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Abstract

During the mid- to late Neogene (20 - 2.5 million years ago), episodic retreat of the

Antarctic Ice Sheet (AIS) coincided with periods of higher-than-present atmospheric

CO2, indicating ice sheet sensitivity to climatic conditions similar to those projected

for the coming decades. Understanding Antarctic climate and vegetation during such

a period of AIS retreat is crucial for our fundamental understanding of high latitude

environments in warmer-than-present climate scenarios. This thesis presents a detailed

geochemical study of sediments and plant fossils from the terrestrial Sirius Group of

Oliver Blu↵s, Transantarctic Mountains, located at 85� S today and during the Neogene.

Biomarker analysis of the sediments show strong evidence for a warmer Antarctica,

where summer temperatures reached 5 �C. These relatively favourable conditions sup-

ported a low diversity mixed vegetation. In contrast to the macrofossil record, there

is geochemical evidence for conifers, suggesting that Antarctic vegetation was strongly

controlled by local environmental variability. The warmer conditions are associated

with a dynamic carbon cycle, evidenced by anomalously high and variable atmospheric

�13C and possibly linked to atmospheric CO2 levels. Precipitation isotopes are recon-

structed from plant compound isotope analysis of the fossils, and indicate markedly

di↵erent hydrological cycling. This result is supported by climate modelling experi-

ments which suggest that Antarctic hydrological cycling is most strongly governed by

the extent of the ice sheet rather than by greenhouse gas radiative forcing. This thesis

presents a new approach to exploring Antarctic climate and vegetation and provides

important novel information on this crucial region of the world.
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Chapter 1

Introduction

1.1 Background to this thesis

1.1.1 Rationale

As a result of anthropogenic greenhouse gas emissions, average global surface tem-

peratures are projected to increase by up to 4.8 �C; this unprecedented warming is

predicted to have far-reaching consequences for the Earth’s climate system (under the

Represenative Concentration Pathway 8.5 scenario; IPCC, 2013). High latitude envi-

ronments, including ice sheets, are particularly sensitive to climate change, and have

experienced temperature increases much larger than the global average with poten-

tially severe repercussions for continental ice sheets (Fig. 1.1A; Jacka and Budd, 1998,

Rohling et al., 2012, Singarayer and Valdes, 2010). Considerable e↵ort has therefore

gone into understanding present-day dynamics of the Antarctic Ice Sheet (AIS), and

forming projections of its behaviour under future warming scenarios. However, much

less is understood about how aspects of the terrestrial Antarctic climate and envi-

ronment, particularly surface temperature, hydrological cycling and vegetation, might

change during future ice sheet retreat. Improved understanding of Antarctic climate

during periods of significant ice sheet retreat in the geological past is crucial for un-

derstanding the fundamental behaviour of high latitude climates during warmer-than-

present climate scenarios.
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There is both direct and indirect evidence that, in the past, the AIS exhibited large

changes in volume and extent during the Neogene (23 - 2.5 million years ago; Ma), from

both the West and East Antarctic Ice Sheets (Fig. 1.1B, C and D; Levy et al., 2016,

Naish et al., 2009, Pollard and Deconto, 2016). Looking to these past episodes of ice

sheet retreat could therefore provide valuable new information about the behaviour of

Antarctic climate and vegetation in warmer, reduced ice worlds.

One such episode of ice sheet retreat is represented by the terrestrial Sirius Group

sediments at Oliver Blu↵s in the Transantarctic Mountains, which provide a unique

opportunity to explore Antarctic terrestrial climate. A fossil-bearing layer within the

formation represents a period of AIS retreat during which a tundra shrub grew 480 km

from the South Pole (Carlquist, 1987, Francis and Hill, 1996, Hill and Trustwell, 1993,

Hill et al., 1996, Webb and Harwood, 1987), indicating that mean summer temperatures

were significantly warmer than the present day (Ashworth and Preece, 2003, Ashworth

and Kuschel, 2003, Ashworth and Cantrill, 2004, Francis and Hill, 1996). Presently, the

AIS exerts a strong influence on regional climate, particularly through surface albedo

feedbacks on temperature, but also by influencing the water vapour holding capacity

of the atmosphere, which a↵ects hydrological cycling on the continent (Krinner et al.,

2007). It could be anticipated that ice sheet retreat in the past would have significantly

a↵ected these climate variables, but Antarctic terrestrial climate in the past is poorly

constrained and there is a clear need for detailed datasets to assess the impacts ice sheet

retreat. The purpose of this thesis is to reconstruct the climate and vegetation on the

continent during this episode of AIS retreat, as well as to explore the impact of ice

sheet retreat on climate. The findings will have relevance for both our understanding

of past warm periods, as well as for constraining the fundamental behaviour of the

climate system under future warming scenarios.

1.1.2 Geological setting

Much of this thesis uses fossil and sediment samples from the Sirius Group sediments

in the Transantarctic Mountains, Antarctica to reconstruct terrestrial climate and flora

2



1.1 Background to this thesis

Figure 1.1: (A) Current areas of glacier thinning and ice mass loss from the Antarctic Ice
Sheet, denoted by red circles, where the size of the circle shows the speed of mass loss, from Paolo
et al. (2015). (B) Early estimates of Pliocene AIS retreat by Webb et al. (1984) corresponding
to loss of more than half of the ice sheet volume, and demonstrating the presence of open marine
basins in the interior of the continent. (C) mid-Miocene AIS retreat under CO2 levels of 500
ppmv (Gasson et al., 2016). (D) Pliocene AIS retreat at 400 ppmv atmospheric CO2 and using
a dynamic topography scheme (Austermann et al., 2015).
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during a period of Neogene AIS retreat. Well-preserved terrestrial sequences are rare,

but can provide valuable information about past climate systems, so these samples are

a unique opportunity to gain new insights into Antarctic climates. The Sirius Group

sediments are a set of Neogene glacigenic sedimentary deposits outcropping over 1300

km throughout the Transantarctic Mountains. While there are other locations where

plant fossils have been reported (dated between the Oligocene and Pliocene; Hambrey

et al., 2003), I focus particularly on one outcrop at Oliver Blu↵s in the Beardmore

Glacier region (85� S, 166� E). Here a plant fossil-bearing horizon represents a brief

period where the AIS retreated far enough, and temperatures were warm enough, for

a vegetation to grow, although the age of these deposits and plant fossils is uncertain.

The age of the Sirius Group has been the focus of a long-running debate, and

has played a key role in determining the stability (or otherwise) of the EAIS since its

expansion ⇠13.85 Ma (for detailed discussion, see Barrett, 2013). The Sirius Group

as a whole is considered by Passchier (2001, 2004) to be the product of multiple ice

sheet retreat and advance events, and as such, deposits at di↵erent locations may be

of di↵erent ages. The Sirius Group at Oliver Blu↵s consists predominantly of glacial

tillites, as well as thin mudstones, siltstones and sandstones, deposited during glacial

advance and retreat (Passchier, 2001, 2004, Webb et al., 1996). The deposits were as-

signed a Pliocene age based on the understanding that marine diatoms recovered from

diatomaceous clasts in glacial sediments record the incursion of seawater deep into the

continent, and therefore that the East Antarctic Ice Sheet responded dynamically to

Pliocene warmth (therefore sediments were deposited ⇠3.8 Ma; Webb et al., 1996; Fig.

1.1B). Retallack et al. (2001) assigned an age of 1.3 - 4.1 Ma to palaeosols in the same

formation. However, this age is complicated by arguments that the Pliocene diatoms

were windblown contamination (Burckle and Potter, 1996, Stroeven et al., 1996), im-

plying that the sediments are much older, although Passchier (2004) disputes this on

the basis of provenance and geochemical data of the diatomaceous clasts. Nothofagus

pollen discovered in DSDP Site 274 with a biostratigraphic age of ⇠3 Ma also supports

a Pliocene age, as the most likely source for the pollen would have been from Nothofa-

gus growing on the Ross Sea coast (i.e. the fossil plants at Oliver Blu↵s; Fleming and
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Barron, 1996), but this result has not been replicated in other studies.

Other researchers suggest a much older age for the deposits. The presence of un-

weathered volcanic ash in the McMurdo Dry Valleys dated to between 4 and 15 Ma

are thought to indicate a persistently cold and arid climate since the mid-Miocene, and

therefore that the deposits at Oliver Blu↵s can be no younger than ⇠14 Ma (Marchant

et al., 1993a,b,c, 1996, Sugden et al., 1995). This is supported by more recent work

from the Olympus Range at the head of the McMurdo Dry Valleys, where sediment

and moraines record the transition from wet-based to cold-based glaciation between 14

and 13.6 Ma (Lewis et al., 2007, 2008). Exposure dating of surfaces associated with

the nearby Koski fault at Oliver Blu↵s indicates that the sediments are much older

than 3.8 Ma (Ackert, Jr. and Kurz, 2004). Furthermore, with the exception of the

pollen record from DSDP Site 274, there is a considerable lack of marine evidence for

a vegetated continent during the Pliocene: terrestrial pollen in Pliocene intervals from

marine cores from the Ross Sea are considered to be derived from eroded Paleogene

strata (Taviani et al., 2008, Warny et al., 2006), and a similar result is suggested for

pollen data from the Antarctic Peninsula, although in situ Pliocene pollen in this core

cannot be ruled out (Warny and Askin, 2011). In contrast, the marine cores dated to

the mid-Miocene (17 - 15 Ma) contain abundant terrestrial pollen (Warny et al., 2009)

and it seems unlikely that vegetation could survive on Antarctica into the Pliocene

without leaving some sort of palynological trace. Notably, during the mid-Miocene, the

AIS underwent episodic ice sheet retreat coincident with elevated CO2 (Foster et al.,

2012, Levy et al., 2016) and increased vegetation cover on the continent (Warny et al.,

2009).

In summary, it seems most likely that the Sirius Group at Oliver Blu↵s are mid-

Miocene (⇠17 - 15 Ma) rather than Pliocene in age, although this cannot be confirmed

and remains a hotly debated topic. Regardless of age, the sediments and fossil assem-

blages at Oliver Blu↵s indicate a period of warming and ice sheet retreat such that the

ice sheet margins were no more than 500 km from the South Pole. The deposits at

this site are unique in terms of both their excellent preservation and the type of cli-

mate event that they represent and can provide new perspectives on our fundamental
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Figure 1.2: Antarctic data sites mentioned in this literature review. OB = Oliver Blu↵s
(Francis and Hill, 1996, McKelvey et al., 1991), AND = ANDRILL-2A core (Feakins et al.,
2012, Gasson et al., 2016, Griener et al., 2015, Levy et al., 2016, Warny et al., 2009), MDV =
McMurdo Dry Valleys (Ashworth et al., 2007, Lewis et al., 2007, 2008, Marchant et al., 1993a,
Sugden et al., 1995), DSDP274 = Deep Sea Drilling Program Site 274 (Fleming and Barron,
1996), WL = Wilkes Land (Cook et al., 2013, Passchier et al., 2013a), PB = Prydz Bay (Clark
et al., 2013, Cook et al., 2014, Escutia et al., 2009, Passchier et al., 2011), SG = Shackleton
Glacier (Hambrey et al., 2003).
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understanding of high latitude climates during warmer worlds.

1.1.3 Antarctic climate and vegetation during AIS retreat

This section provides background and context to the topics explored in Chapters 2,

3 and 4. Each section gives the state of current knowledge from the Sirius Group at

Oliver Blu↵s and places it within the wider context of Antarctic research for both of

the possible age scenarios for the deposits (the mid-Miocene, ⇠17 - 15 Ma, and the

early to mid- Pliocene, 5 - 3 Ma).

1.1.3.1 Ice sheet retreat

The fossil plants from the Sirius Group sediments represent a time period when the AIS

margin had retreated far inland. The depositional environment is thought to have been

an active glacial margin at the head of a fjord more than 100 km from the Ross Sea,

where now the sequence is exposed on the flanks of the modern Beardmore Glacier.

Furthermore, the stratigraphy at the Oliver Blu↵s is indicative of a highly dynamic

ice margin, where the glacier advanced and retreated on several occasions (Ashworth

and Cantrill, 2004). Both of the possible age scenarios for the Sirius Group at Oliver

Blu↵s correspond to time periods during the Neogene where there is strong independent

evidence for considerable fluctuations in both the volume and extent of the AIS.

The variable nature of the ice-sheet during the mid-Miocene is demonstrated by se-

quence stratigraphy (Fielding et al., 2011), mineral provenance (Hauptvogel and Pass-

chier, 2012, Iacoviello et al., 2015) and sedimentology (Passchier et al., 2011, 2013b)

from marine cores in the Ross Sea, pointing to warm intervals when ice sheet margins

retreated inland as far as the Transantarctic Mountains (Hauptvogel and Passchier,

2012, Passchier et al., 2011). During colder intervals, the grounding line extended well

into the Ross Sea basin (Hauptvogel and Passchier, 2012). Overall, well-dated glacial

and fossil records from the Olympus Range in the McMurdo Dry Valleys, East Antarc-

tica indicate a significantly smaller ice sheet accompanied by wet-based glaciers prior

to 13.94 Ma (Lewis et al., 2007, 2008). This ice sheet retreat is replicated in modelling
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studies, which are able to produce significant and variable AIS retreat, equivalent to

30 - 36 m of sea level rise (Gasson et al., 2016, Pekar and DeConto, 2006).

The mid-Miocene ice sheet fluctuations appear to be primarily driven by orbital

variations (Griener et al., 2015, Passchier et al., 2013b), but the AIS was clearly highly

sensitive to relatively small and rapid fluctuations in atmospheric CO2 (Foster et al.,

2012, Gasson et al., 2016, Levy et al., 2016); multiple geochemical records indicate a

threshold for Miocene AIS retreat of around 500 ppmv (Greenop et al., 2014, Holbourn

et al., 2015, Kürschner et al., 2008, Levy et al., 2016). Since these ice sheet fluctuations

occurred for a range of atmospheric CO2 from preindustrial CO2 levels to projections

for the year 2050 (280-500 ppmv), it is important to understand how Antarctic cli-

mate might have been a↵ected by them (Gasson et al., 2016). Furthermore, these

rapid fluctuations in atmospheric CO2 drove variability in the marine carbon isotope

record (Holbourn et al., 2007, 2013, Vincent and Berger, 1985, Woodru↵ and Savin,

1989), suggesting a long-term coupling between the carbon cycle, ice sheet and climate

throughout the middle Miocene (Holbourn et al., 2015). The exact nature of this rela-

tionship is unknown, particularly with respect to carbon cycling during episodes of ice

sheet retreat.

Similarly to the mid-Miocene, evidence from mineral provenance, ice-rafted debris,

sediment facies and grain size, microfossils and mineralogy from multiple sub-glacial

basins demonstrate that the EAIS had a dynamic margin during the Pliocene, largely

due to orbital forcing (Cook et al., 2013, 2014, Escutia et al., 2009, Hansen et al.,

2015, Passchier et al., 2011, Patterson et al., 2014, Reinardy et al., 2015, Williams

et al., 2010). Until recently, attempts to model EAIS retreat that are consistent with

estimates of Pliocene sea level increases (of up to 25 m higher than present day) sug-

gested it could not have happened (Pollard and DeConto, 2009). However, a number

of additional processes related to ice sheet instability have since been added to the

ice sheet model used by Pollard and DeConto (2009), and under warm conditions the

model now predicts considerable ice loss in East Antarctica (equivalent to 17 m of sea

level rise; Pollard et al., 2015, Pollard and Deconto, 2016). Ice sheet retreat also seems

more likely when taking into account Pliocene-specific mantle topography under the
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ice sheet, which implies a much larger deglaciated area than under modern conditions

(Austermann et al., 2015). The AIS appears to be less sensitive to CO2 during the

Pliocene; peak warmth during the mid-Pliocene Warm Period is associated with CO2

levels of 365 - 415 ppmv (Pagani et al., 2010), much lower than peak CO2 levels of the

mid-Miocene. Nevertheless, long-term variability in the AIS is believed to have varied

coherently with the carbon cycle throughout the Pliocene (de Boer et al., 2014), but

again, the dynamics of the carbon cycle during these fluctuations is not clear.

1.1.3.2 Vegetation

The site at Oliver Blu↵s is most notable for an exceptionally preserved fossil flora, con-

sisting of fossil mosses, cushion plants, flowers, and the wood, pollen and leaves of a new

species of Nothofagus, Nothofagus beardmorensis (Ashworth and Cantrill, 2004, Askin

and Markgraf, 1986, Carlquist, 1987, Hill and Trustwell, 1993, Hill et al., 1996, Webb

and Harwood, 1987, 1993). The fossil plants stand out especially for their high de-

gree of preservation: the plants are desiccated and there is very little permineralisation

(infilling of fossil casts by water-borne minerals), meaning that much original woody

structure is preserved (Francis and Hill, 1996). The discovery of such well-preserved

plant fossils, 500 km from the South Pole, has been described as one of the most im-

portant palaeobotanical discoveries to have been made in Antarctica (Ashworth and

Cantrill, 2004). The fossil plants represent a tundra vegetation, and all woody plants

were identified as a single species of Nothofagus (Carlquist, 1987), although a few rare

grains of podocarp pollen were also identified (Askin and Markgraf, 1986, Askin and

Raine, 2000, Hill and Trustwell, 1993, Raine, 1998). The discovery of podocarp pollen

without accompanying macrofossils at a site with abundant, well-preserved Nothofagus

macrofossils and pollen raises questions about the make-up of Antarctic vegetation:

was Antarctic flora entirely dominated by one species of Nothofagus, or do biases in

the fossil record mask a more diverse mixed angiosperm-conifer vegetation?

This discrepancy is also reflected in the wider record of Antarctic vegetation during

the Neogene. Pollen records from mid-Miocene marine sediment cores from both the
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Ross Sea and the Antarctic Peninsula record a tundra shrub dominated by Nothofagus

with sparse podocarps (Anderson et al., 2011, Askin and Raine, 2000, Feakins et al.,

2012, Levy et al., 2016, Raine, 1998, Warny and Askin, 2011, Warny et al., 2009). A

Nothofagus dominated flora is also supported by well-dated terrestrial deposits from

the McMurdo Dry Valleys, where fossil assemblages record a tundra habitat, along

with numerous bryophytes, lycophytes and algal species, similar to the flora of modern

day Tierra del Fuego, Chile (Ashworth et al., 2007, Lewis et al., 2008). However, in

contrast to the Ross Sea coastal vegetation, there is no evidence for the presence of

podocarps in the Dry Valleys, indicating complex spatial and temporal patterns in

Antarctic vegetation change. It is suggested that tundra vegetation became extinct

⇠13.85 Ma on East Antarctica (Lewis et al., 2008) and by 12.8 Ma on the Peninsula

(Anderson et al., 2011) as a result of the growing ice sheet, although it cannot be ruled

out that vegetation survived in refugia into the Pliocene (Warny and Askin, 2011). A

lack of well-dated terrestrial Pliocene deposits means there is a shortage of vegetation

information about the Antarctic continent, although Nothofagus pollen dated to the

mid-Pliocene has been recovered from a sedimentary core ⇠250 km o↵shore from Cape

Adare (Deep Sea Drilling Project Site 274; Fleming and Barron, 1996); this result has

not been repeated in subsequent Antarctic cores (e.g. Warny et al., 2006). Therefore,

while the pollen record from the Ross Sea in particular appears to provide a thorough

record of Neogene vegetation on Antarctica (Feakins et al., 2012, Warny et al., 2009), it

is clear from other records that there are many pieces of the puzzle still missing, which

a new approach could help to find.

1.1.3.3 Climate

The occurrence of vegetation at such high latitudes in the Transantarctic Mountains at

Oliver Blu↵s is indicative of considerable warming and ice sheet retreat. The fossil wood

has very narrow growth rings, implying slow growth during a short summer growing

season where temperatures reached ⇠5 �C (Francis and Hill, 1996); 10 �C warmer than

Antarctic summer temperatures in the present day. This is comparable with the lower

biological limits of fossil fauna found at the same site, all implying a minimum summer
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temperature of 4 - 5 �C (Ashworth and Kuschel, 2003, Ashworth and Preece, 2003),

while analysis of palaeosols in the same sequence implied MATs of -3 to -11 �C (Re-

tallack et al., 2001). Warmer than present-day continental temperatures are supported

by geological evidence from elsewhere on the continent for the mid-Miocene. Pollen

records from the Ross Sea suggest that at peak warmth, mid-Miocene air temperatures

could have reached 10 �C (Feakins et al., 2012, Griener et al., 2015, Warny et al., 2009),

and data from soil chemofunctions suggests mean annual temperatures were perhaps

4 - 8 �C (Passchier et al., 2013a). The presence of wet-based glaciation suggests tem-

peratures in the Dry Valleys were 25 - 30 �C higher than present-day, but a switch

in glacier thermal regime means air temperatures may have reached present-day tem-

peratures (-30 �C) by 13.94 Ma (Lewis et al., 2007). Similarly warm temperatures for

the Pliocene (8 �C in the summer) are also supported by atmospheric GCM modelling,

driven by Southern Ocean sea surface temperature warming, and reduced terrestrial

ice cover and surface albedo (Francis et al., 2007).

With the exception of the pollen and geochemistry-derived temperatures from the

Ross Sea (which, because of the age uncertainty, are not directly comparable to Oliver

Blu↵s), the temperature reconstructions for Antarctica during the Neogene are largely

limited to analyses based on qualitative comparisons of modern fauna and flora (Ash-

worth and Kuschel, 2003, Ashworth and Preece, 2003, Francis and Hill, 1996). These

reconstructions therefore do not provide quantitative estimates of palaeotemperatures,

and fossil-derived palaeotemperatures are generally less precise than geochemically-

derived temperature estimates (Ballantyne et al., 2005). A geochemistry based palaeother-

mometer applied to the Oliver Blu↵s sediments could provide far more precise estimates

of continental temperature during this period of ice sheet retreat, and is the aim of part

of this thesis.

There is some evidence for hydrological cycle change during Neogene AIS retreat.

Mean annual precipitation of 120 - 220 mm is also estimated from palaeosol analysis

at Oliver Blu↵s (Retallack et al., 2001), which is drier than precipitation estimates

from the Pliocene atmospheric GCM (72 - 360 mm; Francis et al., 2007). Both of

these estimates indicate that Antarctica experienced significantly higher mean annual
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precipitation than during the present-day (variable, but up to 100 mm). This was

further explored by Tindall and Haywood (2015), who used a fully coupled oxygen

isotope-enabled ocean-atmosphere GCM to explore global precipitation isotope pat-

terns during the mid-Pliocene Warm Period. At high latitudes, increased temperatures

lead to increased precipitation �18O, but the relationship between the two was spatially

variable and non-linear (as opposed to the present day, linear relationship; Craig, 1961,

Tindall and Haywood, 2015).

Hydrological change is also noted for the mid-Miocene. Reconstructions of precipi-

tation based on soil chemofunctions suggest that mean annual precipitation could have

bene as high as 600 mm (Passchier et al., 2013a); during ice sheet minima, increased

precipitation improved water availability, allowing the periodic expansion of vegetation

between 20 and 16 Ma (Griener et al., 2015). Using an aqua-planet model (an entirely

ocean-covered Earth surface), it was inferred that increased precipitation was driven

by evaporation from high latitude oceans, leading to an increase in locally derived

moisture relative to the present day (Feakins et al., 2012), although the results of this

study are not specific to periods of ice sheet retreat, and are instead averaged over a

much expanded time period (20 - 16 Ma). The evidence from both the Pliocene and

mid-Miocene suggest that high latitude hydrological cycling may function di↵erently

in warmer worlds with reduced ice sheets, but a detailed study exploring mechanis-

tic change specific to ice sheet retreat is clearly lacking. While Feakins et al. (2012)

provided a more thorough examination of Antarctic hydrological cycling than that of

Tindall and Haywood (2015), aqua-planet models cannot capture land surface-climate

interactions or the influence of ice sheets on climate. These interactions could be par-

ticularly important at high latitudes, where the impact of the ice sheet on albedo,

atmospheric moisture content and atmospheric circulation have been shown to be par-

ticularly important for both past and present-day climate (Francis et al., 2007, Holland

and Bitz, 2003, Krinner et al., 2007, Jacka and Budd, 1998, Rohling et al., 2012, Sin-

garayer and Valdes, 2010). Instead, a fully coupled ocean-atmosphere GCM (as in

Tindall and Haywood, 2015) would enable a rigorous examination of the climate and

hydrological response to ice sheet reduction.
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1.1.3.4 Research opportunities and outstanding uncertainties

Regardless of age, the sediments and fossil assemblages at Oliver Blu↵s indicate a period

of warming and ice sheet retreat so that the ice sheet margins were no more than 500 km

from the South Pole. The deposits at this site are unique in terms of both their excellent

preservation and the type of climate event that they represent. They provide numerous

untapped opportunities for examining Antarctic palaeoclimate through further proxy

work, which will build on previous research on the deposits that has so far mostly

provided qualitative temperature estimates. Firstly, the exceptional preservation of

the fossil prostrate trees means that tree ring isotope analysis may be applied, building

on previous dendrochronological work (Francis and Hill, 1996, McCarroll and Loader,

2004). Application of this technique to the Oliver Blu↵s fossils would provide novel

proxy archives for Antarctica, but, prostrate plants have not been tested for their use

in tree ring isotope studies and further work developing this proxy is needed. Secondly,

the fossil plants were deposited in situ, which means that it is likely that there are

high levels of contemporaneous organic matter in the surrounding sedimentary matrix,

making biomarker-based temperature and vegetation reconstructions possible for the

first time on the Antarctic continent. Thus, the deposits present a unique opportunity

to study a snapshot of Antarctic climate and vegetation during a period of significant

ice retreat, and to provide rare terrestrial Neogene palaeoclimate data.

There are several substantial gaps in current knowledge of Antarctic climate pro-

cesses and vegetation cover during periods of ice sheet retreat, (mostly summarised

in section 1.1.3). Given the important influence of AIS both globally and regionally

(briefly outlined in section 1.1.1) it is the intent of this thesis to address these out-

standing uncertainties, as indicated in table 1.1.

1.2 Aims and objectives

The aim of this thesis is to answer the broad research question:

What was Antarctic climate and vegetation during a period of Neogene
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Table 1.1: Summary of the outstanding uncertainties in the published research undertaken to
understand Antarctic palaeoclimate and vegetation during EAIS retreat, forming the basis of
this thesis.

Outstanding uncertainties in the research carried out to date

1. Uncertainties over the composition of Neogene Antarctic vegetation commu-
nities due to discrepancies between the macrofossil and pollen record in both
terrestrial and marine geological records.

2. Limited geochemical-based temperature data to provide more precise, quanti-
tative estimates of continental temperatures during ice sheet retreat.

3. Prostrate fossil trees could provide novel proxy archives of environmental sig-
nals but it is unknown whether tree ring isotopes in prostrate trees or shrubs
record climate signals.

4. Limited understanding of carbon cycle dynamics during EAIS retreat, al-
though ice sheet fluctuations are known to be linked to atmospheric CO2

levels.

5. No constraints in hydrological change during EAIS retreat or detailed ex-
amination of Antarctic climate response to EAIS retreat: the only Neogene
Antarctic hydrological reconstruction to date is too early (20 - 15 Ma) and
has no temporal resolution.

East Antarctic Ice Sheet retreat?

This thesis takes an integrated, multidisciplinary approach, and uses both geo-

chemical and climate modelling methods to address this aim. Numerous geochemical

techniques are applied to a terrestrial archive of AIS retreat recovered from the Sirius

Group sediments to elucidate information about temperature, vegetation, hydrological

cycling and atmospheric CO2. In addition, there is a climate modelling component that

builds on some of the geochemical results to investigate in greater detail the impact of

EAIS retreat on the Antarctic hydrological cycle. This data-model approach has the

benefit of being able to test the assumptions made in generating the geochemical data

and gaining a more comprehensive understanding of the palaeoclimate system under

examination.

The overarching research aim above can be addressed by a number of objectives,

which have been framed as Research Questions, given in Table 1.2. Each of the following

chapters (Chapters 2, 3 and 4) explicitly address these questions, with at least one

Research Question addressed per chapter. Chapter 2 addresses Research Questions 1
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Table 1.2: Research questions addressed in this thesis.

Research Question Chapter

1. Can a geochemical approach advance understanding of local
and regional vegetation community structures?

2

2. What were continental temperatures during EAIS retreat? 2

3. Can oxygen isotopes in Antarctic fossil prostrate trees be
used to trace hydrological change?

3

4. Were there changes in carbon cycling during EAIS retreat? 3

5. Was there a di↵erent hydrological cycle during EAIS retreat? 4

and 2: organic geochemical methods are used to examine in detail environmental and

vegetation changes during Antarctic ice sheet retreat, and a geochemical temperature

proxy is used to elucidate continental summer temperatures. Chapter 3 addresses

Research Questions 3 and 4 and takes an isotopic approach to constraining precipitation

and the composition of atmospheric CO2. Chapter 4 combines several of the insights

from Chapters 2 and 3, and adds a reconstruction of precipitation hydrogen isotopes

to examine how a reduced AIS could impact hydrological cycling, and to take these

insights forward at both a local and continental scale. The results vastly broaden our

understanding of how Antarctic continental climate is impacted by ice sheet retreat.The

rest of this chapter explores the scientific background of each research question and

briefly discusses the methodologies used to address them.

1.2.1 Can a geochemical approach advance understanding of local and

regional vegetation community structures? (Chapter 2)

There are many challenges associated with reconstructing past Antarctic vegetation, not

least because much of the geological record is hidden by the ice sheet. Vegetation on the

Antarctic continent was probably sporadic in nature during the Neogene: advancing

inland as the EAIS retreated and returning to form coastal refugia as it expanded

again (Levy et al., 2016). Discrepancies between the pollen and macrofossil record of

Antarctic vegetation during the Neogene have led to uncertainties over the composition

and ecology of this vegetation. The Sirius Group macrofossil record suggests a low
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diversity tundra shrub, dominated by Nothofagus (southern beech; Carlquist, 1987,

Francis and Hill, 1996, Hill and Trustwell, 1993, Hill et al., 1996, Webb and Harwood,

1987). Rare podocarpaceous pollen from the Sirius Group indicate the presence of

conifers, but this is not reflected in the macrofossil record (Askin and Raine, 2000).

Similar discrepancies in the presence or absence of conifers are noted elsewhere in the

Transantarctic Mountains (Ashworth et al., 2007, Lewis et al., 2008). This could be

explained by several possibilities: there may have been spatially complex vegetation-

environment patterns which are not well understood, or biases in either the macrofossil

or pollen record for Antarctica (or both) which have not yet been identified. The

application of organic geochemical methods to Antarctic sediments could provide new

constraints on Neogene Antarctic vegetation.

