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Abstract

In this PhD thesis we explore the concept of a multidimensional asymptotic
class. This is a new notion in model theory, arising as a generalisation of
the Elwes–Macpherson–Steinhorn notion of anN -dimensional asymptotic class
[22] and thus ultimately as a development of the Lang–Weil estimates of the
number of points of a variety in a finite field [47]. We provide the history and
motivation behind the topic before developing its basic theory, paying par-
ticular attention to multidimensional exact classes, a special kind of multidi-
mensional asymptotic class where the measuring functions provide the precise
sizes of the definable sets, rather than only approximations. We describe a
number of examples and non-examples and then show that multidimensional
asymptotic classes are closed under bi-interpretability. We use results about
smoothly approximable structures [35] and Lie coordinatisable structures [18]
to prove the following result, as conjectured by Macpherson: For any countable
language L and any positive integer d the class C(L, d) of all finite L-structures
with at most d 4-types is a polynomial exact class in L; here a polynomial exact
class is a multidimensional exact class with polynomial measuring functions.
We finish the thesis by posing some open questions, indicating potential further
lines of research.
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Chapter 1

Introduction

Dimension theory, so-called, has become a pervasive theme in contemporary
model theory.

Macpherson & Steinhorn, p. 411 of [50]

This thesis is on the topic of asymptotic classes, a relatively new area of re-
search lying at the boundary between finite and infinite model theory, where
‘model theory’ here refers to the study of mathematical structures in the con-
text of first-order classical logic. Accordingly, it has been written for math-
ematicians familiar with the fundamentals of model theory. Such familiarity
can be gained from a number of texts, of which [53] and [58] are two of the
present author’s favourites.

This introductory chapter has four aims: To convince the reader of the
topic’s worth, to outline what has been written about the topic already, to
outline what is written about the topic in this thesis, and to explain the no-
tation and terminology used to write about the topic. Accomplishing the first
three of these aims already requires the fourth – which is really just bookkeep-
ing, at least for the cognoscenti – so the reader may wish to scan over § 1.4
before continuing.

1.1 History and motivation

The story of asymptotic classes begins with the famous theorem of Zoé Chatzi-
dakis, Lou van den Dries and Angus Macintyre regarding definable sets in finite
fields, as published in [12]:

Theorem 1.1.1 (CDM, 1992). Let φ(x̄, ȳ) be a formula in the language of
rings Lring := {0, 1,+, ·}, where n := l(x̄) and m := l(ȳ). Then there exist a
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Chapter 1 Introduction

constant C ∈R+ and a finite set D of pairs (d, µ) ∈ {0, . . . , n}×Q+ such that
for every finite field Fq and for every ā ∈ Fq

m, if φ(Fq
n, ā) ̸=∅, then

∣∣|φ(Fq
n, ā)| −µqd

∣∣≤ Cqd−
1/2 (1.1)

for some pair (d, µ) ∈D. Moreover, the parameters are definable; that is, for
each (d, µ) ∈ D there exists an Lring-formula φ(d,µ)(ȳ) such that for every Fq,
Fq |= φ(d,µ)(ā) if and only if ā satisfies (1.1) for (d, µ).

The proof of the theorem uses the Lang–Weil estimates of the number of
points of a variety in a finite field [47], the work of Ax on pseudofinite fields [4]
and the work of Kiefe on quantifier elimination in finite fields [37]. See [11] for
some useful notes. There are two key aspects to the theorem: Firstly, it says
that the sizes of definable sets in finite fields can be described approximately
in terms of a dimension d and a measure µ, with the relative error decreasing
asymptotically; indeed, in order to gain some intuition, the reader may find it
useful to read (1.1) as |φ(Fq

n, ā)| ≈ µqd. Let’s call this the dimension–measure
aspect. Secondly, it says that each such size, taken across the class of finite
fields, is governed by a finite set of functions, in a definable way. Let’s call this
the finite aspect.

