the stellar wind model of Vink et al. (2001). Lyman continuum fluxes were

taken from the results of Martins et al. (2005) and Lanz and Hubeny (2007). For

each star multiple simulations were carried out for different environment densities

between n⋆ = 0.8×104 cm−3 to n⋆ = 12.8×104 cm−3. Simulated observations of

these model HII regions match well with those observed, clearly showing cavities and

limb-brightened morphologies. Adjusting the viewing angle of these observations led

to significant changes in morphological classification. Classification of CORNISH

UCHII regions by Kalcheva (2017, in prep) is showing that most are cometary after

removing those that are unresolved. All of the models produced regions bounding

fully ionised gas that were roughly spherical, with shallower density structures than

the surrounding material. This feature was further expressed through a comparison

of the SEDs of the power-law models and corresponding uniform density models,

which were almost identical.

With a grid of cometary models that spans a significant portion of the parameter

space of UCHII regions I set out in chapter 4 to use these models to simulate a survey

of simulated observations using a generated population of stars in our Galaxy. The

Davies et al. (2011) galaxy population synthesis code was improved upon by using

a more up-to-date model of the Galactic electron density distribution and, with the

grid, a more realistic model of HII region evolution. It was found that stars in the

higher density surveys, with n⋆ ≥ 6.4×104 cm−3, gave closer qualitative agreement

to distributions of integrated flux and size. Assuming all stars are born in the same

density environment results in an over-prediction of the overall number of UCHII
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region samples for stars in high densities, n⋆ ≥ 6.4×104 cm−3. This is because

stars in higher densities have a higher chance of being detected (due to their smaller

sizes) and also because HII region stagnation becomes important for high density

fields, where the limiting sizes lie within CORNISH selection bounds. These results

suggest that the number of UCHII regions in the Galaxy that are embedded in high

densities is relatively low but, as they are more likely to be included in the CORNISH

survey, the distribution can still be dominated by these regions. Assuming stars lie

in a power-law probability density distribution as a function of local stellar density

(with power-law index =−0.5) I was able to get very close fits to not only the shape

of the flux and size distributions of the CORNISH survey but also the overall number

of UCHII regions. It should be noted, however, that we could also get similar results

by modifying the ambient temperature (and therefore the stagnation radius of the

HII regions). What I have shown here is the effect of a density distribution on the

shape of the other distributions and their normalisation.

Overall it was found that the prescriptions used to simulate surveys of UCHII

regions lead to results that are consistent with what is observed.

5.2 Future Work and Improvements

The resolution of the model HII regions at early times is sometimes too low. This

may have seeded numerical instabilities that grow through to the solution at later

times. An improvement would be to run simulations on an AMR (adaptive mesh

refinement) grid. This, however, introduces another problem in that the C2–Ray

scheme must be extended to handle interpolating optical depths over coarse-fine

cell interfaces. In section A.2 I show a possible scheme for short characteristics ray

tracing on AMR grids.

Another issue with the ray tracing in TORCH is that it was not possible to run

it in parallel. The hydrodynamics can be parallelised but, due to the constraint that
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cells must be causally iterated over, the ray tracing schemes in the radiative transfer

and heating/cooling modules cannot. To do so would require partitioning the grid

into independent causally linked paths through the grid, which may introduce too

much parallel over-head through the increased number of “ghost-cells” surrounding

non-cuboidal grids. One can, however, get some parallelism by partitioning the grid

into the sections that are traversed separately from the starting positions described

in section 2.2.3. The level of parallelism then depends on where the star is in the

grid. If high-resolution simulations are desired, it may be better to switch to an

explicit scheme for the integration of the ionisation fraction. Although the time-step

constraint is more severe for this family of integration schemes, cells may not need

to be causally iterated over (see section 2.2.3), meaning each sub-problem can be

solved in parallel, which may over-compensate for this increase in computation. For

the current work, this was not necessary because I was running many low-resolution

models. An adaptive ray tracing scheme that uses HEALPix (Hierarchical Equal-

Area isoLatitude Pixelization of the sphere) (Górski et al., 2005) such as that of

Abel and Wandelt (2002) would be a great improvement to the current scheme for

high-resolution AMR simulations.

