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Abstract

A novel methodology for Simultaneous Localisation and Mapping (SLAM) is re-

searched, allowing for interactive object selection and description. Current re-

search focusses on SLAM applications, e�iciency and larger area mapping. How-

ever, o�en SLAM relies on local, algorithm dependent and automatically selected

features which require dense representations for meaningful map generation.

Vision-SLAM has gained interest thanks to a�ordable image sensors, which

also allow flexible feature representations beyond points like curves or planes.

However, these are still automatically created and they need to be found in the

surroundings. Despite this, indoor applications allow to expect certain objects, e.g.

products in shops. These approaches rely on databases for detection, requiring

maintenance outside of operating cycle if new objects are to be added. Feature

description o�en relies on the same databases. Some works address this by means

of overlaid annotations, relegating an user to input data in a selected feature.

However, these remain predefined by the algorithm. This also does not improve

SLAM and thus the annotations are limited to be shown according to camera pose.

Therefore, user involvement is minimal in SLAM which can be explained by

fully automated trends in engineering. This discards potential user object di�er-

entiation and description, ignoring improvements in SLAM through user shaped

high-level objects. Active user interaction can provide semantics for be�er fea-

ture representation and overall map description, whereas high-level objects can

improve the inner workings of the SLAM algorithm. This includes be�er feature

matching with included high-level object parameter tweaking in real-time, e.g

avoiding fully autonomous approaches that incorrectly guess depth in features.

Yet, this does not exclude full automation with user input reused in further runs,

with improved description and semantics.

Two approaches are presented to achieve user input in SLAM: The first makes

use of active contours with an Extended Kalman Filter (EKF), whereas the sec-

ond uses particle filtering coupled with a novel Hough-Bresenham line detec-

tor. These implementations rely on General Purpose computing on Graphics Pro-

cessing Units (GPGPU) to o�er real-time performance. Results show improved

stability and semantics compared to a baseline vision-SLAM with inverse depth

parametrisation approach, opening a new research branch within SLAM.
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Chapter 1

Introduction

Robots have made their way into everyday life, first by performing stationary,

monotonous and automated tasks in industry and recently in domestic or out-

doors applications, such as indoor vacuum cleaners, automated driving cars,

drones used for leisure or surveillance and even rovers designed to explore the

surface of other planets (Han et al., 2016).

Amongst these scenarios there are limitations in robot task execution flexibil-

ity, e.g. those that account for safety limit robot dexterity. However, in scenarios

were safety is not much of a concern, constrained mobility by lack of robot per-

ception limits automated task adaptability in them. A contrasting case would be

an user acting exclusively as an operator, e.g. when using high mobility drones.

In this case there is no task automation as the user maintains full control at all

times, with the caveat of requiring constant a�ention (Scholtz, 2002).

As the engineering trend of fully automated devices continue, more robots

are expected to dynamically adapt their behaviour in any environment they are

deployed. At the same time they are not expected to come into a sudden stop

whenever a condition is found, which has not been accounted in its program-

ming. Computational advances slowly allow to remove this limitations by means

of artificial intelligence (Kim et al., 2013). However, the concept of environment

perception in robots is still needed for autonomous approaches and remains highly

sought, as it allows adaptability in them to perform a task.

The above suggest robot self-localisation awareness as an important charac-

teristic, as it can be used to extend the capabilities of a robot. This helps in industry

as it allows a robot to increase mobility in assigned areas of operation, by allow-

1
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ing a power assisted tasks to be executed with flexibility of place. On the other

hand it provides freedom and e�iciency of operation on domestic uses, e.g. an

autonomous home vacuum cleaner that creates a map on the fly (Ackerman and

Guizzo, 2015).

This motivates Simultaneous Localisation and Mapping (SLAM) research,

which allows a robot to sense and map its surroundings through perceived land-

marks. Sensor readings are compared against a map stored in memory, if there is

not a previously inserted map the robot is limited to assume a starting position

when turned on. Using this assumption does not tell the robot where this starting

position is nor what it means in a map.

However, even when the robot has been programmed with defined objectives

or landmarks in the form of a map, it is still limited in the tasks it can perform.

For example, the robot can perform obstacle avoidance using its built map, but

assuming that the robot is required to retrieve an object or visit a place, recognition

algorithms capable of using the data obtained from the surroundings are needed.

In SLAM, information is o�en retrieved from the environment in the form of

very localised and generic features like points, which if considered alone they are

limited in their semantics or meaning and thus require clusters of them to perform

recognition (Carlone and Censi, 2014, Li et al., 2014, Reinoso et al., 2014, Deusch

et al., 2015). Usually landmark or object information is programmed outside of

the robot operation cycle, i.e. o�line and thus requires reprogramming for any

change not accounted in the surroundings.

Real-time object or place recognition can be of help in these circumstances,

robots can make use of such capabilities but some implementations are restricted

to an object database. This is built also outside of operation cycle and at the same

time limits what objects the robot can recognise (Gross et al., 2008, Civera et al.,

2011, Ranganathan and Lim, 2011).

In persons, object segmentation and di�erentiation is taken for granted com-

pared to robots, as the constant contact with di�erent objects through the course

of years allows for accurate object categorisation and recognition, in the moment

of perception by the human senses (Su, 2012). Therefore, a research opportunity

within robot self-localisation and mapping is missing. This expands perception

in robots, involving active user participation beyond just a supervising task. At

the same time it removes the need of o�line programming or se�ing information

prior robot operation, allowing user driven adaptation in unknown surroundings
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without going out of operation cycle.

Fusing human recognition capabilities with SLAM would allow the user to be

part of the algorithm, making a robot more adaptable to a new environment. This

involves real-time user semantics and descriptive input, by means of using as-

sisted tools such as active contours which are capable of tracking objects through

user initialisation, or by se�ing prior information in real-time which is valuable to

particle filtering techniques. As such this becomes the main basis for this investi-

gation, which is assisting SLAM through user interaction.

1.1 A Short SLAM Description and Missing Links

Robot SLAM is an intense area of research, as it allows to bring further applica-

tions to what was once very constrained or limited in robotic sensing (Durrant-

Whyte and Bailey, 2006, Bailey and Durrant-Whyte, 2006). SLAM is a methodol-

ogy that allows a robot to recognise and match its location in the environment, by

means of landmarks acquired from it allowing pose estimation relative to them.

In this sense both industrial and domestic robots obtain benefits from perceiving

their surroundings, as they can dynamically adjust their movements, avoiding ob-

stacles or find areas in where specific tasks must be carried out.

The basic problem of SLAM can be described by thinking of a robot, which

has been put in an unknown environment in order to accomplish two main tasks

whilst moving: to map the surroundings and locate itself within the created map.

Given this scenario a robot registers di�erent salient features o�en in the form of

points, which become map landmarks if they can be repeatedly found with the

robot sensors. Both vehicle and landmark locations are considered together, as a

common error is produced between them yielding correlation, Figure 1.1 (Smith

et al., 1986).

The popularity of this approach comes from allowing a robot to give a be�er

estimation of other landmarks, using readings which possess li�le error from an

earlier registered landmark when the robot had li�le uncertainty. This is usually

performed using the Extended Kalman Filter (EKF) (Durrant-Whyte and Bailey,

2006), allowing for estimation (robot position) and correction through repeated

landmark observation.
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Initial position
(Assumed no error)

Robot moves, 
no registered landmark
(Error increases, 
represented in red oval)

Robot senses landmark
(With position error) Robot registers landmark

(Possessing both robot
and measurement error)

(b)(a)

 (c) (d)

Figure 1.1: Error correlation between robot and landmark in EKF SLAM. The

initial robot position is assumed with no uncertainty or error in its position (a). If

the robot moves its uncertainty will increase as its own sensors might dri� from

the real measurement (b), thus accumulating error. This error is present when the

robot observes a landmark (c), the la�er is added into the map with a correlated

error (d).
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For a feature to become a valid landmark in SLAM it must be constantly pre-

dicted from di�erent robot positions until it is out of range, a feature failing this

test is discarded (Davison and Kita, 2001). Successfully added landmarks then al-

low robot localisation a�er long periods of absence, as each one of them helps to

update the robot position as well as the landmark location relative to the previous

robot pose. As the same measurement from a landmark is used to update other

landmarks positions, the correlation between these grows even bigger (Durrant-

Whyte and Bailey, 2006).

The nature of detecting, aggregating and re-observing landmarks is completely

automated with no particular criteria in their selection. This ignores semantics of

any sort that might give surrounding context, or feature state indicating present

object condition, e.g. broken desk in o�ice. This is in part because points are

good salient features when there are computational constraints, as in the case of

small vehicles where processing power is not readily available. However, points

are limited in any descriptive property as they are very localised features, which

might represent any object in the surroundings. This SLAM paradigm has been

and continues being studied for more than a decade, as it possesses an elegant

mathematical solution.

As such, there is a considerable amount of research performed in SLAM which

compile ideas from many di�erent areas. Some examples represent new ideas

and challenges in SLAM, including optimisation of its computational resources,

improvements using new estimation techniques (Li et al., 2014), implementations

in other environments outside indoors (Lee et al., 2014), coupling of multiple sen-

sors (Luo and Lai, 2014), localisation within ambient magnetic fields (Jung et al.,

2015) to name a few (Durrant-Whyte and Bailey, 2006, Bailey and Durrant-Whyte,

2006).

Despite all the research performed in di�erent areas of SLAM there is still a

missing link between feature acquisition and meaning, state or surrounding con-

text. This is something that cannot be easily programmed into a robot, as it would

require an artificial intelligence capable of evaluating many factors in its surround-

ings, ge�ing more close to human recognition.

Through years of experience or training a person can infer context or describe

object’s state o�en instantly. Ideally, user given semantics would allow to expand

the usefulness of SLAM: A task can be programmed beforehand if an objective is

known, e.g. locating a place or handling objects. However, if any task is required



6 1.2. User Input Hints and Local Feature Avoidance in SLAM

beyond moving from one point to another or outside of an object database, a

person could input descriptive information or assign an object in the moment of

observation. This could be potentially useful in search and rescue missions, where

o�en there are unexpected scenarios. The given user information could be relayed

to other robots or persons as well, which could assist the operation at hand.

Therefore, this work aims to relate user input into SLAM complementing an

o�en fully automated paradigm. This does not only rely on o�line object labelling

approaches, but rather incorporates user interaction within the SLAM cycle in

order to unify object selection with real-time semantics, exploiting user experience

combined with pose estimation in order to increase map usability.

This information can potentially help collaborative scenarios involving other

robots or persons, as it relays important points or objects of interest avoiding re-

dundancy in surrounding recognition. This enables fast specialised task execution

for other robots with limited SLAM capabilities, or other users in need to perform

in-place objectives.

At the same time this means that an user will not be able to directly use points,

as these are very localised and unless chosen by an algorithm not reliable for re-

peatable observation. This also aims to inspire further research, in which a robot

can perform di�erent tasks with no o�line re-programming. This includes the pos-

sibility of aiding other users and the robot itself through interactive input whilst

on algorithm execution.

This research is presented by introducing the concept, whilst looking into user

guided tools which might allow for interactive input in self localisation and map-

ping. As such, the following sections briefly describe the general state of SLAM,

with some investigations that execute other tasks besides localisation and map-

ping. This includes implementations which do not use localised features, intro-

duce environmental semantics or enable some form of user interactivity in them.

1.2 User Input Hints and Local Feature Avoidance
in SLAM

Human interaction into the SLAM methodology has been li�le considered in the

research literature. Examples point to slight hints by showing an user se�ing a



Chapter 1. Introduction 7

reference feature with known dimensions, thus providing valuable prior informa-

tion for the robot (Davison et al., 2007). Applications with augmented reality (AR)

include interactive virtual object placement with camera movements a�ecting its

perspective (Skrypnyk and Lowe, 2004). An active approach is proposed in which

an user is guided to move the camera in forward, backward, right, le�, up, down

and stay positions. This allows to obtain more information from landmarks which

possess big uncertainty (Vidal-Calleja et al., 2006).

Outside of the above examples SLAM approaches tend to automatically ac-

quire rigid, algorithm dependent and local features such as points which o�er no

context or meaning in them. O�en they are extracted from the environment using

di�erent sensors, e.g. sonar, electromagnetic, laser range finders or cameras. The

recent a�ordability and quality increase of image sensors and the vast informa-

tion that an image provides gained vision-SLAM momentum, which also began

using points as main salient features (Munguia and Grau, 2007).

Image feature acquisition o�en consists of algorithms that extract points from

patches, e.g. the high contrast point detector, Scale Invariant Features Tracking

(SIFT), Speeded Up Robust Features (SURF), or Features from Accelerated Seg-

ment Test (FAST) (Shi and Tomasi, 1994, Skrypnyk and Lowe, 2004, Bay et al.,

2008, E. Rosten and Drummond, 2010). Therefore, dense feature acquisition and

clustering is required in order to avoid sparse representations. This is because

points are unable to o�er any description due its localised and limited nature.

However, an image provides more information than other sensors, allowing

for more flexibility in feature acquisition. Only a few examples have been pre-

sented as alternatives to localised features with dense representations, these em-

ploy curve fi�ing or object recognition techniques (Pedraza et al., 2007, 2009, Ali

and Nordin, 2010, Rao et al., 2012). Curves are selected because otherwise points

cannot represent certain environments, such as those containing smooth curved

walls. Object recognition is used because a database can contain more data about

the object itself, e.g. chairs with predefined dimensions, as they provide be�er

feature association compared to points.

This thesis aims to present benefits in SLAM with interactive semantic or de-

scriptive input, whilst also introducing a feature selection based on user prefer-

ence by exploiting feedback from a constant video feed. With this be�er environ-

ment description can be a�ained, useful for both user and robot thus enabling

further collaborative applications in SLAM. The challenges of this approach will
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be explored along the way in this document, as they are the basis for novelty and

contributions of this research.

1.3 Aims and Objectives of User Involvement in
SLAM

This investigation revolves around creating a new branch within SLAM research,

one that involves user interaction in SLAM. However, this by itself aims to intro-

duce three concepts: high-level feature creation, interactive object labelling and

the combination of them to promote user interactivity in SLAM.

High-level feature creation avoids using localised features like points, this

is mainly based on objects as they o�er meaning and context within a map. At

the same time, these features rely on user selection in the moment of their ob-

servation. This implies that there is no previously created object database, which

allows to avoid o�line reprogramming of the robot and at the same time allowing

input semantics or description.

Objectives:

• Involve an user in the creation of high-level features (Munguia and Grau,

2007), without obtaining data too abstract that it cannot be used for tracking

purposes, i.e. provides no measurable quantities or simply that it is not

possible to use as a landmark.

• Enable either semantics or descriptive input in the feature, as this informa-

tion is valuable within a map.

User interaction requires a method to input information, which will be used

for high-level feature creation but also for semantics and description. This also

includes any other form of input that can help in SLAM (Pedraza et al., 2007, Rao

et al., 2012).

Objectives:

• Devise an interface which allows to see the created high-level feature in

real-time.
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• Allow to modify the high-level feature in real-time. This is in order to im-

prove re-observation, allowing to correct user initialisation deviations.

Perform interactive SLAM using the created high-level features coupled

with an estimator (Pupilli and Calway, 2005, Montiel et al., 2008), allowing to ob-

tain position estimates for robot and high-level features by re-observation of the

la�er.

Objectives:

• Use information from the high-level feature entered by the user in order to

perform localisation, which requires repeatable observation from di�erent

positions of the feature.

• Display position and descriptive information about the feature and robot in

real-time. Performance will be evaluated according to tracking capabilities

using a high-level feature, which will change in perspective with changes in

robot position.

Finally, another major aim of this investigation is to make future propositions,

which can only be accomplished with active user input. As an example, this could

include se�ing a course of action instead of fully automatic robot exploration.

This is because sometimes a person has already a be�er set of decisions leading

to intuition, which tells about how to proceed in a particular scenario. This sort

of thinking behaviour is not exactly easy to program into a robot, for this is what

makes us human; be our decision a mistake or success. Therefore, the following

section describes the contributions of this research related to this aims.

1.4 An Interactive SLAM Contribution

This research contributes a novel human-robot cooperative approach for vision-

SLAM, in which a human is part of the algorithm discerning features of interest

from an image sequence. This leads to o�loading computational resources with

be�er and meaningful feature selection compared to a baseline SLAM algorithm.

At the same time user semantic labelling and state input in the moment of

SLAM runtime are introduced, such as “this is a door”, “this is an o�ice” or “o�ice
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door is broken” which can be of use for another user or robot. This does not require

an external module but merely user intervention, this hinted in Goal-Directed

Navigation but instead of human interaction an additional device is used to detect

particular features (Davison and Murray, 2002).

Users are considered an important part of SLAM for this research, as object

segmentation and di�erentiation has huge computational penalties in computers

but becomes something natural in persons, as years of experience through human

senses allows to quickly discern them (Su, 2012).

A constant flow of images is proposed to be used for interactive feature selec-

tion and tracking, where filtering is involved whilst accounting for speed. These

features may not only involve object location, their usage will be expanded in or-

der camera position as well. Therefore, the following contributions are detailed

and summarised:

• The primary contribution is that, to the best of our knowledge, this work is

the first implementation to incorporate interactivity in a SLAM algorithm

through user feature selection. Other SLAM implementations have not in-

cluded the ability to select objects from the surroundings for tracking, even

if they are simple in nature as investigated in Chapter 2.

• A compilation of the mathematical foundations used in monocular SLAM,

including an inverse depth parametrisation approach in Chapter 3. This is

as many works assume these foundations are known, as seen in much of

the research presented in Chapter 2.

• User semantics and description in algorithm runtime is shown in Chapter 4.

Labelling of an object avoids the need of o�line databases for object match-

ing. The current state of a feature and semantics can also be described right

a�er it has been selected, e.g. when selecting a computer screen it can be la-

belled as one, indicating that it probably belongs to an o�ice. This improves

map usefulness which might also be helpful in cooperative scenarios.

• A first implementation of real-time Gradient Vector Flow (GVF) forces driv-

ing active contours for object tracking in SLAM is seen in Chapter 4. As

a first hypothesis in the presented interactive approach, active contours is

a known user assisted tool capable of following silhoue�es from objects.

However, this ability comes with serious performance penalties. Thanks to
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General Purpose computing on Graphics Processing Units (GPGPU), it is

possible to a�ain real-time speed. Tracking information is then obtained at

video rate speed, which is later on given to an EKF monocular SLAM imple-

mentation.

• A first particle filtering implementation involving user interaction, allowing

to provide object tracking and capable of estimating camera position is pre-

sented in Chapter 5. In this scenario the user is allowed to describe an object

through its edges, which then are represented using an novel line detector

based on Hough and Bresenham algorithms. User input is seen through

a vertex approach based on geometric constrains over the object, and also

with real-time manual feature modification.

1.5 Thesis Overview

Chapter 2 describes previous and current insight into SLAM research. Section

2.1 introduces the basic SLAM idea, whilst Section 2.1.1 describes current SLAM

research. However, the main interest of this investigation pertains to the vision-

SLAM branch and thus seen in Section 2.2, which narrows the investigation focus

towards vision-SLAM. Section 2.3 shows works that allow to further demonstrate

and justify active user participation in SLAM. Finally Section 2.4 gives particular

key remarks that motivate this investigation.

Chapter 3 describes the o�en used estimator EKF, whilst also detailing in

depth a baseline monocular SLAM algorithm. Many concepts of importance in

this document are seen in this sections, e.g. adding features or removing lens dis-

tortions. The EKF and its nomenclature is introduced in Section 3.1. Monocular

SLAM is deeply discussed in Sections 3.2 and 3.3 using an inverse depth parametri-

sation exploiting the parallax e�ect for depth estimation.

Chapter 4 presents a first a�empt to introduce active user participation within

vision-SLAM. This approach is based on the EKF with user interactivity through

active contours or snakes, which first require Gradient Vector Flow (GVF) forces

seen in Section 4.1 and whose real-time performance is explored in Section 4.2.

The foundations of the active contours can be seen in Section 4.3 and the results

of applying them into the SLAM algorithm are presented in Section 4.4.
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Given the results of the approach presented by using EKF, monocular SLAM

and active contours, it was decided to employ a di�erent estimation method such

as particle filtering in Chapter 5. This remains a Bayesian approach but it diverges

considerably from EKF, as it does not need linearisation. However, a new way to

incorporate users is needed as this would allow be�er flexibility in long term. As

a result, particle filtering is described together with some of its resampled and re-

cursive implementations in Section 5.1. Likelihoods are required for the algorithm

to work properly, which are related at the same time with user input. Therefore, a

method which allows for both interactivity and likelihood is devised by means of

the Hough transform in Section 5.2. Fusing this likelihood into particle filtering

is seen in Section 5.3, with user interaction accounting for initial assumptions in

depth in Section 5.3.3 and the results of this implementation presented in Section

5.4.

Finally, the conclusions to this investigation are presented in Chapter 6. This

is proposed to be followed by the future work presented in Section 6.1.



Chapter 2

Background

Chapter 1 explored SLAM in regards to its basic principles, highlighting that dy-

namic interactive feature selection has not been introduced within this area of

research. Meanwhile, robot platforms become more a�ordable as time passes,

and they are further involved in industry or domestic tasks when aided by locali-

sation and mapping. SLAM then allows robots to perform pose estimation whilst

moving, yet this remains largely in reference to fixed and local features from the

surroundings.

SLAM implies in the name that both localisation and mapping happen simul-

taneously, yet the robot first requires to map features which allow it to localise

itself. This was reflected in Simultaneous Map Building and Localization (SMAL)

for Autonomous Mobile Robot and Concurrent Mapping and Localisation (CML)

(Leonard and Durrant-Whyte, 1991, Durrant-Whyte and Bailey, 2006). This is fun-

damental as a robot never really knows where initially it is when just placed in

unknown environment, instead it maps features and takes them for granted as

part of the environment. Therefore, this chapter begins by giving more details

which allow a robot to use SLAM for self-localisation in Section 2.1, which briefly

gives state of the art research focused on standard SLAM in Section 2.1.1.

O�en landmarks take the form of points, which are automatically obtained

using dedicated algorithms. The caveat of this is that dense representations are

required, since using points are very localised limiting any descriptive informa-

tion in them. Therefore, the focus shi�s drastically in this literature review to the

branch of vision-SLAM in Section 2.2. This is as images provide more informa-

tion than other sensors and thus flexibility in feature selection. The principle of

13
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vision-SLAM remains similar as in standard SLAM, but also requires dense feature

acquisition for meaningful environment representation.

Early approaches for vision-SLAM are described in Section 2.2.1, with state-of-

the-art investigations presented in Section 2.2.2. This is then narrowed to monoc-

ular SLAM research in Section 2.2.3, as processing di�erent video sources can be

computationally costly. Then Section 2.2.4 discusses why user involvement within

automated approaches like monocular SLAM is a good idea.

Later on some works going beyond localisation and mapping are explored in

Section 2.2.5. These explore alternatives to points in vision-SLAM, which employ

object recognition techniques or use other feature characteristics like silhoue�es.

Some of these approaches are closely related to this investigation, but they still

remain dependent on previously entered data outside of operating cycle. As such,

any feature that does not follow a stored pa�ern is not taken into account. How-

ever, these works provide glimpses for user interactivity within vision-SLAM.

The focus then shi�s into tools that can be used for interactivity within SLAM,

like active contours in Section 2.3.1 which is considered an assisting tool for object

selection. Particle filtering is also seen as a way to introduce interaction in SLAM,

thanks to flexible hypothesis generation in Section 2.3.2. Finally concluding re-

marks are seen in Section 2.4. Therefore, as a first step to introduce user input in

SLAM its basic inner workings are explored next.

2.1 Describing an early SLAM methodology

The SLAM methodology allows a robot to ask itself where it is, which it then

proceeds to estimate through landmark observations. However, what the robot

obtains are positions with inherent error. This is because as the robot moves its

uncertainty grows, even when the robot is equipped with sensors to measure its

movement. This is as any sensor is assumed to have imperfections in its measure-

ments, but also because of external factors, e.g. slippage in wheels. Subsequently,

this uncertainty also a�ects feature observations.

Observing features is also assumed an imperfect process, inherent to any sen-

sor used and thus contributes to uncertainty (Figure 2.1). However, the robot

continuously registers and recalls its distance from di�erent landmarks, allowing
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Figure 2.1: Basic SLAM Operation. A robot detects salient features from the en-

viroment, such as corners or high contrast points. Sonar and LASER sensors o�er

distance measurements towards the features, which are then registered on the

SLAM map. Robot uncertainty is present because of movements without regis-

tered features, including initial assumptions at the start of the SLAM algorithm ex-

ecution. This uncertainty can also increase due to model linearisations and noise,

which then becomes correlated with measurement error. This is represented in

the SLAM map in the form of uncertainty elipses around the robot (triangle with

green contour) as well as the features (blue dots).

to perform position dri� correction and uncertainty reduction. Landmarks are

salient features from the surroundings that were successfully added, following a

criteria in which they have to be unique enough to be associated from di�erent

observations in distinct positions. At the same time there are other sources of

uncertainty, which include initial assumptions made about robot parameters or

linearisation. This takes place in motion or feature appearance models, which are

o�en involved in estimators like the EKF or its derivatives.

In initial conditions there is an assumed origin position with very li�le uncer-

tainty (close to zero) and no added salient features. This robot position uncer-

tainty remains small whilst no movement is performed, but it will immediately

accumulate as soon as there is movement. The first landmarks seen by the robot

are initialised with low uncertainty if they are closest, further ones will initialise

depending on the current robot position uncertainty when observing them. If

there are no landmarks on sight the robot can only rely on its own sensors, which

consequently increases its current location uncertainty.
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Figure 2.2 demonstrates a basic example of a SLAM algorithm
∗

using EKF (Dis-

sanayake et al., 2001): given an unknown environment, a robot equipped with sen-

sors detects salient features from its surroundings. These are then registered as

landmarks allowing the robot to reference itself through their repeated observa-

tions. The obtained measurements are assumed not precise, i.e. they are contam-

inated by noise. This assumption is based on the fact that sensors are not perfect,

also including unforeseen events beyond said imperfections, e.g. slippage on the

robot wheels. Newly added salient features are a�ected by robot uncertainty: if it

is big, then the added landmark uncertainty will also be big. This also applies in

the opposite case and hence its correlation.

One way to minimise both robot and landmark uncertainty is making use of

an EKF, which uses predictions and repeated observations to give a position es-

timate. The EKF considers equations for both state and observation models: the

former predicts the robot movement and the la�er the landmarks appearance in

the surroundings. The EKF stores all position parameters in states containing

translations, rotations, landmark locations, etc. in a vector and their uncertainty

information of each states is represented in a covariance matrix. As more obser-

vations are obtained, the uncertainties are reduced by means of a Kalman gain

which later on updates both state vector and covariance matrix.

The Kalman gain changes depending on how good a prediction of the robot

position is according to landmark observations: landmarks are foreseen from a

predicted robot position and measurements are expected close to said predictions,

any deviation in these observations will have an e�ect on the value of the Kalman

gain. As a particular note the extended part in EKF comes from the linearisation

of robot or observation (or both) models using a Jacobian matrix (Taylor series).

However, this approximation and other assumptions induce uncertainty and thus

overall noise in the system.

Further research improves or expands the SLAM concept beyond localisation

and mapping. However, the basic idea remains the same. Therefore, some ex-

amples of recent SLAM research are described in the next section. These reflect

recent SLAM development in all areas, allowing to focus later on Vision-SLAM

research.

∗
Code can be obtained from http://openslam.org/ , SLAM Package of Tim Bailey.

http://openslam.org/
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(a)

(b)
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(c)

Figure 2.2: Simulation of a basic SLAM approach. A robot in an unknown en-

vironment (green triangle) following a predefined target path (green) discovering

salient features (blue asterisks) is shown in (a). The traversed path (black) coupled

with robot and landmark (x, y) position uncertainties (red ellipses) are estimated

by the SLAM’s internal EKF used for this simulation. Both landmarks and robot

position uncertainties are correlated. This is because as the robot moves with

no measurements its uncertainty increases, which then a�ects newly initialised

landmarks. In this simulation salient features are observed in the order expressed

by the number above them. The robot reduces its location uncertainty by re-

observing the first landmark in (b), which was detected almost immediately and

initialised with low uncertainty, therefore allowing the algorithm to correct the

estimated path. The correction is seen as a discontinuity of the black path. As

the location uncertainty of the robot is low, the landmarks position uncertainty is

decreased as soon as the robot sees them again in (c), displaying smaller uncer-

tainty ellipses compared to (a). The robot path can be repeated as many times as

needed in order to lower all landmarks location uncertainties (EKF convergence).
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2.1.1 Current SLAM Research

SLAM has been continuously researched from the basic approach described in

Section 2.1. Many other applications start with the idea of obtaining a position

estimate through landmark observations, improving the inner workings of this

methodology. These investigations are briefly mentioned without going deep into

general SLAM investigation, as the own nature of SLAM leads to considerable

research branching and also because the primary area of interest in this thesis is

interactivity, which is heavily involved with the area of Vision-SLAM.

The EKF is not the only estimation algorithm that can be used in SLAM.

Other examples include the Unscented Kalman Filter (UKF) or particle filtering

approaches. The former has similarities with the EKF but does not use Jacobian

matrices for linearisation, whereas the la�er uses a multi-hypothesis approach

representing many di�erent system states. Another example includes the Rao-

Blackwellised Particle Filter (RWPF) which propagates a posterior using an EKF,

then uses a multi-hypothesis approach to obtain estimates.

Many other works have grown from these ideas with recent examples includ-

ing multi-sensor and collaborative approaches in order to improve performance,

whilst also allowing to detect moving objects or work in clu�ered spaces (Luo and

Lai, 2014, Moratuwage et al., 2014). Also shown are arrangements of specialised

sensors to detect magnetic fields, which provide refinements in pose estimation

(Lee et al., 2015, Jung et al., 2015). Data association has also particular interest,

since mismatching a landmark with false readings can lead to divergence (Li et al.,

2014). Reliability in estimators is continuously tested, as erratic motion can lead

to divergence (Carlone and Censi, 2014, Deusch et al., 2015). Applications on dif-

ferent environments other than indoors are considered, like underwater (Lee et al.,

2014).

This small sample of research and many others are focused on improving pre-

vious SLAM investigation, as this can be aided by many other branches in engi-

neering. However, SLAM started using points as main features for the algorithm

to work and these are limited in their description and meaning. This produces re-

search which tries to partly solve then inherent limitations of points, with many

of them delivering improved results but no definitive methodology in SLAM ac-

counting for all possible scenarios. Therefore, recent research is also being made
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beyond localised and dense point representations, bringing a new trend of SLAM

by creating maps for metrics and topology (Reinoso et al., 2014). However, an im-

age provides more information than other dedicated sensors allowing for more

flexibility in features, albeit requiring filtering in order for an image to provide

useful data to perform SLAM.

Cameras have been introduced in SLAM research, taking also the original ap-

proach of relying on feature points. However, the main di�erence lies in their

acquisition: instead of obtaining distance readings using dedicated sensors (e.g.

sonar, laser), observations are obtained in the form of two dimensional coordi-

nates from an image. Vision-SLAM has gained popularity as sensors have become

of be�er quality and a�ordability, but also because computational power has be-

come enough to speedily process images. This prompted the use of more complex

features in images for pose estimation, e.g. lines, planes or curves, whilst also of-

fering new possibilities like augmented reality. The la�er is a natural consequence

of video as o�en graphics overlays can be used over images.

However, a key element in this thesis taken from cameras is their capability of

providing visual feedback to an user, thus enabling a novel element within SLAM

in the form of interactivity. Therefore, the next section focus primarily on Vision-

SLAM by describing first earlier approaches, then discussing into single camera

setups. This also includes user involvement as well as applications of Vision-SLAM

beyond localisation and mapping.

2.2 Vision-SLAM

Compared to other traditional SLAM approaches Vision-SLAM characterises itself

by using cameras, which extract salient features from the environment with or

without using auxiliary sensors as in Figure 2.1. O�en single camera setups are

preferred, as they o�er a simple, cheap and compact implementation which can

be put virtually in any environment.

However, obtaining information through cameras with no aid of other sen-

sors presents a di�erent challenge compared to traditional SLAM. This is because

whereas vision-SLAM can rely on the same estimation techniques like the EKF

from its non-vision SLAM counterpart, its observation models need to account
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for landmark appearance in images where no depth information is present (Fig-

ure 2.3).

Despite these shortcomings, cameras o�er possibilities that otherwise cannot

be achieved with dedicated sensors, as the information from the la�er is limited.

For example, vision allows to detect complex structures or common objects within

their surroundings (Gee et al., 2008, Hwang and Song, 2011). Vision also relates to

real-time decision making in persons, by directly feeding information to an user

which then through experience can interactively respond to the system.