Dugald Macpherson and Charles Steinhorn decided to investigate both
apects of CDM-like behaviour further, whereby they developed the notion
of an asymptotic class as a generalisation of Theorem 1.1.1. Richard Elwes,
a student of Macpherson, quickly generalised this notion to that of an N -
dimensional asymptotic class, the original definition of Macpherson and Stein-
horn becoming a 1-dimensional asymptotic class under Elwes’s new definition
(modulo slightly different error terms):

Definition 1.1.2 (Macpherson–Steinhorn [50], Elwes [21], 2007/2008). Let L
be a first-order language, N ∈ N+ and C a class of finite L-structures. Then
C is an N-dimensional asymptotic class if for every L-formula φ(x̄, ȳ), where
n := l(x̄) and m := l(ȳ),

(a) there exist a finite set D ⊂ ({0, . . . , Nn}×R+)∪{(0, 0)} and a partition
{Φ(d,µ) : (d, µ) ∈ D} of the set {(M, ā) : M ∈ C, ā ∈Mm} such that for
each (d, µ) ∈D, ∣∣∣|φ(Mn, ā)| −µ|M |d/N

∣∣∣= o
(
|M |d/N

)
for all (M, ā) ∈ Φ(d,µ) as |M | →∞; and
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1.1 History and motivation

(b) for each (d, µ)∈D there exists an L-formula φ(d,µ)(ȳ) such that for every
M∈ C, M |= φ(d,µ)(ā) if and only if (M, ā) ∈ Φ(d,µ);

where the meaning of the little-o notation is as follows: For every ε > 0 there
exists Q ∈ N such that for all (M, ā) ∈ Φ(d,µ), if |M |>Q, then∣∣∣|φ(Mn, ā)| −µ|M |d/N

∣∣∣< ε|M |d/N .

The investigation of asymptotic classes proved to be fruitful, with many
interesting examples and theorems given in [21] and [50].

This now brings us to multidimensional asymptotic classes, the topic of
this thesis, which are a further generalisation of the notion of an asymptotic
class. The details are given in the next chapter, but we outline the idea be-
hind the new notion here. An N -dimensional asymptotic class C is just that:
N -dimensional. The definable subsets of each M ∈ C must have approxi-
mate size µ|M |d/N for some dimension–measure pair (d, µ). Proving that a
class of structures is an N -dimensional asymptotic class is a strong result,
but being tied to the dimension–measure functions limits the range of exam-
ples. What about classes of structures whose definable sets do not fit this
particular dimension–measure picture? For instance, consider a multi-sorted
structure M with sorts of different dimensions. In this case the size |M | of
the structure is too crude an input for functions approximating the sizes of the
definable sets. However, taking the sizes of the individual sorts as inputs may
allow the finite aspect of CDM-like behaviour to be demonstrated, as shown
by the example of vector spaces over finite fields (Example 2.3.2). It was this
example that originally inspired Macpherson and Steinhorn to move beyond
the framework of N -dimensional asymptotic classes, initially leading them to
the multi-sorted approach. It is also the reason behind the choice of the term
‘multidimensional’.

But we can go further: Why not allow functions of any nature? The
multi-sorted approach is still limited and allowing more exotic functions fur-
ther expands the range of examples, as demonstrated by Example 2.3.8 and
Theorem 4.6.4. This is the idea behind a multidimensional asymptotic class
for R (Definition 2.1.2): The set of functions R can be anything, save the re-
quirement that only a finite number of functions from R are required for any
given formula. Dealing with the functions separately allows us to study the
finite aspect of CDM-like behaviour in isolation, permitting statements of the
form ‘There exists R such that C is a multidimensional asymptotic class for
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Chapter 1 Introduction

R’. This is not to say that we disregard the nature of R. To the contrary: For
example, the goal of Chapter 4 is to ascertain the nature of R for a particular
family of examples.

This then is the motivation behind the topic of this thesis: Drop the
dimension–measure aspect of CDM-like behaviour and focus on the finite as-
pect. Work on multidimensional asymptotic classes has been successful, with
a number of interesting examples found and results proved, some of which are
given in this thesis. Nonetheless, the research is still in its infancy and there
is much more to be investigated (see Chapter 5).

In this thesis we pay particular attention to multidimensional exact classes
(Definition 2.1.4), where we have the finite aspect for the exact sizes of the
definable sets, not just their approximate sizes.