Terrestrial plants are major producers of biological compounds, which can be de-

posited in situ or transported into sedimentary basins. During transport and deposi-

tion, compounds can lose much of their functionality, but their carbon skeletons are

preserved in sediments as biomarkers. The distributions of certain classes of biomarker

(e.g., n-alkanes, terpenoids) are characteristic of di↵erent types of vegetation, and

therefore biomarker distributions in sediments be used as proxies for vegetation com-

position and diversity at the time of deposition. Furthermore, the use of biomarkers as

a proxy for vegetation has some advantages over looking only at the fossil record. The

fossil record (both macro- and micro-) necessarily su↵ers from various biases due to

di↵erences in degradation and preservation, transportation, and in the case of pollen,

di↵ering rates of pollen production between plant types. The biomarker record also

su↵ers from the same biases, but they act in di↵erent ways upon the biomarker record

compared to the fossil record. The biomarker-based approach used in this thesis to

reconstruct vegetation can therefore provide a di↵erent perspective on vegetation com-

munities. This approach provides new insights into Antarctic flora during the Neogene

and will contribute to our broader understanding of the history of vegetation on Antarc-

tica. Details of the analytical geochemistry techniques used here are given in Chapter

2.
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1.2.2 What were continental temperatures during EAIS retreat? (Chap-

ter 2)

Since the discovery of a fossil flora in the Sirius Group sediments at Oliver Blu↵s,

numerous researchers have reconstructed continental temperatures in an attempt to

understand how vegetation could be sustained at such high latitudes. At 85� S, vegeta-

tion growing at Oliver Blu↵s would have received ⇠42% of the radiation received over

Tierra del Fuego (54� S), resulting in low temperatures even during the summer. A

mean summer temperature of ⇠5 �C has been proposed based on the minimal thermal

requirements of freshwater molluscs (Ashworth and Preece, 2003), listroderine weevils

(Ashworth and Kuschel, 2003) and extant Nothofagus species (Francis and Hill, 1996,

Hill and Trustwell, 1993, Hill et al., 1996, Hill and Jordan, 1996, Webb and Harwood,

1993), and climate modelling suggests summer temperatures could have been 8 �C

(Francis et al., 2007). Palaeosol structures for the Sirius Group suggest mean annual

temperatures of between -11 and -3 �C (Retallack et al., 2001). While these recon-

structions are numerous, there is a clear need for a more quantitative calculation of

temperature using geochemical methods.

The use of a geochemistry-based proxy for palaeo-temperatures has numerous ad-

vantages over other methods. Fossil-based temperature proxies such as pollen, insects

and leaf margin shape provide qualitative measures of climate change, but tend to be

less precise than geochemical proxies, which can provide more quantitative estimates

(Ballantyne et al., 2005).

Palaeothermometers based on branched glycerol dialkyl glycerol tetraethers (br-

GDGTs) are very useful for terrestrial settings such as the Sirius Group, which con-

tain only low levels of carbonate, precluding the use of isotopic temperature prox-

ies. The MBT’/CBT proxy (Methylation of Branched Tetraethers and Cyclization of

Branched Tetraethers, respectively; Peterse et al., 2012, Weijers et al., 2007) is based

on the temperature-dependent distribution of br-GDGTs in soils and works well in

cold high latitude climates (Peterse et al., 2009). The use of the MBT’/CBT proxy

as a palaeothermometer is discussed further in Chapter 2, but will provide a precise

17



Chapter 1

estimate of continental temperatures on Antarctica.

1.2.3 Can oxygen isotopes in Antarctic fossil prostrate trees be used

to trace hydrological change? (Chapter 3)

To examine how Antarctic climate behaved during EAIS retreat, it is useful to examine

changes in the hydrological cycle, particularly looking at precipitation over the conti-

nent. Oxygen isotope ratios in precipitation act as a tracer of the hydrological cycle.

Locally, precipitation �18O is governed by condensation temperature and the amount

of condensate formed from the parcel of water vapour (Dansgaard, 1964), but is also

influenced more broadly by the characteristics of the moisture source (both location

and isotopic composition) and the trajectories of the vapour in the atmosphere (Gat,

1996). Therefore, on geological timescales, there are multiple changes to the climate

system that could a↵ect precipitation isotopes, including changes in seasonality, sea

surface temperature gradients, continental topography, and ice sheet volume and ex-

tent (Feakins et al., 2012, Kaandorp et al., 2005, Sepulchre et al., 2006, Ullman et al.,

2014). Oxygen isotope ratios in tree ring cellulose have been shown to be a very useful

tool for reconstructing precipitation isotopes in the modern (McCarroll and Loader,

2004). The exceptionally well-preserved prostrate trees at Oliver Blu↵s therefore have

excellent potential for use, but prostrate trees are generally not used in isotope studies.

In Chapter 3, the ability of cellulose-oxygen isotopes in prostrate Nothofagus to record

precipitation �18O is tested using modern plants, and then applied to fossil Nothofagus

from the Sirius Group, Antarctica.

1.2.3.1 Prostrate trees

Prostrate trees are woody plants with a stunted or twisted dwarf growth form (generally

<2 m height), which frequently have a non-vertical trunk or grow laterally along the

ground. They generally inhabit marginal habitats, e.g. at higher altitudes than arboreal

trees, growing at or above the upper treeline on mountain slopes or at the tundra-taiga

interface (Crawford, 2014). The stunted growth form may be genetically predetermined,

18



1.2 Aims and objectives

or it could occur because of phenotype plasticity. The latter cause is most likely the case

for the prostrate Nothofagus fossils used in this study; at their southernmost extent

in South America (⇠54� S), multiple Nothofagus species grow in prostrate form in

areas most a↵ected by strong winds, whereas they grow in erect form in more sheltered

areas (Veblen et al., 1996). In addition, pollen records from the Ross Sea suggest that

Antarctic vegetation increased in stature from a prostrate shrubby form to a more tree-

like, upright growth form in response to brief warming during the Miocene (Warny et al.,

2009), indicating that Nothofagus adopts a prostrate form as a phenotypic response to

climate.

A common feature of prostrate trees is the formation of tension wood, formed in

place of normal wood by trees, in response to gravity. Cambial activity is enhanced

on the upper side of non-vertical trunk wood, producing more cells and therefore a

thicker and denser growth ring. This can lead to elliptical or asymmetric growth rings,

and in angiosperms, tension wood has a higher proportion of cellulose than normal

wood. Prostrate plants are traditionally not used in dendroclimatological studies for

this reason (Schweingruber, 2007), although increasingly tree ring widths in high alti-

tude shrubs are being explored as climate archives (Hantemirov et al., 2011, Garcia-

Cervigon Morales et al., 2012). To my knowledge, prostrate trees have never been

tested for use in tree ring isotope studies. If they prove to be suitable archives of cli-

mate variables, tree ring isotopes from the fossil Nothofagus in this study could be used

to reconstruct Antarctic palaeoclimate, with an emphasis on hard-to-reconstruct vari-

ables such as the isotopic composition of precipitation. Importantly, this advance would

also make end-member environments that have heightened climate sensitivity, such as

those at high latitudes and altitudes, more accessible for climate reconstructions.

1.2.3.2 Oxygen isotopes in tree rings

Oxygen isotopes in tree ring cellulose are widely used as a proxy for palaeoclimate and

can be used to reconstruct �18O of ancient precipitation (Ballantyne et al., 2006, 2010,

Csank et al., 2011, Jahren and Sternberg, 2003, 2008, Wolfe et al., 2012). Cellulose
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�18O is largely governed by three dominant factors (summarised in Fig. 1.3):

(a) The isotopic composition of the plants source water (Dawson and Ehleringer,

1993, Dawson and Pate, 1996);

(b) Enrichment of heavy isotopes in leaf water via stomatal conductance, which is

controlled by relative humidity (Barbour et al., 2000, Barbour and Farquhar,

2001, Barbour et al., 2002, Craig and Gordon, 1965, Dongmann et al., 1974);

(c) Various biological fractionation factors during biosynthetic pathways and trans-

port i.e., synthesis of leaf sugars from leaf water (factor b), transport of sugars to

the cambium and their subsequent conversion to cellulose. (Barbour et al., 2000,

Sternberg et al., 1986).

A plants main source of water (factor a) is through the soil and accordingly, part

of the �18O signal of trees is that of the soil moisture, generally from precipitation

or groundwater. This signal is governed by several additional factors: soil residence

time (as fractionation can occur via evaporation from the soil); the depth from which

the roots acquire water (Dawson and Pate, 1996), and seasonal variation in �18O of

precipitation. No fractionation occurs when roots take up water, thus soil water �18O

= source water �18O (Brunel et al., 1991).

Various models exist describing the relationship between source water �18O, leaf

water �18O and relative humidity (i.e. factor b). The majority are steady-state models

based, in one way or another, on the Craig-Gordon model of evaporation from a free

water surface (Craig and Gordon, 1965, Dongmann et al., 1974, Farquhar et al., 1989b,

Farquhar and Lloyd, 1993b) e.g. equation 1.1:

�18O
evap

= ✏+ ✏
k

+
e
a

e
i

(�18O
atmos

� ✏
k

) (1.1)

where �18O
evap

gives the degree of enrichment of leaf water relative to source water

at the site of evaporation, ✏ is the depression of water vapour pressure by H18
2 O, ✏

k

is the fractionation at the stomata/leaf boundary layer, �18O
atmos

gives the degree of

20



1.2 Aims and objectives

Figure 1.3: The oxygen isotope composition of cellulose is primarily governed by three pro-
cesses: (a) the isotopic composition of precipitation, combined with evaporation processes from
the soil and groundwater mixing; (b) evapotranspiration from leaves, which itself is dependent
upon temperature and relative humidity; and (c), various well-constrained biological fraction-
ation factors.
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enrichment of atmospheric water vapour relative to the source water, and e
a

and e
i

give

the ambient and intercellular vapour pressures respectively (Craig and Gordon, 1965).

Numerous extensions to equation 1.1 have been proposed including enrichment along

a series of evaporative cells (Gat and Bowser, 1991); the two-pool model, representing

the mesophyll and veins (Allison et al., 1985); and the Péclet e↵ect (Farquhar and

Lloyd, 1993a), which describes the convection of depleted water to evaporating sites

(stomata), opposed by backward di↵usion of H2
18O from enriched evaporative sites,

supported by multiple observations (Barbour et al., 2004, Gan et al., 2002, Helliker

and Ehleringer, 2000, Roden and Ehleringer, 1999, Wang and Yakir, 1995).

During the synthesis of leaf sugars (factor c), carbonyl-bound oxygens exchange

with leaf water resulting in an isotopic enrichment of 27 h for sugar �18O relative to

leaf water �18O (Sternberg et al., 1986). Further fractionation occurs during synthesis

of cellulose from sucrose, where exchange occurs between the hydroxyl groups on the

sugar rings and source water in xylem tissue (Sternberg et al., 1986).

Several models have been proposed combining factors (b) and (c) together, and can

link �18O of tree ring cellulose and plant source water. Early models were generally

empirical or with basic terms describing evaporative enrichment, or the proportion of

oxygen that exchanges with xylem water (Epstein et al., 1977, Sternberg et al., 1986,

Yakir and DeNiro, 1990). More recent models are more mechanistic in nature and

increasingly complex, including biological fractionation factors (Saurer et al., 1997, Ro-

den and Ehleringer, 2000) and transpiration rates (Barbour et al., 2004). Comparisons

between the latter three models found that the simplest approaches, such as that by

(Saurer et al., 1997), give better predictions (Roden and Ehleringer, unpublished data).

This is good news for palaeo-reconstructions, where the required input information on

climate and biological parameters is scarce. For this reason, a simple adaptation of the

Saurer model is used in Chapter 3 (Anderson et al., 2002).
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1.2.4 Were there changes in carbon cycling during EAIS retreat?

(Chapter 3)

During the Neogene, it appears that the Antarctic Ice Sheet had an atmospheric CO2

threshold of ⇠500 ppmv before significant collapse occurred (Gasson et al., 2016, Levy

et al., 2016); ice sheet volume and extent, and the carbon cycle are clearly linked to

each other. In this section of the thesis, I attempt to constrain carbon cycling during

AIS retreat using �13C of plant material from the Sirius group fossils to reconstruct

the isotopic composition of atmospheric CO2. The carbon isotopic composition of the

atmospheric carbon reservoir varies through time with fluctuations in carbon fluxes

through ocean and atmospheric reservoirs (Berner, 1998, Zachos et al., 2001). In most

palaeoclimate studies, atmospheric �13C is assumed to be equivalent to the preindustrial

value of -6.5 h (e.g. Feakins et al., 2005, 2007, Hopley et al., 2007, Zhang et al.,

2009), but most likely varied through time in line with changes in the carbon cycle,

such as rates of organic carbon burial and ocean overturning. Therefore calculating

atmospheric �13C provides additional constraints on carbon cycling during a period of

ice sheet retreat.

Terrestrial plant material has been ignored generally as a potential proxy for atmo-

spheric �13C because it was thought that various physiological e↵ects drowned out the

atmospheric signal (reviewed in Farquhar et al., 1989a). However, Arens et al. (2000)

found a strong linear relationship between �13C of C3 land plant tissue and �13C of

atmospheric CO2, and this has been used several times to constrain ancient carbon

cycling (Grocke et al., 1999, Jahren et al., 2001).

1.2.5 Was there a di↵erent hydrological cycle during EAIS retreat?

(Chapter 4)

The presence of vegetation on Antarctica during the Neogene supports the notion that

there was a di↵erent hydrological cycle, presumably with increased precipitation relative

to today. Feakins et al. (2012) found enriched precipitation isotopes over the Antarctic

coast throughout the warmth of the Miocene, and unexpected changes in precipitation
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isotopes are also noted during the mid-Pliocene Warm period (Tindall and Haywood,

2015). Chapter 4 takes a data-model approach to answer Research Question 5. The

geochemical data component builds on the oxygen isotope results of Chapter 3 by

the addition of a second, independent proxy for precipitation isotopes (plant leaf wax

hydrogen isotopes, giving precipitation �2H; a discussion of the proxy can be found in

Chapter 4). This both provides greater confidence in the result from Chapter 3 and

allows deeper analysis of hydrological cycling.

The geochemical results are then combined with climate modelling from an isotope-

enabled ocean-atmosphere GCM in order to assess climate mechanisms behind the geo-

chemical data. In order to fully understand our geochemical data, a climate model with

oxygen isotopes implemented throughout the hydrological cycle is necessary. Thus far,

modelling work specifically exploring Neogene Antarctic palaeoclimate has only used

an isotope-enabled aqua-planet model (Feakins et al., 2012). This type of model does

not take into account the impact of changes in albedo, sea ice or ice sheet volume

and elevation on climate, which enact multiple feedbacks on temperature, atmospheric

circulation and evaporation; all essential components to understanding hydrological

cycling. Tindall and Haywood (2015) examined the mid-Pliocene global hydrologi-

cal cycle using a fully coupled ocean-atmosphere GCM, which is able to capture land

surface-climate interactions as well as the direct influence of the ice sheet on climate.

However, a full examination of Antarctic hydrological cycling was not the purpose of

that paper, but it provides an excellent starting point for the work carried out and

presented in this thesis, which will provide in-depth understanding of climate mecha-

nisms at play during ice sheet retreat. The addition of atmospheric dye-tracers into

the model will further this work by providing a first order approximation of changes in

moisture source region in a warmer world.

It is important to point out here that the boundary conditions used for the modelling

component of this thesis are equivalent to those for the mid-Pliocene Warm Period,

which could di↵er from the boundary conditions of the true time period represented by

the geochemical results. Nevertheless, these still provide a reasonable representation of

the boundary conditions important for answering our question; elevated atmospheric
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CO2 (400 ppmv) and a reduced AIS (2/3 the size of present-day). Furthermore, as dis-

cussed in section 1.1.3, the use of a fully coupled atmosphere-ocean GCM will address

specific questions surrounding the impact of a reduced ice sheet on Antarctic hydrolog-

ical cycling which will advance our understanding beyond the aqua-planet modelling of

Feakins et al. (2012).

1.3 Thesis structure and author contributions

All written work presented in this thesis is my own. In addition to guidance and

technical support from my supervisors, a number of collaborations resulting in co-

authorships were established while undertaking the research in this thesis. Listed in

order of appearance, these are:

• Dr Fiona Gill (University of Leeds, UK) who granted me access to her organic

geochemistry lab and aided me in GC-FID and GC-MS analysis and quantification

of biomarker lipids (Chapter 2).

• Drs. Christopher H. Vane and Raquel A. Lopes dos Santos (British Geological

Survey, UK) who provided measurements of GDGT abundances and gave useful

discussion on the MBT’/CBT palaeothermometer (Chapter 2).

• Dr Alina Marca (University of East Anglia, UK) who provided measurements of

oxygen isotopes in extracted soil and plant waters using cavity ring-down spec-

troscopy (Chapter 3).

• Dr Jens Holtvoeth and Prof. Rich Pancost (University of Bristol, UK) who pro-

vided compound specific-isotope analysis and useful discussions on interpreting

leaf wax �2H data (Chapter 4).

• Dr Julia Tindall (University of Leeds, UK) who gave advice and provided simu-

lations from HadCM3 for analysis, as well as assisting with analysis of HadCM3

model output (Chapter 4).
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• Prof. Paul Valdes (University of Bristol, UK) who provided coding, training and

technical assistance for implementing conservative dye-tracers in GCM simula-

tions (Chapter 4).

Contributions and assistance not resulting in a co-authorship can be found in the

Acknowledgements section.

Each of the three research chapters (Chapter 2, 3 and 4) have been written as

individual research articles in preparation for submission to peer-reviewed journals.

In each data chapter of the thesis, references to other data chapters are made using

both the chapter number and the paper references. Chapter 2 has been formatted

for submission to Organic Geochemistry (Rees-Owen et al., in prep-a) and Chapter

3 for Earth Planetary Science Letters (Rees-Owen et al., in prep-b). Chapter 4 has

been prepared for submission to Nature Geoscience (Rees-Owen et al., in prep-c); the

short format nature of this journal means that detailed discussion of the data produced

and methods employed in this chapter may be found in Supplementary Information

3. For this reason, all supplementary material for each chapter is included as the final

section within each chapter rather than as separate appendices. Each research chapter

begins with a preface, detailing the intended journal and its status, and co-author

contributions are noted.
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The last forests on Antarctica:

reconstructing flora and

temperatures from the Neogene

Sirius Group, Transantarctic

Mountains

Preface

Chapter 2 was written in preparation for submission to Organic Geochemistry. The

co-authors are my supervisors, colleagues and external collaborators (Fiona Gill, Rob

Newton, Ruza Ivanovic, Jane Francis, James Riding, Christopher Vane and Raquel

Lopes dos Santos). The work presented in this chapter is my own, including the back-

ground research, experiment design, set-up and execution, data analysis and presenta-

tion, and the written manuscript. My co-authors gave valuable advice and suggested

improvements for all aspects of the work. Additionally, Fiona Gill provided technical

support for the geochemical work carried out, and Christopher Vane and Raquel Lopes

dos Santos provided analyses for the br-GDGT data.
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Abstract

Fossil-bearing deposits in the Transantarctic Mountains, Antarctica, indicate that, de-

spite the cold and dynamic nature of the continent’s climate, a tundra ecosystem flour-

ished during periods of ice sheet retreat in the mid- to late Neogene (17 - 2.5 Ma), 480

km from the South Pole. There is contradictory evidence in the fossil record whether

this flora was mixed angiosperm-conifer vegetation, or whether by this point, conifers

had disappeared from the continent. Additionally, to date, temperature reconstruc-

tions have only been based on biological ranges, thus calling for a robust geochemical

approach to understanding continental climate and environments. In order to ad-

dress these questions we have analysed, for the first time, vascular plant and bacterial

biomarkers in terrestrial sediments from the Transantarctic Mountains to reconstruct

past temperatures and vegetation during a period of East Antarctic Ice Sheet retreat.

From tetraether lipids (MBT’/CBT palaeothermometer), we conclude that continental

summer temperatures were ⇠5 �C, which is in agreement with previous reconstructions.

This is warm enough to allow woody vegetation to survive even during the austral win-

ter. Biomarkers from vascular plants indicate a low-diversity and spatially variable

flora consisting of higher plants, mosses and algal mats growing in microenvironments

in a glacial outwash system. Abietane-type compounds, a class of conifer biomark-

ers, are abundant which indicates that conifers, most likely Podocarpaceae, grew on

the Antarctic continent well into the Neogene. This is supported by the palynological

record, but not the macrofossil record on the continent and has implications for the

evolution of vegetation on Antarctica.

2.1 Introduction

Since angiosperms first flourished on Antarctica in the late Cretaceous (85 million

years ago; Ma; Cantrill and Poole, 2012; and references therein), Antarctic vegetation

underwent a secular change, from a diverse fern-conifer dominated ecosystem, to a

temperate rainforest during Eocene warmth, to a low-diversity tundra flora dominated
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by angiosperms in the Neogene (Francis et al., 2008). This trend broadly correlates

with long-term cooling seen from the mid-Eocene and the expansion of the Antarctic

Ice Sheet (Zachos et al., 2001).

Generally, the Neogene Period (23 - 2.5 Ma) is characterised by atmospheric CO2

levels similar to or lower than present, and warmer but fluctuating temperatures relative

to today (Beerling and Royer, 2011).This interval is of particular interest in Antarctic

science because of the complexity of both cryosphere (Cook et al., 2013, Pollard et al.,

2015) and biosphere dynamics (e.g. Lewis et al., 2008) in this region. The scarcity of

Neogene terrestrial deposits on Antarctica makes reconstructing vegetation di�cult,

but it appears that a low diversity mosaic tundra vegetation existed over a wide ge-

ographical range throughout the Oligocene to Middle Miocene (24 - 14 Ma; Prebble

et al., 2006, Askin and Raine, 2000, Hill, 1989, Raine, 1998), and survived multiple

episodes of glacial advance and retreat (Ashworth et al., 2007). Questions remain over

both the timing of the disappearance of this tundra vegetation and its composition. In

the McMurdo Dry Valleys at least, woody vegetation appears to have been rendered

extinct by the expansion of the East Antarctic Ice Sheet at 13.8 Ma (Lewis et al.,

2007, 2008). However, palynological data from DSDP Site 274 in the Ross Sea suggests

that southern beech trees (Nothofagus) were present into the Pliocene (5 - 2.5 Ma;

Fleming and Barron, 1996). The macrofossil record indicates that Antarctic flora was

dominated by Nothofagus during the Neogene, but some pollen records suggest that

conifers existed on Antarctica at least until ⇠15 Ma (Warny et al., 2009).

The Sirius Group in the Transantarctic Mountains has played a key role in recon-

structing the Neogene flora of Antarctica. Fossil discoveries from Oliver Blu↵s (85

�S, 166 �E; Francis and Hill, 1996) are some of the most important palaeobotanical

discoveries on the continent in recent years. The age of these deposits has been the

subject of a contentious debate (Barrett, 2013). Marine diatoms found at several Sirius

Group locations throughout the Transantarctic Mountains suggest the deposits are 3

Ma (Webb and Harwood, 1991). However, it seems likely that the diatoms represent

wind-blown contamination (McKay et al., 2008) and exposure dating of moraines at

Oliver Blu↵s suggests they formed at least 5 Ma and probably much earlier (Ackert,
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Jr. and Kurz, 2004). Nonetheless, it is clear that these deposits represent a period of

late Neogene Antarctic deglaciation, where the East Antarctic Ice Sheet had retreated

far enough to allow a tundra shrub to grow 480 km from the South Pole. Not only

do these sediments provide rare data on the evolution of vegetation on the Antarctic

continent during the Neogene, but also insight into the Antarctic terrestrial climate

during a warmer world.

The macrofossil and palynomorph record at Oliver Blu↵s represent a low diversity

angiosperm flora, including exceptionally preserved leaves and wood of Nothofagus

(Carlquist, 1987, Francis and Hill, 1996, Hill et al., 1996, Hill and Trustwell, 1993,

Webb and Harwood, 1987) as well as flowers, fruits, seeds and the remains of vascular

plants with a cushion habit (Ashworth and Cantrill, 2004). Furthermore, at least five

species of moss have been identified (Ashworth and Cantrill, 2004, Hill et al., 1996).

There is no macrofossil record of coniferous plants at Oliver Blu↵s, but rare bisaccate

pollen grains suggest the presence of conifers, perhaps Podocarpidites (Askin and Raine,

2000). The low numbers of pollen grains is perhaps due to low pollen production, but

the question of whether there were conifers in the interior of Antarctica has not been

unequivocally answered. Resolving this issue would greatly enhance our understanding

of Antarctic floral evolution.

Biomarkers from plants provide valuable information on terrestrial environments

and climates and can be used to reconstruct past floras and depositional environments.

Some, such as aliphatic wax lipids (e.g. n-alkanes, n-alkanols) are non-specific, whereas

others, particularly the terpenoid family of compounds, provides valuable chemotax-

onomic information. For example, tricyclic diterpenoids (e.g. abietanes) are char-

acteristically produced by conifers, while non-steroidal pentacyclic triterpenoids (e.g.

oleanane-type compounds) are specific to angiosperms (Otto and Wilde, 2001; and ref-

erences therein). Using a biomarker approach to understand vegetation gives di↵erent

insights into past floral changes where preservation biases in the macro- and microfossil

record di↵er from those in the biomarker record. This has been used to some advantage

in deep time settings, such as the Paleocene and Eocene Bighorn Basin, to gain a more

complete knowledge of ancient vegetation (Diefendorf et al., 2011).
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The fossil discoveries at Oliver Blu↵s are thought to represent warm interglacials

which allowed the flora to briefly return from coastal refugia (e.g. Askin and Markgraf,

1986). Temperatures for these warm periods have been reconstructed by analysis of the

biological limits of fossil plants (Francis and Hill, 1996), weevils (Ashworth and Kuschel,

2003) and freshwater molluscs (Ashworth and Preece, 2003) found at Oliver Blu↵s,

suggesting temperatures were significantly warmer than the modern; i.e. 5 �C during

the summer compared to ⇠-3.4 �C for the present day. The distribution of branched

glycerol dialkyl glycerol tetraether molecules, a suite of bacterial membrane lipids, can

be used to empirically reconstruct soil pH and continental temperatures (known as the

MBT’/CBT palaeothermometer, since followed by improved ratios (Peterse et al., 2012,

Weijers et al., 2007). No geochemical thermometers have previously been applied to

terrestrial Antarctic deposits during this interval.

This chapter describes the first biogeochemical study of the Sirius Group at Oliver

Blu↵s. We analyse biomarkers from higher plants to assess their preservation and po-

tential as vegetation indicators which could resolve the apparent discrepancies between

the macro- and microfossil record of conifers at Oliver Blu↵s. The use of a geochemi-

cal thermometer provides an additional and robust dimension to our understanding of

continental temperatures during Southern Hemisphere deglaciations. While the precise

age of these deposits is not known, the results from this study inform our understanding

of Antarctic climate and vegetation in a past warmer world.

2.2 Materials and Methods

2.2.1 Geological setting

The sediment samples are taken from the Meyer Desert Formation glacigenic deposits,

which form the upper part of the Sirius Group in the Meyer Desert and Dominion

Range region of the Transantarctic Mountains (Fig. 2.1, Mercer and Sutter, 1982).

Samples were collected from Oliver Blu↵s, which today is at the northern end of the

Oliver Platform at latitude 85� 07’ S and longitude 166� 35’ E, 1760 masl. The site
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Figure 2.1: Map of Beardmore Glacier region with Oliver Blu↵s marked. Grey areas denote
outcrops. White areas denote ice-covered land and the Ross Ice Shelf.
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was at a similarly high latitude during deposition (Lawver and Gahagan, 2003), but

would have been at a considerably lower altitude (<700 masl), based on the biologi-

cal constraints of the in situ plant macrofossils (Mercer, 1986). The section sampled

is Member 2 of McKelvey et al. (1991), which includes fossil-bearing siltstones and

sandstones, diamictites and mudstones, and is interpreted as representing periglacial

or interglacial conditions.

2.2.2 Plant lipid analysis by Gas Chromatography/Mass Spectrome-

try

Prior to use, all glassware was solvent cleaned and furnaced (400 �C, 4 hours) to avoid

contamination. Sediment was dried and ground to <200 µm. An aliquot of sediment

(20 - 25 g) was extracted using Soxhlet apparatus for 24 hours in DCM/MeOH (9:1,

v/v). Sulphur was removed from the extract by the addition of activated copper wire (24

hours). The bulk of the solvent was removed using a rotary evaporator. Half of the total

lipid extract (TLE) was archived; the other half was fractionated into four fractions

(apolar, aromatic, aldehydes and ketones, polar) using column chromatography with

activated silica gel and elution with hexane (4 ml), hexane/DCM (2:1; 2 ml), DCM (4

ml) and methanol (5 ml) respectively; adapted from Bendle et al. (2007). The polar

fraction was derivatised by bis(trimethyl)trifluoroacetamide (BSTFA) in pyridine at 60

�C for 1 hour prior to analysis. Samples were dissolved in ethyl acetate before analysis

by gas chromatography/mass spectrometry (GC/MS).

Lipid analysis by GC/MS was conducted at the University of Leeds using a Trace

1300 gas chromatograph coupled to an ISQ mass spectrometer (Thermo Scientific, UK)

equipped with a non-polar fused silica capillary column (CPSil-5CB, 50 m x 0.32 mm x

0.12 mm; Agilent Technologies, USA). The temperature programme used was as follows:

initial temperature 40 �C, increasing to 130 �C at a rate of 20 �C per minute, then rising

to 300 �C at a rate of 4 �C per minute with a final isothermal hold at 300 �C for 25

minutes. Helium was used as the carrier gas. The sample was injected splitless with the

injector temperature at 300 �C. The ion source and transfer line were maintained at 300
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�C. The emission current was 50 A and the electron energy was 70 eV. The analyser

was set to scan at m/z 50-650 with a scan cycle time of 0.6 s. Data were collected

and processed using the XCalibur software. Individual compounds were identified by

interpretation of mass spectrometric fraction patterns and comparison of mass spectra

and retention times with literature and library data. Lipids were quantified relative to

internal standards.

2.2.3 GDGT analysis by Liquid Chromatography/Mass Spectrometry

Freeze-dried sediments were extracted using an automated solvent extractor (Dionex

200) operated at 100 �C and 7.6 x106 Pa with DCM: MeOH (9:1, v:v) to obtain a TLE.

Internal standard C46 GDGT was added to the TLE, which was separated into an apolar

and polar fraction in an alumina oxide column (Al2O3), using n-hexane/DCM 9:1 and

MeOH /DCM 1:1. The polar fraction was filtered through a polytetrafluoroethylene

filter (PTFE - 0.45 µm) and analysed using a Thermo TSQ Quantiva MS instrument

coupled to an Ultimate 3000 series µHPLC instrument. The chromatographic and MS

conditions are described in Lopes dos Santos and Vane (2016). GDGT distributions

were determined relative to internal standard.

