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Abstract

One of the major challenges to viable fusion energy is the exhaust of hot plasma,

as future magnetic fusion devices will have unacceptably high heat fluxes on the

plasma facing components. Recent research into advanced divertor designs and

alternative magnetic configurations attempts to alleviate this issue, however the

effectiveness of these configurations relies on cross field transport in the poloidal

magnetic null region, which is currently poorly understood. Simulations of in-

stabilities and turbulence in X-point configurations are challenging due to the

limitations of field-aligned coordinate systems: X-point dynamics are often in-

terpolated based on nearby flux surfaces, which could exclude relevant physics.

Here we present the results of turbulence and transport simulations relevant to

tokamak X-points in various magnetic geometries using coordinate systems which

are not aligned to the magnetic field.

First, we present results as part of a feasibility study of a university-scale

linear plasma device capable of producing azimuthal X-points. The turbulent

characteristics of this system are explored and measurements using synthetic di-

agnostics are proposed. These studies are then extended to toroidal geometries

by simulating filament propagation in TORPEX poloidal magnetic null point

scenarios and comparison to experiment. It is determined that the null region

can cause an acceleration of filaments due to increasing connection length, but

this acceleration is small relative to other effects, which we quantify. Experimen-

tal measurements are reproduced, and the dominant acceleration mechanism is

identified as that of a developing dipole in a moving background. Finally, the im-

plementation of the Flux Coordinate Independent method for parallel derivatives

into BOUT++ is investigated by simulating transport and diffusion in nonaxisym-

metric geometries. The potential for BOUT++ to be used as a stellarator turbulence

and transport code is also discussed.
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5.4 Poincaré plot of the straight stellarator . . . . . . . . . . . . . . . 116

5.5 Heat diffusion in the straight stellarator . . . . . . . . . . . . . . 117

5.6 Scaling of inherent diffusion from the FCI method in the straight

stellarator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.7 Numerical diffusion as a function of time . . . . . . . . . . . . . . 119

10



List of Figures

5.8 Density in a 1D transport equation using finite volume operators . 121

5.9 Velocity in a 1D transport equation using finite volume operators 121

5.10 Density transport solution simulated using finite difference operators122

5.11 Velocity solution using finite difference operators . . . . . . . . . . 122

5.12 Geometry for one dimensional FCI transport model test . . . . . . 123

5.13 The solution for density using modified finite difference operators 123

5.14 The solution for mach number using modified finite difference op-

erators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.15 The density solution for a transport model using FCI operators . 124

5.16 The velocity solution for a transport model using FCI operators . 124

11





Acknowledgments

I owe the success of this PhD to the phenomenal support structure that I have

in my life. Firstly I must extend my sincerest gratitude to my supervisor, Dr.

Ben Dudson, for his expertise, patience, and guidance. I would also like to thank

the members of the York Plasma Institute, who have made this experience both

academically and personally rewarding. Specifically, I’d like to acknowledge Pro-

fessor Howard Wilson, Professor Bruce Lipschultz, and Professor Kieran Gibson

for their valuable advice, and Dr. Jarrod Leddy for his fruitful discussions re-

garding both physics and more material matters. I must also thank Dr. Nick

Walkden, who is somehow still willing to discuss filament physics at any oppor-

tunity. Additionally, I am grateful for the help of Dr. Peter Hill, who has led the

development of the Flux Coordinate Independent method in BOUT++, helping me

to achieve my master plan of surreptitiously bringing stellarator physics to the

YPI.

I rarely embrace a challenge tentatively, which is the fault of my family.

Without their unwavering support and encouragement, I would never have been

able to reach my goals. I am very thankful to have loving parents who have always

provided for me and given excellent guidance. I must also thank my brother, who

has always been the ideal older sibling; always giving the best advice to help me

succeed.

Finally, I am eternally grateful to my wife Sophia for her help, patience, and

laughter. Many PhD candidates apologize to their spouses for always discussing

physics, but I am fortunate enough to have married an incredibly talented physi-

cist. I must therefore thank her for the countless conversations concerning work,

and equally for the discussions which have distracted us.

13





Declaration

I declare that the work presented in this thesis, except where it is otherwise

stated, is based on my own research and has not been submitted previously for a

degree in this or any other university. Parts of the work presented in this thesis

have been published in:

� [1] B W Shanahan and B D Dudson, “X-point modelling in linear geometries

using BOUT++” Journal of Physics: Conference Series, 561(1):012015, 2014.

� [2] B W Shanahan and B D Dudson, “Blob dynamics in TORPEX poloidal

magnetic null configurations” Plasma Physics and Controlled Fusion 58(12):125003,

2016.

� [3] B W Shanahan, P Hill, and B D Dudson, “Towards nonaxisymmetry;

initial results using the Flux Coordinate Independent method in BOUT++”

Accepted to Journal of Physics: Conference Series 2016.

� [4] J Leddy, B Dudson, M Romanelli, B Shanahan and N R Walkden,

“A novel flexible field-aligned coordinate system for tokamak edge plasma

simulation” Accepted to Computational Physics Communications 2016.

� [5] P Hill, B Shanahan, and B Dudson, “Dirichlet boundary conditions for

arbitrary-shaped boundaries in stellarator-like magnetic fields for the Flux-

Coordinate Independent method”, Submitted to Computational Physics Com-

munications 2016.

15





Chapter 1

Introduction

1.1 Global Energy Picture

It is becoming increasingly apparent that that the global energy production and

consumption is not sustainable[6, 7, 8]. Two main factors which should drive

humanity’s migration toward cleaner, renewable energy are the imminent climate

change due to atmospheric greenhouse gas emissions and the reduction of fossil

fuel supplies.

1.1.1 Carbon emissions and peak oil

The ongoing climate change due to emission of greenhouse gasses is one of the

most pressing issues facing humanity; it is now clear that the carbon emissions

due to human civilization [9, 10] has already begun affecting living systems [11].

Greenhouse gas emissions must be reduced in order to avoid global temperature

increases which will lead to rising sea levels, severe droughts and other catas-

trophic events [12, 13].

As of 2013, 79% of global energy consumption relies on fossil fuel energy

sources [14]. This over-reliance on fossil fuels is concerning as these resources

are finite. M. King Hubbert originally postulated the idea of peak oil, where the

global supply of oil will one day peak, leading to rapid decline in availability [15].

Many of the subsequent studies have proposed that we have already passed the
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Chapter 1. Introduction

time for peak oil supply, as shown for example in Figure 1.1 [16].

Figure 1.1: Comparison of Hubbert’s upper bound peak oil model for the
contiguous United States and the corresponding actual oil production, taken
from [16].

Prior to the mid 2000s, it appeared that global oil production had peaked.

As seen in Figure 1.1, however, oil production in the United States (and numerous

other areas) has recently seen a large increase due to the realization of methods

allowing for extraction of oil in areas which was previously thought impossible.

The most common method for this is called “hydraulic fracturing” or “fracking”

of shale oil which was originally patented in the 1960s [17]. The major disadvan-

tage of this method of oil extraction is its environmental impact on ground- and

surface water [18]. Nevertheless, the increase in oil production from hydraulic

fracturing has sparked several counterarguments to peak oil that suggest global

energy production from fossil fuels is far from peaking, but that there is enough

world reserves for the next century. Nevertheless, a viable alternative should be

found within that (relatively short) century.

There are several candidates for clean, renewable energy sources – solar,

wind, geothermal, etc. In reality, many renewable energy sources should be used

together, as each has its own advantages and disadvantages. Nuclear fission will

18
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probably provide the majority of the “clean” energy for the near future. However,

nuclear nonproliferation limits the research of fission, and the safe and responsible

storage of long-lived radioactive waste is a still major challenge. Other means

of energy production have limited availability due to their dependence on factors

such as the cost, large land areas required, and the dependence on local weather.

An ideal energy source would have a very large natural fuel supply, emit no

greenhouse gasses, and have no long lived radioactive waste. Additionally, the

energy should come from a consistently available, compact and safe system free

from risks of large scale catastrophe. Fusion power has the potential to fulfil these

criteria, but there are a number of challenges which have yet to be overcome.

1.2 Fusion as an energy source

Fusion energy is beginning to establish itself as a viable alternative to conven-

tional energy sources[19, 20]. Fusion is the principle by which the Sun produces

energy. By forcing light nuclei together it is possible to overcome the Coulomb re-

pulsion and allow the strong force to combine the nuclei into one heavier nucleus.

The resulting nucleus is lighter than the combined constituent nuclei, and the

“missing” mass is converted to energy via the now-famous relation E = mc2 [21].

The most promising reaction for commercial fusion prospects is thought to

be the fusion of Deuterium and Tritium:

2
1D + 3

1T→ 4
2He + n + 17.6MeV (1.1)

While there are other approaches being investigated, the D-T reaction is

generally favored as it has a relatively high cross section at temperatures achiev-

able in laboratory plasmas (around 10keV), as shown in Figure 1.2 [22].

If there are enough nuclei fusing and producing this energy, the reaction

can be self sustaining. The parameters necessary for this to occur were first

calculated by J D Lawson [23]. This calculation provides a minimum threshold

which is necessary for ignition, or the self sustaining fusion reaction, and is often

19



Chapter 1. Introduction

Figure 1.2: Average cross section times reactant velocity (〈σν〉) for the three
most common fusion reactions as a function of temperature [22].

expressed as a triple product:

nTτE ≥
12

Efusion

T 2

〈σν〉
(1.2)

where n is the density, T is temperature, and τE is the energy confinement

time. To determine these values, one must know the reaction cross section σ, the

speed of a reactant nucleus ν, and the energy from the fusion reactions Efusion.

For the D-T reaction, this triple product must be greater than 1021keV s/m3 for

temperatures relevant for laboratory fusion (10-20keV). It should be noted here

that temperatures in plasma physics are often referred to in units of electron volts

(eV). For reference, a plasma with a temperature of 1keV is over 11 million degrees

20
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Celsius. This is where the challenges to fusion begin; how to create sufficient

densities and temperatures while maintaining good enough confinement. There

are several routes to fusion, all of which focus on creating a plasma where the

parameters fulfil this Lawson criterion, Equation 1.2.

1.2.1 Plasma

Plasma is the fourth and most common state of matter in the universe. A plasma

is formed when the electrons are stripped from atoms, allowing the nuclei (ions)

and electrons to move individually. This dissociation of electrons can be accom-

plished either by increasing the temperature or subjecting matter to very strong

electromagnetic fields. Plasmas may seem unfamiliar but are apparent in every-

day life. Lightning, flames, and fluorescent light bulbs are all examples of plasma

– although these plasmas vary greatly from those used in fusion applications.

Plasmas differ to the descriptions of gasses in that they can be described by their

collective behavior.

The physics of plasma is fundamental to the study of nuclear fusion. As

stated in the previous section, fusion plasmas must have a high triple product –

the combination of density, temperature, and confinement time. The two principle

routes to fusion, inertial confinement fusion (ICF) and magnetic confinement

fusion (MCF) attempt to achieve this by maximizing different factors.

1.2.2 Common routes to fusion

The fundamental challenge of fusion – to confine a dense, hot plasma for long

enough to produce fusion reactions – is apparent when considering the scale of

the parameters involved. Typical fusion reactions are most convenient at 10keV

(which corresponds to over 100 million degrees Celsius). It is clear that one

must be clever in confining something with these temperatures, as most materials

cannot withstand such heat. There are two main routes which have had early

success in containing these reactions. The first of which is inertial confinement

fusion which attempts to produce fusion reactions in plasmas at high densities for
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short confinement times, and localize these reactions far away from any confining

material walls.

1.2.3 Inertial confinement fusion

Inertial confinement fusion typically uses lasers to either directly or indirectly

heat a spherical capsule of DT fuel, and cause it to implode. The ablation of the

outer surface causes an inward compression of the capsule, allowing for a hot,

dense sphere to fuse nuclei [24, 25]. This process is shown in Figure 1.3.

Figure 1.3: The fundamental physics behind direct-drive inertial confinement
fusion [25].

Inertial confinement fusion relies on the idea of having very high densi-

ties (around 1029 → 1030m−3), with a relatively low confinement time (order

1ns), as the plasma is only confined by its inertia inwards. The challenges of

inertial confinement fusion are apparent when examining these scales, but there

have been recent advancements at the National Ignition Facility (NIF) which is
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located at Lawrence Livermore National Laboratory. Recent experiments have

achieved about 40% of the expected Lawson criterion fusion yield [26]. It should

be noted however, that early design of NIF and simulations of capsule implosions

predicted higher performance [27]. Turbulent mixing of hot and cold fuel as well

as nonuniform implosion are challenges which have yet to be overcome [28].

1.3 Magnetic confinement fusion

The other primary route to fusion utilizes a lower density plasma (1020m−3) which

is confined for longer times (order 1 second) and relies on the physics of charged

particle motion in magnetic fields.

1.3.1 Fundamentals of magnetically confined fusion

To understand the motivation behind using magnetic fields to confine plasmas

for fusion applications, it is useful to consider single particle classical motion.

Charged particles are free to move along magnetic field lines but are subject to

the Lorentz force:

F = Ze (E + v ×B) (1.3)

This constraint means that particles follow helical paths along field lines in

the absence of electric fields as shown in Figure 1.4, where the radius of their

orbit is described as the Larmor radius:

rL =
mv⊥
qB

(1.4)

In strong magnetic fields, the particle experiences a relatively constant field,

and therefore it’s angle relative to the field line does not matter. Therefore, the

particle will feel the same torque from the magnetic field. This torque on a particle
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Figure 1.4: A single particle travelling helically along a field line when there is
no electric field present.

by a magnetic field is called the magnetic moment, and is given by Equation 1.5:

µ =
mv2
⊥

2B
(1.5)

In the absence of an electric field, the charged particle can do no work.

Therefore the energy (and magnetic moment) are invariant. By splitting the

velocity of a particle into its parallel and perpendicular components one can

write:

v2
‖ = v2 − v2

⊥ = v2 − 2µB

m
(1.6)

where we have used the expression for magnetic moment (1.5) to replace

v⊥. When v‖ = 0, the particle is purely gyrating around the field line, and not

moving parallel to the magnetic field. At the limit of the very large magnetic

field, Equation 1.6 is negative. As speeds are not imaginary, this means that the

particle reflects and returns to the area of weaker magnetic field. This is the basis

for a magnetic mirror [29], a schematic of which is shown in Figure 1.5.

In these magnetic mirrors, particles would be reflected back from the regions

of high magnetic field strength. From the conservation of magnetic moment, it
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Figure 1.5: The magnetic mirror concept for confining a fusion plasma [30]

can be shown that particles will only be lost if the following relation is fulfilled:

v2
⊥min

v2
<
Bmin

Bmax

(1.7)

Where v⊥min is the perpendicular velocity in the region of the minimum

magnetic field strength, Bmin, and Bmax is the maximum magnetic field strength.

Unfortunately, plasmas are composed of many ions, and collisions between parti-

cles ensure that a large fraction of particles will eventually enter the “loss cone” of

Equation 1.7. These end losses made it difficult to obtain fusion-relevant condi-

tions in these mirror devices. The natural way to prevent end losses is to remove

the ends of your device by wrapping it into a torus. This is the basis for toroidal

confinement devices.

1.3.2 Toroidal confinement

By creating a toroidal magnetic field to overcome end losses, the magnetic field

can no longer be considered uniform across a poloidal cross section. The magnetic

field is now higher on the inside of the torus than it is on the outside. This
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gradient in the magnetic field creates particle drifts – as a particle is orbiting

around the magnetic field line, it feels different strengths of the magnetic field.

Therefore, when referring to Equation 1.4, one can see that the radius of the

charged particle orbit will be smaller in the high field side, and larger in the

region of weaker magnetic field. This leads to a net drift (which will be discussed

more in Section 2.2.1), which degrades confinement.

To overcome this, the field lines in toroidal configurations must not be

strictly toroidal. Consider an ion which drifts upward when on the top of the

torus. If the field line wraps around the torus helically, the ion will be able to

also drift upwards when it is at the bottom of the torus – thereby negating any

previous drift outward. By introducing an additional (poloidal) magnetic field,

the confinement of particles is recovered. The degree by which a field wraps

helically around a torus is called the rotational transform. It is the manner

by which this rotational transform is implemented which distinguishes various

toroidal confinement devices.

1.3.3 Tokamaks

In the 1950s, physicists Igor Yevgenyevich Tamm and Andrei Sakharov suggested

that the rotational transform could be generated by a toroidal current within the

plasma, which would create a poloidal magnetic field [31]. This was termed

the TOroidal’naya KAmera v MAgnitnyuk Katushkakh, or the tokamak. An

illustration of a simple tokamak is given in Figure 1.6.

In a tokamak, magnetic field coils create a toroidal field, and a central

transformer coil is supplied with a time-varying current, which creates a vary-

ing magnetic flux and induces a toroidal current. This toroidal current creates

a poloidal magnetic field, which creates the rotational transform necessary for

confinement [22]. By the late 1960s, tokamaks began to outperform other con-

temporary configurations, and the tokamak configuration has since continually

set the benchmark for fusion performance. The Joint European Torus (JET), lo-

cated in Culham, England currently holds the record for the highest fusion gain,

when it produced 16.1MW of fusion power in the late 1990s [33, 34].
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Figure 1.6: A schematic of a simple tokamak [32]

The performance of the tokamak configuration has led to the construction

of the ITER device [35] in Cadarache, France, which will become operational in

the late 2020s. This experiment is designed to have an energy gain of 10, such

that the fusion power produced is 10 times higher than the power used to heat

and contain the plasma. The ITER project is an international collaboration and

marks an important era in fusion research.

There are, of course, disadvantages to tokamaks. Some of the more relevant

challenges will be discussed in Section 2.1. However, additional challenges are

manifested in the form of current-driven instabilities and disruptions – where the

plasma violently extinguishes. These instabilities can be mitigated by creating a

rotational transform without inducing a plasma current.

1.3.4 Stellarators

Also in the late 1950s, Lyman Spitzer began to study the three dimensional con-

finement of particles and suggested that external magnetic coils could produce

a rotational transform. This can be done by either rotating the poloidal cross
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section of the plasma or with a torsion of the magnetic axis. The advantage of

this configuration is that there are very small plasma currents, limiting the effect

of current-driven instabilities and disruptions. He termed this concept the stel-

larator, and the first designs were in the form of a figure-eight [36]. Unfortunately

these early devices had very poor confinement, especially in comparison to the

tokamak.

Despite their early struggles, the stellarator concept of producing a rota-

tional transform with external coils persisted. By the late 1980s, stellarator

research on what are now considered ‘classical stellarators’ culminated in the

Wendelstein 7-AS device, which is shown in Figure 1.7 [37].

Figure 1.7: A schematic of the Wendelstein 7-AS stellarator, which is known as
a “classical stellarator” due to the in-vessel helical coils. Image from [37].

The blue, toroidal field coils in Figure 1.7 produce a toroidal field. The

black, helically winding coils produce the rotational transform and poloidal flux

surfaces, since the current direction alternates between coils. These helical coils

posed a major challenge in classical stellarator construction. However, the rel-

atively recent advent of modular coils allows for easier construction and better

diagnostic access [38].

Stellarator design is challenging due to their inherently three dimensional

nature. While tokamaks were considered axisymmetric since the poloidal cross
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section does not change toroidally, modern stellarators exploit other symmetries,

such as helical symmetry. As such, there are many more degrees of freedom

when designing a stellarator [39, 40]. For many years, this was a disadvantage as

theoretical and computational tools for stellarator optimization were not avail-

able until the late 1990s [30]. Recently, however, developments in the stellarator

concept has led to in the construction of the Wendelstein 7-X experiment in

Greifswald, Germany [41].

The inherent nonaxisymmetry of stellarators causes difficulty in designing,

constructing, and analyzing stellarators. The final research chapter of this thesis

discusses the challenges of simulating nonaxisymmetric configurations, and re-

ports the recent progress towards stellarator edge turbulence modelling in BOUT++.