As such, this thesis drastically changes focus towards vision-SLAM from here

on, as it might o�er insight in the novel idea of interactivity within the SLAM

context. First, Section 2.2.1 presents early approaches which mostly introduce

cameras as sensors in SLAM. Section 2.2.2 follows with a compilation of some

general vision-SLAM work. However, there is no precise path to follow which

marks an evolution over previous research. This is because as with standard SLAM

further investigation is concentrated on improving over the foundations, mostly

stability concerns and pose estimation improvements.

Later on, Section 2.2.3 focuses on monocular SLAM as their implementation

requires almost no special setups nor arrangements, also allowing to lower compu-

tational resources for real-time operation. Section 2.2.4 di�ers from the previous

literature, by se�ing a perspective in which persons are involved in automated

processes in order to improve them. Finally, Section 2.2.5 shows vision-SLAM im-

plementations which go beyond just localisation and mapping. This describes

potential for future research which is not only focused on performance tweaks for

SLAM, but rather implies the use of abstractions as features in this methodology.

2.2.1 Beginnings of Vision SLAM Approaches

Earlier works in vision-SLAM adapt the SLAM methodology described in Section

2.1 by concurrently extracting salient features from images of the environment,

provided by one or multiple cameras (Figure 2.3). Early approaches started using a

dual camera setup mounted over a robot, that whilst in movement acquires points

of high contrast as features the Shi and Tomasi operator
∗

(Shi and Tomasi, 1994).

∗
This operator was used as it o�ered good performance at the time, other operators are men-

tioned in Section 1.2
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Figure 2.3: Camera and other sensors in SLAM. The upper diagram illustrates a

robot performing SLAM with common sensors like sonars or laser range finders,

which are used to detect salient features from the surroundings. Distance and

bearing information is obtained in this way. The lower diagram shows a robot

performing SLAM using only a camera. Because an image only contains two di-

mensional data, only coordinates can be used leaving depth to be obtained indi-

rectly.
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The right image performs stereo matching using epipolar geometry. If the feature

is continuously matched then its 3 dimensional position is inferred, otherwise it is

rejected (Davison and Murray, 1998). This is later on added as a landmark allowing

to use EKF estimation to track it and reference the robot.

As this initial research was limited to a planar environment, no tilt changes

were taken into account. Therefore, uncertainty increased when a slope was found

by the robot. One solution found to this relies on an accelerometer to measure the

pull of gravity, allowing the robot to infer its inclination (Davison and Kita, 2001).

This investigation also introduced 3D orientation information by using a

quaternion system, which avoids the singularities presented by its Euclidean

counterpart (gimbal lock). This is seen in many further SLAM implementations.

These first approaches rely on points for feature extraction, with no interactiv-

ity considered and thus not relying on user input. However, this can be explained

by the need to have an algorithm with low computational cost. This is because

both image sources are processed to extract image patches, which later on are

matched through correlation. These operations are intensive on computational

resources, with the research taking priority on using camera information to per-

form SLAM.

2.2.2 Further Vision SLAM Research

This section describes the research performed in vision-SLAM a�er the founda-

tions seen in Section 2.2.1. The early stages of vision-SLAM research concentrated

on cumulative improvements over the original investigations. However, as vision-

SLAM can make use of many other areas of research further works do not follow

an unique logical path as seen in the following paragraphs.

First, alternatives to EKF have been presented with estimators involving parti-

cle filtering to improve localisation. This includes an approach based on FastSLAM

using a Rao-Blackwellised Particle Filter (RWPF) (Montemerlo and Thrun, 2003,

Sim et al., 2006), and coupling with the Unscented Kalman Filter (UKF) with faster

versions using the square root UKF (Pupilli and Calway, 2006, Holmes et al., 2008,

2009). The works which follow a similar approach to FastSLAM achieve a large

number of salient features, therefore allowing dense representations.
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These approaches use a considerable amount of computational resources as

they use numerous pose hypotheses. The investigations using particle filtering in

conjunction with UKF allow faster recovery from erratic motion, but map gener-

ation is not dense compared to FastSLAM approaches and its performance still

behind of other EKF implementations.

Later on, the field of view in cameras has been considered for improvements

in pose estimation. Di�erent arrangements have been tested, including hyper-

boloidal mirrors (Kim et al., 2006), panoramic (Milford et al., 2006, Milford and

Wyeth, 2008) and omnidirectional (Tardif et al., 2008, Andreasson et al., 2008). As

local features remain limited in their context, association is a problem when ob-

taining readings a�er periods of absence. Therefore, these investigations show a

increased amount of time in which localised features remain within the field of

view.

In omnidirectional cameras and setups involving hyperboloidal mirrors land-

marks remain visible even in full rotations, allowing robustness in association even

when tested outdoors. The panoramic approach does not always retain a land-

mark in camera image, but this is aided by odometric information using a biolog-

ically inspired goal navigation approach. These investigations partly increase the

complexity of implementation as the main interest is to keep localised features in

view, as to solve problems in feature re-association when they are out of view. This

reduces the need to obtain new features each time the robot turns, with reduction

in the noise introduced in the system when aggregating them as landmarks.

Localised features represent a problem particularly in images, as these can only

provide two dimensional features with no depth information. This increases the

complexity of landmark estimation, leading to development of stereo camera algo-

rithms with the intention of improving landmark appearance estimation. There-

fore, epipolar geometry can be exploited in depth estimation (Schleicher et al.,

2006), scale considerations are made in (Paz et al., 2008) and individual monocular

SLAM executions are seen in (Sola et al., 2008). These approaches already benefit

from a wide field of view, thanks to their stereo setup.

Epipolar geometry allows to infer depth based on the position of two cameras

observing the same feature, but at the same time this requires detection of the

same feature in both image sources. Considering scale is shown to reduce pose

dri�, with close and far feature representations used to represent structures. De-

centralised schemes also allow infinity point representations, demonstrating also
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asynchronous usage and communication within SLAM algorithms. A side e�ect

of using two cameras is that two image sources need to be processed, which de-

pending on the resolution would scale computational load accordingly requiring

e�icient use of resources.

Further investigations integrate other sensors with cameras in vision SLAM

as points are localised and limited in nature, with the objective of improving fea-

ture association indirectly yielding be�er pose estimation. These include laser

range finders (Newman et al., 2006, Andreasson et al., 2007, Ramos et al., 2007)

or three dimensional cameras which capture images with included depth infor-

mation (Ohno et al., 2006). Di�erent tasks can be assigned to each sensor whilst

performing SLAM: laser range finders can build the map with cameras accounting

for loop closing, with the advantage of relying on visual similarity rather than ge-

ometry. On the other hand cameras can perform SLAM whilst laser range finders

are used for landmark association by creating three dimensional models, allowing

to track shape and texture for improved motion estimation. Inertial measurement

units in vision-SLAM are also used (Piniés et al., 2007), but their benefits reflect

on reduced variations in map scaling thanks to improved forward and backward

camera motion estimation.

Algorithm optimisation can be seen in these investigations, showing be�er

feature association thanks to multi-sensor approaches. These allow features to

become more resilient to false readings, but association and model complexity

increase as more sensors are used. With this it can be seen that association is

a notable challenge in vision-SLAM, especially when using localised features as

their similarity between each other is high. Using di�erent sensors allows to partly

overcome this problem, at the cost of algorithm and implementation complexity.

Other investigations have tried to overcome the problems related to feature

association, by means of using artificial landmarks. This includes RFID patches

in the surroundings or simple printed fiducial makers (Kleiner et al., 2007, Hyon

and Young Sam, 2009). Although the work using RFID patches uses a camera

only to obtain images, its equipped antenna allows it to see the landmarks even

when obstructions are present, with each one of them being associated by the

information embedded on them. Fiducial markers share some of the previous

advantages as well, as association becomes easier with each marker being printed

distinctive from each other; they can also be put on paper and placed anywhere

or even made invisible.
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Many advantages can be seen for feature association with fiducial markers, as

they o�er meaning and context beforehand. However, this is an o�line approach

with user intervention limited to the information given to the fiducial markers.

Improvements can be made in the form of user feature selection, as it would allow

to register them in the moment of their observation rather than o�line.

Due to limited computational resources and image processing complexity,

these SLAM investigations tend to use points. These features perform well when

the main objective of a robot is to estimate its localisation, with ongoing investi-

gation improving their detection and matching. However, at the same time map-

ping is constrained by the use of localised features, as dense representations are

required to o�er an understandable representation of the surroundings. This rep-

resents another performance impact within their algorithms, as dense represen-

tations need to account for all the features with their respective estimation tech-

niques. Overall this leaves li�le room for any user involvement and thus preferring

fully automated execution. Other investigations have also found that processing

multiple image sources is detrimental to performance, leading to e�orts in which

only one image source is processed, i.e. monocular SLAM.

The next section focuses on single camera setups only, as they are preferred in

order to avoid processing twice as much image data. This allows to make propo-

sitions in which an user can be part of the algorithm, allowing to leverage some

steps of feature detection to an user.

2.2.3 Monocular SLAM Research

Monocular SLAM is the idea of using only a single camera to perceive the sur-

roundings around a robot. This approach o�ers simplicity of implementation, as

it basically consists of a camera mounted over a robot. Stereo setups compared

to monocular implementations can obtain depth through the use of epipolar ge-

ometry, but processing a single image source halves the e�ort and time spent in

lens calibration, feature detection and matching. However, single cameras cannot

directly provide feature depth from a single position (recall Figure 2.3). As such,

indirect methods are required in which the camera needs di�erent feature angles

in order to provide a depth estimate.
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The Rao-Blackwellised Particle Filter (RWPF) estimator is used with real-time

performance in (Eade and Drummond, 2006), following the steps of FastSLAM

and its stereo camera implementation (Montemerlo and Thrun, 2003, Sim et al.,

2006). These approaches allow to register a considerable number of landmarks,

with the ability to recover from shake in the implementations using cameras. The

idea is that if the poses of a robot are already known, then the estimates from

landmarks are independent from other features whose pose is not known. This

is because an indirect uncertainty correlation can only occur between robot and

landmark if both of their positions are uncertain. When there is no robot position

uncertainty the correlation disappears. However, a map which can tell all the

possible locations of a robot is required as prior.

Another investigation for monocular SLAM limited the quantity of tracked

landmarks, coupled with a simplified constant velocity motion model (Davison,

2003). This is followed by another work with emphasis on fast path estimation

using SIFT features (Skrypnyk and Lowe, 2004, Stasse et al., 2006). In these ap-

proaches the camera does not expect to follow a predefined path with landmarks

along the way, instead grabs any available features from its surroundings. The

camera is able to obtain real-time pose estimation by using sparse landmarks dis-

regarding map representation, with the assumption that only angular and linear

accelerations impulses a�ect camera movement. This implementation can make

use of a prior, e.g. a calibrated frame with known dimensions. However, this is

used to provide the internal distance units with meaning.

Faster performance is also achieved considering a total of 10 to 12 sparse fea-

tures in (Davison et al., 2007). Compared to the previous work it discards SIFT

image patches and instead uses high contrast points (Shi and Tomasi, 1994). This

investigation also presents augmented reality thanks to its real-time performance.

However, whilst the idea of SLAM in interactive scenarios is suggested, only com-

puter graphic overlays are shown.

These investigations proved that single camera SLAM was possible even in

real-time. However, as an early e�ort, further development of its suggested appli-

cations was limited, e.g. virtual reality. This is mainly due to computational con-

straints, as even landmark acquisition is constrained in order to maintain speed.

Further investigation continues with algorithm tuning, speed being a priority with

the main purpose of expanding its applications.

Feature depth initialisation takes interest as images can only deliver two di-
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mensional data in (Gemeiner et al., 2007). A delayed initialisation for feature depth

is presented, which uses a semi-infinite line representing all possible depth hy-

pothesis. The line is directed towards the feature from the camera which later

on is treated as a one dimensional Gaussian distribution, requiring some steps

to create a depth hypothesis. Di�erent views from the feature are gathered a�er

moving the camera, allowing to obtain a suitable depth estimate. However, valu-

able orientation information is discarded, as the camera still needs to move until

an acceptable estimate is found.

Delayed initialisation was addressed in the inverse depth parametrisation re-

search (Montiel et al., 2008), followed by an improved version with robustness to

changes in light, orientation and scale variations in (Chwan-Hsen et al., 2007).

The parallax e�ect provided by feature points was used: the closer to the centre

of the image from di�erent positions the farther they are in depth. This has the

advantage of linear modelling, which is ideally suited for immediate feature ini-

tialisation and EKF convergence. These investigations also suggest the use of wide

angle cameras for monocular SLAM, as they possess a wider field of view which

improves feature extraction. However, lens imperfections in these kind of cam-

eras produce severe image deformations requiring radial and tangential models

to correct them.

This research tries to address the inherent problem of using local features like

points, as they can only provide much information from an image. Inferring data

from these features becomes more complex and improved, but does not solve the

need for dense representations in order to provide any meaningful representation.

So far no user involvement in the SLAM algorithm has been seen in any of the

previous approaches. Mainly this is because monocular SLAM continues to fol-

low further algorithm optimisation and applications. However, it is o�en believed

that user interaction can be detrimental, even if it o�ers advantages in semantics

or description. As such, the next section tries to justify user involvement within

SLAM and perhaps other automated approaches.
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2.2.4 Why User Involvement?

In SLAM, human interaction has been largely ignored as it is o�en thought that

this methodology can remain completely automated, leading to minimal or non-

existent user input in SLAM. This is of no surprise as reducing human input has

been a trend in numerous engineering works.

Nevertheless, complete autonomy in machines might present potential prob-

lems in some scenarios: unforeseen circumstances might bring the robot to a halt

or cause malfunction. Depending on the circumstances these problems can make

a particular task delayed or una�ainable. In the worst case scenario an unpre-

dicted occurrence could present harm to the robot, to a person or loss of any

object involved in the task. This is reflected in most of the robots possessing a to-

tal shut-down switch, with a form of user link with the robot in order to alleviate

potential problems and costs for these fully autonomous devices.

Communication between robot and persons can be presented in many ways,

with teleoperation being the most common. In this case the robot is just a tool

and is o�en used for environments that are harsh or not known, its operation and

task execution is limited to user skill and feedback speed between its actions and

the robot. The opposite being autonomous systems, which grant independence to

the robot. High-level goals are achieved this way and the person only functions

as a supervisor with almost no interaction to the robot (Scholtz, 2002).

Depending on the autonomy degree in a human-robot system, the strengths of

both can be maximized for a specific task taking into account their skills: ingenu-

ity, dexterity, heuristic knowledge, intuition and ‘common sense’ for the human;

continuous computational power for the robot (Milgram et al., 1993, Green et al.,

2007).

However, systems enabling communication about goals, abilities, plans,

achievements and problem solving between user and robot are more robust and

be�er performing than those lacking the link with a person (Fong et al., 2006).

Thus interactivity between robot and user is suggested for improved task execu-

tion, as the more information a person receives the more its experience can help

in such tasks.

In recent years image sensors have become mainstream. Hence, computer

vision allows robots to see the world. If autonomous systems would have the
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context and interpretations that human beings take for granted, then they might

infer context and behave similar to a person (Su, 2012). However, these systems

would need to analyse and understand visual data in the same way as a human.

This is o�en the result of years of trial and error, inferring meaning through a

constant sensory flow of information which includes natural vision.

Robots have increased their capabilities in perception and control, as there

is an constant push towards process automation. However, high-level decisions,

strategic planning and cognitive functions remain an ‘achievable goal’ (Milgram

et al., 1993, Wang et al., 2015). Specifically for object recognition, humans segment

objects be�er than machines (Da�a et al., 2008, Borji et al., 2015). This advantage

is due to years of association experience from a constant video feed through the

person’s eyes, being capable of discerning objects from multiple viewpoints, with

di�erent lighting conditions and even occlusions.

Particularly in SLAM, salient features from the environment that can present

all the previous characteristics are preferred, yet current approaches only allow

them to be very local with low-level and less robust association. This is o�en

in the form of points which are unable to o�er context or semantics, leading to

limited map representation. Even with a dense number of points detailing the sur-

roundings, further classification needs to be made adding another step. Involving

a person in the algorithm would avoid this, allowing to create maps full of user

given context.

Nonetheless, as technology progresses new ways to employ both robot and

human skills arise. This causes a performance increase with human-robot sys-

tems surpassing perhaps that of fully autonomous robots (Milgram et al., 1993,

Tsarouchi et al., 2016). An example of this would be augmented reality, enabling

computerised graphics to be displayed on top of a real world image. This is an

ideal platform for interactivity between robots and persons because it provides

spatial cues for local and remote collaboration.

Robot interaction might also be used in collaborative workspaces, allowing

to perceive positions of robots and other interacting persons (Green et al., 2007,

Tsarouchi et al., 2016). Visual cues allow to reach a common ground for a human

and robot, maintaining situational awareness. The robot can then communicate

its internal state and intentions through graphic overlays on the real world view

of the user (Colle� and MacDonald, 2006). Therefore, interactivity does possess

an interest within the research community, but at the same time it represents



Chapter 2. Background 31

challenges which go from an user interface to a feedback mechanism for the user.

The next section will explore some SLAM works which use human interaction

or extract high level information. Although scarce, they o�er a glimpse for further

research in this area.

2.2.5 Beyond SLAM

To the extent of our knowledge the idea of interactivity in SLAM is novel, in the

sense that no other work so far has implemented user driven tools in SLAM con-

text, nor a�empted interactive user input at SLAM runtime. However, there are

particular similarities with other works that help the motivation behind this inves-

tigation, together with approaches that go beyond just localisation and mapping.

Examples include sensor combinations used to find alternatives to points, i.e.

avoiding localised features. This makes assumptions of environments which ac-

count for multiple geometric man made structures, allowing to search for high-

level shapes where dense representations are not descriptive enough (Jeong and

Lee, 2006). Cameras and infra-red sensors have been used to detect lines, mak-

ing the algorithm more robust than relying only on points. A combination of

lines and planes is also seen in order to achieve be�er camera pose (Lemaire and

Lacroix, 2007, Viejo and Cazorla, 2007). A newer approach of local feature avoid-

ance has also been researched, which relies exclusively on image gradients to per-

form SLAM (Engel et al., 2014).

Up to here it can be seen how abstractions can be used to obtain be�er esti-

mates, as the features themselves are more ‘unique’. For example, it is easier to

confuse very localised features like points than to do so with lines. Usually these

abstractions are complicated to distinguish in an automated form (Borji et al.,

2015), whereas a person can discern them without much e�ort.

Further refinement led to find abstractions in the surroundings such as walls

(Gee et al., 2008). Dynamic environments with moving objects are considered

by repairing maps that have changed. This works by using long term matching

techniques involving detection of intersections, walls, floors and ceilings (Konolige

and Bowman, 2009). Depending on the detection of certain complex structures

a robot can be assigned to perform labelling on walls, floors and ceilings. This
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assigns limited semantics on automated map generation (Flint et al., 2010). SLAM

can be performed by looking for common indoor objects including: lamps, corners

and doors. These are detected by a camera looking upwards (Hwang and Song,

2011).

These works show a tendency to detect commonly found indoors or outdoors

objects, as they remain the same in essence with slight variations of form and

shape. An algorithm can be given this information prior to perform SLAM in order

to recognise them, or if user interaction was considered an individual might do so.

More complex research introduces B-Splines to SLAM, producing an improved

representation of the map, by making be�er use of the measurements obtained

with a laser range finder as o�en 95% of the readings are discarded (Pedraza et al.,

2007, 2009). A similar approach is seen with the use of Bézier curves. These are

used for stereo matching instead of points, but are limited to obtain curves from

the ground plane image, i.e. from riverine areas or where surfaces lack textures as

points detectors rely on them. Edge detection is used to produce the most visible

silhoue�es and later on curve fi�ing them in order to perform SLAM (Rao et al.,

2012).

In these approaches no user interaction is given, as there are already assump-

tions about how the world might be and which objects there are in it. Neverthe-

less, there is the reasoning that dense representations are not always suited nor

are the best performers.

Database object recognition has been used in order to reduce dense feature

acquisition. Early approaches demonstrate a be�er landmark association. How-

ever, this method requires to build an o�line database containing any expected

objects of interest for association (Ahn et al., 2006). Sonar sensors coupled with

cameras have been used: the former provides point and line features and the lat-

ter recognises planar objects from a previously constructed database (Choi et al.,

2006).

A practical implementation shows a robot receiving input from a person to

locate a particular product within a store, recognising it from previously stored

images in a database (Gross et al., 2008). Other applications involve gaining de-

scriptive information about an object of interest using database matching. An

aiding robot can make use of these clues, e.g. a glass can be detected and the

robot informed of it. This delivers more information inherent to the object, e.g. an

object’s material can be informed to the robot so it knows how to grasp it and to
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which site it must transported (Civera et al., 2011).

Pre-programmed labelling of indoor places through image matching also rep-

resents a huge advantage, as it allows a robot to execute specific tasks according

to its location in a building. It also permits user input to perform predefined tasks

in such places, with the robot knowing where it has to go (Ranganathan and Lim,

2011). Visually impaired persons can benefit from semantics provided by clouds

of SIFT features. A set of features can be extracted and saved onto a database

prior to SLAM operation. A camera can be set onto a person and the algorithm

will extract features from the environment. For example if the gathered cloud of

image patches match the entry of a dining table in the database, then feedback is

heard helping the user to recognize its surroundings (Ali and Nordin, 2010).

From these examples it is possible to see that descriptive or semantic infor-

mation is of great help for both the robot and persons. However, o�line database

creation must be done prior to SLAM execution. Even so these applications are

limited to recognise only the objects or places that are stored in the database, re-

straining its flexibility. User interaction would allow for online user input, with

information given to an object for further usage.

Augmented reality is also directly related with interactivity as the surround-

ings are expanded in information, using image overlays which may help a user in

decision making. This concept has been applied in SLAM, creating games that of-

fer di�erent camera perspectives referenced to discovered planes (Chekhlov et al.,

2007). However, this approach does not make an user part of the SLAM algorithm,

instead it relegates the person to other applications which do not involve SLAM

improvements.

One of the closest approaches to the research presented in this thesis refers

to a system involving graphic overlays. Research shows an interactive annotation

algorithm with three types of selection: punctual, planar or oval. These selections

are incorporated into a FastSLAM algorithm through di�erent models, allowing

camera pose estimation (Montemerlo and Thrun, 2003, Reitmayr et al., 2007). Re-

marks are made for remote collaboration in unknown environments with an ex-

pert adding notes to support other collaborators. This approach signals towards

the importance of state in features, yet discards any other possible input from

the user in order to form part of the SLAM algorithm itself, instead relying on

FastSLAM. Augmented reality takes estimated camera positions for perspective

changes, changing the annotations perspectives as well.
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This thesis presents an interactive approach, in the sense that there is missing

active user interaction within the SLAM methodology. This is motivated by real-

time user input in SLAM leading to flexibility in object selection, brief feature state

description and at the same time because this introduces a new branch in SLAM

exploiting interactivity benefits. This is particularly important for mapping objec-

tives, as autonomous algorithms do not take into account objects of interest for a

person. This makes the assumption that an user or other robots might not require

fine grain detail on a map, but rather they prefer to focus on important objects or

places. This information could also be shared in cooperative environments, which

would speed up certain tasks in other robots.

The next section proposes the use of either active contours or particle filtering

for feature abstraction. In both cases, the user can set a prior that eventually

allows a particular object of interest to be tracked, which is used at the same time

for mapping with user given semantics.

2.3 Enabling User Interactivity with Cameras

Most of the research in Section 2.2 has shown a complete preference towards

fully automated approaches, but also gave a glimpse of recent interest in includ-

ing more abstract user input. Hence, this research builds on these glimpses by

introducing a novel approach, combining active user input with tracking into the

vision-SLAM paradigm.

A first inspiration for a methodology combining human interaction with track-

ing was found in a research using fractal dimensions, which measure the variation

between pixels over an image. The work uses active contours (snakes) which de-

form to track a texture with either user help or predefined parameters (Smith,

2010). The user can pinpoint a location over the image and plant a seed, creating

a snake that eventually contains the selected texture. Although limited to textures

the approach illustrates an interactive way between snakes and a person, allowing

to obtain useful tracking information.

Active contours allow for interactivity as the user can set an initial position

for them over an object of interest, evolving and keeping track of it whilst the

camera is in motion. This causes position changes in the snake, which can be
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later interpreted as measurements a�ected by noise. All this information can be

entered in an EKF vision-SLAM algorithm.

Particle filtering also o�ers a way to introduce interactivity into SLAM, due to

its flexibility in hypothesis generation and voting. A defined criteria can be used

to obtain votes based on interactivity, allowing to replicate the most supported

hypothesis.

Therefore, Section 2.3.1 explores research pertaining to active contours and ob-

jects. However, works in which snakes can perform object tracking are fewer than

those using active contours for image segmentation purposes. Later on Section

2.3.2 explores particle filtering in SLAM giving small hints to interactivity.

2.3.1 Active Contours (Snakes)

Active contours make use of interpolated curves, commonly found in other com-

puter vision problems. The basic behaviour of a snake is as follows (Kass and

Witkin, 1987): an active contour is initialised near a region of interest in a filtered

(binary) image, which contains only discernible silhoue�es. A�ractive forces are

generated from this image allowing the snake to a�ach itself to them, gradually

taking its shape. A sketch of this can be seen in Figure 2.4, which compares an

early (baseline) approach against a more e�icient implementation of force extrac-

tion such as Gradient Vector Flow (GVF).

Snakes have the property of a�aching themselves to a desired contour, which

produces a local minima as shown in Figure 2.5. However, there is a need for a

mechanism that initialises them near an object’s contour. In the case of a person

this is considered a power assist, as in the hands of an expert it allows to ini-

tialise the snake onto an object of interest (Kass and Witkin, 1987). Automated

approaches can be used to initialise the snake, but they need to analyse the whole

image looking for a desired local minima or object silhoue�e.

Tracking motion has been demonstrated using snakes since its inception (Kass

and Witkin, 1987). However, occlusion or rapid changes in speed will cause the

active contour to lose track of the target. Because of this the elements of the snake

are proposed to include mass in order to minimise this e�ect. Later on, Kalman

filtering was introduced in active contours (Terzopoulos and Szeliski, 1992). This
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(a)

(b)

Figure 2.4: Sketches of di�erent image generated forces. Shown in (a) and (b) are

forces or vector fields (grey arrows) generated by a picture contour (black line) at-

tracting an hypothetical active contour (blue line). This snake is initialised outside

the figure and does not have to follow a particular shape. The baseline generated

forces in (a) do not allow the active contour to fully follow the concavity a�er

reaching an steady state (red line), as the forces generated around the concavity

are parallel to each other causing the snake to be pulled in opposite sides. Forces

generated using GVF appear in (b) which allow the active contour to fully a�ach

itself to the silhoue�e of the figure, as the forces are not parallel and thus pull the

snake inside the concavity.
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Figure 2.5: Active contour demonstration. The orange crosses are discretised

points of the snake curve which are sometimes called snaxels. Image forces a�ract

these snaxels with each one of them impacting the form of the snake in each

iteration, which does not follow an uniform a�raction towards the shape. A�er

steady state has been reached, i.e. a�er all the snaxels have found local minima,

the snake resembles the form of the silhoue�e in the figure.
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proposed two models for snake tracking: the first one has fast performance but

does not account for occlusions, with the second one following the idea of mass

in the elements of the active contour, by means of using an inertial term but pos-

sessing less performance than the first approach.

Optical flow allows to detect brightness changes in moving objects, provid-

ing description of its motion which can be used to drive an active contour (Horn

and Schunck, 1981, Peterfreund, 1997). This approach is able to perform tracking

prediction, but it requires to process first a batch of images in order to provide

estimates for an object of interest. These tracking capabilities are improved us-

ing a Kalman filter (Peterfreund, 1999). However, as the Kalman filter is only able

to follow unimodal distributions this approach is still a�ected in its tracking by

occlusion or clu�er (Cham and Rehg, 1999, Drummond and Cipolla, 2002).

It must be noted that around this time Gradient Vector Flow Forces (GVF) were

presented in (Xu and Prince, 1998b,a). These allow a snake to posses be�er concav-

ity deformation and insensitivity to initialisation. However, the main drawback

of GVF is its high computational cost per image and thus it is not widely used.

This changed when another research proposed them instead of baseline forces for

tracking (Lam and Lee, 2004). The conclusions obtained were that GVF increased

algorithm e�iciency avoiding distractions produced by other contours, but com-

putational limitations required generating forces only around the object of inter-

est. Another approach for avoiding distractions from outside contours in the snake

involves constrained evolution (Sundaramoorthi et al., 2006). This uses Sobolev

spaces for internal snake energy minimisation, allowing it to deform maintaining

gradual but not sudden shape changes even in noise corrupted images.

These investigations suggest the idea of using active contours for tracking pur-

poses in SLAM. However, particle filtering is seen as another alternative to intro-

duce interactivity in this thesis thanks to flexible hypothesis generation. There-

fore, the works that rely mainly on cameras and particle filtering are seen next.

This is focused on research containing cameras as here they are considered an

important feedback mechanism for interactivity.
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2.3.2 Tracking with Particle Filtering

Other estimation techniques are more flexible for approximating complex param-

eters like camera pose or feature appearance compared to the EKF, such as parti-

cle filtering or sequential Monte Carlo methods (Gordon et al., 1993). These use

a multi-hypothesis approach in which each particle can represent a di�erent fea-

ture or robot pose, with voting deciding which ones remain and which ones are

discarded (Särkkä, 2013). As such, particle filtering is a widely used approach in

many areas. In SLAM it is o�en seen when the performance of estimators like

EKF is not satisfactory enough, or when the chosen estimator can be improved by

incorporating it into the algorithm.

One of the first implementations of particle filtering in SLAM considered only

sonar sensors and later cameras (Montemerlo and Thrun, 2003, Eade and Drum-

mond, 2006). This demonstrated advantages by using a hypothesis approach to

infer location, which is more suitable when aggregating a considerable amount of

landmarks. This is because in particle filtering there is need to update a whole

matrix as in EKF, which contains all uncertainties of the landmarks.

Erratic motion is o�en the cause of divergence in estimators like EKF (Pupilli

and Calway, 2006, Mirabdollah and Mertsching, 2012). In this case the particle

filter is used to relocate the camera when experiencing erratic motion, stopping

mapping in order to first correct camera pose. These investigations are of par-

ticular interest as the particle filter allows multiple hypotheses, which represent

di�erent camera locations as in (Pupilli and Calway, 2005). To obtain a valid po-

sition voting is performed, in which the best hypothesis is able to perceive all

registered landmarks (Figure 2.6).

Other works have improved over feature stability or association (Gil et al.,

2006, Tomono, 2007, Lee et al., 2007). These consider several camera pose hypothe-

ses according to multiple views, epipolar geometry or image sequences. However,

this research uses particle filtering mainly to accommodate dense feature acqui-

sition but benefiting only pose estimation. Other works have employed a similar

approach for loop closing in maps (Elinas et al., 2006, Pradeep et al., 2009). This

allows the robot to return towards a predefined place, then particle filtering gives

hypotheses for loop closure which can be used in large area maps or mini-maps

that can be stitched together.
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Camera moves forward. 
Re-observes landmarks.

Hypothesis
generation.

Camera and two landmarks.
Initial position.

Hypothesis
voting.

New starting
position.

Figure 2.6: Simplified particle filtering camera principle based on (Pupilli and

Calway, 2005). First there is an initial position where the camera starts, features

are assumed available in the surroundings. From the initial position several hy-

pothesis are generated, representing a possible camera position a�er movement

as well as their respective possible observations. The camera finally moves and

then obtains landmark measurements which then will be matched, with each of

the predicted observations from the previously generated hypotheses. Only the

hypothesis with the most votes is considered for the next iteration, generating

more hypotheses from it. Note that in this example an unimodal distribution is

considered for the camera position. However, this o�en does not follow a Gauss

distribution and rather it takes a more complex form.



Chapter 2. Background 41

Visual cues have been used in SLAM to aid mapping whilst using particle fil-

tering (Kundu et al., 2011, Skoglar and Törnqvist, 2012, Lowry et al., 2013). These

systems take references from moving objects, known road networks or even places

which can be the same place but present environmental changes. Multi sensor fu-

sion approaches in SLAM have been researched involving particle filtering (Bleser

and Stricker, 2008, Schroeter and Gross, 2008, Moemeni and Tatham, 2014, Sil-

veira Vidal et al., 2015). These approaches show flexibility in sensor fusion, in-

cluding inertial measurement units, sonar and cameras which are also capable of

capturing depth. However, these approaches are still related to landmark associ-

ation using particle filtering in dense feature acquisition scenarios.