Weijers et al. (2007) created two indices, the Methylation of Branched Tetraethers

(MBT) and Cyclisation of Branched Tetraethers (CBT), which described the empirical

relationship between the distribution of branched tetraether lipids, mean annual air

temperature (MAAT), and soil pH. More recently, Peterse et al. (2012) recalibrated

the proxy using an expanded global soils dataset, and refining the br-GDGTs used in

the calibration. Here, we use the CBT index (equation 2.1) after Weijers et al. (2007)

and use the revised MBT’ index (equation 2.2; Peterse et al., 2012). Mean annual

air temperature was calculated using two calibration equations (equations 2.3 and 2.4)

from Peterse et al. (2012). The Branched Isoprenoidal Tetraether (BIT) index was

calculated after Hopmans et al. (2004); equation 2.5.

CBT =
� log(Ib+ IIb)

(Ia+ IIa)
(2.1)
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MBT 0 =
(Ia+ Ib+ Ic)

(Ia+ Ib+ Ic+ IIa+ IIb+ IIc+ IIIa)
(2.2)

MAAT
a

= �0.64 + 22.9 ⇤MBT 0 (2.3)

MAAT
b

= 0.81� 5.67 ⇤ CBT + 31 ⇤MBT 0 (2.4)

BIT =
(I + II + III)

(I + II + III + IV )
(2.5)

Roman numerals in the equations refer to GDGT structures given in Weijers et al.

(2007). The average standard standard deviation of the MBT’ and CBT indices, based

on duplicate injections of sample, is 0.013 and 0.051. This results in an analytical

error in temperature estimates of ca. 0.3 and 0.6 �C for MAAT
a

and MAAT
b

, respec-

tively. The root mean squared error of the mean annual temperature is 5.7 and 5.0 �C

for MAAT
a

and MAAT
b

respectively, estimated for the MAAT calculations using the

transfer functions in Peterse et al. (2012). Several factors may contribute to the rela-

tively large scatter in the calibrations, but the uncertainty in temperature estimates is

likely mainly systematic; application of the proxy on a local scale (such as this study)

will result in much lower uncertainty, but an exact estimate of the error is hard to

constrain (Peterse et al., 2012).

2.3 Results

2.3.1 Plant lipid contents

All lipid fractions analysed were dominated by plant-derived biomarkers, including a

range of n-alkyl and terpenoid components; compound identifications are shown in Fig.

2.2 and the lipid contents are summarised in Table 2.1.

The apolar fraction is characterised by an n-alkane homologous series between C14
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Figure 2.2: GC-MS (Total Ion Current; TIC) traces of polar, aromatic and apolar fractions
from one sample from Oliver Blu↵s, Transantarctic Mountains. For peak annotations see Table
2.1. � = alkanoic acid, ⌅ = alkanols, N = alkanes.
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and C34. Lipids were detected in concentrations between 0.02 - 84.3 µg g-1 dry sediment;

n-C13 was detected in some samples in concentrations between 0.003 - 0.6 µg g-1 dry

sediment. The odd-even preference index (OEP) was 25.5 on average (Scalan and

Smith, 1970) and the average carbon preference index (CPI; Bray and Evans, 1961)

was 11.7, confirming a terrestrial plant origin (Fig. 2.3). The average chain length

(ACL; Eglinton and Hamilton, 1967) ranged between 25.3 and 28.1 which is broadly

consistent with modern trees (Diefendorf et al., 2011). The majority of samples had

an n-alkane maximum at C27 (n=11); however, the remainder were dominated by low

chain-length alkanes (C17), suggesting algal input.

The polar fraction contained a homologous series of n-alkanols and n-alkanoic acids,

ranging from C10 to C30, and C9 to C28, respectively. The n-alkanol series exhibited a

strong even-odd predominance, had a CPI of 3.3 - 12.3 and the ACL ranged between

22.7 and 25.3. The dominant alkanol was C22 in all samples. The alkanoic acid se-

ries exhibited a weaker even over odd predominance and had an average chain length

ranging from 22.9 - 25.6. The majority of samples exhibited a bimodal distribution,

maximising at C16 and C22. The C21 alkanoic acid was the most abundant lipid in one

sample. In addition to the fatty acid homologous series, a homologous series of ↵,!-

alkanedioic acids (C14 - C23) and several hydroxyl-fatty acids were found in numerous

samples.

The polar fraction also contained numerous triterpenoids indicative of higher vas-

cular plants including the steroids cholesterol, 5�-stigmastanol, 5 ↵-stigmastanol, 5�-

sitosterol and campesterol, as well as the non-steroidal triterpenoids �-amyrin, ↵-

amyrin, taraxerol, betulin, betulinic acid and several unknown compounds.

The aromatic fraction contained a variety of aromatic diterpenoids and five di- and

tri-aromatic des-A-triterpenoids, as well as two unidentified fully aromatised triter-

penoids. Diterpenoids of the abietane class, which are typical of conifers (Otto and

Wilde, 2001, Yamamoto et al., 2006), are relatively abundant, particularly dehydroabi-

etane, norsimonellite, tetrahydroretene and two dehydroabietins (18-norabieta-8,11,13-

triene and 19-norabieta-8,11,13-triene). Four trisnorabietatriene isomers were also iden-
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tified along with several unknown diterpane compounds.
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2.3 Results

Figure 2.3: Average fractional abundance of n-alkanes, n-alkanols, n-alkanoic acids. Error
bars = 1 sd.

2.3.2 Bacterial tetraether lipid distributions

Branched GDGTs were present in all samples. The total concentration of br-GDGT per

sample ranged between 0.23 and 61.5 ng g-1 dry sediment and averaged at 7.12 ng g-1.

Sample WSU-13-6 was a major outlier (outside the outer fence; 3 x interquartile range

added to the third quartile) with markedly higher br-GDGT abundances than other

samples (total br-GDGT abundance 61.5 ng g-1 sediment). GDGTs IIIa and IIa were

the most abundant (mean of 32% each), followed by GDGT Ia (mean 18%), GDGT IIb

(9%) and Ib (6%) (Fig. 2.4). Br-GDGTs IIc and IIIc were below the detection limit in

several samples. The BIT index, a proxy for soil input, was calculated after Hopmans

et al. (2004) and exceeded 0.99 in all samples. The CBT index ranged between 0.30-

1.21, and MBT’ ranged between 0.16-0.59.

Using the revised calibration in Peterse et al. (2012) (equation 2.3, MAAT
b

), re-

constructed temperatures ranged between 3.1 and 12.7 �C, with a mean temperature

of 4.5 ± 2.4 �C (error is standard deviation of sample mean). Using the alternative

calibration from the same study (equation 2.4, MAAT
a

), reconstructed temperatures

exhibited a larger range between -0.7 and 12.1 �C, with a mean temperature of 5.0

± 2.5 �C (Fig. 2.5). The large range was caused by sample OBFL-04-14, which was

a minor outlier (between the inner and outer fences; inner fence = 1.5 x interquartile

range added to the third quartile). There was no analytical reason to reject this sample,

and it was therefore included in the remainder of the study. Using both calibrations,

sample WSU-13-6 was identified as a major outlier with a calculated temperature of

⇠12 �C. This could not be attributed to analytical error so was included in our analysis,
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Figure 2.4: Average branched GDGT distributions in sediment samples (n=15). Error bars
= 1 sd.

although it is outside the proxy calibration error.

2.4 Discussion

2.4.1 Reconstructing vegetation from plant biomarkers

2.4.1.1 Sources of plant biomarkers

Aliphatic lipids The high molecular weight (HMW) aliphatic lipids in the sediment

were n-alkanes, n-alkanols and n-alkanoic acids in the range C22 to C34, characteristic

of epicuticular waxes from higher plants (Eglinton and Hamilton, 1967); this result is

broadly consistent with the macrofossil record at Oliver Blu↵s. The n-alkane distri-

butions at Oliver Blu↵s maximise strongly at C27, with high abundances of C25, and

low abundances of the C29 and C31 homologues (Fig. 2.3). It is di�cult to ascribe

unambiguous origins to HMW aliphatic distributions, because large ranges have been

documented within genera and species (e.g. Bush and McInerney, 2013, Stránský et al.,

1967), and the aliphatic lipid record may also be biased towards angiosperm represen-
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2.4 Discussion

Figure 2.5: Distributions of reconstructed palaeotemperature for Oliver Blu↵s using two
calibrations from Peterse et al. (2012).
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tation (Bush and McInerney, 2013, Diefendorf et al., 2011). However, the ACL index

is at the lower end of the range for deciduous angiosperms reported in the literature

(Diefendorf et al., 2011), which could suggest a mixed input from other higher plants.

High abundances of the C27 alkane have been reported in some sedges (Ficken et al.,

1998), such as those found at Oliver Blu↵s, although most graminoids are typically

dominated by higher MW alkanes (e.g. Bush and McInerney, 2013). Similarly, the

dominant chain lengths in alkanol and alkanoic acid series (C22 alkanol for all and C22

alkanoic acid for most samples) are low relative to those seen in modern leaf waxes

and the sedimentary archive (Kolattukudy et al., 1976), and could reflect some input

from mosses (Nierop et al., 2006). There is more variability in the distribution of

low and medium MW aliphatic lipids at Oliver Blu↵s. Several samples exhibited high

abundances of the C16 alkanoic acid, and the C17 alkane is also abundant in a subset

of these samples, which suggests that these samples have either a significant moss in-

put (Nierop et al., 2006), or an algal input, or both (e.g. Cranwell, 1974). Abundant

medium MW alkyl lipids are also indicative of peat bog bryophytes such as Sphagnum

moss (Xie et al., 2000). Similarly, relatively high abundances of diacids in these sam-

ples may suggest a strong bryophyte input. Diacids could derive from the oxidation

of !-hydroxyalkanoic acids, which are significant components of some liverwort cutin

acids (Caldicott and Eglinton, 1976), as well as macromolecules in Sphagnum (Pancost

et al., 2002). This interpretation is consistent with the Oliver Blu↵s macrofossil record,

which contains at least five poorly defined moss species as well as peat lenses, which

are either a product of algal mats or mire deposits that represent poorly drained soil

(Ashworth and Cantrill, 2004).

Terpenoids The steroid series at Oliver Blu↵s consists of compounds with C27 and

C29 backbones, suggesting that they originate from a higher plant source, although

some C29 sterols can also be synthesised by algae (Goodwin, 1974). The most abundant

steroid was �-sitosterol, and the other identified steroids were in much lower abundance.

Polar triterpenoids of the lupane, oleanane and ursane classes are abundant in the

polar fraction of the majority of samples, shown in Fig. 2.2; the majority were unaltered
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2.4 Discussion

natural products. Betulin and a compound we tentatively identify as uvaol were the

most abundant triterpenoids (t13 and t12, respectively). Triterpenoids of these classes

are characteristic of angiosperms (Simoneit et al., 1986) and suggest a high angiosperm

input. Several triterpenyl acids were also detected, tentatively identified as betulinic

acid and oleanolic acid as well as an unidentified triterpenyl acid (t18 - t20). Be-

tulinic and oleanolic acid were in high abundance in some samples. Triterpenyl acids

have been found in very high abundance in some Sphagnum mosses (Pancost et al.,

2002); we speculate a possible moss source for these, although given their widespread

distribution among angiosperm taxa, it is not possible to give a precise taxonomic as-

signment. Several di- and triaromatic triterpenes of the oleanane, ursane and lupane

classes with A-ring (des-A) cleavage were identified (t24 - t29), and are also charac-

teristic of angiosperms, (Hürlimann and Cherbuliez, 1981, Karrer, 1958, Karrer et al.,

1977, Simoneit et al., 1986). The presence of des-A-triterpenoids suggests microbially

mediated formation of these compounds (Huang et al., 1996, Trendel et al., 1989). The

compounds identified here are similar to those identified in Late Cretaceous (100 - 66

Ma) and Paleocene (66 - 56 Ma) angiosperm fossils from Japan (Nakamura et al., 2010),

which is consistent with the low level of oxidative degradation in our sediments and

confirm a high angiosperm input to the sediment.

Diterpenoids are good chemotaxonomic biomarkers as they are major compounds

in gymnosperms (Simoneit et al., 1986), and many classes of compounds have relatively

high chemotaxonomic specificity (Otto and Wilde, 2001), although this is complicated

at Oliver Blu↵s by the lack of diterpenoid natural product precursors. The majority

of the diterpenoids identified in the aromatic fraction were abietane-class compounds,

which are widespread among conifers. Tetrahydroretene (d2) and the dehydroabietins

18-norabieta-8,11,13-triene and 19-norabieta-8,11,13-triene (d5, d6) have been identi-

fied as points on the diagenetic pathway for the degradation of abietic acid to retene

(Marchand-Geneste and Carpy, 2003, Otto and Simoneit, 2001, 2002, Simoneit et al.,

1986). Additionally, dehydroabietane and the norabietatetraenes are also thought to

form during the diagenesis of abietic acid (cf. Hautevelle et al., 2006), so it seems likely

these compounds originated from abietic acid. Under more reducing conditions, abi-
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etic acid can undergo transformation to norabietanes like fichtelite (Otto and Simoneit,

2001), while bacterial degradation results in diterpenoid ketones and carboxylic acids

(Biellmann et al., 1973b,a, Tavendale et al., 1997b,a). Their absence suggests an ox-

idative diagenetic pathway for diterpenoids in these sediments rather than biogenic or

anaerobic alteration, in contrast to the triterpenoids. 18-norabieta-8,11,13-triene (d8)

is also believed to be a derivative of 18-norferruginol (Stefanova et al., 2002), which

itself is a diagenetic product of phenolic and ketophenolic abietanes such as ferruginol

(Otto and Simoneit, 2001), and is found in all conifer families other than Pinaceae,

although compounds in these families have not been identified here. The widespread

distribution of normal abietane-class compounds among conifers means their source

cannot be distinguished at a family level. However, abietanoic acids like abietic acid

are predominantly found in Pinaceae resin (Otto and Wilde, 2001, Otto and Simoneit,

2001, 2002, Rezzi et al., 2005), though they are also found in low abundances across

other conifer families (Hautevelle et al., 2006). The geographical range of the Pinaceae

family today is restricted to the Northern hemisphere, hence the diterpenoids identified

at Oliver Blu↵s come from another coniferous family.

2.4.1.2 Depositional microenvironments

Substantial variability is noted in the distributions of the classes of aliphatic lipids

examined in this study between samples. In general, our samples cluster strongly into

three groups based on aliphatic lipid distributions, which appear to represent several

highly spatially heterogeneous distinct vegetation types, and support a complex sed-

imentary depositional regime consisting of microenvironments within a wide glacial

outwash plain (summarised in Table 2.2). Group 1 consists of an input dominated by

higher vascular plants (high C27 alkane, low LMW alkanes), although high abundances

of the C22 alkanoic acid may indicate input from mosses. High abundances of triter-

penoids suggests high angiosperm input, while low abundances of diterpenoids suggests

very low input from conifer plants; these samples possibly correlate with the plant-

colonized ridges of an outwash plain as described by Ashworth and Cantrill (2004).

Samples in groups 2 and 3 exhibited high abundances of the C16 alkanoic acid, and
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Table 2.2: Di↵ering biomarker distributions indicating microenvironments in the Beardmore
Glacier region.

Group Samples Description

1 WSU-13-6, LCBA-05-5, SRB-
07-6, OBFL-4-23, OBFL-04-
29,OBFL-04-32, OBFL-04-25,
SPBW-09-27, OBFL-04-13

High C27 alkane and triter-
penoids, low LMW alkanes
and diterpenoids

2 OBFL-04-3, LCBA-05-17,
OBFL-04-2

High C16 alkanoic acid, low
diterpenoids

3 OBFH-02-1, BNLB-12-3,
LCBA-05-36, OBFL-04-20,
SRB-07-5

High C16 alkanoic acid, high
C17 alkane, low diterpenoids

the C17 alkane is also abundant in group 3 samples, which suggests that these samples

have either a significant moss input (Nierop et al., 2006), or an algal input (e.g. (Cran-

well, 1974), possibly from waterlogged locations in abandoned meltwater channels. Low

abundances of diterpenoids in group 2 samples implies little coniferous input, but group

3 samples have abundant triterpenoids and diterpenoids, indicating a mixed coniferous-

angiosperm input. The variability in lipid distributions suggests that the vegetation

recorded in our lipid record grew in a mosaic pattern of mires, cryptogram-herb and

tundra shrub seen in Arctic islands and Tierra del Fuego, Chile, where the distribution

of vegetation is a product of temperature, soil water balance and topography (Bliss and

Matveyeva, 1992).

2.4.1.3 Coniferous input to sediment

The terpenoid record at Oliver Blu↵s provides interesting insights into Antarctic veg-

etation. The high abundances of unaltered triterpenoids is consistent with both the

macrofossil and palynomorph record which indicate a vegetation dominated by an-

giosperms, particularly Nothofagus. However, conifer-derived diterpenoids are reported

here at Oliver Blu↵s for the first time, supporting the presence of conifers on Antarc-

tica well into the Neogene as suggested by the pollen record. While the abietane-class

diterpenoids identified at Oliver Blu↵s are generally not considered to be chemotaxo-

nomically indicative beyond the division level, all coniferous pollen at Oliver Blu↵s are
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identified as Podocarpaceae (Askin and Raine, 2000), indicating a podocarp origin for

these diterpenoids.

The uncertainty of the age of the strata at Oliver Blu↵s makes it di�cult to draw

direct comparisons with other vegetation records. Earlier palynomorph records sug-

gest that Podocarpidites species were the dominant Antarctic conifer throughout the

Oligocene and Early Miocene (33 - 14 Ma; Askin and Raine, 2000, Kemp and Barrett,

1975, Prebble et al., 2006), and abundant Podocarpidites pollen has been identified be-

tween 17 Ma and 12 Ma in ANDRILL core AND-2A (Warny et al., 2009) which would

support our interpretation. It is likely that these would have grown with a shrub or

prostrate habit, similar to the prostrate Nothofagus fossils discovered at the same site

(Francis and Hill, 1996); the pollen record also suggests that, with the exception of

one or two warm intervals during the early Miocene, Podocarpidites grew as coniferous

shrubs (Warny et al., 2009). Whilst it is possible that the Oliver Blu↵s sediments are

Pliocene (5 - 2.5 Ma) in age, the sole Pliocene palynomorph record (from DSDP Site

274; Fleming and Barron, 1996), only discusses Nothofagus pollen. This could provide

a further constraint on the age of the sediment although a re-examination of the DSDP

274 pollen is necessary.

We note an apparent discrepancy between the preservation of macrofossil and lipid

records at Oliver Blu↵s. Many of the angiosperm-derived triterpenoids identified at

Oliver Blu↵s are unaltered natural products, with some evidence of diagenetic degrada-

tion. We did not identify any natural product precursors to the conifer-derived aromatic

diterpenoids, suggesting that the diterpenoids were preferentially degraded relative to

the triterpenoids. This is in contrast to the trend documented in the Miocene Clarkia

Formation (Idaho, USA), attributed to the preferential taphonomic degradation of an-

giosperm over coniferous plant material (Otto et al., 2005). We suggest three possible

explanations for this interpreted di↵erence between the fossil and biomarker record:

1. The presence of relatively degraded diterpenoids alongside better preserved angiosperm-

derived triterpenoids is due to the reworking of older organic matter from sedi-

ments with a high input of coniferous plant material.
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2. The diterpenoids are geologically contemporaneous with the triterpenoids, but

are transported (either fluvially or by aeolian processes) from a distal site with

coniferous vegetation.

3. Di↵erent ecological niches for angiosperms and conifers existed within the glacial

outwash plain (i.e. a mosaic of poorly- and well-drained soils; Ashworth and

Cantrill, 2004), which could have had variable preservation potential relative to

biomarker and macrofossil degradation.

It is di�cult to distinguish between these three hypotheses. The palynomorph

record may discount the first hypothesis: Askin and Markgraf (1986) suggested that

some of the Nothofagus (angiosperm) pollen identified at Oliver Blu↵s was reworked

older Cenozoic palynomorphs (counter to explanation 1 above), although all pollen

was deemed to be contemporaneous during later examinations (Ashworth and Cantrill,

2004). However, other biomarker classes indicate very low levels of reworking (e.g. very

high abundances of fatty acids), suggesting that this hypothesis is unlikely. The lack

of gymnosperm macrofossils and low abundances of Podocarpidites sp. pollen support

the second explanation and may undermine the third. Podacarpaceae occupy a broad

ecological range, generally preferring wet conditions (Veblen et al., 1995) but can survive

in extreme environments including droughts, cold, and nutrient-poor soils (Coomes and

Bellingham, 2011). In modern polar latitudes, deciduous shrubby plants are restricted

to the most sheltered habitats, while evergreen plants can be found in much more

exposed locations (Bliss and Matveyeva, 1992). Given this highly tolerant nature, it

is di�cult to understand why Podocarpidites sp. pollen should be substantially less

abundant than angiosperm pollen if the two were coexistent at the same site. Hence we

would favour the explanation that a Podocarpaceae-dominated vegetation existed in

an upland site some distance from the Oliver Blu↵s deposits, which could conceivably

provide a mechanism for the preferential degradation of conifer biomarkers, as well as

a lack of conifer macrofossils and a lower abundance of conifer pollen.
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2.4.2 Temperature reconstruction from bacterial biomarkers

Using the br-GDGT based proxy MBT’/CBT paleothermometer, our results suggest a

mean annual air temperature (MAAT) for the strata at Oliver Blu↵s ranging between

3 and 12 �C, with a mean of 5 �C (Fig. 2.5). As the majority of the samples analysed

(11 of the 15 soils) showed temperatures on the range of 3 - 5 �C, we speculate that

this is the range of temperatures that mainly characterized the time period. The large

calibration errors for this proxy mean that absolute temperature calculations must be

interpreted cautiously (Peterse et al., 2012). However, our results are consistent with

other temperature reconstructions from the Oliver Blu↵s succession, giving summer

temperatures of 5 �C based on tree ring analysis (Francis and Hill, 1996), fossil weevils

(Ashworth and Kuschel, 2003) and freshwater molluscs (Ashworth and Preece, 2003)

and MAAT of ⇠-12 �C based on palaeosol analysis (Retallack et al., 2001). A further

constraint on the application of this proxy to high latitude soils could be the decou-

pling of air and soil temperatures by winter soil (Cline, 1997), which could result in

reconstructed soil temperatures that di↵er markedly from the MAAT. Nevertheless,

br-GDGT temperature calculations in modern high latitude soils closely match mea-

sured MAAT distributions (Peterse et al., 2009), supporting our absolute temperature

reconstruction.

The palaeolatitude of Oliver Blu↵s was highly likely to have been very similar to its

latitude today (Lawver and Gahagan, 2003), which implies that during winter months,

(a) the polar light regime would have caused surface temperatures to drop well below

freezing, and (b) soil water availability would have been severely limited. Temperatures

during these months would have dropped to -20 �C or lower, meaning that vegetation

would have remained dormant for much of the year and soil bacterial activity would

decrease although it continues under the snow (Männistö et al., 2012). We envisage that

temperatures warm enough to induce snowmelt would have been reached in summer,

allowing vegetation to flourish and soil bacteria activity to increase. Today, plant root

and shoot growth in Antarctic and the Arctic can occur at low temperatures (0 - 5

�C; Billings et al., 1977) and plants are adapted to a rapid burst of growth following
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snowmelt. Since br-GDGTs are membrane lipids produced by an unknown group of

soil bacteria, likely Acidobacteria (Sinninghe Damsté et al., 2011, Weijers et al., 2007),

it is possible that br-GDGT producing bacteria at Oliver Blu↵s had a preferential

summer growing season during the late Neogene. No seasonal pattern has been found

in br-GDGT distributions at modern mid-latitudes (Weijers et al., 2011). However, at

high latitudes, the MBT/CBT temperature reconstructions from a core containing br-

GDGTs originating from coastal soils of the Wilkes Land sector of Antarctica showed

a bias towards summer temperatures for the Early and Mid Eocene (Pross et al.,

2012). Similarly, MBT/CBT based reconstructions for the Arctic during the Early

Eocene are in good agreement with warmest month temperature reconstructions based

on oxygen isotopes from biogenic phosphates of co-occurring terrestrial vertebrates

(Weijers et al., 2007, Eberle et al., 2010). Based on the above, we suggest that the

temperature calculations yielded by this study reflect a strong summer-seasonal or

even warm monthly bias, meaning that MAAT over Antarctica were much cooler than

5 �C. Indeed, the vegetation reconstruction from this study supports this idea as it

shows, consistent with the macrofossil record, a tundra shrub flora similar to those

growing in present day cold high latitude environments.

2.5 Conclusions

This initial biogeochemical study of the Sirius Group at Oliver Blu↵s shows new cli-

matic and flora results, and the potential for further, more detailed study. Calculated

temperatures are consistent with those reported from other temperature proxies re-

covered from the same site. Specifically, Antarctic summer surface air temperatures

reconstructed using the MBT’/CBT proxy were around 5 �C, which is significantly

higher than present day. This result is consistent with multiple temperature recon-

structions from the same site, and is consistent with longer-term temperature records

throughout the Neogene which suggest that continental summer temperatures ranged

between 4 and 12 �C (Prebble et al., 2006, Warny et al., 2009). The bacterially-derived

temperatures suggest that during the mid- to late-Neogene, Antarctica was perhaps
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10 �C warmer than today in the summer. This would have been a cold, periglacial

environment, which is supported by the sedimentology and flora at Oliver Blu↵s (Ash-

worth and Cantrill, 2004, Retallack et al., 2001). The climate would have been strongly

seasonal, where the onset of summer melt would have had a significant impact on the

biological and hydrological regime of the outwash plain.

The aliphatic lipid record indicates a low diversity vegetation consisting of mosses,

angiosperms and microalgal mats existing in a periglacial environment. The presence

of aromatised diterpenoids provides the first geochemical evidence for the presence

of conifers at or near this site, probably Podocarpaceae. These results contrast with

the macrofossil record, which suggests that angiosperms were the only vascular higher

plants present at the time, but support the palynomorph record from the same site

(Askin and Raine, 2000). If the deposits at Oliver Blu↵s are Miocene in age, then

this result is consistent with marine cores from the Ross Sea (Warny et al., 2009); if

they are Pliocene then this is a significant finding, indicating that the floral record of

Antarctica is far from complete. Regardless, our data highlights the complexities of

Antarctic biosphere dynamics. Additionally, this result emphasises the importance of

using a multi-proxy approach when reconstructing vegetation because of taphonomic

and transport biases in both the fossil and molecular record, and supports the use of

chemotaxonomy as a complementary tool to palynology and palaeobotany.
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2.6 Supplementary Information 1

Table 2.3: Summary of organic proxy data

Sample % TOC pH from CBT MAAT
a

/ �C Depositional group

OBFH-02-1 2.5 6.1 7.4 3

BNLB-12-3 3.1 6.7 6.3 3

OBFL-04-3 2.8 6.2 3.9 2

WSU-13-6 1.9 5.5 12.8 1

LCBA-05-36 3.3 3

LCBA-05-5 0.9 1

LCBA-05-17 2.4 6.8 3.5 2

OBFL-04-2 2.8 5.6 3.1 2

SRB-07-6 2.2 7.3 4.1 1

OBFL-04-14 1.8 7.1 6.0

OBFL-04-20 3.3 3

SRB-07-5 5.3 6.5 4.4 3

OBFL-4-23 2.0 7.1 4.6 1

OBFL-04-29 3.4 6.9 3.3 1

OBFL-04-32 2.2 7.3 4.0 1

OBFL-04-25 3.6 1

SPBW-09-27 4.2 1

OBFL-04-13 4.7 1
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Figure 2.6: Structures of the terpenoid compounds identified in sediments at Oliver Blu↵s.
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Climatic signals recorded in

carbon and oxygen isotopes of

fossil southern beech trees from

Antarctica

Preface

Chapter 3 has been prepared for submission to Earth and Planetary Science Letters.

The co-authors are my supervisors and external collaborators: Rob Newton, Ruza

Ivanovic, Jane Francis, James Riding, and Alina Marca. The work presented in this

chapter is my own, including the background research, experiment design, set-up and

execution, data analysis and presentation, and the written manuscript. My co-authors

gave valuable advice and suggested improvements for all aspects of the work. Rob

Newton gave technical support for the work carried out; in particular, with the isotopic

measurements of tree ring cellulose. Alina Marca provided isotopic measurement of all

waters.
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Abstract

Carbon and oxygen isotopes in tree rings are widely used to reconstruct palaeoclimate

variables such as temperature during the Holocene (12 thousand years ago - present),

and are used increasingly in deeper time. However, they also have excellent potential

as archives of environmental isotopic signals such as the isotopic composition of precip-

itation and atmospheric CO2, which are much harder to reconstruct but can provide

valuable information about hydrological and carbon cycling. Here we focus on a late

Neogene (17 - 2.5 Ma) glacial deposit from the Transantarctic Mountains, Antarctica,

from a period of significant ice sheet retreat. The deposits are characterised by a re-

markable fossil floral assemblage, among which are a suite of exceptionally preserved

southern beech twigs (Nothofagus beardmorensis), representative of a prostrate tundra

shrub. Using cellulose-�18O in the fossil wood, we are able to reconstruct precipita-

tion oxygen isotopes over the Antarctic interior and cellulose-�13C to reconstruct the

isotopic signature of atmospheric CO2 for the first time for this time period. This ap-

proach is calibrated by analysing tree ring isotopes in modern analogue Nothofagus in

Chile at the southern limit of their current range. The results show that �18O
precip

over

Antarctica was -16.0 ± 4.2 h (12 h enriched relative to today), suggesting changes in

the hydrological cycle linked to warmer temperatures. Atmospheric �13C was -4.5 ±

1.5 h, which is significantly heavier than present day atmospheric �13C and indicates

substantial (possibly short-lived) changes to the carbon cycle through organic carbon

sequestration.

3.1 Introduction

Tree ring stable isotope analysis is a powerful and widely-used tool for palaeoclimatic

reconstructions, providing rare insights into terrestrial palaeoclimate at annual and sea-

sonal resolution (McCarroll and Loader, 2004). The variables controlling the oxygen

isotope composition of tree-ring cellulose are well understood and have been successfully

described by numerical models based on plant physiology and its response to the envi-

60



3.1 Introduction

ronment (eg. Roden and Ehleringer, 2000, Farquhar and Gan, 2003). Cellulose-oxygen

isotopes are primarily governed by a combination of tightly-constrained biological frac-

tionation factors, source water isotope composition and relative humidity (McCarroll

and Loader, 2004). They are expressed as �18O; where delta notation is the conven-

tional notation used for the ratio of isotopes (e.g. 18O/16O) in a sample (R) relative to a

standard (R
std

) such that � = (R/(R
std

�1)1000,) reported in per mil (h). For oxygen

isotopes, results are reported with respect to Vienna Standard Mean Ocean Water (VS-

MOW; R
std

= 2.005 x 10�3). Tree-ring cellulose �18O (�18O
cell

) is therefore an e↵ective

proxy for reconstructing global and regional hydrological change, for example, changes

in basinal water regimes (Brienen et al., 2012) and atmospheric circulation (Zhu et al.,

2012). Carbon isotopes in tree-ring cellulose (expressed as �13C
cell

, reported relative

to the Vienna Pee Dee Belemnite standard) also have utility as a palaeoclimatic proxy.