1.4 Outline

The research presented within this thesis focuses on simulating edge transport

and turbulence in various magnetic geometries relevant to fusion. Transport at

the edge of magnetic fusion devices dominates the performance of fusion plasmas.

It is therefore necessary to determine the nature of this transport, and be able to

simulate it effectively.

This thesis is arranged as follows. Chapter 2 provides a brief review of the

fundamental physics of transport in magnetically confined plasmas, and highlights

the methods used in describing tokamak plasmas. The simulation of plasma tur-

bulence in toroidal geometries will also be discussed. The chapter also introduces

BOUT++, a plasma turbulence framework used here to simulate turbulence in three

different geometries, before concluding by introducing numerical methods and

deriving an isothermal plasma turbulence model which has been implemented in

BOUT++.

Chapter 3 discusses simulations of turbulence in linear geometries where an

azimuthal magnetic null point is present. This work serves as a feasibility study

for a university-scale linear plasma device to study plasma scenarios relevant to

tokamak heat and particle exhaust.
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Chapter 4 reports results in simulating plasma filaments in poloidal mag-

netic null point scenarios in the TORPEX device. Filaments (or blobs) are coher-

ent structures which transport heat and particles in magnetically confined plas-

mas. Understanding their behavior in scenarios applicable to a tokamak scrape

off layer is important in minimizing turbulent losses.

Chapter 5 reports the progress in modelling nonaxisymmetric configurations

in BOUT++. At the moment, there is no code capable of simulating plasma fluid

turbulence in the entire edge of nonaxisymmetric devices. Recent numerical im-

plementations into BOUT++ have allowed for nonaxisymmetric geometries. Here a

proof of principle is provided indicating the ability of BOUT++ to perform global

edge fluid transport and turbulence simulations in nonaxisymmetric geometries,

which will, among other things, allow for analysis of divertor interactions in stel-

larators.

Finally, Chapter 6 will provide conclusions and prospective future work

based on the research presented herein.
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Background

Before discussing the research presented within this thesis, it is important to un-

derstand the motivation behind the work. This chapter attempts to provide a

context for this research, while introducing concepts which will be important in

understanding the following chapters. Section 2.1 discusses the general tokamak

configuration which is used in modern experiments, and why this configuration

has been chosen. The following section, Section 2.2 provides a brief introduction

to the transport mechanisms inherent to the tokamak configuration, and how

these effects limit the confinement. The most dominant transport phenomenon,

turbulence, is introduced in Section 2.3, which also includes a review of the physics

of a turbulent mechanism which is extensively studied in Chapter 4. The sim-

ulation framework BOUT++ is introduced in Section 2.4 before concluding with

a derivation of the plasma fluid model (Section 2.5.1) and numerical methods

essential to the research presented within this thesis.

2.1 The modern tokamak

Early tokamaks were very similar to that described in Section 1.3.3; toroidal mag-

netic configurations with poloidal magnetic field manifested by a toroidal current

within the plasma. By considering only the classical transport as described in

Section 1.3.2, early estimates predicted fusion could be accomplished in a machine

on the order of centimeters [42]. However, there are other transport mechanisms
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(such as turbulence which will be discussed in Section 2.3) which have dictated

that machines must be much larger than originally thought. With the increase

in machine size comes an increase in performance; some of the most important

challenges in fusion are associated with the control of heat and particle flux onto

plasma facing components.

2.1.1 The diverted tokamak

The original interface between tokamak plasmas and the wall of the device was

a segment of metal onto which particles and heat were deposited at the outer

edge of the plasma. This device was called a limiter, and effectively isolated the

rest of the wall of the device from the hot plasma. The part of the plasma which

interacted with the limiter was called the scrape off layer (SOL), as it was the final

layer of plasma which was “scraped off”. The main disadvantage of the limiter,

however, was that this method introduced a large amount of impurities into the

plasma[30]. High-Z impurities from the wall material are problematic in tokamak

plasmas as they tend to radiate energy and cool the hot, dense, core region[43].

In order to mitigate the amount of impurities entering the plasma from surface

interactions, the divertor concept was implemented. A divertor configuration uses

an extra set of magnetic coils to create a poloidal magnetic null point at the edge

of the confined plasma. The plasma diffuses across this area and deposits particles

and energy along field lines onto target plates. As these target plates are farther

separated from the core plasma, there is less contamination from impurities[30,

44]. Figure 2.1 illustrates the difference between plasma cross sections in the

Joint European Torus (JET) in both limiter and divertor configurations [45].

The implementation of the divertor concept brought a drastic improvement

in the performance of tokamaks. Most notably, diverted tokamaks began to be

able to access operating regimes of improved confinement. This high confinement

mode or “H-mode” was first discovered on the ASDEX machine in Garching,

Germany [46]. While the mechanism is still a subject of research nearly 35 years

later, H-mode exhibits increased flows at the plasma edge, which lead to the

suppression of turbulence [47, 48].
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Figure 2.1: Plasma cross sections in JET in both limiter and divertor configu-
rations [45]

While the divertor concept increased the performance of tokamaks, it also

increased the heat and particle flux density onto plasma facing components.

There is growing concern that traditional divertor configurations in future de-

vices could still have unacceptably high heat fluxes, especially during transient

events [49, 50]. As a result, there have been increasing studies into alterna-

tive concepts which could lessen the stress on divertor targets [51, 52]. At the

moment, the proposed operating scenario for ITER is one with partial divertor

detachment [53], where a gas is injected into the divertor area which allows for

cooling of the plasma via collisions and radiation prior to striking the divertor

targets. This scenario could be insufficient for future tokamak reactors, however,

as the heat fluxes will be much higher and access to detached scenarios will be

limited [54]. Alternatively, there have been studies to alter the magnetic con-

figuration such that the heat load on the divertor targets is minimized. One

particular design to be studied is the snowflake divertor [55]. This design utilizes

an additional set of coils to create extra branches to dissipate plasma flows toward

target plates, thereby reducing heat flux. An illustration of this configuration is

shown in Figure 2.2.

The effectiveness of the snowflake divertor relies on cross field transport

in the poloidal magnetic null region. However, transport in this area is poorly
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Figure 2.2: A schematic of a perfect snowflake divertor[56]

understood, as the majority of plasma turbulence simulations do not directly

model X-points, since they usually employ a field-aligned coordinate system. The

X-point is where flux surfaces cross, and in a tokamak this region has effectively

no poloidal magnetic field component. For reasons which will be discussed later,

X-points create numerical instability in plasma turbulence simulations and are

therefore difficult to model efficiently. The most common method currently is

to interpolate parameters from either side of the X-point region. This system,

however, could potentially exclude important physics associated with this region.

As a region of complicated plasma dynamics which can greatly affect the edge

and SOL flows, the X-point region is an area that merits direct modelling, and

this is a major aim of this research.

2.2 Transport in tokamaks

If the plasma physics associated with toroidal confinement were as simple as

described in Section 1.3.2, it would be possible to have a tokamak producing a

net energy gain via fusion reactions in a relatively small room. Unfortunately, the

analysis presented previously neglected important transport mechanisms which

are inherent in toroidal magnetic confinement: drifts and turbulent transport.
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2.2.1 Plasma Drifts

A toroidal magnetic configuration destroys the magnetic field uniformity of linear

configurations. Any lack of uniformity will lead to either parallel acceleration

(partially discussed in Section 1.3.1), or a drift of particles perpendicular to the

magnetic field, which will be briefly discussed here.

Drifts of particles can be broadly characterized by the general drift mecha-

nism:

� A partial expansion/contraction of the Larmor orbit, causing a nonuniform

Larmor radius as a particle completes an orbit: E×B, ∇B, and curvature

drifts

� A shift of the Larmor orbit: the polarization drift

� Fluid flows due to Larmor motion: the diamagnetic drift

Referring to the Lorentz force (Equation 1.3), we can see that the perpen-

dicular motion of a charged particle can be influenced by either the electric field or

the magnetic field. Let us first consider the effect of an electric field perpendicular

to the magnetic field, which is shown in Figure 2.3 [30].

A charged particle is always accelerated either parallel or anti-parallel to

the electric field, depending on the sign of the charge. Referring to situation (a)

in Figure 2.3, we see that at point 1 of a particle’s orbit, it is travelling parallel

to the electric field. This causes an acceleration such that at point 2, the particle

has a higher perpendicular speed, v⊥, before it is decelerated at point 3 such that

it has a low perpendicular speed at point 4. By referring to Equation 1.4, we see

that this creates a larger Larmor radius at the top of the orbit, and a smaller

orbit at the bottom. This causes a net drift outwards, which is referred to as

the E ×B drift as it is caused by an electric field which is perpendicular to the

magnetic field. The radial drift velocity vE caused by this effect is described as

in Equation 2.1

vE =
E×B

B2
(2.1)
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Figure 2.3: An illustration of the E×B drift [30]

This effect – that a perpendicular (specifically, vertical) electric field causes

a radial advection – is an important mechanism in filament dynamics, which will

be discussed in greater detail in Section 2.3.1. Understanding the consequences

of this effect will help to understand confinement degradation in tokamaks and

other magnetic confinement devices.

Another mechanism for particle drifts is a variation in the magnetic field. It

has already been discussed how a parallel variation in the magnetic field strength

can lead to trapped particles in magnetic mirrors. A radial nonuniformity can

also lead to a particle drift, as described in Figure 2.4.

When referring again to the expression for a particle’s Larmor radius, Equa-

tion 1.4 it is apparent that in areas of higher magnetic field, the particle will have

a smaller Larmor radius. This in turn means that the variation in the magnetic

field strength causes a nonuniform orbit, leading to a drift (which is shown here

to be vertical). Unlike the E×B drift, the ∇B drift causes the electrons and pos-

itively charged ions to drift in opposite directions. The ∇B drift can be described
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Figure 2.4: An illustration of the ∇B drift [30]

in a similar form to the E×B drift:

v∇B =
v2
⊥

2Ωc

B×∇B

B2
(2.2)

where Ωc = esB
ms

is the Larmor, cyclotron, or gyro-frequency – or the fre-

quency with which a particle orbits a field line – where es and ms are the charge

and mass of the species, respectively. It should be noted here that the gyrofre-

quency carries the sign of the charge, which indicates the direction of oscillation

around the field line. From Equation 2.2, we see that a radial gradient in the

toroidal magnetic field strength causes a vertical drift.

The final drift which is caused by the modification of the Larmor radius

across a gyro-orbit is the curvature drift. As a particle is traversing along a

curved field line, it will experience a centripetal force. At the top of the gyro-

orbit (for instance) this force accelerates the particle, causing a larger Larmor

radius, and decelerates the particle at the bottom of the orbit. This, like the ∇B
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drift, causes a vertical net drift, given by:

vcurv =
v2
‖

Ωc

Rc ×B

R2
cB

(2.3)

where Rc = Rcr is the radius of curvature. Similar to the ∇B drift, the

curvature drift causes electrons and ions to be shifted in opposite directions. In a

fluid model like that which will be described in Section 2.5.1, the curvature and

∇B drifts are combined since the parallel and perpendicular velocities are not

evolved separately.

These three drifts have been derived considering time-independent electro-

magnetic fields. However, when a time-varying electromagnetic field is imposed,

further drifts can arise. Let us first consider a time-varying radial electric field. If

a particle initially at rest in a homogeneous magnetic field suddenly experiences a

radial electric field E, it will be accelerated radially – for ions, in the direction of

the electric field. Once it is in motion, it experiences the effects of the magnetic

field, and begins to gyrate in a Larmor orbit. Once the electric field is no longer

applied, the particle no longer experiences a radial force, and is left to gyrate.

Now, however, it’s guiding center has been shifted radially. This is described as

the polarization drift, and is described by:

vpol =
1

ΩcB

dE

dt
(2.4)

As this drift relies on a time varying electric field, it can only be present

for a finite amount of time. Therefore this drift can be relatively small, but the

current associated with this drift is an important mechanism in plasma dynamics,

as will be discussed in Chapter 4.

It should be noted that the drifts described by Equations 2.2, 2.3, and 2.4

are all dependent on the mass of the species. For this reason, the drifts will be

smaller for electrons than for ions, as me/mi � 1. Furthermore, the discussion

here is meant solely to be illustrative, since currents derived from considerations
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of single particle orbits can be misleading, as a full currents should be averaged

over entire distributions of particles – currents will most likely not be completely

uniform.

The final drift which will be discussed is the diamagnetic drift which is

caused by a gradient in pressure. One of the most distinguishing features of the

diamagnetic drift is that the individual gyro-orbits do not drift; rather, there

is a net fluid motion of particles which can be described as a drift. Consider a

situation with a pressure gradient perpendicular to the magnetic field, as shown

in Figure 2.5.

Figure 2.5: A description of the diamagnetic drift.

Consider the shaded region in Figure 2.5. Due to the pressure gradient ∇P ,

there are more particles at the top of the diagram than at the bottom. Therefore,

in this shaded region, there are more particles appearing to move to the left than

those to the right. This creates a net drift motion of a fluid, and is called the

diamagnetic drift. An expression for the fluid velocity of the diamagnetic drift is

shown as Equation 2.5.

vd =
1

Zen

B×∇P
B2

(2.5)

Again, this drift is dependent on the charge of the particle, and is in opposite
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directions for electrons and ions. This drift is important in filament dynamics,

which will be discussed in Section 2.3.1, as it can lead to currents within the

filaments and ultimately a charge separation. In a constant magnetic field, the

MHD equilibrium force balance equation (J ×B = ∇P ) dictates that the there

must be a uniform pressure. Therefore this current arises to maintain equilibrium

and cancel the opposing field. However, no isolated finite pressure plasma can

develop a self-confining magnetic field to satisfy a force-balance equilibrium [57].

Furthermore, a density gradient in a finite plasma will cause drift waves, which

flow perpendicular to the magnetic field at the diamagnetic drift velocity [22]. To

illustrate how the diamagnetic current arises, consider a Gaussian perturbation

in density in the plane perpendicular to the magnetic field, Figure 2.6.

Figure 2.6: An illustration of the diamagnetic current. Pressure gradients create
a flow perpendicular to both B and ∇P (counterclockwise here). However, since
the magnetic field is not constant, the effect is stronger in areas of weaker magnetic
field, and therefore causes a net vertical drift. Diagram courtesy of Ben Dudson

Consider particles on particular flux surfaces (labelled in blue in Figure 2.6).

While the diamagnetic drift doesn’t lead to a direct shift of individual particles,

there is a net fluid drift counter clockwise. However, since there is a gradient in

magnetic field, the drift is stronger (referring to Equation 2.5) for those particles

in the region of weaker magnetic field. This results in a net current which can be
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described by the following relation:

Jdia =
B×∇P
B2

(2.6)

This current is fundamental to the physics of blob propagation, which will be

discussed in Section 2.3.1. Note that the divergence of this current has the same

net effect as the divergence of the ∇B and curvature drift currents. This is best

noticed by expanding the MHD equilibrium force balance equation (∇P = J×B),

and noting ∇×B = J, providing a curvature term and a pressure gradient driven

term.

We have been able to describe the main drifts in tokamaks. While these

effects do limit the performance of tokamaks, there is an additional transport phe-

nomenon which further degrades the confinement. The following section discusses

turbulence and its effect on the confinement of plasma in magnetic configurations.

2.3 Turbulence

Tokamaks were originally predicted to provide a net energy output from a rela-

tively small device. Unfortunately these predictions failed to consider the effects

of plasma turbulence. Turbulence is a ubiquitous phenomenon in all fluids; it is

apparent when milk is poured into tea, and in the evolution of galactic clouds.

The varied forms of turbulence have prevented a unified theory to describe it.

It is not a new phenomenon either – Leonardo Da Vinci sought to understand

the nature of turbulence, as is evident in his drawings dated 1510, shown as

Figure 2.7 [58].

Turbulence, perhaps due to its ubiquitous (and equally varied) nature, has

been defined in many different ways. Let us choose a definition similar to that of

Tsytovich [59], which describes turbulence as nonlinear dynamical behavior with:

� (apparent) randomness and irreversibility. Turbulence is deterministic and

dependent on initial conditions.
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Figure 2.7: Drawings from Leonardo Da Vinci describing the turbulent motion
of fluids, indicating a cascade of eddies at various scales.

� the excitation of fluctuations across a range of scales.

� exchanges of energy between fluctuations excited over this range of scales.

This definition of turbulence is broad, but thereby encapsulates almost all

aspects of the various forms of turbulence. In studying turbulence, we select

properties to be studied. The typical properties of turbulence which are analyzed

are (not limited to):

� Correlations: how closely two quantities are related

� Correlation lifetimes: the amount of time it takes for the relation between

quantities to be lost. The random nature of turbulence gives correlations a

finite lifetime.

� Spectral energy transfer: the transfer of energy between scales. This is

apparent in Figure 2.7, where Da Vinci has drawn water whirls in many

different sizes, having been created by a large perturbation – the flow from

the top right. This phenomenon is often described in cascades of turbulent

eddies.

� Invariance, symmetry, and symmetry breaking: homogeneous, unbounded

turbulence has an apparent symmetry in the cascade through scales and the
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excited modes. By imposing boundaries (i.e. in a tokamak), the symmetry

is broken.

� Transport or movement: the spatial transport of quantities via turbulence

is a fundamental obstacle in plasma physics

It is now understood that turbulent transport is the dominant radial dif-

fusive process in tokamak devices [60, 61], and therefore limits performance and

determines machine size. Furthermore, turbulence in fusion plasmas can affect

the heat and particle flux onto plasma facing components. While turbulence has

been studied extensively for centuries, a complete unified description remains a

mystery.

Fortunately, there have been significant advances in understanding plasma

turbulence in recent years [62]. By modelling plasma turbulence in tokamaks,

one can ascertain the performance of certain configurations. For instance, the

fluid turbulence simulations presented within this thesis allow for direct exper-

imental comparison to present devices. By benchmarking simulations against

experiments, it is possible to apply the same numerical methods to future devices

and predict their behavior. Additionally, it is possible to surmise configurations

which limit turbulent transport and therefore increase performance.

2.3.1 Filament Physics

Part of the research presented in this thesis, specifically Chapter 4, explores the

behavior of filaments (or blobs) in a complicated magnetic geometry including

a poloidal magnetic null region. Filaments are typically field aligned plasma

structures found in the edge and scrape off layer (SOL) of tokamaks, and are a

form of turbulent transport. There is a good review of filament physics found

in [63], and this section will serve only as a brief overview.

D‘Ippolito et al. [63] define blobs as:

� A monopole density distribution with a peak value much higher than the

surrounding RMS fluctuations of the background plasma (typically ≥ 2

times)
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� Having an alignment to the magnetic field such that variation along the

field line is weaker than in the transverse direction

� Exhibiting a dominantly dipole potential in the perpendicular plane which

causes a strong component of E ×B motion radially.

There are many different names for plasma filaments [64]. For the sake

of simplicity, the terms ‘filament’ and ‘blob’ will be used interchangeably when

referring to this phenomenon throughout this thesis.

There has been substantial research into the physics of blobs, as they are

considered to be an important mechanism for heat and particle transport out of

the plasma during L-mode and inter-ELM H-mode plasmas [65]. However, while

blobs have been measured in many tokamaks [66, 67, 68, 69], they are also evident

in other magnetic configurations such as stellarators [70] and linear devices [71].

Additionally, and of particular pertinence to these studies, there is significant

study of filament propagation within simple magnetic tori such as the TORPEX

device [72, 73].

As blobs are seen across a broad range of magnetic configurations, significant

effort has gone into determining the physics behind their behavior. Generally, the

research can be divided between that of filament origins and propagation. The

research presented within this thesis focuses only on the motion of filaments, and

therefore this background will cover only the physics associated with blob propa-

gation. The fundamental physics of blob propagation is described in Figure 2.8.

Diamagnetic drifts (equivalently the∇B and curvature drifts) cause a charge

separation (shown as the grey dipole in Figure 2.8), which causes an electric field

to develop. This electric field then gives rise to E×B convection (vE) in the form

of counter-rotating vortices, since a flow develops perpendicular to the dipole elec-

tric field. These vortices then drive the filament radially outwards (anti-parallel

to ∇B and κ). The propagation of filaments once in motion is dependent on the

mechanism for the charge separation, which will be discussed shortly.

