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Abstract 

Eicosapentaenoic acid (EPA) is an omega (ω)-3 polyunsaturated fatty acid (PUFA) found 

at high levels in oily fish such as salmon and mackerel. EPA has been shown to have anti-

colorectal cancer (CRC) effects in two clinical studies where it was shown to reduce polyp 

burden in familial adenomatous polyposis (FAP) patients, and possibly improve overall 

survival in patients following liver resection for CRC liver metastases. At present, it is 

unknown how EPA exerts its anti-CRC effects.  

Resolvin E1 (RvE1) is a lipid with anti-inflammatory and pro-resolving activities derived 

from EPA. RvE1 biosynthesis requires three enzymes; aspirin acetylated cyclooxygenase-

2 (COX-2), 5-lipoxygenase (5-LOX) and leukotriene A4 hydrolase (LTA4H). RvE1 has been 

shown to mediate its anti-inflammatory effects through two different G-protein coupled 

receptors, ChemR23 and BLT1. The hypothesis was that RvE1 synthesised within CRC 

could induce CRC cell apoptosis through either or both ChemR23 and BLT1 receptor 

signaling.  

ChemR23 and BLT1 protein were found to be expressed by human CRC clinical samples. 

ChemR23 and BLT1 were expressed at lower levels in histologically normal colorectal 

epithelium when compared to CRC, a relationship also seen with the associated stroma. 

No RvE1 mediated effect on CRC survival or apoptosis was identified on ChemR23 

expressing human CRC cell lines in vitro. There was no BLT1 expression by human CRC 

cells in vitro. 

Human polymorphonuclear leukocytes (PMNs) treated directly with 18- 

hydroxyeicosapentaenoic acid (18-HEPE) generated RvE1. In vitro CRC cells and 

macrophages alone and in a transcellular synthesis model failed to produce RvE1.  

In conclusion, ChemR23 and BLT1 receptors were found to be expressed by human CRC 

clinical samples. RvE1 was not synthesised by a CRC model in vitro. The candidate 

identified no in vitro RvE1 biological activity. Further research could look to establish 

whether RvE1 can be detected in human CRC samples. 
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1 Introduction 

 The clinical problem  1.1

There has been a steady rise in human colorectal cancer (CRC) incidence globally and 

the increasing healthcare costs associated with CRC screening, diagnosis, treatment 

and surveillance, mean there is still an unmet need to identify novel, safe and well 

tolerated anti-CRC agents. At present there is considerable pre-clinical evidence that 

omega (ω)-3 polyunsaturated fatty acids (PUFAs) have anti- CRC activity. However it 

is unclear how ω-PUFAs exert this activity. The candidate aimed to establish whether a 

novel ω -3 PUFA derived lipid mediator could explain in part their anti-CRC activity. 

 Epidemiology of colorectal cancer 1.2

CRC is a common and significant health problem in the United Kingdom (UK), and is 

currently the third most common malignancy with 40,695 new cases registered in 2010 

(Cancer Research UK, 2013). Across Europe, around 334,000 new cases of CRC were 

diagnosed in 2008 (Ferlay et al., 2010a). Worldwide, CRC is the third most common 

cancer after lung cancer and breast cancer, with an estimated 1.24 million new cases 

diagnosed in 2008 (Ferlay et al., 2010b). Arnold et al (2016) estimate that the global 

burden of CRC is likely to reach in excess of two million new cases by 2030.  Eastern 

countries, such as Japan, have undergone a 'westernisation' of the diet over the last 

fifty years and have subsequently seen a marked increase in the number of new cases 

of CRC (Koyama & Kotake, 1997, Toyoda et al., 2009). 

Despite the increased incidence, the overall CRC mortality rate has steadily fallen over 

the last twenty years in the United Kingdom (UK), with earlier detection and improved 

treatment being the key reasons for this (Cancer Research (CR) UK., 2014; 

www.cancerresearchuk.org). However, the disease continues to carry a high mortality 

when compared to many other solid organ malignancies, and is the second most 

common cause of cancer-related mortality in the UK with 16,187 cancer-related deaths 

occurring in 2012 (CRUK., 2014).  

 Colorectal cancer staging 1.3

There are four stages of primary tumour determined by pathology (pT) based on the 

depth of invasion, with pT1 representing tumour contained within the submucosa, pT2 

where tumour has invaded into the muscularis propria of the colon wall, pT3 where the 

tumour has grown into the subserosal fat and pT4 representing tumour that has spread 
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through the peritoneum or involves adjacent organs. There are also three stages of 

lymph node (pathological nodal; pN) spread, with pN0 showing no lymph nodes 

containing tumour cells, pN1 where one to three regional lymph nodes contain cancer 

cells, and pN2  where four or more lymph nodes contain tumour cells. Finally there are 

two stages of tumour metastasis spread (pathological metastasis; pM), pM0 means 

that the tumour has not spread to distant organs and pM1 represents a tumour that has 

spread to other parts of the body (Sobin & Wittekind, 1997). 

  Aetiology of colorectal cancer  1.4

The vast majority of CRCs (75% of cases) are believed to develop sporadically, with 

20% of cases having familial aggregation with more than two-first degree relatives 

affected, whereas 5% of cases occur due to Mendelian inheritance in the context of a 

hereditary syndrome (Lynch et al., 2003).  

Familial adenomatous polyposis (FAP) is an autosomal dominant inherited disease 

caused by mutations in the adenomatous polyposis coli (APC) gene on chromosome 5 

(Kinzler et al., 1991). This results in multiple colorectal adenomas at a very early age 

(Groden et al., 1991). Invariably, at least one of these adenomas will develop into an 

invasive cancer in the second or third decade of life. Lynch syndrome, previously 

known as Hereditary non-polyposis colorectal cancer (HNPCC), is associated with a 

germline mutation in one of the deoxyribonucleic acid (DNA) mismatch repair (MMR) 

genes and results in early onset cancers of the large bowel and other organs (Bellizzi & 

Frankel, 2009). Both FAP and Lynch syndrome patients usually undergo intensive 

colonoscopic surveillance to detect polyps and cancers at an early stage, and may 

undergo prophylactic removal of the large intestine.  

There are several established risk factors that contribute to CRC development.  The 

main risk factor associated with CRC is advancing patient age with more than 90% of 

cases occurring in those aged 50 years or older (Surveillance, Epidemiology and end 

Results Program Cancer Statistic Review, 1975-2002; www.seer.cancer.gov). Obesity 

has been shown to increase CRC incidence in both men and woman (Renehan et al., 

2008), as has smoking (Botteri et al., 2008). Diet may also play a role in CRC with 

consumption of high amounts of red and processed meat, and low consumption of fibre 

and fish as exposable risk factors for CRC development (Vargas et al., 2012).  

There have been several studies looking at the relationship between fish consumption 

and risk of CRC, with most reporting a reduction in CRC risk, albeit small, with higher 

dietary fish consumption (Geelen et al., 2007, World Cancer Research Fund, 2007, Wu 

et al., 2012, Pham et al., 2013). Recently a Phase II double-blind, randomised, placebo 
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controlled trial showed a possible overall survival benefit post liver resection surgery 

(for CRC liver metastases) in those patients who took eicosapentaenoic acid (EPA) 

compared with placebo (Cockbain et al., 2014). 

Chronic inflammation is also associated with an increased risk of CRC. Idiopathic 

inflammatory bowel disease, of which there are two main types, ulcerative colitis (UC) 

and Crohn’s disease (CD), both predispose the individual to CRC development which 

is also known as colitis-associated cancer. In UC patients who have active disease, the 

risk of CRC is 2% after 10 years, 8% after 20 years and 18% after 30 years (Eaden et 

al., 2001). CD is associated with a two fold relative risk of developing CRC (Canavan et 

al., 2006).  

 Molecular pathogenesis of colorectal cancer 1.5

 Colorectal anatomy and histology 1.5.1

The colorectum in humans is made up of the colon and the rectum. The caecum is the 

proximal part of the large intestine that lies in the right iliac fossa that is joined to the 

ascending colon, which ascends to the right hypochondrium and then becomes the 

transverse colon. The transverse colon then passes horizontally to the left 

hypochondrium and then descends to form the descending colon. At the left iliac fossa 

the descending colon becomes the sigmoid colon. The sigmoid colon then becomes 

the rectum (Christensen, 1991). 

The colorectum histologically is made up of four layers. Theses four layers are the 

mucosa, submucosa, muscularis propria and the adventitia. The mucosa is made up of 

epithelial cells supported by the lamina propria. The epithelium is arranged in straight 

tubular glands referred to as ‘crypts of Lieberkühn’. These crypts pass from the central 

lumen of the colorectum towards the submucosa and are made up of two cell types, 

simple columnar epithelial cells, which have a microvillus apical border and the basally 

located goblet cells. Stem cells within the base of the crypts proliferate to form 

daughter cells, which as they ascend up the crypt mature into their differentiated 

phenotype, before shedding into the colorectal lumen at the apical surface of the crypt 

(Wong & Wright, 1999, Winton., 2001). The dysregulation of this cell proliferation and 

migration has long been thought to lead to CRC development (Lipkin, 1974). 

Supporting the epithelium of the mucosa is the lamina propria which contains immune 

cells such as T-cells, macrophages and myofibroblasts along with blood and lymphatic 

vessels within a connective tissue matrix. The muscularis mucosa separates the 

mucous from the submucosa, which is a denser layer of connective tissue, blood and 

lymphatic vessels and nerves which support the mucosa. Outwards from the colorectal 
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lumen the submucosa is surrounded by the muscularis propria which is made up of two 

layers of smooth muscle. The inner layer is circular and the outer layer is longitudinally 

orientated muscle. The adventitia then surrounds the muscularis propria and is made 

up of loose connective tissue with an epithelial squamous lining, and then the 

peritoneum or fascia (Christensen, 1991).   

 The adenoma-carcinoma sequence 1.5.2

CRC typically develops over a ten to fifteen years period (Muto et al., 1975). Benign 

adenomatous polyps are the most common form of precursor lesion leading to CRC 

development (Jass., 2007). Adenomas increase in frequency with age and are thought 

to be present in around 30% to 40% of individuals in western populations (Midgley & 

Kerr., 1999). However, only a small proportion of adenomas will develop into invasive 

CRCs. High risk factors for malignant transformation of adenoma include size equal or 

greater than ten millimeters, three or more adenomas, villous architecture and 

adenomas with high grade dysplasia (Muto et al., 1975, Winawer et al., 2006).  

Around 85% of CRCs are believed to develop through the classical chromosomal 

instability pathway (CIP), a stepwise accumulation of genetic mutations that develop as 

the lesion progresses from a benign adenoma through to an invasive carcinoma 

(Vogelstein et al., 1988). APC gene mutations occur early in colorectal carcinogenesis 

being present in over 70% of colorectal adenomas (Kinzler et al., 1996). Mutations that 

activate the kirsten rat sarcoma (KRAS) oncogene and mutations that inactivate tumour 

protein (TP)53 tumour suppressor gene further promotes progression to carcinoma 

(Lengauer et al., 1997). 

However CRC is a heterogeneous disease and there is no single mechanism for CRC 

carcinogenesis, and in addition to the CIP there are other pathways such as the CpG 

island methylator phenotype (CIMP) pathway (Toyota et al., 1999, Samowitz et al., 

2005), microsatellite instability (MSI) pathway (Vilar & Gruber, 2010) and the serrated 

pathway (Legget & Whitehall, 2010) which have been shown to cause CRC 

development (Figure 1). 

 Epithelial-mesenchymal transition 1.5.3

The differentiation of epithelial cells to motile cells with mesenchymal characteristics is 

a process called epithelial mesenchymal transition (EMT). Whilst EMT is fundamental 

in embryological development and wound healing, it is also thought to be involved in 

cancer progression. EMT is typically characterised by a loss of cell-cell adhesion, loss 

of apical-basal cell polarity and increased motility, serving to promote migration away 
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from the primary tumour (Thiery, 2002). Epithelial cell-cell protein junctions serve to 

maintain epithelial integrity via tight junctions, adherens junctions, desmosomes and 

tight junctions (Huang et al., 2012). As there is loss of expression of junctional proteins 

there is loss of cell apical-basal polarity (Huang et al., 2012). During EMT initiation 

these junctions are degraded or repositioned and typically associated with a loss of E-

cadherin expression secondary to transcriptional repressors such as SNAIL, ZEB2, and 

Twist.  Such transcriptional repressors have been shown to be involved in cancer 

invasion and metastasis (Peinado et al., 2007). Transforming growth factor-β is also 

involved in EMT through the suppression of genes such as E-cadherin (Xie et al., 

2004). 

Interestingly the proteins that are involved in the regulation of cell polarity also play an 

important role in asymmetric cell division an event that plays a role in cell renewal and 

differentiation two vital properties of stem cells (Kong, et al., 2011). Mani and 

colleagues have shown that EMT can form cells with stem cell like properties (Mani et 

al., 2008). Mesenchymal stem cells (MSCs) which are thought to be non 

haematopoietic multipotent stem cells are thought to migrate to tumours such as CRC, 

integrating in the tumour architecture as carcinoma-associated fibroblasts (CAFs). 

CAFs have been implicated in CRC invasiveness, with CAFs being associated with 

increased migration and invasion of CRC epithelial cells in three-dimensional culture 

(Tommelein et al., 2015). The interaction between the cancer epithelium and its 

associated stroma in the progression of cancer is a greatly complex, but rapidly 

developing field of scientific interest. 
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Figure 1. Diagram showing the proposed pathways for CRC development from normal colorectal epithelium.  

CRC is a heterogeneous disease that is postulated currently to arise via four different molecular pathways. The CpG island methylator phenotype 

(CIMP) pathway, the chromosomal instability (CIP) pathway, the microsatellite instability (MSI) pathway (associated with Mismatch repair mutations-

MMR) and the serrated pathway. Diagram adapted from Harrison & Benziger, 2011. 
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 Inflammation and colorectal cancer 1.5.4

There are six fundamental hallmarks that are essential for carcinogenesis (Hanahan & 

Weinberg, 2000), which are: 

1. Self-sufficient growth. 

2. Resistance to growth inhibitory signals. 

3. Evasion of programmed cell death (apoptosis). 

4. Sustained angiogenesis. 

5. Replicative immortality. 

6. Activation of invasion and metastasis. 

Advancement in the understanding of cancer over the last decade has led to the 

presence of two further emerging hallmarks, which includes the ability to elude immune 

destruction and the capability to alter cellular metabolism and thus support continued 

cancer cell proliferation (Hanahan & Weinberg, 2011).  

There is also increasing evidence that implicates the role of inflammation in the 

development and progression of CRC (Terzić et al., 2010). Inflammation is recognised 

as an emerging hallmark of cancer (Colotta et al., 2009; Hanahan & Weinberg, 2011). 

The production of pro-inflammatory signals within tumours is thought to drive cell 

transformation via DNA damage and consequent tumour growth (Shacter et al., 2002). 

Tumour cells and other cells recruited to the tumour microenvironment produce 

cytokines and chemokines that drive inflammation, such as tumour necrosis factor 

(TNF)-α, interleukin (IL)-6 and IL-1β. TNF-α is a potent pro-inflammatory cytokine that 

is thought to play a role in the pathogenesis of CRC (Popivanova et al., 2008). IL-6 is a 

multifunctional cytokine that has been shown to be increased in the plasma of CRC 

patients and levels have been shown to correlate with tumour stage, size, metastasis 

and patient survival (Knϋpfer et al., 2010). IL-1β is another pro-inflammatory cytokine 

that is produced by activated macrophages, that has been shown to stimulate the 

expression of TNF-α, IL-6 and prostaglandin (PG)E2 all of which are  implicated in CRC 

development (Duque et al., 2006). 

Immune cells such as macrophages are present in tumours, located principally in the 

tumour stroma, which is made up of blood vessels, fibroblasts and immune cells 

(Mantovani et al., 2002). Macrophages play a vital role in resolving acute inflammation 

(Serhan & Savill, 2005). Macrophages within the tumour microenvironment are known 

as tumour-associated macrophages (TAMs). TAMs with anti-inflammatory properties 

are thought to suppress tumour progression whilst those with pro-inflammatory 

properties promote tumour progression. This difference in TAM phenotype may explain 
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why some have correlated increased TAM density with improved CRC prognosis 

(Forsell et al., 2007), and others have associated increased density with poorer 

prognosis (Bailey et al., 2007, Kang et al., 2010). Ong et al., (2012) found that TAMs in 

their human co-culture multi-cellular tumour spheroid (MCTS) model were pro-

inflammatory (increased synthesis of IL-6/8, interferon (IFN)-y) and inhibited tumour 

cell proliferation (Human HT29 CRC cell line and primary human monocytes). TAMs 

have also been shown to increase expression tumour growth factor (TGF)-β which 

promote epithelial mesenchymal transition and also matrix metalloproteinases (MMP), 

which promotes cell invasion through E-cadherin disruption (Thuault et al., 2006, 

Illemann et al., 2006).  The role of TAMs in CRC remains complex and controversial 

and their phenotype is likely to be influenced by cell to cell interactions within the 

tumour microenvironment.  

NF-кB is a transcription factor activated by certain cytokines and chemokines (Lin et 

al., 2007). NF-кB is involved in regulating the expression of genes involved in cell 

proliferation, angiogenesis and metastasis (Naugler et al., 2008). Inhibition of NF-kB 

activation (IKKβ knockout mice) reduced the incidence of CRC (Greten et al., 2004). 

In addition to the cytokine and chemokine production in the tumour microenvironment 

there has been a growing body of published evidence examining the role of lipids in 

CRC pathogenesis, such as eicosanoids (discussed below in section 1.6).  

COX-2 is one of three isoforms (-1 and -3), (Chandrasekharan et al., 2002), which act 

on the substrate arachidonic acid (AA) to produce the precursor for PGs and 

thromboxanes (TXs), which play a role in a number of cellular processes such as 

proliferation, inflammation and angiogenesis. COX-2 was first shown to be over-

expressed in CRC in the 1990’s (Eberhart et al., 1994), and its overexpression is 

associated with worse survival in CRC patients (Ogino et al., 2008), (see section 1.6.1 

for COX-2 discussion).  

 Eicosanoids and colorectal carcinogenesis 1.6

 Eicosanoid biosynthesis 1.6.1

Fatty acids (FAs) are long chain aliphatic compounds made up of carbon and hydrogen 

chains with a carboxylic (-COOH) group at one end (start of the chain also known as 

‘alpha’) and a methyl group (CH3) at the other end (end of the chain also known as 

‘omega’). FAs containing only single bonds between carbons are called saturated FAs 

whereas unsaturated fatty acids contain at least one (monounsaturated) or more 

(polyunsaturated carbon-carbon double bonds. Omega-3 and ω-6 PUFAs are so 

named because of the position of the first double bond from the methyl end (third [n-3] 

and sixth [n-6] carbon respectively). The parent ω -6 PUFA is linoleic acid (LA) and the 
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parent ω -3 PUFA is alpha-linolenic acid (ALA). LA and ALA are essential fatty acids 

(EFA), as mammals must consume them as they are unable to directly synthesise 

them, as the desaturase enzyme required in order to place the double bond in either 

the n-3 or n-6 position is not present. LA and ALA are both found in vegetable oils. LA 

and ALA can be further metabolized into AA (20:4n-6) and eicosapentaenoic acid 

(EPA, 20:5n-3) respectively through the action of delta (∆)-6 desaturase and ∆5 

desaturase enzymes, however the conversion of EPA from ALA in humans is not very 

efficient and is likely due to several factors such as genetic variations and substrate 

preferences for the desaturases (Pawlosky et al., 2001; Burdge, 2006, Glaser et al., 

2010). The main ω-3 PUFAs are EPA and docosahexaenoic acid (DHA, 22:6n-3), 

which are present in oily fish such as salmon and mackerel. The main PUFAs in the 

western diet are the ω-6 PUFAs. 

Twenty-carbon PUFAs such as AA and EPA (Figure 2A/ B) are biologically important, 

with roles in phospholipid membrane structure and function, as well as cellular 

signaling and lipid metabolism (Ricciotti & FitzGerald., 2011, Gorjäo et al., 2009).  

 

 

 

 

 

 

 

 

Figure 2. The chemical structures of AA and EPA. 

 

AA and EPA are present in the phospholipid membrane of cells and is released by the 

phospholipase A2 family of enzymes and in this free form is then oxidized by three 

main enzymatic pathways: 

1. Cyclooxygenase (COX) pathway (COX-1 and COX-2). 

2. Lipoxygenase (LOX) pathway (5-LOX, 12-LOX and 15-LOX).  

3. Cytochrome (CYP) P450 pathway (superfamily of monooxygenase 

enzymes).  
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These three pathways synthesise a wide variety of metabolites from 20-carbon FAs 

such as AA, collectively known as eicosanoids. Eicosanoids are made up of five 

families, PGs, prostacyclins (PGI), TXs, leukotrienes (LT), and lipoxins (LX). 

Prostanoids are a sub-group of eicosanoids including PGs, TXs, and PGIs (Figure 3; 

AA derived eicosanoids). 

There are three different isoforms of COX (COX-1,-2, and -3), COX-3 is not functional 

in humans. The COX-1 gene is constitutively expressed in tissues (Fitzpatrick et al., 

2004, Topper et al., 1996), and  is highly expressed in platelets and gastric epithelial 

cells where it activates platelets through TXA2 production and cytoprotects the gastric 

epithelial cells through PGE2 synthesis (Capone et al., 2007).  COX-2 is an immediate-

early gene which can be induced by various cytokines and growth factors; however 

COX-2 can also be expressed constitutively in some cells such as endothelial cells 

where PGI2 directs anti-thrombotic and vasoprotective actions (Di Franscesco et al., 

2009).  

COX-1 and-2 generates PGH2 from AA through the bis-oxygenation and cyclisation of 

AA to PGG2 then the peroxidation of PGG2 to PGH2 (Smith et al., 2000). The COXs are 

made up of 72 kilodaltons (kDa) homodimers (Smith et al., 2000). Each of the 

monomers can bind to AA, but each can act as a regulatory allosteric subunit on the 

other, which allows the other subunit to convert AA into PGG2, before the peroxidation 

of PGG2 to PGH2. The PGH2 is then acted upon by a series of tissue or cell-specific 

synthases and isomerases to produce a number of biologically active prostanoids 

(Ueno et al., 2005). PGE2 one of the most abundant human prostanoids is synthesised 

by PGE synthase. PGE2 is involved in the classical signs of inflammation; redness, 

swelling and pain, via increased vascular dilatation, permeability, and activation of 

sensory neurons (Funk, 2001). PGE2 also has a diverse array of gastrointestinal 

functions from control of gastric acid secretion, gastrointestinal motility, and mucus 

production, through its membrane receptors EP. PGE2 is thought to play a role in CRC 

as differential expression of its EP receptors has been shown in CR carcinogenesis 

(Shoji et al., 2004; Kawamori et al., 2005). In addition to the prostanoids the COXs can 

also synthesise further AA oxygenated products such as 11(R)- 

hydroxyeicosatetraenoic acid (HETE), and 15S-HETE, in less abundance than the 

prostanoids, with product formation differing in their individual Km values (Michaelis 

constant), (Thuresson et al., 2000). 

The lipoxygenases (LOXs) are a family of iron containing dioxygenases that insert 

molecular oxygen into PUFAs with at least one five carbon chain with two double 

bonds known as a pentadiene. These enzymes have been shown to be expressed in 

mammalian tissue. LOXs are classified according to their positional specificity of AA 



11 

oxygenation as 5-, 12- and 15-LOX. AA is initially oxygenated to 5-, 8-, 12- and 15-

hydroperoxyeicosatetraenoic acids (HPETEs) by their respective lipoxygenases which 

then reduce to the appropriate hydroxyeicosatetraenoic acids (HETEs), (Pidgeon et al., 

2007), (Figure 3). LOXs are involved in the metabolism of eicosanoids. 

5-HPETE is formed from the oxygenation of AA by 5-LOX and an 18kDa 5-LOX 

activating protein (FLAP). In its active state 5-LOX translocates to the nuclear 

membrane and associates with FLAP. FLAP then allows AA to interact with the nuclear 

membrane bound 5-LOX to produce 5-HPETE (Mancini et al., 1993). The 5-HPETE is 

either reduced to 5-HETE or dehydrated to the unstable metabolite leukotriene A4 

(LTA4). LTA4 can then be either converted to the cysteinyl leukotrienes (LTC4, LTD4 

and LTE4) through glutathione conjugation, hydrolysed to LTB4, or utilised for LX 

synthesis. LXs are trihydroxyeicosatetraenoic acids derived from AA, formed by 

transcellular synthesis. They are formed by two different pathways, (Bannenberg et al., 

2010): 

1. Platelet-leukocyte interaction. LTA4 produced by polymorphonuclear leukocytes 

(PMNs) is converted to LXA4 and LXB4 by platelet 12-LOX (Chiang et al., 2005). 

2. Epithelial-immune cell interaction. 15-HETE produced by epithelial cells is 

oxygenated by 5-LOX to generate LXA4 and LXB4.   

LTB4 is a potent chemoattractant mainly produced by PMNs, whilst the cysteinyl 

leukotrienes are bronchoconstrictors and vasodilators (Lewis et al., 1990). LXs differ 

from most other eicosanoids in that they have potent anti-inflammatory activities. 

Examples include; inhibition of neutrophil chemotaxis, up regulation of monocyte 

chemotaxis and up regulation of monocyte ingestion of apoptotic neutrophils (Serhan, 

1997 & 2002). 

The CYPs are a family of diverse enzymes that catalyse the oxidation of organic 

matter. CYPs are present not only in animals but also in fungi, bacteria, viruses and 

plants. In humans, CYPs are found on the membrane of endoplasmic reticulum and the 

inner mitochondrial membrane. The human genome contains 57 CYP genes (Nelson, 

2009). Human CYP enzymes oxidise both xenobiotics and endogenous compounds 

such as hormones, cholesterol and vitamin D. CYP enzymes can also metabolise 

PUFAs through hydrolysis or epoxygenation. AA epoxygenation by CYP mono-

oxygenases can result in four different epoxyeicosatrienoic acids (EET), which can 

undergo hydroxylation to biologically inactive dihydroeicosatetraenoic acid (DHET), or 

AA oxidation  to synthesise several different HETEs (Konkel et al., 2011).  

Whilst the COXs, LOXs and the CYP enzymatic system can metabolise AA they can 

also metabolise EPA to generate less active eicosanoids (Calder et al., 2006). EPA is 
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present within the phospholipid membrane of cells and is released and metabolised like 

AA to generate eicosanoids. EPA incorporation into mammalian cells membranes has 

been shown (Miles et al., 2003, Kew et al., 2004, Browning et al., 2012). EPA 

metabolism via COXs produces the three series prostanoids, including PGE3 (Figure 4).  

COX-1 oxygenates EPA with only about 10% potency of that of AA, and COX-2 

oxygenates EPA at about 30% of that of AA (Wada et al., 2007).  PGE3 has been 

shown to be less efficient in up regulating COX-2 than PGE2, and induces synthesis of 

less IL-6 in macrophages when compared to PGE2 (Bagga et al., 2003). EPA derived 

5-series LTs are synthesised via the 5-LOX pathway and 5-, 12-, 15- 

hydroxyeicosapentaenoic acids (HEPEs) by the respective LOXs. The CYP system can 

also metabolise EPA to form various (HEPEs) and epoxyeicosatetraenoic acids 

(EEQs), (Figure 4; EPA derived eicosanoids).  

Colonic mucosa AA and EPA levels in healthy controls have been shown to be around 

8% and 1% of the main total mucosal fatty acids (Courtney et al., 2007). In respect to 

human colonic mucosa it has been shown that ω-3 PUFA supplementation is 

associated with an increase in mucosal EPA content and decrease in AA content (Anti 

et al., 1993, Courtney et al., 2007, West et al., 2009, West et al., 2010). The majority of 

eicosanoids that are generated in humans are derived from AA, principally as the 

western diet contains higher levels of LA than ALA. 
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Figure 3. Schematic overview of AA metabolism.  

Arachidonic acid (AA) is metabolised to eicosanoids by the actions of three different enzyme systems: the cyclooxygenase (COX), the lipoxygenase 

(LOX) and the cytochrome P450 monooxygenase system. 
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Figure 4. Schematic overview of EPA metabolism.  

Eicosapentaenoic acid (EPA) is metabolised to eicosanoids by the actions of three different enzyme systems: the cyclooxygenase (COX), the 

lipoxygenase (LOX) and the cytochrome P450 monooxygenase system. 
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 Lipidomic analysis of eicosanoids 1.6.2

Methods currently used to analyse lipids such as eicosanoids include enzyme 

immunoassays (EIA) (Nicosia et al., 1992), gas chromatography (GC) mass 

spectrometry (MS) (Hubbard et al., 1986, Tsukamoto et al., 2002). EIA whilst readily 

available has low specificity and is affected by cross-reactivity, and cannot 

simultaneously detect more than one lipid. GC/MS is sensitive but requires sample 

derivatisation prior to analysis. Liquid chromatography (LC) coupled to MS has allowed 

the simultaneous qualitative and quantitative assessment of several lipid mediators in 

one biological sample (Masoodi & Nicolaou, 2006, Masoodi et al, 2008). The use of 

electrospray ionisation (ESI) has permitted the ionisation of compounds such as lipids, 

so that the metabolites can form either positive or negative ion species. The separation 

ability of liquid LC through high performance-LC can easily be coupled to MS. 

Quantitation of mediators can be met through the coupling of LC-ESI to a tandem MS 

(MS/MS) on a multiple reaction monitoring mode (MRM). Calibration lines constructed 

using synthetically prepared internal lipid standards allow the absolute quantification of 

the mediator of interest (Masoodi & Nicolaou, 2006). LC-ESI-MS/MS analysis was used 

in the candidate’s experimentation for lipidomic profiling, and is discussed further in 

Chapter 4. 

 Eicosanoids metabolism and colorectal cancer 1.6.3

The COX, LOX, and CYP450 systems have been implicated in the development of 

cancer (Wang & Dubois, 2010, Panigrahy et al., 2010). COX-2 is up-regulated in 

colorectal adenomas and cancer with approximately half of all adenomas and over 

85% of CRC having elevated COX-2 levels (Eberhart et al., 1994, Sano et al., 1995, 

Shao et al., 2000, Soslow et al., 2000). It is considered that COX-2 plays an important 

role in CRC progression as it has been shown that increased COX-2 levels correlate 

with larger tumour size, advanced stage, risk of recurrence and poorer survival in 

human CRC (Sheehan et al., 1999, Tomozawa et al., 2000, Zhang et al., 2002, 

Soumaoro et al., 2004, Ogino et al., 2008). COX-2 driven tumorigenic activity is 

believed, at least in part, to be due PGE2 which is abundantly expressed in human 

CRC (Rigas et al., 1993) and has been shown to play a role in early colorectal 

carcinogenesis (Wang & Dubois., 2010, Hernandez et al., 2010). Whilst COX-2 has 

been thought to be the principal isoenzyme involved in CRC carcinogenesis, there is 

evidence indicating the role played by COX-1 (Sano et al., 1995). The Apc mouse 

model (murine model of FAP), has shown that COX-1 is expressed in all polyps whilst 

COX-2 is only induced in those polyps greater than one millimetre in size. Such 

evidence supports the role of COX-1 in generating basal PGE2 levels supporting early 

polyp growth followed by an induction in COX-2 expression to further increase growth 
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in the polyp (Takeda et al., 2003). The induction in COX expression found in CRC 

leads to increased PGE2 synthesis. Increased PGE2 is associated with a poorer 

prognosis in CRC (Rigas et al., 1993). PGE2 has been shown to promote CR cell 

proliferation, survival and angiogenesis through prostaglandin receptor (EP) signalling, 

and activation of Wnt signalling (Castellone et al., 2006, Dorsam et al., 2007, Cherukuri 

et al., 2007).  PGE2 has also being associated with the promotion of CRC development 

in several mouse models (Wang et al., 2004, Wang & Dubois, 2006, Cha & Dubois, 

2007). Fibroblasts and macrophages present within the cancer also express COX-2, 

thus may have a role in CRC development via COX-2 (Bamba et al., 1999, Ota et al., 

2002). 

5-LOX protein over-expression has been implicated in murine CRC development (Ye et 

al., 2004), Melstrom et al.,   (2008) using human CRC cell lines in a mouse xenograft 

model, found that the 5-LOX inhibitor α-pentyl-3-(2-quinolinylmethoxy)-benzene 

methanol reduced tumour growth. A role of 5-LOX in CRC in angiogenesis has also 

been proposed (Barresi et al., 2007). Over-expression of 5-LOX was shown to 

correlate with the presence of typical high-risk factors for malignant transformation in 

adenomatous polyps such as high grade intraepithelial neoplasia, polyp size and 

villous and tubulovillous adenoma (Wasilewicz et al., 2010), furthermore this was 

supported by Soumaoro et al., 2006 who demonstrated that 5-LOX over-expression 

was associated with advanced cancer stage, size and vessel invasion. AA derived 5-

LOX mediator LTB4 has been shown to promote cell survival and proliferation in human 

CRC cells in vitro (Ihara et al., 2007).  

LXs have been shown to reduce cell proliferation in vitro in lung cancer cells (Clària et 

al., 1996) and reduce the expression of the pro-inflammatory cytokines TNF-α and IL-8 

in a co-culture model using a CRC cell line (Caco2) and mouse macrophage cell line 

(Kure et al., 2010). LXA4 has been identified in vivo in several experimental models 

(Munger et al., 1999, Chiang et al., 1999, Bandeira-Melo et al., 2000, Aliberti et al., 

2002a, 2002b, Bellenger et al., 2010) and in human samples (Pouliot et al., 2000, 

Bonnans, et al., 2002, Karp et al., 2004, Levy et al., 2005, Planagumà et al, 2008). At 

present there has been no study looking for a potential role of LXs as potential anti-

CRC agents.  

The use of combined COX-2 and 5-LOX inhibitors such as licofelone as 

chemopreventative agents for CRC have been shown in vitro (Tavolari et al., 2008, 

2012) and in vivo (Mohammed et al., 2009). The effect of licofelone has not only been 

shown on the malignant epithelial cells but also on H-ras transformed rat fibroblasts 

where licofelone induced apoptosis in these transformed carcinogenic fibroblasts 

(Kabadere et al., 2014). Furthermore the safety and tolerability of licofelone in human 
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subjects was confirmed in a phase III clinical trial for osteoporosis (Alvaro-Gracia, 

2004). At present there has been no published literature on the use and effects of 

licofelone in human cancer patients. 

The CYP ω–hydroxylases of the 4A and 4F families generate HETEs whilst the 

epoxygenase pathway driven by the 2C and 2J genes generates the EETs. CYP 

derived 20-HETE has been shown in vitro to stimulate cell proliferation in a 

glioblastoma cell line, and also increase tumour growth when these cells were 

implanted into a rodent model (Jiang et al., 2005). 10-HETE increased expression of 

vascular endothelial growth factor (VEGF) and metalloproteinase (MMP)-9 in non-small 

cell lung cancer cells in vitro with associated promotion of invasion. This same group 

also showed that non-small lung cell tumour burden was increased in a mouse model 

in 20-HETE pre-treated cells, with the tumour size reduced when the cells were pre-

treated with a CYP ω-hydroxylase inhibitor (HET0016) or a 20-HETE antagonist 

(WIT002), (Yu et al., 2011). Jiang et al., 2005 identified  CYP2J2 as potential target in 

cancer, they showed that when CYP2J2 was over-expressed in several human cancer 

cell lines there was an induction of cell proliferation and increased tumour burden when 

injected into a murine model. Data such as this suggest a potential role for EETs in 

cancer development. The gut microflora is most abundant and diversely functioning 

microbial population in the human body, compromising around ten times the number of 

human cells (Savage, 1977, Peterson et al., 2009). Whilst there are a few studies that 

have looked at the gut microbial content of CRC and the difference in makeup 

compared to normal subjects (Shen et al., 2010, Sobhani et al., 2011), there has been 

no study to date looking at CYP gut microbiota CYP metabolism of PUFAs and CRC.  

 Aspirin and colorectal cancer  1.7

Aspirin (acetylsalicylic acid) is an analgesic and anti-inflammatory agent that inhibits 

the generation of prostanoids, through the inhibition of the activity of both COX-1 and 

COX-2 (Capone et al., 2007). Aspirin acetylates either serine 529 on COX-1 or serine 

516 on COX-2, this irreversibly inhibits the cyclooxygenase activity of COXs. The 

acetylated COXs are therefore unable to form PGG2, but acetylated COX-2 retains 

some catalytic activity and metabolises AA into 15R-HETE (Lecomte et al., 1994).15R-

HETE is a substrate for 5-LOX producing aspirin triggered-LXs (ATL). ATLs, like LXs, 

have been shown to have potent anti-inflammatory actions such as the non-phylogistic 

engulfment of apoptotic PMNs, (Clària et al., 1995, Serhan et al., 2005), and inhibition 

of PMN chemotaxis in a zymosan induced peritonitis murine model (Chiang et al., 

2005). ATLs have also been identified in experimental in vivo models (Chiang et al., 

1998, Peretti et al., 2002, Titos et al., 1999, Fiorucci et al., 2002), in human blood 

samples treated once a day with 81 mg of  aspirin for eight weeks (Chiang et al., 2004), 
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in human gastric mucosa (Fiorucci et al., 2003). Aspirin-triggered LXA4 has been 

shown to have in vitro anti-neoplastic effects in lung cancer (Clària et al., 1996). To 

date the presence of ATLs in CRC has not yet been commented upon. 

Evidence supporting the use of aspirin as an agent that can reduce the risk of CRC is 

becoming well established (Flossman & Rothwell, 2007, Rothwell et al., 2010, Bosetti 

et al., 2012). Daily intake of aspirin for at least five years reduced the 20 year risk of 

CRC by 32% (Rothwell et al., 2010). Furthermore a meta-analysis of four separate 

RCTs showed a risk reduction of colorectal adenoma development by 17% and a risk 

reduction of 28% in advanced adenomas , in patients that took aspirin daily (75-325 

mg) for three years (Cole et al., 2009). There are several proposed mechanisms to 

explain the anti-CRC activity for aspirin. The most widely studied is the ability of aspirin 

to block the metabolism of AA through the COXs. The acetylation of COX-1 by aspirin 

causes complete loss of COX activity. Aspirin has been shown in vitro to be between 

50 and 100-fold more potent at inhibiting platelet’s COX-1 activity than monocyte’s 

COX-2 activity and has a short half-life in the human circulation (15-20 minutes), 

(Dovizio et al., 2012, Ferrández et al., 2012). As COX-2 expressing cells are able to 

resynthesize COX-2, high doses of aspirin are required to inhibit it (Patrono et al., 

2004). The loss of COX-1 enzymatic activity and consequent inhibition of TXA2 

dependent platelet function therefore may play a significant part in the anti-cancer 

effect of aspirin. It is postulated that activated platelets play a role in cancer 

progression through the release of several factors involved in cell growth and 

angiogenesis (Gay & Felding-Habermann, 2011). An in vitro study showed that human 

CRC cells grown in co-culture with platelets stimulated TXA2 platelet synthesis that was 

inhibited by aspirin (Dovizio et al., 2012). Increased TXA2 synthesis by colon-26 

adenocarcinoma cells was shown to result in increased tumour growth when inoculated 

into a syngeneic mouse model (Pradono et al., 2002). Therefore the prevention of 

platelet aggregation may offer an explanation for the anti-CRC effects of aspirin.  

Interestingly, aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) have 

been shown to have anti-proliferative effects on COX negative cells (Hanif et al., 1996; 

Yu et al., 2002), thus supporting COX independent anti-CRC actions. Aspirin has been 

shown to have effects on the anti-apoptotic gene BCL2L1 (Zhang et al., 2000) and the 

pro-apoptotic gene PAWR (Zhang & Dubois., 2000), increase MMR protein expression 

and promote apoptosis in COX negative cell lines (Goel et al., 2003).  

At the present time the relative contribution of COX dependent and independent anti-

neoplastic mechanisms of aspirin are not clear (Wang et al., 2006, Baron  et al., 2006, 

Chan A.T et al., 2007, Borthwick et al., 2006, Deng et al., 2009). 
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 Eicosapentaenoic acid and colorectal cancer  1.8

Observational studies have reported a relationship between fish intake and CRC risk. 

