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Abstract 
The effects of fluid viscoelasticity on the expansion of gas bubbles in polymer foams 

for both non-reactive and reactive polymers are investigated. Polymer foams are used 

extensively in consumer products, from car parts to upholstery. They are produced either 

by injection moulding (of non-reactive polymeric fluids) or reaction injection moulding. 

We use standard rheological models (Oldroyd B and Pompom) to investigate bubble 

growth driven by gas diffusion as a model for injection moulding. To model reaction 

injection moulding, we develop a new fluid model based on existing linear theory for a 

gelling liquid. In this case gas is produced as a by-product of the polymer reaction. 

At small bubble volume fractions gas bubbles remain spherical and isolated from 

neighbouring bubbles during expansion. In this regime we demonstrate the effects of 

rheology and gelation on the bubble growth. 

At high bubble volume fractions neighbouring bubbles compete for the available gas 

and become distorted in shape. The effects of viscoelasticity on the expansion of gas 
bubbles arranged in a two-dimensional hexagonal array in a non-reacting polymeric fluid 

are investigated. In addition to a full finite element calculation of the two-dimensional 

flow, two one-dimensional approximations valid in the limits of small and large gas area 
fractions are presented. We show that these approximations give accurate predictions of 

the evolution of the bubble area, but give less accurate predictions of the bubble shape. 

Finally we consider how bubbles of different sizes evolve in an expanding foam. We 

illustrate how the surface tension driven phenomenon known as Ostwald Ripening causes 

large bubbles to grow at the expense of smaller ones. For the case of bubbles of two 

different sizes we examine the effects of viscoelasticity on the shapes of the bubbles 

within the structure and show that viscoelasticity has a different effect on the bubble size 

distribution depending upon the initial geometry. 
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1 

Chapter 1 

Introduction 

1.1 Polymeric Liquids 

Polymeric liquids are liquids containing very large molecules. Due to the freedom 

of rotation of the molecular bonds, these molecules are highly flexible and their 

configuration can be deformed by velocity gradients within the fluid. However, random 

collisions with other molecules will try to return the configuration distribution to the 

equilibrium state. This competition between deformation by the fluid velocity gradient 

and entropic relaxation causes these liquids to display viscoelastic and other non- 

Newtonian fluid properties. Here we 'describe some of the key non-Newtonian flow 

phenomena of polymeric liquids, more details can be found in reference [5]. 

Polymeric fluids display non-linear resistance to flow. For Newtonian fluids the rate of 

volume flow down a pipe is proportional to the applied pressure gradient. In polymeric 

liquids the flux depends non-linearly on the pressure gradient. Since the long polymer 

molecules become elongated in the direction of the flow and reduced in the gradient 

direction shear-thinning behaviour is observed in which the volume flow rate more than 

doubles when the applied pressure gradient doubles. 

Polymeric liquids resist extension allowing them to be drawn into long filaments where 

equivalent Newtonian filaments would break up under capillary instabilities, see figure 
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1.1. The extensional resistance of a polymeric liquid increases with strain, so that the 

thinnest sections of the filament provide the greatest resistance to further extension. 

In shear flows polymeric liquids possess normal stress differences that are absent in 

Newtonian flows. In a Newtonian fluid the diagonal components of the stress tensor in 

a shear flow q= (yy, 0,0) are all equal. However, in a polymeric liquid the first normal 

stress difference, the difference between the normal stresses in the flow direction and 

gradient direction, is positive. This can be thought of as a tension in the streamlines. 

If a Newtonian liquid is stirred with a rotating rod the fluid level dips slightly near 

the rod due to centripetal acceleration. However, in polymeric liquids the streamline 

tension produces a force towards the rod that causes the fluid level to rise there. This 

phenomenon is known as rod climbing or the Weissenberg effect and is illustrated 

in figure 1.2. The streamline tension is also responsible for keeping sedimenting rods 

vertical and drives particles suspended in polymeric liquids together into chains - see 

figures 1.3 (a) and (b). 

Polymeric liquids display elastic as well as viscous behaviour. When stirring is ceased 

in liquid such as bubble bath a small recoil effect is seen. A polymeric liquid will recoil 

back into its original container if the fluid is cut with a pair of scissors as it is being 

poured out. This experiment is illustrated in figure 1.4. Elastic effects also contribute to 

die swell: when a viscoelastic liquid is forced through a small die the jet of liquid swells 

in an attempt to recover its `remembered' width upstream of the die, see figure 1.5. 

1.2 Polymeric Foams 

Polymeric foams are foams consisting of either gas bubbles embedded in a polymeric 

solid, or a bi-continuous structure of air and solid polymer like a sponge. They 

are used in a vast range of applications from car steering wheels and shoe soles to 

furniture upholstery and cavity wall insulation due to their low weight, sound- and 

shock-absorbing, and thermal insulation properties. The properties of the foam are 
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Figure 1.1: Comparison of the shape of a filament drawn from a polymeric liquid (a) and a 

Newtonian liquid (b). The polymeric filament has a more uniform cross section and smaller foot 

region near the plate. Picture taken from [491. 

Figure 1.2: The rod climbing or Weissenberg effect observed when a polymeric liquid is stirred 

with a rotating rod. Picture taken from [9]. 

(a) (b) 
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Figure 1.3: Diagram showing how the streamline tension due the first normal stress difference 

(a) rotates a sedimenting rod to the vertical, and (b) drives particles towards each other. 

Figure 1.4: Polymeric liquid showing elastic recoil as the flow from one container to another is 

cut. Picture taken from 191. 
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Figure 1.5: Die swell of a polymeric liquid exiting a convergent die. Picture taken from 191. 

5 

highly dependent on the size, distribution, and density of the bubbles and on whether 

the bubbles remain whole (closed cell foams) or whether the windows separating them 

break forming open cell foams. There are two distinct methods of production depending 

on whether the polymer is synthesised prior to, or during, the moulding process. In the 

former case a polymeric liquid containing a foaming agent is injected at high pressure 

into a mould. As the pressure is reduced, bubbles nucleate and expand forming a 

polymeric foam. In the latter case of reaction injection moulding [29], liquid reactants 

are injected into the mould where they react forming a polymer of increasing molecular 

weight. Gas is produced as a by-product of the reaction, leading to the nucleation and 

growth of bubbles within a fluid whose rheology evolves from a low viscosity liquid to 

a viscoelastic gel. 

Our aim is to provide a better understanding, firstly of the growth of isolated bubbles, 

and secondly of the deformation of the liquid windows between neighbouring bubbles, 

that could be applied to these two processes. 

We begin in this chapter by describing the production processes and the background 

chemistry involved in reaction injection moulding in more detail. We also review 
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some of the existing work on bubble growth and foam models. In chapter 2 we 

give some background information about the tensor notation used in this thesis and 

linear viscoelasticity. We then outline the fluid models used including a description of 

Rubinstein, Colby and Gilmor's [43] linear reacting model and our non-linear extension 

to it. In this section we include a brief description of some of the percolation theory that 

is used as a basis for the reacting fluid model. 

When the bubble volume fraction is small the bubbles are sufficiently far from their 

neighbours to remain spherical throughout the expansion. In chapter 3 we analyse the 

growth of individual isolated bubbles, by considering a spherical bubble surrounded by 

a spherical envelope of liquid containing dissolved gas. Expansion is driven by the 

pressure difference between the pressure inside the bubble and an ambient pressure 

outside the liquid layer. In order to model the two different production processes we 

employ a number of constitutive models for the liquid layer. In the case of thermoplastic 

injection moulding the liquid rheology does not change during the expansion and so we 

use Oldroyd B and Pompom models for the liquid phase. In order to model foaming in 

reaction injection moulding, we apply the reacting fluid model described in chapter 2 

in which the fluid viscoelasticity increases as the reaction proceeds and gas is produced 

that then diffuses into the bubble. 

When the bubble volume fraction is large, bubbles are affected by the proximity of 

their neighbours and the assumption of spherical symmetry breaks down. In chapter 

4 we analyse the growth of identical bubbles in a two-dimensional hexagonal array of 

bubbles and liquid. In this chapter we study the size and shape of bubbles as the fluid 

films separating them thin by analysing a small region of the fluid window, equal to 

1/12 of a hexagonal cell. Here we adapt an existing simulation developed by Harlen 

[22] to include the effects of gas diffusion. Comparisons are made between the full 

two-dimensional, finite-element solution and two approximations. When the liquid 

layer becomes very thin we can assume that velocity gradients and polymer stresses 

are independent of fluid depth and so we are able to construct a one-dimensional, 

planar, approximation. In the opposite limit we assume that the bubble remains circular 
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throughout the expansion. Due to the geometric differences between two and three 

dimensions we also present axisymmetric models for the strut in an open cell foam and a 

circularly symmetric section of the window between two bubbles in a closed cell foam. 

In reality foams are not made up of identical bubbles. The competition between 

bubbles of different sizes for the available gas gives rise to the surface tension driven 

phenomenon known as Ostwald Ripening. This causes small bubbles to shrink while 

large bubbles continue to expand. In chapter 5 we use an approximate model for 

a distribution of spherical bubbles of varying sizes to investigate the effect of fluid 

rheology on Ostwald ripening and the final bubble size distribution in a dilute suspension 

of bubbles. We then extend the two-dimensional hexagonal geometry of chapter 4 to 

include bubbles of two different sizes to investigate higher volume fractions. We solve 

the full two-dimensional problem for bubbles expanding in an Oldroyd B liquid and 

make comparisons with a circular approximation in which gas diffusion is instantaneous. 

In this way we are able to predict the final bubble sizes and the shape of the gas- 

liquid interface at various stages of the expansion. Chapter 6 provides discussion and 

conclusions of the work presented in chapters 3 to 5. 

The fluid constitutive models referred to in the following sections will be described fully 

in chapter 2. 

1.3 The Reaction Injection Moulding Process 

The major development of reaction injection moulding technology was pushed by the 

needs of the U. S. automotive industry following a 1972 Congress mandate that bumpers 

on all cars sold in the U. S. should withstand a5 mile per hour impact without damage. 

Reaction injection moulding production in the U. S. grew from 2000 tons in 1974 to 

17 000 tons in 1978, by 1987 production had risen dramatically again and included 

application to interior car parts, furniture, construction items such as window frames, 

appliances and recreational equipment. 



Chapter 1. Introduction 8 

In conventional thermoplastic injection moulding, the polymer is heated until its 

viscosity is low enough that it can injected into moulds. The mould is then cooled, 

the polymer solidifies, and the product is turned out. During this process there is no 

chemical change in the material but very high temperatures are often required so that 

cooling can be a relatively lengthy process. 

Reaction injection moulding is a method for rapid production of complex plastic 

parts directly from low viscosity monomers. The liquid reactants are combined by 

impingement mixing as they enter the mould. Mixing activates the reaction and solid 

polymer forms by cross-linking or phase separation so that parts can often be removed 

from the mould in less than a minute. Bubble density gradients occur in the final part 

in the direction of the flow. These can be caused by bubbles at the flow front having 

longer to grow and experiencing lower pressures, coalescence of bubbles near the front, 

and temperature gradients in the mould walls affecting the rate at which the reaction 

progresses to gelation. 

The viscosity of materials entering a reaction injection mould are of the order 0.1-1Pas 

compared to 102 - 105Pas for thermoplastic injected materials. This has the advantage 

that large parts with complex shapes can be made relatively easily and cheaply. However, 

a disadvantage of using low viscosity liquids is that if the flow into the mould is too rapid 

air may be entrained and large bubbles appear in the final part. This is the greatest source 

of scrap production in reaction injection moulding. In addition, the liquid reactants are 

highly dangerous and often carcinogenic. 

Mould pressures are typically very low in the reaction injection moulding process, 

resulting in lighter weight and lower cost moulds than in thermoplastic injection 

moulding. 

Since reaction injection moulding uses polymerisation rather than cooling to set the 

part shape the temperature of the mould walls is much closer to the temperature of the 

material than in thermoplastic injection moulding. Typically there might be a difference 

of 30°C between mould walls and materials compared to a difference of 175°C between 

thermoplastic mould walls and materials. Other processes use polymerisation to set the 
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part shape but employ hot mould walls to activate the reaction. 

More detail regarding reaction injection moulding can be obtained from `The 

Fundamentals of Reaction Injection Moulding' [29]. 

1.4 Reaction Chemistry of Polyurethane 

The main polymer used in foam manufacture is polyurethane. Polyurethane is made 

by reacting two groups of reactants: molecules with isocyanate end groups (NCO); 

and polyols, low molecular weight polymers containing OH end groups. There are 

two reactions involved in making polyurethane foam. In the first molecules containing 

isocyanate end groups react with water generating carbamic acid. This compound is 

unstable and degenerates into amine and carbon dioxide. The carbon dioxide causes 

foaming and the amine reacts again with a second isocyanate group to form a urea 

bond. Figure 1.6 shows this reaction diagrammatically. Thus one complete reaction 

involves two isocyanate groups and one water molecule. In the second reaction polyol 

molecules react with isocyanate groups to produce urethane groups (see figure 1.7). Most 

molecules contain either two OH groups or two NCO groups, one at each end, so that 

these reactions lead to the synthesis of linear polymers. However branching may be 

introduced by adding a few molecules with functionality greater than two. The ratio of 

NCO groups to OH groups (in the water and polyol) is called the stoichiometric ratio. 

In practice the foaming process is more complicated as other elements are added to 

control the properties of the cured foam and the foaming reaction. For example, volatile 

compounds are added as blowing agents and surfactants are often used to stabilise the 

bubbles. Different molecules with isocyanate end groups can be used by changing 

the `R' part of the molecule. The NCO+H20 segments are referred to as hard block 

segments with the water molecules playing the role of chain extender. The long 

polyol molecules are referred to as soft block segments because of the presence of a 

flexible alkane chain between the OH groups. The resulting polymer is therefore a block 
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Figure 1.6: Isocyanate and water reaction, resulting in hard block segments. 
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Figure 1.7: Isocyante and polyol reaction, resulting in soft block segments. 
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copolymer consisting of hard and soft block segments. It is observed that the ratio of 

hard to soft block segments affects the level of cell opening. 

In reaction injection moulding the moulded part is usually removed from the mould 

while hot (the reactions are highly exothermic) to speed up the process, so the liquid 

must have gelled and cured sufficiently to hold the required shape. Gelation occurs 

through a combination of two mechanisms. The inclusion of isocyanate molecules 

with functionalities greater than two produces branching during polymerisation and the 

formation of a gel held by chemical bonds. In addition, as the temperature decreases 

phase separation occurs between the soft and hard block phases. This phase separation 

forms a physical gel as hard block segments of different molecules are held together. 

1.5 Bubble Growth in Newtonian and Viscoelastic 

Liquids 

For small bubble volume fractions bubbles remain isolated, and so remain spherical 

during the expansion. Several studies are available on bubble growth where expansion 

is driven by gas diffusing from the surrounding liquid. Here we present a brief summary 

of previous work on bubbles expanding in Newtonian and viscoelastic fluids. The 

assumption of spherical symmetry breaks down as the bubble volume fraction increases 

and bubble growth is affected by the presence of neighbouring bubbles. Few studies 

of the effects of proximity of neighbouring bubbles have been reported in the literature 

though we review two that study two-dimensional bubble expansion. 

1.5.1 Growth of Isolated, Spherical, Bubbles 

There have been a number of studies of the expansion of a spherical gas bubble due to 

diffusion of gas from the surrounding liquid. 

Amon and Denson [1] introduce the idea of a `cell model' -a spherical bubble 
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surrounded by a spherical envelope of fluid which contains a limited supply of gas. 

The volume of fluid is dictated by the number of bubbles per unit volume in the cured 

foam. Arafmanesh and Advani [3] describe a model for bubble growth in a Newtonian 

fluid driven by gas diffusion. Their model takes account of heat transfer and inertia and 

couples bubble growth to the changing foam density. 

Street [52] was one of the first to study the effects of viscoelasticity on bubble growth rate 

using the Oldroyd B fluid model. When compared to bubbles expanding in Newtonian 

liquids he found that bubbles expanding in a viscoelastic liquid with the same zero shear 

rate viscosity have a higher initial growth rate followed by a cessation of growth as 

bubbles interact to form thin liquid films. Tanasawa and Yang [54] and Ting [55] also 

studied bubble growth in an Oldroyd B fluid and, like Street, assumed that all available 

gas was inside the bubble at nucleation. Han and Yoo [21] provide experimental 

results showing the effects of various parameters. At low injection pressure the growth 

mechanism is controlled by diffusion, whereas at high injection pressure there is an 

initial phase of slower growth rate before the growth rate approaches that of the diffusion 

controlled case. Melt viscoelasticity was again found to enhance the initial growth rate 

compared to a Newtonian liquid with the same zero shear rate viscosity while increasing 

the melt viscosity reduces the initial growth rate. Ramesh, Rasmusen and Campbell [41] 

give a comparison of experimental results with their own model for bubble growth in 

a power law fluid and the model of Arafmanesh and Advani [2] in which gas diffuses 

into the bubble from a limited supply dissolved in an Oldroyd B fluid. They concluded 

that the Oldroyd B model is better able to fit the experimental data capturing both the 

rapid initial phase followed by a slower growth phase and the equilibrium bubble radius. 

The two viscous models show large deviations during the initial stages of growth and, 

since these models assume a limitless supply of gas, do not predict an equilibrium bubble 

radius. 

Koopmans et al [26] model foam growth in a thermoplastic polymer by analysing an 

isolated spherical bubble expanding in a generalised Newtonian fluid. The temperature 

dependent viscosity accounts for the cooling effect of the blowing agent in addition to 
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the cooling of the polymer. 

1.5.2 Foam Windows 

At higher volume fractions the bubbles become non-spherical with thin fluid windows 

separating neighbouring bubbles. Schwartz and Roy [45] study the effects of closely 

packed gas bubbles on a gelling liquid using a lubrication approximation for the flow 

in the liquid films. In their model bubble expansion is driven by a known rate of 

gas production imposing a deformation rate on the liquid. The fluid is modelled as a 

generalised Newtonian fluid whose viscosity increases at a rate dependent on the drying 

time. For times larger than the drying time the viscosity is assumed infinite and a final 

fluid profile is obtained. Their model includes the effects of surfactant molecules on the 

fluid-gas interface. Surfactant concentration affects the interface dynamics in two ways: 

Marangoni stress, caused by surface tension gradients, hardens the liquid-gas interface 

and thickens windows while the surfactant locally reduces the surface tension. When 

sections of the film become very thin a disjoining pressure caused by Van der Waals 

and other molecular forces tends to prevent window breakage. 

Pozrikidis [35] considered the expansion of two dimensional bubbles surrounded by a 

Newtonian liquid, in square and hexagonal arrays, for a specified areal flow rate. Here 

the long time structure of the foam is a strong function of the capillary number and the 

thickness of the liquid films decreases in time according to a power law relation with 

film rupture occurring at infinite time. 

In the event that the liquid windows break, all the liquid is found in struts that stretch 

and deform as the foam continues to expand. These stretching struts have similarities 

with stretching filaments that have been described in numerous papers. Szabo [53] 

provides a detailed analysis of the forces on a filament with circular cross section 

attached to horizontal moving plates. He analyses the model to ascertain the importance 

of inertia, gravity and surface tension with various viscoelastic fluid models. These 

calculations were done specifically for use with filament stretching rheometers to ensure 
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that measurements are appropriately corrected. Entov and Hinch [15] use a FENEcr 

constitutive model to describe the behaviour of a uniform cylindrical column of fluid 

which is squeezed by surface tension. The resulting extension is divided into three 

regions: early viscous times before elastic stress becomes significant; middle elastic 

times in which the strain-rate drops in order not to stretch the elastic stress beyond 

the capillary pressure and the way in which the radius decreases is dependent on the 

spectrum of relaxation times and could not be represented by a single model; and late 

times limited by the finite extension of the FENE model. These filament stretching 

models provide a useful qualitative comparison of elastic effects for our axisymmetric 

model of the liquid struts in an open cell foam (section 4.3). 

1.5.3 Nucleation 

The expansion of a foam is dependent on the formation of clusters of gas molecules 

that are able to nucleate and expand into bubbles. The calculation of the size of cluster 

that is able to nucleate and the rate at which clusters are able to overcome the nucleation 

threshold is highly complex and has been the subject of much investigation. The simplest 
form of nucleation is homogeneous nucleation which is generally used as a basis 

for describing other forms of nucleation such as heterogeneous nucleation (in which 

bubbles nucleate on the surface of impurities in the liquid phase) and crystallisation 

from solutions and melts. While there are a number of theories on the subject they are 

largely divided into two categories: classical theory dating back to the 1930's and 40's 

and, more recently, kinetic theories. 

Nucleation occurs when a cluster of gas molecules is larger than a critical cluster. 

The free energy of formation of the critical cluster can be thought of as a free energy 

barrier to nucleation. A decrease in size of the critical cluster increases the likelihood 

of nucleation. As the amount of gas dissolved in the liquid increases the size of the 

critical cluster, and hence the energy barrier, is reduced and the probability of nucleation 

increases. The calculation of the nucleation rate involves the free energy associated 
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with the surface of the critical cluster, which is difficult to obtain. In the classical 

theory a capillarity approximation allows the free energy of formation of a cluster to 

be calculated from bulk thermodynamics. Validity of this assumption is questionable 

because of the high surface curvature of clusters involved. There have been numerous 

attempts to correct this -a review is given in [23]. A kinetic theory developed by 

Ruckenstein et al (eg. [44]) and later applied to the formation of gas bubbles by Shen 

and Debenedetti [48] avoids the capillarity approximation by deriving a balance between 

the rates of dissociation (the rate at which molecules on the surface of a cluster leave the 

surface layer by overcoming a potential energy barrier) and condensation (rate at which 

molecules diffuse from the external field). 

The main difficulty arising in applying these theories to bubble growth and foam 

formation is that these are microscopic theories and the bubble growth models are 

macroscopic. Shaft et al [46] and [47] divide foam expansion in Newtonian liquids 

into two phases -a nucleation phase and a bubble growth phase. In the nucleation phase 

the bubble growth and gas diffusion equations are solved locally in the neighbourhood 

of each bubble. An `influence volume' is assigned to each bubble by setting the outer 

radius of a spherical shell of liquid to be that at which the gas concentration falls below 

the nucleation threshold. As the bubbles grow and the gas concentration in the bulk 

decreases the influence volumes increase in size. Outside the influence volumes the 

gas concentration is higher than the nucleation threshold and new bubbles are able to 

nucleate. Eventually all the liquid is assigned to influence volumes and the nucleation 

phase ends with a distribution of bubble volumes, each surrounded by a spherical shell 

of liquid containing a fixed mass of gas. Final bubble volumes are calculated via a mass 

balance on each cell. They found that decreasing the nucleation rate or increasing the 

bubble growth rate resulted in fewer bubbles being formed. 

Due to the complex nature of the nucleation process we will study the expansion of 

bubbles from the end of the nucleation phase. 
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Much of the work in this thesis concerns the solution of partial differential equations with 

variations in space and time. In this section we describe the main numerical methods 

employed in this thesis to solve these equations. 

1.6.1 Spatial Variations 

In chapter 3 and part of chapter 4 the geometry and assumptions made reduce the 

governing equations to a one-dimensional set. In chapter 3a spherical geometry allows 

the spherical layer of liquid surrounding a spherical gas bubble to be discretized into a 

series of spherical shells as shown in figure 1.8. In chapter 4 the liquid film between two 

bubbles is pulled into a long, thin, filament and we make assumptions that, again, reduce 

the problem to one dimension and allow us to discretize the computational domain into 

a series of trapezia as shown in figure 1.9. Since spatial variations are restricted to 

one dimension we can use finite difference methods to discretize derivatives. Since the 

nodes are not equally spaced we use 

ac ci+l - ci 
ä-x xt+l - xi 

for first derivatives and 

__ 
8x 8x 

aý2 
Z(xi+l - xi-1) 

2 
Gi+l - Ci 

- 
Cl - Ci-1 

(xi+l 
- x1)(xi+1 - xi-1ý 

TXT- 
xi-1)(xi+1 - xi-1)/ 

for second derivatives. However, when the simplifying assumptions that reduce the 

solution space to one dimension are not made we require methods to solve the two- 

dimensional forms of the equations. Finite difference methods can also be used in 

multiple dimensions by solving the equations on an orthogonal grid. However, the 

complex shape of the fluid domain makes it difficult to apply the boundary conditions. 
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Figure 1.8: Schematic diagram showing the computational grid for chapter 3. 
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Figure 1.9: Schematic diagram showing the computational grid for the finite difference 

calculations in chapter 4. 
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Figure 1.10: Diagram showing the computational grid for the finite element calculations in 

chapter 4. 

Instead we discretize the two-dimensional region into a triangular mesh and use a finite 

element method. Figure 1.10 shows the computational region for the finite element 

calculations in chapter 4. Details of finite element methods can be found in numerous 

books, however [7] gives a clear introduction while [11] and [24] give more detailed 

explanations. Here we outline the theory applied to the two dimensional Laplace 

equation, Dec = 0. 

The domain is discretized into a series of elements that can be of any shape, however the 

simplest (and the ones we use) are triangles. We approximate c as a sum of discrete c,,,, 

(the value of c at node m) multiplied by interpolating functions 0,,,: 

c(x) =Z cmgm(X). (1.1) 

m 

The interpolating functions satisfy the conditions gm(xm) =1 and cm(xs) =0 where 

s0m. 0, is only non-zero in elements which include node in. For triangles with 

nodes at the vertices the interpolating functions are linear. However, more complex 

elements use interpolating functions that are quadratic or higher order polynomials. 

In particular, spectral element methods use small numbers of elements with high 

order polynomial interpolation within each element. For the linear triangular element 



Chapter 1. Introduction 19 

interpolating functions are obtained by considering the shape function for the single 

element consisting of nodes at xi, x2 and Xk shown in figure 1.11: 

c=ao+a1x+a2y 

with c=c; at x;, c,, at xj, and ck at xk. Solving for a0, al and a2 and rearranging to 

obtain c= CA + cjq5 + ck¢k gives the element interpolating functions 

cý = 2A 
((xiyk - xkYj) + (Yj - Yk)x + (Xk - Xj)y) 

Oj = 2A 
((xkyti - XiYk) + (Yk - ys)x + (x; - Xk)y) 

Ok = 2A 
((xsyj - xjyi) + (Yi - yj)x + (x1 - x')Y) 

where A is the area of the triangle. The interpolating function cbm is then obtained by 

Figure 1.11: Schematic diagram showing a triangular element with nodes x1, x3 and xk. 

summing the element interpolation functions for each element including the node at x,,,. 

Substituting the approximate solution 1.1 into Laplace's equation gives a residual, R: 

E 
Cm020m = R. 

m 

The method of weighted residuals minimises this by multiplying by a weighting 

function and integrating over the fluid volume, V, to give 

JRWICdV = 0, 
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where wk are the weighting functions associated with node k. Galerkin's method uses 

the interpolating functions as the weighting functions, thus 

EmOkV2&,, dV=0. 
m 

fV 

By integration by parts we can obtain two integrals: one over the fluid volume and one 

over the surface bounding the fluid volume, 

EC. f 
VOkVOmdV =J Vc. nokdS, 

,nvS 

E C, Mmj =J Vc. nq5jcdS, (1.2) 
MS 

where the matrix Mmk = fv Vc5kVq5mdV. Voi can be calculated for the element 

consisting of nodes at xi, x3 and xk as 

80i, igoi äxayý 

Thus the element containing nodes i, j, and k contributes to the following coefficients 

of M: 
ii ii ik 

ji ii jk 

ki ki kk. 