The primary model for filament propagation was published by Krashenin-

nikov in 2001 [74] for filaments in tokamaks, and will be reproduced here. For this

derivation, the electron temperature Te is considered constant, and the parallel
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Figure 2.8: Schematic of blob propagation mechanism showing the formation
of counter-rotating vortices from diamagnetic drifts

dynamics are neglected – only providing boundary conditions. It is proposed that

a quasineutral (ni ≈ ne) filament will have no internal divergence of the current:

∇ · J = ∇ · J⊥ +∇ · J‖ = 0 (2.7)

where J is the current density and J⊥ and J‖ are the perpendicular and

parallel components of the current density. As the motion of blobs is considered

to be caused by E×B advection, we write:

∂n

∂t
= −vE · ∇n (2.8)

Which is the lowest order of the density continuity equation where n is

the density of the blob and vE is the E × B velocity. The potential difference

(which creates the electric field via E = −∇φ) which forms across the dipole is

derived via current balance in Equation 2.7. In Krashenninikov’s model, the only

perpendicular current is that caused by the curvature and ∇B drifts, allowing us
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to write:

∇ · J⊥ = ∇ · Jdia = ∇ ·
(

B×∇P
B2

)
≈
(
∇× b

B

)
· ∇P (2.9)

where P = nT is the pressure and with:

∇× b

B
=

2

B
b× κ+

2

B2
b×∇B (2.10)

where κ is the curvature vector. This expression (2.10) is just the sum of

the curvature and ∇B contributions to the perpendicular current, as discussed

in Section 2.2.1. As this is a single-fluid approximation, the species dependence

of the drifts is neglected, assuming a single drift direction. Assuming the ∇× b
B

contributions are perpendicular to both the radial and parallel directions (and

defining this direction to be z), we can write:

∇ · J⊥ =

(
∇× b

B

)
· ∇P ≈ 1

BR

∂P

∂z
= ∇‖J‖ (2.11)

Here, we have defined b ·∇ = ∇‖, which will be used throughout this thesis

for parallel gradients. As stated previously, Krashenninikov assumes minimal

variation along the magnetic field, allowing us to integrate along the field line

such that:

∫ L‖

0

dl
1

BR

∂P

∂z
≈

L‖
BR

∂P

∂z
= ∆J‖ (2.12)

where L‖ is the parallel connection length between the ends of the filament

(which are assumed to be the divertors), and ∆J‖ is the difference between the

parallel current density at the two ends (sheaths) of the filament. It is then

possible to substitute a relation for the current density at the sheaths, obtained
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from [75], and neglecting parallel flow, allowing us to write:

∆J‖ ≈ −entcs
(
eφ

Te

)
(2.13)

where e is the electron charge, nt is the density at the target (divertor),

cs =
√
Te/mi is the sound speed, and φ is the potential. Substituting this

expression into Equation 2.12 gives:

eφ

Te
=

L‖Te
BRentcs

∂nb
∂z

(2.14)

where nb is the density of the blob. Equation 2.14 provides a relation be-

tween the potential difference across the filament and the filament density. We

can now determine the E × B velocity and substitute into Equation 2.8. If

we assume that the density at the target is some fraction of the blob density,

nt = χnb, and we write the resulting equation as a separable ballistic equation:

nb(x, z, t) = nxb (x, t)n
z
b(z), where nzb ∝ exp(−z2/δ2) with δ being the perpendicu-

lar width of the filament and x as the radial coordinate. We then arrive at the

following expression describing a filament moving radially:

v = cs

(ρs
δ

)2 L‖
R

nb
nt

(2.15)

where ρs = cs/Ωi is the gyroradius with Ωi = eB/mi describing the gyro-

frequency. Equation 2.15 is considered a major result in filament dynamics and

is often referred to as the sheath-limited scaling of filament propagation as it

assumes the charge separation within the filament is dissipated via the sheath

currents. In deriving this expression, however, many parallel dynamics were

neglected. In reality, the charge separation can be mitigated by other currents,

as described in Figure 2.9.

In a filament, a potential difference is created due to the separation of
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Figure 2.9: Schematic of current dissipation mechanisms in filaments, taken
from [76]

charge. Since plasmas are often considered to follow the Boltzmann relation,

the potential perturbation is often on the scale of the density perturbation. The

way this potential is mitigated determines how the filament is advected. If the

parallel resistivity η‖ is high enough, or likewise the connection length L‖ to the

sheath is too long, the blob circuit shown in Figure 2.9 can be short circuited

by the polarization current J⊥pol. When this occurs, the filament propagation

velocity follows a δ1/2 scaling [77], and is considered to be inertially limited.

By analyzing the filament propagation and the currents within the system, it

is possible to determine the blob propagation regime. Section 4.4.1 contains an

analysis of the blobs in a poloidal magnetic null point geometry by following

these principles. Additionally, the mechanism for charge dissipation is a central

question within the research presented in this section, as it helps determine the

validity of an analytical model.

2.3.2 Simulating turbulence

As it has become apparent that turbulence is the dominant mechanism for heat

and particle transport in plasmas, there has been great effort into researching

plasma turbulence. The research presented within this thesis focuses on turbu-

lence modelling in various magnetic geometries. There are several approaches

to model plasma turbulence, and they can be distinguished by considering the
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different assumptions in deriving the models and consequently the scales involved.

In constructing a description of plasma turbulence, we must begin with

finding a fundamental description of plasmas [22]. Due to the number of particles

involved, any description must be statistical, therefore we begin by considering

a distribution function f(x,v, t) which describes the probability density for a

particle to exist at time t, with a position x and a velocity v. We can then write

that the distribution function is a function of the particle’s position q = x and

canonical momentum p = mv such that f = f(q,p). In the absence of external

sources, the distribution function is assumed to follow a continuity equation:

df

dt
= −f

(
∂

∂q
· q̇ +

∂

∂p
· ṗ
)

(2.16)

where the time derivative on the left hand side is defined as:

d

dt
=

∂

∂t
+ q̇ · ∂

∂q
+ ṗ · ∂

∂p
(2.17)

The right hand side of Equation 2.16 can be shown to be zero by substituting

Hamilton’s equations:

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
(2.18)

Therefore Equation 2.16 becomes:

∂f

∂t
+ q̇ · ∂f

∂q
+ ṗ · ∂f

∂p
= 0 (2.19)

Which is a form of the Boltzmann equation. Reminding ourselves that a

particle in a plasma is subject to the Lorentz force, Equation 1.3 and that the

force exerted on a particle is the time derivative of the momentum (Newton’s
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Second Law), we write:

ṗj = Zej (E + v ×B) (2.20)

By substituting this into Equation 2.19, we arrive at the Vlasov equation:

∂f

∂t
+ v · ∂f

∂x
+
Zej
mj

(E + v ×B) · ∂f
∂v

= 0 (2.21)

The Vlasov equation describes the behavior of a collection of particles in a

plasma in the absence of collisions. To include collisions, a collision operator C

is added which varies based on the type of collisions present. This addition gives

the Vlasov-Fokker-Planck equation:

∂f

∂t
+ v · ∂f

∂x
+
Zej
mj

(E + v ×B) · ∂f
∂v

= C[fj, fi] (2.22)

We now have an equation which describes the distribution function for a

particle species j under the influence of an electric field E, magnetic field B and

colliding with species i. This expression is difficult to solve completely, as it

is 7-dimensional. As such, it serves as the starting point for many descriptions

of plasma. The various descriptions of plasma differ by which assumptions and

simplifications of the Vlasov-Fokker-Planck equation are made.

By assuming that electromagnetic field varies significantly across a Larmor

orbit and averaging this effect over that orbit (or, gyro-averaging), the gyroki-

netic equation is obtained. This description focuses on smaller scale effects both

in time and space, as numerical simulation of the gyrokinetic equation is compu-

tationally expensive. At the moment, this is the only method by which stellarator

turbulence is modelled due to the complexity of the nonaxisymmetric magnetic

field. The difficulties of simulating nonaxisymmetric fields in fluid simulations

will be discussed in depth in Chapter 5. Gyrokinetics are also often used to sim-
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ulate core plasmas in tokamaks, as the high temperatures (and low collisionality)

prompt a kinetic treatment.

Alternatively, by taking moments of the Vlasov-Fokker-Planck equation, one

arrives at a set of fluid equations for both species (electrons and ions). Further

simplifications such as quasineutrality (ne = ni) lead to single fluid equations.

This fluid description of plasma assumes that fluctuations occur on scales much

larger than a gyroradius, and slower than a gyrofrequency. Fluid turbulence

simulations often assume a flute-reduction such that perturbations perpendicu-

lar to the magnetic field occur on smaller spatial and temporal scales to those

in the parallel direction. This assumption often leads to computation on field-

aligned grids, which is impractical in complicated magnetic geometries and will

be discussed in more detail in Section 2.4. Fluid descriptions are often used for

global plasma edge simulations in tokamaks, as the collisionality is high enough

to assume a fluid description.

It is this fluid approach to plasma turbulence simulation that is mainly

employed in BOUT++. The main advantages are that large scales can be efficiently

simulated, while still recovering relevant physics. A brief derivation of the fluid

model used in this thesis will be provided in Section 2.5.1.

2.4 BOUT++

To perform the modelling in this research, a framework developed primarily in

York called BOUT++ is used. BOUT++ is a highly adaptable, modular tool which

simulates an arbitrary number of equations in 3D curvilinear coordinates, with

the original intention of simulating flute-reduced plasma fluid turbulence models.

It is written primarily in C++, although the pre- and post-processing routines

are written in Python, IDL, Mathematica and Matlab. Unlike most fluid turbu-

lence codes [78, 79], BOUT++ does not solve a particular plasma model. Rather,

the model (and numerical methods) can be changed. This allows for greater flex-

ibility and adaptability to the physics which is to be investigated. The model

implemented for the majority of the simulations presented within this thesis is
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described in Section 2.5.1. Some of the advantages of BOUT++ are:

� An object-oriented and modular structure. Users can alter numerical meth-

ods, schemes and solvers without altering the core structure of the code.

This allows for a greater flexibility and alterations which are specific to the

issues to be investigated.

� Generalized differential operators. These operators can be solved in any

curvilinear system where the metric tensor varies in two dimensions (this

limitation will be addressed in Chapter 5). This allows various geometries

to be implemented with minimal alteration to the code.

� A straightforward syntax for model implementation, allowing for simple and

natural code implementation.

BOUT++ was originally developed with the intention of solving plasma fluid

turbulence models in field aligned coordinate systems. In the context of typical

BOUT++ meshes, a field aligned system refers to a coordinate system in which one

coordinate is aligned to the magnetic field (typically y in BOUT++), and another

coordinate is radial (x) and one is toroidal (z). This coordinate system allows for

stability and efficiency of numerical methods, as the parallel derivatives always

lie in only one coordinate direction, and therefore the parallel operators must

only be one dimensional. Figure 2.10 illustrates half of a poloidal cross section

for a field-aligned mesh of the Mega-Ampere Spherical Tokamak (MAST), which

is generated using a common grid generator for BOUT++ called Hypnotoad.

Figure 2.10 quite nicely demonstrates the limits of a field aligned coordinate

system. Firstly, this method cannot correctly capture the plasma-surface inter-

action at divertor strike points. Consider the mesh which covers the outboard

divertor leg (magenta). As the coordinate must be strictly radial (technically,

perpendicular to flux surfaces), it cannot be aligned to the divertor (shown as a

horizontal red line) as the divertor is not aligned perpendicularly to flux surfaces.

For this reason, any divertor interactions must be extrapolated.

The treatment of X-points in field-aligned systems is the main motivation

for this work. As the field is completely toroidal at the X-point, the field aligned
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Figure 2.10: The field-aligned coordinate system (black, red, cyan, magenta)
within BOUT++, as illustrated in half of a poloidal cross section if the MAST
tokamak. The black contour lines illustrate magnetic surfaces, and the red lines
at the edges of the figure represent the location of the vacuum vessel.

coordinate system is insufficient since two coordinates (toroidal, field-aligned)

are then parallel. This mathematical singularity causes numerical instability in

the form of zero volume elements. Instead, the mesh is generated as closely

as possible to the X-point without violating the Courant-Friedrichs-Lewy (CFL)

condition [80]. While an implicit method is used, small grid cells lead to small

timesteps.

The CFL condition imposes a limit on the spacing of grid points when

solving partial differential equations using finite difference methods. Heuristically,

the limit arises based on the amount of time that a wave propagates across a grid

cell. If this time is less than the timestep used in solving the differential equation,

the solution cannot be correct.

As a result, there is a significant portion of the computational domain in

the magnetic null region where there are no explicit calculations. This could

potentially exclude important physics. For instance, there has been a recent

proposition of a “churning mode” [81] near poloidal magnetic nulls in tokamaks.
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This mode could become important when describing the distribution of heat and

particle flux in divertor configurations such as the snowflake [82].

There are several options for coordinate systems which are able to generate

a computational mesh which accurately describes the physics near null points.

One method which has recently been implemented into BOUT++ through the mod-

ification of Hypnotoad, though is not used in this thesis, is the non-orthogonal

coordinate system which is shown in Figure 2.11.

Figure 2.11: The nonorthogonal field-aligned coordinate system (black, red,
cyan, magenta) within BOUT++, which is able to more closely model the X-point
and include realistic strikepoint coverage.

With the implementation of the nonorthogonal coordinate system illus-

trated in Figure 2.11, the X-point is more closely (but still not completely) mod-

elled while still maintaining the advantages of field aligned coordinate systems

allowing for more efficient computation. This method will not be used within this

thesis, but it should be mentioned due to its potential application to X-point and

divertor studies.

For the work presented herein, the method of prescribing a Cartesian coordi-

nate system is used. This creates a singularity-free orthogonal coordinate system,
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allowing for more flexible magnetic geometries. For this research, the Cartesian

coordinate system is imposed such that the x direction is now considered horizon-

tal, z is vertical, and y is toroidal. With this stability comes a few disadvantages.

One must be clever in implementing the magnetic geometry. For the work within

this thesis, the magnetic field is implemented in two ways. Firstly, an analytical

form for the magnetic vector potential is found and the parallel derivatives are

modified to include the perpendicular perturbation, as described in Section 2.5.2.

Secondly, a new method for parallel derivatives called the Flux Coordinate Inde-

pendent [83] method has been implemented into BOUT++. This method allows for

much more complicated magnetic geometries and will be discussed in Section 5.2.

The stability of imposing a Cartesian coordinate system comes a the cost of

numerical efficiency. Since the field line no longer lies in a coordinate direction,

parallel derivatives are less efficient, as each operation must be a three dimensional

operation. The efficiency is also degraded in the case of FCI derivatives, as an

interpolation scheme must also be used for each derivative. The advantages and

disadvantages of such a system will be explored in Chapter 5.

The original metric tensor in BOUT++ was implemented to be two dimen-

sional, assuming that there is always a symmetric direction z. As such, spectral

methods are often used in computing derivatives or operators in the z direction

such as Laplacian inversion. This is sufficient for axisymmetric tokamak cases,

as the toroidal z direction is is the direction of symmetry. However, the author

of this thesis insists on doing things the difficult way, and the new z direction,

the vertical direction, has broken the periodic and symmetric nature. As such, a

new method for Laplacian inversion must be implemented, as will be discussed

in the following section.

2.5 Isothermal model and Numerical methods

The strength of BOUT++ lies in its flexibility. As we are free to choose a (sensible)

plasma model, this section describes the isothermal model which will be utilized

in this thesis. Additionally, the modular nature of BOUT++ allows for the imple-
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mentation of new numerical methods. The common numerical methods used in

the majority of this thesis are also presented here.

2.5.1 Isothermal model

The research described in Chapters 3 and 4 utilize an isothermal reduced mag-

netohydrodynamic model which was initially developed for blob studies [84], but

has been extended to evolve parallel velocity. For a full description of the deriva-

tion, see Nick Walkden’s thesis [64], where the original model was derived by

following that found in Reference [85, 86]. A brief outline of the derivation will

be provided here.

The derivation of this model begins, like many plasma fluid turbulence mod-

els, by taking moments of the Vlasov-Fokker-Planck equation (Equation 2.22).

We start with the zeroth moment which describes the density continuity for a

species j:

∂nj
∂t

+∇ · (njuj) = Sn,j (2.23)

where nj is the density, uj is the velocity, and Sn,j is a source term. The

first moment of the Vlasov-Fokker-Planck equation provides the momentum con-

servation equation:

mj
∂njuj

∂t
+∇pj+∇·

(
↔
πj +mjnjujuj

)
= Zjenj (E + uj ×B)+R+Sm,j (2.24)

where mj is the mass, pj is the pressure,
↔
πj is the viscous stress tensor, Zj

is the atomic number, and Rj is the friction force. The displacement term in

Ampere’s law is neglected here, as in many MHD models. This approximation

is valid only for highly conducting fluids at low frequency (less than the plasma

frequency). For this derivation there are assumed to be no sources (Sn,j = Sm,j =

0) and a drift ordering scheme is used which assumes:
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� The plasma equilibrium exhibits two separable length scales; one with

slowly varying quantities Ls and one with fast varying quantities Lf . On

both scales, quantities are varying on a timescale such that at each time the

plasma is in MHD equilibrium (J×B = ∇P ), but this variation is on slow

timescales compared to the Alfvén time. Quantities on the slowly varying

time scale are assumed to have a large spatial extent, whereas quantities

which are quickly varying are assumed to exhibit a small spatial extent.

Effectively, this is the separation between the parallel and perpendicular

length scales within the scrape off layer, as Ls is assumed to be associated

with effects such as the curvature of the equilibrium magnetic field, and Lf

is associated with local radial gradients. A small parameter ε is defined:

ε ≡ Lf
Ls
� 1 (2.25)

� Other assumed small parameters include the plasma β, which is the ratio

of the thermal to magnetic pressure:

β ≡ 2µ0nT

B2
0

� 1 (2.26)

and a collision-dominated, magnetized plasma is assumed such that:

∆ ≡ λ

Ls
� λ

Lf
� 1 (2.27)

δ ≡ ρ

Ls
� 1 (2.28)

where λ is the ion-electron mean free path and ρ is the Larmor radius.

� The time scales are assumed to follow the ordering that:

ω � ν � Ω, ωpe (2.29)
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where ωpe =
√
nee2/meε0 is the plasma frequency, ω is the frequency of the

relevant physics, ν is the collision frequency, and Ω is the gyrofrequency.

Physically, this means that the plasma is magnetized but still collisional;

particles can travel around orbits, but will still experience collisions.

To derive an expression describing the density evolution, we first obtain expres-

sions for the perpendicular flow velocity. By taking the perpendicular component

of our momentum conservation equation, Equation 2.24, we begin to see some

familiar terms. By noting the following relation:

B× (uj ×B) = B2uj − (u ·B) B ≡ B2u⊥ (2.30)

we can arrive at an expression for our total velocity:

u = u‖ + u⊥ = u‖ + ud + uE + up (2.31)

where we have recovered the diamagnetic velocity:

ud =
1

Zjenj

B×∇p
B2

(2.32)

the E×B velocity:

uE =
B×∇φ
B2

(2.33)

and the polarization velocity:

up =
1

ΩjB2
B×

(
∂u

∂t
+ u · ∇u +

∇ · ↔πj −Rj

mjnj

)
(2.34)

The drift ordering makes the polarization velocity a small correction to the

E × B velocity (∼ δ2
i ), and will be simplified when deriving an expression for

vorticity.

This seems as good a time as any to discuss the viscous stress tensor,
↔
π .