Systematic reviews of observational studies have stated limited supporting evidence for 

an association between ω-3 PUFAs intake and CRC prevention (Gerber et al., 2012). 

This relationship is supported by the updated interim report of the second expert report 

of the World Cancer Research Fund (WCRF) and American Institute for Cancer 

Research (AICR), (WCRF/ AICR, 2007 and 2011). There have been several in vitro 

studies that have supported the role as EPA as anti-CRC agent, through reduced cell 

proliferation and increased apoptosis (Meneaud et al., 1992, Tsai et al., 1998, Clarke et 

al., 1999, Palozza et al., 2000, Boudreau et al., 2001, Calviello et al., 2004, Hawcroft et 

al., 2010). However it remains that there is only limited evidence for the beneficial 

effects of fish consumption and CRC risk, (WCRF/AICR., 2011).  

There is strong pre-clinical evidence that the ω-3 PUFA EPA has anti-CRC activity 

(Calviello et al., 2007). EPA was shown to suppress polyp number in APC (Min/+) mice 

(Fini et al., 2010), which is a mouse model of FAP. Leading on from this study a 

double-blind randomised controlled trial showed that the use of EPA in patients with 

FAP was associated with a significant reduction in polyp burden, both in size and 

number, which suggests that EPA may have a potential chemopreventative effect in 

CRC (West et al., 2010). There was reduced liver tumour burden in a 

diethylnitrosamine (DEN)-induced liver tumour model using the fat-1 transgenic mouse 

model (endogenously converts ω-6 PUFAs to ω-3 PUFAs such as EPA), (Weylandt et 

al., 2011). A recent phase II double-blind, randomized controlled study of daily EPA 

use in patients undergoing surgery for CRC liver metastasis reported a 40% increase in 

EPA in the tumour tissue (Cockbain et al., 2014).  

The proposed mechanisms behind EPA’s anti-CRC activity include: 

1. Induction of cellular oxidative stress. 

2. Effects on membrane dynamics and cell surface receptors. 

3. Alternative substrate for COX/ LOX enzymatic activity. 

Altered cellular redox status and amplified cellular oxidative stress due to increased 

reactive oxygen species in colonocytes of EPA/ DHA supplemented rats has been 

shown to induce colonocyte apoptosis in a rat CRC model with ROS levels inversely 

related to DNA damage (Hong, et al., 2002, Sanders et al., 2004).  

Disruption of lipid rafts by ω-3 PUFAs in the cell phospholipid cell membrane has been 

shown (Wassall et al., 2009). Omega-3 PUFA supplementation to breast cancer cells in 

vitro reduced expression of the chemokine receptor CXCR4 which is a marker of breast 
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cancer metastasis (Altenburg & Siddiqui., 2009).  Altenburg & Siddiqui (2009) showed 

that ω-3 PUFAs displaced CXCR4 an effect that was not seen with the saturated FA 

stearic acid. EPA incorporation into the lipid rafts of mammalian breast cancer cells has 

also been shown to alter epidermal growth factor receptor (EGFR) signaling and 

subsequent tumour growth in vitro (Schley et al., 2007). Both ω-3 and ω-6 PUFAs can 

bind and activate the G-protein coupled receptor (GPCR) GPR120. GPR120 has been 

shown to be expressed in the in vitro human CRC cell line Caco2 and human colonic 

samples (Mobraten et al., 2013). Mobraten et al (2013) found that EPA inhibited NF-кB 

activation via GPR120 signaling. Further work is needed looking at GPR120 

expression in CRC clinical samples and the possible influence that EPA signaling may 

have. 

EPA can act as an alternative substrate for the COXs and LOXs. Instead of AA acting 

as a substrate for the COXs and producing the pro-tumorigenic 2-series PGs such as 

PGE2, EPA is converted to the less inflammatory 3-series PGs (e.g. PGE3) (Hawcroft et 

al., 2010), in human CRC cells. However to date there has been no evidence showing 

a PGE2 to PGE3 switch in human CRC tissue, with no switch identified by Cockbain et 

al (2014). At present there has also been no published work looking at whether the 5 

series LTs such as LTB5 have a role to play in EPA directed anti-CRC effects, but it is 

established that LTB5 is less pro-inflammatory than LTB4 (Terano et al., 1984, Tatsuno 

et al., 1990). Resolvins of the E series are novel anti-inflammatory and pro-resolving 

lipid mediators derived from EPA. At present there are three different Resolvins of the 

E series, known as Resolvin E1 (RvE1), (Serhan et al, 2000, Arita et al., 2005), RvE2 

(Tjonahen et al., 2006) and RvE3 (Isobe et al., 2012). The work presented by the 

candidate focuses on RvE1 as a potential novel anti-CRC agent. 

 Resolvin E1  1.9

 Resolvin E1 biosynthesis 1.9.1

EPA is the precursor for the resolution phase interaction product known as RvE1. RvE1 

was initially identified through lipidomic profiling of exudates collected during the 

resolution phase of inflammation in mice treated with aspirin and EPA, using LC-

MS/MS, (Serhan et al., 2000). Aspirin-acetylated COX-2 metabolises EPA to a lipid 

intermediate  called 18-hydroxyeicosapentaenoic acid (18R-HEPE), which when acted 

upon by two further enzymes, 5-LOX and LTA4 hydrolase (LTA4H), produces RvE1 (Oh 

et al., 2011), (Figure 5; chemical structure of RvE1). The chirality of the hydroxyl group 

on carbon 18 of 18-HEPE is important as the hydroxyl group in the R position is 

required to synthesise RvE1.  RvE1 have also been shown to be synthesised from EPA 

via the CYP system (Haas-Stapleton et al., 2007). Figure 6 summarises the current 
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proposed cellular pathway for RvE1. RvE1 exerts its biological actions in vitro in the 

nanogram (ng) range and has been shown to be rapidly enzymatically inactivated (Arita 

et al., 2006). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The chemical structure of RvE1. 

 

  



22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Proposed biosynthesis for pathway for EPA derived RvE1.  

Eicosapentaenoic acid (EPA) within an epithelial cell or endothelial cell is converted to 18R-HEPE via acetylated COX-2 or by the CYP450 system. 

The 18R-HEPE then leaves the cell (by an unknown cellular mechanism) and is taken up (by an unknown cellular mechanism) by a 

polymorphonuclear leukocyte (PMN) such as a neutrophil. The neutrophil then converts the 18R-HEPE to RvE1 through the actions of two different 

enzymes 5-LOX and LTA4 hydrolase (LTA4H). 
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The RvE1 intermediate 18R-HEPE has been produced by EPA and aspirin treated 

human vascular cells in vitro (Serhan et al., 2000). 18R-HEPE has been shown to be 

present in the plasma of EPA alone and EPA/aspirin supplemented healthy volunteers 

(Oh et al., 2011), (aspirin 81 mg at 0 hour, then 81 mg aspirin and fish oil capsule 

containing 1 g EPA at 12 hours, then plasma analysed by LS-MS/MS after 3 hours). 

RvE1 has been synthesised in vitro by human PMNs when exposed to human vascular 

endothelial cell line derived 18R-HEPE (Serhan et al., 2000), and when synthetic 18-

HEPE standard was treated with recombinant 5-LOX and LTA4H (Oh et al., 2011). 

RvE1 has also been identified in vivo in the colons of EPA treated fat-1 transgenic mice 

with chemically induced colitis (Hudert et al., 2006). The fat-1 transgenic mice are 

genetically engineered to express the Cenorhabditis elegans fat-1 gene which encodes 

a ω-3 FA desaturase enzyme, able to convert ω-6 PUFAs to ω-3 PUFAs (Kang et al., 

2004). RvE1 has also been identified in the plasma of EPA and aspirin treated healthy 

volunteers with a published range of 0.1 to 0.4 ng/ mL in the six participants (Arita et 

al., 2005a), (1 g EPA/ 0.7 g DHA then 160 mg aspirin, three hours later, plasma then 

analysed four hours after EPA/DHA given by LS-MS/MS) and at plasma levels of 

around 0.2 ng/ mL in a cohort of healthy volunteers on a described ‘normal’ diet 

(Psychogios et al., 2011). RvE1 is metabolised into several different lipid products via 

dehydrogenation through the enzyme 15-hydroxyprostaglandin dehydrogenase (15-

PGDH). These metabolites include 18-oxo-RvE1 (Arita et al., 2006), 20-carboxy-RvE1 

(via 19 and 20-hydroxy-RvE1) and 10, 11-dihydro-RvE1. These lipid products were 

shown to display no or very little anti-inflammatory properties compared to RvE1 

particularly in respect to leukocyte infiltration in the murine peritonitis model used 

(Hong et al., 2008). Interestingly 15-PGDH has been shown to be down regulated in 

human CRC (Backlund et al., 2004).  

 Biological effects of Resolvin E1 1.9.2

RvE1 stimulates the resolution of acute inflammation by reducing transmigration of 

human PMNs in vivo (Serhan et al., 2000, Arita et al., 2005, Campbell et al., 2007) and 

increasing the clearance of PMNs through the induction of CD55 (or decay accelerating 

factor). CD55 is an anti-adhesive protein expressed at the epithelial surface and acts to 

facilitate PMN clearance (Louis et al., 2005, Campbell et al., 2007). Furthermore RvE1 

increases mononuclear infiltrates in vivo into sites of inflammation (Schwab et al., 

2007, Kebir et al., 2012), reduces IL-12 production by dendritic cells (Arita et al., 2005) 

and stimulates macrophage phagocytosis (Schwab et al., 2007, Hong et al., 2008, 

Kebir et al., 2012). Interestingly, 18-HEPE, the intermediate lipid product in the 

formation of RvE1 from EPA, has been shown to reduce PMN infiltration in the TNF-α 

induced inflammatory murine dorsal pouch model, but its potency was less than 50% of 
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that of RvE1 (Arita et al., 2005). Platelet aggregation been shown to be inhibited by 

RvE1 (Dona et al., 2008, Fredman et al., 2009). RvE1 has also been shown to 

antagonise the effects of the pro-inflammatory eicosanoid LTB4 (Arita et al., 2007). 

RvE1 was shown to be protective in murine colitis (Arita et al., 2005, Ishida et al.,  

2010, Campbell et al., 2010) and inhibited lipopolysaccharide (LPS) induced 

macrophage synthesis of TNF-α in mouse peritoneal macrophages (Ishida et al., 

2010). RvE1’s protective actions in chemically induced murine colitis models are in part 

thought to be due to the induction in intestinal alkaline phosphatase (ALPI), which can 

detoxify bacteria endotoxins such as LPS (Campbell et al., 2010). 

Interestingly RvE1 has been shown to inhibit NF-кB signaling (Arita et al., 2005 & 

2007). NF-КB, as discussed previously, is a transcription factor that can regulate cancer 

cell proliferation through upregulation of Cyclin D1 expression (Guttridge et al., 1999, 

Baldwin., 2001), apoptosis through the increased expression of anti-apoptotic proteins 

such as Bcl-xL (Chen et al., 2000) cancer angiogenesis through VEGF (Huang et al., 

2000), and cancer migration and invasion through MMP-9 (Choo et al., 2008). NF-КB 

has also been shown to be constitutively active in 40% of human CRC tissue 

(Sakamoto et al., 2009). RvE1 inhibition of NF-КB signaling therefore offers a potential 

novel approach towards cancer inhibition. The biological effects of RvE1 are 

summarised in Figure 7. 

Importantly the stereochemistry of the hydroxyl group on carbon 18 (R or S) has been 

shown to alter the biological activity of RvE1. 18S-RvE1 has higher affinity for the RvE1 

receptor than 18R-RvE1 (see section 1.9.3), but is more rapidly metabolised. Both 

stereoisomers were shown also to have slightly different potencies on macrophage 

phagocytosis in vivo (engulfment of Escherichia coli (E.coli), zymosan and apoptotic 

neutrophils), neutrophil infiltration and cytokine synthesis in the murine peritonitis 

model (Oh et al, 2011).  

 The receptors for Resolvin E1  1.9.3

There are two known receptors of RvE1 named ChemR23 (Arita et al., 2005) and BLT1 

(Arita et al., 2007). ChemR23 and BLT1 are both GPCRs. GPCRs are plasma 

membrane-bound glycoprotein receptors that interact with heterotrimeric guanine 

nucleotide binding proteins called G-proteins that are involved in the regulation of 

cellular processes through the transduction of extracellular stimuli to intracellular 

signals (Kroeze et al., 2003). 
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 ChemR23 1.9.3.1

ChemR23 (also known as chemokine-like receptor 1), is a receptor for both the 

chemoattractant adipokine chemerin and RvE1. ChemR23 has two isoforms A and B, 

(A: 373 amino acids, B: 371 amino acids) with predicted molecular weights (MWs) of 

42.3 kDa and 42.0 kDa, respectively. Whether there is differing functions and 

expression patterns between the two isoforms of ChemR23 is unknown. ChemR23 has 

been shown to be expressed in human T lymphocytes and macrophages (Arita et al., 

2005), human skeletal muscle cells (Sell et al., 2009), and human platelets (Dona et 

al., 2008, Fredman et al., 2010). Interestingly in murine macrophages ChemR23 

messenger ribonucleic acid (mRNA) expression was increased after LPS stimulation. 

ChemR23 mRNA expression was shown to be increased in the colons of murine colitis 

models compared to control mice in vivo (Ishida et al., 2010). When the ChemR23 

transfected HEK293 were treated with pertussis toxin, the RvE1 mediated extracellular 

signal regulated kinase (ERK) phosphorylation was inhibited, this suggests ChemR23 

coupling to Gαi/o (Arita et al., 2005). RvE1 has been shown to promote 

phosphorylation of (ERK) mitogen-activated protein kinase (MAPK) in human 

monocytes and ChemR23 transfected human embryonic kidney (HEK) 293 epithelial 

cells.  

Chemerin was the initial ligand identified to bind to ChemR23. Chemerin promotes 

chemotaxis of all leukocyte populations that express ChemR23 (dendritic cells and 

macrophages), (Wittamer et al., 2004, Luangsay et al., 2009, Vermi et al., 2005, 

Parolini  et al., 2007, Demoor et al., 2011). In human models chemerin has been 

shown to promote the chemotaxis of immature dendritic cells (DC) and macrophages 

and inhibit PMN chemotaxis (Wittamer et al., 2003, Vermi et al., 2005). There is also 

evidence that chemerin functions as an adipokine regulating adipogenesis and 

adipocyte metabolism (Goralski et al., 2007, Muruganandan et al., 2011) via ChemR23 

mediated pathways.  

RvE1 binding to ChemR23 was demonstrated through tritium-labelled RvE1 ligand 

binding studies. EPA and 18R-HEPE did not specifically bind to ChemR23 (Arita et al., 

2005). Unlike chemerin, RvE1 was not able to evoke a change in extracellular 

acidification rate in ChemR23 transfected HEK293 cells, thus suggesting that RvE1 

could induce a different signalling cascade upon binding to its receptor (Arita et al., 

2005).   RvE1 also inhibited TNF-α stimulated NF-κB activation via ChemR23 in 

ChemR23 transfected HEK293 cells (Arita et al., 2005). Interestingly both RvE1 and 

chemerin have been shown to induce ALPI expression in the ChemR23 expressing 

human CRC cell line Caco2 (Campbell et al., 2010). RvE1 induced epithelial 

expression of ALPI was shown to be protective against sodium dextran sulphate (DSS) 
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induced colitis in a mouse model, possibly through the detoxification of bacterial 

endotoxin. RvE1 and chemerin have also been shown to induce the expression of 

CD55 in the ChemR23 transfected KB oral epithelial cell line in vitro. This induction in 

CD55 expression was shown to promote the clearance of PMNs across the epithelial 

surface thus facilitating the resolution of inflammation (Campbell et al., 2007). 

 

 BLT1 1.9.3.2

BLT1 (also known as LTB4 receptor 1/ chemoattractant receptor like-1/ G-protein 

coupled receptor 16/ P2Y purinoceptor 7), is a receptor for the potent inflammatory lipid 

LTB4. BLT1 is 352 amino acids long and has a predicted MW of 37.6 kDa. It has been 

shown to be expressed primarily in granulocytes (Pettersson et al., 2000, Dasari et al., 

2000, Kebir et al., 2012). The major function of LTB4 is in the recruitment and activation 

of leukocytes (Ford-Hutchinson et al., 1980). There are two different GPCRs for LTB4 

called BLT1 and BLT2. LTB4 binds to BLT1 with greater affinity than BLT2 (Yokomizo 

et al., 2000). However RvE1 does not interact with BLT2. RvE1 was shown to induce 

intracellular calcium levels in human peripheral blood monocytes (PBMCs) but at about 

one third that of LTB4. Interestingly pre-treatment of human PBMCs with RvE1 inhibited 

the LTB4 induced raised intracellular calcium. Furthermore RvE1 was shown in an in 

vitro cell model to block LTB4 dependent NF-κB activation, (Arita et al., 2007). These 

competitive substrate binding studies support RvE1 as a partial BLT1 agonist. 
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Figure 7. The biological effects of RvE1. 
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2 Aims and Hypotheses to be tested 

 A potential role for Resolvin E1 in colorectal cancer 2.1

treatment 

The mechanism of actions for EPA’s anti-CRC activity are not completely known. The 

role of EPA derived RvE1 as a potential anti-CRC agent had not been previously 

investigated at the time of writing this thesis. Exogenous RvE1 has been shown to 

attenuate chemically induced colitis in several mouse models with concomitant 

reduction in the synthesis of pro-inflammatory cytokines such as TNF-α (Ishida et al., 

2010, Campbell et al., 2010). Constitutively activated NF- kB has been shown to be 

present over half of CRCs (Lind et al., 2001) In the distal colon of a sodium dextran 

sulphate (DSS) murine colitis model, RvE1 inhibited the phosphorylation of NF-kB at 

serine residue 276 (Ishida et al., 2010), and up regulated the expression of ALPI 

(Campbell et al., 2010). Such protective anti-inflammatory effects for RvE1 in vivo, 

support a possible beneficial role that requires investigating in an inflammatory 

environment like CRC. The RvE1 receptor ChemR23 has been identified to date in two 

different human CRC cell lines T84 and Caco2 in both cell lines (Campbell et al., 

2010). At the time of writing there has been no published work investigating ChemR23 

expression in human clinical CRC samples. 

BLT1 receptor expression was shown both in vitro by human CRC cell lines (Caco2 

and HT29) and in clinical human CRC tissue samples (Ihara et al., 2007). This group 

showed that there was BLT1 expression by both the malignant epithelium and the 

immune cell infiltrate (10 out of 10 different samples). They also showed that BLT1 was 

not present in normal human CR epithelium (ten cases), with expression present in 

eight out of the ten CR adenomas examined. There was reduced BLT1 expression in 

the adenomatous tissue compared to that of CRC. The ERK pathway also known as 

the MAPK pathway when activated is involved in several cellular function such as cell 

proliferation, survival and motility. Disturbance of this pathway has been shown in 

several cancers including CRC. Ihara et al., (2007) showed LTB4 induced activation of 

ERK signaling in the Caco2 cell line was blocked by the BLT1 antagonist U75302. One 

possibility is that RvE1 may act as a partial antagonist, blocking LTB4-BLT1 signaling in 

CRC. 

The RvE1 mediated effects on the inhibition of adenosine diphosphate (ADP) and TX 

mediated platelet aggregation could potentially influence colorectal carcinogenesis 

(Dona et al., 2008, Fredman et al., 2010). Interestingly recent findings have shown that 
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aspirin taken at a dose of at least 75 mg (anti-platelet dose) reduces the incidence and 

mortality of cancers such as CRC (Rothwell et al., 2010 & 2011). 

Two of the enzymes required for the synthesis of RvE1, COX-2 and 5-LOX have been 

shown to be over-expressed in human CRC tissue. However LTA4H and its metabolite 

LTB4 have not been directly investigated in human CRC tissue to date, but have been 

shown to be expressed in vitro by human CRC cells (Dias et al., 1992, Jeong et al., 

2009, Guillen-Ahlers et al., 2011). As human CRCs over- express COX-2 and 5-LOX, 

RvE1 could feasibly be synthesised from EPA in CRC tissue, or via the CYP pathway 

without the need for an aspirin acetylated COX-2 enzyme. 

This work is the first looking to establish whether RvE1 could play a part in the anti-

CRC effects of EPA. 

 Hypothesis  2.2

RvE1 synthesised within CRC (epithelium and/ or macrophages), can inhibit CRC cell 

proliferation, and induce cancer cell apoptosis, through ChemR23 and/ or BLT1 

receptor signaling. 

 Aims 2.3

i. To investigate whether the receptors for RvE1, ChemR23 and BLT1 are 

expressed in human CRC tissue. 

ii. To determine whether human CRC epithelial cells and /or macrophages alone 

or by transcellular synthesis, can synthesise RvE1 from EPA in vitro. 

iii. To develop and use an in vitro cell culture model to determine whether RvE1 

can exert a direct effect on CRC cell proliferation and/ or apoptosis. 
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3 Characterisation of BLT1 and ChemR23 expression 

in human colorectal cancer samples and in vitro 

models 

 Introduction 3.1

BLT1 and ChemR23 receptor expression in human CRC needs investigating. In vitro, 

BLT1 and ChemR23 have been reported to be expressed by THP-1 cells (a human 

acute monocytic leukaemia cell lines), (Hashidate et al., 2010) and Jurkat cells (human 

T-cell lymphoma cell line), (Novus Biologicals® NB100-92428 antibody data sheet) 

respectively, with neither receptor reported to be expressed by HEK293 cells (Chen et 

al., 2004, Arita et al., 2005). The candidate therefore used the THP-1 cells as a positive 

control for the in vitro BLT1 studies and Jurkat cells as positive controls for the 

ChemR23 in vitro studies. The HEK293 cells were used as a negative control for both 

BLT1 and ChemR23 in vitro studies. 

In respect to BLT1 expression in CRC tissue, there has been one published study to 

date (Ihara et al., 2007). The authors commented that BLT1 was expressed in immune 

cell infiltrates and by the CRC epithelium; however they only examined ten cases. The 

authors also commented that none of the normal colon tissues expressed BLT and that 

eight out of ten adenomas expressed BLT1, but the BLT1 expression was weaker than 

that seen in the CRC epithelium. There were no descriptions of heterogeneous 

expression of BLT1 in the CRC samples and no comment as which specific immune 

cell types were staining, and no discussion of whether there was any correlation 

between BLT1 expression and the clinicopathological details of the patients. 

There is no published evidence demonstrating ChemR23 expression in human CRC 

tissue. In other cancer types, publications are limited to investigating its role in the 

recruitment of anti-tumour natural killer cells in a murine melanoma model, where 

ChemR23 expression was associated with tumour growth inhibition (Pachynski et al., 

2012). Murine ChemR23 expression by tumour infiltrating and peritoneal macrophages 

has been confirmed (Rama et al., 2011). They also showed that ChemR23 expression 

was increased in J744A.1 monocyte/macrophage cells by both tumour cells (4T1 

mammary cancer cells) and fibroblasts (3T3-L1), with an associated chemerin 

(ChemR23 agonist) induced expression of pro-inflammatory cytokines such as IL-1β 

and TNF-α (Rama et al., 2011). A study also described ChemR23 single-nucleotide 

polymorphism (SNPs) rs1878022 was  associated with a worse overall survival in stage 

III or IV non-small lung cancer, however no examination of ChemR23 protein 

expression or function was explored by the authors (Wu et al., 2011). ChemR23 protein 
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expression has been reported in two human CRC cell lines T84 and Caco2 to date 

(Campbell et al 2010), with BLT1 protein expression shown in the Caco2 and HT29 cell 

lines (Ihara et al., 2007). At the time of writing this thesis there has been no published 

work investigating ChemR23 expression in human CRC. 

In view of the limited data for both BLT1 and ChemR23 expression in human CRC, 

expression was examined for in a panel of seven human CRC cell lines at both the 

mRNA and protein level. On confirming the specificity of the antibodies used in the 

protein expression studies in vitro, an immunohistochemical study looking at BLT1 and 

ChemR23 protein expression and receptor localisation was carried out by the 

candidate in a series of human CRC tissue specimens.  

 

 Aims 3.1.1

Characterisation of ChemR23 and BLT1 expression in human CRC tissue and in a 

panel of human CRC cell lines in vitro. Identify an appropriate human CRC cell line(s) 

so that in vitro RvE1 biological activity could be investigated.  

 

 Materials and Methods  3.2

 Cell culture 3.2.1

 Media and growth requirements  3.2.1.1

Human CRC cell lines HCA7, LoVo, T84, HRT18, HT29, Caco2 and SW480, human 

lymphocyte cell lines Jurkat (T-cell) and Raji (Burkitt’s lymphoma B lymphocyte) cell 

lines used for 5-LOX and FLAP studies in Chapter 4) and the HEK293 cell lines were 

obtained from the European Collection of Cell Cultures (ECACC), Porton Down, United 

Kingdom (UK)).THP1 (human acute monocytic leukaemia cell line) cells were gifted by 

Dr. Peter Laslo (Myeloid differentiation group, Leeds Institute of Cancer & Pathology, 

University of Leeds). HCA7, HRT18, HT29, Caco2, SW480, Raji, Jurkat, THP-1, and 

HEK293 cell lines were cultured in sterile RPMI 1640 with GlutaMAX™-I (Gibco® by 

Life Technologies; Cat. No. 61870-010) and 10% (v/v) foetal bovine serum (FBS). 

LoVo cells were cultured in F-12 with GlutaMAX™-I nutrient mixture (Ham) 1X (Gibco® 

Life technologies; Cat. No.31765-027) and 10% (v/v) FBS. T84 cells were cultured in 

Dulbecco’s modified eagle’s medium nutrient mixture F-12 Ham (Sigma®, Life Science; 

Cat. No. D8437) and 10% (volume (v)/v) FBS. Cells were grown on sterile tissue 

culture treated non-pyrogenic polystyrene culture flasks (Corning Incorporated costar®, 
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United Kingdom [UK]) at 37oC in the presence of 5% CO2. Cells were passaged at 70 

to 80% confluency.  

 Passaging of the cell lines 3.2.1.2

Cells were passaged by removing cell culture medium from cells, rinsing with sterile 

Dulbecco’s phosphate buffered saline (DPBS), (Gibco® by Life Technologies™ without 

calcium and magnesium; Cat. No. 14190-094), three times, and incubating with 0.05% 

(w/v) trypsin and 500 micromolar (µM) ethylenediaminetetraacetic acid (EDTA), 

(Gibco® by Life Technologies™) in sterile PBS at 37oC for five to ten minutes. 

Detached cells in trypsin solution were then placed in an equal volume of cell type 

specific culture medium and centrifuged at 400 gravitational force (g) for five minutes at 

25 degrees centigrade (oC) in a 50 millilitre (mL) non pyrogenic sterile 50 mL tube 

(Corning Incorporated costar®, UK; Cat. No.430828). Cell pellets were either used for 

ribonucleic acid (RNA) isolation, or re-suspended in cell specific medium and counted 

(section 3.2.1.3) for further analysis, or used directly for passaging. Raji and THP-1 

cells were suspension growing cells, and were seeded at 1x106 cells/ mL and 

passaged when at a cell density of 3x106 cells/ mL. Cells were used for up to a 

maximum of ten passages. 

 Viable cell counting 3.2.1.3

Cells were harvested from tissue culture flasks as described (3.2.2.1). The cell pellet 

was re-suspended in cell specific medium. A volume of 100 microliters (μL) of a cell 

suspension was mixed with an equal volume of 0.4% (v/v) trypan blue (Sigma-Aldrich, 

Poole, UK) in sterile DPBS. Cell viability was assessed using an improved Neubauer 

haemocytometer and exclusion of 0.4% (v/v) trypan blue, with viable cells being 

unstained and non-viable being stained. Cells were counted in four large corners (X20 

magnification) on each of the grids and an average number was calculated. 

 Gene expression analysis 3.2.2

 Sample preparation 3.2.2.1

Human cell lines were grown to 70% confluence in sterile tissue culture treated non-

pyrogenic six well plates. The cells were then washed three times with sterile DPBS 

(1X) before being trypsinised (see section 3.2.3.1).  

 Ribonucleic acid extraction 3.2.2.2

Cells were pelleted at <1 x 107 cells/ mL and total RNA was extracted using an 

RNeasy® Mini Kit (Qiagen, Crawley, UK; Cat. No.74104.) using the manufacturer’s 

protocol. The concentration of the extracted RNA was then automatically calculated by 
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the quantified NanoDrop spectrophotometer (ND-1000 with version 3.3 software) at 

260nm and 280nm). 

 First strand complementary deoxyribonucleic acid synthesis 3.2.2.3

First strand complementary deoxyribonucleic acid (cDNA) synthesis was carried out 

using a Superscript™ III First-Strand Synthesis SuperMix (Invitrogen, Life 

Technologies, Paisley, UK; Cat No. 11752-050) using the manufacturer’s protocol. 

Total RNA used in a transcription reaction was standardised at 500 ng across all 

samples. The samples were then stored at -20oC until use. Samples without reverse 

transcriptase (RT) were also prepared to serve as ‘RT-’ negative controls.  

 Detection of gene expression by quantitative polymerase chain reaction 3.2.2.4

Commercial TaqMan primers/ probes for the quantitative polymerase chain reaction 

(qPCR) were obtained from Life Technologies (UK). Target genes were ChemR23 and 

BLT1 and the housekeeping gene control was β-actin (Table 2). The nucleotide 

sequence region amplified by the TaqMan gene expression assays were searched 

within the NCBI BLAST® resource to confirm the specificity of the respective assay for 

the target gene (Table 1). All PCR reactions were carried out in a 10 µL reaction 

volume, in a sample well of an optical 96-well reaction plate (Life technologies, Applied 

Biosystems, MicroAmp™; Cat.No.4306737).  

A master PCR mixture was prepared. In brief this contained TaqMan Universal Master 

Mix (MM)II (2X) with uracil N-glycosylase (UNG) and TaqMan gene expression assay 

(20X) containing the primers (one in ten dilution, of TaqMan gene expression assay to 

TaqMan Universal MM with UNG, respectively). The candidate used a one in four 

dilution of BLT1 cDNA to nuclease free water (Severn Biotech Ltd, Cat.No. 20-9000-

01) and a one in two dilution for the ChemR23 study. This dilution of cDNA to nuclease 

free water (for both BLT1 and ChemR23) achieved housekeeping gene (β-actin) cycle 

threshold (Ct) values that ranged between 15 and 20 (Ct discussed below).  

Each qPCR 10 µL reaction volume was made up of 5.5 µL (Master PCR mixture) and 

4.5 µL (cDNA and Nuclease free water), (Table 2). The plate was covered with a 

MicroAmp™ optical adhesive film (Life technologies, Applied Biosystems, MicroAmp™; 

Cat.No.4306737), then loaded into the 7900HT Fast real time PCR system (Life 

Technologies, Applied Biosystems, UK). Each experiment began with heating to 50C 

for two minutes followed by ten minutes at 95C to begin denaturation. This was 

followed by 40 repeat amplification cycles of heating to 95C for 15 seconds followed 

by cooling at 60C for one minute for primer annealing and elongation. Each sample 

was run in triplicate. Negative controls included no template cDNA reactions as well as 

RT-samples to rule out reaction mixture and genomic DNA contamination respectively.  
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SDS software version 2.3 (Life Technologies, Applied Biosystems, UK) was used to 

analyse qPCR reaction.  

A Ct value was obtained when there was exponential amplification in the linear phase 

of the DNA of interest. Delta (∆) Ct values were calculated by subtracting the Ct value 

of the target gene (BLT1 or ChemR23) from that of the housekeeping gene, β-actin. 
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Table 1. TaqMan gene expression assay details  

The context sequence is the nucleotide sequence around the TaqMan probe.
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5
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Table 2. TaqMan gene expression assay reaction contents  

 

 Western blotting  3.2.3

 Sample preparation and protein extraction 3.2.3.1

Human cell lines were grown to 70-80% confluence in T75 cm2 culture flasks. Cells 

were washed twice with sterile PBS. Cells were lysed with 1 mL of radio-

immunoprecipitation assay (RIPA) buffer (50 mL solution containing 50 mM Tris-HCl, 

pH 8.0, with 150 mM sodium chloride, 1.0% Igepal CA-630 (NP-40), 0.5% sodium 

deoxycholate, and 0.1% sodium dodecyl sulphate [SDS]) containing protease inhibitor 

(One Complete® protease inhibitor cocktail tablet; Boehringer Mannheim, Lewes, UK), 

for 10 minutes (on ice). Cells were scraped off and placed in a Qiashredder column 

(QIAGEN, Crawley, UK, Cat No. 79654) and centrifuged for two minutes at ≥8000 x g. 

The protein lysates were then stored at -80oC prior to protein quantification. 

 Quantification of protein in cell extract 3.2.3.2

Protein concentration was determined using the Bio-Rad DC protein assay (BIO-RAD 

Laboratories, Richmond, CA, USA), a modification of the Lowry assay (Lowry et al., 

1951). Following the manufacturer’s instructions, serial dilutions of Bovine Serum 

Albumin (BSA) ranging from 0 to 2.0 mg/ mL of protein were prepared to construct a 

standard curve. Three serial dilutions of human cell lysates were prepared (neat, 50% 

v/v with RIPA buffer and 20% v/v with RIPA buffer). Five microlitres of standard or 

sample were placed into a clean, dry microtiter plate. A volume of 25 µL of reagent A’ 

(25 µL reagent S added to 1 mL reagent A) was added to each well (samples were 

analysed in duplicate). Then 200 μL of reagent B was placed into each well. After 15 

minutes the optical density (OD) was measured in each sample at a wavelength of 630 

nm using a plate reader (Dynex Technologies OpsysMR). The Dynex Technologies 

Revelation QuickLink version 4.04 software was used to calculate a calibration curve 

and determine the protein concentration of the cell lysates. The western blotting (WB) 

studies on BLT1 and ChemR23 used 20 μg and 30 μg protein concentrations. 
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 Sodium dodecyl sulfate polyacrylamide gel electrophoresis of proteins 3.2.3.3

Protein lysates were mixed one in four with NuPAGE lithium dodecyl sulphate (LDS) 

Sample Buffer 4X (4% [v/v] pH 8.4, glycerol [v/v] 40-70% and 1% [v/v] β-2 

mercaptoethanol [Life Technologies]). Samples were denatured by heating to 102oC for 

five minutes and cooled on ice prior to polyacrylamide gel electrophoresis (PAGE) 

electrophoresis. A 12% SDS-PAGE gel (NuPAGE Novex 12% Bis-Tris Gel 1.0 mm, 10 

well) was placed into the gel/buffer core assembly unit and loaded into an Invitrogen 

XCell SureLock™ Mini-Cell. A total of 500 mL of running buffer, containing 475 mL de-

ionised water and 25 mL NuPAGE® MOPS SDS running buffer 20X (pH 7.7, 50 mM 

MOPS, 50 mM Tris Base, 0.1% SDS, 1 mM EDTA [Invitrogen, United States of 

America (USA), Cat. No. NP0001]) was placed in the Invitrogen Mini-Cell. The 

denatured samples, as well as the molecular weight (MW) standard (ColorPlus Pre-

stained Protein Marker, Broad Range 7-175 kDa [New Englands Biolabs, Cat. No. 

P7709S] mixed 25% v/v with a second protein marker, MagicMark™ XP Western 

Protein Standard [Invitrogen, Cat. No.LC5602]) were then loaded (10 μL volume) into 

individual sample wells (samples at equal protein amounts). The electrophoresis 

chamber was sealed and electrophoresised at 150 volts (V) for 90 minutes. 

 Transblotting of sodium dodecyl sulfate polyacrylamide gel 3.2.3.4

electrophoresis separated proteins 

Resolved proteins were then transferred onto a polyvinylidene difluoride (PVDF) 

membrane (Thermo SCIENTIFIC, Rockford, USA; Cat.No.88518) by wet 

electrophoretic transfer. A PVDF and four pieces of Trans-Blot® filter paper (BIO-RAD 

Laboratories, Richmond, CA, USA Mini; Cat.No.1703932) were cut to the size of the 

gel and soaked first in 100% methanol for 30 seconds and then transfer buffer 

containing 375 mL de-ionised water, 100 mL 100% methanol and 25 mL of NuPAGE® 

transfer buffer 20X (Glycerol 190 mM, Bis-Tris 500 mM, EDTA 20 mM, Serva Blue 

G250 0.75 mL 1% [v/v] solution, phenol red 0.25 mL 1% [v/v] solution, ultrapure water, 

pH 8.5 [Invitrogen, USA, Cat. No. NP0006-1] for ten minutes. The membrane and gel 

flanked on either side by two sheets of Trans-Blot® filter paper were then placed into 

the electrophoretic transfer cell (Invitrogen XCell II™ Blot Module) and the tank filled 

with transfer buffer 1X. The outside of the tank was filled with cold water. A constant 

current of 350 millamperes was applied for 60 minutes.  
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 Immunoblotting of proteins 3.2.3.5

PVDF membranes were incubated in blocking buffer (0.05 % [v/v] PBS-NP40 [Fluka 

Analytical, USA] and 5% [w/v] dried skimmed milk) for one hour at room temperature. 

The primary antibodies (ChemR23 and BLT1 see Table 3) were diluted in 0.05% [v/v] 

PBS-NP40 and 1% [w/v] dried skimmed milk overnight at 4oC. The protein loading 

controls used were either anti- human β-actin or mouse anti-human α-tubulin 

antibodies which were incubated for one hour at room temperature. Primary antibody 

concentrations were used at a concentration recommended on the product data sheet. 

BLT1 antibody dilution used (1 in 1000), was that published by Ihara et al., 2007.  After 

incubation the membranes were washed three times in blocking buffer for five minutes, 

at room temperature. The membranes were then incubated for one hour at room 

temperature with an appropriate horseradish peroxidase (HRP)-conjugated secondary 

antibody (see Table 3) in 0.05% [v/v] PBS-NP40 and 1% [w/v] dried skimmed milk. The 

membrane was then washed three times in blocking buffer for five minutes at room 

temperature. 

 Visualisation of antibody-reactive proteins 3.2.3.6

Proteins of interest were visualised using chemiluminescent substrate from Thermo 

SCIENTIFIC (SuperSignal® West Pico Chemiluminescent Substrate [Cat No. 34079]), 

following the manufacturer’s instructions (standard chemiluminescent) and then 

SuperSignal® West Femto Chemiluminescent Substrate [Cat.34094]) referred to as 

‘high sensitivity chemiluminescence’ if no signal detected with the standard 

chemiluminescent.  

 Densitometric analysis 3.2.3.7

Resolved protein signal intensity for ChemR23 and BLT1 and the protein loading 

controls β–actin or α-tubulin were measured using BIO-RAD Image Lab 4.1 software. 

Adjusted volume intensity (sum of intensity of pixels multiplied by pixel area in 

millimeter (mm)2) were calculated for each ChemR23 and BLT1 resolved protein band 

for each individual cell line tested and divided into the corresponding resolved protein 

loading control band for that blot. This allowed semi-quantitation of the ChemR23 and 

BLT1 protein expressed in each cell line. 

  Transmembrane protein extraction 3.2.3.8

To extract the transmembrane proteins from the human cell lines (to determine for 

BLT1 and ChemR23 expression), the Novagen® ProteoExtract® Transmembrane 

Protein Extraction Kit was utilised (Cat. No. 71772-3). The extraction was performed 

according to manufacturer’s instructions. In brief HEK293 cells and Caco2 cells were 
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grown to 70-80% confluency in a T75 cm2 culture flask. The culture medium was 

removed from the cells. The cells were then washed twice DPBS at 4oC. DPBS was 

then added to the culture flask at a volume of 3 mL. The cells were then scraped off 

using a cell scraper, and placed into a 15 mL falcon tube. Next the cells were 

centrifuged at 1000 x g for five minutes (at 4oC). The cells were then placed in 1 mL of 

manufacturer’s Extraction Buffer 1 and 5 μL of Protease Inhibitor Cocktail Set III. The 

resuspended cells were then incubated for ten minutes at 4oC with gentle agitation. 