Much of this investigation does not consider particle filtering besides improve-

ments in camera or feature estimation. However, particle filtering is a very flexible

approach. This is because it relies on hypotheses which can be voted on according

to any criteria assigned to them, thus its flexibility on both selection and scoring.

This kind of voting can be used for interactive scenarios in SLAM, as an user can

point a landmark and modify its parameters whilst the camera is in motion. This is

not limited to localised features (points) and instead more abstract landmarks can

be used, as assuming that they can be voted they are suitable for pose estimation.

2.4 Concluding Remarks

Despite being implied that both localisation and mapping happens simultane-

ously in SLAM, what the robot does first is to map in order to reference itself.

Indeed even the name SLAM was di�erent in early approaches being SMAL, Si-

multaneous Map building And Localisation or CML, Concurrent Mapping and Lo-

calisation (Leonard and Durrant-Whyte, 1991, Durrant-Whyte and Bailey, 2006).

This is very important as the robot never really knows where it is from the begin-

ning, its initial position is just assumed to have li�le uncertainty. From there on,

the robot performs mapping by observing adjacent features and references itself

with them.

The general literature of SLAM revealed research concentrated on be�er land-

mark position estimation, data association, feature depth modelling, quantity of

features and performance improvements at the cost of functionality. However, it



42 2.4. Concluding Remarks

also shown a lack of user interaction and real-time object representation in SLAM

algorithms. This can be explained by a continuous push towards automated ap-

proaches, in which theoretically information can be stored and manipulated in

big quantities.

There are works that go beyond just SLAM, i.e. those not directly trying to

o�er an alternative to current SLAM solutions. These include approaches involv-

ing feature abstraction: lines, planes, ceilings or walls. This is done in order to

avoid localised features that o�er weak feature association. This is further taken

forward with curved walls or riverine areas using curve fi�ing techniques. Of-

fline database recognition is also pushed forward as having prior information of

a feature helps in matching as well.

However, it was shown that fully autonomous algorithms might lead to prob-

lems associated with computing resources, o�en limiting real-time operation.

Also worth of mention are foreign situations which are outside of algorithm pro-

gramming, which might lead to robot malfunction or complete task interruption.

Therefore, there is a need for an hybrid approach involving autonomous opera-

tion and high-level decision making. One way to achieve this is by introducing

user interactivity in SLAM, which might also lead into artificial intelligence algo-

rithms research for SLAM, focused onto objects in order to avoid dense mapping

altogether.

Therefore, this thesis a�empts to involve an user in a more active role within

SLAM. However, first a methodology is needed to incorporate user input. This

research proposes active contours coupled with curve fi�ing techniques, allowing

contour evolution to start in a nearby shape selected by an user. This would al-

low to exploit a snake’s deforming capabilities in order to track silhoue�es, which

would be produced by objects of interest. Particle filtering is also proposed in

which a person actively modifies the properties of an object of interest, with par-

ticles as hypothesis of the camera pose. This would allow to see how good an user

choice of object parameters is, based on camera movements reflected in perspec-

tive changes in the object. These propositions take form by several key factors:

• In many works feature extraction is limited by automatic approaches, o�en

in the form of points. Dense representations are required if detail is needed,

but this increases also the computational power required (Stasse et al., 2006).

• Systems enabling goals communication and algorithm information are more
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robust and be�er performing than those that do not (Fong et al., 2006). Of-

ten there are persons evaluating the SLAM performance in a robot or pro-

tecting the hardware, but a more active role outside virtual reality scenarios

is not yet present allowing for improvement.

• Persons o�en segment objects be�er than machines (Da�a et al., 2008). This

ability comes from experience and contact with a variety of objects through

the years, which allow to o�load feature selection to an operator. This saves

computational resources and it is not limited to o�line database construc-

tion.

• Whereas there is not an investigation discussing user interaction at algo-

rithm level, there is an investigation that really considers user input, provid-

ing semantics in the form of annotations in (Reitmayr et al., 2007). However,

it does not incorporate an user into the SLAM algorithm and rather includes

the annotations as an a�erthought. This is akin to other augmented real-

ity approaches were graphics overlays are put over the image in real-time,

but this shows than an user can give valuable information for the robot and

perhaps other collaborative users as well.

The approach presented here first elaborates over a simple implementation

using shape silhoue�es, in order to observe the feasibility of user interaction into

SLAM. However, first the monocular SLAM foundations are described in the next

chapter, as these are o�en assumed known in much of the related investigation.
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Bayesian SLAM and Cameras

As a whole, the aim of this thesis is to introduce interactivity into SLAM. It is then

proposed first to explore in more detail the inner workings of this methodology,

more precisely se�ing the focus on vision-SLAM. This is as images o�er a good

feedback mechanism for interactivity. At the same time, the links between feature

acquisition, images and the EKF are o�en assumed known and hence overlooked

in many investigations.

Therefore, this chapter begins by recalling the idea from Section 2.1 in which a

mobile robot is capable of perceiving its surroundings through sensed landmarks.

A first step taken by the robot is to rely on its odometry or any other sensors

which allow modelling, with the intention of obtaining a predicted future state or

robot pose; this is possible given that there is a time interval, a motion model and

a previous robot state or position.

This is a process assumed susceptible to error, e.g. slippage in wheels can af-

fect the odometry. Therefore, the robot also looks for features in the surroundings,

in order to find a second reference for motion estimation based on environment

observation. However, if the robot moves and no features are found the uncer-

tainty in prediction accumulates. This is as its previous state already possesses

an assumed error, from which a prediction is also obtained. This yields increased

uncertainty based on the previous robot pose.

When a new landmark is found the current uncertainty in robot pose a�ects

this observation, as it is uncertain about its position and the newly found fea-

ture references from the current robot pose. As a consequence, correlation occurs

between the uncertainties in landmark and robot pose (Smith et al., 1986).

44



Chapter 3. Bayesian SLAM and Cameras 45

At the same time, when using dedicated sensors for observing landmarks there

is an error in the measurements as they are assumed not ideal. In some cases

the obtained reading does not directly relate to a position. Therefore, a model is

used to obtain a desired result from the observed quantity. This linearisation can

also be presented in the motion model. In both cases, if it is less than ideal the

linearisation can introduce further uncertainty into the system.

An elegant way to cope with this uncertainty correlation is by means of

Bayesian or probabilistic techniques, such as the Kalman Filter or particle filtering.

In the case of SLAM where model linearisation is involved, the Extended Kalman

Filter (EKF) can be used. Much investigation has been made in SLAM and vision-

SLAM parting from EKF, but these o�en assume the reader knowledgeable in the

complex processes involved for pose prediction and feature acquisition.

Therefore, this chapter gives detail of the EKF vision-SLAM methodology, con-

sidering models for predicting feature appearance using inverse depth parametri-

sation (Civera et al., 2008). This is done with the intention of finding links for an

interactive approach within SLAM:

• A brief introduction to the EKF is presented, in which the general idea of us-

ing a state vector and covariance matrix is explored. This includes prediction

and update steps involving features extracted from images.

• An o�en overlooked compilation of all the methodology required to perform

vision-SLAM, including several steps taken in image feature acquisition: the

lens pin-hole model, accounting for image lens deformations, camera mo-

tion model and landmark prediction. Also considered is feature registration

based on camera pose into the state vector and covariance matrix of the

EKF.

• The use of inverse depth parametrisation for three dimensional feature rep-

resentation, which allows to reduce non-linearities a�ecting the perfor-

mance of the EKF (Civera et al., 2008). However, many principles explored

in this chapter can be used in other estimation techniques, such as particle

filtering.

These foundations allow to explore in which form interactivity can be intro-

duced, in a way that allows data to be obtained from user input and used for
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SLAM. The presented contribution includes the mathematical foundations behind

monocular SLAM, which are presented in a detailed manner.

Therefore, Section 3.1 provides a brief overview of the EKF algorithm, describ-

ing both the additive and non-additive noise formulations in Sections 3.1.1 and

3.1.2 respectively. These include the general equations, which can be applied as

an initial framework for estimation and sensor fusion in non-linear systems.

The EKF in SLAM has two main stages: adding features into the state and co-

variance, as well as robot and feature prediction with update a�er observations.

The first stage is explored in Section 3.2 which involves feature acquisition in Sec-

tion 3.2.1, considerations on lens deformations in Section 3.2.2 and finally, adding

features to EKF’s state vector and covariance matrix in Sections 3.2.3 and 3.2.4.

The second stage can be seen in Section 3.3 involving camera state and co-

variance prediction in Section 3.3.1, from which feature appearance position and

uncertainty predictions using the inverse depth parametrisation model are made

in Sections 3.3.2 and 3.3.3. In the last part of the section, feature observations are

obtained and verified to be from the same sample in Section 3.3.4. The deviations

from their respective predictions allow to perform EKF update, a�ecting both state

and covariance matrices as seen in Section 3.3.5. Finally an implementation of this

approach is shown in Section 3.4, with concluding remarks described in Section

3.5.

3.1 The Extended Kalman Filter

The Kalman Filter is an estimator capable of dynamically producing estimates

from di�erent sensor sources, which are assumed to produce a certain amount of

error in their readings. The resulting estimate is be�er than only using the noisy

measurements from the sensors (Särkkä, 2013, Zarchan and Muso�, 2009).

This section briefly explores the two steps involved in the EKF, which are sim-

ilar for the Kalman Filter but with included linearisation. In the vision-SLAM con-

text, the first step obtains predictions of both camera and landmarks positions

(state variables) and the corresponding uncertainties. A second step delivers es-

timates, which update the predictions using noisy landmark positions from the

camera (noisy observations).



Chapter 3. Bayesian SLAM and Cameras 47

The usefulness of a Kalman Filter relies in its capability to dynamically weight

a prediction and an observation. This is done according to their uncertainty, e.g.

if the camera prediction has a sizeable uncertainty, the filter delivers an esti-

mate which relies more on the landmark observations than in the camera mo-

tion model. Similarly if the landmarks observations are too noisy, the resulting

estimates favour the prediction made by the camera motion model.

3.1.1 Additive Noise Formulation

An EKF with assumed additive noise uses a state-space model, which represents

state (camera and landmarks positions) and measurements (landmark observa-

tions) in the following recursive form (Särkkä, 2013):

x
k
= f(x

k–1
) + q

k–1
(3.1)

z
k
= h(x

k
) + r

k
(3.2)

where the sub-index k denotes a current iteration, x
k

is the state vector contain-

ing the variables of interest, zk are the measurements. q
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where Fx is obtained by evaluating the Jacobian of f(x) with x = m
k–1
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Overall P–

k
indicates the uncertainty of the state prediction, thus if this covari-

ance matrix is big then the state prediction is assumed to have high uncertainty.

This is reflected in an increase of the Kalman gain K
k
, making the filter trust

more the obtained measurements. On the other hand the elements of S
k

indicate

the uncertainty in the measurements, thus if this innovation covariance matrix

is big the confidence over the observations will be low. Hence, this renders also

the Kalman gain low causing the state predictions to be trusted more. Finally the

values of m
k

and P
k

can be updated using Equations (3.6), (3.7) and (3.8):
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3.1.2 Non-Additive Noise Formulation

SLAM o�en uses the EKF with non-additive noise formulation, including its in-

verse depth parametrisation approach (Civera et al., 2008). This is a further gener-

alisation of the EKF which can be obtained using a non-additive noise formulation,
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accounting also for signal based noises (Iickho Song, 2002). In this scenario the

EKF model changes to:
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) (3.9)

z
k
= h(x

k
, r
k
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where q
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are again also zero mean Gaussian state and measurement

noises N(0,Q
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) and N(0,R
k
). The state and measurement models are therefore

represented in the same way with f(·) and h(·).
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where Fx and Fq are obtained by evaluating the Jacobian of f(x,q) with x = m
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Similarly to an EKF with additive noise formulation, the update of m
k

and P
k

requires the error v
k

between measurements z
k

and their predicted observations
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k
, 0), needing as well innovation covariance S

k
and the Kalman gain K

k
but

accounting for non additive noise:
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where Hx and Hr are obtained by evaluating the Jacobian of h(x, r) with x = m
k–1
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and r = 0
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Finally the values of m
k

and P
k

can be updated using Equations (3.15), (3.16)

and (3.17):
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More information about the derivation of these equations, as well as further

discussion of estimation algorithms can be found in (Särkkä, 2013). A more de-

tailed and pragmatic approach can be found in (Zarchan and Muso�, 2009).

The following sections then detail a vision-SLAM algorithm with using inverse

depth parametrisation, whilst relating it to the EKF equations presented in this

section. These also describe some links in vision-SLAM which are independent of

the selected estimation method, be either EKF or particle filtering and which can

give insight for an interactive approach in SLAM.

3.2 Inverse Depth Monocular SLAM: Adding Fea-
tures to State and Covariance

SLAM is a structured methodology in which each of the stages represent an im-

portant part within the whole process. For monocular SLAM, the basic setup in-

cludes a camera connected to a computer, Figure 3.1. The environment in which

the camera is placed is assumed to have available salient features, i.e. not texture-

less surfaces.

Monocular SLAM relies on performing localisation and mapping using only a

single camera as a sensor, as well as the principles expressed in Section 3.1. The

inverse depth parametrisation aids landmark estimation by using 6 parameters,

instead of 3 from an Euclidean representation. This exploits the parallax e�ect,
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Figure 3.1: Monocular SLAM setup. A single camera is used to observe the sur-

roundings obtaining salient features, the la�er become landmarks when added

into the EKF state vector and covariance. Depth information is not directly avail-

able from images, as such only two dimensional coordinates are obtained.

in which a farther feature will appear to move less from the centre compared to

a closer one. Hence, helping in non linearities and allowing for fast initialisation

(Civera et al., 2008).

The EKF methodology is used in SLAM by assuming a probability density for

both camera and landmarks, depending on feature measurements as in Equa-

tion (3.3). As such, landmark acquisition is the first important step in monocular

SLAM. Camera and landmark positions are assumed to have a mean, represent-

ing an estimate of their location and a covariance, describing the uncertainty in

said estimate. When adding features a correlation between camera and landmark

uncertainty occurs, as feature observation is a�ected by the camera uncertainty.

Once a landmark has been added it remains static as the feature is assumed not

to move.

All of the uncertainties are then stored in the covariance matrix, which initially

only has values for all camera states and later on for the acquired landmarks. It

must be noted that landmarks can be deleted, from the state and covariance if

they present low observability or by going out of range. In such case new features
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Feature initialisation, adding to state vector x 
(containing both camera and feature states) and 

covariance matrix P

Monocular SLAM 
(cycle start)

Image acquisition and
feature extraction

Lens correction, from 
distorted to undistorted 
mapping (new features)

Feature prediction h(x-) 
according to camera 

predicted position, using 
the state vector x

Lens imperfections, from 
undistorted to distorted 

mapping (estimated features)

No 
registered 
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needed 
for the 
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feature extraction and 

matching
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Figure 3.2: Monocular SLAM simplified diagram with feature acquisition group.

Blue rectangles signal EKF steps while green ones represent stages inherent to

vision-SLAM. The feature acquisition group shows how features are added as

needed, a�er lens deformations have been removed. Correction of lens imper-

fections is needed in order to add salient features, as their initial 3D positions do

not involve those deformations. A�erwards prediction and update in the EKF’s

state and covariance is performed.

are sought, maintaining a predefined amount of landmarks in the EKF.

The following sections focus on the aspects involved for feature acquisition:

From preparing an image in order to use automated feature detectors, accounting

for image deformations produced by lens imperfections, and their aggregation

as landmarks in the EKF’s state vector and covariance matrix. These steps are

summarised in the simplified monocular representation seen in Figure 3.2.
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3.2.1 Feature Acquisition

Vision research has always relied on visual cues obtained from images, which are

o�en distinguishable from other elements in it. Early examples demonstrate this

by detecting changes in brightness to describe object motion or through extrac-

tion of high contrast points (Horn and Schunck, 1981, Shi and Tomasi, 1994). A

good part of vision-SLAM takes this concept further by adding a condition of re-

peatability, i.e. the same visual cues must be detected even a�er changes in posi-

tion or orientation. Hence, the more repeatable a feature is the be�er the camera

referencing becomes.

The algorithm of monocular SLAM with inverse depth parametrisation makes

use of local features in mapping and matching tasks. The former allows to perform

SLAM as the obtained features serve for map creation, the la�er matches an added

landmark with an observation from a di�erent camera pose to perform motion

estimation (Civera et al., 2008).

O�en feature acquisition is made using automated algorithms such as SIFT,

SURF or FAST, which deliver points with resilience to variations in scale, orienta-

tion and illumination (Skrypnyk and Lowe, 2004, Bay et al., 2008, E. Rosten and

Drummond, 2010). As such, feature detection algorithms possess great impor-

tance within vision-SLAM, as the more reliable they are the be�er referencing is

achieved.

Automated feature detectors are continuously investigated for SLAM and

many other vision applications, examples include BRISK, ORB, KAZE and AKAZE

(Leutenegger et al., 2011, Rublee et al., 2011, Alcantarilla et al., 2012, F. Alcantar-

illa et al., 2013). Of particular interest in this thesis is the AKAZE salient feature

detector, as it is a new and reliable approach which is already integrated in the

commonly used vision processing package OpenCV
∗
. The la�er o�ers a founda-

tion for fast execution of vision algorithms, possessing an interface coded in the

programming language C++, which is also used in this investigation due to its

speed.

The first step for feature acquisition consists of image simplification, as an im-

age provided by a camera consists of many intensity values. These o�en go from

∗
Open Source Computer Vision is a package of libraries dedicated to vision algorithms, sup-

porting a variety of languages and platforms (OpenCV, n.d.)
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0 to 255 in three channels: red (R), green (G) and blue (B). Therefore a transfor-

mation from RGB to greyscale intensities is o�en applied over an image using the

formula:

Greyscale intensity = R ∗ 0.299 + G ∗ 0.587 + B ∗ 0.114 (3.22)

which produces a greyscale image, with only 1 channel containing intensity val-

ues. This image is the input for the chosen feature detector, which then analyses it

in order to find features with invariant characteristics. The result of this is simply

a point coordinate, which if observed with the same salient feature detector from

a pose, orientation or lighting variation should deliver the same point but within

a new image.

The process to acquire landmarks for SLAM o�en follows this procedure: first

a random region within an image (already greyscale) is selected, considering mar-

gins from its total horizontal and vertical resolution. From there, the selected

salient feature detector obtains an invariant point, if it does not find one then

another random region is selected in the same image. O�en points are extracted

from object corners, high contrast or distinctive parts of an image. However, in

the case of walls with plain or smooth colour there will be not salient feature

detection. As such it is important for the image not to be too uniform.

Image deformations must be accounted a�er a feature is extracted. This is

because lens imperfections are present in wide angle optics, which are preferred

in SLAM for their big field of view. Therefore, the next section addresses this by

using radial models.

3.2.2 From Distorted to Undistorted Mapping and Vice Versa

Vision tracking applications benefit from wide fields of view, because any object

of interest remains more time in image when camera displacements occur. This

is as association or the ability to recognise an object again has a direct e�ect in

tracking performance. Because of this, vision SLAM has also shown improvements

yielding be�er camera orientation estimates (Schleicher et al., 2006).

A bigger field of view can be accomplished in two ways: 1. Increasing the

image sensor area; 2. Reducing the focal length of the lens. The former allows

to have longer focal lengths that still cover a wide area and are less di�icult to
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(a) (b)

Figure 3.3: Image pincushion and barrel imperfections. Each camera lens is dif-

ferent, thus also its produced image. Most common corrections are performed for

pin-cushion (a) or for barrel (b) distortions. Lens imperfections can be corrected

by either adding more lenses (optical correction) or by so�ware post processing.

manufacture, whereas the la�er permits to create small cameras like the ones

in mobile phones. However, both options present advantages and disadvantages

compared to each other. Larger sensors allow for less image noise, but bigger

optics are required to fill the entire image frame making them more expensive.

Shorter focal lengths o�er more field of view in smaller sensors (at the cost of

more image noise), but optics are very di�icult to create at shorter focal lengths

without producing a deformed image, o�en requiring many optical elements to

partially correct it.

Despite this, cameras with wide angle lenses are found in webcams with

enough picture quality. These are commonly used in vision-SLAM thanks to their

recent a�ordability. However, the image is still a�ected by distortion, which tends

to present itself as barrel, pincushion, or a mixture of both, as seen on Figure 3.3.

Correcting distortions from coordinates hd = [Xcam, Ycam]
>

or the deviations

from rectilinear projections is important, as vision-SLAM does not account for

these, o�en this is le� as aggregated steps for feature acquisition and prediction

in the SLAM algorithm. In both of these cases the Brown-Conrady model is used

to deliver undistorted coordinates hu =

[
hux

, huy

]>
as it has good invertible prop-

erties
∗
, i.e. it is possible to remove lens deformations for incorporating a salient

feature into SLAM, as well as adding imperfections to said feature in order to

∗
This particular step is inverted in Civera’s Monocular SLAM code, which can be obtained

from http://openslam.org/

http://openslam.org/
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Adding lens deformations

Removing lens deformations

Corrected image

Original image

Figure 3.4: An example of removing and adding image distortion in features. A

deformed mesh can be seen on the le� hand side, showing a mixture of barrel and

pincushion deformations commonly found on wide angle lenses. The right hand

side depicts a corrected image using a Brown-Conrady model. The blue point in

the original image gets displaced as part of this, seen as the red dot in the corrected

image. The Brown-Conrady model allows to move between from the original and

the corrected representations, particularly used to add and predict landmarks.

predict the appearance of it over an image (Civera et al., 2008).

Radial distortions can be considered using more than one coe�icient, which

allows to correct more complex image deformations. However, numerical approx-

imations are needed for good results with two coe�icients, whereas a model with

one coe�icient will allow for a direct analytical solution (Brown, 1966). An example

of removing and adding deformations can be seen in Figure 3.4.

Predicting Features, Adding Distortion

Inverse depth parametrisation produces estimates for landmarks in 6 parameters

using EKF. The algorithm uses a transformation which projects these landmarks

onto a two dimensional representation, allowing to perform landmark position

prediction over a new image. However, this representation does not account for

image imperfections produced by wide angle lenses.

The undistorted coordinates of the predicted landmark hu =

[
hux

, huy

]>
are

first transformed to normalised undistorted coordinates nu =

[
nux

, nuy

]>
using
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the following conversion:

nux
=

(hux
– Xc)

fx

nuy
=

(huy
– Yc)

fy

(3.23)

where the principal points Xc, Yc together with the focal lengths fx, fy must be ob-

tained using camera calibration so�ware, e.g. using a camera calibration toolbox

(Matlab).

Therefore, for a normalised pixel mapping going from undistorted nu to a dis-

torted nd =

[
n
dx
, n

dy

]>
representation (adding image imperfections produced by

wide angle lenses) the following formulae are used:

n
dx

= nux
(1 + K1r

2

d
+ K2r

4

d
) n

dy
= nuy

(1 + K1r
2

d
+ K2r

4

d
) (3.24)

with r
d

defined for this mapping as:

r
d
=

√
n
2

ux
+ n

2

uy
(3.25)

and the coe�icients K1, K2 are obtained also with camera calibration so�ware.

Transforming the normalised distorted coordinates nd =

[
n
dx
, n

dy

]>
obtained

from Equation (3.24) to distorted coordinates hd = [Xcam, Ycam]
>

, is used to

match a predicted landmark with a salient feature over a new camera image. For

this case the following formulae apply:

Xcam = n
dx
fx + Xc Ycam = n

dy
fy + Yc (3.26)

where Xcam and Ycam are pixel coordinates straight from the camera image.

Adding Features, Removing Distortion

In the SLAM process the features are usually added first in order to perform pre-

diction, Figure 3.2. Here this step was deliberately le� a�erwards, as adding dis-

tortion is a more direct method than removing it.

Extracted features hd = [Xcam, Ycam]
>

possess distorted coordinates as they

are directly extracted from a new camera image. Similar to Section 3.2.2 the ex-

tracted features need to be first transformed into normalised distorted coordinates
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nd =

[
n
dx
, n

dy

]>
, which is done using the following conversion:

n
dx

=

(Xcam – Xc)

fx

n
dy

=

(Ycam – Yc)

fy

(3.27)

For an inverse mapping from a distorted to an undistorted representation (re-

moving image imperfections produced by wide angle lenses), Equation (3.24) be-

comes:

nux
=

n
dx

1 + K1r
2

u
+ K2r

4

u

nuy
=

n
dy

1 + K1r
2

u
+ K2r

4

u

(3.28)

with ru defined using (Zhang, 1999):

r
d
= ru(1 + K1r

2

u
+ K2r

4

u
) (3.29)

Compared to a one coe�icient model which has a direct solution (Devernay

and Faugeras, 1995), Equation (3.29) comes from a two coe�icient model. There-

fore in order to solve for ru a numerical solution is required such as Newton-

Rhapson
∗
. Once ru has been found it can be plugged onto (3.28) in order to obtain

the normalised undistorted coordinates nu =

[
nux

, nuy

]>
, which will eventually

lead to undistorted coordinates hu =

[
hux

, huy

]>
using the following conversion:

hux
= nux

fx + Xc huy
= nuy

fy + Yc (3.30)

where the principal points Xc, Yc together with the focal lengths fx, fy are the same

as obtained from the camera calibration so�ware. Once the feature is free from

any deformation it can be initialised in the SLAM algorithm, eventually allowing

for prediction.

3.2.3 Adding Features to State

A�er a feature has been extracted and has been accounted for image deforma-

tions, it must be entered into the state and covariance matrix of the EKF in the

∗
Civera’s code mentions that 10 iterations are su�icient to find a proper ru value.
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Salient feature

fy

h
uy

Pinhole projection plane

, Focal length

Y
c

Focal point 

Inference

y fi

z
fi

Figure 3.5: The pinhole camera model allows to infer three dimensional positions

using an idealised camera model, by knowing parameters such as the focal lengths

fx, fy and the principal points Xc and Yc. In this example the pinhole camera model

is seen considering only the YZ plane for simplification. A salient feature f
i

(big

red cross on the right) is seen by a hypothetical pinhole camera. Because of the

model this feature is projected in a inverted way, towards the pinhole projection

plane (small green cross on the le�). This pin-hole projection of the salient fea-

ture is assumed with no lens deformations, which require applying first Equations

(3.28) and (3.30) with a salient feature obtained from a camera image. Camera pa-

rameters will a�ect this projection as its height y
fi

and distance z
fi

will correspond

to an inverted height huy
, considering the focal length fy in the pinhole projection

plane.

vision-SLAM algorithm. For the case of monocular SLAM this is an indirect pro-

cess, since a three dimensional salient feature is projected onto a two dimensional

camera image. This projection is assumed free of lens imperfections and is used

to initialise a new landmark with 6 parameters, which first are obtained from a

three dimensional representation inferred from the previous two dimensional pro-

jection. This inference can be performed using an idealised pin-hole camera model

as seen in Figure 3.5.

For simplicity of notation x will represent both the state vector and mean of

the EKF in all subsequent sections, i.e. x
k
= m

k
. This is because pragmatically

the mean is the estimate of the state vector using the EKF assumption seen in

Equation (3.3).

Therefore an extracted salient feature is assumed observed by an ideal pinhole

camera, which is then projected onto the pinhole projection plane. As an opposite
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case the EKF makes use of an already added landmark for prediction, from the

pinhole projection plane towards a camera frame coordinate system as in Figure

3.6. These transformations are given by:

x
fi

z
fi

= –

hux

fx

y
fi

z
fi

= –

huy

fy

(3.31)

where hux
, huy

are the undistorted coordinates from the salient feature obtained

through Equations (3.28) and (3.30). The coordinates x
fi

, y
fi

and z
fi

express the fea-

ture position in three dimensions in front of the idealised pinhole camera, which

is also named camera frame. Note that the negative sign replicates the e�ect of

a real pinhole camera, i.e. the projection is upside down (an entire image would

look inverted). Removing the sign corrects this at the cost of becoming physically

impossible to replicate, nevertheless it simplifies the model theoretically.

Given a pinhole model inference it is possible to initialise a new feature f
i
. For

simplification purposes the sign is removed in Equation (3.31) and z
fi

is set to 1 as

the feature depth is not yet known, with the EKF assumed to eventually produce

a be�er estimate of it thanks to inverse depth parametrisation. This leads to the

initial feature coordinates in camera frame as seen in Figure 3.6:

hc
=

xfiy
fi

z
fi

 =


hux

– Xc

fx

huy
– Yc

fy

1

 (3.32)

Note the subtraction of both principal points Xc and Yc. This is needed as it centres

the pinhole projection plane, since image coordinates are o�en only positive.

A�er the new salient feature hc
as been expressed in terms of the camera frame

with (3.32), it needs to be transformed into world frame coordinates. Compared

to camera frame terms this helps to keep uncertainties down (Civera et al., 2010).

In order to transform the feature, information from the camera state vector is
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ch  = 
xfi

yfi

zfi

Feature is first seen in camera

y

x

z

World Frame

yC

zC

xC

Camera Frame

wcTranslation r
wcOrientation q

Figure 3.6: Inverse Depth SLAM Feature Initialisation. In this scenario a camera

with translation rwc and orientation qwc
with respect to the world frame observes

for the first time a salient feature, which is set in terms of the camera frame ac-

cording to Equation (3.32).

needed:

xv =


rwc

qwc

vw

ωc

 (3.33)

where rwc is the estimated camera optical centre position w.r.t. the world frame

(coordinates x, y, z in Figure 3.6), qwc
the estimated orientation quaternion w.r.t.

the world frame, vw is the estimated linear velocity w.r.t. the world frame and ωc

represents the estimated angular velocity w.r.t the camera frame.

Using the orientation quaternion from the camera state it is possible to gen-

erate a rotation matrix ROTwc from the camera frame hc
to the world frame hw

.

This is done in order to remove the camera rotation, which might not be aligned

with the world frame (Diebel, 2006):

ROTwc =

q
2

r
+ q

2

x
– q

2

y
– q

2

z
2(q

x
q
y
– q

r
q
z
) 2(q

z
q
x
+ q

r
q
y
)

2(q
x
q
y
+ q

r
q
z
) q

2

r
– q

2

x
+ q

2

y
– q

2

z
2(q

y
q
z
– q

r
q
x
)

2(q
z
q
x
– q

r
q
y
) 2(q

y
q
z
+ q

r
q
x
) q

2

r
– q

2

x
– q

2

y
+ q

2

z

 (3.34)
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where q
r
, q

x
, q

y
, q

z
are the quaternion components of qwc

, the current camera

orientation estimation. Thus using Equations (3.32) and (3.34):

hw
= ROTwchc

= ROTwc


hux

– Xc

fx

huy
– Yc

fy

1

 (3.35)

The last step consists of changing the feature parametrisation to inverse depth,

which consists of 6 states:

y
fi
=

[
x
fi

y
fi

z
fi

θ
fi

φ
fi

ρ
fi

]
(3.36)

which models a 3D point xi in camera frame

x
i
=

XfiY
fi

Z
fi

 =

xfiy
fi

z
fi

 +

1

ρ
fi

m(θ
fi
,φ

fi
), (3.37)

m =

[
cosφ

fi
· sin θ

fi
– sinφ

fi
cosφ

fi
· cos θ

fi

]>
,

where y
fi

encodes the position ‘ray’ where the feature was first seen, by the cam-

era’s EKF estimated optical centre position x
i
y
i
z
i

or rwc in Equation (3.33). The

azimuth θ
fi

and elevation φ
fi

are calculated using Equation (3.35) according to

(Civera et al., 2008)
∗
:[
θ
fi

φ
fi

]
=

[
arctan(h

w

x
, h

w

z
)

arctan(–h
w

y
,

√
(h

w

x
)
2
+ (h

w

z
)
2
)

]
(3.38)

Finally, depth is estimated by the EKF through its inverse ρ
fi
= 1/d

fi
, with ρ

fi
set

empirically to a value ρ0 (Civera et al., 2008). A full representation is illustrated in

Figure 3.7.

Feature states y
fi

in Equation (3.36) are added into the state vector a�er the

camera states shown in Equation (3.33), so that it resembles the following full state

vector:

x
k–1

=

[
rwc
k–1

qwc

k–1
vw
k–1

ωc
k–1

y
f0
· · · y

fi

]>
(3.39)

∗
Note that azimuth θ

fi
and elevation φ

fi
are swapped in (Montiel et al., 2008).
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ch  = 
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Figure 3.7: Feature inverse depth parametrisation. A feature is observed for the

first time in the camera frame according to Equation (3.32). Later on the EKF

provides be�er estimates of depth through its inverse ρ
fi

= 1/d
fi

, changing the

magnitude of the directional ray m(θ
fi
,φ

fi
). Hence the feature appearance in the

image changes, using to the parallax e�ect and resulting in Equation (3.37).

