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Abstract 

A study has been performed in the design and fabrication of deployable 

borehole robots into confined spaces. Three robot systems have been 

developed to perform a visual survey of a subterranean space where for any 

reason humans could not enter.  

A 12mm diameter snake arm was designed with a focus on the cable tensions 

and the failure modes for the components that make the snake arm. An 

iterative solver was developed to model the snake arm and algorithmically 

calculate the snake arms optimal length with consideration of the failure 

modes.  

A robot was developed to extend the range capabilities of borehole robots 

using reconfigurable borehole robots based around established actuation and 

manufacturing techniques. The expected distance and weight requirements of 

the robot are calculated alongside the forces the robot is required to generate 

in order to achieve them. The whegged design incorporated into the tracks is 

also analysed to measure the capability of the robot over rough terrain. Finally, 

the experiments to find the actual driving forces of the tracks are performed 

and used to calculate the actual range of the robot in comparison to the target 

range.  

The potential of reconfigurable mobile robots for deployment through 

boreholes is limited by the requirement for conventional gears, motors, and 

joints. This chapter explores the use of smart materials and innovative 

manufacturing techniques to form a novel concept of a self-folding robotic joint 

for a self-assembling robotic system. The design uses shape memory alloys 

fabricated in laminate structures with heaters to create folding structures. 
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Chapter 1  
Introduction 

This chapter details the background, aims and objectives of this research. 

1.1 Background 

In our modern technological world, it is surprising that there are many 

locations that cannot be characterised through remote scanning via satellite 

or other remote sensing technologies. These spaces are often too small or 

unsafe for human to explore [1].  

There are three methods available for mapping and surveying underground 

spaces as outlined by Morris, A., et al. [2]. These are: 

 Direct Observation, which requires the direct presence of personnel 

to produce irrefutable first-hand observations on the state and 

geometry of underground spaces. 

 Borehole Observation where a borehole is drilled to allow a down-

hole camera probe to be deployed, this can produce satisfactory 

results in certain circumstances. 

 Remote Sensing that employs non-intrusive techniques to measure 

geophysical features using electromagnetic waves and assumed soil 

compositions to locate voids without the need for drilling. Other 

techniques also involve the use of ground penetrating radar and 

seismic reflection/refraction. These techniques cannot match the 

fidelity and sampling densities of direct observation. 

Robots have the potential to be deployed within those spaces and provide 

crucial sensor data.  Robotic exploration can be classified into three scenarios, 

i) Space exploration, ii) Subsea exploration, iii) on Land exploration.  This 

research focuses on land exploration robotics.   

The Fukushima nuclear power plant incident (2011), whilst was a terrible 

accident, provided an opportunity for companies to showcase state-of-the-art 

robotic devices. Two PackBot ground robots from iRobot were granted the 

opportunity to enter the Fukushima reactor in order to monitor oxygen levels, 

temperature and radioactivity. The results successfully revealed high levels of 
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radiation at Unit 1 and Unit 3, too high for humans to safely access the facilities 

[3]. 

Other unexplored spaces, such as unmapped subterranean voids (caves, 

sewers and mines) are well suited to robotic exploration [2]. Knowledge of 

these subterranean features are vital for prevention and mitigation of mining 

disasters [4] [5] and play a key role in the design and planning of new mines, 

sewer lines and surface structures.  

Lack of accurate documentation has led to accidents and deaths such as the 

Quecreek Mine Rescue in July 2002 [4] where miners accidently dug into a 

poorly documented coal mine leading to flooding and trapping of 9 miners. In 

March 2010 similar events occurred at the Wangjialing coal mine trapping 153 

miners [5]. In fact, from 1900 to 2007 in the Unites States alone, there have 

been 12,823 fatalities which mostly involves mine rescue teams working in the 

harsh extremely hostile environments [6].  

Subterranean robots enhance the capabilities of traditional borehole camera 

probes (cameras on sticks) as they are capable of locomotion beyond the 

initial entry point to survey a larger space.  

The research and application challenges for robotic underground mapping 

and surveying are varied; the PackBot ground robot (by iRobot) highlighted 

some problems during the exploration of the Fukushima power plant.  Officials 

described that the robot was impeded by broken chunks of ceiling and walls 

blown off during hydrogen blasts [7]. Although, the PackBot was specifically 

designed and built to navigate difficult terrain - including the capability to open 

doors and defuse roadside bombs [8].    

Subterranean mines generally consist of several tunnels acting as accesses, 

haulages, production levels, and airways [9]. Most shafts constructed in the 

1900’s were of a rectangular cross section due to the shape of the equipment 

brought into the shafts. However, in hard rock mines, it is common to see 

circular cross sections because the geometry provides good airflow, rock 

support characteristics and also ease of construction. Furthermore, elliptical 

shafts were implemented as an alternative to the large circular shafts which 

had the effect of reducing the amount of rock required to be excavated and 

therefore also the cost, which is an important aspect of mining projects. As all 
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these shafts can run great distances into the hundreds of metres the range of 

all robotic systems must be considered.  

The condition of the mine opening is dependent on whether the mine is still in 

use or disused. Disused mines can be sealed voluntarily (filled and capped) 

or by accident. Obviously, entry into well maintained and operating mine 

shafts will provide the easiest method of mine ingress allowing for large 

systems such as the 1500 pound Groundhog to be deployed [10]. However, 

deploying systems into sealed shafts do require additional costs and effort.  

In August 2007, a vertical shaft of 6m diameter costed USD $12,857 per metre 

to excavate, and a 5x4m declining shaft at 8° costed USD $5,714 per metre 

[9]. To breach a sealed mineshaft from the surface is a costly endeavour 

hence the use of small diameter borehole drop cameras with less than 15.2cm 

(6 inches) diameter to reduce costs.  

The small borehole also has the benefit of reduced damage resulting in the 

reduced likelihood of compromising the structural integrity of a subterranean 

void. Subterranean voids are often speculated to contain historical artefacts 

that are fragile and irreplaceable. The Sphinx in Egypt was speculated to 

contain secret tunnels and chambers beneath it. Due to raised subterranean 

water levels, boreholes were drilled around the site to allow the ground water 

to be pumped away to protect the Sphinx. Dr Zahi Hawass lowered borehole 

deployable cameras to show no such hidden structures exist [11]. 

Furthermore, if the subterranean void is also of historical importance such as 

the underground city in Cappadocia region of Tukey [12] or the tomb of William 

Shakespeare [13] then despite the size differences the preservation by 

minimising damage is a priority.  

1.2 Motivation for Research 

The motivation for this research is to undertake research and development 

into minimally invasive tools, for deployment through small diameter 

boreholes, in order to expand the capabilities of current borehole deployable 

systems. These new capabilities will create viable solutions for exploration 

robotics across a broad range of application areas including urban search and 
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rescue, mine rescue, robot archaeology, and nuclear power station inspection 

and decommission. 

Despite a compelling case for restricted access exploration robotics, relatively 

little attention has been paid to the borehole robotics area by the robotics 

community. As a field, robotics has thoroughly researched applications on 

land, in water and in the air; but few have concentrated on developing fully 

capable robots to be deployed through small-restricted access boreholes.  

This thesis discusses the path taken from this problem to analysis and 

experimentation of robotic tools capable of exploring subterranean expanses 

of different sizes yet producing minimal damage to preserve the condition and 

integrity of the explored space. 

1.3 Research Objectives 

The overall aim of this study is to undertake research into ground based 

robotic systems capable of deployment, and subsequent visual survey, 

through restricted access entrances into two confined spaces of different 

sizes. To fulfil the project aim, the following objectives were outlined: 

1. To investigate the fundamental length limitations of self-supported 

snake arms. 

2. To create an algorithmic approach to designing the self-supporting 

snake arms of optimal length for a given borehole diameter and 

current material properties. 

3. To extend the range capabilities of borehole robots using 

reconfigurable borehole robots based around established actuation 

and manufacturing techniques. 

4. To investigate advanced actuation and fabrication technologies 

towards miniature mobile borehole exploration robots. 

1.4 Statement of Contribution 

The main areas of original work carried out during this research are 

highlighted below. 
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1. The methodology to algorithmically determine the maximum length of 

a long reach small diameter snake arm is conducted and implemented 

to produce a long reach snake arm. (Published paper 2) 

2. A reconfigurable dual track robot has been designed and built to be 

deployed through small 41mm boreholes. (Published paper 1) 

3. A novel bi-directional self-folding joint has been presented that is 

unique using compound layers of shape memory alloys, thermally 

insulating layers and heat generating layers.  

1.4.1 Published Documents (Appendix A) 

1. Liu, J., et al., Exploration Robots for Harsh Environments and Safety. 

IFAC-PapersOnLine, 2015. 48(10): p. 41-45. 

2. Liu, J., et al., Mechanical Design of Long Reach Super Thin Discrete 

Manipulator for Inspections in Fragile Historical Environments, in 

Towards Autonomous Robotic Systems: 16th Annual Conference, 

TAROS 2015, Liverpool, UK, September 8-10, 2015, Proceedings, C. 

Dixon and K. Tuyls, Editors. 2015, Springer International Publishing: 

Cham. p. 155-160. 

1.5 Structure of Thesis 

The main body of this thesis consists of eight chapters. A breakdown of each 

chapter is given below. 

Chapter 1: Introduction 

This chapter describes the context, objectives and methodology of the 

reported research.  

 

Chapter 2: Literature review 

This chapter reviews research into the locomotion of exploration robots and 

the suitability of the system for borehole deployment and confined space 

explorations.  

 

Chapter 3: System specifications 



- 6 - 
 

This chapter introduces two environmental scenarios for inspection and builds 

the system specifications to cover the overall aims.  

 

Chapter 4: Snake arm theory and analysis 

This chapter develops the method to calculate the cable tensions of a snake 

arm and analyses the buckling failure modes of each component comprising 

the snake arm. The experiments to verify the cable tensions are also 

performed with the inclusion of friction analysed for the experimental test rig.  

 

Chapter 5: Mechanical design of snake arm prototype 

This chapter details the design of the 12mm snake arm building towards a 

model for algorithmically calculating the optimal snake arm length. The forces 

where part failure occurs using FEA software and buckling theory is performed 

and the effects they have on snake arm length analysed. 

 

Chapter 6: Reconfigurable dual track robot 

This chapter details the design of the reconfigurable robot with whegged 

profiles. The expected distance and weight requirements of the robot are 

calculated alongside the forces the robot is required to generate in order to 

achieve them. The whegged design incorporated into the tracks is also 

analysed to measure the capability of the robot over rough terrain. Finally, the 

experiments to find the actual driving forces of the tracks are performed to 

calculate the actual range of the robot in comparison to the target range.  

 

Chapter 7: Self-folding robot 

This chapter explores the novel concept of a self-folding robotic joint for a self-

assembling robotic system. The generation of a thermal barrier isolating two 

parallel layers of heat activated shape memory alloys is developed using heat 

transfer studies. Alongside experiments to characterise the transformation 

curve of the shape memory alloy and effect of length and width on the torque 

generated at each joint.  
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Chapter 8: Conclusions 

This chapter presents and discusses the finding from the three case studies 

conducted to evaluate the applicability of each system for the exploration of 

restricted access confined spaces. Before finally summarising the research 

and its findings. It discusses benefits of using the proposed systems and make 

recommendations for further research.  

A flow chart of the overall thesis structure is shown in Figure 1.1. 

 

Figure 1.1 Graphical design of thesis structure. 

Introduction 

(Chapter 1) 
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(Chapter 6) 

Design and 

development of a self-

folding robot with fully bi-

directional joints 

(Chapter 7) 

Conclusions and future work 

(Chapter 8) 
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Chapter 2  
Literature Review 

This chapter reviews research into the locomotion of exploration robots and 

the suitability of the system for borehole deployment and confined space 

explorations. Gaps in knowledge are identified that form the basis of this 

research. 

2.1 Introduction 

Methods of locomotion can be characterised by the environmental medium 

the robot will traverse through; air, land and water. Locomotion methods on 

land are viable approaches for restricted access robotic exploration and are 

explored within this literature review. Whilst there are many spaces to explore 

that are flooded – this is a specific problem for which solutions are not 

generally applicable, therefore this class of technology is not covered within 

this review. 

Locomotion enhances the capabilities of a robot for remote mapping and 

surveying underground spaces by improving observational detail and 

expanding the explored workspace. The benefits incurred from including 

methods of locomotion can be measured in endurance, distance and detail, 

which each locomotion method will score differently. 

2.2 Methods of entry 

There are generally two types of entrances for accessing subterranean 

spaces i) existing void like openings as primary entrances to mine shafts and 

caves ii) new entrances such as boreholes.  

Primary entrances are designed and constructed to be large enough for 

humans and machinery resulting in relatively easy access for large 

commercial mobile robots such as the Groundhog [10]. However, in most 

exploration scenarios, the subterranean spaces are difficult or impossible for 

humans to enter due to the small entrance or the requirement to drill an 

entrance path. Minimisation of the drill diameter increases the speed that the 

hole can be created, reduces the energy required to make the hole and 

minimises the risk of structural collapse or damage to important structures.   
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Therefore, from a void perspective, the aim is to minimise the size of the drilled 

hole. This places strict limits on the cross section and payload of a deployed 

robot. For long vertical drill depths of approximately 300m and greater, 

horizontal drift can occur causing deployment issues and affecting the 

orientation of a borehole robot [2]. 

 

Figure 2.1 Illustration of the restricted access entrance where entrance depth 

and diameter can both be varied. 

The use of portable borehole drilling equipment has the capability of drilling 

boreholes from one intact mine shaft to another adjacent shaft therefore 

drastically reducing the long distances involved if the shaft was to be reached 

from the surface. The Shaw tool (Figure 2.2) [14] is a uniquely designed 

handheld drilling tool that is easy to use, portable, fast penetrating and self-

contained. Commonly used for initial metal ore prospecting, academic 

applications have used the Shaw portable drill for projects including petroleum 

source, paleomagnetic investigations and monitoring well installations. The 

diameters available for the Shaw tool are 25mm, 41mm and 51mm and can 

achieve drill depths of up to 23m depending on the materials involved.  

Depth 

Diameter 
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Figure 2.2 Shaw tool 41mm OD drill kit [14]. 

2.3 Void entry ground robots 

Ground-based systems for exploration is a well-established area with a large 

range of applications and can assume many forms. Ground-based robots do 

not require constant power to maintain position allowing for a natural increase 

in endurance for explorations into restricted access voids.  

Locomotion over cluttered and unstructured terrain can be a significant 

challenge for robots. Traditional approaches use wheeled locomotion [15] that 

lack the capability of climbing over obstacles of equal height [16]. Alternative 

approaches such as legged robots [17] and tracked robots [18] can increase 

the capability of the robot to navigate over difficult terrain. 

The implementation of land locomotion for use in an unknown environment 

presents several complications as the size constraint of the restricted access 

way affects the size of the robot and the effectiveness of the locomotion. For 

these reasons wheeled locomotion [15], legged robots [17] and tracked robots 

[18] are studied as they can increase the capability of the robot to navigate 

over difficult terrain. 

Although borehole entrances can vary greatly in size and impose strict limits 

on the cross section and payload of a robot, void entrances can readily lead 

into subterranean spaces from the surface, which can offer a reduced 

constraint on size. Past the entrance, the workspace can range from a few 

centimetres to metres in width and height. This cross-sectional size, therefore, 
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does constrain a robot’s physical size; the length of the subterranean space 

in the range of kilometres will also constrain a robot's mobility and operational 

range.  

Larger and less complex robots are more commonly found in literature and 

commercially in comparison to a small self-reconfigurable robot for a borehole 

deployment. Void entrance robots commonly have greater abilities to 

overcome rough terrains and gaps on the floor, more resistance to low levels 

of water and most importantly can carry a larger payload. 

Once inside the void, the floor on which the robots will locomote can vary 

significantly. Manmade sites such as underground tombs that have since been 

sealed are likely to find some flat ground and steps such as in the ZhangHuai 

Prince’s Tomb near the city Xi’an in China. Though built 1300 years ago, an 

exploration robot was able to travel on its flat floor and steps, all of which were 

on a slight slope incline of 15° [19]. Uneven terrain can occur when floor 

sections of buildings have collapsed creating a constrained and layered 

environment. 

Whether it is rough, irregular, uneven, difficult or complex terrain, these terms 

all describe an environment where there is no clear path for a robot to travel. 

It is said that the variety of irregular terrain is unlimited and it is difficult to cover 

all the different cases for navigating over irregular terrain [20]. Terrain features 

can be simplified into four different features that are commonly found in rough 

terrain and these are gradient, ditch, vertical step and isolated wall as shown 

in Figure 2.3 where each obstacle can be described by only one or two 

parameters [20].  

 

Figure 2.3 Geometry of four standard obstacles. (a) gradient (b) ditch (c) 

vertical step (d) isolated wall [20]. 
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Subterranean spaces both natural and manmade have environments that 

greatly vary from one to another, this brings about a level of uncertainty that 

greatly influences the design and construction of a robot [2, 6]. Additional 

features can be introduced into the operating environment such as low 

crumbled ceilings and roofs that are an obstacle in itself. This constraint will 

restrict the height of any deployed vehicles and altitude of flying aircraft. 

Robots used for Urban Search and Rescue (USAR) are commonly found to 

use land-based locomotion with wheels or tracks. A report that reviews 

locomotion mechanisms for USAR scenarios by Wang, Z. and H. Gu, 

conclude that current robots are incapable of practically and autonomously 

carrying out any sort of rescue work in irregular, complex, and unstructured 

environments [21]. They argue how the specific downfalls of each locomotion 

method analysed would stop the robots in their tracks as seen at Table 2.1 

that sums up their conclusions. 

Table 2.1 Review of locomotion methods for USAR [21]. 

Locomotion 

Method 

Examples Advantages Disadvantages 

Wheeled  CUL [22]  Compact 

designs 

 Easy to use 

 Difficult to adapt to 

uneven/complicated 

terrain 

 The wheel can be 

caught on pieces of 

clothing and loose 

electrical wiring etc. 

 More prone to slip and 

fall over 

Tracked  Micro VGTV 

[21] 

 PackBot 

[23] 

 Works in 

unstructured 

terrain 

 

 Not competent at 

tackling vertical voids 

or inclined walls 

 More prone to slip and 

fall over 
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Legged  Robug III 

[24] 

 Can walk 

over uneven 

rugged 

terrain 

 Difficult to function in 

narrow voids 

 Not competent at 

tackling vertical voids 

or inclined walls 

Serpentine  Serpentine 

robot by 

Carnegie 

Mellon 

University 

[25] 

 Serpentine 

robot by 

Erkmen [26] 

 Good for 

navigating 

voids 

 

 Difficult to adapt to 

uneven/complicated 

terrain 

 

Other characteristics found in subterranean spaces that can influence the 

design of a robot are: 

• The amount of debris the robot must navigate. A large build-up of 

debris will favour locomotion choices such as tracks or legs and will 

affect whether the robot is teleoperated or acting autonomously.  

• How wet or dry the spaces are. Increasing depth of liquid impacts 

locomotion and design of the robot.  

• What composition of the air within the space is, the possibility of 

flammable gases would require no exposed wiring for the robot and 

a corrosive atmosphere will affect the material of the exposed robot. 

• The level of illumination is the subterranean space. Generally, these 

voids are incredibly dark and therefore must contain its own source 

of illumination or employ other sensors such as sonar. 

2.3.1 Tracked 

Robots for USAR purposes can use wheel or tracks for its locomotion system, 

however uneven terrain creates problems for wheels due an inevitable loss of 

traction. Larger more bulky wheels can be used to increase surface contact 

however the change to tracked robots is a more capable choice despite the 
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higher costs. If the environment is flat, wheels are effective and the lowest-

priced solution. Obstacles of different sizes present an extreme challenge, as 

the diameter of the wheels is proportional to its ability to navigate them. Tracks 

on the other hand smooths out bumps in the terrain and can allow a robot to 

glide over small obstacles, unlike wheels, tracks cannot be punctured or torn 

and effectively distribute the weight of a robot over a larger area to aid 

locomotion over soft ground like mud or snow [27].  

Moosavian, S.A.A., et al. discussed the compromises a USAR robot must 

overcome, on one hand the robot must be small enough to bypass small 

openings and voids but on the other hand, the same robot needs the ability to 

climb over obstacles which calls for a larger size [28]. The minimum length of 

their mobile rescue robot was decided at 730mm, the minimum length for a 

tracked robot to span two steps on stairs. The large length of 730mm creates 

a large turning circle, a space that cannot be afforded in a destructed 

environment, therefore Moosavian, S.A.A., et al. compromises by 

implementing a robot with extendable tracks. This ensures the length required 

for climbing stairs yet has the capacity to alter is structure to produce a smaller 

profile for better manoeuvrability.  

The actuated and tracked sections of the robots also add the benefit of 

allowing these robots to navigate higher obstacles; it is no coincidence that 

this design improvement is commonly seen elsewhere with commercial 

robots.  

 

Figure 2.4 Resquake mobile rescue robot [28]. 
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Switchblade is an unmanned ground vehicle (UGV) with a small form factor 

for navigating confined spaces. By Morozovsky, N. et al. the Switchblade is a 

treaded rover capable of transversing rough terrain by use of its two treads 

pivotally attached on either side of the central torso [18]. This unique design 

allows the UGV to transverse terrain other generic treaded rovers may 

struggle with such as chasms longer than the rovers length or inclined stairs. 

The length of the Switchblade in its most compact configuration is 

approximately 300-400mm and its ability to continue to function upside down 

is beneficial to reduce risks of failure during any mission deployment.  

The Switchblade was mainly demonstrated to advertise its ability to balance 

itself in the ‘V-balance mode’ (Figure 2.5); a mode which provides the robot 

with the ability to overcome obstacles nearly as high as its treads length  [18]. 

This ability was not tested in the paper; therefore, it is unknown whether the 

Switchblade V-balance mode successfully functions to allow the robot to climb 

over any high uneven obstacles. 

 

Figure 2.5 Completed Switchblade prototype [18]. 

A similar design approach to the Switchblade can be found in the USAR robot 

RAPOSA by Marques, C., et al., [29]. It is intended for outdoor use in 

environments hostile to human presence. A unique component of this robot is 

the ability to disconnect and reattach its tether while being remotely controlled. 

Other similar USAR robots have the option to draw its power from the tether 

or onboard batteries, they cannot, however, switch between the two without 

changing the robot structure [29]. The robot that measures 175mm tall, 
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370mm wide, 750 long and weighs 27kg is claimed to have the ability to allow 

deployment into a deep hole by lowering it down via the tether. The ability to 

disconnect and reconnect the tether remotely improves the mission duration 

and search area of the robot, at the cost of increased complexity. Wang, Z. 

and H. Gu [21] state that tracked robots are incompetent in navigating inclined 

walls and are prone to slip and flip; the RAPOSA is therefore built to climb 45° 

inclinations and also function upside down. 

 

Figure 2.6 USAR robot RAPOSA [29]. 

The iRobot 510 PackBot is the most successful robot in its class and has 

reached commercial success with over 4500 robots delivered worldwide [8]. 

Described as mobile, expandable, portable and easy to use the military 

applications of the robot have aided its success [30]. With the detachable front 

flippers the robot measures at 178mm high, 521mm wide and 889mm long 

weighing at 10.89kg (without batteries), it can climb inclines of 60° and 

submersible in 914mm water [8]. The specifications of the PackBot are 

certainly impressive in comparison to its competition. Unfortunately, the sizes 

of these front flipper tracked robots make it extremely difficult or impossible to 

navigate small voids.  
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Figure 2.7 iRobot 510 PackBot [8]. 

In the military, there is a requirement for a tool that can provide situational 

awareness fast. The iRobot 510 PackBot is much too large and heavy to be 

transported by a person; therefore, a smaller version was created by iRobot. 

Named the iRobot 110 FirstLook, the smaller version had to be in a smaller 

and lighter package yet retain some advantages from its larger model that 

made it popular. Weighing only 2.45kg with dimensions 254 x 229 x 102mm 

(L x W x H) the FirstLook can be carried in a backpack and be thrown for 

deployment purposes which reflect the ruggedness of the design. Crawl 

spaces present less of a problem for this robot and the ability to climb over 

steps 178mm high means this robot is suitable for investigating unknown 

environments despite its small size. 

 

Figure 2.8 iRobot 110 FirstLook [31]. 
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2.3.2 Legged 

It is said that legged robots have an advantage in walking through uneven 

terrain but not through narrow and inclined voids [21, 32]. Though not so 

important for USAR operations, the fact that the legs in contact with the floor 

are static means there is a reduced chance of scratching the surface when 

moving. However, as the contact area of legged robots is largely reduced 

compared to tracked robots, the chance of slip is increased, which can create 

scratches on a surface. This risk is reduced due to legged robots usually 

having multiple degrees of freedom (DOF) which allows the robot to shift its 

weight and thus its own centre of mass.  

If a wheeled or tracked robot is deployed, the consequences of failure of a 

wheel or track could result in the complete loss of mobility. Not for legged 

robots though if the design incorporated redundant legs [32] although these 

robots require more complex mechanisms thus achieving a larger chance of 

a part failure.  

Drawing inspiration from a spider the Abigaille-I robot has six legs (each with 

10 DOF) and 18 actively controlled joints and only weighs 0.131kg. Featuring 

specially designed feet that can integrate synthetic dry adhesives the 

Abigaille-I by Menon, C., et al. can adhere onto a slope of almost 50° on a 

smooth plastic surface [33]. The dimensions of this robot was not reported nor 

was a demonstration of the robot walking, however what is gained from this 

paper is lightweight legged robots can hold their own ground on inclines 

contrary to what was reported by Wang, Z. and H. Gu in their review of 

locomotion methods [21]. Therefore the material coating the feet plays a role 

alongside the surface area of the foot that aids in providing the traction needed 

for the robot. 
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Figure 2.9 Six-legged Abagaille-I robot [33]. 

Just as the Abigaille-I used small electric motors to actuate each leg joint other 

components can also be utilised to automate the legs of a robot. An important 

measure of whether the mechanism is applicable depends on several aspects 

such as size, scalability and reliability. Another six-legged robot by Clark, J.E., 

et al. finds its inspiration from nature and the authors attempt to fabricate a 

robot with passive mechanical properties like those found in small 

invertebrates [34].  

For a small-legged robot to transverse over uneven and uncertain terrain 

Clark, J.E., et al. closely observed the cockroach that can achieve great speed 

and stability. The authors note how many hexapod designs maintain its centre 

of mass within the support polygon provided by at least three feet to ensure 

static stability, it was noted however that these designs limit many of those 

robots to very slow, near static speeds. Aiming for a hexapod built for the 

simple task of running straight ahead through rough terrain, their first 

prototype named the Sprawlita (Figure 2.10) was a 160mm long robot with its 

legs in a sprawled posture to provide a wide base of support [34]. From 

studying the anatomy of a cockroach, the authors decide to use pneumatic 

pistons for the leg functions to greatly accelerate and decelerate the robot 

faster than the electrical component alternatives could have provided. The 

disadvantage of using the pneumatic pistons is obviously the need for the 

robot to be tethered in order to supply pressurised air to the pistons. 

Overall, the Sprawlita was said to have managed to clear obstacles 35mm 

high and achieve speeds of 0.42m/s on the smooth level ground. Whilst the 

robot was capable of moving across different soils such as sand the authors 

noted that foot design was important to prevent miring [34].  
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Figure 2.10 Hexapod robot Sprawlita [34]. 

Solutions that will enable the miniaturising of legged robots would be 

beneficial for the exploration of a historical chamber where its small size will 

allow for the robot to transverse small voids. Reducing the amount of legs 

and/or simplifying the mechanism that automates the legs will reduce the 

complexity of the design and should aid in the miniaturisation effort.  

A mini-hexapod robot produced by Arena, P., et al. has a simple design by 

only providing each of the six legs just two DOF (Figure 2.11), this results in 

only 12 servos in place which has the benefit of reducing power consumption, 

complexity and also weight [35]. The mini-hexapod robot has dimensions 150 

x 100 x 100mm (L x W x H), weighs 0.826kg and is powered by four AA 

batteries and two additional 9v batteries, the duration the robot can function is 

not mentioned. Experimentation with the robot has revealed the robot to be 

capable of walking on flat surfaces, small slopes and small size obstacles 

(Figure 2.12).  

 

Figure 2.11 mini-hexapod with the simplified mechanism for leg automation 

[35]. 
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Figure 2.12 (a) mini-hexapod climbing over step obstacle [35] (b) mini-

hexapod climbing over ramp obstacle [35]. 

The maximum height of an obstacle this robot could climb over was not 

provided nor was information regarding length of void the robot could bridge 

over. The duration the robot could continuously function was said to be range 

between 0.5-1 hour on flat terrain and it has a speed ranging from 1 cm/s to 

10 cm/s [35].  

2.3.3 Wheel-Legged 

Further simplifying the mechanism of the legs can imply a reduction in the 

degrees of freedom per leg. The mini-hexapod by Arena, P., et al. had 2 DOF 

per legs thus has two servo motors per leg. Reducing the DOF to just one per 

leg would therefore half the amount of servomotors required. An example of a 

robot with this set up is the ASGUARD (Figure 2.13) by Eich, M., F. 

Grimminger, and F. Kirchner [36]. Designed for harsh outdoor environments 

and USAR missions the ASGUARD makes use of multiple rotating legs to 

navigate the difficult terrain. As the legs are rotating, the category these robots 

fit under is a hybrid between wheels and legged, sometimes referred to as 

‘whegs’.  

 

Figure 2.13 ASGUARD robot climbing stairs [36]. 
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The ASGUARD robot has dimensions 0.95 x 0.5 x 44m (L x W x H) and 

demonstrates ability to climb stairs in an outdoor test track. The authors noted 

that at times the robot did perform undesired backflips during some tests that 

was later fixed using program changes. Unlike the legged robots reviewed 

previously, ASGUARD robot should continue to function also when upside 

down, although not explicitly stated.  

An in-depth analysis of benefits for using wheel-legs for USAR has already 

been done [16] and proves to be more advantageous than wheels alone. One 

reason is that wheel-legs are able to obtain a foothold on obstacles that are 

taller than the wheel-leg radius.  

 

Figure 2.14 Wheel-leg robots (a) can obtain a foothold on higher obstacles 

than wheels (b) of equal radius [16]. 

The number of spokes per wheel-leg and the number of wheel-legs per robot 

can still be altered for each robot designed and produced. A hexapod named 

RHex [37] is a whegged robot despite only having one spoke per wheel-leg 

as each of the six legs rotate a full circle when walking. The simplicity of the 

RHex produced a robust robot with demonstrated capabilities on an obstacle 

course specially designed for great difficulty and a sense of uncertainty 

(Figure 2.15). The number of spokes does affect the design of the robot. RHex 

is an example that six legs must remain in coordination where the stable 

triangular stance could be maintained. However, with the ASGUARD robot the 

use of several spokes allows the robot to manoeuvre in a similar manner with 

only four wheel-legs yet still maintaining the triangular stance. The actual 

benefits of the two additional wheel-legs then are in the hexapods capability 

to have redundancy on its movement, increased stability [38] and the ability 

to bridge larger voids.  
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Figure 2.15 (Left) RHex hexapod robot [37], (Right) RHex posed atop section 

of obstacle course [37]. 

Miniaturisation of a robot using the simplified wheel-leg type locomotion is 

possible and has already been proposed and studied, but problems occur with 

capabilities of the legged robot that strongly affect the usefulness of the robot 

in USAR missions. Though these robots could be assembled to navigate the 

smallest of holes and crevices, the downscaled wheel-legs obviously affect 

the ability to scale over tall obstacles.  

The Mini-Wheg IV (Figure 2.16) is a highly mobile small robot using the wheel-

leg locomotion method. Two versions were built; one to present its miniature 

design and the other to demonstrate an ability to jump in order to clear 

obstacles it is not able to climb otherwise. The physical dimensions of the Mini-

Wheg IV chassis are 0.09 x 0.068 x 0.036m (L x W x H). It is controlled by 

radio control signals, drawing power from onboard lithium batteries [39]. 

Capable of reaching speeds of 0.9m/s, the Mini-Wheg IV is fast in comparison 

with previously reviewed legged and whegged robots, yet only has one motor 

driving the two axles of the four wheel-legs. Problems were found during 

testing with the whegs being caught in slated surfaces or tangled surfaces. 

The robot is also incapable of turning on the spot, a useful ability when 

navigating through tight confined crevices. This is due to the Mini-Wheg IV 

using traditional steering like those found in cars, providing the Mini-Wheg IV 

with a turning circle between 178 – 27.9mm or between 2 and 3.1 body lengths 

[39].  
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Figure 2.16 Size comparison of the Mini-Wheg IV and a Blaberus gigantius 

cockroach [39]. 

The Mini-Wheg IV at its current form would not be able to climb stairs or any 

other obstacles approximately more than twice its height. The novel solution 

to this by Morrey, J.M., et al. was to design the Mini-Wheg 4J as proof of 

concept. Sacrificing the steering and radio controlling system, a spring-loaded 

four-bar jumping mechanism was introduced powered by the same motor 

running the whegs, which meant both systems were not independent. Though 

a prototype the Mini-Wheg 4J performed admirably reaching heights of 

220mm, however as acknowledged by the authors the controlling aspects of 

the robot had to be reinstated in future versions of the Jumping Mini-Wheg 

[62].  

 

Figure 2.17 The Mini-Wheg 4J in action reaching heights of 220mm [39]. 

A later iteration of the Mini-Wheg was built to incorporate several design 

improvements to both the Mini-Wheg IV and the Mini-Wheg 4J [40]. The Mini-

Wheg 7 was fitted with improved wheel-legs that included wider feet and 
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rubber coating to aid traction and modification of the shape to eliminate 

tangling with terrain. Slight alterations were made to the steering mechanism 

to reduce weight where possible, overall the chassis of the Mini-Wheg 7 

measures 0.089 x 0.054m (L x W) making it smaller than its predecessor [40]. 

Experiments with the newer version revealed the robot to still be able of 

achieving speeds of almost four times its body length when carrying additional 

batteries onboard yet the climbing ability remained unchanged from the 

previous design (due to leg length remaining unchanged). When attempting 

to climb over obstacles of 38mm the robot begins to tumble over and inclines 

of 25° are its limit on a unmentioned surface [40]. The lightweight steering 

mechanism in the Mini-Wheg 7 provided the robot with a turning circle of three 

to four body lengths which is an increase in comparison to the Mini-Wheg IV 

[39].  

 

Figure 2.18 Mini-Wheg 7 can climb obstacles 25% greater in size than the 

length of each leg spoke [40]. 

The prototype Mini-Wheg 4J was only a proof of concept lacking the capability 

to steer and jump independently while driving forwards. The Mini-Wheg 9J 

was an attempt to realise a fully functional model building upon the 

improvements from the Mini-Wheg 7. Separating the mechanism driving the 

four wheel-legs and the jumping mechanism a separate motor had to be 

introduced thus increasing the size of the chassis to 0.104 x 0.076m (L x W). 

Figure 2.19 shows the robot jumping over a 90mm high obstacle reaching a 

height of 150-180mm [40], this is less than the height achieved by the 

prototype model which achieved 220mm yet the newer version weighs less at 

191g. Regardless the jumping height would still allow the robot to climb atop 

obstacles higher than the 38mm found from the Mini-Wheg 7.  
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Figure 2.19 Mini Wheg 9J jumps over a 90mm obstacle [40]. 

2.4 Borehole Inspection 

Borehole entrances can vary greatly in size and impose strict limits on the 

cross section and payload of a robot. They do not benefit from the same 

freedoms a void entry robot enjoys and must be designed for restricted access 

deployments.  

A dry subterranean environment allows a device to be designed and 

constructed with ease and operated with a minimum number of personnel. 

Often tethered and deployed by raising/lowering the device from the surface, 

these devices can only offer a linear form of mobility.  

2.4.1 Static and Dry 

 A static borehole device similar to the Ferret [41] is a very simple yet effective 

device for its task. Often tethered and deployed by raising/lowering the device 

from the surface these can only offer a linear form of mobility. A dry 

subterranean environment allows the device to be designed and constructed 

with ease and operated with a minimum number of personnel. The Ferret 

carries onboard a surveying laser on a two-axis mechanism to allow for a more 

detail analysis once deployed alongside a camera and two small lamps to 

provide visual feedback to the operator.  

A common issue that arises with these systems is that they are highly 

constrained to the line of sight. Obstructions such as supporting pillars in a 

mineshaft can greatly obstruct a sensors view and therefore warrant the need 

for careful and accurate placement of boreholes.  
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2.4.2 Static and Wet 

The borehole camera system for imaging the deep interior of ice sheets [42] 

is designed to house two cameras (one side and one facing down) with 

halogen bulbs to provide illumination. Tethered via a fibre-optic cable this 

device was deployed into a 1000 -1200m deep borehole where water is 

assumed present, the presence of water and pressure was addressed in the 

design. In this case, the borehole camera system never navigates beyond the 

bored shaft in the ice, had the system entered an underwater cavern with any 

water current, then the analysis would not have produced the same quality 

images as the camera system contains no method of stabilisation. 

2.4.3 Mobile and Dry 

The cost of drilling a hole is proportional to the volume of material removed; 

therefore, it will be costly for a static camera system to find there is a large 

obstruction adjacent to the breach in the subterranean space. Rather than 

repositioning and re-drilling the borehole, a mobile system that can navigate 

the space beyond the borehole would be advantageous. A more detailed 

analysis of the subterranean space is possible with additional vantage points 

and the TerminatorBot [43] is an example of one. Utilising two three-degree 

of freedom arms that retract into a cylindrical body, the tethered robot can be 

deployed into a borehole and continue to navigate beyond the entrance by 

crawling.  

The use of tracks can also supplement the locomotion system to improve the 

ability to overcome rough terrains [6]. Inkutun Mine Crawler robot contains two 

sets of tracks that can tilt to allow the robot to compact and transverse the 

borehole. Comparisons between the TerminatorBot and Inkutun Mine Crawler 

reveal that both have the ability to self-reconfigure after deployment into the 

borehole, a capable locomotion system to overcome expected obstacles and 

a form of steering appropriate for navigation in narrow passages [2].  

2.4.4 Mobile and Wet 

The wet subterranean environment may contain water currents that affect the 

detail of images and other sensory data. The inclusion of underwater 

locomotion provides the deployed system with the capability to navigate and 

stabilise itself throughout a deployment. Just as an obstacle can obstruct 
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sensors’ view for a static and dry device, the ability to navigate around them 

greatly improves the capabilities of such system [2].  