Since VO is constant over triangles, the contributions to M from this element are 

(Yj - Yk)2 
+(Xk - 2j)2 

(Yj - Yk) (Yk -V j) 

+(xk - 2j) (27i - Xk) 

(Yk - Yi) (Yj - Yk) (yk - yi)2 M 
4A +(2i - Xk) (Xk - Xi) +(Xi - Xk)2 

(vi - y�j)(yj - Yk) 
+(xj - Xi)(xk - x, ) 

(Yi - Yj) (Yk - Yi) 

-{-(27{ - Xk)(XJ - Xs) 

(Yj - Yk) (Yi -V j) 
+(Xk - 2, j) 

(Xi 
- Xi) 

(Yk - Yi) (Yi - Yj) 
+(x1 - Xk) (Xi - X+) 

(y= - yj)2 

+(xj - xi), 
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Thus M is constructed by summing contributions from each element. The surface 

integral on the left hand side of 1.2 is obtained from boundary conditions. For Dirichlet 

boundary conditions the integral is zero since q=0 for all unknown ck. For Neumann 

boundary conditions the surface integral can be calculated directly from the boundary 

conditions. The discretization leads to a matrix equation of the form Mc =r for the 

vector of c, coefficients c. 

Conjugate Gradient Method 

The system Mc =r is solved for the symmetric, positive definite matrix M, using a 

conjugate gradient method. Solving Mc -r=0 is equivalent to finding the minimum 

value of the function 4) =2 cTMc - Jr. One way to do this would be by the method of 

steepest descents. Here 4D represents a surface and co is a starting point on the surface. 

In order to find an improved estimate of the true value of c we first find the steepest 

gradient given by 

-V (co) =r- Mco = po. 

Then the new estimate, cl is given by the minimum of (D in the direction of po. Let 

cl = co + a0p0 

then for a stationay point d-lý/dao =0 so that 

Po Po 
T 

Po MPo 

From the point cl we move in the new direction of steepest gradient until we reach c2, 

the minimum in this direction, and so on. 

The conjugate gradient method allows us to minimise (D in a number of directions 

simultaneously. When the matrix M is positive definite the minimum value that is the 

true solution, c, lies at the centre of the elliptical level curves '1(c1). Thus, we find cl as 

above but then choose a new search direction, pi, that points to the centre of the level 
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curve through c1. In this way the new direction, pi, is in a conjugate direction to po 

satisfying the condition that 

(1.3) Pö MPi =0 

In order to find pl we let 

Pi = ni - ßiPo 

where nl is the normal to the level curve through cl at the point cl. Substituting this 

into 1.3 gives 

'a' = 
Pö Mn, 

Pö MPo 

Then we search for c2 by finding the minimum value of ß(c1 + alpl) in the direction 

Pi. 

The algorithm for finding ci is: 

Q'i = 
Pä'n2 

Pi MPi 

Ci+l = Ci + OliPi 

ni+i = ni - aiMPi 
ni+1T MPi 

Pi MPi 

Pi+i = ni+i - ßiPi. 

Provided that M is non-singular the search directions pi are linearly independent and, 

with exact arithmetic, the conjugate gradient method converges exactly when the number 

of iterations equals the size of the matrix. However, due to round off errors, the numerical 

algorithm is in practice iterative. The rate of convergence depends on the ratio of largest 

to smallest eigenvalues of M. 

In order to further improve efficiency the basic method is preconditioned, that is it is 

replaced with a problem with the same solution but with a smaller ratio of eigenvalues. 

This is done by multiplying the original equation by a preconditioner matrix that is an 

approximate inverse of M. In order to preserve the symmetry of the system we solve 
IV-1 IV -1 IV I -1 

L ML Lc=L r, 
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N-I 
where the preconditioner, L, is obtained from an incomplete Cholesky factorisation 

of M. The complete Cholesky factorisation of M is a lower triangular matrix, L, such 
N 

that M= LLT. The matrix L is formed using the same algorithm as the complete 

factorisation but only has non-zero entries if the corresponding element of M is non- 
__T NN 

zero. Consequently LL gives an approximate factorisation of M, so that LML has a 

lower ratio of eigenvalues. 

Further details of these methods are to be found in [17] and [36]. 

1.6.2 Time Integration 

There are numerous methods for stepping through time and considerations of stability, 

accuracy and efficiency dictate the appropriate choice. The simplest, first order scheme, 

is a forward Euler method in which at is calculated at the current time and the new c 

is calculated by 

ýn+l = Cn + -At. 

The true value of 0+1 could be expressed as an infinite series 

Cn+l_Cn+ac ot + a2 of2 03 of3 +... at ate 2! + äF3 7! 

which is truncated after the order At term, thus each step involves errors of order Ott, 

so that this scheme produces errors of order At. Higher order methods are available by 

using multiple calculations in each time step such as Runge Kutta methods. 

Applying this, and other forward methods, to the gas diffusion equation, öc/ät = DV 2c, 

produces an unstable scheme in which errors escalate if the time step At > (0x2)/2D 

[36]. This critical time step can be thought of as time scale for gas to diffuse over one 

spatial step Ox. This instability can be overcome by using either a backwards method in 

which the V2 term is calculated at the new time, 

cn+1 -0= DQtV26n+1 
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or by a Crank-Nicolson method which calculates the V2 term as an average of the value 

at the current time and at the new time 

6n+1 _ ei = 
DOt 

(V20+1 + V2Cn)2 

The Crank-Nicolson method has the advantage of being second order accurate in time. 

Whether one uses a finite difference or finite element method to express the V2 term 

spacially, the solution of an equation of the form cM =r is required. In the case 

of the finite difference method M is a band-diagonal matrix that can be solved using 

standard numerical recipes [36] routines to construct and solve an LU decomposition. 

In the finite element case it is a sparse symmetric matrix that is, again, solved using the 

preconditioned conjugate gradient method described above. 
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Chapter 2 

Fluid models 

In this chapter we present the Oldroyd B and Pompom constitutive equations that are 

used to model the non-reacting polymer. The results of bubble expansion in these fluids 

are reported in subsequent chapters. We also include a brief description of the Rouse 

model. Although we do not apply this model directly to the bubble expansion flow, 

it is the starting point for the derivation of the reacting fluid model. We detail results 

from percolation theory before going on to present the derivation and linear viscoelastic 

behaviour of the model of a reacting fluid used in chapters 3 and 4. 

2.1 Stress, Constitutive Equations and Tensor Notation 

Before discussing specific fluid models we introduce the concepts of stress and 

constitutive equations in general terms. When a force is applied to a Newtonian liquid the 

liquid deforms and remains in this deformed state when the force is removed. However, 

when a force is applied to an elastic solid it deforms but returns to its original shape 

when the force is released. Polymeric liquids display a complex combination of these 

two types of behaviour. 

The stress in a material is defined as the force per unit area acting across a plane of unit 
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normal n, such that the force density, f 

f =0. "n. 

The stress, a, is therefore a tensor field with component ozj. In an incompressible 

material part of the stress is an isotropic pressure required to maintain conservation of 

volume. It is therefore useful to express the stress, a in the form 

cr = -PI + S, (2.1) 

where p is the isotropic pressure and S is the extra stress which depends on the 

deformation and deformation rate of the material. It should be noted that, unlike the case 

of Newtonian fluids, the extra stress in many viscoelastic fluid models is not traceless. 

The rate of deformation of the material can be obtained from the gradient of the velocity 
field, q(x) written as Vq where [Vq]ij =e. However only the symmetric part 

of this tensor, E=2 (Vq + VqT), describes deformation as the antisymmetric part, 
fl =2 (Vq- VqT), represents a solid body rotation. The concept of strain is introduced 

by comparing the length of a fluid element at the current time to that in a reference 

configuration. The tensor F is defined by F: j =ä where x is the current position 

of the particle at time t and x' is the position in a reference configuration. The current 

length of a fluid element, dx, is 

dx2 = dx " dx = FTF : dx'dx' 

The tensor C= FTF is the Cauchy-Green tensor. 

Two examples of constitutive equations are those of a Newtonian liquid in which the 

non-isotropic part of the stress is proportional to the deformation rate 

S= 2µE; 

and a neo-Hookean rubber where the non-isotropic part of the stress is proportional to 

the deformation 

S=GB 

where B= FFT is the Finger strain tensor. Further details can be found in 

`Understanding Viscoelasticity' [34]. 
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2.2 Viscoelasticity 
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A non-Newtonian fluid is any fluid not governed by the Newtonian constitutive equation, 

S= 2µE. Non-Newtonian effects can be classified into two groups: non-linear 

effects associated with the non-linearity of the constitutive relation (effects such as shear 

dependent viscosity, normal stress differences and high extensional resistance); and 

viscoelasticity, the extent to which the stress is dependent on the strain history rather than 

just the current strain-rate. Most non-Newtonian fluids have a characteristic time scale 

r. In a flow with characteristic shear-rate ry and time T we can define two dimensionless 

numbers, the Deborah number, De =r 1T, and the Weissenberg number, Wi= r'y 

[34]. The Deborah number measures the transient nature of the flow relative to the fluid 

time scale and characterises the memory effect associated with viscoelasticity. If the flow 

time scale is large compared to the relaxation time the material responds like a fluid, if 

it is small compared to the relaxation time the response is like an elastic solid. Thus in 

the limit De =0 we have a visocus liquid and in the opposite limit, De = oo, we have 

an elastic solid. 

The Weissenberg number measures the nonlinearity of the stress strain-rate relationship. 

For example, in shear flow it gives a measure of the ratio of the first normal stress 

difference to the shear stress. 

In a Newtonian fluid stress is linearly dependent on current strain-rate so that De = 
Wi = 0. In viscometric flows where the time scale for the flow is infinite (steady shear 

flows), De =0 while Wi > 0. Conversely in small amplitude oscillatory flows the 

stress strain-rate relation is linear but time dependent, so that the relation is Wi=0 

but De > 0. This latter flow regime is referred to as linear viscoelasticity. Figure 2.1 

shows a Pipkin diagram from [34] that maps all possible flow types in terms of Deborah 

and Weissenberg numbers. In general flows both the Deborah number and Weissenberg 

number are non-zero. 
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Figure 2.1: Schematic diagram mapping all possible flow types in terms of Deborah number 

and Weissenberg number. 

2.2.1 Linear Viscoelasticity 

In the linear viscoelastic regime (small strain amplitude) the extra stress, S, is a linear 

function of deformation rate and so can be written 

t 
S=2f G(t - t')E(t')dt'. (2.2) 

00 

Here it is assumed that no aging occurs i. e. the experiment yields the same results today 

and tomorrow, and that stress does not depend on future deformation. Equation 2.2 is 

known as Boltzman's constitutive equation. He was the first to quantify the memory 

effect in viscoelasticity and proposed this equation in 1874. G is a function which 

depends on all past times, relating stress to strain history. If G is constant this reduces 

to an elastic solid -a material with infinite memory so that it `remembers' its initial 

configuration and resists deformation. In the opposite limit of a Newtonian viscous 

liquid we have G(t - t') = p5(t - t'). Here the stress depends only on the deformation 

rate at the current time and resists deformation rate. In a viscoelastic liquid the stress 
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depends on a combination of deformation and deformation rate. 

There are a number of rheological experiments available to measure the properties of a 

fluid in the linear regime. The first of these is a step-strain where a constant strain is 

applied instantaneously to a sample of fluid and the shear stress is then measured as a 

function of time. In a step-strain 2Eyy = y(t') = ryö(t') so that 

Sxy = ryG(t). 

In the elastic solid limit where G is constant, a constant stress needs to be applied 

to maintain a constant strain. In the Newtonian liquid limit, stress is only non-zero 

at t=0, thus no stress is required to maintain a constant strain since all the stress 

is instantaneously relaxed. Between these limits, stress relaxes with a characteristic 

relaxation timer (see figure 2.2). 
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Figure 2.2: Schematic of G(t) for a viscoelastic fluid. G(t) for a Newtonian fluid is zero except 

when t=0 and G(t) for an elastic solid is constant (equal to the elastic modulus). Here the 

elastic modulus G=1 and the characteristic relaxation time r=1. 

Another commonly used experiment is that of small amplitude oscillations, used to 

measure the elastic and viscous responses of the fluid. An oscillatory strain is applied so 

that 
Ezy = 7(t) = eRe[e`''t] 
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so that, 

y(t) = cRe[iwe'""]. 

The shear stress is therefore 

00 
Sxy =J iwce"'-3)G(s)ds 

where s=t- t'. This can be represented in two ways: 

S zy = G*(w)ry where G*(w) = G'(w) + iG" (w) = fö iwe-i`''G(s)ds 

or SSA, = rj*(w) , where r1*(w) = 71'(w) + irk" (w) =f o" e-'"'"G(s)ds. 
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G*(w) is called the complex elastic modulus whereas rj*(w) is called the complex 

viscosity. The storage modulus, G'(w), the real part of G*(w), is in phase with ry 

and measures the elastic response of the liquid, G' = -wry". The imaginary part of 

G*(w), the loss modulus, G"(w) = wrý'(w), is in phase with - and measures the viscous 

response. 
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Figure 2.3: Schematic of log(G'(w)) and log(G"(w)) against log(es) are shown as solid and 

dashed lines respectively. An elastic solid with the same elastic modulus has log(G) =0 and a 

Newtonian fluid with the same zero shear rate viscosity has log(G") = log(w) + log (p). 
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In order to measure the viscosity of the fluid a constant deformation rate is applied to a 

sample, EZy _ry so that 
ft 

Changing the variable of integration gives 

00 
1=ry=J G(T)dT 

When G(t) is constant we see that the viscosity for an elastic solid is infinite while 

G(t) oc b(t) gives a constant viscosity for a Newtonian liquid. Since a constant strain 

rate is being applied, the magnitude of the strain eventually gets large enough so that 

we may see non-linear effects if the shear-rate is large enough. We may then see shear 

thickening or, more commonly, shear thinning (figure 2.4 shows a schematic diagram). 

Most polymeric liquids show shear thinning behaviour because, as the shear rate is 

increased, the long polymer molecule becomes elongated in the direction of the flow 

and reduced in size in the gradient direction which reduces the viscosity. However, 

the Oldroyd B model (which is introduced in the next section), does not show shear 

thinning because the extension of a linear elastic dumbbell in the gradient direction 

remains constant so that the viscosity is not reduced. 

2.3 Constitutive Equations For Non-Reacting 

Viscoelastic Liquids 

In order to capture the viscoelastic effects in the liquid surrounding the bubbles we 

use the Oldroyd B and Pompom models to describe the fluid. The Oldroyd B model 

is the simplest constitutive equation for a polymeric fluid that can be derived from a 

microscopic model. It is most appropriate for dilute polymer solutions at moderate 

strains as it does not include entanglement effects or finite extensibility. The Pompom 
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Figure 2.4: Schematic diagram showing constant viscosity in the linear regime, here the slope 

= ri. Shear thinning (solid line), and shear thickening (dashed line) are shown in the 

nonlinear regime with smaller'and larger gradients respectively. 

model of McLeish and Larson [30] is appropriate for entangled long chain branched 

polymers. Qualitative differences arise from the separation of the stretch and orientation 

in the Pompom model. The Oldroyd B fluid does not predict shear thinning whereas 

the Pompom model does, however, the bubble expansion flow does not contain any 

shear. Both models capture extension hardening with strain. References [30] and [6] 

give descriptions of the equations required by the Pompom model and reference [25] 

describes the properties of the model in shear and extensional flows. 

2.3.1 Oldroyd B Model 

The Oldroyd B model may be derived by representing the gross distortion of a polymer 

molecule by the extension of a dumbbell consisting of two beads joined by a linear 

spring. For a solution of dumbbells the stress is defined as 

a= -pI + 2µE + Qp (2.3) 
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Figure 2.5: Oldroyd B model - beads and spring. 
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where v. p is the extra stress contributed by the dumbbells. The force exerted by the 

dumbbells across a surface is obtained by counting the number of dumbbells intersecting 

the surface (see figure 2.6). Molecules with end to end vector R intersect a surface with 

normal n if they lie within a distance R R. n of the surface. Each of these molecules 

contributes its entropic force F to the polymer stress, QP. The number of molecules with 

end-to-end vector R is given by vb where v is the total number of molecules per unit 

volume and 7P is the probability distribution function for the dumbbell orientations. Thus 

the force density is given by 

Tp "n= -v J VFR " nd3R. 

In the Oldroyd B model the entropic spring is assumed to be Hookean with F= -icR 

Figure 2.6: Oldroyd B model - stress generation. 

so that the stress is given by 

cp = vac J bRRd3R. 

The equation of motion for the second bead relative to the first is then given by 

ý(R-R"Vq)=-KR, 
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where C is the friction coefficient between the beads and fluid and q is the fluid velocity 

field. The Fokker-Plank equation for conservation of dumbbells is 

L 
+V. -q +Va. I Rb-DýR) =0. (2.4) 

The second term here is the advection of dumbbells by the flow, and VR represents the 

gradient with respect to dumbbell orientation so that the third term is the divergence of 

the flux of dumbbells in orientation space due to stretch and diffusion (D = kBTIe is 

the diffusion coefficient). Substituting for R, multiplying by RR and integrating gives 

a closed equation for the second moment 

DA=A"Vq+(Vq)T"A-T(A-I), 
(2.5) 

where A-= f 
kB RRd3R and r=Z. The time derivative A== Dt -A. Vq-(Vq)T. A 

is the upper convected derivative which describes the rate of change of A in a frame that 

is moving and deforming with the fluid. The term T (A - I) represents the relaxation of 

the polymer towards its equilibrium configuration. The extra stress contributed by the 

polymer is crP = G(A - I), where G= vkBT is an elastic modulus. 

By substituting the expression for cp into equation (2.5) we get the more common 

version of the Oldroyd B constitutive equation, in which Qp satisfies the Upper 

Convected Maxwell equation 
v 
ap + -Qp = 2GE 

T 
(2.6) 

In the limit of small Deborah number I Vqj T«1, I QP irr « op so that to leading order 

Qp = 2GrE. Thus in this limit the polymer contributes an extra Newtonian viscosity 

GT. In the opposite limit, lVglr » 1, the model behaves as an incompressible elastic 

solid with shear modulus G. This can be seen by considering the Finger strain tensor B. 

For a rubber Qp = G(B - I). Applying the upper convected derivative gives 
QP 

= 2GE 

(since B= 0) in agreement with equation 2.6. The model is able to capture the entire 

range of behaviour from a viscous fluid to an elastic solid. 

In the linear regime of small strains (section 2.2.1) A=I+a where (al « 1, equation 
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2.5 becomes 

ä- (Vq + VqT) = -1 a 
T 

to leading order. This yields the solution 

a=2JLt e- t, E(t')dt'. 
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Hence, for the Oldroyd B fluid in the linear regime, the relaxation modulus is G(t) = 

p6(t) +Ge-T where 6(t) is the Dirac delta function. The response of an Oldroyd B fluid 

to oscillatory strain is given by 

r00 
G''(w) =J iwe'"'"(p6(s) +Ge-=)ds 

0 

= iwµ +G (w272 + iwr) 
. 1+ w272 

Thus at low frequency G(w) = Gw2 and G"(w) = w(µ + Gr). 

We can calculate the orientation tensor, A, analytically for simple non-linear flows such 

as simple shear and planar extension. In the start-up of shear flow 

000 
Vq= ;00 fort>0. 

000 

Substituting this into (2.5) yields 

2y2T(T - tot/' - re-t/1) + ryT(1 - e-týT) 0 

A= '7(1-e-t/T) 10 

001 

The transient shear viscosity is given by Qxy/ry = µ+G7-(1-e-ter) which is independent 

of -'y and tends to µ+ Gr for t»r. Thus the Oldroyd B fluid has a constant shear 

viscosity. In steady shear flow the orientation tensor becomes 

1+ 2ý2T2 ""yr 0 

A= '"yr 10 

001 
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Thus there is a positive first normal stress difference, o-o yy = 2Gy2r2 as is observed 

experimentally in polymeric liquids, and which is responsible for flow phenomena such 

as rod climbing and die swell, but the second normal stress difference is zero. 

In the startup of planar extension flow 

10 

Vq=E 0 -1 
00 

0 
0 fort>0 

0 

where E is the extension rate. This yields 

1- 2TEe-eýi-zTEý/T 
Z-2r 

0 

0 

o0 
1+ 2TEe-t( i+2ni)/T 

1+2r 
0 

01 

Thus the transient extensional viscosity is given by 

O'xx -2 e-t(i-2TE)/T e-t(1+2TE)/T ýy 
- 411 + 2G7- 

(1 
- 2TE) (1 + 2TE) 1- 27-E 1+ 2TE 

) 

and is strongly dependent on the extension rate ET. In particular for ET > 1/2 

the extensional stress grows exponentially without bound due to the absence of finite 

extensibility [401. However, provided that we restrict our considerations to flows with 

finite extension strain the Oldroyd B model captures the extension hardening found in 

the filament stretching experiment. 

2.3.2 Rouse Model 

Although the Oldroyd B model captures the competition between stretching by velocity 

gradient and entropic relaxation it is a rather crude representation of a polymer and 

does not capture the linear viscoelastic spectrum. In the Rouse model the molecule is 

represented by a random walk of N steps. Each step is modelled as beads connected by 

a spring as in the Oldroyd B model. In this way the drag on the molecule from the fluid 
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Figure 2.7: Rouse model - random walk made up of beads and springs. 
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is now distributed at points along the chain. By a similar argument to the previous the 

polymer stress is obtained by summing the contributions from each link in the chain so 

that N-1 

ap = vru 1: ((Rn+l - W)(Rn+l _ Re)ý" 
n=0 

where x is the entropic spring constant, and R' is the position vector of bead n. The 

net force acting on bead n is -rc(Rn+l - 2R" + R"'1) except for the two end beads 

n=0 and n=N. Thus the equation of motion of the bead with position vector R" in 

the absence of flow is 

1n 
=-K(-W+1 +2R, "-W-1)+P; n=1,..., N-1 

aý0 
_-K(Rl-R°)+f°; 

aRN 
= _K(RN-1 - RN) + fN, 

at 

where e is the friction coefficient between the beads and the fluid. The Rouse model 

ignores hydrodynamic and excluded volume interactions between different points on the 

chains, so that C is constant. f" is the random force on bead n due to Brownian motion. 

The forces on each bead are uncorrelated so that (fife) =0 for i; j. 

Since the equations of motion for all the beads in the chain are coupled, we define 

normal coordinates by taking the Fourier series 

Xk =NN 
N 

cos 
(v!: ) 

Rn(t)dn. 
0 

UNIVER rri 
LIBRARY 

r_rný 
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The equations of motion uncouple to give 

rk 
ax's 

= _Ckxk + fk 
S 

at 
where 

and 

cl =2 
Nic k2, k=0,1,2,... 

Ne; ek=2NZ, k=1,2,.... 
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kN/ 
fý`ý =NF, cos lN1 f" 

o\ 
are the random forces in Fourier space which remain uncorrelated. Taking the inverse 

transform and differentiating with respect to n gives an expression for the stress in terms 

of the normal modes: 
Qp = 

ECk(Xk(t)Xk(t))" 

k 

Including the effect of a flow the equation of motion becomes 

k 
=- Xk +kfk+ Xk "Vq. 

As for the dumbbell model, we define a Fokker-Plank equation for the probability 

distribution associated with the normal modes, multiply by XkXk and integrate to get 

15t i 
(XkXjk _ Zk 

(2kBT5 
- 2ck (Xi Ji'j ý) + [VµgiI(XµXj 

'ý 
(XXi )[03 ] 

Defining Ak = kBT(XkXk)/ck gives an equivalent of equation 2.5 

DDtk 
= (Vq)T. Ak + Ak. Vq - 

Tk (Ak - I) 

for each mode, k, where T-k =f N'/21r'nk' = TR/k2. Stress is then obtained by 

summing the contributions from each mode 

N 

47p=G>Ak 
k-o 
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where the elastic modulus G= vkBT. 
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Thus for linear Rouse chains we have a spectrum of modes with relaxation times 

Tk = rR/k2. Other bead chain models give spectrums of the general form Tk = 7R/k" 

for a suitable choice of the index v. For example, the Zimm model [14] includes 

hydrodynamic interactions to give v= 3/2. For branched polymers v depends on the 

fractal dimension d f, of the molecule with v= d+ 1 [43]. 
f 

Since the Rouse model is in effect a superposition of Maxwell models, the linear 

viscoelastic results for the Rouse model are a straightforward extension of the Oldroyd 

B model. Results for the Rouse model are obtained by summing contributions from each 

of the k modes. Thus the steady shear viscosity is given by 

N 
an 

=GET 
k 

. 
ry k-i 

This is dominated by the modes with the largest relaxation times and, for large N 

00 1 GTRIr2 

77 ̂-GTRk2 =6 
k=1 

The relaxation modulus, G(t), is given by 

NN z 
G(t)=GEe *E=Gýe-rR" 

k=1 k=1 

We can also obtain expressions for the storage and loss moduli, G'(w) and G"(w), from 

the Rouse model: 
/ °° rZ 

G'ý` =J iwG E8\ rR 
-iss) ds 

00 

k=1 
00 

= G, ZWTR 

V+ iWTR 
k=l 
00 

W2TR k2WTR 
= Ci 

0+ W2-r. ' 
ý- 24+ 

WZT2l k_1 R 

Thus for small frequencies, w« 1/TR, G'(w) oc w2 and G"(w) oc w. For large 

frequencies, w» 1/TR many of the modes contribute and we can approximate the 
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sum as an integral so that 

G'(w) -GJ 
00 

k4 
+2T2 dk 

1R 

and 
G'(w) = GJ 

00 k2WTR 
dk. 

110+ w2TR 

Changing the variable of integration from k to X= k/ wR we obtain 

00 1 
UJ2 G'(w) =G WTR I X4 +1 

dX cc 

G"(w)=G w- RJ00 
X2 

dXocwä. 
0 

X4+ 1 
0 

Figure 2.8 shows a plot of log(G') and log(G") against log(w). 

s 

30 

2-2 

I/fR 

-10 
-5 -4 3 -2 -1 b6(ß) 12345 

40 

= Figure 2.8: Rouse model - Plot showing storage and loss moduli against frequency. Solid Be 

log(G'(w)), dashed line = log(G"(w)) 

2.3.3 Pompom Model 

The Oldroyd B model is only valid for dilute polymer solutions where intermolecular 

interactions can be ignored. At higher concentrations the motion of a polymer is highly 
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Figure 2.9: Pompom model - chain trapped in a tube with h free arms at each end. 
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constrained by the presence of other molecules. These constraints are captured in the 

reptation theory of deGennes and Doi and Edwards [14], [12] for linear polymers where 

the presence of neighbouring molecules restricts the motion of the polymer to a tube. 