Following this the cells were centrifuged for five minutes at 1000 x g (4oC). The 

supernatant was then carefully removed and stored on ice as the cytosolic protein 

fraction. The remaining cell pellet was resuspended in manufacturer’s Extraction Buffer 

2A and 5 μL of Protease Inhibitor Cocktail. The suspension was then incubated for 45 

minutes at room temperature with gentle agitation, before centrifuging at 16,000 x g for 

15 minutes at 4oC. The supernatant was then transferred to a fresh falcon tube and 

protein quantified and analysed for ChemR23 as discussed in this section. 

 Immunofluorescence 3.2.4

Caco2 CRC cells were grown on sterile glass cover slips in six well plate to either 50% 

or 100% cell confluency. The cells were then washed three times with sterile DPBS. 

The cells were then fixed in 4% paraformaldehyde (PFA) for 20 minutes at room 

temperature. The 4% PFA was then removed and the cell were washed with sterile 

PBS for five minutes. The cells were then used for immunofluorescence studies. 

Immunofluorescence (IF) was performed using ChemR23 (Bioss Cat. No bs2530R). 

Cells were blocked with antibody diluent reagent solution (Invitrogen Cat no, 003218) 

which was tipped off immediately. The coverslips were then incubated with primary 

antibodies diluted in TBS for one hour at room temperature. Anti-ChemR23 was used 

at a dilution of 1 in 50. A no-primary control was included. The cells were then washed 

with TBS-Tween (TBLS-T) (2 x 5 minutes), then TBS (1 x 5 minutes). The cells where 

then incubated for 1 hour in the dark with fluorescein isothiocyante (FITC)-conjugated 

secondary antibodies (donkey anti-rabbit, Alexa Fluor®488 (Invitrogen) diluted in TBS 

at a 1 in 300 dilution) at room temperature, under the cover of tinfoil, in order to block 

out all of the light. Cells were then washed with TBS-T (2 x 5 minutes), then TBS (1 x 5 

minutes). The cells were then mounted in ProLong® Gold anti-fade with 4,6-diamidino-

2-phenylindole (DAPI) (Cell signaling Technology Cat No 8961). IF was visualized 

using a Zeiss Axioscope microscope and images were processed using the Axiovision 

4.4 software. Representative images were taken using the appropriate optimal 

exposure time settings, assessed on the positive control cells (100% confluent Caco2 

cells). Establishing the settings this way meant that semi-quantitative differences 

between the human cell lines tested could be ascertained. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Antibody details for western blotting and immunohistochemistry studies.  

Antibody details including species antibody raised in, antibody dilution used in experimentation and manufacturers details. 
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 Immunohistochemistry 3.2.5

 Ethical approval 3.2.5.1

Ethical approval for the collection of clinicopathological data and archival formalin fixed 

paraffin embedded human CRC specimens was obtained from the National Research 

Ethics Service (NRES) Committee Yorkshire & The Humber- Leeds Central REC 

reference 11/YH/0157 (Appendix 1 for approval letter). 

 Specimen collection and clinicopathological data 3.2.5.2

Formalin-fixed, paraffin-embedded (FFPE) tissue blocks of human CRC were selected 

from the histopathology archives at St. James’s University Hospital, Leeds, UK. 

 Clinicopathological data 3.2.5.3

The patients’ age, size of cancer in centimeters (cm), site of cancer (proximal or distal 

to the splenic flexure), grade of differentiation (poor, moderate or well), pathological (p) 

tumour (T) and nodal (N) stages and whether there was histological vascular invasion 

present were obtained.   

 BLT1 and ChemR23 immunohistochemistry 3.2.5.4

3.2.5.4.1 BLT1 

FFPE sections (5 µm) were mounted on Thermo Scientific™ Superfrost™ Plus 

microscope slides. Sections were dewaxed in xylene (3 x 5 minutes) and rehydrated 

through a series of ethanol washes (3 x 5 minutes). The sections were then rinsed in 

running tap water for five minutes before endogenous peroxidase activity was blocked 

with 0.3% (v/v) hydrogen peroxide in 100% methanol for ten minutes at room 

temperature. The sections were then rinsed in running tap water for five minutes. The 

sections were then blocked with antibody diluent reagent solution (Invitrogen Cat no, 

003218) to block non-specific binding sites. This blocking agent was then removed 

after 30 seconds and the primary antibody anti-BLT1 (Cayman Chemical Cat. No 

120114) was incubated at room temperature with the tissue at a 1 in 1500 dilution for 

one hour at room temperature. The sections were then washed in TBS- tween (TBS-T), 

(2 x 5 minutes) then TBS (1 x 5 minutes). Slides were incubated in anti-mouse 

horseradish peroxidase (HRP) conjugated polymer secondary antibody (Dako, Cat No. 

K4001) for 30 minutes. The slides were then washed with TBS-T (2 x 5 minutes) and 

then TBS (1 x 5 minutes). Then 100 μL of diaminobenzidine (DAB) solution was added 

to each slide for exactly ten minutes. The sections were then rinsed in tap water for five 

minutes, and stained with haematoxylin (Solmedia Laboratory Suppliers, Cat No. 

HST011) for 30 seconds, followed by a one minute rinse in tap water. This was followed 
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by a wash in Scott’s tap water for one minute, and a subsequent one minute rinse in 

tap water. The slides were dehydrated with graded ethanol (1 x 2 minutes followed by 2 

x 1 minute) and xylene (3 x 1 minute), and mounted in diphenylxylene (DPX). The 

BLT1 antibody was optimised over several antibody concentrations, to obtain the 

optimal receptor immunostaining in the fixed human CRC tissue. 

3.2.5.4.2 ChemR23 

ChemR23 immunohistochemistry was also performed on FFPE sections using a rabbit 

anti-ChemR23 (BIOSS, bs-2530R LOT 130320). The immunohistochemistry was 

carried out as above except that prior to the blocking for endogenous peroxidase 

activity, the sections were placed in 10 mM citrate buffer, pH 6.0, and heated to 80oC 

for ten minutes in a microwave oven and then cooled down for a further 20 minutes and 

rinsed with tap water.  

The ChemR23 antibody was optimised over several antibody concentrations with 

antigen retrieval to obtain the optimal receptor immunostaining in the fixed human CRC 

tissue. There were issues with batch availability, sensitivity and specificity issues for 

the anti-ChemR23 (BIOSS, bs-2530R) which are described further in section 3.4.2.2.  

3.2.5.4.3 Controls 

A no primary antibody control was included in each IHC run. To address inter-run 

variability a control slide was included that was present in every independent IHC run. 

3.2.5.4.4 Scoring of ChemR23 and BLT1 immunostaining 

Immunostaining scores were given to tumour epithelium, tumour stroma, histologically 

normal epithelium and histologically normal stroma. Normal CR tissue was on the 

same FFPE block as the CRC; the candidate acknowledges that this was therefore not 

truly representative of normal CR tissue and that ideally separate matched CR tissue 

blocks would be required. Separate normal CR tissue blocks were not available to the 

candidate, so for the purposes of this thesis whilst the candidate makes reference to 

normal CR epithelium and stroma, the candidate was fully aware of the aforementioned 

limitation. Receptor expression staining within the cancer epithelium was scored on an 

intensity scale of 0 to 3 (0= negative, 1= weak, 2= moderate, 3 =strong expression) and 

a percentage cell population staining (P) scale (0= negative, 1= 1-33%, 2= 34-66%, 3= 

67-100%). The intensity and percentage scores were then multiplied to give a total 

score out of nine (Figure 8). Cancer associated stroma and normal stroma were scored 

0-3 (0= negative, 1= weak, 2= moderate, 3 =strong). In respect to the stroma, the % 

cell population scores were consistent throughout, with a value of 3, hence stroma 

scores are solely expressed as an intensity value. 
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Twenty two different sections were scored by two independent observers who were the 

candidate and a gastrointestinal pathologist Dr. Nicholas P West (NPW), University of 

Leeds (NPW) to evaluate inter-observer agreement of the scoring. Upon confirmation 

of at least a moderate strength of agreement for scoring by weighted kappa statistical 

analysis (a minimum of a moderate strength weighted kappa agreement is recognised 

to be needed for IHC scoring), the candidate scored the sections independently. 

 Statistical analysis 3.2.5.5

The statistical significance of observed differences in ChemR23 and BLT1 expression 

related to CRC location, grade of differentiation, patient age, pT and pN stages and 

vascular invasion status were tested using the Mann-Whitney U test and Kruskal-Wallis 

as appropriate. The relationship between ChemR23 and BLT1 stromal, epithelium, 

stroma-epithelium expression was analysed by Spearman rank correlation coefficient. 

The relationship between BLT1 and ChemR23 expression between normal and cancer 

epithelium and between normal and cancer epithelium associated stroma was 

analysed by the Wilcoxon signed-rank test. Inter-observer concordance between the 

two-observers for the IHC scoring was measured using the weighted Cohen’s kappa 

(k) coefficient statistic. Statistical significance was assumed if the P value was less than 

0.05.  

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Immunostaining scoring system for BLT1 and ChemR23 protein 

expression in human CRC epithelium. 
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 Results (BLT1) 3.3

 BLT1 expression by human colorectal cancer epithelial cell lines 3.3.1

 BLT1 mRNA detection in a panel of human colorectal cancer cell lines 3.3.1.1

BLT1 gene expression was measured by qPCR in seven human CRC cell lines. All cell 

lines screened expressed BLT1 receptor mRNA at detectable levels, including the cell 

line HEK293, which was hypothesized to be a negative control. As the negative control 

HEK293 cell line gave a delta (∆)-Ct value of 11.5 (SEM 0.1) and the positive control 

cell line THP-1 gave a ∆-Ct value of 12.3 (SEM 0.4), this suggests that the negative 

control cell line contains more BLT1 that the positive control cell line. Furthermore the 

Ct values for BLT1 in all cell lines were greater than 30, and suggestive of only a small 

amount of BLT1. One possibility is that all cells lines have low BLT1 mRNA and or the 

assay is not targeting BLT1 expression. Importantly the NTC and RT- controls gave no 

signal on the qPCR amplification plot. Mean Ct values for both BLT1 and β-actin with 

respective SEM are shown in Table 4. Figure 9 shows the small range of expression 

levels (∆ Ct values) detected in the cell lines.  

  BLT1 protein detection in a panel of human colorectal cancer cell lines  3.3.1.2

A single resolved protein band in keeping with the BLT1 receptor was confirmed in the 

positive control cell line THP1 (human acute monocytic leukaemia cell line) at 40kDa 

using the Cayman Chemicals anti-BLT1 antibody. No protein band was observed in the 

negative control HEK293 cells and no BLT1 protein band was seen in any of the 

human CRC cell lines screened under standard chemiluminescence (Figure 10A) or 

high sensitivity chemiluminescence (Figure 10B).  Protein loading was confirmed by 

probing the PVDF membrane with mouse monoclonal α-tubulin antibody (see Figure 

10C).  
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Figure 9.  BLT1 mRNA expression in a panel of human CRC cell lines. 

BLT1 receptor mRNA expression in a panel of human cell lines. Data collected from 

three individual independent cell cultures for each cell line, shown as mean delta-cycle 

threshold (∆Ct) value with standard error of the mean.  
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Table 4. Mean cycle threshold (Ct) values for BLT1 and β-actin in the screened 

panel of human cell lines. 

Cycle threshold values were measured in three independently performed experiments 

for each of the nine human cell lines. Each individual experiment was performed in 

triplicate. Data shown as mean with standard error of the mean. 
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Figure 10. BLT1 protein expression as measured by western blot in a panel of 

human CRC cell lines. 

BLT expression of human cell protein lysate was probed for in a panel of human cell 

lines. (A) The image was acquired after 180 seconds of standard chemiluminescence. 

(B) Image after two seconds of high sensitivity chemiluminescence. (C) Protein loading 

was assessed by probing with mouse monoclonal anti-human α-tubulin antibody 

(Sigma 1 in 5000), image acquired after one second of standard chemiluminescence.  

The first lane contains the (chemiluminescent protein ladder) MagicMarkTM.
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 BLT1 expression by human colorectal cancer tissue 3.3.2

 Clinical characteristics of the study population 3.3.2.1

The clinical characteristics of the study population are summarized in Table 5. The 

median patient age at diagnosis was 74 years (range 37-93 years). Forty percent of 

patients had cancers proximal to the splenic flexure, and sixty percent of patients had 

cancers distal to the splenic flexure. Median size of the cancers was 3.5 cm (range 1.5-

10 cm). Cancer differentiation was categorized as either well (3% of cases), moderate 

(79% of cases) and poor (18% of cases). The tumour stage distribution was pT1 in 4% 

of cases, pT2 in 9% of cases, pT3 in 56% of cases, and pT4 in 31% of cases. The 

nodal stage distribution was pN0 in 53% of cases, pN1 in 28% of cases and pN2 in 

19% of cases. Presence or absence of vascular invasion was reported in 51% and 

49% of cases respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Clinical characteristics of the BLT1 study population
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 BLT1 immunohistochemistry staining and scoring method optimisation 3.3.2.2

Optimisation of the BLT1 antibody on the human CRC tissue confirmed that a dilution 

of 1 in 1,500 with no antigen retrieval step gave specific staining in comparison to the 

no primary control (Appendix 2). There was no positive and negative tissue controls 

included. However BLT1 is expressed by PMNs and membranous staining was seen in 

immune type cells in CRC tissue samples (Appendix 3). Inter-observer agreement was 

confirmed by two independent observers, the candidate and NPW. Twenty-two 

different human CRC specimens were scored for BLT1 expression in the cancer 

epithelium and the cancer epithelium associated stroma. Moderate agreement 

(weighted kappa: 0.544; 95% confidence interval 0.318-0.890) was obtained between 

the candidate and NPW for the cancer epithelium (Figure 11A), with complete 

agreement in 14 of the 22 samples scored. It is accepted that moderate weighted 

Kappa agreement is an acceptable measure of inter-rater agreement. 

There was strong agreement (weighted kappa: 0.605; 95% confidence interval 0.328-

0.860) for the cancer associated stroma between the between the candidate and NPW 

(Figure 11B), with complete agreement in 16 of the 22 samples scored. The scoring 

system was therefore validated and applied to the full panel of samples. A no primary 

antibody control slide and a primary antibody control slide (positive staining slide from 

same tissue specimen in each IHC run) was included in each of the four runs required 

to complete the BLT1 IHC on 78 different CRC tissue samples (Appendix 4 for no 

primary antibody control images and Appendix 5 for the primary antibody control 

images, between the different IHC runs).  

 BLT1 expression in human CRC epithelium and histologically normal 3.3.2.3

colorectal epithelium 

BLT1 protein was detected in the cancer epithelium of all 78 of the 78 FFPE human 

CRC (Figure 12). Representative staining intensities from the cancer epithelium is 

shown (Figure 13).  Positive staining was cytoplasmic. Thirty of the 31 samples 

containing histologically normal looking epithelium stained positively for BLT1, the 

staining appeared cytoplasmic (Figure 14B, further images see Appendix 6). It is 

important to note that whilst the candidate refers to this epithelium as being normal, the 

canididate accepts that this epithelium (and the later detailed normal CR associated 

stroma) was on the same tissue block as the CRC and therefore not a truly 
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independent normal CR (or associated stroma) sample. BLT1 staining was seen at the 

top of CR crypts but absent from the base of the crypt (Figure 14B). There was an 

increase in cytoplasmic BLT1 staining between matched histologically normal CR and 

CRC epithelial samples (Figure 14A; P = 0.0051). Representative staining for the 

increase in BLT1 expression between matched histologically normal colorectal and 

cancer epithelium is shown (Figure 14B and C). 

There was no statistically significant correlation between BLT1 expression in either the 

human CRC epithelium or human histologically normal CR epithelium with the 

clinicopathological data including age, cancer location, cancer size, cancer cell 

differentiation, pT, pN or histological presence of vascular invasion (Appendix 7 for 

CRC epithelium and Appendix 8 for histologically normal CR epithelium data).
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Figure 11. Inter-observer agreement for BLT1 expression in human CRC tissue. 

Twenty- two different FFPE human CRC specimens where scored for BLT1 expression by two independent observers (myself and gastrointestinal 

histopathologist NPW). (A) Scores given to BLT1 expression levels in the CRC epithelium. (B) Scores given to BLT1 expression in the CRC 

epithelium associated stroma. 
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Figure 12. Cytoplasmic BLT expression in human CRC epithelium 

Seventy-eight different FFPE human CRC samples were probed for BLT1 expression 

using a rabbit polyclonal anti-human BLT1 antibody (Cayman 1 in 1500 and probed 

with a secondary conjugated HRP antibody (anti-Rabbit envision kit) by IHC. Image 

shows the cytoplasmic BLT1 protein expression. (Scale bar 100 μm).
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Figure 13. BLT expression in human CRC epithelium. 

Illustrative images of different intensities of BLT1 protein expression as measured by 

immunohistochemistry. (A) Example of intensity score of 1. (B) Example of intensity 

score of 2. (C) Example of intensity score of 3. All samples had a cytoplasmic staining 

pattern for BLT1 with a spread of intensity scores between 0-3. Arrows indicate cancer 

epithelium. (Scale bars 25 μm). 



 54  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14.  BLT1 expression between matched histologically normal CR epithelium and CRC epithelium. 

There were 31 different FFPE human CRC samples with both histologically normal colorectal epithelium and CRC epithelium. (A) BLT1 expression in 

histologically normal colorectal epithelium and CRC epithelium, individual  (I x P) scores for matched samples show statistical analysis performed 

using a Wilcoxon matched-pairs signed rank test (P = 0.0051). (B) BLT1 staining in histologically normal CR epithelium. (C) BLT1 staining in CRC 

cancer epithelium (sample matched to that of B). There was a significant increase found in BLT1 staining between matched CRC epithelium and 

histologically normal colorectal epithelium. Arrows indicate CR epithelium. (Scale bars 100 μm). 
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 BLT1 expression in human colorectal cancer associated stroma and 3.3.2.4

histologically normal colorectal epithelium associated stroma 

BLT1 protein was detected in the stroma in all 78 of the 78 FFPE human CRC 

samples. Representative staining from the CRC epithelium associated stroma is shown 

(Figure 15A-C). All of the 31 samples containing histologically normal CR epithelium 

associated stroma stained positively for BLT1 (Appendix 6). Interestingly there was an 

increase in BLT1 staining between matched histologically normal CR associated 

stroma and CRC associated stroma samples (Figure 16A). Positive staining was not 

only seen by immune type cells, but also by spindle shaped cells (Figure 16B; further 

staining would be required to establish if these spindle shaped cells were 

myofibroblasts).There was a statistically significant correlation between BLT1 

expression in the CRC associated stroma and cancer location, with higher expression 

being found in cancers distal to the splenic flexure (Figure 17). There were no other 

correlation found between CRC associated stroma and the remaining 

clinicopathological factors (Appendix 9 for graphical data). There was no statistically 

significant correlation found with histologically normal colorectal epithelium associated 

stroma and the clinicopathological data including age, cancer location, cancer size, 

cancer cell differentiation, pT, pN or histological presence of venous invasion, 

(Appendix 10 for graphical data).  

No correlation was found between BLT1 staining in the CRC associated stroma and 

CRC epithelium on matched sample analysis (Appendix 11; Spearman r 0.117, 95% 

confidence interval -0.115-0.337, P = 0.307). There was no correlation found between 

BLT1 staining in the histologically normal CR epithelium associated stroma and CR 

epithelium on matched sample analysis (Appendix 12; Spearman r 0.032, 95% 

confidence interval -0.336-0.391, P = 0.866). 
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Figure 15 BLT1 expression in human colorectal cancer 

epithelium associated stroma 
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Figure 16.  BLT1 expression between matched histologically normal CR epithelium associated stroma and CRC epithelium associated 

stroma 

Thirty one different FFPE human CRC samples with both histologically normal colorectal epithelium and CRC epithelium were scored for BLT1 

expression. (A) Graph illustrating the score for BLT1 expression in histologically normal colorectal epithelium associated stroma and CRC associated 

stroma. Statistical analysis was performed using a Wilcoxon matched-pairs signed rank test (P = <0.0001). (B) BLT1 staining in histologically normal 

colorectal epithelium associated stroma. (C) BLT1 staining in CRC associated stroma epithelium (sample matched to that of B). Arrows indicate the 

epithelium associated stroma. (Scale bars 100 μm). 
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Figure 17. BLT1 expression in CRC epithelium associated stroma and cancer location in relation to splenic flexure 

Seventy-eight different FFPE human CRC epithelium samples were probed for BLT1. (A) Graph illustrating the score for BLT1 CRC associated 

stromal expression and cancer location (either distal or proximal to the splenic flexure, data analysed using a Mann-U Whitney test (P = 0.035). (B) 

Representative images of the staining for BLT1 in CRC associated stroma in proximal to splenic flexure cancers. (C) Representative images of the 

staining for BLT1 in CRC associated stroma distal to splenic flexure. (Scale bars 50 μm). 
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 Results (ChemR23) 3.4

 ChemR23 mRNA detection in a panel of human colorectal cancer cell 3.4.1.1

lines 

Quantitative qPCR was utilised to characterise ChemR23 gene expression in seven 

human CRC cell lines. ChemR23 receptor mRNA was identified in all cell lines 

screened, including the negative control cell line HEK293. The NTC and RT- controls 

gave no signal on the qPCR amplification plot, ruling out DNA contamination. Whilst 

the Jurkat cell line (positive control) gave a ChemR23 mean Ct value of 27.8 and the 

HEK293 cell line a mean Ct value of 30.3 which implies a higher ChemR23 expression 

in the Jurkats. However when the β–actin mean Ct value was used for each cell line to 

calculate the ∆–Ct value there was no difference in ChemR23 mRNA expression 

between the cell lines, using this method. The results make conclusion on ChemR23 

difficult as either all cells lines express low ChemR23 mRNA, or this method is not 

specific for ChemR23. Mean Ct values for both ChemR23 and β-actin with respective 

SEM are shown in Table 6. Figure 18 shows the small range of expression levels (∆Ct 

values) detected in the cell lines. 

 ChemR23 protein detection in a panel of human CRC cell lines 3.4.1.2

Several commercially available anti-ChemR23 antibodies were tested to establish 

whether ChemR23 was expressed in human CRC cell lines. When Novus Biologicals, 

R&D systems and Abcam anti-ChemR23 antibodies where used several resolved 

protein bands at above and below the predicted MW expected for ChemR23 were 

seen, meaning these antibodies were not suitable for the ChemR23 studies (Appendix 

13).  

Using a high sensitivity chemiluminescent condition, a protein band at a MW of 45 kDa 

in keeping with that expected for the ChemR23 protein was seen in the positive control 

Jurkat cell line as well as the human CRC cell lines T84, HRT18, HT29, Caco2 and 

HCT116 (Figure 19A), when the Bioss anti-ChemR23 antibody was used. Using the 

Bioss anti-ChemR23 antibody the LoVo human CRC cell line did not give a resolved 

band at this MW under the chemiluminescent conditions used, with the HCA7 CRC cell 

line giving only a very faint resolved protein band. Resolved protein bands were also 

seen just above the 100 kDa standard marker in all cell lines, discussed later. Protein 

loading was monitored by probing for α–tubulin (Figure 19B). Figure 20 shows the ratio 
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of adjusted volume intensity of the ChemR23 resolved protein band against the α-

tubulin loading control for each cell line. Caco2 human CRC cells were shown to have 

two fold more ChemR23 protein than HRT18 and HT29 CRC cells and five fold more 

protein than T84 and HCT116 human CRC cells under these conditions.  

To confirm that the resolved protein band seen at 45 kDa was located at the 

membrane, and thus in keeping with that expected of a seven-transmembrane receptor 

such as ChemR23, the candidate probed the membrane protein lysate extracted from 

HEK293 (negative control) and Caco2 cells for ChemR23. The 45 kDa resolved protein 

band was identified in the membrane fraction in Caco2 cells, and absent in the HEK293 

cells (Figure 21), thus adding further support to the identity of the 45 kDa resolved 

protein band being ChemR23. 

An interesting finding was that ChemR23 protein expression increased in Caco2 

human CRC at increasing cell confluency (Figure 22), with a four fold increase at 100% 

cell confluency. The IF study suggested that ChemR23 expression was more intense in 

confluent Caco2 cells compared to less confluent cells, with the NP controls giving no 

specific staining (Figure 23). This induction in ChemR23 protein expression with 

increased cell confluency was not seen in any of the other six human CRC cell lines 

investigated (Figure 24). As a result of this effect on ChemR23 with Caco2 cells, BLT1 

protein was also investigated in the same panel of human CRC cell lines at either 50 or 

100% cell confluency. No BLT1 expression was identified in either the 50% confluent 

cells or 100% confluent CRC cell lines (Figures 25). ChemR23 protein induction in 

confluent Caco2 human CRC cells was utilized in the cell viability/ apoptosis/ gene 

expression assays, and possible reasons for its increased expression discussed in 

Chapter 5. 
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Figure 18. ChemR23 mRNA expression in a panel of human CRC cell lines. 

ChemR23 receptor mRNA expression in a panel of human cell lines. Data collected 

from three individual independent cell cultures for each cell line, shown as mean delta-

cycle threshold (∆Ct) value with standard error of the mean.  
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Table 6. Mean cycle threshold values (Ct) for ChemR23 and β-actin in a panel of 

human cell lines. 

Cycle threshold values were measured in three independently performed experiments 

for each of the nine human cell lines. Each individual experiment was performed in 

triplicate. Data shown as mean with standard error of the mean. 
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Figure 19. ChemR23 protein expression in a panel of human CRC cell lines. 

Human CRC protein lysate was probed with anti-human ChemR23 antibody (Bioss) 

and probed with a secondary conjugated HRP antibody (1 in 2000), image from one 

second of high sensitivity chemiluminescence (A). A resolved protein band at a MW of 

45 kDa in keeping with that expected for the ChemR23 protein was seen in the positive 

control Jurkat cell line as well as the human CRC cell lines T84, HRT18, HT29, Caco2 

and HCT116 (see arrow). (B) Protein loading was confirmed by probing with mouse 

monoclonal anti-human α-tubulin antibody.   
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Figure 20. Semi-quantitative analysis of ChemR23 expression in a panel of 

human CRC cell lines.  

The relative quantities of the ChemR23 protein expression for each cell line was 

calculated by dividing the adjusted volume intensity of the ChemR23 resolved band by 

that of the loading control (α-tubulin). The adjusted volume intensity values where 

calculated using the BIO-RAD Quantity One Software using the PVDF membrane 

image from Figure 18A (under standard chemiluminescence).  
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Figure 21.  ChemR23 protein expression in the membrane protein fraction of 

Caco2 human CRC cells. 

Human CRC protein lysate from membrane fraction was probed with affinity purified 

rabbit polyclonal anti-human ChemR23 antibody (Bioss, 1 in 1000), and probed with a 

secondary conjugated HRP antibody (1 in 2000), image from 15 seconds of standard 

chemiluminescence. A resolved protein band at a MW of 45 kDa in keeping with that 

expected for the ChemR23 protein was seen in membrane extracted fraction of Caco2 

human CRC cells with none identified in the HEK293 cells. Protein loading was 

confirmed by probing with mouse monoclonal anti-human α-tubulin.  
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Figure 22.  ChemR23 protein expression by Caco2 human CRC cells at 

increasing cell confluency. 

Caco2 human CRC cells were grown to 20, 50, 80 or 100% cell confluency before the 

cells were lysed and the protein lysate collected. The protein lysates were then probed 

with a rabbit polyclonal anti-human ChemR23 antibody (Bioss 1 in 500), and probed 

with a secondary HRP1 swine anti-rabbit antibody (1 in 2000). (A) ChemR23 protein 

expression in 20, 50, 80, and 100% confluent Caco2 cells with α–tubulin protein 

loading. (B) Densitometric analysis of (A); data shown as percentage (%) ChemR23 

resolved protein expression against the α–tubulin loading control for each protein 

lysate. Data analysis was carried out on three independent WB images.
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Figure 23. Immunofluorescence detection of ChemR23 by Caco2 human CRC cells at differing cell confluencies.  

Caco2 human CRC cells were grown on sterile glass cover slides to either 50% or 100% cell confluency, before being fixed in 4% PFA. The cells 

were then probed with an affinity purified rabbit polyclonal anti-human ChemR23 antibody (Bioss 1 in 50), and probed with a secondary donkey anti-

rabbit AlexaFluoro488 antibody (1 in 300). Cell nuclei were stained with DAPI (blue), ChemR23 receptor represented as FITC (green).The images 

were acquired using a Zeiss Axioscope microscope. (A) 50% confluent cells (at X63 magnification). (B) 100% confluent cells. (Scale bars 10 μm).
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Figure 24. Western blot detection of ChemR23 by human CRC cell lines at differing cell confluencies. 

Human CRC protein lysates were probed with affinity purified rabbit polyclonal anti-human ChemR23 antibody (Bioss, 1 in 500), and probed with a 

secondary conjugated HRP antibody (1 in 2000). (A-B) ChemR23 protein expression in a panel of human CRC cell lines, using HEK293 cells as a 

negative control for ChemR23 expression, Image from one second of high sensitivity chemiluminescence ,  protein loading was monitored by probing 

with mouse monoclonal anti-human β-actin antibody.  
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Figure 25.  BLT1 protein expression by human CRC cell lines at differing cell confluencies. 

Human protein lysates were probed with affinity purified rabbit polyclonal anti-human BLT1 antibody (Cayman Chemical, 1 in 1000), and probed with 

a secondary conjugated HRP antibody (1 in 2000), image from one second of high sensitivity chemiluminescence (A-C). Protein loading was 

monitored by probing with mouse monoclonal anti-human β-actin antibody (1 in 5000), image acquired from 15 seconds of standard 

chemiluminescence. 
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  ChemR23 expression by human colorectal cancer tissue 3.4.2

 Clinical characteristics of the study population 3.4.2.1

The clinical characteristics of the study population are summarized in Table 7. The 

median patient age at diagnosis was 73.5 years (range 45-93 years). Forty percent of 

patients had tumours proximal to the splenic flexure, and sixty percentage of patients 

had cancers distal to the splenic flexure. Median size of the cancers was 3.5 cm (range 

1.5-10 cm). Cancer cell grade/differentiation was categorized as either well (3% of 

cases), moderate (79% of cases) and poor (18% of cases). The tumour stage 

distribution was pT1 in 3% of cases, pT2 in 8% of cases, pT3 in 56% of cases, and pT4 

in 33% of cases. The pathological node (pN) was pN0 in 51% of cases, pN0 in 29% of 

cases and pN2 in 20% of cases. Histologically reported presence or absence of 

vascular invasion was reported in 52% and 48% of cases respectively. The number of 

cases is different to the BLT1 study as not all tissue blocks had enough tissue to allow 

ChemR23 analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7. Clinical characteristics of the ChemR23 study population. 
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 ChemR23 immunohistochemistry staining and scoring method  3.4.2.2

The scoring system was the same as that used in the BLT1 study, so the candidate 

scored all sections independently. All 73 specimens were scored for ChemR23 

expression in cancer epithelium, histologically normal CR epithelium (as for the BLT 

this tissue was from the same CRC tissue sample, therefore not independent in 

location, as was also the case for the stroma), cancer epithelium associated stroma, 

and histologically normal CR epithelium associated stroma, ChemR23 expression. 

Optimisation of the ChemR23 antibody confirmed that a dilution of 1 in 1000 with an 

antigen retrieval step gave specific staining against the no primary control (Appendix 

14). As for BLT1, a control no primary antibody slide and a primary antibody control 

slide was included in each of the four runs required to complete the ChemR23 IHC on 

the 73 different human CRC tissue samples (see Appendix 15 for no primary antibody 

control images and Appendix 16 for the primary antibody control images, between the 

different runs). Unfortunately Bioss were unable to supply the batch of antibody used to 

optimise the IHC. The candidate pooled together subsequent same lot numbers of the 

Bioss antibody after confirming their individual specificity via WB (Appendix 17. The 

candidate sought to confirm specificity initial as a previous lot of the Bioss antibody had 

very poor specificity making ChemR23 expression impossible (see Appendix 18 for 

example WB image). Initial optimisation of the Bioss antibody identified a 1 in 2000 

dilution as optimal, however a 1 in 25 dilution was subsequently needed of the supplied 

antibody. Specificity between the two batches was similar as can be seen in their 

respective WB images (Figure 19 and Appendix 17, respectively), however their 

sensitivity differed markedly for the IHC, however there was comparable and good 

specificity on WB (Appendix 19). 

 ChemR23 expression in human colorectal cancer epithelium and 3.4.2.3

histologically normal colorectal epithelium 

The cancer epithelium of all 73 of the 73 FFPE human CRC samples expressed 

ChemR23. Typical staining from the cancer epithelium is shown (Figure 26 & 27) and 

appeared cytoplasmic. Twenty eight of the 28 samples containing histologically normal 

CR epithelium stained positively for ChemR23, with cytoplasmic expression. As seen 

with BLT1, ChemR23 expression was seen at the apex of the crypt (Figure 28). 

Additionally ChemR23 expression was shown to be increased in CRC epithelium when 

compared to matched histologically normal CR epithelial samples. The increase in 
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ChemR23 expression between matched histologically normal colorectal and cancer 

epithelium is shown in Figure 28.  

As for BLT1 the candidate found no statistically significant correlation between 

ChemR23 expression in the human CRC epithelium with the clinico-pathological data 

including age, cancer location, cancer size, cancer cell grade, pT, pN or histological 

presence of venous invasion (Appendix 20 for graphical data). Neither was a 

statistically significant correlation found between ChemR23 expression in human 

histologically normal colorectal epithelium with the clinico-pathological data including 

age, cancer location, cancer size, cancer cell grade, pT, pN or histological presence of 

vascular invasion, (Appendix 21 for graphical data). Interestingly when the crypts were 

examined there appeared to be an induction in ChemR23 immunostaining at the apex 

of the crypt (Figure 29).  

 

 

 

 

 

 

 

 

 

 

Figure 26. Cytoplasmic ChemR23 expression in human CRC epithelium 

Seventy-three different FFPE human CRC samples were probed for ChemR23 

expression using rabbit polyclonal anti-human ChemR23 antibody (Bioss 1 in 50 and 

probed with a secondary conjugated HRP antibody using anti-Rabbit envision kit). 

Illustrative image of the cytoplasmic (arrow) ChemR23 protein expression as measured 

by IHC (X40 magnification; scale bar 50 μm). 
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 ChemR23 expression in human colorectal cancer associated stroma and 3.4.2.4

histologically normal colorectal epithelium associated stroma 

Of the 73 human CRC samples investigated for ChemR23 expression, all were shown 

to express ChemR23 in the cancer-associated stroma. Figure 30 shows the stromal 

pattern of ChemR23 staining.  Twenty-eight samples containing histologically normal 

CR epithelium associated stroma were all found to express ChemR23. ChemR23 

staining was more pronounced in CRC associated stroma samples when compared 

with matched histologically normal CR associated stroma and (Figure 31). ChemR23 

expression pattern was similar to that seen for BLT1 with expression by immune type 

and spindle shaped cells.  

No statistically significant correlation found with human CRC epithelium associated 

stroma and the clinic-pathological data including age, cancer location, cancer size, 

cancer cell differentiation, pT, pN or histological presence of venous invasion, 

(Appendix 22 for graphical data). No statistically significant correlation was found with 

histologically normal CR epithelium associated stroma and the clinic-pathological data 

including age, cancer location, cancer size, cancer cell differentiation, pT, pN or 

histological presence of vascular invasion (Appendix 23 for graphical data).  

There was a very weak correlation identified between ChemR23 expression in the CRC 

epithelium associated stroma and CRC epithelium (Appendix 24; Spearman r 0.237, 

95% confidence interval 0.044-0.406, P = 0.014), with there being no correlation 

between histologically normal colorectal epithelium associated stroma and CR 

epithelium (Appendix 24; Spearman r -0.087, 95% confidence interval -0.455-0.30, P = 

0.660). 
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Figure 27. ChemR23 expression in human CRC cancer 

epithelium.  

Seventy-three different FFPE human CRC samples were 

probed for ChemR23 expression using rabbit polyclonal anti-

human ChemR23 antibody (Bioss 1 in 50 and probed with a 

secondary conjugated HRP antibody (anti-Rabbit envision kit). 

The sections where scored for intensity (0-3) and percentage 

cell population staining (0-3). (A) Example of an I score of 1. 

(B) Example of an I score 2. (C) Example of an I score 3. All 

samples had a cytoplasmic staining pattern for ChemR23 with 

a spread of I scores between 0-3. All samples had 100% cell 

population staining of the cancer epithelium. Arrows indicate 

cancer epithelium. (Scale bars 100 μm). 

7
4
 



 75  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. ChemR23 expression between matched histologically normal CR epithelium and CRC epithelium. 

Twenty-eight different FFPE human CRC samples with both histologically normal colorectal epithelium and CRC epithelium. The sections had been 

scored for intensity (0-3) and percentage cell population staining (0-3). (A) Graph illustrating the score for ChemR23 expression in matched 

histologically normal colorectal epithelium and CRC epithelium. Statistical analysis was performed using a Wilcoxon matched-pairs signed rank test 

(P = 0.003). (B) ChemR23 staining in histologically normal colorectal epithelium. (C) ChemR23 staining in colorectal epithelium (sample matched to 

that of B). Arrows indicate epithelium. (Scale bars 100 μm). 
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Figure 29. ChemR23 protein expression by histologically normal CR 

epithelium 

            Image taken from FFPE human CRC tissue specimen, used in the human CRC  

            tissue study undertaken by the candidate. ChemR23 expression appears to  

            be increased at the apical surface of the colonic crypt. (Scale bar 100 μm). 
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Seventy-three different formalin fixed paraffin embedded 

Human CRC samples were probed for ChemR23 expression 

using rabbit polyclonal anti-human ChemR23 antibody 

(BIOSS), and probed with a secondary conjugated HRP 

antibody (anti-Rabbit envision kit). The sections where scored 

for intensity (I) (0-3) and percentage cell population staining 

(0-3). (A) Example of an I score of 1. (B) Example of an I score 

2. (C) Example of an I score 3. All samples had stromal 

staining pattern for BLT1 with a spread of I scores between 1-

3. Arrows indicate cancer epithelium associated stroma. 

(Scale bars 100 μm). 

Figure 30 ChemR23 expression in human CRC epithelium 

associated stroma. 
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Figure 31. ChemR23 expression between matched histologically normal human CR epithelium associated stroma and CRC epithelium 

associated stroma. 

Twenty-eight different FFPE human CRC samples with both histologically normal CR epithelium associated stroma and CRC epithelium associated 

stroma. The sections had been scored for intensity (0-3) and percentage cell population staining (0-3). (A) Graph illustrating the score for ChemR23 

expression in matched histologically normal CR epithelium associated stroma and CRC epithelium associated stroma. Statistical analysis was 

performed using a Wilcoxon matched-pairs signed rank test (P = 0.032). (B) ChemR23 staining in histologically normal CR epithelium associated 

stroma. (C) ChemR23 staining in CRC epithelium associated stroma (sample matched to that of B). There was an increase in ChemR23 expression 

between histologically normal human colorectal epithelium associated stroma and human CRC epithelium associated stroma. Arrows indicate stroma. 

(Scale bars 100 μm). 
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 Correlation between BLT1 and ChemR23 expression in human colorectal 3.4.2.5

cancer tissue 

There was no correlation found between 73 matched human CRC samples for BLT1 

and ChemR23 expression in the CRC epithelium (Appendix 25; Spearman r 0.218, 

95% confidence interval -0.019-0.433, P = 0.064). There was no correlation found 

between BLT1 and ChemR23 expression in the histologically normal colorectal 

epithelium in 19 matched samples (Appendix 26; Spearman r -0.358, 95% confidence 

interval -0.706-0.129, P = 0.132).  

Furthermore no correlation was established between BLT1 and ChemR23 expression 

in the CRC epithelium from the matched 73 samples (Appendix 27; Spearman r -0.016, 

95% confidence interval -0.252-0.221, P = 0.891), or in the 19 matched samples with 

histologically normal CR epithelium associated stroma expression (Appendix 28; 

Spearman r -0.279, 95% confidence interval -0.623-0.266, P = 0.347).  