2.1.1 Reconfigurable robots 

2.4.4.1 Modular reconfigurable robots 

Modular reconfigurable robots have received attention that mainly focuses on 

a modular design [44-46]. The PolyBot G2 (short for generation 2) promised 

great versatility and robustness with its modular design. The ability to self-

reconfigure into three modes allows it to use three different land-based 

locomotion methods [45]. By utilising up to a maximum of 32 modules, the 

PolyBot G2 has the capacity to rearrange its own structure to create a snake-

like gait for easy navigation of obstacles, rolling track for efficient travel over 

flat terrain and a four-legged configuration to stride over uncertain rough 

terrains (Figure 2.22).  

The PolyBot self-reconfigurable robot appears to be a logical choice for 

exploration purposes, as it can be deployed in its slender snake-like mode to 

minimise the size of the chamber entrance and once deployed there are three 

locomotion options to allow for different terrain scenarios. Therefore, the 

PolyBot can be subject to the same scrutiny as the snake robots in regards to 

the size of such robots and the ease of scalability in the design (Figure 2.21).  

The design goal of the PolyBot G2 is for each module to fit within a 50mm 

cube on a side (Figure 2.20). Unfortunately the inclusion of a brushless DC 

motor protrudes from the cube destroying the sleek looks of the robot, 

increases its physical size and creates interference with some of its own 

functions [45]. The third generation version, the PolyBot G3 promises a 

redesign where the protruding motor is absent by replacing the component 

with a pancake DC motor and planetary gears [47]. Further papers of the 

PolyBot G3 have yet to be published at the time of writing.  

Demonstrations of the PolyBot G2 capabilities revealed its ability to clear a 

variety of obstacles including “crawling in a 4" diameter aluminium ducting 

pipes, up ramps (up to 30 degrees), over chicken wire, climbing 1.75" steps, 

over loose debris and wooden pallets” [48] using the snake-like configuration. 

Due to the complexity of introducing an individual power source into each 

module, the authors opt to supply power to the robot via a tether.  
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Figure 2.20 Close up of a single module from the 1st gen. PolyBot with 

protruding motor [48]. 

 

Figure 2.21 2nd gen. PolyBot with nine modules. A micro camera and battery 

is attached at the front [48]. 

 

Figure 2.22 2nd gen. PolyBot in its 3 configurations, (top-left) rolling track, 

(bottom-left) snake-like, (bottom-right) four-legged spider [47]. 

A single module of the PolyBot contains just 1DOF yet the SuperBot [49] 

module contains 3DOF (Figure 2.23). The extra DOF drastically increase the 

robot’s mobility and flexibility. Designed to be operated in uncontrolled harsh 

rough terrain, a design requirement of the SuperBot was for each module to 

be sealed from outside contaminants and incorporate an abrasion resistant 
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outer casing [46]. In essence, the SuperBot robots are designed for real 

outdoor applications by distancing itself from proof of concept hardware in 

controlled environment. This transition introduces many new challenges for 

the robot such as the ability to share power amongst its own modules, a full 

list can be found in the same paper [46]. 

The dimensions of each prototype cube for the SuperBot is 84mm thus each 

module is 168mm long, limited to 180° for yaw/pitch and 270° roll. Torque from 

each module is capable of reliably lifting two neighbouring modules, granting 

the robot with the capacity to travel 1km using the rolling track configuration 

on a single battery charge or climb 45° inclines on hard surfaces using the 

legged configuration [49].  

 

Figure 2.23 SuperBot module with 3DOF [49]. 

Unlike the PolyBot G2, the SuperBot is currently unable to self-reconfigure 

and relies on external aid for setting up. This is due to manual connectors 

between each module and will be addressed in future designs. On a positive 

note, each module contains its own power supply meaning the SuperBot 

robots are autonomous and untethered [49].  

 

Figure 2.24 Multiple configurations of the SuperBot [49]. 
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Docking of each module is an important milestone for self-reconfiguration for 

robots such as the PolyBot or the SuperBot. The creators of the PolyBot 

experimented with docking procedures and found the problem to be complex 

due to compounding errors in kinematics from one module to another. In order 

to reduce errors and to aid positioning of modules, the creators introduced a 

three-step guide for accurate alignment using additional sensors before a 

latch is closed to secure a module [47].  

2.4.4.2 Non-modular reconfigurable robots 

Robots that are designed for configurability and are compatible with small 

diameter boreholes incorporate mechanisms to maintain high levels of 

functionality post-deployment into subterranean spaces.  

Houdini is a tethered reconfigurable and collapsible machine for remotely 

cleaning hazardous waste and petroleum storage tanks [50]. The tethered 

robot system is designed for deployments into boreholes as small as 0.51m 

in diameter. Capable of a variable aspect ratio (ratio between wheelbase and 

track width) this is achieved using a collapsible diamond shaped frame 

powered by dual rotary hydraulic actuation to separate two parallel track 

modules.  

 

Figure 2.25 Houdini robot deployment system at different stages of 
deployment  [50]. (a) the robot is first deployed vertically from above (b) 
the robot begins reconfiguring stage (c) robot is fully deployed on ground.  

a 

b 

c 
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Deploying the tracks of the reconfigurable robot in series will assist with 

reducing the borehole diameter for entry. Like the OmniTread robot [51] as 

reviewed in Chapter 2.4.3, the combination of in-line tracks connected by 

actuated joints allows the robot an option to drive through boreholes and can 

reconfigure post-deployment to assume a wider aspect ratio for enhanced 

stability.  

This form is adopted with the shape changing robot by Hitachi and Hitachi-GE 

Nuclear Energy (HGNE) for inspection of the Fukushima Daiichi nuclear plant 

[52]. The robot is composed of the main body and two compact tracked 

modules that can be rotated 90° in relation to the main body (Figure 2.28). It 

can travel through pipes of 100mm diameter and has the dimensions 90 x 250 

x 272mm (h x l x w) when moving along flat surfaces or 90 x 640 x 65mm 

when moving within pipes. Weighing 7.5kg, the robot is operated via a 40m 

cable. 

 

Figure 2.26 Hitachi and HGNE shape-changing robot [52]. 

In terms of performance, the Hitachi shape changing robot ‘died’ exploring the 

tsunami-hit Fukushima Daiichi nuclear power plant within 3 hours due to loss 

of control, however, the robot did succeed in examining 14 out of 18 planned 

inspection spots [53]. The Houdini robot however only concludes the robot is 

well suited for a wide range of clean-up tasks and will be able to drive in 

expected silo wastes with minimum sinkage [54].  

2.1.2 Self-folding robots 

Origami inspired self-folding robots rely on the shape memory effect of smart 

memory polymers (SMP) or shape memory alloys (SMA). Shape memory 

materials are stimuli-responsive materials and have the capability of changing 

their shape upon application of an external stimulus. The widely used form of 

stimulus is the application of heat.  
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Applications from the ability to change shape on command can be useful for 

self-assembling of robotic machines. Creating complex geometries and 

mechanisms by manual folding requires a significant amount of time and 

effort. Self-folding to construct three-dimensional structures from two-

dimensional materials without external manipulation is, therefore, desirable as 

it reduces work required and aids storage of such robots when not required 

[55].  

Use of SMP materials was demonstrated by Felton, S.M., et al. by building a 

self-folding lamp [56], origami cranes [57] and also the self-assembly printed 

inchworm robot [55]. The actuated folds of the inchworm robot are heat 

activated via a joule heating copper circuit layer for localised heating 

laminated to a layer of pre-stretched polystyrene (PSPS) that permanently 

shrinks when activated. The ability to localise the heating and activation of the 

PSPS layer allows the printed robot to sequential and simultaneous folding to 

assemble the structure of the inchworm robot. Only after completion of the 

folding process does the manual addition of servos and batteries take place 

to finish the inchworm mechanism (Figure 2.27).  

 

Figure 2.27 (a) The robot before the structure is self-folded. (b) The folded 

robot after the servo and battery is manually attached [55]. 

The method for building these self-folding machines is further demonstrated 

with a four-legged robot demonstrating potential for complex, autonomous and 
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self-controlled assembly [58]. Once the PSPS material is activated and shrunk 

to create the folds, the change to the material is irreversible and the robot 

cannot be unfolded and reused. If a benefit of the self-folding robot is the easy 

storage when not in use, that benefit will be lost as the additional servos and 

battery must be stored elsewhere.  

The different approach using nickel titanium (NiTi) SMA materials can allow 

the folds to be unfolded and reused. This research was demonstrated by Paik, 

J.K., E. Hawkes, and R.J. Wood with their low-profile SMA torsional actuator 

[59]. With pre-programmed SMA sheets bound to passive sheets, a heating 

coil was bonded to each SMA actuator with non-conductive thermal epoxy. 

The heated coils activate each fold when the SMA transition temperature is 

reached and the 180° fold is achieved (Figure 2.28). Like the SMP folds, the 

direction of the folds for the SMA can only occur in one direction. Unlike the 

SMP folds, the SMA fold can be manually undone due to the ductile material 

properties.  

 

Figure 2.28 Two positions of the single direction SMA actuated fold [59]. (Left) 

unfolded position (Right) folded position. 
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In an attempt to increase the capabilities of each fold, Paik, J.K. and R.J. 

Wood introduce the bi-directional SMA folding actuator [60]. The changes 

made over the previous single directional fold is the SMA sheet is now pre-

programmed to fold either direction (Figure 2.29) and the heating element is 

replaced with a ‘printed-on’ flexible heater that is micro laser welded and 

epoxied.  

 

Figure 2.29 Bi-directional fold. (a) & (b) Before activation occurs. (c) Single 

fold activated. (d) Both folds activated [60]. 

It was reported the critical element for producing the independent motions is 

isolating the heated regions from one another, which was challenging due to 

the close proximity to mimic collinear rotation [60]. It can be seen the bi-

directional fold suffers from the same issue as the single fold, as the unfolding 

process remains irreversible without external manipulation. In comparison to 

the SMP folds by Felton, S.M., et al. the use of SMA can perform the same 

role but offers greater flexibility with the option to be reactivated once manually 

reset.  

Without the capability for each fold to unfold itself without external aid, the 

single use folds can only be assigned to performing structural folds and any 

actuation requirements reliant on servos or other actuators. The use of SMA 

materials have allowed dedicated SMA actuators to be utilised for worm robots 

[61, 62] and biomimetic inchworm robots [63-65], but those applications lose 

the capability for self-assembly and disassembly.  

To the knowledge of the author, there has been no attempt to construct a self-

folding robot where each fold is self-reversible and bi-directional. For a self-

folding robot to be applicable for borehole deployment into restricted spaces, 

it is crucial to reduce the need for bulky externally embedded actuators and 

sensors so the remaining flexible materials used for construction can be 

utilised to conform to the geometry of the borehole. A benefit to a fully 
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reversible SMA fold is the fold itself will then be capable to of both being 

structural folds and actuated folds, therefore, bypassing the need for 

externally embedded servos.  

2.1.3 Snake robots 

Land systems reviewed so far has shown the locomotion mechanisms can 

take a large amount of space that creates a large robot. The performance of 

each system varies according to the design and the more novel techniques 

such as hopping [66, 67] are created in an attempt to overcome the limitations 

of its inherent design. Using nature for inspiration, there are methods animals 

use to avoid the ground when avoiding predators or scouring for food. A snake 

is able to navigate difficult terrain despite having no external limbs and is also 

capable of climbing trees by reaching from branch to branch [68].  

Snake robots have been in circulation around researchers for years. Shigeo 

Hirose has achieved awards for contributions to robotic mechanisms at the 

Tokyo Institute of Technology [69] began development of snake-like robots in 

1972 [70]. Through several iterations, Hirose eventually built an impressive 

dust and waterproof snake robot named the ACM-R5 [71] which had eight 

joints, was 1.7m long, 0.08m diameter and weighed at 6.5kg and is capable 

of replicating the creeping motions of a live snake on the ground and in water. 

This ability is due to 2 degree of freedom (DOF) joints Hirose proposed in his 

paper [72]. For a tree snake to cross a gap between tree branches, the snake 

must first secure its tail to support its dead weight as it lifts and lengthens its 

main body and head towards the target branch like a girder. For a snake robot 

to achieve the same, the individual joints must produce a torque capable of 

lifting sections of its body unsupported. The ACM-R5 is capable of only lifting 

two of seven joint units and with a link length of 0.17m that means it can cross 

a horizontal gap of 0.34m at most. The distance of this horizontal gap a snake 

robot is capable of crossing is important as it is representative of the distance 

this snake robot can be deployed into restricted access spaces without 

touching any surfaces past the initial borehole.  
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Figure 2.30 Small Active Cord Mechanism [72]. 

The OmniTread is a serpentine robot by Granosik [51], this is slightly different 

to the usual snake robots because it derives propulsion from tracks located 

around its outer body rather than the relative motion of the joints like in the 

ACM-R5 [72]. At 1.27m length, 0.186m diameter and at 13.6kg the OmniTread 

is much larger than Hirose’s ACM-R5, the larger volume allows for its four 

joints to be powered by pneumatic bellows which Granosik discusses its 

benefits over electric motors and hydraulics in another article [73]. The greater 

torque produced by using pneumatics over electric power is revealed when 

they are described as capable of lifting two lead sections to allow the robot to 

navigate gaps more than half its length long, making the gap approximately 

0.65m wide.  

 

Figure 2.31 OmniTread in cantilever-lift position [51]. 

On the snake robot over half the body weight is used to counter the weight of 

the head and body to stop the snake robot from tilting over, this means the tail 

section of the robot is wasted whereas a dedicated counterweight can fulfil the 

same role.  
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2.1.3.1 Snake arms 

The snake arm is essentially a snake robot with its tail-anchored to a base 

section, used as a highly dexterous and redundant system snake arms have 

had focus in the industry to successful effect [74, 75]. Snake arms have shown 

that they can be built to have a large variance in diameter; snake arms can be 

sufficiently small to be used for minimally invasive surgery [75] or large to 

make repairs on nuclear power plant sites [74]. It seems apparent the 

diameter of the snake-arm is highly dependent on the environment the product 

is to be deployed in, also a correlation between the diameter and length can 

be deduced which will affect the performance of the snake arm. 

Lum, G.Z., et al. breaks down the design of snake arms further by stating how 

there are currently two categories for dexterous robotic arms, those being 

discrete and continuum [76]. Discrete robots consist of a series of short rigid 

links connected to one another with the use of discrete joints (such as 

universal joints), continuum robots, on the other hand, replaces the discrete 

joints for an elastic deformable body. The authors mention this will decrease 

the weight of the snake arm, however, it makes calculating the motion of the 

continuum robot more complex [76].  

The base of the snake arm would contain the components necessary for the 

function of the snake arm, but not required for deployment through a restricted 

access entrance. This results in the base of the snake arm to benefit from less 

restrictive specifications allowing room for mounting large actuators and 

sensors if required. The diameter of the snake arm, on the other hand, is 

subject to the borehole diameter. 

If there is a large range of available borehole diameters, there is also a large 

selection of options for actuating the snake arms. These can be categorised 

as a motor driven [77], pneumatically driven [78] or cable driven [79]. A larger 

snake arm diameter generally results in a snake arm capable of further 

horizontal reach. The specifications and type of a range of snake arms 

illustrate this in Table 2.2. 
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Table 2.2 Snake arm specifications. 

Type Backbone Diameter 

(mm) 

Length 

(mm) 

D/L ratio Reference 

Motor Discrete 6.35 14.5 0.438 [80] 

Motor Discrete 100 1130 0.088 [77] 

Pneumatic Continuous 10 150 0.066 [81] 

Pneumatic Continuous 80 300 0.267 [82] 

Pneumatic Continuous ~150 1480 0.101 [78] 

Cable Continuous 3.8 770 0.005 [83] 

Cable Continuous 4.2 28 0.150 [84] 

Cable Continuous 4.8 800 0.006 [85] 

Cable Continuous 8.8 77.4 0.114 [86] 

Cable Continuous 15 150 0.100 [87] 

Cable Continuous 15 300 0.050 [88] 

Cable Continuous 15 450 0.033 [89] 

Cable Continuous 16 150 0.107 [90] 

Cable Continuous 30 355 0.085 [91] 

Cable Continuous - 750 - [92] 

Cable Continuous 40 - - [74] 

Cable Continuous 60 - - [74] 

Cable Continuous 100 1200 0.083 [93] 

Cable Discrete 12.5 2200 0.006 [74] 

Cable Discrete ~40 ~700 0.057 [94] 

Cable Discrete 100 6000 0.017 [95, 96] 

Cable Discrete 150 2400 0.063 [97] 

Cable Discrete 160 8200 0.020 [98] 

Lum, G.Z., et al. constructed a discrete robotic arm to verify their kinematic 

formulations and motion control algorithms [76]. Using three cables to actuate 

each discrete joint, the feasibility of using the lightweight tendons proved to 

be successful and the authors suggested the use of cables as opposed to 

heavy actuators in each section which provided a larger workspace, larger 

payload to weight ratio and lower production costs [76].  
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Figure 2.32 Cable-driven dexterous robotic arm prototype [76]. 

A successful example of a product that uses cables would be by a company 

known as OC Robotics [99]. As described in their case study the authors 

Buckingham, R.O. and A.C. Graham describe the event where their discrete 

snake arm was used to repair a vital pipe at a nuclear power plant site, the 

snake arm has a diameter 60mm and length of 800mm. In place of the general 

universal joint and link configuration, the authors designed and patented their 

own link assemblies which go away with the mechanical joints in place of 

plates with elastomers sandwiched between them [100]. The environment 

which the snake arm was deployed was too small and too dangerous for a 

human worker to reach, the fact that the snake arms would not require any 

access holes practically guaranteed the job to them. This has shown that 

snake arms are capable of reaching into difficult to reach spaces using limited 

space, yet still have the dexterity to allow it to function in the severely 

constrained spaces.  

Practical applications for the use of snake arms can be found in search and 

rescue operations at disaster sites. To search through piles of rubble, the use 

of a thin elongated snake arm could be capable of navigating around the small 

gaps in the rubble to reach a destination, this will be less labour intensive than 

digging the site and also much safer for anyone buried under the rubble. With 

this scenario was the research conducted by Lu, C., et al. [94] where a 

portable discrete snake arm was manufactured. Using only manual power for 

controlling the snake arm, the lack or limited use of electricity at disaster sites 

was overcome as the only power source required was for the cameras and 

lights, a small resource in comparison to several high power linear actuators. 

The paper makes no mention of the products total diameter or length, however 
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from approximate scaling on images the diameter is approx. 40mm and length 

approx. 700mm. Unfortunately, only the ‘head’ section was actuated by cables 

and the majority of the body is composed of flexible hollow segments. Whilst 

the length of the actuated segments is short, by lengthening the unactuated 

flexible segments the authors essentially drastically improved the effective 

range of their snake arm in a simple manner.  

 

Figure 2.33 Prototype of the search and rescue apparatus [94]. 

Issues with unsupported links for long reach snake arms is the arm cannot 

hold the horizontal cantilever posture without being supported externally. At 

small diameters where space is a premium this issue is difficult to overcome 

without large forces for torque production, however, with larger diameters, 

there are options to compensate for the gravity effect. Using a special 

mechanical parallelogram structure, Perrot, Y., et al. was able to reduce the 

size of the actuators needed to operate the snake arm (Figure 2.34) with the 

inclusion of an equilibrium spring to counter the gravity effect on the elevation 

(pitch) actuators (Figure 2.35) [101]. 

 

Figure 2.34 PAC long reach robotic carrier [101]. 
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Figure 2.35 (left) Robot kinematic model. (right) Forces through the 

parallelogram [101].  

It is advantageous to use discrete robots as the motion can be predictable, 

however, they cannot produce high output speeds. On the other hand, 

continuum robots can achieve higher speeds but the predictability of the 

motion is sacrificed [102]. Attempting to combine the advantages of both Tran, 

L.D., et al. built a test rig for a cable driven snake arm with a flexible backbone. 

The backbone material was chosen to be elastic, inextensible and rigid in 

torsion with the cables made of steel. The author's conclusions indicate they 

are capable of achieving good position control and tracking ability with the 

flexible backbone such that it is comparable to a discrete universal joint [102]. 

Tran, L.D., et al. however makes no mention of the flexible backbone possibly 

buckling under the pull of the steel cables, it is common knowledge that struts 

will buckle under sufficient axial compression, therefore the low stiffness of 

the system could pose to be an issue. 

 

Figure 2.36 Features of robotic arm with one module [102]. 

An area where the short flexible backbone is shown to be suitable is found in 

tools for minimally invasive surgery. Although the buckling of the flexible 

backbone still occurs on the snake-like unit built by Simaan, the author 

prevents the failure by replacing the thin cables for the same material as the 

primary backbone [103]. This improved design allows the actuating cables to 
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be used in a push/pull manner as opposed to the larger snake arm designs 

where the actuating cables can only pull; essentially the actuating cables are 

now secondary backbones that reduce the load on the primary backbone. In 

the author's conclusion, Simaan states the multiple backbone method could 

be miniaturised, the author does not however mention about upscaling the 

method to possibly improve systems such as that created by Tran, L.D., et al 

[102]. 

The joints of a snake-like robot have been an important focus for literature, 

the greater torque a joint can produce, the greater the ability to cantilever-lift 

(lift when extended horizontally) [104]. The snake arm built by Wolf, A., et al. 

has the capability to cantilever-lift six joints, this is achieved not through cables 

but by designing a 1DOF joint with a motor and ball screw assembly. By 

limiting the joints of their design to 1DOF, the single segment has a less 

complex mechanism and more room to accommodate larger motors. Overall 

the authors introduce the concept to be capable of inspecting unreachable 

areas by searching through small cracks and pipes alike. No specifications to 

the snake arms size nor length were provided. 

 

Figure 2.37 USAR elephant-trunk-like robot (ETR) [104]. 

2.2 Discussion and conclusion 

A selection of literature regarding methods of locomotion was reviewed for 

deploying instruments for exploring a restricted access space. It can be 

beneficial for explorations to be conducted through a small borehole that can 

be quickly bored and the damage is minimal. The implications of this on the 

design of a purpose-built robot are it would need to be able to fit through that 

very same small diameter borehole. Once a robot is deployed beyond the 
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restricted opening and into a larger expanse beyond, the robot would then 

require the capacity to travel around unaided through unpredictable and 

possibly uneven rough terrain.  

On the process of selecting the appropriate robot design, Li, B., et al. [105] 

mentions how the selection demands trade-offs related to: 

 System size to access through the smallest possible voids and 

openings. 

 The system’s ability to climb over large obstacles which are directly 

related to size for land locomotion. 

 The ability to adapt to the uneven terrain and the need to probe to 

varying depths. 

Therefore, a robot that can access entrances of the smallest possible diameter 

is not expected to overcome large obstacles (with respect to the robot) unless 

a novel solution exists to overcome those barriers. 

Snake robots are in a unique position where their design inherently requires 

the design of the robot to have a slender profile i.e. large length to diameter 

ratio. This makes these snake robots suited for deployment through a bored 

hole of equal or larger diameter than the snake robot. The disadvantage of 

using snake robots has been their large chassis required to house the many 

actuators within the body of the snake robot and for snake arms even though 

all the motors can be relocated to a base platform, the reach of the snake-arm 

is limited to the design so exploration beyond its length would not be possible. 

An advantage of using a snake arm is the ability to support its own weight and 

not require contact with any internal surfaces nor structures for any length of 

time.   

The design for a self-reconfigurable robot is similar to a snake robot with 

greater capabilities, one that requires an additional layer of complexity over 

an already complex design. Simplification of a reconfigurable robot would be 

beneficial to reduce chances of failure. Reconfigurable robots can be 

restructured to adapt to the terrain encountered, however its legged 

configuration is still capable of crossing flat areas and slopes at the cost of 

efficiency. The strength of a reconfigurable robot in our case was found in its 

ability to alter its cross section area before and after deployment. 
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Self-folding systems are still in the early development stage, however, their 

flexible construction and ability to function without traditional motors 

demonstrates potential for a new class of novel robotics. A printed inchworm 

robot is capable of self-assembly and motion using external servo-motors by 

Felton, S.M., et al. [55], whilst actuated joints using SMA are already functional 

though limited by Paik, J.K. and R.J. Wood introduce the bi-directional SMA 

folding actuator [60]. A fusion of bi-directional SMA folds forming an inchworm 

mechanism will produce a lightweight and compact system capable of self-

reconfiguration and locomotion. This fusion of technologies can assist towards 

creating miniature mobile borehole exploration robots. 
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Chapter 3  
System Specifications 

This chapter develops the specifications for the two robotic tools covered in 

this research that will be deployed into two different environmental scenarios.   

3.1 Introduction 

The literature review in Chapter 2 explored the use of several locomotion 

techniques for ground robots. To apply the techniques into this research and 

fulfil the research aims, the specifications for two borehole inspection robotic 

tools for two different environmental scenarios are expanded upon and 

developed.  

Before deploying robotic tools into the subterranean spaces, the composition 

of the two environments was investigated further. Factors such as the 

boreholes diameter and depth, and the size of the chamber after, are 

important factors for deciding on the type of robot to be deployed.  

3.2 Environment 1 

Environment 1 has the attributes of an underground tomb with great historical 

significance. Access into the subterranean chamber must be conducted 

through the smallest and least damaging hole possible and capable of visually 

observing the chamber. Table 3.1 details the environmental specifications that 

affects the robot chosen for this task.  

Table 3.1 Environmental specifications. 

Borehole 

diameter 

The suggested diameter for the borehole is 14mm, 

based on available drill sizes.  

Borehole depth From the surface to the subterranean space is a 

distance of approximately 200mm.  

Chamber size The subterranean space assumed to be 2m width x 2m 

long x 1-4m deep.  

Provided with the information in Table 3.1, the environment describes a 

scenario where a robotic tool must be deployed through a small borehole of 
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14mm diameter and 200mm in length. Thereafter, the robot enters a chamber 

of volume between 4m3 to 16m3. The additional information suggesting the 

chamber is of historical importance further suggests preservation of the site 

has priority and ideally, the explored chamber will be kept unmarked and 

undamaged. This results in the robots locomotive options being restrictive.  

3.3 Environment 2 

Environment 2 has the attributes of a disused mineshaft. Accessing the 

mineshaft is possible through a small diameter borehole using the Shaw 

portable drill. In comparison to Environment 1 (Section 3.2), entry into the 

mineshaft requires travelling through a borehole of longer length into a 

subterranean space of much greater proportions. Table 3.2 details the 

environmental specifications that affects the robot chosen to explore this 

space.  

Table 3.2 Environmental specifications. 

Borehole 

diameter 

Based on the Shaw portable drill [14], the diameter of 

the borehole is 41mm. 

Borehole Depth The Shaw portable drill can achieve borehole depths of 

up to 23m in some circumstances. In this case, the 

robot will be deployed vertically downwards in a 

borehole of length 30ft (9.144m).  

Chamber size After penetrating the borehole and entering the 

confined subterranean space. The geometry of the 

mineshaft is assumed 2.5m wide x 2.5 m high with a 

length of up to 200m on a slight 2° incline. 

Provided with the information in Table 3.2, the environment describes a 

scenario where a robotic tool must be deployed through a larger borehole of 

41mm diameter and approximately 9m in length. Thereafter, the robot enters 

a chamber of 1250m3 in volume. Without the requirement for historical 

preservation of the mineshaft beyond not compromising the structural integrity 

of the mineshaft, more locomotive options are available for the design of the 
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robotic system. As the mineshaft was at some point active, it is expected the 

terrain to be rough and uneven.  

3.4 Locomotion method selection 

Subject to the two environments of different specifications to be inspected by 

two robotic systems. It was necessary to select a suitable locomotion system 

inspired by those examined in the literature review in Chapter 2. The decision 

was aided using a decision matrix (Table 3.4) and the criteria shown in Table 

3.3. Scoring was completed by scoring each locomotion method against each 

criteria with a score between 1 and 5, with a score of 1 being low and a 5 

being high.  

Table 3.3 Decision matrix criteria for locomotion designs. 

Criteria Score 

1 - low 3 - medium 5 - high 

Size of 

chamber 

entrance 

The locomotion 

method 

requires a large 

chamber 

entrance. 

The locomotion 

method requires a 

medium chamber 

entrance. 

The locomotion 

method requires a 

small chamber 

entrance. 

Deployed size 

of robot 

The deployed 

robot is large 

and difficult to 

control in an 

enclosed 

space.  

The deployed 

robot is of 

medium size and 

can cause 

controlling issues 

in an enclosed 

space. 

The deployed 

robot is small and 

will be simple to 

control in an 

enclosed space. 

Robust design The design is 

not robust and 

is difficult to 

disassemble 

and repair.  

The design is 

quite robust and 

can be repaired 

with replacement 

parts but is 

difficult to 

disassemble.  

The design is 

robust and is 

easily repaired and 

disassembled.  
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Feasibility 

through a 

14mm bore 

The locomotion 

method cannot 

be scaled down 

for the 14mm 

diameter 

borehole. 

It is possible with 

minor 

modifications for 

the locomotion 

method to be 

deployed through 

the 14mm 

borehole.   

The locomotion 

method can easily 

be deployed 

through 14mm 

borehole 

entrances.  

Feasibility 

through a 

41mm bore 

The locomotion 

method cannot 

be scaled down 

for the 41mm 

diameter 

boreholes. 

It is possible with 

minor 

modifications for 

the locomotion 

method to be 

deployed through 

the 41mm 

borehole.   

The locomotion 

method can easily 

be deployed 

through 41mm 

borehole 

entrances.  

Range If tethered, the 

locomotion 

system is not 

expected to 

travel great 

distances.   

If tethered, the 

locomotion 

system is 

expected to 

produce travel 

distances 

adequate for a 

brief exploration. 

If tethered, the 

locomotion system 

is suitable for long 

distance 

explorations.  

Survivability 

from impacts  

The 

mechanism 

driving the 

locomotion is 

complex and 

prone to 

complications. 

The mechanism 

driving the 

locomotion is 

complicated but 

reliable. 

The mechanism 

driving the 

locomotion is 

simple and very 

reliable. 

Ability to climb 

over obstacles 

The robot 

cannot climb 

over obstacles. 

The robot will not 

be impeded by 

minor obstacles 

The robot displays 

the ability to climb 

over obstacles.   
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but will find larger 

steps difficult. 

Ability to 

navigate 

through voids 

Once deployed 

the robot will be 

too large to 

pass through 

further voids 

due to a large 

cross section.  

Once deployed 

the robot will be 

able to pass 

through voids due 

to a smaller cross 

section.  

Once deployed the 

robot will retain a 

small cross section 

or has the ability to 

reconfigure its 

cross sectional 

area to navigate 

through voids.  

Ability to climb 

slopes 

The robot 

locomotion 

does not 

produce 

enough driving 

force to climb 

inclines.  

The robot 

locomotion does 

produce enough 

driving force to 

climb inclines, but 

at a reduced 

range.  

The robot 

locomotion is 

unhindered by 

slopes.  

Ability to 

navigate 

unpredictable 

rough terrain 

The robot is 

incapable of 

handling terrain 

composed of 

multiple 

obstacles such 

as steps, ramps 

and gaps.  

The robot is 

impeded when 

handling terrain 

composed of 

multiple obstacles 

such as steps, 

ramps and gaps. 

The robot is 

capable of 

handling terrain 

composed of 

multiple obstacles 

such as steps, 

ramps and gaps. 

From Table 3.4, wheeled and tracked robots underperform due to their large 

size and limited ability to navigate obstacles. However, snake arms, wheel-

leg robots and reconfigurable robots rank amongst the highest. 

Reconfigurable robots and wheel-leg robots rank similar in their abilities and 

size, however, the reconfigurable robots naturally benefits in tackling voids 

and obstacles.  

Wheel-leg robots have demonstrated the ability to climb over rough terrain, 

hence the larger feasibility scores. Although, merging both to create a wheel-
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leg robot that can be reconfigured will draw upon the strength of both is 

possible. Furthermore, this merger will result in the reconfigurable robot losing 

its modular design in place of a simplified design as wheel-legs have been 

shown to be capable on both flat and rough terrain, so the capabilities and 

feasibility of the robot can only improve in that regard. 

Snake arms have demonstrated ability to function through small diameter 

entrances in minimally invasive surgery [75] or for USAR operations [94]. 

Therefore snake arms scored highly for its size and feasibility. A snake arm 

can be designed to continuously operate in a horizontal cantilever position the 

snake arm, hence its ability to navigate obstacles and voids is a strength for 

the snake arm as is its capability to function over rough terrain. In fact the 

snake arms only low scoring criteria was the short reach normally assosiated 

with small diameters. A small diameter snake arm with long length would be 

a useful tool for exploration with minimal damage.  
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Table 3.4 Decision matrix for locomotion designs. 
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3.5 Refining the specifications  

Integrating the results of the decision matrix (Table 3.4) and the environmental 

specifications (Section 3.2 and 3.3) produces the most suited locomotion 

solution for each environmental layout.  

3.5.1 Snake arm specifications 

Environment 1 revealed a situation where the inspection of an underground 

tomb was required. The borehole entrance had to be small at 14mm diameter 

and the length of the borehole was short at approximately 200mm, the 

borehole then expanded into a small chamber 2m width x 2m long x 1-4m 

deep.  

Comparing the results of the snake arm to environment 1, the snake arm 

scores high with feasibility through the small diameter boreholes and ability to 

overcome the terrain within the chamber. The main disadvantage of the snake 

arm was the range, however, as the chamber is relatively small the drawback 

from this issue is minimised. The ability to hold the horizontal cantilever 

position without external supports will additionally encourage the use of the 

snake arm as the tomb does hold historical significance. This results in a 

system that can explore the internal volume without the need to make contact 

with any chamber surfaces.  

A snake arm designed to explore environment 1 must therefore: 

 Be 12mm in diameter for portable borehole deployment (1mm 

clearance each side through borehole). 

 Be designed for maximum reach to perform a visual exploration. 

 Be capable of self-supporting in the horizontal cantilever position to 

minimise risk of internal damage to the chamber.  

3.5.2 Reconfigurable specifications 

Environment 2 revealed a situation where the inspection of a sealed mineshaft 

was required. The diameter of the borehole entrance was taken from the size 

of the Shaw tool at 41mm and the length of the borehole is expected to be 

approximately 9m long. The mineshaft is assumed 2.5m wide x 2.5m high with 

a length of up to 200m on a slight 2° incline. 
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Although the snake arm scored highly in the decision matrix, the dimensions 

of the mineshaft and the short range of a snake arm meant it was not feasible 

to deploy a snake arm for this case. The use of a wheel leg robot would grant 

it the capability to explore the mineshaft at a much greater distance than the 

snake arm. However, complications would arise in deploying such robotic 

systems through a small 41mm diameter entrance without some method of 

reconfiguring the shape of the robot from an unstable slender profile to a more 

stable wide gait.  

A reconfigurable robot utilising wheel leg techniques for locomotion is ideal for 

exploring environment 2. The Houdini [50] and Hitachi robot [52] demonstrates 

the ability for a robot to conform to two configurations, one whilst deploying 

and another during the exploration. Therefore, implementing wheel leg profiles 

onto the tracks of the reconfigurable robot will increase the capability of the 

robot to overcome obstacles and terrain.  

A method of controlled decent and retrieval is also vital for any remote 

exploration. This is possible with a tether for a physical connection between 

the surface and the robot. The tether can also be used to supply electrical 

power and communications between a user and the robot and this system is 

also found for the Houdini [50] and Hitachi robot [52].  

Combining the information for environment 2 and the decision to use a 

reconfigurable robot with wheel leg profiles for locomotion, the following 

specifications are formed.  

 The diameter of the robot must be less than 41mm.  

 The robot is expected to travel 200m on a slight 2° incline. 

 The robot must be tethered to transmit power and assist in extraction 

of the device 

 Illumination from a small light, such as a single Cree XLamp module to 

provide sufficient illumination [106]. 

 Tapered at rear for withdrawal. 

 The robot weight needs to be sufficiently high to generate traction 

forces sufficient to pull the cable. 



- 55 - 
 

3.6 Discussion and conclusion 

Environmental information is essential when planning any inspections. 

Information on the access routes, size, obstacles on the ground (debris, voids, 

steps, inclines etc.) and any other dangers will aid in the selection of an 

appropriate robotic platform. In cases where a subterranean chamber remains 

unexplored, ground penetrating radar (GPR) is capable of detecting 

subsurface objects, changes in material properties, and map subsurface 

archaeological artefacts, features, and patterning [107]. A more detailed 

preliminary inspection can then be conducted using drop down borehole 

cameras to gather visual information on the immediate surrounding area. This 

will provide further information on the terrain and state of the subterranean 

space for selecting the next tool to be deployed for an in-depth exploration.  

In sections 3.2 and 3.3, two opposing environments is introduced, one 

environment is small and the other a magnitude larger. To select the 

appropriate tool to inspect each environment, a decision matrix was utilised 

using criteria scoring on performance over different terrain and feasibility 

through small diameter boreholes of different sizes. The results show snake 

arms robots scoring highest and wheel-leg and reconfigurable scoring equally 

below snake arms.  

Snake arms suffer from a limited range due to the base platform housing the 

motors and electronics actuating the cables within the arm being larger than 

the diameter of the arm. This benefits the snake arm as all forward movement 

is provided directly from the surface and if the snake arm is capable of 

maintaining a horizontal cantilever position then it would not be affected by 

terrain inside the chamber. Therefore, this makes it suitable for inspecting the 

smaller environment (environment 1). 

With a range of up to 200m for environment 2, the deployment of a snake arm 

is unsuitable for exploring this space. From literature, reconfigurable robots 

can be designed to assume many forms to aid with deployment and 

locomotion. These creations are complex and modular, increasing the risk of 

complications and failure. To deploy through a small diameter borehole of 9m 

in length, a reconfigurable robot must assume a long and slender posture, 
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then upon entering, a locomotive configuration can be used to overcome any 

terrain and obstacles.  

A wheel-leg platform is demonstrated to be capable of overcoming rough 

terrain and obstacles. These systems are also much simpler and more robust 

than modular reconfigurable robots. Although, four whegged robot cannot be 

easily deployed through small diameter boreholes. Fortunately, it is possible 

to combine the reconfigurable robot together with a whegged platform, forming 

a platform capable of forming a slender configuration though a borehole and 

reconfigure into an alternate configuration for exploration of the mineshaft.  

From the decisions formed from the environmental specifications and the 

decision matrix, the specifications for two robotics platforms are created. This 

demonstrates how different environments will require different robotic systems 

to perform the inspection and there is no single solution to every scenario.   
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Chapter 4  
Snake arm theory and analysis 

This chapter develops the method to calculate the cable tensions of a snake 

arm and analyses the buckling failure modes of each component comprising 

the snake arm. The experiments to verify the cable tensions are also 

performed with the inclusion of friction analysed for the experimental test rig.  