In the process of reptation the polymers relax their configuration by diffusion along the 

tube. However, in branched polymers this reptation process is inhibited by the presence 

of branch points that cannot move freely along the tube. For such entangled branched 

polymers, McLeish and Larson [30] proposed a simple constitutive equation called the 

Pompom model to account for the effects of branching. The Pompom model considers 

the motion of an entangled melt of polymers consisting of a backbone chain connected 

to h arms at each end (see figure 2.9). The stress is dominated by the backbone section 

that is modelled by a linear chain connected to the branch points. The presence of the 

arms restricts the motion of the branch points which is modelled by an effective friction 

coefficient, Cbp, that depends exponentially on the entanglement length of the arms. As 

in the previous section 

QP = -v J V)(R)FRd3R 

=VJ V)(u)rcL2uud3u 

where x is the entropic spring constant and the end-to-end vector R= Lu is factorised 

into its length L and its orientation u. The ratio of the current length of backbone to the 

equilibrium length of backbone is denoted by A= L/Lo and represents the stretch of 

the backbone. The maximum stretch of the backbone is A=h since each of the h arms 

generates an entropic force fo so that the backbone can maintain a tension of hfo before 
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the branch points start to withdraw into the tube. The equation for the stretch, A, is 

obtained by considering a force balance on the molecule. The drag force is proportional 

to the relative velocity between the branch point and tube: 

1 DL 
Dt -Lu"Vqul 1 

This term must balance with a Hookean spring term K(L - Lo). Dividing by Lo and 

replacing uu by its ensemble average S=f zbuud3u we obtain the stretch equation 
Da 1 

=AVq: S-(A-1) (2.7) 
Dt T8 

where T, is the stretch relaxation time and r, = 6/2n. In the original model r, was 

constant, however Blackwell et al. [8] suggested a modification to account for local 

branch point withdrawal. Since the branch point friction scales exponentially with arm 
length even a small change in arm length changes the relaxation time significantly. 
Blackwell suggested that r, should be replaced 1 with re- ýý-li. 

The polymer stress, o P, can be written 

Qp = 3GA2S. (2.8) 

For the orientation tensor S we use the differential approximation where 
A 

trA 

and A satisfies the Oldroyd B equation 

A= -1 (A -1) (2.9) 

where Tb is now the backbone orientation relaxation time. Equations (2.7), (2.8) and 

(2.9) form the Pompom constitutive equations. 

In steady shear flow the evolution equation for A can be solved to give 
1+ 2'y2Tb 7Tb 0 

A= ryrb 1 0) 1 
(2.10) 

001 

IHere we use the corrected expression re r-T ( 1) instead of r, e- (A-li used in [8]. 
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then equation (2.7) gives 

0= a3+ý2 
Tb 

2y2T2 - 
8eýa-1ý(a 

6 

Provided that the backbone stretch remains small so that (A) « (h), we can make the 

simplification that the stretch relaxation time remains constant, thus the above equation 

reduces to 

A3 
+ 2y2r-2 -8 (a 

6 

This can now be solved to give 

A=1 (2.11) 
1- 

g+2ry2 r6 

Thus provided r< 2Tb A will remain close to one for all shear rates, '. As a 

consequence the Pompom model is strongly shear thinning. Indeed, it shows a shear- 

stress maximum. Figure 2.10 shows the shear component of the stress obtained from 

equation (2.8) in the case where the Pompom molecule has 5 arms. The linear regime, 

in this case, prevails until around y=0.5. When y is small A1 so that 77, = Qxy/ý = 

GTb. More detail of the Pompom model in shear and extension is given in [25]. 

2.4 Theory of Gelation 

In order to describe bubble growth in a reacting polymer we first need a constitutive 

model for a gelling system. In this section we describe some of the previous work carried 

out in this area as well as the theory of gelation and key ideas of percolation theory. 

2.4.1 Gelation 

By gelation we mean the formation of a network structure. In chemical gelation 

permanent covalent bonds are formed between multifunctional molecules while in 

physical gels a network is formed by some form of ordering. Physical gels may be 
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Figure 2.10: Stress against shear-rate for the Pompom model scaled with 1/T6 for h=5, and 

(solid line) Td = 1.0, (dashed line) Ts = 1/2, and (dotted line) Ts = 1/3. 

formed by phase separation, crystallisation, the formation of ionic bonds or specific 

geometric complexes. The main difference between physical and chemical gelation is 

that physical gelation is reversible and can be reversed by changes to the environment, 

for example by increasing temperature. We limit ourselves here to the study of chemical 

gelation. 

The process of gelation affects molecular mobility and leads to large rheological 

changes. These are clearly seen in the shear stress relaxation function, G(t). Figure 

2.11 shows a schematic diagram of G(t) derived from data in [59]. For each curve the 

extent of reaction, a, is constant. At early stages of cross-linking (a < ac) stress is 

able to relax quickly. More chemical bonds are added as the reaction progresses and the 

longest relaxation time increases until, at the gel point, a power law regime is reached 

for all t. Beyond the gel point, a>a, the relaxation modulus no longer decays with 

time but tends to the gel modulus, Ge, indicating the presence of the gel. The value of 

this gel modulus is zero at the gel point and grows with the extent of reaction. 

Before the gel point we denote by Tth the longest relaxation time of the largest molecules. 

Near the gel point, Jac - al « 1, Tth diverges in a power law. After the gel point we 
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use Tth to represent the longest relaxation time of any molecule not yet fixed in the gel. 

These components that are able to relax (sol fraction, unattached chain ends and long 

loops) become part of the gel as the reaction progresses and so -rh decreases. 

The transient part of the relaxation modulus is the Laplace transform of the relaxation 

spectrum, H(r), 
Tch 

T G(t) = Ge +I H(T)e-t/T 
T. 0 

H(T) cannot be measured directly, but can be extraced from linear viscoelastic 

experiments [33]. From the analysis of chemical gelation experiments Chambon and 

Winter [58,101 proposed a self-similar relaxation spectrum 

H(T) = r(nT 

where r(n) is the gamma function and S is the gel stiffness indicated by the slope of 

G(t) at the gel point. The exponent n is restricted to values between 0 and 1. The case 

n=0 corresponds to the limit of a Hookean solid with constant relaxation modulus. An 

upper limit of 1 is required to give a diverging zero shear rate viscosity at the gel point. 

ýi 
t 

Figure 2.11: Reacting fluid - schematic diagram showing a log-log plot of the relaxation 

function G(t) at increasing extents of reaction. Lower curves are drawn before the critical point, 

the straight line represents G(t) at the gel point and the upper curves are drawn after ac. 

Near the gel point the zero shear rate viscosity, rho and the gel modulus, G, are also 
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observed to grow in power laws [51]: 

rho«(ac-a)--' a<a,, 

Ge oC (a - a, )2 a> ac. 

The viscosity of the sol for a<a, increases due to the increase in molecule size 

and diverges at the gel point. Beyond the gel point the gel modulus, Ge increases as 

an increasing fraction of the molecules attach to the gel and strengthen the spanning 

network. Figure 2.12 shows a schematic diagram of these features. 

Figure 2.12: Schematic diagram showing the viscosity diverging at the critical point and the 

increasing gel modulus. 

DeGennes [12] in 1979 suggested that the gelation process could be described by the 

percolation model. The following assumptions regarding the polymerisation process are 

made: 

" the reactivities of all functional groups of the same type are equal and independent 

of each other 

" no intermolecular reactions between functional groups on the same molecule are 

allowed 

" cross-links are randomly formed between any pair of functional groups that can 

form a bond 

. point-like monomers are assumed (no excluded volume effects) 
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2.4.2 Percolation Theory 
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Percolation theory is a statistical mechanics tool used to model random processes or 

disordered systems. There are two types of percolation depending on how the lattice 

is constructed. In site percolation sites are either occupied with probability a or 

unoccupied with probability 1 -a. Clusters of neighbouring occupied sites are formed as 

shown in figure 2.13. In bond percolation the lattice is viewed as a graph consisting of 

edges and vertices. An edge is either open with probability a or closed with probability 

1-a. A cluster is now defined as a subgraph consisting of open edges (see figure 2.14). 

In either case a percolating cluster is a cluster that spans the lattice from one edge to 

the other. 

Figure 2.13: Two-dimensional lattice showing site percolation, shaded squares showing 

occupied sites. 

Flory [19] identified the polymerisation process with bond percolation. In this 

application of bond percolation we think of the vertices on a grid or lattice as being 

occupied by molecular units with reactive end groups. Neighbouring vertices are joined 

if the reactive end groups form chemical bonds to form larger polymer molecules 

consisting of clusters of joined molecular units. A fraction a of all the possible bonds 

(lines on the lattice) are joined corresponding to the fraction of reacted end groups. 

Clusters can consist of single isolated molecular units - clusters of size 1- up to an 
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Figure 2.14: Two-dimensional lattice showing bond percolation, dark lines showing open edges. 

infinite number. There exists a critical fraction, a, such that for a>a, an infinite 

cluster exists which spans the lattice. This percolating cluster represents the formation 

of a gel. 

In one dimension the lattice is of the form of a line of adjacent molecular units. A cluster 

of size m is formed if there are m adjacent joined molecular units. If a unit is chosen 

at random there is a probability n(m) = am-1(1 - a)2 that it is the left hand end of a 

cluster of size m since the probability that each of the m-1 bonds are joined is aii-1 

and the bonds at each end of the cluster are not joined with probability (1 - a)2. The 

number of such clusters is Lam-'(1- a)2 (neglecting the effects of the ends of the line) 

where L is the total number of lattice vertices. Thus, the average number of m clusters 

per vertex - the number density of molecules consisting of m chain segments - is n(m). 

In one dimension a, =1 since any bond which is not joined would split the spanning 

cluster into two clusters. 

Flory [19], in 1979, studied bond percolation in a Bethe lattice (also known as a Cayley 

tree). In a Bethe lattice one starts with a central molecular unit having z reactive end 

groups (figure 2.15 shows such a lattice with functionality z= 3). Each possible 

bond ends in another unit from which again z possible bonds emanate; one of these 

is connected with the origin, the other z-1 lead to new units. This branching structure 
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Figure 2.15: Bethe lattice with z=3 bonds. 
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is continued again and again. There are no closed loops in this structure, which means 

that we always reach new units if we never go back. 

Using a similar argument to the one-dimensional case, the average number of m- 

clusters per vertex is n(m) = gmam'1(1 - a)2+(Z-2)m where gm depends on the 

number of different arrangements of the joined molecular units. Considering the ratio 

n(m, a)/n(m, ac) we are able to obtain [50] 

n(m, a) 
oc exp(-cm) 

n(m, a, ) 

where the factor c acts as a cut off for the largest cluster size since only clusters smaller 

than c contribute significantly to cluster averages. In general this effective largest cluster 

scales as c oc Ia - ail -ol where a= 1/2. 

The probability that any chosen vertex is part of an m cluster is n(m)m, and so 

E (n(m)m) m defines the average cluster size for a<a, A power law decay is 

proposed for n(m) 

n(m, a) oc m-" 

so that the average cluster size can be calculated as 

SaE m2-" exp(-cm). 
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For large m this is approximated by 

aJ m2-" exp(-cm)dm. 

Defining t= cm gives 

= c"-3 J 
t2-' exp(-t)dt 

o( (ao 
- a) 

2v-6 
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The average cluster size, S, can be calculated directly from the Bethe lattice [50] as 

S oc (a, - a)-1 for a<a, giving v= 5/2. 

The `strength' of the infinite cluster, P, is defined as the probability of a chosen 

molecular unit belonging to the percolating cluster. At a=a, the probability of a chosen 

vertex belonging to the infinite cluster is zero so that E n(m, a, )m = 1. Therefore, 

P= n(m, a, )m -E n(m, a)m aE mi-"(1 - exp(-cm)). 

For large m 

PcJ ml-"(1- exp(-cm))dm 

c cv-2 J 
ti-L (1 

- exp(-t))dt 

-z a (a - aC) c 

The scaling laws described for the Bethe lattice are a special case of the more general 

scaling laws 

n(m, a) = m-"f ((a - a, )m°) 

where the precise form of the scaling function f has to be determined by experiment. 

The scaling laws for c, P and S hold for percolation on any lattice, not just the Bethe 

lattice. The calculations based on the Bethe lattice are known as the ̀ classical' or `mean 

field' theory. Close to the gel point, as molecules form large three-dimensional networks 

the polymers are better represented by a three-dimensional lattice rather than a Bethe 

lattice. Though solutions for three-dimensional lattices are not known analytically the 
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parameters v and a as well as the scaling function f can be determined by Monte-Carlo 

simulations. 

To summarise, the key scaling laws which apply to gelling systems are: 

. n(m, a) oc m "exp(-cm) where v= 5/2 for the classical mean field theory on 

the Bethe lattice and v=2.2 for the 3D lattice. n(m) is the average number of m 

clusters per vertex, analogous to the number density of molecules with molecular 

weight m. Figure 2.16 shows a schematic diagram of this between smallest and 

largest molecules, mz and mt,. Close to the gel point the precise form of the cut 

off function at the two ends is of little importance [59] so we use a step function 

cut off as shown in the diagram. Gimel et al [20] as well as others [59] investigate 

the precise form of the cut off function and conclude that an exponential decay at 

the upper end best describes the distribution. 

10ow 
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Figure 2.16: Schematic diagram showing the molecular weight distribution near the gel point. 

mt is the molecular weight of the smallest self similar molecules, mh is the molecular weight 

of the largest molecules. 

" The largest cluster size that contributes significantly to n(m) is given by c oc 

Ia - aj'i where a= 1/2 for the Bethe lattice and a=0.45 for the 3D lattice. 
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This is equivalent to the largest molecule, mth in a gelling system. 

" Finally, the `strength' of the infinite cluster, the probability that a chosen vertex 
., belongs to the percolating cluster, is given by Pa (a - a, ) d2 . This is equivalent 

to the fraction of chain segments that belong to the gel fraction in a gelling system. 

2.4.3 Previous Work 

The rheology of gelling systems near the gel point has been studied extensively by 

Mours and Winter [59], [32], [13]. Winter et al. [59] provides a detailed review of 

the subject, including scaling laws for the longest relaxation time, viscosity and elastic 

modulus of the gel. They also describe a power law molecular weight distribution 

and scaling of the largest molecular weight near the gel point from which they obtain 

the linear viscoelastic spectrum. Mours and Winter [32] compare the predictions of 

these scaling models with oscillatory shear experiments. Gimel et al. [20] review 

experiments reported in the literature to compare percolation parameters with measured 

data as well as performing their own simulations for the molecular weight distribution. 

Prochazka, Durand and Nicolai in [37], [38] and [39] have produced experimental 

work on polyurethane rheology, including comparisons with models for gelling systems. 

These all confirm that the value of the power law exponent in the molecular weight 

distribution, v=2.2, obtained from Monte Carlo simulations is in good agreement with 

experiment near the gel point. 

Rubinstein, Colby and Gillmor [43] use a combination of percolation theory and Rouse 

dynamics to predict the relaxation spectrum of polydisperse self-similar molecules. They 

assume a power-law distribution of molecular weights between smallest and current 

largest molecular weights with a step function cut off at either end. The smallest 

molecule has a single relaxation time, with higher modes being absorbed into a solvent 

viscosity, while the remaining molecules each have a spectrum of relaxation modes. 

Their scaling argument is presented in section 2.5. Randrianantoandro et al. [42] 

augmented the Rubinstein, Colby and Gillmor model by using Monte-Carlo simulations 
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to predict the form of the cut off function at the maximum molecular weight. They also 

included high frequency a-relaxation in the linear relaxation spectrum. Comparisons of 

G' and G" with experiment appear very good below the gel point. Above the gel point 

there is evidence of slow dynamics not captured by their model that they suggest may be 

due to dangling arms in the gel. 

2.5 Constitutive Model For a Gelling Liquid 

In reaction injection moulding liquid containing a reactive polymer is injected into a 

mould where it reacts to produce a fluid with increasing viscosity, and carbon dioxide 

that causes foaming. The liquid gels and eventually the foam sets. Mora, Artavia and 

Macosko [31] describe the foaming process in four stages: an initial stage lasting around 

30 seconds in which bubbles nucleate and the foam forms a physical gel; a period lasting 

around two minutes (up to a reaction extent of about 0.6) of liquid foam; a stage where 

phase separation may occur, cells may open, and the liquid forms a chemical gel at 

an extent of reaction of about 0.83; and a final stage in which the foam becomes an 

elastomer. In chapter 3 we will consider the case of a bubble expanding in a reacting 

liquid where gas is produced as a by-product of the reaction and diffuses into the bubble 

causing expansion. While we do not model nucleation and the very early stages of 

foaming, our model examines a single bubble from part way through the first stage of 

foaming through to the final stages described in [31]. The effects of phase separation are 

not included in our model. In this section we present a viscoelastic model of a gelling 

liquid. The linear rheology is the work of Rubinstein, Colby and Gillmor [43] to which 

we have added a non-linear extension to allow us to examine bubble growth outside the 

linear regime. 

In this model the polymer molecules in the liquid begin as a mono-disperse distribution 

of self-similar molecules. As the reaction progresses molecules bond to form 

increasingly large, branched, structures each with a spectrum of relaxation modes. The 
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largest molecular weight, mth and the longest relaxation time, Tom, increase until a gel 

is formed with a finite elastic modulus but infinite viscosity. Once a gel is formed we 

use mh to denote the molecular weight of the largest free molecule. We assume that 

reactions now occur between the gel and the largest molecules in the sol so that mA is 

also the molecular weight of the cross-links in the gel. The longest, finite, relaxation time 

is denoted by r. The reaction continues until all available end groups have reacted. In 

this section we give an overview of the calculations required to obtain Rubinstein, Colby 

and Gillmor's linear rheological results. 

We assume that the polymer molecules in the fluid surrounding the bubble begin as 

self-similar chains with molecular weight mx and relaxation time r.,. For polyurethane 

Randrianantoandro et al [42] quote a figure of 8 polyoxypropylene (POP) triol molecules 

as being a necessary number of molecules to obtain a self similar chain. We also assume 

that the polymer solution is semi-dilute so that the polymer molecules are close enough 

to screen hydrodynamic interactions, but are not entangled. 

The molecules start to react and bond to form molecules with a range of molecular 

weights, each with a Rouse spectrum of relaxation modes [14] approximated as a 

continuous spectrum rk, so that the relaxation modulus Gm (t) for molecules of mass 

m is given by 

mI 
my 

e-e/Tk dk. Gm(t) = 
PmýT m 

, 
/i 

The mode number, k, runs from 1 (the slowest mode) to m/m, the number of segments 

of molecular weight mx. Here pm, R and T are, respectively, the density of molecules 

of mass m, gas constant and temperature. In Rouse dynamics the friction on a molecular 

segment is proportional to the number of monomers so that the diffusion coefficient, 

D, is inversely proportional to molecular weight. The longest relaxation time for a 

molecule of molecular mass m and radius of gyration r will, therefore, scale as Tm oc 

rnr2. The radius of gyration, r, increases as mil df 
, where df is the fractal dimension of 

the equilibrium coil size. We use a value for df=2.5 obtained from bond percolation 

on the three dimensional lattice [12,50]. Mean field theory gives df =4 which leads 

to a physical discrepancy, since any value higher than 3 results in the cluster density 
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increasing with cluster size [39]. Hence the longest relaxation time, Tm, satisfies 

Tm 97L 
(df+lý 

Tx mx 

The kth mode corresponds to the relaxation of sections of mass m/m,, k, hence from this 

scaling argument we obtain the relaxation time, r, for mode k as 

/ \-( (k äf+i) 
T=Tm(k)=Tx 

my 
. \m 

Changing the variable of integration from k to -r gives the result of Rubinstein, Colby 

and Gillmor [43]: 

Tm _s 

Gm(t) = mn(m) r Go IT e't/T - (2.12) 2 

(Tý) ' TT' 

z 

Here 2/d,. =1+ 2/d f, Go = p1ZT/mx, and mn(m) = pm/p is the number density 

of molecules of molecular weight m. We assume that the number density n(m) follows 

a power law between the minimum and maximum molecular weights mx and ma so 

that n(m) oc m-'. It has been shown (see section 2.4.3) [20], [39] that the value of v 

obtained by Monte-Carlo simulations provides an accurate description near the gel point. 

For simplicity in our simulations we use this value of v=2.2 throughout the reaction 

though one could use the value of v=2.5 from mean field theory [50] to improve 

accuracy further from the gel point. Following Rubinstein, Colby and Gillmor [43] we 

impose a step cut-off at the minimum and maximum molecular weights so that prior to 

the gel point ac 

n(m) = 
v-2 mz-2 mv 

(m lv 1-\ h/ 

n(m) =0 

a< ac; mx<m<mch 

abaci M>Mch; m<mx 

Randrianantoandro et al [42] use Monte-Carlo simulations to obtain a more accurate 

exponential cut-off function that is in good agreement with experimental data [20]. 

However, for the sake of simplicity we retain the step function cut-off. 

Integrating (2.12) over all molecular weights from mx to mth gives the relaxation 
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modulus prior to gelation (a < a, ) as 
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GO 2 Tch (L\ sL(V-1) TCh 
(v-2) G ýdr 

() 
% 

-t/r 2Gtý 
(v-2) J Tý Tx 

xT 

(2.13) 

Beyond the gel point the largest molecular weight is infinite and we use rech to denote 

the molecular weight of the largest free molecule. Since the only reactions are between 

the longest molecules in the sol and the gel the number density is now 

n(m) = (v - 2)mx-2m-" a>a,; my <m< mch. 

The relaxation modulus of the free molecules is still given by equation (2.12) so that 

integrating over molecular weights from m. to mh and changing the order of integration 

gives 
dr rTcA meh TZ e-t/T 

G(t), ot = Go- JJ mrý(m) 
(7) L dmdr. 2 T: mT Tx T 

For the remaining 
()l_2 

making up the gel fraction we assume that molecules of 

molecular weight mth are fixed so that modes with relaxation times faster than Tch can 

relax. In addition to these relaxing gel modes there is a gel mode that cannot relax, 
v1 

corresponding to a molecular weight larger than mh, with gel modulus Go (-) . 
Thus 

(MX) P-2 d rah -z v-1 
r e-t/-r 

dT 
+Gr0 xl G(t)get =- G0 

m2J(7. c1+ r: xTC 

mmch 

/ 

In order to combine all the relaxing modes in the solution and the gel, we write 
m 

(v-2) 
/ýo0 (7nch) = Jmch mn(m)dm, 

so that 
d rTch fm,. 

mch /T -Z 

G(t) = Go 2J mn(m) I Ty dmdýr sol modes 
Tm 

rTch TMch 
00 

+G2r 
T 

mn(m) 
(Txl 2e_ 

dmdýr relaxing gel modes 
x 

°° co / \- ä 

+Go 
dT 

mn(m) (T I1 dmdr. non-relaxing gel mode 2r mch \TX /T 
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Now the relaxing modes from the solution and the gel can be combined and the - 
integration over m performed: 

G(t) 
-G 

df rah Tz 
(v-1) 

e 
t1 

aT 
+ 

(, rCh -z (v-2) 
T2dr 

2f 

(Tx) 

T Ty Ty T 
ch 

(2.14) 

We leave the second term here in its integral form for ease of discretization. 

In fact there exist faster relaxation times than r. but, since these modes are always able 

to relax very quickly we include them as a solvent viscosity of Gory. 

To complete our formulation we must relate the characteristic relaxation time, Tch, to 

the extent of reaction a. Near the gel point, a,, the largest molecular weight mth 
(a - a, ) a [43] so that the longest relaxation time Tch N (a - a, ) . The value of a 

can be obtained from percolation theory [50] or by Monte-Carlo simulations [20] and 

we use the value of 0.45 obtained by Monte-Carlo simulations. In our model we assume 

that this scaling applies throughout the reaction. Since the reaction begins with all the 

molecules having the same molecular weight, m, before the gel point we have 

ac -a) 
a6T 

Tch --: -- T, 
( 

ac 

Randrianantoandro et al [42] describe Monte Carlo simulations to determine the 

prefactors before and after the gel point for their parameter I (a - ac , 
)/acl which scales 

with mz O'. From the ratio of these prefactors we can determine the scaling for rh with 

a after the gel point 
a od* 

T- ßr - aý (2.16) 
ac 

where 0=0.0049. A value of 0 greater than 
-2 

aC odr 

1-aj 

allows for the fact that the network may not be an exactly self similar structure and 

may have `dangling arm' sections with T> Tch which are able to relax [42]. In our 

simulations we choose, =ß for the sake of simplicity. Figure 2.17 shows the evolution 

of the extent of reaction and the longest relaxation time, we see that the longest relaxation 

time diverges at the gel point. 
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2.5.1 Viscosity and Elastic Modulus 
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The viscosity of the material before the gel point can be calculated by integrating the 

relaxation function, G(t), over time. 

Ti =J 
ýG(T)dT 

0 
T 

1- (v-1) 1112G 
ý` 

2 

(Ty 
Z(v-1) d d(V-L) 
22 

z (v-2) 
Iých 1 C 

TZ 12 

where 
Ga _ 

GoTzdr/2 
(10 - 2-(v-2) 

Since rh N (a, - a)-2/(°d ), viscosity scales as 

Ti N («c - cý)(2*-°1). 

The elastic modulus of the gel, obtained from the second term in equation (2.14) scales 

as 
_ ýL. '_i) CTch1 

Y-1 

Figure 2.18 shows the diverging steady viscosity of the sol fraction before the gel point, 

and the development of the elastic modulus of the gel after the critical point, with 

reaction extent in agreement with the schematic diagram in figure 2.12. Here viscosity is 

scaled with the steady viscosity of the polymer at a=0, Gor_,, and the elastic modulus 

is scaled with the elastic modulus of the fully developed gel, Go. 
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2.5.2 Linear Viscoelastic Response 
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The storage and loss moduli are calculated from the real and imaginary parts of G* (w) _ 
iw f °° G(t)e-'wtdt resulting in 

God, /2 TOA W2T2 

-dF sh z 
(v_2) 

JTa 
1+ W272' 

)-dr dLt 
a 

(v-2) 
Ta dT T ch 

Tx 

( 

Ty) Txl 7 

and 

G"(w) _ 
God,. /2 fTý" wT 

1-ýý-2 
(Y-2) 

Ts 
1 -i- w272 

Y-2) -2 
C Tx 

dr) )_d= (f/-L) 
Týh -Z(T dT T ((rz 
Ty Tx 7 

At the gel point, Tch -3 oo and these become 

dr- d 00 W2T2 Ta 
(v-1) d(, -/, --, ) 

G'(W) _ Go f 211 +W2T2 Tom) T Ty 

and 
d --2 

21 +W2T2 

(TX) 

T Tx 

By defining a change of variables u= wr we can express the storage and loss moduli as 

1 (v-1) 
00 u2 s G(w)=Go 

2(wT) 
f 

1+u2u ' du 
ýTa 

and 
dd °° U Gºº(w) = Go * ýwTxý ; (ý-i) %1 

+u2 U2 (ý-i)-idu. 
2 JwTý 

Before the gel point, for frequencies w« 1/Tch G' a w2 and G" oc w. In figures 2.19 

and 2.20 we see a change of gradient from 2 at low frequencies to 2 (v - 1) = 2/3 for 

intermediate frequencies (1/T «w« 1/ri) in the storage modulus and from unity 

at low frequencies to 2 
(v - 1) at intermediate frequencies in the loss modulus. At the 
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gel point, as 1/Tt, --4 0, the slope of 2/3 in both G' and G" extends to all frequencies 

w« 1/Tx. The storage modulus shows the elastic modulus of the material at high 

frequencies before and after the gel point. However, after the gel point we also see the 

solid like behaviour of the material at low frequencies due to the increasing presence 

of the gel fraction. The value of the maximum in G"(w) increases with a up to the 

gel point as the molecular weight increases. Beyond the gel point it decreases again as 

higher molecular weight material becomes part of the gel. 