 

 Discussion 3.5

Before examining whether RvE1 has any effects on CRC cell apoptosis or proliferation 

and whether CRC cells and or macrophages could synthesise RvE1, it was necessary 

to establish whether the GPCRs BLT1 and ChemR23 where expressed by CRC cells in 

vitro. Furthermore by establishing the BLT1 and ChemR23 expression profile of a 

panel of different human CRC cell lines in vitro would allow appropriate use of cellular 

models examining for RvE1 mediated effects on human CRC cell apoptosis and 

proliferation.  

 The in vitro expression of BLT1 and ChemR23 by human colorectal 3.5.1

cancer cells 

The qPCR screen of the human CRC cells confirmed expression of BLT1 receptor 

mRNA in all cell lines including the positive THP1 control cell line, and the negative 

HEK293 control cell line. ChemR23 expression was also seen in all cell lines including 

the supposedly negative HEK293 cells. These results must be interpreted with caution 

as the results are not in keeping with the literature, which casts doubt on the specificity 

of these assays for the receptors targeted by the candidate in this work.  

Whilst HEK293 cells are reported to be negative for BLT1 gene expression (Chen et 

al., 2004), this is not in keeping with the positive mRNA findings of the candidate’s 

work. However the authors (Chen et al., 2004) did not clarify which technique they 

used to confirm the absence of BLT1 in HEK293 cells, and did not show their data. 
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Recently HEK293 were shown to be positive for BLT1 mRNA qPCR, but the authors 

did not comment on BLT1 protein expression status in the HEK293 cells (Galet et al., 

2013). Using a Cayman Chemical anti-BLT1 antibody BLT1 protein expression was 

identified in the positive control cell line THP1 cell lines but not in any of the human 

CRC cell lines screened. A reason for the discrepancy between the qPCR and WB 

findings for BLT1 expression in human CRC cells could be that BLT1 mRNA is not 

translated into protein. Each cell line may be expressing extremely low levels of BLT1 

mRNA. However as the THP-1 (positive) control cell line did not have a notably lower 

∆Ct value than the HEK293 (negative control) cell line it is likely that the BLT1 primers 

were not effectively amplifying their target sequences. The Ct values across all cell 

lines for the target gene raises the possibility that the assay was not detecting BLT1 

and thus the candidate is unable to comprehensively conclude on BLT mRNA 

expression, despite good expression in the β–actin housekeeping gene (Ct value less 

than 20).  

As for BLT1 the qPCR screen of the human CRC cells confirmed expression of 

ChemR23 mRNA in all the human CRC cell lines including the positive control Jurkat 

cells and the negative control HEK293 cell line. The Jurkat (positive control) cell line 

however did not have a lower ∆Ct value than the HEK293 (negative control) cell line, 

which like the BLT1 primer, casts doubt on the primer specificity. ChemR23 protein 

expression was confirmed by WB in the positive control Jurkat cell line with ChemR23 

detected in all the human CRC cell lines the under high sensitivity chemiluminescence. 

Furthermore the Caco2 human CRC cell line which had the highest level of 

endogenous ChemR23 protein expression did not have the highest expression of 

ChemR23 at the mRNA level. 

However the lack of correlation between mRNA and protein findings for BLT1 and 

ChemR23 could also be genuine. For instance no correlation was found between  gene  

and protein expression in the androgen treated prostate cell line LNCaP (Waghray et 

al., 2001), and in a study comparing gene and protein expression in human lung 

adenocarcinomas, only 21% of genes had a significant correlation with the respective 

protein ( Chen et al., 2002). Another explanation for differences in protein translation 

between cell lines could be also due to differences in the untranslated regions (UTR) 

between different cell lines. Indeed both 5’ and 3’ UTR regions of mRNA contain motifs 

that can influence the stability of mRNA and subsequently the efficiency of its 

translation into protein (Pesole et al., 2001). The ChemR23 TaqMan gene expression 

assay used was placed within the 3’ UTR. Therefore gene amplification may be 

affected by variation in this region between cell lines and therefore account for the 

differences in between the mRNA and protein findings for ChemR23 (Appendix 30 and 
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Appendix 31, for BLT1 and ChemR23 respectively). Recent published work showed 

ChemR23 expression by M1 macrophages using qPCR that targeted the 5’ region of 

the gene (Herová et al., 2010). Thus the primers used by the candidate may just not 

have worked. Indeed whilst there was ChemR23 protein induction in increasing 

confluent Caco2 cells this was not seen at the mRNA level (Appendix 32). Another 

reason for a lack of clear association between the mRNA and protein levels for both 

ChemR23 maybe down to the TaqMan assays being non-specific to the target gene. 

However a nucleotide sequence search of the probes used by TaqMan confirmed 

specificity for human BLT1 and ChemR23. Another reason could be secondary to an 

inherent difference between the cell lines used by the candidate and those of other 

group. Indeed short tandem repeat (STR) sequencing of the all the cell lines used in 

this work found allelic variation against that of published STRs (DNA sample collected 

by candidate for analysis but analysis performed by Leeds University cell line 

authentication service, data not shown). In summary the mRNA findings of both BLT1 

and ChemR23 have to be interpreted with some caution as firm conclusions could not 

be made by the candidate.  

Campbell et al., (2010) reported that Caco2 and T84 human CRC cells express BLT1 

protein and Ihara et al., (2007) showed that both Caco2 and HT29 human CRC cells 

express BLT1 protein, which is not in keeping with the current negative findings of this 

work. An inherent difference between the group’s cell lines may explain this. Indeed 

short tandem (STR) sequencing of the Caco2 and HT29 cells used showed that there 

was some allelic variation with published Caco2 and HT29 STR sequences. The 

authors also reported low expression of BLT1 protein in Caco2 and T84 cells using a 

Genetex anti-BLT1 antibody. Their published BLT1 WB included several other non-

specific resolved protein bands and no clear protein MW marker, so firm conclusions 

on BLT1 protein status would be difficult to make. In respect to Ihara et al., (2007) they 

used an anti-BLT1 antibody from Cayman Chemical (no more details provided), and 

did not publish a full WB image or define the MW of the BLT1 resolved protein 

detected. In respect to the 40 kDa size of the resolved protein band (Figure 10) and the 

predicted 38 kDa MW of BLT1, the difference could be explained by glycosylation of 

the BLT1 receptor. It is established that GPCRs are usually glycosylated, principally at 

their extracellular N-terminal domain. The candidate also confirmed a variation 

between different commercially available protein standards and the protein size may 

indeed be closer to 38 kDa. A similar size discrepancy was seen with the resolved 

ChemR23 protein band which may be contributed through glycosylation or discrepancy 

with the sizing of the standard protein bands.  
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In respect to ChemR23 there are several other resolved protein bands evident on the 

WB image, and this could be explained by the non-specificity of rabbit polyclonal 

identifying other related human proteins. Example human proteins that have amino 

acid residue coverage of 10 or greater with the immunogen used to raise the anti-

ChemR23 antibody (amino acid sequence:YMACMVI WVLAFFLSS PSLVFRDTAN 

LHGKISCFNN F SLSTPGSSSW) includes probable G-protein coupled receptor 152, 

C3a anaphylatoxin chemotactic receptor, substance P receptor and Prostaglandin D2 

receptor 2.  

The candidate found that the protein ladder also could influence the interpretation of a 

resolved bands size, with two different protein standards migrating through a WB gel 

differently (see Appendix 33). The candidate used the MagicMark TM protein standard 

for all WB studies. 

Campbell et al., (2010) published that both T84 and Caco2 human CRC cells express 

ChemR23 mRNA and protein by flow RT-PCR and flow cytometry, respectively. 

Campbell et al., (2010) also reported high cell population ChemR23 protein expression 

in Caco2 and T84 cells, with 83.7% cells staining positive for ChemR23 in the T84 cell 

population. This is different to the WB findings of this report where Caco2 protein 

expression was more than fivefold greater than for T84 cells. Reasons for this 

dissimilarity could be due to inherent variations between the cells, the type of anti-

ChemR23 antibody used, a discrepancy in the growth conditions of the cells when 

analysed (e.g. cell confluency) and difference in the ChemR23 analytical technique 

used.  

Interestingly the candidate’s work has shown that Caco2 human CRC cells have an 

induction in ChemR23 protein expression at increased cell confluency. To date there 

has been no published literature on ChemR23 induction in human CRC cell lines; 

however there is literature describing ChemR23 protein expression in other cell types 

such as leukocytes of the monocytic lineage such as monocytes, macrophages, 

myeloid dendritic cells (mDC) and plasmacytoid dendritic cells (pDC), with ChemR23 

downregulated in both mDC and pDC during differentiation (Vermi et al., 2005). In 

macrophages ChemR23 has shown to be downregulated by proinflammatory cytokines 

(IFN-γ, TNF-α), TLR ligands (LPS) and increased by TGF-β (Zabel et al., 2006). 

ChemR23 mRNA induction by TGF-β  was also shown by Campbell et al (2007) by oral 

epithelial cells (KB cells), however TGF-β did not change ChemR23 transcript levels in 

T84 and Caco2 human CRC cell lines (Campbell et al., 2010). However Campbell et al 

(2010) did not comment in their study on whether they measured ChemR23 mRNA 

transcript levels in the T84 and Caco2 cell lines tested, and whether or not they 

correlated with protein levels. Reasons for the ChemR23 induction in Caco2 cells may 
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be due to TGF-β levels or down to reduced nutrients or serum growth factors in the 

culture medium as the cells become more confluent. Heterogeneity between Caco2 

cells for ChemR23 expression seen on the IF study suggests that there may be a cell 

confluency dependent effect, as staining appeared more intense on those Caco2 cells 

clustered closely together. Future work could look to investigate TGF-β levels in the 

conditioned medium from Caco2 cells over increasing confluency and measure 

ChemR23 expression in different serum depleted conditions. Human CRC cell 

confluency has been shown to effect protein expression previously, an example being 

CD26. CD26 is a dipeptidyl peptidase IV surface glycoprotein, the expression of which  

has been shown to increase in a confluency dependent mannor in two different human 

CRC cell lines (HCT116 and HCT15) (Abe et al., 2011). This group showed that CD26 

induction was secondary to increased Cdx2 expression, related to a confluence-

mediated cell cycle arrest. Future work should look to investigate the mechanism(s) 

involved in the confluence-dependent increase in ChemR23 expression in the Caco2 

human CRC cell line, and the role that this receptor may have in CRC.  

 Expression of BLT1 and ChemR23 by human clinical colorectal cancer 3.5.2

tissue 

BLT1 protein expression was then examined in human CRC tissue. The anti-BLT1 

antibody was the same as that used from the WB study. BLT1 expression was 

identified in all 78 cases of human CRC, with the immunostaining being cytoplasmic in 

the CRC epithelium. BLT1 expression was also examined in the histologically normal 

epithelium, and shown to be present in 30 of the 31 cases examined. There was a 

significant induction in BLT1 expression between matched histologically normal 

colorectal epithelium and CRC epithelium, which may be related to increased 

inflammation present in the CRC microenvironment. The reason why the staining for 

BLT1 a GPCR receptor appeared to be cytoplasmic could be due to the FFPE 

processing of the specimen, or intracellular cycling of the receptor. The cytoplasmic 

staining pattern of BLT1 in CRC epithelium and its increased expression in CRC 

epithelium compared to normal epithelium is in keeping with the study by Ihara et al 

(2007), BLT1 was also showed to be cytoplasmic in human prostate cancer specimens 

(Galet, et al., 2013). There is, however, evidence in the literature that other G protein 

coupled receptors such as GPR43 give a cytoplasmic staining pattern in normal colon 

and adenocarcinoma tissue (Tang et al., 2010), as did GPR116 in normal breast and 

breast cancer tissue (Tang et al., 2013). There was increased expression of BLT1 in 

the cells in the non-dividing, differentiated surface compartment (Figure 16B). 

Differential gene expression patterns between cells located in the basal crypts 

compared to cells at the top of the colonic crypts has been commented upon previously 
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(Kosinski, et al., 2007), however differential BLT1 protein expression in colonic crypts 

has not been published to date.  

BTL1 expression was seen in the stroma of the CRC samples, with expression not only 

by immune cells, in keeping with the published literature (Tager et al., 2003), but also 

by spindle shaped cells (possibly myofibroblast cells). Fibroblasts (James et al., 2006), 

and endothelial cells have both been shown to express BLT1 protein (Qiu et al., 2006). 

Like with the cancer epithelium and histologically normal epithelium, there was a 

significant induction in BLT1 expression between histologically normal associated 

stroma and the cancer associated stroma. This increased expression in BLT1 between 

the normal and cancer for both the epithelium and stroma could present an increase in 

the inflammatory cellular environment associated with cancer.  

BLT1 expression was increased in tumours distal to the splenic flexure, with the 

staining increased in spindle shaped cells (possibly myofibroblast) in those distal 

tumours. CRC pathogenesis is thought to be different between proximal colon and 

distal colon cancers, as these two sites orginate embryologically from the midgut and 

hindgut (Langman, 1985). Differences in the genetic mechanisms between proximal 

and distal CRC initiation and progression is supported in the published literature 

(Delattre et al., 1989; Breivik et al., 1997; Konishi et al., 1999). Therefore it may be that 

the difference in BLT1 expression between proximal and distal CRC may be being 

influenced by distinct genetic factors based on CRC location, such as TP53 mutations, 

that have been predominantly found in distal CRCs (Konishi et al., 1999). 

The discrepancy between the negative in vitro findings for BLT1 expression in the 

human CRC cell lines and the positive cytoplasmic expression identified in the human 

CRC epithelium is interesting. The BLT1 expression in the stroma could be influencing 

the expression of BLT1 in the CRC epithelium through paracrine signaling, however 

this is speculative. Future in vitro cell modeling should take this into account and 

should incorporate a co-culture model including not only CRC epithelial cells but 

stromal cells such as myofibroblasts. 

Interestingly, ChemR23 as with BLT1 protein expression was seen in the base of the 

crypts of the normal CR epithelium which could be due to expression by the colonic 

stem-like crypt cells. Furthermore, there was increased expression of ChemR23 in the 

cells in the non-dividing, differentiated surface cell compartment of the colonic crypt (as 

was seen with the BLT1 receptor). BLT1 and ChemR23 expression in colonic stem 

cells could be investigated. As intestinal stem cells are constantly replenishing the 

epithelium and there appears to be an induction in both BLT1 and ChemR23 

expression in cells as they migrate up the colonic crypt then future studies should look 

to determine whether stem cells are expressing these receptors or whether more 
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differentiated crypt cells express these receptors. This could be studied in the first 

instance, through co-expression studies, using stem cell markers, such as the leucine-

rich-repeat-containing G-protein coupled receptor 5, (Barker et al., 2007).  

BLT1 and ChemR23 expression by tumour associated myofibroblasts should be 

confirmed, particularly in regards to BLT1. The differences in CRC epithelium 

associated BLT1 expression between distal and proximal CRC appeared to be as a 

consequence of increased myofibroblast expression. Whether there are phenotypic 

differences between those myofibroblasts that are located proximal to the splenic 

flexures which are predominantly low expressors of BLT1 and those that are located 

distal to the splenic flexure which are higher BLT1, would be valuable to know. 

Establishing in the first instance whether the BLT1 expression in the myofibroblasts 

correlates with protease fibroblast activation protein-α expression, which is a protein 

that has been shown to be expressed by CAFs, (Henriksson  et al., 2011), and 

implicated as a negative prognostic factor in metastatic CRC patients, would be 

warranted (Henry et al., 2007). 

 Summary 3.6

The candidate aimed to investigate whether ChemR23 and BLT1 are expressed in 

human CRC tissue. The candidate found that both human CRC epithelium and its 

associated stroma express both BLT1 and ChemR23. 

BLT protein expression was not identified in vitro in the screened panel of human CRC 

cell lines, with ChemR23 protein expression identified in several of the cell lines 

screened. Consideration to whether human CRC cells need other cells such as 

fibroblasts or immune cells to express these receptors could be addressed through co-

cultures. Future in vitro studies looking at a cell model to investigate RvE1 activity 

would need to address the fact that the human CRC cell lines screened by the 

candidate did not express detectable BLT1 protein. Therefore consideration to either 

screening further human CRC cell lines for BLT1 expression, or whether BLT1 

expression could be promoted through cell co-cultures. 

BLT1 and ChemR23 protein were shown to be are expressed in human CRC tissue. 

BLT1 and ChemR23 expression was not only seen in the cancer epithelium but also in 

the associated stroma with immunostaining in immune like cells, endothelial and 

spindle shaped cells (possibly myofibroblasts). This work has shown an association 

between human colorectal epithelium BLT1 and ChemR23 protein expression and 

increased expression in CRC epithelium, which is likely secondary to the increased 

inflammatory microenvironment seen in CRC. There was a weak correlation between 

ChemR23 protein expression in the CRC epithelium and stroma. Furthermore there 
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was increased BLT1 protein expression identified in the CRC associated stroma distal 

to the splenic flexure. Human CRC tissue express increased amounts of BLT1 and 

ChemR23 and therefore offers a plausible pathway for any RvE1 mediated anti-CRC 

effect(s).  

Future studies should look to examine for an association between ChemR23 and BLT1 

with disease free and mortality outcomes as well as in adenomatous CRC precursor 

lesions. 
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4 Development of an in vitro model for investigation of 

Resolvin E1 synthesis by colorectal cancer cells  

 Introduction 4.1

The biosynthesis of RvE1 from EPA in the presence of aspirin was initially identified by 

liquid chromatography tandem mass spectrometry (LC-MS/MS) in TNF-α induced 

inflammatory exudates from murine air pouches (Serhan et al., 2000). Subsequently 

Serhan and colleagues reported the presence of RvE1 in the colon of DSS-treated 

transgenic fat-1 mice in vivo by LC-ultraviolet (UV)-MS/MS (Hudert et al., 2006) and in 

human plasma samples by LC-MS/MS (Arita et al., 2005).  

As discussed in section 1.9.1, RvE1 is formed through the actions of aspirin acetylated 

COX-2, 5-LOX and LTA4H enzymes on EPA. It is proposed that EPA within endothelial 

or epithelial cells is acted upon by aspirin acetylated COX-2 which acts like a 

peroxidase and adds a hydroxyl group (-OH) to C18 of EPA forming 18-HEPE. 18-

HEPE is then converted to RvE1 by the actions of both 5-LOX and LTA4H. Acetylation 

by aspirin on a serine residue in the channel of the COX enzyme causes COX-2 to lose 

one of its two catalytic activities, with the 15-lipoxygenase like activity remaining 

(Holtzman et al., 1992), specifically in the R chiral form (Mancini et al., 1994). 

LC-ESI-MS/MS has the ability to simultaneously analyse multiple lipid mediators in a 

single biological sample (Masoodi et al., 2008). This analytical method thus offers a 

distinct advantage over techniques such as enzyme-linked immunosorbent assay 

(ELISA), and the reason why it was used in this project for lipid mediator analysis. 

No published study to date has investigated for the synthesis of RvE1 in cancer cells or 

tissues. There is well documented over-expression of COX-2 and overexpression of 5-

LOX (Soumaoro et al., 2006) in human CRC thus there is a theoretical pathway that 

would allow the synthesis of RvE1 synthesis in human CRC. 

 

 

 Hypothesis  4.2

RvE1 can be synthesised by CRC epithelium with or without macrophages 

present. 
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 Aims 4.3

1. To confirm that RvE1 can be detected by the candidate using LC/ESI-

MS/MS from human PMNs. 

2. To investigate the COX-2 and 5-LOX protein status of a panel of seven 

human CRC cell lines. 

3. To establish in vitro conditions that allow the successful acetylation of 

COX-2 by aspirin. 

4. To determine whether human or mouse CRC cell lines or a mouse 

macrophage cell line (+/- aspirin treatment) can synthesise RvE1. 

5. To determine whether a transcellular model (CRC cell line/ macrophage 

cell line) can synthesise RvE1. 

 

 Materials and Methods 4.4

 Experimental solutions 4.4.1

 Arachidonic Acid 4.4.1.1

AA (Cayman Chemical, Ann Arbor, MI, US; Cat. No 90010) was supplied as a solution 

in ethanol at 100 mg in 200 µL. This stock solution was further dissolved in ethanol to 

make a 1 mM stock solution and was stored at -80oC. AA was added to culture medium 

to give experimental media containing AA at a concentration of 1 µM at 0.1% (v/v) 

dilution. A working solution was freshly prepared to minimise degradation. Culture 

medium supplemented with 0.1% (v/v) ethanol served as negative control in each 

experiment. 

 Aspirin 4.4.1.2

Aspirin (Cayman Chemical, Ann Arbor, MI, US; Cat. No 70260) was dissolved in 

dimethyl sulfoxide (DMSO), (Sigma-Aldrich, Poole, UK; Cat. No. 472301) at 80 mg/mL. 

Aspirin was added to culture medium to give experimental media at a concentration of 

500µM at 0.1% (v/v) dilution. Cell culture medium supplemented with DMSO served as 

negative control in each experiment. 

 Calcium Ionophore (A23187) 4.4.1.3

Calcium ionophore A21387 (SIGMA-ALDRICH, Missouri, US; Cat. No C7522) was 

dissolved in ethanol at 1 mg mL. Calcium ionophore A21387 was added to culture 
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medium to give experimental media at a concentration of 1 µM at 0.1% (v/v). Culture 

medium supplemented with ethanol served as negative control in each experiment. 

 

 Eicosapentaenoic acid 4.4.1.4

EPA free fatty acid (FFA) capsules were kindly provided by SLA Pharma (Watford, 

UK). EPA-FFA was extracted from a plastic capsule using a sterile 21 gauge (G) 

needle and diluted 1:100 in 95% (v/v) ethanol immediately before use. EPA was added 

to culture medium to give experimental media at a concentration of 50 µM at 0.1% (v/v) 

dilution. A working solution was freshly prepared to minimise degradation. Culture 

medium supplemented with ethanol served as negative control in each experiment. 

 18-hydroxyeicosapentaenoic acid  4.4.1.5

18-hydroxy-eicosapentaenoic acid (18-HEPE) standard (Cayman Chemical, Ann Arbor, 

MI, us; Cat.No 32840) was supplied as a solution in ethanol at 50 µg in 500 µL (314 

μM). 18-HEPE was added to culture medium to give experimental media at 

concentration of 1µM at 0.1% (v/v) dilution. A working solution was freshly prepared to 

minimise degradation. Culture medium supplemented with ethanol served as negative 

control in each experiment.  

 Ionomycin 4.4.1.6

Ionomycin calcium salt from Streptomyces conglobatus was supplied by (SIGMA-

ALDRICH, Missouri, US; Cat. No I0634). Ionomycin was reconstituted in ethanol to 

make a stock one molar solution. Experimental solutions were made up to give a 

concentration of 1µM at <0.1% (v/v). 

 Lipopolysaccharide 4.4.1.7

LPS from Escherichia coli 0128:B12 was supplied as a lyophilized powder (SIGMA-

ALDRICH, Missouri, US; Cat. No L2887). LPS was reconstituted in sterile phosphate 

buffered saline (PBS) to make a stock 1 mM solution. LPS stock solution was added to 

culture medium at a 1 µg/mL concentration. 

 Resolvin E1 4.4.1.8

RvE1 standard (Cayman Chemical, Ann Arbor, MI, US; Cat.No 10007848) was 

supplied as a stock solution in ethanol at 25 µg in 500 µL (143 μM) and stored in 20 µL 

aliquots at -80oC until use. During the course of the candidate’s studies RvE1 was not 

readily available and permission was obtained from Cayman Chemical for supply. 
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 Cell culture 4.4.2

 Media and growth requirements 4.4.2.1

Cells were cultured as detailed in section 3.2.1.1.  

 Passaging of the cell lines 4.4.2.2

Seventy to eighty percent confluent cells were passaged and pelleted as outlined in 

section 3.2.1.2. Raji cells (B-lymphocytes), a suspension growing cell line were grown 

to a cell density of 3x106 cells/ mL before they were centrifuged to a cell pellet (400 x g 

for five minutes). Cells used to produce the conditioned medium for the lipidomic 

analysis, were passaged and pelleted immediately after the medium was collected so 

that viable cell counts could be performed. RAW264.7 cells were not trypsinised and 

were scraped off the culture flasks, before being pelleted by centrifugation (400 x g for 

five minutes). CRC, Raji and RAW264.7 cells used in the experiments were used for up 

to a maximum of ten passages. 

 Viable cell counting 4.4.2.3

Cells were harvested from tissue culture flasks as described and viable cell counts 

taken as in section 3.2.1.3. Lipid mediators could therefore be quantified as picograms 

(pg) per million cells. 

 Western blotting 4.4.3

 Sample preparation and protein extraction 4.4.3.1

See section 3.2.3.1. HCA7 were used as a positive control cell line for COX-2 

expression (Tavolari et al., 2008). Raji cells were used as a positive control cell line for 

both 5-LOX and 5-LOX activating protein (FLAP) protein expression (Boudreau et al., 

2011). 

 Quantification of protein in cell extract 4.4.3.2

See section 3.2.3.2. 

 Sodium dodecyl sulphate polyacrylamide gel electrophoresis of proteins 4.4.3.3

See section 3.2.3.3. 

 Transblotting of sodium dodecyl sulphate polyacrylamide gel 4.4.3.4

electrophoresis separated proteins 

See section 3.2.3.4. 
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 Immunoblotting of proteins 4.4.3.5

See section 3.2.3.5. Anti-COX-2 was used at a dilution of 1 in 250, anti-5-LOX at a 

dilution of 1 in 250, and anti-FLAP was used at a dilution of 1 in 1000. See Table 3 for 

antibody details. 

 Visualisation of antibody reactive proteins 4.4.3.6

See section 3.2.3.6. 

 High performance liquid chromatography electrospray ionisation tandem 4.4.4

mass spectrometry analysis of lipid mediators 

 Preparation of cells for eicosanoid analysis 4.4.4.1

Human CRC cells were grown to 70-80% confluency in T75 cm2 flasks in culture 

medium containing FBS (see section 3.2.1).  

The experimental solutions prior to cell supernatant collection for LC/ESI-MS/MS 

analysis were made up in FBS-free medium, as lipids present in the FBS would prevent 

accurate analysis of the lipid mediators synthesised by human CRC cells when 

analysed by LC/ESI-MS/MS.  

Cells were either treated with culture medium with control carrier or with 1 µM of AA for 

24 hours, before cell conditioned medium collection. Each cell line had two biological 

replicates (i.e. two control and two AA supplemented samples; different passage 

numbered cells with experiments performed on different days). The cell conditioned 

media was then collected in 15 mL collection tubes placed on ice prior to immediate 

transfer to -80oC storage.  

Cell viability counts were performed on the adherent cells so individual eicosanoid 

levels could be quantified against cell number. 

Twenty three different COX derived eicosanoids and one 5-LOX derived eicosanoid 5-

HETE was analysed by LC/ESI-MS/MS. The COX derived eicosanoids were (Figure 3): 

1. AA COX derived series-2 prostanoids. 

2. Dihomo-gamma-linolenic acid (DGLA) COX derived series-1 prostanoids. 

3. EPA COX derived series-3 prostanoids and TBX3. 

 COX-2 acetylation by aspirin in human colorectal cancer cells 4.4.4.2

HCA7 human CRC cells were grown in cell culture specific medium T75 cm2 flasks to 

70-80% confluency. HCA7 cells were treated with 500 µM aspirin (or control carrier) for 

30 minutes, before the medium was removed and replaced with a 1 μM AA solution (or 
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control carrier) for three hours. The assay (cell conditioned) medium was collected, 

stored and prepared as discussed above prior to 15R/S-HETE chiral LC/ESI-MS/MS 

analysis. Each condition was performed in duplicate (different passage numbered cells 

with experiments performed on different days). PGE2 was included in the analysis to 

confirm successful COX acetylation. 

Carrier control (ethanol) treated HCA7 cells were included as a control. Cell viability 

counts were performed on the adherent cells so individual lipid mediator amounts could 

be quantified against cell number.   

 

 HCA7 human CRC, MC38 mouse colorectal cancer and RAW264.7 mouse 4.4.4.3

macrophage cell preparation for the synthesis of Resolvin E1  

HCA7 human CRC cells and MC38 mouse CRC cells were grown in cell culture 

specific medium to 70-80% confluency, and the mouse macrophage cell line 

RAW264.7 was grown to 50% confluency. MC38 cell conditioned medium was 

collected and used both for LC/ESI-MS/MS and indirect co-culture with RAW264.7 cells 

in section 4.4.4.4. This allowed direct comparison between the samples pre and post 

placement on the RAW264.7 cells. 

The HCA7, MC38 CRC cells were treated for 30 minutes with 500 µM aspirin (or 

equivalent DMSO control carrier) before the cell conditioned medium was removed, 

and 50µM of EPA was then added to the cells (or ethanol) for a further three hours. 

RAW264.7 cells were also included to investigate whether these cells could synthesise 

RvE1. The 50% confluent RAW264.7 macrophage cells were treated with 1µg/mL 

lipopolysaccharide (LPS) for 12 hours in order to induce COX activity before aspirin 

treatment (the dose and duration of LPS stimulation had been established prior to 

performing the experiment: 1 µg/ mL LPS treatment, 0 to 48 hour time period; samples 

analysed by Dr.Paul Loadman, University of Bradford). 

Further control conditions included AA in culture medium (1 µM, 3 hours), EPA in 

culture medium (50µM, three hours) and aspirin in culture medium (500 µM, 30 

minutes), AA treated cells (1 µM, 3 hours), EPA treated cells (50 µM, 3 hours) and 18-

HEPE treated cells (1 µM, 3 hours). No cell controls were also included. 

The cell conditioned medium/ or culture medium was then collected and stored at -

80oC prior to LC/ESI-MS/MS analysis for RvE1, 18-HEPE, PGE2, PGE3, 15-HETE, 

LTB4, LTB5, 5-HETE lipid mediators. Each condition was performed in triplicate 

(different passage numbered cells with experiments performed on different days) apart 

from the AA alone oxidation control where only one sample was analysed. Note that 
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the aspirin and EPA treated MC38 cells (and aspirin and AA treated cells) were used at 

20 mL reaction volumes in T150 cm2  flasks, whereas all remaining samples were 

carried out in 10mL reaction volumes in T75 cm2 flasks. This meant that 10 mL of cell 

conditioned medium from the aspirin and AA treated MC38 cells and 10 mL of the cell 

conditioned medium from the aspirin and EPA treated MC38 cells could be used for the 

transcellular synthesis cell model (see section 4..5.8) whilst the remaining 10 mL could 

be analysed separately (see section 4.5.7). All experimental solutions dosed on the 

cells were free of FBS. Cell viability counts were performed on the adherent cells so 

individual lipid mediator amounts could be quantified against cell number. Experimental 

protocol summarised in Figure 30 (more detailed see Appendix 34). 

 Preparation of the transcellular synthesis cell model for the synthesis of 4.4.4.4

RvE1 

MC38 mouse CRC cells were grown in cell culture specific medium in T150cm2 flasks 

to 70-80% confluency, and the mouse macrophage cell line RAW264.7 was grown to 

70% confluency in T75 cm2 flasks. The MC38 cells were treated for 30 minutes with 

500 µM aspirin before the cell conditioned medium was removed, and 50 µM of EPA 

was then supplemented to the cells (or ethanol) for a further three hours. The cell 

conditioned medium from the MC38 mouse CRC cells treated with aspirin/EPA and 

aspirin/AA was then placed on 70% confluent mouse RAW24.7 macrophage cells for 3 

hours at 37oC. The last 10 minutes of the experimental incubation involved each of the 

RAW264.7 samples being treated with ionomycin (1 µM) in order to increase 

intracellular calcium and activate 5-LOX. The cell conditioned medium/ or culture 

medium was then collected, stored at -80oC prior to LC/ESI-MS/MS analysis for RvE1, 

18-HEPE, PGE2/3, 15-HETE, LTB4/5, 5-HETE lipid mediators. Each condition was 

performed in triplicate (different passage numbered cells with experiments performed 

on different days). Cell viability counts were performed on the adherent cells so 

individual lipid mediator amounts could be quantified against cell number.  All 

experimental solutions dosed on the cells were free of FBS. The experimental protocol 

is summarised in Figure 30 (more detailed see Appendix 34). 
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Figure 32. Experimental design for CRC and macrophages RvE1 biosynthesis experimentation.

9
4
 



95 

 

 Solid-phase extraction of lipid mediators 4.4.4.5

Prior to lipid extraction samples were thawed on ice and adjusted to 15% (v/v) 

methanol solution by adding 100% methanol (HPLC-grade, Fisher Scientific, Cat. No. 

M/4056/17). The internal standards (IS) PGB2-d4 (Cayman Chemical Co Ann Arbor, 

MI, USA, Cat. No. 311210), and 12-HETE-d8 were added to each sample. The 

samples were acidified with 0.1 M hydrochloric acid (HCl; ACS reagent; Cat.No 

320331) to pH 3.0 and applied to individual activated solid-phase extraction cartridges 

(SPE) cartridges C18-E (500 mg, 6 mL; Cat. No 8B-S001-HCH) as below. 

The SPE cartridges were preconditioned with 20 mL of methanol followed by 20mL of 

de-ionised water. The extraction procedure was performed using a vacuum manifold 

(Phenomenex). After the samples were applied, the cartridges were washed with 20 

mL 15% Methanol, 20 mL de-ionised water (ELGA system, 18.2 MΩ-cm purity, Model 

Ultra Ionic, Part No.PRIPLB0450, High Wycombe, UK) and 10mL Hexane (HPLC-

grade, Fisher Scientific, Cat. No. H/0406/17), in succession. The lipid mediators were 

then eluted in 15 mL methyl formate (HPLC-grade, Fisher Scientific, Cat. No.12682-

0025). The fraction was collected in a clean test tube and the solvent was evaporated 

under a stream of nitrogen. The residue was dissolved in 100 µL ethanol and stored at 

-20oC prior to analysis. 

 LC/ESI-MS/MS analysis 4.4.4.6

The analyses were performed on a Waters Alliance 2695 high performance liquid 

chromatography (HPLC) pump coupled to an ESI triple quadrupole Quattro Ultima 

mass spectrometer (MS) (Waters, Elstree, Hertsfordshire, UK), (LC/ESI-MS/MS). 

Instrument control and data acquisition were performed using the MassLynx™ version 

4.0 software. The LC/ESI-MS/MS and chiral LC/ESI-MS/MS analyses were performed 

by the Nicolaou group. The candidate performed all the lipid mediator data analysis 

using chromatograms for lipid mediator specific MRMs supplied by the Nicolaou group 

from sections 4.4.4.1 and 4.4.4.2. The candidate acquired all chromatograms from lipid 

mediator appropriate MRMs for 4.4.4.3 and 4.4.4.4 under the supervision of the 

Nicolaou group. 

In brief, stock solutions for all lipid mediators analysed were mixed and diluted to 

provide appropriate stock solutions between 2 and 100 pg/ µL final concentrations. For 

section 4.4.4.1 stock solutions of 2, 10, 20, 50 and 100 pg/ µL were used. For section 

4.4.4.2; 10, 20, 50 and 100 pg/ µL stock solutions were used. For sections 4.4.4.3 and 

4.4.4.4; 4, 10, 20, 50 and pg/ µL stock solutions were used. The internal standards 

PGB2-d4 and 12-HETE-d8 were prepared in ethanol (2 ng/ µL) and added to all 

composite standards at a final concentration of 800 pg/ µL. Each individual lipid 
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mediator chromatogram had an x-axis (retention time, minutes) and a y-axis (% signal 

intensity), (Figure 31A) for the appropriate MRM mass to charge ratio (m/z), and a 

calculated peak area for the lipid mediator of interest (area calculated by MassLynx™ 

V4.0 software).The limit of detection (LoD) was calculated by using a signal-to-noise 

ratio (S/N) of 3 (ICH harmonised tripartite guidelines (2005)). The limit of quantitation 

(LoQ) was determined if the quantity of sample lipid mediator fell within the range of the 

standard calibration curve. Peak integrations and calculations of S/N ratios were 

performed using the MassLynx™ V4.0 software (Waters). The candidate constructed 

all lipid mediator standard calibration lines from chromatograms provided by the 

Bradford group for 4.4.4.1 and 4.4.4.2 (example shown in Figure 31B). Data acquisition 

and analysis were carried out by the candidate with supervision from Professor 

Nicolaou for 4.4.4.3 and 4.4.4.3. The peak-area ratios of the appropriate analyte, either 

to PGB2-d4 or 12-HETE-d8 (IS), were calculated or plotted against the concentration of 

the calibration standards. This serves to normalise analyte values to a known standard. 

Calibration line equations were calculated by the least-squares linear regression 

method. In order to calculate the concentration of a particular analyte the peak-area 

ratio of the analyte area against corresponding IS area was calculated and this area 

was quantified using the appropriate calibration line for said analyte (Figure 31C). 

Figure 31 summarises this method of lipid mediator analysis by the candidate, using 

PGE2 synthesis by HCA7 cells as an example.  

All cell conditioned media samples for lipidomic analysis were immediately stored at -

80oC after collection. All samples were transported on dry ice to Bradford University.  

All samples immediately underwent solid-phase lipid extraction once they had 

defrosted. After solid-phase extraction the lipid samples were then immediately placed 

at -20oC storage ahead of sample analysis by LC/ESI-MS/MS. 
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Figure 33. LC/ESI-MS/MS data analysis example. 

The data analysis of the MRM allows the identification of the analyte of interest against a known m/z ratio(s). Construction of calibration lines from 

known amounts of lipid mediator allowed quantification of the lipid against that of the internal standard which was added in a known amount to the 

biological sample prior to analysis. (A) PGE2 chromatogram example for the PG standard and from a HCA7 human CRC cell line sample at a MRM of 

351> 271 (m/z). (B) Construction of PGE2 calibration line from the 0-100 pg/ μL standard data analysis; x-axis shows PGE2 pg/ µL and y-axis shows 

mass ratio; PGE2 area/ PGB2-d4 area. (C) Tabulated analyte (PGE2) calculation example showing how the analyte is semi-quantified against the 

internal standard initially as an area ratio, before quantification using the least-squares linear regression method obtained for the specific lipid 

mediator standard calibration curve.  
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 Cell viability assay 4.4.5

HCA7 human CRC cells, MC38 mouse CRC cells and RAW264.7 mouse macrophage 

cells were seeded into a 96 well plate at a cell concentration of 2000 cells per well for 

HCA7 and MC38 CRC cells  and 3000 cells per well for the RAW264.7 macrophage 

cells. After 24 hours of incubation at 37oC, (each condition had eight wells) of a range 

of doses;  0 to 200 µM for EPA (3 hours 37oC) and 0 to 1600 µM (30 minutes, 37oC) for 

aspirin (culture medium was free of FBS). Controls included cells cultured in medium 

containing carrier control (eight replicates per plate) and culture medium alone (8 

replicates per plate). The experimental solutions were made up in 50 mL sterile 

solution basins (Scientific Laboratory Supplies, UK; Cat.No.746180-2) to facilitate 

dosing of the cells by a multi-channel pipet. Seventy two hours after either EPA or 

aspirin treatment, 20 µL of 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT), (Sigma-Aldrich, Poole, UK; Cat.No M2128-1G) at a prepared concentration of 5 

mg/ mL (in sterile DPBS) was added to each well and left in the dark at a temperature 

of 37oC for three hours. The culture medium solution was then aspirated, and DMSO 

added to the formazan precipitate left in the wells. The plate was then read at 570 nm 

using a microplate reader (Opsys MR™ Dynex technologies Ltd, UK) to give an optical 

density (OD) value for each well. The mean OD of a minimum of six wells was taken 

and a percentage cell viability value calculated by dividing the mean OD value for each 

individual experimental condition by the mean OD control value for each plate. Results 

were obtained from three independent experiments. 
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 Human polymorphonuclear leukocyte isolation from whole blood samples 4.4.6

and treatment with 18-HEPE for Resolvin E1 synthesis 

The experimental protocol was developed by the candidate using information detailed 

in the previous publications in which RvE1 was synthesised by PMNs (Tjonahen et al., 

2006; Oh et al., 2011). 

Human plasma samples were collected from healthy volunteers who had not taken 

medication for at least two weeks prior to the samples being taken. Approval for the 

blood sampling was provided by the Leeds Multidisciplinary Research Tissue Bank, 

University of Leeds. 