First, we can split this tensor into its parallel, perpendicular, and gyroviscous
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components:

↔
π =

↔
π‖ +

↔
π⊥ +

↔
πg (2.35)

The perpendicular component describes the resistance of particles to move per-

pendicularly caused by collisions. The gyroviscous component describes the vis-

cous stress on a rotating fluid element due to its gyro-motion. We will be neglect-

ing the collisional (parallel and perpendicular) components as they are smaller

than the gyroviscous part by a factor of 1
Ωi

[87]. For a detailed description of the

gyroviscous tensor, see References [88, 89]. When considering many gyro-orbits,

the gyroviscous stress creates a net vertical stress. Therefore, to the leading order,

the gyroviscous stress tensor is given by [85]:

↔
πg ≈ −ud,i · ∇u (2.36)

This approximation is often referred to as the gyroviscous cancellation, and is

justified in that it removes the divergence free advection due to particle orbits.

Quantities are considered not to be advected due to gyromotion, but instead by

the guiding center motion described previously. This cancellation removes any

effects due to the gyromotion, much like gyroaveraging removes these effects in

gyrokinetic and gyrofluid treatments.

Derivation of density continuity

To derive the density equation, we begin by substituting Equation 2.31 into our

density continuity expression, Equation 2.23. We neglect the contribution of the

polarization velocity as the drift ordering assumes its 1/Ωi dependence determines

that it is me/mi smaller than than uE and ud . Utilizing this assumption, we get:

dn

dt
+ uE · ∇n = −n∇ · uE −∇ · (nud)−∇ ·

(
nu‖

)
(2.37)
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It is easiest to evaluate this expression term by term. We will begin now to write

our magnetic field vector as b = B
B

. Let’s start by simplifying the first term on

the right hand side by recalling that the curl of a gradient is exactly zero:

n∇ · uE = n∇ ·
(

b

B
×∇φ

)
=

(
∇× b

B

)
· n∇φ+ n

b

B
(∇×∇φ)

=

(
∇× b

B

)
· n∇φ

(2.38)

We can perform a similar treatment on the second term on the right hand side

of Equation 2.37:

∇ · (nud) = ∇ ·
(

b

B
× ∇p
Ze

)
=

(
∇× b

B

)
· ∇p
Ze

+
b

B

(
1

Ze
∇×∇p

)
=

(
∇× b

B

)
· 1

Ze
∇p

(2.39)

The third and final term on the right hand side of Equation 2.37 can be

treated by first considering the electron expression and recalling the definition of

a parallel current:

∇ ·
(
nu‖,eb

)
= ∇ ·

(
nu‖,i −

J‖
e

)
b

= ∇‖
(
nu‖,i −

J‖
e

)
+

(
nu‖,i −

J‖
e

)
∇ · b

(2.40)

where ∇‖ = b · ∇. We can split the velocity term ∇‖nu‖,i and recall for the

second half of the expression that:

∇ · b =
1

B
∇ ·B + B · ∇ 1

B
= − B

B2
∇B = − 1

B
∇‖B (2.41)

Therefore we can write the parallel component of Equation 2.37 as:

∇‖
J‖
e
− n∇‖u‖,i − u‖,i∇‖n−

1

B

(
n∇‖u‖,i −

J‖
e

)
∇‖B (2.42)
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This gives us the following expression for the density of electrons:

dn

dt
+ uE · ∇n =

(
∇× b

B

)
·
(

1

e
∇p− n∇φ

)
+∇‖

J‖
e
− n∇‖u‖,i

− u‖,i∇‖n−
1

B

(
n∇‖u‖,i −

J‖
e

)
∇‖B

(2.43)

We now begin to apply our reductions to this model. Firstly we assume a

large aspect ratio, such that ∇‖B → 0. We also assume an isothermal plasma

with cold ions: Ti � Te ≈ constant ⇒ p ≈ nTe ⇒ ∇p ≈ Te∇n. Finally, we

define our polarization vector ξ ≡ ∇ × b
B

which defines the direction of charge

polarization due to the drifts described earlier in section 2.2.1. Applying these

reductions, we arrive at the final form of our density continuity equation:

∂n

∂t
+ uE · ∇n = 2csρsξ · (∇n− n∇φ) +∇‖

J‖
e
− n∇‖u‖ − u‖∇‖n (2.44)

where cS =
√

Te
mi

is the sound speed, ρs = cs
Ωi

is the gyro radius, and Ωi = eB
mi

is the cyclotron frequency.

Derivation of the vorticity equation

Next, we can derive an expression for vorticity by considering the ambipolarity

condition ∇·J = 0 where J = Zne (ui − ue). For this derivation, we will assume

a hydrogen plasma such that Z = 1. We can then expand the electron and ion

velocities into the components as described in Equation 2.31 in order to write:

−∇‖J‖ = ∇ · (ne[ud,i − ud,e]) +∇ · [en (up,i − up,e)] (2.45)

We note that the first term on the right hand side of Equation 2.45 has a

similar form to Equation 2.39, which allows us to write:

∇ · (neud,i − ud,e) =

(
∇× b

B

)
· ∇ (pi + pe) (2.46)

To simplify the second term in the right hand side of Equation 2.45, we
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recall our expression for the polarization velocity, Equation 2.34. As the inertial

part of this velocity is dependent on 1/Ωj, it is clear that the electron polarization

is smaller than the ion polarization by a factor of me/mi and therefore can be

neglected. The electron-ion friction term, Rj is written as:

Re = −Ri = en

(
J‖
σ‖

+
J⊥
σ⊥

)
(2.47)

where nonisothermal terms have been neglected. Therefore, the friction

terms in the polarization current cancel. Finally, we use the gyroviscous approx-

imation to leave only the leading order for the viscous stress tensor, allowing us

to write:

∇ · (neup,i − up,e) = ∇ ·
[
b×

(
1

Ωi

n
∂

∂t
ui − ud,i · ∇u

)]
(2.48)

To write our perpendicular components of the velocity, we first remind

ourselves that the polarization current is small by a factor of 1
Ωi

, and therefore

is neglected. Therefore our perpendicular velocities are simply the E × B and

diamagnetic components, which allows us to write:

b× ui = − 1

B
∇⊥φ−

1

neB
∇⊥pi (2.49)

Next, we substitute this expression into Equation 2.48 and exploit the

Boussinesq approximation [90] such that ∇ · (n∂t∇⊥φ) ∼ n∂t∇2
⊥φ. This ap-

proximation is commonly used in fluid turbulence simulations and limits the size

of the density perturbation above the background. This approximation has been

shown to be valid in scrape-off-layer turbulence simulations, as its inclusion intro-

duces only a small discrepancy [91]. We also utilize the isothermal approximation

and normalize our potential to the electron temperature Te(eV ) to write the po-
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larization current as:

∇ · (neup,i − up,e) = − Te
BΩi

n
dω

dt
(2.50)

where ω = ∇2
⊥φ is the vorticity, and the advective derivative d

dt
is written:

d

dt
=

∂

∂t
+ uE · ∇+ u‖ · ∇ (2.51)

We again use the definition of our polarization vector ξ ≡ ∇ × b
B

and

substitute Equations 2.50 and 2.46 into Equation 2.45 to give an expression for

vorticity:

Te
BΩi

n
dω

dt
= Teξ · ∇n+∇‖J‖ (2.52)

Dividing through by e and utilizing our expressions for ρs, cs and Ωi, we

arrive at the final form for our vorticity:

ρ2
sn
dω

dt
= 2csρsξ · ∇n+∇‖

J‖
e

(2.53)

Derivation of the parallel Ohm’s law and the parallel velocity equation

As the research presented within this thesis is focused on turbulence in poloidal

magnetic null regions, the parallel dynamics must be considered. As such, we will

derive expressions for the parallel version of Ohm’s law and the parallel velocity.

We begin by deriving an expression for Ohm’s law by considering the parallel

projection of our electron momentum expression, neglecting inertial and viscous
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terms:

Te∇‖n+ en∇‖φ = b ·Re (2.54)

By substituting Equation 2.47 and normalizing the plasma potential to the elec-

tron temperature (in eV), we arrive at:

J‖ =
σ‖Te
en

(∇‖n− n∇‖φ) (2.55)

which is the electrostatic version of Ohm’s law parallel to the magnetic field.

To derive an expression for the parallel velocity, we begin similarly by con-

sidering the parallel projection of the ion momentum expression:

∂minu‖
∂t

+ b · ∇ ·
(
↔
πi +minuiui

)
+ en∇‖φ− b ·Ri = 0 (2.56)

This can be simplified by considering Re = −Ri and substituting Equa-

tion 2.54 to get:

∂minu‖
∂t

+ Te∇‖n+ b · ∇ ·
(
↔
πi +minuiui

)
+ en∇‖φ− b ·Ri = 0 (2.57)

Expanding the time derivative and substituting in the density continuity

equation (Equation 2.23) gives:

∂minu‖
∂t

= nmi

∂u‖
∂t
−mib · ui∇ · (nui) (2.58)

We can now combine the second hand on the right hand side of Equa-
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tion 2.58 with the fourth term in Equation 2.57, which gives:

b · [∇ · (minuiui)−miui∇ · (nui)] = b · [nmiui · ∇ui] = nmiui · ∇u‖ (2.59)

Finally, we again use only the lowest order of the gyroviscous stress tensor

so that:

b · ∇ · ↔π ≈ −ud,i · ∇u‖ (2.60)

Combining Equations 2.58, 2.59 and 2.60 into Equation 2.57, we arrive at

the final expression for our parallel velocity evolution:

du‖
dt

= −c
2
s

n
∇‖n (2.61)

Where we have again used the form for the total advective derivative, Equa-

tion 2.51.

Model summary

In the interest of energy conservation, the density should be considered constant

in terms where it is not differentiated. This is essentially an outcome of the

Boussinesq approximation (∇ · (ndt∇⊥φ) ∼ n0dt∇2
⊥φ). Section 3.3.3 includes

a more complete consideration of the energy dynamics within this model. The

complete model which has been derived is summarized below, which evolves:

Density continuity:

dn

dt
= 2csρsξ · (∇n− n0∇φ) +∇‖

J‖
e
− n0∇‖u‖ (2.62)

Vorticity:

ρ2
sn0

dω

dt
= 2csρsξ · ∇n+∇‖

J‖
e

(2.63)
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Parallel velocity:

du‖
dt

= − c
2
s

n0

∇‖n (2.64)

Ohm’s law:

J‖ =
σ‖Te
en0

(∇‖n− n0∇‖φ) (2.65)

Here the advective derivative is given as d
dt

= ∂
∂t

+ uE · ∇ + u‖ · ∇. We

have also defined the vorticity as ω = ∇2
⊥φ, and our polarization vector ξ ≡ ∇×

b
B

. This model is isothermal, electrostatic, inviscid, and employs the Boussinesq

approximation.

The treatment of each species in this model should be clarified. As the

assumption of quasineutrality (ni ≈ ne) has been made, the density evolution

(Equation 4.1) holds for both electron and ion densities. The electron velocity

was used in describing parallel advection, as electrons are considered to be much

more mobile than ions. Equation 4.3, however, describes only the evolution of

parallel ion velocity, and the parallel current is used as a representation of the

electron velocity. As the parallel current is not evolved, the expression is used

simply for closure. Ultimately, perpendicular velocity including the effects of

species dependent phenomena such as the diamagnetic current is not evolved,

but parallel velocity is. This model describes effects for both ions an electrons,

but not separately.

Having derived the model used in the following two chapters, it is now useful

to discuss numerical methods which will allow us to properly simulate the physics

of plasma turbulence in the regions of magnetic null points.

2.5.2 Common numerical methods

For the first two chapters of this thesis, parallel derivatives are implemented by

modifying the form of the parallel gradient operator, ∇‖, such that it includes the

contributions from the relatively small perpendicular (azimuthal in Chapter 3 and

poloidal in Chapter 4) magnetic field. These perpendicular magnetic fields are

66



Chapter 2. Background

implemented by prescribing an analytic form for the magnetic vector potential

and modifying the parallel gradient operator. To determine the form of the

magnetic vector potential, we start with the general form of magnetic vector

potential in an unbounded space [92]:

A(r) =
µ0

4π

∫
J(r′)

|r− r′|
d3r′ (2.66)

As we can exploit symmetry in both chapters (longitudinal in Chapter 3

and toroidal in Chapter 4), we find that A must be the same at a given distance

r from a current carrying wire. Thus, assuming a constant current in the wire we

arrive at the Biot-Savart law:

A(r) =
−µ0I

2π
ln(r)ŷ (2.67)

where ŷ is the longitudinal or toroidal direction (parallel to wire). It is therefore

possible to construct an arbitrary magnetic field given the number of turns, cur-

rent, and location of magnetic coils. The only difficulty is the infinite magnetic

field on axis, which is avoided using a penalization scheme, as described later in

section 4.3.2. Our form of the vector potential can therefore be implemented into

our simulations as the b · ∇ operator such that:

b · ∇f = ∇‖f −
[
Aext
B

, f

]
(2.68)

where Aext is the perturbed externally applied vector potential due to the

magnetic coils and the square brackets are Poisson brackets which are solved

using the Arakawa method [93].

Due to the highly modular nature of BOUT++, the majority of solvers and

operators within BOUT++ can be altered as user input. There are a few options

which are common to all of the research presented within this thesis. Time
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integration was implemented using the implicit time integration solver CVODE,

within the SUite of Nonlinear and DIfferential/ALgebraic equation Solvers (SUN-

DIALS) [94]. For the first two chapters, the Laplacian solver, which calculates

potential (φ) from vorticity (ω), in BOUT++ was altered to invert using discrete sine

transforms in the z (vertical) direction, which eliminates the periodicity inherent

in typical Laplacian inversion utilizing full Fourier transforms. The Laplacian

solver has also been altered to invert using discrete cosine transforms, allowing

for arbitrary-value boundary conditions, but this method was not used for the

results presented here.

We have now discussed the motivation and methods for simulating plasma

turbulence in magnetic null point regions in tokamaks. A brief description of the

transport mechanisms in tokamaks has been presented, and we have seen that the

turbulent dynamics near X-points in modern tokamaks could have a significant

influence on the heat and particle deposition onto plasma facing components.

The BOUT++ framework has been introduced, and its limitations in magnetic null

point configurations have been addressed. With typical BOUT++ field-aligned sim-

ulations, X-point dynamics must be interpolated based on nearby flux surfaces.

The implementation of a Cartesian coordinate system allows for simulation of

plasma turbulence in the presence of magnetic null points. We have derived

an isothermal reduced magnetohydrodynamic model and discussed the numeri-

cal methods which allow us to implement this model in BOUT++. The following

two chapters will describe the research which has contributed toward the un-

derstanding of turbulence and transport in the regions of magnetic X-points, by

first considering a linear geometry in order to test the aforementioned numerical

methods before including curvature in toroidal X-point configurations.
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X-points in linear geometries

3.1 Introduction

This chapter describes simulations performed as part of a feasibility study for a

university scale linear plasma device which is capable of producing an azimuthal

magnetic null region, and most of which is published with coauthors in [1]. The

motivation for this research was to find a suitably accessible device to study

fusion-relevant divertor scenarios. Future fusion devices will have unacceptably

high heat fluxes [49, 50]. At the moment, the solution for ITER is to operate in

a partially detached regime. Additionally, there are investigations into altering

the magnetic geometry in tokamaks to mitigate the high heat loads [51, 52]. This

linear device would provide a directly accessible, easily diagnosed machine for

alternate divertor and detachment relevant plasma scenarios.

As discussed previously, typical BOUT++ three dimensional turbulence simu-

lations use field-aligned coordinate systems, which have singularities at X-points.

Here, the linear geometry provides the simplest geometry in which to test the

implemented Cartesian coordinate system and the associated method for calcu-

lating parallel derivatives. This is the first chapter which implements the method

of modifying the parallel gradient operator such that:

∇‖(f)→ ∇‖(f)−
[
A‖
B
, f

]
(3.1)
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where A‖ is the imposed magnetic vector potential by which X-point fields

are incorporated. By implementing this method in linear geometries, it is possible

to test the efficacy and stability of the method while providing meaningful results

for future experimental investigations.

This chapter is arranged as follows. The geometry and fluid model used

in the following turbulence simulations are given in Section 3.2. Section 3.3

compares the turbulence characteristics and energy dynamics of a simple linear

device to those of a device with X-point azimuthal fields. Previous work in linear

configurations is confirmed and proposed measurements and dynamics in future

devices are given. Finally, section 3.4 asserts our conclusions and discusses future

work.

3.2 Simulation geometry and model

3.2.1 Geometry and coordinate system

As an initial study into X-point simulation in BOUT++, we have considered a hypo-

thetical linear plasma device capable of producing azimuthal magnetic null points,

as shown in Figure 3.1. The machine parameters are chosen as part of a feasi-

bility study into a hypothetical university-scale experiment capable of producing

X-points for tokamak-relevant scenarios. The study of tokamak divertor-relevant

scenarios is becoming increasingly important and has led to the proposal of mul-

tiple test facilities [95, 96, 97]. This machine would allow for direct investigation

of fundamental plasma physics associated with tokamak divertor regions and al-

low simple diagnostic access to an azimuthal magnetic null region, an area which

is currently poorly understood. The machine parameters were chosen based on

those achieved in previous machines such as those in References [98, 99]. This

device is proposed to produce low temperature, high density plasmas relevant

to detachment and divertor-relevant scenarios. The electron temperature will be

simulated as Te0 ∼ 2eV, which is relevant for tokamak divertors in detached con-

figurations and typical for linear devices as parallel streaming limits the maximum

electron temperatures which can be achieved. The machine will achieve densi-
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ties of up to 1019m−3, as in previous machines [98, 100], for detachment-relevant

scenarios. The initial plasma minor radius was considered to be 5cm. The axial

magnetic field is B0 ∼ 0.2 − 0.3T. An additional azimuthal field is created by

longitudinal wires which can create X-point fields of approximately Bext ∼ 0.02T

at the edge of the simulation domain, which corresponds to a current of about

300A in the internal X-point wires, which are considered to be 18-turn coils.

More exotic configurations such as the snowflake [82] can easily be reproduced by

the inclusion of more longitudinal wires. It should be noted that the interchange

drive will not be present in this configuration, as there is no curvature, except

for small local curvature in the perturbed (X-point) field. While this means that

this machine will have different turbulent characteristics to a tokamak, it is still

capable of producing tokamak-relevant studies applicable to divertor areas, as

other turbulent modes such as driftwaves are still present. Therefore, the study

of the interaction of turbulence with neutral gas and the influence of turbulence

on detachment would be possible.

x
y

z
B = B

0  y

C

C

C

C

Figure 3.1: Schematic of proposed device showing vessel and X-point coils.
Cartesian coordinate system measuring 30cm x 30cm x 3m shown inlaid within
the vessel. The four X-point coils are labelled with a ‘c’.

In most 3 dimensional turbulence simulations in BOUT++, a field-aligned

coordinate system is used in the interest of numerical efficiency [101]. In these

systems, one coordinate is radial, one is toroidal, and one lies in the direction

of the magnetic field. This method cannot be used to explicitly model X-points,
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where the field is completely toroidal, as this introduces zero-volume elements

where two coordinates are parallel. To ameliorate these issues, we have imposed

a Cartesian coordinate system, as shown in the center of the machine pictured in

Figure 3.1. The implementation of this coordinate system ensures that there are

no zero volume elements, as each dimension is perpendicular to the other two, and

therefore X-points (and any other singularities) can be effectively incorporated.

The main disadvantages of this method are the potential lower accuracy at a

given resolution and the pollution of parallel and perpendicular derivatives. These

disadvantages were mitigated by performing simulations at high resolution with

a relatively small perpendicular field.

Figure 3.1 also illustrates the shape of the external field used to simulate

X-point scenarios. This field was considered to be of the form shown in equa-

tion 3.2 [82], where θ = tan−1
(
z
x

)
is the azimuthal angle. The magnitude and

specific geometry of this field can be arbitrarily chosen by altering A0, the expo-

nent of r and corresponding coefficient of θ. For instance, changing the exponent

of r and coefficient of θ to 3 would give a perfect snowflake configuration (likewise

4 will give a cloverleaf).