4.1 Introduction 

A snake arm is an self-supporting (can lift its weight against gravity) articulated 

series manipulator. It often contains large numbers of joints that enable 

positioning of a payload as well as the ability to define the path taken to the 

desired sensor deployment co-ordinates. A snake arm is anchored at a base 

point opposed to snake robots that are self-contained and not grounded.  

 

Figure 4.1 First prototype from OC Robotics [108]. 

A discrete backbone snake arm structure is formed from a series of long rigid 

links and joints while a continuous one formed is from multiple continuous 

curving short vertebrae interconnected with a flexible backbone (Figure 4.2). 
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Figure 4.2 (Top) rigid snake arm, (Bottom) continuous snake arm. 

Motors within each joint can actuate a snake arm, or as the arm is supported 

at a fixed point motors can drive cables attached to each joint and remotely 

operate them. For a self-supporting snake arm it is important to minimise the 

weight in each joint, therefore cables (tendons) offer the lightest solution. 

However, the internal space must accommodate tendons for each joint and 

additional cables for the end effector. The diameter of each tendon is 

determined by the tension required and the properties of the tendon material. 

There is a physical limit to the number of tendons that will fit in a given 

diameter of snake arm and this, in turn, places a physical limit on the number 

of joints achievable.  

Cables can only exert tension but not compression i.e. forces applied are 

unidirectional. Morecki, A., et al. stated that a manipulator with n-DOF requires 

at least n+1 tendons to achieve complete control of all degrees of freedom 

[109]. 

Figure 4.3 illustrates how a 12mm diameter cross section is used for a thin 

cylindrical link, cables and a 2-DOF joint located at the centre. The specific 

values of this example are determined in Chapter 3. Using a cable of 1.5mm 

diameter with a cylindrical link of 1mm wall thickness allows the cables to be 

spaced radially at 7mm diameter. Leaving at least 1mm space between each 

cable allows space for only 10 cables. Allocating a single cable for a camera 

end effector, the nine remaining cables are divided by three (the minimum 

amount of cables required to fully constrain the joints) to reveal the capacity 

Rigid links 

Joints 

Continuous flexible link 

Cable restraining vertebrae 
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of a 12mm diameter snake arm to be only three joints with 2DOF each. The 

remaining space can then be allocated for the joints.  

 

Figure 4.3 Snake arm cross section of 12mm diameter. 

For a snake arm to increase its workspace, the length of the snake arm and 

the range of motion at each joint should be maximised. However, there is a 

physical limit to these properties that, if exceeded will cause the snake arm to 

fail. The remainder of this chapter considers how these properties can be 

maximised.  

4.2 Kinematics and statics 

It is important to calculate the forces required at each joint and the forces 

acting on the structure. To find this information the torque required at each 

joint is needed. Kinematics of a three jointed snake arm can be characterised 

using Denavit-Hartenberg parameters as shown in Table 4.1.  

Link length J denotes the offset distance between the two axes of rotation in 

a 2DOF universal joint. In most cases, the axes are collinear resulting in the 

value of zero. In Chapter 4, it is shown that by offsetting the axes a smaller 

diameter joint is possible with larger diameter pins and is represented in 

Figure 5.3. This effectively splits each universal joint into two individual joints. 

For purposes of simplification and continuation, each combination of adjacent 

pitch and yaw joints will be regarded as a single joint.  
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Figure 4.4 Denavit-Hartenberg notation for snake arm. 

Table 4.1 Denavit-Hartenberg notation for each snake arm link. 

Link α A θ D 

1 0 B 0 0 

2 0 J θ1 0 

3 -π/2 L θ2 0 

4 π/2 J θ3 0 

5 - π/2 L θ4 0 

6 π/2 J θ5 0 

7 - π/2 Le θ6 0 

Using these parameters, the position at each joint and the end effector can be 

computed as the product of the transformation matrices. The solution to the 

forward kinematic problem is given by: 
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0T18 = 0T1 1T2 2T3 3T4 4T5 5T6 6T7 7T8 8T9 9T10 10T11 11T12 12T13 13T14 14T15 15T16 16T17 

17T18 

4.1 

𝑇18
 

 
0 = 𝑡𝑟𝑎𝑛(𝐵, 0,0) ∙ 𝑟𝑜𝑡(Z,θ1) ∙ 𝑡𝑟𝑎𝑛(𝐽, 0,0) ∙ 𝑟𝑜𝑡 (X,-

π

2
) ∙ 𝑟𝑜𝑡(Z,θ2)

∙ 𝑡𝑟𝑎𝑛(𝐿, 0,0) ∙ 𝑟𝑜𝑡 (X,
π

2
) ∙ 𝑟𝑜𝑡(Z,θ3) ∙ 𝑡𝑟𝑎𝑛(𝐽, 0,0)

∙ 𝑟𝑜𝑡 (X,-
π

2
) ∙ 𝑟𝑜𝑡(Z,θ4) ∙ 𝑡𝑟𝑎𝑛(𝐿, 0,0) ∙ 𝑟𝑜𝑡 (X,

π

2
)

∙ 𝑟𝑜𝑡(Z,θ5) ∙ 𝑡𝑟𝑎𝑛(𝐽, 0,0) ∙ 𝑟𝑜𝑡 (X,-
π

2
) ∙ 𝑟𝑜𝑡(Z,θ6)

∙ 𝑡𝑟𝑎𝑛(𝐿𝑒, 0,0) ∙ 𝑟𝑜𝑡 (X,
π

2
) 

4.2 

Where the operators are given by: 

𝑡𝑟𝑎𝑛(𝑥, 𝑦, 𝑧) = [

1 0 0 𝑥
0 1 0 𝑦
0 0 1 𝑧
0 0 0 0

] 
4.3 

𝑟𝑜𝑡(𝑥, 𝜃) = [

1 0 0 0
0 cos 𝜃 − sin 𝜃 0
0 sin 𝜃 cos 𝜃 0
0 0 0 1

] 
4.4 

The unknown variables of link lengths B, L and J are required to calculate the 

position and orientation of the end effector at any joint angle. Calculating the 

torques required at each joint to maintain the joint angles will assist in solving 

for the unknown link length, which would maximise the workspace, and length. 

This is possible using the recursive Newton-Euler (RNE) formulations to 

calculate joint torques for rigid link arms. The formulations are derived directly 

from Newton’s Second Law of Motion, which describes dynamic systems in 

terms of force and momentum. Incorporating all the forces and moments 

acting on individual links including the coupling forces and moments between 

links, the resulting equations provides a closed-form expression in terms of 

joint torques and joint displacements [110].  

This is achieved in two steps, the outward recursion and the inwards 

recursion.  

Outward recursion 

For link i=1:n 
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1) Angular velocity of link: 𝜔𝑖 = 𝜔𝑖−1 + 𝜃̇𝑖 

2) Angular acceleration of link: 𝜔̇𝑖 = 𝜔̇𝑖−1 + 𝜃̈𝑖 

3) Linear acceleration of link at frame origin: 𝑣̇𝑖−1
 = 𝑅𝑖−1

 
 
𝑖

 
𝑖 𝑣̇𝑖−1

 
 

𝑖−1  

        𝑣̇𝑖
 = 𝑣̇𝑖−1

 
 
𝑖

 
𝑖 𝐿𝑖 [

−𝜔𝑖
2

𝜔̇𝑖
] 

4) Linear acceleration of link at centroid:  𝑎𝑖
 = 𝑣̇𝑖−1

 + 𝑐𝑖 [
−𝜔𝑖

2

𝜔̇𝑖
] 

𝑖
 
𝑖  

5) Resultant force acting on link at centroid: 𝐹𝑖
 = 𝑚𝑖 𝑎𝑖

 
 
𝑖

 
𝑖  

6) Resultant moment acting on link around centroid: 𝑁𝑖 = 𝐼𝑖𝜔𝑖 

Inward Recursion 

For link i=n:1 

1) Force exerted on link i by link i-1: 𝑓𝑖+1
 = 𝑅𝑖+1

 𝑓𝑖+1
 

 
𝑖+1

 
𝑖

 
𝑖  

      𝑓𝑖
 = 𝐹𝑖

 + 𝑓𝑖+1
 

 
𝑖

 
𝑖

 
𝑖  

2) Torque exerted on link i by link i-1:  

𝜏𝑖 = 𝑁𝑖 + 𝜏𝑖+1 + 𝑓𝑖,𝑦𝐶𝑖

 + 𝑓𝑖+1,𝑦
 (𝐿𝑖 − 𝐶𝑖) 

𝑖
 
𝑖  

Assuming we have a simplified snake arm with the specifications listed in 

Table 4.2, by applying the above RNE formulations, a torque required for each 

joint displacement is calculated.  

Table 4.2 Specifications of the simplified snake arm. 

Number of links 4 

Number of joints 3 

Length of each link 1 m 

Mass of each link 1 kg 

Joint angle limit -90° to 90° 

Using Matlab software to perform the RNE formulations the torque at each of 

the three joints of the simplified snake arm (as shown in Figure 4.4) is 

iteratively computed in one-degree increments. Assuming the arm is static (no 

inertia), a torque required to hold the snake arm at each step is recorded and 
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plotted to illustrate the joint angle at which a peak torque occurs. Figures 4.6 

and 4.7 show that the peak torque occurs at a joint angle of 0°, otherwise 

known as the horizontal cantilever position. This is where the focus of the 

snake arm will be aimed as the relationship between torques required and 

cable tensions will contribute to the axial compressive forces acting through 

the snake arm structure.  

Iteration number: 0 

Joint angles: Z1 = Z3 = Z5 = -90° 

Iteration number: 90 

Joint angles: Z1 = Z3 = Z5 = 0° 

Iteration number: 180 

Joint angles: Z1 = Z3 = Z5 = 90° 

 

Figure 4.5 (Top left) Snake arm at start position, (Top right) Snake arm at 

middle position, (Bottom left) Snake arm at end position, (Bottom right) 

Path of the snake arm end effector. 
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Figure 4.6 Change in pitch torque per joint as joint angle is incremented.  
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Figure 4.7 Change in yaw torque per joint as joint angle is incremented.  
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4.3 Link buckling  

The composition of the tubing that makes up the links for the snake arm is a 

long, thin-walled cylinder. For the control of a discrete snake arm, it is 

important that the link remains rigid as axial loading induced bending affects 

the RNE torque formulations. Links under axial compression can deflect and 

deform through two types of buckling modes, flexural and local buckling. Both 

are independent and each must be investigated to avoid buckling failure.  

4.3.1 Flexural buckling 

Flexural buckling occurs when a load causes an extreme fibre of the cylinder 

to reach a prescribed stress. The Engineering Sciences Data Unit (ESDU) 

who is an engineering advisory organisation based in the United Kingdom 

contains many datasheets which is assessed and peer-reviewed and some 

containing information on the buckling of thin-walled cylinders. The formula to 

find the stress at which flexural buckling occurs is stated as [111]: 

𝑓𝑏
𝑓𝐸

=
1

2
(
𝑓𝑃
𝑓𝐸

+ (1 + 𝜂)) − [
1

4
(
𝑓𝑃
𝑓𝐸

+ (1 + 𝜂))

2

−
𝑓𝑃
𝑓𝐸

]

1
2

 

4.5 

𝑓𝐸 = 𝜋2𝐸 (
𝑘

𝑙′
)

2

 4.6 

𝜂 = 0.003(
𝑙′

𝑘
) 4.7 

𝑘 =
(𝐷2 + 𝑑2)

1
2

4
 

4.8 

Where: 

𝑓𝑏 = Elastic buckling stress [ N/m2 ] 

𝑓𝐸 = Euler buckling stress [ N/m2 ] 

𝑓𝑃 = 0.2% proof stress or yield stress of material [ N/m2 ] 

𝜂 = Empirically determined factor accounting for imperfections 

𝑘 = Radius of gyration of section [ m ] 

𝐸 = Modulus of elasticity of material [ N/m2 ] 

𝑙′ = Equivalent length of strut, 2 × 𝑙 [ m ] 

𝐷 = Outer diameter of cylinder [ m ] 
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𝑑 = Inner diameter of cylinder [ m ] 

Torsional buckling can be characterised using the equations 

𝑓𝑇 =
𝐺𝐽

𝐼𝑝
+

𝜋2𝐸Γ

2𝐼𝑝𝑙′
 4.9 

𝐽 = 2𝐼 =
𝜋

2
[𝐷4 − (𝐷 − 2𝑡)4] 4.10 

Where: 

𝐺 = Shear modulus of material [ N/m2 ] 

𝐽 = Torsion constant of section [ m4 ] 

𝐼𝑝 = Polar second moment of area about shear centre [ m4 ] 

𝐸 = Modulus of elasticity of material [ N/m2 ] 

𝑙′ = Equivalent length of strut, fixed ends 2 × 𝑙 [ m ] 

Γ = Warping constant of section  

𝐷 = Outer diameter of cylinder [ m ] 

𝑡 = Wall thickness of cylinder [ m ] 

4.3.2 Local buckling 

When a cylindrical shell is subjected to an axial compression, local buckling 

in the small deflection range can occur in two possible modes. The first mode 

is in the form of waves or bellows and is known as symmetrical, ring, or 

bellows buckling mode (Figure 4.8). The other mode is in the form of waves 

in both the longitudinal and transverse direction which post-buckling snaps 

into another state of equilibrium known as the depressed diamond shape [111, 

112]. 

 

Figure 4.8 Buckling modes of circular sections [111]. 

Local buckling occurs in two modes, diamond and bellows, the critical stress 

for when initial buckling occurs for an ideal cylinder is given as: 
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𝑓𝑏𝑡 =
𝑄𝐸

[3(1 − 𝜈)2]
1
2

(
𝑡

𝑅
) 4.11 

Where: 

𝑄 = Empirically found constants for tube end states 

𝐸 = Modulus of elasticity of material [ N/m2 ] 

𝜈 = Poisson’s ratio 

𝑡 = Wall thickness of cylinder [ m ] 

𝑅 = Outer radius of cylinder, 𝐷/2 [ m ] 

4.4 Cable tensions 

Table 4.1 shows the parameters used to specify the kinematics of the snake 

arm assuming the links do not bend or twist. The position of the end effector 

with respect to the base frame is computed with forward kinematics from the 

transformation matrices produced. Combined with the Recursive Newton-

Euler (RNE) method, the torque at each joint is computed and is carried over 

to calculate the cable tensions.  

The RNE joint torques reach a maximum when the snake arm is at a horizontal 

cantilever position without additional external forces other than gravity acting 

upon it; therefore at this point, it is assumed the closely associated tendon 

tensions are also at its maximum. This horizontal state should then be where 

the failure of the snake-arm is most likely to occur and is where this analysis 

is focused on.  

Calculating the cable tensions from the joint torques can be performed if the 

cables are assumed to have constant length and tension with negligible 

friction and all joint angles are known. Simplifying the snake arm into a single 

joint system of length L, weight W, payload weight P and perpendicular tendon 

distance of Dy as shown in Figure 4.9 the single tendon tension T must be 

equal to the moment about the joint, assuming no friction or other external 

forces. 
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Figure 4.9 Simplified snake arm with single joint and single tendon. 

 

Figure 4.10 Simplified snake arm with two joints and two tendons. 

As multiple tendons cannot occupy the same space for all joints, some 

tendons are displaced radially about the centre. This creates an undesirable 

lateral load and the introduction of additional tendons to counteract the loads. 

As snake arms generally include multiple joints, Figure 4.10 represents a 

snake arm with two joints and two tendons at different heights of Dy for a more 

accurate representation. The RNE method is used to calculate the joint 

torques R1 and R2 and the tendon tensions calculated for the ith joint is 

expressed as: 

𝑅𝑥𝑦𝑖 = ∑ 𝑇𝑗  𝐷𝑥𝑦𝑗

𝑁

𝑗=𝑖

 
4.12 

Where Rxyi is the torque generated at joint i for both yaw (Rx) and pitch (Ry) 

joint directions. Tj is the tension of each tendon that passes through or 

terminates at joint j. Dxyj is defined as the distance between tendon j and the 

neutral axis of joint i, it can also be a negative value dependent on the direction 

the tendon j transmits its force on joint i.  
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Applying the equation to the double-jointed snake arm as shown in Figure 

4.10 the equations relating torques to tensions can be produced and solved 

using matrices. 

[
0 𝐷𝑦2

𝐷𝑦1 𝐷𝑦2
] [

𝑇1

𝑇2
] = [

𝑅𝑦2

𝑅𝑦1
] 4.13 

Where the tensions T1 and T2 can be solved as: 

[
𝑇1

𝑇2
] =

[
 
 
 
 
𝑅𝑦1

𝐷𝑦1
−

𝑅𝑦2

𝐷𝑦1

𝑅𝑝2

𝐷𝑦2 ]
 
 
 
 

 

4.14 

For a three jointed snake arm with six DOF and nine control tendons, the 

calculations to determine tendon tensions cannot be readily solved as this 

creates a system of linear equations with infinite solutions.  

[
 
 
 
 
 
 

0 0 𝐷𝑥3

0 0 𝐷𝑦3

0 𝐷𝑥2 𝐷𝑥3

0 0 𝐷𝑥6

0 0 𝐷𝑦6

0 𝐷𝑥5 𝐷𝑥6

0 0 𝐷𝑥9

0 0 𝐷𝑦9

0 𝐷𝑥8 𝐷𝑥9

0 𝐷𝑦2 𝐷𝑦3

𝐷𝑥1 𝐷𝑥2 𝐷𝑥3

𝐷𝑦1 𝐷𝑦2 𝐷𝑦3

0 𝐷𝑦5 𝐷𝑦6

𝐷𝑥4 𝐷𝑥5 𝐷𝑥6

𝐷𝑦4 𝐷𝑦5 𝐷𝑦6

0 𝐷𝑦8 𝐷𝑦9

𝐷𝑥7 𝐷𝑥8 𝐷𝑥9

𝐷𝑦7 𝐷𝑦8 𝐷𝑦9]
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
𝑇1

𝑇2

𝑇3

𝑇4

𝑇5

𝑇6

𝑇7

𝑇8

𝑇9]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝑅𝑦3

𝑅𝑥3

𝑅𝑦2

𝑅𝑥2

𝑅𝑦1

𝑅𝑥1]
 
 
 
 
 
 

 

4.15 

To assist in finding a solution to the above, the tendons with a negative Dy 

would not contribute any torque to overcoming the gravity acting on the snake 

arm and can be allocated pre-tension values depending on the snake arm 

design. This action results in a solvable matrix and the necessary equations 

for a theoretical tendon tensions.  

 

4.16 

The tensions T5, T6 and T7 are the pre-tension values assigned, and a value 

of zero represents the tendon left slack.  
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4.5 Tension experiments 

Designed for easy and fast modification, the test rig illustrated in Figure 4.11 

uses one DOF joints with capacity for fifteen Dyneema tendons to be mounted 

at three different diameters for a variable value of Dy and Dx. Given three 

tendons to constrain each joint, the test rig is able to accommodate up to five 

joints for experimentation. The links are composed of 6mm aluminium or 

carbon fibre dowel attached to a rapid prototyped vertebra. The end vertebra 

contains a hook where additional payload weights can be attached. The test 

rig was assembled to examine the ability to accurately predict the tension of 

the tendons in multiple configurations.  

 

Figure 4.11 Double jointed variant of snake arm test rig. 

The experimental method consisted of holding the arm at a horizontal 

cantilever position and attaching weights to each tendon in increments of 1kg, 

0.5kg or 0.1kg. As the load on the tendon is assumed to equal the tension in 

the tendon, when the arm is released and maintains its position afterwards 

with no change to the joint angles, the weight is recorded and repeated for 

accuracy. If inadequate tension were supplied to the tendons, the arms would 

collapse and if too much tension were supplied, the arm would rise beyond 

the horizontal starting position. The recorded tensions are then taken and 

plotted against the theoretical tension values for further analysis. To alter the 

torque required at each joint to maintain its position, the payload is also 

incrementally increased and the experimental method repeated. 

4.5.1 Joint variations 

Equation (1) is used to calculate the tension of a single tendon with three 

different heights of Dy and five selections of payload weight. The experiment 

to test the equation uses a single joint configuration of the rig shown in Figure 

4.11 with a length of 934mm and carbon fibre links. 
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The experimental results on Figure 4.13 display a strong correlation between 

the theoretical and experimental values; this implies (1) is suitable predicting 

the tendon tensions for simple single joint snake arms in the horizontal 

cantilever position.  

 

Figure 4.12 Single jointed variant of snake arm test rig. 

 

Figure 4.13 Comparison of the theoretical and experimental tendon tensions 

for a single joint snake arm controlled by a single tendon. The dotted 

lines represent the theoretical values for tendon tension for each value 

of Dy and the points represent the experimental data. 

The interaction between two tendons and the distribution of tension between 

two joints was tested using the configuration shown in Figure 4.11. In this 

experiment, the link lengths and values of Dy for both tendons remained 

constant and only the payload was incremented. Four tests were completed 

for each payload weight and the full experimental results can be found in 

Appendix B.3. The results shown in Figure 4.14 and Figure 4.15 show a similar 

form between the theoretical equation (3) and the experimental results of T1 
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and T2. Although the zero-shift in the results reveals a difference between the 

theoretical equations and the experimental results as a result of external 

influences not present in the theoretical calculations.  

 

Figure 4.14 Comparison between a sample of theoretical and experimental 

tendon tensions for a double-jointed snake arm with two tendons. This 

graph compares the values for T1, the tendon constraining the first joint 

as shown in Figure 4.10. 
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Figure 4.15 Comparison between a sample of theoretical and experimental 

tendon tensions for a double-jointed snake arm with two tendons. This 

graph compares the values for T2, the tendon constraining the second 

joint as shown in Figure 4.10. 

4.5.2 Friction  

Further investigation revealed this was the result of friction in the test rig 

between the tendon, vertebra and pulleys and the theoretical calculations that 

were assumed to have negligible friction in the system. To compensate for the 

error, the relationship between the load acting on the tendons and friction for 

the test rig was developed and implemented with the experimental values 

adjusted for the additional friction forces dependent on the load on the 

tendons.  

The test rig was modified as illustrated in Figure 4.16 where force F is opposed 

with friction forces acting on the cable where it is in contact with the pulley and 

joint vertebrae. Rather than have the cables terminate at the usual joint, the 

cable was extended and attached to a linear stiffness spring, which is then 

anchored to an immovable platform.  
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Figure 4.16 Friction test rig with illustrated forces and length. 

Calculating the friction force per cable was done by careful measurement of 

the spring’s length and known force acting on each cable. If there would be 

zero friction acting throughout the cable, it would be possible to find the 

calculated spring stiffness from Equation 4.17 to be equal to the actual spring 

stiffness, which is also found experimentally. 

𝐹 = 𝑘𝑥 
4.17 

Where, 

𝐹 = Normal force acting on spring 

𝑘 = Spring stiffness 

𝑥 = spring length 

With the introduction of friction into the system, a change will be found in the 

recalculated spring stiffness and the difference between the actual spring 

stiffness and new spring stiffness will allow the friction force to be calculated. 
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Figure 4.17 Experimental results from friction test. 

The results on Figure 4.17 show the length the of spring (𝑥) in response to the 

load acting on the cable (𝐹) and displays a clear difference on the levels of 

friction acting on each cable. For cable 2, the larger gradient correctly 

indicates the presence of larger friction forces as expected due to the increase 

in surface contact with respect to cable 1.  

Modifying equation to include friction provides the following equation: 

𝐹 − 𝐹𝑟 = 𝑘𝑥 
4.18 

Where, 

𝐹 = Normal force acting on spring 

𝐹𝑟 = Friction 

𝑘 = Spring stiffness 

𝑥 = spring length 

Rearranging for friction, 

𝐹𝑟 = 𝐹 − 𝑘𝑥 
4.19 
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As the actual spring stiffness was experimentally determined to be 560.82 N/m 

from the gradient from Figure 4.17, equation 4.19 can then be applied to find 

the relationship between the force applied and the friction.  

 

Figure 4.18 Force applied against friction for cable 1. 

 

Figure 4.19 Force applied against friction for cable 2. 

An equation is derived from Figure 4.18 and Figure 4.19 representing the 

relationship between the tension acting through the cable and the friction 

encountered. It can be seen the friction acting on each cable is non-linear and 

will eventually plateau. Since the friction test is a measure of static friction on 

the cables these results are expected as once the static friction forces peak 

the cables will be under kinetic friction and must be moving. 
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Cable 1: 𝐹𝑟 = −0.0056𝐹2 + 0.3294𝐹 + 0.3382 
4.20 

Cable 2: 𝐹𝑟 = −0.0031𝐹2 + 0.2419𝐹 + 0.086 
4.21 

For each case in the original experiment the tension (𝐹) is already known, 

substituting each value into equations and the unique friction force is 

calculated. Therefore, we can correct each experimental value by 

compensating for friction for a clearer comparison to the theoretical values by 

using: 

𝐹𝑛𝑒𝑤 = 𝐹𝑒𝑥𝑝 + 𝐹𝑟 4.22 

 

Figure 4.20 Comparison between a sample of theoretical and corrected 

experimental tendon tensions for a double-jointed snake arm with two 

tendons. This graph compares the values for T1, the tendon constraining 

the first joint as shown in Figure 4.9. 
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Figure 4.21 Comparison between a sample of theoretical and corrected 

experimental tendon tensions for a double-jointed snake arm with two 

tendons. This graph compares the values for T2, the tendon constraining 

the first joint as shown in Figure 4.9. 

Accounting for friction for the experimental results as illustrated in Figure 4.20 

and Figure 4.21, the differences between the theoretical and experimental 

results have been reduced. The amount the experimental values can be 

adjusted for static friction is dependent on the experimentally calculated value 

of spring stiffness (𝑘), if the stiffness value was recorded larger the resulting 

static friction will be assumed larger due to Equation 4.18 and therefore further 

affecting the unique friction force acting on each cable as the payload 

changes.  

The remaining discrepancy between the theoretical and experimental results 

is assumed the result of the imperfect joint angles during the experiments as 

the snake arm is manually held in the horizontal cantilever position. Slight 

deviations to the joint angle affects the horizontal distance and torque 
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requirements. Likewise, the friction tests also assumes the snake arm is held 

at the exact same joint angles throughout original experiment, however any 

small deviations in the joint angle will affect the friction force between the cable 

and test rig.  

4.6 Discussion and conclusion 

Predicting the magnitude of the forces acting through a snake arm is important 

for preventing the failure of structural components. The arrangement of links 

and joints forming the snake arm can be tabulated using the Denavit-

Hartenberg notation. The DH parameters can then be used with the RNE 

formulations to calculate the torque requirements at each joint axis. Torque at 

each joint is produced using actuation cables running from each joint to a base 

platform located at the root of the arm where the length of each cable can be 

controlled, pulled taught and relaxed.  

Assuming gravity is the only external force acting on the snake arm, holding 

an unsupported arm in the horizontal cantilever position generates the largest 

torque requirements. Accordingly, in this position, the actuation cable tensions 

and the resulting axial compressive forces is also at its peak.  

Knowing the torque requirements and the layout and position of each 

actuation cable enables the tension of each cable to be generated. To 

safeguard the snake arm links against the cable tensions and axial 

compressive forces, the behaviour of the thin walled cylinders under axial 

compression was studied and incorporated using ESDU resources.  

Therefore, the prevention of all component failures begin from the cable 

tension calculations. Experiments were conducted to examine the accuracy of 

those cable tension predictions using two test rigs. The results of a single joint 

and single cable experiment revealed the theoretical and experimental values 

were close almost identical. However, the addition of another joint and cable 

created some complications in the experiment. An offset between the 

theoretical and experimental values revealed additional forces needed to be 

considered. The presence of friction was measured in the test rig leading to a 

method of incorporating frictional forces into the experimental data, resulting 

in a closer approximation. 
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It was not possible, however, to predict the cable tensions as accurately as in 

the case for a single joint and single cable without redesigning the test rig for 

better control of the joint angles, without which would affect the tensions and 

the torques at each joint and create discrepancy with the ideal theoretical 

values.      
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Chapter 5  
Mechanical design of snake arm prototype 

This chapter develops an algorithmic approach to the design and fabrication 

of snake arms to optimise the maximum length. To this end, failure points are 

analysed using finite element analysis software and algorithmic buckling 

theory is implemented. Specific experimental designs are developed at a 

12mm diameter scale in line with the primary scope of the research.  

5.1 Introduction 

The rigid snake arm, at its most basic form, is just a series of links and joints. 

If each joint length were the same, the only method of altering the length of 

the snake arm would be through the length of the links or increasing the 

number of links. However, cable tension theory (Section 4.4) demonstrated 

that cable tension dramatically increases with the length of the snake arm. 

Therefore, is it important to analyse the forces and failure modes of the links 

and cables to maximise the length. 

5.2 Prototype design 

Secti0on 3.5 developed the fundamental specifications for a snake arm in this 

research: 

 12mm diameter for portable borehole deployment. 

 Long reach to perform a visual exploration. 

 Must be self-supporting in the horizontal cantilever position. 

The construction of a discrete snake arm relies on a series of joints and rigid 

links as shown in Figure 5.1. 
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Figure 5.1 Snake arm links and joints. 

As established in Section 4.1 with Morecki, A., et al. stating a manipulator with 

n-DOF requires at least n+1 tendons to achieve complete control of all 

degrees of freedom [109]. The limit of nine, 1.5mm diameter cables, results in 

a snake arm that has just three 2-DOF joints and four links of unknown length. 

The sum of the tension running through the actuation cables will exhibit an 

axial compressive force throughout the entire structure of the snake arm. 

An axial compressive force of sufficient magnitude could result in failure of 

components on the snake arm, including: 

 The actuation cable could fail due to exceeding its yield limit. 

 Joints at the connection of links could fail due to either the shear of the 

pins that hold the joint to the link or plastic deformation of material. 

 The links could fail due to the three buckling modes.  

Each of the proposed failure modes is to be investigated separately.  

5.3 Joint design 

Joints join links together and enable them to be constrained longitudinally 

whilst allowing relative rotation through actuation. Therefore, the joint is a 

highly critical component of the snake arm that provides a range of movement 

and also anchors termination cables so that forces can be applied to the end 
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of links for actuation. Ordinary 2-DOF joints can be readily purchased (Figure 

5.2). Universal joints are designed to transmit torque between two shafts while 

the angle between the shafts varies.  

If a universal joint is to be used to join links to create a snake arm, outer 

diameter is required to be as small as possible to allow room for cables whilst 

keeping the diameter small. For example, to conform to the specifications for 

an outer diameter of 12mm, a universal joint is limited to a maximum outer 

diameter of just 7mm (diameter remaining after accommodating for link wall 

thickness and cable thickness). Commercial universal joints have both axis of 

rotations intersecting at a mid-point as illustrated in Figure 5.2 that results in 

joint with smaller diameter pins and smaller arms. This, therefore, reduces the 

maximum axial force and torque that can be exerted on the joint.  

There are three joint specific failure modes in this scenario, these are: 

 Shearing, where the pins at the pivot shear and break. 

 Axial compression, where the joint undergoes plastic deformation. 

 Torque twisting, where the joint twists and plastically deforms. 

 

Figure 5.2 A 2-DOF universal joint with collinear axis of rotation. 

5.3.1 Shear forces 

Shearing failure of the joints (Figure 5.4) can occur at the arms or the pins of 

the joint (as illustrated in Figure 5.5) and is calculated as: 

𝜏 =
𝐹

𝐴
 5.1 

Failure occurs when: 

𝜏 = 0.58 ∙ 𝑇𝑆 
5.2 

Where: 
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𝜏 = Shear stress 

𝐹 = Force 

𝐴 = Cross-sectional area of material with area perpendicular to the applied 

force vector 

𝑇𝑆 = Tensile strength 

The value of 0.58 is the result of the Von Mises yield criterion [113] and is an 

approximation for the relationship between the Tensile Yield Strength and 

Shear yield point for wrought steel and alloy steel. 

 

Figure 5.3 Exploded view of a single joint assembly. 

 

Figure 5.4 Manufactured joint. 
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Figure 5.5 Shearing of the joint pin occurs at two locations (in red). 

The proposed joints in Figure 5.3 uses stainless steel with the following 

specifications: 

Table 5.1 Steel grade 303S31 specification for the joint pin. 

Grade  303 Stainless steel 

Diameter D mm 3 

Young’s 

Modulus 

E GPa 193 

Tensile Strength TS N/mm2 517.1067 

Yield Strength YS N/mm2 206.8427 

The force required to shear the pin can be approximated through the diameter 

of the pin and the material tensile yield strength.  

𝐹 = 𝜏𝐴 = 0.58 ∙ 𝑇𝑆 ∙ 2 ∙ 𝜋 ∙ (
𝐷

2
)
2

 5.3 

𝐹 = 0.58 ∙ 206.843 ∙ 2 ∙ 𝜋 ∙ (
3

2
)
2

 5.4 

𝐹 = 4240 𝑁 
5.5 

Figure 5.5 shows shearing of the pin at two locations and was reflected in the 

previous calculations as double the area resisting the shear force. The 

approximated value of 4240N represents the maximum combined shear force 

from the sum of the cable tensions. 
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5.3.2 Finite Element Analysis of joint assembly 

Finite element analysis (FEA) was used to evaluate the joint as a non-

destructive testing method, unlike the shear force calculations in Chapter 5.3.1 

the structure of the joint can fail wherever stress concentrations form. The 

location of the stress concentrations can be found during the FEA process that 

allows preventative measures to be implemented in the joint design before 

manufacture takes place. This includes elements of adding fillets to sharp 

edges or increasing the material thicknesses at some parts.  

SolidWorks software was used to perform the FE analysis with a model of the 

2DOF joint (Figure 5.6) under applied axial forces. Given the joint will fail when 

the stresses exceed the material yield strength (Figure 5.7) the maximum 

stress for each simulation was recorded and plotted in order to find the load 

value where joint failure starts to occur (Figure 5.8).  

Table 5.2 Stainless Steel material for joint used for FEA simulations. 

Young’s 

Modulus 

E GPa 210 

Tensile Strength TS N/mm2 723.83 

Yield Strength YS N/mm2 620.42 

 

Figure 5.6 Iteration of 2DOF snake arm joint undergoing a FEA simulation.  
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Figure 5.7 Iteration of 2DOF snake arm joint, FEA results can reveal the site 

for highest stress points. The above shows where the local stresses 

exceed the material yield stress. 

 

 Figure 5.8 Results of multiple FEA simulations, linear trend reveals an axial 

load of approximately 1350N to be the absolute maximum the 2DOF joint 

should be subjected too.  

As the axial compressive force remains unknown until the length of the snake-

arm is established, the approach used for this FE analysis is similar to the pin 

shear and the maximum limit was to be methodically found. Plotting the results 
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of load versus maximum stress from multiple FEA simulations (Figure 5.8), 

the load value the joint can withstand before reaching its material yield stress 

was extrapolated to be in the region of 1332N.  

Alongside compression, the joint must also sustain torque twisting from lateral 

joint angles. Repeating the methodology used for analysing joint compression, 

multiple simulations of the FE analysis was conducted with increasing 

increments of torque. The changing maximum von Mises stress was recorded 

and once interpolated; it revealed a limit to the maximum torque for the joint 

as 1.8Nm.  

 

Figure 5.9 FEA simulation with 0.8Nm torque axial torque applied to joint.  
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Figure 5.10 FEA simulation plot. 

5.4 Cable properties 

Cables are collectively responsible for maintaining the position or the 

movement of each joint. A cable of high yield strength will enable the creation 

of a snake arm with long length. Other important cable characteristics are the 

weight per unit length, stretch, stiffness and physical characteristics such as 

effective termination (attachment of a cable end to a structure). 

UHMwPE (Ultra High Molecular weight Polyethylene) fibres are an attractive 

option for high tension cables. The properties of these fibres can be compared 

to steel as [2]:  

 Weight for weight, the fibres are 15 times stronger than steel wire.  

 Size for size, the fibre cables are 8 times lighter. 

 The fibre cables are hydrophobic and do not absorb water. 

 The fibre cables are chemically inert and perform in dry, wet, salty and 

humid environments. 

Two samples of 1.5mm diameter cable from separate suppliers 

(http://www.backpackinglight.co.uk/ (BPL) and Marlow) were tested on tensile 

testing machinery to determine the breaking loads (Figure 5.11). The 
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experiment was designed to subject each of the seven specimens to an 

increasing load through movement of 8mm/s until failure (speed from the 

linear actuator at Table 5.6). Each specimen was attached to the testing rig 

using the figure-eight loop knot, a very important prime knot used in sailing 

and rock climbing (Figure 5.12). Tested to destruction the recorded load and 

extension of the seven specimens is then plotted as shown in Figure 5.15 and 

Figure 5.16.  

Table 5.3 Supplier stated average break loads. 

Name Average Breaking Load (N) 

BPL Dyneema 1.5mm Diameter 1078.732 

Marlow Excel Racing 1.5mm 

Diameter 

1363.124 

Given the cross-sectional diameter of each specimen is 1.5mm and the 

original lengths are known, the stress, strain and Young’s Modulus can then 

be calculated using: 

𝜎 =
𝐹

𝐴
 5.6 

𝜀 =
∆𝐿

𝐿𝑜
 5.7 

𝐸 =
𝜎

𝜀
 5.8 

Where: 

𝜎 = Stress 

𝜀 = Strain 

𝐹 = Force 

𝐴 = Cross sectional Area 

∆𝐿 = Change in length 

𝐿𝑜 = Original length 

The average breaking load for the BPL Dyneema rope in Figure 5.15 is 475N 

and the Marlow rope in Figure 5.16 is 490N. The average strain at the breaking 

load for the BPL Dyneema rope in Figure 5.15 is 0.146 and the Marlow rope 

in Figure 5.16 is 0.127. Therefore, the Marlow rope makes the better 



- 92 - 
 

candidate for the snake arm construction due to a greater breaking load and 

lower strain.  

 

Figure 5.11 Tensile testing machine. 

 

Figure 5.12 Figure-eight loop knot. 

 

Figure 5.13 Seven specimens before testing. 
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Figure 5.14 Seven specimens after testing. 

 

Figure 5.15 BPL 1.5mm diameter Dyneema rope. 
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Figure 5.16 Marlow Excel Racing Dyneema rope with SK75 core and 16 plait 

polyester cover. 

 

Figure 5.17 BPL 1.5mm diameter Dyneema rope. 
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Figure 5.18 Marlow Excel Racing Dyneema rope with SK75 core and 16 plait 

polyester cover. 

Comparing the breaking loads to the supplier's listed values, a decrease of 

44% was noted for the BPL Dyneema rope and 36% for the Marlow Excel 

Racing rope. These results are consistent with the findings of Adam Long et 

al [114] in their investigation into the effect of ten different knots against the 

manufacturers stated strength for ropes of nominal 10.5mm diameter at 

lengths of 200mm. The test consisted of extending the ropes at a rate of 

500mm/minute to destruction and recording the maximum force sustained. 