Before we move on, we remark on the notion of a measurable structure
(Definition 3.1 in [22]). We do not study measurable structures in this thesis,
but they are important to mention because of their close relation to asymp-
totic classes: Any infinite ultraproduct of an N -dimensional asymptotic class
is a measurable structure (Proposition 3.9 in [22]). Put heuristically: Mea-
surable structures are the infinite counterparts to N -dimensional asymptotic
classes. What then are the infinite counterparts to multidimensional asymp-
totic classes? In [2] it is shown that generalised measurable structures pro-
vide the answer. Generalised measurable structures are to measurable struc-
tures as multidimensional asymptotic classes are to N -dimensional asymptotic
classes: In a measurable structure the sizes of definable sets are measured by
dimension–measure pairs lying in N×R+ ∪ {(0, 0)}, with only finitely many
such pairs being required for each formula. In a generalised measurable struc-
ture one keeps the finiteness requirement but drops the requirement that the
measuring functions be of this form, allowing the codomain of the measur-
ing function to be any ordered semiring (as defined in [2]). As one would
hope, an infinite ultraproduct of a multidimensional asymptotic class is gen-
eralised measurable [2]. (Generalised) measurable structures are interesting
things in their own right, e.g. [28] and [33], but they are also a useful tool
for proving things about asymptotic classes. For example, since a measurable
structure is supersimple (Corollary 3.7 in [22]), an infinite ultraproduct of an
N -dimensional aysmptotic class must also be supersimple. In the new context
of multidimensional asymptotic classes, one may place conditions on R and
see how they affect the ultraproducts of a multidimensional asymptotic class
in R, as investigated in [2].
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1.2 Literature review

1.2 Literature review

We have already mentioned the main journal articles on N -dimensional asymp-
totic classes, namely [21] and [50]. Further material is to be found in the PhD
thesis of Richard Elwes [20] and there are two survey articles [22] and [51],
the latter also containing work on robust classes, which we do not discuss.
Asymptotic classes also arise in [25], [30], [55] and [56]. Darío García, one
of the authors of [25], has recently developed a new direction of research,
namely that of an o-asymptotic class (the o standing for ‘order’), which is an
attempt to avoid the issue blocking Non-Example 2.3.9 from being an asymp-
totic class. Nothing has yet been published on this new topic, but there is
a paper in preparation [24]. The situation of multidimensional asymptotic
classes in the literature is similar: Nothing has yet been published, but two
papers are in preparation [2] (the main paper) and [60]. The manuscript [1]
of Sylvy Anscombe and Charlotte Kestner is also relevant, as is the work of
Ricardo Bello Aguirre [6], [7]. It is hoped that Bello Aguirre’s results may lead
to further joint work with the present author: see Question 5.6.

1.3 Outline of the thesis

In Chapter 2 we give the definition of a multidimensional asymptotic class
and that of a multidimensional exact class. We make some basic observations
before going through a number of technical lemmas that are used at various
points throughout the thesis. We then provide a number of examples and non-
examples of both multidimensional asymptotic classes and multidimensional
exact classes. We finish the chapter with a result allowing new examples to be
found via interpretations in known examples.

Chapters 3 and 4 build toward our main result, namely a proof of the con-
jecture of Macpherson, as stated in the Abstract. In Chapter 3 we introduce
smooth approximation and show how it provides a generic example of a mul-
tidimensional exact class. This is a nice result in itself, but it is of the form
‘There exists R such that C is a multidimensional exact class for R’, thus im-
mediately raising the question as to the nature of R. In Chapter 4 we answer
this question by using the great technical machinery of Lie coordinatisation,
finishing the chapter with a proof of Macpherson’s conjecture.

We end with some open questions in Chapter 5. There are also Appen-
dices A and B, which cover the details of some notions used in the main text.
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Chapter 1 Introduction

1.4 Notation and terminology

We use the notation X := Y to mean that X is defined to be equal to Y and
the notation X :⇐⇒ Y to mean that X is defined to be equivalent to Y . We
use the symbol ≡ to denote equality between formulas and :≡ to mean defined
equality between formulas. The notation A ⊆ B means that A is a subset of
B, while A⊂B means that A is a proper subset of B.

We refer to [53] and [58] for general model-theoretic notation and termi-
nology. Unless otherwise specified, L denotes a finitary (i.e. Lω,ω), first-order
language with a symbol = for equality, M an L-structure, C a class of finite
L-structures, and T an L-theory, where by an ‘L-theory’ we mean a negation-
complete set of sentences, i.e. for every L-sentence φ either φ ∈ T or ¬φ ∈ T
(and not both!). Note that we identify isomorphic L-structures; that is (equiv-
alently), two L-structures are distinct if and only if they are not isomorphic.