Aext = A0r
2cos(2θ) (3.2)

The expression in Equation 3.2 then creates a perturbed field, as Bθ =

∇ × Aext. The implementation of this perturbed magnetic field into parallel

gradient operators is described in section 3.2.3.

3.2.2 Model modifications and numerical methods

The simulations in this Chapter are performed using the isothermal model de-

scribed in section 2.5.1 in a linear geometry, and therefore any terms involving

curvature are neglected in the following analysis (ξ ≡ ∇ × b
B
→ 0). While this

model includes several simplifications, it still captures relevant physics such as

Kelvin-Helmholtz and driftwave turbulence, an important class of instabilities in
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tokamak edge plasmas [102], as driftwaves are a ubiquitous instability. It should

be noted that for this chapter, the density is written with a capital N , as the

lower case is reserved for the longitudinal mode number, n, which will be dis-

cussed later. The complete set of equations which are solved are as follows in SI

units:

Density continuity equation:

dN

dt
= ∇‖

J‖
e
−N0∇‖u‖ (3.3)

Vorticity:

ρ2
sN0

dω

dt
= ∇‖

J‖
e

(3.4)

Parallel velocity:

du‖
dt

= − c2
s

N0

∇‖N (3.5)

Ohm’s law:

J‖ =
σ‖Te0
eN0

(∇‖N −N0∇‖φ) (3.6)

Where ω ≡ ∇2
⊥φ is vorticity, total derivatives are split via d

dt
= ∂

∂t
+uE ·∇+

u‖ ·∇, and parallel derivatives are defined as ∇‖ = b ·∇ – however the exact form

of this operator must incorporate the X-point field, as discussed in the following

section. In the above equations, ρs = cs
Ωi

is the Bohm gyroradius. These equations

are normalized such that density (N) is normalized to N0 = 5× 1018m−3, speeds

are normalized to the sound speed, and φ = eΦ
Te0

is the normalized electrostatic

plasma potential. The isothermal electron plasma temperature Te0 is chosen to be

2eV. The boundary conditions for the simulations presented here will be discussed

in section 3.3.

This model differs from that used in reference [84] in that it incorporates

parallel ion free streaming, u‖, as parallel flows are vital when determining the

effects of X-points. Additionally, energy conservation required the restriction
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that density N is considered constant (N0) in terms where it is not differentiated.

This is essentially an outcome of the Boussinesq approximation, as discussed in

Section 2.5.1. See Section 3.3.3 for a full discussion on the energy dynamics within

the system.

3.2.3 Numerical Methods

This model was solved for the system described in section 3.2.1 using a resolu-

tion of 1.15mm (1.25ρs) in the plane perpendicular to B (x, z), and 8cm (90.4ρs)

in direction parallel to B (y). The longitudinal direction was chosen to have a

relatively low resolution, as fine structure dynamics were expected to be more

dominant in the perpendicular planes. Previous studies of linear devices [103]

have also indicated that low axial wave-numbers are dominant in linear config-

urations. Additionally, Alfvén length scales ( VA
Ωci

) are about 20cm, and therefore

these dynamics are adequately resolved, as Alfvén wave transit times are shorter

than perpendicular drift dynamics.

The parallel dynamics introduced by the imposed X-point field were imple-

mented by altering the b ·∇ operator such that ∇‖(f)→ ∇‖(f)−
[
A‖
B
, f
]
, where

the brackets indicate Poisson brackets, which were calculated using the Arakawa

method [93]. Here it was assumed that the perturbed magnetic field is given by:

b̃ = ∇×
(
A‖bo

)
≈ b0∇A‖.

The simulation domain was chosen to exclude the in-vessel coils as the

magnetic field is infinite on the axis of an infinitesimally thin wire, and therefore

causes a numerical instability. Furthermore, the solid-density coils create diffi-

culty when simulating them next to plasma-density regions. These issues can be

overcome by introducing a penalization scheme [104], which has been successfully

achieved in BOUT++ and will be described in Chapter 4.
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3.3 Simulation analysis

3.3.1 Implementation and behavior

The model represented by Equations 3.3 - 3.6 was implemented into BOUT++ and

simulations were performed with and without an externally applied X-point field.

The plasma source was modelled as a constant flow at the sound speed into the do-

main from one of the longitudinal boundaries (y = 0), as this mimics the plasma

source used the current York Linear Plasma Device [105]. The opposing longitu-

dinal boundary was considered to have zero-gradient boundary conditions in cases

both with and without an imposed X-point. In cases with an X-point, sheath

boundary conditions pertinent to presheath entrance as found in reference [106]

were implemented. These boundary conditions are modified Bohm boundary con-

ditions which account for the oblique magnetic fields at the Chodura sheath. As

these boundary conditions rely on an oblique magnetic field, they could not be

imposed in a basic linear case without an externally applied field, as the field lines

are parallel to the wall. As such, these cases were constrained to zero-gradient

boundary conditions on all fields in the directions perpendicular to the magnetic

field (x, z).

Figure 3.2 shows the time evolution of the total energy of the fluctuations,

which will be discussed later in Section 3.3.3. The simulations begin with an

initial perturbation, and fluctuations grow until reaching a saturated stage. This

state is considered turbulent as the profile has reached an average equilibrium, but

fluctuations around that mean profile persist. Furthermore, there is an excitation

of energy at various scales, and an exchange of energy between these scales, which

will be discussed later in section 3.3.3. This stage is shown as the flat section in

Figure 3.2. All analysis presented in this work has been conducted within this

regime.

Figure 3.3 illustrates the mean radial density profiles both with (solid) and

without (dotted) an X-point at various locations along the length of the device.

The radial profiles in each case is taken along a diagonal (x = z) line across

the azimuthal plane which lies on the X-point. Figure 3.3 indicates that the
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Figure 3.2: Time evolution of the volume averaged total dissipation (−〈Etot〉)
in a case without an X-point. For reference, the ion gyroperiod is 59ns.

introduction of a magnetic X-point introduces an asymmetric off-axis peak of

density and a narrowing of the total profile.

Figure 3.3: Time averaged radial density profiles along a diagonal in the az-
imuthal plane with (solid) and without (dotted) an X-point applied.

The narrowing of the profiles induced by the X-point as shown in Figure 3.3

can be attributed to the externally applied azimuthal magnetic field, which is
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Figure 3.4: Density contour at y=1.5m with overlaid magnetic field, indicating
an asymmetric profile in the azimuthal plane.

shown in Figure 3.4. The profile is distorted due to the external magnetic field

which maps a circular input profile to an elongated profile at the opposite (sheath)

end. This can be described by simply following field lines. Consider a test particle

which moves along the axis of the machine. Along the magnetic axis of the

machine, the perturbed field shifts the total magnetic field such that it is closer

to the null point in two directions (top right and bottom left in Figure 3.4).

This therefore creates a narrowing of the profiles in that direction. Likewise the

opposite occurs in the other two directions, creating a broadened radial density

distribution. Finally, Figure 3.3 also indicates that the radial density profiles are

smoother without an X-point field applied. This could perhaps be explained by

considering the cross field transport introduced by the X-point which inhibits the

azimuthal flow of plasma, breaking up coherent structures.
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3.3.2 Transport and cross correlation

As this device is intended to be relevant to configurations such as the snowflake

divertor, the flow dynamics near the azimuthal magnetic null region are important

to determine. To study the parallel dynamics of the system, a cross correlation

analysis was employed. The inbuilt cross correlation function in IDL was used to

compute the cross correlation (Pfg) of two quantities f and g using the method

shown in Equation 3.7. Here k is the index for each population and M is the

number of elements in said population.

Pfg =
M−1∑
k=0

(fk − f)(gk − g)

{[
M−1∑
k=0

(fk − f)2

][
M−1∑
k=0

(gk − g)2

]}− 1
2

(3.7)

Using this method, one can determine the correlation between two quantities

at different points within the domain. This serves as a convenient method to

visualize flow dynamics, as shown in Figure 3.5, which shows the two dimensional

cross correlation of density perturbations in an azimuthal plane at the center of

the machine (y = 1.5m) when an X-point field is applied. The reference point for

the cross correlation in Figure 3.5 is shown in black near the null region. This

analysis is dependent on the choice of the reference point, however the general

trend remains that perturbations are correlated along field lines, and not very

well correlated across field lines. This then indicates the nature of transport in

the system. This figure illustrates the effects of an induced X-point on parallel

dynamics, as transport along field lines is apparent. A correlation in density

perturbations indicates that the fluctuations in one region are related to those in

another. Furthermore, perturbations on neighboring field lines are not very well

correlated, indicating a lack of transport in that direction.

Figure 3.6 plots the cross field flux (Γ) when an X-point is applied, given

by Γ = 〈Nv⊥〉 where v⊥ = |b×∇φ̃|
B

and φ̃ = φ− 〈φ〉. The cross field flux indicates

the regions of high cross field transport, which is an important factor in the effec-

tiveness of novel divertor configurations such as the snowflake or cloverleaf [82],

since it determines how effectively heat and particle flux will be distributed across
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Figure 3.5: Two dimensional cross correlation of density fluctuations at
y=1.5m, reference point shown as black dot.

additional divertor legs.

Figures 3.5 and 3.6 indicate two characteristics of note. Firstly, Figure 3.5

indicates that away from the null point, perturbations are highly correlated along

field lines, but adjacent areas perpendicular to field lines are less correlated, as

indicated by the change from highly correlated (orange) to weakly correlated

(blue). Secondly, Figure 3.6 indicates that the null point is the main area of

cross-field transport allowing plasma to flow from one region to another. This

figure also indicates a two-fold symmetry, since the structure of the magnetic field

(as seen in Figure 3.4) introduces a preferred direction which is also apparent in

the density profile.

To visualize the full dynamics of the machine, a three dimensional cross

correlation was performed for both cases using the same method as before (Equa-

tion 3.7). By analyzing correlations in three dimensions, it is possible to deter-

mine the dynamics along the length of the machine and visualize the plasma

profile, as shown in Figures 3.7 and 3.8. The perturbed plasma profiles induced

by the external X-point field is most apparent when visualizing using the three

dimensional cross correlation.
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Figure 3.6: Cross field flux at y=1.5m, indicating that the center of the machine
is the dominant area for cross-field transport.

Figure 3.7: Three dimensional cross correlation of a basic linear plasma, and
slices at various longitudinal positions. The plasma is relatively uniform along
the length of the device.

In these cross correlations, a point was chosen in the middle of the com-

putational domain, and Equation 3.7 was employed to calculate the correlation
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Figure 3.8: Three dimensional cross correlation of an imposed X-point plasma
and slices at different longitudinal positions, indicating transport along the field
lines and a perturbed profile.

of densities at every point within the domain with that central reference posi-

tion. From Figures 3.7 and 3.8 it is apparent that the imposed X-point field

alters the dynamics of the device. Nevertheless, there exists a correlation among

perturbations along the length of the device in both configurations.

As a further analysis, the effect of the imposed X-point on the system’s

turbulence can be examined using basic synthetic diagnostics. Specifically, one

can look at the turbulence on a circle at a constant radius from the center of

the plasma column, in this case considered to be r = 5cm, and measure the

phase shift between potential and density fluctuations. Figures 3.9 and 3.10

indicate this relationship measured on turbulence with longitudinal fluctuations

(driftwave-like), which was chosen due to its ubiquitous nature [102, 107]. Here,

m is the azimuthal mode number, since this analysis only considers fluctuations

in the azimuthal plane.

The phase shift measurements shown in Figure 3.9 indicate structures which

are highly correlated and therefore their phase shifts are centered around 0. Fig-

ure 3.10 however indicates that the introduction of an X-point causes structures
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m

0 0.1 0.2 0.3

Figure 3.9: Phase shift comparison of density and potential perturbations in
driftwave-like modes in a basic linear geometry.

to be dissipated, meaning that their phase shifts, while centered around zero,

have a broader, less coherent spectrum. This is to be expected, as the perpendic-

ular, perturbed X-point field lines inhibit the transport of turbulent structures,

and therefore dissipates adjacent fluctuations.

Additionally, a similar synthetic diagnostic can be used to examine the cross

correlation between perturbations in density and potential within the system,

which is a common method in determining the turbulent characteristics of a

system [108]. The results of this analysis are shown in Figures 3.12 and 3.13.

Figure 3.12 demonstrates the strong driftwave-like behavior in the simple

linear configuration, as the perturbations are highly correlated (as indicated by

the contour lying on the 1:1 diagonal). It can be seen from Figure 3.13 that this

strongly coherent driftwave like nature is removed when an X-point is introduced,

as the coherent modes previously present have been dissociated due to inhibited

transport across field lines. These figures and the phase shift measurements shown

above provide predictive measurements which could be reproduced in experiment

using simple diagnostics.
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m

0 0.1 0.2 0.3

Figure 3.10: Phase shift comparison of density and potential perturbations in
driftwave-like modes with an applied X-point.

3.3.3 Energy dynamics

An important aspect of plasma models is conservation of physical quantities. For

this reason, an analysis of the energy dynamics within the system was performed

similar to that found in reference [109]. In this work, the system is spectrally-

decomposed in the azimuthal and axial directions, and the energy of each mode is

analyzed to determine the energy transfer channels and dissipation. The energy

of each Fourier mode where ~k = (m,n), with m being the poloidal mode number

and n the axial mode number, is:

Etot(~k) =
1

2

〈∣∣N~k

∣∣2︸ ︷︷ ︸
(a)

+
1

2

∣∣∣u‖,~k∣∣∣2︸ ︷︷ ︸
(b)

+ ρ2
s

1

2

[∣∣∣∣∂φ~k∂r
∣∣∣∣2 +

m2

r2

∣∣φ~k∣∣2
]

︸ ︷︷ ︸
(c)

〉
(3.8)

Where Nk, u‖,~k and φ~k are the Fourier-transformed density, parallel velocity,

and potential, respectively. The analysis presented here occurs in the turbulent,

steady state phase described in Figure 3.2. The individual terms in Equation 3.8

83



Chapter 3. X-points in linear geometries

Figure 3.11: Phase shift profiles of azimuthal perturbations averaged over ρim.

Figure 3.12: Turbulent correlations of density and potential perturbations in
driftwave-like modes in a basic linear geometry.

indicate the (a) internal energy, (b) parallel kinetic energy, and (c) perpendicular

kinetic energy of the system in Fourier space. The evolution of each Fourier mode
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Figure 3.13: Turbulent correlations of density and potential perturbations in
driftwave-like modes with an applied X-point.

can be described as [109]:

∂Ef (~k)

∂t
= Qf (~k) + Cf (~k) +Df (~k) (3.9)

Here, f indicates each field (N, u‖, φ, j‖), and Qf (~k), Cf (~k), and Df (~k)

stand for the nonconservative energy forces (i.e. external sources and sinks),

linear energy transfer channels, and dissipation terms respectively. There are only

conservative energy forces in our system, so Qf (~k) = 0. The exact expressions

for Cf (~k) and Df (~k) in our model are:

CN(~k) =
1

eN2
0

Re

〈
ik‖j‖,~kN

∗
~k
− 1

N0

ik‖u‖,~kN
∗
~k

〉
(3.10)

Cφ(~k) =
1

eN2
0

Re
〈
ik‖j‖,~kφ

∗
~k

〉
(3.11)
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Cu‖(~k) =
1

N0

Re
〈
ik‖N~ku

∗
‖,~k

〉
(3.12)

Cj‖(~k) =
1

eN2
0

Re
〈
ik‖N~kj

∗
‖,~k − iN0k‖φ~kj

∗
‖,~k

〉
(3.13)

Dj‖(~k) = Re

〈
−j2
‖

σ‖Te0

〉
(3.14)

Sound Wave

Internal Energy

Parallel Kinetic 
Energy

Perpendicular Kinetic 
Energy

Adiabatic Drift 
Wave

Ohmic Dissipation

Figure 3.14: Energy dynamics diagram indicating the transfer of energy via
sound waves and adiabatic drift waves.

Furthermore, our system conserves energy except for Ohmic dissipation,∑
f Cf (

~k) = 0, as shown in Figure 3.14. As a result, Equation 3.9 elucidates the

wave numbers at which energy is dissipated from the system, as the only terms

remaining are those found in Df (~k). Figures 3.15 and 3.16 plot the nonconser-

vative rate of change of the total energy,
∂Ef (~k)

∂t
, as a function of wave number in
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cases with and without an X-point.

Figure 3.15: Total spectral nonconservative energy loss without an X-point

Figure 3.16: Total spectral nonconservative energy loss with an X-point

These results are similar to those found in [109] in that the energy dynamics
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(in this case dissipation) is localized to small longitudinal mode numbers. Here,

the longitudinal mode number n is normalized such that n = 1 = 2 ∗ π/L where

L is the length of the device. Therefore, mode numbers smaller than unity are for

modes which have a wavelength longer than the device. It should be noted that

the nonconservative rate of change of our total energy is negative, as the only

contribution is from the Ohmic dissipation, Dj‖ . Furthermore, and somewhat

unexpectedly, an X-point reduces the dissipation in higher n-numbers, indicating

that the azimuthally-applied X-point perturbs the strictly parallel mode number

dissipation. This could perhaps be explained by considering the distortion of the

profiles as shown in Figure 3.4, which might dissipate a structure which (without

perturbation) would exist helically along the magnetic axis. The shift to higher

azimuthal mode numbers is due to the externally applied X-point field inhibiting

transport of azimuthally flowing perturbations, which dissolves coherent struc-

tures leading to higher mode number oscillations. This indicates that structures

in a region of high cross field transport will be small relative to those in regions of

free transport. While this is not directly applicable to tokamaks due to the flows

of the scrape off layer, it still serves as an interesting result in this configuration.

Figure 3.17: Specific longitudinal mode number traces of the total spectral
nonconservative energy loss without an X-point
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Figure 3.18: Specific longitudinal mode number traces of the total spectral
nonconservative energy loss with an X-point

Figures 3.17 and 3.18 show the nonconservative rate of change of the total

energy at selected longitudinal mode numbers as a function of azimuthal mode

number. It is clear from these plots that the n=0 mode is dominant across the

azimuthal mode number spectrum both with and without an X-point. While

the introduction of an X-point induces a shift of dissipation to lower n-numbers,

Figures 3.17 and 3.18 indicate that dissipation increases for each of those lower-n

modes.

3.4 Conclusions and future work

A linear plasma device capable of simulating scenarios relevant to tokamak diver-

tor regions would allow for direct comparison of plasma turbulence models and

investigation of fundamental plasma physics. The results presented here indicate

that a modest coil set on a university scale linear plasma device will produce

measurable effects on the plasma profile, which would help elucidate the physics

associated with tokamak divertor regions.

BOUT++ can capably handle direct X-point simulations by imposing a simple
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Cartesian coordinate system and altering parallel operators to include perturbed

external fields. The introduction of a modest magnetic X-point perturbs the

turbulence characteristics of the plasma column and alters the energy dynamics

within the system. The simulations presented here propose future measurements

to distinguish an altered driftwave phase shift, perturbed cross correlation in the

turbulent spectrum, and measure a perturbed density profile exhibiting transport

along the X-point field lines. These measurements could be reproduced experi-

mentally in a similar device, as the variation in cases with and without an X-point

is substantial. For instance, the energy dynamics shift to poloidal mode numbers

which are twice as high in cases with an X-point. Furthermore, turbulent cross

correlation profiles are about twice as wide as in cases without an X-point. It

would therefore be interesting to build such a machine which would be able to

attain results relevant to tokamak divertor and detachment scenarios.

Future work could look to implement a more complicated model which

would remove the isothermal assumption allowing for studies of heat and energy

convection. This would help elucidate physics relevant to novel divertor config-

urations such as the snowflake. Additionally, the results presented here could

be compared with those obtained using the Flux Coordinate Independent (FCI)

method for parallel derivatives, which will be explained and utilized in Chapter 5.