Our model gives qualitatively similar results to those of Randrianantoandro et al [42]. At 

high frequencies their model shows a further change in gradient due to the a-relaxation 

in the low molecular weight segments which we incorporate into an effective solvent 

viscosity. Their model also predicts an undershoot in G' after the gel point, caused 

by the difference in the form of the high molecular weight cut off function. Mours and 

Winter [32] investigate relaxation patterns of nearly critical gels. They present the results 

of oscillatory shear experiments near the gel point and plot the frequency dependence of 

G' and G". Their results show the same changes of slope as the model we use, further 

justifying our model up to frequencies corresponding to the low molecular weight cut off. 

Beyond this their results show the steeper gradient of the a-relaxation process described 

by Randrianantoandro. 
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Figure 2.17: The evolution of the longest relaxation time (solid line) and the extent of reaction 

(broken line). 
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Figure 2.18: Viscosity relative to the viscosity at of =0 in the sol phase (solid line) and elastic 

modulus relative to the elastic modulus of the fully developed gel in the gel phase (broken line). 
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Figure 2.20: Loss modulus, G"(w), at various extents of reaction. 
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Chapter 3 

Expansion of Individual Bubbles 

When the bubble volume fraction is small bubbles are surrounded by enough fluid so that 

there are no interactions between neighbouring bubbles. Thus, in this chapter we present 

models of spherical bubbles surrounded by spherical envelopes of liquid. In order to 

model the thermoplastic and thermoset injection moulding processes we consider first, 

the case when the liquid rheology remains constant and, second, the case of a changing 

fluid rheology. Initially we formulate the spherical bubble problem in terms of non- 

reacting fluid models, using the Oldroyd B and Pompom models for the liquid phase. 

Here bubble growth is driven by the diffusion of gas from a limited supply dissolved 

in the liquid. We go on to discuss two limiting cases: no gas diffusion where bubble 

expansion is due to a fixed mass of gas present initially; and diffusion limited growth 

where the gas pressure in the bubble remains at the ambient pressure. In the second 

section we use the model for polymer gelation discussed in section 2.5. We assume that 

gas production is proportional to the extent of reaction and that evolution of the extent 

of reaction follows second order kinetics. In this way we model bubble growth, driven 

by gas diffusion, in a fluid with evolving rheology. 

The results presented in section 3.1.3 and 3.2.3 are also presented in reference [16]. 
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3.1 Non-Reacting Fluid Models 

Thermoplastic foam products are produced by injecting polymer that has been 

pressurised to enable it to absorb a blowing agent, and heated to a temperature above 

the glass transition temperature. Foaming results from a sudden reduction in pressure. 

We model the foam as a system of identical spherical bubbles of gas, each surrounded 

by a layer of viscoelastic fluid. The volume of this layer could be estimated by dividing 

the initial volume of liquid by the observed number of bubbles in the cured foam. 

We consider a spherical bubble of gas with an initial volume 37ruo, and gas pressure p. 90, 
expanding in a uniform spherical envelope of incompressible viscoelastic fluid which 

contains a limited supply of a dissolved ideal gas. Since we are not attempting to model 

the initial rapid phase of bubble expansion immediately following nucleation, the initial 

bubble volume is not the volume at nucleation but a larger volume when the gas pressure 

is p90. Growth is driven by the pressure difference between the gas pressure inside 

the bubble, p9, and a background pressure outside the envelope, pa,. We assume that the 

expansion rate is sufficiently small that fluid inertia may be neglected (see section 3.1.3), 

bubble growth is isothermal, and the bubble-fluid interface remains in thermodynamic 

equilibrium. 

3.1.1 Governing Equations 

In this section we begin by deriving the equations that govern bubble growth in a general 

fluid, specifying later to the Oldroyd B constitutive equation. 

Fluid incompressibility gives V"q=0, where q is the velocity field. This defines the 

radial velocity, 
q(t) R2R 

qr = 72- = 
r2 
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where R is the bubble radius and r is the general radial position. The velocity field for 

the expanding bubble in spherical polar coordinates gives 

Oq' 00 1-2 00 Or R2R 
Vq+VqT=2 0 It 02 

r3 
010 

0 0? 001 

We can write the stress in the liquid (following (2.1)) as Q= -pI +S and, due to the 

spherical symmetry, Sao = Soo, and p, Srr and Soo are assumed to depend on r and t 

only. Neglecting inertia, the radial momentum equation, V"o, = 0, gives 

0=-Lý'+ Ir (r2S )- 2S99 J 

Evaluating the derivative of r2Srr and rearranging allows us to write 

aP 2(Srr-SB9) OSrr 
ör r+ ör 

(3.1) 

Since the fluid volume is conserved it is useful to transform from a radial coordinate r 

to a Lagrangian volume coordinate x such that r3 =u+x. Here, 37ru is the bubble 

volume and 3irx 
is the general fluid volume so that x=X is the Lagrangian position of 

the outer edge of the envelope. At the boundaries x=0 and x=X 

_p(2=0)+Srr(X =0) - -pg+? 
K 

u 

-p(2=X)+Srr(x=X) =-Po 

(inner surface boundary condition) 

(outer surface boundary condition) 

where K is the surface tension at the bubble surface. Integrating (3.1) across the fluid 

layer and using these boundary conditions gives: 

0= P9 - Pa +3, 
Xrr_ SiOO 

dx - 
2K 

. 
(3.2) 

0 X+ U 

The initial concentration of gas in the fluid is co, and P9o = Hco where H is Henry's 

constant. As the bubble expands the pressure drops and a concentration gradient 
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Figure 3.1: Diagram showing the bubble surrounded by fluid, initial gas concentration profile 

co and general concentration profile c. 

propagates through the fluid (see figure 3.1.1) causing gas to diffuse into the bubble. 

The concentration at the bubble surface is given by Henry's law as 

c(0, t) - co = H(p9 - Vg0) - 

The concentration, e(x, t), is the number of moles of gas per unit volume of fluid. 

Henry's law is valid for dilute solutions where gas concentrations are of the order of I%; 

we justify its use in section 3.1.3. The diffusion of gas through the liquid is determined 

by the change in gas concentration 

Dc 

where j is the flux of gas into the bubble. In spherical polar coordinates j= DOc/Drr 

and the change in gas concentration becomes 

Dý__Da ýzaý1 c> Dt rl car 
r 0,1. ) . 

3.3 

Substituting r3 =x+u gives the gas diffusion equation 

ac=spa ((T+z1)3aC) 
at a: r a3. 

We introduce a concentration potential O(x, t) so that 3O =c- co to aid in the numerical 

solution [l, 31. The diffusion equation then becomes 

z0 
at- =9D(x+u)3ax2, (3.4) 
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with ö¢/öx = H(p9 - p9o) at the bubble surface and ö2q/öx2 =0 at the outer edge 

of the fluid layer which implies that 0 is constant in time there. Thus there is no gas 

transport through the outer edge of the fluid layer and gas supply is limited. Conservation 

of mass across the bubble interface gives: 

d (p9R3 )= 
_DR2 

ac 
Ir_R. 

dt 3RT är (3.5) 

Here R is the bubble radius and 1Z and T are, respectively, the gas constant and 

temperature. In terms of the Lagrangian coordinate, x, and concentration potential 0 

this becomes 

dt 
d (RT) =9Du3ä21 =o. 

Substituting from (3.4) and integrating with respect to time gives 

P9u = P9ouo + RTq5(0, t) (3.6) 

since we can arbitrarily set ¢(0,0) = 0. 

For the Oldroyd B fluid model 

Srr - S09 = -2µ 
ü 

i+u+ 
G(Arr - Aoo), 

so that the momentum equation can be written as 

411_2 Arr - A09 
dx 

2K 
. (3.7) 3p u 

lu 
[X+uj9-P 

a+3G 
fx 

x+u - 
U3 

Equation (2.5) gives expressions for A,.,. and A99 which can then be subtracted to give 

an equation for the first normal stretch difference. Due to the coordinate transformation 

the stretch at any position in the fluid can be followed in the Lagrangian frame giving 
BArr 4ü 1 

IN 3(x + u) 
Arr -T (Arr - 1) (3.8) 

ö(Arr - Ase) 
_ 

2u [(Arr - Aoo) - 3Arr] - 
1(Arr 

- Aoe) (3.9) at 3(x + u) T 
Initially A, =1 and A,.,. - A90 =0 everywhere. 

The five equations (3.4) and (3.6) - (3.9) together with initial conditions A,.,. =1 and 
Arr - A09 = 0, u= uo and p9 = pgo govern bubble growth. 
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3.1.2 Non-dimensional Equations 

68 

i 
We scale all lengths with uö and scale times with the polymer relaxation timer. Pressure 

is scaled so that the dimensionless gas pressure is the ratio of the current pressure 

difference to the initial pressure difference: P9 = (p9 - pa)/(pgo - po, ). The number 

of moles of gas which have diffused out of the liquid, ¢, is scaled with the initial number 

of moles of gas in the bubble, p9ouo/RT giving the following dimensionless equations 

where all variables are dimensionless: 

X Arr - oo 
- 3[u X+ u] -P9De+3'y, 

Ax+u 

dx 

1ý, 

o ru3 

4fi aat rr 
-- 3(x + 2l) 

Ar, 
- - 

(Arr - 1), 

ö(Arr - Aoo) 
- 

2z'ß 
at 3(x + u) 

[(Arr - A00) - 3Arr] - (Arr - A00), 

(Pa+(P90 -Pn)P9 1u= 1+go, t), 
Pgo J 

o 20 

a =N(x+u)3OX2, 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

together with boundary conditions: 

00 
ä =(DP90oa(P9-1), 

. 0,95 OX2 =0, 

(at the bubble surface) (3.15) 
(atx=X) 

and initial conditions A,.,. =1 and A,.,. - A00 = 0, u=1 and P. = 1. There are five 

non-dimensional groups summarised in table 3.1. 

3.1.3 Results and Discussion 

The full system of equations (3.10) - (3.14) are solved using an Euler method with an 

adaptive time step for (3.10), (3.11) and (3.12) and a Crank-Nicolson method for the 

diffusion equation. Parameters used to generate the figures are outlined in table 3.2 

though these are typical of values found in the literature. Values of the dimensionless 
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Deborah number De =p° µp° T ratio of the rate of bubble 

growth in the solvent to the 

relaxation rate of the polymer 

viscosity ratio ry = µT ratio of polymer to solvent 

contributions to the steady 

shear viscosity 

capillary number I' = 2K ratio of viscous force to 

surface tension 

time scale ratio N=9= Td ratio of the polymer 
uo 

relaxation time, T, to gas 
diffusion time, Td 

RTH 

X dimensionless volume of 
fluid in the liquid layer 

69 

Table 3.1: Dimensionless groups arising in the non-dimensional formulation of the equations 

governing bubble growth. 
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parameter value units 

pressure outside the fluid layer pa, 1 105N m-2 

initial bubble gas pressure p9o 10 105N m-2 

elastic modulus G 1-10 105N m-2 

solvent viscosity µ 1,6 105Ns M-2 

polymer relaxation time T 1 s 

initial bubble volume uo 1 10-18m3 

surface tension K 0-5 10-1N m-1 

gas constant R 8.3 Jmol-'K-1 

temperature T 370 K 

Henry's law constant H 10.5 10-5mo1 N-1m-1 

Diffusivity D 0.1-oo 10-12m2S-1 

Fluid density p 1200 kg M-3 
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Table 3.2: Parameters values used in calculations of bubble expansion for figures 3.2- 3.16. 

dimensionless groups value 

De 9 

ry 5 

r 00 

X 53.6 

N 0.9 

0.32 

Table 3.3: Dimensionless numbers used in calculations of bubble expansion for figures 3.2- 

3.16 unless otherwise stated in the captions. 
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groups are given in table 3.3. The Henry's law constant, H, controls the concentration 

of gas in the liquid for a given bubble gas pressure. The values of H and p9o given 

in table 3.2 lead to an initial gas concentration of 105mo1m 3. For a liquid density 

of 1200kgm 3 and molar mass of 0.044kgmol-1 for carbon dioxide this is 0.385% 

initial gas concentration. Since Henry's law is valid for dilute solutions where gas 

concentrations are of the order of 1% use of Henry's law is justified in this parameter 

regime. 

In order to neglect inertia from this model, the Reynolds number for the bubble 

expansion must be small. Balancing the inertia term with the viscosity term in the 

momentum equation gives a Reynolds number 

PUL 
__ 

Puog (Pyo - pa) 
µ µ2 

(using De as the time scale for the bubble expansion). Thus, inertia is negligible as long 

as the ratio of the pressure difference, p9o - pa, to viscosity squared is small. For the 

parameter values given in table 3.2 the Reynolds number for the expansion is 1.97 x 

10-io 

In this problem there are three distinct timescales controlling the expansion of the bubble. 

These are: the diffusion time for gas transport into the bubble from the surrounding fluid; 

the viscous growth time for a bubble in a viscous fluid of the solvent viscosity; and the 

relaxation time of the polymer, T. 

From equation (3.14) the time scale for gas to diffuse across the fluid layer is of the 

order (uoX)3/9D = X3T/N, whereas solvent viscosity imposes a maximum bubble 

expansion rate of order (p9o - p. )/IL = De/T. Depending upon the relative values of 

these, bubble growth may be controlled by any one of the three timescales. 

Instantaneous Diffusion 

We can examine the effects of viscoelasticity on growth rate by considering the limit 

N» DeX 3 when diffusion is, essentially, instantaneous so that the bubble growth is 
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limited by the rheology of the surrounding fluid. In this case the concentration profile 

of gas in the liquid is independent of fluid volume and is dictated by the gas pressure in 

the bubble through Henry's law. Now boundary condition (3.15) at the bubble surface 

applies throughout the fluid layer and the conservation of mass equation (3.13) becomes 

P. + (p9o - Pa)P9 
u=1+, 1 Pgo Pa (1 - P9)X. (3.16) 

( 

P9o Pgo 

This enables the bubble growth equations to be solved independently of the diffusion 

equation. In the case when ýX is large so that there is a large reservoir of gas available 

within the layer, the gas pressure P9 remains approximately constant until u= ?X 

after which the pressure difference decays to zero in absence of surface tension. In the 

opposite limit when -IýX «1 and p9o » pQ so that most of the gas is already within the 

bubble at t=0, the pressure decreases as 1/u. 

In figure 3.2 we compare the growth rate of bubbles at different Deborah numbers for 

the same value of ry. At large Deborah numbers we see two distinct phases of bubble 

growth: an initial rapid expansion in which the bubble volume increases rapidly, and 

a slower second phase of expansion. As the polymers are initially unstretched they do 

not provide any resistance during the initial phase of expansion, so that the resistance 

comes only from the solvent viscosity. The rapid expansion during this phase causes the 

polymer to stretch so that A99 - A,.,. increases (see figure 3.3). This phase of expansion 

stops once the normal stress difference 7(Aog - Arr)/De at the surface of the bubble 

becomes comparable to the pressure difference. During the second phase the pressure 

difference is balanced by the elastic normal stress difference within the fluid. The growth 

of the bubble is therefore controlled by the relaxation of the elastic stress, which relaxes 

on a timescale of order r, the unit of time in our non-dimensionalisation. 

We can attempt to estimate the timescales for the first phase in the two limits described 

above of large and small 4)X. If IF and X are both large and polymer does not contribute 

to the stress then equation (3.10) may be approximated as 

= 
4PqDe. 
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Figure 3.2: Effect of viscoelasticity on bubble volume when ry = 5. Solid line: De = 9; long 

dashed line: De = 99; short dashed line: De = 999. 
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Figure 3.3: Effect of viscoelasticity on the first normal stress difference at the bubble surface 

when ,y=5. Solid line: De = 9; long dashed line: De = 99; short dashed line: De = 999. 
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As the bubble grows A99 increases while Ar,. decreases so that, neglecting Ar,. 

in equation (3.12), the polymer stretch difference on the bubble surface evolves 

approximately as 
a(Ase - A,, ) 2ic 

at 
= 

(3u 
-1 (Aee - Arr) 

Using these approximate equations we find, for ýX large, that the bubble volume 

increases exponentially as approximately exp (3Det/4) and A00 - A,.,. = exp (2 De - 1)t. 

Thus the elastic stress will balance the pressure difference after a time of order 

De-2 
log °e 

" This scaling can be seen approximately in figure 3.3 where the maximum 

pressure difference occurs at 0.04 for De = 999 and at time 0.3 for De = 99. 

Diffusion Limited Case 

When N« DeX 3 bubble growth is limited by diffusion. In fact, since De is an 

overestimate of the bubble growth rate, this limit is reached for values of N -ý DeX g. 

Growth is slow initially as the bubble has a small surface area over which the gas 

can diffuse (see figure 3.4). The expansion rate increases as the bubble gets larger 

but subsequently decreases once the gas pressure approaches the pressure outside the 

fluid layer and the concentration of gas in the liquid reaches a uniform profile. In the 

initial phase of expansion the pressure drops rapidly inside the bubble as it expands. The 

polymer stress builds to a maximum and then decays as the expansion rate decreases. 

However the stress is prevented from relaxing completely by gas diffusing into the 

bubble. Between t=5 and 15 we see a plateau in the first normal stress difference 

and a decrease in the rate of pressure drop (see figures 3.5 and 3.6, N=0.9 curve) 

corresponding to an increase in gas transport into the bubble. The stress is finally allowed 

to relax once the gas concentration in the bulk falls. In the limit of diffusion controlled 

growth the bubble gas pressure remains at the ambient background pressure, p9 = Pa, 

Thus bubble growth is controlled by equations (3.13) and (3.14). These can be solved 

analytically in the case of infinite fluid volume and zero initial radius as follows. 

In terms of the radial coordinate, r, conservation of mass across the bubble interface 
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Figure 3.4: Effect of diffusivity on bubble growth rate when y=5. Solid line: N=0.9; long 

dashed line: N=4.5; short dashed line: N= 18; dotted line is the limit N -* oo. 

Figure 3.5: Effect of diffusivity on dimensionless gas pressure (ratio of the pressure difference 

to the initial pressure difference) when ry = 5. Solid line: N=0.9; long dashed line: N=4.5; 

short dashed line: N= 18; dotted line is the limit N -+ oo. 
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Figure 3.6: Effect of diffusivity on the magnitude of the first normal stress difference, 

'yl Arr - ABBI 
, at the bubble surface when ry = 5. Solid line: N=0.9; long dashed line: 

N=4.5; short dashed line: N= 18; dotted line is the limit N --3 oo. 

gives: 
d3 
dt 

(3RT) 
= -DR2 är r=R 

where R is the bubble radius. This reduces to the non-dimensional equation 

dR 
__N 

pgo öc (3.17) dt 9 pQ -ar 
r=R 

. 

Gas diffusion in terms of r gives 

Ft 9 är 
(r2 

Or) - 
(3.1 S) 

When the fluid layer is of infinite depth the concentration far from the bubble surface 

remains at an initial level c(oo, t) = co. For zero initial bubble radius R(O) =0 there is 

a similarity solution available for equations (3.17) and (3.18). 

Substituting the similarity variable 'i =t in equation (3.18) gives the following 

equation for c(i7) 
9 (6N dc d2c 

4N 91J+1)d77_dn2. 
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This can be solved for do to give 

77 

dc 
= A71-3/2 e-91l/(4N) ä7l 

Changing the variable to (= 17-1/2 allows us to write an expression for c(() 

-S -9/(4NV2) c= 2A Je dv. (3.20) 
0 

Since the gas concentration in the liquid, c, depends only on the combination t the 

region having a particular concentration will have moved a distance r oc t1/2 in time t. 

In particular, since c(R, t) is constant (because p9 = pa throughout the expansion in this 

case), and R(O) = 0, R= at'/2. Thus, A and a satisfy 

7ZTH = -2A 
J e-9/(4Nva)dv. (3.21) 

0 

Using the expression for d- from equation (3.19) at r=R in (3.17) gives 

dR 2NA pgo -gat/(4N) 
tl/2 

dt 9e Pa R2 

which can be solved to give 

R 
(INApgoe-9a2/(4N) 1/3 

tl/2. 
9 pQ 

Thus a satisfies 

a3e9a2/(4N) =4 
p9o NA. (3.22) 

9 Pn 

Since the gas pressure always drops to the ambient pressure eventually during the 

expansion we see a region of bubble growth where R oc V t-. If the fluid domain is finite 

this proportionality is lost towards the end of the expansion since the amount of gas 

available is limited by the volume of the fluid. This can be seen in figure 3.7 for the case 

of bubble growth in a Newtonian liquid. A similar figure is obtained for a viscoelastic 

liquid (, y > 0) though the beginning of the V section is delayed as viscoelasticity 

inhibits the bubble growth rate and prevents pressure from dropping as rapidly. 
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Figure 3.7: Diagram showing the growth of bubbles in a Newtonian liquid against V t-. Solid 

line: initial fluid depth 29Ro (X = 27000); dashed line: initial fluid depth 45Ro (X = 100000); 

dotted line: initial fluid depth 66.780 (X = 310000). Straight line shows diffusion controlled 

growth when p9 = pQ, Ra Vt-. 

Limit of Zero Gas Diffusion 

In the limit of (DX «1 equation 3.13 reduces to 

Pa +(P9o-Pa)P9=püo 

In this limit we assume that the expansion is isothermal so that the gas pressure is related 

to the bubble volume by 

1 +(u. " -1)P9= 
uü (3.23) 

Here ¢(0, t) =0 and there is no mass transfer from the fluid. Thus the problem is 

reduced to three equations, (3.10), (3.11) and (3.12), which are solved using a forward 

Euler method with adaptive time stepping. An initial gas pressure of 165.55 is used so 

that the volume of gas is equivalent to that in the previous sections. 

For a viscoelastic fluid (y > 0) the growth of the bubble can be roughly divided into two 

phases. During the initial phase the elastic stress is small and X»u, so equation 3.10 
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reduces to 
4u= 

PgDe. 
3u 

For p9o » pa the gas pressure P. N 1/u and the bubble volume grows linearly as 

approximately 1+ 3Det/4. Figure 3.8 compares the early growth phase with the 

linear prediction. Provided that De is greater than unity the expansion stretches the 

polymers causing the elastic stress to increase. At the bubble surface A09 - Ar,. 

increases approximately as u2/3 exp(-t). This initial phase ends when the normal stress 

difference -y (A,.,. -A00)/De at the bubble surface balances the pressure difference, when 

(1 + 2Det) exp(-3t/5) = (De/ry)3/5. For large De this will be at a time of order 

De-2/5 y-3/5. Subsequent expansion is controlled by the relaxation of polymer stress at 

rate 1 /r. 

Nucleation and the early stages of bubble growth involve a period of surface tension 

dominated growth or collapse. In this work we assume that the initial bubble volume is 

large enough that r> 1/De. In this case the bubble is able to grow and surface tension 

again dominates the growth rate towards the end of the expansion as P9 De -1 /Fug -3 0. 

Decreasing the capillary number reduces the final bubble volume. Figure 3.9 shows the 

equilibrium bubble volume against capillary number and compares these data with those 

obtained by performing a perturbation analysis. As t -+ oo, ii --* 0, (A, - Aoo) -4 0 

and, therefore, from equation 3.10, P9De 
ru 

,3 so that equation (3.23) yields a first 

order approximation for u: 

u= uoo 1- 
Spa i/s 2( 

2(pgo-p, ) U00 Der + 1) 

Moderate Diffusivities 

As diffusivity is increased the pattern of bubble growth remains qualitatively similar, but 

with an increase in the bubble growth rate. Increased diffusion reduces the extent of the 

initial rapid pressure drop until, in the limit of infinite diffusion, this initial phase is lost 
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Figure 3.8: Comparison of early bubble growth phase with the linear prediction. Solid curve: 

ry = 1, De = 164.55; dashed curve: y= 1/2, De = 82.28; dotted curve: ry = 1/3, De = 54.85. 

Lines show 1+ 3Det/4 in each case. 

i/r 
Figure 3.9: Effect of surface tension on the equilibrium bubble volume. + obtained from model 

predictions, x obtained from the perturbation analysis. 
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altogether (see figure 3.5). Increasing diffusion also causes the final stress relaxation 

to occur sooner and the more rapid bubble growth increases the magnitude of the first 

normal stress difference at its peak. These two regions eventually become indistinct 

(figure 3.6). 

The parameter ry is the ratio of the polymer to solvent contributions to the zero shear- 

rate viscosity with ry =0 corresponding to a Newtonian fluid and ry = oo to an upper 

convected Maxwell fluid. Initially the polymers are unstretched and so the first stage of 

bubble growth is resisted only by the solvent stress. Consequently bubbles grow more 

rapidly in a viscoelastic liquid than in a Newtonian fluid of the same zero shear-rate 

viscosity. This is shown in figure 3.10, where we compare the growth in bubble volume 

between a fluid with ry =5 and a Newtonian fluid at N=0.9 and in the limit of infinite 

diffusivity. The difference in growth rate is most marked at high diffusivity where the 

initial growth rate is controlled by the fluid viscosity. At low diffusivity viscoelastic 

effects are less significant due to slower growth rate. 

The potential, 0, is the relative number of moles of gas diffused from the liquid at time 

t. In the absence of surface tension, as t -+ oo, the dimensionless gas pressure P9 --+ 0 

and q5 --> c(p9o - pn)X/p9o. This leads to an equilibrium bubble volume given by 

uOO _ 
Pgo + I'(Pgo - Pa)X. (3.24) 

Pa 

Again, the effect of including surface tension at the bubble surface (F < oo) is to increase 

the equilibrium gas pressure and reduce the equilibrium bubble volume, see figure 3.11. 

Figure 3.12 has been included to provide a comparison with Arafmanesh and Advani's 

results [2]. They did not include a solvent term and so were forced to use an iterative 

technique to obtain solutions. By taking a small solvent viscosity in our model we have 

a very good agreement with their results. Figure 3.12 shows the effect of diffusivity in a 

deep fluid layer, the largest rate of diffusion producing the largest bubble growth rate. 
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Figure 3.10: Comparison of bubble growth in a viscoelastic liquid and a Newtonian liquid of 

the same zero shear rate viscosity. The solid lines represent a viscoelastic liquid with ry = oo 

and De = 9, the long dashed lines represent a viscoelastic liquid with ry =4 and µ=2, and 

the short dashed line represents a Newtonian liquid with ry = 0. The lower curves show bubble 

growth rate when N=0.9 and the upper curves show bubble growth rate in the limit of infinite 

diffusion. 



Chapter 3. Expansion of Individual Bubbles 

14 

12 

10 

8J 

5/ 

t 

2 

0- 
05 10 15 20 25 30 

time 

83 

Figure 3.11: Effect of surface tension (I' < oo) on bubble growth rate, N=0.9, De =9 and 

ry = 5. The solid line shows r= oo; the two lines with positive bubble growth rate (F > 1/De) 

show successively smaller equilibrium bubble volumes with r=0.5 and I' = 0.2 respectively. 