We distinguish between the L-structure M (calligraphic font) and its un-
derlying set M (roman font), although we won’t maintain this distinction
pedantically. We use the notation N ≤M to mean that N is an L-substructure
of M. The theory of M is the set

Th(M) := {φ : φ is an L-sentence and M |= φ}.

For a subset A ⊆M , LA denotes the language where the elements of A are
named by constant symbols; that is, LA is the language obtained by adding to
L a constant symbol ca for each element a ∈ A, where the assignment 1 of ca
in M is defined to be a, i.e. caM := a. We conflate the element a ∈ A and its
constant symbol ca, denoting both by a and calling such an element/constant
symbol a parameter.

We use x, y, z, x1, x2, . . . , etc. for variables and a, b, c, a1, a2, . . . , etc. for pa-
rameters. We write x̄ and ā to denote finite tuples of variables and parameters
respectively and l(x̄) to denote the length of a tuple, e.g. if x̄ = (x1, . . . , xn),
then l(x̄) = n. Concatenation may be used to mean union, e.g. ab := {a, b},
Bā :=B ∪{ā}; whether this applies should be clear from the context.

We write φ(x1, . . . , xn) to indicate that all the free variables in the L-
formula φ are among the xi and that the xi are pairwise distinct. Note that
writing φ(x1, . . . , xn) does not mean that each xi is necessarily a free vari-
able in φ; for instance, φ(x1, . . . , xn) could even be an L-sentence. Also note

1 We use the word ‘assignment’ to avoid overuse of the word ‘interpretation’ in § 2.4,
the latter perhaps being the more standard term, e.g. Definition 1.1.2 in [53] and Definition
1.1.2 in [58].
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1.4 Notation and terminology

that how we label the free variables in a formula is important: For example,
R(x1, x2)∧P (x1) and R(x2, x1)∧P (x2) are (the only) distinct labellings of the
free variables in the formula R(y, z)∧ P (y) by the variables x1 and x2. Ac-
cordingly, the notation φ(x1, . . . , xn) implicitly specifies a particular labelling
of the free variables in φ by x1, . . . , xn. When we say things such as ‘for every
L-formula φ(x1, . . . , xn)’, we really mean ‘for every L-formula φ and for every
possible labelling of the free variables in φ by x1, . . . , xn’.

For parameters a1, . . . , an and an L-formula φ(x1, . . . , xn), φ(a1, . . . , an)
denotes the L{a1,...,an}-formula obtained from φ(x1, . . . , xn) by replacing each
instance of xi with ai, for every i. So, for example, if φ(x1, x2) denotes the
formula R(x1, x2)∧P (x1), then φ(a1, a2) denotes the formula R(a1, a2)∧P (a1),
but if φ(x1, x2) denotes the formula R(x2, x1)∧P (x2), then φ(a1, a2) denotes
the formula R(a2, a1)∧P (a2).

For an L-formula φ(x̄, ȳ) with l(x̄) = n and l(ȳ) = m, an L-structure M
and a tuple ā ∈Mm, we define

φ(Mn, ā) := {b̄ ∈Mn :M |= φ(b̄, ā)}.

For a subset A⊆M , dcl(A) denotes the definable closure of A and acl(A)

denotes the algebraic closure of A. See Exercises 1.4.10 and 1.4.11 in [53] for
definitions of these terms.

If E is a ∅-definable equivalence relation on Mn and ā ∈Mn, then ā/E

denotes the E-equivalence class that contains ā and ⌜ā/E⌝ denotes the same
E-equivalence class but as a member of Meq. So ⌜ā/E⌝ ∈Meq is a canonical
parameter for the ā-definable subset ā/E ⊆Mn. See §§ 1.3 and 8.2 of [53] or
§ 8.4 of [58] for an introduction to Meq and canonical parameters.

We define Q+ := {x∈Q : x> 0}, R+ := {x∈R : x> 0} and R≥0 :=R+∪{0},
where Q and R denote the set of rational numbers and the set of real numbers
respectively. It will be useful to distinguish between the set N := {0, 1, 2, . . .}
of natural numbers and the set N+ := {1, 2, 3, . . .} of positive natural numbers.
We write n ∈ N and n < ω interchangeably.