This would help quantify the errors associated with each method, whether it be

the assumption of straight field lines (used here) or the interpolation scheme used

by the FCI method.
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TORPEX validation

4.1 Introduction

The natural progression after simulating linear geometries is to bend the linear

device into a torus. This chapter details the research performed in simulating

filament dynamics (Section 2.3.1) in toroidal geometries, specifically the poloidal

magnetic null point scenarios in the TORPEX device [110]. Due to the flexibility

of the method for creating magnetic geometries in Cartesian BOUT++ scenarios

(Section 2.5.2), we are able to fully reproduce the complex geometries of this

experiment. This is the first time that this geometry has been simulated. Exper-

imental measurements of filament propagation are reproduced, but an alternative

mechanism for filament acceleration is proposed: it was recently suggested that

the filament acceleration is caused by an increasing connection length in the

poloidal magnetic null regions [111]. It is determined here, however, that the ac-

celeration seen in experiment is likely dominated by the advection of a developing

dipole, which is not unique to X-point scenarios.

Section 4.2 provides a brief introduction and motivation for the studies, as

well as a description of the TORPEX poloidal magnetic null point geometry. Sec-

tion 4.3 describes the modifications of the previously used isothermal model and

the implementation of various numerical methods. Section 4.4 discusses filament

characterization within this magnetic geometry, before comparing simulation to

analytic calculations and experimental measurements in both a stationary and
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moving plasma background. Section 4.5 describes the main conclusions of this

work and potential areas for further investigation.

4.2 Background

Filaments, or blobs, are typically field aligned plasma structures which have been

observed in the scrape of layer (SOL) of many magnetically confined plasmas [63].

These filaments carry particles into the SOL and therefore play a role in deter-

mining the profiles during L-mode and inter-ELM H-mode scenarios. While there

have been many investigations into the dynamics of such filaments [63, 84, 112],

few if any have studied their behavior near magnetic X-points. Simple magnetic

tori such as the TORPEX device [113] replicate tokamak scrape off layer (SOL)

scenarios while allowing straightforward diagnostic access. While filaments have

been studied extensively within TORPEX [110, 114, 115], no theoretical stud-

ies have yet explored the dynamics in X-point configurations recently studied

experimentally [116, 117, 111].

The fundamental physics of blob propagation is described in detail in Sec-

tion 2.3.1 and in Reference [63] which is as follows. The divergence of the diamag-

netic drift (physically, the curvature drift) causes a polarization of the blob, lead-

ing to an E×B velocity in the form of counter-rotating vortices and an outward

advection of the blob. The dynamics of propagating filaments depends on the

mechanism for charge dissipation within the blob in order to satisfy quasineutral-

ity, ∇·j = 0. If the charge separation is resolved primarily via the parallel current

through the sheath, the filament is considered to be sheath-connected [63, 74].

If the connection length to the sheath is too large, or likewise the resistivity too

high, charge is dissipated via cross-field currents such as the polarization current

and the blob is said to be in the inertially limited regime [77].

In this work filaments are characterized in TORPEX magnetic null point

scenarios using three dimensional simulations in BOUT++ [101]. The research pre-

sented here focuses on the behavior of filaments as they encounter both open and

closed field lines, and how that simulated behavior relates to experimentally ob-
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served characteristics. Recent work [111] has sought to experimentally character-

ize filaments in TORPEX magnetic null configurations. A significant acceleration

of filaments towards the X-point is observed in [111], and an analytical model is

developed to explain this acceleration. In the region of poloidal magnetic nulls,

the distance along the field lines between the two lobes of the potential dipole,

called the connection length L‖, is increased. This increased connection length

is considered to reduce the effect of charge dissipation via parallel currents, and

therefore an acceleration is manifested. Interestingly, a deceleration of the fila-

ments is seen experimentally in the immediate vicinity of the X-point, but this

is attributed to dissolution of the blob structure. Here we simulate filaments in

these scenarios and compare simulations with this previously derived analytical

model [111] in an attempt to further understand the nature of filament propaga-

tion in regions of poloidal magnetic nulls.

4.2.1 TORPEX null point scenarios

The aim of this work is to explore blob dynamics in the TORPEX simple magnetic

torus in X-point geometries [111, 116, 117]. Many previous studies of filaments

in the TORPEX device [73, 118, 119] utilized a case with a vertical field, which

is the conventional TORPEX configuration. Figure 4.1 provide a picture of the

TORPEX device, with a section of the device removed [113].

The TORPEX device has a major radius of 1m, a minor radius of 20cm, and

creates a toroidal magnetic field via the brown coils pictured in Figure 4.1 [113].

The beige coils create a vertical magnetic field, providing open field line configu-

rations similar to the scrape off layer of a tokamak.

Figure 4.2 indicates the trajectory of filaments in three different magnetic

fields; a purely toroidal field (top), a TORPEX vertical field scenario (middle),

and the recently studied poloidal magnetic null scenario (bottom). This figure

helps to illustrate the effects of geometry on the evolution of filaments, as the

trajectory of filaments in TORPEX X-point scenarios will later be compared to

that in vertical field scenarios.

For the vertical and magnetic null scenarios, the magnetic field is calcu-
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Figure 4.1: The TORPEX device, with a section removed. The brown coils
create a toroidal field while the beige coils provide a vertical field in conventional
operating scenarios [113].

lated based on the coil position and current, as described in Section 2.5.2 and

will be discussed further in section 4.3.2. Filaments in this geometry have been

observed experimentally to be toroidally symmetric, and therefore not aligned to

the magnetic field [111]. The filaments are first considered coherent in experi-

ment 4cm left of the center of the vacuum vessel (r,z) = (-4cm ,0cm) [117, 111],

where (r,z) = (0,0) is considered the center of the vacuum vessel. Here we seed

toroidally symmetric filaments with an initial peak density of 3× 1016m−3 at (r,z)

= (-4cm,0cm) and an initial diameter of about 3cm.

4.3 Numerical methods and model

4.3.1 Isothermal Model

The model described previously in Section 2.5.1 is used here to simulate filaments

in TORPEX magnetic null point scenarios. This model is again suitable as it was

initially constructed for blob studies [84, 120] but has been extended for use in

X-point scenarios [1]. Here, the model is extended to include a masking function

χ which will be required for dealing with the in-vessel coil in TORPEX. For
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Figure 4.2: Filaments upon initialization (left), 21µs after seeding (middle), and
42µs after seeding (right) in three different TORPEX magnetic geometries; (top)
purely toroidal magnetic fields, (middle) a vertical poloidal field, and (bottom) a
poloidal magnetic null scenario [111]. Poloidal magnetic geometries are indicated
by the white, dashed contours.

these simulations, the isothermal electron temperature Te0 is set to 2.5eV, as is

measured in experiment [117]. The equations are given again as follows in SI

units:

dn

dt
= (1− χ)

[
2csρsξ · (∇n− n0∇φ) +∇‖

J‖
e
− n0∇‖u‖

]
+ χ∇2

‖n (4.1)

ρ2
sn0

dω

dt
= 2csρsξ · ∇n+∇‖

J‖
e

(4.2)
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du‖
dt

= − c
2
s

n0

∇‖n (4.3)

J‖ = (1− χ)

[
σ‖Te
en0

(∇‖n− n0∇‖φ)

]
(4.4)

Where ω ≡ ∇2
⊥φ is the vorticity, total derivatives are split via d

dt
= ∂

∂t
+uE ·

∇+ u‖ ·∇, and parallel derivatives are evaluated using ∇‖ = b ·∇ where b is the

unit vector along the total magnetic field, including the poloidal field. Curvature

effects are included via the polarization vector ξ ≡ ∇× b
B
∼ 1

BRc
ẑ. In the above

equations, ρs = cs
Ωi

is the Bohm gyroradius, and σ‖ is the parallel (Spitzer [121])

conductivity. These equations are normalized such that density (n) is normalized

to typical TORPEX values, n0 = 8×1015m−3, speeds are normalized to the sound

speed, and φ = eΦ
Te0

is the normalized electrostatic plasma potential.

The fundamental physics of blob propagation is reliant upon the currents

within the system, as discussed in Section 2.3.1. This model effectively incorpo-

rates both the diamagnetic and polarization currents; the left hand side of the

vorticity equation is the polarization current density, and the first term on the

right hand side describes the diamagnetic current density.

Because TORPEX utilizes an in-vessel coil to create the X-point field, the

singularity on the coil axis has been avoided by implementing a penalization

scheme [104, 122], which utilizes a masking function at the location of the wire

such that there are no gradients across the coil cross section. The masking func-

tion (χ) has the following form:

χ =


1 0 < r < rc

χ0 ln(r) rc ≤ r ≤ 1.1rc

0 r > 1.1rc
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Where rc is the coil radius, chosen here to be 1cm, and χ0 is an arbitrary

coefficient to determine the smoothness of the masking function. The final term

of Equation 4.1 is a simple diffusion term to allow density to diffuse across the

coil cross section.

4.3.2 Numerical Methods

The presence of poloidal magnetic field singularities in the form of O- and X-

points in this magnetic topology requires the use of non-field-aligned coordinate

systems. As such, a cylindrical coordinate system defined by the major radius

(x), vertical direction (z), and toroidal direction (y) was implemented , and the

poloidal magnetic field was again implemented by prescribing an analytic form

for the magnetic vector potential and modifying the parallel gradient operator.

The model described in Section 4.3.1 is solved in this geometry using a res-

olution of 1.5mm (0.36ρs) in the poloidal plane (x, z), and 15.7cm (36.5ρs) in

the toroidal direction (y). This resolution was chosen as modes are considered

to be flute-like such that fluctuations are large scale in the toroidal direction

and small in the poloidal direction. The perpendicular resolution is sufficient

since it smaller than a gyroradius; fluid approximations assume that fluctuations

vary slowly over a gyroradius. The remaining numerical schemes were used as

in Chapter 3: time integration was implemented using the implicit time integra-

tion solver CVODE, within the SUite of Nonlinear and DIfferential/ALgebraic

equation Solvers (SUNDIALS) [94]. The Laplacian solver, which calculates po-

tential (φ) from vorticity (ω), in BOUT++ was altered to invert using discrete sine

transforms in the z (vertical) direction, which eliminates the periodicity used in

typical Laplacian inversion utilizing Fourier transforms in BOUT++ [101]. As the

filaments in TORPEX are considered toroidally symmetric and therefore do not

reach the sheath, simple Neumann (zero gradient) boundary conditions have been

used in the poloidal plane, although presheath boundary conditions [106] have

been implemented.
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4.4 Filament Characterization and Experimen-

tal Comparison

As the model described in section 4.3.1 was previously tested in linear geome-

tries [1], simulations were performed here to validate the extension of this model

to toroidal geometries and to determine the characteristics of blob propaga-

tion within the TORPEX magnetic null point scenarios. Experimental com-

parison was conducted to investigate the filament acceleration mechanism seen

in experiment. The simulations were initialized based on experimental observa-

tions [111, 123]; the initial filament diameter, measured as the full width at half

maximum, was set to 3cm, and the filaments were seeded at (r,z) = (-4cm,0cm)

as this is where filaments are first considered coherent in this TORPEX geometry.

It has been proposed in [111] that the poloidal magnetic null region causes an

acceleration by increasing the connection length associated with the dipole field.

Here we test this assertion and compare simulations to the previously developed

analytical model.

4.4.1 Current characterization

As described in Section 2.3.1, currents within filaments determine their propaga-

tion. Typically, filaments are field aligned and therefore can extend to the sheath,

although recent work has found that currents can extend to the sheath even if

the filament itself does not reach the target [118]. Filaments within this TOR-

PEX configuration have been determined to be toroidally symmetric, however,

and therefore the current is expected to be localized within the blob. As such,

we have investigated the currents within the simulated filaments, as shown in

Figure 4.3.

From Figure 4.3 it is apparent that the current is localized to the blob and

does not extend to the plasma sheath at the edges of the computational domain.

This localized current is essential to the development of the model in [111], as it

is assumed that the charge is dissipated along the field line which connects the

two lobes of the potential dipole. Furthermore, Figure 4.3 indicates our current
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Figure 4.3: The divergence of the three currents within the system (color con-
tour) immediately after initialization. The blob cross section is shown as the black
solid contours, and the poloidal magnetic field is indicated by the grey dashed
contours.

balance, since ∇ · Jpol ≈ ∇ · Jdia + ∇ · J‖, and therefore the total current is

divergence free.

4.4.2 Stationary Background

Having explored the currents which govern the filament propagation in this geom-

etry, an attempt to validate simulation methods with experimental measurements

of blob velocity was conducted. Initial simulations were performed with a station-

ary background plasma profile. To compare with experiment, the center of mass

velocity was calculated and plotted for comparison with experimental data [111].

The results of this analysis are summarized in Figure 4.4, where the simulation

in a stationary background is plotted as a solid green line.

From this data, it is clear that although the simulations exhibit a similar

velocity to the blob propagation in experiment, they do not exhibit the same

acceleration; the acceleration found in experiment is much higher than that of the

simulations in the region of the X-point. However, it is still possible to determine

the effect of the magnetic null region on filament propagation by seeding blobs at

various distances from the magnetic null and measuring their velocities as they

approach the X-point. The results of these simulations are shown in Figure 4.5.

Figure 4.5 indicates that the filaments undergo an acceleration as they ap-
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Figure 4.4: Center of mass velocity measurements from experiment (red, blue,
black, magenta) and simulation (green). The black curve indicates the measured
blob speed from experiment. The blue curve represents the calculated E × B
background plasma velocity from measurements of the plasma potential. The
red curve illustrates the calculated E × B from the blob potential dipole mea-
surements, and the magenta curve is the calculated E×B velocity of the blob (red)
plus the background velocity (blue). The simulation has a stationary background,
and is comparable in magnitude to measurements which neglect the background,
reproduced from Reference [111].

proach the X-point, but the highest acceleration occurs at the beginning of the

evolution. To further analyze this, the acceleration of the various seeded blobs is

illustrated in Figure 4.6.

Filaments have a higher acceleration at the beginning of their evolution due

to the developing dipole, and continue to accelerate more slowly as they approach

the X-point. This supports the assertion that the magnetic null point region

causes an acceleration of filaments, most likely due to the increased connection

length. However, as the strongest acceleration occurs during the formation of the

dipole (e.g. ∼ 1× 108ms−2 for the case seeded at x0 = -4cm), these results could

indicate that the acceleration seen in experiment is due to the dipole forming on

a moving background (which is itself approaching the null region). Furthermore,

this initial acceleration is the same for each case, indicating that it is geometry

independent. This is illustrated well in Figure 4.7, which plots the center of mass
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Figure 4.5: Velocity comparison of blobs seeded at various distances from the
X-point. Faster blob propagation is seen near the null region, which is marked
with a vertical line. The vertical field strength is plotted in blue dots as an
indication of connection length, as L‖ ∼ B−1

z .

velocity for filaments seeded at different locations as a function of time.

Figures 4.7 and 4.6 indicate that the initial acceleration of the filaments,

which is similar to that measured in experiment, is the same regardless of initial

seeding position. This suggests that this acceleration is geometry independent, as

it is only caused by the initial formation of a dipole. Therefore, the acceleration

of an advected dipole could could mimic the acceleration caused by an X-point,

and could explain the experimental observations. In these simulations, the dipole

develops self-consistently, but there is no initial background potential profile. This

could be different in experiment, where a dipole could already be present when

a blob forms. The seeding of filaments farther from the X-point, however, would

allow a dipole to fully develop before encountering the X-point region. In any case,

the hypothesis of an advected developing dipole mimicking X-point acceleration

due to increasing connection length will be further tested in Section 4.4.4.

To determine if the effects modelled here are consistent with previous anal-

ysis of TORPEX X-point scenarios [117, 111], a comparison with an analytic

model [117, 111] of blob propagation in magnetic null regions was performed.
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Figure 4.6: Comparison of acceleration of blobs seeded at various distances
from the X-point. The highest acceleration occurs initially, as a dipole is devel-
oping. The vertical field strength is again shown in blue dots as an indication of
connection length.

4.4.3 Analytical model comparison

An analytical model has been previously developed which relies on the assumption

of increasing connection length in poloidal magnetic null regions as an acceleration

mechanism [117, 111], and will be referred to here as the “Avino model”. In this

model, the blob velocity follows a function as shown in Equation 4.5:

vb =
δn

n

√
2a

R
cs

(
1

1 + A/L2
‖

)
(4.5)

where:

A =
CB2a5/2

√
2R

mics
(4.6)

Here, C is the proportionality coefficient between the plasma conductivity

and the plasma density (C = σ/n), a is the radius of the blob, L‖ is the parallel

connection length, R is the major radius, and cs is the sound speed. In the limit
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Figure 4.7: Velocity comparison of blobs seeded at various distances from the
X-point as a function of time. The initial acceleration is the same in every case,
which can be attributed to the developing potential dipole; as the dipole develops,
the increasing electric field causes an acceleration.

L‖ → 0, this relation reduces to the inertial scaling for blobs [63], and a 1/a2

scaling can be seen via the a dependence in the expression for A. In the original

analysis by Avino et al., the relative perturbation of density, δn/n, was considered

constant, and therefore the magnetic field (B), which also dictates the parallel

connection length L‖, is considered the only position-dependent variable. In the

analysis presented here, however, we are able to directly calculate all quantities

in Equation 4.5 from numerical simulations.

Although the plasma (Spitzer) conductivity [124] is an input to the simula-

tion, it is calculated differently in [111], which defines it as:

σ =
ne2

meνeH
(4.7)

where νeH = nnσeH
√
Te/me is the electron-neutral collision frequency. In

these simulations, we have assumed the neutral density nn is 2 × 1018m−3 and

a collisional cross section σeH = 2 × 10−19m2 following the analysis of [125]. It
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should be noted, however, that this plasma conductivity only affects the value of

C, which is used as a free parameter both here and in [111] to ensure that the

model correctly corresponds with initial measured/simulated filament velocity.

As stated previously, an isothermal temperature of 2.5eV was assumed.

The blob size a can be calculated as half the distance between the maxi-

mum and minimum of the potential dipole. Connection length is calculated by

assuming that:

L‖ =
2a

tan
(
δB
B

) (4.8)

where δB/B is the poloidal magnetic field over the toroidal magnetic field.

In completely vertical field cases, this reduces to Bz/B.

This model was then plotted against the same stationary background sim-

ulation which was shown in Figure 4.4 along with the calculations from Refer-

ence [111]. The proportionality coefficient C is adjusted such that the calculated

blob velocity coincides with our simulation 28µs prior to the filament arriving

at the X-point. This is also done in Reference [111], where the proportionality

constant is three times that calculated analytically. Here, the proportionality con-

stant is multiplied by a factor of 0.63 (C = 0.63Canalytic) relative to the analytic

solution, whereas C was increased by a factor of 3 in [111]. Figure 4.8 illustrates

the simulation, the calculations based on the simulation presented here with an

adjustment to the proportionality constant, and the connection length L‖ which

was previously asserted to be the main contribution to filament acceleration.

From Figure 4.8 it is not clear how well the analytical model expressed in

Equation 4.5 reproduces the data. While the increasing connection length cor-

responds to an increased analytical blob velocity, the simulated filament velocity

is not fully recovered, even when other factors such as δn/n in Equation 4.5 are

evolved. As δn/n is considered constant in [111], a higher acceleration is seen.

Since δn/n will only decrease (no sources), when allowed to vary as shown here,

the analytic calculation produces a smaller acceleration. While other factor are

varying (b, R), they vary by less than 10−3, and therefore are not as significant as
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Figure 4.8: Comparison of simulated blob velocities (on a stationary back-
ground) with an analytical model [111]. Simulated results are shown in green,
the model explicitly calculated herein is shown in black, dashed, with an adjust-
ment to the proportionality coefficient. Here, as with [111], t=0 is when the blob
is at the null point. The connection length is shown in blue, dot-dashed.

the density perturbation, which varies by as much as 30%. Furthermore, the par-

allel connection length is not infinite, as the filament experiences a slight vertical

displacement, and misses the exact X-point.

The same analysis was conducted on a filament seeded farther from the

magnetic null region. This allows the filament dipole to fully develop before

encountering any effects of the X-point. The results are shown in Figure 4.9.