In general, �13C
cell

is largely controlled by the interplay between stomatal conductance

and photosynthetic rate. With increased aridity or decreased precipitation, in order

to conserve water, a plant will decrease stomatal conductance, which reduces the ratio

of intracellular CO2 to atmospheric CO2 (c
i

/c
a

), decreasing 13C discrimination and

enriching �13C
cell

(Farquhar et al., 1982).

Both carbon and oxygen tree ring isotopes are increasingly being applied to older

time periods (up to 53 Ma; Jahren and Sternberg, 2003, Schubert et al., 2012, Wolfe

et al., 2012) as more fossil plants with adequate preservation are being recovered. One

particular advantage of this growing dataset is the ability of tree ring isotopes to recon-

struct climatic parameters that are much harder to access through marine sediments.

These include environmental geochemical signals like precipitation isotopes (Ballantyne

et al., 2006, Jahren and Sternberg, 2008, Jahren et al., 2009) and atmospheric carbon

isotopes (�13C
atmos

; Arens et al., 2000, Jahren et al., 2001). A notable example is

the rich treasure trove of exceptionally well-preserved Eocene and Pliocene fossil wood

from multiple kimberlite deposits in the Canadian High Arctic. These fossil recoveries

have revealed unique details about Eocene and Pliocene palaeoclimate and hydrological

cycling through their stable isotope records, such as reconstructing terrestrial tempera-

tures and the isotopic composition of precipitation as well as providing insights into high
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latitude climate variability (Ballantyne et al., 2006, 2010, Csank et al., 2011, Jahren

and Sternberg, 2008, Jahren et al., 2009, Wolfe et al., 2012).

An exceptionally well-preserved suite of fossil wood of southern beech (Nothofagus

beardmorensis) have been recovered from the Neogene Sirius Group deposits at the

Oliver Blu↵s in the Transantarctic Mountains, Antarctica (85� 07’ S, 166� 35’ E; Webb

and Harwood, 1993, Hill et al., 1996, Francis and Hill, 1996), deposited at a similar

latitude to today (Lawver and Gahagan, 2003). The fossil trees were deciduous and

represent a tundra-like shrub. The plants likely had a prostrate life-habit, where stems

grow horizontally to avoid freezing winds, similar to the extant Salix arctica in the

High Arctic (Francis and Hill, 1996). Based on both geochemical (Rees-Owen et al.,

a; Chapter 2) and macrofossil-derived (Francis and Hill, 1996, Ashworth and Cantrill,

2004) palaeothermometers, continental summer temperatures were ⇠5 �C, implying

a weakened latitudinal temperature gradient compared to the present day, where the

mean temperature December is -3.4 �C (McMurdo Station; 77� 51’ S, 166� 40’ E). Shal-

lower gradients are supported by vegetation and marine proxy-based reconstructions,

indicating, for example, a reduction of ⇠5.5 �C in the meridional temperature gradient

during the early Pliocene relative to today (Brierley et al., 2009, Pound et al., 2012).

The age of these sediments has been the subject of a protracted debate. The

plant fossils have been biostratigraphically dated by close association with late Pliocene

marine diatoms (Harwood, 1986, Webb et al., 1984), thought to indicate the incursion of

seaways deep into the Antarctic interior. This relatively young age has been challenged

by multiple studies that suggest the diatoms represent wind-blown contamination from

the open ocean much further away (Burckle and Potter, 1996, Stroeven et al., 1996).

Additionally, cosmogenic exposure dating suggests these sediments are much older (at

least 5 Ma, but possibly as old as 17 Ma; Ackert, Jr. and Kurz, 2004); further details

of this ongoing debate may be found in Barrett (2013).

Regardless of the age, the fossiliferous bed clearly represents a period of significant

East Antarctic Ice Sheet (EAIS) retreat in response to warming temperatures (Francis

and Hill, 1996, Mercer, 1986). Evidence for a periodically reduced ice sheet exists for

62



3.2 Materials and methods

the mid-Miocene (17 - 15 Ma; Gasson et al., 2016, Griener et al., 2015, Levy et al.,

2016, Warny et al., 2009), and increasingly both modelling (Austermann et al., 2015,

Dolan et al., 2011, Pollard et al., 2015, Pollard and Deconto, 2016) and data (Cook

et al., 2013) studies also suggest that at least partial EAIS retreat occurred during the

Pliocene, driven by warmer sea surface temperatures (Pollard et al., 2015).

The objective of this study is to reconstruct �13C
atmos

and �18O
precip

during this

brief period of warmth and EAIS retreat by measuring the carbon and oxygen isotopic

composition of fossil plants from Oliver Blu↵s. We use a simple process-based isotope

model to calculate precipitation isotopes from fossil plants (Anderson et al., 2002) and

apply an empirical transfer function to reconstruct �13C
atmos

(Arens et al., 2000). Al-

though prostrate trees are beginning to be used in modern dendrochronological studies

(e.g. Buras and Wilmking, 2014), no studies using tree ring isotopes in prostrate plants

exist. We therefore examine the use of high latitude prostrate fossil trees for climatic

reconstructions using modern analogue plants from Isla Navarino, Chile, where two

extant deciduous Nothofagus species grow in both arborescent and prostrate form in a

subpolar forest environment.

3.2 Materials and methods

3.2.1 Oliver Blu↵s; fossil site

The fossil wood was sampled from a sedimentary succession at Oliver Blu↵s in the

Dominion Range of the Transantarctic Mountains (85� 07’ S, 166� 35’ E), which forms

part of the Sirius Group sediments (Fig. 3.1). The fossil plant material occurs within

one main bedding horizon in the central part of the exposure at Oliver Blu↵s, on the

eastern side of the upper valley of the Beardmore Glacier. The present elevation is

approximately 1760 m above sea level, but deposition likely occurred at a much lower

altitude (Webb and Harwood, 1993, Ackert, Jr. and Kurz, 2004). The sedimentary

sequence consists of glacial diamictites, and are thought to be lodgement tills deposited

by the ancestral Beardmore Glacier during glacial advance and retreat (McKelvey et al.,
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1991). The fossiliferous bed containing fossil wood and leaves comprises poorly-sorted

sandstones with silt lenses, representing an outwash deposit, in places burying poorly-

developed glacial soils on a braided outwash plain (Ashworth and Cantrill, 2004). We

envisage sporadic accretion of sediment over the plain, such that the fossiliferous bed

is spatially heterogeneous, but as a whole is representative of a significant portion of

the ice sheet retreat event.

The fossil wood fragments were first described as Nothofagus (Carlquist, 1987) and

later identified as Nothofagus beardmorensis (Hill et al., 1996). Leaf remains and tree

ring analyses suggest that these were deciduous prostrate shrubs, very similar to the

krummholz N. pumilio and N. antarctica, which grow at the treeline in Tierra del

Fuego, Chile (Francis and Hill, 1996). Due to the small ring size (<100 µm), fossil

wood fragments were sampled for isotope analysis in bulk or by pooling multiple rings

together to give a decadal-resolution record.

3.2.2 Isla Navarino; modern analogue site

Isla Navarino (55� 56 S, 67� 37’ W; Fig. 3.1) is part of the Magellanic subpolar forests

ecoregion which stretches west of the Andes down to Tierra del Fuego, Chile. The island

has a maritime climate, with mean annual temperatures of 6 �C, average summer highs

of 10 �C and winter averages of 2 �C. Cool windy conditions prevail year round; Mean

Annual Precipitation (MAP) is 400-500 mm, which is uniformly distributed throughout

the year. The island vegetation is characterised by Magellanic forest dominated by

Nothofagus trees to the north, and Magellanic moorland to the south.

Wood cores and rounds from branches (for prostrate trees) from 31 living trees

were collected at five sites on Isla Navarino during the austral summer of 2013. Three

species of Nothofagus trees grow on the island, one evergreen species (N. betuloides)

and two deciduous species (N. antarctica and N. pumilio). Because the fossil plants

from the Sirus Group sediments are deciduous (Hill et al., 1996), cores were taken

from two deciduous Nothofagus species over an altitude transect from near sea-level to

the treeline (⇠600 m) at 5 sites (Table 3.1; Fig. 3.1). Over the transect, Nothofagus
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Figure 3.1: (A) Location of sampling sites on Isla Navarino in Tierra del Fuego, Chile.
Yellow triangle = marks the location of the GNIP station at Ushuaia; open circles = mark
the tree ring sampling sites. (B) Fossil wood location at Oliver Blu↵s (black filled circle),
Transantarctic Mountains, Antarctica. White represents ice; grey shapes are Transantarctic
Mountain outcrops. (C) Photograph of exceptionally preserved fossil Nothofagus from Oliver
Blu↵s. (D) Scanning Electron Microscope image of fossil Nothofagus, demonstrating excellent
preservation of wood fibres. (E) Prostrate Nothofagus antarctica from Isla Navarino.
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ranged in habit from arborescent (single stem and generally greater than 4 m in height)

to krummholz form (i.e. prostate, with a small trunk or stem and multiple branches

lying horizontally upon the ground). Species were identified by leaf character (Moore,

1983) and sampled during the height of austral summer 2013 (January), when the

trees were in full leaf. Arborescent trees were cored at chest height (⇠130 cm above the

ground) using an increment wood corer with a diameter of 5 mm. Prostrate individuals

were sampled from primary branches in order to match sampling from the fossil trees.

The core samples were dated to the calendar year of their formation and cross-

dated using the techniques described in Stokes and Smiley (1968). As the austral

growing season overlaps two calendar years, rings were assigned to the year when ring

growth began (i.e. the last complete ring taken for each core in January 2013 was

dated to austral summer 2011, as the 2012-2013 ring was still incomplete at the time

of sampling).

The cores were air-dried, stored in plastic straws and a 30 year sequence was iso-

lated for isotopic analysis. Tree rings are composed of earlywood and latewood; the

former comprises large thin-walled cells made of stored photosynthates from the previ-

ous year and the latter comprises thicker-walled cells formed during summer. Therefore

to sample at true annual resolution, it has been suggested that only latewood should

be taken (Switsur et al., 1995). However, the rings in the prostrate plants in this study

were too small to obtain su�cient latewood, so the entire ring was sampled each time;

this approach has been used successfully to reconstruct hydrological change in the same

region (Lavergne et al., 2016).

Soil and root samples were also collected, along with water from a stream network

covering the altitude transect in order to estimate source water �18O. Soils were sam-

pled from 50 cm depth (where 90% of Nothofagus forest root mass is situated; Schulze

et al., 1996), wrapped in cling film, stored in multiple airtight bags and frozen un-

til required for water extraction. Source water samples were taken from fast-flowing

streams, filtered (0.2 µm) and stored in McCartney vials. We also used temperature,

precipitation and precipitation �18O data from the nearby Global Network of Isotopes
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in Precipitation (GNIP) station at Ushaia, Argentina (54� 46’ 48” S; 68� 16’ 48” W),

approximately 50 km away.

3.2.3 Sample preparation and isotopic analysis

Except where otherwise indicated, the following procedures were all carried out in the

University of Leeds Cohen Geochemistry laboratories, 2013 - 2016.

3.2.3.1 Sample preservation

Exceptional preservation of the fossil Nothofagus utilised in this study is well doc-

umented (Francis and Hill 1996), and is supported by scanning electron microscope

imaging (Fig 3.1D), which shows excellent retention of wood fibres. Although it is

clear that some degradation of vessels has occurred, this should not impact the isotopic

signal of the remaining cellulose; cellulose extracted from fossil trees significantly older

than those used in this study (up to 53 Ma; Hook et al., 2014, 2015, Staccioli et al.,

2014, Wolfe et al., 2012), was extracted in low yield (<5%; Hook et al., 2015), indicat-

ing a high degree of cellulose degradation, but showed no signs of isotopic alteration.

Mineral contaminants in the form of microcrystalline calcite were detected in the Sirius

Group fossil trees using energy dispersive X-ray spectroscopy, which could a↵ect both

�18O and �13C, but the delignification step during extraction is performed below pH

5, which removed all calcite (not shown). After extraction, cellulose was recovered

as a white flu↵y material (5 - 30% yield), which is a clear indication that cellulose is

well-preserved and hence the fossil material is appropriate for isotope analysis.

3.2.3.2 Cellulose isotope measurements

Cellulose was extracted from both modern and fossil samples using batch extraction

equipment described by Wieloch et al. (2011). To summarise, ground wood samples

were heated in aqueous NaOH solution (5%, 2 hours, 60 �C, repeated twice) to remove

tannins, resins and fatty acids. Samples were then heated (60 �C) in acidified NaClO2

(via glacial acetic acid; 7.5%, pH 4-5) for 10 hours; this step was repeated four times
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to ensure complete delignification. Finally, we used a solution of NaOH (17%; 60 �C,

2 hours) to remove hemicelluloses, leaving ↵-cellulose for analysis. Cellulose samples

were homogenised using a Retsch MM301 Mixer Mill, then freeze-dried for 24 hours to

remove ambient water. Samples were stored in Eppendorf vials and kept in a desiccator

for >24 hours prior to isotope analysis.

In order to measure �18O
cell

, the milled, freeze-dried cellulose samples were weighed,

packed into silver capsules and pyrolysed at 1450 �C. Oxygen isotope ratios were mea-

sured using an elemental analyser with a purge and trap column (Elementar vario PY-

ROcube), coupled to an Isoprime isotope ratio-mass spectrometer. Ratios of 18O/16O

were converted to �18O VSMOW with a one point linear calibration using IAEA-601

(benzoic acid; �18O = +23.15 ± 0.3h) with reference to cellulose from Sigma-Aldrich,

UK (Lot#SLBD2972V; hereafter Leeds Sigma cellulose). The Leeds Sigma cellulose

was analysed at the University of Leeds against IAEA-CH-3 cellulose (assuming �18O =

+31.9 ± 0.5h; Hunsinger et al., 2010) and assigned a value of 29.2 ± 0.2h. Standards

were included at an interval of every twelve samples. Within-run reproducibility of an

internal check standard was ± 0.37 h. For �13C analysis, extracted cellulose samples

were weighed and packed into tin capsules. Carbon isotope ratios were measured using

an Elementar PyroCube elemental analyser coupled to an Isoprime mass spectrome-

ter. The encapsulated samples were combusted at 1150 �C in pure oxygen. Ratios of

13C/12C were calibrated to the international VPDB scale using in-house urea and C4

sucrose. These were assigned values of 46.83 ± 0.22h and 11.93 ± 0.24h, respectively

after calibration using six replicates of each of the following international standards:

IAEA-LSVEC (-46.479h), IAEA-CH7 (-31.83h), IAEA-CH6 (-10.45h) and IAEA-

CO1 (+2.48h). The precision obtained for repeat analysis was better than ± 0.2h

(�).

3.2.3.3 Water isotope measurements

Water was extracted from roots and soils by cryogenic vacuum distillation, following

the procedure detailed by West et al. (2006). Extracted samples, along with stream
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Figure 3.2: (A) Standard deviation of �13C
cell

(closed circles) and �18O
cell

(open circles) with
altitude for Nothofagus from Isla Navarino, demonstrating a decrease in variability for �18O

cell

for prostrate trees. Dotted line is a linear trendline for the oxygen data. (B) Mean �18O
cell

data for modern Nothofagus separated into arboreal and prostrate form, and fossil Nothofagus.
(C) As panel (B) but for �13C

cell

.

waters, were stored frozen until they were measured for water isotope ratios at the

School of Environmental Sciences, University of East Anglia, UK. The 18O/16O ratios

were analysed using a Picarro L1102-i cavity ring-down spectroscopy analyser with

a CTC Analytics autosampler. Measurements were calibrated by the application of

linear regression of the analyses of IAEA calibration material (VSMOW, VSLAP and

GISP). For each sample, 6 replicate injections were performed. The reproducibility of

replicates was better than ± 0.2 h.

3.3 Results and discussion

3.3.1 Oxygen and carbon isotope ratios in modern Nothofagus

Oxygen and carbon isotope ratios in modern Nothofagus trees over a range of mor-

phologies were measured to provide a first order check on the ability of fossil prostrate

Nothofagus plants to record long-term climate and environmental variables. Mean

�18O
cell

for all sites over the sample period ranged between 24.1 and 26.9h. There

was no statistically significant di↵erence between the two Nothofagus species (p>0.7;

Students unpaired t-test). An enrichment in mean �18O
cell

with increasing altitude was

expected due to increasing wind stress, which would be consistent with trends seen in

global datasets of �18O
cell

and �18O
source

. However, there is no statistically significant

di↵erence between sites for mean �18O
cell

, and therefore for altitude and morphology
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(i.e. prostrate or arboreal form), indicating that morphology does not impact absolute

�18O
cell

. While inter-tree variability at all sites is consistent with studies using only

arboreal trees (� range = 0.7 - 2.2; Fig. 3.2), intriguingly, prostrate trees in this study

exhibit much lower inter-tree variability than their arborescent counterparts (� = 2.1,

� = 0.8, for arboreal and prostrate morphologies, respectively). Prostrate plants are

more aerodynamically decoupled from the atmosphere, and retain tight control over

their microclimate (Barrera et al., 2000, Korner, 2003), which may reduce inter-tree

variability in transpiration. We therefore speculate that the lower variability means

that �18O
cell

in prostrate plants is a better archive of source water �18O than in their

arboreal counterparts.

Mean �13C
cell

for each site ranged between -27.2 and -26.7h, (grand mean = -26.6

± 0.7 h), which is consistent with typical values for C3 land-plants (O’Leary, 1988).

Mean inter-tree variability was low (� range = 0.6 - 0.8 h;) and did not vary with

altitude or morphology. In this case, �13C
cell

variability may be a function of carbon

assimilation rate rather than transpiration (in support of findings by Farquhar et al.

(1998) and Scheidegger et al. (2000), for example). Transpirational control would lead

to co-varying carbon and oxygen isotope ratios with morphology, which is not seen

here.

Generally, tree ring isotope studies are performed at annual resolution and require

the construction of statistically representative chronologies between trees. Inter-series

coherence at all sites was low for both �13C and �18O. An Expressed Population Signal

(EPS; Wigley et al., 1984) was calculated for each sites �18O and �13C chronologies.

This is a measure of how well a chronology constructed from a finite number of trees

represents the hypothetical perfect or true chronology; a value of 0.85 is generally con-

sidered to be an acceptable confidence level. On the whole, EPS is highly sensitive

to the number of trees in the chronology. However in this study, the EPS for each

site was low (particularly for �13C) and did not improve with increasing sample size

(0.43 - 0.69 for �18O; series were negatively correlated for �13C). This result contrasts

with recent work by Lavergne et al. (2016), who found a strong common signal in �18O

series from Nothofagus pumilio in Northern Patagonia, and leads us to the conclusion
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Table 3.1: Summary of sample sites on Isla Navarino with mean site �18O
soil

Site Latitude Longitude Elevation / m No. trees �18O
soil

/ h
1 54� 56’ 37” S 67� 39’ 25”W 29 5 -11.51±0.25

2 54� 57’ 04” S 67� 38’ 58”W 97 4 -13.07±0.73

3 54� 58’ 33”S 67� 40’ 22” W 247 5 -10.48±1.17

4 54� 59’ 19”S 67� 41 02” W 395 7 -12.02±1.29

5 54� 59’ 35”S 67� 41’ 04”W 527 11 -11.96±0.58

that stand-level isotope signals on Isla Navarino may be dominated by tree-level e↵ects

due to microclimatic variations. Thus, krummholz Nothofagus in this region are not

appropriate archives for constructing isotope chronologies at annual resolution. How-

ever, this does not prevent the plants from being good long-term archives of climate

signals; the low inter-tree variability in the prostrate plants in particular suggests they

may function well as a record of decadal resolution climate information and we test

this hypothesis using a physiological model below. This result is particularly pertinent

to the fossil plants in this study, where the tree ring widths are extremely narrow and

do not provide su�cient material for analysis at annual resolution; data from the fossil

plants is averaged at decadal scale resolution.

3.3.2 Source water �18O in modern Nothofagus

The isotopic composition of plant source water for the modern Nothofagus in this study

was constrained by measuring �18O of soil waters (�18O
soil

; 50 cm; the recorded soil

water depth for Nothofagus; Schulze et al., 1996) for the five sites, which ranged between

-13.06 ± 0.73 h and -10.56 ± 1.17 h (1 �; grand mean = -11.91 ± 0.89 h; Table 3.1).

We also analysed �18O from eight fast flowing streams and lakes across the sampling

transect (�18O
stream

), which ranged between -11.13 and -9.78 h (mean = -10.78 ±

0.41 h). The �18O data presented here only represent one years summer precipitation;

�18O
precip

data from a nearby GNIP station (Ushuaia, record 1982-2002) were included

in order to take into consideration summer and winter seasonal precipitation in this

study. Mean summer precipitation was -9.9 ± 0.9 h; mean winter precipitation was

-11.92 ± 0.75 h, which is not statistically di↵erent from the mean soil water �18O
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(p<0.001). Root water extracted from Nothofagus trees at three sites (mean = -10.50

± 0.54 h) was isotopically similar to �18O
stream

and �18O
precip

, indicating that plants

took up water from an annually integrated precipitation signal. From these observations

we infer that plant source water �18O (�18O
source

) can be treated as �18O
precip

. There

was no significant trend in �18O of measured waters with altitude, which is most likely

because of the small altitude range covered in this study (0-600 m). Sites 2 and 3

�18O
soil

are statistically di↵erent from each other (p<0.05; one way ANOVA with

post-hoc Tukey test) and site 2 is also significantly depleted relative to the stream and

root water, suggesting an increased contribution from winter precipitation to soils.

3.3.3 Reconstructing ancient precipitation �18O from fossil Nothofa-

gus

Mean �18O
cell

for the fossil plants was 20.3 ± 3.0 h. The inter-tree variability is similar

in magnitude to that seen in modern trees, but is greater than the inter-tree variability

seen in the prostrate plants of this study. It seems likely that these data capture both

significant temporal variability and climate variability. It is important to note that

here, we are treating all fossils as being geologically contemporaneous as they were all

collected from the same bed, but it is highly likely that our data may span multiple

millennia. Ice sheet fluctuations during both the mid-Miocene and Pliocene occurred

at orbital timescales (Greenop et al., 2014, Patterson et al., 2014); therefore the dura-

tion represented by the fossils must be less than 100 kyr, but long enough for poorly

developed soils to form and woody plants to colonise the area. This is consistent with

the larger variability in the fossil data compared to the modern. Mean �18O
cell

for the

Sirius Group plant is significantly depleted by ⇠5 h (p<0.001) relative to the mean

of the modern Nothofagus trees from Isla Navarino (25.5 ± 1.5 h). Broadly, there are

two major controls on �18O
cell

, which could cause such an o↵set: evapotranspiration

rates (controlled by relative humidity and stomatal conductance) and �18O of the plants

source water (�18O
source

; McCarroll and Loader, 2004). From the modern data, plant

source water is equal to precipitation �18O within the uncertainty of precipitation vari-

ability (and where �18O
precip

is controlled by latitude, condensation temperature and
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precipitation amount; Dansgaard, 1964), but there are additional processes that could

modify this signal, including evaporation from soil or plants using groundwater as a

moisture source. Depletion could result from a large decrease in stomatal conductance

caused by increased Relative Humidity (RH), reducing evapotranspiration from leaves.

However, RH on Isla Navarino is already high (65-75% in summer) and it is unlikely

that there would have been significant increases in RH for Antarctica when summer

temperatures are not predicted to have been much lower (Rees-Owen et al., a; Chap-

ter 2). Alternatively, decreased �18O
cell

could be caused by a di↵erence in �18O
precip

,

which is consistent with the higher palaeolatitude of the fossil plants (85�S for the Sir-

ius Group, 54�S for Isla Navarino). We test this hypothesis with a physiological model

linking �18O
cell

with �18O
precip

.

There are multiple models of varying complexity linking �18O
cell

, �18O
precip

and

relative humidity and it is not clear whether more complex models provide better

predictions than simpler ones. For the purposes of this study, we used a relatively

simple model by Anderson et al., (2002) given by eq. 3.1, which was chosen because

there are only two unconstrained parameters (RH and the fraction of leaf water not

subject to fractionation, f ). This model has been used in multiple studies to reconstruct

past precipitation isotopes (Csank et al., 2011, Hook et al., 2015, Wolfe et al., 2012):

�18O
source

= �18O
cell

� (1� f)(1�RH)(✏
e

+ ✏
k

)� ✏ (3.1)

where ✏ is the biological fractionation factor associated with the formation of cel-

lulose (+27 ± 3 h; Sternberg and DeNiro, 1983), ✏
e

is the equilibrium liquid-vapour

fractionation for water and approximates �18O of atmospheric vapour (11 h; Majoube,

1971) and the subscript source denotes source water. The kinetic liquid-vapour frac-

tionation (✏
k

) is dependent on leaf morphology and boundary layer vapour transport

conditions; broad-leaf trees have quasi-laminar boundary layer conditions so ✏
k

= 21 h

(Buhay et al., 1996). The parameter f is the fraction of leaf water not subject to evap-

oration (Allison et al., 1985), and also includes the isotopic alteration of carbon-bound

oxygen via exchange with stem water (Roden and Ehleringer, 1999).

73



Chapter 3

Figure 3.3: The relationship between modelled source water �18O and measured �18O
source

from soils (circles), roots (squares) and Global Network of Isotopes in Precipitation �18O
precip

(summer precipitation; diamond). Modelled source water �18O was calculated from measured
�18O

cell

(modern Nothofagus) using the same method as Anderson et al. (2002). Markers give
the mean modelled �18O, y-error bars show the full measured data range, x-errors show fully
propagated model errors, and a 1:1 ratio is given by the dotted line for comparison. Modelled
data is calculated using RH = 0.7, f = 0.2.

We tested the assumptions made by Anderson et al. (2002) using measured �18O
cell

from the modern analogue trees as input for the model (with RH = 0.7, f = 0.2 as

in Allison et al., 1985) and compared the results against measured �18O
source

(i.e. soil

and stream water) and �18O
root

from Isla Navarino and GNIP precipitation data from

Ushaia. The model over-predicted �18O
source

by between 0.2 and 2.9 h (mean for all

sites = 1.5 h; Fig. 3.3). This could be due to model parametrization; we chose a

value of exactly 27 h for the biological fraction factor ✏, but another value within the

accepted range of 24 - 30 h could equally be chosen (as in Anderson et al., 2002).

Moreover, modelled �18O
source

was not statistically di↵erent from �18O
root

, �18O
stream

or GNIP summer precipitation, indicating that the model works well for predicting

�18O
precip

from measured �18O
cell

. We now apply the model to the fossil Nothofagus

in order to calculate ancient �18O
precip

.

In order to apply the model to fossil Nothofagus, we applied a large range of values

for RH that are consistent with measurements from high latitude modern analogue sites

such as Isla Navarino (0.5 - 0.85) and using a random number generator with uniform

distribution, we sampled between these constraints (n=1000) to provide an estimate of
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Figure 3.4: Cellulose �18O from the Sirius Group fossil Nothofagus, with modelled �18O of
palaeo precipitation and modern Antarctic snow. Modern measurements fromMasson-Delmotte
et al. (2008); data restricted to >75 S and below 700 masl. The median is given by the line,
the first and third quartiles by the box, and the whiskers denote the full range of data.

the likely range of �18O
precip

. With this approach, we calculate that mean continental

Antarctic palaeoprecipitation was -16 ± 4.2 h (1 �; ranging between -26 and -3.5 h).

Since �18O
cell

is strongly modified by ambient relative humidity, the large range in our

results is consistent with the conservative (i.e. wide) humidity range used in this study.

In the present day, �18O
precip

over East Antarctica is highly variable, ranging from

-55 h at the highest elevations and furthest from the coast, to -25 h near sea level at

lower latitudes (<75� S; Masson-Delmotte et al., 2008). However, there is considerable

uncertainty surrounding the palaeoaltitude of the Nothofagus fossils sampled in this

study (Ackert, Jr. and Kurz, 2004), which makes it di�cult to provide context for

the reconstructed �18O
precip

values. We therefore compared our record to measured

Antarctic �18O
precip

from sites above 75 �S and less than 700 m above sea level (masl; the

height of the timberline on Isla Navarino; Masson-Delmotte et al., 2008), representing

a reasonable habitat range. Reconstructed �18O
precip

was significantly enriched by ⇠12
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h relative to modern �18O
precip

(ancient mean = -16 h, modern mean = -28 h; p <

0.001; Fig. 3.4). Growth experiments have suggested that plant �2H (and therefore by

extension, �18O) can be significantly enriched in plants grown under continuous light,

analogous to the polar light regime (Yang et al., 2009; Supplementary Information 2).

Therefore, part of the enrichment in the Sirius Group specimens could be accounted

for by the continuous light regime experienced by the Antarctic plants during the

growing season, which would increase �18O
cell

via continuous transpiration, as opposed

to the light regime on Isla Navarino, where plants undergo a diurnal transpiration-

respiration cycle. However, the plants used by Yang et al. (2009) have a relatively high

transpiration rate because of the relatively warm growing temperatures used in their

experimental study. We suggest that the transpiration rate for the Sirius Group plants

would likely be much lower because of the cold summer temperatures (⇠5 �C, compared

to ⇠20 �C in the environment used by Yang et al., 2009). Furthermore, Nothofagus have

been documented as having significantly tighter stomatal control of transpiration than

co-existing conifers (Fernández et al., 2009), as used by Yang et al. (2009). Therefore

it seems likely that there is much lower enrichment due to continuous light in the Sirius

Group fossils (see Supplementary Information 2 for further discussion).