It is important to remember that this vector is an estimate from either the first

or a previous iteration just before the update step in the EKF, hence the subindex

k–1
in x

k–1
which recalls Equations (3.9) and (3.10). Many features can be added as

long as computational power allows. A�erwards it is needed to assign uncertainty

to the features by adding them into the covariance matrix. This is done as the EKF

idea remains a Gaussian approximation (recall Equation (3.3)), therefore requiring

both mean and covariance to perform prediction and update respectively.

3.2.4 Adding Features to the Covariance

Once a feature has been added to the state vector of the EKF, Equation (3.39), the

covariance matrix P
k–1

, the measurement covariance matrix R
fi

and the inverse

depth feature uncertainty σρ
f
i

are used to initialise the uncertainties of the new

feature. The covariance matrix R
fi

considers the observation uncertainty when a

feature is observed, considering its image projection with coordinates hux
and huy
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(recall Figure 3.6):

R
fi
=

σ2hux 0

0 σ2
huy

 (3.40)

where σ2
hux

and σ2
huy

are the variations in measurements from the image feature.

The initial value for the uncertainty in the inverse depth of the feature σρ
f
i

is ob-

tained through experimentation (Civera et al., 2008). Given these considerations

the covariance matrix for the EKF a�er feature initialisation becomes:

Pnew

k–1
= J


P
k–1

0 0

0 R
fi

0

0 0 σ2ρ
f
i

 J>,

with the Jacobian J defined as:

J =

 I 0 0

∂y
f
i

∂rwc
∂y

f
i

∂qwc 0 · · · 0

∂y
f
i

∂hd

∂y
f
i

∂ρ
f
i

 . (3.41)

It is possible to obtain the Jacobian J in Equation (3.41) considering the chain

rule. For the first two partial derivatives Equations (3.33) and (3.36) are used:

∂y
fi

∂rwc
=

1 0 0

0 1 0

0 0 1

 ;

∂y
fi

∂qwc
=

∂y
fi

∂hw
· ∂hw

∂qwc
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where ∂y
fi
/∂hw

has mostly zeros except for the azimuth and elevation:

∂y
fi

∂hw
=



∂x
fi

∂hw
x

∂x
fi

∂hw
y
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∂y
fi

∂hw
x

∂y
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∂hw
y
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∂hw
z

∂z
fi

∂hw
x

∂z
fi

∂hw
y

∂z
fi

∂hw
z

∂θ
fi

∂hw
x

∂θ
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∂hw
y

∂θ
fi

∂hw
z

∂φ
fi

∂hw
x

∂φ
fi

∂hw
y

∂φ
fi

∂hw
z

∂ρ
fi

∂hw
x

∂ρ
fi

∂hw
y

∂ρ
fi

∂hw
z



=



0 0 0

0 0 0

0 0 0

∂θ
fi

∂hw
x

∂θ
fi

∂hw
y

∂θ
fi

∂hw
z

∂φ
fi

∂hw
x

∂φ
fi

∂hw
y

∂φ
fi
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z

0 0 0
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(3.42)

Therefore
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(3.43)

For ∂hw
/∂qwc

, Equation (3.35) can be used as the rotation matrix ROTwc in Equa-

tion (3.34) depends on qwc
, thus the partial derivative ∂hw

/∂qwc
would be equal

to ∂hw
/∂qwc

= ∂(ROTwc)/∂qwc×hc
from Equation (3.32), where the components

of ∂(ROTwc)/∂qwc
are given by (Diebel, 2006)

∗
:
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∂q
r

= 2

 q
r

q
z

–q
y

–q
z

q
r

q
x

q
y

–q
x

q
r


>

,

∂(ROTwc)

∂q
x

= 2

qx q
y

q
z

q
y

–q
x

q
r

q
z

–q
r

–q
x


>

,

∂(ROTwc)

∂q
y

= 2

–qy q
x

–q
r

q
x

q
y

q
z

q
r

q
z

–q
y


>

,

∂(ROTwc)

∂q
z

= 2

–qz q
r

q
x

–q
r

–q
z

q
y

q
x

q
y

q
z


>

.

∗
Note that in this citation they are transposed, but that is only because the rotation matrix

considered there is from world to camera, not from camera to world.
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Thus

∂hw

∂qwc
=

[
∂(ROTwc)

∂q
r

· hc
∂(ROTwc)

∂q
x

· hc
∂(ROTwc)

∂q
y

· hc
∂(ROTwc)

∂q
z

· hc

]
.

(3.45)

Continuing with ∂y
fi
/∂hd in (3.41) the chain rule is also used:

∂y
fi

∂hd
=

∂y
fi

∂hw
· ∂hw

∂hc
· ∂hc

∂hu
· ∂hu
∂hd

(3.46)

where ∂y
fi
/∂hw

is given by Equation (3.42). The relationship between a point

∂hw
/∂hc

in both camera frame and world frame is given by ROTwc. The partial

derivative ∂hc
/∂hu can be extracted from Equation (3.32):

∂hc

∂hu
=


1

fx

0

0

1

fy

0 0

 (3.47)

For ∂hu/∂hd Equations (3.24), (3.23), (3.26) are required:

∂hu
∂hd

=

∂hu
∂nu

· ∂nu
∂nd

· ∂nd
∂hd

which can also be rewri�en as:

∂hu
∂hd

=

∂hu
∂nu

·
(
∂nd
∂nu

)
–1

· ∂nd
∂hd

Therefore ∂hu/∂nu and ∂nd/∂hd are given by:

∂hu
∂nu

=

[
fx 0

0 fy

]
;

∂nd
∂hd

=

[
1

fx

0

0
1

fy

]
(3.48)

and for ∂nd/∂nu:

∂nd
∂nu

=

∂ndx∂nux

∂n
dx

∂nuy
∂n

dy

∂nux

∂n
dy

∂nuy

 (3.49)
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with
∗

∂n
dx

∂nux
= 1 + 3K1n

2

ux
+ K1n

2

uy
+ 5K2n

4

ux
+ 6K2n

2

ux
n
2

uy
+ K2n

4

uy

∂n
dx

∂nuy
= 2K1nux

nuy
+ 4K2n

3

ux
nuy

+ 4K2nux
n
3

uy

∂n
dy

∂nux
= 2K1nux

nuy
+ 4K2n

3

ux
nuy

+ 4K2nux
n
3

uy

∂n
dy

∂nuy
= 1 + 3K1n

2

uy
+ K1n

2

ux
+ 5K2n

4

uy
+ 6K2n

2

ux
n
2

uy
+ K2n

4

ux

Finally ∂y
fi
/∂ρ

fi
is simply 1. All these partial derivatives can be set in Equation

(3.41), allowing to form the Jacobian now includes the new feature. This will even-

tually multiply the covariance matrix P̂
k–1

, introducing the feature as well. The

next section pertains to prediction step, which now can be performed given that a

new feature has been included in both the EKF state and covariance matrix. This

prediction expects an observation within uncertainty limits, in which the di�er-

ence between these values is used for the update step in the EKF.

3.3 Inverse Depth Monocular SLAM: Prediction
and Update

A�er a state model with registered landmarks has been created like in Equation

(3.39), with the la�er added to the covariance as described in Section 3.2.4, it is

possible to predict both state and covariance as in Equations (3.11) and (3.12). This

eventually allows for EKF update through feature re-observation.

The state model only allows to predict camera motion and is considered af-

fected with non-additive noise, as this accounts for noise present within the model

as described in Section 3.1.2. A newly predicted camera position will change the

appearance of the registered landmarks h(m–

k
, 0) using an observation model. In

case of not having registered features in the EKF, the camera position uncertainty

will simply increase with each time step k.

Using all this information the Kalman update can be performed, which occurs

∗
Civera’s code uses a di�erent Jacobian for ∂nd/∂nu.
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a�er the error from the predicted landmarks and the observations is obtained,

Equation (3.15). The observed features are not perfect as the observation model

is also contaminated by non-additive noise, thus a�ecting landmark observations

and subsequently the innovation covariance matrix S in Equation (3.16).

The innovation covariance matrix contains the uncertainty in the measure-

ments: if it has big values the confidence over the observations will be low, if it

has lower values the opposite case applies. Both the innovation and covariance

matrices provide weighting in the form of the Kalman gain K in Equation (3.17).

This gain indicates in which proportion to trust both the model and observations.

If it is low the camera motion model prediction will be trusted more, if it is high the

observations will be given increased importance. As a result the mean, i.e. camera

and landmarks position estimates and covariance matrix are updated with Equa-

tions (3.20) and (3.21).

As such, the next sections focus on the aspects involved for the prediction and

update steps: Predicting three dimensional landmark positions, adding lens im-

perfections in their bi-dimensional projections, matching new features with pre-

dictions, and finally state and covariance update. These steps are summarised in

the simplified monocular representation seen in Figure 3.8.

3.3.1 Predict Camera State and Covariance

Once new features have been added to both the state and covariance of the EKF,

it is possible to perform camera and feature appearance prediction. The camera

state evolution follows the constant velocity model. This is used as it gives a sim-

plified camera motion taking into account acceleration impulses:

x–
v
k

=


rwc

–

k

qwc
–

k

vw
–

k

ωc
–

k

 =


rwc
k–1

+ (vw
k–1

+ Vw
)∆t

q((ωc
k–1

+ Ωc
)∆t)× qwc

k–1

vw
k–1

+ Vw

ωc
k–1

+ Ωc

 (3.50)

where rwc, qwc
, vw and ωc share the same definitions as in Equation (3.33);

q((ωc
k–1

+Ωc
)∆t) is a quaternion

∗
defined by (ωc

k–1
+Ωc

)∆t. Finally Vw
are the lin-

∗
�aternion multiplication is not commutative, the importance of this will be seen later.
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Feature initialisation, adding to state vector x 
(containing both camera and feature states) and 

covariance matrix P

Monocular SLAM 
(cycle start)

Image acquisition and
feature extraction

Lens correction, from 
distorted to undistorted 
mapping (new features)

Feature prediction h(x-) 
according to camera 

predicted position, using 
the state vector x

Lens imperfections, from 
undistorted to distorted 

mapping (estimated features)

No 
registered 
features

or new features 
needed 
for the 

EKF

No
State vector x  and covariance 

matrix P update. According to the 
error between extracted Feature 

positions (z) feature predictions (h)

Yes

Image acquisition, 
feature extraction and 

matching

Feature Acquisition

Prediction and Update

Figure 3.8: Monocular SLAM simplified diagram with remarked prediction and

update group. Blue rectangles signal EKF steps while green ones represent stages

inherent to vision-SLAM. The prediction and update group shows how stored fea-

tures used, allowing their state and covariance prediction using current camera

position. Adding lens imperfections is needed for feature observation, as their

predicted 3D positions do not involve those deformations. Update is done in the

EKF a�er observations have been obtained.
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ear velocity impulses aw∆t, produced by linear accelerations aw w.r.t. the world

frame and Ωc
are the angular velocity impulses αc∆t produced by angular accel-

erations αc w.r.t. the camera frame. Both linear and angular velocity impulses

are assumed to be zero mean and Gaussian, which can be seen as uncertainty af-

fecting the camera whilst in movement. However, for this model the non-additive

noise formulation is considered for which the state evolution resembles that of

Equation (3.11):

x–
v
k

= f(xv
k–1

, 0) =


rwc

–

k

qwc
–

k

vw
–

k

ωc
–

k

 =


rwc
k–1

+ vw
k–1

∆t

q(ωc
k–1

∆t)× qwc

k–1

vw
k–1

ωc
k–1

 (3.51)

The process noise and its covariance are given by:

q
k–1

=

[
N(0, (aw∆t)

2
)

N(0, (αc∆t)
2
)

]
; Q

k–1
=

[
(aw∆t)

2
0

0 (αc∆t)
2

]
(3.52)

Then the Jacobian of the process with respect to the noise states is given by Equa-

tion (3.14) as:

Fq =

∂xv–
k

∂q
k–1

=

∂f
i
(x,q)
∂q

j

∣∣∣∣∣
x=xv

k–1
,q=0

=



∂rwc
–

k

∂vw
k–1

∂rwc
–

k

∂ωc
k–1

∂qwc
–

k

∂vw
k–1

∂qwc
–

k

∂ωc
k–1

∂vw
–

k

∂vw
k–1

∂vw
–

k

∂ωc
k–1

∂ωc
–

k

∂vw
k–1

∂ωc
–

k

∂ωc
k–1


(3.53)

where

∂vw
–

k

∂vw
k–1

=

1 0 0

0 1 0

0 0 1

 ,

∂ωc
–

k

∂ωc
k–1

=

1 0 0

0 1 0

0 0 1

 ,

∂rwc
–

k

∂vw
k–1

=

∆t 0 0

0 ∆t 0

0 0 ∆t

 (3.54)
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For the partial derivative ∂qwc
–

k
/∂ωc

k–1
the following quaternion multiplication

formulae are required (Diebel, 2006):

qp = qm(q,p) = Q(q)p = Q̄(p)q

pq = qm(p,q) = Q(p)q = Q̄(q)p
(3.55)

where q and p are two quaternions, with Q being a matrix function and Q̄ its

conjugate whose values depend on a quaternion as well:

Q(q) =


q
r

–q
x

–q
y

–q
z

q
x

q
r

q
z

–q
y

q
y

–q
z

q
r

q
x

q
z

q
y

–q
x

q
r

 ; Q̄(q) =


q
r

–q
x

–q
y

–q
z

q
x

q
r

–q
z

q
y

q
y

q
z

q
r

–q
x

q
z

–q
y

q
x

q
r


Given this, the partial derivatives of a quaternion multiplication can be defined as

(Diebel, 2006):

∂qm(q,p)
∂q

= Q̄(p) (3.56a)

∂qm(q,p)
∂p

= Q(q) (3.56b)

Following the state update in Equation (3.51), it is possible to observe that

q(ωc
k–1

∆t)×qwc

k–1
is a quaternion multiplication and it can also be wri�en as qwc

k–1
×

q(ωc
k–1

∆t)
∗
. For the former case Equation (3.56a) becomes Q̄(qwc

k–1
) and for the

la�er is Q̄(q(ωc
k–1

∆t))
†

. Thus in order to solve ∂qwc
–

k
/∂ωc

k–1
the chain rule and

Equation (3.56a) can be used:

∂qwc
–

k

∂ωc
k–1

=

∂(q(ωc
k–1

∆t)× qwc

k–1
)

∂q(ωc
k–1

∆t)

·
∂q(ωc

k–1
∆t)

∂ωc
k–1

= Q̄(qwc

k–1
)

∂q(ωc
k–1

∆t)

∂ωc
k–1

(3.57)

with q(ωc
k–1

∆t) the quaternion obtained from the angular velocity times ∆t,

∗
�aternion multiplication is not commutative. However, any order can be used as long as

it is maintained through all the state evolution steps. Note that this requires using the proper

equations for the needed partial derivatives.

†
Civera’s code uses qwc

k
× q(ωc

k
∆t), but Equation (3.56a) is used for Q̄(qwc

k
).
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where:

q =



cos

(
θ

2

)
sin

(
θ

2

)
×
(
ωc
x
k–1

∆t

θ

)
sin

(
θ

2

)
×

(
ωc
y
k–1

∆t

θ

)
sin

(
θ

2

)
×
(
ωc
z
k–1

∆t

θ

)


; θ =

√
(ωc

x
k–1

∆t)
2
+ (ωc

y
k–1

∆t)
2
+ (ωc

z
k–1

∆t)
2

The Jacobian of the next state with respect to the current state or transition

matrix is obtained, as seen in Equation (3.13):

F
k
=

∂x–
v
k

∂xv
k–1

=

∂f
i
(x,q)
∂x

j

∣∣∣∣
x=xv

k–1
,q=0

=



∂rwc
–

k

∂rwc
k–1

∂rwc
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k
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∂rwc
–

k

∂vw
k–1

∂rwc
–

k

∂ωc
k–1

∂qwc
–

k

∂rwc
k–1

∂qwc
–

k

∂qwc

k–1

∂qwc
–

k

∂vw
k–1

∂qwc
–

k

∂ωc
k–1

∂vw
–

k

∂rwc
k–1

∂vw
–

k

∂qwc

k–1

∂vw
–

k

∂vw
k–1

∂vw
–

k

∂ωc
k–1

∂ωc
–

k

∂rwc
k–1

∂ωc
–

k

∂qwc

k–1

∂ωc
–

k

∂vw
k–1

∂ωc
–

k

∂ωc
k–1


(3.58)

in which the terms are given by Equations (3.54), coupled with:

∂rwc
–

k

∂rwc
k–1

=

1 0 0

0 1 0

0 0 1


However, Equation (3.56b) is used for ∂qwc

–

k
/∂qwc

k–1
:

∂qwc
–

k

∂qwc

k–1

=

∂(q(ωc
k–1

∆t)× qwc

k–1
)

∂qwc

k–1

= Q(q(ωc
k–1

∆t)) (3.59)

Finally the camera covariance Pv
k–1

is predicted in a similar way as Equation (3.12)
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using Equations
∗

(3.52), (3.53), and (3.58):

P–

v
k

= F
k
Pv

k–1
F>
k
+ L

k
Q
k
L>
k

(3.60)

Note that there is no state evolution for the features, as they are supposed to

remain in the same place where they were first observed. Therefore the entire

covariance matrix P–

k
is updated as follows:

[
P–

k

]
m,n

=

[
P–

v
k

F
k
[P

k–1
]
0 ··· 12,13 ··· n

[P
k–1

]
13 ···m,0 ··· 12 F>

k
[P

k–1
]
13 ···m,13 ··· n

]
(3.61)

This resulting covariance reflects the dynamics of feature uncertainty a�er the

camera covariance prediction. Hence, the camera uncertainty P–

v
k

remains the

same as obtained in Equation (3.60). The uncertainty between the features

[P
k–1

]
13 ···m,13 ··· n also remains unaltered, as they are not influenced by cam-

era movements but only by themselves. However, F
k
[P

k–1
]
0 ··· 12,13 ··· n and

[P
k–1

]
13 ···m,0 ··· 12 F>

k
show modification influenced by a predicted change in

camera pose, as these represent the uncertainty between the camera and features.

3.3.2 Predict Camera Measurements

Given the camera state prediction x–
v
k

in Equation (3.51), the update step of the

EKF requires to obtain observations h(x–
v
k

, 0) as required in Equation (3.15). For

an observation with inverse depth parametrisation (recall Figure 3.7), the formula

is (Civera et al., 2008):

hc
= hc

ρ = ROTcw

ρfi

xfiy

fi

z
fi

 – rwc

 + m(θ
fi
,φ

fi
)

 (3.62)

where ROTcw is the rotation matrix that brings a point from world frame to cam-

era frame. This is similar to Equation (3.34) but transposed
†

, m(θ
fi
,φ

fi
) is given

∗
Where Q for practical purposes remains only with the subindex k, i.e. Q

k
.

†
This is an orthogonal matrix and it has the property that both its inverse and transpose are

the same. In Civera’s code both transpose and inverse are used indistinctly. However, it is worth

mentioning that the inverse of a matrix presents a higher computational load than its transpose.
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by:

m(θ
fi
,φ

fi
) =

cos(φfi) sin(θfi)– sin(φ
fi
)

cos(φ
fi
) cos(θ

fi
)

 (3.63)

with the feature states x
fi

, y
fi

, z
fi

, θ
fi

, φ
fi

and ρ
fi

obtained from Equation (3.36).

Because hc
represents the feature in camera frame, it is necessary to map it into

a 2D prediction, as an image only has 2 dimensions:

hu =

[
hux

huy

]
=


fx

h
c

x

h
c

z

+ Xc

fy

h
c

y

h
c

z

+ Yc

 (3.64)

Note the addition of the principal points Xc and Yc. As opposed to Equation (3.32),

these are added as an image has positive coordinates.

A�er Equation (3.64) has been obtained it is necessary to follow the steps to

go from an undistorted projection hu to a distorted projection hd as described in

Section 3.2.2. Note that once the pixel coordinates Xcam and Ycam are obtained, a

check must be performed in order to assert they are within the camera picture. If

they are not, the features are simply marked as not possible to be observed and

therefore skipped from the EKF update. The following step considers building

the innovation covariance matrix for this prediction based on both the predicted

camera covariance, the current feature uncertainty and the noise present in ob-

servations.

3.3.3 Feature Innovation Covariance Matrix

Once the features have been predicted it is necessary to obtain their current un-

certainty, based on that obtained from the covariance prediction step. However,

the uncertainty inherent in feature observation needs to be accounted for too. This

is because noise is assumed to a�ect its extraction from the image. This can be

done through the innovation covariance matrix for each feature independently
∗
,

∗
This allows to use a method seen further on to check whether or not an extracted feature

belongs to the same sample.



Chapter 3. Bayesian SLAM and Cameras 75

which is akin to Equation (3.16):

S
k
f
i

= Hx
f
i

P–

k
H>
x
f
i

+ R
k
f
i

(3.65)

Note that compared to Equation (3.16) there is no Jacobian Hr
f
i

since there is no

model for the observations, i.e. coordinates are acquired from an image ‘as is’.

Hence, this becomes similar to an additive noise formulation. In this case the

measurement covariance matrix R
k
f
i

resembles that of Equation (3.40), with P–

k

given by Equation (3.61) and Hx
f
i

defined by:

Hx
f
i

=

[
∂hd
∂xv

0 · · · 0

∂hd
∂y

fi

]
(3.66)

where 0 · · · 0 represents all the other features besides the one currently chosen,

in order to obtain its innovation covariance matrix. Given this, ∂hd/∂xv can be

wri�en as:

∂hd
∂xv

=

[
∂hd
∂rwc

∂hd
∂qwc

]
=

[
∂hd
∂hc
· ∂hc

∂rwc
∂hd
∂hc
· ∂hc

∂qwc

]
=

[
∂hd
∂hu

· ∂hu
∂hc
· ∂hc

∂rwc
∂hd
∂hu

· ∂hu
∂hc
· ∂hc

∂qwc

]
=

[
∂hd
∂nd

· ∂nd
∂nu

· ∂nu
∂hu

· ∂hu
∂hc
· ∂hc

∂rwc
∂hd
∂nd

· ∂nd
∂nu

· ∂nu
∂hu

· ∂hu
∂hc
· ∂hc

∂qwc

]
where ∂nd/∂nu is given by Equation (3.49), later on ∂hd/∂nd and ∂nu/∂hu are

given by:

∂hd
∂nd

=

[
fx 0

0 fy

]
;

∂nu
∂hu

=

[
1

fx

0

0
1

fy

]
(3.67)

Next ∂hu/∂hc
can be obtained from Equation (3.64) using first Equation (3.62) to

find hc
, thus yielding:

∂hu
∂hc

=


fx

hz

0

0

fy

hz

–fx

hx

h
2

z

–fy

hy

h
2

z


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The next partial derivative ∂hc
/∂rwc is then obtained from Equation (3.62) as:

∂hc

∂rwc
= –ROTcw(ρi)

Lastly the partial derivative ∂hc
/∂qwc

follows a similar approach to Equation

(3.45), however, insight now comes from Equation (3.62), where

hc
= ROTcwhw

(3.68)

with hw
as:

hw
= ρ

fi


xfiy

fi

z
fi

 – rwc

 + m(θ
fi
,φ

fi
) (3.69)

Hence the partial derivatives of the rotational matrix ROTcw with respect to the

quaternion qwc
are given by (Diebel, 2006):
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which leads to the partial derivative of interest

∗
:

∂hc

∂qwc
=

[
∂(ROTcw)

∂q
r

· hw
∂(ROTcw)

∂q
x

· hw
∂(ROTcw)

∂q
y

· hw
∂(ROTcw)

∂q
z

· hw

]

∗
Civera’s approach to this was similar to Equation (3.45), however instead of using the partial

derivatives from Equation (3.70), the ones from Equation (3.44) are used but with a conjugate

quaternion, i.e. (∂(ROTwc)/∂q̄wc
) · hw · (∂q̄wc

/∂qwc
).
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The partial derivative ∂hd/∂y
fi

can be obtained in the following way:

∂hd
∂y

fi

=

[
∂hd
∂hc
· ∂hc

∂y
fi

]
=

[
∂hd
∂hu

· ∂hu
∂hc
· ∂hc

∂y
fi

]
=

[
∂hd
∂nd

· ∂nd
∂nu

· ∂nu
∂hu

· ∂hu
∂hc
· ∂hc

∂y
fi

]
where all the partial derivatives are known except for ∂hc

/∂y
fi

, this partial deriva-

tive can be obtained directly from Equation (3.62). Once S
k
f
i

has been obtained it

can be used to match a feature in a newly extracted image. If a salient feature is

well outside of this uncertainty it simply does not belong to the same sample and

therefore the reading for this feature is discarded.

3.3.4 Obtain Observations

A�er the innovation covariance matrix S
k
f
i

in Equation (3.65) has been obtained

for each of the features contained in the state vector from Equation (3.39), the next

step is to obtain its corresponding observations hc
. This is no di�erent than the

process explained in Section 3.2.2 although matching must be performed. This

is to ensure that the observation corresponds to the same landmark which was

initialised from the same salient feature.

When using feature detectors a common approach is to obtain descriptors from

the salient features, which work as identifiers that allow to perform brute-force

matching. However, the innovation covariance matrix S
k
f
i

together with the Ma-

halanobis distance (Winter, 2010) can also be used to detect if a newly extracted

salient feature is part of the same sample:

Mahalanobis Distance =

√
vT
k
S–1
k
f
i

v
k

where v
k

is the error between the estimate hc
given by h(m–

k
, 0) in Equation (3.62)

and the observation z
fi

as in Equation (3.15). For the la�er this is given as the x and

y coordinates of the newly obtained salient feature. If the Mahalanobis distance

fails to pass a certain threshold for this feature, this is skipped in the subsequent
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update of the EKF algorithm.

3.3.5 State and Covariance Update

The last part of the algorithm before a new cycle starts is to update both state x
k

and covariance P
k
, given all the predictions h from Section 3.3.2 and the feature

measurements z obtained in Section 3.3.4. This is akin to using Equations (3.15),

(3.17), (3.20) and (3.21):

K
k
= P–

k
H>
k

S–1
k

(3.71)

x
k
= x–

k
+ K

k
(z – h) (3.72)

P
k
= P–

k – K
k
S
k
K>
k

(3.73)

where P–

k
is given by Equation (3.61), x–

k
is the predicted state which consists of

the camera states from Equation (3.51) and the already stored features in Equation

(3.39), as they are assumed to remain static:

x–
k
=

[
rwc

–

k
qwc

–

k
vw

–

k
ωc

–

k
y
f0
· · · y

fi

]>
(3.74)

S
k

are the stacked matrices obtained from each feature in Equation (3.65), H
k

are also stacked matrices from Equation (3.66). The stacking is done in order to

include all features for the update. It is worth mentioning that because the camera

orientation is kept as a quaternion, its magnitude must be always 1, therefore

normalisation a�er each state update is recommended.

With this the whole algorithm of monocular SLAM with inverse depth

parametrisation has been detailed. Next, results are seen for a C++ implemen-

tation of SLAM, using both EKF and inverse depth parametrisation.

3.4 Implementation Results

This section explores the feasibility of the SLAM algorithm, using both EKF and

inverse depth parametrisation (Montiel et al., 2008). The algorithm was set to run
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on a computer with an Intel 4790K processor, aided by a GPU R9 290X from AMD

and the Logitech C920 camera. The processor has the task of detecting features

using the AKAZE feature detector (F. Alcantarilla et al., 2013), which grabs a total

of 15 features randomly selected across the image. The GPU is used to accelerate

image processing tasks like greyscale conversion. Each EKF cycle is constrained

to be of 0.08 seconds.

The implementation works in real-time, meaning that a live or a pre-recorded

video can be used as source instead of frame by frame processing. It is worth

mentioning that this does not consider meaningful units for mapping, as the

main interest is to ensure stability within the implementation. Therefore, the EKF

algorithm works using its own units. The results of SLAM using inverse depth

parametrisation are shown next.

3.4.1 Baseline EKF SLAM With Inverse Depth Parametrisa-
tion

In order to evaluate the performance of SLAM with inverse depth parametrisation

it was decided to use a source video recorded hand-held. However, when hand-

held video was used stability issues arose in many runs a�er runtime reached the

minute mark or less. Therefore, it was chosen to perform the experiments using

a tripod and performing camera swinging le� and right motions, for about 90 de-

grees as smoothly as possible. This was performed outdoors within an urban area,

as this allows to have enough unique, close and far features for good matching.

Detected features are added into both state vector and covariance matrix, then

later they are mapped showing elongated ellipses since their initial depth uncer-

tainty is big (Figures 3.9, 3.10 and 3.11). Note that the generated map contains

numbers that are not representative of any unit, as the algorithm works with its

own internal units with the intention of observing algorithm stability. The map

shows from a bo�om view perspective what the camera sees at the front, with

features remaining for the most part static. However, the ellipse shape represen-

tation will shrink down to a point when the feature that represents reduces its

uncertainty a�er camera motion.

Using a tripod to constrain motion did show stability improvements with the
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camera estimate, allowing to see orientation changes in each swing. However,

this still caused the algorithm to eventually stop working due to matrix inversion

problems in Equation (3.71), with the longest run stopping at around 550 seconds

in runtime. This is believed to be caused in part by the tripod constrained motion,

as the algorithm tries to assume also translation movements which produce li�le

change in feature appearance but keep increasing uncertainty within the algo-

rithm with no recovery. Note that this scenario is unique and a ground of truth

is not available for comparison with the same hardware configuration. However,

this algorithm implementation follows that of (Montiel et al., 2008), serving as a

baseline for further chapters in this thesis.

The camera translation and orientation values can be seen in Figures 3.12 and

3.13. A conversion from the quaternion states to angle degrees is shown for read-

ability purposes in Figure 3.14, this shows the le� and right swinging motion ap-

plied to the camera. However, it also shows incorrectly estimated values for roll

and pitch. This is despite the features having low uncertainty in their states, as

this does not mean that the camera ones will have them too. Eventually a�er

adding and removing enough landmarks, the EKF algorithm fails to properly up-

date both state and covariance matrix, leading to uncertainty increase until failure

(Figures 3.15 and 3.16).

With this it has been seen that the performance of EKF SLAM, even with im-

provements such as inverse depth parametrisation is prone to stability issues. The

next section discusses some key elements regarding the feasibility of a baseline

implementation of SLAM with inverse depth parametrisation.

3.4.2 Monocular SLAM with Inverse Depth Parametrisation
Feasibility

The results in Section 3.4.1 did not show stable performance in the algorithm, as

many problems were encountered in the implementation of the monocular SLAM

algorithm with inverse depth parametrisation (Civera et al., 2008). Many of these

problems were associated with undesired results in the algorithm, o�en slowing

down leading to program stop within less than five minutes of operation. These

can be traced to a particular and crucial step within the algorithm in Section 3.3.5,
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(a)

(b)

Figure 3.9: EKF SLAM with inverse depth parametrisation initialisation. Features

that have been initialised and mapped are shown in (a) with long elongated el-

lipses (green), as depth uncertainty is initially big and only reduced a�er camera

movements (red triangle). The algorithm grabs and keeps track of features in (b)

(yellow circles). Numbers in (a) are not representative of any unit as the algorithm

works with its own internal units.
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(a)

(b)

Figure 3.10: EKF SLAM with inverse depth parametrisation, feature initialisation

error. As the camera moves sideways (a) (red triangle) the algorithm reduces depth

uncertainty in the features (green). Those that are not discarded remain mostly

static in their mapped position except for their depth. Features that failed to

be predicted are discarded and replaced by a new one obtained from (b) (yellow

circles). However, when feature initialisation fails it o�en displays the behaviour

of a very elongated ellipse (a). Numbers in (a) are not representative of any unit

as the algorithm works with its own internal units.
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(a)

(b)

Figure 3.11: EKF SLAM with inverse depth parametrisation, low uncertainty fea-

tures. A�er enough EKF cycles have passed with the camera moving sideways

(red triangle). If the features have not been removed previously, these experience

reduced depth uncertainty (green) (a). However, this does not mean that the cam-

era uncertainty is also low. The mapped features correspond to the ones shown

in (b) (yellow circles). Numbers in (a) are not representative of any unit as the

algorithm works with its own internal units.
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Figure 3.12: Inverse depth parametrisation EKF camera translation states.

Around 530s the algorithm fails to properly update the EKF state vector, hence

the overshoot in values. Magnitude numbers are not representative of any unit as

the algorithm works with its own internal units.
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EKF camera states
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Figure 3.13: Inverse depth parametrisation EKF quaternion states. Around 530s

the algorithm fails to properly update the EKF state vector, hence the truncation

in the values.