The presented results show there is little variation of strength with respect to 

the knot used. Whilst in some cases one knot displayed greater strength over 

another, the large variance between individual tests results demonstrates that 

one knot cannot be guaranteed to be stronger than the other. Overall no knot 

reduced the strength to <55% of its absolute strength. Indeed, the figure-eight 

loop knot managed to retain between 66% and 77% of the rope's full strength.  

Given the strength of a knot depends on largely on the radius of the first bend 

[114], the smaller 1.5mm diameter ropes used in our own experiments (in 

comparison to the 10.5mm diameter ropes by Adam Long et al) does explain 

the drop from 66% to 36%.  
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5.5 Base actuation design 

The role of the base component is to control the movement of all the actuation 

cables and provide a support structure for the snake arm to resist against 

reaction forces (Figure 5.20). To control the snake arm, precise calculation of 

each cable length (Chapter 5.5.1) is required along with simultaneous control 

of nine linear actuators. A human operator will specify the angle of six joints 

and a computer controller will then translate this to individual cable length to 

be implemented through closed loop feedback control (Figure 5.19).  

 

Figure 5.19 Proposed cable length control method. 

 

Figure 5.20 Complete snake arm assembly with base mechanism on left.  
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5.5.1 Tendon forces and control 

Assuming no cable stretching, all changes in cable length within the snake 

arm will directly result in rotation of joints. The length of each individual cable 

can be found using forward kinematics of each joint to attain the 

transformation matrix and multiplying it by the cables positional coordinates. 

Figure 5.21 represents the joint shown in Figure 5.3 indicating degrees of 

freedom and link lengths.  

 

Figure 5.21 Simplified kinematic model of the 2DOF joint. 

The calculation to find the position and orientation at the end of the joint, the 

transformation matrix can be written as the product of individual 

transformation matrices for links 1 to 3: 

T = Trans(0,0,5.5) Rot(x,θ1) Trans(0,0,5) Rot(y,θ2) Trans(0,0,5.5) 
5.9 

𝑇𝑟𝑎𝑛𝑠(0,0,55) = [

1 0 0 0
0 1 0 0
0 0 1 5.5
0 0 0 1

] 
5.10 

𝑅𝑜𝑡(𝑥, 𝜃1) = [

1 0 0 0
0 𝑐𝑜𝑠𝜃1 −𝑠𝑖𝑛𝜃1 0
0 𝑠𝑖𝑛𝜃1 𝑐𝑜𝑠𝜃1 0
0 0 0 1

] 
5.11 
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𝑇𝑟𝑎𝑛𝑠(0,0,5) = [

1 0 0 0
0 1 0 0
0 0 1 5
0 0 0 1

] 
5.12 

𝑅𝑜𝑡(𝑦, 𝜃2) = [

𝑐𝑜𝑠𝜃2 0 𝑠𝑖𝑛𝜃2 0
0 1 0 0

−𝑠𝑖𝑛𝜃2 0 𝑐𝑜𝑠𝜃2 0
0 0 0 1

] 
5.13 

Which equates to: 

𝑇

= [

𝑐𝜃2 0 𝑠𝜃2 5.5(𝑠𝜃2)

(−𝑠𝜃1)(−𝑠𝜃2) 𝑐𝜃1 (−𝑠𝜃1)(𝑐𝜃2) 5.5(−𝑠𝜃1)(−𝑐𝜃2) + 5(−𝑠𝜃1)

(𝑐𝜃1)(−𝑠𝜃2) 𝑠𝜃1 (𝑐𝜃1)(𝑐𝜃2) 5.5(𝑐𝜃1)(𝑐𝜃2) + 5(𝑐𝜃1) + 5.5
0 0 0 1

] 

Where: 

𝑠 = 𝑠𝑖𝑛, 𝑐 = 𝑐𝑜𝑠 

5.14 

Given the spacing of each cable is known as coordinates in the X-Y plane 

(Figure 5.22 and Table 5.4), the joint transformation matrix (Equation 5.14) 

multiplied by the coordinates in vector form will output the position of each 

cable at the end of the joint, using the start of the joint as the frame of 

reference.  

 

Figure 5.22 Arrangement of actuation cables in the joint vertebrae. Dxi 

denotes the horizontal position and Dyi denotes the vertical position of 

the ith cable. 
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Table 5.4 Coordinates of each actuation cable w.r.t the centroid. 

Cable i Dxi (mm) Dyi (mm) 

1 0 4.25 

2 2.5 3.44 

3 4.04 1.31 

4 4.04 -1.31 

5 2.5 -3.44 

6 -2.5 -3.44 

7 -4.04 -1.31 

8 -4.04 1.31 

9 -2.5 3.44 

So for joint 2 and given joint angle values of 𝜃1=15 and 𝜃2=20, the position of 

the cable at the far end of the joint is calculated as: 

[

𝑐𝜃2 0 𝑠𝜃2 5.5(𝑠𝜃2)

(−𝑠𝜃1)(−𝑠𝜃2) 𝑐𝜃1 (−𝑠𝜃1)(𝑐𝜃2) 5.5(−𝑠𝜃1)(−𝑐𝜃2) + 5(−𝑠𝜃1)

(𝑐𝜃1)(−𝑠𝜃2) 𝑠𝜃1 (𝑐𝜃1)(𝑐𝜃2) 5.5(𝑐𝜃1)(𝑐𝜃2) + 5(𝑐𝜃1) + 5.5
0 0 0 1

] 
5.15 

× [

2.5
3.44
0
1

] = [

4.2303
0.9123
15.3863

1

] 
5.16 

Where: 

𝑠 = 𝑠𝑖𝑛 

𝑐 = 𝑐𝑜𝑠 

Using the two positional vectors, the difference can be found as: 

[

4.2303
0.9123
15.3863

1

] − [

2.5
3.44
0
1

] = [

1.7303
−2.5277
15.3863

0

] 
5.17 

In addition, the individual cable length is calculated as its hypotenuse. 

𝑐𝑎𝑏𝑙𝑒 2 𝑙𝑒𝑛𝑔𝑡ℎ = √1.73032 + −2.52772 + 15.38632 = 15.6882𝑚𝑚 5.18 

Applying same joint angles to all other cables provides: 
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Table 5.5 Sample cable lengths for joint angles 𝜃1=15 and 𝜃2=20. 

Cable i Cable Length (mm) 

1 16.761 

2 15.688 

3 14.605 

4 13.926 

5 13.906 

6 15.633 

7 16.717 

8 17.395 

9 17.414 

 

 

Figure 5.23 Illustration of the different part lengths required to calculate each 

cable length.  

Applying this methodology to the complete snake arm as shown in Figure 5.23 

can therefore output the length of each cable at any joint orientation. This can 

be computed quickly using the sum of each known part length however not all 

cables pass through the length of the whole snake arm as illustrated in Figure 

5.24 which show which links and joints each cable passes through the snake 

arm and where the cables terminate. 
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Figure 5.24 The three groups of cables and where each is expected to span 

the snake arm. 

5.5.2 Actuator frame 

Mounting the linear actuators with the configuration illustrated in Figure 5.25 

benefits the system by: 

 Increasing the maximum force supplied to the actuation cables. 

 Improving accuracy of the actuation cable lengths. 

 Supplying a means to attach a sensor for measuring the cable length. 
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Figure 5.25 The base actuator frame assembly. 

Changing the stroke length of the linear actuator mounted in its individual 

frame allows for the actuation cable lengths to be altered and controlled. The 

range of motion is illustrated in Figure 5.26. Through leverage a large 

displacement of the linear actuator will produce a smaller displacement for the 

cables and in return the force supplied is increased. 

 

Figure 5.26 Illustration of change in actuation cable length. (left) The red 

actuation cable will be at its shortest length, (right) the blue actuation will 

be at its longest length.  
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5.1.1.1 Force supplied 

Selection of the linear actuator required a combination of large force and 

stroke length. Large force to supply the predicted forces necessary for each 

cable and the large stroke to increase the accuracy in combination with the 

frame for supplying the correct changes in cable length. As the Marlow cables 

have a maximum tension limit of 490N, the force supplied by the linear 

actuator should be equal or greater. Future-proofing for later platforms that 

can utilise a cable of larger breaking load will aid the reusability of the base 

actuator frame, so a linear actuator that can be mounted on the frame (Figure 

5.26) and is capable of supplying at least 3 times the spec cable tension was 

required.  

Table 5.6 Firgelli Automation Light Duty Linear Actuator [115]. 

Specification – FA-240-S-12-12” 

Gear Ratio 30:1 

Input Voltage 12v 

Load Capacity 200lbs (890N) 

Static Load 400lbs (1779N) 

Stroke Length 12” (305mm) 

Speed at No load 0.3 inch/s (8mm/s) 

Current consumption 12v DC 5A 

Operating Temperature Range -26°C to +65° 

Protection IP54 

From the actuator specifications (Table 5.6) and the geometry of the actuator 

frame, the maximum values of tension supplied on the cables can be 

calculated as a function of arm angle θ with the variables shown in Figure 

5.26. Figure 5.27 illustrates the change in max tension supplied to range from 

1454N to 1603N as the linear actuator extends towards its maximum stroke 

length of 12”.  

The arm angle θ is limited from 90° to 120° due to the linear actuator stroke 

length. At the minimum angle of 90°, forces LF will equal FL and FT will equal 

T, at this instance, the force transmitted from the linear actuator to the cable 
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will be parallel and the leverage will create the occurrence of a larger force 

creating the drop in the force curve in Figure 5.28 as arm angle begins to 

swing.  

 

Figure 5.27 Graphical model of the actuator frame assembly as seen in Figure 

5.26. 

Where: 

𝐿𝐹 = Load capacity of linear actuator 

𝐹𝐿 = Perpendicular force exerted by linear actuator 

𝐹𝑇 = Perpendicular force experienced on cable 

𝑇 = Tension force exerted by linear actuator 

Linear actuator 

Actuation cable 

Cable pulley 

M6 Bolt 
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Figure 5.28 Maximum possible cable tension changes with the arm angle in 

the actuator frame. 

5.1.1.2 Beam bending 

The aluminium beams that form the actuator frame are required to withstand 

loads of up to 1603N (the maximum force that can be supplied to the cables). 

Focusing on the sections where the actuation cables terminates (Figure 5.30), 

the beam sections comprises of twin parallel beams (Figure 5.29) of constant 

cross section meaning each is only subjected to half of the 1603N load. 

 

Figure 5.29 Actuator frame beams and cable path. 
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Figure 5.30 Actuator frame beam bending. 

 

Figure 5.31 Actuator frame loading condition simplifies to beam bending 

problem. 

Forces acting on a beam causes bending and deflection, this affects the 

control of the cable lengths. By calculating the maximum deflection expected 

the design of the beam was verified before manufacture. Ideally, the 

calculated deflection of the beam should be small and insignificant.  

The deflection of the beam at the point of load is defined as [116]: 

𝑊𝑎2𝑏2

3𝐸𝐼𝐿
 5.19 

Whereas the maximum deflection is defined as [116]: 

Cable tension 
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𝑊𝑎(𝑣1
3)

3𝐸𝐼𝐿
 5.20 

Which occurs at [116]: 

𝑣1 = 𝑏√
1

3
+

2𝑎

3𝑏
 

5.21 

Where: 

𝑊 = Load 

𝐸 = Modulus of Elasticity 

𝐼 = Moment of Inertia 

𝐿 = Total length 

The Moment of Inertia of a single aluminium beam of constant cross-section 

is calculated as [117]: 

 

Figure 5.32 Moment of inertia for square aluminium beam. 

𝐼 =
𝑎4𝑏4

12
=

12.74 × 9.34

12
= 1.5445 × 109𝑚4 5.22 

Using W=801.5N, a=0.18m, b=0.12m, L=0.3m and Ealuminium = 69x109N/m2 the 

deflections are. 

Deflection at the load point:  

𝑊𝑎2𝑏2

3𝐸𝐼𝐿
=

801.5 ∙ 0.182 ∙ 0.122

3 ∙ 69 × 109 ∙ 1.5445 × 109 ∙ 0.3
= 3.899 × 10−21𝑚 5.23 

Maximum deflection at: 

𝑣1 = 𝑏√
1

3
+

2𝑎

3𝑏
= 0.12√

1

3
+

2 ∙ 0.18

3 ∙ 0.12
= 0.139𝑚 

5.24 

Maximum deflection: 
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𝑊𝑎(𝑣1
3)

3𝐸𝐼𝐿
=

801.5 ∙ 0.18(0.1393)

3 ∙ 69 × 109 ∙ 1.5445 × 109 ∙ 0.3
= 4.0396 × 10−21𝑚 5.25 

Given the small value of maximum deflection, the frame structure is expected 

to perform adequately within the expected loading conditions.  

5.1.1.3 Arm angle 

The relationship between the actuation cable length and the angle of the arm 

can be found by simplifying the model (Figure 5.33). 

 

Figure 5.33 Graphical model of the actuator frame assembly without a linear 

actuator. 

𝐴 = √𝐿2 + (
21

2
−

6

2
)

2

 
5.26 

𝐵 = √1802 + 266.642 5.27 

𝛼 = tan−1 [
266.64

180
] 5.28 

𝛽 = 90 − 𝛼 
5.29 

𝛾 = cos−1 [
𝐵2 + 1802 − 𝐴2

360 × 𝐵
] 5.30 

𝜃 = 𝛽 + 𝛾 
5.31 
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Where: 

𝐿 = length of cable in the frame 

𝜃 = angle of arm in association with the potentiometer 

Therefore, the total change in cable length can be calculated by subtracting 

the cable length when the linear actuator is at maximum length by the cable 

length when the linear actuator is at minimum length.  

Table 5.7 Cable lengths in actuator frame.  

Angle 𝜽 Cable length 𝑳 

90° 266.534mm 

120° 357.376mm 

Maximum change in cable length 90.842mm 

5.1.1.4 Gearing selection 

The arm rotates through 30 degrees (from 90 degrees to 120 degrees) to 

achieve the desired change in cable length. It is important to measure the 

actual joint angle so that feedback control can be implemented. A 

potentiometer is a simple and low-cost sensor capable of measuring rotation 

through a change in resistance. If a potentiometer were mounted directly at 

the arm pivot point, only approximately 20% of measurable signal range would 

be used resulting in poor sensor resolution.  

The use of spur gears between the swinging arm and the potentiometer can 

increase the range of motion. Potentiometers typically have an active range 

of 280 degrees, therefore an optimum rotational range of 180° was selected 

to allow a small measurable overshoot at the end of each range. Equation 

5.32 calculates the gear ratio required to scale from 30 degrees to 180 

degrees.  

Figure 5.34 illustrates the gears chosen for scale the potentiometer motion, 1 

gear of 12 teeth and one of 72 teeth. Teeth of module 1 were chosen as the 

gears only transmit torque to rotate the potentiometer. 

180°

30°
=

6

1
𝑟𝑎𝑡𝑖𝑜 

5.32 
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Figure 5.34 Gear assembly on the actuator frame. 

5.6 Iterative solver 

The design of an optimally long snake arm involves many interdependent 

variables. Table 5.8 and Table 5.9 presents the known and unknown variables 

to design a snake arm.  

Due to a large number of unknowns, there is not an algorithmically solvable 

solution to determine the optimal length of snake arm. Therefore, an 

interactive solver was developed to search potential solutions for an optimal 

case.  

Table 5.8 Known variables for iterative solver.  

Known variable Value Unit 

Number of joints 3  

Length of joint 0.0055 m 

Length of end vertebrae 0.002 m 

Length of joint link 0.005 m 

Position of yaw joint centroid 0.00321 m 

Position of pitch joint centroid 0.00229 m 

Position of end vertebrae centroid 0.00081 m 

Payload mass 0.02 kg 

MOD1 

12 Teeth 

Driven 

MOD1 

72 Teeth 

Driver 
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Payload length 0.06 m 

Mass of joint 0.00252 kg 

Mass of joint link 0.0008 kg 

Mass of end vertebrae 0.00147 kg 

Density of electrical wire 8940 kg/m^3 

Diameter of electrical wire 0.0015 m 

Diameter of actuation cable 0.0015 m 

Density of actuation cable 955 kg/m^3 

Breaking load of actuation cable 490 N 

Breaking load of joint 1332 N 

Breaking twisting torque of joint 1.8 Nm 

Cable FOS 6  

Joint FOS 4  

Joint twist torque FOS 4  

Tube FOS 4  

Table 5.9 Unknown variables for iterative solver.  

Unknown variable Value Unit 

Base link length - m 

Link length - m 

5.6.1 Optimisation strategy 

As represented in Figure 5.33, the approach was to firstly determine the 

maximum length of the links and thereafter determine the length of the base 

link. This is because the base link length does not affect the actuation cable 

tensions, the calculations for the buckling failure of the three links or the forces 

acting into the 2DOF joints. However, the axial stress resulting from the cable 

tensions acting through the Base link and weight of the unsupported snake 

arm does affect the likelihood of buckling for the base link.  

MATLAB was used as a numerical solver to find the maximum lengths for both 

the link types of the self-supported snake arm design. The design for a 
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discrete 12mm diameter snake arm was built and parts such as the joints were 

designed to conform to the size constraints. The aluminium tubing was 

selected for its properties on buckling resistance, density and size. The 

actuation cables were chosen for its high yield strength and low strain so the 

only unknown factors were the lengths of the links and base link. To simplify 

the study, the length of the three link are kept the same under the single 

variable. 

A model was written to take two variables (length of link and base link) and 

calculate the tensions for nine actuation cables using the methods defined in 

Chapter 4.3. A full breakdown of the code used for the solver can be found in 

Appendix D. Assumptions made for the model include friction to be negligible 

and the snake arm to remain static and not affected by any external forces 

other than gravity.  

Once the tensions were calculated, the next stage was to sequentially perform 

checks to ensure no parts are anticipating failure. These checks consisted of: 

 Comparing the cable tensions to the experimentally found yield load of 

490N.  

 Analysing the axial stress through the links for buckling utilising 

buckling theory already available for thin-walled cylinders in axial 

compression [111, 112]. 

 Comparing the axial load with the shearing load of 4240N on the joint 

pins. 

 Comparing the axial load with the joints material failure load of 1332N.  

 Comparing the torque generated by the snake arm against the joints 

torque twist limit of 1.8Nm. 

Design factors of safety (FOS) were implemented into the study for each of 

the failure modes, as allowing the tension of the cables to equal or surpass its 

breaking stress, for example, would severely harm the durability and 

performance of the snake arm whilst still allowing the snake arm to be at its 

physical maximum length. The application of any appropriate FOS will, 

therefore, aid overcome any uncertainties in applied loads or variations in 

material properties [118].  



- 113 - 
 

Based on recommended values supplied from manufacturers and values 

chosen to represent where materials used are reliable but used under difficult 

and environmental conditions.  

The FOS values designated were: 

Table 5.10 Factors of safety. 

Part FOS Source 

Actuation cable 6 [119] 

Link buckling 4 [120] 

Joints 4 [120] 

MATLAB was used to determine the maximum length of snake arm by 

algorithmically incrementing the length of the base link and all links by 1mm 

whilst simultaneously ensuring the imposed design safety constraints are 

conserved.  
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Figure 5.35 Graphical representation of MATLAB code to determine the 

maximum length of the snake arm. 

As represented in Figure 5.35, the approach was to firstly determine the 

maximum length of the links and thereafter determine the length of the base 

link. This is because the base link length does not affect the actuation cable 

tensions, the calculations for the buckling failure of the three links or the forces 

acting into the 2DOF joints. However, the axial stress resulting from the cable 

tensions acting through the Base link and weight of the unsupported snake 

arm does affect the likelihood of buckling for the base link.  

5.6.2 Solver results 

This approach yielded a snake arm of total length 1.149m with a link length of 

0.1850m and base link of 0.5440m for the 12mm diameter snake arm, the 

effective length being 0.605m. Extracting information from the solver at the 
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final solution provides can inform what components of the snake arm risk 

failure and limits the growth of the snake arm.  

 

Figure 5.36 Snake arm lengths. 

Table 5.11 Actuation cable tension results. 

Cable Number Tension (N) Limit (N) FOS 

1 78.975 490 6.205 

2 50.866 490 9.633 

3 14.779 490 33.155 

4 0.000 490  - 

5 0.000 490  - 

6 0.000 490  - 

7 0.000 490  - 

8 31.476 490 15.567 

9 23.883 490 20.517 

The results from the predicted cable tensions (Table 5.11) shows cable 1 

approach the FOS limit of 6. This was expected as the cables 1, 4 and 7 are 

tasked with actuating joint 1 (with the highest torque requirements). However, 

as cables 4 and 7 are positioned below the centroid as shown in Figure 5.22, 

these cables are kept slack as per the cable tension theory (Chapter 4.4); 

therefore, cable 1 remains to provide the largest torque required to support 

the rest of the snake arm.  

 

Aluminium 

Base Link Link 1 Link 2 Link 3 

0.544 0.185
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0.605m 

Aluminium Aluminium Aluminium 
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Table 5.12 Joint compression results. 

Joint Number Axial Compression Force (N) Limit (N) FOS 

1 199.980 1332 6.661 

2 121.004 1332 11.008 

3 38.662 1332 34.453 

Table 5.13 Joint shear results. 

Total axial load (N) Limit (N) FOS 

199.979 4240 21.20 

Table 5.14 Maximum torque twist at joint 1 

Maximum Torque Twist (Nm) Limit (Nm) FOS 

0.449 1.8 4.012 

The joints display a surplus tolerance to axial compression (Table 5.12) with 

a FOS value of 6.661 and pin shearing with a FOS of 21.2 (Table 5.13). 

However, for the torque twisting of joint 1 (where greatest torque occurs), the 

limited FOS of 4 was met.  

Table 5.15 Flexural buckling results. 

Link Axial stress (N) Elastic buckling stress (N/m2) FOS 

Base 5786900 23178000 4.005 

1 5786900 110140000 19.033 

2 3501500 110140000 31.455 

3 1118800 110140000 98.445 

Table 5.16 Local buckling results. 

Link Axial stress (N) Local buckling stress (N/m2) FOS 

Base 5786900 4453300000 769.549 

1 5786900 4453300000 769.549 

2 3501500 4453300000 1271.826 

3 1118800 4453300000 3980.426 
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As intended, the FOS of the base link reached the limit of 4 as to maximise its 

length at 0.544m. Given the short link lengths of 0.185m, the calculated elastic 

buckling stress for flexural buckling to occur was large (Table 5.15), resulting 

in a FOS as low as 19.033. The likelihood of local buckling occurring in the 

snake arm is very low given the FOS values of minimum 769.549 as shown in 

Table 5.16.  

The complex interconnection of each part made constructing a long length 

snake arm difficult. The results of the algorithm used to calculate the 1.149m 

snake arm has shown in this case the likelihood of torque twisting to be the 

main culprit in hindering the reality of a truly long snake arm with small 

diameter. If the FOS for the joint were to be relaxed, this would allow for 

increased link lengths, the results of the joint compression and buckling show 

enough excess capacity to allow such increases. However, the longer link 

lengths would by association increase cable tensions wherein lies a problem 

as the FOS is already in close proximity to the cable FOS limit, so any 

increases in length would be small (reducing the joint FOS to 3 results in a 

small length increase to 1.15m). 
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5.6.3 Further strategies 

To further increase the length of the snake arm beyond the current 1.149m 

length, the analysis of the solver results revealed the yield limit of the cables 

and the maximum allowable joint torque twist must both be strengthened. One 

possible solution would be to increase the diameter of the snake arm (going 

against the specification); this allows the cables to be displaced further from 

the centroid therefore providing greater torque and less tension.  

Another approach however would be to reduce the forces acting through the 

snake arm by reducing the torque required at each joint. This is possible 

without going against the specification by altering the weight of each link. Until 

now each of the three links has been kept identical by using the same 

construction materials for each link tubing, the buckling results of the solver 

(Table 5.15 and Table 5.16) does show each link from 1 to 3 progressively 

increase its FOS as the axial compressive forces decrease as it approaches 

the end of the arm. By swapping links currently using aluminium for a weaker 

but lighter carbon fibre alternative of same size, the length of the snake arm 

can be improved. 

For example, using carbon fibre tubing for the third link increases the total 

length to 1.529m and effective length 0.281m (Figure 5.37). In consequence, 

the length of each link is reduced by 41.62% to just 0.077m due to the 

decrease in elastic buckling stress leading to an earlier occurrence of flexural 

buckling.  

 

Figure 5.37 Snake arm lengths. 

A result of the shorter link lengths, the torque requirements are reduced 

resulting in an increase to the calculated cable FOS with a minimum of 31 

(Table 5.17).  

0.077
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Table 5.17 Actuation cable tension results. 

Cable Number Tension (N) Limit (N) FOS 

1 15.360 490 31.902 

2 9.483 490 51.670 

3 4.061 490 120.665 

4 0.000 490 - 

5 0.000 490 - 

6 0.000 490 - 

7 0.000 490 - 

8 5.868 490 83.498 

9 6.562 490 74.669 

The implications of the shorter link lengths are also seen in the joint results 

with a minimum FOS of 14 occurring with the joint twisting (Table 5.20). This 

leaves the buckling of the links to be the main source of failure. Table 5.21 

shows the Base link length to be maximised until the FOS limit is reached, but 

the carbon fibre link also risks flexural buckling failure due to the reduced 

elastic buckling stress.  

Table 5.18 Joint compression results. 

Joint Number Axial Compression Force (N) Limit (N) FOS 

1 41.334 1332 32.225 

2 25.975 1332 51.281 

3 10.623 1332 125.387 

Table 5.19 Joint shear results. 

Total axial load (N) Limit (N) FOS 

41.334 4240 102.578 

Table 5.20 Maximum torque twist at joint 1. 

Maximum Torque Twist (Nm) Limit (Nm) FOS 

0.121 1.8 14.925 
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Table 5.21 Flexural buckling results. 

Link Axial stress (N) Elastic buckling stress (N/m2) FOS 

Base 1196100 4791300 4.006 

1 1196100 150000000 125.408 

2 751640 150000000 199.564 

3 307400 1268300 4.126 

Table 5.22 Local buckling results. 

Link Axial stress (N) Local buckling stress (N/m2) FOS 

Base 1196100 4453300000 3723.184 

1 1196100 4453300000 3723.184 

2 751640 4453300000 5924.778 

3 307400 4110200 13.371 

Going further and introducing more carbon fibre tubing for links two and three 

(Figure 5.38) reveals the trend of longer total snake arm length at the 

compromise of a shorter effective snake arm length.  

 

Figure 5.38 Snake arm lengths. 

Table 5.23 Actuation cable tension results. 

Cable Number Tension (N) Limit (N) FOS 

1 8.444 490 58.026 

2 5.738 490 85.399 

3 3.360 490 145.854 

4 0.000 490 - 

5 0.000 490 - 

6 0.000 490 - 

Base Link Link 1 Link 2 Link 3 

1.568 0.059

1.795m 

0.227m 

Aluminium Aluminium Carbon Fibre Carbon Fibre 
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7 0.000 490 - 

8 3.551 490 138.004 

9 5.429 490 90.256 

Table 5.24 Joint compression results. 

Joint Number Axial Compression Force (N) Limit (N) FOS 

1 26.521 1332 50.224 

2 18.077 1332 73.685 

3 8.789 1332 151.561 

Table 5.25 Joint shear results. 

Total axial load (N) Limit (N) FOS 

26.521 4240 159.871 

Table 5.26 Maximum torque twist at joint 1. 

Maximum Torque Twist (Nm) Limit (Nm) FOS 

0.086 1.8 20.930 

Table 5.27 Flexural buckling results. 

Link Axial stress (N) Elastic buckling stress (N/m2) FOS 

Base 767460 3071500 4.002 

1 767460 154930000 201.874 

2 523100 2159800 4.129 

3 254320 2159800 8.493 

Table 5.28 Local buckling results. 

Link Axial stress (N) Local buckling stress (N/m2) FOS 

Base 767460 4453300000 5802.648 

1 767460 4453300000 5802.648 

2 523100 4110200 7.857 

3 254320 4110200 16.162 

The results of the cable and joint FOS show the forces acting on the parts are 

well within the bounds of the FOS limits. Just as the carbon fibre link was the 

limiting factor to the snake arm in Figure 5.37, the results in Table 5.27 show 
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the carbon fibre link undergoing the greater amount of axial stress to be the 

limiting component.  

Interchanging all three links for the carbon fibre tubing (Figure 5.39) further 

increases the overall snake arm length to be 1.894m whilst reducing the 

effective length to 0.209m.  

 

Figure 5.39 Snake arm lengths. 

Table 5.29 Actuation cable tension results. 

Cable Number Tension (N) Limit (N) FOS 

1 6.461 490 75.836 

2 5.175 490 94.683 

3 3.132 490 156.439 

4 0.000 490 - 

5 0.000 490 - 

6 0.000 490 - 

7 0.000 490 - 

8 3.202 490 153.008 

9 5.062 490 96.806 

Table 5.30 Joint compression results. 

Joint Number Axial Compression Force (N) Limit (N) FOS 

1 23.033 1332 57.831 

2 16.572 1332 80.379 

3 8.194 1332 162.561 

 

  

Base Link Link 1 Link 2 Link 3 

1.6850m 0.053m 

1.894m 

0.209m 

Aluminium Carbon Fibre Carbon Fibre Carbon Fibre 
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Table 5.31 Joint shear results. 

Total axial load (N) Limit (N) FOS 

23.033 4240 184.086 

Table 5.32 Maximum torque twist at joint 1. 

Maximum Torque Twist (Nm) Limit (Nm) FOS 

0.076 1.8 23.747 

As was the case for replacing one (Figure 5.36) or two links (Figure 5.37) for 

carbon fibre tubes, the shortened link lengths result in the design of the joints 

and cables to be fully capable of withstanding the tension and axial 

compressive forces. Table 5.33 reveals Link 1 to be the reason for the shorter 

link lengths.  

Table 5.33 Flexural buckling results. 

Link Axial stress (N) Elastic buckling stress (N/m2) FOS 

Base 666510 2668200 4.003 

1 666510 2676100 4.015 

2 479530 2676100 5.581 

3 237110 2676100 11.286 

Table 5.34 Local buckling results. 

Link Axial stress (N) Local buckling stress (N/m2) FOS 

Base 666510 4453300000 6681.520 

1 666510 4110200 6.167 

2 479530 4110200 8.571 

3 237110 4110200 17.335 

The increasing reliance on lighter carbon fibre links with the aim of an ever 

increasing snake arm length has revealed the compromise of a longer snake 

arm resulting in a shorter manoeuvrable length and hence a smaller 

workspace as illustrated in Figure 5.40. This is due to the increased likelihood 

of flexural buckling for the carbon fibre links. Given the compromise and the 

aim of investigating within a restricted access void, in this instance, the greater 

workspace volume is more beneficial than the long reach and as such, the 

1.149m snake arm was chosen.  
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Issues will arise if the restricted access borehole is longer than the base link 

length of 0.544m as the borehole will interfere with the movement of the joints. 

On the other hand, the length of a borehole will effectively confine the base 

link and support the structure, thus reducing the chance of flexural buckling 

and instead increasing the likelihood of local buckling. Therefore, this would 

allow the total snake arm length to increase but the effective length to remain 

the same with the same construction design.  

Due to the resulting short lengths presented, another means of increasing the 

exploration workspace beyond the 1.149m is required to increase the scope 

of exploration. Similar to a snake robot, if a robotic tool can traverse the 

borehole entirely then the tool should be able to utilise an alternative form of 

locomotion to continue the exploration.  
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Figure 5.40 Workspace for snake arms of different link materials. 
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5.7 Experiment 

An experiment to observe the response of the snake arm to a change in cable 

length was conducted. In Figure 5.19 the proposed control process involved 

demanding two joint angles for each joint (pitch and yaw) as the user input 

and the controlling software will then calculate the ideal cable lengths for all 

cables and adjust the stroke of the linear actuators to match the ideal cable 

lengths.  

Observing the relationship between the change in cable length provided by 

the actuator frame (from Section 5.5.2) and the joint angle output will allow the 

accuracy of the snake arm to be graded. 

5.7.1 Methodology 

Cable 1 of the snake-arm is responsible for much of the heavy lifting for the 

snake arm. The cable terminates after Joint 1 (Figure 5.24) and carries the 

largest amount of tension whilst under the horizontal cantilever position (Table 

5.11). It is ideally located laterally centred to the joint (Figure 5.22) where 

distance Dy is greatest and any displacements to the cable will result in no 

lateral angle changes to the snake arm. This makes Cable 1 an ideal 

candidate for this experiment as only the arm movements in the longitudinal 

plane needs to be monitored.  

The set up for the experiment is shown in Figure 5.41 from the vantage point 

of a dedicated camera to film the changes to the joint angles as Cable 1 is 

actuated to lift the snake arm. The side view perspective allows the three joint 

angles to be measured post-experimentation for analysis but the stroke of the 

linear actuator is measured directly and recorded during the procedure. Power 

to the linear actuator is supplied through a bench power supply at 6V and 

activating the linear actuator is done through the power supply onboard 

switch.  

Measuring the joint angles is performed before, during and after the activation 

of the linear actuator to pull Cable 1 (Figure 5.42) and the measured angles 

are paired with the measured stroke length changes for further analysis.  
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Figure 5.41 Experimental test rig set up.  

 

Figure 5.42 Results of actuating only Cable 1.  

 

 

Joint 1 Joint 2 Joint 3 

Linear actuator for Cable 1 

Before 

During 

After 
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5.7.2 Results 

The effect of actuating just Cable 1 does produce changes to the arm angles 

for joints 2 and 3. This is due to the cables that terminate at Joints 2 and 3 

being subjected to small changes to length at Joint 1. If the pitch of Joint 1 is 

increased, the calculations for cable lengths in Section 5.5.1 would reveal the 

cables above the centre is reduced in length but the cables below the centre 

is increased. Therefore it was expected from the experimental results that 

whilst the pitch of Joint 1 will increase, the pitch of Joint 2 should decrease 

and the changes to the length of cables for Joint 3 should be mostly 

unchanged as the individual cables are shortened at Joint 1 but lengthened at 

Joint 2.  

The experiment method was repeated ten times and the results for each 

plotted in Figures 5.43, 5.44 and 5.45 (full results are found in Appendix E). 

The manually controlled displacement of the linear actuator ranged from 0mm 

to 18mm and the arm positions and linear actuator is reset after each test, this 

left small deviations to the initial starting joint angles prior to each test.  

As shown in Figure 5.43 the pitch angle of Joint 1 was increased as expected, 

and the linear actuators target displacement of 12mm resulted in joint pitch 

angles of approximately 33°.  

 

Figure 5.43 Experimental results for Joint 1. 
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Figure 5.44 Experimental results for Joint 2. 

 

Figure 5.45 Experimental results for Joint 3. 

It was anticipated Joint 2 will demonstrate a reduction in the joint pitch angle 

as Joint 1 was actuated, Figure 5.44 shows the average pitch angle for Joint 

2 to be -51°. The difference in joint angles between Joints 1 at 33° and Joint 

2 at -51°, therefore, has an effect on Joint 3 that can be seen in Figure 5.45. 
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Small cable length changes occur as the Joint 3 cables pass through the other 

joints, the changes due to the difference in angles result in Joint 3 exhibiting 

an increase in the pitch angle. 

The variance and standard deviation (SD) of the experimental results in Table 

5.35 allows the accuracy of the snake arm to be graded. From the standard 

deviation of individual joints 76% of all the angles occur within one standard 

deviation indicating confidence in the experimental results, but the deviation 

values are widely spread with 2.79° for Joint 1, 5.51° for Joint 2 and 6.46° for 

Joint 3. Interpreting the SD values shows the positional error from this method 

of control can be large and requires further refinement.  

Table 5.35 Experimental accuracy. 

 

Test Cable 

Displacement 

(mm) 

Joint 1 angle 

(°) 

Joint 2 angle 

(°) 

Joint 3 angle 

(°) 

1 11 26.98 -43.99 -7.71 

2 12 32.72 -50.31 -8.81 

3 12 35.35 -50.1 -9.51 

4 12 35.73 -56.35 -4.13 

5 13 34.86 -55.9 1.93 

6 13 35.17 -56.74 -1.73 

7 13 31.65 -46.94 -10.57 

8 13 35.81 -40.45 -5.43 

9 18 33.25 -53.36 7.55 

10 16 31.16 -53.2 5.73 

 

Average 33.27 -50.73 -3.27 

Variance 7.77 30.39 41.72 

Standard deviation 

(sample) 

2.79 5.51 6.46 
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5.8 Discussion and conclusion 

The tension of each actuation cable is related to the length of the overall snake 

arm. As the overall length and cable tensions increase, the potential for 

component failure also increases. Along with link buckling as analysed in 

Section 4.3, there is the risk of cable and joint failure. Each potential failure 

mode limits the maximum length of snake arm possible.  

To find the maximum length a snake arm of 12mm diameter is capable of, an 

iterative solver was formed to check for each failure mode as the snake arm 

length was gradually increased. The tensile strength of the actuation cables 

was found experimentally by pulling several samples of cable until failure. This 

type of experiment is common for discovering the force at which cables tend 

to fail and are accurate and reproducible. A non-destructive approach towards 

predicting the failure of the joints was implemented using FE analysis to 

remove the need to destroy the custom joints.  

Overall, the iterative solver produced a snake arm of 1.149m in length with the 

joint bring the limiting component. A length that the snake arm would be 

sufficient for inspecting environment 1, but not enough for the end effector to 

reach from one wall to another opposing wall. As the weight of each link can 

drastically affect the force required to maintain a snake arm in the horizontal 

cantilever position, the steel construction of each link was replaced with a 

lighter carbon fibre alternative of equal size to discover whether a longer 

snake arm can be achieved.  

Replacing the steel links for carbon fibre in the iterative solver does achieve a 

longer snake arm length, however, at the cost of its workspace volume and 

reduced effective arm length. This compromise for longer overall length would 

not benefit the exploration of a subterranean tomb of historical significance 

and the use of steel links was held.  

An experiment to measure how the snake arm responds to changes in a cable 

length was performed. Pulling a single cable by a known length produced a 

reproducible change in joint angle with slight variance. This variance is likely 

caused by stretching of each cable whilst under load. The indication of cable 

stretching would therefore interfere with the model for controlling the snake 
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arm through changes in the actuator cable lengths and additional controls will 

need to be implemented for any control software.   
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Chapter 6  
Reconfigurable Dual Track Robot 

This chapter investigates the use of reconfigurable mobile robots, deployed 

through boreholes, as an alternative technology to the use of robotic snake 

arms. The expected distance and weight requirements of the robot is 

calculated alongside the forces the robot is required to generate in order to 

achieve them. The whegged design incorporated into the tracks is also 

analysed to measure the capability of the robot over rough terrain. Finally, the 

experiments to find the actual driving forces of the tracks are performed to 

calculate the actual range of the robot in comparison to the target range.  