The line with negative bubble growth rate shows r=0.1 < 1/De. 
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Figure 3.12: Effect of changes in diffusivity, here time is not scaled. µ=0.01, ry = 0.1 



Chapter 3. Expansion of Individual Bubbles 84 

3.1.4 Bubble Expansion in a Liquid modelled by the Pompom Fluid 

Model 

In this section we outline the modifications required to model expansion of a bubble 

in a liquid where molecules can be represented by the pompom model described in 

section 2.3.3. In addition to parameterising the viscous drag and elasticity of the polymer 

molecules, as in the Oldroyd B model, the pompom model allows the structure of the 

molecule to be changed via the parameter h which controls the number of arms. We 

investigate the effects of changing the number of arms and the separation of stretch, A, 

and orientation of the backbone, A, on bubble growth. 

Expansion of a bubble surrounded by a pompom liquid requires one extra equation to 

evolve the stretch of the backbone and orientation of the backbone separately. Now the 

first normal stress difference S,.,. - SBB is given by 

2 
Srr-Soo=-2µ2-I-2ý+t 

A)(Arr-ABe). 

and, in the spherical geometry of the expanding bubble, the equation for the evolution of 

the stretch of the backbone, A, is given by 

4Ü (A,,. - A99) Tb 2a_1 a --e (A-1). (3.25) 3(x+u) (A, r+Moo) Ts 

As in the Oldroyd B model, the evolution equations for A are given by 

OArr 
_ 

426 
Arr - (Arr - 1) 

; at -5(x + u) 
(3.26) 

2il ö(Arrat Aee) 
= 3(x + u) 

[(Arr - Aee) - 3Arr] - (A,,. - A00). 

Since the expression for the stress is modified to include the stretch and orientation 

separately, the radial component of the momentum equation 3.2 becomes 

4ic (1 
-1+ try 

X A2 (A� - A99) 
dx - r1 u3 . 

(3.27) 3ux+ u) = P9De 
Jo 

(A, + 2A09 (x u) L 

In equations (3.25) to (3.27) above, time is scaled with the backbone relaxation time, Tb, 

while other variables are scaled as in section 3.1.2. 
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In the limit N» DeX213 gas diffusion is effectively instantaneous and the expansion is 

controlled by the fluid rheology. The structure of the pompom molecule can be modified 

by changing the parameter h which controls the number of arms. Increasing the number 

of arms leads to a slower growth rate which is most apparent at high Deborah numbers. 

Thus we use a Deborah number of 50 for the figures in this section. Times are scaled 

with the backbone relaxation time, Tb, and the stretch relaxation time r, /Tb = 1/3, other 

dimensionless numbers and parameter values are given in table 3.2. In figure 3.13 we 

show the bubble growth rate with h=2,5 and 10 arms. Early bubble growth for 

h=2 is similar to that for the Oldroyd B model, as the number of arms is increased 

and the pompom molecules become less rod-like even this early similarity is lost. The 

stretch relaxation time, given by -r e-2(a-l)/(h-1), is increased by increasing h since the 

viscous drag on the molecule ends is increased. Thus the maximum stretch increases 

(figure 3.14) though the magnitude of the orientation I Ar,. - AeoI /tr(A) remains almost 

unchanged (figure 3.15) as h increases. In figure 3.14 we can see that the molecule is 

stretched to its finite limit dictated by A=h when h=2. 
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Figure 3.13: Effect of changes in the number of arms on bubble growth rate. Solid line: h=2; 

long dashed line: h=5; short dashed line: h= 10; dotted line: Oldroyd B model. De = 50; 

7=5. 
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Figure 3.14: Effect of changes in the number of Pompom arms on the stretch, A, of the 

backbone. Solid line: h=2; dashed line: h=5; dotted line: h= 10. De = 50; y=5. 
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Figure 3.15: Effect of changes in the number of Pompom arms on the orientation, Arr. - 

A00I /tr(A), of the backbone. Solid line: h=2; dashed line: h=5; dotted line: h= 10. 

De =50; ry=5. 
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Finally we note that the effect of diffusivity on the first normal stress difference is similar 

to that for the Oldroyd B model at these high Deborah numbers. In figure 3.16 we see 

that for small diffusivities the stress builds up to a maximum during the initial period 

of growth, then stress is prevented from relaxing as continued diffusion of gas increases 

bubble growth rate and gives a second maximum to the first normal stress difference. 

Figure 3.16: Effect of changes in the time scale ratio, N, on the first normal stress difference, 

37I ATr - Ago /trA. Solid line: N=0.9; dashed line: N=4.5; dotted line: N=9. De = 50; 

y=5. 

3.2 The Reacting Fluid Model 

In this section we consider the case of a bubble expanding in a reacting liquid where 

gas is produced as a by-product of the reaction and diffuses into the bubble causing 

expansion. We detail modifications to the equations of the previous sections and 

present the method of solution and a summary of results. All equations are given in 

dimensionless form with the scaling described in section 3.1.2 with the exception of 

time, which is now scaled with the reaction rate, and the concentration potential, 0 which 



Chapter 3. Expansion of Individual Bubbles 88 

is scaled with the amount of gas generated by the reaction. These modifications will be 

fully described in section 3.2.1. As discussed in section 2.5, the polymer molecules in the 

liquid begin as a mono-disperse distribution of self-similar molecules. As the reaction 

progresses molecules bond to form increasingly large, branched, structures each with 

a spectrum of relaxation modes. The longest relaxation time increases until a gel is 

formed with a finite elastic modulus but infinite viscosity. The reaction continues until 

all available end groups have reacted. Throughout this process gas is produced as a 

by-product of the reaction. 

3.2.1 Generation of Gas 

In this section we describe the additional equation which governs the reaction rate and 

detail changes to the diffusion equation (3.14) and the conservation of mass equation 

(3.13) to allow for gas production. 

Polymerisation is governed by the following equation, from reference [29], for catalyst, 
[C], isocyanate, [NCO] and active hydrogen compound, [OH], concentrations: 

d[NCO] 
= _k[C]a[NCO]b[OH]c. dt 

Here k= exp(-Ea/RT) and Ea, is an activation energy. When the stoichiometric ratio 

is unity, in the absence of catalyst, this becomes 

d[NCO] 
= _k[NCO]°+c dt 

where b+c is the order of the reaction which is usually equal to 2. Defining the extent 

of reaction, a=1- [NCO], as the fraction of reacted isocyanate end groups we obtain 

a second order kinetics equation for a as 
da_ 

dt = ßq(1 - a)2. 

1/ca is the timescale for the reaction. Scaling time with this timescale, the evolution of 

the extent of reaction follows the dimensionless equation 
da 
dt - ý1 - a)2' (3.28) 
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We assume that gas is generated at a rate proportional to dt 
, where a is the fraction of 

reacted end groups at time t. The concentration of gas generated is SHpa (a - ao) where 

ao is the initial extent of reaction and c is a dimensionless parameter that dictates the 

maximum number of moles of dissolved gas per unit volume that could be generated by 

the reaction. In order to satisfy Henry's law at the bubble surface the initial gas pressure 

is given by pgo = pa (1 + cao). Scaling the concentration potential, 0, with the number of 

moles of gas generated by the reaction at completion, ; Hp, Xuo, the diffusion equation 

(3.14) becomes 
igo z 

Tt = N(x + U)13 aax2 -1xddt (X - x). (3.29) ýt 

The boundary condition (3.15) is 

ao SX 
P9oPa P. A- 1) (3.30) 

at the bubble surface and ä2¢/ax2 =0 at x=X. The dimensionless group N= 
2 

9D/u 3 ca is now the ratio of the gas diffusion rate to the reaction rate. The conservation 

of mass equation, (3.13), becomes 

(Pa + (P9o 
_Pa) Pg 

u= 1+Sý1? aX (c5(0, t)+(a-ao)). (3.31) 
P90 

) 

P90 

3.2.2 Nonlinear Rheology 

In this section we describe how we utilise the results of section (2.5) in the momentum 

equation (3.10) and stress evolution equations (3.11) and (3.12). 

The linear spectrum is discretized into a set of discrete modes given by 

G(t) = 1: Gke-ttTk. 

In order to extend this to nonlinear flows, each mode is treated as a mode in a multimode 

Oldroyd B fluid so that the first normal stress difference becomes 

S, - Soo = -2p xü+u+ 
Gk (A,, - 

Aoo)k" 

k 
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This simple nonlinear extension does not introduce any additional parameters and will 

be valid provided that molecular strains remain modest so that molecular segments do 

not extend beyond their maximum length. 

For a<a, we use equation (2.13) to obtain Gk. Ar,. and A,.,. - A99 for each mode 

satisfy 
äA,.,. 4u 1 

(Arr - 1) (3.32) 
19t 3(x + u) 

Arr 
7-C, 

and 

ö(Arr - A00) 

at 3(2 + 2t) 
[(Arr - A00) - 3Arr] - 

TC 
(Arr - ABB). (3.33) 

a 

The values of the elastic moduli change during the reaction due to the loss of translational 

modes and the subsequent gain of internal modes. In addition new modes are ̀ switched 

on' as larger molecules are produced. This means that in order to conserve stress we 

must adjust A for each mode so that when G changes by an amount AG, 

(G + AG)Anew = GA + AGI. (3.34) 

Finally, we sum the modes in the momentum equation (3.10): 

Tch /Tx 

3u uX+u= 
P9M + 

2, 
Y Gk 

fX (AT 

x+u 
ee)kdX d(lnr) - 

13 
. (3.35) 

Lo rU 

Here M= (p9o - pn)/µca is the ratio of the bubble growth rate in the solvent to the 

reaction rate, 'y = Go/µc,, and I' = uö/3pca/2S. 

Fora > a, we consider separately the relaxing modes with r< Tch and the single gel 

mode which corresponds to an elastic solid. For r< Tch we obtain expressions for G 

for each mode from the first term on the right hand side of (2.14), since these modes 

can relax A,, and A,,. - A09 for each mode satisfy (3.32) and (3.33). The gel mode 

is equivalent to the non-relaxing modes with r> Tch in equation (2.14) so we use the 

second term of equation (2.14) to obtain the Gk. These modes do not relax and so Ar,. and 

A,.,. - A90 for each mode satisfy equations (3.32) and (3.33) with -r = oo. The increase 

in modulus of this mode with extent of reaction can be attributed to three sources: first 

from the translational modes of molecules attaching to the gel; second from modes near 
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Tth in these molecules, which are frozen as they attach to the gel; and third from modes 

already in the gel which become frozen as Tch changes. Hence, as a increases and Tch 

decreases past the gel point, all modes with T> Tch are switched from the sol to the 

gel fraction. Both their modulus, OGof, and their stress, AGofAoff, are added to the 

gel mode accounting for contributions two and three above. The contribution from the 

translational modes corresponds to an additional stress contribution OGgejI. Thus, for 

the gel mode, 

(Ggel +I Ggel + LGo$)Anew = GgeiA + OGgeII + OGo fAo ff. (3.36) 

The sum in the momentum equation now includes a gel term with r= oo in addition to 

the terms from r<T< rm. 

Equations (3.28) for the reaction rate; (3.29) for gas diffusion; (3.31) for bubble gas 

pressure; (3.32), (3.33) and (3.34) for the elastic stresses; (3.35) for the bubble growth 

rate; and (2.15) and (2.16) for the evolution of the shortest relaxation rate provide a 

dimensionless equation set governing bubble growth in a gelling system. Here time is 

scaled with the reaction time, ¢ with the total number of moles of gas produced by 

the reaction at completion and bubble gas pressure and lengths are scaled as in section 

3.1.2. The method of solution is that described in section 3.1.3. Numerically, we find 

that twenty modes per decade give a sufficiently accurate description of the viscoelastic 

spectrum. 

3.2.3 Effects on Bubble Growth 

In this section we describe the effects of the competing timescales on bubble growth. 

Tables 3.4 and 3.5 outline the parameters used to generate the figures in addition to 

those in the previous section and the dimensionless groups arising in the formulation 

of the reacting model. The definitions differ from those in table 3.1 since time here is 

scaled with the reaction time 1/ce. 

We now consider the growth rate of a bubble in a reacting polymer in which gas is 
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parameter value units 

molar mass of initial polymers MX 0.5 kg mo1-1 

relaxation rate of initial polymers Tx 0.00133 s 
liquid density p 1200 kg m-3 

rate of reaction ca 1,10 s-1 
max. gas concentration produced by reaction 

background gas concentration S 10 - 
extent of reaction at the gel point ac 0.91 - 
extent of reaction at nucleation ao 0.1 - 
molecular weight distribution, n(m), v 2.2 - 

exponent 

largest molecular weight scaling a 0.45 - 
exponent 

fractal dimension of the equilibrium coil df 2.5 - 
size of a molecule 

solvent viscosity µ 0.1 105Ns M-2 

92 

Table 3.4: Additional parameters used for bubble expansion in a reacting polymer for figures 

3.17-3.23. 
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M= (p µ °) 10,1 ratio of the rate of bubble 
CIO 

growth in the solvent to the 

reaction rate 
Go ry-ACC 738,73.8 

/Acct r_0 oo ratio of viscous force to 

surface tension 

N=- 0.9-400 ratio of the rate of gas 
U0 C. 

diffusion to the reaction rate 

(D =RTH 0.32 

X1 53.6 1 dimensionless fluid volume 

93 

Table 3.5: Dimensionless groups arising in the non-dimensional formulation of the equations 

governing bubble growth in a gelling system together with the values for figures 3.17-3.23. 

produced as a reaction by-product. 

As in the non-reacting model the rate of diffusion of gas is of order 

9D 
(uoX) 3 

while the initial bubble expansion rate is of order 

cpa ao 

µ 

There is now a third timescale, the reaction rate ca, which determines both the production 

of gas and the evolution of the fluid rheology. Here we describe how the balance of these 

timescales controls bubble growth dynamics. For simplicity we have assumed that the 

gas diffusion constant, D, is independent of the extent of reaction. Although there will 

be a change in diffusivity between the initial and final states of the material, most of the 

gas is produced in the early stages of the reaction and in most cases diffusion takes place 

well before the gel point. 

The initial phase of bubble growth is controlled by supply of gas into the bubble. There 

are now two distinct sources of gas available to drive bubble growth. First, some gas 
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is present in the liquid initially and will immediately begin to diffuse into the bubble. 

Second, gas will be produced within the liquid as the reaction progresses and, if the 

production rate exceeds the rate of transport into the bubble, the gas concentration in the 

liquid will increase with time. If gas diffusion is slow compared to the initial bubble 

expansion rate there is an initial drop in the gas pressure inside the bubble as it expands. 

However, as the excess gas produced by the reaction diffuses into the bubble we see 

an increase in gas pressure (see figure 3.17). The bubble gas pressure only begins to 

fall once the reaction rate decreases and the gas concentration in the fluid decays. A 

distinct change in bubble growth rate can be seen around t=2.5 for N=9 and 

t=1 for N= 90 in figure 3.18 as excess gas has diffused into the bubble and the 

expansion changes from being controlled by gas diffusion to gas production. Increasing 

the diffusivity increases the rate at which gas is transported into the bubble. This 

produces an increase in the bubble gas pressure at early times and a consequent increase 

in the rate of bubble growth (figures 3.17 and 3.18). 
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Figure 3.17: Effect of diffusivity on dimensionless bubble gas pressure when M= 10. Solid 

line: N=9; dashed line: N= 90; dotted line shows the limit of infinite diffusion. 

Comparing figures 3.6 and 3.19 we see the effect of the polymerisation on the elastic 

stress. For a non-reacting system, figure 3.6, reducing the diffusivity (and hence the 
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Figure 3.18: Effect of diffusivity on bubble growth when M= 10. Solid line: N=9; dashed 

line: N= 90; dotted line shows the limit of infinite diffusion. 

bubble growth rate) produced a much lower first normal stress difference. However, in 

figure 3.19 we see that the main effect of diffusivity is to delay the point of maximum 

first normal stress difference with relatively little change in the magnitude. Although a 

lower diffusivity reduces the bubble expansion rate at early times, it delays the maximum 

rate of expansion to times when the molecular weight is larger and so the fluid is more 

viscoelastic. 

In the three cases shown in figures 3.17,3.18 and 3.19 the final bubble volume is 

independent of diffusivity. In these cases the rate of the reaction is sufficiently slow for 

the gas pressure to reach equilibrium before the gel point is reached. At faster reaction 

rates the gas bubble will not have reached its equilibrium size before gelation and so 

the equilibrium bubble volume will depend on the values of N and M (see figure 3.21). 

The asymptotes given by the limit of infinite diffusivity in figure 3.20 show that the 

ratio of the bubble expansion rate to reaction rate, M, dictates a maximum equilibrium 

volume. The ratio of the rate of gas diffusion to reaction rate, N, dictates the proportion 

of that volume achieved. Figures 3.22 and 3.23 show the increase in gas pressure and 

first normal stress difference caused by continued gas diffusion after the gel point when 
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Figure 3.19: Effect of diffusivity on the magnitude of the first normal stress difference, 

1ry E G(k) (Arr (k) - Aeo (k)) 1, when M= 10. Solid line: N=9; dashed line: N= 90; 

dotted line shows the limit of infinite diffusion. 

the diverging fluid rheology prevents further bubble growth. The slower the rate of gas 

diffusion the greater the increase in gas pressure and first normal stress difference since 

a smaller amount of gas had diffused into the bubble prior to gelation. 

Increasing ry increases the viscosity of the liquid throughout the reaction and so decreases 

the equilibrium bubble volume while increasing the magnitude of the first normal stress 

difference and the equilibrium gas pressure. This effect is much more pronounced at 

high reaction rates. Increasing ao, the extent of reaction when the bubble nucleates, 

increases the initial gas pressure in the bubble and so the equilibrium bubble volume at 

completion of the reaction is increased. 

3.3 Justification of the Full Reacting Model 

In this section we justify the complexity of our reacting model by comparing the results 

for bubble expansion using this model with results generated by using two simplified 

models. In our reacting model we add new relaxation modes as the longest relaxation 
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Figure 3.20: Effect of varying the values of the ratio of the rate of diffusion to the reaction rate, 

N, and the ratio of the bubble growth rate to the reaction rate, M, on the equilibrium bubble 

volume. Solid line: M=0.1; dashed line: M=1; and dotted line M=5. 
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Figure 3.21: Effect of diffusivity on bubble growth when M=1 and ry = 73.8. Solid line: 

N=0.9; dashed line: N=9; dotted line shows the limit of infinite diffusion. 
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Figure 3.22: Effect of diffusivity on dimensionless bubble gas pressure when M=1. Solid 

line: N=0.9; dashed line: N=9; dotted line shows the limit of infinite diffusion. 
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Figure 3.23: Effect of diffusivity on the magnitude of the first normal stress difference, 

1ryF, G(k)(Af,. (k) - ABB(k))j, when M=1. Solid line: N=0.9; dashed line: N=9; 

dotted line shows the limit of infinite diffusion. 
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time increases. In the diagrams presented in the previous section we discretize the 

relaxation spectrum by rk = rxe-k"bk where k is an integer. Thus, 5k = 0.1 gives 

approximately 20 modes per decade and up to 400 relaxation modes in total. When this 

is applied across a number of discrete fluid shells in the case of the spherical bubble, or 

elements as described in figure 4.2 as in the case of the hexagonal bubble geometry, there 

is a significant time penalty compared to the single mode calculations of section 3.1. In 

figure 3.24 we compare the bubble expansion, as far as the gel point, at a reaction rate 

of 10 (M = 1), with differing numbers of modes per decade. It can be seen that 1 mode 

per 5 decades gives a very poor degree of accuracy. The plateau regions correspond to 

the addition of new modes. 

Though using 1 mode per decade reduces the computational time without a significant 

loss of accuracy, it would be beneficial to provide a simple one or two mode model that 

could predict bubble expansion to a reasonable degree of accuracy. The simplest model 

for a reacting fluid might be that of a generalized Newtonian fluid with viscosity that 

increases with the extent of reaction. We use a viscosity equivalent to the total viscosity 

of the full reacting model outlined in section 2.5.2. As the reaction approaches the 

critical extent of reaction the longest relaxation time and, hence, the viscosity, diverge to 

infinity. The elasticity of the material allows the bubble to continue expanding beyond 

this point. However if the fluid was Newtonian with increasing viscosity, the diverging 

viscosity would halt bubble expansion at the gel point. At low reaction rates most of 

the bubble expansion takes place before the gel point while the molecules are small and 

stress relaxes quickly. When the reaction rate, ca = 1, the Newtonian model gives a 

reasonable approximation, particularly at early times as can be seen in figure 3.25. At 

high reaction rates the molecules increase in size quickly and so the elasticity of the 

material becomes significant. In figure 3.26 the reaction rate, ca = 10, and we see that 

the Newtonian model gives a poor description of bubble expansion except at very early 

times. 

In order to improve the prediction without making the model very much more complex 

we devised a model that incorporates the early time accuracy of the generalized 
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Newtonian model with the late time necessity of an elastic model. At early times we use 

an increasing Newtonian viscosity, as above, with no elastic contribution. At later times 

the Newtonian viscosity remains constant and we introduce a single Oldroyd B mode 

with increasing relaxation time equal to Tch and elastic modulus, G fixed to give the 

correct viscosity as section 2.5.2. After the gel point the gel mode is added by a second 

mode with infinite relaxation time. As the longest relaxation time drops we revert to a 

decreasing Newtonian viscosity and no elastic contribution. Figure 3.25 shows that at 

low reaction rates the point at which the elastic mode contributes can be adjusted to give 

a very close fit. However, at high reaction rates figure 3.26 shows that the predictions 

are still poor. The generalized Newtonian model gives a very poor fit due to the rapid 

increase in viscosity. Expansion starts up again after the gel point as the viscosity of the 

sol fraction decreases as an increasing fraction of the material becomes gel. The single 
Oldroyd B mode model gives a slightly better fit until well after the gel point. 
The above models justify use of the full reacting model at high reaction rates while 

providing a fast approximate prediction of bubble expansion at low reaction rates. 
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Figure 3.24: Comparison of different mode densities on bubble expansion using the full reacting 

model. 
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Figure 3.25: Bubble expansion at low reaction rates (ca = 1) to compare simplified models for 

a reacting fluid with the full reacting model described in chapter 2. 
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Figure 3.26: Bubble expansion at high reaction rates (ca = 10) to compare simplified models 

for a reacting fluid with the full reacting model described in chapter 2. 
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Chapter 4 

Analysis of the Window Between Two 

Bubbles 

In the previous chapter we considered the growth of individual gas bubbles in isolation. 

The assumption of spherical symmetry breaks down as the bubble volume fraction 

increases and bubble growth is affected by the presence of neighbouring bubbles. In 

this chapter we shall study the effects of neighbouring bubbles by considering bubble 

growth in a symmetric foam of identical gas bubbles. In static foams, the surface tension 

forces acting on the films separating neighbouring bubbles must be in equilibrium at the 

Plateau borders where films meet. Thus, in a two dimensional foam three films joined 

at a common line must meet at 120°. Consequently we can construct a symmetric two- 

dimensional foam from a hexagonal array of cells. In section 4.1 we shall compare the 

solution of the full two-dimensional equations governing bubble growth using a finite 

element method with two approximations. The first approximation is that of circular 

symmetry - section 4.1.2. The second is the opposite extreme: a one-dimensional 

approximation of a two-dimensional hexagonal array of bubbles separated by thin liquid 

windows - section 4.1.3. We compare the solutions obtained from the three methods 

and provide estimates of when each of the two approximations are useful. 

In three dimensions four films meet at angles of 109.47°. Unlike the two-dimensional 
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case, it is not possible to construct a symmetric three-dimensional foam with planar 

faces. Kelvin showed that space can be partitioned into identical cells with equal volume 

and minimal surface area. The resulting cell is a tetrakaidecahedron which has six planar 

quadrilateral faces and eight nonplanar hexagonal faces. However, in practice pentagonal 

faces are dominant [27]. Although we will not solve the full three-dimensional flow 

problem, in view of the geometric differences between two and three dimensional bubble 

growth, in section 4.3 we study two axisymmetric models that model the stretching of a 

strut in an open cell foam and the expansion of a circular window between bubbles in a 

closed cell foam. 

Throughout this chapter we shall assume that the expansion rate is sufficiently small 

that fluid inertia may be neglected, bubble growth is isothermal, and the bubble-fluid 

interface remains in thermodynamic equilibrium. We shall use two different constitutive 

models for the liquid phase. First we use the Oldroyd B model to determine the effect 

of viscoelasticity on bubble growth in a non-reacting polymer foam. Second, we model 

a reacting foam where the rheology changes as the reaction progresses using the model 

for a gelling liquid from chapter 2. 

4.1 Bubble Growth in a Two Dimensional Hexagonal 

Lattice 

We consider a symmetrical two-dimensional arrangement of bubbles in a hexagonal 

lattice. Due to the symmetry of this system we only need to perform calculations on 

a triangular region that makes up 1/12 of the hexagonal cell, shown in figure 4.1. Bubble 

expansion is, again, driven by a difference in pressures between the gas pressure inside 

the bubble, p9(t) and ambient pressure outside the system, pa. 

Neglecting inertia the momentum equation gives 

V cr = O, (4. iß 
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Figure 4.1: Diagram showing the two dimensional arrangement of circular bubbles. 

together with conservation of mass 

0"u=0. (4.2) 

By symmetry there are no tangential tractions and no flow through the boundary of the 

element and so by specifying the rate of increase of the cell length, L, these equations can 

be solved for the velocity and pressure within the fluid. In order to find 
.L we consider the 

work done by the fluid stress, bubble gas pressure, ambient pressure and surface tension 

(K) in changing the bubble area an infinitesimal amount. Balancing the work done in 

the liquid with the work done in expanding the bubble gives the equation 

f 
o: E dAf =_ (P9 - P) 

dAb 
-KC. (4.3) n dt dt 

Here Af is the fluid area, Ab is the bubble area, and C is the length of the liquid-bubble 

interface CD. The concentration of gas in the liquid, c(x, t) is governed by the diffusion 

equation 
Dc 

= DV2c, 
Dt 

(4.4) 

with boundary conditions satisfying Henry's law along the bubble-liquid interface (CD 

in figure 4.1) and a zero flux condition on the three remaining boundaries (AB, AD and 

BC) by symmetry. 
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Mass conservation across the fluid-bubble interface relates the current gas pressure in 

the bubble to the amount of gas which has been transferred from the fluid. 

d p9`4b DVc" ndC (4.5) 
dt RT) 

fc 

Non-Dimensional Equations 

We scale lengths with the initial bubble radius, Ro, times with the polymer relaxation 

time, T, and the pressure difference, p9 - pa, with the initial pressure difference, pgo - Pa 

in order to obtain a dimensionless conservation of energy equation from (4.3): 

f o-: EdAf=PPDedd±_ 1 
t 

(4.6) 

Here R. =p is the dimensionless gas pressure difference and o, E, Ap Ab and 

C are also dimensionless. Scaling the gas concentration with 9ZT/p9o we obtain the 

dimensionless gas diffusion equation 

Dc 
= NV2c (4.7) Dt 

where N= Dr/Ro, together with boundary conditions 

c_ 
«(Pa + (29o - P-)P9) 

at the bubble-liquid interface (CD) (4.8) 
P9o 

n" Vc =0 on the boundary on AB, AD and BC. 