A total of 150 mL of blood was taken from two different volunteers in 6 mL VACUTTE® 

coagulation sodium citrate 3.2% tubes. Then 12 mL of HISTOPAQUE®-1119 was 

added to a 50mL plastic falcon tube. 12 mL of HISTOPAQUE®-1077 was then carefully 

layered onto the HISTOPAQUE®-1119. A volume of 24 mL of whole blood was then 

placed on top of the HISTOPAQUE® gradient. The 50 mL falcon tube(s) were then 

centrifuged at 700 x g for 30 minutes at room temperature (18-26oC). After 

centrifugation two distinct layers were seen, with the lower layer just above the red 

coloured erythrocytes containing the PMNs. The PMN layer was then carefully 

aspirated using a sterile 3mL Pasteur pipette. The PMNs were then washed by the 

addition of 10 mL isotonic PBS without calcium chloride (CaCl2) and magnesium 

chloride (MgCl2) (SIGMA-ALDRICH, US; Cat. No D8537). The cells were then 

centrifuged at 200 x g for 10 minutes. The supernatant was then removed and 

discarded. The PMNs were then re-suspended in 10 mL isotonic DPBS (without CaCl2 

and MgCl2) and then centrifuged at 200 x g for 10 minutes. The cells were then washed 

re-suspended and centrifuged once more. The cells were then placed in sterile DPBS 

and a viability count was performed using trypan blue exclusion (see section 3.2.1.3).  

Two samples were then prepared of 50 x 106/ mL PMNs in sterile isotonic DPBS with 

CaCl2 and MgCl2 (Sigma-Aldrich, US; Cat. No D8662). One sample was treated with 

carrier control (ethanol, three minutes, 37oC) then with further carrier control (ethanol, 

45 minutes, 37oC, v/v less than 0.1%) and the second sample was treated with 5 μM 

calcium ionophore A21387 (three minutes, 37oC) and then 50 μM of 18-HEPE (v/v 

0.1%) for 45 minutes at 37oC. The incubations were stopped by adding two volumes of 

cold methanol. The samples were then immediately stored at -80oC until extraction and 

LC-ESI-MS/MS analysis (Nicolaou group). 

 

  



100 

 

 Results 4.5

 Resolvin E1 synthesis by human polymorphonuclear leukocytes 4.5.1

Human PMNs not treated with 18-HEPE did not synthesise detectable RvE1 (Figure 

34A). Calcium ionophore stimulated human derived PMNs treated with 18-HEPE 

synthesised detectable RvE1 (Figure 34B). The MRM and retention time was directly 

comparable to that of the Cayman Chemical RvE1 (Figure 34C).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34. RvE1 biosynthesis by human polymorphonuclear leukocytes. 

Samples were analysed using LC/ESI-MS/MS.  (A) RvE1 chromatogram from the 

carrier control (ethanol) treated PMN sample. (B) RvE1 chromatogram from 18-HEPE 

treated, ionophore stimulated PMN sample. (C) RvE1 chromatogram from the RvE1 

control Cayman Chemical RvE1. The dotted line represents the expected retention 

time for RvE1 (MRM 349>195). 
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 COX-2 protein expression in human colorectal cancer cell lines 4.5.2

COX-2 protein expression in human CRC cells was analysed by WB. A band in 

keeping with its predicted MW of 72 kDa was detected by standard chemiluminescence 

in the HCA7 cell line, alone (Figure 35A). Under high sensitivity conditions several 

protein bands of varying MWs were seen in the remaining cells lines making 

conclusions on COX-2 status in the cell lines difficult, with possible low level expression 

in the HRT18, HT29 and Caco2 cell lines (Figure 35B). Protein loading was confirmed 

by probing the PVDF membrane with mouse monoclonal α-tubulin antibody (Figure 

35C). 

 COX derived lipid mediators synthesis by human colorectal cancer cell 4.5.3

lines 

The lipid mediators synthesised by each human CRC cell line was analysed by LC/ESI-

MS/MS in both AA supplemented and un-supplemented conditions. All of the human 

CRC cell lines synthesised quantifiable levels of COX derived lipid mediators from AA, 

DGLA and EPA, as shown in the heat map (Figure 36). There was no clear difference 

in the amounts of lipid mediators synthesised between the un-supplemented and AA 

supplemented cell lines (AA 1 µM, 3 hours), on comparison of the heat maps of Figures 

36 and 37, respectively, with individual AA/ DGLA/ EPA COX-derived lipid mediators 

shown in Figure 38. The HCA7 human CRC cells synthesised the largest amounts of 

AA derived COX derived lipid mediator PGE2. Individual human CRC cell line lipid 

mediator synthesis data is tabulated in Appendix 35 and 36 (HCA7), Appendix 37 

(LoVo), Appendix 38 (T84), Appendix 39 (HRT18), Appendix 40 (HT29), Appendix 41 

(Caco2), and Appendix 42 (HCT116).  

As the HCA7 cell line showed the highest level of COX enzymatic activity, with 

confirmed expression of COX-2 protein expression. This cell line was chosen to 

establish the in vitro conditions that would permit synthesis of the AA derived 

acetylated COX-2 product 15R-HETE. 
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Figure 35. COX-2 protein expression by human CRC cell lines. 

Human CRC cell lysate was loaded in each lane and probed with a goat anti-human 

COX-2 polyclonal antibody (1 in 250) and probed with a secondary conjugated HRP 

antibody (1 in 2000). (A) Image acquired using standard chemiluminescence. (B) 

Image acquired using high sensitivity chemiluminescence. (C) Protein loading was 

confirmed by probing for α-tubulin (50 kDa) with a mouse monoclonal anti-human α–

tubulin antibody (1 in 5000), using standard chemiluminescence.  
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Figure 36. COX derived lipid mediator synthesis by human CRC cell lines. 

Heat map illustrating the COX derived lipid mediators detected by LC/ESI-MS/MS 

analysis of the cell conditioned medium from control (no AA) human CRC cells. 

Coloured values represent picograms (pg)/ µL. Data acquired from two independently 

cultured experiments, using individual chromatograms, supplied by the Nicolaou group 

(appropriate standard calibration lines constructed and individual lipid mediator data 

analysed by the candidate). PGE2 levels exceeded the 100 pg/ µL upper limit of 

quantification for the HCA7 human CRC cell line. 
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Figure 37. COX derived lipid mediator synthesis by AA treated human CRC cells 

lines. 

Heat map illustrating the COX derived lipid mediators detected by LC/ESI-MS/MS 

analysis of the supernatant taken from AA supplemented (1 µM, 24 hours) human CRC 

cells. Coloured values pg/ µL. Data acquired from two independently cultured 

experiments, using individual chromatograms, supplied by the Nicolaou group 

(appropriate standard calibration lines constructed and individual lipid mediator data 

analysed by the candidate). PGE2, PGF2α and TXB2 levels exceeded the 100 pg/ µL 

upper limit of quantification in the HCA7 human CRC cell line.  
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Figure 38. COX derived AA lipid mediators from the HCA7 human CRC cell line. 

HCA7 cell conditioned medium was analysed for 12 different COX derived AA derived lipid mediators by LC/ESI-MS/MS, in the presence and 

absence of supplementary AA treatment. PGE2, PGF2α and TXB2 levels exceeded the upper limit of the calibration curve for both control and AA 

samples and are shown as a ratio against the internal standard, (coloured blue). The remaining quantifiable lipid mediators are shown as pg per 

million (x106 cells), (coloured red). The lighter coloured bars are the control samples and the darker coloured bars are the AA treated cell samples. 

Data shown as mean (two independent cell cultured experiments). 
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 Western blot analysis of 5-LOX protein expression in a panel of seven 4.5.4

human colorectal cancer cell lines 

Expression of 5-LOX protein was investigated by WB using Raji cell lysate as a positive 

control (Boudreau et al., 2011). Caco2 and HCA7 cells have also been shown to be 

positive for 5-lipoxygenase protein expression by WB using a BD Transduction 

Laboratories anti-5-LOX antibody (Tavolari et al., 2008). WB revealed numerous 

protein bands so the presence of a 5-LOX protein could not be confirmed. Protein 

loading was confirmed by probing the PVDF membrane with mouse monoclonal β-actin 

antibody (Figure 39). As several protein bands of differing MWs were seen on the WB 

firm conclusions as to whether 5-LOX was indeed being detected under these 

experimental conditions could not be concluded upon. 

 

 Lipidomic analysis for 5-LOX derived 5-HETE synthesis in a panel of 4.5.5

seven different human colorectal cancer cell lines 

Production of the 5-LOX derived lipid mediator 5-HETE synthesised from AA was 

analysed by LC-ESI-MS/MS, in both AA supplemented and un-supplemented 

conditions. Only one of the human CRC cell line supernatant samples contained 

detectable levels of 5-HETE but not at levels that allowed quantification by LC-ESI-

MS/MS (Figure 40). The 5-HETE peak in both the AA treated LoVo samples was above 

the baseline of the chromatogram, however this peak was not of sufficient magnitude 

for accurate quantification on analysis with the values obtained being <1 pg/ µL, which 

is below the lowest concentration of 5-HETE used to construct the calibration line (2 

pg/ µL). 

To investigate whether the lack of quantifiable 5-HETE was due to an absence of five 

lipoxygenase activating protein (FLAP), the panel of seven human CRC cell lines were 

screened for FLAP expression by WB. The Raji cells have been shown to be positive 

for FLAP expression (Bonizzi et al., 1999), and were used as a positive control. 

Western blotting revealed the presence of a protein band in all human CRC cell lysates 

and Raji cells, in keeping with the predicted MW of FLAP which is 18 kDa (Figure 41). 

In summary COX activity with COX-2 expression was seen in the HCA7 cell line, 

however 5-LOX expression/ enzymatic activity could not be established in any of the 

human CRC cell lines screened (Table 8). 
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Figure 39. 5-lipoxygenase protein expression in human cell lines. 

Human cell line lysate was probed with a rabbit anti-human 5-LOX polyclonal antibody 

(1 in 250) and probed with a secondary HRP (1 in 2000). (A) Image acquired after 45 

seconds of high sensitivity chemiluminescence. (B) Protein loading was confirmed by 

probing for β-actin with a mouse monoclonal anti-human β–actin antibody (1 in 5000) 

using standard chemiluminescence. The presence of protein bands both above and 

below the predicted molecular weight (MW) of 5-LOX which is 78 kDa makes 

determination of the 5-LOX protein status of these cell lines under these conditions not 

possible. 
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Figure 40. LC/ESI-MS/MS analysis for 5-HETE in the cell conditioned medium 

from LoVo human CRC cells. 

Chromatograms obtained from LC/ESI-MS/MS analysis of the cell conditioned medium 

taken from AA treated LoVo cells (1 µM, 24 hours) (A). 5-HETE internal standard 

chromatogram. (B). 5-HETE chromatogram The 5-HETE detected in the AA treated 

LoVo cells is just above the baseline of the chromatogram, and was not of sufficient 

magnitude for accurate quantification. No 5-HETE was detected in any of the other six 

human CRC cell line samples. The above original chromatograms provided by the 

Nicolaou group were very faint so the candidate has strengthened these peaks so that 

they can be visualised more clearly for the illustrative purposes of this thesis. 
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Figure 41. 5-lipoxygenase activating protein expression in human CRC cell lines. 

Thirty micrograms of human cell lysates were probed with affinity purified rabbit 

monoclonal anti-human 5-lipoxygenase activating protein (FLAP) antibody (1 in 1000) 

and probed with a secondary HRP (1 in 2000). (A) Image acquired after 30 seconds of 

standard chemiluminescence, shows a single resolved protein band in each cell line at 

a molecular weight in keeping with that expected for FLAP (18 kDa). (B) Protein 

loading was confirmed by probing for α-tubulin with a mouse monoclonal anti-human 

α–tubulin antibody (1 in 5000), image acquired after 15 seconds of standard 

chemiluminescence. FLAP was found in all human CRC cell lines screened, including 

the positive control Raji cell line, under standard chemiluminescence (see arrow). 
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Table 8. Summary of both the expression and functional status of COX (-2) and 5-

LOX in a panel of seven human CRC cell lines. 

 

 Synthesis of the acetylated COX-2 derived lipid mediator 15R-HETE in 4.5.6

aspirin treated HCA7 human colorectal cancer cells 

Due to the high COX-2 expression and proven COX activity the HCA7 human CRC cell 

line was chosen as the cell model for determining the in vitro conditions required for 

successful COX acetylation. The dose of aspirin used and length of duration of 

treatment on the cells were taken from published evidence (Serhan et al., 2002) 

alongside cell viability data that determined that these aspirin conditions were not 

cytotoxic to HCA7 human CRC cells (Figure 42). 15-R-HETE synthesis was detected in 

aspirin treated conditions with levels further increased when HCA7 cells were treated 

with AA (Figure 43). Successful acetylation of COX-2 was also confirmed by the 

absence of 15S-HETE and the reduction of PGE2 levels in the aspirin treated HCA7 

cell conditioned medium (Figure 43). Interestingly, 15S-HETE production was found in 

the cell conditioned medium of HCA7 cells when exogenous AA was present (without 

aspirin). This is in keeping with the understanding whereby COX can produce 15S-

HETE from AA (Hamberg & Samuleson, 1967). The chiral LS/ESI-MS/MS analysis 

confirmed that 15R-HETE was only synthesised by HCA7 cells when treated with 
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aspirin. Figure 44 illustrates representative chromatograms obtained from the chiral 

15R- and 15S- HETE analysis.  

In conclusion treating HCA7 human CRC cells with 500 μM of aspirin for 30 minutes 

acetylated COX-2 sufficiently to allow synthesis of 15R-HETE, an acetylated COX-2 AA 

derived lipid mediator.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42. Determination of the aspirin cytotoxicity in the HCA7 human CRC 

cancer cell line. 

HCA7 human CRC were exposed to a range of aspirin doses (0-16 mM) in cell medium 

free of fetal bovine serum (FBS) for 30 minutes (reflecting the FBS free conditions the 

cells will be in prior to LC/ESI-MS/MS analysis). Data collected from three independent 

cell experiments, shown as mean with standard error of the mean.  
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Figure 43. 15R/S-HETE, and PGE2 synthesis by HCA7 human CRC cells. 

15R/S-HETE and PGE2 synthesis by HCA7 human CRC cells. In brief 500 μM of 

aspirin was treated on the HCA7 cells for 30 minutes (or carrier control), followed by 

AA (1μM for three hours), or carrier control treatment. Data shown as mean, from two 

independent cell samples. Data acquired by candidate using individual chromatograms 

and appropriate standard calibration lines supplied by the Nicolaou group. 15R-HETE 

and 15S-HETE use left y-axis; PGE2 data use the right y-axis). Where the lipid 

mediator exceeded the upper limit of the standard calibration curve the data is shown 

as a ratio against the internal standard, otherwise the data is shown as pg per 106 cells.  
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Figure 44. 15R and 15S-HETE chromatograms.  

HCA7 human CRC cells were treated with and without aspirin. The AA derived COX 

product 15S-HETE and the AA acetylated COX-2 derived product 15R-HETE were 

analysed by chiral LC/ESI-MS/MS. (A) 15R and 15S-HETE internal standard 

chromatogram obtained from the chiral LC/ESI-MS/MS analysis:  retention time 41.41 

(R-) and 42.99 (S-). (B) 15R-HETE chromatogram obtained from the chiral LC/ESI-

MS/MS analysis of the supernatant from aspirin treated (500 µM, 30 minutes) HCA7 

cells; retention time 41.41. (C) 15S-HETE chromatogram obtained from chiral LC/ESI-

MS/MS analysis of the supernatant from AA (1µM, three hours) supplemented HCA7 

cells: retention time 42.45. The original chromatograms (MRM 319>175) provided by 

the Nicolaou group were very faint, so the candidate strengthened these peaks so they 

could be visualised for the purposes of this thesis .
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 Lipidomic analysis for RvE1 and 18-HEPE synthesis by HCA7 human 4.5.7

colorectal cancer cells 

The HCA7 cell line was found to express COX-2 protein and synthesise the greatest 

amounts of COX derived lipid mediators. It was also shown capable of generating an 

acetylated COX-2 lipid, therefore this cell line was examined to see if it could 

synthesise RvE1.  

Cell viability assays were completed to confirm that exposure to 50 µM EPA for three 

hours was not cytotoxic to the HCA7 (Figure 45).   

 

 

 

 

 

 

 

 

 

 

Figure 45. Determination of the cytotoxicity of EPA on HCA7 human CRC cell 

lines. 

HCA7 human CRC cells were exposed to a range of EPA doses (0-200 µM) in cell 

medium free of FBS for three hours (reflecting the FBS free conditions the cells will be 

in prior to LC-ESI-MS/MS analysis), before removing and incubating the cells in cell 

medium plus FBS for 96 hours at 37oC. Data collected from three independent cell 

cultured experiments, shown as mean with standard error of the mean. 
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HCA7 cells supplemented with EPA with and without pre-treatment with aspirin did not 

synthesise detectable RvE1 under the experimental conditions used. No peak is seen 

within the chromatogram at the expected retention time of RvE1, as is shown in the 

representative chromatograms for RvE1 (Figure 46).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 46. RvE1 chromatograms (HCA7 cells). 

HCA7 human CRC cell condition medium was analysed for RvE1 by LC-ESI-MS/MS 

analysis. (A) Chromatogram for RvE1 standard (Cayman Chemical). (B) RvE1 

chromatogram from control EPA (50 µM, three hours). (C) RvE1 chromatogram for the 

cell conditioned medium from HCA7 carrier control treated cells. (D) RvE1 

chromatogram for the cell conditioned medium from HCA7 18-HEPE (1 µM, three 

hours) treated cells. (E) RvE1 chromatogram for the cell conditioned medium from 

HCA7 EPA treated (50 µM, three hours) treated cells. (F) RvE1 chromatogram for the 

cell conditioned medium from HCA7 aspirin (500 µM, 30 minutes) and EPA (50 µM, 

three hours) treated cells. The dotted line represents the expected retention time for 

RvE1.  
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18-HEPE was detected in the EPA treated HCA7 cells, with 18-HEPE levels 

decreasing when the cells were pre-treated with aspirin (Figure 47A). However 18-

HEPE was also detected in the control EPA samples in the absence of cells, 

suggesting a level of non-cellular EPA oxidation to 18-HEPE (Figure 47A). 

Representative 18-HEPE chromatograms are shown in Figure 48. The 18-HEPE levels 

detected in the control EPA alone samples were outside the range of the calibration 

curve (>100 pg/ μL).  

Successful acetylation of COX by aspirin was confirmed by the decrease in PGE2 and 

PGE3, in AA and EPA supplemented HCA7 cells respectively (Figures 47B/C), as well 

as the increase in 15-HETE levels in the aspirin treated cells (Figure 45D). 

Representative 15-HETE chromatograms are shown in Figure 49. However 15-HETE 

was detected in the no cell AA control likely secondary to non cellular driven AA 

oxidation to 15-HETE. However there was a clear increase in 15-HETE detected in the 

aspirin and AA treated cells when compared to AA treated cells, indicating that there 

may be 15-HETE synthesis above AA oxidation via non-cellular mechanisms. The 

levels for both PGE3 and PGE2 exceeded the upper limit of quantification and are 

consequently presented as ratio values of lipid mediator to internal standard (PGB2-d4). 

In addition to acetylated COX-2 activity on EPA, RvE1 synthesis requires 5-LOX and 

LTA4 hydrolase enzymatic activity. In order to establish 5-LOX and LTA4 hydrolase 

activity in the HCA7 cells, 5-HETE and 5-HEPE and LTB4/5 synthesis was analysed in 

the cell conditioned medium. 5-HETE is formed through the activity of 5-LOX on AA. 

LTB4 and LTB5 are formed through the activity of both 5-LOX and LTA4H on AA and 

EPA, respectively (Figure 2, AA pathway summary; Figure 3, EPA pathway summary). 

A lipid mediator in keeping with 5-HETE was detected in all AA treated HCA7 cell 

conditioned medium samples. However this lipid mediator was also found in the AA 

alone control sample (Figure 50), indicating 5-HETE synthesis via a non cellular route. 

No quantification could be performed as no 5-HETE standard was included, however 

the amounts were still below the limits of quantification. No cell mediated 5-HETE 

synthesis could therefore be concluded upon. No LTB4 (Figure 51), or LTB5 (data not 

shown) was detected in AA or EPA supplemented HCA7 cells, respectively. 

Aspirin triggered-LXA4 is derived through the enzymatic activity of acetylated-COX-2 on 

AA which produces 15R-HETE, which is then oxygenated by 5-LOX to aspirin 

triggered-LXA4, and thus represents the same enzymatic pathway involved in RvE1 

synthesis. As was the case with RvE1 the HCA7 cell line was unable to synthesise 

detectable aspirin triggered-LXA4 (Figure 52). 
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Figure 47. Analysis of HCA7 cell conditioned medium for 18-HEPE, PGE2, PGE3 

and 15-HETE. 

The cell conditioned medium from HCA7 human CRC cells was analysed by LC-ESI-

MS/MS. (A) 18-HEPE biosynthesis by HCA7 cells (control no cell EPA sample use left 

y-axis; remaining samples use right y-axis). (B) PGE2 biosynthesis by HCA7 cells. (C) 

PGE3 synthesis by HCA7 cells. (D) 15-HETE synthesis by HCA7 cells (Control AA 

alone sample use left y-axis; remaining samples use right y-axis). Results from three 

independent experiments and shown as mean with standard error of the mean, the 

control AA alone sample represents data from one experiment. Where the lipid 

mediator exceeded the upper limit of the standard calibration curve the data are shown 

as a ratio against the internal standard, otherwise the data is shown as pg per 106 cells. 

The control AA alone sample is shown as pg/ μL, as this was a cell free control sample. 
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Figure 48. 18-HEPE chromatograms (HCA7 cells). 

HCA7 human CRC cell conditioned medium was analysed for 18-HEPE by LC-ESI-

MS/MS analysis (A) Chromatogram for 18-HEPE standard (Cayman Chemical). (B) 18-

HEPE chromatogram for control EPA (50 µM, three hours). (C) 18-HEPE 

chromatogram for the cell conditioned medium from HCA7 carrier control cells. (D) 18-

HEPE chromatogram for the cell conditioned medium from HCA7 18-HEPE (1 µM, 

three hours) treated cells. (E) 18-HEPE chromatogram for the cell conditioned medium 

from HCA7 EPA (50 µm, three hours) treated cells. (F) 18-HEPE chromatogram for the 

cell conditioned medium from HCA7 aspirin (500 µM, 30 minutes) and EPA (50 µM, 

three hours) treated cells. The dotted line represents the expected retention time for 

18-HEPE.
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Figure 49. 15-HETE chromatograms (HCA7 cells). 

HCA7 human CRC cell conditioned medium was analysed for 15-HETE by LC/ESI-

MS/MS. (A) 15-HETE chromatogram for the standard (Cayman Chemical). (B) 15-

HETE Chromatogram for the control no cell, AA (1 μM, three hours culture medium. (C) 

15-HETE chromatogram for HCA7 control carrier conditioned medium (two of the three 

samples detected 15-HETE but were below the limit of quantification (<4 pg/ μL). (D) 

15-HETE chromatogram for HCA7 AA (1 μM, three hours) treated cell conditioned 

medium. (E) 15-HETE chromatogram for HCA7 aspirin (500 μM, 30 minutes) and AA (1 

μM, three hours) treated cell conditioned medium. The dotted line represents the 

expected retention time for 15-HETE. 

 



120 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 50. 5-HETE chromatograms (HCA7 cells). 

The cell conditioned medium from HCA7 human CRC cells was analysed by LC-ESI-

MS/MS. (A) Chromatogram from control AA (1 µM, three hours) conditioned medium 

alone. (B) HCA7 carrier control treated cell conditioned medium. (C) HCA7 AA (1 µM, 

three hours) treated cell conditioned medium. (D) HCA7 aspirin (500 µM, 30 minutes) 

and AA (1 µM, three hours) treated cell conditioned medium. The dotted line represents 

the expected retention time for 5-HETE. 
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Figure 51. Leukotriene B4 chromatograms (HCA7 cells). 

The cell conditioned medium from HCA7 cells was analysed by LC-ESI-MS/MS. (A) 

Leukotriene B4 (LTB4) standard (Cayman Chemicals). (B) HCA7 carrier control treated 

cell conditioned medium. (C) HCA7 AA (1 µM, three hours) treated cell conditioned 

medium. The dotted line represents the expected retention time for LTB4.  
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Figure 52. Aspirin triggered-LXA4 chromatograms (HCA7 cells). 

The cell conditioned medium from HCA7 cells was analysed by LC-ESI-MS/MS. (A) 

Chromatogram for aspirin triggered-LXA4 standard (Cayman Chemical). (B) 

Chromatogram from control no cell AA (1 µM, three hours) medium alone. (C) 

Chromatogram for HCA7 carrier control treated cell conditioned medium. (D) 

Chromatogram for HCA7 AA (1 µM, three hours) treated cell conditioned medium. (E) 

HCA7 aspirin (500 µM, 30 minutes) and AA (1 µM, three hours) treated cell conditioned 

medium. The dotted line represents the expected retention time for aspirin triggered-

LXA4. 
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 Lipidomic analysis for 18-HEPE and Resolvin E1 synthesis by MC38 4.5.8

mouse colorectal cancer cells and RAW264.7 mouse macrophage cells. 

As the human CRC cell lines described previously were unable to synthesise 

detectable RvE1, likely due to a lack of functional 5-LOX/ LTA4H enzymatic activity, a 

transcellular in vitro transcellular synthesis model was developed. To avoid species 

cross-reactivity in the model, two mouse cell lines were used. The MC38 mouse CRC 

cell line has established COX functional activity, and the RAW 264.7 mouse 

macrophage cell line, has COX and 5-LOX functional activity (Revermann et al., 2011, 

Hofmann et al., 2012, Norris et al., 2012). RAW26.7 macrophage cells require LPS 

treatment in order to induce COX-2 activity. LPS stimulation of the RAW264.7 cell line 

to show COX activity was confirmed over a 48 hour time period. This also served to 

establish an appropriate duration of LPS treatment required to stimulate COX derived 

PGE2 synthesis, prior to using the cells in aspirin/ AA/ EPA experiments (Figure 53). 

LPS (1 μg/ mL) for 12 hours was subsequently used, as this time point produced high 

levels of PGE2. Cell viability assays were completed to confirm that 30 minutes of 500 

µM aspirin (Figure 54) and three hours of 50 µM EPA treatment (Figure 55) would not 

be cytotoxic to either the MC38 mouse CRC, or the RAW264.7 mouse macrophage cell 

lines. 

 

 

 

 

 

 

 

Figure 53. Analysis of LPS stimulated RAW264.7 cell conditioned medium for 

PGE2 over 24 hours. 

LPS stimulated mouse macrophage RAW264.7 cells where analysed for PGE2 in the 

cell continued medium over a 48 hour period, by LS/ESI-MS/MS. Data represents one 

independent experiment. The samples were collected by the candidate; PGE2 data 

provided by the Dr.Loadman. 
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Figure 54. Assessment of MC38 and RAW264.7 cell viability over a range of 

aspirin dosages. 

MC38 or RAW264.7 cells were grown in a T25 flask to 80% confluency before being 

seeded into a 96 well plate (1000 cells/ well) for 24 hours (in triplicate). (A) MC38 cells. 

(B) RAW264.7 cells were exposed to a range of either aspirin concentrations (0-100 

mM) for 30 minutes in cell medium free of FBS for three hours (reflecting the FBS free 

conditions the cells will be in prior to LC-ESI-MS/MS analysis) before removing and 

incubating the cells in cell medium plus FBS for 96 hours at 37oC. Data collected from 

three independent cell experiments, shown as mean with standard error of the mean.  
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Figure 55. Assessment of MC38 and RAW264.7 cell viability over a range of EPA 

doses. 

MC38 or RAW264.7 cells were grown in a T25 flask to 80% confluency before being 

seeded into a 96 well plate (1000 cells/ well) for 24 hours (in triplicate). (A) MC38 cells. 

(B) RAW264.7 cells were exposed to a range of eicosapentaenoic acid (EPA) doses 

(0-200 µM) in cell medium free of FBS for three hours (reflecting the FBS free 

conditions the cells will be in prior to LC-ESI-MS/MS analysis) before removing and 

incubating the cells in cell medium plus FBS for 96 hours at 37oC. Data collected from 

three independent cell experiments, shown as mean with standard error of the mean. 
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Initially it was examined whether either or both of the cell lines alone, could synthesise 

18-HEPE or RvE1. The LC/ESI-MS/MS analysis confirmed that no RvE1 was detected 

in either the MC38 (Figure 56) or the RAW264.7 (Figure 57) cell conditioned medium 

samples treated with EPA and aspirin or with EPA alone or 18-HEPE directly. No peak 

was seen within the respective chromatograms at the expected retention time of RvE1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 56. Analysis of MC38 cell conditioned medium for RvE1. 

MC38 cell conditioned medium was collected and RvE1 analysed for by LC/ESI-

MS/MS. (A) Chromatogram for RvE1 standard (Cayman Chemical). (B) RvE1 

chromatogram for the control EPA (50 μM, three hours) medium alone. (C) RvE1 

chromatogram for the cell conditioned medium from MC38 carrier control cells. (D) 

RvE1 chromatogram for the cell conditioned medium from MC38 18-HEPE (1 µM, three 

hours) treated cells. (E) RvE1 chromatogram for the conditioned medium from MC38 

eicosapentaenoic acid treated (50µM, three hours) treated cells. (F) RvE1 

chromatogram for the conditioned medium from MC38 aspirin (500 µM, 30 minutes) 

and eicosapentaenoic acid (50 µM, three hours) treated cells. The dotted line 

represents the expected retention time for RvE1. 
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Figure 57. Analysis of LPS stimulated RAW264.7 cell conditioned medium for 

RvE1. 

RAW264.7 cells were stimulated with LPS for 12 hours before being treated as 

appropriate. The cell condition was then collected and analysed for RvE1 by LC/ESI-

MS/MS analysis. (A) Chromatogram for RvE1 standard (Cayman Chemical). (B) RvE1 

chromatogram for the control EPA (50 μM, three hours) medium alone. (C) RvE1 

chromatogram for the cell conditioned medium from RAW264.7 carrier control cells. (D) 

RvE1 chromatogram for the conditioned medium from RAW26.4 18-HEPE (1 µM, three 

hours) treated cells. (E) RvE1 chromatogram for the conditioned medium from 

RAW264.7 EPA treated (50 µM, three hours) treated cells. (F) RvE1 chromatogram for 

the conditioned medium from RAW264.7 aspirin (500 µM, 30 minutes) and EPA (50 

µM, three hours) treated cells. The dotted line represents the expected retention time 

for RvE1. 
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18-HEPE was detected in all samples where cells were treated with EPA (Figure 58; 

MC38 and Figure 59; RAW264.7) with 18-HEPE levels increasing when EPA 

supplemented cells were pre-treated with aspirin (Figure 60A; MC38 and Figure 61A; 

RAW264.7). However as discussed earlier 18-HEPE was also detected in the EPA 

oxidation control samples. The 18-HEPE levels detected in the samples were outside 

the range of the calibration curve (100 pg/ µL) for the oxidation control and the EPA 

treated MC38 CRC and RAW264.7 macrophage cells, both with and without aspirin 

treatment. Therefore the results are shown as a ratio of the 18-HEPE peak area 

against the internal standard peak area (12-HETE-d8), (Figure 60A; MC38 and Figure 

61A; RAW264.7). 
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Figure 58. Analysis of MC38 cell conditioned medium for 18-HEPE. 

MC38 mouse CRC cell conditioned medium was analysed for 18-HEPE by LC-ESI-

MS/MS. (A) Chromatogram for 18-HEPE standard (Cayman Chemical). (B) 18-HEPE 

chromatogram for control EPA (50 μM, three hours) medium alone. (C) 18-HEPE 

chromatogram for the carrier control MC38 cell conditioned medium. (D) 18-HEPE 

chromatogram for the cell conditioned medium from MC38 18-HEPE (1 µM, three 

hours) treated cells. (E) 18-HEPE chromatogram for the cell conditioned medium from 

MC38 EPA (50 µm, three hours) treated cells. (F) 18-HEPE chromatogram for the cell 

conditioned medium from MC38 aspirin (500 µM, 30 minutes) and eicosapentaenoic 

acid (50 µM, three hours) treated cells. The dotted line represents the expected 

retention time for 18-HEPE. 
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Figure 59. Analysis of LPS stimulated RAW264.7 cell conditioned medium for 18-

HEPE. 

LPS stimulated RAW264.7 cell conditioned medium was analysed for 18-HEPE by LC-

ESI-MS/MS analysis. (A) Chromatogram for 18-HEPE standard (Cayman Chemical). 

(B) 18-HEPE chromatogram for the control EPA (50 μM, three hours) medium alone. 

(C) 18-HEPE chromatogram from RAW264.7 control carrier cell conditioned medium. 

(D) 18-HEPE chromatogram for the cell conditioned medium from MC38 18-HEPE (1 

µM, three hours) treated cells. (E) 18-HEPE chromatogram for the cell conditioned 

medium from RAW264.7 EPA (50 µM, three hours) treated cells. (F) 18-HEPE 

chromatogram for the cell conditioned medium from RAW264.7 aspirin (500 µM, 30 

minutes) and EPA (50 µM, three hours) treated cells. The dotted line represents the 

expected retention time for 18-HEPE. 
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Figure 60. Analysis of MC38 cell conditioned medium for 18-HEPE, PGE2, PGE3 

and 15-HETE. 

The cell conditioned medium from MC38 mouse CRC cells was analysed by LC-ESI-

MS/MS. (A). 18-HEPE biosynthesis by MC38 cells. (B) PGE2 biosynthesis by MC38 

cells. (C)  PGE3 synthesis by MC38 cells. (D) 15-HETE synthesis by MC38 cells 

(Control AA alone sample use left y-axis; remaining samples use the right y-axis). 

Results from three independent experiments and shown as mean with standard error of 

the mean, the control AA alone sample represents data from one experiment. Where 

the lipid mediator exceeded the upper limit of the standard calibration curve the data is 

shown as a ratio against the internal standard, otherwise the data are shown as pg per 

106 cells. The control AA alone sample is shown as pg/ μL.  
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Figure 61. Analysis of LPS stimulated RAW26.7 cell conditioned medium for 18-

HEPE, PGE2, PGE3 and 15-HETE. 

The cell conditioned medium from LPS stimulated RAW264.7 cells was analysed by 

LC-ESI-MS/MS. (A) 18-HEPE biosynthesis by RAW264.7cells. (B) PGE2 biosynthesis 

by RAW264.7 cells. (C) PGE3 synthesis by RAW264.7 cells. (D) 15-HETE synthesis by 

RAW264.7 cells (Control AA alone sample use left y-axis; remaining samples use the 

right y-axis). Results from three independent experiments and shown as mean with 

standard error of the mean, the control AA alone sample represents data from one 

experiment. Where the lipid mediator exceeded the upper limit of the standard 

calibration curve the data is shown as a ratio against the internal standard, otherwise 

the data are shown as pg per 106 cells. The control AA alone sample is shown as pg/ 

μL.  
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Acetylation of COX by aspirin was confirmed by the decrease in PGE2 and PGE3 

(Figure 60C/D; MC38 and Figure 61C/D; RAW264.7) in the AA and EPA experimental 

conditions respectively. However the levels for both exceeded the upper limit of 

quantification and are consequently presented as ratio values of lipid mediator to 

internal standard (PGB2-d4). Evidence for successful COX acetylation is also 

supported by the increase in 15-HETE levels in aspirin treated cells (Figure 60D; MC38 

and Figure 61D; RAW264.7). However as discussed in section 4.5.7, 15-HETE was 

also detected in the no cell AA control, indicating that there may be an uncertain 

degree of 15-HETE synthesis secondary to non-cellular AA oxidation. 15-HETE 

chromatograms are shown for the MC38 and RAW264.7 cell samples in Figures 62 

and 63, respectively. An increase in 15-HETE detected in the aspirin and AA treated 

cells compared to AA treated cells, (Figure 60D; MC38 and Figure 61D; RAW264.7), 

indicates a possible cell driven synthesis of 15-HETE beyond AA oxidation via non-

cellular mechanisms.   
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Figure 62. Analysis of MC38 cell conditioned medium for 15-HETE. 

MC38 human CRC cell conditioned medium was analysed for 15-HETE by LC/ESI-

MS/MS. (A) 15-HETE chromatogram for the standard (Cayman Chemical). (B) 15-

HETE Chromatogram for the control AA (1 μM, three hours) culture medium. (C) 15-

HETE chromatogram for MC38 control carrier conditioned medium. (D) 15-HETE 

chromatogram for MC38 AA (1 μM, three hours) treated cell conditioned medium. (E) 

15-HETE chromatogram for MC38 aspirin (500 μM, 30 minutes) and AA (1 μM, three 

hours) treated cell conditioned medium. The dotted line represents the expected 

retention time for 15-HETE. 
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Figure 63. Analysis of LPS stimulated RAW264.7 cell conditioned medium for 15-

HETE. 

LPS stimulated RAW264.7 mouse macrophage cell conditioned medium was analysed 

for 15-HETE by LC/ESI-MS/MS. (A) 15-HETE chromatogram for the standard (Cayman 

Chemical). (B) 15-HETE Chromatogram for the control AA (1 μM, three hours) no cell 

culture medium. (C) 15-HETE chromatogram for RAW264.7 control carrier conditioned 

medium. (D) 15-HETE chromatogram for RAW264.7 AA (1 μM, three hours) treated 

cell conditioned medium. (E) 15-HETE chromatogram for RAW264.7 aspirin (500 μM, 

30 minutes) and AA (1 μM, three hours) treated cell conditioned medium. The dotted 

line represents the expected retention time for 15-HETE. 
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No LTB4 (Figure 64; MC38 and Figure 65; RAW264.7) or LTB5 (Figure 66; RAW264.7) 

was detected, and whilst 5-HETE was detected in all AA treated cell conditioned 

medium samples, 5-HETE was found in the AA alone control sample. Consequently no 

cell driven 5-HETE could therefore be established. Despite treatment with a calcium 

ionophore RAW264.7 cells were unable to produce a detectable 5-LOX/ LTA4H, AA or 

EPA derived lipid mediator. Therefore no 5-LOX enzymatic activity was identified in 

either MC38 or RAW264.7 cells under these in vitro conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 64. Analysis of MC38 cell conditioned medium for LTB4. 

MC38 cell conditioned medium was analysed for LTB4 by LC-ESI-MS/MS. (A) LTB4 

chromatogram for the standard (Cayman Chemical). LTB4 chromatogram. (B) LTB4 

chromatogram for control AA (1 µM, three hours) medium. (C) LTB4 chromatogram for 

MC38 carrier control treated cell conditioned medium. (D) LTB4 chromatogram AA 

treated MC38 cells (1 µM, three hours). The dotted line represents the expected 

retention time for LTB4.  
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Figure 65. Analysis of LPS stimulated RAW264.7 cell conditioned medium for 

LTB4. 

RAW264.7 cell conditioned medium was analysed for LTB4 by LC/ESI-MS/MS. (A) 

LTB4 chromatogram for standard (Cayman Chemical). (B) LTB4 chromatogram for 

control AA (1 µM, three hours) medium. (C) LTB4 chromatogram for RAW264.7 carrier 

control treated cell conditioned medium. (D) Chromatogram for AA (1 µM, three hours) 

treated culture medium. The dotted line represents the expected retention time for 

LTB4. 
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Figure 66. Analysis of LPS stimulated RAW264.7 cell conditioned medium for 

LTB5. 

RAW264.7 cell conditioned medium was analysed for LTB5 by LC/ESI-MS/MS. (A) 

LTB5 chromatogram for standard (Cayman Chemical). (B) LTB5 chromatogram for 

control EPA (1 µM, three hours) medium. (C) LTB5 chromatogram for RAW264.7 

carrier control treated cell conditioned medium. (D) Chromatogram for EPA (50 µM, 

three hours) treated RAW26.7 cells. The dotted line represents the expected retention 

time for LTB5. 
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As aspirin triggered-LXA4 requires acetylated COX-2 and 5-LOX with AA as the 

substrate, which is directly comparable to RvE1 synthesis from EPA, aspirin triggered-

LXA4 was analysed for. The question being whether the substrate was the issue and 

not the enzymatic machinery in RvE1 synthesis. The candidate found that neither 

MC38 nor RAW26.7 cells could synthesise detectable aspirin triggered-LXA4 (Figure 

67; MC38 and Figure 68; RAW264.7). 