The models described a specific scenario for HII region evolution. In reality

not all UCHII regions are cometary, and generally form in a clumpy ISM with

a variety of birth environments. Steeper density gradients could lead to runaway

photo-ionisation on the edges of clouds whilst flatter gradients would lead to more

spherically symmetric regions. The proper motion of the stars was neglected, which

can affect HII region morphology as not only does the environment of these stars

change over their lifetimes but they may also form bow shocks if they are moving

supersonically with respect the ambient medium. Another issue with the models

is that a temperature gradient was used in order to keep the birth cloud of each

HII region in pressure equilibrium. It would be more accurate to have a physically

justified model of the cloud, such as a Bonnor–Ebert sphere, and simulate the effects
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of self-gravity. Lastly, as I was running low-resolution simulations, the fixed grid led

to a large injection region that could have affected these results. Again, this can be

remedied with AMR grids.

It would be interesting to see how the distributions in chapter 4 change once a

more realistic cloud model is used to to simulate UCHII regions. For example, the

stagnation radius of a HII region in equation 3.25 depends on the sound speed of the

ambient medium. A lower ambient temperature would lead to a higher stagnation

radius, which would not change the results of the lower density surveys (n⋆ <

6.4×104 cm−3) as all the HII regions stagnate at sizes too large to be included in the

CORNISH survey. It would, however, lead to changes in the shape and normalization

of the distributions resulting from the higher density surveys (n⋆ ≥ 6.4×104 cm−3).

For example, reducing the ambient temperature local to the star from 300 K to 10 K

would lead to stagnation radii that are 10 times larger.

One could simulate surveys resulting from a number of different HII region mod-

els and compare the distributions with CORNISH. The sensitivity of the distributions

to varying these models would be tested and we would, as a result, know more about

the parameter space that UCHII regions occupy.

Fitting the kinematics of cometary HII region models to individual objects is

something that wasn’t explored in this thesis. Different velocity structures are

predicted by different models, e.g. peak line widths are found ahead of the ionising

star in bow shock models as opposed to in the tail as found in champagne flow

models. Therefore, these studies can help distinguish between different models. I

have updated the code by Dougherty et al. (2003) so that it is capable of producing

simulated radio recombination line observations (see section 2.4.2). With this one

could directly compare simulations with real observations, such as the deep H53α

and H66α radio recombination line observations of DR 21 by Cyganowski et al.

(2003).
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Appendix A

Details and Proofs

A.1 Cell Path Length

The length of the segment of a ray passing through a cell is given by

∆S =

√
1+

(ti − si)2 +(t j − s j)2

(tk − sk)2 ∆r , (A.1)

where i, j and k are vector components, t⃗ is the target cell centre position vector, s⃗

is the source position vector and ∆r is the physical width of the grid cell. The kth

direction is chosen such that

k̂ =
n̂ · (⃗t − s⃗)
|n̂ · (⃗t − s⃗)|

, (A.2)

where n̂ is the geometric normal to the grid cell face (pointing into the grid cell) that

the ray crosses, entering the cell.

The cell path length in equation A.1 is found by first noting that

∆S = |⃗t − c⃗|∆r , (A.3)
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where c⃗ is the position vector of the point where the ray crosses the square with

vertices at the centres of the cells that contribute to the optical depth (see figure 2.5).