Our result has implications for regional and global climate during periods of ice

sheet retreat in the Neogene. A significant enrichment in precipitation isotopes im-

plies a considerable change in some of the atmospheric processes of the hydrological

cycle. Plausible mechanisms include increased temperatures a↵ecting fractionation dur-

ing condensation, or changes in rainout patterns due to shifts in source moisture region

or di↵erent atmospheric circulation patterns leading to a shortened vapour transport

pathway. As previously discussed, warmer Antarctic temperatures (relative to today)

are consistent with multiple contemporaneous terrestrial temperature proxies, which

suggest that summer temperatures reached 5 �C during the period of study (Ashworth

and Preece, 2003, Ashworth and Kuschel, 2003, Ashworth and Cantrill, 2004, Rees-

Owen et al., a; Chapter 2). This result is also consistent with both age scenarios for

the site: during both the mid-Miocene and Pliocene, sea surface temperatures in the

Southern Ocean were several degrees warmer than today (Clark et al., 2013, McKay
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et al., 2012, Warny et al., 2009) and there is evidence for reduced sea ice cover (Warny

et al., 2009, Whitehead et al., 2005). However, previous work by Feakins et al. (2012)

suggests that the relationship between temperature and precipitation isotopes earlier in

the Miocene (20 - 15 Ma) on the Antarctic coast was di↵erent from the modern, driven

by increased evaporation from a warmer Southern Ocean. This implies that other fac-

tors may also influence the hydrological cycle at this time, which is plausible within

the context of a warmer Neogene world, where warmer Southern Ocean temperatures

could drive an increase in evaporation from high latitude moisture sources. Equally,

the smaller ice sheet could well have influenced regional atmospheric circulation pat-

terns, and changes in global atmospheric circulation are documented for the Pliocene

(Brierley et al., 2009). These variables are likely to be important for understanding

the full significance of our data, but are unconstrained, and a full exploration of hydro-

logical changes is beyond the scope of this study. These questions could be more fully

answered through further data collection to reduce proxy uncertainty, and the use of a

coupled ocean-atmosphere climate model to investigate hydrodynamic changes.

3.3.4 Reconstructing atmospheric �13C from fossil Nothofagus

Mean �13C
cell

was -22.6 ± 1.9 h (1 �). The inter-tree variability here is much larger

than in either the arboreal or prostrate plants from Isla Navarino (-26.6 ± 0.7 h),

which again is consistent with the dataset spanning millennial timescales. This range

of values is significantly enriched by ⇠4 h (p<0.001) relative to the mean values seen

in the modern Nothofagus trees (Fig. 3.2).

Scarring on the bark (Francis and Hill, 1996) implies strong winds and paleosol

analysis suggests MAP was 120-220 mm (Retallack et al., 2001), which is considerably

lower than MAP on Isla Navarino (400-500 mm). Both of these factors would lead

to water stress, reducing stomatal conductance and hence enriching �13C
cell

. This is

consistent with the decrease in 13C discrimination seen in our fossil plants relative to

the modern, although fossil Nothofagus leaves associated with the wood fragments are

large in size indicating that the plants were not living in a marginal habitat (Hill et al.,
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1996) and thus any water stress could not have been too severe.

In studies of modern plants along precipitation gradients, leaf �13C decreased by less

than 1h per 200 mm increase in MAP (Gouveia and Freitas, 2009, Stewart et al., 1995).

While leaf and cellulose �13C are not directly comparable, their isotopic compositions

are controlled by the same environmental factors. It is therefore unlikely that more

than 1 h of the enrichment in the fossil plants is due to water stress and associated

decreases in stomatal conductance and in the ratio of intercellular to atmospheric CO2

concentration (c
i

/c
a

). Instead, we infer that the enrichment must be caused by �13C

enrichment of atmospheric CO2.

Similar to oxygen isotopes, this interpretation of our findings could be a↵ected

by plant growth under continuous light, which has also been shown to a↵ect �13C
cell

(Yang et al., 2009). The 24 hour transpiration cycle results in a higher c
i

/c
a

and

greater discrimination against 13C. Thus, �13C
cell

decreases by 1 - 4 h (Jagels and Day,

2004, Smith et al., 1976, Yang et al., 2009). As previously mentioned, transpiration

rate is partly determined by temperature and the fossil Nothofagus experienced much

colder temperatures than the growth experiment conifers (Yang et al., 2009). It is

therefore unlikely that growth under the polar light regime significantly a↵ected the

carbon isotope data from the fossil plants. Additionally, any continuous light-induced

depletion in �13C
cell

for the fossil plants would increase the o↵set between modern and

fossil Nothofagus �13C
cell

, requiring a larger shift in �13C
atmos

.

By analysing a large dataset of published plant �13C measurements, Arens et al.

(2000) derived an empirical relationship between �13C
atmos

and �13C
plant

(eq. 3.2;

r = 0.95, r2 = 0.91). In order to verify this relationship’s predictive ability, we first

converted �13C
cell

to wholewood �13C (�13C
ww

) using the relationship in eq. 3.3 (Loader

et al., 2003), and then applied the transfer function to �13C
cell

from modern Nothofagus

plants.

�13C
atmos

=
(�13C

plant

+ 18.67)

1.1
(3.2)
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�13C
ww

= �13C
cell

� 1 (3.3)

This analysis yielded means of -8.3 ± 0.2 h from arboreal trees and -8.0 ± 0.2 h for

prostrate plants (standard error of the mean; s.e.m; n=14 for both). Mean �13C
atmos

over the thirty year period sampled in our modern data is -7.96 ± 0.24 h (1 s.e.m;

1982-2012; data from Keeling et al., 2010; and NOAA Earth System Research Labo-

ratory). Both of our reconstructed �13C
atmos

values are statistically indistinguishable

from measured �13C
atmos

values (p>0.37 for arboreal, p>0.9 for prostrate) indicating

that the method successfully predicts �13C
atmos

, within error. By applying the same

method to ancient wood, we calculate that �13C
atmos

was -4.4 ± 0.1 h (1 s.e.m). There

is considerable variability (� = 1.2h) in our land-plant based �13C
atmos

results, which

again is likely due to integration over multi-millennial timescales.

There are few palaeorecords of �13C
atmos

with which to compare our results, but the

range of our record (between -7.9 and -1.6 h) is greater than that seen in recent records

of �13C
atmos

from Antarctic ice cores over the last glacial-interglacial cycle (between

-7.0 and -6.2 h; Eggleston et al., 2016). In contrast, a similarly large range is seen

in �13C
atmos

calculated from land plants using the same method as this study during

the Early Cretaceous (between -3 and -8 h; Jahren et al., 2001), thought to have been

caused by rapid methane hydrate release, which is unlikely to have influenced carbon

cycling during the Neogene.

Our result is also strikingly di↵erent from both the pre-industrial �13C
atmos

value of

-6.5 h and the modern value of -8.0 h, indicating a change in carbon cycling (Eggleston

et al., 2016). A record of �13C
atmos

for the last 65 Ma has been reconstructed from

benthic foraminiferal �13C (Tipple et al., 2010), which provides points of comparison

for both possible age scenarios for the fossil wood (i.e. 17 - 15 Ma or 3 Ma). Tipple

et al. (2010) also produced a record of �13C
atmos

based on planktonic foraminifera, but

because of large uncertainties over several factors influencing planktonic �13C (such as

e↵ects of photosymbionts, depth of production and recrystallization after burial), this

record was considered by the authors to be much less robust than the benthic record
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and is not discussed here.

Reconstructed �13C
atmos

from fossil Nothofagus is considerably enriched relative to

values from the benthic foraminifera record for both possible age scenarios (-6.3 h for

the Pliocene, between -5.6 and -5.3 h for the mid-Miocene, see Fig. 3.5; Tipple et al.,

2010). The benthic �13C
atmos

curve was constructed using a 3 Myr moving average

(mean; Tipple et al., 2010), which implicitly smooths out any short-lived variability, and

the size of the dissolved inorganic carbon pool in the ocean would serve to dampen the

response of carbon isotope ratios in benthic foraminifera to rapid or large atmospheric

changes. Decoupling of benthic and atmospheric �13C on glacial-interglacial timescales

during the Pleistocene is seen in both data and model studies (Eggleston et al., 2016,

Köhler et al., 2010): certain processes that enrich �13C
atmos

, such as increased marine

export and decreased ocean stratification, will deplete benthic �13C, while increased

terrestrial carbon storage will enrich both �13C pools (Köhler et al., 2010). It is not

clear whether these mechanisms would have a similar impact on the timescales of the

Cenozoic curve, but this does provide a plausible explanation for part of the positive

o↵set between the land-plant and benthic foraminifera reconstructions. Nevertheless,

an enrichment on the order of 1-2 h in atmospheric �13C relative to pre-industrial

values implies a significant change in carbon cycling during a period of EAIS retreat;

we now discuss potential mechanisms for the two age scenarios.

Warmth in the Pliocene has been well-documented. Sea surface temperatures in

the Early Pliocene were ⇠5 - 7 �C warmer in the mid-latitudes relative to the present,

and meridional temperature gradients were considerably weaker (Fedorov et al., 2015).

Increased sea surface temperatures would decrease equilibrium fractionation, enriching

�13C
atmos

somewhat due to solubility e↵ects (Vogel et al., 1970, Zhang et al., 1995,

Lourantou et al., 2010). However, dust and iron fertilisation in the Southern Ocean,

today a significant driver of primary productivity and therefore changes in �13C
atmos

,

was much lower during the Pliocene (Mart́ınez-Garcia et al., 2011), which would have

reduced export of 13C-depleted waters to the deep ocean. A strengthening of the

Atlantic Meridional Overturning Circulation (AMOC) has been inferred from marine
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ocean circulation proxy data (Dowsett et al., 2009, Frank et al., 2002, Frenz et al., 2006,

McKay et al., 2012, Raymo et al., 1996, Ravelo and Andreasen, 2000), although this is

not replicated well in modelling studies (Zhang et al., 2013). It has been proposed that

a stronger AMOC would result in greater upwelling of 13C-depleted deep waters in the

Southern Ocean, which would again result in more negative �13C
atmos

(Köhler et al.,

2010); in general, multiple models have found that, on glacial-interglacial timescales,

�13C
atmos

is negatively correlated with increasing ocean ventilation (Menviel et al.,

2015). Regardless, none of these explanations can explain the high �13C
atmos

seen

in this record, which implies a significant perturbation in the carbon cycle, such as

increased sequestration of organic carbon in the oceans, that is not seen in the global

benthic �13C record for the Pliocene (Zachos et al., 2001). In fact, when put into the

context of Cenozoic climate evolution, the benthic �13C
atmos

curve records a continuous

decrease in �13C
atmos

(Tipple et al., 2010), in line with an overall cooling throughout

the Pliocene; our result is not consistent with this scenario.

The alternative age scenario for the fossil plants is a mid-Miocene age, correlated

with plant fossils from the McMurdo Dry Valleys, which are dated to ⇠14 Ma (Lewis

et al., 2007, 2008). At first glance, our carbon isotope data appears to be consistent

with carbon isotope data from this time period (benthic foraminifera and bulk car-

bonate). A mid-Miocene age corresponds to the tail end of a significant perturbation

in the carbon cycle between 16.9 and 13.6 Ma (Badger et al., 2013, Holbourn et al.,

2007) known as the Monterey Excursion and captured in the �13C
atmos

reconstruction

by Tipple et al. (2010), although the latter point is somewhat circular as the �13C
atmos

record is based on marine �13C. The event is expressed globally as a broad positive car-

bon isotope excursion in bulk carbonate, benthic and planktonic foraminiferal records

(Vincent and Berger, 1985, Holbourn et al., 2007). Within the broader excursion, there

are multiple short-lived positive excursions of between 1 and 1.5 h, some lasting as

little as 40 kyr (Badger et al., 2013). There are complex links between these maxima

and EAIS fluctuations: several of the carbon isotope maxima coincide with periods of

low CO2 (<300 ppmv) and Antarctic Ice Sheet maxima, but others correlate with high

atmospheric CO2 levels and ice sheet minima (�500 ppmv; Holbourn et al., 2014, 2015,
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Levy et al., 2016). Broadly, the ice sheet fluctuations are driven by orbital forcing

(Griener et al., 2015, Holbourn et al., 2005, Passchier et al., 2013b), but are strongly

modulated by changes in atmospheric CO2 (Gasson et al., 2016, Levy et al., 2016). Our

�13C
atmos

data represent an anomalously heavy and highly variable atmospheric carbon

pool during a period of EAIS retreat, of a magnitude and timescale compatible with

middle Miocene carbon cycle dynamics. Multiple mechanisms to explain these carbon

maxima have been proposed, though it is not clear to what extent they are driven by

changes in the terrestrial or marine carbon cycle (Diester-Haass, 2009). Traditionally,

the positive excursions are interpreted as the result of increased organic matter burial

in marine settings, leading to a drawdown of atmospheric carbon dioxide (Badger et al.,

2013, Flower and Kennett, 1994, Katz et al., 2005, Shevenell et al., 2004, Woodru↵ and

Savin, 1989) and thus an increase in �13C
atmos

, although this scenario is not necessarily

consistent with a reduced ice sheet. Carbon isotope maxima in the benthic �13C record

coincide with productivity maxima in the Pacific and Southern Ocean, which would

increase �13C
atmos

(Diester-Haass et al., 2013). Increases in terrestrial carbon seques-

tration have not been discussed in great detail as a mechanism for the excursions, but

a denser vegetation cover than today is modelled globally for the mid-Miocene (Krapp

and Jungclaus, 2011) and would also be consistent with our result. In summary, the

results from our fossil tree-derived �13C
atmos

reconstruction are in good agreement with

proposed mechanisms for global carbon cycling during the mid-Miocene, in contrast to

those for the Pliocene, and may provide additional constraints on the age of the Sirius

Group fossils.

3.4 Conclusions

By testing a simple physiological model linking �18O
cell

with �18O
precip

in two species

of modern Nothofagus plants, which grow in both arboreal and prostrate form, we

found that �18O
cell

of prostrate Nothofagus faithfully records �18O
precip

at multi-year

resolution. Hitherto, most tree ring stable isotope analyses have been applied to trees

with an arboreal habit in temperate and tropical environments. Therefore, it was pre-

83



Chapter 3

viously unclear whether the assumptions made in process-based isotope models hold

true for krummholz -type plants, such as those from Oliver Blu↵s, which feature growth

asymmetry that could a↵ect isotopic signals via resource partitioning. Our findings

demonstrate that prostrate trees are potentially suitable archives for recording clima-

tological means over longer periods (on the order of decades). This result opens up

high latitude and altitude end-member environments in both palaeo and modern times

for tree ring isotope analysis.

The carbon and oxygen isotopic composition of exceptionally well-preserved fossil

wood from the Transantarctic Mountains, Antarctica, provide new insights into Neo-

gene hydrological and carbon cycling. The oxygen isotope record indicates that during

a period of EAIS ice sheet retreat in which small prostrate shrubs colonised the exposed

glacial landscape close to the South Pole, the hydrological cycle was markedly di↵erent

to today with precipitation significantly enriched in 18O by ⇠12 h relative to modern

precipitation over the continent. While the enrichment may be temperature driven

alone, our result correlates well with the result of Feakins et al. (2012), suggesting that

moisture source regions may have been di↵erent in the past. However, it is not possible

to distinguish between these two possibilities or some combination of both based on

the geochemical data alone.

Our record also reveals that the time period represented by the fossils was charac-

terised by an anomalously heavy and variable atmospheric �13C, indicating a dynamic

carbon cycle during a period of EAIS retreat. This result is consistent with high

amplitude, orbitally driven climate-carbon cycle fluctuations in the mid-Miocene and

may correspond to documented EAIS fluctuations associated with rapid carbon cycle

changes (Levy et al., 2016).

84



3.5 Supplementary Information 2

3.5 Supplementary Information 2

3.5.1 Modification of carbon and oxygen isotopes by continuous light

A recent study (Yang et al., 2009) suggested that hydrogen and carbon isotope frac-

tionations in plants could be significantly a↵ected by growth under continuous light,

analogous to plant growth at very high latitudes under a polar light regime. Here, we

discuss the potential impact of growth under continuous light on the measured isotope

ratios in fossil Nothofagus.

Our reconstruction of �18O
precip

from ancient tree ring cellulose suggests that during

a period of warming and Neogene ice sheet retreat, Antarctic �18O
precip

was significantly

enriched (˜12 h) relative to modern precipitation over the continent. Part of this

enrichment could be due to the continuous light regime experienced by the plant during

the growing season. While no data exists for �18O, an enrichment in �2H of 15 - 40

h has been documented in plant species grown in continuous light experiments (Yang

et al., 2009); using an equilibrium fractionation factor of 8 to convert between �18O

and �2H, this would imply an enrichment of 2 - 5 h in oxygen isotope space.

This decrease in discrimination against the heavier isotope is believed to be caused

by enhanced water loss during a 24 hr transpiration cycle. However, it must be empha-

sised that while the light regime may have been similar, the fossil Nothofagus plants

in this study grew under very di↵erent conditions to those used in the growth experi-

ments. During the late Neogene, the Antarctic interior was covered by a tundra shrub;

low summer temperatures (˜5 �C), low precipitation rates and high wind stress mean

that photosynthetic and transpiration rates would have been significantly lower dur-

ing the growth season, evidenced by the extremely narrow growth rings of the fossil

Nothofagus (Francis and Hill, 1996). In contrast, deciduous conifers in the experiments

of Yang et al. (2009) were grown at much higher temperatures and lower water stress.

This would considerably reduce the transpiration rate for Antarctic plants versus those

used in the growth experiment, decreasing water loss, and consequentially reducing any

potential leaf water isotope enrichment. We therefore conclude that the majority of the
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enrichment signal in our ancient �18O
precip

reconstruction is caused by changes in the

hydrological cycle, not in plant isotope fractionation. The same study also recorded

more negative values in plant �13C in plants grown under continuous light relative to

those grown under diurnal light, due to increased internal CO2 concentrations which

would impact our estimations of palaeo-�13C-CO2 (Jagels and Day, 2004, Smith et al.,

1976, Yang et al., 2009). For similar reasons, however, we believe that the lower tran-

spiration rates in the Antarctic fossil plants would lead to smaller increases in c
i

/c
a

and would have a much smaller impact on �13C
cell

.
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Table 3.3: Isotopic data for Sirius Group samples.

Sample �13C
cell

/ h �18O
cell

/ h

SRB-07-03 -25.83

SRB-07-03 -25.13 27.82

OBFH-02-07 -22.51

OBFL-04-06 -20.57 20.18

OBFL-04-06 -21.91 18.97

OBFL-04-06 -21.85 21.82

OBFL-04-06 -21.51 21.00

OBFL-04-06 -21.33 23.67

SRB-07-1 -21.84 20.33

SRB-07-1 -22.38 19.47

SRB-07-1 -22.13 23.08

SRB-07-1 -24.59

SRB-07-1 -22.12

SRB-07-1 -22.07

SRB-07-1 -22.65 24.28

SRB-07-1 -23.11 22.00

OBFL-04-4 17.81

OBFL-04-12 -22.01 16.98

OBFL-04-12 -21.22 20.75

OBFL-04-12 -21.72 18.61

OBFL-04-18 -20.06 20.25

OBFL-04-18 -19.70 21.11
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Table 3.3: continued

Sample �13C
cell

/ h �18O
cell

/ h

OBFL-04-18 -19.47 25.43

OBFL-04-16 -22.58

OBFL-04-16 -22.91

OBFL-04-16 -22.79 20.33

LCBA-05-06 -21.36 23.31

LCBA-05-06 -21.19 26.69

OBFL-04-23 17.17

OBFL-04-23 -22.74 16.12

OBFL-04-23 -22.86

OBFL-04-23 -22.33

OBFL-04-23 -24.62

OBFL-04-23 -17.48

OBFL-04-23 -24.05

OBFL-04-23 -24.35

OBFL-04-23 -25.69

OBFL-04-23 -23.60 15.35

WSU-13-1 -24.67

FBCP-14-7 -22.94

FBCP-14-7 22.33

FBCP-14-7 -21.32 20.62

FBCP-14-7 -21.80 23.64

FBCP-14-7 25.56
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Table 3.3: continued

Sample �13C
cell

/ h �18O
cell

/ h

LRB-08-4 -21.66

SBPW-09-18 -21.65

SBPW-09-18 -21.69

SBPW-09-16 -24.81 21.12

SRB-07-2 -21.66 16.02

SRB-07-2 -21.64

SRB-07-2 -21.77

SRB-07-2 -21.45

SRB-17-4 -23.87

BNLB-12-1 -24.79

BNLB-12-1 14.92

LLW-06-4 -22.54 20.60

LLW-06-4 -22.15 18.31

LLW-06-4 -22.20 21.22

LLW-06-4 -22.39 21.15

LLW-06-4 -22.63 20.58

LLW-06-4 -22.24 20.38

LLW-06-4 -21.35 20.67

LLW-06-4 -21.76 19.33

LLW-06-1 14.59

LLW-06-1 -20.52 18.71

LLW-06-1 -20.74 18.36
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Table 3.3: continued

Sample �13C
cell

/ h �18O
cell

/ h

LLW-06-2 -21.04

LLW-06-2 -21.39 18.01

LLW-06-2 -24.96 17.37

FBCP-14-2 -23.00 18.86

FBCP-14-2 -22.36 21.43

FBCP-14-3 -21.97 17.50

FBCP-14-3 -23.40 17.26

FBCP-14-3 -23.43 21.03

FBCP-14-1 -22.51 15.41

FBCP-14-1 -23.24 18.63

FBCP-14-1 -22.49 17.69

LLW-06-3 -23.71 19.71

LLW-06-3 -22.98

LLW-06-3 -22.02 14.82

FBCP-14-6 -23.27 22.65

FBCP-14-6 -23.28

FBCP-14-5 -23.63

FBCP-14-5 -21.36 22.06

FBCP-14-4 -21.11 22.33

FBCP-14-4 -21.88 23.49

FBCP-14-4 -21.77 19.64

Mean -22.38 20.14
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Table 3.3: continued

Sample �13C
cell

/ h �18O
cell

/ h

s.d. 1.41 2.95

s.e.m. 0.16 0.38
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Chapter 4

Smaller ice sheets drive a shift in

the Antarctic temperature-water

isotope relationship in a warmer

world

Preface

Chapter 4 has been prepared for submission to Nature Geoscience. The co-authors are

my supervisors, colleagues and external collaborators: Rob Newton, Ruza Ivanovic,

Jane Francis, James Riding, Julia Tindall, Rich Pancost, Jens Holtvoeth and Paul

Valdes. The work presented in this chapter is my own, including the background re-

search, experiment design, set-up and execution, data analysis and presentation, and

the written manuscript. My co-authors gave valuable advice and suggested improve-

ments for all aspects of the work. In particular, Ruza Ivanovic assisted with running

the climate model and analysing climate model output. Julia Tindall provided sim-

ulations for analysis and Paul Valdes assisted with the implementation of dye-tracers

in the model. Jens Holtvoeth and Rich Pancost provided compound-specific isotope

analyses as well as useful discussion on their interpretation. This paper was written
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more collaboratively than the other chapters appearing in this thesis; Rob Newton and

Ruza Ivanovic assisted with the structure of the manuscript and with identifying the

key arguments to develop and emphasise.

Abstract

During the mid- to late Neogene (17 - 2.5 million years ago), episodic retreat of the

Antarctic Ice Sheet (AIS) coincided with periods of higher-than-present atmospheric

CO2, indicating ice sheet sensitivity to climatic conditions similar to those projected for

the coming decades. Climate-ice sheet feedbacks mean that glacial climates are sensitive

to ice sheet change, impacting temperature and moisture availability. Understanding

the Antarctic hydrological cycle during past AIS retreat is therefore critical for under-

standing hydrological change in future warming scenarios. Here we use plant compound

isotopes (�18O and �2H) from terrestrial sediments to reconstruct precipitation isotopes

and assess mechanisms for change using an isotope-enabled General Circulation Model.

Tree ring �18O and leaf wax �2H translate to values of -16h and -170h, respectively,

for precipitation falling over the continent, significantly higher than modern day values

(-30 h and -240 h). Combining these independent proxy measurements with climate

simulations, we find that the shrinking AIS induced a change in precipitation regime

where moisture fell as rain over deglaciated coastal areas, with an associated isotopic

depletion of inland snow, relative to modern. Our findings are likely to be indicative of

future hydrological change over Antarctica. Furthermore, examining the spatial distri-

bution of ice sheet isotopes in model runs shows that interpretations of ice core records

may underestimate interglacial temperatures, depending on the location of the core

relative to the ice sheet margin.

4.1 Introduction

Much of the mid- to late-Neogene (17 - 2.5 million years ago; Ma) is characterised

by fluctuations in Antarctic Ice Sheet (AIS) volume and extent, particularly the mid-
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Figure 4.1: Location of the Sirius Group sediments at Oliver Blu↵s (yellow star), which is on
the poleward side of the Transantarctic Mountains (TAM). Grey shading shows rocky outcrops
of the mountains.

Miocene (17 - 15 Ma; Gasson et al., 2016, Levy et al., 2016, Warny et al., 2009), and

Pliocene (5 - 2.5 Ma; Austermann et al., 2015, Cook et al., 2013). Ice sheet retreat is

linked to atmospheric CO2 levels above 400 ppmv (Beerling and Royer, 2011, Gasson

et al., 2016, Levy et al., 2016) as well as to variations in the Earth’s orbit (Patterson

et al., 2014); the former trigger being highly relevant to twenty-first century climate.

There are intriguing climate feedbacks associated with ice sheet retreat: glacial

climates are highly sensitive to ice sheet change (Ullman et al., 2014) in part because

of the impact that topography has on temperature and atmospheric circulation, while

moisture availability and net precipitation are an important limiting factor on ice sheet

growth (Shevenell et al., 2008). These changes may also impact the isotopic composition

of precipitation falling over the ice sheet (Rees-Owen et al., b; Chapter 3), which could

also a↵ect interpretations of interglacial climate from ice core records by introducing

spatial variability into the empirical temperature-isotope relationship used to calculate

temperature records (Sime et al., 2009). Plant fossils, pollen, and biomarkers recovered

from the terrestrial Sirius Group sediments in the Transantarctic Mountains record a

97



Chapter 4

warmer climate and the existence of a tundra vegetation during a period of Neogene

AIS retreat 480 km from the South Pole (Fig. 4.1; Askin and Markgraf, 1986, Francis

and Hill, 1996, Rees-Owen et al., a; Chapter 2). Clearly, understanding the Antarctic

hydrological cycle during such an episode of reduced ice is critical for understanding

the fundamental behaviour of the climate system, and potentially also for improving

projections of our own warming world (Pollard and Deconto, 2016).

4.2 Reconstructing precipitation isotopes

Oxygen and hydrogen isotope ratios in precipitation (�18O
precip

and �2H
precip

, respec-

tively) act as a tracer of the hydrological cycle, giving quantitative insight into evap-

orative and transport processes (Dansgaard, 1964). The isotopic composition of pre-

cipitation at mid- and high latitudes is largely governed by latitudinal and vertical

temperature gradients, as well as distance from the evaporative source region (Gat,

1996). Thus, ⇠55 million year old geological records of �2H
precip

from the Arctic reveal

considerably higher poleward moisture transport and rainout at high latitudes rela-

tive to the present day, during a period of abrupt climate change and carbon release

to the atmosphere (Pagani et al., 2006). Precipitation isotopes can be reconstructed

using �18O
precip

and �2H
precip

in plant compounds (tree ring cellulose and plant leaf

waxes; McCarroll and Loader, 2004, Sachse et al., 2012). Accordingly, we are able to

use cellulose �18O
precip

and plant leaf wax �2H to reconstruct a multi-proxy record of

precipitation isotopes during Neogene AIS retreat, thus giving a unique insight into

Antarctic hydrological cycling.

The Sirius Group sediments at Oliver Blu↵s provide an exceptional geological

archive of terrestrial Antarctic climate during a period of AIS retreat under CO2 levels

in the range 400 - 500 ppmv (Beerling and Royer, 2011, Levy et al., 2016), similar to

today and projections for near-future changes (next 40 years, IPCC, 2013). The studied

plant fossil-bearing interval is a mixed coarse sand and gravel unit representing glacial

outwash over a poorly developed soil horizon that formed on top of glacial moraine,

sandwiched between fluvioglacial lodgement tillites; it represents periglacial or inter-
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glacial conditions and likely formed over a geologically short period of time (McKelvey

et al., 1991). Fossil and geochemical evidence show continental summer temperatures

reached 5 �C and tundra-like vegetation was able to survive (Francis and Hill, 1996,

Rees-Owen et al., a; , Chapter 2). The timing of this episode of retreat is uncertain,

and may coincide with periodic warming and ice sheet fluctuations from the Pliocene

(5 - 2.5 Ma; Cook et al., 2013) or the mid-Miocene (17 - 15 Ma; Lewis et al., 2007,

2008). This age uncertainty is not problematic for our aims: these time periods share

characteristics which make them equally useful for an investigation into the style of

Antarctic hydrological cycle change in a warmer world (see Supplementary Informa-

tion 3).The Sirius Group sediments capture a snapshot of an episode of such retreat

at a critical location and therefore have the potential to provide key insights into the

response of Antarctic climate to a reduced ice sheet. Recent work using tree ring cellu-

lose oxygen isotope analysis has shown that during this period of warmth, the oxygen

isotope composition of precipitation (�18O
precip

) falling over the Antarctic continent

was -16.2 ± 4.2 h (Rees-Owen et al., b; Chapter 3). Palaeoprecipitation was therefore

⇠12 h enriched in the heavy isotope relative to modern-day precipitation, markedly

di↵erent to current high latitude precipitation (p < 0.001). This is an intriguing result,

which suggests that the hydrological cycle was functioning very di↵erently in response

to warmer temperatures and a reduced Antarctic ice sheet. Hydrological cycle change

will impact both the oxygen and hydrogen isotope composition of precipitation in a

similar way. To fully explore the mechanisms behind isotopic change and as a check on

the veracity of our cellulose oxygen measurements we therefore reconstructed �2H
precip

.

This enables a deeper investigation of hydrological cycling by providing independent

data to support the tree ring isotope result, as well as comparing the results to mod-

ern relationships between the two parameters (Craig, 1961), prior to investigating the

significance of these changes with an isotope enabled GCM.

Plant compound isotope analysis in the form of plant leaf wax hydrogen isotopes

(hereafter �2H
leaf

) from sedimentary lipids provide independent evidence for hydro-

logical change during Neogene East Antarctic Ice Sheet (EAIS) retreat. The isotopic

composition of precipitation is a dominant component of the �2H
leaf

signal, along with
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various biological fractionation factors (Sachse et al., 2012). Applications of this proxy

to ancient sediments have been able to reconstruct changes in rainout patterns and

moisture source region for high latitude hydrological cycling during warmer climates

55 Ma (Pagani et al., 2006) and 20-15 Ma (Feakins et al., 2012). Previous work iden-

tified C23 to C31 n-alkanes in the terrestrial sediments at the same site in the Sirius

Group at Oliver Blu↵s, Transantarctic Mountains (Rees-Owen et al., a; Chapter 2).

The strong odd-over-even preference indicates that the leaf waxes are derived from the

epicuticular waxes of plant leaves, likely forming during the growth season in the aus-

tral summer and deposited in situ to the terrestrial sediments or transported a short

distance (Rees-Owen et al., a; , Chapter 2). We selected the C27 n-alkane for the

�2H
leaf

-based reconstruction of palaeoprecipitation as it is the most abundant; while

fractionation factors vary with n-alkane chain length, previous work has found that

this does not greatly bias the result (Sachse et al., 2012). �2H
leaf

values range between

-298 and -254 h with a mean of -275 ± 10 h (1 s.d., n = 14). Isotopic variability

between samples and within the n-alkane homologous series indicates that the isotopic

signal is unaltered (Schimmelmann et al., 2006; Supplementary Information 3).