In conclusion neither MC38 mouse CRC cells nor RAW264.7 mouse macrophage cells 

could cells synthesised detectable RvE1 or a comparable AA derived lipid mediator 

under the in vitro conditions used by the candidate.  

 

 

 

Figure 67. Analysis of MC38 cell conditioned medium for aspirin triggered-LXA4. 

MC38 cell conditioned medium was analysed for aspirin triggered-LXA4 by LC-ESI-

MS/MS. (A) Chromatogram for aspirin-triggered LXA4 standard (Cayman Chemical). 

(B) Aspirin-triggered LXA4 chromatogram from control (AA 1 µM, three hours) medium. 

(C) Aspirin-triggered LXA4 chromatogram for MC38 carrier control treated cell 

conditioned medium. (D) Aspirin-triggered LXA4 chromatogram from MC38 AA (1 µM, 

three hours) treated cell conditioned medium. (E) Aspirin-triggered LXA4 chromatogram 

for MC38 aspirin (500 µM, 30 minutes) and AA (1 µM, three hours) treated cell 

conditioned medium. The dotted line represents the expected retention time for aspirin 

triggered-LXA4.  
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Figure 68. Aspirin triggered-LXA4 biosynthesis by mouse macrophage RAW264.7 

cells. 

LPS stimulated RAW264.7 cell conditioned medium was analysed for aspirin triggered 

LXA4 by LC-ESI-MS/MS analysis. (A) Aspirin triggered-LXA4 chromatogram for the 

standard (Cayman Chemical). (B) Aspirin triggered-LXA4 chromatogram for AA control 

(1 µM, three hours) no cell medium. (C) Aspirin triggered-LXA4 chromatogram for 

RAW264.7 carrier control treated cell conditioned medium. (D) Aspirin triggered-LXA4 

chromatogram for RAW264.7 AA (1 µM, three hours) treated cell conditioned medium 

alone. (E) Aspirin triggered-LXA4 chromatogram for RAW264.7 aspirin (500 µM, 30 

minutes) and AA (1 µM, three hours) treated cell conditioned medium. The dotted line 

represents the expected retention time for aspirin triggered-LXA4.  
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As no RvE1 synthesis was identified in the in vitro mouse cell model a transcellular 

model was developed. In this model cell conditioned medium from ASA and EPA 

treated MC38 cells was placed on RAW264.7 cells. The LC/ESI-MS/MS analysis 

confirmed that no RvE1 was detected in any of the cell conditioned medium samples 

from the transcellular synthesis models, as  shown by the chromatograms showing the 

transition time expected for RvE1 (Figure 69). 18-HEPE was detected in the 

transcellular synthesis model (Figure 70).  

The amount of 18-HEPE identified was lower, than that identified in MC38 (ASA+EPA) 

samples (Figure 71A). This was also seen for 15-HETE (Figure 71B). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 69. Analysis of the transcellular model (MC38/ RAW264.7) cell conditioned 

medium for RvE1. 

MC38 cells were treated with aspirin and EPA, the cell conditioned medium was then 

placed on RAW264.7 cells for three hours. The cell conditioned medium was then 

analysed for RvE1 by LC-ESI-MS/MS analysis. RvE1 chromatograms for the standard 

(Cayman Chemical) and below for the transcellular synthesis model. The dotted line 

represents the expected retention time for RvE1. 
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Figure 70. Analysis of the transcellular model (MC38/ RAW264.7) cell conditioned 

medium for 18-HEPE. 

MC38 cells were treated with aspirin and EPA. The cell conditioned medium was then 

placed on RAW264.7 cells for three hours. The cell conditioned medium was then 

analysed for 18-HEPE by LC-ESI-MS/MS analysis. 18-HEPE chromatogram for the 

standard (Cayman Chemical) and below for the transcellular synthesis model. The 

dotted line represents the expected retention time for 18-HEPE. 
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Figure 71. Analysis of the cell cultured medium from the transcellular synthesis 

model for 18-HEPE, and 15-HETE. 

MC38 cells were treated with aspirin and EPA (or aspirin and AA), as appropriate. The 

cell conditioned medium was then placed on RAW264.7 cells for three hours. The cell 

conditioned medium was then analysed for 18-HEPE and 15-HETE by LC-ESI-MS/MS 

analysis. (A) 18-HEPE production. (B) 15-HETE production (control AA alone use right 

y-axis; MC38 and transcellular synthesis model data use left y-axis). Results from three 

independent experiments and shown as mean with standard error of the mean, the 

control AA alone sample represents data from one experiment. Where the lipid 

mediator exceeded the upper limit of the standard calibration curve the data are shown 

as a ratio against the internal standard, otherwise the data are shown as pg per 106 

cells. 
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The levels of both PGE3 and PGE2 increased in the conditioned medium from the 

transcellular synthesis model, when compared to MC38 ASA and EPA treated and 

MC39 AA and AA treated cells respectively (Figure 72A and B). The reason for this is 

likely due to the non-acetylated COXs in the RAW264.7 allowing conversion of the 

remaining AA/ EPA through to PGE2/3 respectively. No aspirin triggered-LXA4 was 

detected in the RAW26.7 cell conditioned medium that was received from the aspirin 

and AA treated MC38 mouse CRC cells (Figure 73).  

In conclusion this transcellular synthesis model could not synthesise detectable RvE1 

under these in vitro conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 72. Analysis of the cell cultured medium from the transcellular synthesis 

model for PGE2 and PGE3. 

MC38 cells were treated with aspirin and EPA (or aspirin and AA), as appropriate. The 

cell conditioned medium was then placed on RAW264.7 cells for three hours. The cell 

conditioned medium was then analysed for PGE2 and PGE3 by LC-ESI-MS/MS 

analysis. (A) PGE3 synthesis. (B)  PGE2. Results from three independent experiments 

and shown as mean with standard error of the mean, the control AA alone sample 

represents data from one experiment. The lipid mediator exceeded the upper limit of 

the standard calibration curve the data and are shown as a ratio against the internal 

standard.  
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Figure 73. Analysis of the cell conditioned medium from the transcellular 

synthesis model for aspirin triggered-LXA4. 

MC38 cells were treated with aspirin and AA. The cell conditioned medium was then 

placed on RAW264.7 cells for three hours. The cell conditioned medium was then 

analysed for aspirin triggered-LXA4 by LC-ESI-MS/MS analysis. (A) Aspirin triggered-

LXA4 chromatogram for the standard (Cayman Chemical). (B) Aspirin triggered-LXA4 

for the conditioned medium from the transcellular synthesis model. The dotted line 

represents the expected retention time for RvE1 and 18-HEPE as appropriate. 
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 Discussion 4.6

The biosynthesis of RvE1 in the context of CRC has not been investigated to date. To 

address this, a panel of seven human CRC cell lines were characterized for COX-2 and 

5-LOX expression by WB, and for COX- and 5-LOX-derived lipid mediator synthesis by 

LC-ESI-MS/MS.  

On identifying a suitable COX-2 expressing cell line(s), the in vitro conditions required 

to successfully acetylate the COXs and allow the synthesis of the acetylated COX-2 

product 15R-HETE was determined. The dose of aspirin used and duration of 

treatment on the cells were taken from published evidence (Serhan et al., 2002), 

supported by cell viability data that determined that aspirin was not cytotoxic to the 

cells (discussed later). 

Serhan and colleagues (2000) have reported that RvE1 is synthesised through 

transcellular synthesis (two different cell types, discussed in section 1.9). The 

candidate initially looked to determine whether human CRC cells alone could 

synthesise RvE1, when the CRC cell line was treated with EPA in the presence of 

aspirin. A mouse CRC cell line (MC38) and mouse macrophage (RAW264.7) cell line 

were also investigated for RvE1 biosynthesis. The use of two mouse cell lines would 

facilitate the development of an in vitro transcellular synthesis experiment without 

having to use cell lines from different species.  

To establish that the LC/ESI-MS/MS system used by the candidate could identify 

RvE1, a human neutrophil-based experiment was initially performed replicating as 

closely as possible the experimental protocols published by Serhan et al., 2000; 

Tjonahen et al., 2006; Oh et al., 2011.  

 Resolvin E1 synthesis by human polymorphonuclear leukocytes 4.6.1

Published in vitro studies have used up to 100 µM of 18-HEPE standard (Tjonahen et 

al., 2006, Oh SF et al., 2011) to synthesise RvE1 from human PMNs, which is 

concerning as to whether RvE1 can be synthesised in vivo. The candidate sought to 

replicate these same in vitro conditions to confirm that RvE1 could be synthesised in 

this cell system and detected by the LC/ESI-MS/MS used in the candidate’s lipidomic 

experiments. Using calcium inophore activated 18-HEPE treated human PMNs RvE1 

was detected. This confirmed that RvE1 synthesis could be replicated in an in vitro cell 

model and detected by the LC/ESI-MS/MS used by the candidate. RvE1 synthesis 

outside Professor Serhan’s group had not been identified in the published literature at 

the time of writing this report. 
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 Human HCA7 colorectal cancer cell lipidomic experiments 4.6.2

COX-2 expression was identified in HCA7, HRT18, HT29 and Caco2 human CRC cell 

lines under high sensitivity chemiluminescence, with highest expression clearly seen in 

the HCA7 human CRC cell line. High COX-2 protein expression in the HCA7 human 

CRC cell line is in keeping with the published literature (Shao et al., 2000 and Sharma 

et al., 2001). Using LC/ESI-MS/MS the simultaneous profiling and quantitative analysis 

of 23 different COX derived lipid mediators was carried out in the same panel of human 

CRC cell lines, in the presence or absence of AA. The HCA7 CRC cell line produced 

the highest amounts of COX derived lipid mediators from AA. In respect to the HCA7 

AA supplemented cells there was no clear increase found, or the other human cell 

lines. Reasons for the lack of a clear increase in AA derived lipid mediators could be 

due to a problem with the AA dosing, such as failure to dose the cells with the correct 

amount of AA. Another possibility is that the cells were unable to synthesise increased 

levels of AA derived mediators as the absence of FBS in the culture medium may have 

placed the cells under too much stress over the 24 hour culture period. However the 

principal aim of this experiment was to identify a high COX-2 expressing cell line, which 

was achieved. 

As RvE1 synthesis requires 5-LOX enzymatic activity, the presence of 5-LOX lipid 

mediator 5-HETE was determined in the cell conditioned medium by LC-ESI-MS/MS. 

Whilst 5-HETE was detected only in the AA supplemented LoVo supernatants, the 5-

HETE peak only had a signal-to-noise (S/N) ratio of three, which was below the limit of 

quantification, (S/N ratio of 10). The WB studies examining for 5-LOX protein 

expression detected several protein bands, so conclusions on 5-LOX expression could 

not be made. These additional bands in part could be explained by other isoforms of 5-

LOX. Five different human isoforms have previously been identified in PMNs, THP-1 

cells and Raji cells, with predicted MWs of 78, 76, 72, 62 and 56 kDa (Boudreau et al., 

2011). The authors also showed that in their in vitro cell model, expression of 

alternative 5-LOX isoforms decreased the synthesis of 5-LOX products. The 

expression of alternative isoforms by the human CRC cell lines may account for low 

detectable levels of 5-HETE. As 5-LOX is subject to a regulatory control method in that 

it requires interaction with FLAP. FLAP is believed to play a role in presenting the 

substrate to 5-LOX, investigation into whether the human CRC cell lines express FLAP 

was carried out. A clear resolved protein band was evident at the predicted MW of 

FLAP in all cell lines. Therefore FLAP protein is unlikely to be a limiting factor for 5-

HETE production in the cell lines. It is clear that under these in vitro conditions used 

that the human CRC cell lines are not producing quantifiable levels of 5-HETE. 

Published work also supports the role of a number of factors that are required in order 
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for 5-LOX to be active. They include calcium, which has been shown to stimulate 5-

LOX translocation to the membrane and induce cellular leukotriene synthesis (Noguchi 

et al., 1994) and adenosine triphosphate (ATP) which also has been shown to 

stimulate 5-LOX activity and require the presence of calcium (Noguchi et al., 1996). 

Thus the calcium in vitro conditions used here may be affecting 5-LOX activity in the 

cell systems and preventing its activation. 

As the COX-2 enzyme requires acetylation in order to produce 18-HEPE from EPA, the 

conditions required to acetylate COX-2 were replicated from the literature by the 

candidate. The Serhan group (Serhan et al 2002) published that they had dosed 

HUVECs with 500 µM aspirin for 30 minutes prior to DHA treatment. They showed that 

these in vitro conditions allowed production of novel DHA derived bioactive products. 

This aspirin dosing regimen therefore served as the benchmark in establishing the in 

vitro conditions that could generate 15R-HETE in the human CRC cell line HCA7. The 

HCA7 human CRC cell line was chosen due to its favourable COX-2 profile on WB and 

high production of COX derived lipid mediators. After confirming that 500 µM aspirin for 

30 minutes was not irreversibly cytotoxic to the HCA7 cells, HCA7 cells were treated 

with aspirin with and without AA supplementation in order to amplify any aspirin 

induced COX effect. Successful acetylation of COX was confirmed by a clear reduction 

in PGE2 production in the HCA7 CRC cell conditioned medium in the presence of 

aspirin, and the switch in chirality of 15-HETE from S in the AA supplemented cells to R 

in the aspirin and AA supplemented cells. This experiment confirmed the in vitro 

conditions required for successful synthesis of an aspirin acetylated COX-2 product by 

HCA7 human CRC cells. 

The HCA7 cell line was unable to synthesise detectable RvE1 in cell conditioned 

medium after aspirin and EPA treatment. COX activity on EPA was established in 

these cells, through PGE3 detection in the cell conditioned medium. Successful COX-2 

acetylation by aspirin was confirmed by a reduction in both PGE2 and PGE3 in the 

presence of aspirin. Interestingly whilst there was an induction in 15-HETE levels in the 

presence of aspirin, this was not the case for 18-HEPE in the HCA7 cell line. However 

in this experiment no chiral analysis was performed on the 15-HETE or 18-HEPE to 

confirm chiral change in the 15-HETE or 18-HEPE product in the presence of aspirin. 

Additionally 18-HEPE and 15-HETE were present in the no cell EPA and AA control 

respectively suggesting a degree of non-enzymatic AA oxidation. This control had not 

been included in the initial 15-HETE chiral analysis experiment. However the increase 

in 15-HETE detected when AA treated cells were also dosed with aspirin compared to 

the AA treated cells supports a cell driven process of 15-HETE above that of non-

cellular 15-HETE synthesis. Expectations from the literature from human clinical 
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samples would be that 18-HEPE levels would have increased in the EPA treated 

aspirin dosed HCA7 cells compared to the EPA treated cells (Serhan et al., 2000, Oh 

SF, et al., 2011). This suggests that whilst the HCA7 acetylated COX-2 enzyme and 

can use AA as a substrate it may not be able to use EPA in a similar fashion. 

Furthermore there is a potential that both 18-HEPE and 15-HETE were already present 

in the EPA and AA stock solution controls which were not analysed as controls 

included EPA and AA stock solutions placed in the culture medium. Additional controls 

including culture medium and AA and EPA stock solution would assist in establishing 

cell driven synthesis of 18-HEPE and 15-HETE. Interestingly the published 

methodology from Professor Serhan’s group does not comment whether AA and EPA 

(no cell) controls were included in their experiments to rule out none cell driven lipid 

oxidation. 

No 5-HETE was identified in any cell conditioned media samples from the HCA7 

human CRC cells, neither was LTB4 or EPA derived LTB5, in either AA or EPA 

supplemented experimental conditions. The lack of 5-HETE and LTB4/5 indicates the 

probable absence of functional 5-LOX activity in this cell line, with LTA4H activity 

uncertain. Therefore the lack of RvE1 was likely secondary to an absence of functional 

5-LOX activity in these cells.  Further support for a lack of 5-LOX activity comes from 

the absence of aspirin triggered LXA4 which also requires a functional 5-LOX to act on 

the substrate15-HETE.  

The published literature treated human PMNs with doses of up to 100 µM (Tjonahen et 

al., 2006, Oh et al., 2011), the candidate dosed 1 µM 18-HEPE on the CRC and 

macrophage cells. This emphasises the high concentrations of 18-HEPE required in 

order to produce detectable RvE1 in the PMN studies when compared to that used by 

the candidate. Whether this high dose of 18-HEPE would of generated RvE1 by the 

CRC cells is uncertain. The cost of purchasing 18-HEPE would have been high and 

made experiments impractical from a costing view point. Whether there was RvE1 

produced below the limit of detection for this experiment is difficult to establish as 

Tjonahen et al., (2006) and Oh et al., (2011) published RvE1 chromatograms alone 

and did not comment on the amount of RvE1 produced by their cell models. 

Additionally the relevance of whether RvE1 could be genuinely produced in vivo when 

such large amounts of 18-HEPE are required in vitro should not be ignored. 

 Murine transcellular metabolism experiments 4.6.3

To avoid species cross-reactivity in a transcellular synthesis model, a mouse CRC and 

macrophage cell line was used. The candidate successfully confirmed that LPS 

stimulated COX mediated PGE2 production in RAW264.7 mouse macrophage cells. 
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MC38 mouse CRC cells and RAW264.7 mouse macrophage were shown to produce 

AA and EPA derived COX products through the detection of COX derived PGE2 and 

PGE3. Further successful aspirin acetylation of COX was confirmed through the 

inhibition of both PGE2 and PGE3 in the AA and EPA treated cells respectively. 

However like the HCA7 human CRC cells they were unable to synthesise detectable 

RvE1 in the cell conditioned medium. The absence of 5-HETE and LTB4 in the cell 

conditioned medium supports an absence of a functional 5-LOX plus or minus LTA4H 

activity, despite AA and EPA substrate dosing to the cells. The absence of detectable 

aspirin triggered LXA4 supports this. 

A limitation of the study was that 18-HEPE, 15-HETE and PGE2 and PGE3 levels 

exceeded the upper limit of quantification as set by the calibration curve used for each 

respective lipid mediator (100 pg/ μL). Whilst the samples could have been diluted and 

re-analysed for accurate quantification, this was not practical due to the time and 

financial costs that would have been incurred. In the case were levels exceeded those 

for accurate quantification, the values were presented as a ratio against the known 

internal sample. An internal standard was included in every sample analysed, thus 

allowing the candidate to identify a qualitative increase or decrease in amounts through 

fold changes in the lipid mediators analysed. 

The MC38 and RAW264.7 cells produced increasing levels of 18-HEPE in the 

conditioned medium when treated with aspirin and EPA, compared to EPA treated 

cells, mirroring the induction seen for AA-derived 15-HETE. Whilst the AA and EPA 

controls produced 15-HETE and 18-HEPE respectively there was difficultly in 

establishing how much 15-HETE and 18-HEPE was derived from cell driven oxidation 

versus non-cellular oxidation. However there was the trend seen for an increase in both 

15-HETE and 18-HEPE in the presence of aspirin for both the MC38 and RAW26.7 

cells. Despite ionomycin treatment of the RAW264.7 cells no 5-LOX derived synthesis 

of 5-HETE could be detected, nor LTB4 or LTB5. The ionomycin was used with the 

purpose of increasing intracellular calcium levels in the RAW264.7 cells, through 5-

LOX activation. Ionomycin has been reported to stimulate 5-LOX activity in RAW264.7 

cells and the candidate replicated the dose and length of treatment of ionomycin 

applied to these cells (Buczynski et al., 2007). The candidate established COX activity 

in these cells but found no 5-LOX activity.  

No RvE1 was detected in the cell conditioned medium from the transcellular synthesis 

model. There was a reduction in the amount of both AA derived 15-HETE and EPA 

derived 18-HEPE, when compared to matched cell conditioned medium samples from 

aspirin (+AA), and aspirin (+ EPA) treated MC38 cells. This reduction could be due to 

cell driven breakdown by the RAW264.7 cells or secondary to RAW264.7 uptake of 15-
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HETE and 18-HEPE intracellularly. It could be that the RAW264.7 cells in the 

transcellular model are synthesising the RvE1 intracellularly. Interestingly in the human 

PMN based experiments utilised by the Serhan group the PMNs and experimental 

solution were analysed as one. Indeed on replicating the conditions used by Serhan in 

the PMN model, RvE1 was detected. In this model the PMNs were lysed with ice cold 

methanol and the lysed product was analysed for RvE1. Therefore an explanation for a 

lack of RvE1 synthesis in the candidate’s in vitro cell models could be that the RvE1 is 

being synthesised within the cells. Future experiments looking to examine for RvE1 

production should address this by analysing both the cell conditioned medium and cell 

pellets for RvE1 (or lysing the cells in the cell conditioned medium) before immediate 

storage at -80oC, before lipid mediator analysis. 

Furthermore the absence of detectable RvE1 in these experiments could be due to its 

rapid breakdown. It is known that RvE1 undergoes metabolic inactivation by 

dehydrogenation (Arita et al., 2006, Hong et al., 2008). Breakdown products such as 

19-hydroxy-, 20-hydroxy-, 20-carboxy-,10,11-dihydro-, 18-oxo-RvE1 were not 

investigated for in the cell conditioned medium, and such mediators could be 

investigated for  in future experiments.  

It is likely that the in vitro calcium/ ATP conditions used in the experiments to date will 

need further optimisation in order to see if 5-LOX activity can be induced in vitro. 

Experimentation to establish LTB4 production in the in vitro cell model would confirm 5-

LOX/ LTA4H enzymatic activity, a crucial pathway required in RvE1 synthesis. 

Lipidomic analysis of the intracellular contents of cells should also be examined as 

previous published work has lysed the cells within the reaction when RvE1 has been 

identified.  

It is of note that Gleissman et al., (2010) found no D-series resolvins in their 

neuroblastoma tumour model when tumours were supplemented with DHA. The 

authors proposed that the lack of D-series resolvin in the neuroblastoma cell line may 

represent a survival strategy by these cells. Whilst the authors state that these cells 

express 5-LOX they did not confirm the production of a 5-LOX derived lipid mediator in 

their study. Therefore a second cell type may needed in order to synthesis RvE1.  

There is evidence that supports an active 5-LOX pathway in fibroblasts (James et al., 

2006) as well as PMNs (as discussed previously). The candidate’s work has identified 

PMN type cells in human CRC tissue as well as fibroblast type cells. Future in vitro cell 

culture modelling should consider using PMNs or fibroblasts in transcellular synthesis 

models with CRC epithelial cells. 
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 Summary 4.7

In vitro production of RvE1 by CRC cells and macrophages separately and using a 

transcellular synthesis model was not found by the candidate. COX enzymatic activity 

was proven in the CRC cells and macrophage cell lines. No 5-LOX enzymatic activity 

was identified in any of the cell lines. However the intermediate 18-HEPE lipid mediator 

was identified in EPA supplemented cells. Conclusions on whether the 18-HEPE 

identified was cell or non-enzymatic driven could not be concluded. A second cell type 

with 5-LOX and LTA4H activity is likely to be needed alongside the CRC cells for RvE1 

synthesis in vitro. Establishing whether RvE1 is present within human CRC samples or 

colorectal samples should be considered important before further in vitro RvE1 

synthesis studies are performed. 
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5 Effect of Resolvin E1 on human colorectal cancer 

cell viability and apoptosis 

 Introduction 5.1

The candidate has confirmed expression of both ChemR23 and BLT1 in human CRC 

tissue. The presence of these receptors in human CRC tissue provides a means by 

which RvE1 might have anti-CRC activity. In order to establish any in vitro activity that 

RvE1 has on CRC cells, the candidate performed cell viability and apoptosis assays. 

To confirm that the RvE1 used in the cell viability and apoptosis assays was 

biologically active, the candidate looked to replicate RvE1 mediated in vitro effects from 

the literature. RvE1 has been shown to induce ALPI expression by ChemR23 mediated 

signalling (Campbell et al., 2010). Increased epithelial expression of ALPI has been 

shown to be protective against dextran sodium sulphate (DSS) induced colitis in a 

mouse model.  RvE1 has also been shown to induce the expression of CD55. This 

induction via ChemR23 in CD55 expression was shown to promote the clearance of 

PMNs across the epithelial surface thus facilitating the resolution of inflammation 

(Campbell et al., 2007).  As RvE1  has been shown to induce ALPI expression in the 

ChemR23 expressing human CRC cell line Caco2 (Campbell et al., 2010) and induce 

the expression of CD55 in the ChemR23 transfected KB oral epithelial cell line in vitro, 

and human CRC cell lines Caco2 and T84, the candidate sought to replicate these 

findings using these human CRC cell lines. RvE1 has also been shown to induce 

intracellular calcium levels in human PBMCs this experimental model was also utilised 

in establishing the biological activity of the Cayman Chemical RvE1 (Arita et al., 2007). 

The Cayman Chemical RvE1 product used in the cell viability and apoptosis assays, 

was analysed by ESI-MS/MS.  

 Hypothesis  5.2

RvE1 can inhibit CRC cell proliferation, and induce cancer cell apoptosis, 

through ChemR23 and/ or BLT1 receptor signaling. 

 Aims 5.3

1. To check the chemical identity and stability of the Cayman Chemical RvE1 

standard at 37oC. 

2. To establish whether RvE1 affects human CRC cell viability and apoptosis. 
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3. To investigate whether RvE1 induces ALPI and CD55 expression  in human 

CRC cells and induces intracellular calcium levels in human PMNs 

 

 Materials and Methods 5.4

 Experimental solutions 5.4.1

 Resolvin E1 preparation 5.4.1.1

RvE1 standard (Cayman Chemical, Ann Arbor, MI, US; Cat.No 10007848) was 

supplied as a stock solution in ethanol at 25 µg in 500 µL (143 μM; stored in 20 µL 

aliquots at -80oC until use). RvE1 experimental solutions were made in culture medium 

(RPMI 1640 GlutaMAXTM) free of FBS for the cell viability and gene expression assays 

but in culture medium (RPMI 1640 GlutaMAXTM+10% FBS) for the apoptosis assay at a 

v/v dilution of 0.1%.  Cayman Chemical was the sole commercial supplier of RvE1 (at 

the time of the candidate’s period of study). Permission was sought in order to obtain it 

from Cayman Chemical, as RvE1 was not commercially available. 

 Etoposide preparation 5.4.1.2

Etoposide was supplied as a powder from Sigma-Aldrich® (4’-

Demethylepipodophyllotoxin 9-(4, 6-O-ethylidene-β-D-glucopyranoside), VP-16-213; 

e1383-25mg). Etoposide was solubilised in DMSO at a concentration of 10 mg/ mL. 

Experimental solutions were made in culture medium (RPMI 1640 GlutaMAXTM+10% 

FBS) at a v/v dilution of less than 0.1%. 

 Western blotting 5.4.2

Human cell lines were grown to 50-70% or 100% cell confluency, and protein extracted 

and as for detailed in section 3.2.2. 

 Cytotoxicity assay  5.4.3

HCA7, Caco2 and HT29 human CRC cells were seeded in sterile tissue culture treated 

non-pyrogenic 96-well plates (Corning Incorporated costar®, NY, UK; Cat. No. BC019) 

at a density of 1000 cells/ well for HCA7 and HT29 cells and 2000 cells/well for Caco2 

cells in cell type specific culture medium containing 10% FBS. 

After 24 hours of incubation eight replicates (RvE1 0.06 nM to 1000 nM) were added to 

the culture medium (without FBS so as to prevent lipid binding to the RvE1). Controls 

included cells cultured in medium containing carrier control and culture medium alone. 

The experimental solutions were made up in 50 mL falcon tubes before being 

dispensed from sterile solution basins (Scientific Laboratory Supplies, UK; 

Cat.No.746180-2), to facilitate dosing of the cells by a multi-channel pipette. After three 
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hours the RvE1 solution was removed and the cells washed gently three times before 

culture medium containing FBS was placed on the cells to prevent adverse effects on 

cell viability secondary to the lack of FBS.Twenty-one hours later the culture medium 

was removed and cells washed gently three times with sterile DPBS before the 

experimental RvE1 solutions (without FBS) were placed on the cells for three hours. 

This cycle was repeated until the cells had been incubated for a total of 72 hours. After 

96 hours 20 µL of 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 

(Sigma-Aldrich, Poole, UK; Cat.No M2128-1G) at a prepared concentration of 5mg/ml 

(in DPBS) was added to each well and left in the dark at a temperature of 37oC for 

three hours. The solution was then aspirated off, and 150 μL of DMSO was added to 

the formazan crystals left in the wells. The plate was then read at 570 nm using a 

microplate reader (Opsys MR™ Dynex technologies Ltd, UK) to give an optical density 

value for each well. The mean OD of a minimum of six wells was taken and a 

percentage cell growth value calculated by dividing the mean OD value for each 

individual experimental condition by the mean OD control value for each plate (as cells 

were visualised pre and post dosing, any wells that had been affected by mechanical 

trauma to the cells from pipetting were excluded by the candidate). The mean blank 

well value was subtracted from the cell well OD values. Results are shown as a mean 

values with SEM from three independent experiments.  

 Apoptosis assay 5.4.4

Apoptosis was measured using the fluorescein isothiocyanate (FITC) Annexin V 

propidium iodide (PI) apoptosis detection kit I (BD Pharmingen™; Cat. No.556547), 

which was used as per manufacturer’s instructions. In brief the assay utilises the 

plasma membrane disruption that occurs in early apoptosis. The assay uses a vital dye 

called PI, which is excluded by cells with intact plasma membranes; however damaged 

or dead cells are unable to exclude PI. The membrane phospholipid phosphatidylserine 

(PS) translocates from the inner to the outer leaflet of the plasma membrane during 

early apoptosis (Bossy-Wetzel & Green., 2000). Consequently PS is exposed to the 

external cellular environment. Annexin V is calcium dependent binding protein that that 

can bind to PS. Therefore this assay uses both PI and Annexin V to identify early and 

late apoptotic cells; in summary viable cells exclude PI and prevent binding of Annexin 

V, early apoptotic cells are PI negative but Annexin V positive, and those cells in late 

apoptosis or dead are both Annexin V and PI positive. In this assay the Annexin V is 

bound to a flurochrome (FITC) which allows it to be probed by flow cytometry. 

Etoposide was used as a pro-apoptotic drug for the apoptosis assay. Etoposide 

interacts with DNA to form a ternary complex along with the enzyme topoisomerase II. 

This complex serves to inhibit DNA re-ligation. This ultimately leads to DNA breaks 
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which cannot pass into the mitotic phase of cell division and subsequently cell death. 

For the HCA7 cell line 20 μM of etoposide had been shown by others within the 

research group to be pro-apoptotic over a 24 hour period, so this dose and duration 

was confirmed by the candidate before the RvE1 experiments were performed. 

However when Caco2 cells were dosed with 20 μM of etoposide over 24 hours there 

was no clear apoptosis induction. The candidate subsequently performed an 

experiment over 72 hours using 50 μM of etoposide, in order to determine re-

producible apoptotic experimental conditions in the Caco2 cells before the RvE1 

experiments were carried out. 

HCA7 and HT29 were grown to 80% confluency and Caco2 cells grown to 100% 

confluency (in order to maximize ChemR23 expression in the Caco2 cells, see section 

3.4.1.2). Cells were grown on sterile tissue culture treated non-pyrogenic 6-well plates. 

Cells were then washed three times in sterile DPBS. The cells were then dosed with 

either etoposide 20 µM (HAC7 cells) or 50 µM (Caco2 cells) (positive apoptosis 

inducing control) or 1µM RvE1 for 24, 48 or 72 hours, with appropriate carrier controls 

(DMSO or ethanol carrier), (0.1% v/v). Cells were harvested by trypsinisation (see 

section 3.1.2) and then centrifuged at 400 x g for five minutes prior to re-suspension in 

50 µL DPBS and counted using a haemocytometer. The cells were then prepared for 

flow cytometry analysis using the FITC Annexin V PI apoptosis detection kit I (BD 

Pharmingen™; Cat. No.556547), which was used as per manufacturer’s instructions. In 

brief, the cell pellet was washed twice with cold DPBS and then re-suspended in 1X 

Binding Buffer at a concentration of 1 x106 cells/ mL. A volume of 100 μL cell 

suspension (1 x105 cells) was transferred into a 5 mL tube. Then 5 μL of FITC Annexin 

V and 5 µL PI was added to the cell suspension, before gently vortexing and incubating 

for 15 minutes at room temperature (25oC) in the dark. A further 400 µL of 1X Binding 

Buffer was then added to each tube before the sample was analysed. Staining controls 

with no FITC and no PI, PI alone, or FITC alone were included. The samples where run 

on a Beckton Dickinson LSRII 3 laser flow cytometer and analysed using BD FACS 

Diva software (v5.0.2). Three independent cultured experiments were completed for 

the HCA7 cell line and one for the Caco2 cell line. The candidate performed all data 

analyses. 

When carrier control treated Caco2 and HCA7 human CRC cells were analysed by the 

flow cytometry, two distinct populations on the forward and side scatter dot blots were 

seen, (labeled as 1 and 2 in Figure 74A (Caco2), Figure 75A (HCA7)). Population 1 

was made up of cellular debris (PI positive or FITC Annexin V and PI positive (late 

apoptotic cells or cell debris) and Population 2 on analysis was a cell population that 

was viable (FITC Annexin V and PI negative). As the aim of this experiment was to 
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identify apoptosis occurring as a result of RvE1 population 2 was gated for the 

subsequent apoptosis analysis.  

 Gene expression analysis 5.4.5

 Sample preparation 5.4.5.1

Caco2 cells were grown to 100% cell confluency, T84 cells were grown to 80% cell 

confluency in sterile tissue culture treated non-pyrogenic six well plates. The cells were 

then dosed with either carrier control (ethanol) or RvE1 for between 0-24 hours (time 

course specific to the experiment), the cells were then washed three times with sterile 

PBS (1X) before being trypsinised (see section 3.2.1.2). Cell incubations with carrier 

control or RvE1 were carried out in specific cell culture medium without FBS.  

For the ALPI experiment a time course was initially performed over eight hours (0, 4 

and 8 hour time points) using a 100 nM RvE1 dose. This replicated as closely as 

possible the conditions published by Campbell et al., (2010). Who showed a five to six 

fold induction in ALPI mRNA expression in RvE1 (100 nM) dosed Caco2 cells after four 

hours with induction still evident after eight hours (2-3 fold) and 12 hours (2 fold). A 

further experimental condition was included investigating for ALPI gene induction after 

six hours of 500 nM RvE1 treatment to the Caco2 cells, looking for a concentration 

dependent effect. 

For the CD55 study the candidate performed a time course experiment over 24 hours 

before completing a dose study at six hours, thus including the published experimental 

conditions used by Campbell et al., (2010), who showed a three fold and two fold 

inducton in CD55 protein expression in T84 and Caco2 cells respectively. 

 Ribonucleic acid extraction 5.4.5.2

As per section 3.2.2.2. 

 First strand complementary deoxyribonucleic acid synthesis 5.4.5.3

As per section 3.2.2.3. 

 

 Amplification of complementary deoxyribonucleic acid by quantitative 5.4.5.4

polymerase chain reaction 

Primers for qPCR were designed by TaqMan gene expression assays (Life 

Technologies, UK). Target genes were ALPI and CD55 and the housekeeping gene 

control was β-actin, details shown in Table 1.  
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PCR reaction mixes were prepared according to manufacturer’s instructions as per 

section 3.2.2.4. In brief a one in two dilution of cDNA to nuclease free water (Severn 

Biotech Ltd, Cat.No. 20-9000-01) was prepared for both ALPI and CD55 studies. Each 

10 µL reaction volume was therefore made up of 5.5 µL (Universal MM II and TaqMan 

gene expression assay) and 4.5 µL (cDNA and Nuclease free water), (summarised 

Table 9).  

 

 

 

 

 

 

Table 9. TaqMan gene expression assay reaction contents for the ALPI and CD55 

studies 

 

 

 Intracellular calcium influx assay 5.4.6

 Sample preparation 5.4.6.1

5.4.6.1.1 Human peripheral blood monocytes  

Human plasma samples were collected from healthy volunteers who had not taken 

medication for at least two weeks prior to the samples being taken. Approval for the 

blood sampling was undertaken under the approval of the Leeds East Research Ethics 

Committee (REC reference 07/Q1206/47) Multidisciplinary Research Tissue Bank (Dr. 

Gina Doody). 

A total of 10 mL of blood was taken from one volunteer in two six mL VACUTTE® 

coagulation sodium citrate 3.2% tubes. The Lymphoprep (Stemcell Technologies, Cat 

No;07801) was mixed thoroughly before use. Twenty millilitres of Lymphoprep was 

added to a 50 mL plastic falcon tube. The 10 mL of blood collected was then mixed 

with an equal volume of PBS containing 2% FBS. This then was carefully layered on 

top in order to reduce mixing of the blood with the Lymphoprep. The sample was then 

centrifuged at 800 x g for 20 minutes at room temperature. The upper plasma layer 

was then removed and discarded. The mononuclear cell layer at the plasma-

Lymphoprep interface was then carefully removed. The mononuclear cells were then 

re-suspended in 10 mL in isotonic PBS (without CaCl2 and MgCl2) and then centrifuged 
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at 200 x g for 10 minutes. The cells were then resuspended in sterile PBS containing 

10% FBS and a viability count as in section 3.2.1.3. The PBMCs cells where then used 

for the intracellular influx assay, detailed below. 

5.4.6.1.2 THP-1 cells 

THP-1 human acute monocytic leukaemia cell line was grown in suspension in cell 

culture medium (RPMI 1640 GlutaMAXTM+10% FBS) to a cell concentration of 1x106 

cells/mL. The cells were then centrifuged at 400 x g for five minutes. The cells were 

then re-suspended in sterile DPBS and counted, in preparation for the calcium influx 

assay. 

 Intracellular calcium measurement 5.4.6.2

Fura-2 is a ratiometric calcium indicator dye that allows the measurement of 

intracellular calcium. The acetoxymethyl ester (AM) form is membrane permeable and 

once inside the cell the AM group is cleaved by non-specific esterases to produce the 

charged and active form (Fura-2) that is able to bind calcium with a high affinity. Upon 

binding calcium there is a spectral shift in fura-2 absorption which is proportional to the 

concentration of calcium causing this ratio to change (340/380 nm ratio or ∆ F Ratio). 

This allows the measurement of intracellular calcium. 

Thapsigargin belongs to an enzyme group of sarco/ endoplasmic reticulum calcium 

ATPases. Thapsigargin causes an increase in intracellular calcium, by blocking the 

cell’s ability to pump calcium back into the sarcoplasmic and endoplasmic recticulum. 

ATP has been shown to increase intracellular calcium levels in in vitro  

(Bandyopadhyay et al., 2000). Both the Thapsigargin and ATP experimental solutions 

were provided to the candidate by the Beech group. As RvE1 has been shown to 

induce intracellular calcium levels (Arita et al., 2007), and block subsequent 

intracellular calcium levels in human PBMCs, then LTB4 (Cayman Chemical 100 nM) 

was used as a positive control in this assay. 

PBMCs and THP-1 human acute monocytic leukaemia cells were counted and the cells 

pelleted by centrifugation at 300 x g for five minutes. The PBMCs and THP-1 human 

cells were then loaded with 2 μM Fura-2 AM, 0.01% pluronic acid (5% v/v double 

distilled water) in standard bath solution (SBS), (130 mmol/ L sodium chloride (NaCl), 5 

mmol/ L potassium chloride (KCl), 8 mmol/ L D-glucose, 10 mmol/ L HEPES, and 1.2 

mmol/ L magnesium chloride (MgCl2), 1.5 mmol/ L calcium chloride (CaCl2) titrated to 

pH 7.4 with sodium hydroxide (NaOH) at 37oC for one hour. The PBMCs and THP-1 

cells were then centrifuged at 300 x g for five minutes. The pelleted cells were washed 

once with SBS at room temperature. The PBMCs and THP-1 cells were then re-
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suspended at 1x106/ml in SBS. Then 200,000 cells of the cell suspension was added to 

each well of a 96 well plate. The cells were then centrifuged in a 96 well plate at 300 x 

g for five minutes, in order to let cells the form a monolayer at the bottom of each well. 