See Appendix B for notation and terminology regarding types.
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Chapter 2

Multidimensional asymptotic
classes

So if a man’s wit be wandering, let him study the mathematics.

Francis Bacon, Of Studies, 1625 edition

In this chapter we do precisely that and go through the mathematical details
of multidimensional asymptotic classes. In §2.1 we state the main definition of
the thesis and make some remarks upon it. We then move on to §2.2, where we
go over a number of technical lemmas. With the exception of the Projection
Lemmas (Lemmas 2.2.1 and 2.2.2), these lemmas are not particularly interest-
ing in themselves and so the reader may wish to skip this section upon first
reading, returning to it as and when each lemma is used. In §2.3 we consider a
number of examples and non-examples. We end the chapter with § 2.4, which
deals with interpretability in multidimensional asymptotic classes.

2.1 Basic definitions

Let L be a language and let C be a class of finite L-structures. For m ∈ N+

define
C(m) := {(M, ā) :M∈ C, ā ∈Mm}.

The elements of C(m) are sometimes referred to as pointed structures. For
completeness we further define C(0) := C.

Definition 2.1.1 (Definable partition). Let Φ be a partition of C(m). An
element π ∈Φ is definable if there exists a parameter-free L-formula ψ(ȳ) with

9



Chapter 2 Multidimensional asymptotic classes

l(ȳ) =m such that for every (M, ā) ∈ C(m), we have (M, ā) ∈ π if and only if
M |= ψ(ā). The partition Φ is definable if π is definable for every π ∈ Φ.

We now state the fundamental definition of this thesis, as developed jointly
by Anscombe, Macpherson, Steinhorn and the present author:

Definition 2.1.2 (R-mac). Let R be a set of functions from C to R≥0 closed
under addition and multiplication. Then C is a multidimensional asymptotic
class for R in L, or R-mac in L for short, if for every L-formula φ(x̄, ȳ), where
n := l(x̄) and m := l(ȳ), there exists a finite definable partition Φ of C(m) such
that for each π ∈ Φ there exists hπ ∈R such that∣∣∣|φ(Mn, ā)| −hπ(M)

∣∣∣= o(hπ(M)) (2.1)

for all (M, ā) ∈ π as |M | → ∞, where the meaning of the little-o notation is
as follows: For every ε > 0 there exists Q ∈ N such that for all (M, ā) ∈ π, if
|M |>Q, then ∣∣∣|φ(Mn, ā)| −hπ(M)

∣∣∣≤ εhπ(M). (2.2)

Remark 2.1.3.

(i) We call the functions hπ the measuring functions and the L-formulas
that define the partition Φ the defining L-formulas.

(ii) The stipulation that R be closed under addition and multiplication is
stated for convenience: If A and B are definable sets, then their disjoint
union A⊔B is definable and has size |A|+ |B| and their cartesian prod-
uct A×B is definable and has size |A| · |B|, so even if the stipulation
were not made explicit, it would still need to be satisfied, albeit at least
asymptotically and ignoring inconsequential exceptions. We suppress the
stipulation for finite classes, e.g. Corollary 2.2.8.

Also note that R must contain a constant function M 7→ k for each k ∈N
(again at least asymptotically), since one can always define a set of any
given fixed size, assuming of course that the structures in C are arbitrarily
large.

(iii) If we drop the requirement that the partition Φ be definable, then we call
C a weak R-mac. We call (2.1) the size clause and the requirement that
the partition be definable the definability clause. So a weak R-mac need
satisfy only the size clause. We sometimes use the term full R-mac to

10



2.1 Basic definitions

emphasise that both the size and definability clauses hold and the term
strictly weak R-mac to emphasise that only the size clause holds.

(iv) Condition (2.2) holds if π is bounded – that is, if there exists some N ∈N
such that |M | ≤ N for all (M, ā) ∈ π – since we may choose Q = N for
any ε > 0, in which case there is no (M, ā) ∈ π with |M | > Q and so
the condition is vacuously true. It follows that if C is finite, then C is
vacuously an R-mac for any R.

Also note that (2.2) is equivalent to

(1− ε)hπ(M)≤ |φ(Mn, ā)| ≤ (1+ ε)hπ(M).