6.1 Introduction 

To explore a mineshaft up to 200m long and located approximately 9m from 

the entrance through a borehole. The 1.149m length of the snake arm 

developed in Chapter 5 becomes unsuitable for performing inspections at the 

distances required. However, this result was anticipated and the decision 

matrix and discussions in Chapter 3 revealed an alternative mobile robotic 

device is an attractive option to explore large distances beyond the initial entry 

point. Deciding upon a non-modular reconfigurable robot using wheel-leg 

profiles to improve its locomotion capabilities, the development of a 

reconfigurable dual-track robot is investigated here to conduct explorations 

beyond the range of conventional snake arms.  

6.2 Specifications 

As presented in Chapter 3, environment 2 was to conduct a visual survey of 

an underground mine, where the mine entrance is collapsed and sealed. In 

many situations, the quickest method of entry would be through a vertical 

borehole from an accessible mine shaft into the sealed shaft. In this scenario, 

the following specification was developed in Chapter 3.  

The specifications given were: 

 The robot will be deployed vertically downwards in a borehole of length 

30ft (9.144m) 41mm diameter hole. 

 The robot will have the ability to travel 200m on a slight 2° incline. 
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 The robot will be tethered to transmit power and assist in extraction of 

the device 

 Illumination from a small light, such as a single Cree XLamp module 

will provide sufficient illumination [106]. 

 Tapered at rear for withdrawal. 

 The robot weight needs to be sufficiently high to generate traction 

forces sufficient to pull the cable. 

 The robot is required to be deployed from an entrance tunnel of up to 

height/width 2.5m. 

6.3 Design theory 

Initially the theory of tracked vehicles will be developed without regard for 

reconfiguration constraints to understand the required performance of mobile 

robots beyond the entrance point. Assuming a tracked configuration instead 

of wheels as the method of locomotion due to a greater ability to obtain 

footholds over higher obstacles and increased surface contact as described 

in Chapter 2.3.1.  

There is no ideal distance for the separation of the tracks. The ratio or aspect 

ratio between wheelbase and track width (Figure 6.1) differs according to the 

purpose of a vehicle. For vehicles designed for speed where aerodynamics 

for reduced drag calls for a small track width and large wheelbase ratio, lateral 

stability is sacrificed for the reduced track width and increases the likelihood 

of toppling over. 

A small wheelbase with large track width contributes to a vehicle with smaller 

turning radius and enhanced resistance to lateral weight transfer and body 

lean.  
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Figure 6.1 Illustrating track width and wheelbase. 

6.3.1 Robot Mass 

The mass of the robot serves to produce the required tractive force to travel 

the specified length. The mass can be calculated when assuming the robot on 

an incline (Figure 6.2) is static but at the point of moving and is located at the 

furthest point. At this point, the forces acting to drag the robot down the incline 

would be highest due to the tether drag and assuming a smooth surface.  

 

Figure 6.2 Free body diagram of robot and tether on an incline. 

Where: 

𝐹𝑚  = Robot static friction  

𝐹𝑟  = Robot normal force 

𝐹𝑔𝑟  = Robot mass acting down incline 

𝐹𝑐  = Tether static friction 

𝐹𝑡 = Tether normal force 

𝐹𝑔𝑡  = Tether mass acting down incline 

Track width 

Wheelbase 

Robot 

Tether 
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These equations are valid for the free body diagram: 

𝐹𝑚 = 𝜇𝑟 ∙ 𝑀𝑟 . 𝑔. cos(𝜃𝑎) 6.1 

𝐹𝑔𝑟 = 𝑀𝑟 . 𝑔. sin(𝜃𝑎) 6.2 

𝐹𝑐 = 𝜇𝑡. 𝐶𝑚. 𝑥𝑐. 𝑔. cos(𝜃𝑎) 6.3 

𝐹𝑔𝑡 = 𝐶𝑚. 𝑥𝑐. 𝑔. sin(𝜃𝑎) 6.4 

Assuming the mass of the robot is sufficiently high so that 𝐹𝑚 is equal or 

greater to the sum of the forces acting down the incline.  

𝐹𝑚 ≥ 𝐹𝑔𝑟 + 𝐹𝑐 + 𝐹𝑔𝑡 6.5 

𝜇𝑟 ∙ 𝑀𝑟 . 𝑔. cos(𝜃𝑎)

≥ 𝑀𝑟 . 𝑔. sin(𝜃𝑎) + 𝜇𝑡. 𝐶𝑚. 𝑥𝑐 . 𝑔. cos(𝜃𝑎) + 𝐶𝑚. 𝑥𝑐 . 𝑔. sin(𝜃𝑎) 

6.6 

𝜇𝑟 ∙ 𝑀𝑟 . 𝑔. cos(𝜃𝑎) − 𝑀𝑟 . 𝑔. sin(𝜃𝑎)

≥ 𝜇𝑡. 𝐶𝑚. 𝑥𝑐. 𝑔. cos(𝜃𝑎) + 𝐶𝑚. 𝑥𝑐 . 𝑔. sin(𝜃𝑎) 

6.7 

Rearranging, 

𝑀𝑟 ≥
𝐶𝑚. 𝑥𝑐(𝜇𝑡. cos(𝜃𝑎) + sin(𝜃𝑎))

𝜇𝑟 ∙ cos(𝜃𝑎) − sin(𝜃𝑎)
 

6.8 

Where: 

𝜇𝑟 = Static coefficient of friction between robot and slate floor 

𝜇𝑡 = Static coefficient of friction between tether and slate floor 

𝜃𝑎 = Angle of incline 

𝐶𝑚 = Mass of tether per metre 

𝑥𝑐 = Length of tether (distance travelled up the incline) 

Using the values: 

𝜇𝑟 = 0.9 (rubber to dry concrete) [121] 

𝜇𝑡 = 0.9 (rubber to dry concrete) [121] 

𝜃𝑎 = 2° 

𝐶𝑚 = 0.03344 kg/m 

𝑥𝑐 = 200m 

From Equation 6.8 and the values defined here, the required mass of the robot 

is calculated to be at least 7.229kg. However, the actual weight of the robot 

after manufacturing was 2.372kg. Adding additional weight was problematic 
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given the diameter of 36mm and lack of available space. Given the density of 

grade 316 stainless steel is 8.0 g/cm3 [122], to make up the additional 4.857kg 

weight, a 36mm diameter stainless steel bar must be 0.6m long. 

Consequently, the specified 200m distance may not be achieved. Despite this, 

the presence of rough terrain could aid traction that in combination with 

sufficient driving force would increase the distance possible.  

If the length of tether (𝑥𝑐) is indicative of the distance travelled by the robot, 

then rearranging Equation 6.8 for 𝑥𝑐 will provide the maximum distance 

possible assuming a smooth surface. The variable 𝑥𝑐 therefore equates to 

65.629m. 

6.3.2 Driving Force 

For the robot to climb an incline of angle of known mass Mr, the robot must 

generate sufficient pulling force Fp to overcome gravitational force Fgr and Fgt, 

and the forces required to overcome the drag from the tether Fc.  

 

Figure 6.3 Free body diagram of the robot on an incline. 

These equations are valid for the free body diagram: 

𝐹𝑟 = 𝑀𝑟 . 𝑔. sin(𝜃𝑎) 6.9 

𝐹𝑔𝑟 = 𝑀𝑟 . 𝑔. cos(𝜃𝑎) 6.10 

Force 𝐹𝑝 is also highest when located at the furthest point up the incline due 

to the tether friction and mass. 

Robot 

Tether 
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𝐹𝑝 ≥ 𝐹𝑔𝑟 + 𝐹𝑐 + 𝐹𝑔𝑡 6.11 

𝐹𝑝 ≥ 𝑀𝑟 . 𝑔. cos(𝜃𝑎) + 𝜇𝑡. 𝐶𝑚. 𝑥𝑐. 𝑔. cos(𝜃𝑎) + 𝐶𝑚. 𝑥𝑐. 𝑔. sin(𝜃𝑎) 6.12 

Therefore, in order to climb the incline, the required pulling force is: 

𝐹𝑝 ≥ 𝑀𝑟 . 𝑔. sin(𝜃𝑎) + 𝐶𝑚. 𝑥𝑐. 𝑔. [sin(𝜃𝑎) +𝜇𝑐. cos(𝜃𝑎)] 6.13 

Using the values: 

𝜇𝑟 = 0.9 (rubber to dry concrete) [121] 

𝜇𝑡 = 0.9 (rubber to dry concrete) [121] 

𝜃𝑎 = 2° 

𝐶𝑚 = 0.03344 kg/m 

𝑥𝑐 = 200m 

From Equation 6.8, the required force of the robot of ideal weight 7.229kg is 

calculated to be ≥ 8.724N. 

6.4 Robot design 

To fabricate an experimental robot similar to the Hitachi shape changing robot 

concept (from Section 6.4) the design of the robot was broken down into three 

modules, two locomotion and a single deployment module.  

Preserving the differential steering tracks as the locomotion method for its 

ability to navigate rough terrain and small size, the robot concept assumes a 

U-like shape once deployed (Figure 6.4) but can configure into a slender 

straight line throughout the deployment process (Figure 6.5). The finished 

dimensions and weights are shown in Table 6.1. 
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Figure 6.4 The mine exploration robot in the deployed configuration. 

 

Figure 6.5 The mine exploration robot in the un-deployment configuration. 

Table 6.1 Mine exploration robot specifications. 

 

 

Mass 2.372 kg 

Deployed size (H x W x L) 33 x 335 x 455 mm 

Un-deployed size (H x W x L) 33 x 31 x 1199.5 mm 

Locomotion module 

Deployment module 
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6.4.1 Locomotion Module 

For the robot to be deployed the diameter of the robot must be less than the 

specified 41mm diameter, leaving 2.5mm room each side for clearance, the 

diameter becomes 36mm (Figure 6.6). The length of the un-deployed robot 

was only limited by the height of the shaft at approximately 2.5m meaning 

although the diameter was restricting, the available length provided the 

volumetric space to successfully house all the internal components by 

extending the robot. 

 

Figure 6.6 Front view of the locomotion module and the diameter limits. 

 

Figure 6.7 Locomotion module. 

Ø41 

Ø36 

Motor section 

Space for internal electronics 

Tensioning section 

Camera / LED 
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The locomotion module is constructed from three sections, one end houses 

the motor and gearbox and the other maintains the belt tension of the tracks 

(Figure 6.7). The tension is supplied through a sliding platform and capacity 

for containing variable stiffness extension springs to adjust the tension of the 

tracks.  

6.1.1.1 Gearbox 

The force exerted from the tracks is supplied from a specially designed low 

profile gearbox (Table 6.3) and motor (Table 6.2) that fits entirely within the 

tracks as shown in Figure 6.8.  

 

Figure 6.8 Motor and gearbox section for locomotion module. 

Table 6.2 Maxon motor specification. 

Brand Maxon Motor 

Part number 110044 

Nominal torque (Nm) 0.00219 

Nominal speed (rpm) 6700 

No load speed (rpm) 12300 

Motor 

Gearbox 

370:1 

Bevel gear 

16 teeth 

Bevel gear 

16 teeth 

Spur gear 

12 teeth 

Spur gear 

26 teeth 

Spur gear 

32 teeth 
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Table 6.3 Maxon motor planetary gearbox specification. 

Brand Maxon Motor 

Part number 110324 

Reduction 370:1 

Max continuous torque at gearbox output 

(Nm) 

0.25  

 

Figure 6.9 Track gear train.  

The maximum output torque was calculated from the gear train in Figure 6.9. 

These calculations was necessary during the design phase prior to 

manufacturing to ensure the force output is adequate to meet the demands 

from the driving force calculations in Section 6.3.2. The calculated torque 

produced is shown in Table 6.4. 

Table 6.4 Maximum torque from track gearbox. 

Motor output 0.00219 Nm 

Gearbox output 0.810 Nm 

Track output 2.161 Nm 
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Figure 6.10 Side view of the track. 

Using the perpendicular distance between the centre and track (Figure 6.10), 

the maximum force produced was calculated as: 

𝐹𝑜𝑟𝑐𝑒 =  
𝑇𝑜𝑟𝑞𝑢𝑒

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 

6.9 

𝐹𝑜𝑟𝑐𝑒 =  
2.1608

0.01635
 

6.10 

𝐹𝑜𝑟𝑐𝑒 = 132.159𝑁 6.11 

However, the Maxon motor gearbox is only rated for a maximum continuous 

torque of 0.25Nm (from Table 6.3). Substituting this value as the gearbox 

output in Table 6.4 results in a torque of 0.667Nm and 40.775N of force. This 

provides a factor of safety of: 

𝐹𝑜𝑟𝑐𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑

𝐹𝑜𝑟𝑐𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑
=

40.775

8.724
= 4.674 

6.12 

Assuming a mechanical efficiency of 50% that doubles the force required. The 

calculated factor of safety will remain larger than one; this result indicates the 

system is still sufficient for driving the robot.  

The maximum speed of the track and ultimately the speed of the robot can 

also be calculated from the gearbox ratio and track geometry. 

  

0.01635m 
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Table 6.5 Maximum speed from track gearbox. 

Motor nominal output 6700 rpm 

Gearbox output 18.108 rpm 

Track output 6.7905 rpm 

Therefore: 

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 max 𝑠𝑝𝑒𝑒𝑑 = 𝑐𝑖𝑟𝑓𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ∙ 𝑟𝑝𝑚 6.13 

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 max 𝑠𝑝𝑒𝑒𝑑 = 2 ∙ 𝜋 ∙ 𝑟 ∙ 𝑟𝑝𝑚 6.14 

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 max 𝑠𝑝𝑒𝑒𝑑 = 2 ∙ 𝜋 ∙ 0.0164 ∙
6.791

60
 

6.15 

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 max 𝑠𝑝𝑒𝑒𝑑 = 0.0116 𝑚/𝑠 6.16 

6.1.1.2 Step-Climbing 

Assuming rough terrain within the mineshaft, the robot would be expected to 

climb over steps and obstacles. The function of the 5mm high profiles in a 

20mm pitch on the tracks serves two purposes, to provide ground clearance 

to the robot and also the characteristics of a whegged robot [16]. The whegs 

can allow the robot to maintain a discontinuous foothold on irregular terrain, 

similar to legs [37]. Additionally, the whegs enable such robots to climb and 

negotiate terrain that are usually impassable for wheeled robots.  

The maximum step height of the tracks is calculated from 20mm pitch of the 

whegs, 3mm thickness and 16.35mm radius.  

𝑎𝑟𝑐 𝑙𝑒𝑛𝑔𝑡ℎ =  
𝜃

360
∙ 𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

6.17 

𝑎𝑟𝑐 𝑙𝑒𝑛𝑔𝑡ℎ =  
𝜃

360
∙ 2 ∙ 𝜋 ∙ 𝑟 

6.18 

20 =  
𝜃

360
∙ 2 ∙ 𝜋 ∙ 16.35 

6.19 

Rearranging,  

𝜃 =
20 ∙ 360

2 ∙ 𝜋 ∙ 16.35
 

6.20 

𝜃 = 70.087° 6.21 
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Figure 6.11 Whegged tracks climbing steps.  

From the equations and Figure 6.11, the maximum step height the robot can 

climb is 24.51mm. 

6.4.2 Deployment Module 

The role of the deployment module is to connect the two locomotion modules 

and change the configuration of the robot when required. To complete the 

survey of the shaft, the module also contains the single Cree XLamp alongside 

an analogue camera. 

To find the torque required in order to deploy the locomotion modules, the 

deployment module and a single locomotion module was modelled as a two-

link arm moving from 0° to 90° (Figure 6.12). When at 0°, the torque is 

expected to peak due to the greater gravity effect.  

Track with 5mm 

high profiles 3mm 

thick on a 20mm 

pitch. 
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Figure 6.12 Two modules as a two-link arm at both angle extremes.  

Table 6.6 Deployment module properties. 

Length (m) 0.306 

Actual mass (kg) 0.69 

Centroid position (m) 0.153 

Table 6.7 Locomotion module properties. 

Length (m) 0.441 

Actual mass (kg) 0.789 

Centroid position (m) 0.222 

Deployment Locomotion 

Deployment 

L
o

c
o
m

o
ti
o

n
 

0° 

90° 
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Using the Recursive Newton-Euler methodology as used in Chapter 4.2, the 

torques required to actuate the arm using the link properties at table 6.6 and 

Table 6.7 as a function of the arm angle was computed and the results in 

Figure 6.13 show a peak of 1.6928Nm when at 0° to 0Nm at 90°. 

 

Figure 6.13 Change in joint torque versus arm angle. 

 

Figure 6.14 Inside deployment module. 

Motor 

Gearbox 

M6 threaded rod 

Brass nut 

Deployment module 

Locomotion module 
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Production of the large torque requirements rests upon the linear actuator 

mechanism within the deployment module (Figure 6.14). Utilising the same 

gearbox (Table 6.3) and motor (Table 6.2) combination as the locomotion 

module the torque generated is non-linear and a function of the arm angle.  

The power screw assembly (Figure 6.15) converts the motor's torque into a 

reciprocating linear force and is calculated as:  

 

Figure 6.15 Power screw components. 

Table 6.8 Power screw properties. 

Motor torque, T  0.8103 Nm  

Pitch, P  0.001 m  

Lead, L  0.001 m  

Nominal diameter, D  0.005312 m  

Root diameter, Di  0.004596 m  

Pitch diameter, d 
𝑑 =

𝐷 + 𝐷𝑖

2
 

0.004954 m 6.22 

Helical angle, θ 
𝜃 = 𝑡𝑎𝑛−1 (

𝐿

𝜋 ∙ 𝑑
) 

3.6764 ° 6.23 

Coefficient of friction, 

μ 

 0.19   

Friction angle, ℓ ℓ = 𝑡𝑎𝑛−1(𝜇) 10.758 ° 6.24 

Thread angle, α 𝛼 =
𝛼

2
 30 ° 6.25 

 

Motor 

ISO M6 threaded rod, 

6g Tolerance class 

Brass Nut 
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Specifications for the power screw assembly are shown in Table 6.8. The 

force produced by the power screw is dependent on whether it is raising (90° 

to 0°) or lowering (0° to 90°).  

𝐹𝑟𝑎𝑖𝑠𝑒 =
2 ∙ 𝑇

𝑑 (
𝜇 ∙ 𝑠𝑒𝑐(𝛼) + tan (𝜃)

1 − 𝜇 ∙ 𝑠𝑒𝑐(𝛼) ∙ tan (𝜃)
)

= 1137.5667𝑁 
6.26 

𝐹𝑙𝑜𝑤𝑒𝑟 =
2 ∙ 𝑇

𝑑 (
𝜇 ∙ 𝑠𝑒𝑐(𝛼) − tan (𝜃)

1 + 𝜇 ∙ 𝑠𝑒𝑐(𝛼) ∙ tan (𝜃)
)

= 2140.1842𝑁 
6.27 

Working with the smaller force produced, the torque produced can be 

calculated simplifying the mechanism into a 4-bar linkage force analysis with 

the forces labelled in Figure 6.16. 

 

Figure 6.16 Deployment mechanism. 
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Figure 6.17 shows the torque produced by the power screw assembly and the 

torque required to lift the locomotion module as calculated in Figure 6.13. As 

the torque produced is consistently greater than the torque required, the 

assembly should be able to lift the locomotion module with no external 

assistance.  

 

Figure 6.17 Torque results. 

Reducing the motor/gearbox output to the 0.25Nm gearbox operating limit, the 

force produced by the power screw assembly is reduced to 350.97N. 

Recalculating the torque results reveal the mechanism still provides the 

required torque with a minimum FOS of 2.7 (Figure 6.18). Accordingly, the 

deployment system remains fully capable of actuating the locomotion modules 

in the horizontal cantilever position where the torque requirements are at its 

peak.  
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Figure 6.18 0.25Nm Gearbox output torque results. 

6.5 Experimentation 

6.5.1 Speed 

The speed of the robot was theoretically calculated as 1.16cm/s, to establish 

the actual speed the robot was tested to displace 0.6m in a straight line and 

manually timed as shown in Figure 6.19. 

 

Figure 6.19 Experimental set up for timed distances. 

The test was repeated for both deployment states and the speed calculated 

as: 

𝑣 =
𝑠

𝑡
 6.28 

Where: 

𝑣 = Velocity (m/s) 
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𝑠 = Distance (m) 

𝑡 = Time (s) 

Table 6.9 Velocity results. 

Distance Joint angle 0° Joint angle 90° 

0.6 39.99 40.92 

0.6 39.64 39.58 

0.6 39.71 39.92 

0.6 39.70 39.84 

0.6 39.80 39.55 

0.6 39.64 39.55 

0.6 39.60 39.74 

0.6 39.72 39.53 

0.6 39.60 40.13 

0.6 39.59 39.84 

Average 39.70 39.86 

The velocity of the robot in the un-deployed straight line configuration is, 

therefore: 

𝑣 =
0.6

39.70
= 1.51 𝑐𝑚

𝑠⁄  
6.29 

The velocity of the robot in the deployed U-like configuration is, therefore: 

𝑣 =
0.6

39.86
= 1.51 𝑐𝑚

𝑠⁄  
6.29 

This results in the experimental speed being greater than the theoretical 

speed, a difference of 26.0479%. This can be explained due to the theoretical 

speeds being calculated from the motors nominal speed that would normally 

vary under different loading conditions. The results in Table 6.9 also shows 

the speeds to be consistent.  

6.5.2 Track force 

Analysis of a robot climbing an incline revealed the force required by the 

locomotion drive to be 8.724N. To investigate whether the robot can supply 

the force a test rig was built to allow different loads to be attached to the drive 

(Figure 6.20).  
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Figure 6.20 Track force experimental set up. 

As shown in Figure 6.20 the test procedure involved attaching weights to the 

tracks in increments of 0.1 and 0.5kg and driving the tracks forward to lift the 

weights upwards. It was observed that overloading the tracks would cause the 

belts to slip due to the belt-tensioning component being overcome and unable 

to maintain non-slip contact between timing pulley and belt. A solution was 

found by increasing the spring stiffness of the tensioning component, this 

overall increases the tension throughout the belt and also increased the force 

required for the belt slip to occur.  

The aim of this experiment was not to find the absolute force output, but rather 

a sufficient amount of force to be supplied for the robot to climb the 2° incline 

at 200m and at which point does the track slippage start to occur without 

further increasing the tensioning spring stiffness.  

Table 6.10 Testing robot at 2° incline. 

Distance (m) 200 Incline (°) 2 

𝜇𝑟 0.9 𝜇𝑡 0.9 

Required mass (kg) 7.2285 Required force (N) 8.7242 

Applied force (N) 9.32 Verdict Pass 

The results of Table 6.10 shows the locomotion module capable of providing 

the torque required to drive a 7.229kg robot up 200m on a 2° incline. The next 

Weights 

Clamp 

Track loading 
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step was to incrementally increase the load on the tracks until slippage 

occurred. At a load of 12.86N, no slippage had occurred. It was observed at a 

load of 13.36N slippage was becoming a frequent occurrence. 

From Equation 6.13, the incline the robot can no longer climb the 200m 

distance can be found as 4.9° however the robot mass must be increased to 

8.0969kg. 

6.6 Discussion and conclusion 

The theory developed with the two track locomotion system with wheel-leg 

profiles would allow the robot to climb over small obstacles and generate 

sufficient force to climb the 200m distance. However, for the necessary 

traction to be generated the weight of the manufactured robot is insufficient 

without substantial modifications to incorporate additional mass. These weight 

requirement calculations on an incline does assume a smooth surface where 

only the weight provides the static friction force, however a mineshaft floor is 

rarely ever smooth. An advantage of using tracks with the whegged profiles is 

it will allow the robot to gain additional traction to further increase the distance 

travelled.  

The analysis and experimentation with the robot has shown it to be capable 

of contributing a driving force of up to 13.36N on the 2.372kg platform to a 

distance of 65.629m on a 2° incline. At this distance, the robot is only 

employing 2.863N driving force according to Equation 6.13. If the robot was 

to fully utilise the driving force with the same mass, Equations 6.8 and 6.13 

also show the robot to be capable of achieving 10.813m on a 33.5° incline. 

Ground clearance for the robot is limited to the height of the track profiles at 

5mm. The length of the deployment module dictates the size of the track width. 

As the dimensions of the robot are known (Table 6.1), the aspect ratio of the 

robot can be calculated as 1.36:1. This track width contributes towards 

resistance to lateral weight transfer and body lean. The low ground clearance 

would result in obstacles being caught in the space between the two tracks 

resulting in a build-up of debris. Likewise, this issue will also occur with the 

Hitachi shape changing robot and can be resolved if the ground clearance of 
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the locomotion modules is either increased for the deployment modules raised 

higher through additional mechanisms.  
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Chapter 7  
Feasibility of Self-Folding Robots 

The potential of reconfigurable mobile robots for deployment through 

boreholes is limited by the requirement for conventional gears, motors, and 

joints. This chapter explores the use of smart materials and innovative 

manufacturing techniques to form a novel concept of a self-folding robotic joint 

for a self-assembling robotic system. The design uses shape memory alloys 

fabricated in laminate structures with heaters to create folding structures.  

7.1 Introduction 

Programmable self-folding machines (similar to folded paper origami) could 

enable the creation of a more complex and capable robotic structure. Shin, B., 

et al. have demonstrated the fabrication of folding laminate structures [56].  

Research has developed self-folding hinges for irreversible assembly 

structures only [55, 58, 123]. The folds are actuated using thermoplastic film 

layers of pre-stretched polystyrene (PSPS) or shape memory alloys (SMA). 

The PSPS activated fold is permanent and non-reversible, whereas the SMA 

fold can be reversible through external manipulation but not permanent [59, 

60]. 

The ability of an SMA actuated fold to work in two directions without manually 

resetting the state after each use will be hugely beneficial, enabling the 

deployment, recovery and cyclic operation for locomotion. Thus removing the 

need for traditional motors and other bulky electronics and mechanisms. The 

development of self-reconfigurable and self-folding laminates can therefore 

introduce an alternative platform for smaller miniature mobile borehole 

exploration robots. 

The implementation of a true self-reversible bi-directional fold is a significant 

milestone for self-folding robotics. The research conducted in this chapter 

aims to develop a true self-reversible bi-directional fold using SMA and 

drawing from the results of manufactured samples, form a decision on the 

feasibility of using these actuated folds for actuating robots.  
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7.2 Specifications 

A self-folding robot should start fully flat without externally embedded 

electronics. By using shape memory alloys, each fold should produce enough 

torque to actuate its hinge, be self-reversible and non-permanent. The 

creation of a self-reversible fold allows the simple concept of a basic inchworm 

mechanism to be proposed that can assemble and actuate itself fully.  

7.3 Layer design 

SMA folds can be activated by heating the alloy above its activation 

temperature where the metal structure transforms from martensite to austenite 

phase. When activated, the SMA fold will actuate to a preprogrammed shape 

on the other hand when left below the activation temperature, the SMA is 

ductile and stays at its previous shape [124].  

Activation can be accomplished by any means of applying heat to the alloys, 

the common methods are using joule heating [59] or by attaching a flexible 

heater to the alloy and activating by heat conduction [60]. For the hinge folds 

to be bi-directional and reversible, attempts have been made training an alloy 

to remember both two separate actuation directions and selectively activating 

one portion when required [60]. This solution, however, is not reversible and 

cannot be used repeatedly.  

It is proposed that by introducing two individually activated SMA sheets into a 

single fold (Figure 7.1), the fold will be fully bi-directional and reversible 

through selective heating with a capable heat insulating layer separating them 

(Figure 7.2).  
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Figure 7.1 Layer composition. 

 

Figure 7.2 Selectively heating one side changes fold direction. 

The role each layer plays is defined in Table 7.1. 

Table 7.1 Layer roles. 

Layer Role 

Power Contains the embedded flexible heating circuit, used to 

activate the SMA. 

Adhesive Binds the two adjourning layers together. 

Active Contains the embedded SMA sheet, preprogrammed to fold 

the hinge.  

Thermal Thermally insulating layer to reduce heat conduction 

through the other layers. Allows SMA activation on only one 

side. 
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The parts supplied for each layer is provided in Table 7.2. The selected 

copper-polyimide laminate was chosen as these are commonly sourced for 

flexible circuitry and the thin thickness was intentional to more effectively 

conduct heat to the SMA layer. In general, the thickness of each layer was 

important due to its effects on the bend radius and overall stiffness. Although 

the selection of the thermal layer was a compromise between thickness and 

its heat transfer properties.  

Table 7.2 Layer parts sourced. 

Layer Thickness Material Brand Mfr-

reference 

Power 0.1 Copper-Polyimide 

Laminate 

Goodfellow 283-280-25 

Adhesive 0.13 Acrylic sheet 3M 3M 7955 

Active 0.1 NiTi alloy sheet Memry Nitinol Alloy 

M 

Thermal 0.125 Polyimide film Goodfellow 667-985-89 

It is proposed the self-folding hinges be used to actuate a basic inchworm 

mechanism as illustrated in Figure 7.3. 

 

Figure 7.3 Proposed self-folding inchworm mechanism. 

     

Top View: 

Stored flat when in 

storage and unused. 

Three SMA actuated folds 

Side View: 

Activated folds creates the 

inchworm mechanism with 

angled feet for asymmetric 

friction. The active centre 

fold will actuate the 

mechanism for locomotion. 
Direction of travel 
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7.3.1 Bend radius 

The thickness of the total layer composition affects the bend diameter and 

force required to actuate the folds. When a fold is actuated, one-half is under 

compression and the other under extension. This change in length can be 

measured as strain and is important for parts such as the NiTi alloy that have 

a 10% limit [125].  

If the design is for a bidirectional fold of 360°, the SMA strain can be found as: 

 
Figure 7.4 SMA strain. 

Where: 

𝐵 = Bend diameter 

𝐼𝐷 = Inner diameter 

𝑂𝐷 = Outer diameter 

𝐸𝑋 = Extension 

𝐼𝐴 =
𝜋 ∙ 𝐼𝐷

2
+ (2 ∙ 𝐸𝑋) 

7.1 

𝑂𝐴 =
𝜋 ∙ 𝑂𝐷

2
+ (2 ∙ 𝐸𝑋) 

7.2 

𝑆𝑀𝐴 𝑠𝑡𝑟𝑎𝑖𝑛 =
𝑂𝐴 − 𝐼𝐴

𝐼𝐴
 

7.3 

This would then inform whether the SMA strain limits are exceeded. 



- 161 - 
 

7.3.2 Active Af Experiment  

The austenite finish temperature (Af) is the temperature at which the 

transformation from martensite to austenite finishes on heating i.e. the 

temperature when the SMA has fully transformed. The transformation curve 

of the SMA in combination with the insulating abilities of the thermal layer is 

vital for the bidirectional fold to work. A common method for determining the 

transformation temperatures of an alloy whilst being slowly heated is the 

active Af-test. It is conducted by bending a sample and submerging it into a 

cold bath initially to ensure no transformation are present from the start. The 

bath water is slowly heated while the shape recovery and temperature is 

monitored. This method has been demonstrated to achieve accurate and 

repeatable results if performed carefully [126].  

 
Figure 7.5 Active Af-test. 

The experimental procedure involved fully submerging the SMA alloy pre-

deformed into a U shape. The combination of a heater and water agitator 

results in the water temperature being uniform, minimising temperature 

differences between the SMA and thermometer. As the water temperature 

rose, an image was taken of the SMA at regular intervals until no more 

changes were observed. The water is then replaced with cold water to remove 

heat effects and then the experiment repeated 7 times. Post-processing of 

Digital thermometer 

Water agitator 

Heater 

Water bath Thermocouple 

element 

SMA 
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each image was performed to measure the angle of the SMA in each frame 

to be correlated with water temperature.  

Table 7.3 Active Af measurement experiment 1. 

Temperature 

(°C) 

Image Angle (°) 

22 

 

-14.83 

50 

 

17.01 

60 

 

83.94 

70 

 

145.92 

 



- 163 - 
 

 

Figure 7.6 Active Af measurement results. 

The transformation curve illustrated in Figure 7.6 shows that between 25°C to 

52°C the SMA response is small and slow, and the large changes occur from 

52°C to 68°C where the alloy assumes its pre-programmed state. From 52°C 

to 68°C, this 16°C difference is important for the development of the thermal 

layer (Figure 7.7).  

The role of the thermal layer is to thermally separate both SMA actuators. 

When the flexible heater heats one side the temperature should reach 70°C 

to fully activate its adjacent SMA actuator. However, if this heat was to 

continue conducting through the other layers, the other SMA actuator will also 

activate causing no net angle change to the hinge.  
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Figure 7.7 Thermal damping range.  

7.3.3 Thermal Layer 

The thermal insulating properties of air (Table 7.5) can be taken advantage of 

to assist the layer. As the layer cannot entirely consist of only air, the polyimide 

film (Table 7.4) must still be used to provide a structure small enough to limit 

heat conduction but enough to support the pockets of air. Comparing the 

coefficient of thermal conductivity between the two materials, it is clear the 

larger the percentage of air in the layer the better the thermal damping range. 

It is unknown what performance the single layer can have or how many layers 

are needed. 

Table 7.4 Polyimide thermal properties at 25°C 

Density ρ 1420 kg/m3 

Coefficient of thermal 

conductivity 

k 0.12 w/mk 

Specific heat c 1090 J/kg.k 

Thermal diffusivity α 0.0775x10-6 m2/s 

Table 7.5 Air thermal properties at 25°C 

Density ρ 1.1 kg/m3 

Coefficient of thermal 

conductivity 

k 0.027 w/mk 

Specific heat c 1000 J/kg.k 

Thermal diffusivity α 24.5454x10-6 m2/s 
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7.3.3.1 Thermal Analysis 

Thermal layers with air pockets of different sizes (Figure 7.8) were analysed 

using SolidWorks Thermal Analysis. Setting the temperature of the heating 

elements to the target 70°C as part of a transient study (Table 7.6) as shown 

in Figure 7.9, the temperatures of both SMA sheets were measured and the 

temperature differences extracted post processing. For completeness, the 

presence of no air and only air was also analysed. At the cost of additional 

thickness, the thermal layer can also be composed of multiple layers of the air 

pockets and adhesive layers in-between in order to increase the thermal 

insulation.  

46% air 57% air 81% air 

   

Figure 7.8 Different sized air pockets.  

Table 7.6 Thermal Analysis Parameters. 

Heat Power 1 W 

Heat Power Limits 69°C - 71°C 

Convection 10 W/m2.k 

Initial temperature 25°C 
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Figure 7.9 SolidWorks thermal analysis heating curve maintains the 

temperature at 70°C. 

The following results display the surface heat maps of the two active SMA 

layers as the target temperature is met and illustrates the temperature 

differences between them. The greater the average temperature difference 

the larger the proposed effectiveness of the thermally insulating layer. Only 

the results of 57% air are shown, the results for other layers with different 

sized air pockets are found in Appendix G. 

% Air = 57% Single thermal layer 

 

 

Temperature of both layers Temperature difference 

Figure 7.10 Thermal analysis results. 
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% Air = 57% Double thermal layer 

  

Temperature of both layers Temperature 

difference 

Figure 7.11 Thermal analysis results. 

% Air = 57% Triple thermal layer 

  

Temperature of both layers Temperature difference 

Figure 7.12 Thermal analysis results. 
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Table 7.7 Thermal analysis results comparison. 

      % Air 

      0% 46% 57% 81% 100% 

L
a

y
e

r 
A

rr
a

n
g

e
m

e
n

t 

S
in

g
le

 

Time 40 37 37 37 34 

Average 

U Temp 

69.0403 69.1086 69.5093 69.3891 69.8795 

Average L 

Temp 

65.6183 64.3722 64.1988 62.4800 61.0487 

Difference 3.422 4.7364 5.3105 6.9091 8.8308 

D
o

u
b

le
 

Time 54 46 42 42 38 

Average 

U Temp 

70.6394 70.6035 69.5361 74.1346 70.3677 

Average L 

Temp 

65.2953 62.9727 30.9122 61.7015 56.0091 

Difference 5.3441 7.6309 8.6239 12.4331 14.3586 

T
ri

p
le

 

Time 58 52 48 44 38 

Average 

U Temp 

68.5165 70.9055 70.5117 74.0903 69.4574 

Average L 

Temp 

61.3006 60.5608 58.8309 57.2722 50.3634 

Difference 7.2159 10.3446 11.6808 16.8181 19.0941 

The results of the thermal analysis (Table 7.7) has shown for the 16°C 

difference to be achieved, the closest match would be to use three layers of 

the 81% air pockets. The results are as expected due to the smaller coefficient 

of thermal conductivity for air in comparison to the polyimide film. To further 

increase the effectiveness of the thermal layer, it can be proposed that the 

medium is altered so that the air is replaced with a material with a smaller 

coefficient of thermal conductivity. 

Using Equations 7.1, 7.2 and 7.3, the minimum bend diameter gave the 

combined layer thicknesses of 1.6mm is calculated to be 4.05mm for 10% 

strain.   
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7.4 Experiment 

To test the abilities of the bi-directional SMA actuated folds, several samples 

were produced for testing using the triple thermal layers with 81% air. The 

tests involved hinges with different sized SMA sheets embedded of different 

lengths and widths with the aim to find how the size of the SMA affects the 

hinges performance.  

 

Figure 7.13 Several samples of different sized embedded SMA sheets.  

The SMA sizes chosen for the experiment are listed in Table 7.2. From strip 1 

to 5, the length and width values are varied to allow for the effects of SMA size 

and its effects on the performance of the fold to be observed. 

Table 7.8 Different sized SMA strips used. 

SMA number Length (mm) Width (mm) 

1 55 10 

2 40 10 

3 25 10 

4 25 20 

5 25 30 

7.4.1 Methodology 

Five different samples were produced each with a unique SMA size. Activation 

of the hinge relies on the combined effort of several layers and the failure of 

any will result in the failure of the joint to move. For each sample, a series of 

tests were performed to check the functionality and performance. Table 7.9 

lists the tests performed, what was expected and indications the layer has 

failed.  
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Table 7.9 Experimental checks. 

Test 

performed 

Success Failure 

Does the 

heating layer 

produce 

enough heat 

to activate 

the SMA 

layer? 

If the heating layer functions 

correctly and the SMA activation 

temperature is met, a change in 

the shape of the hinge should be 

noticeable.  

A digital thermometer will be able 

to accurately read the temperature 

at the surface.  