All test compounds were prepared at five times the wanted final test concentration in a 

96 well plate; this is referred to as the compound plate, as addition to the test plate 

meant they underwent a 1 in 5 dilution.  

The 96 well plate containing the cells was then placed in FlexStation II384 (Molecular 

Devices, California). The FlexStation II is an automated device that adds compounds 

from a compound plate onto a prepared 96 well cell plate and measures the 

subsequent changes in fluorescence.  The FlexStation II uses the Softmax Pro 4.7.1 

software (Molecular Devices) to measure excitation wavelengths (340 nm, 380 nm) and 

emission wavelengths (510 nm). All experiments were conducted at room temperature. 

The FlexStation II384 was programmed to add 50 µL of compound solution to the 200 µL 

in the cell plate thus producing the chosen concentration. Compound solutions included 

carrier control (ethanol), Thapsigargin (positive assay control), ATP (positive assay 

control), LTB4 (positive control) and RvE1. 

 

 High performance liquid chromatography electrospray ionisation tandem 5.4.7

mass spectrometry analysis of Resolvin E1 standard 

 Sample preparation for Resolvin E1 identification 5.4.7.1

Aliquots of RvE1 in a volume of 10 μL were stored at -80oC (25 µg/ 500 µL in ethanol) 

ahead of analysis. These aliquots were taken from the supplied Cayman Chemical 

RvE1 standard. Fresh aliquots were used for each new experimental stock solution in 

the gene expression, cell viability and apoptosis assays.  

In brief the sample was analysed on a Waters Alliance 2695 electrospray (ESI) triple 

quadrupole Quattro Ultima mass spectrometer (MS) (Waters, Elstree, Hertsfordshire, 

UK), (LC/ESI-MS/MS). Instrument control and data acquisition were performed using 

the MassLynx™ version 4.0 software. The ESI-MS/MS was performed by the Nicolaou 

group. The sample was placed in a clean test tube and the solvent (ethanol) was 

evaporated under a stream of nitrogen. The residue was then dissolved in 100 µL of 

ethanol. The extracted sample was then analysed by LC-ESI-MS/MS and the mass 

spectrum collected. The MS collected was then compared to a published mass 

spectrum for RvE1. 
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 Sample preparation for Resolvin E1 stability experiment 5.4.7.2

For the RvE1 stability experiment, sample preparation and subsequent data analysis 

post the LC/ESI-MS/MS analysis was performed by the candidate. In summary three 

100 nM solutions were prepared in culture medium (RPMI 1640 GlutaMAXTM without 

FBS). The samples were then incubated at 37oC for zero, one or 24 hours, then placed 

at -80oC until analysis. Prior to lipid extraction samples were thawed on ice and 

adjusted to 15% (v/v) methanol solution by adding 100% methanol (HPLC-grade, 

Fisher Scientific, Cat. No. M/4056/17). The internal standard 12-HETE-d8 (2 ng/ µL) 

was added to each at a final concentration of 800 pg/ µL. The samples were acidified 

with 0.1M hydrochloric acid (HCl; ACS reagent; Cat.No 320331) to pH 3.0 and applied 

to separate activated solid-phase extraction cartridges (SPE) cartridges C18-E (500 

mg, 6 mL; Cat. No 8B-S001-HCH) as below. The STRATA SPE cartridges were 

preconditioned with 20 mL of methanol followed by 20 mL of de-ionised water. The 

extraction procedure was performed using a vacuum manifold (Phenomenex). After the 

samples were applied, the cartridges were washed with 20 mL 15% Methanol, 20 mL 

de-ionised water (ELGA system, 18.2 MΩ-cm purity, Model Ultra Ionic, Part 

No.PRIPLB0450, High Wycombe, UK) and 10 mL Hexane (HPLC-grade, Fisher 

Scientific, Cat. No. H/0406/17), in succession. The lipid mediators were then eluted in 

15 mL methyl formate (HPLC-grade, Fisher Scientific, Cat. No.12682-0025). The 

fraction was collected in a clean test tube and the solvent was evaporated under a 

stream of nitrogen. The residue was dissolved in 100 µL ethanol and stored at -20oC 

prior to analysis. Peak integrations and calculations of S/N ratios were performed using 

the MassLynx™ v4.0 software (Waters). The peak-area ratio of the RvE1 against 12-

HETE-d8 (IS) was calculated.  

 Statistical analysis 5.4.7.3

ALPI and CD55 mRNA expression changes in human CRC cells were tested using the 

Mann-Whitney U test and Kruskal-Wallis one-way analysis of variance (ANOVA) as 

appropriate. Statistical significance was assumed if the P value was less than 0.05.  
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 Results 5.5

 Mass spectrometry analysis of the Resolvin E1 Cayman Chemical 5.5.1

standard and stability at 37oC 

As RvE1 mediated biological activity was being investigated via cell viability and 

apoptosis assays it was important that the candidate validated that the Cayman 

Chemical’s RvE1 product actually contained RvE1. In order to investigate this two 

different experimental objectives were performed, they were: 

1. Does the Cayman Chemical’s RvE1 product contain RvE1? 

2. Does the Cayman Chemical’s RvE1 product remain stable in aqueous solution? 

 

 Does the Cayman Chemical Resolvin E1 product contain chemically 5.5.2

recognisable Resolvin E1? 

In order to confirm that the Cayman Chemicals RvE1 standard contain RvE1 an ESI-

MS/MS analysis was performed on the product. ESI-MS/MS analysis confirmed the 

presence of RvE1 in the Cayman Chemical sample as shown in the mass spectrometry 

spectrum (Figure 74). Whilst both spectra show the same diagnostic peaks there are 

some differences in the relative abundance of fragmented ions and this is likely due to 

the fact that two different instruments have been used to record the spectra (Candidate 

used triple quadruple, Lu et al., 2007 used an ion trap). 

 Does synthetic Resolvin E1 remain stable in aqueous solution?  5.5.3

The Cayman Chemical RvE1 was incubated in culture medium at 37oC over a 24 hour 

period and was subsequently analysed by LC/ESI-MS/MS. LC/ESI-MS/MS analysis of 

the RvE1 confirmed that RvE1 was present in each of the samples analysed over the 

24 hour period (Figure 75A), when compared to the RvE1 standard used by the 

Nicolaou Group. Furthermore  the levels in the samples incubated remained stable, as 

shown by the area ratio which was calculated by dividing the peak area for RvE1 by the 

peak area of the internal standard(12-HETE-d8) over time (Figure 75B). However only 

one sample was used for each experimental condition. 

In summary the RvE1 remained stable when incubated in culture medium at 37oC over 

a 24 hour period. 
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Figure 74. Electrospray ionization product ion spectrum for RvE1. 

(A) Product ion spectra obtained from synthetic RvE1 used in the cell viability, apoptosis and gene expression assays. (B). Product ion spectra 

obtained from the analysis of synthetic RvE1, taken from Lu et al., 2007. The candidate’s RvE1 product spectra identified characteristic and stable 

ions consistent with other published mass spectra (Lu et al., 2007) 
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Figure 75. RvE1 identification and stability when incubated at 37oC for 24 hours.  

RvE1 (Cayman Chemical) was placed in culture medium and incubated at 37oC for up to 24 hours. RvE1 was then analysed by LC/ESI-MS/MS at 0 

hour, 1 hour and 24 hour incubation time point. (A) Comparison of the chromatogram at 0, 1 and 24 hours against RvE1 standard used by the 

Bradford Group. Two different multiple reaction monitoring (MRM) were used (349>205 and 349>195). (B) Ratio of RvE1 to internal standard (12-

HETE-d8) at 0, 1, 24 hour time points. MRM 349>195 was used to quantify RvE1 in the three samples. Data shown as a ratio of the peak area for 

RvE1 by that of the internal standard (12-HETE-d8). Data from one experiment.  
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 Effect of Resolvin E1 on human colorectal cancer apoptosis 5.5.4

When control Caco2 and HCA7 human CRC cells (culture medium and ethanol carrier 

v/v  dilution 0.1%) were analysed by the flow cytometry two distinct populations of 

cellular events, on the forward and side scatter dot blots, were seen, (labeled as 1 and 

2 in Figure 76A for the Caco2 cells and Figure 77A  for the HCA7 cells).  

On analysis of cell population one, it was shown to be predominantly late aoptotic or 

dead cells for both the Caco2 and HCA7 cells (under control conditions at 24 hours). 

For the Caco2 and HCA7 cells this gated cell population consisted of principally late 

apoptotic or dead cells (Table 10 & 11 respectively). 

 

 

 

 

 

 

 

Table 10. Caco2 human CRC cell viability in gated cell population 1 on flow 

cytometry. 

 

 

 

 

 

 

 

 

Table 11. HCA7 human CRC cell viability in gated cell population 1 on flow 

cytometry 
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On analysis of population two, the cell population was predominantly viable cells for 

both the Caco2 and HCA7 cells under control conditions at 24 hours (Table 12&13 

respectively). 

 

 

 

 

 

 

 

Table 12. Caco2 human CRC cell viability in gated cell population 2 on flow 

cytometry. 

 

 

 

 

Table 13. HCA7 human CRC cell viability in gated cell population 2 on flow 

cytometry. 

 

 

As the aim of this experiment was to identify apoptosis occurring as a result of RvE1 

treatment on the CRC cells (and positive control pro-apoptotic drug etoposide) then 

population two  was included in the gated population analysed (Figure 74B; Caco2 

cells and Figure 75B; HCA7 cells). This gating protocol was used for all further 

etoposide and RvE1 treated experiments when Caco2 and HCA7 human CRC cells 

were used.  



 167  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 76.  Flow cytometry forward and side scatter dot plot for the analysis of the Caco2 human CRC cell line.  

Untreated Caco2 human CRC cells were grown to 100% confluency where analysed by flow cytometry for apoptosis using a FITC Annexin V PI 

apoptosis assay. (A)Two distinct populations of cellular events are seen when Caco2 cells are analysed, defined by black line (1) and green line (2). 

(B) The cellular event population gated for the analysis is defined by the representative red line (3). 
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Figure 77. Flow cytometry forward and side scatter dot plot for the analysis of the HCA7 human CRC cell line.  

Untreated HCA7 human CRC cells were grown to 70% confluency where analysed by flow cytometry for apoptosis using a FITC Annexin V PI 

apoptosis assay. (A) Two distinct populations of cellular events are seen when HCA7 cells are analysed, defined by black line (1) and green line. (A). 

(B) The cellular event population gated for the analysis is defined by the representative red line (3). 
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The dose of etoposide needed to induce apoptosis and the length of time required to 

induce apoptosis in Caco2 was examined, in order to establish positive control 

conditions for apoptosis. Initially Caco2 human CRC cells were treated with either 

carrier control or 50 µM etoposide over 72 hours with apoptosis assessed at 24, 48 and 

72 hour time points. There was approaching 90% cell viability at 24 hours which was 

maintained at 48 hours and 72 hours in the untreated human CRC cells. In the 

etoposide treated cells the apoptosis effect on these cells was more clearly seen at 48 

hours with a reduction in cell viability and increase in cells in late apoptosis/ dead 

compared to the control, with further reduction in cell viability at 72 hours (Table 14).  

Clear induction in apoptosis was seen in etoposide treated Caco2 cells at 48 hours, so 

that this time point was utilised as a positive pro-apoptotic control in the RvE1 

experiments. The flow cytometry cellular event plots (FITC vs. PI) for the control and 

etoposide experiments are shown in Figure 78. 

 

 

 

Table 14. Caco2 human CRC cell apoptosis secondary to etoposide.  

(A) Control treated Caco2 cell data over 72 hours. (B) Etoposide treated Caco2 cell 

data over 72 hours. Data taken from one experiment. 
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Figure 78. Apoptosis in etoposide treated Caco2 human CRC cells (flow cytometry scatter plots). 

Caco2 cells were treated with DMSO carrier or etoposide 50 µM for 72 hours and then analysed for apoptosis by flow cytometry. On the flow 

cytometry dot plots quadrant 3 (Q3) represents viable cells (FITC Annexin V and PI negative), Q4 represents early apoptotic cells (FITC Annexin V 

positive and PI negative), Q2 late apoptotic/ dead cells (FITC Annexin V and PI positive) and Q1 necrotic bodies (FITC Annexin V negative and PI 

positive). The data is shown from one cell cultured experiment. 
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HCA7 cells were treated with either carrier control or 20 µM etoposide over 48 hours 

with apoptosis assessed at 24 and 48 hours. There was clear induction in apoptosis at 

48 hours in the HCA7 human CRC cells (Data taken from one experiment Table 15; 

Figure 77 for the flow cytometry cellular event plots (FITC vs. PI) from a representative 

experiment). Etoposide at a concentration of 20µM for 48 hours was therefore used a 

positive control for the HCA7 experiments. (Appendix 43 for graphical data). Data taken 

from one experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 15. HCA7 human CRC cell apoptosis secondary to etoposide. 

(A) Control treated HCA7 cell data over 72 hours. (B) Etoposide treated HCA7 cell data 

over 72 hours. 
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Figure 79. Apoptosis in etoposide treated HCA7 human CRC cells (flow cytometry scatter plots). 

HCA7 human CRC cells were treated with DMSO carrier or etoposide 50 µM for 48 hours and then analysed for apoptosis by flow cytometry. On the 

flow cytometry dot plots quadrant 3 (Q3) represents viable cells (FITC Annexin V and PI negative), Q4 represents early apoptotic cells (FITC Annexin 

V positive and PI negative), Q2 late apoptotic/ dead cells (FITC Annexin V and PI positive) and Q1 necrotic bodies (FITC Annexin V negative and PI 

positive). The data is shown from one cell cultured experiment. 
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RvE1 (1 µM) treatment of Caco2 and HCA7 human CRC cells over a 72 hour period 

did not induce apoptosis in these cells. The control CRC cells remained stabily viable 

over the 72 hour period as did the RvE1 treated cells. There was no change in the 

percentage population of cells in the early apoptotic or late apoptotic cells when the 

RvE1 treated cells were compared with their respective control (Data for Caco2 human 

CRC cells Figure 80, and HCA7 human CRC cells Figure 82). The flow cytometry 

cellular event plots (FITC vs. PI) for the Caco2 cells are shown in Figure 81 and  

representative plots for the HCA7 cells is shown in Figure 83. These plots show 

visually that the cell population gated are not progressing differently through the 

different stages of cell apoptosis when the cells were treated with RvE1.  

Clear induction in apoptosis was established in the etoposide positive control. With 

etoposide treated Caco2 human CRC cells and HCA7 human CRC (Figure showing 

reduced cell viability with increased apoptotic cells after 48 hours of treatment (Caco2 

Figure 84; HCA7 Figure 85). The candidate also investigated whether RvE1 induced 

apoptosis in the HT29 human CRC cells line (low ChemR23 protein expression). No 

RvE1 mediated induction of apoptosis was found (data not shown). 

In conclusion no RvE1 mediated induction in apoptosis was identified in either the 

Caco2 or HCA7 human CRC cell lines, using these in vitro conditions. 
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Figure 80. Apoptosis in RvE1 treated Caco2 human CRC cells.  

Caco2 human CRC cells were treated with control carrier or RvE1 (1 µM) and then analysed for apoptosis by flow cytometry at 24, 48 and 72 hour 

time points. (A) Caco2 human colorectal cancer (CRC) cells were treated control carrier (ethanol) for 24 hours.  (B) RvE1 1 µM for 24 hours. (C) 

Control carrier (ethanol) for 48 hours. (D) RvE1 1 µM for 48 hours. (E) Control carrier (ethanol) for 72 hours. (F) RvE1 1 µM for 72 hours.   Number 

above bar represents percentage of cell population. Data from one experiment. 
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Figure 81. Apoptosis in RvE1 treated Caco2 human CRC (flow cytometry scatter plots).  

Caco2 human CRC cells were treated with control carrier or RvE1 (1 µM) and then analysed for apoptosis by flow cytometry at 24, 48 and 72 hour 

time points. This data is the original flow cytometry dot plots. On the flow cytometry dot plots quadrant 3 (Q3) represents viable cells (FITC Annexin V 

and PI negative), Q4 represents early apoptotic cells (FITC Annexin V positive and PI negative), Q2 late apoptotic/ dead cells (FITC Annexin V and PI 

positive) and Q1 necrotic bodies (FITC Annexin V negative and PI positive) 

.
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Figure 82. Apoptosis in RvE1 treated HCA7 human CRC cells.  

HCA7 human CRC cells were treated with control carrier or RvE1 (1 µM) and then analysed for apoptosis by flow cytometry at 24, 48 and 72 hour 

time points. (A) HCA7 human colorectal cancer (CRC) cells were treated control carrier (ethanol) for 24 hours.  (B) RvE1 1 µM for 24 hours. (C) 

Control carrier (ethanol) for 48 hours. (D) RvE1 1 µM for 48 hours. (E) Control carrier (ethanol) for 72 hours. (F) RvE1 1 µM for 72 hours.   D Number 

above bar represents mean percentage of cell population. The data was collected from three independent cell cultured experiments, and shown as 

mean with standard error of the mean. 
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Figure 83. Apoptosis in RvE1 treated HCA7 human CRC cells (flow cytometry scatter plots).  

HAC7 human CRC cells were treated with control carrier or RvE1 (1 µM) and then analysed for apoptosis by flow cytometry at 24, 48 and 72 hour 

time points. This data is the original flow cytometry dot plots. On the flow cytometry dot plots quadrant 3 (Q3) represents viable cells (FITC Annexin V 

and PI negative), Q4 represents early apoptotic cells (FITC Annexin V positive and PI negative), Q2 late apoptotic/ dead cells (FITC Annexin V and PI 

positive) and Q1 necrotic bodies (FITC Annexin V negative and PI positive). The data is shown from one cell cultured experiment that is 

representative of the dot plots obtained from three independently cultured cell experiments.  
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Figure 84. Apoptosis in etoposide treated Caco2 human CRC cells. 

Caco2 human CRC cells were grown to 90% cell confluency before being treated with 

50 µM etoposide for 48 hours. Apoptosis was measured by flow cytometry using a 

FITC Annexin V PI assay. (A) Apoptosis results for Caco2 cells treated with carrier 

control (DMSO). (B) Apoptosis results for Caco2 cells treated with etoposide 50 µM for 

48 hours.  
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Figure 85. Apoptosis in etoposide treated HCA7 human CRC cells. 

HCA7 human CRC cells were grown to 80% cell confluency before being treated with 

20 µM etoposide for 48 hours. Apoptosis was measured by flow cytometry using a 

FITC Annexin V PI assay. (A) Apoptosis results for HCA7 cells treated with carrier 

control (DMSO). (B) Apoptosis results for HCA7 cells treated with etoposide 20 µM for 

48 hours.  
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 Effect of Resolvin E1 on human colorectal cancer cell viability 5.5.5

Caco2 human CRC cells were chosen as they expressed the highest levels of 

ChemR23 protein and HCA7 human CRC cells as they had low ChemR23 expression 

(see Figure 19). As the candidate had found ChemR23 induction at 100% cell 

confluency in Caco2 cells (see 3.4.1.2). Cell viability assays where performed when the 

Caco2 cells were fully confluent. As discussed there was at least a four fold increase in 

ChemR23 in Caco2 cells.  

In the cell viability assays Caco2 and HCA7 cells were dosed with RvE1 daily for a total 

of 72 hours at a range of concentrations up to 1 µM. This range encompassed the 

doses used in the published literature showing RvE1 mediated effects (10-100 nM), 

(Serhan et al., 2000, Arita et al., 2005, Campbell et al., 2007). The RvE1 was dosed 

daily in culture medium free of FBS to avoid protein binding of the RvE1 in the serum.  

There was no clear effect on cell viability identified when RvE1 was dosed on either 

Caco2 (Figure 86A) or HCA7 (Figure 86B) human CRC cells when compared to carrier 

control treated cells. 
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Figure 86.  Determination of the cytotoxicity of RvE1 by MTT assay in the human CRC cell lines Caco2 and HCA7.   

Caco2 and HCA7 human CRC were treated with a range of RvE1 concentrations (as defined above in the graphs). (A) RvE1 treated Caco2 human 

CRC cell viability. (B) RvE1 treated HCA7 human CRC cell viability. Data shown from three independent cell cultured experiments, shown as mean 

with standard error of the mean. 
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 Measurement of intestinal alkaline phosphatase expression in Resolvin 5.5.6

E1 treated human colorectal cancer cells 

As no RvE1 mediated effect was found on human CRC cell survival and apoptosis 

assays, the candidate sought to confirm the biological activity of the Cayman Chemical 

RvE1, used in these assays. As RvE1 has been confirmed in the published literature to 

induce ALPI mRNA expression in Caco2 cells, the candidate replicated the 

experimental conditions used by Campbell et al., (2010).  

Caco2 human CRC cells at 100% cell confluency were treated with 100 nM RvE1 over 

eight hours. No clear induction in ALPI mRNA was identified, when compared to control 

cell expression (Figure 87). There was no clear change in ∆-Ct between the control and 

RvE1 treated cells. The expectation would have been reduction in the ∆-Ct value for 

the RvE1 treated cells compared to the control, which would have signified increased 

expression of ALPI. However this was not seen over the eight hour time period.  The 

individual Ct values for β-actin and ALPI with respective ∆-Ct values are shown in 

Table 16. 

 

 

 

 

 

 

 

 

 

 

 

Figure 87. Time dependent expression of ALPI mRNA expression in RvE1 treated 

Caco2 human CRC cells. 

Caco2 human CRC cells were grown to 100% cell confluency. The cells were then 

treated with RvE1 over an eight hour period, before mRNA was quantified for intestinal 

alkaline phosphatase (ALPI) expression. ALPI mRNA expression shown as a ∆-Ct 

value in RvE1 treated Caco2 human CRC cells over eight hours, one independent 

experiment.
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As no induction of ALPI was found, the candidate increased the RvE1 dose used from 

100 nM to 500 nM, looking for a dose mediated effect. A six hour time point was used 

to collect the samples for mRNA analysis as Campbell et al., (2010) had found maximal 

ALPI induction at this time point. No significant increase in ALPI was identified, when 

compared to control cell expression (Figure 88), Kruskal-Wallis Test P = 0.909. The ∆-

Ct was 8.0 (SEM 0.8) for the control, 5.3 (SEM 0.4) for the RvE1 (100 nM) treated 

cells, 8.8 (SEM 0.2) for the RvE1 (200 nM) treated cells, 8.4 (SEM 0.1) for the RvE1 

(100 nM) treated cells. The individual Ct values for β-actin and ALPI are shown in 

Table 17. No ALPI induction was seen when the RvE1 time course and dose response 

experiments were carried out in T84 human CRC cells (Appendix 44 and 45, 

respectively). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 88. Dose dependent expression of ALPI mRNA in RvE1 treated Caco2 

human CRC cells. 

Caco2 human CRC cells were grown to 100% cell confluency. The cells were then 

treated with a range of RvE1 doses, before mRNA was quantified for ALPI expression. 

ALPI expression in 100 nM, 200 nM, and 500 nM RvE1 treated Caco2 human CRC 

cells after 6 hours, three independent experiments. Data presented as mean ∆-Ct with 

standard error of the mean, data analysed using SPSS (Kruskall-Wallis Test, P = 

0.909).
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Table 16. Cycle threshold (Ct) values for β–actin and ALPI for the RvE1 treated Caco2 time course experiment. 

 

 

 

 

 

 

 

 

Table 17. Cycle threshold (Ct) values for β–actin and ALPI for the RvE1 treated Caco2 dose response experiment.
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 Measurement of CD55 (decay accelerating factor) expression in Resolvin 5.5.7

E1 treated human colorectal cancer cells 

As no RvE1 mediated effect on ALPI expression in the Caco2 or T84 human CRC 

cells, the candidate examined for an RvE1 mediated effect in CD55 mRNA expression 

in the same CRC cell lines. As discussed, RvE1 has been confirmed in the published 

literature (Campbell et al., (2010)) to induce CD55 expression in T84 cells. The authors 

had shown a three fold induction in CD55 in T84 cells and a two fold induction in Caco2 

cells (RvE1 100 nM for 24 hours). 

The Caco2 cells were initial investigated by the candidate. On dosing 100% confluent 

Caco2 cells with 100 nM RvE1 over an eight hour time period, no clear induction in 

CD55 mRNA was identified (Figure 89). The individual Ct and ∆-Ct values are shown in 

Table 18. There was no reduction in the ∆-Ct in the RvE1 treated cells compared to 

their respective control, which would be expected if CD55 mRNA expression was 

induced in these cells by RvE1.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 89. CD55 mRNA expression in RvE1 treated Caco2 human CRC cells. 

Caco2 human colorectal cancer (CRC) cells were grown to 100% cell confluency. The 

cells were then treated with RvE1, before mRNA was quantified over an eight hour 

period. Data shown from one experiment, shown as a delta Ct values. 
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As no time dependent effect was established by the candidate on the CRC cells by 

RvE1, the dose of RvE1 was then increased to investigate for a dose dependent effect 

on these CRC cells, the six hour time point was chosen. No significant increase in 

CD55 was identified (Figure 90), Kruskal-Wallis Test P = 0.210. No CD55 induction 

was identified at any of the doses of RvE1 used by the candidate as evidenced by an 

absence of ∆-Ct reduction in the RvE1 treated compared to their corresponding control 

(see Table 19 for individual Ct and ∆–Ct values).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 90. CD55 mRNA expression in RvE1 treated Caco2 human CRC cells.  

Caco2 human colorectal cancer (CRC) cells were grown to 100% cell confluency. The 

cells were then treated increasing doses of RvE1 for six hours, before mRNA was 

quantified. Data is shown as mean delta Ct values with standard error of the mean, 

from three independently cell cultured experiments, data analysed using SPSS 

(Kruskall-Wallis Test,  P  = 0.210). 
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Table 18. Cycle threshold (Ct) values for the time course CD55 RvE1 treated Caco2 cells experiments. 

 

 

 

Table 19. Cycle threshold (Ct) values for CD55 in RvE1 treated Caco2 dose response experiments.  
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No CD55 mRNA induction was identified in RvE1 treated Caco2 cells by the candidate. 

RvE1 treatment of T84 human CRC cells had been shown to induce CD55 mRNA by 

Campbell et al. (2010). The candidate then investigated whether RvE1 treatment of 

T84 cells induced CD55 expression in vitro. 

There was no significant induction in CD55 found in the treated cells at four hours. The 

∆-Ct was 8.0 (SEM 0.1) in the control cells and 7.9 (SEM 0.1) in the RvE1 treated cells 

(Mann-Whitney U Test, P = 0.900). After eight hours there was still no CD55 induction 

found with a ∆-Ct of 7.8 (SEM = 0.1) in the control cells and 8.0 (SEM 0.1) in the 

treated cells (Mann-Whitney U Test, P = 0.700). Whilst after the 12 hour and 24 hour 

time points there was a fall in the ∆-Ct values compared to their respective controls this 

did not reach statistical significance. The ∆-Ct in the control cells after 12 hours was 7.9 

(SEM 0.1) and 7.5 (SEM 0.1) in the RvE1 treated cells (Mann-Whitney U Test, P = 

0.100); 7.5 (SEM 0.1). After 24 hours the ∆-Ct in the control cells was 7.5 (SEM 0.1) 

and 7.2 (SEM 0.1) in the treated cells (Mann-Whitney U Test, P = 0.100). Therefore on 

dosing the T84 human CRC cells with 100 nM RvE1 over a 24 hour time period, no 

significant induction in CD55 mRNA was identified (Figure 91). Table 20 shows the 

individual Ct values for β-actin and CD55 and respective ∆-Ct values.  

In order to examine for a dose dependent response in CD55 expression in RvE1 

treated T84 cells the candidate increased the RvE1 dose to 500 nM and examined for 

CD55 mRNA expression at 6 hours. No significant increase in CD55 was identified 

(Figure 92), Kruskal-Wallis Test P = 0.640. The ∆-Ct was 7.2 (SEM 0.2) for the control, 

6.8 (SEM 0.3) for the RvE1 (100nM) treated cells, 6.7 (SEM 0.8) for the RvE1 (200 nM) 

treated cells, 6.4 (SEM 0.3) for the RvE1 (100 nM) treated cells. The individual Ct 

values for β-actin and CD55 are shown in Table 21. 

In conclusion, no RvE1 mediated induction in CD55 was identified in Caco2 or T84 

human CRC cells. 
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Figure 91. CD55 mRNA expression in RvE1 treated T84 human CRC cells (100nM, 

24 hours). 

T84 human CRC cells were grown to 100% cell confluency. The cells were then treated 

with RvE1 (in cell culture medium without FBS), before mRNA was quantified. CD55 

expression in 100 nM RvE1 treated T84 cells over 24 hours Figure represents data 

from three independent experiments, data is shown as mean delta Ct (calculation by Ct 

value of CD55 minus Ct value of β–actin) with standard error of the mean. 
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Table 20. Cycle threshold (Ct) values for β–actin and CD55 for RvE1 treated T84 cells over 24 hours.
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Figure 92. CD55 mRNA expression in RvE1 treated T84 human CRC cells (0-500 

nM, 6 hours). 

T84 human CRC cells were grown to 100% cell confluency. The cells were then treated 

with RvE1 for eight hours (in cell culture medium with FBS), before mRNA was 

quantified. ALPI expression in 100 nM, 200 nM, 500 nM. Figure represents data from 

one experiment, figure B data is shown as mean delta Ct value (calculation by Ct value 

of CD55 minus Ct value of β–actin) with standard error of the mean, from three 

independently cell cultured experiment, data analysed using SPSS (Kruskall-Wallis 

Test, P = 0.640). 
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Table 21. Cycle threshold (Ct) values for β–actin and CD55 for the RvE1 treated T84 dose response experiment.
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 Investigation of Resolvin E1 mediated induction of intracellular calcium in 5.5.8

human peripheral blood monocytes and the THP-1 human acute 

monocytic leukaemia cells 

The candidate could not establish any RvE1 mediated effect on ALPI or CD55 mRNA 

expression. The concern was that the RvE1 used was not authentic. The candidate 

then sought to replicate other published work detailing RvE1 mediated effects. The 

candidate investigated for an RvE1 mediated effect on human PBMCs, where RvE1 

has been shown to increase intracellular calcium (Arita et al., 2007). The authors 

proposed that RvE1 increased intracellular calcium levels through the GPCR BLT1. 

The candidate replicated the experimental conditions used by Arita et al., (2007) in 

order to establish the biological activity of the RvE1 used in the experimentation to 

date. 

Human PBMCs were collected and dosed with RvE1 (100 nM and 200 nM). No rise in 

intracellular calcium levels was identified in the RvE1 treated PBMCs (see Figure 93A). 

A clear increase in intracellular calcium is seen in the thaspsigargin treated cells 

confirming that the assay was sensitive to an intracellular calcium induction.  No 

increase in calcium was found with ATP, so was not used in the next experiment. The 

candidate then increased the concentration of RvE1 up to 2 µM. Again no RvE1 

mediated effect was found in the PBMCs (THP-1, Figure 93B). Furthermore, no LTB4 

mediated increase was seen in either experiment.  

As the candidate had shown that there was BLT1 protein expression by the THP-1 

cells (section 3.3.1.2) these cells were also investigated for RvE1 mediated induction in 

intracellular calcium. Despite using doses of RvE1 up to 2 mM no RvE1 mediated 

induction was found. There was an induction found in the thapsigargin and ATP 

controls (see Figures 94A & B). Moreover, no LTB4 mediated increase was identified 

either.  

In conclusion, no RvE1 mediated rise in intracellular calcium was observed in human 

PBMCs or by the BLT1 protein expressing human acute monocytic leukaemia THP-1 

cell line. Therefore the biological activity of Cayman Chemical RvE1 could not be 

proven. 
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Figure 93. Measurement of intracellular calcium levels in RvE1 treated human 

PBMCs. 

Human PBMCs were loaded with fura 2 and then treated with either thapsigargin, ATP, 

LTB4 or RvE1. (A) PBMCs were treated with LTB4 (100-200 nM) or RvE1 (100-200 

nM). (B) PBMCs were treated with LTB4 (500-2000 nM) or RvE1 (500-1000 nM). Data 

shown as mean with standard error of the mean from triplicate values obtained at each 

time point from one experiment.  
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Figure 94. Measurement of intracellular calcium levels in RvE1 treated human 

THP-1 acute monocytic leukaemia cells. 

THP-1 cells were loaded with fura 2 and then treated with either: (A) LTB4 (100 nM) or 

RvE1 (100 nM. (B) LTB4 (500-2000 nM) or RvE1 (500-1000 nM). Data shown as mean 

with standard error of the mean from triplicate values obtained at each time point from 

one experiment. 
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 Discussion 5.6

Confirmation that the Cayman Chemical RvE1 product contained chemically 

recognisable RvE1 was then sought by the candidate. ESI-MS/MS analysis confirmed 

that the Cayman Chemical product contained RvE1. The ESI-MS/MS product spectra 

identified characteristic and stable ions consistent with other published mass spectra 

(Lu Y et al., 2007). The slight differences that were seen in the spectra are due to the 

fact two different methods to obtain the ion spectral pattern were used, as discussed. 

Another possibility is that the RvE1 is being rapidly broken down in the experimental 

solution ahead. Therefore the candidate aimed to confirm that the RvE1 remained 

stable at 37oC in aqueous solution, thus reflecting the cell conditions at which RvE1 

would be placed in the gene expression, cell viability and apoptosis assays. Overall the 

findings supported that the Cayman Chemical RvE1 remained stable in aqueous 

solution at a time point that exceeded the length of time that the RvE1 was dosed on 

the CRC cells in the cell viability, gene expression and intracellular calcium assays. 

Whilst accurate quantification could not be made there was no clear reduction in RvE1 

when presented as a ratio against the IS over the 24 hour period, however the concern 

was that there was rapid breakdown of the RvE1 is doubtful. Another limitation would 

be the fact that this experiment was only performed once by the candidate. 

RvE1 has been shown to be a potent anti-inflammatory lipid mediator through effects 

on the synthesis of proinflammatory cytokines and inflammatory cell migration (Serhan 

et al., 2000 & 2002; Arita et al., 2005b; Campbell et al., 2007). The candidate aimed to 

establish whether RvE1 exerts any in vitro effects on CRC cell survival. 

Confirmation of both the presence and stability of RvE1 provided evidence that the 

absence of an RvE1 mediated CD55 or ALPI mRNA is unlikely to be due to an 

absence of RvE1, or secondary to rapid non-enzymatic breakdown in solution. 

However as there was no positive control used for these qPCR studies one cannot 

exclude the possibility that the primers used were not specific. Further studies should 

look to optimise or identify a reliable positive control that results in clear ALPI or CD55 

induction. 

The candidate used the confluency dependent ChemR23 induction in Caco2 CRC cells 

when exploring for an RvE1 mediated effect on cell viability and apoptosis assays. The 

rationale being that any biological mediated effect of RvE1 through the ChemR23 

receptor would be most likely seen when the Caco2 cells are at full cell confluency. The 

candidate could not detect RvE1 mediated effects on cell growth and apoptosis. The 

apoptosis assays required that the CRC cells were grown in culture medium containing 

FBS. Absence of FBS in the medium over the course of the assay would have resulted 



197 

 

in nutritional deprivation of the cells and subsequent cell death which would have made 

interpretation of the cell viability and apoptosis impossible. Interestingly the candidate 

had shown during the EPA viability assays on a number of different cell lines that EPAs 

negative effect on cell viability was enhanced when made up in culture medium free of 

FBS (see Appendix 46). Therefore something is limiting the EPA effects on cell viability 

when made up in culture medium containing FBS. Therefore a reason for a lack of 

affect on apoptosis in this experimental design may be the presence of FBS in the 

culture medium. The candidate attempted to limit any RvE1 protein interaction (in FBS) 

in the cell viability assays by dosing the cells with RvE1 in culture medium without FBS 

for three hours in each 24 hour cell culture period. However any small effect of RvE1 

on cell viability may have been lost as a consequence of the repeated cell washings 

that were required before and after RvE1 dosing, as outlined in the methods section 

(5.4.3.1). Another reason for an absence of RvE1 mediated effects on cell viability 

could lie in the fact that the candidate did not have biologically active RvE1. It has been 

shown that the chirality of the 18-hydroxyl group with RvE1 has effects on the potency 

of RvE1 as discussed. However this is unlikely to be a factor as biological activity has 

been established in both R and S chiral forms (Oh et al., 2011).  

To confirm that the RvE1 standard contained biologically active RvE1 and substantiate 

the in vitro cell viability and apoptosis assay findings, two different gene expression 

assays were examined. As RvE1 has been shown to induce CD55 protein over 24 

hours (> three fold) and ALPI mRNA expression (> five fold) via ChemR23 CRC cells 

(Campbell et al., 2010), these experiments were replicated. When the candidate 

treated T84 and Caco2 CRC cells RvE1, no significant CD55 mRNA induction was 

found. When confluent Caco2 cells were treated with 100 nM RvE1 over 8 hours no 

ALPI mRNA induction was identified. The lack of a positive control condition in the 

assays, prevented firm conclusions being made on the gene expression findings. 

Chemerin, a known agonist of the ChemR23 receptor, has been shown to induce ALPI 

expression and could be used as future positive control, if this assay was to be 

repeated. The ALPI gene induction identified by Campbell et al. (2010) may have been 

as a consequence of higher endogenous levels of ChemR23 protein expression in the 

in vitro cell lines they used. Future studies could look to overexpress ChemR23 in a 

CRC cell line, aiming to maximise any RvE1 mediated CD55 or ALPI induction that 

may be occurring. The candidate performed the gene expression assays in culture 

medium without 10% FBS, thus removing any potential inhibition of RvE1 through the 

proteins and lipids contained within the FBS, thus replicating the culture conditions 

used by Campbell et al., 2010.  
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As no RvE1 mediated CD55 and ALPI gene expression was identified, a further assay 

aimed at establishing the RvE1 activity was sought by the candidate. Previous work 

had shown that RvE1 increased intracellular calcium levels in PBMCs (Arita et al., 

2007). The candidate replicated as closely as possible the experimental methodology 

of Arita and colleagues (2007). Using human PBMCs and the BLT1 expressing cell line 

THP-1 (section 3.3.1.2) no RvE1 mediated effect on intracellular calcium levels was 

identified in either cell. Furthermore no LTB4 mediated induction in PBMCs or THP1 

cells was identified, with LTB4 being used as a positive cell control. LTB4 had been 

used by Arita and colleagues (2007) and shown to induce intracellular calcium in 

human PBMCs. Reasons for the absence of any RvE1 or LTB4 mediated induction in 

intracellular calcium could include issues with the chemical integrity of the lipid 

products both of which were purchased from Cayman Chemical. Problems with 

possible concentration issues were addressed in that concentrations used in the Arita 

and colleagues (2007) study were mirrored by the candidate for both LTB4 and RvE1. 

Furthermore concentrations exceeded that used by Arita and colleagues (2007), being 

(20X higher for both LTB4 and RvE1, and despite this no mediated rise in calcium was 

found. However no LC-ESI-MS/MS analysis was performed on the LTB4 to confirm its 

chemical integrity. The absence of BLT1 in the human PBMCs may also account for a 

lack of intracellular calcium response to RvE1, and the BLT1 expression status of 

PBMCs was not commented upon by Arita and colleagues. (2007) and indeed the 

authors then went on to use human PMNs to confirm BLT1 mediated RvE1 signalling in 

the same paper. A recent study did however confirm BLT1 mRNA expression by 

human PBMCs, but it was unclear from this study whether they confirmed BLT1 protein 

expression in PBMCs from the WB image shown (Galet et al., 2013). The human 

PBMCs used in this thesis were not examined for BLT1 mRNA or protein expression.  

Further published RvE1 mediated biological activities that could be used to confirm 

biological activity in the Cayman Chemical RvE1 could include;  

1. RvE1 inhibition of TNF- stimulated NF-кB activation in ChemR23 transfected 

HEK293 cells (Arita et al., 2005). 

2. RvE1 inhibition of PMN migration (Serhan et al., 2000, 2002 & 2005). 

3. RvE1 stimulated phagocytosis of apoptotic neutrophils (Hong et al., 2008). 

4. RvE1 increased phosphorylation of ERK/ MAPK in peripheral blood monocytes 

and ChemR23 transfected HEK293 cells (Arita et al., 2005). 