Integrating the mass conservation equation (4.5) over time gives a non-dimensional mass 

conservation equation 

(Pa + (pgo - Pa)P9)Ab = Pgo 
(Abo 

+N pc "n dC dtl (4.9) 
it 

/ 

By applying the divergence theorem to the surface integral term, substituting the 

expression for 02c from the diffusion equation (4.7) and integrating with respect to 

time we could obtain a similar expression to (3.6) in chapter 3. However, here we leave 
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the expression with the flux across the bubble-liquid interface so that we can apply it to 

bubbles of differing size in chapter 5. - 
The dimensionless groups arising are summarised in table 4.1. Equations (4.6) - (4.9) 

together with dimensionless forms of (4.1) and (4.2) and constitutive equations for the 

evolution of the polymer stress, S, provide the dimensionless equation set governing 

bubble growth. 

Deborah number De = 
(P'O-P°)T ratio of the rate of bubble 

growth in the solvent to the 

relaxation rate of the polymer 

viscosity ratio ry =µ ratio of polymer to solvent 

contributions to the steady 

shear viscosity 

capillary number r=K ratio of viscous force to 

surface tension 

RTH 

time scale ratio N= 9D-r =T R Td ratio of the polymer o 

relaxation time, r, to gas 
diffusion time, Td 

Table 4.1: Dimensionless groups arising in the non-dimensional formulation of the equations 

governing bubble growth. 

4.1.1 Finite Element Solution 

In this section we first describe an existing two-dimensional simulation developed by 

Harlen, [22], in which a bubble expands at a rate dictated by the limit of infinite diffusion 

as in (3.16) in an Oldroyd B fluid. We go on to outline the adaptations required to extend 

this simulation to include the effects of gas diffusion. 
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Eulerian-Lagrangian Finite Element Method 

A finite element scheme is employed to discretize the fluid region. The fluid model used 

is the Oldroyd B model of section 2.3.1 in which the polymer contribution to the fluid 

stress is GA with elastic modulus G and configuration tensor A satisfying 

A= -(A - I), (4.10) 

and extra stress under our non-dimensionalisation 

S= 2E + ry(A -I). (4.11) 

The presence of the free surface, and the absence of flow through the boundaries, makes 

the flow calculations well suited to Lagrangian computational methods. Consequently 

we shall use the split Eulerian-Lagrangian finite element method developed by Harlen 

et al. [22]. The equations are solved on triangular finite elements that move and deform 

with the fluid. 

Following the approach taken in [22] the polymeric stress is split into a `viscous' part 

equivalent to the stress exerted by the dumbbell in order to retain its current length and 

an ̀ elastic' part caused by changes in the length of the dumbbell. Using equation (4.10) 

we may write the polymer contribution to the stress 

0 
A-I=A"E+E"A-A, 

where A= aA/öt +q" VA -AA. SZ + SZ "A is the corotational derivative and 
0 

2 
(Vq - VqT) is the vorticity tensor. Thus the extra stress can be written in the 

form 

Sij = I. ijklEki - -YA0ij. 

where Pijkl _ (ask +7Aik)bjz + 5ik (5 z +7Aj1) is an effective viscosity. We approximate 

the velocity field, q, by a sum over the finite element nodes q(x) = E. qm O'" where qm 

is the velocity of the grid node at position x�, and 0' are linear interpolating functions 

With (m(, )=1, Om(xt1) =0 for n; m. The pressure field is interpolated using 
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O 

the same interpolating functions while A and A are interpolated as piecewise constants. 

The extra stress, S; j is therefore approximated as 

[ý 
. 
5'iß =L 

(qim am 

Öx; 
+ Q'; m 

am 

Cýxi 
m 

mmmm 

2 äxi qj axk \ axk + ýk axi / 
Ak'J 

- ryAi; 
} (4.12) 

In order to minimise the residual obtained when the above approximations are made 

the standard Galerkin method of weighted residuals is applied to the conservation of 

momentum equation so that, when multiplied by the interpolating function on, and 

integrated over the fluid domain, we obtain 
fr 

(-Op +V" S) o"dA1 = 0. 

Integrating by parts leads to 

Jc 
( P95"ns + Sijnj¢n) dC - 

A-P 

ýi+S; 
j aI 

dAf = 0. 

I 7/ 

On the bubble-liquid interface, CD, -pn+S -n = -p9n+Srcn. On AB, AD and BC the 

normal componant of the velocity field, q"n, is known so only the tangential component 

is required. Since nxS"n=0 on these boundaries there is no contribution to the line 

integral coming from these sections of the boundary, so that the only contribution comes 

from the bubble-liquid interface, CD. The liquid phase pressure, p, is approximated by 

p= Em pmqs'' so that the volume integral can be written 

pmm + 
J (m 

+q 
Af 7 

m-aom 'Y [Aik 
91 + 

eon 
m 

aom eon 

+ Qý 2 ax " ax " axk ax " 
mn 

+ 
(qim ä 

a 
+ m 

om q5n 
Jka Akil 

n 
dAf. (4.13) ''Ai, 

ý 

k te; x x; aI ? J äx 

The p terms here simplify to 

E-p"'' o""ý= 
n 

dA 
m 

JA1 
f; 
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while the velocity terms are 

'ý` 
(Lom aon 

qi f ax ax + 
aom aon a0m aýn 

dA 
ay a 

ý dAf + qx f ax ax f m y i 
+ qv dA f a a 

aom aýn 
+2 

[Ai. 

qxln 
l 

dAf 
2q5n 

+ 
a0m 2L (a ry f abm 

A x; I y A x 8x ay ay I 

+ m 
/' 

Aiygy JA I 

aým aýjn aým aýn aom aon 

ax ax 
+ 

ay ay) dAf + Aixgx 
J 

ax ax dAf 
I 

+ Aizqy 
m yn 

ax a 
ým 0n 

dAf + AiYgx 
AA ay a2 

dAf 
) f 

+ Aiygy f 
AAf ay ay 

aom aon aým aýn 
dA dA f+ Ax, gm 

4 ax ax f 
) 

+ AsYýIin 
Lf acjm acjn 

19X ay , 

aom aýn 

dAf + Ayýq; " 
AI ay ax dAf 

+ Ayq; 
J mn 

y ay 
d4f +Azx4x 

mn f 

A) 
dAf äxß a 

+ Azygz f 
mn äi 

ay 
m ýn 

dAf + Ayqý f ox 

a ax dAf 
I e Af 

+ m Ayyqy fI 
ac5m aqn 

ax, ay dAf ; 

O 

and A terms to 

-7' Aix dA f 
o 

Aý 

n dA f+ Aiy 
fA1 

m/ 

This can be written as a matrix equation of the form 

110 

UU UV pU 
qx 

VU VV Vq 

(fu). 
(4.14) 

Pmfv 
p 
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Contributions to the coefficients from the element consisting of nodes 1, m and n are as 

follows: 

UU =1 {2(1 +7Axx)dxmdx" +7Axy(dxmdy" + dx"dym) 

+ 
(1 

+ 
2(Axx 

+ Ayy)) dymdynJ 

UV = 
4a {7A(dxmdx72 + dytdy") + (1 + 2(Axx + Avu)) dxmdynJ 

VU =1 
{7A(dxmdxtm + dymdyn) + (1 +2 (Axx + Avy)) dxndym} Ta- 
f2 

{ (1 
+2 (Axx + Avv)) dxmdx'i + -yAxb(dxmdyn + dxndym) VV =1 4a 2 

+ 2(1 + 7AYy)dymdy"} 
dym 

ý'U 6 

V 
dxm 

6 

fu =2 
(ixxdX" + Axydy") +f (-pnx + Sxxnx + Sxvny) b"dC 

C 

and 

fV=2 (1dx" + Ayydy") +J (-pny + SSýny + Syyny) OndC, (4.15) 
c 

where dx' = x" - x' (similarly for dx", dym and dy") and a is the area of the triangle. 

In order to stabilise the liquid pressure across the fluid domain a small pressure term is 

added to the continuity equation. The modified continuity equation is 

V"q+h2EV2p=o, 

where e is a small parameter and h2 is twice the area of the element [57]. Applying 

Galerkin's standard formulation and integrating the V2 term by parts leads to 

/ý q` o"dAf + h2e ý' onnidC - 
ap aO n 

dAf =0 JA, äxß 
(fc 

äx; Af axi axi 
Since there are no pressure gradients normal to the boundary of the fluid region by 

thermodynamic equilibrium and symmetry considerations, the boundary integral is equal 

to zero. Applying the finite element approximation for q and p, we obtain 

'n 

J 
aým 

(ýndAi h dA f 
2E mJ 

a9m acb (qi 

A, 
a--i 

Al Ox exi = 0, 
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which simplifies to 
mm h2c \ 

qi 
ds 

+ qm 
dxm 

- pm(dxtdx" + dymdy") I=0. (4.16) C m 

The mass and momentum equations are solved simultaneously by solving 

AB qln f 
(4.17) 

BT C pm 0 

where 

h1c 
A_ 

UU 
'B= 

(d s, d s) 
, and C= 

4a 
(dxmdxn + dymdyn) . Vu vv 

0 
At each time step, equation (4.17) is solved for current values of A and A and an estimate 

for the expansion rate L. By separating the terms in equation (4.6) into those that are 

linear and quadratic in the velocity we can obtain a new estimate for L. The velocity is 

then recalculated and the value of L is further refined by linear interpolation. In practice 

at most three iterations are required to find the correct value of L. 

Once the velocity field has been found, the positions of the nodes of the finite elements 

are updated. The configuration tensor A is then found by integrating equation (4.10) in 

the frame of the deforming element, where the upper convected derivative becomes dA 

The solution for A is thereby reduced to a first-order ordinary differential equation. 

Finite Element Solution for Gas Diffusion 

The gas diffusion equation (4.7) is solved using the same finite elements used to solve 

the momentum equation and makes use of the Lagrangian nature of the grid to remove 

the advection term. For stability we use a backward Euler scheme to discretize time and 

the Laplacian is discretized using the standard Galerkin method and the resulting linear 

system is solved by a preconditioned conjugate gradient method, details are given in 

chapter 1. Thus, when discretized in time, the gas diffusion equation (4.7) becomes 
&+l - Cn 

- NV2cn+1 = 0. (4.18) At 
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Here superscripts denote discretization in time and subscripts denote discretization in 

space. The gas concentration is approximated by a sum over computational space 

elements c(x) = E,,, 0,,, c,, where c�, are the values of the concentration, c(x�a), at 

the grid nodes zm and ¢�a are the linear interpolating functions discussed above. When 

applying this approximation to equation (4.18) we obtain 

+l Om - Cm0m - NOt E 
Cn+1021 = mm es 

mmm 

where R, is the residual - the difference between the true solution of equation 4.18 and 

the solution obtained by applying the approximation. 

Now we apply Galerkin's method of weighted residuals as for the momentum equation: 

fC 15m5kdAf -E Cm0mOkdAf - NIt JE cm 1OkV20mdAf = 0. 
JM Al m Al M 

Integrating the V2 term by parts and rearranging leads us to 

E Cm 1 
fAf 

(45mOk + NOtVq5mVck) dAf = NA tJn" Vc"+1OkdC 
mC 

+EC;, 15m kdAf (4.19) 
m 

jf 

where C is the boundary of the liquid domain. The line integral on the right hand side 

is obtained from boundary conditions and, in this case, equals zero on all four fluid 

boundaries since n- Vc is zero on AB, AD and BC while on CD the gas concentration 

is known so that ¢k =0 for all the unknown elements of c. 

The value of the bubble gas pressure from equation (4.9) is calculated from the flux of 

gas across the bubble-liquid interface given by the line integral 

n "NAt Vc' 'dC. Ic 
D 

Convergence 

The calculations were performed using grids with approximately 1000 elements and a 

timestep of 10-3L/L. Spatial accuracy was checked by comparing calculated values for 
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A, uL and bubble area for one set of parameter values with those obtained using a finer 

grid with approximately 4000 elements and were found to be within a relative error of 

0.5%. A seperate check of temporal accuracy using a timestep of 5x 10-4L/L found 

relative errors in A of at most 1% and smaller errors in other quantities. 

4.1.2 Circular Bubbles 

When the bubble area fraction is small we might expect bubbles to remain circular 

during the expansion, thus we can consider a simplified model where circular bubbles 

are surrounded by a circular liquid layer. The formulation here is very similar to that for 

spherical bubbles in chapter 3. 

In cylindrical polar coordinates liquid pressure, p, and stresses, Sr,. and SBB, are assumed 

to depend on r and time t only. Neglecting inertia, the radial component of the 

momentum equation, V" a- = 0, gives 

8p (Sr, - Soo) C9Srr 
ör r+ ar 

(4.20) 

Since the fluid area is conserved we transform from a radial coordinate r to a Lagrangian 

area coordinate x such that r2 =u+x. Here, 7ru is the bubble area and irx is the general 

fluid area so that x=X is the Lagrangian position of the outer edge of the envelope. At 

the boundaries x=0 and x=X 

-p(u) + Srr(u) = -p9 +u1, (inner surface boundary condition) 

-p(X + u) + Srf(X + u) = -pa, (outer surface boundary condition) 

where S is the surface tension at the bubble interface. Integrating (4.20) across the fluid 

layer and using these boundary conditions gives: 
1IX Srr - 

For the Oldroyd B model S,. f - Soo = -2ic/(x + u) + y(A,,. - Aee) so that 
X_ 

it X+uP9De+2yj 
`4ý+ýBBdx-, 1 I. (4.21) 

lu 

ou 
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Due to the coordinate transformation, the evolution of Arr and A99, given by equation 

(2.5), can be followed in the Lagrangian frame: 

ü 
Arr - (Arr - 1), (4.22) 

ät (X+u) 
and 

8(Arr - Aee) 
_u [(Arr -Ase) - 2Arr] - (Arr - Aee). (4.23) 

at (x + u) 

Initially Arr =1 and Ar,. - A99 =0 everywhere. We introduce a concentration potential 

q(x, t), where 90/8x =c- co to aid in the numerical solution [1,3] of the gas diffusion 

equation (4.4) as in chapter 3. The diffusion equation then becomes 

. =4N(x+u) 
2 

ax 2 (4.24) 

with 901ax = 4ý(pgo - Pa) (P9 -1)/pgo at the bubble surface satisfying Henry's law and 

02q5/axe =0 at the outer edge of the fluid layer so that there is no mass transport there. 

Substituting equation (4.24) for the left hand side of equation (4.5) and integrating with 

respect to time gives 

(Pa + (Pgo - Pa)P9)U = p9o(1 +0 (O, t)), (4.25) 

since we can arbitrarily set «(0,0) = 0. 

The five equations (4.21) - (4.25) govern bubble growth for isolated bubbles which 

remain circular during the expansion. 

4.1.3 Thin Film Approximation 

In the opposite limit where bubbles are separated by thin films, we can obtain a second 

one-dimensional approximation. Since there is no traction along either the bubble 

surface or the x-axis the flow in the liquid region is approximately an extensional flow 

in the x-direction. Thus, when the fluid layer is thin, the velocity gradient and, hence, 

the polymer stress will be approximately uniform over the thickness of the fluid layer. 

We can, therefore, construct a one dimensional thin film model analogous to those used 
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to model spin lines [18,28]. 

We divide the fluid region into n trapezoidal elements and a triangle as shown in figure 

4.2. Ox; and Dy; are the width and height of element i. 

Figure 4.2: Diagram enlarging the computational region. 

In Cartesian coordinates the velocity field q in planar extension is given by 

8 

Vq =o 
lqv 

000 
and so in each element 

Ay 

Vq= o 
0 

Integrating the momentum equatii 

00 öz 

°-ý 0=0 Ay 

000 

)n over element i and 

00 
°y 0 Ox 

00 
applying the divergence theorem 

we obtain 
fV- 

adAi=O=J (r "ndCj=0 
; c; 

where A; is the interior and C; is the boundary of element i. To obtain the contributions 

to the integral from the left and right hand sides we assume that, since the fluid layer is 

thin, fluid pressure, p, and stress components, Sy. and Sy,, are independent of y. Thus 

the integrals along the vertical boundaries are 

-ý-p -i- Qxxý4yi x and (-p + Ux) +lLyi+i X. 
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The contribution from the gas-liquid interface is obtained by using the boundary 

condition 

a-n=(-p9+Kic)n 

where 'c is the curvature, K is the surface tension on the bubble surface and ndC = 

xdy - ydx. The expression for the curvature is obtained from the rate of change along 

the free surface of the tangent to the free surface 

ýc 
I d2h 

2 

where h=xx+ Ay y, dC =1+ Dy'2 dx and' indicates a derivative with respect 

to x. This gives 

AY It 
fG ==- 

(1+Dy)312 
1d1 

Dy' TX (1 + zy'2)1/2 

Thus the contribution from the gas-liquid interface gives 

(1 + Dy; 2)1/2 x+J (-pg + Sr. ) dxy. - 
(_P9Yi+i 

- Dys) - (1 -F 4y +1)12 +S 

Finally the contribution from the symmetry line along the bottom of element i is 

f (-p + SSy)y dx. 

Contributions from each of the four integrals are then combined. Balancing the y 

components give an expression for the pressure in the fluid, 

Syy=-(p9-p)+ Sr. (4.26) 

The x components relate the stress and fluid pressure at the left hand end of each element 

to that of the right hand end of each element, using equation (4.26) to eliminate the fluid 

pressure we obtain the non-dimensional equation for the force balance on each element 

(Sxx - 
S. 4) Ayi+l - ('Sxx 

- SVY)i AN 

-1 

(Ki+lAyi+i 

- KiDyi + 
(1 + Oy 1ý2 1+ Oy )1/2l / 

(4.27) 
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To obtain an expression for the expansion rate, L, we, again, consider the work done 

in expanding the bubble an infinitesimal amount as in equation 4.6. For our discrete 

system, we obtain 
ýa-: Eai=P9Dedd6-, 1 ýdd' 

where ai =2 (Dy; +l + Ay; )Ox; is the area of element i and Ci is the length of the 

bubble-liquid interface for element i. Thus 

E(x's+i + Ti)0xi = vl3-PgDeL 
dt 

-1 
(9 i (4.28) 

11 

where we define' = (S.. - 
Syy)Ey. 

For the Oldroyd B fluid model 

w_ -40y +, y(Axx - Avv) Ay (4.29) 
Ay 

while from equation (4.10) the evolution of elastic stresses are given by 

O Axx = -2oYAx,, - (Aý.,,, - 1) 
(4.30) tAy A yv=2 Avv-(Avv-1). 

Since this approximation holds when the window is thin we shall assume that gas 

diffusion is effectively instantaneous so that gas concentration is uniform throughout 

the fluid. By Henry's law the amount of gas that has diffused into the bubble is 

1) 
(Pgo 

- Pa) 

P0 
(1 - P9)Ai 

and so from conservation of mass equation (4.9) 

(L02 
- Af + &Af (P90 - Pa)P9 = P9o 

Lz - Af + ýA1 - Pa. (4.31) 

Finally we have an equation for conservation of fluid area: 

(Dys+i + Dyi)Oxi = -(Dys+i + Dyi)Axs. (4.32) 

Equations (4.27) - (4.32) govern the deformation of the region under consideration. As 

with the calculation of the full finite element problem, we separate the solution of the 
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force balance and conservation of mass equations from the evolution of the constitutive 

equation. Using an initial estimate for the expansion rate at the midpoint of the window 

we calculate values of Aye from equation (4.27) using the Crank-Nicolson method to 

evaluate the curvature terms, we then adjust the expansion rate via a secant method to 

satisfy equation (4.28) using values of 0x obtained from equation (4.32). In order to 

conserve the area of the whole of the fluid region, the change in area of the triangle 

is calculated and distributed equally between the trapezia allowing their lengths to be 

adjusted. Once the Ay and 0x have been updated the bubble gas pressure is calculated 

by equation (4.31) and the stresses are updated by evolving equations (4.30). 

4.1.4 Reacting Fluid Model 

Here we implement the reacting fluid model described in chapter 3 in the one- 

dimensional approximation. 

In the reacting fluid model the total amount of gas produced by the reaction at time t is 

SAP Afa(t). The gas concentration is uniform throughout the fluid so that by Henry's 

law it is s aoP9 and the amount of gas transported into the bubble is Pgo 

SýDPnAj(a 
- aoP9). P9o 

Since p9o - pa = caop0, gas pressure can be determined from 

ho-Pa) 
(ýL2 

- A1 + Af P9 = pgo 
(ýLö 

-Af- Pa 
2 

L2 -Af 

Sýpac' A f. (4.33) 

As in chapter 3, the extent of reaction is governed by the second order kinetics equation 

(3.28). 

The force balance equation, equation (4.27), and virtual work arguments of section 4.1.3, 

now include contributions to the stress from each of the k modes so that 

ýy 
Sxx - Syy = -4Ay +'YEGk(Axx - Avv)k" 

k 
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The elastic moduli for the different modes, Gk, are calculated, as described in sections 

2.5 and 3.2.2, from equation (2.13) for a<a, and from equation (2.14) for a> ac. 

Before the gel point, a,, the stretch in each of the modes is governed by 

Axxk = -2 öAxxk - (Axxk - 1) 
Tb (4.34) 

Avaºk = 2ö Avvk - Tw ýAYYk - 1) 

where c, is the reaction rate and time is scaled with the reaction time, 1/ca. 

After the gel point the relaxing modes in both the sol and gel with rk < rh are governed 

by equations (4.34) and the non-relaxing gel mode follows these equations with an 

infinite relaxation time. Calculation of A allowing for the rearrangement of modes and 

scaling of the longest relaxation time are described in section 3.2.2. 

Parameter values used in addition to those for the non-reacting Oldroyd B fluid are the 

same as in the spherically symmetric case given in table 3.4. The dimensionless groups 

are summarised in table 4.2; the definitions differ from those in table 4.1 since time here 

is scaled with the reaction time 1/ca. 

M=p ý° ratio of the rate of bubble IACO 

growth in the solvent to the 

reaction rate. 

Y 
738 

{lea Ca 

r= Ro 10000ca ratio of viscous force to 

surface tension 

, ED =RTH 0.32 

X 0.0655 dimensionless fluid area 

obtained by using initial gas 

area fraction of 0.8 

Table 4.2: Dimensionless groups arising in the non-dimensional formulation of the equations 

governing bubble growth. 



Chapter 4. Analysis of the Window Between Two Bubbles 121 

4.2 Results and Discussion 

We assume that the bubbles will be sufficiently far from each other initially so that the 

bubbles are circular and the polymers are unstretched. As in chapter 3 we do not attempt 

to model nucleation and the very early stages of bubble growth so the value of the initial 

bubble radius, R0, is not the value at nucleation but that defined by the gas pressure being 

at p9o. The values of the parameters used are equivalent to those used in chapter 3 and 

are summarised in table 3.2. 

4.2.1 Full Two-Dimensional Simulations 

For an isolated spherical bubble we saw in chapter 3 that the only effect of surface 

tension is to modify the pressure difference between the gas and the fluid and, hence, 

the final bubble size. Consequently the expansion of an isolated bubble is governed 

by three timescales: a polymer relaxation time, r; a viscous growth time, De/T; and 

a gas diffusion time, Nlr. However, bubbles expanding in a hexagonal lattice do 

not necessarily remain circular so that there is an additional timescale controlling the 

expansion: the time for surface tension to restore circular bubbles. At high capillary 

number the surface tension timescale is much longer than the bubble expansion timescale 

and so the bubbles expand to some quasi-equilibrium shape before relaxing to either a 

circular shape or, if the gas area fraction is greater than 7r/(2V) = 0.907, to circular 

arcs connected to thin, `black', films. 

We first consider the case when the rate of gas diffusion is faster than the viscous 

expansion rate (N » DeX). In this regime we would expect to see the effects of 

viscoelasticity as the expansion rate is controlled by the fluid rheology. When the 

expansion is rapid compared to the polymer relaxation time (high Deborah number) 

it can be divided into two regions. Initially we see a period of rapid thinning as 

the resistance to expansion is from the solvent alone. This can be seen in figure 4.3 

which compares an expansion in a viscoelastic liquid and Newtonian liquid of the same 
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zero shear rate viscosity. The solvent contribution to the zero shear-rate viscosity is 

smaller in the viscoelastic liquid so the early expansion is more rapid. The first normal 

stress difference increases during this phase until it balances the gas pressure difference. 

Beyond this time further expansion occurs, as polymer stress relaxes, at the polymer 

relaxation rate. This two-phase expansion behaviour was seen in our earlier calculations 

for spherical bubbles at high Deborah number, see section 3.1.3 and figure 3.2. 
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Figure 4.3: The effect of y on the bubble area when the zero shear rate viscosity is constant 

(µ + G7 = 1). Solid line: y=0; dashed line: y=1; dotted line: ry = 4. 

In figure 4.4 we compare the shape of the liquid-bubble interface for a bubble volume of 

27.7 (indicated by the horizontal line in figure 4.3). It can be seen that the viscoelastic 

iquid has bubbles with flatter fluid windows that are thicker in the middle. Initially 

he extension rates are highest in the middle of the window, producing higher polymer 

extensions that resist further extension of this region. Indeed, for high Deborah number 

; xpansions we see an elastic recoil in which fluid is pulled back towards the middle 

egion so that the window thickens there even though the bubble is still expanding. This 

; lastic recoil can be seen in figure 4.5 where we show the evolution of the thickness of 

the narrow end of the liquid region. As the ratio of polymer to solvent contributions to 

the zero shear rate viscosity, 'y, is increased (keeping the zero shear rate viscosity fixed) 
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the magnitude of the `bounce' increases and the maximum thickness attained occurs 

earlier. Figure 4.7 shows snapshots of the polymer stress distribution in the liquid during 

the expansion, plotted as the difference in eigenvalues of A. Initially, (a), there is no 

polymer stress while at time t=0.05 (just before the turning point in the minimum 
fluid depth) (b) shows the middle of the window becoming stretched. Pictures (c) and 

(d) show the stress during the relaxation phase where recoil is seen. During the recoil 

phase there is a stagnation point at which the liquid depth neither increase nor decreases. 

Figure 4.6 shows the evolution of the position of the stagnation point for a zero shear 

rate viscosity of 1 and ry = 4. 
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Figure 4.4: The effect of 'y on the liquid-bubble interface when the bubble volume is 27.7 and 

the zero shear rate viscosity is p+ G7- = 1. Solid line: 7=0; dashed line: y=1; dotted line: 

y=4. 

At small capillary numbers surface tension affects the bubble growth in two ways: it 

relaxes the shape towards a circular bubble; and it reduces the final bubble size by 

maintaining a higher bubble gas pressure. We do not attempt to model window breakage 

here. In the absence of intermolecular forces windows will not break in finite time but 

tend to circular arcs connected by very thin, `black', films. The rupture of thin films due 

to Van Der Waals forces is considered by Vaynblat, Lister and Witelski [56] and Zhang 
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Figure 4.5: The effect of "y on the evolution of the minimum fluid depth when the zero shear 

rate viscosity is p+ Gr = 1. Solid line: ry = 0; dashed line: -y = 1; dotted line: -y = 4. 

Figure 4.6: The evolution of the position of the stagnation point predicted by the thin film 

approximation when the zero shear rate viscosity is µ+ Gr =1 and y=4. 
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4.7: Polymer stress plotted as the difference in eigenvalues of A at: (a) t=0; (b) 

25; (c) t=0.05: (d) t=0.1; and (e) t=0.2 with contour interval of 2. 
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and Lister [60] who include depth dependent, inter-molecular, forces. 