This supports the hypothesis that the increasing connection length L‖ in

the region of the X-point causes an acceleration, as the model described in

Reference [111] reproduces results seen in the simulation. Here, the propor-

tionality coefficient C was decreased by a factor of 3.3 relative to the analytic

solution(C = 0.3Canalytic). As the analytical model exhibits the same accelera-

tion profile as shown in simulation, it is plausible to conclude that the acceleration

seen in the simulation is due to the introduction of the X-point. This acceler-

ation, however, is smaller than that seen in experiment. The acceleration seen
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Figure 4.9: Comparison of simulated blob velocities (on a stationary back-
ground) with an analytical model [111]. Here, the filaments are seeded farther
from the X-point, at r0 = -8cm to allow the dipole to fully develop. Simulated
results are shown in green and the model explicitly calculated herein is shown in
black, dashed. The connection length is shown in blue, dot-dashed.

in experiment is characteristic of the initial dipole formation. If the developing

dipole were advected toward the X-point, it could appear that the magnetic null

region is causing the acceleration, when in actuality the effect of the null region on

the acceleration is minimal (as shown here). To test the assertion of an advected

dipole creating the acceleration profile seen in experiment, a moving background

was added to the simulation, corresponding to a vertical electric field observed in

experiments.

4.4.4 Constant translational background

To investigate if the initial dipole development causes the acceleration seen in

experiment, a constant background radial plasma velocity of 2km/s was imple-

mented in accordance with experimental measurements [111]. This was incor-

porated by implementing a background plasma potential profile with a constant

gradient in z, thereby creating a constant radial E × B motion of the plasma.
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Figure 4.10 shows the results of three simulations. A simulation of blobs on a

stationary background plasma profile, as discussed previously, is shown as the

solid line. The dashed line indicates the velocity of a blob in a TORPEX X-point

geometry with a moving background. When this is compared with the experi-

mental measurements in Reference [111], it is clear that the simulation has more

closely reproduced the experimentally observed acceleration and deceleration.

Not only does this case match the velocity seen in experiment, but both the

average acceleration and deceleration are reproduced. There is a slight difference

in the maximum velocity which could potentially be attributed to the isothermal

and inviscid approximations, or the effect of neutral damping.

Figure 4.10 also illustrates the calculated blob velocity using Equation 4.5

and the parameters from the simulation. It is clear that the acceleration profile

is not matched by the analytical model when the parameters in Equation 4.5 are

explicitly calculated, and the initial acceleration is underestimated, indicating an

additional acceleration mechanism to the increasing connection length L‖.

To verify that this effect is an effect of dipole formation and not the null

region increasing connection length, we can overplot the velocity in a vertical

magnetic field case, where no magnetic X-point is present. The vertical field case

is the typical TORPEX scenario, and has been implemented via Equation 2.67

knowing the vertical coil current and locations [123]. The vertical field is rel-

atively constant and the same strength as the X-point field at the blob seed-

ing/birth location, (r,z)=(-4cm,0cm). The results of this test case are also shown

in Figure 4.10, where the dotted line indicates the blob propagation in a vertical

field case with a moving background.

Figure 4.10 indicates that filaments in a vertical field have similar accel-

eration and velocity characteristics to those in magnetic X-point scenarios. To

analyze this assertion more completely, the E × B component of the blob prop-

agation has been calculated from simulation in both X-point and vertical field

scenarios. The comparison of these contributions is shown in Figure 4.11.

From Figure 4.11 it is clear that the E × B motion is the dominant ef-

fect in blob velocity. Additionally, Figure 4.11 allows for direct comparison with
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Figure 4.10: Center of mass velocity measurements from simulations of three
different scenarios; stationary background X-point case (solid), moving back-
ground X-point (dashed) and vertical (dotted) fields. The vertical field case in a
moving background recovers the same characteristics as the X-point simulation
and experimental measurements, indicating that the null region has little measur-
able effect on filament acceleration. This assertion is also supported by the small
acceleration seen in the stationary background case (solid). The Avino model
fails to recover the simulated acceleration, indicating and additional acceleration
mechanism.

Figure 4.4. By plotting the E × B contribution for both cases, it can be illus-

trated that the X-point has little measurable effect on the filament acceleration

via E × B convection. Additionally, the differences in velocity profiles between

vertical and X-point scenarios as seen in simulation lie within the experimental

uncertainty [111].

From these results it is possible to conclude that the acceleration mechanism

seen in experiment is not primarily due to the increased connection length in the

region of the X-point. Instead, the moving background causes the developing

dipole to propagate towards the null region as it begins to accelerate the filament

relative to the background. It should be noted that the recent experiments in

magnetic null point geometries are not the first to exhibit the shown acceleration

and deceleration profile. This characteristic has been seen previously in TORPEX
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Figure 4.11: Center of mass velocity measurements from simulations including
the E ×B contributions for vertical (blue) and X-point (green) scenarios.

without poloidal magnetic nulls both with simulation [119] and experiment [73],

both of which exhibit an initial acceleration and deceleration in the first tens of

microseconds. Additionally, the analytical model derived in [111] was also unable

to explain the deceleration after t ∼ −10µs in the immediate vicinity of the X-

point, which was attributed to the dissolution of the blob (despite δn/n being

considered almost constant immediately prior). The advection of a developing

dipole exhibits both an acceleration and a deceleration of the filaments on a

correct timescale. As the analytical model in Figure 4.10 underestimates the

acceleration, the increasing connection length can be considered a minor factor

in the filament acceleration.

4.5 Conclusions and future work

We have successfully been able to model blob propagation in the X-point sce-

narios within the TORPEX device using a method of perturbed magnetic vector

potentials. By prescribing a Cartesian coordinate system, numerical instabili-

ties have been avoided, allowing for straightforward simulation. Experimental

109



Chapter 4. TORPEX validation

measurements could be reproduced, however simulation results indicate that the

filament acceleration seen in experiment is due to dipole formation, and not the

increased connection length caused by to the introduction of an X-point. It has

also been shown that the magnetic null region does indeed cause an accelera-

tion of filaments in the vicinity of the X-point. This acceleration, however, is

much smaller than that of the initial dipole formation, and therefore is difficult

to measure experimentally. However, if the magnetic null were created farther

from the region where the filaments are formed, it would in principle be possible

to measure the acceleration due to the increased connection length in the X-

point region, provided the blob dipoles were given sufficient time to form. Future

computational analysis of TORPEX configurations should look to implement a

more complicated model which does not make an isothermal approximation and

accurately incorporates neutrals.
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Towards nonaxisymmetry

Having modelled complex magnetic geometries in both linear and toroidal con-

figurations, we provide here the basis of ongoing work towards nonaxisymmetric

modelling in BOUT++. The ultimate goal of this research is to be able to simulate

plasma fluid turbulence simulations in realistic stellarator geometries in BOUT++.

This would allow for comparison with experiment as well as divertor interaction

studies, which are currently limited computationally to (non-turbulent) transport

simulations.

Section 5.1 provides a brief discussion of the current status of stellara-

tor transport modelling, and the associated challenges. Section 5.2 introduces

the Flux Coordinate Independent (FCI) method for calculating parallel deriva-

tives, which allows the simulation complex geometries including stellarators. Sec-

tions 5.3 and 5.4 describe the testing of the FCI method and describe the foun-

dations for stellarator modelling in BOUT++, including transport modelling using

the FCI method. Finally, Section 5.6 provides a summary and description of

proposed future work toward global stellarator edge fluid turbulence modelling

in BOUT++.

5.1 Stellarator and Nonaxisymmetric Modelling

Historically, neoclassical transport has been the dominant loss mechanism in stel-

larators [126]. Recent optimizations have allowed for the minimization of neoclas-
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sical losses, which has culminated in the design of the Wendelstein 7-X stellara-

tor [39, 127]. As Wendelstein 7-X has been optimized for neoclassical transport,

turbulent transport could potentially become comparable to neoclassical losses.

As such, it is becoming increasingly important to simulate turbulence in non-

axisymmetric configurations to determine its role in comparison to neoclassical

transport in order to optimize performance.

Edge fluid turbulence modelling of tokamak plasmas often exploits the ax-

isymmetry of tokamak configurations to reduce the computational expense. The

nonaxisymmetric nature of stellarators, however, requires that simulations are

fully three dimensional. For three dimensional tokamak modelling, it is often

advantageous to align the computational grid to the magnetic field as discussed

in Section 2.4, which helps improve numerical efficiency. Typically, parallel dy-

namics exhibit a high wavelength, which allows for lower resolution in the parallel

direction, and therefore faster computation. In stellarators, however, the com-

plex magnetic geometry requires either a clever field aligned system [128], or a

nonaligned system since parallel structures are introduced along the magnetic

field.

Figure 5.1 [129] presents a Poincaré plot of the Wendelstein 7-X stellarator,

which illustrates the differences between the edge and core of a stellarator which

determine the difficulty in simulating edge and core turbulence.

In the core of stellarators, the closed flux surfaces and low collisionality fa-

cilitate the use of gyrokinetic codes such as GENE [130], which is currently the

only technique for simulating stellarator turbulence. However, due to the small

scales simulated in gyrokinetics, the computation is quite expensive for experi-

mentally relevant temporal and spatial scales. Additionally, GENE simulations

are currently localized to single flux surfaces or flux-tube geometries.

The edge of stellarators, however, includes stochastic regions and magnetic

islands, and edge modelling in stellarators is currently limited to magnetohy-

drodynamic transport modelling to determine the steady state profiles. This is

done primarily using a code called EMC3 [131], which employs a Monte-Carlo

solver to simulate three dimensional transport (non-turbulent) equations in or-

112



Chapter 5. Towards nonaxisymmetry

Figure 5.1: Poincaré plot of the Wendelstein 7-X magnetic field lines, indicating
closed flux surfaces in the core and a stochastic edge region [129]

der to determine steady state quantities for divertor profiles. The relatively high

collisionality of edge plasmas both in stellarators and tokamaks justifies a fluid

approach to turbulence simulations, however the current nature of plasma fluid

turbulence simulations renders it difficult to simulate nonaxisymmetric magnetic

geometries; stochastic regions are impossible in field-aligned coordinate systems.

The simulation of nonaxisymmetric configurations in BOUT++ is possible, al-

though difficult. BOUT++ was originally developed for flute reduced plasma models

in field aligned geometries. Specifically, the three dimensions used were radial,

toroidal, and parallel to the magnetic field. As stated previously, this is inaccu-

rate in the presence of magnetic X- and O-points, which still exist in stellarator

geometries. Additionally, the metric tensor within BOUT++ is two dimensional, as

it assumes the third dimension is periodic (toroidal angle) and can be spectrally

decomposed. Although a three dimensional metric tensor would be advanta-

geous, we will show here that it is possible to simulate stellarator geometries in

BOUT++ using a non-field-aligned grid through the implementation of the Flux

Coordinate Independent (FCI) method for parallel derivatives.
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5.2 The Flux Coordinate Independent Method

The advantage of field aligned coordinate systems is that parallel derivatives are

simplified to be taken along one dimension of the coordinate system, which is

computationally efficient since the majority of turbulence models are described

by separating perpendicular and parallel derivatives. One disadvantage of this

method is that complex geometries such as magnetic nulls are poorly described

and susceptible to numerical instabilities. A second disadvantage of field-aligned

coordinate systems is the difficulty associated with generating the mesh for non-

axisymmetric fields. In most turbulence codes, field aligned grids are generated

using a two dimensional poloidal cross section, and an assumption of axisymme-

try which leads to a two dimensional equilibrium. Additionally, the presence of

magnetic islands and stochastic magnetic field regions in stellarators render this

method impractical. The previous two chapters have utilized a modified parallel

derivative scheme in a Cartesian coordinate system (discussed in Section 2.5.2).

This method, however, is unsuitable for nonaxisymmetric cases due to the per-

pendicular displacement of field lines as a function of toroidal angle. That is, as

the field line moves toroidally, it also moves significantly in the poloidal plane.

The previous method for parallel derivatives relies on the assumption that per-

pendicular perturbations in the field and stochastic regions are small. Therefore,

for cases such as stellarators, another method must be used to calculate parallel

derivatives.

Recently Dr Peter Hill has led the implementation of the Flux Coordi-

nate Independent method for calculating parallel derivatives [5, 83] in BOUT++.

This method for calculating parallel derivatives has been implemented in other

codes [132], and is intuitively straightforward, as described in Figure 5.2 [5].

Based on the form of the magnetic field at a given point, the field line is

followed to the next poloidal (or azimuthal) plane. The position at which the

field line hits the next plane is interpolated to the nearest grid points, and a

value for a given quantity is assigned based on that interpolation. This process

is repeated on the previous plane, and a differential is calculated based on these

interpolated values via central differencing. As the FCI method is used solely for
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Figure 5.2: Illustration of Flux Coordinate Independent method for calculating
parallel derivatives.

calculation of parallel derivatives, the process is independent of the poloidal grid

configuration. In the work presented here, the poloidal grids are chosen to be

Cartesian. For the FCI method used in BOUT++, the interpolation scheme is cubic

Hermite spline, but other schemes can be implemented.

While this process is intuitively straightforward, it allows for more complex

magnetic field configurations in comparison to structured grids. Previous work

has used this model to simulate turbulence in the region of magnetic islands [133],

verifying its suitability for magnetic X- and O-points. In the following section,

the recent implementation of the FCI method is tested to determine if nonax-

isymmetric modelling is possible within BOUT++.

5.3 Foundations for stellarator modelling in BOUT++

The FCI method has been implemented into BOUT++ and tested via the method of

manufactured solutions [5], which determined that the operators converge to sec-

ond order, as is expected for the central difference schemes in use. One of the aims

of the research presented here is to provide the components necessary to simulate

stellarator turbulence cases and evaluate the computational and developmental

work required. The following subsection details the progress towards stellarator

turbulence using the FCI method by describing the recent nonaxisymmetric test

scenarios which have been implemented.
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5.3.1 Diffusion test cases

To determine the efficacy of the FCI method as a tool for stellarator turbulence

modelling, a test case of an infinite aspect ratio classical stellarator was con-

structed. A theoretical linear device with 4 helical coils was considered, as shown

in Figure 5.3. A Poincaré plot of this configuration was created to ensure the

existence of closed flux surfaces, as shown in Figure 5.4.

Figure 5.3: The straight stellara-
tor test case; a very large aspect ra-
tio classical stellarator showing helical
coils and the inlaid Cartesian coordi-
nate system (dashed).

Figure 5.4: Poincaré plot of the
straight stellarator indicating closed
flux surfaces

This configuration has been implemented into the FCI grid generator [5],

which has recently been written in collaboration with Dr. Peter Hill and Dr.

Ben Dudson. It is possible to change several parameters in this grid generator

including rotational transform, toroidal field and helical coil current/position. A

typical grid with 16 Cartesian poloidal planes at 256 x 256 resolution can be

generated in approximately 45 seconds.

As the FCI method is purely a tool for calculating parallel dynamics, a

simple heat advection equation was modelled:

∂f

∂t
= ∇ · (bb · ∇f) ≡ ∇2

‖f (5.1)

By solving Equation 5.1 for an initial three dimensional (non-field-aligned)
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Gaussian distribution of our test function f , and allowing the simulated to reach

a saturated steady state, it is possible to trace out the flux surfaces (shown in

Figure 5.4). The results of the diffusion simulation are shown in Figure 5.5.
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Figure 5.5: Heat diffusion in the straight stellarator test case; flux surfaces
are correctly mapped out, qualitatively indicating proper calculation of parallel
derivatives.

Figure 5.5 indicates that the FCI method for calculating parallel derivatives

is correctly evaluating parallel dynamics; as an initial distribution is left to prop-

agate along the field lines, the flux surfaces are traced out. The extent to which

the interpolation of field lines in the perpendicular planes modifies the calculated

quantities is tested in the following section.

5.3.2 Inherent Numerical Diffusion

There exists a strong anisotropy of heat conductivity in magnetized fusion plas-

mas. Parallel conductivity can be as much as a factor of 1010 higher than per-

pendicular conductivity. It is therefore important to reduce errors in parallel

operators, as even a small perpendicular pollution of parallel dynamics can lead

to substantial errors [134]. One of the main sources of error for the FCI method is

the interpolation, as every quantity is interpolated based on where the field lines

intersect the next and previous perpendicular planes. The issue can be illustrated
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by considering a field aligned structure which is very small in the poloidal plane

at a given grid point. Assuming the field line does not intersect a grid point in the

next (or previous) perpendicular plane, the structure will be distributed between

the four nearest grid points. This will then dissipate the function, causing a loss

of accuracy and introducing an error. Currently, the FCI method in BOUT++ uti-

lizes cubic Hermite spline interpolation, but other methods are possible and can

be used [132]. As a test of the interpolation, the previous diffusion case of a

straight classical stellarator was implemented for 4 different grid resolutions. It

is possible to determine the inherent numerical diffusion from interpolation by

assuming that the diffusion follows the relation:

∂f

∂t
= D∇2

⊥f = D∇ · (∇f − bb · ∇f) (5.2)

where D is the diffusion coefficient for the numerical diffusion of our test

function. The inherent numerical diffusion from the interpolation scheme puts

a limit on the minimum resolution which can be used, as low resolution grids

will introduce a higher perpendicular numerical diffusion. Ideally, numerical per-

pendicular diffusion should be at least a factor of 10−8 smaller than the parallel

dynamics [134]. The scaling of inherent perpendicular numerical diffusion coef-

ficients with perpendicular mesh spacing in the straight stellarator geometry is

shown in Figure 5.6, where the diffusion coefficients at a grid point just off-axis

(r,z = 16,15cm) are normalized to the parallel diffusion. For this analysis, the

number of parallel grid points was fixed at 16, and the number of perpendicular

grid points varied; 64x64 resolution gives a mesh spacing of 4.76mm, 128x128

resolution gives a perpendicular mesh spacing of 2.38mm, 256x256 resolution in-

dicates a mesh spacing of 1.19mm, and 512x512 resolution has a mesh spacing of

0.59mm. For reference, the domain size is always set to 30cm x 3m x 30cm, and

the parallel resolution is chosen to be a constant 19.6cm. Figure 5.7 indicates the

loss of our test function f due to numerical diffusion as a function of time for

these various resolutions. The initial transient region in Figure 5.7 is due to the

parallel transport along field lines. As the test function fills in the flux surfaces,
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the test function f increases in regions which were not initially highly populated.

The following decrease is then due to inherent diffusion, as there are no sinks in

the system.

Figure 5.6: Inherent numerical per-
pendicular diffusion as a function of
poloidal mesh spacing in the straight
stellarator test case. The fit shows
third order convergence, which is
broadly in line with previous work [5].

Figure 5.7: The test function f at
the center of the domain as a func-
tion of time for various resolutions;
inherent numerical diffusion serves as
an artificial sink at lower resolutions.

From Figures 5.6 and 5.7 it appears that the optimal resolution for an

FCI mesh is 256 by 256, as the perpendicular diffusion is at least 10−8 smaller

than the parallel diffusion. This ensures that the pollution of parallel dynamics

in the perpendicular planes is acceptable, following the analysis of [134]. Of

course, higher resolution cases are more precise but are also more computationally

expensive.

Having quantified the diffusion inherent in the FCI method for parallel

derivatives within BOUT++, we arrive at a minimum resolution required for this

nonaxisymmetric configuration, which is comparable to the resolution one would

choose for a given turbulence case for a system of this size, as ρs ≈ 1mm. We

have therefore provided evidence that nonaxisymmetric modelling is possible in

BOUT++, as the most difficult barrier to stellarator modelling is the ability to

correctly capture parallel dynamics. The next section describes recent work in

implementing a transport model which is a subset of the EMC3 model, which

intends to test the efficacy of BOUT++ as an alternative to common methods used

in stellarator modelling.
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5.4 Transport modelling

EMC3 [131] is a commonly used tool to simulate the steady state profiles of

stellarator edge plasmas, which allows for the reconstruction of heat flux profiles

for divertor optimization. Recent work [135] has looked to test the EMC3 model

against analytic solutions of the one dimensional transport model. Here, we

present the first results following this work in BOUT++ to determine if BOUT++ can

effectively and efficiently solve a simplified form of the EMC3 equations. The

EMC3 equations can be reduced to a one dimensional model which captures

isothermal parallel dynamics, which are shown in [135] to be:

∂n

∂t
= −∇ ·

(
nv‖
)

+ Si (5.3)

∂nv‖
∂t

= −v‖∇‖nv‖ − 2Te0∇‖n (5.4)

where Te0 is the isothermal electron temperature, assumed here to be 5eV,

n is the density, Si is the constant source function, and v‖ is the parallel velocity.