It remained that the Cayman Chemical RvE1 product was not verified biologically 

active by the candidate. In the future other sources of RvE1 should be sought if further 

assays are going to be investigated. 
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 Summary 5.7

No effect of RvE1 on human CRC cell viability, apoptosis or gene expression (ALPI 

&CD55) was detected in these series of experiments. It remains unclear as to whether 

the Cayman Chemical RvE1 supplied to the candidate was biologically active. 

Furthermore the chirality of the RvE1 supplied was unknown. 

To date there has been no publications outside Professor Serhan’s group that have 

shown RvE1 activity on GPCRs BLT1 and ChemR23, indeed reference was made to 

this by Bondue and colleagues (2011) in their comprehensive review detailing the role 

of chemerin and its receptors. Serhan and colleagues comment in publications 

investigating the biological activity of RvE1 that they produce it themselves by total 

organic synthesis (Serhan et al., 2000, Arita et al., 2006, Oh et al., 2011). Therefore 

their RvE1 source is not the same as that used by the candidate. 

If future exploratory experiments examining for a role of RvE1 in colorectal 

carcinogenesis are to be carried out then robust reproducible in vitro assays need to be 

established. At present the role of chemerin in CRC has not be examined and future 

studies should not only look to characterise any RvE1 activity on CRC but also look to 

examine for any that chemerin may have.  
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6 Final discussion and future work 

At the time of writing this thesis, ChemR23 expression in human CRC clinical samples 

has not been investigated, with just one study investigating BLT1 expression by human 

CRC tissue (Ihara et al., 2007). Ihara and colleagues showed that inhibition of the 

LTB4-BLT1 pathway induced CRC cell apoptosis in vitro. Interestingly RvE1 has been 

shown to have partial agonist activity at the BLT receptor. Future studies should aim to 

identify a human CRC cell line that expresses BLT1. This would allow investigation into 

RvE1-BLT1 signaling. If a cell line could not be established transfection of a cell line 

with BLT1 could be considered.  

The candidate established that ChemR23 and BLT1 expression is up regulated in CRC 

tissue. This induction in expression has not been previously described in CRC or any 

cancer to date. Whilst ChemR23 and BLT1 were shown to be expressed by normal 

colorectal and CRC epithelium expression was also identified in the stroma associated 

with both the CR and CRC epithelium. Immune cells, myofibroblasts and endothelial 

cells expressed ChemR23 and BLT1. BLT1 expression by CRC epithelium in the 

human CRC clinical samples and the absence of BLT1 expression in vitro may be 

secondary to the loss of paracrine signaling with the stroma. The increased expression 

of BLT1 in CRC associated stroma in CRCs distal to the splenic flexure is interesting. 

There has been reported pathogenetic differences between CRCs at different 

locations, with proximal CRC being associated with MSI, Lynch syndrome, and distal 

CRCs being associated with FAP, and rectal tumours with related increased TP53, 

COX-2 and APC/ β-catenin signaling.  

The adenoma-carcinoma sequence for CRC development through genetic and 

epigenetic mutations (discussed section 1.5) poses the question as to whether 

ChemR23 and BLT1 are expressed by human colorectal adenomas. Ethical approval 

for a study examining human adenoma tissue for ChemR23 had been obtained by the 

candidate (REC reference: 11/YH/0157). Unfortunately time restraints prevented this 

study from being performed. Whilst the candidate found that human CRC tissue 

expressed more ChemR23 and BLT1 when compared to matched histologically normal 

CR tissue, the tissue examined resided on the same tissue block.  Therefore a concern 

would be that the receptor expression in the normal CR tissue may not be an accurate 

representation. The use of matched histologically normal tissue blocks ideally should 

be used in order to reduce any direct effects that the CRC tissue may be having on 

receptor expression. The candidate was also keen to determine whether patient’s 

disease free survival and mortality correlated with ChemR23 and or BLT1 expression.  
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RvE1 was first identified in the exudates murine dorsal pouches treated with omega-3 

fatty acids and aspirin (Serhan et al., 2000). The authors then went on to show that 

when aspirin was dosed on human vascular endothelial cells with upregulated COX-2 

then EPA was converted to 18R-HEPE. When the 18R-HEPE was then placed on 

human PMNs, RvE1 was generated (Serhan et al., 2000). 18-HEPE has also been 

shown to be present in the plasma of healthy volunteers supplemented with fish oil (1g 

EPA), (Oh et al., 2011). Human PMNs have also been shown to biosynthesise RvE1 

directly from 18-HEPE (Tjonahen et al., 2006, Oh et al., 2011). Oh and colleagues 

(2011) also showed RvE1 detection in incubations from recombinant 5-LOX/ LTA4H 

and 18-HEPE. RvE1 has been identified in vivo within the colitic colons of fat-1 

transgenic mice (Hudert et al., 2006). RvE1 has also been detected and quantified in 

the plasma of patients treated with EPA (0.1 and 0.4 ng/ mL; six participants; Arita et 

al., 2005). Whilst there are several studies supporting the generation of RvE1 from 

EPA or 18-HEPE, the generation of RvE1 in CRC has not been investigated. The 

generation of a potent anti-inflammatory, pro-resolving lipid mediator such RvE1 in the 

cancer microenvironment could offer a novel means of inhibiting pro-carcinogenic 

signalling, particularly as in vitro work has that NK-кB signalling is inhibited by RvE1 

(Arita et al., 2005).  

The candidate therefore looked to establish whether RvE1 could be biosynthesied by 

human CRC cells in vitro. Importantly the candidate established that activated human 

PMNs generated detectable RvE1 by LC/ESI-MS-MS. One worry raised from the 

human PMN study was that 50 μM of 18-HEPE was utilised to generate detectable 

RvE1, which casts doubt as to whether RvE1 could be biosynthesised in an in vitro 

CRC model, when such a concentration of 18-HEPE was required. RvE1 biosynthesis 

was not detected by LC/ESI-MS/MS in the in vitro CRC or transcellular synthesis cell 

models. Published in vitro studies have used up to 100 µM of 18-HEPE to synthesise 

RvE1 (Tjonahen et al., 2006, Oh SF et al., 2011), compared to the 1 µM used in this 

study. However the cost implications of using 100 µM concentrations would have been 

large and made appropriately controlled reproducible experiments such as those 

performed by the candidate impossible.  Published human PMN studies and the PMN 

experiment performed by the candidate analysed both the PMN conditioned medium 

and the methanol lysed contents of the PMNs for RvE1. An experimental shortcoming 

of CRC and transcellular models is that RvE1 LC/ESI-MS/MS analysis was on the cell 

conditioned medium and did not include the cells. A question remains that RvE1 may 

have been biosynthesised intracellularly. Future studies should look to address this 

through analysis of lysed cells and the cell conditioned medium. Interestingly two 

separate recent studies have failed to identify RvE1 in the plasma of healthy human 

volunteers supplemented with fish oil (Dawczynski et al., 2013, Sharke et al., 2015). 



202 

 

Interestingly Dawcynski also treated their volunteer’s intravenously with endotoxin 

(LPS) alongside fish oil supplementation in order to provoke an inflammatory response.  

Recruitment is currently underway for a randomized, double-blind placebo controlled 

trial is looking to determine whether EPA prevents colorectal adenomas, either alone or 

in combination with aspirin. It will be valuable to know whether RvE1 Is detected in the 

CR mucosa of the trial participants.  

Whilst the candidate identified 18-HEPE in vitro, the candidate was unable to conclude 

as to whether this was cell driven due to the presence of 18-HEPE in the EPA 

containing culture medium controls, thus suggesting 18-HEPE synthesis by auto-

oxidation. However in the mouse cell models there was a reproducible induction in 18-

HEPE biosynthesis between the EPA treated and EPA and aspirin treated cell 

samples. This increase in 18-HEPE with aspirin is in keeping with that found in human 

plasma (Oh SF et al., 2011). Oh SF and colleagues showed aspirin increased the S 

chiral form of 18-HEPE (EPA only R: S ratio 3.4:1 and EPA with aspirin 1.4:1). Chiral 

studies on the 18-HEPE generated by the EPA supplemented cells would be important 

in identifying any chiral change in the 18-hydroxyl group when aspirin is used and 

importantly any change when compared to the EPA control culture medium. Chirality 

change between cell and no cell conditions would support cell mediated 18-HEPE 

synthesis.  

The absence of a 5-LOX/ LTA4H hydrolase generated lipid mediator supports the 

assumption that the RvE1 was not biosynthesied in any of the CRC cell models or 

macrophage cell line due to the lack of 5-LOX and or LTA4H enzymatic activity. 

Activation of both calcium  (by ionomycin) and Toll-like receptor (TLR)-4 pathways has 

been shown to have synergistic effects on the activation of the 5-LOX pathway in 

macrophages (Buczynski et al., 2007) an effect that not has been examined to date in 

human CRC cells. The candidate looked to replicate these conditions and treated the 

macrophage cell line (RAW264.7) with both LPS and ionomycin. Whilst a clear 

induction was identified in the COX pathway, no 5-LOX/ LTA4H derived lipid mediator 

was identified. The rationale for using macrophages alongside CRC epithelial cells is 

supported by the presence of macrophages within CRC (Mantovani et al., 2002, Forsell 

et al., 2007, Bailey et al., 2007, Kang et al., 2010), however the ability of these CRC 

associated cells to produce a 5-LOX/ LTA4H product is not. Confirmation that these 

cells have functional a 5-LOX/ LTA4H would provide a plausible pathway for RvE1 

biosynthesis in CRC, through a possible transcellular route, such as between the COX-

2 expressing CRC epithelium and associated 5-LOX/ LTA4H expressing macrophages/ 

other immune cells. There has been literature published in respect to 5-LOX 

expression in cancer (discussed previously), however 5-LOX/ LTA4H activity in human 
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CRC had not been investigated at the time of writing. Future studies should look to 

determine the 5-LOX/ LTA4H expressional and functional status within CRC. PMNs and 

fibroblasts have both been reported to have active 5-LOX enzymatic pathway, 

therefore PMNs and fibroblasts along with macrophages could therefore potentially an 

important role in the biosynthesis RvE1. 

To conclude the candidate has shown that human CRC tissue expresses the RvE1 

receptors ChemR23 and BLT1, and that these receptors appear to be upregulated 

between matched colorectal tissue and CRC. Future studies should look to establish 

whether ChemR23 and BLT1 receptor expression is associated with clinical outcomes. 

Such studies should establish whether either or both of these receptors could serve as 

potential human CRC biomarkers, or therapeutic targets.  

The candidate was unable to identify an RvE1 mediated effect on human CRC cell 

viability, apoptosis, and ALPI or CD55 gene expression. Whilst the chirality of RvE1 

has been shown to effect potency this is unlikely to be the cause of the negative 

findings, as both chiral forms of RvE1 have been shown to be biologically active. The 

use of long acting RvE1 analogue would be useful, at the time of writing such an 

analogue was not readily available. However a RvE1 analogue is currently being 

investigated in a phase III clinical trial in patients with dry eye syndrome (Safety and 

Efficacy Study of RX-10045 NCT0079952; www.clinicaltrials.gov).The candidate went 

to great lengths to confirm the biologically activity of the RvE1 used in the cell viability 

and apoptosis assays, through a series of gene expression and intracellular calcium 

assays. The candidate also utilised the reproducible, confluence dependent induction, 

in ChemR23 expression, in Caco2 human CRC cells, however no biological effect was 

identified. Further reason for the lack of biological activity of RvE1 on the human CRC 

may be due to an absence in BLT1 expression or RvE1 interactions with protein within 

the FBS containing culture medium. As no biological activity was established using the 

Cayman Chemical RvE1 the candidate was unable to conclude on the negative in vitro 

findings.  

Whether RvE1 can be generated in vitro by CRC remains unanswered at present. 

Further research should look to establish whether RvE1 can be detected in human 

CRC samples. If detected in human colorectal or CRC samples, establishing whether it 

has a role to play in EPA’s anti-cancer effects should be pursued. Establishing the 

presence of other specialised pro-resolving mediators in CRC such as the D-series 

resolvins also warrants investigation. The D-series resolvins are derived from DHA via 

a similar transcellular route to RvE1, these D-series resolvins also have well 

established pro-resolutory and anti-inflammatory actions (Serhan et al., 2002, Duffield 

et al., 2006, Sun et al., 2007). Mention should also be made to chemerin, which is an 
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agonist at the ChemR23 receptor. Levels of chemerin have recently been shown to be 

elevated in plasma of patients with CRC (Erdogan et al., 2015). At present the 

significance of raised chemerin levels is unknown and future studies are needed in 

order to determine its significance. Whether RvE1 could block any pro-tumorgenic 

actions that chemerin may have through ChemR23 remains purely hypothetical.  

Whilst RvE1 was not detected in the supernatant of CRC in vitro models the candidate 

did establish that RvE1 could be generated by human PMNs and also importantly 

confirm that the ESI-MS/MS method used in these studies could detect RvE1.
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Appendix 1. Research ethics committee approval letter. 

Committee approval letter, for the ChemR23 and BLT1 receptor expression in 

colorectal tumours study. REC reference 11/YH/0157. Meeting attended by candidate. 

Page 1 of 3.  
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Research ethics committee approval letter. 

Committee approval letter, for the ChemR23 and BLT1 receptor expression in 

colorectal tumours study. REC reference 11/YH/0157. Meeting attended by candidate. 

Page 2 of 3. 
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Research Ethics Committee approval letter. 

Committee approval letter for the ChemR23 and BLT1 receptor expression in colorectal 

tumours study. REC reference 11/YH/0157. Meeting attended by candidate. Page 3 of 

3. 
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Appendix 2. BLT antibody optimisation for immunohistochemistry. 

Human CRC tissue was probed for BLT1 expression using a rabbit polyclonal anti-BLT 

antibody (Cayman Chemicals) by IHC. Three sections were taken from the same FFPE 

human CRC tissue sample, two sections were probed for BLT1 using two different 

antibody concentrations and one section was used as a control (no primary antibody). 

A: No primary control. B:  1 in 1500 dilution. C: 1 in 2500 dilution. (Scale bars 100 μm). 
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Appendix 3. Membranous BLT1 protein expression by human immune type cell. 

Image taken from one of the FFPE human CRC tissue samples, which was probed for 

BLT1 expression by IHC (Cayman Chemical rabbit polyclonal antibody 1 in 1500 

dilution). The arrow points to an immune cell. Further staining of the cells for specific 

immune cell markers would be needed to clarify the type of immune cell that is showing 

clear membranous staining. (Scale bar 50 μm).  
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Appendix 4. No primary control images between different BLT1 

immunohistochemistry runs. 

The candidate stained 78 different FFPE human CRC tissue samples for BLT1 

expression. Four different IHC runs were performed by the candidate. In each run a no 

primary antibody control slide was included (taken from the same CRC tissue sample). 

These images represent the no primary control in each of the four different IHC runs. A: 

Run 1. B: Run 2.  C: Run 3. D: Run 4. (Scale bars 100 μm). 
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Appendix 5. BLT1 immunohistochemistry inter-run variability in a human CRC 

tissue sample. 

The candidate stained 78 different FFPE human CRC tissue samples for BLT1 

expression. Four different IHC runs were performed by the candidate. In each run a 

primary antibody control was included (taken from the same CRC tissue sample). 

These images represent the primary control in each of the four different IHC runs. A: 

Run 1. B: Run 2.  C: Run 3. D: Run 4. (Scale bars 100 μm). 
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Appendix 6. BLT1 human CR epithelial and associated stromal expression by 

immunohistochemistry in two different human CRC tissue samples. 

The candidate stained 78 different FFPE human CRC tissue samples for BLT1 

expression (Cayman Chemicals rabbit polyclonal antibody; 1 in 1500 dilution). The 

above are presentative images of the human CR epithelium and associated stroma 

identified in the CRC tissue, from 31 of the 78 tissue samples examined by IHC. The 

candidate appreciates that the close proximity of this CR epithelium and associated 

stroma to the CRC tissue means that the epithelium and stroma does not truly 

represent normal CR epithelium and stroma as discussed in Chapter 3. (Scale bars 

100 μm). 
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Appendix 7. Correlation of BLT1 expression in human CRC epithelium with age, cancer location, cancer size, cancer cell differentiation, pT, 

pN stage and vascular invasion status. 

There were 78 different FFPE human CRC epithelium scored samples. Statistical analysis was performed on the total BLT1 expression score (I x P) 

for all samples. Statistical analysis was performed using SPSS. Correlation between BLT1 expression and age (P = 0.913, Kruskall-Wallis) (A). 

Correlation between BLT1 expression and cancer location to splenic flexure (P = 0.305, Mann-U Whitney) (B). Correlation between BLT1 expression 

and cancer size (P = 0.085, Kruskall-Wallis) (C). Correlation between BLT1 expression and cancer cell differentiation (P = 0.495, Kruskall-Wallis) (D). 

Correlation between BLT1 expression and cancer pT stage (P = 0.266, Kruskall-Wallis) (E). Correlation between BLT1 expression and cancer pN 

stage (P =  0.910, Kruskall-Wallis) (F). Correlation between BLT1 expression and cancer vascular invasion status (P = 0.510, Mann-U Whitney) (G). 

There was no statistically significant correlation (P <0.05) between BLT1 expression and the clinic-pathological data. 
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Appendix 8. Correlation of BLT1 expression in human histologically normal colorectal epithelium with age, cancer location, cancer size, 

cancer cell differentiation, pT, pN stage and vascular invasion status. 

There were 31 different formalin fixed paraffin embedded human colorectal cancer samples containing histologically normal epithelium. Statistical 

analysis was performed on the total BLT1 expression score (I x P) for all samples. Statistical analysis was performed using SPSS. Correlation 

between BLT1 expression and age (P = 0.230, Kruskall-Wallis) (A). Correlation between BLT1 expression and cancer location to splenic flexure (P = 

0.733, Mann-U Whitney) (B). Correlation between BLT1 expression and cancer size (P = 0.851, Mann-U Whitney) (C). Correlation between BLT1 

expression and cancer cell differentiation (P = 0.167, Mann-U Whitney) (D). Correlation between BLT1 expression and cancer pT stage (P = 0.698, 

Kruskall-Wallis) (E). Correlation between BLT1 expression and cancer pN stage (P = 0.115, Kruskall-Wallis) (F). Correlation between BLT1 

expression and cancer vascular invasion status (P = 0.999, Mann-U Whitney) (G). There was no statistically significant correlation (P <0.05) between 

BLT1 expression and the clinic-pathological data.   
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Appendix 9. Correlation of BLT1 expression in human CRC associated stroma with age, cancer size, cancer cell differentiation, pT, pN 

stages and vascular invasion status. 

Statistical analysis was performed on the BLT1 expression score (I) for all 78 samples. Statistical analysis was performed using SPSS. Correlation 

between BLT1 expression and age (P = 0.639, Kruskall-Wallis) (A). Correlation between BLT1 expression and cancer size (P = 0.809, Mann-U 

Whitney) (B). Correlation between BLT1 expression and cancer cell differentiation (P = 0.664, Mann-U Whitney) (C). Correlation between BLT1 

expression and cancer pT stage (P = 0.662, Kruskall-Wallis) (D). Correlation between BLT1 expression and cancer pN stage (P = 0.582, Kruskall-

Wallis) (E). Correlation between BLT1 expression and cancer vascular invasion status (P = 0.143, Mann-U Whitney) (F). There was no statistically 

significant correlation (P <0.05) between BLT1 expression and the clinic-pathological data shown.   
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Appendix 10. Correlation of BLT1 expression in human histologically normal CR epithelium associated stroma with age, cancer location, 

cancer size, cancer cell differentiation, pT, pN stages and vascular invasion status. 

Statistical analysis was performed on the BLT1 expression score (I) for all 78 samples. Statistical analysis was performed using SPSS. Correlation 

between BLT1 expression and age (P = 0.951) Kruskall-Wallis) (A). Correlation between BLT1 expression and cancer location (P = 0.277, Mann-U 

Whitney) (B). Correlation between BLT1 expression and cancer size (P = 0.999, Kruskall-Wallis) (C). Correlation between BLT1 expression and 

cancer cell differentiation (P = 0.157, Mann-U Whitney) (D). Correlation between BLT1 expression and cancer pT stage (P = 0.193, Kruskall-Wallis) 

(E). Correlation between BLT1 expression and cancer pN stage (P 0.898, Kruskall-Wallis) (F). Correlation between BLT1 expression and cancer 

vascular invasion status (P = 0.435, Mann-U Whitney) (G). There was no statistically significant correlation (P <0.05) between BLT1 expression and 

the clinic-pathological data shown.  
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Appendix 11. Correlation of BLT1 expression between human CRC associated 

stroma and CRC epithelium. 

Human CRC samples were probed for BLT1 expression. The samples were scored for 

BLT1 expression in the CRC epithelium associated stroma 0-3 and in the CRC 

epithelium 0-9 as described. Statistical analysis was performed using SPSS and 

spearman r correlation coefficient test. The spearman r value = 0.117 (95% confidence 

interval -0.115 to 0.337), P = 0.307.  
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Appendix 12. Correlation of BLT1 expression between histologically normal 

human CR epithelium associated stroma and CR epithelium. 

Thirty-one different FFPE human CRC samples were probed for BLT1 expression. The 

samples were scored for BLT1 expression in the histologically normal CR epithelium 

associated stroma 0-3 and in the CR epithelium 0-9 as described. Statistical analysis 

was performed using SPSS and spearman r correlation coefficient test. The spearman 

r value was 0.032 (95% confidence interval -0.336 to 0.391), P = 0.866.  
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Appendix 13. Western blot analysis of ChemR23 receptor protein expression by three different commercially available anti-ChemR23 

antibodies in a panel of seven different human CRC cell lines. 

Thirty micrograms of human lysate was probed with either Novus Biologicals (rabbit polyclonal), R&D Systems (mouse monoclonal) or Abcam (rabbit 

polyclonal) anti-human ChemR23 antibodies, and probed with a secondary conjugated HRP antibody (1:2000). (A) Protein expression in a panel of 

human colorectal cancer cell lines and the negative control HEK293 cell line under high sensitivity chemiluminescence (30 seconds) using the Novus 

Biologicals anti-ChemR23 antibody (1:1000) with protein loading image using α–tubulin (1:5000), image under standard chemiluminescence (30 

seconds). (B) Protein expression in a panel of human colorectal cancer cell lines and the negative control HEK293 cell line under high sensitivity 

chemiluminescence (15 seconds) with image using the R&D Systems anti-ChemR23 antibody (1:1000) with protein loading image using β-actin 

(1:5000), image under standard chemiluminescence (10 seconds). (C) Protein expression in a panel of human colorectal cancer cell lines and the 

negative control HEK293 cell line under high sensitivity chemiluminescence (90 seconds) with image using the Abcam anti-ChemR23 antibody 

(1:1000) with protein loading image using β-actin (1:5000), image under standard chemiluminescence (10 seconds). 

2
5
0

 



251 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 14. ChemR23 antibody optimisation for immunohistochemistry. 

Five sections were taken from the same FFPE human CRC tissue sample. The 

sections were probed for ChemR23, using a heat retrieval step (Bioss polyclonal anti-

rabbit antibody) by IHC. A: No primary control. B:  1 in 50 dilution. C: 1 in 200 dilution. 

D: 1 in 500. C: 1 in 2000. (Scale bars 100 μm). 
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Appendix 15. No primary control images between different ChemR23 

immunohistochemistry runs. 

The candidate stained 73 different FFPE human CRC tissue samples for ChemR23 

expression. Four different IHC runs were performed by the candidate. In each run a no 

primary antibody control was included (taken from the same CRC tissue sample). 

These images represent the no primary control in each of the four different IHC runs. A: 

Run 1. B: Run 2.  C: Run 3. D: Run 4. (Scale bars 100 μm) 
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Appendix 16. ChemR23 immunohistochemistry inter-run variability in a human 

CRC tissue sample. 

The candidate stained 73 different FFPE human CRC tissue samples for ChemR23 

expression (Bioss polyclonal anti-rabbit antibody). Four different IHC runs were 

performed by the candidate. In each run a primary antibody control was included (taken 

from the same CRC tissue sample). These images represent the primary control in 

each of the four different IHC runs. A: Run 1. B: Run 2.  C: Run 3. D: Run 4. (Scale 

bars 100 μm). 
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Appendix 17. Bioss anti-ChemR23 antibody sensitivity and specificity 

consistency between four different vials of antibody (bs-2530R.LOT 130320). 

Human CRC protein lysate (HEK293 negative control; Caco2 positive control) was 

probed with Bioss anti-ChemR23 (BS2530R. lot 130320) from four separate vials at 1 

in 500 dilution, then probed with a secondary conjugated HRP antibody (1:2000), equal 

protein loading was confirmed using α–tubulin (1:5000). (A) ChemR23 protein 

expression under standard chemiluminescence (five seconds). (B) Alpha-tubulin 

expression under standard chemiluminescence (one second). The specificity and 

sensitivity of all vials of Bioss anti-ChemR23 antibody were consistent between each 

vial. The vials where then mixed and this antibody master mix was used in the IHC 

ChemR23 expression study detailed in this thesis. 
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Appendix 18. Bioss anti-ChemR23 antibody sensitivity and specificity 

inconsistency between different LOTS (example shown BS2530R. lot YE1027W). 

Human CRC protein lysate (HEK293 negative control; Caco2 positive control) was 

probed with Bioss anti-ChemR23, then probed with a secondary conjugated HRP 

antibody (1:500 or 1:200), equal protein loading was confirmed using α–tubulin 

(1:5000). Image taken under high sensitivity chemiluminescence.  
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Appendix 19. ChemR23 expression in human CRC between two different batches 

of the same Bioss anti-ChemR23 antibody. 

The same human CRC tissue was used for both batches of the ant-ChemR23 

antibody. (A). Bioss anti-ChemR23 bs-2530R (lot: YE1215W), used initially then batch 

became unavailable (1:2000; Heat Retrieval). (B). Bioss anti-ChemR23 bs-2530R (lot: 

130320), used for IHC study (1:25; Heat Retrieval). (Scale bars 100 μm).
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Appendix 20. Correlation of ChemR23 expression in human CRC epithelium with age, cancer location, cancer size, cancer cell 

differentiation, pT, pN stage and vascular invasion status. 

There were 73 different FFPE human CRC epithelium scored samples. Statistical analysis was performed on the total ChemR23 expression score (I x 

P) for all samples. (A) Statistical analysis was performed using SPSS. Correlation between ChemR23 expression and age (P 0.674, Kruskall-Wallis). 

(B) Correlation between ChemR23 expression and cancer location to splenic flexure (P 0.790, Mann-U Whitney). (C) Correlation between ChemR23 

expression and cancer size (P 0.920, Kruskall-Wallis). (D) Correlation between ChemR23 expression and cancer cell differentiation (P 0.592, 

Kruskall-Wallis). (E) Correlation between ChemR23 expression and cancer pT stage (P 0.471, Kruskall-Wallis). (F) Correlation between ChemR23 

expression and cancer pN stage (P 0.554, Kruskall-Wallis). (G) Correlation between ChemR23 expression and cancer vascular invasion status (P 

0.382, Mann-U Whitney). There was no statistically significant correlation (P <0.05) between ChemR23 expression and the clinic-pathological data. 
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Appendix 21.  Correlation of ChemR23 expression in histologically normal human CRC epithelium with age, cancer location, cancer size, 

cancer cell differentiation, pT, pN stage and vascular invasion status. 

There were 28 different FFPE human CRC epithelium scored samples. Statistical analysis was performed on the total ChemR23 expression score (I x 

P) for all samples. Statistical analysis was performed using SPSS. Correlation between ChemR23 expression and age (P = 0.064, Kruskall-Wallis) 

(A). Correlation between ChemR23 expression and cancer location to splenic flexure (P = 0.650, Mann-U Whitney) (B). Correlation between 

ChemR23 expression and cancer size (P = 0.271, Kruskall-Wallis) (C). Correlation between ChemR23 expression and cancer cell differentiation (P 

0.313, Kruskall-Wallis) (D). Correlation between ChemR23 expression and cancer pT stage (P = 0.727, Kruskall-Wallis) (E). Correlation between 

ChemR23 expression and cancer pN stage (P 0.076, Kruskall-Wallis) (F). Correlation between ChemR23 expression and cancer vascular invasion 

status (P = 0.387, Mann-U Whitney) (G). There was no statistically significant correlation (P <0.05) between ChemR23 expression and the clinic-

pathological data. 
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Appendix 22. Correlation of ChemR23 expression in human CRC epithelium associated stroma with age, cancer location, cancer size, 

cancer cell differentiation, pT, pN stage and vascular invasion status. 

There were 73 different FFPE human CRC epithelium scored samples. Statistical analysis was performed on the total ChemR23 expression score (I x 

P) for all samples. (A) Statistical analysis was performed using SPSS. Correlation between ChemR23 expression and age (P = 0.684, Kruskall-

Wallis). (B) Correlation between ChemR23 expression and cancer location to splenic flexure (P = 0.899, Mann-U Whitney). (C) Correlation between 

ChemR23 expression and cancer size (P = 0.140, Kruskall-Wallis). (D) Correlation between ChemR23 expression and cancer cell differentiation (P 

0.425, Kruskall-Wallis). (E) Correlation between ChemR23 expression and cancer pT stage (P = 0.557, Kruskall-Wallis). (F) Correlation between 

ChemR23 expression and cancer pN stage (P = 0.589, Kruskall-Wallis). (G) Correlation between ChemR23 expression and cancer vascular invasion 

status (P = 0.618, Mann-U Whitney).There was no statistically significant correlation (P <0.05) between ChemR23 expression and the clinic-

pathological data. 
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Appendix 23. Correlation of ChemR23 expression in histologically normal human CR epithelium associated stroma with age, cancer 

location, cancer size, cancer cell differentiation, pT, pN stage and vascular invasion status. 

There were 28 different FFPE human CRC epithelium scored samples. Statistical analysis was performed on the total ChemR23 expression score (I x 

P) for all samples. Statistical analysis was performed using SPSS. Correlation between ChemR23 expression and age (P = 0.352, Kruskall-Wallis) 

(A). Correlation between ChemR23 expression and cancer location to splenic flexure (P = 0.683, Mann-U Whitney) (B). Correlation between 

ChemR23 expression and cancer size (P = 0.337, Kruskall-Wallis) (C). Correlation between ChemR23 expression and cancer cell differentiation (P = 

0.678, Kruskall-Wallis) (D). Correlation between ChemR23 expression and cancer pT stage (P = 0.273, Kruskall-Wallis) (E). Correlation between 

ChemR23 expression and cancer pN stage (P = 0.199, Kruskall-Wallis) (F). Correlation between ChemR23 expression and cancer vascular invasion 

status (P = 0.387, Mann-U Whitney) (G). There was no statistically significant correlation (P <0.05) between ChemR23 expression and the clinic-

pathological data. 
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Appendix 24.  Correlation of ChemR23 expression in human CRC associated 

stroma with matched CRC epithelium. 

There were 73 different FFPE human CRC samples examined Statistical analysis was 

performed matched samples for ChemR23 expression in the CRC epithelium 

associated stroma (0-3) and CRC epithelium (0-9). Statistical analysis was performed 

using SPSS. A spearman’s rank correlation coefficient was calculated. Spearman’s r 

was 0.233 (95% confidence interval 0.044-0.406, P = 0.014). There was a weak 

correlation between ChemR23 expression in the CRC epithelium associated stroma 

and CRC epithelium. 
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Appendix 25. Correlation of ChemR23 expression between matched 

histologically normal human CR epithelium associated stroma and CR 

epithelium. 

Twenty-eight different FFPE human CRC samples were probed for ChemR23 

expression. The samples were scored for ChemR23 expression in the histologically 

normal colorectal epithelium associated stroma 0-3 and in the colorectal epithelium 0-9 

as described. A spearman’s rank correlation coefficient was calculated. Spearman’s r 

was -0.087 (95% confidence interval -0.455 to 0.306, P = 0.660). There was no 

correlation found between ChemR23 expression in the histologically normal CR 

epithelium associated stroma and CR epithelium. 
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Appendix 26. Correlation of BLT1 and ChemR23 expression in matched human 

CRC epithelial samples. 

Seventy-three different FFPE human CRC samples were matched for BLT1 and 

ChemR23 correlation. The samples were scored for BLT1 and ChemR23 expression in 

the epithelium 0-9 as described. A spearman’s rank correlation coefficient was 

calculated. Spearman’s r was 0.218 (95% confidence interval -0.019 to 0.433, P = 

0.064). There was no correlation found between BLT1 and ChemR23 expression in the 

CRC epithelium. 
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Appendix 27. Correlation of BLT1 and ChemR23 expression in matched 

histologically normal human CR epithelium samples. 

Nineteen different FFPE human matched CRC samples were correlated for BLT1 and 

ChemR23 expression. The samples were scored for BLT1 and ChemR23 expression in 

the epithelium 0-9 as described. A spearman’s rank correlation coefficient was 

calculated. Spearman’s r was -0.358 (95% confidence interval -0.706 to 0.129, P = 

0.132). There was no correlation found between BLT1 and ChemR23 expression in 

matched histologically normal CR epithelium samples. 
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Appendix 28. Correlation of BLT1 and ChemR23 expression in matched human 

CRC epithelium associated stromal samples. 

Seventy-three different FFPE human CRC samples were probed for BLT1 and 

ChemR23 expression. The samples were scored for BLT1 and ChemR23 expression in 

the epithelium 0-3 as described between matched specimens. A spearman’s rank 

correlation coefficient was calculated. Spearman’s r was -0.016 (95% confidence 

interval -0.252 to 0.221, P = 0.891). There was no correlation found between BLT1 and 

ChemR23 expression in the CRC epithelium associated stroma. 
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Appendix 29. Correlation of BLT1 and ChemR23 expression in matched 

histologically normal human CR epithelium associated stromal samples. 

Nineteen different FFPE human CRC samples were probed for BLT1 and ChemR23 

expression. The samples were scored for BLT1 and ChemR23 expression in the 

stroma 0-3 as described. A spearman’s rank correlation coefficient was calculated. 

Spearman’s r was -0.229 (95% confidence interval -0.623 to 0.266, P = 0.347). There 

was no correlation found between BLT1 and ChemR23 expression in matched 

histologically normal CR epithelium associated stromal samples. 
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Appendix 30. Nucleotide sequence for BLT1 with TaqMan assay target. 

Nucleotide sequence in black bold codes for the BLT1 protein. Nucleotide sequence in 

red bold is thhe context sequence that is targeted by the TaqMan gene expression 

assay.
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Appendix 31. Nucleotide sequence for ChemR23 with TaqMan assay target. 

Nucleotide sequence in black bold that codes for ChemR23 protein. Nucleotide 

sequence in red bold is sequence targeted by the TaqMan gene expression assay. 
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Appendix 32. ChemR23 mRNA expression in Caco2 human CRC cells at 

increasing cell confluency. 

Caco2 human CRC cells were grown to either 20, 70 or 100% cell confluency. 

Messenger RNA was then quantified by qPCR. Figure represents data from one (20 

and 100%) and three (70%) independent experiments, data is shown as mean with 

standard error of the mean. No ChemR23 mRNA induction was identified in the Caco2 

human CRC cell line at increasing cell confluency under these experimental conditions. 
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Appendix 33. The migration of two commercially availiable protein standards 

through a 12% SDS-PAGE gel.  

The Invitrogen MagicMarkTM XP standard (LC5603) and BioLabs ColorPlus 

Prestained Protein Marker were used. 
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Appendix 34. Detailed experimental schematic for the CRC and macrophage 

RvE1 biosynthesis experiment. 

Diagram illustrating the experimental set up for the in vitro RvE1 synthesis experiment. 

(A) Single cell type synthesis experiment. (B) Transcellular synthesis experiment. 

Discussed in detail in Chapter 4. 
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Appendix 35. COX derived DGLA and EPA lipid mediators from the HCA7 human 

CRC cell line. 

HCA7 cell conditioned medium was analysed for: (A) Seven different COX derived 

DGLA and (B) Four different COX derived EPA lipid mediators by LC/ESI-MS/MS, in 

the presence and absence of supplementary AA treatment. Lipid mediators are shown 

as pg per million (x106 cells). The lighter coloured bars are the control samples and the 

darker coloured bars are the AA treated cell samples. Data shown as mean and 

standard error of the mean (two independently cell cultured experiments). 
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Appendix 36. COX derived AA/ DGLA and EPA lipid mediator synthesis by HCA7 

human CRC cells. 

(A) AA derived lipid meditors. (B) DGLA derived lipid mediators. (C) EPA derived lipid 

mediators. Values represented as pg of lipid mediator per million (x106) cells. The 

PGE2, PGF2α and TXB2 values are represented as a ratio against internal standard 

(PGB2-d4), as the values exceeded the standard calibration curve (>pg/ μL). 
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Appendix 37. COX derived AA/ DGLA and EPA lipid mediator synthesis by LoVo 

human CRC cells. 

(A) AA derived lipid meditors. (B) DGLA derived lipid mediators. (C) EPA derived lipid 

mediators. Values represented as pg of lipid mediator per million (x106) cells.  
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Appendix 38. COX derived AA/ DGLA and EPA lipid mediator synthesis by T84 

human CRC cells. 

(A) AA derived lipid meditors. (B) DGLA derived lipid mediators. (C) EPA derived lipid 

mediators. Values represented as pg of lipid mediator per million (x106) cells.  
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Appendix 39. COX derived AA/ DGLA and EPA lipid mediator synthesis by HRT18 

human CRC cells. 

(A) AA derived lipid meditors. (B) DGLA derived lipid mediators. (C) EPA derived lipid 

mediators. Values represented as pg of lipid mediator per million (x106) cells.  
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Appendix 40. COX derived AA/ DGLA and EPA lipid mediator synthesis by HT29 

human CRC cells. 

(A) AA derived lipid meditors. (B) DGLA derived lipid mediators. (C) EPA derived lipid 

mediators. Values represented as pg of lipid mediator per million (x106) cells.  
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Appendix 41. COX derived AA/ DGLA and EPA lipid mediator synthesis by Caco2 

human CRC cells. 

(A) AA derived lipid meditors. (B) DGLA derived lipid mediators. (C) EPA derived lipid 

mediators. Values represented as pg of lipid mediator per million (x106) cells. 
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Appendix 42. COX derived AA/ DGLA and EPA lipid mediator synthesis by 

HCT116 human CRC cells. 

(A) AA derived lipid meditors. (B) DGLA derived lipid mediators. (C) EPA derived lipid 

mediators. Values represented as pg of lipid mediator per million (x106) cells. 
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Appendix 43. Apoptosis in etoposide treated HCA7 human CRC cells. 

HCA7 human CRC cells were treated with DMSO carrier or etoposide 20 µM for 48 hours and then analysed for apoptosis by flow cytometry. The 

graphs detail the percentage of cells that are either viable, early apoptotic, late apoptotic/dead or necrotic. The data is shown from one experiment. 

2
8
0

 



281 

 

 

 
 
 
 
Appendix 44. ALPI mRNA expression in RvE1 treated T84 human CRC cells over 

24 hours. 

T84 human CRC cells were grown to 70-80% cell confluency. The cells were then 

treated with 100 nM RvE1 (in cell culture medium without FBS), before ALPI mRNA 

was quantified at specific time points over a 24 hour period for ALPI expression. The 

figure represents data from three independent experiments, data is shown as mean 

with standard error of the mean.  
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Appendix 45. ALPI mRNA expression in T84 human CRC cells treated for six 

hours with range of RvE1 doses (0-500 nM). 

T84 human CRC cells were grown to 70-80% cell confluency. The cells were then 

treated with a range of doses of RvE1 (in cell culture medium with FBS), before ALPI 

mRNA was quantified after six hours. The figure represents data from one experiment.  
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Appendix 46. The effect of the cytotoxicity of EPA on cells in vitro when made up in cell 

culture medium with and without 10% FBS.  

HCA7 human CRC, MC38 mouse CRC cells and RAW264.7 mouse macrophage cells were exposed 

to a range of EPA (as defined above in the graphs) in cell medium with and without 10% FBS for 

three hours before fresh solution was then placed on the cells and left for a further 96 hours at an 

incubation temperature of 37oC, before the cell viability assay was performed. (A)  HCA7 cells. (B) 

MC38 cells. (C) RAW264.7 cells. Data shown from three independent cell cultured experiments, 

shown as mean with standard error of the mean.  