In figure 4.8 we show the evolution of the fluid depth in the comer region in a Newtonian 

liquid. The bubble achieves its equilibrium area at t=0.3, after which time surface 

tension acts to restore circular arcs by drawing fluid towards the corner region. In the 

viscoelastic case the initial expansion-phase ends when the elastic stress balances the 

pressure difference, after which time there is competition between viscoelasticity and 

surface tension. For small capillary numbers the elastic recoil is lost as the surface 

tension effect is stronger, pulling fluid towards the corner region. The reduction in the 

magnitude of the bounce can be seen in figure 4.9. 

Figure 4.8: Diagram showing the effect of surface tension on the evolution of the maximum 

fluid depth in a Newtonian liquid. Solid line: 1/r = 1; dashed line: 1/r =6 

When the rate of gas diffusion across the fluid layer is slower than the viscous 

expansion time (N « DeX) the expansion is controlled by gas diffusion. In this 

limit viscoelastic effects are unimportant as the expansion is too slow to stretch the 

polymers. Consequently the results for a viscoelastic liquid are the same as for a 

Newtonian fluid. Figure 4.10 shows the effect of diffusivity on the bubble expansion 

rate. Here we increase the gas solubility by increasing the constant of proportionality 

in Henry's law, H, and reduce the initial gas pressure, p9o, so that the expansion is 
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Figure 4.9: Evolution of the minimum fluid depth in a viscoelastic liquid: p+ Gr = 1; "y = 4. 

Solid line: 1/I' =5x 10-4; dashed line: 1/I' = 5. 

driven mainly by the transport of gas from the liquid. The bubble expansion rate is small 

initially as the length of the bubble-liquid interface over which gas diffuses is small, 

increases to a maximum, and decreases towards the end of the expansion as the gas 

pressure approaches the ambient pressure and the gas concentration profile in the liquid 

becomes uniform. The N=0.001 curve shows an initial expansion rate that is greater 

than that dictated by the rate of gas diffusion. This is caused by the over pressure in the 

bubble being greater than the rate of gas diffusion. 

Comparison of one-dimensional and circular approximations with the full two- 

dimensional simulations 

Each of the full two-dimensional simulations takes approximately 3 hours of CPU time 

on a 633NII3z Pentium processor. We now consider whether accurate results may 

be obtained by using either the circular model presented in section 4.1.2 or the one- 

dimensional approximation presented in section 4.1.3. 

We begin by checking the accuracy of all three models with an analytic solution. In 
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Figure 4.10: Effect of diffusivity on bubble area in a Newtonian liquid. Solid line: limit of 

infinite diffusion; dashed line: N=0.01; dotted line: N=0.001. 

the absence of the I term the final bubble radius, r, can be predicted analytically. 

Since surface tension enforces a circular shape, as time tends to infinity surface tension 

balances the final gas pressure difference so that 

P9De- 1 
=0 

at the end of the expansion. Since diffusivity does not affect the final bubble area we 

substitute this into the conservation of mass equation (4.31) where cL2 
- Af = 12r2 

to obtain an equation for the final bubble radius. In the case when =0 this is 

2 (Pgo - Pa) 
- Par + Der r pso =0 

Table 4.3 shows a comparison between analytic values and the equilibrium bubble area 

as predicted by the full two-dimensional model and the one-dimensional and circular 

approximations. The circular approximation predicts the final bubble area exactly 

hough it cannot capture the shape of the bubble-liquid interface or the dynamics of the 

rubble area at intermediate times. The full two-dimensional simulation slightly under 

predicts the final area while the one-dimensional approximation predicts the final area 
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accurately when surface tension is large enough to enforce circular bubbles rather than 

circular arcs connected by black films. 

1/r area/ir 

analytic 2D 1D approx. circle approx. 

0 10 10 - 10 

1 7.298 7.246 7.264 7.298 

2 5.367 5.354 5.537 5.367 

4 3.033 3.008 3.033 3.033 

6 1.847 1.839 1.847 1.847 

8 1.208 1.212 1.209 1.208 

Table 4.3: Effect of surface tension on the bubble area - comparison between analytic 

values and predictions from the two-dimensional simulations and one-dimensional and circular 

approximations. 4=0, all other parameters as in table 4.1. Here the one-dimensional 

approximation has 50 computational elements and the circular approximation has 5. The two- 

dimensional simulation has 258 elements. 

In figure 4.11 we compare the evolution of the bubble area for initial gas area 

fractions in the range ß=0.1 - 0.75 in the limit of infinite diffusion. The circular 

geometry provides an adequate description as long as the fluid layer is not too thin 

(ß < 0.75) while the one-dimensional approximation is good provided that the 

liquid layer is not too deep (8 > 0.23) and gas diffusion is effectively instantaneous 

(N > DeX). 

In figure 4.12 we compare the shape of the bubble between the full simulation and the 

one-dimensional approximation in the limit of infinite diffusivity. The one-dimensional 

model reproduces qualitatively the behaviour seen with the full calculations including 

the elastic recoil behaviour. However, for small values of 0<0.63 it underestimates the 

difference in thickness between the thinnest and thickest parts of the film. Unlike the 

full two-dimensional calculations, the one-dimensional theory does not impose the ir/3 
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tangent to the bubble surface at the point C where the free surface meets the edge of the 

next image. Consequently it appears easier to draw fluid out of the strut than is true in 

practice. 
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Figure 4.11: Evolution of the bubble area in the absence of surface tension comparing 

results obtained from the full two-dimensional simulation (solid line) with the one-dimensional 

approximation (dashed line) and circular approximation (dotted line). Here the ratio of polymer 

to solvent contributions, ry =1 and the initial gas area fractions, , ß, are labelled. 

If Q is small enough the presence of other bubbles will not affect the shape of the 

interface and bubbles will remain circular throughout the expansion. Figure 4.13 shows 

the evolution of the distance of the bubble centre to the edge of the interface in the 

middle and the corner of the liquid window (for circular bubbles the two are equal). 

We see that, with a surface tension of 1/F =2 and a ratio of 0 s: 0.1 the expansion is 

closely predicted by the circular geometry until t=1. 
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Figure 4.12: Comparison of the shape of the bubble-liquid interface at t=1 in the absence of 

surface tension between the full two-dimensional simulation (solid line) and the one-dimensional 

approximation (dashed line). Here the ratio of polymer to solvent contributions, ry =1 and the 

initial depth to initial radius ratios, 3, are labelled. 
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Reacting Fluid Model 

In the previous section we showed that the one-dimensional thin film approximation 

provides a good approximation to the full two-dimensional flow in the limit when 

the fluid region between bubbles is thin. We now make use of this approximation to 

consider the effects of bubble interactions with the reacting fluid model. Details of the 

implementation of this model are given in section 4.1.4. 

The reaction rate controls the changing theology of the liquid in the reacting fluid model 

and the rate at which gas becomes available to the expansion of the bubble. In chapter 

3, figure 3.20, we showed that a combination of reaction rate and diffusivity, through 

the dimensionless numbers N and M, dictate the volume the bubble is able to attain 

before gelation stops growth. Here we consider the limit of infinte diffusion, shown 

by the asymptotes in figure 3.20. Figure 4.14 shows the evolution of the distance from 

the bubble centre to the edges of the bubble-liquid interface in the middle of the liquid 

window and in the corner region for a value M=0.1. Here we see that, in addition to 

restricting the final bubble area as in figure 3.20, gelation freezes the shape of the bubble 

before surface tension is able to restore circular arcs. 

4.3 Axisymmetric Models 

The foam structures in this chapter are constructed from two rather than three 

dimensional bubble arrays and there are important geometric differences between 

two and three dimensions. However, the thin film model can be extended to two 

axisymmetric problems that mimic part of the flow in three dimensional foams. In the 

first, the axis of symmetry is AB giving a geometry that represents a strut in an open cell 

foam (figure 4.15). In the second, the axis of symmetry is AC giving a geometry that 

represents a circularly symmetric section of the window between two bubbles (figure 

4.16). 
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Figure 4.14: Diagram showing the evolution of the distance from the bubble centre to the edge 

of the bubble-liquid interface in the middle of the liquid window and in the comer region for a 

value M=0.1. Solid lines: 1 /P = 10; dashed lines: 1/r = 5. 

Figure 4.15: Diagram showing the axisymmetric model for a strut in an open cell foam. 

are 4.16: Diagram showing the axisymmetric model for a circularly symmetric section of 

iow between two neighbouring bubbles. 
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4.3.1 Strut in an Open Cell Foam 

The arguments of section 4.1.3 may be applied to the axisymmetric case by integrating 

the axial force over the surface, C, of a wedge shaped fluid element as shown in figure 

4.17 so that 
fcr. 

ndC=O. 

The contribution from the free surface is obtained by using the boundary condition 

Ar 

50 

oxx 

Figure 4.17: Diagram showing the wedge shaped section of a fluid element. 

o. - n= (-p9+Kic)n 

where the normal ndC = rSO(rdx - xdr). The curvature on the liquid-gas surface now 

has two terms. In addition to the longitudinal curvature there is a second term from the 

azimuthal curvature not found in the planar case. Thus 

Ar" 11d( Or 
= (1 + Orr2)3/2 - Or(1 + Or'2)'/2 OrOrl dx (1 + Or'2)1/2 

Hence the contribution from the free surface is given by 

be jJ (-p9 + Kic) rdxr 

(Or2 Ore) -K 
Arg+i 

- 
Or; 

- 
ý-Zp9 

i+i - (1 + Or; 2 1)172 (1 + Or'2 1/z 
(4.35) 
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The contributions from the two edge faces with normal 0 combine to give 

-60 1 Q0Br dxr. 

In this uniaxial extension flow o -go = arr and balancing the r componants from the free 

surface and the edge faces gives 

ores = arr = -P9 + KK. (4.36) 

The circular sectional face with normal x contributes a term 

which can be written 
Ali+l 

se {f 

f QyxrdrdOx, 

fo 
Or, +1 

(Sxx - Srr) rdr + arrrdr 
JJJ 

Substituting vr,. from equation 4.36 and evaluating the integral gives 

ae \ 2 
ýýSxx 

- 
Srrýi+10it1 + (-pg + KKi+i)i r 1J , 

with a similar expression for the term arising from the other circular sectional face. 

Combining the x components gives the following non-dimensional force balance on each 
fluid element 

Ori+1 Orlý +1 
_ 

Lri Or; 'Or? 
s+l r (1 +4 +)1/2 + (1 + Ar +i)3/2 (1 + Or; 2)1/2 (1 + Orq)3/Z/ 

s 
(4.37) 

where %F = (S--x - S,.,. )Or2. 

Though this geometry represents a strut in an open cell foam we assume that there is a 

`skin' round the outside of the foam so that gas pressure is prevented from leaking away 

allowing it to drive the expansion. We can, again, link the pressure difference, P9, to the 

stress in the liquid: 

((Ssx - Srr)i+l + (S--T - Srr)i)) Oxi(0i+1 + Ori+10ri + Or; ) _ 

3PgDeL2 
dt r1f 

dd '. (4.38) 
I 
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Conservation of fluid area gives 

Ox 
_ _20rs+, 

Ari+i +, &r=+i, &rz + Or; +iOrs + 20r; Ors 
(4.39) 

Ox : +i + Or; +1Or, + 21 r; 

and gas pressure is now given by 

(Pso - Pa)P9 - P9o 7rLo3 -X+ *X (JrL3 

-X+ 1>X) - P°'. (4.40) 

The Oldroyd B model gives an expression for Sxy - 5,.,.: 

, 'xx - Srr = -30r +'y(Axx - Ar,. ), 

where the evolution of A is governed by 

Arr =2 
Ar Arr - (Arr - 1) 

(Arr Axx) _ -4 
Ar 

((Arr. - Axx) + 3Arr) - (Arr - Axx). (4.41 

4.3.2 Circularly Symmetric Section of the Window Between Two 

Bubbles 

For the second axisymmetric case we integrate the momentum equation, using the 

divergence theorem, round the section of fluid element of surface C shown in figure 

4.18 so that 

fo. ndC=O. 

Contributions from the outer and inner curved surfaces are given by 

(5OOrr, ii 1ri+11 Yi+1 - aeQrr, iriOiJi) r (4.42) 

The contribution from the free surface is obtained using the boundary condition am = 

(-pg + KK)n where n= rb9(ydr - rdy). 

There are, again, two curvature terms contributing to the surface tension, giving 

T, + Dy'2)3/2 + 
r(1 + DyI2 1/2 
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Figure 4.18: Diagram showing the section of fluid element used to obtain a force balance. 

From the bottom surface we obtain 

-SB J aver dry. 

and the two edge faces combine to contribute 

-6B J oeo1 y drr. 

The force balance in the y direction gives 

-p9+Krc-er.. =0. 

Substituting this into the r force balance to eliminate the fluid pressure, and using the 

symmetry condition a00 = a,. f, gives the following force balance 

`I'i+i (ri+i + ri) =W (ri+l + rs) -r1 (ri+i - Kj) (rt1yi+i + rs+1Dyi) (4.43) 

where IF _ (Srr - Svv)Dy" From the work done we obtain 

(Ti+l + Ti) 
(rýlIYi+1 

- 1'02�i -+ ri+lri r) ( yil -_ 

s2 
/3P9DeL 

dt I' 
dtt 

s 
(4.44) 
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where T= (Srr - SSy)r/r. The gas pressure is obtained from mass conservation as: 

3'ýL0 
-X +ýX 

- Pa. (4.45) (P90 - Pa)P9 = Pgo 
3L3 -X+ (DX 

In this geometry conservation of fluid volume is given by 

ri+l (2ri+izi+i -3 (2ri+1 + ri)(1yi+l - Dyi) + 30yj+1 (2i+1- ri+lri - ri ) 

(2ri1xi = Ti ++ 2ri) (y+l -+ (- i+1 - rlri + 2r) . 
(4.46) 

For the Oldroyd B model the stress difference in the liquid is given by 

I 
Srr-Syy=-3E7y-+ Arr-A71y)l 

with Arf and Ayy satisfying 

Xyy = 2ýy0yAvy-(Avv-1) 

(Afr Auv) =- 0y ((Arr - Avy) + 3Avv) - (Arr - Ayy). (4.47) 
y 

4.3.3 Results and Discussion 

The method of solution is as described in section 4.1.3 for the one-dimensional model 

of planar flow. 

In the planar case the surface tension arising from the curvature of the bubble-liquid 

interface acts to restore circular bubbles and to limit the size of the bubble by modifying 

the bubble gas pressure. In the axisymmetric geometries the presence of the extra 

curvature adds a second surface tension term. In the case of the liquid strut it acts in 

the opposite direction, providing an additional driving force proportional to 1//r. In a 

Newtonian fluid, expansion is divided into two phases as the two surface tension terms 

compete against each other. This can be seen in figure 4.19. During the first phase the 

longitudinal surface tension is dominant and so the strut extends at a rate controlled by 
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a modified gas pressure difference. At the end of this phase the longitudinal surface 

tension balances the gas pressure difference and the azimuthal term becomes dominant. 

As the strut becomes thinner this term increases in magnitude and eventually the strut 

breaks. In figure 4.20 we show the evolution of the minimum and maximum fluid depths 

in the case when 1/I' = 2. In the planar case this bubble would shrink due to surface 

tension. Here, however, the azimuthal surface tension causes the narrow end of the strut 

to thin while the interface surface tension causes the wide end of the strut to increase in 

depth. 
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Figure 4.19: The effect of surface tension on the length of a fluid strut in a Newtonian liquid. 

Solid line: 1/I' = 0.0001; long dashed line: 1/F = 0.4; short dashed line: 1/F = 1; dotted line: 

1/r=2. 

Entov and Hinch [15] investigate the special case of a cylindrical filament of a FENE 

fluid stretching due to the capillary pressure alone. They found that the filament 

evolution could be divided into three phases. In the first phase the stretching is resisted 

by the solvent viscosity. In the second phase the resistance is provided by the polymer 

stress. In the final phase the finite extensibility of the polymers leads to filament break- 

up. The lengthening of our strut shows very similar behaviour through the first two 

phases (figure 4.21): a rapid viscous phase followed by a slower phase controlled by the 
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Figure 4.20: The effect of surface tension on the maximum and minimum fluid depths in a fluid 

strut in a Newtonian liquid. 1/r = 2. Solid line: minimum fluid depth; dashed line: maximum 

fluid depth. 

relaxation of polymer stress; we do not see a third phase as the Oldroyd B model has 

infinite extensibility. 

In the circularly symmetric window section the axisymmetric curvature term is 

proportional to Ay'/r and acts in the same sense as the surface tension associated with 

the interface, thus inhibiting bubble growth. Surface tension in the planar case has 

little effect on the initial expansion rate. However, the axisymmetric surface tension 

pulls liquid back towards the centre of the window, reducing the bubble growth rate 

throughout the expansion. Figure 4.22 shows how the additional surface tension term 

exaggerates the inhibiting effect causing the bubble to shrink, instead of expand, at much 

larger values of the capillary number. In the planar geometry, for the parameter values 

chosen, bubble expansion occurs provided that 1/I' < 9; in this circularly symmetric 

window geometry, expansion only occurs, with the parameters of table 3.2, for i/I' < 3. 

Viscoelasticity affects the expansion in the same way as in the planar case, dividing it 

into an initial viscous phase and a second phase controlled by the polymer relaxation 

rate. 
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Figure 4.21: The effect of viscoelasticity on the evolution of the length of a fluid strut in the 

limit of large capillary number. Solid line: y=0; dashed line: -y = 10; dotted line: 'y = 20. 

1.3 

1.2 

0.9 

0.7 

0.6 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

tlme 

Figure 4.22: The evolution of the length of the circularly symmetric section of the bubble 

window against time (second axisymmetric model) for a viscoelastic liquid with y=4. Solid 

line: 1/r = 0.0001; long-dashed line: 1/r = 0.5; short-dashed line: 1/r = 1; dotted line: 

1/r = 1.5. 
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Chapter 5 

Bubble Distributions 

So far in this thesis we have examined the expansion of foams consisting of identical 

gas bubbles. In this chapter we consider foams consisting of bubbles of unequal size 

to analyse the competition for the available gas in the liquid. It is expected that the 

surface tension driven phenomenon of Ostwald ripening will cause the small bubbles 

to shrink as gas diffuses into the large ones in a non-reacting system or in a reacting 

system when the reaction is very slow. Solving the coupled problem of gas diffusion 

and bubble expansion in a random distribution of bubbles in three dimensions is very 

difficult and so we consider two simplified models. In the first we consider a system 

of spherical bubbles of different sizes expanding in a fluid in which the gas diffusion is 

effectively instantaneous. We examine the effect of initial bubble volume distribution, 

viscoelasticity, surface tension and reaction rate on the final bubble volume distribution. 

In the second model we extend the two-dimensional, hexagonal, arrangement of bubbles 

described in chapter 4 to bubbles of two different sizes in order to investigate the effects 

of viscoelasticity and gas diffusion when bubbles are in close proximity to one another. 
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5.1 Foam Consisting of Spherical Bubbles 

In a foaming process bubbles nucleate at different times producing bubbles of different 

sizes. Nucleation is a highly complex process and has been the subject of much 

investigation [23,44,48]. In our model we shall consider bubbles of differing sizes 

to represent bubbles that nucleate at different times. The number of bubbles and initial 

bubble volumes are treated as input parameters. We assume that bubbles are sufficiently 

far apart that conservation of momentum and the equations for evolution of stretch can 

be applied locally in the neighbourhood of each bubble. Each bubble works against an 

infinite fluid domain so that the momentum equation 3.2 non-dimensionalised with the 

largest initial bubble volume is given by 

O=PDe+? J 'Sr -Seedx 
-1 950 x+u rug. 

For an Oldroyd B fluid, Srr - Soo = -2ý+u +'y(A,, r - A99) so that the momentum 

equation is given by 

34 
ii 

u-PDe+3 

f' Ax+ueBdx- 1 
(5.1) s 'Y 

o ru 3' 

The configuration tensor A satisfies equations (3.11) and (3.12). 

In the case of the reacting fluid model Srr - Soo includes contributions from all the k 

relaxation modes so that 

S, - SBB = -2 
is 
+ 

+'YEGk(Arr - Aoo)k 
Ic 

The momentum equation then simplifies to 

3u 
P9De+yE 

(3Gkl AeB)kdx 1k 
3 x+u 

) 

rug 

and the elastic moduli for each mode are obtained from equations (2.13) before the gel 

point and (2.14) after the gel point. The coefficients of the configuration tensor for each 

of the k relaxing modes satisfy Oldroyd B type equations of the form (3.11) and (3.12) 

with relaxation times rk and for the non-relaxing gel mode satisfies Oldroyd B equations 
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with infinite relaxation time. Allowance must be made for the rescaling of the elastic 

moduli as the number density of modes evolve so that the total stress is consistent as 

described in the discussion leading to equations (3.34) and (3.36). 

Instantaneous Gas Diffusion 

In the limit of instantaneous diffusion the concentration profile throughout the liquid is 

uniform. Therefore, for bubbles of differing radii to coexist the gas pressures must all be 

equal. In the non-reacting system there is no production of gas and the total flux of gas 

into all the bubbles is given by Henry's law as 

(1- P9)X. 
i P9° 

Here X is an effective liquid volume that acts to limit the supply of gas even though the 

bubbles are considered to expand in an infinite fluid domain. In the non-reacting system 

the equation of gas conservation therefore becomes 

ýPa + (P90 - Pa) P9) ui = Pgo u0ii+ 4D (p9o 
- pa) (1 

- Pg) X (5.2) 

ii 

In the reacting system the amount of gas produced by the reaction is S, paaX so that the 

total gas flux into the bubbles is the difference between the amount of gas produced and 

that remaining in the liquid so that 

(Pa + ('90 - pa) P9) Ui = Pg0 110i + 11 (Spaa 
- 

(P90 
- pa)Pg) X. 

ii 

5.1.1 Results and Discussion 

We begin by considering the competition between two bubbles of different sizes in a non- 

reacting fluid. The non-dimensional parameter X limiting the supply of gas is chosen to 

be 10 with other parameters given in table 3.2 unless otherwise stated. 
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In the limit of large capillary number in a Newtonian liquid (ry = 0) the expansion rate, 

ü/u, from equation 5.1 simplifies to 

4U= 
P9De. 

3u 

This expansion rate is independent of the size of the bubble, thus the bubble volume 

ratios remain constant in time. Figure 5.1 shows the expansion of two bubbles in a 

Newtonian fluid in this limit for differing initial bubble volume ratios. 
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Figure 5.1: Diagram showing the effect of the initial volume ratio on the expansion of two 

bubbles in a Newtonian liquid in the limit of large capillary number. Solid lines show the 

evolution of the bubble volumes for two bubbles with initial volumes 1 and 0.5, and dashed 

lines show the evolution of the bubble volumes for two bubbles with initial volumes 1 and 0.1. 

Surface tension causes a phenomenon known as Ostwald ripening. In a Newtonian liquid 

(-y = 0) equation 5.1 shows that a bubble will shrink when 

1 
P9De - fUT/3 < 0. 

Surface tension has a greater effect on small bubbles due to their higher curvature. 

Consequently the larger bubble will expand faster than the small bubble. Since the gas 

pressures in all the bubbles are equal, this lowers the gas pressure in both bubbles until a 

,ý 
ý-', 
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point when, for the smaller bubble, P9De < 1/1'u" . Figure 5.2 shows this competition 

for gas between two bubbles with an inverse capillary number of 1/1' =2 and initial 

bubble volume ratio 0.5. 
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Figure 5.2: Diagram showing the effect of surface tension on the expansion of two bubbles as a 

function of time. Inverse capillary number 1/I' = 2, initial volume ratio u2/u1 = 0.5. 

In a viscoelastic liquid the increasing polymer stretch difference reduces the growth rate 

from that of a Newtonian fluid of equal solvent viscosity. However, the smaller bubble 

is affected to a larger extent than large bubbles due to the 1/(x + u) term in the elastic 

stress in equation (5.1), resulting in a wider distribution of final bubble volumes. Again 

this is a conseqence of the higher surface curvature of the small bubble. In figure 5.3 

we plot the final bubble ratio, u2/ul as a function of initial volume ratio for two bubbles 

in a viscoelastic liquid for the case of infinite capillary number. Provided the system is 

quenched before surface tension can act to eliminate the smaller bubble, viscoelasticity 

widens the distribution of bubble sizes compared to a Newtonian liquid. 

We now turn our attention to the case of a reacting fluid. When the reaction rate is 

small the results are very similar to those for the non-reacting system. However, at high 

reaction rates the onset of gelation occurs before the bubbles have attained their final 

volumes. Gas pressure and stress can become frozen into the system so that the final 
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Figure 5.3: Diagram showing the effect of viscoelasticity on the final bubble volume ratio as 

a function of initial volume ratio in the limit of large capillary number. Solid line: Newtonian 

liquid, ry =0 (here the final volume ratio equals the initial volume ratio); dashed line: viscoelastic 

liquid y=5; dotted line: viscoelastic liquid y= 10. 

volumes of all the bubbles are reduced. This effect is greater for large bubbles and so 

the final bubble volume distribution is reduced as the reaction rate is increased. Figure 

5.4 compares the final bubble volume distributions for a high and a low reaction rate in 

the limit of infinite capillary number. Here 66 bubbles are initially normally distributed 

with mean 1 and variance 0.03. The values of the mean and variance at t= 20 are 13.9 

and 5.9 respectively for a reaction rate ca = 1, and 10.5 and 3.5 for ca = 10. The effect 

of increasing the reaction rate reduces the dimensionless numbers M and ry by the same 

factor. 

Gelation is able to quench the system before the effects of Ostwald ripening are seen, 

figure 5.5 shows the expansion of two bubbles with an initial bubble volume ratio of 0.5 

and reaction rate ca = 10. Here the dimensionless numbers M=0.9 and 'y = 73.8. We 

can see that for an inverse capillary number of 1/F = 0.2 the reaction rate is sufficiently 

high to freeze the bubble volumes before the small bubble starts to shrink and for an 

inverse capillary number of 1/F = 0.5 the small bubble starts to shrink but gelation 
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prevents it from shrinking to zero volume. 
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Figure 5.4: Histogram of final bubble volumes for a normal distribution of 66 bubbles with 

initial mean=l, variance=0.03. Solid line = low reaction rate (ca = 1); dashed line = high 

reaction rate (ca = 10). 

5.1.2 Expansion Viscosity 

In order to provide a measurable bulk property of the foam we can define an expansion 

viscosity based on the definition provided by Batchelor [4] for a Newtonian liquid. 

Batchelor defines an expansion viscosity for gas bubbles expanding in a Newtonian 

liquid by considering the viscous dissipation in the liquid phase. The rate of dissipation 

per unit volume of the foam as a homogeneous fluid is rc 2 where A is the (uniform) 

rate of expansion and K is the effective expansion viscosity. The expansion of the foam 

is due to the change in volume of the gas bubbles and so 

dt 
(R3) 

where R is the bubble radius. The rate of dissipation per unit volume at a distance r from 

the centre of a bubble is given by 2µE :E where E is the deformation gradient tensor. 
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Figure 5.5: Diagram showing the Ostwald ripening effect for a reaction rate ca = 10 and initial 

bubble volume ratio 0.5. Solid line =1/P = 0.2; dashed line =1/I' = 0.5. 