It is possible to solve these expressions to obtain an analytical solution, assuming

that the velocity is ±cs at the edges of the domain, which are considered to be

at x = ±L/2. Using this information, the differential equation can be solved to

obtain the analytical solutions which have been previously found to be [135, 136]:

ni(x) =
Six

v‖(x)cs
(5.5)

v‖(x) =
L

2x
−
√

L2

4x2
− 1 (5.6)

where Si is again the ion source which is independent of position, x is the
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distance along the field line, cs is the sound speed and L is the length of the

domain, which spans from −L/2 to L/2. For all of the following simulations, the

boundary conditions were implemented in accordance with [135]. Specifically,

velocities were set to ±cs (which is normalized to 1) at the upper and lower

boundary, respectively. Densities were set to SiL
2cs

.

The first implementation of this model into BOUT++ was done without the use

of the FCI method, allowing for testing using conventional operators. Figures 5.8

and 5.9 illustrate a comparison of the analytical model and a simulation using

finite volume (flux conserving) operators.

Figure 5.8: Steady state density in
a 1D transport model and the analyt-
ical solution using conventional finite
volume operators in BOUT++.

Figure 5.9: Comparison of the
steady state velocity in a 1D trans-
port model and an analytical solution
using conventional finite volume oper-
ators in BOUT++.

It is clear from Figures 5.8 and 5.9 that BOUT++ is capable of simulating

the correct profiles in these one dimensional transport equations. However, the

FCI method utilizes a finite difference scheme, which is not conservative and

therefore could introduce losses. As a test, the conventional (non-FCI) central

differencing schemes were implemented and again compared to analytical solution,

Figures 5.10 and 5.11

Figures 5.10 and 5.11 indicate that the more simple central differencing

scheme fails to reproduce the analytical solution, as the numerical steady state

converges to incorrect profiles. Using this method, it is possible that quantities

can be lost from the simulation, as these operators are non-conservative; flux
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Figure 5.10: Steady state density in
a 1D transport model and the analyt-
ical solution, having utilized a finite
difference scheme within BOUT++.

Figure 5.11: Comparison of the
steady state velocity using conven-
tional finite difference schemes in a
transport model and an analytical so-
lution.

exiting one computational cell is not necessarily entering the next. As such, it is

important to reduce these losses when using a finite difference scheme, such as

the FCI method. A method for improving these finite difference schemes will be

discussed shortly.

To further test the Flux Coordinate Independent method for parallel deriva-

tives, this one dimensional transport model was implemented in the geometry

shown in Figure 5.12. This geometry has a completely straight field at the center

of the domain, where the FCI method must not interpolate, and an increas-

ingly strong helical field at larger minor radii where interpolation is essential.

Furthermore, the magnetic field line length is nonuniform which (referring to

Equation 5.5) creates a radially varying profile for density.

The one dimensional transport model was implemented into the geometry

shown in Figure 5.12 at various resolutions. Similar to the straight stellarator

test case, the parallel resolution (y) was held constant while the resolution of

Cartesian poloidal planes was varied. To reduce losses, the FCI operators were

modified to calculate derivatives based on the flux at the at the grid cell faces;

the flux at the edges of each computational cell was averaged with the flux at the

edge of its neighboring cells. While this still does not guarantee the conservation

properties of finite volume methods, the quantities are more closely conserved

122



Chapter 5. Towards nonaxisymmetry

y
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z
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Figure 5.12: The geometry used to test the FCI method when solving the one
dimensional transport model. The azimuthal magnetic field is proportional to
the minor radius r, allowing a test of straight field lines on axis, and a test of
interpolation away from the center.

than in simple finite difference schemes. Figures 5.13 and 5.14 illustrate the results

of the transport simulation at the center of the domain shown in Figure 5.12 for

three different poloidal resolutions. As these plots are taken at the center of the

domain where the field line is straight, they can be compared to the previous

finite difference results, Figures 5.10 and 5.11, and a clear improvement is seen.

Figure 5.13: Steady state solu-
tion for density in the one dimen-
sional transport model and the ana-
lytical solution using the FCI method
on straight field lines

Figure 5.14: Comparison of the
steady state velocity and an analyt-
ical solution using the FCI method in
a region of straight field lines.

As the simulations correctly reproduces the behavior of the analytic model

at the center of the domain, it can be concluded that the losses due to the central
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differencing scheme used by FCI have been reduced. Furthermore, there is no

dependence on poloidal resolution as the interpolation scheme is not used on

straight field lines. To test the interpolation of the FCI method, it is useful to

examine the results away from the center where the field lines are helical, as shown

in Figures 5.15 and 5.16. Specifically, these results were taken at about two-thirds

of the distance to the edge of the computational domain, where the shear causes

a shift of 2.35cm in the azimuthal direction between each perpendicular plane

(separated by 19.6cm).

Figure 5.15: Steady state density
and the analytical solution of a one di-
mensional transport model in a region
of helical field lines for three differ-
ent resolutions. Accuracy is increased
with resolution.

Figure 5.16: Comparison of the
steady state velocity and an analyt-
ical solution in a region of helical field
lines. Again, the higher resolution
cases provide more accurate results.

Again, the simulations of the one dimensional transport model have repro-

duced the analytical solution along helical field lines, when considering a suffi-

ciently high resolution (recalling Section 5.3.2). As these helical field lines require

the use of interpolation in the FCI operators, these results indicate that errors

due to interpolation are reduced to tolerable levels at sufficient resolution and the

FCI method is capable of simulating transport models.
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5.5 Recent additions to BOUT++ of interest

Due to the nature of BOUT++ as an open source framework, there are often new

methods introduced which can benefit others. There have been several recent

implementations in BOUT++ by other developers which are relevant to this re-

search. Firstly, the FCI grid generator has been extended to accept input from

files output from VMEC [137], an equilibrium solver commonly used in stellara-

tor physics. This allows for experimental profiles to be implemented, and the

intention is to provide future comparison with other codes. Poloidal limiters and

parallel boundary conditions for the FCI operators have also been implemented,

allowing for more stable and realistic simulations. Numerically, the recent imple-

mentation of OpenMP [138] in BOUT++ will allow for better parallelization which

should drastically improve performance. Together, the implementations of these

methods provide a strong foundation upon which future stellarator modelling in

BOUT++ can be performed, as they address the main challenges to nonaxisymmet-

ric modelling.

5.6 Conclusions and Future Work

Here we have discussed the recent progress in modelling nonaxisymmetric ge-

ometries within BOUT++. The Flux Coordinate Independent approach to parallel

derivatives has been implemented into BOUT++ and allows for complex geometries

to be modelled. A very large aspect ratio classical stellarator test case was im-

plemented and it was determined that the FCI approach is correctly evaluating

parallel dynamics, which was the most difficult challenge in modelling nonax-

isymmetric configurations. A one dimensional transport model was implemented

and tested against an analytic solution, where it was determined that BOUT++ can

effectively converge to the analytical solution using FCI operators. These results

indicate that BOUT++ has the components necessary to model nonaxisymmetric

cases.

Future work should look to first model transport in nonaxisymmetric de-

vices, as this is an important step in determining the efficacy of numerical meth-
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ods. Furthermore, this would provide a result which can be compared to EMC3,

a code which currently has no equivalent for stellarator scenarios. Once this

is completed, a full turbulence model should be implemented in an attempt to

model global edge fluid turbulence in nonaxisymmetric configurations.

Numerically, BOUT++ should be modified to have a three dimensional metric

tensor. This would allow for more complicated computational meshes and more

complete numerical methods. Currently, the implementation of some operators

(such as curvature) for stellarator geometries must be implemented by prescribing

a three dimensional polarization vector (b×κ) which then modifies the respective

terms. This method is exactly what was used in the previous two chapters for

curvature, and is often used in tokamak turbulence modelling. The implementa-

tion of a three dimensional mesh would allow for three dimensional metric tensors

to more accurately capture the effects of local curvature.

The efficiency of the FCI method could potentially be improved by per-

forming the interpolation on a graphical processing unit (GPU), as the repetitive

two dimensional operation lends itself well to GPU architecture. While there are

several remaining challenges, this work has shown promising progress towards the

first global stellarator edge fluid turbulence simulations.
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Conclusions and Future Work

6.1 Conclusions

Turbulent transport in magnetically confined fusion plasmas is the predominant

limitation to viable fusion energy. By building larger fusion devices, it is possi-

ble to attain fusion-relevant parameters despite the transport due to turbulence.

However, the recent increased performance of tokamaks causes an increase of

heat and particle flux onto plasma facing components. Understanding the na-

ture of turbulence in regions of plasma exhaust is necessary in the development

of efficient, compact fusion reactors. By simulating turbulence in realistic ge-

ometries, it is possible to ascertain the performance and limitations of various

scenarios. Unfortunately, the efficient simulation of turbulence in realistic mag-

netic geometries including magnetic X- and O-points presents further challenges.

Field-aligned coordinate systems, which are most often employed in tokamak

X-point turbulence simulations, have a singularity in the magnetic null region,

prohibiting explicit computation. In this thesis, we have presented the results of

turbulence simulations using non-field-aligned grids in three different geometries

relevant to magnetically confined fusion research.

Chapter 3 details the results of simulations performed as part of a fea-

sibility study for a university-scale linear plasma device capable of producing

azimuthal X-points in tokamak divertor-relevant scenarios [1]. This device would

allow for direct comparison of plasma turbulence models and accessible experi-

mental investigation of fundamental plasma physics relevant to tokamak divertor
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and detachment scenarios. The linear geometry also provides a simple test for

the implementation of complex magnetic geometries using a Cartesian grid and

a modified parallel gradient operator in BOUT++ while still providing novel and

relevant results. The results presented herein indicate that a modest azimuthal

magnetic coil set would produce measurable changes in the plasma profile of a

linear device. A characterization of the turbulence within the device has been

provided, including a measurements from synthetic diagnostics which could be

reproduced experimentally. Among other results, it was shown that the energy

dynamics [109] within the system are altered by the introduction of an azimuthal

magnetic null point, which causes the energy within the system to be dissipated

at higher azimuthal mode numbers. This effect is likely due to the inhibited

transport of azimuthally flowing perturbations, which dissolves coherent struc-

tures.

Having effectively implemented a Cartesian coordinate system and a mod-

ified parallel gradient operator in linear geometries, the method was extended to

characterize turbulence in toroidal configurations by considering filament propa-

gation within TORPEX poloidal magnetic null point scenarios [111, 2]. Recent

work [111] measured the propagation of blobs in the region of a poloidal magnetic

null point. A measured acceleration was attributed to the increasing connection

length in the vicinity of the X-point, and a model was previously developed

for the observed acceleration [111]. Here, we have further investigated filament

propagation in scenarios with both a moving and stationary background. When

simulations are performed with a stationary background plasma, the experimen-

tal acceleration is not recovered. The analytical model, however, supports the

velocity profile of the simulated filaments. This provides first indication that

the acceleration seen in experiment might not be entirely dominated by the in-

creasing connection length, as the analytical model is derived in support of this

assertion. We are able to recover experimental velocity profiles by introducing

a moving background plasma profile as is seen in experiment. This acceleration

profile, however, is seen in scenarios both with and without an X-point, indicat-

ing that the experimentally measured acceleration is not primarily caused by an
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increasing connection length. It is suggested here that the acceleration seen in

experiment is caused by an advection of a developing dipole by the background

plasma. This advection of the dipole mimics acceleration caused by increasing

connection length near an X-point as the filament is accelerated in the direction

of the magnetic null.

Finally, the prospects of BOUT++ as a stellarator simulation code were dis-

cussed in Chapter 5. The implementation of the Flux Coordinate Independent

(FCI) method for parallel derivatives [133] into BOUT++ has allowed for the simu-

lation of complex geometries. Here we have explored two test cases to determine

the efficacy of future stellarator transport and turbulence modelling. Firstly, a

diffusion equation was modelled in a straight stellarator geometry to verify the

implementation of the FCI method. It was shown that the flux surfaces of the

straight stellarator were correctly recovered, indicating that the FCI operators

had been correctly implemented. In addition, a one dimensional transport model

was also implemented into a geometry resembling a circular cross section, infinite

aspect ratio tokamak which allows for testing of the central differencing scheme,

the implementation of boundary conditions, and the interpolation inherent in the

FCI method. We have shown that the transport model within BOUT++ reproduces

the analytic solution in regions both with and without interpolation. Together

with the previous test case of diffusion in a straight stellarator, this result in-

dicates that the implementation of the FCI method for parallel derivatives into

BOUT++ provides the basis for future stellarator turbulence modelling.

6.2 Future Work

The strength of BOUT++ lies in its flexibility. As such, the research presented herein

could be repeated with more complex models. For both the linear and toroidal

cases presented in Chapters 3 and 4 respectively, a nonisothermal model would

elucidate interesting physics. This would especially be useful as the motivation

for this work is its relevance to tokamak divertor scenarios where the goal is to

minimize heat and particle flux onto plasma facing components. Furthermore, the
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simulations in linear geometry could implement a more realistic source and exploit

more synthetic diagnostics. Experimentally, the construction of such a device

would allow for direct measurements of turbulence in divertor and detachment

relevant scenarios.

Simulations in TORPEX poloidal magnetic null point geometries should

look to implement a more realistic source region. The filaments presented here

were seeded poloidal Gaussians, and the generation of filaments is still a subject

for further study. We have presented here an alternative mechanism for filament

acceleration in TORPEX X-point scenarios. As such, future experimental cam-

paigns should explore this possibility. Primarily, a test case in vertical field (no

X-point) scenarios should be performed. This assertion could also be tested by

generating the filaments in a region farther from the X-point, or minimizing the

background plasma flow, allowing the dipole to fully develop.

It is important to note that the simulations presented in Chapters 3 and 4

utilize the electrostatic approximation. That is, magnetic fluctuations due to the

induced currents within the plasma are neglected. However, in the area of a mag-

netic null such as an X-point, small magnetic fluctuations can become significant

relative to the total strength of the magnetic field. It would be a useful exercise

to perform these simulations without making an electrostatic approximation.

Finally, Chapter 5 has discussed the potential for BOUT++ to simulate non-

axisymmetric geometries with a view of stellarator turbulence modelling. The

first studies should look to implement a more complex transport model in a ge-

ometry which can be compared to EMC3. This would allow for verification of

EMC3 while still providing novel physics. Upon successful implementation of a

transport model, a full turbulence model should be implemented. This would be

the first global edge fluid turbulence code for stellarators, and therefore provide

novel results relevant to modern experiments, such as heat flux profiles on the

island divertor in Wendelstein 7-X.

Computationally, the ability for BOUT++ to model stellarator physics could

be improved with several advancements. Firstly, the metric tensor should be

extended to three dimensions to properly incorporate stellarator physics. Fur-
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thermore, the implementation of OpenMP and interfacing with GPU processing

would greatly increase efficiency, which is a strong advantage for fluid turbulence

modelling. Finally, a more flexible, nonorthogonal computational mesh would

allow for more realistic strikepoint coverage and increase efficiency, as the current

method grids an entire plasma cross section including the core. Ideally, the mesh

would be generated for only the plasma edge and scrape off layer.

The results presented in this thesis provide a basis for plasma turbulence

simulation in complex magnetic geometries using BOUT++. Additionally, we have

provided evidence that BOUT++ could effectively be used as a stellarator transport

and turbulence code.

131





Bibliography

[1] B W Shanahan and B D Dudson. X-point modelling in linear configurations

using bout++. Journal of Physics: Conference Series, 561(1):012015, 2014.

[2] B W Shanahan and B D Dudson. Blob dynamics in torpex poloidal null

configurations. Plasma Physics and Controlled Fusion, 58(12):125003, 2016.

[3] Brendan Shanahan, Peter Hill, and Ben Dudson. Towards nonaxisymmetry;

initial results using the flux coordinate independent method in bout++.

arXiv preprint arXiv:1609.06603, 2016.

[4] Jarrod Leddy, Ben Dudson, Michele Romanelli, Brendan Shanahan, and

Nick Walkden. A novel flexible field-aligned coordinate system for tokamak

edge plasma simulation. arXiv preprint arXiv:1604.05876, 2016.

[5] P Hill, B W Shanahan, and B D Dudson. The fci method in bout++. In

Preparation, 2016.

[6] I Dincer. Renewable energy and sustainable development: a crucial review.

Renewable and Sustainable Energy Reviews, 4(2):157–175, 2000.

[7] K Caldeira, A K Jain, and Martin I Hoffert. Climate sensitivity uncertainty

and the need for energy without co2 emission. Science, 299(5615):2052–

2054, 2003.

[8] T B Johansson and L Burnham. Renewable energy: sources for fuels and

electricity. Island press, 1993.

[9] Naomi Oreskes. The scientific consensus on climate change. Science,

306(5702):1686–1686, 2004.

133



Bibliography

[10] John Cook, Dana Nuccitelli, Sarah A Green, Mark Richardson, Bärbel

Winkler, Rob Painting, Robert Way, Peter Jacobs, and Andrew Skuce.

Quantifying the consensus on anthropogenic global warming in the scientific

literature. Environmental research letters, 8(2):024024, 2013.

[11] Camille Parmesan and Gary Yohe. A globally coherent fingerprint of climate

change impacts across natural systems. Nature, 421(6918):37–42, 2003.

[12] Susan Solomon. Climate change 2007-the physical science basis: Working

group I contribution to the fourth assessment report of the IPCC, volume 4.

Cambridge University Press, 2007.

[13] John A Church and Neil J White. A 20th century acceleration in global

sea-level rise. Geophysical research letters, 33(1), 2006.

[14] International Energy Agency. Key world energy statistics, 2013.

[15] M King Hubbert et al. Nuclear energy and the fossil fuel. In Drilling and

production practice. American Petroleum Institute, 1956.

[16] Wikimedia Commons; Plazak. Hubbert upper-bound peak 1956.

[17] and others. Recovery of shale oil, February 8 1966. US Patent 3,233,668.

[18] Kelvin B Gregory, Radisav D Vidic, and David A Dzombak. Water man-

agement challenges associated with the production of shale gas by hydraulic

fracturing. Elements, 7(3):181–186, 2011.

[19] J Ongena and G Van Oost. Energy for future centuries - prospects for

fusion power as a future energy source. FUSION SCIENCE AND TECH-

NOLOGY, 53(2T):3–15, 2008.

[20] J H Nuckolls and L Wood. Future of inertial fusion energy. LLNL Preprint

UCRL-JC-149860, Sept, 33, 2002.
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Joaquim Loizu, and Annamaria Mosetto. Three-dimensional simulations of

blob dynamics in a simple magnetized torus. Physics of Plasmas, 21(2),

2014.

[120] J R Angus, M V Umansky, and S I Krasheninnikov. Effect of drift waves

on plasma blob dynamics. Physical Review Letters, 108(21):215002, 2012.

[121] Robert S Cohen, Lyman Spitzer Jr, and Paul McR Routly. The electrical

conductivity of an ionized gas. Physical Review, 80(2):230, 1950.

[122] Alejandro Paredes, Hugo Bufferand, Guido Ciraolo, Frédéric Schwander,

Eric Serre, Philippe Ghendrih, and Patrick Tamain. A penalization tech-

nique to model plasma facing components in a tokamak with temperature

variations. Journal of Computational Physics, 274:283–298, 2014.

[123] I Furno and F Avino. Private Communication, 2015.
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vereinfachten emc3 models. In DPG-Frühjahrstagung der Sektion Atome,
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