This alternative form perhaps makes the asymptotic nature of the ap-
proximation easier to see.

(v) In the L-formula φ(x̄, ȳ) it is important to maintain the distinction be-
tween the variables x̄ and the variables ȳ. (Although we use the plural
variables, either of x̄ and ȳ could denote a single variable.) The variables
x̄, which we call object variables, are slots for solutions in each M∈ C.
The variables ȳ, which we call parameter variables, are slots for param-
eters from each M∈ C. To aid clarity we sometimes demarcate the two
kinds of variables with a semicolon, writing φ(x̄; ȳ).

(vi) There is a more precise notion of a multidimensional exact class for R
in L, or R-mec in L for short, where we have the equality |φ(Mn, ā)|=
hπ(M) instead of the approximation (2.1); see Definition 2.1.4 below. As
with point (iii) above, we have the corresponding size and definability
clauses and the notions of strictly weak, weak and full R-mecs. Notice
that any R-mec in L is also an R-mac in L.

We often refer to multidimensional exact classes simply as exact classes.

(vii) R-macs and R-mecs are closed under taking subclasses of C and supersets
of R: If C is an R-mac (resp. -mec) in L, then any subclass of C is also
an R′-mac (resp. -mec) in L for any superset R′ ⊇ R. Equivalently, if C
is not an R-mac (resp. -mec) in L, then no superclass of C is an R′-mac
(resp. -mec) in L for any subset R′ ⊆R.

Weak R-macs and weak R-mecs are closed under taking reducts of the
language: If C is a weak R-mac (resp. -mec) in L, then C is also a weak
R-mac (resp. -mec) in any reduct of L. Equivalently, if C is not a weak

11



Chapter 2 Multidimensional asymptotic classes

R-mac (resp. -mec) in L, then C is also not a weak R-mac (resp. -mec)
in any extension of L. Note that we can’t remove the prefix ‘weak’ here,
since taking a reduct of the language may affect the definability clause.

Definition 2.1.4 (R-mec). Let C be a class of finite L-structures and let R be
a set of functions from C to N closed under addition and multiplication. Then
C is a multidimensional exact class for R in L, or R-mec in L for short, if for
every L-formula φ(x̄, ȳ), where n := l(x̄) and m := l(ȳ), there exists a finite
definable partition Φ of C(m) such that for each π ∈Φ there exists hπ ∈R such
that

|φ(Mn, ā)|= hπ(M)

for all (M, ā) ∈ π.

2.2 Useful lemmas

As the title of this section suggests, we now state and prove a number of useful
lemmas. We begin with the Projection Lemmas:

Lemma 2.2.1 (Projection Lemma forR-macs). Let C be a class of L-structures.
Suppose that the definition of an R-mac (Definition 2.1.2) holds for C and for
all L-formulas φ(x, ȳ) with a single object variable x (as opposed to a tuple x̄).
Then C is an R-mac in L.

Lemma 2.2.2 (Projection Lemma forR-mecs). Let C be a class of L-structures.
Suppose that the definition of an R-mec (Definition 2.1.4) holds for C and for
all L-formulas φ(x, ȳ) with a single object variable x (as opposed to a tuple x̄).
Then C is an R-mec in L.

A proof of Lemma 2.2.1 is given in [2]. It is adapted from the proof of
Theorem 2.1 in [50]. We give a proof of Lemma 2.2.2, which is a simplified
version of Anscombe’s proof.

Proof of Lemma 2.2.2. Consider an arbitrary L-formula φ(x̄, ȳ), where n :=

l(x̄) and m := l(ȳ). We need to prove that it satisfies both the size and defin-
ability clauses. We do this by induction on the length of x̄. The base case of
the induction is the hypothesis of the lemma.

Let x̄= (x1, . . . , xn). By the induction hypothesis we may assume that the
size and definability clauses are satisfied by φ(x1, . . . , xn−1;xn, ȳ), where the
semicolon is used to indicate the division between the object variables and

12



2.2 Useful lemmas

the parameter variables (see Remark 2.1.3(v)). So we have a finite partition
Γ of C(1+m) = {(M, a, b̄) :M∈ C, (a, b̄) ∈M1+m} with measuring functions
{fi : i ∈ Γ} ⊆R and defining L-formulas {γi(xn, ȳ) : i ∈ Γ}.