Manufacturing 

complications could 

result in a heater that 

does not produce 

sufficient heat.  

Faults in the copper 

tracks create areas of 

abnormally high 

resistance resulting in 

hot spots that can 

cause the heater to 

burn.  

Does the 

SMA 

produce 

enough 

torque? 

Generating sufficient torque to 

overcome internal stiffness will be 

revealed with a change to the 

angle of the fold. 

No change to the shape 

of the fold will occur if 

the internal stiffness of 

the combined layers is 

too high.  

Does the 

thermal layer 

function as 

intended? 

The thermal layer can only delay 

the temperature rise so only one 

SMA layer is activated before the 

other. Measuring the temperature 

delay of the layer at both sides is 

difficult as direct access is 

obstructed by other layers.  

Indications the layer is performing 

as intended can be witnessed 

through the fold being actuated 

and reversed when the opposite 

layer is activated after (assuming 

Just as the successful 

functionality of the 

thermal layer can be 

observed through the 

actions of the SMA 

layer. The failure of the 

thermal layer can be 

observed if no or slight 

folding occurs.  
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the SMA layer produces sufficient 

torque). 

7.4.2 Results 

Table 7.10 Experimental results for SMA strip 1. 

SMA Strip 1 

55 x 10mm 

 

Does the heating layer produce enough heat to 

activate the SMA layer? 

Measuring the temperature rise with a digital 

thermometer, the 70°C target can be reached and 

maintained by controlling the supply of power to the 

heater.  

Does the SMA produce enough torque? 

No noticeable change to the fold angle was 

observed during heating. This would indicate the 

stiffness of the fold could not be overcome for fold 

actuation to occur.  

Does the thermal layer function as intended? 

No actuation of the fold was observed, it is unclear 

whether the thermal layer functioned or not. As the 

design of the thermal layer is repeated for the other 

samples and the thermal layer does work in those 

cases, it can be assumed the thermal layer in this 

sample would also be functional.  

Table 7.11 Experimental results for SMA strip 2. 

SMA Strip 2 

40 x 10mm 

 

Does the heating layer produce enough heat to 

activate the SMA layer? 

Measuring the temperature rise with a digital 

thermometer, the 70°C target can be reached and 

maintained by controlling the supply of power to the 

heater.  

Does the SMA produce enough torque? 
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No noticeable change to the fold angle was 

observed during heating. This would indicate the 

stiffness of the fold could not be overcome for fold 

actuation to occur. 

Does the thermal layer function as intended? 

No actuation of the fold was observed, it is unclear 

whether the thermal layer functioned or not. As the 

design of the thermal layer is repeated for the other 

samples and the thermal layer does work in those 

cases, it can be assumed the thermal layer in this 

sample would also be functional. 

Table 7.12 Experimental results for SMA strip 3. 

SMA Strip 3 

25 x 10mm 

 

Does the heating layer produce enough heat to 

activate the SMA layer? 

Measuring the temperature rise with a digital 

thermometer, the 70°C target can be reached and 

maintained by controlling the supply of power to the 

heater. The activation of the SMA layer was 

demonstrated before the full assembly in Figure 

7.15 showing the maximum fold angle that can be 

achieved with the SMA.  

Does the SMA produce enough torque? 

No noticeable change to the fold angle was 

observed during heating. This would indicate the 

stiffness of the fold could not be overcome for fold 

actuation to occur. 

Does the thermal layer function as intended? 

Once the initial fold was observed showing the SMA 

layer can actuate the fold, the power was swapped 

to heat the opposing side. Successful activation of 

the opposing layers was observed as the fold 
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actuated in the opposite direction to restore the fold 

angle. 

Table 7.13 Experimental results for SMA strip 4. 

SMA Strip 4 

55 x 20mm 

 

Does the heating layer produce enough heat to 

activate the SMA layer? 

Measuring the temperature rise with a digital 

thermometer, the 70°C target can be reached and 

maintained by controlling the supply of power to the 

heater.  

Does the SMA produce enough torque? 

A change to the fold angle was recorded when the 

heating layer was powered. The deformation is 

illustrated below.  

 

Does the thermal layer function as intended? 

Once the initial fold was observed showing the SMA 

layer can actuate the fold, the power was swapped to 

heat the opposing side. Successful activation of the 
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opposing layers was observed as the fold actuated in 

the opposite direction to restore the fold angle. 

Table 7.14 Experimental results for SMA strip 5. 

SMA Strip 5 

55 x 30mm 

 

Does the heating layer produce enough heat to 

activate the SMA layer? 

The heating element eventually failed and a section 

of the copper track delaminated. However, the 

activation temperature of the SMA layer was 

achieved when activation of the SMA layer 

occurred. The delamination can be seen in Figure 

7.14. 

Does the SMA produce enough torque? 

A change to the fold angle was recorded when the 

heating layer was powered. The deformation is 

illustrated below.  

 

Does the thermal layer function as intended? 

Once the initial fold was observed showing the SMA 

layer can actuate the fold, the power was swapped 

to heat the opposing side. Successful activation of 

the opposing layers was observed as the fold 



- 175 - 
 

actuated in the opposite direction to restore the fold 

angle.  

 

Figure 7.14 Flexible heating layer failure.  

 

Figure 7.15 Heat activation of strip 3 with just the heating element and SMA 

(size 25 x 10mm). 

The results of testing five samples of different SMA sizes has shown the width 

of the SMA to be more important than the length in supplying the torque 

necessary for fold actuation. The stiffness of the combined layers is an 

obstacle that limits the achievable fold angle range. Reducing the overall 

thickness will reduce the stiffness of the fold allowing the SMA to actuate the 

folds with the same torque.  

Figure 7.15 can represent the achievable fold angle if the layer stiffness was 

minimal. Ideally, the fold angle should be 180°, but the annealing step (400°C 

for 30 minutes then water quench) to program the SMA requires further work 

to improve the memorised angle.  

Before: 

After: 
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7.5 Discussion and conclusion 

A self-folding robot is ideally capable of remote, autonomous assembly that 

could be easily transported when packed flat for applications such as satellites 

in space or rapid deployment of shelters during natural disasters [58]. These 

robots are easy to manufacture and the versatility of folds necessitates the 

creation of complex three-dimensional structures from two-dimensional 

structures.  

Printed inchworm robots capable of self-assembly found in literature, such as 

those by Felton, S.M., et al. [55] are reliant on assembly machines to pick and 

place electrical components during manufacturing to provide the printed 

inchworm robot the means to actuate its main fold for locomotion. These 

servomotors, linkages and batteries are bulky constructs that remove the 

ability for self-folding robots to be flat, easily stored and transported.  

The incorporation of SMA strips to power the structural folds and actuation 

folds allows a fully flat machine to be built. The development of a true 

bidirectional SMA folding actuator with collinear rotational axis is the key to 

allowing such self-folding robots to function without external manipulation to 

reverse any folds. The layout of the parallel SMA strips for the actuated fold 

in this chapter relies on a novel heat-insulating barrier to isolate the activation 

of each SMA strip from another. The experimentation conducted reveals the 

direction of the fold can be controlled through selective heating of the flexible 

PCB to its associated SMA strip in combination with the insulating barrier.  

The displacement range of the sample fold was small for a situation where a 

90° fold should be a minimum. This was due to complications in the 

programming of the SMA strips to ‘remember’ large bend angles. The torque 

generated at each fold is also small and was expected with SMA materials. 

From experimentation, a SMA strip of larger width (55 x 30mm) produced 

more displacement on the joint in comparison to a thinner strip (55 x 10mm). 

Therefore, the width of a fold plays a crucial part in the operation of a fold. It 

is unlikely, however, the fold can generate sufficient torque to move the main 

actuation fold needed for the inchworm configuration shown in Figure 7.3. The 

feasibility of self-folding robots is possible and already exist. The use of SMA 
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strips to construct a version without any external electrical components does 

require additional study to increase the force output of the SMA actuated folds.  
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Chapter 8  
Conclusions and future work 

This chapter details conclusions drawn from the findings of three case studies. 

Before finally summarising the research and its findings. It discusses benefits 

of using the proposed systems and make recommendations for further 

research.  

8.1 Assessment of research objectives 

Four research objectives were outlined in Section 1.3. This section identifies 

the extent to which they have been fulfilled during this study: 

8.1.1 Investigate the length limitations to snake arms 

The design of long reach snake arms has been demonstrated in Chapters 4 

and 5. The effects of long reach snake arms on the actuation cables were 

demonstrated with calculations and experiments to predict the cable tensions 

in Section 4.4. The actuation cables provide acceptable movement to the 

snake arm joints (Section 5.7). The limitations to the snake arm links (Section 

4.3) and joints (Section 5.3) were explored for buckling modes that contributes 

to the length limit for the snake arm device.  

8.1.2 Develop an algorithmic approach to producing a snake arm 

of optimal length 

The iterative solver demonstrated the ability to optimise the length of a snake 

arm design in Section 5.6. The snake arm of optimised length was 

successfully designed and fabricated based on the solver's output reducing 

the risk of component failure, improving the longevity of the snake arm.  

8.1.3 Extend the range capabilities of borehole robots using 

reconfigurable robot techniques 

A three module reconfigurable robot has been successfully designed and 

fabricated based on established actuation and manufacturing techniques. The 

robot is capable of assuming two configurations (one for deployment and the 

other for exploring). Experiments have verified that the robot is capable of 

applying the forces (Section 6.6.2) to drive the robot and drag the tether in a 
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hypothetical tunnel of distances greater than the reach of a similar 

reconfigurable robot (Section 6.4).  

8.1.4 Investigate advanced actuation and fabrication 

technologies 

The design uses shape memory alloys fabricated in laminate structures with 

heaters to create folding structures. The performance of SMA is 

experimentally verified in Section 7.3.2 that formed the basis for a thermally 

insulating layer vital for a self-reversible fold to be made possible (Section 

7.3.3).  

A (limited) study has been performed to evaluate the feasibility of folds with 

different size SMA strips. The study shows the concept of a single self-

reversible actuated fold that has potential applications for a self-assembling 

flexible robot; however, the force generated by the SMA is small. For the 

inchworm mechanism to be feasible, the torque generated at the actuated 

folds needs to be more substantial.  

8.2 Conclusions 

The following conclusions relate to the specific elements of work performed: 

8.2.1 Snake arm 

 Minimally invasive exploration of restricted access and confined spaces 

requires bespoke designed hardware for each scenario. As the terrain 

and environment vary from one scenario to the next, the changing 

constraints used to develop one robot will generate a different robot for 

the next.  

 

 The length of the snake-arm is dependent on the destination of the 

deployment. The forces used in the snake arm analysis focused on the 

position being the highly demanding horizontal cantilever position, 

where the cable tensions and axial compressive forces are at its peak. 

Without any external supports for the Base Link, the snake arm length 

was calculated to be 1.149m with an effective length of 0.605m. 

However, those values are only valid for a horizontal deployment.  
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 Given another scenario for a 12mm diameter snake arm that would be 

deployed vertically down into a subterranean chamber; the changed 

constraints will result in different lengths for the Base Link and Links. 

The distribution of actuation cables around the joints will not require 

any changes, meaning the effects of the changed deployment direction 

will only result in a minor change to the orientation of the Denavit-

Hartenberg notation used to describe the snake arm. This results in 

different torques calculated by the recursive Newton-Euler method and 

the remaining method for the algorithmically calculated snake arm 

length largely remains the same.  

 

 The experiments to verify the cable tension theory highlighted 

inaccuracies due to friction in the experimental test rig that deviated the 

experimental results from the theoretical. The experimentally found 

cable tensions are larger than the theoretical. Additional tests to 

measure friction in the test rig was performed and the experimental 

data was updated to accommodate for friction that brought the 

theoretical and experimental data closer together.  

 

 Terminating the Dyneema cables required the simple solution of a 

small knot, which has worked effectively, and taking very little space, 

therefore, allowing the cables to be distributed about the largest 

diameter. The use of steel cables was considered but the proper 

termination of steel cables required bulky ferrules or crimps that 

drastically affected the diameter of the snake arm.  

 

 Usually, in universal joints, the two pivots are collinear to better transmit 

rotation, however, to strengthen the load the snake arm joints can 

withstand the two pivots were offset in the fabricated build. The results 

of the snake arm experiment to observe the effects of cable length on 

the joints revealed the offset did not affect the performance of the joints.  
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8.2.2 Reconfigurable Dual Track Robot  

 Reconfigurable robots with at least two configurations (one for 

deploying and the other for completing its objective) can be utilised to 

perform an exploration with greater reach. The robot detailed in this 

paper can navigate through a borehole of just 41mm and equipped with 

a camera and light be able to perform the initial surveying of a 

hypothetical mine shaft to a range of approximately 65m. The key issue 

with the robot was its lightweight of 2.372kg being inadequate for 

supplying the required traction to drive the full 200m distance and the 

low ground clearance that would struggle under the rough terrain.  

 

 For small borehole diameter deployments, the weight requirement for 

tethered robots to travel large distances exhibit diminishing returns as 

heavier robots must result in a longer bulkier system during the 

deployment.  

 

 When driving the robot, the low ground clearance resulted in a constant 

need for awareness of the surroundings and path planning to avoid 

obstacles and unwanted build-up of debris at the deployment module 

where the camera and lights are located. Without a means to increase 

the ground clearance or life the deployment module further away from 

the ground, travelling long distances can be problematic. 

 

 In order to compact the gears and electronics into the void between the 

track, parts were successfully mounted in series allowing the small 

deployment diameter to be achieved. This left unwanted issues with 

exposed electrical wiring to connect the modules together.  

 

 The tensioning system responsible for maintaining the tension through 

the tracks and protecting the driving gears when slip occurs also serves 

other useful functions that are not previously mentioned. The 

mechanism allows for quick access to the internal compartments where 

the electronics are stored and aids the disassembly of the module 

where the track is usually the first part to be removed. Without the 
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system, the lips on the timing belt pulleys that secure the tracks from 

the unwanted lateral movement will also result in more complicated 

disassembles and builds.  

 

8.2.3 Self-Folding Robot 

 The novel robotic self-assembling mechanism is unique. To the 

author’s current knowledge, there have been no attempts at 

constructing a fully self-reversible, self-folding robot using embedded 

SMA actuators and flexible heating circuitry for a locomotion system 

and support structure. The implicit use of flexible materials results in 

the robot capable of being manually deformed for deployment 

purposes, yet given enough SMA actuators, can self-assemble as 

required post-deployment.  

 

 Programming the SMA was problematic during the annealing stages 

as memory loss caused the SMA to only transform into a fraction of the 

intended shape. To compensate, it was required the SMA be shaped 

prior to heat treatment with more extreme angles than needed. This 

method restored some functionality to the SMA layers but offers less 

control of the final shape. 

 

 To reduce the internal stiffness during the material selection process, 

the thickness of the sourced materials was always of concern. The 

small thicknesses eventually became a problem during the fabrication 

of the flexible heater, as the copper layer in the copper-polyimide 

laminate was thicker than the polyimide. This resulted in a laser etcher 

struggling to isolate copper tracks without cutting or burning the 

polyimide layer underneath.  

 

 The thermal layer was developed using thermal analysis software to 

estimate the thermal insulation range. Increasing the size of the air 

pockets improved the thermal layer as additional air (with smaller 

thermal conductivity) was introduced.  
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8.3 Future work 

This research has provided a starting point for research into borehole 

exploration robots. This section looks forward to future work that might be 

undertaken to further improve the designs. 

8.3.1 Snake arm 

 The cables are subjected to large tensions and selecting stronger 

cables will result in longer snake arms, however, this will offload the 

forces onto other components such as the joints and links that may 

then require further strengthening. The iterative solver will only optimise 

the snake arm length by changing the length of the links and all the 

parts running through them. It cannot, however, vary the thickness of 

the tubes to improve the buckling resistance or increase the diameter 

of the cables to better optimise the components as they reach the FOS 

targets.  

 

 The base actuator frame relies on potentiometers and gearing to 

monitor and control the length of each cable. The cable length 

calculations, however, reveal the changes to the ideal cable length to 

be a few millimetres and requires accuracy the current setup cannot 

provide due to backlash in the gears and resolution of the 

potentiometer. A better alternative would be the installation of optical 

encoders directly onto the linear actuator motor to vastly improve 

resolution and accuracy.  

 

 Cable stretching was an occurrence seen in the cable testing in 

Chapter 5.4. Under load, the cables will also experience a stretch in the 

snake arm during the initial set up pre-loading, however, when the 

snake arm has actuated the state of the cable stretch is unknown. 

Modelling cable stretch into the control software should improve 

decrease the deviation found during testing.  

 

 Friction in the system is problematic for the control of the snake arm as 

was observed with the experimental cable tension test rig. Improving 
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the snake arm design to reduce friction at the joints where friction is 

most prominent would enable the arm to be better predicted and 

controlled.  

 

 Measuring the joint angles is completed with a time intensive method 

of taking still imagery from a side or top view and using image 

manipulation software to read the joint angles. This method is not 

adequate for live monitoring of the arm orientation. Without the known 

joint angles, forward kinematics cannot be used to compute the exact 

position of the end effector. Mounting additional sensors to the joints 

should vastly improve the control of the snake arm. Although space 

around the joints is already limited.  

 

 It can be possible to periodically monitor the structural integrity of the 

snake arm during use if the cable tensions can be measured directly 

with strain gauges mounted between the cables and the actuator 

frame. With all cable tensions known, the axial compression can be 

calculated from the snake arm orientation and cable tensions where 

the values can then be compared to the failure modes previously 

researched.  

 

8.3.2 Reconfigurable dual track robot  

 A major obstacle for the robot is the low ground clearance at the middle 

deployment module where debris can be caught and obstruct the 

camera and light. A mechanism is needed that can raise the module 

further from the ground.  

 

 Connecting the three modules together resulted with electrical cables 

being routed externally to bypass structural components. This left the 

exposed wiring to the terrain with low ground clearance. Some form of 

cable protection or a method to route the cabling internally is required 

to better protect the robot.  
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8.3.3 Self-folding robot 

 The flexible heater uses copper tracks of 0.23mm for joule heating and 

is fabricated using laser etching. To ease the fabrication of this 

component, the track width can be increased (as power consumption 

is not an issue) to allow for standard lithography manufacturing 

techniques to be used. This should improve the quality and reliability 

for the flexible heater.  

 

 A method to measure the temperature at both SMA layers will assist in 

the actuation of the fold. It can be made to turn off the heaters when 

the SMA activation temperature is approached for the opposing layer.  

 

 Further study into better optimising the thermal layer will benefit the 

system. Thicker sheets of polyimide are available which will reduce the 

number of adhesive layers required in between. A better performing 

thermal insulating layer could also be thinner resulting in a reduced 

internal stiffness that can enhance the folding angle and torque 

generated.  
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Abstract: In this paper the development and demonstration of various robotic 

systems for safety applications and harsh environments are presented. These 

robotic systems assist human to monitor and explore various types of spaces and 

measure physical parameters of these spaces. Each individual robot can be 

equipped with 3D ceramic-packaged multi-purpose sensors/actuators, smart 

navigation systems, and reconfigurable high-speed wireless communication 

networking. The targeted applications are real-time monitoring/rescuing in 

various kinds of harmful environments e.g. deep mines, pipe and tube systems, 

dramatically reducing risk of life and economic damage. 

Keywords: Robotic exploration, harsh environments, safety and security, co-

operative robot. 

 

1.  INTRODUCTION 

This paper presents the design and 

demonstration of three novel compact robotic 

systems, which can be integrated with 3D 

ceramic-packaged, multi-purpose micro-

sensors and high-speed ad-hoc wireless 

communication systems. The targeted 

application is for real-time monitoring and 

exploring folded spaces under possible 

harmful conditions e.g. chemical leakages, 

pressure level, temperature and gas 

concentration in harsh environments as well as 

for security and archaeological applications; 

decreasing the risk of life and economic 

damage. 

2. DJEDI ROBOT: A PYRAMID 

EXPLORATION ROVER 

The Great Pyramid of Giza is the last 

remaining wonder of the ancient world. The 

pyramid contains three chambers, including 

the king’s and queen’s chamber. Airshafts 

have been discovered in both chambers, 

however the queen’s shaft has no obvious 

purpose nor does it breach the outer face of the 

pyramid structure, unlike the king’s chamber. 

Exploration of the northern and southern 

airshafts to answer the mysteries of its purpose 

and construction required the use of specialised 

mobile robotic tools, such as the Djedi Pyramid 

Explorer Robot (Figure 1) which in May 2010 

performed a video survey successfully, by 

climbing the full length of the southern air 

shaft. 

 

Produced from soft limestone of varying 

surface roughness, the air shafts are 

approximately 210 mm x 210 mm and spans 

through different configurations for the 

northern and southern shaft. The southern shaft 

begins running horizontally for approximately 

2 m before rising at an incline of 40° from the 

horizontal, spanning approximately a further 

62 m in length from the chamber entrance. 

Additional obstacles exist within the shafts 

such as a lateral step at about 30 m or the 40 

mm vertical step at 59 m and at the top of the 

shaft are the main objectives, which consists of 

two limestone blocking stones of 60 mm 

approximate thickness for the first stone and an 

unknown thickness for the second; each spaced 

approximately 200 mm apart.  

 

The specifications for the Djedi robot required 

the robot to climb the air shafts with minimal 

or no damage to the pyramid walls, yet retain 

the capacity to obtain sufficient tractive force 

to safely navigate the steep inclines, smooth 

surfaces and counter the resultant forces from 

the on-board drill. Building upon the testing of 

three prototypes using different variations of 

an inch worm mechanism, the latest design of 

the Djedi robot had two independently driven 

pinion carriages on the same rack, with one 

carriage for driving the robot through the shafts 

and the other for driving the on-board drill.  

 

To brace against the shaft walls and provide the 

necessary traction to climb and provide 

stability during drilling, custom linear 

actuators were created with a silicon rubber 

brace pad mounted at the end. The points of 
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contact between the brace actuators and the 

wall from each inchworm step during the shaft 

ascent does not move (Figure 2), also the 

applied force is perpendicular to the wall 

surface.  These features combined with the soft 

silicon pads resulted in a large reduction to the 

risk of damaging the air shaft walls. The four 

wheels were left unpowered and served only to 

allow Djedi to climb the vertical step and to 

prevent dragging on the shaft floor.  

 

The use of 3D printing technology was used 

almost exclusively for the manufacture of the 

carriages. Enabling rapid productions of 

chassis parts with complex features, which 

allowed for increasingly compact carriages to 

be reduced in weight and size and therefore 

increase step and drill length of the robot.  

 

Embedded into the carriage chassis are eleven 

composite cameras with an additional snake 

arm camera attachment to replace the drill. 

Each camera is strategically positioned to 

provide a full field of view for all sides of the 

air shafts and vital components of the Djedi 

robot for visual monitoring. The findings from 

the climb revealed red ochre markings or 

hieratic characters previously unseen for 

thousands of years (Richardson, R 2013). 

 

 
Fig. 1. Djedi Southern Shaft Rover. 

 

 
Fig. 2. Rendered images of the Djedi rover 

during different stages of the inchworm 

locomotion. 

3. MINEBOT: A DUAL-TRACK 

RECONFIGURABLE ROBOT 

The subterranean environments such as mines 

and tunnels are remote, inaccessible, and 

dangerous for human entry. Inherent dangers 

in environments motivate the use of robotic 

technology for addressing such challenges 

(Morris, A 2006). In order to inspect 

subterranean environment, it is common to 

drill small boreholes from the surface into what 

is expected to be the exploration area. The idea 

is to insert a small robot through the borehole, 

lower the robot into the subterranean space, 

and explore the area. However, there are still 

many challenges in terms of limited diameter 

of borehole and lack of illumination posed by 

boreholes exploration. 

In response to these challenges, a dual-tracked 

reconfigurable robot with on-board camera and 

Cree LED light, named Minebot, was 

developed at the University of Leeds. The 

Minebot is an imaging mobile system that can 

be lowered down through narrow passages, 

such as boreholes, for subterranean 

exploration. It can establish a remote, 

subterranean presence without unnecessary 

risk to humans. The Minebot is capable of 

reconfiguring to move inside the tunnel, using 

dual-tracked mobility system to move in 

parallel (as shown in Figure 3).  

When the situation requires the robot to be 

inserted into boreholes or navigate obstacles, it 

can transform into a snake-like configuration 

(as shown in Figure 4). The Minebot is 

designed to be deployable and retrievable 

through a 9.1m long, 41 mm diameter borehole 

into tunnels and to operate at long ranges in 

tunnels of approximately 200m long on a slight 

incline over rough terrain. 

Table 1.  Minebot measurements 

Weight 2.7 kg 

Fully deployed  

size 

33 x 335 x 455 mm 

Snake-like size 33 x 1199.5 x 31 

mm 

Maximum speed 11.4 mm/s 

 

Fig. 3. Fully deployed configuration of the 

Minebot. 



- 197 - 
 

     

 

Fig. 4. Snake-like configuration of the 

Minebot. 

Provided with some approximate 

environmental specifications, the locomotion 

and deployment systems of the Minebot were 

developed. The diameter of the borehole was a 

fixed variable supplied from a portable 

borehole drilling device used to gain entry into 

the mine. Considering the small diameter of the 

borehole and its length, a limit of 35mm 

diameter for the entire Minebot during the 

deployment phase was agreed upon. This 

allowed for a value of torque to be calculated 

to compensate for the robots mass on an incline 

and frictional drag forces from the tether. 

Without the ability to replicate the Djedi robots 

ability to brace on two sections of wall, the 

Minebot replies on the weight to produce the 

required traction to travel the long distances.  

Extraction of the Minebot was also considered 

as essential for the mission brief. This resulted 

in the need for a high torque reversible joint 

capable of changing between the fully 

deployed state and the snake-like configuration 

with no assistance.  

 

Fig. 5. Gearbox housing within track section. 

Fig. 6. High torque with slender profile joint.  

 

 

4. LETTERBOT: A FOLDED BUILDING 

EXPLORATION ROBOT 

The Police and other authorities often have to 

search buildings without prior knowledge of 

what hazards may be present. Large robots 

currently in use require a door or window to be 

broken before it can enter the building. 

LetterBot was designed to enable quick 

deployment into any building without 

requiring tools or damage. 

 

In the majority of locked properties the only 

damage free way to insert a robot is through the 

letterbox. The standard BS EN 13724:2002 

(BSI 2002) gives the minimum dimensions of 

the slot to be 230x30mm. This gives a very 

tight height constraint requiring careful 

actuator selection. For the robot to provide 

information beyond that of a pole camera it is 

important that it can overcome stairs as 

reported by Nguyen et al. (Nguyen 2000). 

 

To ensure the robot is capable of ascending all 

regular stairs, UK building regulations (HM 

Government 2013) were reviewed. Giving the 

requirement that the robot length is ≥443mm to 

span two steps, it will have to overcome step 

heights of over 7 times its height, and produce 

enough torque to climb up stairs angled up to 

42°. 

 

A variety of robotic methods have been 

developed for stair climbing, such as a rack and 

pinion arm to lift itself up each step (Wende, G 

2004), a tri-wheeled design that interlocks with 

the stairs (Hirose, S 2001), a multilink 

mechanism with six driven wheels (Michaud, 

S 2002 ) or various humanoid designs. While 

these have all been shown to climb stairs they 

all rely on the robot being larger than an 

individual step. 

 

A tracked design with two separate sections 

and an actuated link joint was developed. Liu 

et al. (2005) analysed fundamental kinematics 

and dynamics for a tracked robot to climb 

stairs. The process is split into Riser Climbing, 

Riser Crossing, and Nose Line Climbing. A tall 

angled front is often used to aid riser climbing 

(Tao, Ou and Feng et al. 2012) but cannot be 

used in this case due to the height restriction.  

 

The two sections allow the robot to ascend the 

stairs without the Riser Climbing stage (Figure 

5). 
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(a) 

 
(b) 

Fig. 5: (a) Sequence for a two sectioned robot 

to climb stairs. (b) Version 1 mechanism. 

Two versions of LetterBot have now been 

created. The mechanism used in the first was 

designed to be simple and robust. A very short 

lever arm and a 200N linear actuator make the 

front section lift around a one degree of 

freedom revolute joint as shown in Figure 5. 

The second version uses an adaptation of a 

“little-known” gear slider mechanism, Figure 

6, (Chironis et al. 1996). To aid weight 

optimisation and complex geometries 3D 

printing was used for the first design. Version 

2 used a steel base plate as a thin rigid base, 

with aluminium modules building up the rest 

of the chassis. 

 

Fig. 6. Modified gear slider mechanism. 

Continuous tracks were chosen as they can be 

used with a smaller diameter driving wheel 

than sectioned tracks. The tracks were custom 

designed to enable the robot to grip the noses 

of steps while climbing and reduce the friction 

when turning. When climbing the angle 

reduces the friction force, the contact area is 

also much smaller. Therefore welded on 

profiles were designed to mesh with the steps 

like teeth of a gear. They also help keep the 

robot perpendicular to the stairs. Using 

analysis by Rastan et al. (2011) the pitch was 

found to be optimal at 20mm. As the robot uses 

a differential drive system to steer, large 

sideways frictional forces are generated during 

turning which can remove the tracks. The 

angled profiles reduce this drag as does 

hinging the robot in the middle to shorten the 

track length in contact. 

 

Fig. 7. Left, LetterBot v1 folded up and 

looking around. Right, v2 climbing stairs. 

5. CLIMBING IDEAL INCLINES 

For a compact exploration robot to climb an 

incline of angle θa, a robot of mass Mr must 

generate sufficient pulling force Fp to 

overcome gravitational force Fg, frictional drag 

forces Fd, and the forces required to drag the 

tether Fc. The gravitational force can be 

resolved into a two components of force, one 

parallel to the ground and the other 

perpendicular to the ground.  

 

 
Fig. 8. Free body diagram of robot on an 

incline. 

 

These equations are valid for the free body 

diagram: 

𝐹𝑟 = 𝑀𝑟 . 𝑔. sin(𝜃𝑎),   (1) 

𝐹𝑔 = 𝑀𝑟 . 𝑔. cos(𝜃𝑎).   (2) 

The pulling force Fp exerted by the robot is 

limited by the frictional coefficient between 

the robot and the floor surface (μn) and the 

normal force (Fr), 

 𝐹𝑝 ≤ 𝐹𝑟 . 𝜇𝑛.    (3) 

In order to overcome the frictional drag from 

the tether (Fc), the sum of the forces due to the 
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cable need to be considered. If the friction 

coefficient between the cable and floor is (μc), 

the cable weight is Cm and xc is the length of the 

tether in meters. The force required to 

overcome the cable frictional drag is then 

calculated as: 

𝐹𝑐 = 𝐶𝑚. 𝑥𝑐 . 𝑔. sin(𝜃𝑎) +
𝜇𝑐. 𝐶𝑚. 𝑥𝑐 . 𝑔. cos(𝜃𝑎).  (4) 

Therefore, in order to climb the incline, the 

required pulling force is: 

𝐹𝑝 = 𝑀𝑟 . 𝑔. sin(𝜃𝑎) +

𝐶𝑚. 𝑥𝑐 . 𝑔. [sin(𝜃𝑎) +𝜇𝑐 . cos(𝜃𝑎)].   (5) 

The most straightforward method to increase 

the robots capability to climb steep inclines is 

to increase the friction coefficient between the 

robot and floor (μn) and decrease the friction 

coefficient between tether and floor (μc).  

 

In the case of the Djedi robot, the tether was 

custom made with a thin, low friction, sheath. 

As a result of the inch-worm mechanism the 

weight of the robot was designed for minimal 

weight (Mr) as the four linear actuators can 

exert the required normal force (Fr) to 

overcome the opposing forces. On the other 

hand, the Minebot and Letterbot with the 

tracked configurations will rely on the mass of 

the robot to provide the necessary force for 

sufficient traction.  

6. CONCLUSIONS 

The Djedi robot operated as intended and 

reached the top of the southern shaft. The 

findings from the video survey provided 

valuable evidence towards the purpose and 

construction of the pyramid. The locomotion 

system was successful in protecting the 

pyramid from damage, as no surface marks in 

the shaft walls were observed after repeated 

climbs.  

The use of rapid prototyped bodywork proved 

to have sufficient strength to endure the forces 

experienced during manoeuvring in the shaft. 

A noticeable drawback to the inch worm 

locomotion was the robots low climbing speed. 

Taking up to four hours to ascend the shafts, 

this time was acceptable when just one or two 

ascents are planned, but if future surveys 

require the use of multiple tools, then the 

ascent time would be a serious issue.  

Deployment of the Minebot through a 3m long 

tube of 40mm diameter has been demonstrated 

successfully. Further testing in lab spaces has 

shown the Minebot to be capable of changing 

its deployments states with no assistance and 

also able to drive effortlessly in the dual track 

configuration on a wooden floor.  

However to achieve the operational distance of 

200m to fully survey the proposed mine tunnel, 

the Minebot will require a large increase in 

weight to 6kg in order to supply the necessary 

traction. The current weight of 2.7kg allows 

the Minebot to survey up to a theoretical 

distance of 92m. A consequence of increasing 

the weight to 6kg is the robots un-deployed 

length must also be increased which will affect 

either the deployed length or width. This could 

possibly affect the robots ability to navigate 

and this trade-off will require further study.  

LetterBot has successfully been deployed 

through a letter box and has climbed sets of 

stairs while returning HD video. The 

mechanism is robust, simple to maintain and 

has proven reliable over many test 

deployments. Version 2’s mechanism (Figure 

6) gives a greater mechanical advantage and 

allows the front section to be both longer and 

heavier, so larger steps can be negotiated. 

However due to its added complexity there is a 

trade off in reliability. 

7. FUTURE WORK 

Whilst the Minebot has been successfully 

tested in lab environments, future work will 

involve field testing in more realistic real 

world environments to find its capabilities to 

overcome rough terrain with debris and also its 

effective range in the mine environment. The 

inclusion of debris could allow for a larger 

coefficient of friction between robot and floor 

which would result in a greater range without 

the increase in robot mass however the low 

ground clearance may play a significant role in 

limiting range.  

Building upon the experiences and techniques 

used in the Minebot for condensing the 

electronics and mechanisms into smaller 

spaces, these techniques can be applied to 

further improve the next iteration of LetterBot. 

At which point the LetterBot will be improved 

for easier deployments through higher and/or 

vertically orientated letterboxes with the 

capacity for additional sensor packages.  
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Abstract. Long reach and small diameter manipulators are ideal for borehole 

deployments into search and rescue scenarios and fragile historical environments. 

Small diameter passageways impose constraints on a snake arm manipulator 

which severely limit its performance and capabilities. This work investigates the 

effects of tendon tensions on the maximum working length of a snake arm under 

tight size constraints and how the maximum length is achieved through an 

algorithmic approach and consideration of how and when key parts fail. 

 

Keywords: Exploration, Long reach, Discrete backbone, Robot archaeology, 

Snake arm, Tendon tension, Minimally invasive, Small Diameter 

Introduction 

The application of robotic devices has been widely used in exploration and search and 

rescue (SAR) scenarios [1]. Ideally deployed where human risk is considered too high 

[2], tools such as the snake arm are often important for examining confined space 

environments where humans and some robots struggle. These robotic platforms are 

profoundly influenced by their intended environments and most exploit a single 

locomotion mechanism to operate in the complex terrains [3-5].  

Different environments vary greatly from one to another, and produces a level of 

uncertainty and challenges for the end user [4]. It can be desirable for small boreholes 

to be used as means of access. Small boreholes will be faster to drill and reduces 

secondary collapse hazards; they are also less destructive and aid to preserve a site. 

Snake arms already have all the necessary locomotion parts anchored to a mobile 

platform outside the borehole [6-8], this allows the snake arm to fully utilize a boreholes 

diameter which plays a vital role in the snake arm’s length.  

The length of a snake arm is representative of the maximum working distance 

possible with a manipulator. Current small diameter snake arms include the continuous 

DTRA arm by OC Robotics with a reach of 610 mm and an outer diameter of 12.5 mm 

[9]. On the other hand long reach snake arms with large diameters already exist where 

mailto:r.c.richardson%7d@leeds.ac.uk
mailto:shaun@scoutek.com
file:///M:/PhD/Written%20Notes/20140730_SSRR_US_Letter%20Paper.docx%23_ENREF_9
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mechanisms to compensate for gravity are possible to achieve unsupported lengths of 

6 m with a 100 mm diameter [9].  

In this paper the design of a triple jointed snake arm manipulator that conforms to a 

very restrictive small diameter constraint is firstly introduced, and then an analysis of 

the snake arm theory is discussed. Lastly, an algorithmic approach is used to determine 

the maximum working length for the snake arm. 

Description of the Basic Snake Arm 

A discrete backbone snake arm simplifies kinematic formulations and motion control 

over its continuous backbone counterpart. Formed from a series of links and joints and 

actuated by a minimum of three tendons per joint, these tendons run through each link 

and terminate at each joint it is assigned to control. Assuming the boreholes are straight, 

the snake arm is not expected to maneuver around obstacles until it breaches through 

the borehole into a target chamber.  

A snake arm capable of self-supporting the full length of its own arm in the deployed 

environment is advantageous for surveying fragile and historically important tomb-like 

chambers because there would be no need for any contact between the arm and surfaces 

for any risk of damage to occur. Fig. 1 shows a 12 mm diameter snake arm consisting 

of a base link (of length B), three two degrees of freedom (DOF) joints (of length J) 

and three links of identical length (of length L). The diameter places physical 

constraints on the number of cables controlling the snake arm joints, the thickness of 

the tubing that makes the links and the diameter of the two DOF joints. 

 Increasing link length L to create a longer snake arm has the effect of increasing the 

tendon tensions required to maintain the snake arms horizontal cantilever position. 

These forces result in greater axial compressive forces acting through the snake arm 

and possibly leading to joint failure and/or buckling of the links.  

As a consequence, a method was required to theoretically calculate the tendon 

tensions from the snake arms kinematics and analyze the values to determine whether 

any anticipated failure modes will occur. 

 

Fig. 1. 12 mm diameter snake arm 
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Discrete Snake Arm Kinematics and Statics 

The position of the end effector with respect to the base frame is computed with forward 

kinematics using transformation matrices produced from joint angles and link lengths. 

Combined with the Recursive Newton-Euler (RNE) method the toque at each joint is 

computed and carried over to calculate the cable tensions.  

The RNE joint torques reaches a maximum when the snake arm is at a horizontal 

cantilever position without additional external forces other than gravity acting upon it; 

therefore at this point it is assumed the associated tendon tensions are also at its 

maximum. This horizontal state should then be where failure of the snake arm is most 

likely to occur and is where this analysis is focused on.  

Calculating tendon tensions from joint torques can be performed if tensions are 

assumed constant throughout with negligible friction and all joint angles are known. 