In order to calculate palaeoprecipitation isotope ratios, the measured �2H
leaf

values

are adjusted for the enrichment factor (✏) between precipitation and leaf waxes (Sessions

et al., 1999). Global calibration studies on modern plants indicate that for the n-C27

alkane, ✏ = -108 ± 25 h (1 s.d., n = 79; Sachse et al., 2012). Plants grown under

continuous light in greenhouse experiments (Yang et al., 2009) have exhibited smaller

fractionations, attributed to a continuous transpiration cycle. However, measured real

world high latitude fractionations are not significantly di↵erent to the global dataset

(Yang et al., 2011), and the cold growing season temperatures of the Sirius Group plants

means that transpiration rates were likely lower (see Supplementary Information 2 for

further discussion). We therefore apply the mean modern value of ✏ = -108 h, which

is similar to fractionations applied in early Miocene Antarctic reconstructions (Feakins

et al., 2012). This yields mean palaeoprecipitation values for continental Antarctica of

167 ± 27h (error is compounded standard deviation; Fig. 4.2).
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Figure 4.2 (previous page): (A) The relationship between �18O and �2H for modern Antarc-
tic snow (open pink circles) demonstrating the linear relationship between �18O and �2H at high
latitude (local meteoric water line). Filled red circles are modern data for sites south of 75�

S and below 700 m above sea level. Sirius Group data is summarised by the green box and
whisker plot in the x- and y- directions showing median (line), 25th and 75th percentiles (box)
and range (error bars). Modern data from Masson-Delmotte et al. (2008). (B) �18O versus
temperature for modern Antarctic snow (Masson-Delmotte et al., 2008), Sirius Group data
(green box and whiskers, as in panel A) and data from the palaeo HadCM3 climate model
simulation (blue squares for grid cells where surface temperature < 0 �C and grey diamonds for
surface temperature > 0 �C). (C) �2H and surface air temperature in modern Antarctic snow
(Masson-Delmotte et al., 2008), with Sirius Group data indicated by the box and whisker plot,
as in panel (A).

Modern precipitation falling over Antarctica ranges between -453 and -156 h (�2H
precip

),

depending on a complex interplay of temperature, season, distance from the coast and

altitude. In contrast, our Neogene �2H
precip

estimates are significantly enriched from

modern values by ⇠100 h (p<0.001, Supplementary Figure 4.7). Presently, �18O

and �2H over Antarctica exhibit a linear relationship, based on mass dependencies

for each isotope, known as the local meteoric water line (given as �2H = 7.75*�18O

- 4.93; LMWL; R2 = 0.998, n=789, Masson-Delmotte et al., 2008). The combined

�2H
precip

and �18O
precip

from Oliver Blu↵s are consistent with this relationship (Fig.

4.2A), which is a first order check on the consistency our two datasets, and provides

further confirmation that neither dataset are isotopically altered. At high latitude,

precipitation isotopes are controlled by the temperature di↵erence between the sites of

evaporation and condensation, because of the temperature-dependence of isotope frac-

tionation (Dansgaard, 1964). Over Antarctica, precipitation isotopes exhibit a strong

linear relationship with temperature, which is the basis for ice core temperature recon-

structions (Jouzel et al., 1997, Masson-Delmotte et al., 2008). Therefore, in warmer

climates, precipitation isotopes at high latitudes are expected to be heavier; our data

are qualitatively consistent with the warmer palaeotemperatures for this site (mean

summer temperature of 5 �C from multiple independent proxies; Ashworth and Preece,

2003, Ashworth and Kuschel, 2003, Francis and Hill, 1996, Rees-Owen et al., a; Chapter

2). However, for both isotope systems, our palaeoprecipitation data is markedly o↵set

from this linear relationship such that using modern isotope-temperature (hereafter

�-T) relationships would under-predict temperature by ⇠20 �C (Figs. 4.2B and 4.2C).
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4.3 Changes in moisture delivery to the continent

The �-T relationship during both the more recent Quaternary interglacials and the

older Early Miocene has been shown to vary temporally and spatially (Feakins et al.,

2012, Jouzel et al., 1997, Lee et al., 2008). The variation in slope is itself temperature-

dependent (Sime et al., 2009), owing to changes in sea ice, evaporative source and rates

of atmospheric overturning. Thus it is plausible that such changes would occur during

even warmer periods of Earths history, such as the interval discussed in this study.

This is important because understanding the mechanism behind this shift will aid fun-

damental understanding of the polar hydrological cycle in a warmer world. Combining

the proxy-data results with an isotope-enabled General Circulation Model (GCM) will

enable a more rigorous examination of the climate and hydrological response to ice

sheet reduction.

4.3 Changes in moisture delivery to the continent

To this end, we employ the oxygen isotope-enabled atmosphere-ocean-vegetation gen-

eral circulation model HadCM3 to explore our results (Cox, 2001, Gordon et al., 2000,

Pope et al., 2000). This climate model has been shown to represent �18O
precip

in the

preindustrial well (Tindall et al., 2009) and has been used to investigate a number of

palaeoclimates, including the Pliocene (5 - 2.5 Ma; Tindall and Haywood, 2015) and

the warmer, older Eocene (56 - 34 Ma; Tindall et al., 2010). As the age uncertainty

of the Sirius Group sediments precludes using a model with age-specific boundary con-

ditions, we use previously published simulations with boundary conditions matching

the mid-Pliocene (Tindall and Haywood, 2015), including elevated CO2 (405 ppmv)

and a reduced Antarctic ice sheet with respect to the preindustrial. The purpose of

the modelling was to examine if the features seen in the temperature and precipitation

isotope reconstructions were consistent with the direction of change in the model data.

Thus, this warmer, reduced-ice world is a reasonable idealised scenario for better un-

derstanding the climate recorded by the Sirius Group (see Supplementary Information

3 for further discussion).

Over the entire continent, the model simulates a mean �18O
precip

of -20.6 ± 14.0
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Figure 4.3: (A) Tracer initialisation sectors (T1-T12; see Methods). Each tracer was ini-
tialised at the surface of the labelled sectors. The tracer sectors overlay the mean di↵erence in
summer evaporation from the sea surface of the palaeo scenario with respect to the preindustrial
(simulations a and b; see Methods). (B) Stacked bar charts of absolute tracer abundance for
latitudinal sectors where white = 0 - 30 �S, light grey = 30 - 60 �S, dark grey = 60 - 80 �S.
(C) Tracer abundance profiles for the preindustrial and palaeo simulations for a set of grid cells
on East Antarctica representative of the Sirius Group site (see Supplementary Information 3).
Tracer amounts were calculated on the 10th day of the simulation, which is the residence time
of water vapour in the atmosphere.
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h (error = 1 s.d.), broadly consistent with the enrichment in our palaeoprecipitation

reconstruction (�18O
precip

= -16.2 ± 4.2 h Supplementary Figure 4.7). In ice-free areas

of Antarctica (i.e. grid boxes which were ice-covered in the preindustrial control but

under palaeo boundary conditions are land), which are most similar to our fossil site,

the climate model simulates a mean �18O
precip

of -24.2 ± 9.4 h (error = 1 s.d.), an

enrichment of ⇠7 h relative to the preindustrial. Furthermore, an o↵set from the

�-T linear relationship (similar to that seen in our geochemical data) is evident in

ice-free areas of Antarctica (Fig. 4.2B; Tindall and Haywood, 2015). The key factors

influencing the distribution of isotopes in modern Antarctic precipitation are the origin

of moisture, and spatial changes of the condensation temperature (Masson-Delmotte

et al., 2008). From both the enrichment and o↵set �-T relationship in the proxy and

model results, we infer a marked shift in the structure of the hydrological cycle during

Neogene ice sheet retreat.

Presently, Antarctic precipitation is dominated by moisture from the mid-latitudes

(up to 66%; 30 - 60� S), while up to a fifth is sourced from high latitude oceans above

60� S (Delaygue et al., 2000). One hypothesis to explain our observations is that the

enrichment in precipitation isotopes is a result of a change to an evaporative source

region closer to the coast (i.e. more moisture from higher latitudes), as this would

alter the evaporation temperature as well as the amount of precipitation along the

water transport path. This mechanism is similar to the source change mechanism

invoked for Antarctic hydrological change during the Early Miocene (Feakins et al.,

2012). We explored this hypothesis by implementing conservative dye-tracers in the

model, which track the movement of air parcels through the atmosphere. The addition

of atmospheric tracers is an e↵ective way of tracing changes in moisture source, and

the preindustrial simulation models the modern latitudinal distribution of moisture

sources well (Fig. 4.3B). In the reduced-ice, warmer world simulation, there is an

overall decrease in the amount of tracer reaching the continent, but based on our model

experiments, there is no significant change in latitudinal moisture source (Fig. 4.3B).

This indicates that changing source region is not responsible for the observed shift

towards more positive precipitation isotope compositions. Alternatively, changes in
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short-range moisture transport pathways caused by shifting local source regions could

be responsible. Indeed, there are subtle changes in the evaporative source regions of

Antarctic precipitation from the polar oceans to the Oliver Blu↵s region. Our tracer

experiments show that there is an increase by a factor of two in moisture sourced from

the Weddell Sea region (Tracer 11) and corresponding decrease in moisture from the

Ross, Amundsen and Bellingshausen Seas (Tracers 7-10) relative to the preindustrial.

These changes in delivery are accompanied by a respective increase and decrease in

evaporation from the sea surface (Figs. 4.3C and 4.4D).

The increase in moisture delivery from the Weddell Sea region may be linked to

changes in atmospheric circulation in the lower atmosphere driven by the reduction

in ice sheet extent; there are notable changes in wind vector direction and reductions

in vector strength over ice-free areas (Supplementary Fig. 4.8). This would allow

increased penetration of moisture via low-pressure systems further into the continent.

Currently, the height of the Transantarctic Mountains and ice sheet at the edge of the

continent prevents penetration of much moisture into the interior (Turner and Marshall,

2011), but the palaeo-orography would have been much lower (Ackert, Jr. and Kurz,

2004). However, while evaporative enrichment in the Weddell Sea would recharge

atmospheric vapour with the heavy isotope (a shift away from the traditional Rayleigh

distillation model) we do not see the expected corresponding shift to more positive

values for water vapour �18O (as in Lee et al., 2008; Fig. 4.4B and D). This suggests

that these small changes in evaporative source cannot explain the observed shift in

the �-T relationship. This result contrasts with Antarctic hydrological change seen in

the Early Miocene ascribed to a latitudinal shift in moisture source region (Feakins

et al., 2012), although this previous study used an idealised general circulation model

without continents or ice sheets, so cannot capture changes in atmospheric circulation

or moisture delivery related to Antarctic orography or ice sheet extent. As the large

changes in the temperature-isotope relationship cannot be caused by source region

changes, we surmise that the di↵erent relationship must therefore be driven by changing

transport and rainout patterns.

Having discounted long- and short-range changes in moisture source region, we infer
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Figure 4.4: Mean summer di↵erence in the palaeo scenario with respect to the preindustrial
(simulations a and b; see Methods) for (A) precipitation �18O; (B) atmospheric vapour �18O
in the lower atmosphere; (C) surface temperature; (D) evaporation from the sea; E) total
precipitation; (F) precipitation falling as rain. Climate fields are calculated from a 30 year
climate mean (last 30 years of the simulations). The Sirius Group site is shown by the black
dot. Note reversed scalebar in E and F.
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a switch to a di↵erent precipitation regime. Analysis of the model results, which present

a good match to measured �18O and surface temperature data (Rees-Owen et al., a,b;

Chapters 2 and 3), show that much of the positive shift in the temperature-isotope

relationship can be explained by change occurring in the areas of Antarctica that have

been fully deglaciated. The ice-free regions experience greater warming than the rest

of the continent (Fig. 4.4C Tindall and Haywood, 2015). The regions of warming are

also subject to an increase in precipitation (Fig. 4.4E), as well as a change in the type

of precipitation: the fraction of precipitation made up by rain increases, particularly

over the coast (Fig. 4.4F). Changing the type of precipitation considerably a↵ects

�18O
precip

. Unlike snow, rain undergoes post-condensation exchange with the vapour

parcel, which enriches the heavy isotopes in the rain and depletes those in the vapour

parcel, therefore �18O
rain

is more positive than �18O
snow

(Field et al., 2010; see discus-

sion in Supplementary Information 3). In the palaeo simulation, isotopically heavy rain

falling over the coast depletes the vapour parcel relative to the pre-industrial simulation,

where precipitation only falls as snow. As the depleted vapour parcel moves inland over

deglaciated regions of Antarctica, precipitation falling as either rain or snow is then

o↵set (lighter) relative to pure Rayleigh distillation �-T relationship (summarised in

Fig. 4.5). This mechanism is the inverse of results from the Last Glacial Maximum

where an increase in precipitation falling as snow resulted in relatively enriched vapour

(Lee et al., 2008).

In the palaeo model, the whole continent volume weighted precipitation average is

⇠11 h more positive than the preindustrial. Therefore in order to maintain isotope

mass balance, we infer the advection of depleted vapour away from the continent. This

conclusion is supported by the results from the dye-tracer experiments, where less tracer

reaches the continent in the palaeo simulation than in the pre-industrial control (Fig.

4.3B).

As a further test of this hypothesis, we examined the results of a simulation with a

pre-industrial (full) EAIS but elevated (400 ppmv) CO2 (Supplementary Information

3, Supplementary Fig. 4.9). Very little change in the temperature-isotope relationship

was found, indicating that the main driver behind this mechanism is ice sheet removal.
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Figure 4.5: (A) Current precipitation regime over Antarctica, where all precipitation falls as
snow. (B) Inferred precipitation regime under reduced ice sheet conditions where precipitation
falls as rain over deglaciated coastal areas, depleting the remaining vapour as it moves inland
relative to scenario (A).
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Figure 4.6: Mean summer di↵erence for precipitation �18O (repeat of Fig. 4.4A) in the palaeo
scenario with respect to the preindustrial (simulations a and b; see Methods) and the locations
of ice cores with records longer than 1000 years . B = Byrd, DF = Dome Fuji, DC = EPICA
Dome C, K = Komsomaskay, SA = Siple Dome A, TD = Taylor Dome, TA = TALDICE, V
= Vostok, W = WAIS Divide. Climate means are calculated from the last 30 years of the
simulations.

Our findings are highly relevant to future warming scenarios: ice sheet modelling pre-

dicts that significant EAIS retreat could occur by 2100 (Pollard and Deconto, 2016),

which in turn could severely impact the Antarctic hydrological cycle, with increasing

temperatures leading to more precipitation and moisture falling as rain rather than

snow. This has implications for predicting future ice sheet-climate feedbacks and ice

sheet changes, which are partly dependent on moisture regime (Ligtenberg et al., 2013,

Shevenell et al., 2008), as well as continental runo↵ and marine productivity.

Just as importantly, these findings have strong implications for the interpretation of

ice cores, particularly during periods of deglaciation and warm interglacials. The loss

of the West Antarctic Ice Sheet (e.g. Marine Isotope Stage 11; Raymo and Mitrovica,

2012) and parts of the East Antarctic Ice Sheet (e.g. the Last Interglacial; Bradley

et al., 2013) could induce similar, if smaller changes in the temperature-isotope rela-

tionship (Sime et al., 2009), particularly for marginal cores proximal to deglaciated

areas such as the Byrd, WAIS Divide or Taylor Dome ice cores (Fig. 4.6). Following
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this through, it seems highly probable that a similar principle applies to ice core records

from Greenland, which experienced substantial ice volume loss during interglacials (up

to 50%; Stone et al., 2013, de Vernal and Hillaire-Marcel, 2008). However, with respect

to this study, �18O
precip

over Greenland is much less well represented by HadCM3 than

Antarctica �18O
precip

(Tindall et al., 2009), for reasons that are not well understood.

Therefore it is not possible to test this hypothesis with any certainty. Temperatures

derived from ice core �18O and �2H records may therefore be severely under-estimated

(by up to 25 �C), which indicates large gaps in our understanding of warmer-than-

present climates. Clearly, this knowledge gap needs to be addressed in order to fully

assess the impact of such warmer climates.

4.4 Conclusions

During a period of significant Neogene EAIS retreat, we find strong model and geolog-

ical evidence for a change in hydrological regime driven by ice sheet shrinkage. Plant

compound isotopes (�18O from tree ring cellulose, �2H from leaf waxes) form the basis

of precipitation isotope calculations showing enrichment in both isotope systems, con-

sistent with warmer temperatures (Rees-Owen et al., a,b; Chapters 2 and 3). Combined

with geochemical temperature reconstructions, we find our data is significantly o↵set

from the well-established modern relationship, used as the basis for the interpretation

of ice-core records (Dansgaard, 1964, Masson-Delmotte et al., 2008) This indicates a

large shift in hydrological dynamics. Model experiments using an atmospheric dye-

tracer show that changes in evaporative source region to a more local moisture source

is an insignificant mechanism in terms of explaining such a hydrological shift. Instead,

we find evidence for a strikingly di↵erent precipitation regime, where a switch to liquid

precipitation from snow alters the isotopic fingerprint of Antarctic continental precipi-

tation, driven by warmer temperatures over areas of ice sheet loss. Our findings o↵er

valuable insights into hydrological processes during periods of ice sheet retreat, and have

implications for Antarctic hydrological cycling in future warming scenarios. Moreover,

this result has particular relevance for our interpretation of ice core records during in-
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terglacials and indicates that ice-core based temperature reconstructions during these

warm periods may be severely underestimated.
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4.5 Methods

4.5.1 Proxy data

4.5.1.1 Tree ring isotopes

The tree ring cellulose oxygen isotope data used in this study is taken from Rees-Owen

et al. (b; Chapter 3).

4.5.1.2 Leaf wax isotopes

Samples analysed for plant leaf wax isotopes are the same as those in Chapter 2 (Rees-

Owen et al., a) and extraction methods can be found in the same location. Lipids (n-

alkanes) in the apolar fraction were analysed for compound specific-isotope ratios (�13C

and �2H) at the Organic Geochemistry Unit, University of Bristol. The stable hydrogen

isotope composition of individual n-alkanes was measured in duplicate or triplicate by

gas chromatography-isotope ratio monitoring mass spectrometry (GC-irmMS), using a

Thermo Scientific Trace Ultra gas chromatograph (GC) linked via a Thermo Scientific

GC Isolink and ConFlo IV interface to a Delta V Plus isotope ratio monitoring mass

spectrometer (irmMS, Thermo Scientific, Bremen, Germany). The GC was fitted with

a PTV splitless injector and a Zebron (ZB-1) fused silica column (30 m, 0.25 mm I.D.,

0.25 µm df; Phenomenex), using helium as the carrier gas (flow: 1.4 ml min�1). The

GC temperature was programmed from 70 to 300 �C at 10 �C min�1 and hold at

300 �C for 8 minutes. Data acquisition was controlled by Isodat (Thermo Scientific)

software and raw data was processed using the Isodat dynamic background integration

Workspace software. Stable carbon isotopes ratios of the n-alkanes were determined in

duplicate using an Agilent Technologies 7890A GC coupled to an Isoprime 100 irmMS

via an Isoprime GC5 combustion interface. The GC was fitted with a split/splitless

injector and a non-polar RTX-1 fused silica column (50 m, 0.32 mm I.D., 0.17 µm

df; Thames Restek). Samples were injected in splitless mode and the carrier gas was

helium (flow: 2 ml min�1). The GC temperature was programmed from 70 to 130 �C

at 20 �C min�1, then to 300 �C at 4 �C min�1 and held at 300 �C for 25 minutes.
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IsoVantage (Isoprime) software was used for data acquisition and processing.

Isotope ratios are given as �2H and �13C values relative to the reference gases

(H2, CO2) calibrated from reference standard mixtures with known isotopic values for

hydrogen and carbon (Schimmelmann, Indiana University, USA). Ratios are reported

relative to the Vienna Standard Mean OceanWater (VSMOW; �2H) and the Vienna Pee

Dee Belemnite (VPDB; �13C) standards. The average standard deviation for hydrogen

isotope duplicate and triplicate analyses of the C25 and C29 n-alkane was ± 5 h and

± 4 h, respectively, and ± 2 h for the dominant C27 n-alkane. The average standard

deviation for carbon isotope duplicate analyses of the C27 and C29 n-alkane was ± 0.2

h, and ± 0.3 h for the C25 n-alkane.

Leaf wax �2H was then converted to precipitation �2H by the addition of the en-

richment factor ✏ (where ✏ = -108 ± 25 h). See Supplementary Information 3 for a

discussion of ✏ values.

4.5.2 Climate modelling

4.5.2.1 Model description

The model used in this study is version 4.5 of the Hadley Centre General Circulation

Model (HadCM3) as described by Gordon et al. (2000) and Pope et al. (2000). HadCM3

is a fully coupled ocean-atmosphere-vegetation GCM. The ocean model has a resolution

of 1.25� x 1.25� with 20 vertical levels, giving highest vertical resolution towards the

ocean surface (Johns et al., 1997), and has a timestep of 1 hour. The atmosphere model

has a coarser resolution at 3.75� x 2.5� with 19 vertical levels based on the hybrid

vertical coordinate scheme by Simmons and Burridge (1981). The version of HadCM3

used here includes the MOSES2 land surface exchange scheme with the TRIFFID

dynamic vegetation model (Cox, 2001), which means that the climate and vegetation

interact fully. The convection scheme is given by Gregory and Rowntree (1990). The

atmosphere and ocean grids are aligned and coupling occurs once per model-day, where

both models pass across the fluxes accumulated over the previous model-day. Oxygen

isotope tracers are included throughout the hydrological cycle (Tindall et al., 2009).
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HadCM3 is no longer considered a state of the art GCM, but its relatively fast

model speed compared with the more highly resolved and complex models (⇠70 model

years per wallclock day on the N8 Polaris Tier 2 supercomputer facility) means it is

highly suitable for a study such as this, which requires millennial-length model simula-

tions to spin-up the palaeoclimate state. It has been shown to represent a realistic and

stable atmospheric and oceanic climate (Gordon et al., 2000, Sime et al., 2006), and is

able to replicate observed estimates of poleward atmospheric and oceanic heat trans-

port very well for modern times (Cooper and Gordon, 2002, Dong and Sutton, 2002).

The oxygen isotope component of the model provides a good representation of oxygen

isotopes in precipitation and sea water for the pre-industrial, and matches well with

proxy data for the Pliocene (Tindall et al., 2009, Tindall and Haywood, 2015). The

isotope-enabled model has been used in a number of palaeoclimate studies including

the Quaternary, Pliocene and Eocene (Tindall et al., 2010, Tindall and Haywood, 2015,

Holloway et al., 2016), and notably has been run as part of the Pliocene Model Inter-

comparison Project (PlioMIP; Bragg et al., 2012, Haywood et al., 2010, 2011, 2016). In

general, the models simulated climate are in good agreement with reconstructions from

palaeoclimate proxies, although there are some discrepancies, e.g. under-predictions of

Northern Hemisphere high-latitude terrestrial warming and Pliocene sea surface tem-

perature in the North Atlantic (a problem common to many PlioMIP models; Bragg

et al., 2012, Dowsett et al., 2012, Salzmann et al., 2013). However, of particular rel-

evance to this study, HadCM3 represents the broad-scale features of high southern

latitude ocean and atmospheric circulation well (Turner et al., 2006) and has been used

to model Antarctica during the Pliocene in multiple studies (e.g. Dolan et al., 2011).

It is for these reasons that we chose to use this model.

4.5.2.2 Addition of tracers

In order to examine changes in moisture source region, we implemented conservative

air dye-tracers in the model, which tags an air parcel initiated at the surface. As

tracer-spiked air circulates around the Southern Hemisphere, it is possible to directly

track the movement of air parcels and quantify changes in moisture delivery to the
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Antarctic continent, though we highlight that the dye-tracers are an approximation for

moisture transport. Since �18O is a moisture source tracer, but one that behaves less

conservatively because it is a↵ected by fractionation processes, the two tracer schemes

are complementary.

The isotopic signal in our tree ring and leaf wax isotope results are most likely

a summer precipitation signal (see Supplementary Information 3), so only changes

in atmospheric circulation during the Austral summer were examined in the tracer

experiments (specifically December, taken as representative of summer precipitation).

Tracer experiments were run in parallel to the steady-state climate simulations (see

5.2.3). The Southern Hemisphere was divided into sectors and a di↵erent dye was

applied to the surface of every sector at the very start of each tracer simulation. Figure

4.3A and Supplementary Fig. 4.10 show the sectors that the di↵erent tracers were

initialised in:

1. Tracers (T) 1 - 12 were applied to the surface between 59 and 80 �S, where the

circumference was divided into twelve equal longitudinal sectors (e.g. T11 was

applied between 30 and 60 �W).

2. Tracer 13 was applied to the surface at all longitudes between 0 and 30 �S.

3. Tracer 14 was applied to the surface at all longitudes between 30 and 60 �S.

4.5.2.3 Experimental design

To examine the interaction between East Antarctic Ice Sheet and the Antarctic hydro-

logical cycle, we performed three HadCM3 simulations (preindustrial, palaeo, palaeoCO2),

along with additional tracer simulations which branch from the preindustrial and palaeo

simulations; see the palaeo-dye simulation (d). The palaeo and preindustrial simula-

tions were run for 2500 years. Results are presented for climate means calculated from

the final 30 years. The majority of discussion in the main text refers to the palaeo

simulation (b), and when anomalies (or climate di↵erences) are discussed, these are the

palaeo simulation (b) with respect to the preindustrial simulation (a), i.e., (b) minus
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(a). The preindustrial and palaeoCO2 simulations are otherwise referred to occasionally

for comparison and in the supplementary material.

(a) Preindustrial: A control experiment was run with standardised preindustrial

boundary conditions based on the HadCM3 public release spin-up simulation

published by Gordon et al. (2000). These include a modern continental config-

uration, fully developed ice-sheets and modern orbital parameters. Atmospheric

CO2 was set to 280 ppmv and trace greenhouse gases were set to standard prein-

dustrial levels (761 ppb methane, 269 ppb nitrous oxide). Vegetation was based

on the Wilson and Henderson-Sellers (1985) archive of land-cover. This simula-

tion provides a reference point for comparison to the idealised, reduced-ice, warm

world simulation (simulation b).

(b) Palaeo: A palaeo simulation, previously published by Tindall and Haywood

(2015), which was set up with mid-Pliocene Warm Period (mPWP) boundary

conditions (see Supplementary Information 3). The palaeo simulation was ini-

tialised from a standard pre-industrial �18O model run, which had been run for

several millennia, based on simulations by Tindall et al. (2009). The experiment

was then reconfigured into a Pliocene Model Intercomparison Project (PlioMIP)

compliant experiment (Bragg et al., 2012, Haywood et al., 2011) by using the

PRISM3D dataset (Dowsett et al., 2010) to change the ice sheets, the orography

and vegetation parameters; while the continental configuration (coastlines), ocean

bathymetry and river outflow points were kept as pre-industrial. The PRISM3D

dataset includes an orography very similar to the modern, except for areas of the

Andes, which are slightly lower than the present day (Dowsett et al., 2010). The

West Antarctic Ice Sheet is fully removed (deglaciated) and in East Antarctica,

the ice sheet is approximately one third smaller (for full details see Dowsett et al.,

2010, Haywood et al., 2010, 2011). Atmospheric CO2 levels were set to 405 ppmv

and orbital parameters were set to 3.205 Ma (Prescott et al., 2014), which are

near-modern. The version of HadCM3 in this study uses the TRIFFID dynamic

vegetation model (Cox, 2001) such that the vegetation is prognostic and interacts
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with the climate (thus making them consistent) and the relative proportions of

vegetation types evolve throughout the simulation.

(c) PalaeoCO2 - An intermediate simulation was run in order to distinguish between

the impacts of greenhouse-gas controlled radiative forcing and ice sheet extent

on Antarctic climate. Atmospheric CO2 was set to 405 ppmv at the end of the

preindustrial simulation (a), all other boundary conditions were kept the same as

in (a), and the simulation was run for a further 500 years, which was su�cient

for the surface climate to reach steady state.

(d) For the dye-tracer enabled simulations, the long palaeo and pre-industrial simu-

lations used in this study were run for a further 30 years each. Dye experiments

were then initialised from the December start dumps of every year of this exten-

sion period, and run for 15 days. This enabled us to repeat the experiment 30

times, one for each year, in order to calculate the climate mean state and thus try

to reduce any uncertainty or bias in the result caused by meteorological events

in the model that are unrepresentative of the background climate state in (e.g.

a large storm beginning on December 1st). The residence time of water in the

atmosphere is ⇠10 days, hence experiments were run for 15 days, also ensuring

that the tracer had not become too mixed and diluted to trace coherent pathways.

Climate means (for all 30 years of each time period) were calculated for the 10th

and 15th day of the experiments. An area consisting of 9 grid squares approx-

imating the Sirius Group site were picked and tracer concentrations calculated

(Supplementary Figure 4.11).

Note, dye tracers were not implemented in simulation (c), since it was a diagnostic

tool for deconstructing the cause of the modelled climate signal, and implementing the

dye tracers comes at significant extra computational cost (slower by a factor of eight).
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4.6 Supplementary Information 3

4.6.1 Proxy reconstruction of precipitation isotopes

4.6.1.1 Sample selection

The Sirius Group sediments at Oliver Blu↵s are located on the poleward flanks of the

Transantarctic Mountains. Sediment samples for leaf wax hydrogen isotope analysis

were the same as those selected for GDGT-based palaeothermometry and biomarker

vegetation analysis in Chapter 2 (Rees-Owen et al., a); these were selected to span the

lateral extent of the fossiliferous bed.

4.6.1.2 Biomarker discussion

Rees-Owen et al. (a) (Chapter 2) reported the biomarker abundances for C21 to C31

n-alkanes in the Sirius Group sediments. The strong odd-over-even preference of the

long chain lipids, with a dominant chain length of C27, is characteristic of terrestrial

plants. In two samples (OB5 and OB14), low abundances of alkanes precluded robust

measurement of hydrogen isotope values for all long chain n-alkanes. We selected n-

C27 for isotope analysis as it was the most abundant n-alkane in all samples, and it

provided the most robust data (high signal to noise; all peak heights were greater than

1000 mV), although n-C25 and n-C29 also produced reasonably robust results which

mirrored the n-C27 values. n-C31 and n-C23 were either not abundant enough or co-

eluted with unresolved compounds, which meant there was a low signal-to-noise ratio,

and did not produce reliable data (see Supplementary Table 4.1).