Consider each γi(xn, ȳ). By the base case of the induction, each γi(xn, ȳ)

satisfies the size and definability clauses, so for each i ∈ Γ we have a finite par-
tition Φi := {πi1, . . . , πiri} of C(m) = {(M, b̄) :M∈C, b̄∈Mm} with measuring
functions {gij : 1 ≤ j ≤ ri} ⊆ R and defining L-formulas {ψij(ȳ) : 1 ≤ j ≤ ri}.
We thus have k := |Γ| finite partitions of C(m). We use them to construct a
single finite partition Φ of C(m). Define

π(j1,...,jk) :=
⋂
i∈Γ

πiji and J := {(j1, . . . , jk) : 1≤ ji ≤ ri, 1≤ i≤ k}.

Then Φ := {π(j1,...,jk) : (j1, . . . , jk) ∈ J} forms a finite partition of C(m). We
now need to show that this partition works.

We first consider the size clause. For each π(j1,...,jk) we need to find a
function h(j1,...,jk) ∈R such that

h(j1,...,jk)(M) = |ϕ(Mn, b̄)| (2.3)

for all (M, b̄) ∈ π(j1,...,jk). So fix some arbitrary (j1, . . . , jk) and consider an
arbitrary pair (M, b̄) ∈ π(j1,...,jk). (If π(j1,...,jk) = ∅, then any function h ∈ R

would be vacuously suitable, so we can ignore this case.) Let χi(x1, . . . , xn, ȳ)

denote the L-formula

φ(x1, . . . , xn, ȳ)∧ γi(xn, ȳ).

Then, since the L-formulas γi(xn, ā) define the partition Γ, φ(Mn, b̄) is parti-
tioned by the χi(Mn, b̄), i.e.

φ(Mn, b̄) =
⋃
i∈Γ

χi(Mn, b̄), (2.4)

where the union is disjoint. Now, for each i ∈ Γ we have

∣∣χi(Mn, b̄)
∣∣= ∑

a∈γi(M,b̄)

∣∣φ(Mn−1, a, b̄)
∣∣

because χi(Mn, b̄) fibres over γi(M, b̄). Thus

∣∣χi(Mn, b̄)
∣∣= fi(M) ·

∣∣γi(M, b̄)
∣∣ , (2.5)

13



Chapter 2 Multidimensional asymptotic classes

since
∣∣φ(Mn−1, a, b̄)

∣∣ = fi(M) if M |= γi(a, b̄). But (M, b̄) ∈ π(j1,...,jk) ⊆ πiji
and so

∣∣γi(M, b̄)
∣∣= giji(M), which gives

∣∣χi(Mn, b̄)
∣∣= fi(M) · giji(M)

when put into (2.5). Combining this with (2.4) yields

∣∣φ(Mn, b̄)
∣∣=∑

i∈Γ

fi(M) · giji(M).

So define

h(j1,...,jk)(M) :=
k∑

i=1

fi(M) · giji(M)

for all M∈ C and (2.3) is satisfied as required.
We now come to the definability clause. Let ψ(j1,...,jk)(ȳ) denote the formula

k∧
i=1

ψiji(ȳ).

Then (M, b̄) ∈ π(j1,...,jk) if and only if M |= ψ(j1,...,jk)(b̄). So the definability
clause is also satisfied and so we are done.

The following lemma provides an asymptotic bound for measuring func-
tions:

Lemma 2.2.3. Suppose that C is a weak R-mac in L. Let φ(x̄, ȳ) be an L-
formula with n := l(x̄) and m := l(ȳ) and, applying the size clause to φ, let Φ
be a partition of C(m) with measuring functions {hπ : π ∈ Φ} ⊆ R. Then for
every π ∈ Φ and for every δ ∈ (0, 1) there exists Qπδ ∈ N such that for every
M∈ π1 := {M∈ C : (M, ā) ∈ π for some ā ∈Mm} with |M |>Qπδ,

hπ(M)≤ |M |n

1− δ
.

Proof. Consider some arbitrary π ∈ Φ and let 0< δ < 1. Let Qπδ be such that
(2.2) holds for ε := δ, i.e. for every (M, ā) ∈ π with |M |>Qπδ we have∣∣∣|φ(Mn, ā)| −hπ(M)

∣∣∣≤ δhπ(M).