86 3.4. Implementation Results

Values from camera quaternion
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Figure 3.14: Inverse depth parametrisation roll pitch and yaw from EKF quater-

nion states. The values of the yaw angles follows that of the le� and right swinging

motion used, with the camera mounted over a tripod. However, pitch and roll are

given some values as well which are incorrect estimations. These values have been

obtained from the quaternion states in Figure 3.13, according to (Berner, 2008).
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Camera Covariances
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Figure 3.15: Inverse depth parametrisation EKF covariance for camera translation

states. Peaks represent whenever a new feature is being added, yet a�er approxi-

mately 90s the algorithm is not able to reduce uncertainty. This leads to failure in

properly update the EKF covariance matrix around 530s, hence the overshoot in

the values. Covariance magnitude numbers are not representative of any unit as

the algorithm works with its own internal units.
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Camera Covariances
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Figure 3.16: Inverse depth parametrisation EKF covariance for camera quaternion

states. Peaks represent whenever a new feature is being added, yet a�er approxi-

mately 90s the algorithm is not able to reduce uncertainty. This leads to failure in

properly update the EKF covariance matrix around 530s, hence the overshoot in

values.
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particularly in Equations (3.71) and (3.73).

Equation (3.71) considers the inversion of the innovation covariance matrix,

giving as a result the Kalman gain K
k
, which subsequently a�ects both state x

k

and process covariance P
k

updates. Whereas OpenCV (OpenCV, n.d.) o�ers its

own library for matrix inversion, this resulted in random slow downs of the algo-

rithm. Hence it was decided to change the matrix inversion with OpenCV for the

same operation using the library Eigen (Eigen, n.d.). This resulted in a noticeable

performance boost over the execution of the algorithm, but did not resolve the

issues of instability.

The calculation of P
k
, Equation (3.73), in the EKF can be seen as the main

source of program malfunction. This conclusion came a�er changing the covari-

ance update to P
k
= (I–K

k
H
k
)P–

k
as suggested in the original code

∗
of SLAM with

inverse depth parametrisation and in (Zarchan and Muso�, 2009). This partially

resolved the instability issues within the algorithm.

Despite this, the EKF algorithm in this particular implementation can still

gather enough dri� which would eventually lead to make the EKF algorithm un-

stable. This might be explained by incorrect state or covariance updates, wrong

initialisation parameters or by too big or small values caused by the matrix inver-

sion in Equation (3.71).

3.5 Concluding Remarks

Up until now the entire SLAM with inverse depth parametrisation has been

shown. From here it is possible to highlight some key elements in this SLAM

approach:

• There is no full compilation of the tools required for a monocular SLAM

implementation. This includes much of the EKF formulation as well as con-

sidering image defects within the program. This is presented here in order

to understand the inner workings of both EKF and camera considerations,

with the la�er being used for many other vision applications.

• The EKF algorithm presented in Section 3.1 o�ers an elegant framework for

∗
This is a commented line in Civera’s Monocular SLAM code from http://openslam.org/

http://openslam.org/
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SLAM, as it allows to consider both robot and feature uncertainties. These

are stored in a covariance matrix which is then used with an innovation ma-

trix, obtained from the covariances of the obtained measurements to pro-

duce a Kalman gain. This last parameter dynamically weights both model

predictions and measurements, allowing to obtain a be�er estimate than if

model or measurements were to be used separately.

• Any kind of feature extracted from an image must account for lens defor-

mations. A good solution capable of dealing with radial distortions is the

Brown-Conrady model in Equations (3.24) and (3.28), o�ering also good in-

vertible properties, i.e. it is possible to remove and add deformations to a

feature. This allows for more robust feature re-observation.

• Very local features which are automatically extracted are used, for all sorts

of operations in SLAM as seen in Section 3.2.1. Therefore, unless dense ac-

quisition is performed they o�er li�le environment description, but dense

mapping presents high computational requirements as well. Therefore, user

interaction might o�er a viable alternative to dense mapping, focusing itself

on meaning rather than on tiny elements of an object.

• Monocular SLAM with inverse depth parametrisation is an algorithm that

is prone to instabilities, mainly due to the inversion step of the covariance

matrix in the EKF as explored in Section 3.4. As features accumulate over

time the covariance matrix grows in size, making more di�icult to find its

inverse. Very small values become very big values and vice versa, making

also the inversion prone to numerical errors.

Whereas, theoretically, EKF SLAM is an elegant solution, in practice it tends

to present many stability issues. This is possibly caused by constantly adding and

removing features from both EKF state and covariance. However, keeping many

features is not a solution, as both state and covariance update increase in time

according to how many features are being kept.

Therefore, a novel a�empt to solve this issue involves active user interaction.

This is because a person can set fewer but meaningful features, which can be kept

for longer periods of time. This sets the basis in the search for a method which

allows to include user interactivity capable of including input semantics.
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A first approach for this involves active contours or snakes, allowing user in-

put and at the same time delivering tracking information. Said snakes require

external forces which drive them towards a desired contour, therefore a Gradient

Vector Flow force is needed for them to work. As such, the next chapter explores

Monocular SLAM aided by active contours.



Chapter 4

Active Contours for
Interactivity in Vision-SLAM

Chapter 3 o�ered a detailed analysis of monocular SLAM with inverse depth

parametrisation. This also revealed the limitation of using very local features like

points, as they require dense representations in order to o�er a meaningful de-

scription of the environment.

However, instabilities in the algorithm were also seen by several factors which

included hand held and tripod constrained motion. This is as the EKF with inverse

depth parametrisation algorithm (Montiel et al., 2008), used in Chapter 3 is sensi-

tive to hand-held shaking in feature observations. At the same time it is a�ected

by unrecoverable dri� when constrained in a tripod, due to small erroneous esti-

mates that have li�le impact in feature appearance. Hence, the algorithm obtains

observations and takes them as valid for an erroneous estimate.

There is no exact tool for unifying both improved stabilisation and aid one of

the main aims in this thesis, which is increased feature meaning. Nevertheless, the

clues in Section 2.3 suggested active contours (snakes) based on their deforming

and a�aching capabilities. These rely on forces generated by objects in the im-

age, which drive and focus them on any immediate image silhoue�e. This means

that initialisation plays an important role for active contours, as this decides to

which object of interest they become a�ached. Dedicated algorithms can be used

for this initial step, but at the same time this can be done manually allowing for

interactivity in object selection.

92
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Therefore, this chapter presents an investigation related to improve the insta-

bilities found in Chapter 3 whilst finding a solution, for more meaningful gener-

ated maps in SLAM without requiring dense representations. This novel approach

for monocular SLAM involves an user in the map generation process through in-

teractive active contour initialisation, allowing also for labelling which directly

reflect semantics of interest for a person:

• Monocular SLAM with inverse depth parametrisation has been chosen, as

it permits to work with only one video feed. This allows real-time opera-

tion with a single image source, enabling further processing without severe

impact in algorithm performance.

• There is no exact tool that improves over dense feature mapping and shak-

ing in hand-held motion for a baseline monocular-SLAM implementation.

Active contours is presented as a novel way to overcome these problems, yet

this approach also increases computational requirements. This is as a snake

evolves according to external forces generated from a camera picture, partly

explaining its missing inclusion within SLAM until now.

• Active contours are also a good option to introduce interactivity in SLAM,

thanks to their user driven functionality and tracking capabilities as pre-

sented in Section 2.3.1. This enables the user to focus onto object of interest

for mapping purposes.

• Generating image forces requires real-time video processing whilst consid-

ering available computational power. However, for the case of Gradient Vec-

tor Flow (GVF) several iterations are required to a�ain convergence (Smistad

et al., 2012). A General Purpose Graphics Processing Unit (GPGPU) imple-

mentation of GVF is used in this investigation allowing to use active con-

tours in SLAM at video rate speeds, enabling real-time interaction within

the algorithm.

Section 4.1 describes the methodology required to obtain GVF forces, includ-

ing the relevant equations in Section 4.1.1, the generation of a binary image in

Section 4.1.2, the use of finite di�erences to extract its gradient in Section 4.1.3

and the required Laplacian in Section 4.1.4. Some improvements in the original

methodology are explored in Section 4.2, including a di�erent mask for the edge
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map and a second order finite di�erence for gradients in Section 4.2.1, as well as

di�erent Laplacian masks in Section 4.2.2.

Later on active contours are explored in Section 4.3, which begins by exploring

the formulation of B-Splines, its basis functions and its derivatives in Section 4.3.1.

Curve fi�ing is also detailed in Section 4.3.2 as it is an important part for user

feature selection, allowing to create an initial B-Spline. Finally, the active contour

evolution based on GVF forces and internal parameters is presented in Section

4.3.3.

The results of applying GVF forces and active contours into monocular SLAM

are described in Section 4.4. This includes first active contours using GVF forces

accelerated by GPGPU in Section 4.4.1. Applying active contours with GVF forces

as features in inverse depth monocular SLAM is presented in Section 4.4.2. Finally

concluding remarks are provided in Section 4.5.

4.1 Gradient Vector Flow (GVF)

An active contour is driven by internal and external forces: the former control

elasticity properties in the snake, whereas the la�er a�racts it towards a local

minima in an image. GVF belongs to the set of external forces and it is particularly

characterised by its good performance in force field generation, which is able to

drive snakes even inside of concavities (recall Figure 2.4).

The iterative process of GVF also allows for increased force field range, useful

in scenarios where snake initialisation is not precise around an object of inter-

est. This is ideal for a novel interactive vision-SLAM scenario, where feedback is

directly given to an user through the camera as it enables user feature selection

without requiring precise aim.

As Monocular SLAM relies on single camera usage, GVF can make use of this

image to generate forces from it. It is worth of mention that images are not the

only source of forces that can drive a snake (Kass and Witkin, 1987). However,

image forces are prioritised in this chapter as the main aim is to aid SLAM through

object abstraction and information input. Therefore, the basic process involved in

GVF force generation is described in Figure 4.1. The following subsections then

relate to this steps by exploring mask filtering and finite di�erences, which allow
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to prepare an input image for GVF.

4.1.1 Gradient Vector Flow Equations

External image forces generated from an object of interest allow an active contour

to deform and follow its shape. This is as the object produces changes in contrast,

which in turn produce gradients and later forces resembling their silhoue�es as in

Figure 4.1d. These also represent a local minima within the output of GVF a�er

the image has been processed.

Therefore, given an image a GVF vector field v(x, y) = [u(x, y), v(x, y)] can be

obtained by minimising the energy functional E
GVF

(Xu and Prince, 1998b):

E
GVF

=

∫∫
µ(u2

x
+ u

2

y
+ v

2

x
+ v

2

y
) + |∇f|2|v –∇f|2dxdy (4.1)

where the vertical and horizontal forces are represented by u and v respectively,

each one mapping a two dimensional space with ux, uy, vx and vy components.

Theµ constant is a term that weights the first operand (u
2

x
+u

2

y
+v

2

x
+v

2

y
) and must be

set according to the noise present in the image. However, se�ing a constant value

of 0.1 for this parameter is recommended (Xu and Prince, 1998b). The gradient

of a binary edge map such as the one in Figure 4.1c is represented by ∇f, which

remains constant within iterations.

In order to find v, calculus of variations can be used to solve Equation (4.1), as

it is assumed that E
GVF

possesses a local minima, resulting in the following set of

Euler equations (Gelfand and Fomin, 2000, Wikipedia, n.d.):

µ∇2
u – (u – f

′
x
)(f
′
x

2

+ f
′
y

2

) = 0 (4.2a)

µ∇2
v – (v – f

′
y
)(f
′
x

2

+ f
′
y

2

) = 0 (4.2b)

In order to solve Equations (4.2a) and (4.2b) a numerical implementation is re-

quired, which can be achieved by treating u and v as functions of time (Xu and
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(a) (b)

(c) (d)

Figure 4.1: Gradient Vector Flow steps. (a) depicts the image as obtained from

the source, with all its red, green and blue (RGB) pixels. (b) illustrates the binary

edge map image obtained using masks from (a). Note that prior to generating a

binary edge map image the original picture is simplified through greyscale con-

version, so only intensity values remain as in Equation (3.22). (c) shows the u and

v components of the binary edge map image from applying finite di�erences in x

and y over (b). Finally (d) iteratively uses data from (c) within the GVF algorithm,

resulting in a “washing” e�ect. Colours indicate the forces, if a snaxel (snake el-

ement) were to be put near any of the colours it would get a�racted towards the

local minima (black silhoue�e) of the image contour.
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Prince, 1998b):

ut(x, y, tk
) = µ∇2

ut(x, y, tk–1
) –

[
ut(x, y, tk–1

) – f
′
x
(x, y)

]
·
[
f
′
x
(x, y)

2
+ f
′
y
(x, y)

2

]
(4.3a)

vt(x, y, tk
) = µ∇2

vt(x, y, tk–1
) –

[
vt(x, y, tk–1

) – f
′
y
(x, y)

]
·
[
f
′
x
(x, y)

2
+ f
′
y
(x, y)

2

]
(4.3b)

where ut(x, y, tk
) and vt(x, y, tk

) are the GVF horizontal and vertical forces respec-

tively at iteration t
k
; outputs from applying finite di�erences (Figure 4.1c) to an

image’s binary edge map (Figure 4.1b) deliver the gradients f
′
x
(x, y), f

′
y
(x, y), dis-

cussed in more detail in Section 4.1.3. These outputs remain constant within all

the GVF iterations executed over the picture. The Laplacian operator applied to

ut(x, y, tk–1
) and vt(x, y, tk–1

) is represented as∇2
ut(x, y, tk–1

) and∇2
vt(x, y, tk–1

),

with t
k–1

indicating its past GVF iteration output. For the first run of GVF,

ut(x, y, tk–1
) and vt(x, y, tk–1

) are just copies of the gradients f
′
x
(x, y) and f

′
y
(x, y), the

results ut(x, y, tk
) and vt(x, y, tk

) recursively become ut(x, y, tk–1
) and vt(x, y, tk–1

)

on the next iteration. The Laplacian operator will be discussed in Section 4.1.4.

Equations (4.3a) and (4.3b) are used for an iterative GVF implementation al-

lowing to form a vector field (Figure 4.1d), taking each element from previously

obtained binary and gradient output images. The next sections pertain to the ac-

quisition of these required images, which mainly rely on mask that are special

matrices multiplying each pixel over a simplified greyscale image.

4.1.2 Binary Edge Map

A binary edge map must be generated prior to obtaining the gradients fx(x, y) and

fy(x, y) in Equation (4.3) (Xu and Prince, 1998b). This allows to obtain silhoue�es

produced from objects in images which will serve as the local minima for GVF, re-

moving necessary information like colour
∗
. Therefore, a greyscale picture is first

obtained from the original image taking in account each red, green and blue el-

ements like in Equation (3.22). This produces an image I(x, y) with only intensity

values contained in it.

∗
A Gaussian filter can also be applied right a�er the greyscale conversion to smooth out some

of the noise present in the picture.



98 4.1. Gradient Vector Flow (GVF)

The creation of the edge map can be achieved by using the Sobel or the Scharr

operators as described in (Sobel, n.d.). This operation can be executed by convolv-

ing the previous greyscale picture I(x, y) with either one of the following set of two

masks, which obtains two sets of data bx(x, y) and by(x, y):

Sobel Masks Gx =

–1 0 1

–2 0 2

–1 0 1

 Gy =

–1 –2 –1

0 0 0

1 2 1

 (4.4a)

Scharr Masks Gx =

 –3 0 3

–10 0 10

–3 0 3

 Gy =

–3 –10 –3

0 0 0

3 10 3

 (4.4b)

Magnitude G =

√
G
2

x
+ G

2

y
(4.4c)

An example of image convolution with these masks is shown in Figure 4.2. The

magnitude in Equation (4.4c) produces a binary image b(x, y), which is obtained

by using the elements of two arrays bx(x, y) and by(x, y). An example of a result-

ing binary image is illustrated in Figure 4.3, showing the application of Gx and

Gy Scharr mask set in an intensity image I(x, y) from Equation (4.4b). Once the

binary image has been extracted the gradients are then obtained through finite

di�erences, which then serve as input for GVF.

4.1.3 Finite Di�erences

The past section presented the calculation of an edge map with help of Equa-

tion (4.4c), which delivers a binary image b(x, y) containing mostly silhoue�es or

di�erences in contrast from the input greyscale image I(x, y). For the numerical

implementation of GVF, derivatives from the generated binary image are needed

following Equation (4.3) in Section 4.1.1, but as the array is in discrete form these

derivatives must be calculated using finite di�erences.

Thus, a first order central di�erence approximation to the derivative is defined
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Figure 4.2: A filter mask convolving with an image. A pixel value is selected

from any RGB channel or greyscale picture and acts as the centre of the mask.

Surrounding pixels are then read according to the mask size so that each of them

is multiplied in a 1×1 relationship, the result is then summed and placed exactly

on the same position as the centred pixel.

(a)

(b)

Figure 4.3: Binary Image. A source image depicts simple shapes in (a), whereas

(b) shows the resulting image a�er applying the Scharr masks prior conversion to

greyscale of (a). These matrices detect changes in contrast obtaining a high value

whenever one is found, with contours representing these intensity changes in (b).
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in the following way (Mathews and Fink, 2004):

f
′
(x) ≈ b(x + h) – b(x – h)

2h

Obtaining a derivative from the edge map b(x, y) requires two operands since the

binary image b(x, y) has discrete pixel coordinates (x and y) in a similar way to

what was described in Section 4.1.2, requiring to apply finite di�erences in hori-

zontal and vertical directions. Therefore, an approximation of the first derivative

using central di�erences is given by:

x = 0 · · · x
img

y = 0 · · · y
img

f
′
x
(x, y) ≈ b(x + h, y) – b(x – h, y)

2h

(4.5a)

f
′
y
(x, y) ≈ b(x, y + h) – b(x, y – h)

2h

(4.5b)

where the total image dimensions are given by x
img

and y
img

. The displacement

h is set to 1 since our next point of data is the following pixel. It is important to

remark that this operation will yield two sets of data arrays f
′
x
(x, y) and f

′
y
(x, y),

each one possessing x and y coordinates and that serve as input in Equation (4.3).

Finally the last operation remaining for GVF is applying the operator∇2
.

4.1.4 The ∇2 operator in Gradient Vector Flow

As a final step in GVF the operator ∇2
f(x, y) needs to be used in order to a�ain

the numerical implementation of GVF seen in Equation (4.3), which is defined as
∗
:

∇2
f(x, y) =

∂2

∂x2
f(x, y) +

∂2

∂y2
f(x, y) (4.6)

However, this equation also needs to be applied to discrete data represented by

2 dimensional x and y arrays. To solve this numerically an approximation of the

second derivative of f(x) must be obtained, e.g. finite di�erences. As such, it is

∗
A more complete and comprehensive explanation can be found in (Keller, n.d.)
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possible to use the following second order central formula:

f
′′
(x) ≈ f(x + h) – 2f(x) + f(x – h)

h
2

(4.7)

Therefore, it is possible to use the following central di�erence approximations to

the second derivatives of the∇2
f(x, y) operator:

∂2

∂x2
f(x, y) = f

′′
x
(x, y) ≈ f(x + h, y) – 2f(x, y) + f(x – h, y)

h
2

(4.8a)

∂2

∂y2
f(x, y) = f

′′
y
(x, y) ≈ f(x, y + h) – 2f(x, y) + f(x, y – h)

h
2

(4.8b)

where both resulting arrays have the same total elements consisting of x
img

and y
img

as the input image.

It is worth mentioning that the first run of GVF, ut(x, y, 0) and vt(x, y, 0) are

f
′
x
(x, y) and f

′
y
(x, y) respectively from the binary edge map in Section 4.1.3. In sub-

sequent runs ut(x, y, tk
) and vt(x, y, tk

) become the GVF outputs from Equations

(4.3a) and (4.3b).

Considering Equation (4.6), together with a displacement h of 1 pixel in the

approximations from Equations (4.8a) and (4.8b), the∇2
operator becomes:

∇2
f(x, y) = f(x + 1, y) + f(x – 1, y) + f(x, y + 1) + f(x, y – 1) – 4f(x, y) (4.9)

If the terms of Equation (4.9) are arranged in a bi-dimensional matrix they yield:0 1 0

1 –4 1

0 1 0

 (4.10)

which in image processing is more o�en known as the Laplacian mask.

With this, all the equations needed for a numerical implementation of GVF in

Section 4.1.1 have been shown. These basically allow to apply a Sobel or Scharr

mask to a greyscale image, which generates a binary image depicting only sil-

houe�es. Finite di�erences are applied a�erwards, which produce the gradients

needed to use the ∇2
operator.

One of the novelties in this investigation resides in the fact that GVF has been

selected as a driving mechanism for snakes in SLAM. However, its CPU implemen-
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tation makes it unsuitable for real-time operation. This is because image filtering

is considered a highly demanding computational process in CPUs. Therefore, the

next section explores the implementation of the GVF forces into a graphics pro-

cessing unit (GPU) through GPGPU, allowing for huge parallel processing and

high speed gains with it.

4.2 Gradient Vector Flow and operations in
GPGPU

The basics covering the GVF have been discussed in Section 4.1, disclosing the

equations needed for a numerical implementation of it using discrete images.

However, by trying to use GVF as a real-time tool a considerable number of pixels

needs to be processed many times a second. This is not only because of dimen-

sions or total amount of pixels in the image but also due to the number of iterations

N
GVF

required. Indeed, it is noted that GVF must be iterated as much as needed

in order to reach convergence, with a number going around 400 to 512 to be said

good enough and the lowest being 256 (Smistad et al., 2012).

Given this it might be argued that one reason for active contours to have been

ignored within the SLAM context is because they require a huge amount of com-

putational resources, which are o�en reserved for SLAM itself as it consumes also

a considerable amount of CPU power. However, nowadays there are more dedi-

cated tools for specific tasks like image manipulation which are o�en considered

highly parallel processes. Compared to a serial workload like SLAM which exten-

sively uses a CPU, parallel tasks can be set apart in a GPU, allowing to increase

the performance of an algorithm like GVF.

This thesis proposes to use General Purpose computing on Graphics Process-

ing Units (GPGPU)
∗

for GVF in a novel SLAM approach. A basic diagram of this

GPGPU GVF implementation is given in Figure 4.4. GPGPU are an accessible and

a�ordable, highly parallel image processing tool allowing to pursue a novel in-

teractive snake application in SLAM: Actively using GPGPU GVF forces, obtain-

ing tracking information from the evolution of an active contour which is later

∗
Further information about GPUs and their inherent parallel processing capabilities are given

in (Singer, 2013.)
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Image generated 
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Gradient 
Vector Flow 

(GVF)

External Forces
implemented in 
Active Contours

GPGPU 
(OpenCL) 

Accelerated
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Figure 4.4: Gradient Vector Flow forces accelerated by GPUs for active contours.

Image forces are part of the external forces that can drive a snake. GVF forces

take images as input but require the processing of all pixels many times each

iteration. A GPGPU implementation of GVF increases the overall performance

when monocular SLAM is also considered, as the CPU is not taxed with GVF forces

generation saving resources for the SLAM execution. This also allows to consider

images containing more pixels in them, thus capturing more information usable

in both GVF and monocular SLAM.

used for feature abstraction in SLAM. Therefore, following is a description of the

used hardware as well as key practical implementations for improved GVF per-

formance.

4.2.1 The Image’s Binary Edge Map

In order to generate GVF forces through GPGPU acceleration a graphics card sup-

porting an Application Programming Interface (API) such as OpenCL is required.

This API allows to use a set of defined instructions that will deliver an expected

determined result aided by GPUs
∗
. In this case OpenCL can make use of GPUs of

di�erent architectures to handle highly parallelised workloads.

Once the image has been converted to greyscale the next step is to obtain its

gradient. To calculate the gradient a 2 step process was devised: the first one

∗
More hardware is supported by OpenCL, however GPUs o�er a cheap alternative present in

almost all computers, including laptops. Note also that OpenCL is not the only API able to do this,

the proprietary technology of CUDA in Nvidia cards can also be used. However, OpenCL has the

advantage of being multi-device and multi-platform.



104 4.2. Gradient Vector Flow and operations in GPGPU

originally was the convolution of one pair of masks as seen in Equations (4.4). The

Sobel or the Scharr 3×3 kernels are commonly used for this task. However, due

to the advantage of using OpenCL a higher size mask would yield be�er results

with almost zero impact on performance. The values for producing a 5× 5 kernel

are (Scharr, 2000)
∗
: [

21.38 85.24 0 –85.24 –21.38

]
/256 (4.11a)[

5.96 61.81 120.46 61.81 5.96

]
/256 (4.11b)

The transposes of both (4.11a) and (4.11b) must be multiplied in order to find the

5×5 Gx mask used for the image convolution, Gy can be found by transposing Gx.

Next, it is required to apply the finite di�erences method as mentioned in

Section 4.1.3. GPU acceleration with OpenCl can be used to improve this stage,

by using a higher order central di�erence formula (Mathews and Fink, 2004):

f
′
(x) ≈ –f(x + 2h) + 8f(x + h) – 8f(x – h) + f(x + 2h)

12h

(4.12)

A remarked requirement for GVF is a binary edge map (Xu and Prince, 1998b).

Hence, the method described here is not the only way to obtain it. Other examples

include using Anisotropic Filtering, which is a non-linear process that is highly

insensitive to noise but requires more computational resources (Perona and Malik,

1990). In this thesis Equation (4.12) is used due to its computational simplicity.

4.2.2 GVF and Other Laplacian Operators

The Laplacian mask is very simple to implement and swap on the OpenCL API.

Nevertheless, there are some recent researches involving more elaborate Laplacian

masks. These include using a 5×5 sized mask instead of the one shown in Equation

(4.10), which allows to consider more surrounding pixels (Wu and Zhang, 2012).

A similar approach uses a same sized 5× 5 mask for a low pass filter and another

one for noise reduction (Liu and Bovik, 2012). However, while very interesting in

principle these approaches failed in tests. These filters amplify the noise contained

within the image rather than to mitigate it as illustrated in Figure 4.5.

∗
This investigation also shows comparisons with other masks.
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(a) (b)

Figure 4.5: GVF a�er applying newer Laplacian masks. (a) shows a sample im-

age containing test silhoue�es, whereas (b) illustrates their GVF output a�er the

Laplacian masks in (Wu and Zhang, 2012, Liu and Bovik, 2012) were applied. Even

when the silhoue�es from (a) can be distinguished, the noise becomes severely

amplified in the resulting GVF output in (b).

These results were unexpected considering how well they seem to appear at

least on paper. Therefore, it was decided to keep the Laplacian mask in Equa-

tion (4.10) as this is already proven. The results show similar output to the one

previously shown in Figure 4.6 as well as those in (Smistad et al., 2012)
∗
.

All these subsections have lead to create the external forces needed for guiding

active contours. The la�er is particularly important as is it more of an user assist

tool, thus not relying on fully automated methods to select features within SLAM.

As such, active contours are explored next.

4.3 Active Contours

Active contours allow to form a curve which dynamically deforms according to

internal and external factors. The la�er includes forces produced by objects, which

then allow the contour to shape itself around them. An example of such forces is

the GVF from Section 4.1, used in this investigation because of its performance,

which can be greatly increased thanks to GPGPU acceleration as seen in Section

4.2.

∗
Author provided code usable only by command prompt and with a static image can be found

in (Smistad, 2013).
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Figure 4.6: Gradient Vector Flow applied to di�erent contours, colours represent

the a�ractive forces on the image, well outside of their shapes. These are the

forces capable of driving an active contour.

The fast generation of GVF forces allows an active contour to deform fast

enough, so that it can keep a lock onto an object without any sort of help. There-

fore, if tracking information is extracted this would be valuable for camera motion

tracking. For SLAM, this is a new approach, as fast active contours are considered

for map and motion estimation. The main interest is to focus onto an object rather

than localised and automated features, which then allows for localisation and im-

proved meaningful mapping.

However, the focus onto an object is not an automated task in this investi-

gation. Here it is a�empted to use a person’s capability to discern objects, thus

initialising an active contour around them by selecting points in an image. An

initial B-Spline would be created that interpolates these points, with GVF forces

driving it eventually taking the object’s shape. Figure 4.7 illustrates all the stages

needed for active contour evolution.

Active contours make use of the calculus of variations. Therefore, an intro-

duction can be found in (Arfken et al., 2013) whereas more abstract information

can be read from (Gelfand and Fomin, 2000). However, here the simpler theo-

retical foundations needed for its implementation will be presented in the next

subsections following (Rogers, 2001). These include the basics behind B-Splines
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Figure 4.7: Active contours require the external forces which guide them to-

wards a desired local minima. Using active contours in SLAM was presumably

overlooked as GVF forces are computationally demanding for CPUs. However,

GPGPU acceleration allows to increase the performance of GVF forces by a con-

siderable margin. Thus allowing video rate GVF forces to be used in snake evolu-

tion.

and its derivatives, which allow to perform curve fi�ing using a series of points

based on a lower count of control polygon points and basis functions. Joining both

GVF forces and user initialised B-Splines gives way to a novel monocular SLAM

approach, which allows inferring camera location with object tracking through

snake evolution. This also allows for included description in the moment of object

selection, improving meaning in the generated SLAM map.

4.3.1 B-Splines, Basis and its Derivatives

A B-spline is a tool that allows to perform smoothing using data points. This is

done using multiple polynomial functions, i.e. piecewise polynomial. This means

that it is possible to manipulate a B-Spline locally, changing only desired parts of

the data smoothing. The B stands for basis which are the B-Spline pieces uniquely

defined given a set of knots, with the la�er being the parts where the pieces meet.

An example of a cubic B-Spline is seen in Figure 4.8.

Part of the novelty in this investigation is its proposition on interactivity within

vision-SLAM. For this, B-Splines o�er a good solution as their initialisation can be

automated or user guided. This not only introduces a person into the SLAM algo-
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Figure 4.8: A cubic (order k = 4, degree 3) uniform (equidistant knot

vector numbers) B-Spline with 9 control polygon points (red crosses, n =

Control Polygon Points–1 = 8). The B-Spline (blue) and its discrete points (purple

crosses) lie always within the convex hull (segmented line) created by the control

polygon points. The higher the order the more the area the convex hull produces,

for k = 2 this hull disappears and the B-Spline can only follow the control poly-

gon line (black). Note how the curve does not begin on the first control polygon

point nor ends at the last one, this is because the parameter range t is directly

influenced by the order of the B-Spline: the higher the order the smoother the

B-Spline becomes but also the more the parameter range is reduced, thus shorter

distance drawn by the B-Spline.

rithm, but also allows to include other information along with the object selected

for map meaning or context purposes. To initialise the B-Splines an user is able to

select points over an object of interest from the camera image, which later serve as

the data points used for smoothing. The generated GVF forces would then drive

the B-Spline closer to the object’s silhoue�e, allowing to track the object. This

is because the B-Spline responds to changes when responding to the a�ractive

forces of GVF, constantly changing small portions if it to be�er fit the contour of

the object.

As such, B-Splines are a first step into active contours. Some of their main

properties are described next (Cox, 1972):

1. The B-Spline order k must be> 2 but less than or equal to the total number

of control polygon vertices. The maximum degree n is one less (k – 1).

2. The B-Spline exhibits the variation-diminishing property. This means that

the produced curve does not oscillate about any straight line more o�en

than its control polygon oscillates about the line.

3. The B-Spline generally follows the shape of the control polygon.
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(a) (b) (c)

Figure 4.9: Open and closed cubic B-Splines. (a) depicts a B-Spline with no re-

peated polygon vertices { B1 B2 B3 B4 B5 B6 B7 B8 } while (b) illustrates the same

B-Spline with 1 repeated control polygon point { B1 B2 B3 B4 B5 B6 B7 B8 B1 }.

Finally a fully closed B-Spline is obtained in (c) with k – 2 extra polygon points

aside from just B1, i.e. { B1 B2 B3 B4 B5 B6 B7 B8 B1 B2 B3 }.

4. Any a�ine transformation is applied to the B-Spline by applying it to the

control polygon vertices.

5. The B-Spline lies within the convex hull of its control polygon.

The knot vector used for creating B-Splines is a vector g containing a series of

monotonically increasing real numbers g
i
≤ g

i+1
, e.g. [0 1 2 3 4] or [0 0.3 0.5 0.85 1].

A periodic uniform vector contains numbers equally distanced between the range

0 ≤ g ≤ n+k and it is used for creating a closed uniform B-Spline. Note that non-

uniform knot vectors can also be used for B-Splines but they are not necessary for

the demonstration of interactivity in SLAM.