Preservation There are several lines of reasoning which suggest that isotopic signal

of the leaf waxes in this study are isotopically unaltered. �2H values of most lipid

biomarkers appear to be una↵ected up until the onset of catagenesis and the excep-

tional preservation of contemporaneous plant fossils (used for �18O
precip

calculations

in Rees-Owen et al., b; Chapter 3) indicates that burial has not generally a↵ected

the sedimentary archive at Oliver Blu↵s. The excellent preservation of a broad range
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of plant lipids also precludes diagenetic alteration (discussed in Rees-Owen et al., a;

Chapter 2). To summarise, diagenesis would convert n-alkanoic acids to n-alkanes,

but n-alkanoic acids are very abundant in the Sirius Group sediments. Similarly, other

natural product compounds (such as polar triterpenoids) are abundant, suggesting that

very little degradation has occurred. Diagenesis could also impact the isotopic signal of

leaf waxes through hydrogen exchange, which would lead to homogenous isotope values

(Schimmelmann et al., 2006). Here, o↵sets of 40 - 50 h between samples suggest that

the primary signal has not been altered. Furthermore, long chain n-alkanes are the

most isotopically conservative hydrogen moiety as they contain the most recalcitrant

C-H bonds of the compound classes used for compound specific �2H analysis (Sessions

et al., 2004).

Calculating palaeoprecipitation isotopes The compound-specific hydrogen iso-

tope composition of leaf waxes (n-alkanes, n-alkanoic acids, n-alcohols) has been shown

to record precipitation �2H well (Sessions et al., 1999, Sachse et al., 2004). The hydro-

gen isotopic composition of precipitation may be calculated from �2H measurements of

leaf wax alkanes by the application of an enrichment factor, ✏, defined as the apparent

fractionation between lipid and precipitation water, given by equation 4.1:

✏ =
(�2H

lipid

+ 1)

(�2H
source

+ 1)
� 1 (4.1)

where the subscript lipid refers to the leaf wax alkane and source to source water,

assumed to be precipitation. In higher plants, ✏ incorporates multiple biological and

environmental fractionations, including soil water fractionation, leaf-water transpira-

tion and biosynthetic fractionation (a full discussion of these processes was laid out by

Sachse et al., 2012). In order to select the most appropriate value for ✏, the plant source

of the leaf waxes must be constrained, as there is considerable variability between ✏ for

di↵erent plant life-forms (Sachse et al., 2012).

The macrofossil and lipid record (Rees-Owen et al., a; Chapter 2) for the Sirius
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Group indicates that that the palaeovegetation comprised a spatially heterogeneous

mixture of angiosperms, gymnosperms and bryophytes. Measurements of leaf wax

carbon isotopes (�13C
leaf

) are recommended to confirm the origin of leaf waxes and

to rule out significant vegetation changes in palaeoenvironmental applications (Sachse

et al., 2012); such as between trees, C3 and C4 grasses. Very little variability is ex-

pected in �13C
leaf

for the Sirius Group as the sediments analysed here represent a small

timeframe, although the vegetation was spatially heterogeneous (Rees-Owen et al., a;

Chapter 2). Mean �13C
leaf

was -29.9 ± 0.2 h (error = 1 �). After the removal of

unreliable data-points (defined as having a standard deviation > 0.5h), the n-C25 and

n-C29 lipids give mean �13C
leaf

of -30.3 ± 0.3 h and -29.7 ± 0.2 h respectively, which

are not statistically di↵erent from each other (see Supplementary Table 4.1). Overall,

our results confirm that the leaf waxes originate from C3 higher plants, and the low

variability indicates that while the macrofossil record may be spatially heterogeneous,

there is little isotopic vegetational change.

Angiosperms produce up to 10 times as many leaf waxes as gymnosperms (Diefendorf

et al., 2010) and bryophytes typically only produce mid-chain length leaf waxes (Pan-

cost et al., 2002), indicating that the average angiosperm apparent fractionation of -113

± 30 h may be appropriate. The Sirius Group macrofossil record also indicates that

the woody vegetation had a prostrate or shrubby life-form; a global compilation of data

shows that the enrichment factors for n-C27 in trees and shrubs are not significantly dif-

ferent (mean -108 ± 25h and 105 ± 31h respectively; Sachse et al., 2012), and neither

are they significantly di↵erent from the angiosperm apparent fractionation. However,

the apparent fractionations for trees and shrubs di↵er for the n-C29 alkane (mean tree

value -121 ± 22h; mean shrub value -99 ± 32h; Sachse et al., 2012). The large dif-

ference between trees and shrubs for n-C29 is attributed to the fact that shrubs are

very common in dry and arid regions, and the D-enriched nature of shrub-derived leaf

waxes is attributed to increased evaporative enrichment of leaf waters (Sachse et al.,

2012). Why this should impact the n-C29 and not the n-C27 alkane is not clear. As

discussed by Rees-Owen et al. (b); (Chapter 3), the size of the fossil Nothofagus leaves
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from the Sirius Group indicates that the plants were not water-stressed, so the ✏ value

for trees is most appropriate (i.e. ✏ = -108 ± 25 h). Plants grown under continuous

light conditions in greenhouse experiments have exhibited smaller values of ✏ relative to

plants grown under diurnal conditions (Yang et al., 2009), attributed to a 24 hour tran-

spiration cycle. However, transpiration is dependent on both temperature and relative

humidity. Temperatures for the Sirius Group were low (5 �C) and relative humidity for

analogous modern environments in South Chile is very high (above 70 % year round),

so it is likely that transpiration rates for the Sirius Group were much lower than those

in the growth experiment by Yang et al. (2009). Therefore a value for ✏ based on the

global dataset is appropriate, and we use ✏ = -108 ± 25 h.

Measured �2H for the n-C27 alkane range between -298 and -254 h. We therefore

convert the measured �2H values to �2H
precip

using ✏ = -108 ± 25 h. From this, we

calculate that �2H
precip

ranged between -190 and -146 h, with a mean of -167 ± 27

h. The error is the propagated standard deviation based on the standard deviation of

reported ✏ for n-C27 alkane for trees (✏ = -108 ± 25 h, n = 79) and mean �2H
leaf

for

the Sirius Group (�2H
leaf

= -275 ± 10, n = 14).

Seasonality of leaf wax production There is considerable seasonal variation in

the isotopic composition of precipitation (Dansgaard, 1964), therefore the seasonality

of leaf wax biosynthesis will impact the interpretation of �2H
leaf

results. Broadleaf

deciduous species form cuticle (and therefore leaf waxes) during the brief period of

leaf expansion, and the majority of leaf wax formation reduces after this first period

(Kolattukudy, 1970, Hauke and Schreiber, 1998). Several studies record varying �2H
leaf

throughout the growing season, owing to short-term changes in leaf and soil water

�2H (Lockheart et al., 1997, Sachse et al., 2009) or reworking of leaf waxes due to

environmental stresses (Bacic et al., 2005). However, other research has shown that leaf

wax �2H in deciduous trees record �2H
precip

at first leaf flush, early in the growing season

rather than integrating over the full growing season (Tipple et al., 2013). Deciduous

shrubs in the High Arctic have a full complement of leaves within 2 - 3 weeks of the start

of the growing season and become dormant within 50 - 60 days (Bliss and Matveyeva,
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1992), although how this a↵ects high latitude leaf wax formation is not clear. Based on

the polar light regime, we infer that the growing season would last for no longer than

2 months (between the months December and February). The climate model used in

this study predicts increased precipitation over Antarctica (>200 % increase in some

areas), but the majority of this increase comes from summer precipitation (Tindall

and Haywood, 2015). Therefore in our interpretation, we assume the leaf wax isotope

signal integrates summer precipitation, although there is likely some bias towards more

depleted (winter) precipitation isotope values because of a snow melt memory e↵ect

(Bliss and Matveyeva, 1992).

4.6.2 Modelling hydrological change

We discuss several climate model experiments in order to evaluate the climate proxy

data presented in this study. Firstly, we compare palaeoprecipitation isotope values re-

constructed from measured tree ring oxygen isotopes and biomarker hydrogen isotopes

to values predicted by an isotope enabled General Circulation Model (GCM) in an

idealised, reduced-ice, warmer world scenario (see Methods section 4.5.2). We then ex-

amine climate diagnostics within the model and implement a conservative atmospheric

dye-tracer in order to examine atmospheric and hydrological changes in greater detail.

4.6.2.1 Choice of boundary conditions

The use of a full GCM for palaeoclimate modelling requires the input of boundary

conditions that are not simulated as prognostics by the model, such as: ice sheet surface

elevation and extent, land surface cover, continental configuration (coastlines), ocean

bathymetry, land surface orography, solar insolation and atmospheric trace gases. The

age uncertainty association with the Sirius Group (i.e. an age of 17 - 15 Ma vs. 5 - 2.5

Ma) means there is uncertainty around some of these boundary conditions; in particular,

land surface orography and solar insolation. We used a mid-Pliocene Warm Period

(mPWP; see Methods 4.5.2) simulation for practical and theoretical reasons, with the

caveat that the modelling results are discussed in terms of an idealised reduced-ice,
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warmer world scenario.

This is justified since the clearest implication from the Sirius Group sediments and

fossils is that there was a significantly reduced Antarctic Ice Sheet during plant growth

and sediment deposition and based on current understanding of radiative forcing and

albedo, as well as atmospheric dynamics, it is likely that this is an important control on

Antarctic climate (e.g. Lewis et al., 2007, 2008). The PRISM3D dataset, reconstructed

for 3.264 - 3.025 Ma, includes the complete deglaciation of the West Antarctic Ice Sheet,

and a significantly smaller East Antarctic Ice Sheet with most ice removal occurring in

the Wilkes and Aurora sub-glacial basins (Dowsett et al., 2010, Haywood et al., 2010).

Atmospheric CO2 in the model (405 ppmv) is the same as reconstructed Pliocene CO2

values (⇠400 - 450 ppm; Beerling and Royer, 2011). Atmospheric CO2 during the

mid-Miocene may have been much lower, although there is large uncertainty associated

with this estimate (120 - 500 ppmv; Beerling and Royer, 2011), and we know climate

was necessarily warmer in order for there to be vegetated land in the Oliver Blu↵s

region. Moreover, geological evidence indicates that episodes of maximum ice sheet

loss during the mid-Miocene occurred when atmospheric CO2 was at least 500 ppmv

(Levy et al., 2016). Therefore, the elevated atmospheric CO2 in the model (with respect

to preindustrial) and reduced ice extent is consistent with both age scenarios for the

Sirius Group.

There is greater uncertainty with regards to the continental configuration and orog-

raphy in the model. Between 17 Ma and 2.7 Ma several tectonic reorganisations oc-

curred that could have led to large changes in oceanic and atmospheric circulation,

including the uplift of several mountain ranges and the closure of the Panama seaway

(Bradshaw et al., 2012). The palaeo simulations use a pre-industrial continental con-

figuration, which could have a small impact on ocean circulation, but modelling studies

have suggested that orographic and marine gateway changes would only have had a

regional e↵ect on climate, e.g., Andean uplift in the late Miocene resulted in warmer

temperatures only in that region (Bradshaw et al., 2012). Thus, any e↵ect on Antarctic

climate from imprecisely represented orography in the models boundary conditions are

likely to be caused by local changes rather than orographic di↵erences further afield,
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or bathymetric uncertainty.

We emphasise that the boundary conditions used in this study are an approximation

for a reduced-ice, warmer world scenario that may be Pliocene (5 - 2.5 Ma) or Miocene

(17 - 15 Ma) in age, even though they are more consistent with a Pliocene age range

for the Sirius Group (3 Ma).

4.6.2.2 Isotopic composition of rain and snow

Isotope theory predicts that the isotopic composition of snow will be heavier than rain

condensed from an identical water vapour parcel, because there is increased fraction-

ation during the vapour-solid transition relative to the vapour-liquid transition (i.e.

the fractionation factor ↵ is larger for the condensation of solids than liquids; Merlivat

and Nief, 1967). The isotope scheme used in this version of HadCM3 only applies the

vapour-solid fractionation factor for condensation temperatures below -20 �C (Tindall

et al., 2009); at temperatures higher than this, the di↵erence in equilibrium fraction-

ation between liquid and solid is small (Dansgaard, 1964). Above this temperature in

the model, di↵erences in �18O between rain and snow falling over Antarctica are de-

pendent on di↵erences in the condensation temperature, along with vapour-exchange

processes as the precipitation falls. Thus it follows that for areas of Antarctica that

have had ice sheet removed, precipitation will be heavier (ie. it will have a higher

apparent condensation temperature) than solid precipitation (snow).
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4.6.3 Supplementary figures

Figure 4.7: (A) �18O from the Sirius Group precipitation, modern Antarctic precipitation at
sites above 75 �S and below 700 masl, precipitation over the entire continent, and simulated
precipitation for deglaciated regions from the HadCM3 palaeo simulation. (B) from the Sirius
Group precipitation, modern Antarctic precipitation at sites above 75 �S and below 700 masl,
precipitation over the entire continent. Modern data from Masson-Delmotte et al. (2008).

Figure 4.8: Seasonal (summer) mean surface wind vectors for (A) preindustrial and(B) palaeo
simulations.
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Figure 4.9: (A) Mean summer temperature di↵erence for the intermediate simulation (c) with
respect to the preindustrial (a) for a 30 year climate mean (taken from the last 30 years of the
simulation). (B) Mean summer precipitation �18O di↵erence for the intermediate simulation
(c) with respect to the preindustrial (a) for a 30 year climate mean (taken from the last 30
years of the simulation).

Figure 4.10: Latitudinal bounds for tracers superimposed over the mean summer evaporation
di↵erence for the palaeo simulation with respect to the preindustrial.
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Figure 4.11: (A) Ice sheet extent for palaeo boundary conditions; the grey box shows the grid
boxes used to calculate tracer concentrations. (B) Ice sheet extent for preindustrial boundary
conditions.
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4.6.4 Supplementary tables

Table 4.1: Plant leaf wax �13C results of the samples used in this study. Data for the n-
C23, n-C25, n-C27, n-C29 and n-C31 alkanes is given for each, along with the analytical error
(standard deviation for duplicate or triplicate measurements). All numbers are in per mille
(h).

sample ID n-C23 � n-C25 � n-C27 � n-C29 � n-C31 �

OBFH-02-1 - -30.8 0.2 -30.5 0.2 -29.7 0.1 -

BNLB-12-3 -28.6 0.5 -29.5 0.5 -29.6 0.2 -29.3 0.1 -30.7 0.1

OBFL-04-3 -31.7 0.7 -31.9 0.3 -29.9 0.3 -30.0 0.1 -

WSU-13-6 -30.0 0.3 -29.6 0.2 -29.0 0.3 -29.2 0.3 -31.5 0.7

LCBA-05-36

LCBA-05-5 -28.7 1.0 -29.8 0.4 -28.2 0.3 -29.2 1.0 -27.9 0.9

LCBA-05-17 - -30.3 0.01 -31.3 0.4 -32.5 0.2 -34.3 0.05

OBFL-04-2 - -30.2 1.4 -31.5 0.4 -30.1 0.4 -

SRB-07-6 - -29.1 1.1 -29.8 0.3 -29.4 0.6 -

SRB-07-5

OBFL-4-23 -30.8 0.8 -31.0 0.5 -31.3 0.2 -30.7 0.1 -31.8 0.6

OBFL-04-29 -29.0 0.5 -29.8 0.3 -30.0 0.1 -31.9 0.1 -33.6 0.5

OBFL-04-32 -29.5 0.7 -30.1 0.1 -28.9 0.04 -28.3 0.3 -

OBFL-04-25 -29.8 0.01 -29.5 0.2 -28.9 0.0 -28.7 0.2 -

SPBW-09-27 -30.2 0.6 -29.9 0.2 -29.5 0.2 -29.2 0.4 -30.8 0.3

OBFL-04-13 -30.7 0.2 -30.5 0.4 -30.4 0.1 -30.0 0.05 -
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Table 4.2: Plant leaf wax �2H results of the samples used in this study. Data for the n-C23, n-
C25, n-C27, n-C29 and n-C31 alkanes is given for each, along with the analytical error (standard
deviation for duplicate or triplicate measurements). All numbers are in per mille (h).

sample ID n-C23 � n-C25 � n-C27 � n-C29 � n-C31 �

OBFH-02-1 -164.6 14.6 -264.5 7.5 -265.9 1.4 -267.4 - -200.8 1.8

BNLB-12-3 -178.8 11.5 -283.3 5.9 -298.9 1.0 -284.3 7.5 -284.5 1.8

OBFL-04-3 -217.9 5.5 -278.3 0.6 -275.9 0.2 -266.1 8.9 -251.2 1.2

WSU-13-6 -228.0 24.0 -308.8 0.5 -290.4 0.9 -294.2 4.0 -294.3 13.9

LCBA-05-36

LCBA-05-5 -200.1 22.3 -250.3 1.2 -254.0 0.5 -261.5 0.3 -252.1 1.5

LCBA-05-17 -228.5 14.2 -263.6 15.2 -269.1 3.2 -266.7 8.3 -270.5 4.9

OBFL-04-2 -261.5 3.8 -235.2 5.4 -276.2 4.8 -231.6 5.3 -149.7 11.1

SRB-07-6 -264.2 - -263.9 7.5 -274.7 4.0 -269.0 1.9 -269.2 -

SRB-07-5

OBFL-4-23 -281.5 11.6 -283.7 4.5 -273.0 0.3 -273.3 1.7 -266.5 1.8

OBFL-04-29 -235.8 27.9 -279.8 4.4 -281.4 0.7 -285.3 0.8 -281.2 3.8

OBFL-04-32 -234.8 13.3 -277.7 2.1 -269.4 1.5 -276.4 1.2 -285.3 5.9

OBFL-04-25 -282.6 2.8 -281.7 0.7 -277.1 1.2 -281.5 2.4 -273.0 7.9

SPBW-09-27 -313.4 1.7 -284.4 6.3 -273.4 1.0 -273.5 6.4 -262.4 17.7

OBFL-04-13 -265.9 8.5 -284.4 3.8 -275.2 0.5 -277.6 3.1 -279.2 5.6
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Conclusions, wider implications

and future work

5.1 Revisiting the aims and objectives

The aim of this thesis was to explore in detail Antarctic vegetation and climate during

a period of East Antarctic Ice Sheet (EAIS) retreat. This overall aim was broken down

into six research questions in Chapter 1 (see table 5.1, reproduced from Chapter 1).

Each research chapter (Chapters 2, 3 and 4) dealt with at least one research question,

using a combination of geochemical techniques and climate modelling with a general

circulation model. In this chapter I summarise the results presented. The overall

conclusions and wider implications are discussed, and the possibilities for future work

are reviewed.

5.2 Answering the research questions

5.2.1 Can a geochemical approach advance understanding of local and

regional vegetation community structures? (Chapter 2)

In agreement with the macrofossil record (Ashworth and Cantrill, 2004), vegetation

reconstructions using higher plant-derived biomarkers indicate a diverse vegetation,
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Table 5.1: Research questions addressed in this thesis (reproduced from Chapter 1).

Research question Chapter

1. Can a geochemical approach advance understanding of local
and regional vegetation community structures?

2

2. What were continental temperatures during EAIS retreat? 2

3. Can oxygen isotopes in Antarctic fossil prostrate trees be
used to trace hydrological change?

3

4. Were there changes in carbon cycling during EAIS retreat? 3

5. Was there a di↵erent hydrological cycle during EAIS retreat? 4

consisting of woody plants (angiosperms), which grew alongside mosses and cushion

plants, as well as peat-forming plants (possibly Sphagnum mosses) and algal mats.

There is considerable local spatial heterogeneity in the plant distributions; i.e. some

samples are dominated by angiosperm input, others by peat-forming plants or algal

mats. The patchy distribution is analogous to mosaic patterns seen in the Arctic,

where local variations in drainage, temperature and nutrient availability control local

plant growth (Bliss and Matveyeva, 1992).

While evidence for the persistence of angiosperms on Antarctica into the Neogene

is very clear, discrepancies between the pollen and plant macrofossil record at Oliver

Blu↵s (Ashworth and Cantrill, 2004, Askin and Markgraf, 1986, Francis and Hill, 1996)

and elsewhere on Antarctica (Ashworth et al., 2007, Hambrey et al., 2003, Lewis et al.,

2008) have raised questions over the presence of conifers on the continent. The pres-

ence of conifer-specific biomarkers in the Sirius Group sediments support conifer growth

(possibly podocarp) on the continent, albeit at a site proximal to Oliver Blu↵s where

aeolian or water-driven transport delivered lipids to the sediments. A similar discrep-

ancy is seen between the Miocene macrofossil record in the McMurdo Dry Valleys

(Ashworth and Cantrill, 2004, Ashworth et al., 2007, Lewis et al., 2008), which did

not find evidence for conifers, and the ANDRILL-2A core in the Ross Sea, which in-

cluded abundant coniferous palynomorphs (Griener et al., 2015, Warny et al., 2009).

This would suggest that during the Neogene, conifers occupied a specific niche, such as

upland sites, which have since been obscured by ice sheet expansion.
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This thesis is the first organic geochemical study of Antarctic vegetation. It has

provided new floral results that provide novel constraints on questions around the evo-

lution of vegetation on Antarctica. Importantly, in contrast to the macrofossil record,

the presence of aromatised diterpenoids show clearly the presence of conifers at or near

the Oliver Blu↵s site, probably Podocarpaceae. As discussed, the age of the deposits

presents some di�culty. If these results date from the Miocene, then this result is

highly consistent with marine sediment-derived pollen records showing Podocarpaceae

on the Antarctic coast (Warny et al., 2009). However, if they are Pliocene, then the

results are much more significant and suggest that present understanding of Antarctic

vegetational evolution is lacking. Moreover, these new data highlight the complexities

of Antarctic biosphere dynamics, and shows the value of using chemotaxonomy to study

ancient vegetation. This result also highlights the importance of using a multi-method

approach for understanding the evolution of vegetation, where taphonomic biases can

skew the fossil record, but have no e↵ect on the lipid record (and vice versa).

5.2.2 What were continental temperatures during EAIS retreat? (Chap-

ter 2)

To fully examine Antarctic climate during EAIS retreat, it is necessary to have pre-

cise constraints on continental temperatures. Previous studies reconstructing Neogene

Antarctic continental temperatures relied on the lower temperature limits of modern

relatives of fossils found in the Sirius group strata (freshwater molluscs, listroderine wee-

vils, extant Nothofagus species; Ashworth and Preece, 2003, Ashworth and Kuschel,

2003, Francis and Hill, 1996, Hill and Jordan, 1996, Hill and Trustwell, 1993, Hill

et al., 1996, Webb and Harwood, 1993). However, fossil-derived temperature recon-

structions are generally found to be less precise than geochemical temperature recon-

structions (Ballantyne et al., 2005). Using a geochemical palaeothermometer could

provide further constraints on continental temperatures. To this end, the MBT’/CBT

palaeothermometer, based on disributions of soil bacteria-derived cell membrane lipids

(br-GDGTs; Weijers et al., 2007, Sinninghe Damsté et al., 2011), was applied to Sirius

Group sediments.
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Application of this proxy to Sirius Group strata gives a temperature of 5.0 ± 2.5

�C, normally assumed to be the mean annual air temperature. Given the polar light

regime and therefore extremely cold winter temperatures, it seems likely that there

was a strong summer bias in the production of bacterial lipids. Similar high latitude

studies (in both hemispheres) during the Eocene also inferred a summer bias in the

proxy at these latitudes (Eberle et al., 2010, Pross et al., 2012, Weijers et al., 2007).

Therefore, a strong summer-seasonal or even warm monthly bias seems probable for

the temperature calculations in this study. The reconstructed temperatures are in

good agreement with the lower summer temperature limits inferred from fossil plants,

molluscs and insects (⇠5 �C; Ashworth and Preece, 2003, Ashworth and Kuschel, 2003,

Francis and Hill, 1996, Hill and Jordan, 1996, Hill and Trustwell, 1993, Hill et al., 1996,

Webb and Harwood, 1993).

These findings are also in generally good agreement with longer-term pollen-based

records of Antarctic temperatures throughout the Neogene, suggesting continental sum-

mer temperatures of 4 - 12 �C (Prebble et al., 2006, Warny et al., 2009). This indicates

that during the mid- to late-Neogene, Antarctica was at least 10 �C warmer than today

(present-day summer temperatures of -3.4 �C), with a strongly seasonal climate. For

the majority of the year, temperatures would have been well below freezing such that

most vegetation remained dormant. For at least two months of the year summer tem-

peratures reached levels warm enough to sustain photosynthesis and provide su�cient

water, significantly impacting the biological and hydrological regime of the deglaciated

areas of the continent.

5.2.3 Can oxygen isotopes in Antarctic fossil prostrate trees be used

to trace hydrological change? (Chapter 3)

In combination with fossil data, the biomarker evidence in Chapter 2 indicates that a

tundra shrub grew during EAIS retreat, when summer temperatures reached ⇠5 �C.

This poses intriguing questions over the nature of the hydrological cycle that could

have supported such vegetation, and whether it functioned di↵erently in response to
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the warmer temperatures and reduced ice sheet. For reconstructing past hydrologi-

cal cycling, the prostrate Nothofagus trees recovered from the Sirius Group sediments

therefore present a unique opportunity to examine hydrological change on Antarctica

through the reconstruction of precipitation isotopes from tree ring cellulose. This ap-

proach not only provides novel insights into Antarctic palaeoclimate, but also presents a

challenge, as prostrate trees have never before been utilised in tree ring isotope studies.

Nearest living relatives of the fossil Nothofagus growing in both arboreal and prostrate

form at the southernmost limit of their range (Tierra del Fuego, Chile) o↵er an oppor-

tunity to test whether tree ring cellulose oxygen isotopes (�18O
cell

) in prostrate trees

function as a proxy for precipitation isotopes (�18O
precip

).

Measurements of �18O
cell

extracted from two species of modern Nothofagus do ap-

pear to record �18O
precip

. In particular, using the model linking �18O
cell

and �18O
precip

by Anderson et al. (2002), it can be shown that over a climate mean period (30 years),

both arboreal and prostrate trees recorded �18O
precip

reasonably well. Prostrate trees

exhibited considerably lower inter-tree variability, likely due to their short stature and

decreased path length (Barrera et al., 2000, Korner, 2003), which implies that mor-

phology does not have an impact on �18O
cell

. Thus it is concluded that they are highly

suitable archives of long-term (averaged) climate records. This result is particularly

important because it potentially makes end-member (high altitude and latitude) en-

vironments more accessible for tree ring isotope-based climate reconstructions using

prostrate trees.

Application of the same technique to the Antarctic fossil Nothofagus yields in-

triguing results, giving �18O
precip

of -16 h. This is significantly depleted relative to

�18O
precip

at Tierra del Fuego, consistent with the very high latitude of the Antarc-

tic plants. Furthermore, comparison with modern Antarctic �18O
precip

(mean -28 h;

Masson-Delmotte et al., 2008) suggests that Neogene palaeoprecipitation over Antarc-

tica was significantly enriched relative to the present day (Fig. 5.1). This result is

indicative of a markedly di↵erent Antarctic hydrological cycle, and it is tempting to

invoke a number of plausible mechanisms as its cause:

135



Chapter 5

Figure 5.1: Cellulose �18O from the Sirius Group fossil Nothofagus, with modelled �18O of
palaeo precipitation and modern Antarctic snow. Modern measurements fromMasson-Delmotte
et al. (2008); data restricted to >75� S and below 700 masl. The median is given by the line, the
first and third quartiles by the box, and the whiskers denote the full range of data. Reproduced
from Chapter 3.

1. Increased condensation temperatures leading to decreased discrimination against

18O;

2. Change to a local, high latitude moisture source region, which would considerably

shortern vapour transport pathways;

3. Change in atmospheric circulation, altering transport and delivery of moisture.

The list of proposed mechanisms is not exhaustive, and full consideration of mech-

anisms using an isotope-enabled general circulation model was later used to shed light

on these new data (Chapter 4).

5.2.4 Were there changes in carbon cycling during EAIS retreat?

(Chapter 3)

There appears to have been long-term coupling between the carbon cycle and EAIS

dynamics throughout the Neogene (Shevenell et al., 2008). In particular, the EAIS ex-

hibited a threshold for collapse at atmospheric CO2 levels above ⇠500 ppmv during the
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mid-Miocene (Gasson et al., 2016, Levy et al., 2016) and perhaps 400 ppmv during the

Pliocene (Beerling and Royer, 2011). Reconstructing atmospheric carbon isotope ratios

(�13C
atmos

) from tree ring carbon isotope ratios (�13C
cell

) could elucidate the carbon

cycling mechanisms at play during EAIS retreat, as well as provide broad constraints

on the age of the fossil plants by correlation with other records of �13C
atmos

.

Atmospheric �13C is rarely reconstructed from plants because of concerns about

competing environmental e↵ects (Farquhar et al., 1989a). Thus, the ability of modern

Nothofagus to record �13C
atmos

was first tested. Similar to the oxygen isotope results

from Chapter 3 (research question 3), we find that at interannual resolution, �13C
cell

in two species of Nothofagus is dominated by tree-level rather than stand-level signals.

However, again in agreement with the oxygen isotope results, the �13C
cell

climate mean

(30 years) is an excellent record of mean �13C
atmos

(measured �13C
atmos

= -7.96 ± 0.24

h; reconstructed �13C
atmos

= 8.3 ± 0.2 h from arboreal trees, -8.0 ± 0.2 h from

prostrate).

While it is impossible to completely rule out the e↵ect of environmental controls

on �13C
cell

and therefore �13C
atmos

, the reconstructed palaeo-archive of �13C
atmos

from

Antarctic fossil plants shows that �13C
atmos

was significantly enriched (-4.4 h) relative

to modern �13C
atmos

(-7.96 h). It is di�cult to draw direct comparisons between the

findings from this study and the Cenozoic record of �13C
atmos

based on marine biogenic

carbonates because the timescale represented by the plant-based record is considerably

shorter than the 3 Ma smoothing period of the marine record (Tipple et al., 2010).

Moreover, the size of the dissolved inorganic carbon pool in the ocean would serve

to dampen the response of carbon isotope ratios in benthic foraminifera to rapid and

large atmospheric changes. Nevertheless, the plant-based �13C
atmos

record presented

in this thesis is closer to calculated �13C
atmos

values for the mid-Miocene than the

Pliocene (Tipple et al., 2010), and is very consistent with large, short-lived positive

carbon isotope excursions seen in the middle-Miocene benthic carbon isotope record

which correspond to EAIS minima (Holbourn et al., 2014, 2015, Levy et al., 2016). The

�13C
atmos

data clearly represent an anomalously heavy and highly variable atmospheric

carbon pool during a period of EAIS retreat, of a magnitude and timescale that is com-
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patible with middle Miocene carbon cycle dynamics. These findings cannot definitively

explain why such an increase in �13C
atmos

would occur, but if (as is suggested by the

EAIS and CO2 record by Levy et al., 2016) this corresponds to a positive excursion in

the marine record too, some mechanisms that would serve to deplete �13C
atmos

, but

that are inconsistent with elevated CO2 could be discounted; for example, increased

organic matter burial in marine sediments resulting in CO2 drawdown (e.g. Badger

et al., 2013).