The crossing point lies somewhere on the line from the source to the target, i.e.

c⃗ = t⃗ +λ (⃗s− t⃗) , (A.4)

and λ can be found because we know the kth coordinate of c⃗:

ck = tk +λ (sk − tk) (A.5)

λ =
tk − ck

tk − sk
=

1
tk − sk

, (A.6)

therefore

∆S = |⃗t − c⃗|∆r

= λ |⃗t − s⃗|∆r

=

√
(ti − si)2 +(t j − s j)2 +(tk − sk)2

tk − sk
∆r ,

(A.7)

giving equation A.1 as required.
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A.2 AMR Short Characteristics Ray Tracing

There are only a handful of distinct grid cell arrangements that need special treatment

and all occur on coarse-fine AMR grid boundaries. To find which cells contribute

to the optical depth to a cell find the triangle that the ray crosses whose vertices

are neighbouring cell centres that have the smallest average distance to the crossing

point. Next use barycentric interpolation, which calculates weights according to

where the ray crosses the triangle plane.

s

c

t

1
2

3

c

1

23
A1

A2 A3

Fig. A.1 This diagram shows a ray passing from the source (the red dot denoted by
‘s’) passing through the interpolation plane (crossing at the green dot, ‘c’) to the
centre of the target grid cell (black dot, ‘t’). Three nearest neighbours are chosen
such that their cell centres (denoted by IDs 1–3) form vertices of a triangle plane that
the ray passes through. A barycentric interpolation is then performed, according to
where the crossing point (green dot ‘c’) is on the triangle plane, to find the weight
each nearest neighbour contributes to a weighted average of optical depths. The
optical depth from source to target cell is then equal to this weighted average.

The optical depth is approximately

τ =
A1(τ1 +∆τ1)+A2(τ2 +∆τ2)+A3(τ3 +∆τ3))

A
, (A.8)

where A1, A2 and A3 are areas shown in figure A.1, A is the area of the triangle and τ1,

τ2 and τ3 are the optical depths to cells with cell centre IDs 1, 2 and 3 respectively.
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We can find areas Ai from the position vectors of the contributing neighbouring

cell centres. First consider a normal vector to the triangle plane,

n⃗ = (⃗x1 − x⃗2)× (⃗x3 − x⃗1) , (A.9)

where x⃗i are the position vectors to the cell centres. The equation of the plane

containing the triangle is then

n⃗ · (⃗x− x⃗1) = 0 . (A.10)

A position R⃗ on the ray that passes from source to target cell satisfies

R⃗ = s⃗+λ (⃗t − s⃗) , (A.11)

where s⃗ is the position vector of the source, t⃗ is the position vector of the target cell

centre and λ parametrises a position on the ray. At λ = λc, the ray crosses the plane,

∴ n⃗ · (⃗s+λc(⃗t − s⃗)− x⃗1) = 0

=⇒ λc =
(⃗x1 − s⃗) · n⃗
(⃗t − s⃗) · n⃗

.
(A.12)

The position vector of the crossing point is

c⃗ = s⃗+
(⃗x1 − s⃗) · n⃗
(⃗t − s⃗) · n⃗

(⃗t − s⃗) . (A.13)
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If a triangle is specified by vectors u⃗ and v⃗ originating at one vertex, then the area is

a half of the corresponding parallelogram: area = 1
2 |⃗u× v⃗|,

∴ A =
1
2
|⃗n|

A1 =
1
2
|(⃗x2 − c⃗)× (⃗x3 − c⃗)|

A2 =
1
2
|(⃗x3 − c⃗)× (⃗x1 − c⃗)|

A3 =
1
2
|(⃗x1 − c⃗)× (⃗x2 − c⃗)| .

(A.14)

In summary:

a⃗i ≡ εi jk(⃗x j × x⃗k)

n⃗ = ∑
i

a⃗i

c⃗ = s⃗+
(⃗x1 − s⃗) · n⃗
(⃗t − s⃗) · n⃗

(⃗t − s⃗)

A =
1
2
|⃗n|

Ai =
1
2
|(⃗ai − εi jk(⃗x j − x⃗k)× c⃗)| ,

(A.15)

where εi jk is the Levi-Civita symbol and k ̸= j ̸= i = 1, 2 or 3.

There is a special case that must be considered when selecting the triangle to use

for interpolation. If more than one triangle could be chosen (i.e. they have the same

average vertex-to-crossing point distance) then choose the one with the smallest area.

If the areas are equal then calculate the result separately for each and take an average

at the end.
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