For a snake arm with two joints and two tendons of link length L, weight W, payload 

weight P and perpendicular tendon distance of Dy as shown in Fig. 2, multiple tendons 

cannot occupy the same space for all joints, therefore some tendons are displaced 

radially about the center. This creates an undesirable lateral load and requires the 

introduction of additional tendons to counteract the loads. 

 

Fig. 2.   Simplified snake arm with two joints and two tendons 

The RNE method is used to calculate the joint torques R1 and R2 and the tendon tensions 

calculated for the ith joint is expressed as: 

 𝑅𝑥𝑦𝑖 = ∑  𝑇𝑗  𝐷𝑥𝑦𝑗𝑁
𝑗=𝑖   (1) 

Where Rxyi is the torque generated at joint i for both yaw (Rx) and pitch (Ry) joint 

directions. Tj is the tension of each tendon that passes through or terminates at joint j. 

Dxyj is defined as the distance between tendon j and the neutral axis of joint i, it can 

also be a negative value dependent on the direction the tendon j transmits its force on 

joint i. Applying equation (1) to the double jointed snake arm as shown on Fig. 2, the 

equations relating torques to tensions can be produced and solved using matrices. 

 [
0 𝐷𝑦2

𝐷𝑦1 𝐷𝑦2
] [

𝑇1

𝑇2
] = [

𝑅𝑦2

𝑅𝑦1
]  (2) 

Where the tensions T1 and T2 can be solved as: 

 [
𝑇1

𝑇2
] = [

𝑅𝑦1

𝐷𝑦1
−

𝑅𝑦2

𝐷𝑦1

𝑅𝑝2

𝐷𝑦2

]   (3) 
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For a three jointed snake arm with six DOF and nine control tendons, equation (1) 

creates a system of linear equations with infinite solutions.  

 

[
 
 
 
 
 
 

0 0 𝐷𝑥3

0 0 𝐷𝑦3

0 𝐷𝑥2 𝐷𝑥3

0 0 𝐷𝑥6

0 0 𝐷𝑦6

0 𝐷𝑥5 𝐷𝑥6

0 0 𝐷𝑥9

0 0 𝐷𝑦9

0 𝐷𝑥8 𝐷𝑥9

0 𝐷𝑦2 𝐷𝑦3

𝐷𝑥1 𝐷𝑥2 𝐷𝑥3

𝐷𝑦1 𝐷𝑦2 𝐷𝑦3

0 𝐷𝑦5 𝐷𝑦6

𝐷𝑥4 𝐷𝑥5 𝐷𝑥6

𝐷𝑦4 𝐷𝑦5 𝐷𝑦6

0 𝐷𝑦8 𝐷𝑦9

𝐷𝑥7 𝐷𝑥8 𝐷𝑥9

𝐷𝑦7 𝐷𝑦8 𝐷𝑦9]
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
𝑇1

𝑇2

𝑇3

𝑇4

𝑇5

𝑇6

𝑇7

𝑇8

𝑇9]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝑅𝑦3

𝑅𝑥3

𝑅𝑦2

𝑅𝑥2

𝑅𝑦1

𝑅𝑥1]
 
 
 
 
 
 

 (4) 

As the tendons with a negative Dy would not contribute to overcoming the gravity acting 

on the snake arm, these can be given pre-tension values and this action results in a 

solvable matrix and the necessary equations for a theoretical tendon tensions.   

 

[
 
 
 
 
 
 

0 0 𝐷𝑥3

0 0 𝐷𝑦3

0 𝐷𝑥2 𝐷𝑥3

0 0 𝐷𝑥9

0 0 𝐷𝑦9

0 𝐷𝑥8 𝐷𝑥9

0 𝐷𝑦2 𝐷𝑦3

𝐷𝑥1 𝐷𝑥2 𝐷𝑥3

𝐷𝑦1 𝐷𝑦2 𝐷𝑦3

0 𝐷𝑦8 𝐷𝑦9

𝐷𝑥4 𝐷𝑥8 𝐷𝑥9

𝐷𝑦4 𝐷𝑦8 𝐷𝑦9]
 
 
 
 
 
 

[
 
 
 
 
 
𝑇1

𝑇2

𝑇3

𝑇4

𝑇8

𝑇9]
 
 
 
 
 

=

[
 
 
 
 
 
 

𝑅𝑦3 − 𝑇6𝐷𝑥6

𝑅𝑥3 − 𝑇6𝐷𝑦6

𝑅𝑦2 − 𝑇5𝐷𝑥5 − 𝑇6𝐷𝑥6

𝑅𝑥2 − 𝑇5𝐷𝑦5 − 𝑇6𝐷𝑦6

𝑅𝑦1 − 𝑇5𝐷𝑥5 − 𝑇6𝐷𝑥6 − 𝑇7𝐷𝑥7

𝑅𝑥1 − 𝑇5𝐷𝑦5 − 𝑇6𝐷𝑦6 − 𝑇7𝐷𝑦7]
 
 
 
 
 
 

  (5) 

The tensions T5, T6 and T7 in (5) are the pre-tension values assigned, where a value of 

zero would represent the tendon left slack.  

Cable Tension Experiment 

To measure the tension of the tendons in multiple configurations, a test rig modelled 

after Fig. 2 was assembled with two single DOF joints and links of constant length with 

capacity for five joints and fifteen tendons at three different diameters. 

The methods consisted of holding the arm at a horizontal cantilever position and 

incrementally attach weights to each tendon. When the arm is released and maintains 

its position with no change to joint angles the weight is recorded and the process 

repeated. If inadequate tension is supplied to the tendons the arms would collapse and 

if too much tension is supplied the arm will rise beyond the horizontal starting position. 

To alter the torque at each joint only the payload was incremented. 

The results shown on Fig. 3 show a close trend between the theoretical equation (3) 

and the experimental results. Further investigation revealed the zero-shift in the data 

was the result of friction in the test rig between the tendon, vertebra and pulleys and the 

theoretical calculations which were assumed to have negligible. To compensate for the 

error, the relationship between the load acting on the tendons and friction for the test 

rig was measured with the experimental values adjusted for the additional friction 

forces dependent on the load on the tendons.  
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Fig. 3.    Comparison between theoretical and experimental tendon tensions for a double jointed 

snake arm with two tendons.  

Maximum working length 

MATLAB was used to determine the maximum length of snake arm by algorithmically 

increasing the length of both links whilst at each step checking against the anticipated 

failure modes (Table 1). The implementation of factors of safety (FOS) reduces the 

lengths as a compromise for increased reliability.  

The approach was to firstly determine the maximum length of the Links and 

thereafter determine the length of the Base link. This is because the Base link length 

does not affect the tendon tensions, the calculations for buckling failure of the three 

Links or the forces acting onto the 2DOF joints. However the axial stress resulting from 

the tendon tensions acting through the Base link and weight of the unsupported snake 

arm does affect the likelihood of buckling for the Base link.  

Strongly dependent on the design of the snake arm, the order the failure modes will 

materialize is difficult to determine and so each mode was analysed individually in the 

design.   

Table 2. Anticipated snake arm failure modes and Factors of Safety 

Failure 

Mode 

Check FOS 

Tendon Each calculated tendon tension was compared to the tendons 

experimentally found yield stress. 

6 

Joints Using Finite element analysis to find the load required for joint 

failure and compare to the predicted compressive axial loads. 

4 

Link 

Buckling 

Axial stress through the links was analyzed for buckling using 

buckling theory for thin walled cylinders in axial compression 

[10,11]. 

4 

This approach yielded a snake arm of total length 1.011m with a Link length of 

0.161m and Base link of 0.478m for the 12mm diameter snake arm.  
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Conclusion and Future Work 

The limiting factors for the design of the snake arm were the tendons and link buckling. 

A length of 1.676 m is achieved if the FOS is set to the point of failure. However a 

better approach would be to increase the yield stress of the tendons and design links 

capable of greater compressive loads. The outcome of the algorithmic approach to find 

the maximum length resulted in a length of 1.011m making this design not ideal for 

SAR scenarios where much greater lengths are crucial but possible for archaeology.  

In future, the snake arm will be examined to increase reach. Including an 

investigation into the effect of axial, bending, and twisting forces through the joints and 

lastly, further tests by performing fielded experiments in real world situations.    
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Results for Tension Experiments 

This section contains the raw theoretical and experimental data from the 

single cable tension experiments.  

To validate the theoretical calculations for cable tensions of the snake arm in 

the horizontal cantilever position, experiments were conducted for 

comparison. The raw data is provided as is. 

B.1 Theoretical Results of a Single Cable on Single Joint 

Dw Payload (Kg) 

0 0.02 0.042 0.058 0.08 0.1 

50 2.02 2.82 3.67 4.28 5.13 5.90 

42 2.41 3.35 4.36 5.10 6.11 7.03 

34 2.97 4.14 5.39 6.30 7.55 8.68 

This data appears in Figure 4.13. 
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B.2 Experimental Results of a Single Cable on Single Joint 

Dw Payload (Kg) 

0 0.02 0.042 0.058 0.08 0.1 

50 1.99 2.83 3.64 4.37 5.07  

1.99 2.92 3.54 4.47 5.15  

2.00 2.92 3.64 4.47 5.08  

2.00 2.83 3.53 4.38 5.20  

42 2.41 3.25 4.35 4.98   

2.40 3.34 4.27 4.97   

2.41 3.25 4.28 4.97   

2.40 3.24 4.27 5.00   

34 2.93 4.15 5.09    

2.93 3.95 5.39    

2.93 3.95 5.27    

2.92 3.96 5.30    

This data appears in Figure 4.13. 
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B.3 Theoretical and Experimental Results of a Double Cable 
on Double Joint 

 Cable 1 Cable 2 

Payload 

(g) 

Theoretical 

(N) 

Experimental 

(N) 

Theoretical 

(N) 

Experimental 

(N) 

0 27.4068 25.5060 11.9825 9.8100 

22.8573 10.8891 

23.2497 10.8891 

21.9744 11.9682 

3.2 27.8307 22.8965 12.5550 11.9192 

22.9652 12.8707 

23.7696 12.8707 

23.9658 11.0559 

6.4 28.2546 24.8291 13.1274 12.8903 

23.9855 12.8903 

25.7709 13.0375 

25.7905 13.8910 

9.6 28.6785 25.8003 13.6999 12.9100 

25.8886 12.9100 

26.8402 12.8903 

26.9088 13.9302 

12.8 29.1024 24.8389 14.2723 12.8903 

25.8297 12.9983 

25.8003 12.8903 

25.9769 13.8812 

16 29.5263 25.8984 14.8447 13.9106 

25.9769 12.9492 

23.8874 14.8720 

25.9278 14.9014 
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19.2 29.9502 27.8212 15.4172 14.8229 

27.8114 13.8910 

27.9095 13.9989 

27.9585 14.8425 

22.4 30.3741 27.8310 15.9896 13.9302 

27.9095 13.9400 

27.9977 14.8720 

27.8604 16.0001 

25.6 30.7978 27.9781 16.5621 14.8327 

27.9683 14.8523 

29.8126 15.9216 

27.9291 14.8622 

This data appears in Figure 4.14 and Figure 4.15. 
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Results for Friction Experiments 

This section contains the raw data from the friction analysis for the two jointed, 

two cable tension experiments.  

To validate the theoretical calculations for cable tensions of the snake arm in 

the horizontal cantilever position, experiments were conducted for 

comparison. The raw data is provided as is. 

C.1 Experimental Results of the Friction Test 

Actual spring stiffness Cable 1 calculated 

spring stiffness 

Cable 2 calculated 

spring stiffness 

Force 

(N) 

Length 

(m) 

0.0000 0.0000 

0.9810 0.0010 

1.9718 0.0030 

2.9430 0.0040 

3.9142 0.0060 

4.8756 0.0070 

5.8566 0.0100 

6.8474 0.0120 

7.8186 0.0130 

8.8094 0.0160 

9.7708 0.0180 

10.7518 0.0190 

10.9480 0.0200 

11.9192 0.0220 

12.9002 0.0230 

13.8910 0.0250 

14.8425 0.0260 

Force 

(N) 

Length 

(m) 

0.0000 0.0000 

0.9908 0.0010 

1.9620 0.0020 

2.9528 0.0030 

3.9338 0.0040 

4.9148 0.0060 

5.8860 0.0070 

6.8670 0.0080 

7.8382 0.0100 

8.8094 0.0115 

9.7806 0.0130 

10.7518 0.0140 

11.3404 0.0150 

11.9290 0.0160 

12.9002 0.0170 

13.8910 0.0190 

14.8818 0.0195 

Force 

(N) 

Length 

(m) 

0.0000 0.0000 

0.9908 0.0010 

1.9424 0.0030 

2.9332 0.0040 

3.9044 0.0060 

4.8952 0.0070 

5.8762 0.0090 

6.8376 0.0100 

7.8186 0.0110 

8.7996 0.0130 

9.7806 0.0140 

10.3692 0.0150 

10.9578 0.0160 

11.9192 0.0170 

12.8903 0.0180 

13.8713 0.0190 

14.8622 0.0210 
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15.8235 0.0280 

16.8045 0.0300 

17.7757 0.0320 

18.7567 0.0330 

19.7279 0.0350 

20.8855 0.0370 

21.8665 0.0380 

22.8475 0.0400 

23.8285 0.0420 

24.7997 0.0430 

25.7709 0.0450 

26.7617 0.0470 
 

15.8530 0.0215 

16.8340 0.0220 

17.8052 0.0240 

18.7763 0.0260 

19.7475 0.0270 

20.9247 0.0285 

21.8861 0.0300 

22.8671 0.0320 

23.8481 0.0340 

24.8291 0.0345 

25.8003 0.0370 

26.7813 0.0410 
 

15.8432 0.0230 

16.8045 0.0250 

17.7855 0.0270 

18.7665 0.0280 

19.7377 0.0290 

20.9149 0.0300 

21.8763 0.0320 

22.8573 0.0340 

23.8383 0.0350 

24.8193 0.0370 

25.8003 0.0390 

26.7715 0.0410 
 

This data appears in Figure 4.17. 
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C.2 Force Applied Against Friction for Cable 1 and Cable 2 

Force 

(N) 

Friction Force on C1 

(N) 

0.0000 0.2117 

0.9908 0.6417 

1.9620 1.0521 

2.9528 1.4821 

3.9338 1.9022 

4.9148 1.7616 

5.8860 2.1720 

6.8670 2.5921 

7.8382 2.4417 

8.8094 2.5717 

9.7806 2.7016 

10.7518 3.1120 

11.3404 3.1398 

11.9290 3.1675 

12.9002 3.5779 

13.8910 3.4471 

14.8818 4.1575 

15.8530 4.0070 

16.8340 4.7076 

17.8052 4.5572 

18.7763 4.4067 

19.7475 4.8171 

20.9247 5.1531 

21.8861 5.2732 

22.8671 5.1326 

23.8481 4.9919 

Force 

(N) 

Friction Force on C2 

(N) 

0.0000 0.2117 

0.9908 0.6417 

1.9424 0.4716 

2.9332 0.9016 

3.9044 0.7512 

4.8952 1.1812 

5.8762 1.0405 

6.8376 1.4411 

7.8186 1.8613 

8.7996 1.7206 

9.7806 2.1408 

10.3692 2.1686 

10.9578 2.1964 

11.9192 2.5969 

12.8903 3.0073 

13.8713 3.4275 

14.8622 3.2966 

15.8432 3.1560 

16.8045 2.9957 

17.7855 2.8551 

18.7665 3.2753 

19.7377 3.6856 

20.9149 4.3020 

21.8763 4.1418 

22.8573 4.0011 

23.8383 4.4213 
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24.8291 5.6925 

25.8003 5.2617 

26.7813 3.9994 
 

24.8193 4.2807 

25.8003 4.1400 

26.7715 3.9896 
 

This data appears in Figure 4.18 and Figure 4.19. 
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C.3 Theoretical and Corrected Experimental Results of a 
Double Cable on Double Joint 

 Cable 1 Cable 2 

Payload 

(g) 

Theoretical 

(N) 

Experimental 

(N) 

Theoretical 

(N) 

Experimental 

(N) 

0 27.4068 30.6028 11.9825 11.9707 

27.7989 13.2416 

28.2193 13.2416 

26.8469 14.5053 

3.2 27.8307 27.8411 12.5550 14.4480 

27.9147 15.5566 

28.7736 15.5566 

28.9820 13.4374 

6.4 28.2546 29.8937 13.1274 15.5794 

29.0028 15.5794 

30.8788 15.7503 

30.8992 16.7390 

9.6 28.6785 30.9094 13.6999 15.6022 

31.0013 15.6022 

31.9853 15.5794 

32.0559 16.7844 

12.8 29.1024 29.9040 14.2723 15.5794 

30.9401 15.7048 

30.9094 15.5794 

31.0930 16.7277 

16 29.5263 31.0115 14.8447 16.7617 

31.0930 15.6478 

28.8987 17.8698 

31.0420 17.9037 
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19.2 29.9502 32.9892 15.4172 17.8134 

32.9792 16.7390 

33.0790 16.8637 

33.1288 17.8360 

22.4 30.3741 32.9991 15.9896 16.7844 

33.0790 16.7957 

33.1687 17.8698 

33.0291 19.1629 

25.6 30.7978 33.1488 16.5621 17.8247 

33.1388 17.8473 

34.9938 19.0732 

33.0989 17.8586 

This data appears in Figure 4.20 and Figure 4.21. 
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Matlab .m files 

This section contains the .m files developed and used throughout the thesis.  

D.1 Algorithmic solver for snake arm length 

The purpose of the solver as presented in Chapter 5.7 was to iteratively 

increase the ‘Link’ length or the ‘Base Link’ length to maximise the feasible 

length of a snake arm. During each iterative step the cable tensions are 

calculated using the method presented in Chapter 4.4 and a series of safety 

checks are made to ensure the failure modes do not occur.  

D.2 run_me.m 

This section of code iteratively increases both link lengths and stops when 

failure conditions are met. 

clear 
clc 
tic 

  
continue_function=1; 
while continue_function==1 

  
    for tle=0.001:0.001:1 

  
        b=0.01;  
        [ROBOT_check,snl]=test_code(b,tle); 

  
        if ROBOT_check(1,1)==1 ||  ROBOT_check(3,1)==1 || 

ROBOT_check(5,1)==1 || ROBOT_check(6,1)==1 
            continue_function=0; 
            break 
        else 
            final_tle=tle; 
        end 
     end 
end 

  
continue_function=1; 
while continue_function==1 
    for b=0.001:0.001:10              
        tle=final_tle; 
        [ROBOT_check,snl]=test_code(b,tle); 
        if ROBOT_check(4,1)==1 
            continue_function=0; 
            break 
        else 
            final_b=b;  
        end 
    end 
end 

Clears any current held variables and 

visible lines on the Command window. 

Link length is increased in 0.001m 

increments from 0.001m to 1m. 

At each step the function test_code is 

recalled to calculate the cable tensions 

and perform the safety checks. Once a 

failure mode is reached the loop is 

broken and the Link length is brought 

forward. 

Using the recorded Link length, the loop 

is repeated with the Base link length 

increased in 0.001m increments from 

0.001m to 10m, this continues until any 

failure conditions are met. 
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final_b 
final_tle 

  
% Number of joints 
number_of_joints=3; 
% Length of base link (m) 
base_tube_link_length=final_b; 
% Length of links (m) 
tube_link_length=final_tle; 
% Length of joint (m) 
joint_length=0.0055; 
% Length of end vertebrae (m)  
end_vert_length=0.002; 
% Length of link in joint (m) 
joint_link_length=0.005; 

  
snl=base_tube_link_length+(tube_link_length*number_of_joints)+(joint

_length*(2*number_of_joints))+end_vert_length+(joint_link_length*num

ber_of_joints) 

  
toc 

D.3 test_code.m 

This section of code contains the variables forming the snake arm model.  

% new algorithm for searching snake arm length 

  
function [ROBOT_check,snl]=test_code(b,tle) 

 
x(1)=b; 
x(2)=tle; 

  
gravity=9.81; 
% Number of joints 
number_of_joints=3; 
% Length of base link (m) 
base_tube_link_length=x(1);  
% Length of links (m) 
tube_link_length=x(2); 
% Length of joint (m) 
joint_length=0.0055; 
% Length of end vertebrae (m) 
end_vert_length=0.002; 
% Length of link in joint (m) 
joint_link_length=0.005; 
% Maximum diameter of Snake Arm (m) 
arm_max_diameter=0.012; 

  
% Length of joint yaw centroid (m)  
joint_yaw_centroid=0.00321; 
% Length of joint pitch centroid (m) 
joint_pitch_centroid=0.00229; 
% Length of end vertebrae centroid (m) 
end_vert_centroid=0.00081; 

  
% Payload weight (kg) 
payload_kg=0.02;  

The maximum Link and Base link 

lengths are displayed. 

The total snake arm length is calculated 

and displayed. 

Assigns the new link length values each 

step. 

Specification of the snake arm. 

Centroid locations of the joint parts and 

end vertebrae. 

Payload conditions are specified here. 
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% Payload Length (m) 
payload_length=0.06; 

  
% Weight of joint (kg) 
weight_joint=0.00252; 
% Weight of link in joint (kg) 
weight_joint_link=0.0008;  
% Weight of end vert (kg) 
weight_end_vert=0.00147; 

  
% Density of electrical wire (kg/m^3) 
wire_density=8940; 
% Electrical wire diameter (m) 
wire_diameter=0.0015; 
% Tendon outer diameter (m)  
tendon_diameter=0.0015; 
% Tendon density (kg/m^3) 
tendon_density=955; 

  
% Arm angles (degrees)  
arm_angle=[0 0 0 0 0 0 0 0]; 

  
% Yield Stress of Cable 
safety_cable_yield=490; 
% Compression limit of joint 
safety_joint=1332; 
% Joint torque twist limit 
safety_twist=1.8;  
% Cable Factor of Safety 
cable_fos=6; 
% Joint Factor of Safety 
joint_fos=4; 
% Joint twist Factor of Safety 
twist_fos=4; 
% tube Factor of Safety 
tube_fos=4; 

  
% Selection of tubes for each link including base tube 
% Default tube selection is 1 for all links 
tselect_array=[1; 1; 1; 1]; 

  
%% File workings 

  
% Use Robotics Toolbox?  
USE_robotics=1; 
% See Plot? 
USE_plot=0; 

  
% Length of Snake arm 
snl=base_tube_link_length+(tube_link_length*number_of_joints)+(joint

_length*(2*number_of_joints))+end_vert_length+(joint_link_length*num

ber_of_joints); 
inv_snl=1/snl; 
disp(['Length of Snake arm set at ' num2str(snl) ' meters.']); 

  
%% Tendons 

  
teor=tendon_diameter/2; 
ewor=wire_diameter/2; 

  

Known constant weights of parts. 

Values required to calculate the weight 

of parts as the length increases. 

Initialises the joint angles for the snake 

arm. 

The safety constraints associated with 

the snake arm. 

This array allows the material of the 

links to be easily interchanged, but 

cannot be changed during the iterative 

process. 

Calculates the length of the snake arm 
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% Number of tendons in each section 
for i=1:number_of_joints 
    tendon_array(i,1)=(number_of_joints-(i-1))*3; 
end 

  
% Imports where tendons stop at each section 
joint_tendon_array=[1 1 4 7; 2 2 5 8; 3 3 6 9]; 

  
% Import the position of each tendon 
tendon_position = 

[1,0,0.00425;2,0.0025,0.00344;3,0.00404,0.00131;4,0.00404,-

0.00131;5,0.0025,-0.00344;6,-0.0025,-0.00344;7,-0.00404,-0.00131;8,-

0.00404,0.00131;9,-0.0025,0.00344]; 

  
Dx1=tendon_position(1,2); 
Dy1=tendon_position(1,3); 
Dx2=tendon_position(2,2); 
Dy2=tendon_position(2,3);  
Dx3=tendon_position(3,2); 
Dy3=tendon_position(3,3); 
Dx4=tendon_position(4,2); 
Dy4=tendon_position(4,3); 
Dx5=tendon_position(5,2); 
Dy5=tendon_position(5,3);  
Dx6=tendon_position(6,2); 
Dy6=tendon_position(6,3); 
Dx7=tendon_position(7,2); 
Dy7=tendon_position(7,3); 
Dx8=tendon_position(8,2);  
Dy8=tendon_position(8,3); 
Dx9=tendon_position(9,2); 
Dy9=tendon_position(9,3); 

  
%% Initialise Arrays 

  
disp('Start-up arrays initialised.'); 
weight_array=zeros([2*number_of_joints+2,2]); 
distance_array=zeros([number_of_joints,number_of_joints]); 
counter_array=zeros([number_of_joints,1]); 
tension_temp=zeros([1,3]); 
arm_angle_rad=zeros([1,2*number_of_joints+2]); 
arm_angle_rad_reverse=zeros([1,2*number_of_joints+2]); 
link_length=zeros([1,2*number_of_joints+2]); 
link_centroid=zeros([1,2*number_of_joints+2]); 
mass_intertia=zeros([1,2*number_of_joints+2]); 
link_moments_array=zeros([number_of_joints,2*number_of_joints+2]); 
ROBOT_tension_array=zeros([tendon_array(1,1),4]); 
joint_force=zeros([number_of_joints,1]); 
ROBOT_check=zeros(6,1); 
ROBOT_compression_array=zeros([number_of_joints,1]); 

  
%% Lengths 
% Length of base section 
length_base_section=base_tube_link_length+joint_length; 
% Length of mid section 
length_mid_section=tube_link_length+(2*joint_length); 
% Length of end section 
length_end_section=tube_link_length+joint_length+end_vert_length; 

  
link_length(1,1)=length_base_section; 
link_length(1,2)=joint_link_length; 

With 3 cables per joint, this For loop 

calculates the number of number of 

cables in each of the 3 links. 

Termination point for each cable. 

From Figure 5.24 

Coordinate position of each cable. 

From Table 5.4. 

Modelling each link segment begins here 
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link_length(1,3)=length_mid_section; 
link_length(1,4)=joint_link_length; 
link_length(1,5)=length_mid_section; 
link_length(1,6)=joint_link_length; 
link_length(1,7)=length_end_section;  
link_length(1,8)=payload_length; 

  
%% Weights 

  
% Imports the selection of usable tubes 
tube_data = 

[1,0.012,0.001,8000,210000000000,170000000,0.265;2,0.012,0.001,1504.

74,200000000,200000000,0.1;3,0.007,0.001,1300,10000000000,200000000,

0;4,0.007,0.001,1180,3300000000,66190080,0]; 

  
[tempa, tempb]=size(tube_data);  
for i=1:tempa 
    tor(i,1)=(tube_data(i,2))/2; 
    twt(i,1)=tube_data(i,3); 
    tde(i,1)=tube_data(i,4); 
    tym(i,1)=tube_data(i,5); 
    tys(i,1)=tube_data(i,6); 
    tpr(i,1)=tube_data(i,7); 
end 

  
% Calculates the weight of each sections and its centroid position 
% Weight of Link 1 (base link) 
weight_array(1,1)=1; 
tube_weight=calc_tube_weight(tor(tselect_array(1,1),1),twt(tselect_a

rray(1,1),1),base_tube_link_length,tde(tselect_array(1,1),1)); 
tendon_weight=calc_tendon_weight(teor,link_length(1,1),tendon_densit

y); 
wire_weight=calc_wire_weight(ewor,link_length(1,1),wire_density); 
weight_array(1,2)=(weight_joint)+tube_weight+(tendon_weight*tendon_a

rray(1))+wire_weight; 

  
tempa=(tube_weight+(tendon_weight*tendon_array(1))+wire_weight)*(bas

e_tube_link_length/2)+(weight_joint*(base_tube_link_length+joint_pit

ch_centroid)); 
tempb=(tube_weight+(tendon_weight*tendon_array(1))+wire_weight)+weig

ht_joint;  
link_centroid(1,1)=tempa/tempb; 

  
% Weight of Link 2 
weight_array(2,1)=2; 
tendon_weight=calc_tendon_weight(teor,joint_link_length,tendon_densi

ty); 
weight_array(2,2)=(tendon_weight*tendon_array(1))+weight_joint_link; 

  
link_centroid(1,2)=joint_link_length/2; 

  
% Weight of Link 3 
weight_array(3,1)=3; 
tube_weight=calc_tube_weight(tor(tselect_array(2,1),1),twt(tselect_a

rray(2,1),1),tube_link_length,tde(tselect_array(2,1),1)); 
tendon_weight=calc_tendon_weight(teor,link_length(1,3),tendon_densit

y); 
wire_weight=calc_wire_weight(ewor,link_length(1,3),wire_density); 
weight_array(3,2)=(weight_joint)+tube_weight+(tendon_weight*tendon_a

rray(1))+wire_weight; 

Grouping individual part lengths, 

the length of each arm segment 

is calculated into an array. 

Tube_data contains the 

specifications of each link material. 

This includes values such as 

dimensions and densities.  

The weight of each link segment is the 

sum of each component forming it. 

As each part runs continuously 

through, the centroid is also 

calculated here.  
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tempa=(weight_joint*(joint_yaw_centroid))+(tube_weight+(tendon_weigh

t*tendon_array(1))+wire_weight)*((tube_link_length/2)+joint_length)+

(weight_joint*(joint_length+tube_link_length+joint_pitch_centroid)); 
tempb=weight_joint+(tube_weight+(tendon_weight*tendon_array(1))+wire

_weight)+weight_joint; 
link_centroid(1,3)=tempa/tempb; 

  
% Weight of Link 4 
weight_array(4,1)=4; 
tendon_weight=calc_tendon_weight(teor,joint_link_length,tendon_densi

ty); 
weight_array(4,2)=( 
tendon_weight*tendon_array(2))+weight_joint_link; 

  
link_centroid(1,4)=joint_link_length/2; 

  
% Weight of Link 5 
weight_array(5,1)=5; 
tube_weight=calc_tube_weight(tor(tselect_array(3,1),1),twt(tselect_a

rray(3,1),1),tube_link_length,tde(tselect_array(3,1),1)); 
tendon_weight=calc_tendon_weight(teor,link_length(1,5),tendon_densit

y); 
wire_weight=calc_wire_weight(ewor,link_length(1,5),wire_density); 
weight_array(5,2)=(weight_joint)+tube_weight+(tendon_weight*tendon_a

rray(2))+wire_weight; 

  
tempa=(weight_joint*(joint_yaw_centroid))+(tube_weight+(tendon_weigh

t*tendon_array(1))+wire_weight)*((tube_link_length/2)+joint_length)+

(weight_joint*(joint_length+tube_link_length+joint_pitch_centroid)); 
tempb=weight_joint+(tube_weight+(tendon_weight*tendon_array(2))+wire

_weight)+weight_joint; 
link_centroid(1,5)=tempa/tempb; 

  
% Weight of Link 6 
weight_array(6,1)=6; 
tendon_weight=calc_tendon_weight(teor,joint_link_length,tendon_densi

ty); 
weight_array(6,2)=(tendon_weight*tendon_array(2))+weight_joint_link; 

  
link_centroid(1,6)=joint_link_length/2; 

  
% Weight of Link 7 
weight_array(7,1)=7; 
tube_weight=calc_tube_weight(tor(tselect_array(4,1),1),twt(tselect_a

rray(4,1),1),tube_link_length,tde(tselect_array(4,1),1)); 
tendon_weight=calc_tendon_weight(teor,link_length(1,7),tendon_densit

y); 
wire_weight=calc_wire_weight(ewor,link_length(1,7),wire_density); 
weight_array(7,2)=(weight_joint)+tube_weight+(tendon_weight*tendon_a

rray(3))+wire_weight+weight_end_vert; 

  
tempa=(weight_joint*(joint_yaw_centroid))+(tube_weight+(tendon_weigh

t*tendon_array(1))+wire_weight)*((tube_link_length/2)+joint_length)+

(weight_end_vert*(joint_length+tube_link_length+end_vert_centroid)); 
tempb=weight_joint+(tube_weight+(tendon_weight*tendon_array(3))+wire

_weight)+weight_end_vert; 
link_centroid(1,7)=tempa/tempb; 

  
% Weight of Link 8 (Payload) 
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weight_array(8,1)=8; 
weight_array(8,2)=payload_kg; 

  
link_centroid(1,8)=payload_length/2; 

  
disp('Calculated the weight of each section.'); 

  

  
%% Tension 

  
GRAV=[0 gravity 0]; 

  
% Arm angles 
for i=1:numcols(arm_angle) 
    arm_angle_rad(1,i)=arm_angle(1,i)*(pi/180); 
end 

  
% Denhavit-Hartenburg matrix 
%    theta    kinematic: joint angle 
%    d        kinematic: link offset 
%    a        kinematic: link length 
%    alpha    kinematic: link twist 
%    sigma    kinematic: 0 if revolute, 1 if prismatic 
%    mdh      kinematic: 0 if standard D&H, else 1 
%    offset   kinematic: joint variable offset 
%    qlim     kinematic: joint variable limits [min max] 
%    m        dynamic: link mass 
%    r        dynamic: link COG wrt link coordinate frame 3x1 
%    I        dynamic: link inertia matrix, symmetric 3x3, about link 

COG. 
%    B        dynamic: link viscous friction (motor referred) 
%    Tc       dynamic: link Coulomb friction 

  
% Links 
link_array(1)=Link('alpha',  pi/2,  'd', 0, 'a', link_length(1,1), 

'offset', 0,   'qlim',[-pi/4 pi/4], 'm', weight_array(1,2), 'r',[-

link_centroid(1,1); 0; 0], 'I', [0.00000066 0.00000000 0.00000000; 

0.00000000 0.00078561 0.00000000; 0.00000000 0.00000000 0.00078560], 

'Jm', 0); 
link_array(2)=Link('alpha', -pi/2,  'd', 0, 'a', link_length(1,2), 

'offset', 0,   'qlim',[-pi/4 pi/4], 'm', weight_array(2,2), 'r',[-

link_centroid(1,2); 0; 0], 'I', [0.00000000 0.00000000 0.00000000; 

0.00000000 0.00000001 0.00000000; 0.00000000 0.00000000 0.00000001], 

'Jm', 0); 
link_array(3)=Link('alpha',  pi/2,  'd', 0, 'a', link_length(1,3), 

'offset', 0,   'qlim',[-pi/4 pi/4], 'm', weight_array(3,2), 'r',[-

link_centroid(1,3); 0; 0], 'I', [0.00000102 0.00000000 0.00000000; 

0.00000000 0.00005518 0.00000000; 0.00000000 0.00000000 0.00005519], 

'Jm', 0); 
link_array(4)=Link('alpha', -pi/2,  'd', 0, 'a', link_length(1,4), 

'offset', 0,   'qlim',[-pi/4 pi/4], 'm', weight_array(4,2), 'r',[-

link_centroid(1,4); 0; 0], 'I', [0.00000000 0.00000000 0.00000000; 

0.00000000 0.00000001 0.00000000; 0.00000000 0.00000000 0.00000001], 

'Jm', 0); 
link_array(5)=Link('alpha',  pi/2,  'd', 0, 'a', link_length(1,5), 

'offset', 0,   'qlim',[-pi/4 pi/4], 'm', weight_array(5,2), 'r',[-

link_centroid(1,5); 0; 0], 'I', [0.00000102 0.00000000 0.00000000; 

0.00000000 0.00005518 0.00000000; 0.00000000 0.00000000 0.00005519], 

'Jm', 0);  
link_array(6)=Link('alpha', -pi/2,  'd', 0, 'a', link_length(1,6), 

'offset', 0,   'qlim',[-pi/4 pi/4], 'm', weight_array(6,2), 'r',[-

The DH table is formed for the RNE 

calculations  
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link_centroid(1,6); 0; 0], 'I', [0.00000000 0.00000000 0.00000000; 

0.00000000 0.00000001 0.00000000; 0.00000000 0.00000000 0.00000001], 

'Jm', 0); 
link_array(7)=Link('alpha',  pi/2,  'd', 0, 'a', link_length(1,7), 

'offset', 0,   'qlim',[-pi/4 pi/4], 'm', weight_array(7,2), 'r',[-

link_centroid(1,7); 0; 0], 'I', [0.00000102 0.00000000 0.00000000; 

0.00000000 0.00005518 0.00000000; 0.00000000 0.00000000 0.00005519], 

'Jm', 0); 
link_array(8)=Link('alpha',  -pi/2, 'd', 0, 'a', link_length(1,8), 

'offset', 0,   'qlim',[-pi/4 pi/4], 'm', weight_array(8,2), 'r',[-

link_centroid(1,8); 0; 0], 'I', [0.00000000 0.00000000 0.00000000; 

0.00000000 0.00000001 0.00000000; 0.00000000 0.00000000 0.00000001], 

'Jm', 0); 

  
Snake_Arm = SerialLink(link_array, 'name','Snake Arm Type 6'); 
%Snake_Arm.display() 
%Snake_Arm.dyn 

  
if USE_plot==1 
    Snake_Arm.plot (arm_angle_rad, 'wrist'); 
    xlabel('x') 
    ylabel('y') 
    drawnow 
end 

  
if USE_robotics==1 
    disp('Using Robotics Toolbox RNE function'); 

     
    %TAU = R.rne(Q, QD, QDD) is the joint torque required for the 

robot R to achieve the specified joint position Q, velocity QD and 

acceleration QDD. 

     
    Q=arm_angle_rad; 
    QD= [0 0 0 0 0 0 0 0]; 
    QDD=[0 0 0 0 0 0 0 0]; 
    TAU = Snake_Arm.rne(Q, QD, QDD); 
    TAUtrans=TAU'; 

     
    Rp1=TAU(1,2); 
    Ry1=TAU(1,3); 
    Rp2=TAU(1,4); 
    Ry2=TAU(1,5); 
    Rp3=TAU(1,6); 

    Ry3=TAU(1,7);1 

     
end 

  
%% Tension Calculations 

  
% Calculate the tensions 
if USE_robotics==1 

     
    T5=0; 
    T6=0; 
    T7=0; 

     

                                            

1 Corke, P.I., A robotics toolbox for MATLAB. IEEE Robotics & Automation Magazine, 1996. 3(1): p. 24-32. 

The RNE function is called from the 

latest Robotics Toolbox addon1. 

As it is assumed the arm is held in 

the static horizontal lever position, 

the torque velocities and 

accelerations are kept zero. 

Uses cable tension equations 

derived from Chapter 4.4. 