Of particular note is that some control polygon points must be repeated in

order for a B-Spline of order k > 2 to be fully closed. This is because the parameter

range t is defined as k–1 ≤ t ≤ n+1 for an uniform knot vector. Therefore, a higher

order B-Spline e�ectively reduces the parameter range t. For example Figure 4.9a

shows what happens if a B-Spline set with k = 4, n = 7 and a uniform knot vector

ranging from 0 ≤ g ≤ n + k or 0 ≤ g ≤ 11 is set. The parameter range becomes

k – 1 ≤ t ≤ n + 1 or 3 ≤ t ≤ 8 and the curve becomes open. Figure 4.9b shows

that even closing the control polygon vertices will not su�ice to close the B-Spline,

therefore a total of k – 2 repeated control polygon points must be added to the

knot vector g. This is done at the beginning or end of the knot vector, besides the

first repeated control polygon point, in this case 0 ≤ g ≤ 14 which also changes

the parameter range to 4 – 1 ≤ t ≤ 10 + 1 or 3 ≤ t ≤ 11.

Given all of this, it is now possible to introduce a more formal B-Spline defini-
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tion:

P(s, t) =

n+1∑
i=1

B
i
N
i,k
(t) t

min
≤ t < tmax 2 ≤ k < n + 1 (4.13)

where n is a desired number of control polygon points, k is the order, P(s, t) is the

B-Spline with a total of M elements (s = 0 · · ·M – 1), B
i

are the control polygon

points and N
i,k

are the basis functions, which can be calculated recursively using

the following formulae (Cox, 1972):

N
i,1
(t) =

1 if g
i
≤ t < g

i+1

0 Otherwise

N
i,k
(t) =

(t – g
i
)N

i,k–1
(t)

g
i+k–1

– g
i

+

(g
i+k

– t)N
i+1,k–1

(t)

g
i+k

– g
i+1

k > 1

(4.14)

where g represents the elements of the knot vector, i.e. 0 ≤ g ≤ n + 2k – 1 for

a closed B-Spline, considering k – 2 extra control polygon points. Lastly, in this

recursion the parameter range t follows the formula:

t = k – 1 +

n

M

(s) (4.15)

recalling that n is the number of control polygon points minus 1.

Taking into account Equation (4.13) its derivatives are extracted using the for-

mulae:

P
′
(s, t) =

n+1∑
i=1

B
i
N
′
i,k
(t) and P

′′
(s, t) =

n+1∑
i=1

B
i
N
′′
i,k
(t) (4.16)

Therefore for P
′
(t):

N
′
i,1
(t) = 0

N
′
i,2
(t) =

N
i,1
(t)

g
i+1

– g
i

–

N
i+1,1

(t)

g
i+2

– g
i+1

N
′
i,k
(t) =

N
i,k–1

(t) + (t – g
i
)N
′
i,k–1

(t)

g
i+k–1

– g
i

+

(g
i+k

– t)N
′
i+1,k–1

(t) – N
i+1,k–1

(t)

g
i+k

– g
i+1

k > 3

(4.17)
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and finally for P
′′
(t):

N
′′
i,1
(t) = 0

N
′′
i,2
(t) = 0

N
′′
i,3
(t) = 2

(
N
′
i,2
(t)

g
i+2

– g
i

–

N
′
i+1,2

(t)

g
i+3

– g
i+1

)

N
′′
i,k
(t) =

2N
′
i,k–1

(t) + (t – g
i
)N
′′
i,k–1

(t)

g
i+k–1

– g
i

+

(g
i+k

– t)N
′′
i+1,k–1

(t) – 2N
′
i+1,k–1

(t)

g
i+k

– g
i+1

k > 4

(4.18)

Using a predetermined quantity of control polygon points it is possible to calculate

all the basis functions N
i,k
(t) and their derivatives N

′
i,k
(t) and N

′′
i,k
(t) in advance.

In this case the basis functions and their derivatives repeat for the extra control

polygon points added for a closed B-Spline. Hence, the parameter range t is used

as if it was the case of an open uniform B-Spline.

A�er both the basis functions and their derivatives have been calculated, they

can be saved for later use as there is no need to recalculate them a�erwards.

However, in order to fit a B-Spline to user given points other operations must be

taken into account.

4.3.2 B-Spline Curve Fi�ing

SLAM Interactivity is to be achieved by manipulating the initial positions of the

control polygon points according to user input. Curve fi�ing is therefore needed

in order to allow the initial B-Spline to include the user selected points. This B-

Spline is later on driven by GVF forces, making it an active contour. However, it

is the user that places it initially surrounding an object of interest.

The previous subsection detailed how to obtain the basis functions of a B-

Spline, but how to initialise the control polygon points B
i

in Equation (4.13) was

not covered. Therefore, the B-Spline curve fi�ing process starts by using the user

input points to approximate parameter values t
j
. This can be done using chord

lengths:

t1 = 0, t
j
=

l∑
r=2

|Dr – Dr–1|∑
j

r=2
|Dr – Dr–1|

2 ≤ l ≤ j, t
j
≤ 1
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where |Dr – Dr–1| represents the magnitude of the (x, y) coordinates, obtained

from the subtraction of one user given point Dr and the previous point Dr–1. Now

with the approximated parameter range values t
j

it is possible to use Equation

(4.14) to obtain a set of basis functions N
D

. Note that these basis functions are

only used to find the initial control polygon points positions, di�ering from the

basis functions obtained using the parameter range t in Equation (4.15) for active

contour evolution.

An initial B-Spline of degree n will interpolate a number j of user points, this

follows Equation (4.13)
∗
:

D1x
(t1) = N

D
1,k
(t1)B1xinit

+ N
D
2,k
(t1)B2xinit

+ · · · + N
D
n+1,k

(t1)B(n+1)xinit

D2x
(t2) = N

D
1,k
(t2)B1xinit

+ N
D
2,k
(t2)B2xinit

+ · · · + N
D
n+1,k

(t2)B(n+1)xinit

.

.

.

D
j
x

(t
j
) = N

D
1,k
(t
j
)B

1xinit
+ N

D
2,k
(t
j
)B

2xinit
+ · · · + N

D
n+1,k

(t
j
)B

(n+1)xinit

as well as

D1y
(t1) = N

D
1,k
(t1)B1yinit

+ N
D
2,k
(t1)B2yinit

+ · · · + N
D
n+1,k

(t1)B(n+1)yinit

D2y
(t2) = N

D
1,k
(t2)B1yinit

+ N
D
2,k
(t2)B2yinit

+ · · · + N
D
n+1,k

(t2)B(n+1)yinit

.

.

.

D
j
y

(t
j
) = N

D
1,k
(t
j
)B

1yinit
+ N

D
2,k
(t
j
)B

2yinit
+ · · · + N

D
n+1,k

(t
j
)B

(n+1)yinit

where D
(1 ··· j)x and D

(1 ··· j)y represent user point coordinates x and y, which de-

pend on a specific parameter range t
j
, the set of basis functions N

D
and the initial

control polygon points B
(1 ··· n+1)xinit

and B
(1 ··· n+1)yinit

. All of this can be put in

matrix form:

D
(1 ··· j)x = N

D
B
(1 ··· n+1)xinit

(4.19)

D
(1 ··· j)y = N

D
B
(1 ··· n+1)yinit

(4.20)

∗
Note that this formulation is a general representation for both open and closed B-Splines, as

the la�er only adds repeated control polygon points with its multiplied basis.
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where

D
(1 ··· j)x =


D1x

(t1)

D2x
(t2)

.

.

.

D
j
x

(t
j
)

 D
(1 ··· j)y =


D1y

(t1)

D2y
(t2)

.

.

.

D
j
y

(t
j
)



B
(1 ··· n+1)xinit

=


B
1xinit

B
2xinit

.

.

.

B
(n+1)xinit

 B
(1 ··· n+1)yinit

=


B
1yinit

B
2yinit

.

.

.

B
(n+1)yinit


and

N
D
=


N
D
1,k
(t1) · · · · · · N

D
n+1,k

(t1)

.

.

.

.
.
.

.

.

.

.

.

.

.
.
.

.

.

.

N
D
1,k
(t
j
) · · · · · · N

D
n+1,k

(t
j
)


The matrix N

D
is square if the condition 2 ≤ k ≤ n + 1 = j is met. However, if

2 ≤ k ≤ n + 1 < j, i.e. fewer control polygon points than user given points, then

the matrix N
D

is no longer square. In order to curve fit user given points for this

case, the least squares method can be used to find both x and y control polygon

point coordinates:

D = N
D

B

NT

D
D = NT

D
N
D

B

solving for B yields
∗
:

B =

[
NT

D
N
D

]
–1

NT

D
D (4.21)

Given the initial control polygon point positions and the calculated basis functions

in Equation (4.14), it is possible to use Equation (4.13) which will give a whole curve

that passes through the user given points D.

In the SLAM context this is a novel way to employ B-Splines, as an user has

∗
Note that NT

D
ND is symmetrical, so that Cholesky decomposition can be applied which is a

very fast way to calculate a matrix inverse.
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the ability to initialise them over an object of interest. This is done by using points

selected through an image directly seen by the user and curve fi�ing over this data

using B-Splines. Other approaches have used B-Splines, e.g. to map riverine areas

but they are constrained to environments in which the ground o�ers visible gra-

dients (Pedraza et al., 2007, 2009). In this thesis the focus on B-Splines is primarily

in objects rather than on the environment, as they provide valuable information

for camera localisation in SLAM following its evolution and deformation due to

GVF forces.

Therefore, a B-Spline needs to be evolved according to external image forces

produced by objects of interest as well as internal parameters which control its lo-

calised deformations. For this their first and second derivatives found in Equation

(4.16) need to be calculated, and this information will be used for its evolution as

seen in the next section.

4.3.3 Snake Evolution

Section 4.3.1 considered the creation of a static B-Spline, whereas Section 4.3.2

fi�ed user given points to it with no evolution involved. In order to obtain tracking

information GVF is assumed to drive the B-Spline, therefore becoming an active

contour.

An active contour evolution can be done in several ways, a commonly found

approach is its original implementation or derivatives of it (Kass and Witkin, 1987,

Ivins and Porrill, 1995). However, in this investigation an approach using a tan-

gential redistribution term is used
∗
. The main advantages of using this method

are a more robust snake evolution and avoiding instabilities that may be caused

by entangling. This evolution follows (Srikrishnan and Chaudhuri, 2009):

∂P(s, t, te)

∂te
= α(s, te)T(s, te) + β(s, te)N(s, te) (4.22)

where ∂P(s, t, te) represents the B-Spline parameters, with te being its time evolu-

tion (displacements in P(s, t) from Equation (4.13)), T(s, te) represents the tangen-

tial component of the curve and N(s, te) its inward normal. For ease of notation

∗
Original C implementation can be found at (Krishnan, 2013).
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the parameter te will be discarded.

As such, this implementation requires the first and second B-Spline derivatives

to be calculated using Equation (4.16) in Section 4.3.1. The unit normal vector N(s),

tangent T(s), curvature k(s) and speed g(s) can be obtained from each of the x and

y elements (s = 0 · · ·M – 1) in P
′
(t) and P

′′
(t) as follows:

N(s) =

[
–P
′
y
s

(t), P
′
xs
(t)

]
√

(P
′
xs
(t))

2
+ (P
′
y
s

(t)s)
2

T(s) =
[
Ny(s), –Nx(s)

]
k(s) =

P
′
xs
(t)P
′′
y
s

(t) – P
′
y
s

(t)P
′′
xs
(t)

((P
′
xs
(t))

2
+ (P
′
y
s

(t))
2
)

3

2

g(s) =

√
(P
′
xs
(t))

2
+ (P
′
y
s

(t))
2

A normal force β(s) = β
GVF

(s) which uses GVF is defined as:

β
GVF

(s) = F·N(s)+µk(s) = ut(Px(t), Py(t))·Nx(s)+vt(Px(t), Py(t))·Ny(s)+µk(s) (4.24)

where ut(Px(t), Py(t)) and vt(Px(t), Py(t)) are the GVF output forces of the current

image from Equation (4.3)
∗
, with magnitude values extracted from locations in the

GVF image given by all the M elements from the B-Spline (x and y coordinates).

Note that µ here is a weighting term set very low
†

and β
GVF

is a matrix containing

a number of elements equal to M.

Given this, the following partial di�erential equation must be solved in order

to find α(s) in Equation (4.22):

∂α(s)

∂s
= K – g(s) + g(s)k(s)β

GVF
(s) (4.25)

which can be achieved using the following discrete approximation:

α(s + 1) = α(s) + K – g(s) + g(s)k(s)β
GVF

(s) with s = 0 · · · M – 1 (4.26)

where K is defined as:

K = L –

∫
1

0

k(s)β
GVF

(s)g(s) ds (4.27)

with L representing the length of the curve. If the values of g(s), k(s) and β
GVF

(s)

∗
As this is the output GVF image the third parameter tK is discarded for simplicity.

†
This is set to 0.0001 in (Krishnan, 2013)
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are neglected in comparison to L the approximation
∗
K = L may be used (Srikrish-

nan and Chaudhuri, 2009):

L =

∫
1

0

g(s) d(s) (4.28)

Once all these values are obtained they can be plugged into Equation (4.22), it-

eratively obtaining B-Spline displacements P(s, t, te). New control polygon points

are calculated by se�ing the displacements in the matrix D in Equation (4.21),

using the new displacement positions in the elements of the B-Spline. These are

ultimately summed to the previous control polygon points, allowing to recreate a

newly evolved B-Spline which is a�ected by GVF forces.

Whereas much of this information uses ideas from established works in the

vision branch, the main novelty and importance in this investigation is its imple-

mentation in vision-SLAM. This allows to introduce interactivity within the algo-

rithm and at the same time makes use of tracking information, thanks to real-time

B-Spline deformations without severe computational cost due to accelerated GVF

forces in a GPU. Therefore, the next section will show results which include a

demonstration of the whole idea of interactivity in SLAM. Focusing primarily on

user intervention and on-the-fly semantics.

4.4 Implementation Results

This section shows the results involving active contours and their inclusion into

monocular SLAM. This is because the basic idea and the novelty of this investi-

gation lies in the given user input, made possible though interactive snake usage.

This allows the user to see and choose objects of interest, giving description or

semantics in real-time. The main di�erence against many other approaches in

SLAM is that a person is now part of the cycle, which is done for the reasons

expressed in Section 2.2.4.

The algorithm was run on a computer with an Intel 4790K processor, fi�ed

with a R9 290X GPU from AMD and the Logitech C920 camera. Processor is in

charge of all the EKF related operations and snake evolution, whereas the GPU

is used to accelerate image processing tasks like greyscale conversion, gradient

∗
This is equivalent to averaging the whole B-Spline P(t) in Equation (4.13).
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and video-rate GVF force generation. Each EKF cycle is constrained to be of 0.08

seconds.

4.4.1 Active Contours with Gradient Vector Flow Forces

First the capabilities of the snakes surrounding objects were tested. Figure 4.10

shows two active contours already initialised by placing points randomly around

two objects. Evolution is rapidly performed with the snake following the forces

generated by silhoue�es around the objects. However, this is not perfect since the

active contours do not evenly take the shape of the objects’ silhoue�e.

Snake object lock-on works if the movement of the camera is slow, as there is

no control other than the image forces produced by GVF. Despite this, undesired

behaviours from this simplistic implementation are apparent: The snake may get

distracted by other forces outside the boundaries of the object of interest, since

every single contour on the picture generates forces. However, objects with high

contrast silhoue�es diminish these caveats and can be used to perform object

tracking.

Therefore, the next section demonstrates the idea of using snakes in vision-

SLAM, involving B-Spline user initialisation around shapes. This includes real-

time GVF forces allowing the active contour to deform fast enough, so that it

becomes a�ached onto an object of interest and keeps track of it whilst in camera

motion. This leads to obtain tracking data which can be used by the EKF, leading

to feature and camera estimation as well as allowing user descriptive input.

4.4.2 EKF SLAM using Snakes, Including Interactivity

As in Section 4.4.1, the overall idea is to make use of an interface in which an user

initiates a snake. The active contour will lock onto a chosen object using a�ractive

GVF forces, generated in parallel thanks to GPGPU.

For a demonstration of interactivity within vision-SLAM simple rectangular

objects are considered. Tracking is performed with an active contour (B-Spline

order k = 2) and a total of 4 control polygon points, causing the la�er to fall on



118 4.4. Implementation Results

(a)

(b)

(c)

Figure 4.10: Simple active contour demonstration. Two snakes are seen following

the forces produced by two objects in the image. The camera is slowly rotated from

le� in (a), to the middle in (b) and to the right in (c). The active contour follow

the forces produced by the two objects in the image. No additional controls that

could drive the snake were used.
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Algorithm 4.1 Interactive vision-SLAM methodology pseudo code.

1: procedure Interactive SLAM

2: Acquire new image;

3: Interactive user feature selection through user clicks;

4: Initialise active contour; /* Section 4.3.2 */

5: for i← 0 to N
GVF

do
6: Gradient vector flow iteration; /* from current image. Section 4.1 */

7: end
8: while User input do
9: /* user decides when the snake is fully a�ached to the feature */

10: Snake evolution; /* Section 4.3.3 */

11: end
12: while SLAM set to start do
13: Acquire new image;

14: for i← 0 to N do
15: Gradient vector flow iteration /* from current image. Section 4.1*/

16: end
17: /* active contour follows the feature. Section 4.3.3 */

18: Snake evolution;

19: if High-level feature not initialised in SLAM then
20: Add feature to state and covariance /* Section 3.2.3 and 3.2.4 */

21: else
22: Obtain observations and update EKF /* Section 3.3.4 */

23: end
24: end

the corners of a selected object. This is because the B-Spline falls always within

the convex hull created by the control polygon points, and for k = 2 this hull

disappears with the B-Spline following control polygon lines (recall Figure 4.8).

In this form the object’s corner coordinates can be set into the SLAM algo-

rithm, first as new features y
fi

in Equation (3.39) and later as observations z
fi

as

seen in Section 3.3.4. As the camera changes position the snake will provide track-

ing data to the EKF, allowing to estimate position for both object and camera. This

approach is detailed in Algorithm 4.1.

The implementation works in real-time by using a source video avoiding using

frames individually a�er each time step. It is worth mentioning that this does not

consider meaningful units for mapping, as the main interest is to ensure stabil-

ity within the implementation. Therefore, the EKF algorithm works using its own

units. For this scenario the camera was hand-held approximately performing the
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following motion pa�erns as follows: backward translation, yaw le� rotation, yaw

right rotation, yaw le� rotation towards centre position, backward translation,

pitch tilting down, pitch tilting up, pitch tilting down towards centre position,

backwards translation, yaw le� rotation, yaw right rotation, yaw le� rotation to-

wards centre position, pitch tilting up, pitch tilting down, pitch tilting up towards

centre position, forward translation, rolling le�, rolling right, rolling le� towards

centre position, forward translation.

The novelty of this approach relies on interactive object selection, allowing to

include input for feature description and semantics (Figures 4.11 and 4.13). In or-

der to select a new object the user is able to stop the algorithm as needed, which

then allows to mark points used for snake initialisation around the object of in-

terest. Later on, descriptive input from the selected object can be entered. This is

reflected in the generated map which now is able to display fewer features, but

still retains meaningful user input (Figures 4.12, 4.14 and 4.15).

Compared to a baseline implementation of SLAM with inverse depth

parametrisation as in Chapter 3, the active contours inclusion is observed to

smooth feature measurements. As a result this produced more stable runs, but

did not completely eradicate instabilities found in the baseline implementation.

The camera translation and quaternion orientation values can be seen in Figures

4.16 and 4.17. A conversion from the quaternion states to a more readable angle in

degrees can be seen in Figure 4.18, allowing to see hand-held rotations applied to

the camera. This also demonstrates how a pure EKF implementation falls in per-

formance compared to the approach using snakes presented in this chapter, as the

pure EKF approach does not properly estimate all pitch rotations, failing to regis-

ter the first camera up tilt and registering other yaw movements not performed.

Roll seems to follow almost the same estimates in both approaches, possibly by

the fact that observations present a discernible change in its location compared

to pitch or yaw motions.

Uncertainty behaviour for the camera states can be seen in Figures 4.19 and

4.20, which explains in part why the EKF with active contours approach performed

be�er. In these images it can be seen that whereas uncertainty increases rapidly

in the snake approach, it tends to decrease steadily until a second object is intro-

duced by the user. This creates an small peak in uncertainty and then continues to

decrease until reaching almost zero. For the EKF only approach this uncertainty

starts low, but as time progresses more uncertainty accumulates in the form of
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steps. This is caused sometimes when the camera is tilted or pitched in the oppo-

site direction, as the observations are lost without recovery forcing the algorithm

to obtain new ones.

With this it has been seen that the performance of EKF SLAM inverse depth

parametrisation, whereas still prone to stability issues, was improved thanks to

the use of active contours. This allowed to keep fewer features into the EKF and

at the same time smoothed hand-held feature observation.

4.5 Concluding Remarks

Monocular SLAM aided by active contours was presented as an alternative form to

improve performance in vision-SLAM. This novel a�empt relies on keeping fewer

but meaningful features, which are interactively selected by the user. From this

approach the following conclusions are drawn:

• Snakes are a computationally expensive tool to use, as their continuous

deformations depend on considerable amount of image processing in real-

time. GPGPU techniques alleviate greatly the image processing tasks, as

GVF is an independent operation applied over each image pixel as seen in

Section 4.2. This allows fast snake deformations, which allow for a new ap-

proach in EKF SLAM that employs snakes for tracking objects.

• Snakes heavily rely on contours with their tracking performance depending

on fast deformations. However, an image has potentially many gradients

these might distract the snake and hamper its tracking performance as seen

in Section 4.4.1. Therefore, high contrast objects are preferred to be usable

in vision-SLAM aided by active contours. However, it is worth mentioning

that in these situations the active contour yields stability in observations,

as the snake dampens erratic hand-held camera motion avoiding the loss

of observations. As a consequence uncertainty remains low compared to a

baseline inverse depth parametrisation EKF SLAM approach, since there is

no added features that increase uncertainty in the system.

• Semantics are an inherent part of interactivity, as they can be given right in

the moment of feature selection by an user as seen in Section 4.4.2. This in-
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(a)

(b)

(c)

Figure 4.11: EKF SLAM with inverse depth parametrisation aided by interactivity

through snakes, initial steps. An user is allowed to select a suitable object in order

to perform camera localisation, such as a computer screen in (a). The user does

not need to be precise in the selection of the object, as user clicks (red crosses) just

need to be around a high contrast part of the image. When given the command,

the active contour is initialised with k = 2, producing an snake that is limited to

follow lines between the control polygon points. For this example they have been

defined to a number of 4, since this would create rectangular contours that fit and

lock the screens be�er. The user then proceeds to add description and semantics

which are shown as image overlays in (b). The generated GVF forces in real-time

which keep the snake locked onto the selected object are displayed in (c).
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(a)

(b)

Figure 4.12: EKF SLAM with inverse depth parametrisation aided by interactivity

through snakes, feature map initialisation. Initialised features are mapped in (a)

with long elongated ellipses (green), as depth uncertainty is initially big and only

reduced a�er camera movements (red triangle). These features correspond to the

ones obtained from the corners of active contour shown in (b) (yellow circles).

Description and semantics are also displayed in both map and in camera image.

Numbers in (a) are not representative of any unit as the algorithm works with its

own internal units.
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(a)

(b)

Figure 4.13: EKF SLAM with inverse depth parametrisation aided by interactivity

through snakes, adding another object. The algorithm can be paused in order to

select other features. The already mapped features can still be seen in (a) with

reduced uncertainty ellipses (green) a�er camera movements (red triangle). De-

scription and semantics remain also displayed in both map and in camera image,

showing user clicks (red crosses) for the second selected object on the le� (b).

Numbers in (a) are not representative of any unit as the algorithm works with its

own internal units.
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(a)

(b)

Figure 4.14: EKF SLAM with inverse depth parametrisation aided by interactiv-

ity through snakes, initialising another object. Once a snake has been set onto a

second object it can be initialised on user request, as in some situations the snake

may need more time to fully se�le onto the silhoue�e (a). Description and se-

mantics remain in camera image in (b). This information is already stored in a

container within the algorithm, thus preserving user descriptive input in the map.



126 4.5. Concluding Remarks

(a)

(b)

Figure 4.15: EKF SLAM with inverse depth parametrisation aided by interactiv-

ity through snakes, feature reduced uncertainty. Mapped features can be seen in

(a) with low uncertainty for the first (green) and for the second (purple) objects

a�er camera several movements (red triangle). Description and semantics remain

also displayed in both map and in camera image, showing user clicks for the sec-

ond selected object (b). Numbers in (a) are not representative of any unit as the

algorithm works with its own internal units.
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EKF camera states
x (EKF + Snake)
y (EKF + Snake)
z (EKF + Snake)

x (EKF Only)
y (EKF Only)
z (EKF Only)
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Figure 4.16: EKF SLAM with inverse depth parametrisation aided by interactivity

through snakes, camera translation states. The algorithm performs a successful

execution up to approximately 300 seconds. The green bar indicates the time the

video was paused in order to select a second object, this can be considered as stop-

ping the algorithm with the camera remaining still. The performance of the EKF

approach aided by snakes is considered be�er in our test, as major displacements

only occurred in the z axis. In the EKF only approach both x and y axis show trans-

lations which were not performed. Magnitude numbers are not representative of

any unit as the algorithm works with its own internal units.
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EKF camera states
qr (EKF + Snake)
qx (EKF + Snake)
qy (EKF + Snake)
qz (EKF + Snake)
qr (EKF Only)
qx (EKF Only)
qy (EKF Only)
qz (EKF Only)
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Figure 4.17: EKF SLAM with inverse depth parametrisation aided by interactivity

through snakes, quaternion states. The algorithm performs a successful execution

up to approximately 300 seconds. The green bar indicates the time the video was

paused in order to select a second object, this can be considered as stopping the

algorithm with the camera remaining still. The EKF approach aided by snakes is

be�er considering that in the EKF only approach some of the rotations disappear

as reflected in q
x
. Magnitude numbers are not representative of any unit as the

algorithm works with its own internal units.
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Figure 4.18: EKF SLAM with inverse depth parametrisation aided by interactiv-

ity through snakes, roll pitch and yaw from quaternion states. The values of the

yaw angles follow the rotating and swinging motion used. However, pitch and

roll present be�er estimations compared to SLAM with inverse depth parametri-

sation. The green bar indicates the time the video was paused in order to select a

second object, this can be considered as stopping the algorithm with the camera

remaining still. The EKF approach aided by snakes is be�er considering that in the

EKF only approach some of the rotations disappear, as reflected the pitch which

also dri�s towards negative numbers. These values have been obtained from the

quaternion states in Figure 4.17, according to (Berner, 2008).
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Figure 4.19: EKF SLAM with inverse depth parametrisation aided by interactivity

through snakes, covariance for camera translation states. Uncertainty decreases

as motion a�ects camera image in the EKF snake aided approach, whereas with

EKF only the uncertainty increases a�er a while when the camera changes its

rotation and looses track of the current features on screen. This forces the algo-

rithm to obtain new features which also introduce uncertainty into the system.

The green bar indicates the time the video was paused in order to select a second

object, this can be considered as stopping the algorithm with the camera remain-

ing. The EKF only approach data has been accounted for this by giving a time

o�set. Covariance magnitude numbers are not representative of any unit as the

algorithm works with its own internal units.
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Figure 4.20: EKF SLAM with inverse depth parametrisation aided by interactivity

through snakes, covariance for camera quaternion states. Uncertainty decreases

as motion a�ects camera image in the EKF snake aided approach, whereas with

EKF only the uncertainty increases a�er a while when the camera changes its

rotation and looses track of the current features on screen. This forces the algo-

rithm to obtain new features which also introduce uncertainty into the system.

The green bar indicates the time the video was paused in order to select a second

object, this can be considered as stopping the algorithm with the camera remain-

ing still. The EKF only approach data has been accounted for this by giving a time

o�set. Covariance magnitude numbers are not representative of any unit as the

algorithm works with its own internal units.
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formation can be displayed by means of colours or messages onto a monitor,

and also can be interpreted by the robot or by other users in collaborative en-

vironments. This information is an improvement in map generation, which

deviates from many other methodologies based on dense representations.

• Also important is active contour evolution, since snakes can become entan-

gled and its tracking performance might be a�ected. The snake evolution

seen in Section 4.3.3 o�ered stable active contour deformations, thanks to

its dependency of the tangential term which keeps the snake steady, even

a�er fast deformations caused by image and object changes due to camera

motion.

Overall this chapter demonstrated the concept of interactivity within SLAM

by means of active contours and user input, which then would track simple high

contrast objects. However, the same EKF performance limitations seen in Section

3.4.2 are inherited. Despite this, stability improvements were seen by keeping

fewer but meaningful features compared to a baseline implementation of SLAM

with inverse depth parametrisation. Most importantly for this thesis was to in-

troduce a new branch within SLAM, which focuses on pursuing interactivity with

added benefits to localisation and mapping.

Alternatives were sought to overcome the caveats in these implementations,

particularly focusing on the stability issues as longer runs would be preferred for

SLAM. As such, a potential solution required to find an estimator that bypassed

linearisation whilst also avoiding the need of complex matrix operations. This is

as both of these introduce noise in the system, whilst also presenting numerical

issues for the la�er in the EKF update step as it requires a matrix inversion.

An algorithm presenting these properties goes by the name of particle filter-

ing, which compared to EKF relies on particles representing a hypothesis (e.g. a

possible camera pose). Therefore, next chapter explores this estimation technique,

whilst trying to find a way of including interactivity for mapping and localisation

purposes.



Chapter 5

SLAM Interactivity Through
Particle Filtering

Chapter 4 introduced interactivity into SLAM, by means of using a powerful user

assisted tool such as GVF guided active contours. The main challenge for this

approach was fast execution, as GVF is a computationally intensive algorithm

and hence the GPGPU technologies were explored for fast snake deformations.

However, this still shared some caveats with a baseline implementation of

monocular SLAM using inverse depth parametrisation. Being the case that an EKF

is used within the algorithm, this means that linearisation and complex matrix

operations are involved which introduce uncertainty in the system. This becomes

exacerbated when feature predictions are made but its corresponding observa-

tions are not found in the image, which causes the algorithm to obtain a new set

of features whose new uncertainty is also added. This is mainly due to direction

changes, particularly in yaw or pitch opposite camera rotations as seen in Section

4.4.2. Therefore, it can be concluded that using an EKF for vision-SLAM might not

be the best approach for interactivity.

As such, this chapter presents another form of user interaction within vision-

SLAM, taking a di�erent approach in feature and camera estimation. This re-

lies instead on a particle filtering estimator which has the advantage of avoiding

linearisation, as observations are taken “as-is” based on several di�erent camera

position hypotheses. These receive an score based on how well they match an

observation, i.e. the hypotheses represent a prediction of the camera pose which
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is expected to match an observation. Based on how well a hypothesis is matched

it receives an score or weight, allowing for more particles to be replicated with

slight variations for the next cycle.

Whereas there are other approaches that already employ particle filtering for

SLAM (Montemerlo and Thrun, 2003, Elinas et al., 2006, Tomono, 2007, Silveira Vi-

dal et al., 2015), the novelty in this chapter is for interactivity to influence particle

weighting. This is done once again thanks to user intervention, which now is

able to select lines that describe an object within the image. Observations take

the form of pixels depicting an expected line, which then can be used for particle

weighting.

In order to perform the weighting a novel approach involving the Hough trans-

form is used, which is adapted to count the pixels that form a line. This is as the

transform in its original implementation depends of a voting mechanism and an

accumulator, from which many lines can be detected using pixels from gradients.

However, this voting is prone to add invalid votes as it might include pixels gen-

erated from noise. Therefore the algorithm is adapted to count votes from lines

with no discontinuities. Once line selection has been performed the user main-

tains control of line parameters, including its three dimensional positioning. This

is as changes in perspective caused by camera motion will make initial user se-

lection to fail matching, therefore the lines can be further on fi�ed to improve

matching in the object of interest.

Section 5.1 provides a brief overview of the particle filter algorithm, beginning

with Monte Carlo approximations in Section 5.1.2. Later on resampling is explored

in Section 5.1.3. These include the general equations, which can be used as an ini-

tial framework for particle filtering, allowing to use di�erent kinds of observations

to estimate non-linear systems.

Next, Section 5.2 discusses the Hough transform and its importance in obtain-

ing lines. Discussing first its equations in Section 5.2.1 and later on its accumulator

in Section 5.2.2.

Once a method for detecting prominent lines has been devised, novel ways

to implement them into the particle filtering weighting is sought in Section 5.3,

exploring both a simple approach in Section 5.3.1 as well as a new and improved

approach which yields be�er prominent line detection in Section 5.3.2. This is

complemented with interactive adjustments made over the lines as initial guesses

in depth become erroneous a�er camera motion in Section 5.3.3.
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Later on feature initialisation and results are shown in Section 5.4 for a novel

interactive SLAM implementation involving particle filtering, as well as an im-

proved and adapted Hough line detection. Finally, the concluding remarks for

this chapter are presented in Section 5.5.