5.2.5 Was there a di↵erent hydrological cycle during EAIS retreat?

(Chapter 4)

Chapter 3 (research question 3) presented tree ring �18O
cell

data which suggested that

precipitation isotopes on Antarctica during a period of EAIS retreat (mean = -16 h)

were significantly enriched relative to the modern (mean = -28 h; Masson-Delmotte

et al., 2008). This is an intriguing result from which we can infer a markedly di↵erent

Antarctic hydrological cycle compared to the present day. Chapter 4 builds on this

result in two ways: firstly, by employing a second, independent proxy for precipitation

(hydrogen isotopes, �2H
precip

), which enables a deeper analysis of hydrological cycling;

and secondly, climate analysis using HadCM3 , an oxygen isotope-enabled atmosphere-

ocean-vegetation General Circulation Model (GCM), to explore mechanisms underlying

this hydrological change.

The leaf wax hydrogen isotope-based reconstructions of �2H
precip

are in good agree-

ment with the �18O
precip

analysis from Chapter 3. This second dataset is also sig-

nificantly enriched relative to modern Antarctic precipitation (-240 h for modern,

Masson-Delmotte et al., 2008; -170 h for a warmer world with a reduced AIS, this

study). The two datasets are internally consistent, giving confidence that both are

recording a primary signal (Fig. 5.2A). Furthermore, by including the temperature

calculations from Chapter 2, both isotope systems exhibit a significant shift away from

the modern linear temperature-isotope relationship (Figs. 5.2B and C), indicating a

considerable reorganisation of the Antarctic hydrological cycle.
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To examine these data further, simulations from the isotope-enabled GCM HadCM3

were analysed (summarised below and discussed in more detail in Supplementary In-

formation 3):

(a) Preindustrial: A control experiment run with standardised preindustrial bound-

ary conditions including a modern continental configuration, full ice-sheets and

modern orbital parameters. Atmospheric CO2 was set to 280 ppmv.

(b) Palaeo: A palaeo simulation, previously published by Tindall and Haywood

(2015), which was set up with mid-Pliocene Warm Period (mPWP) boundary

conditions: 1/3 smaller ice sheet, mPWP vegetation and orography, and atmo-

spheric CO2 was set to 405 ppmv. The continental configuration (coastlines),

ocean bathymetry and river outflow points were kept as pre-industrial.

(c) PalaeoCO2 - An intermediate simulation run in order to distinguish between the

impacts of greenhouse-gas controlled radiative forcing and ice sheet extent on

Antarctic climate. Atmospheric CO2 was set to 405 ppmv at the end of the

preindustrial simulation (a), all other boundary conditions were kept the same as

in (a).

(d) Dye-tracer enabled simulations: Surface air parcels were tagged in the model as

an approximation for tracing moisture sources, run only for simulations (a) and

(b).

Interrogation of the model results shows that whilst precipitation over the Polar

Plateau maintains the same linear relationship, in good agreement with the proxy data,

HadCM3 simulates a shift in the temperature-isotope relationship over deglaciated

regions of Antarctica remarkably similar to that seen in the isotope data. In contrast

to work on the early- to mid-Miocene by Feakins et al. (2012), results from modelling

experiments using atmospheric tracers to tag (or dye) air parcels suggest that very little

change in moisture source region occurred. Some increases in moisture derived from

the Weddell Sea (with corresponding decreases from the Ross Sea region) may play a

small role. More importantly, however, corresponding large increases in temperature
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Figure 5.2: (A) The relationship between �18O and �2H for modern Antarctic snow (open
pink circles) demonstrating the linear relationship between �18O and �2H at high latitude (local
meteoric water line). Filled red circles are modern data for sites south of 75� S and below 700
m above sea level. Sirius Group data is summarised by the green box and whisker plot in the
x- and y- directions showing median (line), 25th and 75th (box) and range (error bars). Modern
data from Masson-Delmotte et al. (2008). (B) �18O versus temperature for modern Antarctic
snow (Masson-Delmotte et al., 2008), Sirius Group data (green box and whiskers, as in panel A)
and data from the palaeo HadCM3 climate model simulation (blue squares for grid cells where
surface temperature < 0 �C and grey diamonds for surface temperature > 0 �C). (C) �2H and
surface air temperature in modern Antarctic snow (Masson-Delmotte et al., 2008), with Sirius
Group data indicated by the box and whisker plot, as in panel (A). Reproduced from Chapter
4.
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Figure 5.3: (A) Current precipitation regime over Antarctica, where all precipitation falls as
snow. (B) Inferred precipitation regime under reduced ice sheet conditions where precipitation
falls as rain over deglaciated coastal areas, depleting the remaining vapour as it moves inland
relative to scenario (A). Reproduced from Chapter 4.

(up to 16 �C) and changes to precipitation (condensing as rain and snow over these

deglaciated regions) imply significant local climatic shifts may be the driving force.

Both the equivalent HadCM3 pre-industrial and intermediate simulation with full ice

sheet and elevated CO2 (405 ppmv) maintain the traditional linear temperature-isotope

relationship. These results show that the Antarctic hydrological cycle and climate is

highly sensitive to ice sheet extent and perhaps far less directly sensitive to radiative

forcing. From the combined data and model findings of Chapters 3 and 4, I propose

a general mechanism for a switch in hydrological regime at high latitudes regions that

have undergone deglaciation (given in Fig. 5.3), described below.

Present day regime: A one-stage process, in which precipitation falls as snow

over the coast; transport of moisture further inland is precluded by the orography of
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both the Transantarctic Mountains and the ice sheet. The isotopic composition of

the precipitation is governed by temperature, with secondary controls by altitude, and

distance from the coast (Dansgaard, 1964). This mechanism produces the well-known

empirical linear temperature-isotope relationship, which is widely used in reconstruc-

tions of temperatures from ice core records (e.g. Bradley et al., 2013).

Reduced ice regime: A two-stage process. Decreasing surface albedo upon after

removal of the ice sheet leads to highly elevated temperatures over deglaciated regions.

Condensation temperatures over the coastal regions in particular are su�ciently warm

that over these ice-free areas, water precipitates as rain instead of snow. The isotopi-

cally heavier rain (Field et al., 2010) depletes the remaining water vapour such that

precipitation falling further inland (as snow) is relatively more depleted than snow

condensing from an identical vapour parcel under the present-day regime.

This is the first study to provide a comprehensive analysis of Antarctic hydrological

cycling using both data and an isotope-enabled fully coupled ocean-atmosphere GCM.

5.2.6 What are the bigger implications of this work?

The ice sheet driven hydrological switch discussed in Chapter 4 (Rees-Owen et al., in

prep-c) clearly has numerous implications for understanding both the past, and future

of Earth’s climate. These are listed below (and discussed further in section 5.4):

Implication 1: Temperature reconstructions of Quaternary interglacials

from ice core records

Numerous records show that there are regions of the Antarctica that are particularly

prone to deglaciation (Raymo and Mitrovica, 2012). The change in the ratio of rain to

snow may be dependent on ice sheet extent, among other, untested variables, including

ice sheet elevation, sea ice extent and the height of the inversion. However, isotope-

based temperature calculations from ice core records proximal to these deglaciation-

prone regions may underestimate the temperature of Quaternary interglacials by up to

20� C. Specifically, the following core locations are particularly likely to be a↵ected:

Taylor Dome, WAIS Divide and Byrd Land. This is broadly in agreement with analysis
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by Sime et al. (2009) who found spatial variability in the temperature-isotope relation-

ship over the Polar Plateau also leading to underprediction of interglacial temperatures.

Implication 2: Past oxygen isotope composition of sea-water

Estimates of past sea level changes are frequently based on the �18O signal of benthic

foraminifera (Miller et al., 2012, Rohling et al., 2014), which in part record �18O of

sea-water, itself governed by ice volume. These calculations are underpinned by the as-

sumption that the isotopic budget of the Antarctic Ice Sheet does not vary with climate.

Recently, Winnick and Caves (2015) proposed that during the mid-Pliocene Warm Pe-

riod (mPWP; 3.3 - 2.9 Ma), the Antarctic ice sheet �18O was 1 - 4 h higher than

present day as a result of warmer Antarctic temperatures, and as a result, estimates of

mPWP sea level from benthic �18O may be too high. The enrichment in precipitation

isotopes from Chapters 3 and 4 support these conclusions to some extent, but the e↵ect

may be somewhat modulated by the precipitation regime switch. This suggests that

Antarctic Ice Sheet �18O was still elevated relative to the present day, but less so than

predicted by Winnick and Caves (2015). However, it should be emphasised here that

these data are representative only of one episode of ice sheet retreat, and clearly there

are many climate signals and mechanisms that require resolving to quantify the e↵ect

for each specific time period.

Implication 3: Ice sheet-climate feedbacks A switch to precipitation falling as

rain over deglaciated regions of Antarctica may have as yet-unexplored consequences

with respect to ice sheet-climate feedback mechanisms. Precipitation falling as rain

would a↵ect existing snow and ice melt, firstly and most simply because rain is warmer

than snow and hence may encourage further snow melt. Secondly, if rain were falling

on pre-existing ice, then further feedback mechanisms could be implemented, such as

enhancing hydrofracturing and meltwater ponds. Meltwater ponds also have lower

albedo relative to a frozen ice surface (0.15 - 0.45 for meltwater, 0.52 - 0.87 for snow-

covered ice; Polashenski et al., 2012), which would further enhance positive feedbacks.

An exploration of these e↵ects is beyond the scope of this thesis, but their implication

is clear: we need to know whether a precipitation regime switch negatively a↵ects ice

sheet regrowth following collapse.
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Implication 4: Hydrological cycling under future warming scenariosGiven

implication 3 (above) , it seems clear that AIS retreat instigates hydrology-based feed-

backs that could play a role in determining ice sheet regrowth (or indeed, further ice

sheet retreat). The future of the AIS under increasing anthropogenically induced ra-

diative forcing in the coming decades and centuries is uncertain (Pritchard et al., 2012,

Shepherd et al., 2012). However, recent ice sheet model developments suggest that the

AIS does exhibit considerable sensitivity to greenhouse gas forcing under some future

emissions scenarios (Pollard et al., 2015, Pollard and Deconto, 2016). Therefore the

two-stage precipitation mechanism proposed in Chapter 4 could play an important role

in future AIS retreat scenarios, although clearly this mechanism needs to be explored

in far greater detail.

5.3 Scientific advances and overall conclusions

The work in this thesis was intended to address several unknowns and outstanding

uncertainties surrounding Antarctic palaeoclimate and vegetation during AIS retreat,

summarised in Table 5.2. The combination of diverse geochemical techniques applied

to the unique samples used in this investigation, and general circulation modelling,

allowed new, broad-ranging information to inform and take forwards our understanding

of Antarctic palaeoclimate. Multiple scientific advancements have been made while

carrying out the research for this thesis and are summarised below (Table 5.3).

With a few notable exceptions focused on the early Miocene (Feakins et al., 2012,

Warny et al., 2009), previous studies documenting Neogene Antarctic terrestrial climate

change have largely been limited to qualitative comparisons between fossils found in

numerous terrestrial deposits and their nearest living relatives (Ashworth and Preece,

2003, Ashworth and Kuschel, 2003, Francis and Hill, 1996, Hill and Jordan, 1996, Hill

and Trustwell, 1993, Hill et al., 1996, Webb and Harwood, 1993), or similar qualitative

comparisons between palaeosols and modern high latitude soils (Retallack et al., 2001).

Although each of the proxies used have their own associated uncertainties (discussed in
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Table 5.2: Summary of the outstanding uncertainties in the published research undertaken to
understand Antarctic palaeoclimate and vegetation during EAIS retreat, forming the basis of
this thesis. Reproduced from Chapter 1.

Outstanding uncertainties in the research carried out to date

1. Uncertainties over the composition of Neogene Antarctic vegetation commu-
nities due to discrepancies between the macrofossil and pollen record in both
terrestrial and marine geological records.

2. Lack of geochemical-based temperature data to provide more precise, quanti-
tative estimates of continental temperatures during ice sheet retreat.

3. Prostrate fossil trees could provide novel proxy archives of environmental sig-
nals but it is unknown whether tree ring isotopes in prostrate trees or shrubs
record climate signals.

4. Limited understanding of carbon cycle dynamics during EAIS retreat, al-
though ice sheet fluctuations are known to be linked to atmospheric CO2

levels.

5. No constraints in hydrological change during EAIS retreat or detailed ex-
amination of Antarctic climate response to EAIS retreat: the only Neogene
Antarctic hydrological reconstruction to date is too early (20 - 15 Ma) and
has no temporal resolution.

detail in Chapters 2, 3 and 4 and corresponding Supplementary Information sections

2 and 3), the data presented here represent the first quantitative geochemical study

of a Neogene Antarctic setting. Unfortunately, poor temporal resolution within the

studied horizon precludes an in-depth analysis of climate evolution during such an

ice sheet retreat event. Nevertheless, the approach for reconstructing climatic change

used in this thesis (documented particularly in Chapter 4) still provides a detailed

understanding of many of the studied climatic changes.

When considered together, the climate proxy data presented in this investigation

(temperature in Chapter 2, precipitation isotopes in Chapters 3 and 4) provide clear

and internally consistent evidence for climatic and hydrological change on the continent

during EAIS retreat. In short, these data show strong evidence for a warmer, wetter

Antarctica. Furthermore, these conditions supported a low diversity mixed vegetation

(Chapter 2), and correspond to a clearly dynamic carbon cycle, evidenced by anoma-

lously high and variable atmospheric �13C (Chapter 3). The carbon cycle dynamics are

probably linked to fluctuations in atmospheric CO2, which itself is tightly coupled to the
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Table 5.3: Summary of the progress made in advancing the science of this field and in ad-
dressing the uncertainties raised in Table 5.2.

Progress made in this thesis Chapter

1. For the first time, biomarker analysis was applied to the
Sirius Group sediments to successfully constrain vegetation
communities growing on the continent.

2

2. The MBT’/CBT palaeothermometer was used to recon-
struct continental temperatures on Antarctica, giving sum-
mer temperatures of 5 �C. This is the first application of
a quantitative palaeothermometer to terrestrial Antarctic
Neogene sediments.

2

3. The same data was used to support previous conclusions
that at high latitudes, the MBT’/CBT proxy has a strong
summer bias, in contrast to the mid-latitudes, where it
records mean annual air temperatures.

2

4. Tree ring cellulose isotopes (carbon and oxygen) in mod-
ern analogue prostrate Nothofagus trees from Tierra del
Fuego, Chile, suggested for the first time that prostrate
plants record climate signals.

3

5. Atmospheric �13C was reconstructed using tree ring �13C
from fossil Nothofagus from the Sirius Group, giving �13C =
4.5 h. This was used to broadly infer carbon cycle dynamics
during EAIS retreat.

3

6. The same data was used as a novel constraint on the Sirius
group age problem.

3

7. Two proxies for precipitation isotopes (tree ring �18O and
plant leaf wax �2H) were used in combination for the first
time.

4

8. The same data provided novel constraints on Antarctic hy-
drological cycling specifically during a period of Neogene
EAIS retreat.

4

9. The modelling experiments presented here are the first to
examine Antarctic hydrological cycling in detail and par-
ticularly to examine the impact of ice sheet reduction on
Antarctic climate.

4

10. For the first time, atmospheric tracers were used to trace
Neogene atmospheric circulation and moisture delivery
changes , challenging previous hypotheses that changes in
�18O were due to changes in moisture source.

4

fate of the AIS (Holbourn et al., 2015, Levy et al., 2016), although from the geochem-

ical data, further direct links to Antarctic climate (i.e. temperature and hydrological

cycling) are unclear. The climate proxy data is borne out by experiments from a fully
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coupled isotope enabled atmosphere-ocean-vegetation GCM (Chapter 4), which show

increased continental temperatures (of a similar order of magnitude as suggested by the

presented proxy data) as well as markedly di↵erent hydrological cycling. Importantly,

the intermediate HadCM3 simulation (full preindustrial ice sheet, atmospheric CO2 =

405 ppmv) strongly suggests that Antarctic continental climate is governed far more

strongly by the extent of the ice sheet than by greenhouse gas radiative forcing , imply-

ing numerous feedbacks that should be explored further such as changes in albedo and

its impact on temperature and hydrological cycling or di↵erent atmospheric circulation

due to changed orography driving temperature and precipitation. In some respects,

this final result could be anticipated from the presented proxy and fossil data as there

is a large di↵erence in surface albedo between shrub/bare soil and ice sheet (Bonfils

et al., 2012). However, the value of using an isotope-enabled GCM approach is clear;

this approach incorporates complex physical processes and interactions and enables a

quantitative analysis of the climate system.

These final conclusions are ultimately limited by the seemingly intractable Sirius

Group age problem. Much of the climate information derived from both the geochemical

and climate modelling components of this thesis functions well as a test of hypothet-

ical warmer, reduced ice world scenarios. There is clear relevance for understanding

future warming scenarios as well as many palaeoclimate time periods (Chapter 4 and

section 5.2.6). However, even more robust conclusions could be drawn from both the

geochemical and climate modelling data if broader boundary conditions (e.g. latitudi-

nal temperature gradients, specific carbon cycle dynamics) associated with the age of

the sampled sediments and fossils were known. Similarly, inferences from the vegeta-

tion and carbon cycle data (Chapters 2 and 3) would be powerful if stronger links and

correlations to other, geographically disparate records (e.g. pollen in Antarctic marine

sediments, global �13C records) could be drawn. It seems somewhat naive to ask for

a better age model, which are never easy to develop in the first place. Nevertheless,

better geological age constraints are very obviously needed so that the novel datasets

produced in this work can inform more realistic climate simulations and geochemical

data collection from both the terrestrial and marine realms. Such experiments and
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data would provide more in-depth analysis of some of the questions posed in this thesis

(particularly relating to ice sheet-hydrological cycle links) and provide much-needed

sensitivity testing for some of the conclusions.

Within the limitations discussed throughout the thesis (Chapters 1 - 4), this study

provides detailed knowledge on Antarctic climate and vegetation during a period of

Neogene AIS retreat. A mixed (angiosperm and conifer) tundra shrub persisted well

into the Neogene, supported by warmer summer temperatures and increased precip-

itation over deglaciated regions of Antarctica. Following on from this, some of the

outstanding uncertainties and limitations should be addressed in future work in order

to shore up or refute these main conclusions.

5.4 Future work

There are multiple possible directions to take in order to improve or expand the work

presented here. In this section, I discuss several ways in which the existing knowledge

within this thesis could be put to better use via further geochemical and modelling

work. Such additional research would address some of the specific limitations of this

thesis and test the conclusions in each chapter, thus improving upon the existing work.

Additionally, Section 5.4.4 discusses some other, bigger picture directions that could

lead on from these results, which would expand the scope of some of the developments

presented in this thesis significantly.

5.4.1 Dating improvements

It would be extremely advantageous to constrain the age of the Sirius Group sediments.

Much of the data presented in this thesis is valuable to several branches of palaeoclimate

science, and would be much more so if the data could be compared robustly with and

included in other datasets. For example, sea level and ice volume records based on ben-

thic foraminifera �18O assume a constant ice sheet �18O through time, which introduces

additional uncertainty into benthic foraminifera-based ice volume reconstructions. Our
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finding that Antarctic precipitation �18O and �2H was significantly higher during AIS

retreat (Chapters 3 and 4) implies that ice sheet �18O was probably much higher during

warm intervals in the past. This would seriously a↵ect past records of sea level and

climate change, as found by Winnick and Caves (2015) but requires a robust age model

before it can be integrated fully into long term palaeoclimate records. Furthermore,

and perhaps more importantly, finding a solution to the Sirius age issue would resolve a

decades-long debate on EAIS stability during the Pliocene. Three possible routes past

the dating issue could resolve the problem:

1. Uranium (U) series dating has recently been used to date organic matter in Qua-

ternary Age fossil wood fragments from North America (Allard et al., 2012).

Application of the technique to organic matter is dependent upon the material

being isolated from surrounding isotopic fluxes such that the material only con-

tains authigenic U. It is plausible that this holds true for the Sirius Group wood

as the exceptional preservation and very low degree of permineralisation suggests

that the fossils have existed in a persistently arid environment since shortly after

deposition. Two test fragments of the Sirius Group wood are currently being

analysed for lead concentrations at the University of Bristol (by collaborator Dr.

David Richards), and may prove this dating technique to be feasible.

2. Foraminifera have been recorded in the sedimentary layer directly below the wood-

bearing horizon at Oliver Blu↵s (Ashworth and Cantrill, 2004), and unlike the

marine diatoms previously used to date the Sirius Group, there is no uncertainty

over their provenance in the sediment (i.e., they are very likely not windblown;

Barrett, 2013). The only reported foraminifera are agglutinated, but much of

the foraminifera record for the Sirius group at Oliver Blu↵s is unpublished (J.

Francis, pers. comm. 2015) and it is therefore unclear whether any calcareous

foraminifera are present. If any calcareous foraminifera are present in these un-

derlying sediments, then strontium isotope (87Sr/86Sr) analysis should provide

a solution to the ageing problem by comparison with the Cenozoic strontium

isotope record (Elderfield, 1986).
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3. A re-examination of Pliocene marine sediments from around Antarctica could

provide additional insights. Based on diatom and radiolarian biostratigraphy,

Fleming and Barron (1996) found Nothofagus pollen in three samples dating to

c. 3 Ma in the DSDP Site 274 core near Cape Adare. By their analysis, previous

studies looking at Pliocene marine sediments had used inadequate techniques to

examine Pliocene palynology, and results suggesting barren palynology were actu-

ally inconclusive. While the presence of Nothofagus pollen in Pliocene Antarctic

marine sediments cannot directly date the Sirius Group sediments in this thesis,

it could give credence to a Pliocene age

5.4.2 How representative are the geochemical results in this thesis?

In this thesis, I have made the assumption that the data from the Sirius Group at

Oliver Blu↵s are representative of large-scale Antarctic change. This could be the case,

as the isotope and temperature data from Chapters 2, 3 and 4 are broadly consistent

with the modelling data. However, it cannot be conclusively resolved from these data

alone. Therefore expanding the spatial and temporal range of geochemical data to

other episodes of AIS retreat would provide information not only on the general rep-

resentability of the results presented in this thesis, but also on the degree of climate

variability between episodes of retreat.

It has been noted that there were further plant fossils from other horizons at Oliver

Blu↵s (B. Duncan, pers. comm. 2015). These plants likely represent other episodes of

AIS retreat, and therefore other interglacials. It would greatly enhance the scope of the

work presented in Chapter 4 to test whether the ice sheet-driven hydrological change

was consistent between interglacials by applying a similar analysis (temperature and

precipitation isotope reconstructions) to these horizons too. Similarly, numerous plant

fossils are noted from multiple locations in the McMurdo Dry Valleys, including Friis

Hills and the Olympus Range (Ashworth et al., 2007, Lewis et al., 2008; B. Duncan,

pers. comm. 2015, J. Francis, pers. comm., 2013). Some of these fossil-bearing deposits

are very well dated; while they also represent di↵erent AIS retreat events, analysis of
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their cellulose and leaf wax isotopes would provide an idea of the spatial variability of

hydrological change during AIS retreat.

Furthermore, a biomarker analysis (with emphasis on terpenoids) of the same de-

posits (above) could provide further detail on questions around the evolution of veg-

etation on Antarctica. A planned future drilling expedition to Friis Hills (R. McKay,

pers. comm., 2015), where a very well-dated terrestrial sequence contains multiple plant

fossil-bearing horizons would give very clear insight on the interplay between vegeta-

tion (particularly the presence/absence of conifers on the continent), environment and

climate.

5.4.3 Improved climate modelling

While the results in Chapter 4 suggest that the main driver of Antarctic hydrological

change during EAIS retreat was the reduced ice sheet extent and volume, there are

several boundary conditions in HadCM3 that could have an e↵ect on this result. Most

of this boundary condition uncertainty stems from the age uncertainty of the Sirius

Group deposits. Although the mid-Pliocene Warm Period boundary conditions used

in the simulations for this thesis remain a reasonable test of hydrological cycling in

a reduced ice volume world, running simulations with mid-Miocene specific boundary

conditions (continental configuration, land-sea mask and orography) would provide a

further check on the representability of the results. This could be a time-consuming

task as currently there are no mid-Miocene boundary conditions for HadCM3, and the

challenge is not only in the technical implementation of new boundary conditions, but

also in the establishment of detailed palaeogeographies.

The orbital parameters for the palaeo HadCM3 simulations in this thesis are very

similar to present day orbital parameters. High latitude climates are a↵ected to varying

degrees by di↵erent orbital configurations. For example, high latitude insolation is di-

rectly correlated with obliquity, and high latitude seasonality is dependent on precession

of the Earths rotational axis. Moreover, ice sheet retreat during both the mid-Miocene

and Pliocene appears to be orbitally driven (Greenop et al., 2014, Patterson et al.,
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2014). Given the age uncertainty, it would be interesting to run a series of simulations

with identical boundary conditions while varying the orbital configurations in order to

further elucidate the true impact of ice sheet retreat on Antarctic climate as opposed

to other climate factors.

5.4.4 Expanding the scope of the work

This section deals briefly with some of the broader implications of this thesis in an

attempt to consider the bigger picture of the climate system as opposed to improving

the existing work. The suggestions for future work are not intended to be an exhaustive

list, but are merely intended to illustrate certain possibilities that could yield important

novel data.

5.4.4.1 Sensitivity testing

Multiple improvements could be made to broaden the scope and impact of this work,

particularly through the use of climate modelling. From Chapter 4, in particular, it

seems clear that the Antarctic hydrological cycle is sensitive to ice sheet extent. Partly

due to time constraints, it was not feasible to fully explore this concept during the

course of my investigation. One possible remedy would be to run a series of simulations

testing the sensitivity of the hydrological cycle to di↵erent ice sheet configurations; such

simulations have been run here at the University of Leeds, but without oxygen isotopes

in the hydrological cycle (D. Hill, pers. comm., 2014). Extending these pre-existing

HadCM3 simulations with the inclusion of water isotopes throughout the climate system

would be a relatively simple way of gaining valuable insight to the sensitivity and

variability of climate in response to changes in ice sheets.

A more complex means of addressing the same concept would be to use an isotope-

enabled ice sheet model (such as that used by Gasson et al., 2016) coupled to a high

resolution isotope enabled GCM. The ice sheet model would include currently accepted

mechanisms for retreat and the climate model would account for ice-sheet climate

feedbacks, including feedbacks related to the new precipitation regime proposed in
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Chapter 4. Furthermore, the isotope-enabled component of both models would allow

the impact of changes in precipitation isotopes on other factors such as ice sheet �18O

and therefore past sea level changes, as well as constraining the impact of the switch

in precipitation regime on ice core records (see section 5.2.6) to be assessed. This is

likely to be very computationally expensive, however, and beyond current modelling

capabilities. If (or when) possible, the most e�cient way of running these simulations to

establish their usefulness would be using snapshot simulations. If this approach proved

fruitful, and given the wide-ranging implications for some of the work in this thesis, it

would not be extravagant to consider running transient simulations, forced by evolving

CO2, to cover entire ice sheet retreat scenarios. Furthermore, this approach could go

some way towards resolving outstanding questions over whether ice core records during

the Quaternary were a↵ected by the precipitation regime switch mechanism.

5.4.4.2 Did a switch in precipitation regime occur over Greenland?

Finally, it would be very interesting to explore whether the precipitation regime switch

seen in the Antarctic data is applicable to the Greenland Ice Sheet (GIS) and climate,

specifically during the Quaternary. The GIS is particularly sensitive to climate warm-

ing (Cu↵ey and Marshall, 2000, Stone et al., 2013, de Vernal and Hillaire-Marcel, 2008)

and during some interglacial periods, such as the Last Interglacial, underwent severe re-

treat (van de Berg et al., 2011). Pollen records from around the continent indicate that

during these periods of GIS collapse, the deglaciated land was colonised by vegetation

(de Vernal and Hillaire-Marcel, 2008), which, similarly to Oliver Blu↵s, would consid-

erably a↵ect surface albedo. A clear advance on the hydrological cycle work presented

in Chapters 3 and 4 would therefore be to reconstruct precipitation isotope data from

Greenland (either from leaf wax hydrogen isotope analysis in marine cores or the use of

oxygen isotopes in fossil plant material) along with temperature reconstructions, and

test for the presence of this mechanism on Greenland during GIS retreat. As the GIS is

more susceptible to collapse than the AIS, one could hypothesise that the precipitation

regime switch mechanism could play a far stronger role in governing precipitation iso-

topes and therefore isotope ratios in ice core records. This could then be tested further
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using a similar modelling approach to that taken in Chapter 4 and would provide im-

portant information for improving our understanding of ice sheet-climate interactions,

in the past and in the future.
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chier, S. M. Bohaty, C. R. Riesselman, L. Tauxe, S. Sugisaki, A. L. Galindo, M. O.
Patterson, F. Sangiorgi, E. L. Pierce, H. Brinkhuis, A. Klaus, A. Fehr, J. A. P. Ben-
dle, P. K. Bijl, S. a. Carr, R. B. Dunbar, J. A. Flores, T. G. Hayden, K. Katsuki,
G. S. Kong, M. Nakai, M. P. Olney, S. F. Pekar, J. Pross, U. Röhl, T. Sakai, P. K.
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2014.

M. Stefanova, D. R. Oros, A. Otto, and B. R. T. Simoneit. Polar aromatic biomarkers in
the Miocene Maritza-East lignite, Bulgaria. Organic Geochemistry, 33(9):1079–1091,
2002.

L. S. L. Sternberg and M. J. DeNiro. Isotopic Composition of Cellulose from C3, C4,
and CAM Plants Growing Near One Another. Science, 220(4600):947–949, 1983.

L. S. L. Sternberg, M. J. DeNiro, and R. A. Savidge. Oxygen Isotope Exchange between
Metabolites and Water during Biochemical Reactions Leading to Cellulose Synthesis.
Plant Physiology, 82(2):423–7, 1986.

G. R. Stewart, M. H. Turnbull, S. Schmidt, and P. D. Erskine. 13C Natural Abundance
in Plant Communities Along a Rainfall Gradient: a Biological Integrator of Water
Availability. Australian Journal of Plant Physiology, 22(1):51–55, 1995.

M. A. Stokes and T. L. Smiley. An introduction to tree-ring dating. The University of
Chicago Press, Chicago and London, 1968.

E. J. Stone, D. J. Lunt, J. D. Annan, and J. C. Hargreaves. Quantification of the
Greenland ice sheet contribution to Last Interglacial sea level rise. Climate of the
Past, 9(2):621–639, 2013.
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