For an isolated spherical bubble expanding in an infinte Newtonian liquid 

2µE: E=121 
R4 R2 

rs 

Thus the total rate of dissipation in the liquid due to one bubble is 

ýý R4R2 
12µ 

r6 
41rr2dr. 

R 

Evaluating the integral over the fluid volume and summing over all the bubbles gives the 

total rate of dissipation as 167rµ > RR2. Hence the effective expansion viscosity is 

167rµ E R1R2 
ýc= 

V(I'- ER21) J 

µV> RR2 
= 

ý(R21)2 

Thus, for a dilute foam consisting of n equal sized bubbles the expansion viscosity per 

unit volume is 
A 

niru 

A 
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In a viscoelastic fluid the stress is no longer a function solely of the instantaneous 

expansion rate R/R but depends on the history of the expansion through the polymer 

stress difference A, -A99. However, we can define an effective instantaneous expansion 

viscosity during the expansion process based on the current values of the polymeric 

stress. 

The rate at which work is done by the fluid stress at a distance r from the centre of a 

bubble is S: E. This reduces to the Batchelor calculation in the case of a Newtonian 

liquid as S= 2µE. Thus the work done in expanding a single isolated bubble is 

ý00 
S: E47rrzdr 

R 

f00 R4R2 R21R 
=J 12p 

r6 -2 r3 
G(Arr - Ae9) 4rr2dr 

R 

16irpRR2 - 8irR2RG 
[00 Art - 

r` 
99 dr. 

R 
Hence we can define an effective instantaneous expansion viscosity as 

167rµ > RRZ - 81r F, R2IRG f0 A" *-ABB dr. 
PCeff =2 

V (4ý E R2Rl `V J 
Using the Lagrangian fluid volume, r3 =u+x, for the distance, r, from the bubble 

centre gives 
V 42 1 °O A, - Aoo 

Iceff - (E ü) o 
2 ýý 

u 2GZft o X+U 
dx) 

. 

For a foam consisting of equal sized bubbles the expansion viscosity per unit volume 

reduces to 
1 µ_ 1G f Arr-A00dxI. 

reff .. 
00 \ 

n7r u2u Ja 
x+u 

For a Newtonian liquid (G = 0) the expansion viscosity decreases like 1/u. For a 

viscoelastic liquid (G > 0) the effective expansion viscosity increases for a time as the 

bubbles increase in volume, then decrease as the elastic stress relaxes. Figure 5.6 show 

the expansion viscosity for a non-reactive, viscoelastic (y = 5), foam consisting of 100 

bubbles with a normal distribution of initial volumes (mean=5, variance=1). 
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Figure 5.6: Expansion viscosity for Newtonian (ry = 0) and viscoelastic foam (y = 5) consisting 

of 100 bubbles initially normally distributed with mean=5, variance=l. 

5.2 Non-Spherical Bubbles 

In this section we extend the two-dimensional hexagonal geometry considered in chapter 

4 to include bubbles of two different sizes. Bubbles of two different sizes can be arranged 

in the ratio 2: 1 by surrounding each cell containing a bubble of size 1 by cells containing 

a bubble of size 2. Thus each size 1 bubble has six neighbouring bubbles of size 2, 

while each size 2 bubble has three neighbouring size 1 bubbles and three neighbouring 

size 2 bubbles. The computational region is now made up in effect from three of the 

computational regions considered in chapter 4- see figure 5.7. We assume that the 

bubbles are initially circular with a uniform initial gas concentration profile so that the 

initial gas pressures in the bubbles are equal. We also assume that the polymers in the 

liquid are unstretched at t=0. 

The method of solution is very similar to that described in section 4.1.1 with changes to 

account for the presence of an extra bubble and an extra edge in the fluid domain. The 
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Figure 5.7: Diagram showing the two dimensional arrangement of bubbles. 

boundary conditions for the gas diffusion equation 4.7 are now: 

C_ 
D(Pa+(pgo-Pa)P91 

Pgo 

c 
(Pa + (Pgo - Pa) P92 

P9o 

n"Vc=O 

at bubble 1 interface (DE in figure 5.7) 

at bubble 2 interface (BC) 

on the three symmetry lines (AB, CD and 

AE). 
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(5.3) 

The subscripts 1 refer to quantities in bubble 1 and subscripts 2 refer to those in bubble 

2. Here we scale gas pressure differences p91 - pa and p92 - pa, with the initial pressure 

difference p9o - pQ so that 

Pgi - Pa Pst= 
Pgo - P. 
P92 - Pa 

and P92 =X90 
- Pa 

Conservation of mass across the surface of the bubble allows the gas pressure in each 

bubble to be calculated from the flux of gas across the surface: 

+NJf Vc " ft dCl dt J (5.4) (Pa + (P90 - Pa)Pgi)Ui = P9o (01 t l 
(a+(pso-Pa)P92)u2=Pgo 

(02 
+NJ 

f 
Vc"ndC2dt) . 

t, 
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The increase in bubble areas is calculated from the normal velocity relative to the bubble 

centres. Defining i as the normal velocity q"n on the edge CD, the bubble centres have 

velocities (0,2E) and (2E/ß/3,0) respectively, so that 

du, 
0 2e)) " ndC, (5.5) 

dt = 
fc, 

(q-(, 

due 
- 

fc2 
2E, 0ndC2. 

dt 
(q- 

The polymer stress equation (4.10) and momentum equations (4.14) and (4.15) are 

solved for the shape of the fluid region, polymer stress and fluid pressures using the 

method described in section 4.1.1 for a given value of E. The work equation (4.6) is then 

used to adjust the expansion rate E in the manner described in section 4.1.1 for L. We 

then solve the gas diffusion equation with new boundary conditions, equation (5.3) as 

described in section 4.1.1 and calculate the new gas pressures and bubble volumes from 

equations (5.4) and (5.5). 

5.2.1 Results and Discussion 

For the non-reacting system we have found, in chapters 3 and 4, that the rate of diffusion 

of gas through the liquid phase and the ratio of polymer to solvent contributions to the 

zero shear rate viscosity, 'y, affect the dynamics of the expansion and the shape, but not 

the final size, of the bubble. The extension of the two-dimensional hexagonal geometry 

to include bubbles of two different sizes now allows us to investigate the effects of 

diffusivity and viscoelasticity on the relative sizes of the bubbles as well as the shape 

of the gas-liquid interface. 

We begin by considering the expansion of bubbles in a Newtonian fluid, y=0, and 

consider the effects of gas diffusivity and surface tension. For large capillary number 

the timescale associated with the late, surface tension driven, phase of the expansion is 

much larger than the timescales associated with the viscous expansion and so the system 

expands to a quasi-equilibrium state before Ostwald ripening occurs causing the smaller 

bubble to shrink to zero. 
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In section 5.1 we showed that, for well separated bubbles in the limit of infinite diffusion 

and infinite capillary number, bubbles of different sizes grow at the same rate so that 

the ratio of bubble volumes remains the same. However, this equality does not hold at 

higher bubble volume fractions where bubbles are no longer expanding in an infinite 

fluid domain. For circular bubbles expanding in a Newtonian fluid at infinite capillary 

number the conservation of momentum equation (4.21) simplifies to 

is x 
(5.6) AuX 

+u -p9 P° 

where X is the liquid area. Thus in the limit of infinite diffusion, where gas pressures 

are equal, bubbles will expand faster for larger values of u/X. Consequently the larger 

bubbles will expand faster resulting in a wider bubble size distribution at higher bubble 

concentrations. 

At early times the bubble volume increases as 

u_uo(1+(Pso-Pa) 
(iý)t) + O(t2) (5.7) 

A 

and so, with no diffusion the bubble gas pressure becomes, 

P_ -- 
P90 - Pa (5.8) 

9 ýa 
1+ (P9oýPa) (i +)t 

Thus, small bubbles maintain a higher gas pressure than large ones. In figure 5.8 we 

show the effects of diffusivity on the expansion of bubbles in a ratio of two large to one 

small bubbles and compare the growth rate to that predicted in this early time limit. 

In figure 5.9 we have attempted to compare the full two-dimensional simulation of 

the hexagonal array with the limit of infinite diffusion for perfectly circular bubbles 

analogous to the spherical model described in section 5.1. In section 5.1 the bubbles 

expand in an infinite fluid domain but in the hexagonal array there is a specific quantity 

of fluid between the bubbles. Therefore in the comparison in figure 5.9 we compare 

the hexagonal simulation (N = 500) for bubbles in the ratio one large to two small 

bubbles with the circular approximation with fluid partitioned proportional to the initial 

bubble areas; and partitioned proportional to the initial bubble circumferences. It can be 
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Figure 5.8: Comparison of the early time bubble areas from two-dimensional simulations (long 

dashed line: N=0.1; short dashed line: N=1; dotted line: N= 10). Solid lines show the 

initial growth rate. Upper curves represent the area of bubble 1, initially ul = ir and lower curves 

represent the area of bubble 2, initially u2 = ir/4. 

-------------- 
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seen that, while the partitioning by bubble area gives the nearest prediction, the circular 

approximation can only give qualitative predictions. 
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Figure 5.9: Comparison of the full two-dimensional simulation at high diffusivity (solid line: 

N= 500) with approximations assuming perfectly circular bubbles and partitioning fluid so that: 

dashed line - fluid area partitioned proportional to the initial bubble circumference; dotted line - 

fluid area partitioned proportional to the initial bubble area. Upper curves represent the area of 

bubble 1, initially ul = it and lower curves represent the area of bubble 2, initially u2 = it/4. 

When bubbles are identical, as in chapter 4, surface tension acts to limit the final bubble 

size by modifying the equilibrium gas pressure and imposes a circular bubble-liquid 

interface (or circular arcs connected by black films). When bubbles of different sizes are 

present Ostwald ripening causes small bubbles to shrink while large bubbles continue to 

expand. When there is no interaction between bubbles the final gas pressure difference 

in a bubble of volume u,,,, is 

P9°°De _1 
ru/s 
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Thus, small bubbles would have a larger final gas pressure than large bubbles. However, 

if the gas can diffuse through the liquid then the gas concentration profile becomes 

uniform throughout the liquid so that all the bubbles must be the same size. As the 

concentration of gas in the liquid falls, the pressure in the small bubbles becomes lower 

than the critical pressure required to maintain their size. Gas now diffuses out of the 

small bubbles into the larger ones causing them to shrink in size and ultimately disappear, 

see figure 5.10. An increased rate of diffusion causes increased expansion rate and the 

time at which the gas pressure term balances the surface tension term occurs earlier so 

that the small bubble begins to shrink earlier. 
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Figure 5.10: Ostwald ripening demonstrated by the evolution of two bubbles in a Newtonian 

liquid with initial radii 1 and 0.5. Inverse capillary number, 1/I' = 1. Solid line: N=1; dashed 

line: N= 10. 

In section 5.1 we saw that at infinitesimal bubble concentrations viscoelasticity widens 

the bubble size distributions. However, in the finite concentration array we find 

that the affect of viscoelasticity on the relative bubble size depends upon the bubble 

configuration, in particular whether the smaller bubbles are in the minority or majority 

in the array. When the ratio of the number of large to small bubbles is 1: 2 the small 

bubbles become trapped in the corner region between three surrounding large bubbles 
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as shown in figure 5.11. In the opposite ratio of two large to one small bubble, each 

small bubble is surrounded by six large bubbles as in figure 5.12. Here the large bubbles 

restrict each other's size, allowing the small bubbles to expand in the hexagonal space 

between them. The expansion is again divided into two phases: an initial rapid viscous 

Figure 5.11: Diagram showing bubbles in a ratio of one large to two small bubbles. Triangular 

section showing three large bubbles trapping a small bubble at a later time. 

phase and a phase controlled by the rate of polymer relaxation. In the case of one large 

to two small bubbles shown in figure 5.11 the small bubble trapped in the corner region 

is prevented from expanding by the high elastic stresses in the windows between the 

large and small bubbles resulting in a wider distribution of bubble sizes in viscoelastic 

liquids than in Newtonian liquids. The evolution of the bubble area is shown in figure 

5.13 while snapshots of the stress in the liquid phase are shown in figure 5.14. In the 

opposite configuration the region of highest elastic stress is between two large bubbles. 

When diffusivity, and hence the expansion rate, is high the large bubbles grow rapidly 

producing high elastic stresses in the thin liquid regions between them. These elastic 

stresses both restrict the expansion of the large bubbles and also pull the liquid from 

the region surrounding the small bubble resulting in a bubble size distribution that 

is narrower for viscoelastic liquids than for Newtonian liquids. This can be seen in 
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Figure 5.12: Diagram showing bubbles in a ratio of two large to one small bubble. 
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Figure 5.13: Evolution of bubble area for bubbles in a ratio of one large to two small bubbles 

when diffusivity, D= 10 and solvent viscosity jc = 1. Upper curves represent the area of bubble 

1, initially ul = it and lower curves represent the area of bubble 2, initially u2 = ir/4. Solid lines 

are bubbles expanding in a Newtonian liquid; dashed lines bubbles expanding in a viscoelastic 

liquid with ry = 0.2; and dotted lines bubbles expanding in a viscoelastic liquid with y=1. 
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Figure 5.14: Snapshots of the elastic stress in the liquid for a configuration of one large to two 

small hubbles. Here the COIOLI itiun indicates the magnitude of the difference in the eigenvalues 

of A and -, = 1. Contours are in intervals of 2. 
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figure 5.15 where we compare the evolution of the bubble areas between Newtonian and 

viscoelastic liquids and in figure 5.16 where we show snapshots of the elastic stress in 

the liquid. It should be noted here that the maximum magnitude of the difference in 

the eigenvalues of A for this configuration of bubbles is approximately double that of 

the case of the one large to two small bubble configuration. In figure 5.17 we show the 

bubble gas pressures for the expansion of bubbles in a ratio of two large to one small 

bubble. Here we see that, as the large bubbles become restricted by other large bubbles 

and viscoelasticity allows the small bubbles to continue to expand, the gas pressures in 

the small bubbles become less than that of the large bubbles. This can be seen most 

clearly on the ry = 0.2 curves. 
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Figure 5.15: Evolution of bubble area for bubbles in a ratio of two large to one small bubble 

when diffusivity, D= 10 and solvent viscosity, µ=1. Upper curves represent the area of bubble 

1, initially ul = ir and lower curves represent the area of bubble 2, initially u2 = 7r/4. Solid lines 

are bubbles expanding in a Newtonian liquid; dashed lines bubbles expanding in a viscoelastic 

liquid with 'y = 0.2; and dotted lines bubbles expanding in a viscoelastic liquid with y=1. 
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Figure 5.16: Snapshots of the elastic stress in the Iiquid for a configuration of two Iarge to one 

small bubble. Here the colourution indicates the magnitude of the difference in the eigenvalues 

of A. =1 and diffusivity. A' - 90. Contours are in intervals of 4. 

When the diffusivity is small the bubbles expansion during the viscous phase is slower 

and the large and small bubbles are closer in size than in the high diffusivity case 

described in figures 5.15,5.16 and 5.17. The windows between neighbouring lare 
-- 

bubbles are thicker and windows between large and small bubbles are thinner than 

in the high diffusion case. Consequently, while the elastic stresses throughout the 

fluid are smaller due to the lower expansion rate the most signifcant reduction is in 

the stress levels between the large bubbles. As with the case of isolated bubbles, the 

higher curvature of the smaller bubbles means that the resultant force from the polymer 

stress in the liquid surrounding the bubbles restricts the size of the small bubble more 

than the larger ones resulting in a ýv ider distribution of bubble sizes in viscoelastic 

liquids compared to Nekktonian fluids for both bubble configurations. Figure 5.18 

shows snapshots of' the elastic stress in the liquid for the two large to one small bubble 

configuration, plotted as the difference in the eigenvalues of A. 

In figures 5.19 and 5.20 we compare snapshots of part of the developing foam in each 
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Figure 5.17: Comparison of the bubble gas pressures for bubbles in the ratio of two large to 

one small huhble hetvvicen Newtonian liquids and viscoelastic liquids. Solid lines: small bubble; 

dashed lines: large bubble. Lower curves: Newtonian liquid; middle curves: viscoelastic liquid. 

0.2; and upper curves: v iscoelastic liquid. 1. 

ºý rý Figure 5.18: Snapshots of the elastic stress in the liquid for a configuration of two large to one 

small Nubble. Here the colouration indicates the mumnitude of the difference in the eigenvalues 

of A. I and diffusiv ity, 
.VU. i). Contours are in intervals of 4. 
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configuration of bubbles. The colours shows the elastic stress difference in the liquid, 

plotted as the difference in the eigenvalues of A. In either configuration the-majority 

bubble is pulled into a triangular shape. 
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Figure 5.19: Snapshots of the developing foam for a configuration of one large to two small 

bubbles. Colouration indicates the magnitude of the difference in the eigenvalues of A and 

= 1. 
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Figure 5.20: Snapshots of the developing foam for a configuration of two large to one small 

bubble. Colouration indicates the magnitude of the difference in the eigenvalues of A and -y = I. 
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Chapter 6 

Discussion and Conclusions 

In this thesis we have presented models for bubble expansion in polymeric foams. When 

the bubble volume fraction is small bubbles remain spherical during the expansion and 

so in chapter 3 we have set out a model for the growth of isolated, spherical bubbles 

in viscoelastic fluids driven by gas diffusion from the surrounding liquid. For the case 

a non-reacting fluid we have used two popular constitutive laws, the Oldroyd B and 

Pompom models, while for the reacting polymer we have developed a novel constitutive 

law to deal with the evolving fluid rheology. When the bubble volume fraction is large 

the assumption of spherical symmetry breaks down and so in chapter 4 we have studied a 

two-dimensional foam made up of initially identical circular bubbles in hexagonal cells. 

Finally in chapter 5 we consider foams made up of polydisperse bubble sizes. 

6.1 Small Bubble Volume Fraction 

In chapter 3 we discussed viscoelastic effects on the expansion of spherical bubbles. We 

used Oldroyd B and Pompom constitutive models to describe foaming in a non-reacting 

fluid during the thermoplastic injection moulding process. We also extended the linear 

viscoelastic rheological model of Rubinstein, Colby and Gillmor [43] to a non-linear, 

multimode Oldroyd B constitutive equation to describe a reacting fluid as a model of the 
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reaction injection moulding process. 
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For a non-reacting polymer in which the liquid theology remains constant there are three 

important time scales that characterise bubble growth: the polymer relaxation time; a 

characteristic time for bubble growth in a viscous liquid; and gas diffusion time. For 

viscoelastic effects to be important the polymer relaxation time must be larger than the 

expansion timescale, i. e. De > 1. Provided that this condition is satisfied, bubble 

growth can be divided into two classes: diffusion limited growth, where the growth rate 

is controlled by the diffusive transport of gas from the liquid; and stress limited growth, 

where the expansion rate is-determined by the polymer relaxation rate. 

For high Deborah number expansions where the expansion rate is much larger than 

the polymer relaxation rate, the expansion is divided into two phases: an initial rapid 

viscous phase during which polymer stress increases; and a later phase controlled by 

the relaxation of polymer stress. Surface tension restricts the final size of the bubble by 

modifying the difference between gas pressure inside the bubble and ambient pressure 

outside the system. Simulations using Oldroyd B and Pompom constitutive models give 

similar results, as both models incorporate the extension hardening of the polymer with 

strain that restricts the expansion. 

In a reacting polymer system there is a fourth timescale: the reaction time. This sets 

both the rate of gas production and the onset of gelation where the polymer relaxation 

time diverges. Most of the gas is produced in the early phase of the reaction, whereas the 

changes to the rheology are most significant when the reaction is near completion. If the 

reaction rate is fast relative to the timescale for bubble growth (set either by diffusion or 

fluid rheology) then gelation will freeze the structure before the stresses have relaxed or 

pressure decayed. 

At low reaction rates a simple generalized Newtonian liquid model, or a combination 

of a generalized Newtonian and Oldroyd B model, with increasing relaxation time, give 

reasonable predictions for bubble growth in a gelling liquid. However, at high reaction 

rates the material properties change so rapidly that the large elastic stresses caused by 

the bubble expansion make a fluid model such as the one presented necessary. 



Chapter 6. Discussion and Conclusions 169 

6.2 Large Bubble Volume Fraction 

In chapters 4 and 5 we have considered the effects of large gas volume fraction on the 

expansion of gas bubbles in a viscoelastic fluid. Initially the bubbles are effectively 

isolated, but as they expand the liquid surrounding them becomes stretched into thin 

films separating neighbouring bubbles. In chapter 4 our two-dimensional calculations 

capture this changing structure for identical planar bubbles in a hexagonal array. 

Although this is not the geometry found in real three-dimensional foams, the results 

of section 4.3, suggest that the effects of viscoelasticity are qualitatively similar between 

two and three dimensions. 

Viscoelasticity controls the bubble growth when the gas diffusion is sufficiently rapid 

to allow the bubbles to expand at a rate faster than the polymer relaxation time. In this 

regime we see the same two stage expansion found previously for isolated spherical 

bubbles. The bubbles initially grow rapidly until they reach a size where the elastic 

polymer stress balances the pressure difference. Beyond this time the bubbles continue 

to grow at the polymer relaxation rate as the stress relaxes. During the initial phase the 

polymers become most extended in the mid sections of the windows where the fluid 

layer is thinnest. Once stretched, the polymers resist further extension and draw fluid 

back from the corners during the relaxation phase. The result is that polymeric foams 

have a more even thickness of fluid surrounding the gas bubbles than Newtonian foams, 

provided that the system is quenched before surface tension restores the interface to 

circular arcs. The extension hardening of the polymer acts to stabilise the fluid interfaces 

against breakage. 

As well as the full two-dimensional calculation we also considered two one-dimensional 

approximations: a circular model valid at low gas area fractions, and a thin film model 

valid at high gas area fractions. Both of these simplified models give accurate predictions 

of the bubble area over a wide range of parameter values, suggesting that gas area is not 

particularly sensitive to the detailed flow in the films. This suggests that models of three- 

dimensional foams that assume spherical symmetry should give accurate predictions of 
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bubble volumes to quite high gas volume fractions. However, these approximate models 

only captured the detailed shape of the fluid films over a much more restricted range 

of parameters, although the thin film model does give the correct qualitative behaviour. 

Thus for high gas volume fractions three-dimensional foams could be investigated using 

an analogue of the thin film model to avoid having to compute the full three dimensional 

flow. 

6.2.1 Polydisperse Bubbles 

In chapter 4 we assumed that the bubbles were identical and evenly spaced on a 

hexagonal array. In practice foams are disordered with a wide range of bubble sizes. 
In foams with bubbles of different sizes neighbouring bubbles compete unevenly for the 

available gas. In chapter 5 we first studied how well-separated bubbles compete for the 

available gas in the limit of high gas diffusivity. We then considered the expansion of 
bubbles of two different sizes in a two-dimensional hexagonal array. 
Surface tension limits the size of each bubble and influences the shape of the bubble by 

restoring circular arcs. When bubbles are unequal in size Ostwald ripening causes large 

bubbles to grow at the expense of small ones. 
When gas diffusion is faster than the viscous expansion rate bubble growth is limited 

by the fluid rheology. In this case viscoelasticity affects the bubble size distribution 

in two ways depending on the configuration of bubbles. In the limit of large capillary 

number we again see a two-phase expansion. By the end of the viscous phase the bubbles 

have expanded such that the difference between their sizes is large. When the ratio of 

large to small bubbles is 1: 2 the small bubbles become trapped in the corner region 

between three large bubbles. During the relaxation phase relaxation of the elastic stress 

pulls liquid from the corner region into the windows between the large bubbles reducing 

the size of the corner region and limiting the size of the small bubbles. Thus, in this 

configuration increasing viscoelasticity results in a wider bubble size distribution. In the 

opposite ratio of two large to one small bubble the small bubble is surrounded by six 
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large bubbles. Fluid pulled into the windows between large bubbles now comes from 

the fluid surrounding the small bubble causing the small bubble to expand more than 

if it was surrounded by Newtonian liquid. Thus, increasing viscoelasticity now results 
in a narrower bubble size distribution. Consequently, whether viscoelasticity increases 

or decreases the bubble size distribution depends upon the details of the configuration. 
Anecdotal experimental observations suggest that foams made of extension hardening 

polymers have a more even size distribution. However, this may in part be due to the 

prevention of film breakage and bubble coalescence. 

6.3 Discussion 

In order to maintain simplicity in a highly complex system we have chosen to ignore 

many additional complications that arise in reaction injection moulding. We assumed a 

single species of reactant, whereas in many cases there are at least two. Our analysis 

assumes isothermal conditions, whereas in practice the synthesis reaction is often highly 

exothermic. Also, in addition to chemical gelation due to branching there may be phase 

separation that is thought to produce a physical gel [29,31]. This occurs before chemical 

gelation and so gives a gel point earlier in the reaction. These latter two effects could 
be incorporated into the model and would be expected to modify the quantitative results. 
However, our model is able to capture the qualitative dependence of this highly complex 

system on the various parameters. 

Throughout chapters 4 and 5 we have chosen to use the Oldroyd B fluid to model 

the polymeric fluid. Although this simple model reproduces the extension-hardening 

characteristic of polymeric fluids it has several shortcomings. In particular it has a 

constant viscosity in shear and has infinite extensibility. However, these shortcomings 

are not very important in the flow considered here. The flow is almost shear free and 

the extensions are limited by the growth of the bubble which is determined by the 

available supply of gas. In the spherical geometry of chapter 3 we justified its use by 
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investigating the effects of using the Pompom model which shear thins and has a stretch 

relaxation time that increases as the molecule is stretched near its maximum and found 

no qualitative change in behaviour. 

For foams produced by reaction injection moulding the gelling model described in 2.5 

would be appropriate. Implementation of this model into the thin film approximation 
indicates that the onset of gelation acts to inhibit the equilibrium bubble area, freezing 

gas pressure and polymer stress into the system. It also freezes the shape of the bubble- 

liquid interface before surface tension is able to restore circular arcs. 

While our two-dimensional foam models assume a highly simplified geometry with 
bubbles being either identical or of two different sizes evenly spaced in a symmetrical 

array they are able to capture some of the key features exhibited by expanding polymeric 
foams. We are able to predict a two phase expansion at high Deborah number, simulate 

two-dimensional foams in which viscoelasticity produces thicker, flatter fluid windows 

and surface tension enforces circular arcs connected by black films; and capture the 

effects of competition for gas between bubbles of different sizes in bi-disperse two- 

dimensional arrays. 

The thin film approximation of section 4.1.3 predicts the evolution of the bubble area 

so closely that a three-dimensional foam model might be constructed from these one 

dimensional fluid elements. 

This thesis has considered the expansion of gas bubbles in a foam that is otherwise at 

rest. However, in injection moulding the foam is subjected to shear flow. Consequently 

another extension of this work would be to model such a foam under shear flow. A first 

step would be to study isolated bubbles, then the two-dimensional geometries of chapters 

4 and 5, in shear flow. The effects of viscoelasticity, bubble area fraction, relative bubble 

sizes and bubble shape on the flow could be analysed as well as the effects of the flow 

on the deformation of the bubbles. 
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