5.1 Monte Carlo Approximations

Monte Carlo approximations are useful when estimating systems with many vari-

ables. They are o�en employed when other methods prove to be inadequate, such

as when linearisation techniques do not yield a confident enough estimate in non-

linear systems. Camera localisation alone in Vision-SLAM already has many of

these properties, e.g. it possesses 3 translation and 4 quaternion orientation vari-

ables together with its non-linear motion model, thus the complexity of its EKF

implementation in Chapter 3.

EKF is based on Bayesian inference which is an approach in which prior infor-

mation p(x) is conditioned with observations z1, · · · , zT, yielding a posterior of

x which is p(x|z
1:T

) (Johnson, 2010). This is later on approximated to a Gaussian

distribution with mean m and covariance P or N(x|m,P) as shown in Section 3.1.1.

This formulation can also be rewri�en in order to obtain the expectations from a

posterior distribution (Särkkä, 2013):

E[g(x)|z
1:T

] =

∫
g(x)p(x|z

1:T
)dx (5.1)

where g : Rn −→ Rn
is an arbitrary function. However, this integral can be

evaluated only on special cases and o�en not analytically. Note, however, that

there is an equivalence to p(x|z
1:T

) which will be seen later.

Therefore, Monte Carlo approximations are tools that allow to compute the

expectation integral in Equation (5.1) by using a total of 1 to N samples x(i) from

the distribution and then obtaining estimates based on averaging (Särkkä et al.,
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n.d., Särkkä, 2013):

i = 1, · · · , N

x(i) ∼ p(x|z
1:T

) (5.2)

E[g(x)|z
1:T

] ≈ 1

N

∑
i

g(x(i)) (5.3)

which is guaranteed to converge by the central limit theorem (Lapeyre, 2007,

Särkkä, 2013). One of the main advantages of this method is that its error term

defined as

ε
N
= E[g(x)|z

1:T
] –

1

N

∑
i

g(x(i))

is invariant with respect to the dimensions of x. This makes it superior to many

other methods where x has multiple dimensions, including the EKF used in Chap-

ters 3 and 4 which considers a system with growing dimensionality per feature

acquired as well as camera location in Equation (3.74).

Therefore, The following subsections proceed to understand the inner work-

ings in Monte Carlo methods and sampling techniques, allowing to adapt particle

filtering to an interactive SLAM approach using lines.

5.1.1 Importance Sampling for obtaining Particles

A distribution p(x|z
1:T

) sometimes does not allow for a straightforward way to

obtain samples as in Equation (5.2). This is as p(x|z
1:T

) might contain regions

that possess very small values or might be a tail within the distribution, as a con-

sequence samples x(i) might fail lie in these regions with low values. Therefore,

sampling in this situation can deliver an incorrect Monte Carlo approximation.

In these situations an importance distribution π(x|z
1:T

) can be used, allowing

to sample from it and thus overweighting or giving importance to a region pre-

senting these low values:

i = 1, · · · , N

x(i) ∼ π(x|z
1:T

) (5.4)
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This needs to be accounted for in Equation (5.1), by adding and removing the

importance distribution within the integral as follows:

E[g(x)|z
1:T

] =

∫
g(x)p(x|z

1:T
)dx

=

∫ [
g(x)p(x|z

1:T
)

π(x|z
1:T

)

]
π(x|z

1:T
)dx

The estimates can be obtained through averaging as in Equation (5.3), but now

this also accounts for the importance distribution:

E[g(x)|z
1:T

] ≈ 1

N

∑
i

[
p(x(i)|z

1:T
)

π(x(i)|z
1:T

)

]
g(x(i)) (5.5)

≈
∑
i

w̃
(i)g(x(i))

w̃
(i)

=

1

N

p(x(i)|z
1:T

)

π(x(i)|z
1:T

)

(5.6)

Nonetheless, as Equation (5.4) is not the original distribution in Equation (5.2), the

former has to have an associated weight for correction as given by Equation (5.6).

All of this so far assumes that the samples from a posterior can be directly

evaluated, i.e. p(x(i)|z
1:T

). When this is not possible Bayes’ rule can be used, which

allows to rewrite the sampling of a posterior as follows:

p(x(i)|z
1:T

) =

p(z
1:T
|x(i))p(x(i))∫

p(z
1:T
|x)p(x)dx

(5.7)

The numerator in Equation (5.7) can o�en be evaluated directly, but the normal-

isation constant (the denominator) cannot. However, importance sampling can

still be applied a�er using Bayes’ rule. First, p(x|z
1:T

) in Equation (5.1) is put into

this form:

E[g(x)|z
1:T

] =

∫
g(x)p(x|z

1:T
)dx

=

∫
g(x)p(z

1:T
|x)p(x)dx∫

p(z
1:T
|x)p(x)dx

Then importance sampling can be applied to both the numerator and denomina-
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tor:

E[g(x)|z
1:T

] =

∫ [p(z
1:T
|x)p(x)

π(x|z
1:T

)

g(x)
]
π(x|z

1:T
)dx

∫ [p(z
1:T
|x)p(x)

π(x|z
1:T

)

]
π(x|z

1:T
)dx

Which can now be approximated using averaging as in Equation (5.5):

E[g(x)|z
1:T

] ≈

1

N

∑
N

i=1

p(z
1:T
|x(i))p(x(i))

π(x(i)|z
1:T

)

g(x(i))

1

N

∑
N

j=1

p(z
1:T
|x(j))p(x(j))

π(x(j)|z
1:T

)

=

N∑
i=1


p(z

1:T
|x(i))p(x(i))

π(x(i)|z
1:T

)∑
N

j=1

p(z
1:T
|x(j))p(x(j))

π(x(j)|z
1:T

)

g(x(i)) (5.8)

w
(i)

=

p(z
1:T
|x(i))p(x(i))

π(x(i)|z
1:T

)∑
N

j=1

p(z
1:T
|x(j))p(x(j))

π(x(j)|z
1:T

)

(5.9)

where the denominator in Equation (5.9) can be seen as a cumulative sum of the

numerator, thus e�ectively normalising Equation (5.8).

This method of importance sampling considers all measurements and states,

which might be detrimental in some scenarios. Therefore, the next section im-

proves over this approach by adapting it to a recursive implementation, allowing

to consider only information obtained from the previous cycle.

5.1.2 Sequential Importance Sampling

Section 5.1 considered a case where the sampling could contain all the observa-

tions from 1 to T. In some cases this might be a problem, e.g. when there is limited

computational resources. However, Sequential Importance Sampling (SIS) can be
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used for distributions of the form:

x
k
∼ p(x

k
|x
k–1

)

z
k
∼ p(z

k
|x
k
)

where x
k
∈ Rn

is the state and z
k
∈ Rm

are the observations at time step k.

Therefore, the approximation of the arbitrary function g(·) is performed at each

step k using weights w
(i)

k
and particles x(i)

k
:

i = 1, · · · , N

E[g(x
k
)|z

1:k
] ≈

∑
i

w
(i)

k
g(x(i)

k
) (5.10)

It is possible to obtain recursion for Equation (5.10) by using an equivalence to

a posterior probability density approximation
∗
p(x

0:k
|z
1:k

) (Särkkä, 2013):

E[g(x
k
)|z

1:k
] ≈

∑
i

w
(i)

k
g(x(i)

k
)

p(x
0:k
|z
1:k

) ≈
∑
i

w
(i)

k
δ(x

k
– x(i)

k
) (5.11)

Therefore, the Bayes’ rule can be used to rewrite p(x
0:k
|z
1:k

):

p(x
0:k
|z
1:k

) =

p(z
1:k
|x
0:k

)p(x
0:k

)

p(z
1:k

)

Bayes’ rule

=

p(z
k
|z
1:k–1

, x
0:k

)p(z
1:k–1
|x
0:k

)p(x
k
|x
0:k–1

)p(x
0:k–1

)

p(z
k
|z
1:k–1

)p(z
1:k–1

)

(5.12)

Equation (5.12) can be simplified by applying Bayes’ rule again, considering

the likelihood p(z
1:k–1
|x
0:k

) and using Markov properties. This is as the last state

in x
0:k

will have no e�ect on the observations z
1:k–1

:

p(x
0:k–1
|z
1:k–1

) =

p(z
1:k–1
|x
0:k

)p(x
0:k–1

)

p(z
1:k–1

)

=

p(z
1:k–1
|x
0:k–1

)p(x
0:k–1

)

p(z
1:k–1

)

∗
Note that the argument x

0:k
is in the discrete domain, but for purposes of this demonstration

this notation is not needed and thus le� away (Süzen, 2014).
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Therefore, the terms in Equation (5.12) are rearranged allowing to simplify:

p(x
0:k
|z
1:k

) =

p(z
k
|z
1:k–1

, x
0:k

)p(x
k
|x
0:k–1

)p(z
1:k–1
|x
0:k

)p(x
0:k–1

)

p(z
k
|z
1:k–1

)p(z
1:k–1

)

=

p(z
k
|z
1:k–1

, x
0:k

)p(x
k
|x
0:k–1

)p(x
0:k–1
|z
1:k–1

)

p(z
k
|z
1:k–1

)

(5.13)

Finally, under Markov assumptions the state x
k

only depends on x
k–1

and the

observations z are independent between themselves in Equation (5.13). Therefore:

p(x
0:k
|z
1:k

) =

p(z
k
|x
k
)p(x

k
|x
k–1

)p(x
0:k–1
|z
1:k–1

)

p(z
k
)

A proportional approximation can be obtained if the normalisation term is re-

moved:

p(x
0:k
|z
1:k

) ∝ p(z
k
|x
k
)p(x

k
|x
k–1

)p(x
0:k–1
|z
1:k–1

) (5.14)

Taking a similar approach to Equation (5.6), it is possible to sample from an

importance distribution x(i)
0:k
∼ π(x

0:k
|z
1:k

), which together with Equation (5.14)

gives the importance weights:

w
(i)

k
∝

p(z
k
|x(i)
k
)p(x(i)

k
|x(i)
k–1

)p(x(i)
0:k–1
|z
1:k–1

)

π(x(i)
0:k
|z
1:k

)

Then the importance distribution can be decomposed as:

π(x
0:k
|z
1:k

) = π(x
k
|x
0:k–1

, z
1:k

)π(x
0:k–1
|z
1:k–1

)

which leads to:

w
(i)

k
∝

p(z
k
|x(i)
k
)p(x(i)

k
|x(i)
k–1

)p(x(i)
0:k–1
|z
1:k–1

)

π(x(i)
k
|x(i)
0:k–1

, z
1:k

)π(x(i)
0:k–1
|z
1:k–1

)

(5.15)

However, the last terms in numerator and denominator demonstrate to be the
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weight at the previous step, i.e. w
(i)

k–1
:

w
(i)

k–1
=

p(x(i)
0:k–1
|z
1:k–1

)

π(x(i)
0:k–1
|z
1:k–1

)

Therefore, Equation (5.15) becomes:

w
(i)

k
∝

p(z
k
|x(i)
k
)p(x(i)

k
|x(i)
k–1

)

π(x(i)
k
|x(i)
0:k–1

, z
1:k

)

w
(i)

k–1
(5.16)

Given Equation (5.16), an interesting result can be obtained if the importance

function is arbitrarily selected as the dynamic model, i.e. π(x
k
|x
0:k–1

, z
1:k

) =

p(x
k
|x
k–1

):

w
(i)

k
∝

p(z
k
|x(i)
k
)p(x(i)

k
|x(i)
k–1

)

p(x(i)
k
|x(i)
k–1

)

w
(i)

k–1

Finally, simplifying terms:

w
(i)

k
∝ p(z

k
|x(i)
k
)w

(i)

k–1
(5.17)

These weights now can be used to obtain E[g(x
k
)|z

1:k
] in Equation (5.10) or its

equivalent p(x
0:k
|z
1:k

) in Equation (5.11) , noting that only the measurement z
k

is needed compared to z
1:T

in Equation (5.9). However, using the dynamic model

p(x
k
|x
k–1

) might require a high number of samples for proper estimation (Särkkä,

2013).

In this recursive form the algorithm is prone to particle degeneracy. This

means that eventually the weights will be too small or close to zero, rendering

this approach unusable. In the next section some improvements are explored over

this implementation are made to mitigate this negative e�ect.

5.1.3 Resampling and the Bootstrap Filter

Particle degeneracy is solved through resampling. This allows to discard particles

with low weight associated to them, whilst replicating higher weighted particles.



142 5.1. Monte Carlo Approximations

There are di�erent ways to perform this technique, with examples including multi-

nomial, systematic and residual systematic resampling (Sileshi et al., 2013a). Both

multinomial and systematic resampling are considered here as they are related.

This is because while other approaches may o�er be�er performance, research

shows that the gains from other resampling techniques might not be that big

whereas their implementation increases in complexity (Douc and Cappé, 2005,

Hol et al., 2006).

A commonly found implementation of multinomial resampling is known as

Ripley’s method, which if programmed in su�iciently low level is considered really

fast. Nevertheless, an improved version that avoids programming loops can also

be used to increase performance (Gustafsson, 2010).

A multinomial resampling can therefore be obtained in the following way: first

the summation of all the weights is calculated from Equation (5.17):

i = 1, · · · , N

s
i
=

∑
i

w
(i)

k

then the weights are normalised, so that all of them sum to 1:

w
(i)

kn

=

w
(i)

k

s
i

,

∑
i

w
(i)

kn

= 1

Subsequently an array is created, containing both the weight indices and nor-

malised summed values:[
1 2 · · · N – 1 N

w
(1)

k
w
(1)

k
+ w

(2)

k
· · · w

(1)

k
+ w

(2)

k
+ · · · + w(N–1)

k
w
(1)

k
+ w

(2)

k
+ · · · + w(N–1)

k
+ w

(N)

k

]

=

[
1 2 · · · N – 1 N

w
(1)

k
w
(1)

k
+ w

(2)

k
· · · w

(1)

k
+ w

(2)

k
+ · · · + w(N–1)

k
1

]
(5.18)

Another array is created similar to Equation (5.18) with indices going fromN+1

to M, where M is the desired number of resampled particles. However, the main

di�erence lies in which the weights values for this array are randomly obtained
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0 1

wk
1 wk

1+wk
2 ... wk

1+wk
2+...+wk

N-1+wk
N

u1 u2
... uM

Replication Times 1 2 4

Figure 5.1: Particle resampling. The blue circles represent the normalised weight

array in Equation (5.18), whereas the red circles represent the weights obtained

by an uniform distribution u ∼ U(0, 1) in Equation (5.19) or by using a predefined

number u1 ∼ U(0, 1) in Equation (5.20). A�er concatenation and ordering of their

indexes, the red circles (weights from polynomial or systematic resampling) will

fall in between the blue circles (particle weights). Resampling of the immediate

particle represented by a blue circle depends on the number of red circles in be-

tween itself and the previous particle. Note that any particle that does not have

any red circles preceding it is simply discarded.

from a uniform distribution which ranges from 0 to 1, i.e. u ∼ U(0, 1):[
N + 1 N + 2 · · · N +M – 1 N + M

u1 ∼ U(0, 1) u2 ∼ U(0, 1) · · · u
M–1
∼ U(0, 1) u

M
∼ U(0, 1)

]
(5.19)

Next both Equations (5.18) and (5.19) are concatenated and sorted according to

their weight index number. A�er the concatenation and ordering of the entire

resulting array according to their weight, there will be indices greater than N (up

to M) which are in between the indices below or equal than N. Therefore, when

there are two weights values with indices below or equal than N whose distance

between themselves is big, there will be more weight values falling in between

these which possess indices greater than N (up to M).

The remaining step is to count how many indices greater than N (up to M)

are in between the ones lower than N, which will indicate how many times to

resample a particle. The resampled particles will be the ones with immediate next

index lower or equal to N, which will be replicated as many times as the count of

the indices greater than N (up to M) in between as illustrated in Figure 5.1.

It is worth mentioning that the resampled particles M can vary or remain con-

stant in Equation (5.19). In both cases the weights of the resampled particles are
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reset, with each particle taking a new weight value of

1

M

. The bootstrap filter

takes Equation (5.17) and uses the multinomial resampling each cycle, allowing

for an straight forward implementation (Gong et al., 2012, Särkkä, 2013).

Multinomial resampling presents itself as one of the easiest methods to im-

plement. However, at the same time it allows for slight tweaks in it to produce

systematic resampling which in turn increases its performance (Douc and Cappé,

2005, Hol et al., 2006, Sileshi et al., 2013b). Therefore, instead of obtaining weight

values from an uniform distribution u ∼ U(0, 1) as in multinomial resampling, only

a random number u1 ∼ U(0, 1) is obtained from a similar distribution for system-

atic resampling. Later on this number u1 and the indices M are used, replacing

the weight values in Equation (5.19):N + 1 N + 2 · · · N +M – 1 N + M

u1 u1 +

1

M

· · · u1 +

M – 2

M

u1 +

M – 1

M

 (5.20)

with the rest of the process remaining almost the same as the multinomial ap-

proach, which now concatenates (5.18) and (5.20). Sorting is performed and in its

resulting array the indices greater than N (up to M) are detected and counted,

resampling its corresponding particle as in Figure 5.1.

All of this leads to the bootstrap filter, also known as the particle filter algo-

rithm, which a�er defining a total number of N particles can be summarised as

follows:

• In the beginning of each time step or iteration k, the weights w
(i)

k
are all

initialised with a value of 1/N.

• The particles x(i)
k

are generated according to p(x
k
|x
k–1

). For the purposes of

camera localisation, each particle x(i)
k

is generated from a previous particle

x(i)
k–1

which has been perturbed by short linear and angular displacements.

These di�er in magnitude as they are caused by randomly generated veloc-

ities multiplied by a short time interval.

• For each particle x(i)
k

its weight w
(i)

k
is obtained following Equation (5.17),

which uses the likelihood p(z
k
|x
k
).

• Resampling is performed, adding all the weights w
(i)

k
and then normalising

them so that their total sum is equal to 1. A�erwards the array in Equation
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(5.18) is formed together with the array from Equation (5.20). This allows to

perform systematic resampling as in Figure 5.1 a�er reordering terms using

the weight values. This marks also the start of a new cycle.

So far information pertaining particle filtering has been gathered here, as an

introduction to this estimation technique. Remarked importance is given to two

main concepts: weighting and the likelihood p(z
k
|x
k
). This is as the two of them

can be linked and related to user input, thanks to the flexibility in hypothesis

generation for particle filtering. Therefore, a method that allows to obtain both

particle weights and include interaction with features is explored. This method is

able to extract lines from images, serving also as hypothesis to which weights can

be assigned.

5.2 The Hough Transform

Edge extraction from images has huge interest in image processing, since they

are o�en found in man made structures whilst possessing good distinction from

other characteristics in objects. As such, an automated line detection algorithm

is preferred capable of discerning points that belong to an edge or a line avoiding

image noise.

A known algorithm within vision for extracting lines is the Hough transform,

which can also be considered as a hypothesis testing methodology. Hence, it al-

lows to discern from lines based on the votes given by edges on the image. This

algorithm takes votes into a two dimensional accumulator, in which each bin tells

how much an hypothesis of a line is supported (Herout et al., 2013). This vot-

ing concept conveniently presents similarities with weighting in particle filtering,

thus allowing to use this idea in line detection and for estimation purposes.

There are other methods for detecting lines, such as PCLines (Dubská et al.,

2011, Markéta, 2011). However, they still make use of an accumulator and votes as

well of a threshold or clipping plane to detect lines. This is done in order to filter

stray lines from those that are prominent (enough votes). However, the Hough

transform is a well understood method for detecting lines allowing for an easier

implementation. Therefore, the next sections explore the Hough transform equa-

tions and their application into an user enabled SLAM approach using particle
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filtering.

5.2.1 Hough Lines

The principle of the Hough transform starts by considering pixels in an image

depicting a line or edge. Later on, voting is performed in which the pixels from

this line will cast votes over a particular Hough accumulator bin. The bins rep-

resent all the possible lines within the image and the amount of votes dictates

how many pixels are part of the line. The line represented by the accumulator bin

is described in Hough terms, which represent a line that transverses the entire

image, overlaying all the pixels that were part of the votes in this particular bin.

The Hough transform formula is then defined as follows:

x
H
cos θ

H
+ y

H
sin θ

H
= ρ

H
(5.21)

where θ
H

is the angle formed from the x-axis towards a line from the centre

(0
H
, 0

H
) in the direction of a point (x

H
, y

H
) which is perpendicular to the line that

needs to be described, whilst ρ
H

is the Euclidean distance from the centre (0
H
, 0

H
)

towards the same point (x
H
, y

H
) (Figure 5.2).

In order to introduce interactivity in this process an user can be allowed to

overlay a line over the edge of an object, by selecting the start and end locations

within the image. However, Equation (5.21) cannot be directly used as the param-

eters ρ
H

and θ
H

need to be obtained according to the line generated through the

two user selected points.

Therefore, the following example is considered to obtain a Hough transform

with two user selected points p1
H

and p2
H

. These points are extracted from an

image that has been corrected from lens deformations as in Section 3.2.2. An

o�set is later applied to the absolute coordinates hux
and huy

described by the

user points, being half of the total horizontal and vertical resolution respectively

(Figure 5.3):

x
H
= hux

–

Horizontal Image Resolution

2

y
H
= huy

–

Vertical Image Resolution

2

(5.22)
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(0,0), Non-centred origin

(0 ,0 ), Centred originH H

(Maximum horizontal image resolution, 0)

(0, Maximum vertical image resolution)

p (x , y )H H H

θH

ρH

Figure 5.2: Hough transform parameters. In this approach a magnitude ρ
H

and

an angle θ
H

mark a point p
H

. The line represented by the Hough transform is

perpendicular to the point p
H

. Assuming that these parameters contain a value,

only a single line perpendicular to the obtained point p
H

can be described within

the image.

Once the coordinates x
H

and y
H

have been defined for both of the points p1
H

and p2
H

, a line can be obtained in terms of the Hough transform. The idea of this

is to find a common angle θ
H

by assuming an equal distance ρ
H

, using Equation

(5.21) for each of the two points p1
H

and p2
H

each one with coordinates (x1
H
, y1

H
)

and (x2
H
, y2

H
) respectively:

x1
H
cos θ

H
+ y1

H
sin θ

H
= ρ

H
First point (5.23)

x2
H
cos θ

H
+ y2

H
sin θ

H
= ρ

H
Second point (5.24)

As ρ
H

is assumed the same the expressions become equal to each other:

x1
H
cos θ

H
+ y1

H
sin θ

H
= x2

H
cos θ

H
+ y2

H
sin θ

H

(x1
H
– x2

H
) cos θ

H
= –(y1

H
– y2

H
) sin θ

H

Therefore, solving for θ
H

will yield a common angle between the two points:

θ
H
= arctan

(
–x1

H
– x2

H

y1
H
– y2

H

)
(5.25)

Finally, the obtained θ
H

can be used in any of Equations (5.23) or (5.24) to yield a
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(0,0), Non-centred origin

(0 ,0 ), Centred originH H

(Maximum horizontal image resolution, 0)

(0, Maximum vertical image resolution)

p1 (x1 , y1 )H H H

p2 (x2 , y2 )H H H

Figure 5.3: Two points with centred coordinates. Both p1
H

and p2
H

are points

referenced to the centre of the image, which are obtained by substracting half of

the horizontal and vertical image resolution to the user selected point coordinates

hux
and huy

respectively. This e�ectively changes their zero reference from the

upper le� corner of the image towards its centre.

common ρ
H

for the two points. The representation of the Hough imaginary line

passing through the points p1
H

and p2
H

can be seen in Figure 5.4.

From the previous example it can be inferred that many lines are generated

when considering an image containing many objects, as only two points or pixels

are required to generate a line. Therefore, the next section explores the Hough

accumulator as it allows to discern prominent lines within an image.

5.2.2 The Hough Accumulator

The Hough transform can make use of a binary image obtained as in Section 4.1.2,

allowing to detect predominant lines by means of voting. The votes are stored

in bins, each one representing a particular combination of ρ
H

and θ
H

. All these

combinations and their respective bins form the Hough accumulator.

For example, the x-axis of the accumulator represents ρ
H

, which can go in a

negative distance from the centre to the upper le� corner of the image, and in

positive distance from the centre to the lower right corner of the image; the y-axis

of the accumulator represents θ
H

which goes from zero to 180 degrees
∗
.

∗
For performance reasons this is usually from 0 to 180 degrees, but it can also be from 0 to 360
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θH

ρH

(0,0), Non-centred origin

(0 ,0 ), Centred originH H

(Maximum horizontal image resolution, 0)

(0, Maximum vertical image resolution)

p1 (x1 , y1 )H H H

p2 (x2 , y2 )H H H

Figure 5.4: Hough transform for two points. A line (blue) described in Hough

terms travels across two defined points p1
H

and p2
H

. This is done by finding

a common angle θ
H

and distance ρ
H

for the two points using Equation (5.21),

e.g. using Equations (5.23) and (5.24), with both θ
H

and ρ
H

becoming the Hough

representation of the line.

An advantage of using an accumulator is that predominant lines can also be

extracted by se�ing a minimum vote threshold. This would filter stray lines pro-

duced by pixels sca�ered across the image, yielding only lines whose ρ
H

and θ
H

combinations exceed a number of votes as shown in Figure 5.5.

However, this voting might be considered a moderately heavy computation

for a CPU depending on image size. This is because the distance from the image

centre is computed for each pixel, by varying each step from 0 to 180 degrees in

θ
H

from Equation (5.21).

Nevertheless, the inherent individual pixel operations of the Hough Transform

allow for GPGPU implementation in a similar fashion to GVF as follows: First, a

binary image is obtained from the source video feed as in Section 4.1.2, then the

distortion produced by the lens across the whole image is removed. This is done

in order to obtain straight lines, using an inverse mapping method
∗

as proposed

in (�reshi, 2011). Finally, for each one of the pixels of the binary image proceed

to obtain votes through the variation of θ
H

.

degrees with ρH being completely positive over the x-axis in the accumulator, i.e. from 0 to the

top corner of the image in distance. Note however that if the former case is used, the sign of ρH
might need to be changed, also an o�set must be added to θH.

∗
This is how Civera’s code was found to have inverted distorted to undistorted steps (http:

//openslam.org/ ).

http://openslam.org/
http://openslam.org/
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(a)

(b)

(c)

Figure 5.5: Hough transform (pixel threshold 150). A Hough transform is applied

to (a), which then produces the Hough accumulator in (b). The la�er shows in

white the bins that contain votes from those pixels whose intensity is above 150,

with the brighter parts containing the most votes. Any other pixels falling below

the intensity threshold are discarded in the voting. Note that the height of the

accumulator represents θ
H

which goes from zero to 180 degrees, hence the sinu-

soidal shaped lines. The lines generated from the combinations of ρ
H

and θ
H

in

the accumulator (b) are further filtered, so that only those which their number of

votes exceed 50 are shown in (c).
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This follows the OpenCL Hough transform implementation which goes

through all the pixels in a binary image as follows (Konrad, 2014): if the inten-

sity is above zero the pixel belongs to a gradient and thus possibly to a line. If

the pixel belongs to a gradient an o�set is given to its coordinates using Equation

(5.22), which change its reference from the upper le� part of the image towards

the centre. Vote casting is then performed by taking these new coordinates in

Equation (5.21), then varying θ
H

from 0 to 180 with step increments of 1. The

accumulator is increased by 1 vote for each ρ
H

obtained with the current θ
H

step.

However, at the same time it is mentioned that for this implementation small

values of ρ
H

were filtered to avoid straight lines in the image centre (Konrad,

2014). Using the proposed code revealed a vertical black bar in the middle part

of the Hough accumulator, with the width of the bar varying according to the

threshold in small values of ρ
H

. This was solved by using a float data type instead

of an integer one for the values of ρ
H

and rounding a�erwards, which produces

an accumulator similar to that of Figure 5.5b.

Now that a fast implementation of the Hough transform is obtained, the re-

sulting information from its accumulator can be used for estimation purposes.

Therefore, the next section explores how to use the obtained votes describing com-

binations of ρ
H

and θ
H

in particle filtering, which then represent lines over the

image.

5.3 Coupling the Hough Transform with the Par-
ticle Filter

The Hough transform discussed in Section 5.2.1 allows to extract lines from an

image, by means of storing votes in an accumulator. Previous to this Section 5.1.3

described a recursive implementation of particle filtering. This estimator is able

to rely on a likelihood, particle (hypothesis) weights and resampling in order to

continuously yield estimates. Therefore, similarities between Hough transform

voting and particle weighting begin to arise. This is as votes can be considered

a form of weighting, which can be used on hypothesis that consist of lines. This

section looks into this relationship, unifying these two concepts in order to a�ain

camera position estimation through image lines.
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One of the main ideas in this research was inspired by real-time camera track-

ing using a particle filter (Pupilli and Calway, 2005). In this investigation par-

ticles represent di�erent camera positions, using local image patches which are

expected to be found within a sequence of images. These patches are used to

build a likelihood allowing to cast votes, which then find their way into weight-

ing. A hypothesis or particle of the camera position is most likely when there is

a successful patch correlation between the stored image templates and the ob-

served patches; it is also less likely when the correlation fails in some or all of the

templates.

Using image templates for correlation with observed patches suggests great

flexibility in selecting a likelihood for the camera position, as other voting meth-

ods besides template correlation can be used as long as they allow for weighting.

Therefore, the Hough transform o�ers an alternative as its accumulator is already

a voting mechanism for lines detected over an image.

However, a full Hough transform of an image would not be of much use, as an

image can deliver many gradients in di�erent parts of it. These are not necessarily

congregated over an object and as a result, the Hough accumulator contains votes

that are not part of edges but from sca�ered pixels across the image. As a result

the following sections consider di�erent ways to use the Hough Transform with

an user approach, in a way to provide weighting for particle filtering.

5.3.1 Simple Hough Likelihood

A first simple approach for a Hough likelihood might involve selecting a threshold

for pixel intensity in the Hough transform. This assumes that the most prominent

lines will possess gradients whose pixels have high values of intensity (Figure 5.6).

However, repetitive line detection might be a�ected by motion blur, as the inten-

sity of pixels in edges decrease in value due to image blurriness.

In order to avoid a strong pixel intensity threshold, another approach is to limit

the region surrounding a feature. This might be selected by the user through the

coordinates (x1Region
, y

1Region

) and (x2Region
, y

2Region

), forming a rectangular region

surrounding an object of interest. From there the image can be cropped and later

its Hough transform can be obtained, or the region coordinates can be directly
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(a)

(b)

(c)

Figure 5.6: Hough transform (pixel threshold 200). A Hough transform is applied

to (a), which then produces the Hough accumulator in (b). The la�er shows in

white the bins that contain votes from those pixels whose intensity is above of

200, with the brighter parts containing the most votes. Any other pixels falling

below the intensity threshold are discarded in the voting. Note that the height

of the accumulator represents θ
H

which goes from zero to 180 degrees, hence the

sinusoidal shaped lines. The lines generated from the combinations of ρ
H

and θ
H

in the accumulator (b) are further filtered, so that only those which their number

of votes exceed 50 are shown in (c). Compared to Figure 5.5 the amount of lines is

reduced, as shown by the accumulator in (b) and the obtained lines in (c).
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given as parameters in a Hough transform GPGPU implementation, allowing to

skip any operation outside of the given region.

However, limiting a region does not ensure that only predominant lines will

be found. This is because the selected object of interest does not always possess

a texture-less surface, with only a handful of well defined gradients in it.

Interactivity allows an user to set a prior by selecting particular lines within

the object. By choosing two points describing an object’s line from beginning to

end. Given two points selected by the user, Equations (5.25) and (5.21) can be

used to obtain the Hough transform parameters ρ
H

and θ
H

representing a line

that crosses them. These two parameters are used to create a reduced search of

θ
H

and ρ
H

, allowing to select upper and lower thresholds in both variables (Figure

5.7). The extracted lines would be limited to only those resembling the previously

given information, as only one combination of θ
H

and ρ
H

will result with the most

votes in the accumulator. Given these restrictions the line selected by the user is

assumed to be the most voted for.

Despite these limitations the results can still be improved. This is because even

with user defined θ
H

and ρ
H

values, it is possible that these cover the entire image,

taking data from gradients that are not those of the predominant lines. This also

includes intersections with other predominant lines as shown in Figure 5.7c.

It was then decided to make the algorithm more robust, depending on the

continuous length of the detected line. This is akin to drawing a line but instead

it is tested for any discontinuities in it, allowing to select a good candidate which

exceeds a selected threshold describing its minimal length. This algorithm is pre-

sented as an innovation, since its resilience to stray lines presents good results

and it is a completely deterministic approach aided by GPGPU.