The tension of each cable is 

calculated. 
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    % Tendon 1 
    tempa=1; 
    ROBOT_tension_array(tempa,1)=tempa; 
    ROBOT_tension_array(tempa,2)=0; 
    ROBOT_tension_array(tempa,3)=tendon_position(tempa,3); 
    ROBOT_tension_array(tempa,4)=(Dx4*(Dy5*T5 - Rp1 + Dy6*T6 + 

Dy7*T7))/(Dx1*Dy4 - Dx4*Dy1) - (Dy4*(Dx5*T5 - Ry1 + Dx6*T6 + 

Dx7*T7))/(Dx1*Dy4 - Dx4*Dy1) - (Dx4*(Dy5*T5 - Rp2 + Dy6*T6))/(Dx1*Dy4 

- Dx4*Dy1) + (Dy4*(Dx5*T5 - Ry2 + Dx6*T6))/(Dx1*Dy4 - Dx4*Dy1); 

     
    % Tendon 2 
    tempa=2; 
    ROBOT_tension_array(tempa,1)=tempa; 
    ROBOT_tension_array(tempa,2)=0; 
    ROBOT_tension_array(tempa,3)=tendon_position(tempa,3); 
    ROBOT_tension_array(tempa,4)=(Dx8*(Dy5*T5 - Rp2 + 

Dy6*T6))/(Dx2*Dy8 - Dx8*Dy2) - (Dy8*(Dx5*T5 - Ry2 + Dx6*T6))/(Dx2*Dy8 

- Dx8*Dy2) + (Dx8*(Rp3 - Dy6*T6))/(Dx2*Dy8 - Dx8*Dy2) - (Dy8*(Ry3 - 

Dx6*T6))/(Dx2*Dy8 - Dx8*Dy2); 

     
    % Tendon 3 
    tempa=3; 
    ROBOT_tension_array(tempa,1)=tempa; 
    ROBOT_tension_array(tempa,2)=0; 
    ROBOT_tension_array(tempa,3)=tendon_position(tempa,3); 
    ROBOT_tension_array(tempa,4)=(Dy9*(Ry3 - Dx6*T6))/(Dx3*Dy9 - 

Dx9*Dy3) - (Dx9*(Rp3 - Dy6*T6))/(Dx3*Dy9 - Dx9*Dy3); 

     
    % Tendon 4 
    tempa=4; 
    ROBOT_tension_array(tempa,1)=tempa; 
    ROBOT_tension_array(tempa,2)=0; 
    ROBOT_tension_array(tempa,3)=tendon_position(tempa,3); 
    ROBOT_tension_array(tempa,4)=(Dy1*(Dx5*T5 - Ry1 + Dx6*T6 + 

Dx7*T7))/(Dx1*Dy4 - Dx4*Dy1) - (Dx1*(Dy5*T5 - Rp1 + Dy6*T6 + 

Dy7*T7))/(Dx1*Dy4 - Dx4*Dy1) + (Dx1*(Dy5*T5 - Rp2 + Dy6*T6))/(Dx1*Dy4 

- Dx4*Dy1) - (Dy1*(Dx5*T5 - Ry2 + Dx6*T6))/(Dx1*Dy4 - Dx4*Dy1); 

     
    % Tendon 8 
    tempa=8; 
    ROBOT_tension_array(tempa,1)=tempa; 
    ROBOT_tension_array(tempa,2)=0; 
    ROBOT_tension_array(tempa,3)=tendon_position(tempa,3); 
    ROBOT_tension_array(tempa,4)=(Dy2*(Dx5*T5 - Ry2 + 

Dx6*T6))/(Dx2*Dy8 - Dx8*Dy2) - (Dx2*(Dy5*T5 - Rp2 + Dy6*T6))/(Dx2*Dy8 

- Dx8*Dy2) - (Dx2*(Rp3 - Dy6*T6))/(Dx2*Dy8 - Dx8*Dy2) + (Dy2*(Ry3 - 

Dx6*T6))/(Dx2*Dy8 - Dx8*Dy2); 

     
    % Tendon 9 
    tempa=9; 
    ROBOT_tension_array(tempa,1)=tempa; 
    ROBOT_tension_array(tempa,2)=0; 
    ROBOT_tension_array(tempa,3)=tendon_position(tempa,3); 
    ROBOT_tension_array(tempa,4)=(Dx3*(Rp3 - Dy6*T6))/(Dx3*Dy9 - 

Dx9*Dy3) - (Dy3*(Ry3 - Dx6*T6))/(Dx3*Dy9 - Dx9*Dy3); 

     
end 

  
%% Safety Checks 

  
disp('Commencing Safety Checks.'); 

The individual tension of each cable 

is compared to the cable yield in 

consideration with the cable FOS. 
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if USE_robotics==1 
    % Check the ROBOT cable tensions 
    tempb=0; 
    for i=1:tendon_array(1,1) 
        tempa=ROBOT_tension_array(i,4)*cable_fos; 
        if tempa>safety_cable_yield 
            tempb=1;  
        end 
    end 

     
    if tempb==1 
        ROBOT_check(1,1)=1; 
        disp('ROBOT cable tension: FAIL.'); 
    else 
        ROBOT_check(1,1)=0; 
        disp('ROBOT cable tension: PASS.'); 
    end 
end 

  
% Check the joint compression 

  
if USE_robotics==1 
    % Sum all ROBOT tensions for each joint 
    for i=1:number_of_joints 
        tempc=ROBOT_tension_array(joint_tendon_array(i,2),4); 
        tempd=ROBOT_tension_array(joint_tendon_array(i,3),4); 
        tempe=ROBOT_tension_array(joint_tendon_array(i,4),4); 
        joint_force(i,1)=tempc+tempd+tempe; 
    end 
    for i=1:number_of_joints 
        ROBOT_compression_array(i,1)=sum(joint_force(i:3,1)); 
    end 
    % Check the joints 
    tempb=0; 
    for i=1:number_of_joints 
        tempc=ROBOT_compression_array(i,1)*joint_fos; 
        if tempc>safety_joint 
            tempb=1; 
        end 
    end 
    if tempb==1 
        ROBOT_check(3,1)=1; 
        disp('ROBOT 2DOF joint: FAIL.'); 
    else 
        ROBOT_check(3,1)=0; 
        disp('ROBOT 2DOF joint: PASS.') 
    end 
end 

   
% Check the tube buckling 

  
if USE_robotics==1 
    tempa=0; 
    tempb=0; 

     
    % check base tubing 
    tube_length=base_tube_link_length; 
    % Row of tube for base on tselect_array 
    i=1; 
    tube_load=ROBOT_compression_array(i,1); 

The condition of the cable is 

displayed in the command window. 

The axial compressive force 

through each link segment is the 

sum of the cable tensions running 

through them. 

The axial compression through 

each joint is compared to the yield 

limit of the joint derived from the FE 

analysis in Chapter 5.4.2. 

The likelihood of buckling for the 

Base Link is checked using the 

function calc_tube_buckling. 
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    [tube_buckling, axialstress, axialstress_noFOS, Fb, 

Fbt]=calc_tube_buckling(tor(tselect_array(i,1),1), 

twt(tselect_array(i,1),1), tym(tselect_array(i,1),1), 

tys(tselect_array(i,1),1), tpr(tselect_array(i,1),1), tube_length, 

tube_fos, tube_load); 
    output_4=axialstress; 
    output_5=axialstress_noFOS; 
    output_6=Fb; 
    output_10=Fbt; 
    if tube_buckling==1 || (output_6/output_5)<tube_fos 
        tempb=1; 
    end 

         
    if tempb==1 
        ROBOT_check(4,1)=1; 
        disp('ROBOT base tube buckling: FAIL.'); 
    else 
        ROBOT_check(4,1)=0; 
        disp('ROBOT base tube buckling: PASS.') 
    end 

     
    tube_buckling=0; 
    % check other tubing 
    for i=1:number_of_joints 
        disp('tube buckling');  
         
        tube_length=tube_link_length; 
        tube_load=ROBOT_compression_array(i,1); 
        [tube_buckling, axialstress, axialstress_noFOS, Fb, 

Fbt]=calc_tube_buckling(tor(tselect_array(i+1,1),1), 

twt(tselect_array(i+1,1),1), tym(tselect_array(i+1,1),1), 

tys(tselect_array(i+1,1),1), tpr(tselect_array(i+1,1),1), 

tube_length, tube_fos, tube_load); 

         
        if i==1 %records the buckling data of link 2 
            output_7=axialstress; 
            output_8=axialstress_noFOS; 
            output_9=Fb; 
            output_11=Fbt; 
        end 

         
        if tube_buckling==1 || output_9/output_8<tube_fos 
            tempa=1; 
        end 
    end 

     
    if tempa==1 
        ROBOT_check(5,1)=1; 
        disp('ROBOT tube buckling: FAIL.'); 
    else 
        ROBOT_check(5,1)=0; 
        disp('ROBOT tube buckling: PASS.') 
    end 

     
end 

  
% Check joint twisting 

  
[twist_buckling, Rt1]=joint_torque_check(b, tle, twist_fos, 

safety_twist); 

The likelihood of buckling for the 

three other Links is also 

checked. 
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output_12=Rt1; 
if twist_buckling==1 
    ROBOT_check(6,1)=1; 
    disp('Joint twist: FAIL.'); 
else 
    ROBOT_check(6,1)=0; 
    disp('Joint twist: PASS.') 
end 

  
disp(' ')  
  
%% Optimisation Outputs 

  
if USE_robotics==1 
    % Grab max cable tension 
    for i=1:tendon_array(1,1) 
        tempa(i,1)=ROBOT_tension_array(i,4); 
    end 
    output_1=max(tempa); 

     
    % Grab max compression of 2DOF joint 
    for i=2:number_of_joints 
        tempa(i,1)=ROBOT_compression_array(i,1); 
    end 
    output_2=max(tempa);  
end 

  
% DEV_check=RNE_tension_array; 
% DEV_check2=RNE_compression_array; 

  
constraint_array(1)=output_4;   % base tube axial stress 
output_5;                       % base tube axial stress w. no FOS 
constraint_array(2)=output_6;   % base tube flexural buckling stress 
constraint_array(3)=output_10;  % base tube local buckling stress 
constraint_array(4)=output_7;   % other tube axial stress 
output_8;                       % other tube axial stress w. no FOS 
constraint_array(5)=output_9;   % other tube flexural buckling stress 
constraint_array(6)=output_11;  % other tube local buckling stress 
constraint_array(7)=output_1;   % max cable tension 
constraint_array(8)=output_2;   % max tension on joints (sum of tendon 

forces) 
constraint_array(9)=output_12;  % Joint torque at 1 

  
FOS_check_1=safety_cable_yield/output_1;    % cable 
FOS_check_2=output_6/output_5;              % base tube flexural 
FOS_check_3=output_10/output_5;             % base tube local 
FOS_check_4=output_9/output_8;              % tube flexural 
FOS_check_5=output_11/output_8;             % tube local 
FOS_check_6=safety_joint/output_2;          % joint 

  

The torque twisting of the joint is 

checked and compared to the 

FEA derived value from Chapter 

5.4.2. 

This section of code allows the 

function operator to output 

specific values to assist in 

debugging and development of 

the script.  



- 229 - 
 

     

D.3 calc_tube_buckling.m 

This section of code calculates the flexural and local buckling stresses for the 

given link material. The equations involved are presented in Chapter 4.3.  

function [tube_buckling, axialstress, axialstress_noFOS, Fb, 

Fbt]=calc_tube_buckling(tor, twt, tym, tys, tpr, tube_length, 

tube_fos, tube_load) 

  
    %% From equation 4.1 at ESDU 88034 

  
    % Fb = Elastic buckling stress                               N/m2 
    % FE = Euler buckling stress                                 N/m2 
    % tym  = Modulus of elasticity of material                     N/m2 
    % tys = 0.2 per cent proof stress or yield stress of material 

N/m2 
    % tle = Actual length of cylinder acting as strut             m 
    % Le = Equivalent length of cylinder acting as strut         m 
    % k  = Radius of gyration of section                         m 
    % Do = outer diameter of cylinder                            m 
    % Di = inner diameter of cylinder                            m 
    % n  = empirically determined factor accounting for imperfections 

  
    %% Variables 
    tod = tor*2; 
    tid = tod-(2*twt); 

     
    Axialload=tube_load*tube_fos; 
    %% Flexural buckling 
    Le = 2*tube_length;  
    k  = (sqrt(tod^2+tid^2))/4; 
    n  = (0.003*Le)/k; 
    FE = (pi^2)*tym*((k/Le)^2); 
    Area_Do=pi*((tod/2)^2); 
    Area_Di=pi*((tid/2)^2); 
    CSA=Area_Do-Area_Di; 
    axialstress=Axialload/CSA 
    axialstress_noFOS=tube_load/CSA 
    var_1= tys/FE; 
    var_2= 1+n; 
    formula_1= 0.5*(var_1+var_2);  
    formula_2= 0.25*((var_1+var_2)^2); 
    formula_3= sqrt(formula_2-var_1); 
    formula_4= formula_1-formula_3; 
    Fb=formula_4*FE 
    if axialstress<Fb 
        tube_buckling=0; 
    else 
        tube_buckling=1; 
    end 

     
    %% Local Buckling 

     
    % Q = simply supported 
    % v = poisson's ratio 
    % t = thickness 
    % R = radius of cylinder 
    % E = young's modulus 
    % Fbt = Elastic buckling stress                               N/m2 

     

Calculates the flexural buckling 

stress. 

Compares the buckling stress to 

the axial compressive load. 
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    Q=0.85; 

     
    if tpr==0 
        disp('WARNING: Tube missing Poissons Ratio data, ignoring 

Local Buckling calculations') 
    else 
        v=tpr; 
    end 

     
    formula_5=Q*tym; 
    formula_6=sqrt(3*(1-(v^2))); 
    formula_7=twt/tor; 
    Fbt_con=(formula_5/formula_6)*formula_7;  
    Fbt=Fbt_con*0.25 

     
    if axialstress<Fbt 

  
    else 
        tube_buckling=1; 
    end       
end 

  

Calculates the local buckling 

stress. 

Compares the buckling stress to 

the axial compressive load. 
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D.4 joint_torque_check.m 

Torque twisting of the joint only occurs when there is a lateral load on the arm. 

Under the snake arms own weight this occurs when the arm is orientated to 

the far left or far right positions. This section of code is largely similar to 

test_code.m (Appendix D.2) however the arm angles are changed and only 

the torque twisting is compared.  

function [twist_buckling, Rt1]=joint_torque_check(b, tle, twist_fos, 

safety_twist) 
% Single pass of the optimisation functions 
% for those one off calculations or code testing 

  
% Initialise Arm angles (degrees) 
theta=30; 
arm_angle=[0 90 -90 -90 theta 0 theta 0 theta 0]; 

  
%% Build Spec 

  
x(1)=b; 
x(2)=tle; 

  
gravity=9.81; 
% Number of joints 
number_of_joints=3; 
% Length of base link (m) 
base_tube_link_length=x(1); 
% Length of links (m) 
tube_link_length=x(2); 
% Length of joint (m) 
joint_length=0.0055; 
% Length of end vertebrae (m) 
end_vert_length=0.002; 
% Length of link in joint (m) 
joint_link_length=0.005; 
% Maximum diameter of Snake Arm (m) 
arm_max_diameter=0.012; 

  
% Length of joint yaw centroid (m) 
joint_yaw_centroid=0.00321; 
% Length of joint pitch centroid (m) 
joint_pitch_centroid=0.00229; 
% Length of end vertebrae centroid (m) 
end_vert_centroid=0.00081; 

  
% Payload weight (kg) 
payload_kg=0.02; 
% Payload Length (m) 
payload_length=0.06; 

  
% Weight of joint (kg) 
weight_joint=0.00252; 
% Weight of link in joint (kg) 
weight_joint_link=0.0008; 
% Weight of end vert (kg) 
weight_end_vert=0.00147; 

  
% Density of electrical wire (kg/m^3) 
wire_density=8940; 
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% Electrical wire diameter (m) 
wire_diameter=0.0015; 
% Tendon outer diameter (m) 
tendon_diameter=0.0015; 
% Tendon density (kg/m^3) 
tendon_density=955; 

  
% Yield Stress of Cable 
safety_cable_yield=500;  
% Compression limit of joint 
safety_joint=1300; 
% Cable Factor of Safety 
cable_fos=6; 
% Joint Factor of Safety 
joint_fos=4; 
% tube Factor of Safety 
tube_fos=4; 

  
% Selection of tubes for each link including base tube 
% Default tube selection is 1 for all links 
%tselect_array=ones([number_of_joints+1,1]); 
tselect_array=[1; 1; 1; 1]; 

  
% Length of Snake arm 
snl=base_tube_link_length+(tube_link_length*number_of_joints)+(joint

_length*(2*number_of_joints))+end_vert_length+(joint_link_length*num

ber_of_joints); 
inv_snl=1/snl; 

  
    %% Tendons 

     
    teor=tendon_diameter/2; 
    ewor=wire_diameter/2; 

     
    % Number of tendons in each section 
    for i=1:number_of_joints 
        tendon_array(i,1)=(number_of_joints-(i-1))*3; 
    end 

     
    % Imports where tendons stop at each section 
    joint_tendon_array=[1 1 4 7; 2 2 5 8; 3 3 6 9]; 

     
    % Import the position of each tendon 
    tendon_position = 

[1,0,0.00425;2,0.0025,0.00344;3,0.00404,0.00131;4,0.00404,-

0.00131;5,0.0025,-0.00344;6,-0.0025,-0.00344;7,-0.00404,-0.00131;8,-

0.00404,0.00131;9,-0.0025,0.00344]; 

  
    Dx1=tendon_position(1,2); 
    Dy1=tendon_position(1,3); 
    Dx2=tendon_position(2,2); 
    Dy2=tendon_position(2,3); 
    Dx3=tendon_position(3,2); 
    Dy3=tendon_position(3,3); 
    Dx4=tendon_position(4,2); 
    Dy4=tendon_position(4,3); 
    Dx5=tendon_position(5,2); 
    Dy5=tendon_position(5,3); 
    Dx6=tendon_position(6,2); 
    Dy6=tendon_position(6,3); 
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    Dx7=tendon_position(7,2); 
    Dy7=tendon_position(7,3); 
    Dx8=tendon_position(8,2); 
    Dy8=tendon_position(8,3); 
    Dx9=tendon_position(9,2); 
    Dy9=tendon_position(9,3); 

         
    %% Lengths 
    % Length of base section 
    length_base_section=base_tube_link_length+joint_length; 
    % Length of mid section 
    length_mid_section=tube_link_length+(2*joint_length); 
    % Length of end section 
    

length_end_section=tube_link_length+joint_length+end_vert_length; 

     
    link_length(1,1)=length_base_section; 
    link_length(1,2)=joint_link_length; 
    link_length(1,3)=length_mid_section; 
    link_length(1,4)=joint_link_length; 
    link_length(1,5)=length_mid_section; 
    link_length(1,6)=joint_link_length; 
    link_length(1,7)=length_end_section; 
    link_length(1,8)=payload_length; 

     
    %% Weights 

     
    % Imports the selection of usable tubes 
    tube_data = 

[1,0.012,0.001,8000,210000000000,170000000,0.265;2,0.012,0.001,1504.

74,200000000,200000000,0.1;3,0.007,0.001,1300,10000000000,200000000,

0;4,0.007,0.001,1180,3300000000,66190080,0]; 

         
    [tempa, tempb]=size(tube_data); 
    for i=1:tempa 
        tor(i,1)=(tube_data(i,2))/2; 
        twt(i,1)=tube_data(i,3); 
        tde(i,1)=tube_data(i,4); 
        tym(i,1)=tube_data(i,5); 
        tys(i,1)=tube_data(i,6); 
        tpr(i,1)=tube_data(i,7); 
    end 

          
    % Calculates the weight of each sections and its centroid position 
    % Weight of Link 1 (base link) 
    weight_array(1,1)=1; 
    

tube_weight=calc_tube_weight(tor(tselect_array(1,1),1),twt(tselect_a

rray(1,1),1),base_tube_link_length,tde(tselect_array(1,1),1)); 
    

tendon_weight=calc_tendon_weight(teor,link_length(1,1),tendon_densit

y); 
    

wire_weight=calc_wire_weight(ewor,link_length(1,1),wire_density); 
    

weight_array(1,2)=(weight_joint)+tube_weight+(tendon_weight*tendon_a

rray(1))+wire_weight; 
    

tempa=(tube_weight+(tendon_weight*tendon_array(1))+wire_weight)*(bas

e_tube_link_length/2)+(weight_joint*(base_tube_link_length+joint_pit

ch_centroid)); 
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tempb=(tube_weight+(tendon_weight*tendon_array(1))+wire_weight)+weig

ht_joint; 
    link_centroid(1,1)=tempa/tempb; 

     
    % Weight of Link 2 
    weight_array(2,1)=2; 
    

tendon_weight=calc_tendon_weight(teor,joint_link_length,tendon_densi

ty); 
    

weight_array(2,2)=(tendon_weight*tendon_array(1))+weight_joint_link; 

     
    link_centroid(1,2)=joint_link_length/2; 

     
    % Weight of Link 3 
    weight_array(3,1)=3; 
    

tube_weight=calc_tube_weight(tor(tselect_array(2,1),1),twt(tselect_a

rray(2,1),1),tube_link_length,tde(tselect_array(2,1),1)); 
    

tendon_weight=calc_tendon_weight(teor,link_length(1,3),tendon_densit

y); 
    

wire_weight=calc_wire_weight(ewor,link_length(1,3),wire_density); 
    

weight_array(3,2)=(weight_joint)+tube_weight+(tendon_weight*tendon_a

rray(1))+wire_weight; 
    

tempa=(weight_joint*(joint_yaw_centroid))+(tube_weight+(tendon_weigh

t*tendon_array(1))+wire_weight)*((tube_link_length/2)+joint_length)+

(weight_joint*(joint_length+tube_link_length+joint_pitch_centroid)); 
    

tempb=weight_joint+(tube_weight+(tendon_weight*tendon_array(1))+wire

_weight)+weight_joint; 
    link_centroid(1,3)=tempa/tempb; 

     
    % Weight of Link 4 
    weight_array(4,1)=4; 
    

tendon_weight=calc_tendon_weight(teor,joint_link_length,tendon_densi

ty); 
    

weight_array(4,2)=(tendon_weight*tendon_array(2))+weight_joint_link; 

     
    link_centroid(1,4)=joint_link_length/2; 

     
    % Weight of Link 5 
    weight_array(5,1)=5; 
    

tube_weight=calc_tube_weight(tor(tselect_array(3,1),1),twt(tselect_a

rray(3,1),1),tube_link_length,tde(tselect_array(3,1),1)); 
    

tendon_weight=calc_tendon_weight(teor,link_length(1,5),tendon_densit

y); 
    

wire_weight=calc_wire_weight(ewor,link_length(1,5),wire_density); 
    

weight_array(5,2)=(weight_joint)+tube_weight+(tendon_weight*tendon_a

rray(2))+wire_weight; 
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tempa=(weight_joint*(joint_yaw_centroid))+(tube_weight+(tendon_weigh

t*tendon_array(1))+wire_weight)*((tube_link_length/2)+joint_length)+

(weight_joint*(joint_length+tube_link_length+joint_pitch_centroid)); 
    

tempb=weight_joint+(tube_weight+(tendon_weight*tendon_array(2))+wire

_weight)+weight_joint; 
    link_centroid(1,5)=tempa/tempb; 

     
    % Weight of Link 6 
    weight_array(6,1)=6; 
    

tendon_weight=calc_tendon_weight(teor,joint_link_length,tendon_densi

ty); 
    

weight_array(6,2)=(tendon_weight*tendon_array(2))+weight_joint_link; 

     
    link_centroid(1,6)=joint_link_length/2; 

     
    % Weight of Link 7 
    weight_array(7,1)=7; 
    

tube_weight=calc_tube_weight(tor(tselect_array(4,1),1),twt(tselect_a

rray(4,1),1),tube_link_length,tde(tselect_array(4,1),1)); 
    

tendon_weight=calc_tendon_weight(teor,link_length(1,7),tendon_densit

y); 
    

wire_weight=calc_wire_weight(ewor,link_length(1,7),wire_density); 
    

weight_array(7,2)=(weight_joint)+tube_weight+(tendon_weight*tendon_a

rray(3))+wire_weight+weight_end_vert; 
    

tempa=(weight_joint*(joint_yaw_centroid))+(tube_weight+(tendon_weigh

t*tendon_array(1))+wire_weight)*((tube_link_length/2)+joint_length)+

(weight_end_vert*(joint_length+tube_link_length+end_vert_centroid)); 
    

tempb=weight_joint+(tube_weight+(tendon_weight*tendon_array(3))+wire

_weight)+weight_end_vert; 
    link_centroid(1,7)=tempa/tempb; 

     
    % Weight of Link 8 (Payload) 
    weight_array(8,1)=8; 
    weight_array(8,2)=payload_kg; 

     
    link_centroid(1,8)=payload_length/2; 

  
%% Torque 

  
GRAV=[0 9.81 0]; 

  
% Denhavit-Hartenburg matrix 
%    theta    kinematic: joint angle 
%    d        kinematic: link offset 
%    a        kinematic: link length 
%    alpha    kinematic: link twist 
%    sigma    kinematic: 0 if revolute, 1 if prismatic 
%    mdh      kinematic: 0 if standard D&H, else 1 
%    offset   kinematic: joint variable offset 
%    qlim     kinematic: joint variable limits [min max] 
%    m        dynamic: link mass 
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%    r        dynamic: link COG wrt link coordinate frame 3x1 
%    I        dynamic: link inertia matrix, symmetric 3x3, about link 

COG. 
%    B        dynamic: link viscous friction (motor referred) 
%    Tc       dynamic: link Coulomb friction 

  
% Links 
link_array(1)=Link('alpha',  pi/2,  'd', 0, 'a', link_length(1,1), 

'offset', 0,   'qlim',[-pi/4 pi/4], 'm', weight_array(1,2), 'r',[-

link_centroid(1,1); 0; 0], 'I', [0.00000066 0.00000000 0.00000000; 

0.00000000 0.00078561 0.00000000; 0.00000000 0.00000000 0.00078560], 

'Jm', 0); 
link_array(2)=Link('alpha', -pi/2,  'd', 0, 'a', 0,                

'offset', 0,   'qlim',[-pi/4 pi/4], 'm', 0,                 'r',[0; 

0; 0],                   'I', [0 0 0; 0 0 0; 0 0 0], 'Jm', 0); 
link_array(3)=Link('alpha',  pi/2,  'd', 0, 'a', 0,                

'offset', 0,   'qlim',[-pi/4 pi/4], 'm', 0,                 'r',[0; 

0; 0],                   'I', [0 0 0; 0 0 0; 0 0 0], 'Jm', 0); 
link_array(4)=Link('alpha',     0,  'd', 0, 'a', link_length(1,2), 

'offset', 0,   'qlim',[-pi/4 pi/4], 'm', weight_array(2,2), 'r',[-

link_centroid(1,2); 0; 0], 'I', [0.00000000 0.00000000 0.00000000; 

0.00000000 0.00000001 0.00000000; 0.00000000 0.00000000 0.00000001], 

'Jm', 0); 
link_array(5)=Link('alpha', -pi/2,  'd', 0, 'a', link_length(1,3), 

'offset', 0,   'qlim',[-pi/4 pi/4], 'm', weight_array(3,2), 'r',[-

link_centroid(1,3); 0; 0], 'I', [0.00000102 0.00000000 0.00000000; 

0.00000000 0.00005518 0.00000000; 0.00000000 0.00000000 0.00005519], 

'Jm', 0); 
link_array(6)=Link('alpha',  pi/2,  'd', 0, 'a', link_length(1,4), 

'offset', 0,   'qlim',[-pi/4 pi/4], 'm', weight_array(4,2), 'r',[-

link_centroid(1,4); 0; 0], 'I', [0.00000000 0.00000000 0.00000000; 

0.00000000 0.00000001 0.00000000; 0.00000000 0.00000000 0.00000001], 

'Jm', 0); 
link_array(7)=Link('alpha', -pi/2,  'd', 0, 'a', link_length(1,5), 

'offset', 0,   'qlim',[-pi/4 pi/4], 'm', weight_array(5,2), 'r',[-

link_centroid(1,5); 0; 0], 'I', [0.00000102 0.00000000 0.00000000; 

0.00000000 0.00005518 0.00000000; 0.00000000 0.00000000 0.00005519], 

'Jm', 0); 
link_array(8)=Link('alpha',  pi/2,  'd', 0, 'a', link_length(1,6), 

'offset', 0,   'qlim',[-pi/4 pi/4], 'm', weight_array(6,2), 'r',[-

link_centroid(1,6); 0; 0], 'I', [0.00000000 0.00000000 0.00000000; 

0.00000000 0.00000001 0.00000000; 0.00000000 0.00000000 0.00000001], 

'Jm', 0); 
link_array(9)=Link('alpha', -pi/2,  'd', 0, 'a', link_length(1,7), 

'offset', 0,   'qlim',[-pi/4 pi/4], 'm', weight_array(7,2), 'r',[-

link_centroid(1,7); 0; 0], 'I', [0.00000102 0.00000000 0.00000000; 

0.00000000 0.00005518 0.00000000; 0.00000000 0.00000000 0.00005519], 

'Jm', 0); 
link_array(10)=Link('alpha', pi/2,  'd', 0, 'a', link_length(1,8), 

'offset', 0,   'qlim',[-pi/4 pi/4], 'm', weight_array(8,2), 'r',[-

link_centroid(1,8); 0; 0], 'I', [0.00000000 0.00000000 0.00000000; 

0.00000000 0.00000001 0.00000000; 0.00000000 0.00000000 0.00000001], 

'Jm', 0); 

  
% Arm angles 
for i=1:numcols(arm_angle) 
    arm_angle_rad(1,i)=arm_angle(1,i)*(pi/180); 
end 

  
Snake_Arm = SerialLink(link_array, 'name',' '); 
%Snake_Arm.display() 
%Snake_Arm.dyn 
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plot_value=1; 

  
% Arm angles 

  
%arm_angle=[0 90+theta -90 -90 0 theta 0 theta 0 0]; %vertical arm 
arm_angle=[0 90 -90 -90 theta 0 theta 0 theta 0]; %horizontal arm 

  
for i=1:numcols(arm_angle) 
    arm_angle_rad(1,i)=arm_angle(1,i)*(pi/180); 
    link_animation_history(plot_value,i)=arm_angle_rad(1,i); 
end 
%TAU = R.rne(Q, QD, QDD) is the joint torque required for the robot 

R to achieve the specified joint position Q, velocity QD and 

acceleration QDD. 

  
Q=arm_angle_rad; 
QD= [0 0 0 0 0 0 0 0 0 0]; 
QDD=[0 0 0 0 0 0 0 0 0 0]; 
TAU = Snake_Arm.rne(Q, QD, QDD); 
TAUtrans=TAU'; 

  
By1=TAU(1,1); 
Rp1=TAU(1,2); 
Rt1=TAU(1,3); 
Rt2=TAU(1,4); 
Ry1=TAU(1,5); 
Rp2=TAU(1,6); 
Ry2=TAU(1,7); 
Rp3=TAU(1,8); 
Ry3=TAU(1,9); 
Ef1=TAU(1,10); 

  
if Rt1*twist_fos >= safety_twist 
    twist_buckling = 1; 
else 
    twist_buckling = 0; 
end 

   
end 

 

  

Updated joint angles at 

maximum horizontal orientation. 

The twisting torque is compared 

to the torque limit of the joint as 

derived from Chapter 5.4.2. 
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D.5 calc_tendon_weight.m 

This section of code was used for calculating the weight of each cable. 

function tendon_weight=calc_tendon_weight(teor,tle,tede) 
tendon_csa=pi*(teor^2); 
tendon_volume=tle*tendon_csa; 
tendon_weight=tede*tendon_volume; 

D.6 calc_tube_weight.m 

This section of code was used for calculating the weight of each link. 

function tube_weight=calc_tube_weight(tor,twt,tle,tde) 
tube_csa_1=tor^2-(tor-twt)^2; 
tube_csa_2=pi*(tube_csa_1); 
tube_volume=tle*tube_csa_2; 
tube_weight=tde*tube_volume; 

D.7 calc_wire_weight.m 

This section of code was used for calculating the weight of the single wire to 

the end effector. 

function wire_weight=calc_wire_weight(ewor,tle,ewd) 
wire_csa=pi*(ewor^2); 
wire_volume=tle*wire_csa; 
wire_weight=ewd*wire_volume; 
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Results from the snake arm cable length changes 

This section contains the results of the snake arm cable length experiment.  

E.1 Joint 1 

 Displacement Joint 1 angle Joint 2 angle Joint 3 angle 

Test 1 0 -7.58 -8.43 -8.46 

Test 2 0 -4.41 -3.29 -8.03 

Test 3 0 -3.63 -3.16 -11.92 

Test 4 0 -9.7 -2.26 -6.06 

Test 5 0 -5.41 -2.27 -0.87 

Test 6 0 3.32 -11.03 -8.69 

Test 7 0 -2.12 3.18 -8.54 

Test 8 0 -0.73 -1.87 -2.24 

Test 9 0 1.17 -7.88 -0.83 

Test 10 0 1.96 -9.2 2.1 

This data appears in Figure 5.43 

E.2 Joint 2 

 Displacement Joint 1 angle Joint 2 angle Joint 3 angle 

Test 1 7 11.96 -28.4 -6.62 

Test 2 7 7.76 -18.57 -9.13 

Test 3 7 10.07 -20.22 -12.55 

Test 4 7 10.04 -22.95 -7.64 

Test 5 9 15.21 -30.82 -0.92 

Test 6 9 9.88 -19.4 -9.1 

Test 7 10 21.91 -31.64 -11.61 

Test 8 10 15.28 -27.53 -3.45 

Test 9 11 25.35 -33.93 -2.4 

Test 10 12 17.4 -28.53 1.95 

This data appears in Figure 5.44. 
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E.3 Joint 3 

 Displacement Joint 1 angle Joint 2 angle Joint 3 angle 

Test 1 11 26.98 -43.99 -7.71 

Test 2 12 32.72 -50.31 -8.81 

Test 3 12 35.35 -50.1 -9.51 

Test 4 12 35.73 -56.35 -4.13 

Test 5 13 34.86 -55.9 1.93 

Test 6 13 35.17 -56.74 -1.73 

Test 7 13 31.65 -46.94 -10.57 

Test 8 13 35.81 -40.45 -5.43 

Test 9 18 33.25 -53.36 7.55 

Test 10 16 31.16 -53.2 5.73 

This data appears in Figure 5.45. 
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Results from the reconfigurable robot design 

This section contains the theoretical data for the power screw assembly from 

the reconfigurable robot design.  

F.1 Maximum torque generated and torque required for the 
deployment module 

Joint 

Angle (°) 

F1 (N) θ1 (°) F2 (N) θ2 (°) F3 (N) Torque 

(Nm) 

0 1137.567 0.000 1137.567 49.086 745.027 14.789 

5 1137.567 5.553 1132.229 49.638 733.245 14.555 

10 1137.567 10.671 1117.894 49.757 722.198 14.336 

15 1137.567 15.341 1097.033 49.427 713.534 14.164 

20 1137.567 19.532 1072.106 48.618 708.751 14.069 

25 1137.567 23.200 1045.577 47.286 709.259 14.079 

30 1137.567 26.292 1019.882 45.378 716.394 14.220 

35 1137.567 28.749 997.347 42.835 731.375 14.518 

40 1137.567 30.512 980.038 39.598 755.155 14.990 

45 1137.567 31.534 969.586 35.619 788.181 15.645 

50 1137.567 31.782 967.001 30.867 830.032 16.476 

55 1137.567 31.249 972.534 25.334 879.003 17.448 

60 1137.567 29.951 985.647 19.037 931.742 18.495 

65 1137.567 27.928 1005.084 12.013 983.072 19.514 

70 1137.567 25.232 1029.032 4.317 1026.112 20.368 

75 1137.567 21.922 1055.310 3.992 1052.750 20.897 

80 1137.567 18.057 1081.539 12.857 1054.422 20.930 

85 1137.567 13.687 1105.265 22.228 1023.130 20.309 

90 1137.567 8.850 1124.024 32.065 952.555 18.908 

This data appears in Figure 6.17. 
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F.2 Reduced torque generated and torque required for the 
deployment module 

Joint  

Angle (°) 

F1 (N) θ1 (°) F2 (N) θ2 (°) F3 (N) Torque (Nm) 

0 350.971 0.000 350.971 49.086 229.862 4.563 

5 350.971 5.553 349.324 49.638 226.226 4.491 

10 350.971 10.671 344.901 49.757 222.818 4.423 

15 350.971 15.341 338.465 49.427 220.145 4.370 

20 350.971 19.532 330.774 48.618 218.669 4.341 

25 350.971 23.200 322.589 47.286 218.826 4.344 

30 350.971 26.292 314.662 45.378 221.028 4.387 

35 350.971 28.749 307.709 42.835 225.649 4.479 

40 350.971 30.512 302.369 39.598 232.986 4.625 

45 350.971 31.534 299.144 35.619 243.176 4.827 

50 350.971 31.782 298.347 30.867 256.088 5.083 

55 350.971 31.249 300.054 25.334 271.197 5.383 

60 350.971 29.951 304.099 19.037 287.468 5.706 

65 350.971 27.928 310.096 12.013 303.305 6.021 

70 350.971 25.232 317.485 4.317 316.584 6.284 

75 350.971 21.922 325.593 3.992 324.803 6.447 

80 350.971 18.057 333.685 12.857 325.318 6.458 

85 350.971 13.687 341.005 22.228 315.664 6.266 

90 350.971 8.850 346.792 32.065 293.890 5.834 

This data appears in Figure 6.18. 
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Results from transient thermal study 

This section contains the thermal study results for the development of the 

thermally insulating barrier.  

% Air = 0% Single thermal layer 

 

 

Temperature of both layers Temperature 

difference 

% Air = 46% Single thermal layer 

  

Temperature of both layers Temperature 

difference 
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% Air = 81% Single thermal layer 

 
 

Temperature of both layers Temperature difference 

 

 

% Air = 100% Single thermal layer 

  

Temperature of both layers Temperature difference 
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% Air = 0% Double thermal layer 

 

 

Temperature of both layers Temperature difference 

 

 

% Air = 46% Double thermal layer 

 

 

Temperature of both layers Temperature difference 
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% Air = 81% Double thermal layer 

  

Temperature of both layers Temperature difference 

 

 

 

% Air = 100% Double thermal layer 

 
 

Temperature of both layers Temperature difference 
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% Air = 0% Triple thermal layer 

  

Temperature of both layers Temperature difference 

 

 

 

% Air = 46% Triple thermal layer 

  

Temperature of both layers Temperature difference 
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% Air = 81% Triple thermal layer 

  

Temperature of both layers Temperature difference 

 

 

 

% Air = 100% Triple thermal layer 

  

Temperature of both layers Temperature difference 
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