5.3.2 Hough-Bresenham Algorithm

The line generation algorithm of Bresenham is widely known in computer graph-

ics, as it allows to trace lines in an integer la�ice, e.g. a computer monitor with

pixels. In this section it is used as a tool for detecting good line candidates as im-

ages themselves are also la�ices, including also binary representations that depict

only contours.
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(a)

(b)

(c)

Figure 5.7: Hough transform with limited θ
H

and ρ
H

accumulator values based

on a user prior, which is seen as the green lines in (a). Any other pixels below

the given intensity threshold, as well as those outside of θ
H

and ρ
H

ranges are

not included in the voting, hence the squares in the Hough accumulator in (b). (c)

shows all the lines generated from the accumulator whose number of votes exceed

150. Compared to just selecting an intensity threshold as in Figures 5.5 and 5.6,

this method yields fewer lines which are concentrated over the user prior.
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Figure 5.8: Bresenham Line Algorithm. The algorithm draws a line with defined

endpoints, such that the general line equation y = m
B
x + b can be used. The

advantage of this algorithm is that it does so by only using integers, which is

important for many computer applications. A grey la�ice illustrates pixels, in

which the current position of the Bresenham line algorithm is (x
Bi
, y

Bi
). The next

position moves in the x axis by one pixel or x
Bi
+1, whereas for the y axis a decision

is made based on which distance is closer between d1 and d2, which it can be either

y
Bi

or y
Bi
+ 1.
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To illustrate the basic principle of the algorithm the following assumptions are

made: A line possesses endpoints with coordinates (X1, Y1) and (X2, Y2), in which

X1 < X2. For simplification purposes also the line slope will lie within 0 and 45
◦
,

that is 0 < m
B
≤ 1 in the line equation y = m

B
x+b. This as the algorithm changes

slightly depending in which octet of a circle the line lies. The increments of x in

the la�ice where the line resides will be limited to only 1, whereas those of y will

be obtained as seen next.

Assuming that the current line position is (x
Bi
, y

Bi
) (Figure 5.8), the algorithm

selects to draw the next pixel based on the following criteria: if d1 – d2 < 0 then

y
Bi+1

is the same as y
Bi

, otherwise if d1 – d2 > 0 then y
Bi

+ 1 becomes the next

pixel, i.e. y
Bi+1

= y
Bi
+1. The distances d1 and d2 are calculated using the following

formulae:

d1 = y – y
Bi

= m
B
(x
Bi
+ 1) + b – y

Bi

d2 = (y
Bi
+ 1) – y = (y

Bi
+ 1) – m

B
(x
Bi
+ 1) – b

with m
B

defined as

m
B
=

∆y

∆x

=

Y2 – Y1

X2 – X1

(5.27)

It is worth of mention that m
B

from Equation (5.27) is not an integer. To over-

come this it is possible to multiply by ∆x in order to remove the denominator from

d1 – d2, the result can be stored in a new parameter p
Bi

:

p
Bi

= ∆x(d1 – d2)

The sign of p
Bi

will remain positive as we are under the assumption of 0 < m
B
≤

1. However, the algorithm can be further generalised, making it recursive and

without the slope limitations
∗

(Claridge, n.d.).

As the Bresenham algorithm allows to generate lines using only integers, it

is possible to use the pixel coordinates that describe a line in a binary image.

Therefore, a pixel is considered valid if its intensity value goes beyond a threshold

value, otherwise it would be considered a discontinuity within the line. At the

same time, since a line is tested in each of its conforming pixels it is possible to

obtain its endpoints (Figure 5.9).

∗
A full C++ implementation can be found at (Roguebasin, n.d.).
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(a)

(b)

(c)

Figure 5.9: Hough-Bresenham transform. The Hough transform and the Bresen-

ham algorithm are coupled to obtain lines from (a) whose accumulator votes in

(b) are greater than 50, with pixels whose intensity exceeds a value of 40. Note

that the Hough accumulator has its votes concentrated on very small regions, as

very few combinations of θ
H

and ρ
H

are valid. This is also since additional restric-

tions have been put, so that only lines which have at most 1 pixel of discontinuity

and a length of at least 40 are included. It is possible to save the maximum and

minimum coordinates of a detected line using the Bresenham algorithm, allowing

draws them only within its start and end positions as displayed in (c).
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Prominent line search can be constrained using the lines generated from dif-

ferent camera positions or particles, which in turn generate a variety of θ
H

and

ρ
H

values. Therefore, the most supported hypothesis would be the one whose

detected prominent line has the most valid pixels (Figure 5.10).

All this information leads to obtain lines that closely resemble an user prior.

However, this is yet to assume camera movements and their e�ects in depth that

a�ect the line end points. Therefore, next sections explore two methods to interac-

tively correct depth considering camera displacements modelled using a familiar

method seen in Section 3.3.1. The first considers a projection plane that modifies

all the features within an object’s surface and the second directly allows to modify

the three dimensional coordinates if the line end points.

5.3.3 Depth Assumptions and Camera Motion

So far line detection has been used only in a static image. In order to perform

SLAM the camera must move and estimate its position according to a feature of

interest. However, as this investigation relies on more complex features like edges

in objects, it requires a slightly di�erent approach to initialisation and estimation.

In Chapters 3 and 4 points are used allowing to initialise them with a prede-

fined depth. This initial depth will change according to the observations obtained

whilst the camera is in motion, due to the measurement error caused by the depth

assumption and the EKF update. Nevertheless, these initial assumptions some-

times lead to improper camera pose estimation and subsequently dri� as seen in

Sections 3.4 and 4.4.

Therefore, in this section is explored a way to interactively change line param-

eters by means of a projection plane, or by repositioning the line ends. However,

first the start and end line points must be added to a world map.

Adding Line End Points to a Map

As line end points need to be added into a map an approach similar to the one

presented in Section 3.2.3 can be used, in which a point (hux
, huy

) is assumed cor-

rected from lens distortions. This can be initialised in the world frame according
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(a)

(b)

(c)

Figure 5.10: Hough-Bresenham transform with particle filtering and user line

selection. The transform obtains lines from a gradient image, using the green

lines as priors which were given by user input in (a). The predominant lines in the

image according to this criteria appear as very concentrated dots in the Hough

accumulator (small dots within yellow rectangles), the zoomed in portions (blue

rectangles) show that they have a very small range of θ
H

and ρ
H

(b). Only the

prominent lines are shown in (c), other lines from which there was no user input

are discarded.
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The focal lengths fx, fy and the principal points Xc and Yc are obtained through

calibration so�ware. The rotation matrix ROTwc which allows a feature to be con-

verted from camera to world frame is obtained through Equation (3.34). Similarly,

to project back onto the image a line end point that has been added to the map

using Equation (5.28) the following formulae can be used:

xfiy
fi

z
fi

 = ROTcw

xfiwy
fiw

z
fiw

 ,

[
hux

huy

]
=


fx

x
fi

z
fi

+ Xc

fy

y
fi

z
fi

+ Yc

 (5.29)

With Equation (5.29) the rotation matrix ROTcw allows a feature to be converted

from the world frame to camera frame, and it is obtained using Equation (3.34)

and transposing it.

Note that in both Equations (5.28) and (5.29) an orientation quaternion from

a camera motion model is required. Therefore, for the purposes of performing

particle filtering aided by the Hough-Bresenham algorithm, this model is based

on the one presented in Section 3.3.1. However, in this implementation the model

is restricted only to translation and orientation:

p(x
k
|x
k–1

) = x–
v
k

=

[
rwc

–

k

qwc
–

k

]
=

[
rwc
k–1

+ (vw
k–1

+ Vw
)∆t

q((ωc
k–1

+ Ωc
)∆t)× qwc

k–1

]
(5.30)

where rwc and qwc
are the camera optical centre position and the camera orien-

tation quaternion respectively, both w.r.t. the world frame as in Equations (3.33)

and (3.50). The choice of removing both linear and angular velocities is made,

as particle filtering allows to directly estimate positions in the form of particles.

Therefore, only translation and orientation states are required to represent dif-

ferent camera position hypotheses. Both translation and orientation states are

obtained by randomly generating linear and angular velocities Vw
and Ωc

.
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Plane Depth Correction

It is assumed that a feature of interest from the environment has distinctive gra-

dients. For a simple but real example a box is considered allowing user selection,

but this possesses gradients that are seen through a two dimensional image. This

causes the initial selected line end points to have all z
fi

set to 1 in Equation (5.28),

resulting in lines which have the same depth (Figure 5.11). Therefore, depth must

be accounted for somehow to properly represent the object edges.

A projection plane can be modelled a�er an object’s surface, which will allow

to estimate the depth in di�erent points within its surface by summing the dis-

tances dp1, dp2 and dp3 (Figure 5.12). A point Po will contain coordinates xo, yo
, zo

within the camera frame. Particles projecting di�erent points using the base co-

ordinates xo, yo
, zo will eventually fail to o�er a high likelihood, as camera move-

ments will a�ect the depth zo that has an influence over the image projection of

the point Po.

The user is allowed to change the two extra parameters ρp and θp, which will

have an influence over all the points in the object’s surface (Figure 5.12). This

changes the distances dp1, dp2 and dp3, according to the following geometrical

relationships:

dp1 = (xo – Ox) tan θp

s1 = (y
o
– Oy) tanφp

s2 = (s1) cos ρp

dp2 = (s2) tan θp

dp3 = (s1) sin ρp

The final corrected dc distance becomes:

dc = (xo – Ox) tan θp + (yo – Oy) tanφp cos ρp tan θp + (yo – Oy) tanφp sin ρp

= (xo – Ox) tan θp + (yo – Oy) tanφp
[
cos ρp tan θp + sin ρp

]
(5.31)

The origin point O is considered to be a user given point which represents

a vertex, obtained whilst selecting lines over an object of interest (Figure 5.13).

However, this method for adjusting a feature was shown to be unintuitive for the

user, but more importantly it could not properly adjust the projection plane to
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(a) (b)

(c)

Figure 5.11: Line selection and initial depth as seen from the XZ plane. (a) shows

green lines depicting the user gradient selection. (b) shows line detection using

Hough-Bresenham transform of Section 5.3.2. (c) shows the projection in the XZ

planes of both selected lines. Note that because they are initialised with the same

initial depth assumption, the two lines appear to be a single straight line. Num-

bers in (c) are not representative of any unit as the algorithm works with its own

internal units.
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Figure 5.12: Plane depth estimation over a surface. (a) shows an objects’ surface

(red rectangle) that is not fully aligned to the camera, presenting both ρp and θp
angles with respect to the camera orientation. (b) shows a top view of the le�

figure, allowing to see the correct depth of a point Po in the projected surface and

thus becoming Pp. Depth is given by summing the three distances dp1, dp2 and

dp3 through geometrical relationships.
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the surface of interest. As such the next method focuses on manual adjustment

of user selected lines, based on observation from the camera movements.

Manual Feature Line Adjustment

As using projection planes did not provide any advantage to the user in order to

infer depth from an object of interest, a manually guided option was added in

which the extremities of lines can be manipulated. This is individual for each line,

allowing to observe the changes in their map projection.

Changing only z
fiw

in Equation (5.28) will not su�ice for ge�ing a be�er line

estimate, as depth alone a�ects the entire line projection in an image and thus

also failing to obtain line estimates from the edges in objects. This is also the

reason why using projection planes did not work, as only depth was accounted to

be a�ected when modifying the plane parameters (Figure 5.14). The user is then

given the option to change the components x
fiw

, y
fiw

and z
fiw

from the line ends.

This allows to change depth and correct for any position deviations in the image

(Figure 5.15).

Finally, the particle filter algorithm in Section 5.1.3 can be modified to intro-

duce the Hough-Bresenham algorithm, allowing to include user input and en-

hanced prominent line detection. This still relies on a total number of N particles,

with each one of them representing a di�erent hypothesis of the camera position:

• In the beginning of each time step or iteration k, the weights w
(i)

k
are all

initialised with a value of 1/N.

• The user can now enter a prior by selecting two or more points over the

image to form lines, possibly describing the edge of an object as in Section

5.2.1.

• Any new start and end points used to describe lines are added to a map

according to Equation (5.28) in Section 5.3.3.

• The particles x(i)
k

are generated according to p(x
k
|x
k–1

) in Equation (5.30).

For the purposes of camera localisation, each particle x(i)
k

is generated from

a previous particle x(i)
k–1

which has been perturbed by randomly generated

linear and angular velocities.
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(a) (b)

(c) (d)

Figure 5.13: Projection Plane with di�erent θp and φp values. (a) shows two lines

in green which were previously selected by an user, a red line shows a perpendic-

ular line formed from the past lines. (b) shows a projection plane with θp = 0
◦

and

φp = 14
◦

visible with yellow lines, (c) shows another plane with values θp = 36
◦

and φp = 0
◦
. Finally (d) depicts the plane with θp = 36

◦
and φp = 14

◦
. The per-

pendicular line has an arbitrary fixed length but this changes due its projection in

the image.
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(a) (b)

(c)

Figure 5.14: User feature depth changes as seen from the XZ plane. (a) shows

green lines depicting the initial user line selection, the yellow line represents a

feature that has changed depth on one of its ends. Even with only this modifica-

tion the yellow line shows a change in its perspective, becoming unable to fit in

the object edge as it did in the initial user selection. (b) shows line detection using

Hough-Bresenham transform of Section 5.3.2, note that the line whose depth has

been changed does not have a gradient and hence it is not detected. (c) shows

the projection in the XZ planes of the lines, with the first line changed in depth.

Numbers in (c) are not representative of any unit as the algorithm works with its

own internal units.
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(a) (b)

(c)

Figure 5.15: User feature parameter changes as seen from the XZ plane. (a) shows

green lines depicting the initial user line selection, whereas the overlapped yellow

lines represent the same lines with user changes in x
fiw

, y
fiw

and z
fiw

. (b) shows

line detection using Hough-Bresenham transform of Section 5.3.2. (c) shows the

projection in the XZ planes of the lines, an user has adjusted both of the lines de-

picting more closely the topology of the box. Numbers in (c) are not representative

of any unit as the algorithm works with its own internal units.
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• For each particle x(i)
k

or camera location hypothesis, the start and end points

from the user prior are projected back onto the image using Equation (5.29).

These points are used to produce di�erent combinations of θ
H

and ρ
H

de-

pending on the camera location described by its particle.

• For each particle x(i)
k

its weight w
(i)

k
is obtained following Equation (5.17),

which uses the likelihood p(z
k
|x
k
). This likelihood is obtained for each par-

ticle by using the Hough-Bresenham algorithm described in Section 5.3.2,

which counts the amount of votes from the individual combinations of θ
H

and ρ
H

that each particle holds.

• Depending on the amount of votes for each particle, an user can decide

whether or not to adjust the line parameters x
fiw

, y
fiw

and z
fiw

a�er camera

motion. This actively requires the user to pause the particle filter algorithm,

in order to adjust the lines so that the edges fit be�er onto the object of

interest. The algorithm can be resumed shortly a�erwards.

• Resampling is performed, adding all the weights w
(i)

k
and then normalising

them so that their total sum is equal to 1. A�erwards the array in Equation

(5.18) is formed together with the array from Equation (5.20). This allows

to perform systematic resampling as described in Section 5.1.3 (Figure 5.1)

a�er reordering terms using the weight values. This marks also the start of

a new cycle.

The next section implements all of these steps, allowing to see the performance

of particle filtering coupled with the Hough-Bresenham algorithm, including ac-

tive user intervention. This is also compared against the EKF algorithm seen in

Chapter 3.

5.4 Implementation Results

This section presents the results obtained from particle filtering aided with the

Hough-Bresenham algorithm, in which an user is able to select edges from an ob-

ject (a box) allowing to perform camera localisation. The particle filter has been

set with a total number of N = 90 particles and the Hough-Bresenham algorithm
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has been set with a pixel intensity threshold of 40, a maximum of 1 pixel of dis-

continuity and a minimum line length of 40.

The implementation works in real-time by using a source video avoiding using

frames individually a�er each time step. It is worth mentioning that this does not

consider meaningful units for mapping, as the main interest is to ensure stability

within the implementation. Therefore, the particle filtering algorithm also works

using its own internal units.

For this scenario the camera was hand-held performing approximately smooth

motion pa�erns as follows: yaw le� rotation, yaw right rotation, pitch tilting

down, forward translation, yaw right rotation, yaw le� rotation, rotation around

the object (counter clockwise), stand still position, slow rotation around the object

(counter clockwise), pitch tilting up, pitch tilting down and some erratic motion.

It must be noted that as soon as the particles were observed not to properly fit the

object’s edges, the video was paused in order to adjust the line parameters as in

Figure 5.15.

The novelty of this approach relies on object selection according to user prefer-

ence, for this case objects with edges present themselves as good candidates. This

is related to another novelty introduced in this chapter, which joined the weight-

ing requirement from the particle filter with the voting capabilities of the Hough

accumulator, further improved with the Bresenham algorithm to detect lines of

interest.

Compared to the baseline implementation of SLAM with inverse depth

parametrisation in Chapter 3, and the approach aided by active contours in Chap-

ter 4, this implementation does not present instabilities caused by loss of obser-

vations. This is as the particles themselves sca�er when all the hypothesis remain

with the same weight, i.e. when no gradients are detected (Figure 5.16).

By introducing interactivity in this implementation an user is able to modify

the parameters x
fiw

, y
fiw

and z
fiw

a�er camera motion in Equation (5.28), which

allows to create a be�er fit to the object’s edges or to correct initial assumptions.

The particle filter still looks for the best match, using the feature as a reference

for camera localisation.

Naturally, these estimates will possess errors whilst an user is modifying the

line parameters. Once a proper combination is found the camera position esti-

mate should improve and even when this is not conclusive for pose estimation,

it demonstrates algorithm stability. This is even a�er extended periods of time,
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Figure 5.16: Sca�ered particles. One of the properties of particle filtering is that

when no hypothesis has more votes than another, the newly resampled particles

present sca�ering (Grey lines covered by the yellow line). This allows more re-

silience to erratic motion, since the sca�ered particles cover a wider area allowing

to retrieve the object’s edge gradient observation. Once a hypothesis with high

weight is found, the particles quickly pile up towards the most weighted one.
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which also accounts for object parameter correction (Figures 5.17, 5.18 and 5.19).

In the same graphs it can be seen that compared to its EKF counterpart the camera

estimates tend to jump less. This is since adding and deleting features a�ects un-

certainty (Figures 5.20 and 5.21). A�er a while the uncertainty grows big enough

that the system cannot recover, whereas this does not occur in the presented im-

plementation using the particle filter. When there is the case that observations

from the object’s edges are totally lost, an user can simply reposition the lines.

However, particle filtering produces noisier estimates and also requires a higher

computational cost than EKF, but the gains reflect greatly in algorithm stability

and flexibility in hypotheses weighting or voting.

5.5 Concluding Remarks

Particle filtering with a novel line voting algorithm has been presented, which

also makes use of interactivity for high-level object tracking. Line detection in-

volves using the Hough transform, which is then further improved by means of a

Bresenham algorithm. From this approach the following conclusions are drawn:

• Particle filtering was chosen for its feasibility to obtain estimates which in-

volve many dimensions as seen in Section 5.1. In this investigation it is seen

that it behaves more stably than other approaches which rely on the EKF,

as it is not prone to matrix inversion problems and avoids linearisation.

• The Hough transform is a useful algorithm for detecting lines by voting all

pixels in the image, which are then put into an accumulator allowing to

discern edges as seen in Section 5.2. This is ideal in particle filtering, as

its flexibility in hypotheses allows resampling particles, in the same way

as they do when the most supported hypothesis is carried over to the next

iteration with many copies of it.

• Interactivity is introduced by an user se�ing an initial likelihood in the form

of a line, which can be used for high-level object tracking and detection.

The Hough transform fills the Hough accumulator with votes according to

prominent lines in the image, these also serve to find the most supported
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Figure 5.17: EKF SLAM baseline inverse depth parametrisation and particle filter,

camera translation states. Top graph depicts translation states with included time

pauses in particle filter, hence the straight lines in between the estimates. Bo�om

graph removes these pauses leaving only translation values. EKF estimates are

also shown in the bo�om graph, jumping in more magnitude compared to the

estimates obtained through particle filtering.
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Figure 5.18: EKF SLAM baseline inverse depth parametrisation and particle filter,

camera quaternion states. Top graph depicts quaternion states with included time

pauses, hence the straight lines in between the estimates. Bo�om graph removes

these pauses leaving only quaternion estimates. EKF estimates are also shown

in the bo�om graph, in which the estimates from q
x

and q
y

dri� considerably

compared to the estimates obtained through particle filtering.
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Figure 5.19: EKF SLAM baseline inverse depth parametrisation and particle filter,

camera orientation from quaternion states. Top graph depicts camera orientation

from quaternion estimates with included time pauses, hence the straight lines in

between the estimates. Bo�om graph removes these pauses leaving only camera

orientations from quaternion values. EKF estimates are also shown in the bo�om

graph, in which the estimates from pitch and yaw dri� considerably compared

to the estimates obtained through particle filtering. Note that the roll remains

almost the same in both cases, which is comparable to the results obtained from

the EKF SLAM baseline inverse depth parametrisation aided by active contours

(Figure 4.18).
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Figure 5.20: Inverse depth parametrisation EKF covariance for camera transla-

tion states using particle filter video. Peaks represent whenever new features are

added, yet at a certain point the algorithm is not able to reduce uncertainty. This

leads to failure in properly update the EKF covariance matrix around 300s and

hence the overshoot. Covariance magnitude numbers are not representative of

any unit as the algorithm works with its own internal units.
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Figure 5.21: Inverse depth parametrisation EKF covariance for camera quaternion

states using particle filter video. Peaks represent whenever a new feature is being

added, yet at certain point the algorithm is not able to reduce uncertainty. This

leads to failure in properly update the EKF covariance matrix around 300s, hence

the overshoot in values.
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hypothesis for camera pose. However, the Hough transform does not ac-

count for line discontinuities. As such, the accumulator might give a high

vote count to lines which are formed from stray image pixels. The Hough-

Bresenham algorithm solves this issue by checking for line discontinuities,

discarding those that do not follow continuity pixel by pixel as seen in Sec-

tion 5.3. Therefore, high-level object tracking through particle filtering is

also improved.

• The results obtained from this novel implementation of particle filtering,

aided by Hough-Bresenham line detection yields improved stability. This

is even considering algorithm pauses in order to correct high-level object

line properties as seen in Section 5.4. Even when the lock-on by the particle

filtering is lost, it is possible to recover tracking through user input. This is

in part because it is possible to rely on fewer features compared to many

points in other SLAM implementations.

Overall, particle filtering presents long term stability and good computational

performance. This is in part thanks to high-level objects which allow to reduce

computational load, by focusing on more abstract features from an object of in-

terest. This abstraction is done using lines, which rely on both line extraction and

user input. Interactivity therefore allows to focus detection onto lines of interest,

whereas a novel Hough-Bresenham transform allows to discern continuous lines

from those containing only sca�ered pixels.

Still, this investigation really only scratches the surface regarding interactiv-

ity and high-level objects in SLAM. This is mainly due to the fact that abstraction

can be presented in many forms, which at the same time can be exploited in many

ways. Particle filtering o�ers good performance using these abstractions, as it al-

lows to estimate many camera pose states whilst focusing hypotheses into objects

rather than many localised points.

EKF on the other hand has proven to be very situational and dependent on

controlled conditions, otherwise it is very easy to reach divergence. Many investi-

gations have focused e�orts on improving stability, as this is a priority in estima-

tion algorithms. However, particle filtering o�ers a viable solution to estimation

considering a focus into high-level objects. This was the main aim of this thesis,

which is to open a new branch within vision-SLAM focused on feature abstraction

aided by interactivity.



Chapter 6

Conclusions and Future
Work

Chapters 1 and 2 focused on exploring Simultaneous Localisation And Mapping

(SLAM) with particular focus on its vision-SLAM branch in order to find works

that relied on active user input in order to improve localisation. The result of this

yielded no direct method to include interactivity, as most of the investigations try

to push the envelope in regards to feature and camera estimation, dense mapping,

feature re-association a�er periods of missed observations, indoor and outdoor

applications. Many other works are derived from these investigations as SLAM is

by itself a multidisciplinary research subject.

In spite of this, no real e�ort has been made to include active user interven-

tion within the SLAM algorithm, ignoring any real-time feature input or selection.

This can be explained by a continuous push towards automated approaches in en-

gineering. However, there are works that improve over the SLAM concept by im-

proving on feature representation. These include approaches taking complex cues

from the environment such as lines, planes, ceilings, walls or even riverine areas

using curve fi�ing techniques, also more complex objects can be used if o�line

databases are used for their recognition.

However, fully autonomous algorithms o�en require high computing re-

sources which limit real-time operation. This is also present in SLAM implemen-

tations, in which also unaccounted situations outside of algorithm programming

might lead to malfunction or task interruption. An hybrid approach involving

179
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autonomous operation and high-level decision making can make it possible to

overcome these problems, by introducing user interactivity in SLAM. Particularly

in vision-SLAM this presents other advantages, since persons o�en segment ob-

jects be�er than machines. This ability comes from years of experience in contact

objects, allowing to o�load feature selection and recognition to an operator.

In order to introduce active user input into vision-SLAM first its inner workings

are explored, as all the information required to performed is assumed known from

considerable amounts of past investigations. This also allows to see how to intro-

duce interactivity in the algorithm, from which two approaches are proposed. The

first considers active contours (snakes) due to its continuous deformation towards

a local minima on the image, which can represent an object. The second uses par-

ticle filtering in which a person actively modifies the properties of an object of

interest, with particles as di�erent camera pose hypotheses.

Chapter 3 focused on exploring a baseline implementation of SLAM with in-

verse depth parametrisation as there is no full compilation for it. This shows a

huge dependence on an Extended Kalman Filter (EKF), which is o�en used for

SLAM implementations as it o�ers a compelling framework for it, by relating robot

and feature uncertainties using a covariance matrix.

The covariance matrix that holds all the feature and camera uncertainties is

updated by the EKF algorithm, a�er obtaining observations from concurrently

added localised features in the form of points. These are a�ected by image imper-

fections which are dealt with using a Brown-Conrady model which is capable of

dealing with radial distortions, caused by wide angle lenses o�en recommended

for SLAM due to its increased field of view. This model also o�ers good invertible

properties, making it possible to remove and add deformations from the localised

features. Using points has the caveat of requiring dense acquisition in order to

provide an idea of the surroundings, increasing computational requirements.

However, EKF in SLAM is an algorithm prone to instabilities due to the need

for complex matrix operations in the covariance matrix. As features are added, re-

moved and accumulated over time the covariance matrix becomes more di�icult

to invert. Eventually this causes numerical errors leading to the algorithm unable

to recover from dri�. This problem becomes more accentuated when all observa-

tions are lost, due to small but sudden motion changes. Therefore, maintaining

the same features for as long as possible might be a good solution to avoid these

issues.
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Chapter 4 introduced a novel approach for feature abstraction using active

contours driven by Gradient Vector Flow (GVF). However, this is a computation-

ally expensive tool to use as it depends on heavy image processing. General Pur-

pose computing on Graphics Processing Units (GPGPU) greatly alleviates and ac-

celerates image manipulation tasks, which translates real-time active contour de-

formation for tracking objects according to camera motion. This is possible as GVF

relies on independent operations applied over each image pixel, which is ideal for

huge parallelism gains.

As a picture contains many gradients it was decided to use high contrast ob-

jects for this implementation. These allow the snake not to become distracted and

ensure good locking onto an object for tracking. Compared to the implementation

in Chapter 3, this approach did require less features and did not continuously add

and remove them. This improved on the instabilities caused by having a sizeable

covariance matrix.

Other important improvements were noted as well, which include observation

stability and the inclusion of user input in the form of description or semantics.

The former is possible as the active contour deformations smoothed measure-

ments, avoiding the loss of observations that otherwise were caused by moving

the camera in opposite direction. The la�er allows to input information right a�er

object selection, which can be used for descriptive or semantic purposes in a map

avoiding the need to perform dense feature acquisition. Despite this, instabilities

were still observed due to the use of the EKF as an estimator for camera motion,

moderately a�er long periods of time and thus it was decided to drastically move

onto particle filtering.

Finally, Chapter 5 presented a radical change in the direction of this investi-

gation but still kept the idea of introducing interactivity in SLAM. The main aim

was to use particle filtering as its capabilities allow for long term runs, indepen-

dence to the number of dimensions or camera states to estimate and flexibility in

hypothesis (particle) weighting. This algorithm does not rely on complex matrix

operations nor linearisation, which avoids the numerical problems seen in the im-

plementations from Chapters 3 and 4 at the cost of requiring more computational

resources.

The Hough transform is a well known method for extracting lines from an

image, by means of votes and an accumulator containing all the bins. Votes and

particle weighting share an inherent relationship and thus it can be used as a
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likelihood for camera estimation. This leads to introduce interactivity within the

algorithm, as an user can now describe objects by means of its edges. Particles

then represent di�erent hypotheses pertaining to camera position, with each one

of them projecting a modified line from the original given input. The line contain-

ing most votes is the most likely and thus the most weighted particle.

The Hough transform in its baseline implementation is able to extract lines

from all the pixels image. However, this also means that only two points are

needed to produce them and thus even noise within the image will yield invalid

votes. Therefore, Hough transform is improved by means of using a Bresenham

algorithm. The la�er is used to draw lines over latices using only integer values,

but here it has been modified to produce a novel Hough-Bresenham algorithm.

This allows to detect prominent lines in an image but only accounting for those

where discontinuities are not present, filtering as well pixels that are produced by

noise or isolated from a prominent line.

All of this has been accelerated using GPGPU technologies in order to perform

real-time camera location. User input is further refined to also include three di-

mensional repositioning of the initially placed lines, so that they can be corrected

and properly fit a�er camera motion since initial depth assumptions will yield in-

valid lines. Compared to EKF which turned out to be a situational approach prone

to dri�, this implementation reached long term stability with moderate computa-

tional requirements. Still, whereas the main aim of investigation was to introduce

interactivity in SLAM, it only begins to dive into interactive feature abstraction in

SLAM as there is not a unique way to a�ain it.

6.1 Future Work

Based on the stability results presented in Chapter 5, this method shown to be

very promising for future investigation. With some key aspects to be considered:

• The nature of particle filtering allows for high parallelism, therefore GPGPU

technologies can be used to greatly accelerate the performance of this es-

timator. The most crucial step in this approach is the sorting of all the

weights, but assuming that camera location follows an unimodal distribu-

tion this can be sorted by using atomic operations in GPUs. These allow
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to perform certain serial computations that are o�en limited to only CPUs.

Therefore, if the algorithm is e�iciently coded it could be put onto drones

with a remote operator using a portable device allowing input for object

description.

• Object abstraction can be further improved, as both Hough transform and

Bresenham algorithm can be used to detect and draw more than lines. They

have been also used to detect more complex shapes such as circles. There-

fore, as long as there is a possibility to count pixels from gradients it is pos-

sible to obtain votes from them.

• Describing objects through user input can be further exploited. This in-

cludes not only drawing lines overlaid on top of a camera feed but rather

more intuitive methods can be explored, e.g. following Computer Assisted

Design (CAD) so�ware guidelines. These are o�en based on geometric prop-

erties that allow to create symmetrical objects based on very simple shapes.

A�er an object has been created in this way only its edges are required,

these will be used in conjunction with the Hough-Bresenham algorithm to

provide likelihoods.

• Fully automation based on feature abstraction is not denied. An artificial in-

telligence can be created so that it can detect gradients belonging to objects,

therefore only asking an user for descriptive or semantic input. This infor-

mation can be used on holographic wearable devices such as the Hololens
∗
,

which would allow to interactively map the surroundings of a person. This

would allow to create a map that is based merely on objects and does not

rely on dense representations, therefore being more useful for tasks based

on objectives.

This investigation managed to open a door to introduce users into a fully au-

tomated approach like SLAM, making it part of the algorithm. Many further pos-

sibilities can be considered if augmented reality is taken into account, including

recreational, work or search and rescue tasks. Therefore, it is concluded that there

is a considerable amount of applications that will be discovered as time passes.

∗https://www.microsoft.com/microsoft-hololens/en-us

https://www.microsoft.com/microsoft-hololens/en-us
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Appendix

Videos for the implementations can be seen in the following URLs:

• For Chapter 3 https://www.youtube.com/watch?v=OO7b31zfM1U , EKF with

inverse depth parametrisation.

• For Chapter 4 https://www.youtube.com/watch?v=N3ts6Px0z7g, EKF with in-

verse depth parametrisation aided by active contours. Also https://www.
youtube.com/watch?v=w_9YCNpnfpE, EKF only using the same source video.

• For Chapter 5 https://www.youtube.com/watch?v=T4YqLrprnhA, particle fil-

tering with Hough-Bresenham algorithm. Also https://www.youtube.com/
watch?v=u495A9_en-w, EKF only using the same source video.
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