This is equivalent to

−δhπ(M)≤ |φ(Mn, ā)| −hπ(M)≤ δhπ(M),
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which implies
(1− δ)hπ(M)≤ |φ(Mn, ā)|.

Thus, since |φ(Mn, ā)| ≤ |M |n,

(1− δ)hπ(M)≤ |M |n.

But 1− δ > 0 and so

hπ(M)≤ |M |n

1− δ

as required.

We now introduce the notion of positive-definiteness for R-macs:

Definition 2.2.4 (in the context of Definition 2.1.2). Let πM := {ā ∈ Mm :

(M, ā) ∈ π}. The measuring function hπ is positive-definite if

φ(M, ā) =∅ for all ā ∈ πM ⇐⇒ hπ(M) = 0 (2.6)

for all M∈ C with πM ̸=∅.

Measuring functions are eventually positive-definite:

Lemma 2.2.5. Suppose that C is a weak R-mac in L. Let φ(x̄, ȳ) be an L-
formula with n := l(x̄) and m := l(ȳ) and, applying the size clause to φ, let
Φ be a partition of C(m) with measuring functions {hπ : π ∈ Φ} ⊆ R. Then
for each π ∈ Φ there exists Qπ ∈ N+ such that (2.6) holds for all M∈ C with
|M |>Qπ and πM ̸=∅.

Proof. Consider some arbitrary π ∈ Φ.
(i) We first prove that the left-to-right direction of (2.6) eventually holds.

For a contradiction, suppose that it never holds, i.e. that for everyQ∈N+ there
exists some MQ ∈ C with |MQ| > Q such that the left-to-right part of (2.6)
fails to hold for MQ. So φ(MQ, ā) =∅ for all ā ∈ πMQ ̸=∅ but hπ(MQ) ̸= 0.
Let ε= 1

2
. Then ∣∣∣|φ(MQ

n, ā)| −hπ(MQ)
∣∣∣= |0−hπ(MQ)|

= hπ(MQ)

> εhπ(MQ).

Since this holds for all Q∈N+, (2.1) does not hold for π and so C is not a weak
R-mac, a contradiction. So there exists Qπ1 ∈N+ above which the left-to-right
direction of (2.6) holds.

15



Chapter 2 Multidimensional asymptotic classes

(ii) We now prove that the right-to-left direction of (2.6) eventually holds.
For a contradiction, suppose that it never holds, i.e. that for every Q ∈ N+

there exists some MQ ∈ C with |MQ| > Q such that the right-to-left part of
(2.6) fails to hold for MQ. So hπ(MQ) = 0 but there exists ā ∈ πMQ such that
φ(M, ā) ̸=∅. Let ε= 1. Then∣∣∣|φ(MQ

n, ā)| −hπ(MQ)
∣∣∣= |φ(MQ

n, ā)|

> 0

= εhπ(MQ).

Since this holds for all Q∈N+, (2.1) does not hold for π and so C is not a weak
R-mac, a contradiction. So there exists Qπ2 ∈N+ above which the right-to-left
direction of (2.6) holds.

Parts (i) and (ii) together imply the result, since we may take Qπ :=

max{Qπ1, Qπ2}.

R-macs and R-mecs are closed under adding constant symbols:

Lemma 2.2.6.

(i) Suppose that C is a weak R-mac (resp. -mec) in L. Let L′ be an extension
of L by constant symbols and for M∈ C let M′ be the L′-expansion of
M. Then C ′ := {M′ :M∈ C} is a weak R-mac (resp. -mec) in L′.

(ii) Suppose that C is a full R-mac (resp. -mec) in L. Let L′ be an extension
of L by constant symbols and for M∈ C let M′ be the L′-expansion of
M. Then C ′ := {M′ :M∈ C} is a full R-mac (resp. -mec) in L′.

Proof. We simultaneously prove parts (i) and (ii) for R-macs, the proof for
R-mecs being all but identical.

Consider an L′-formula φ(x̄, ȳ), where n := l(x̄) and m := l(ȳ). We can
write the constant symbols from L′ \ L that occur in φ(x̄, ȳ) as the tuple c̄,
where k := l(c̄). We can thus write φ as φ(x̄, ȳ, c̄), where φ(x̄, ȳ, z̄) is an L-
formula. Since C is an R-mac in L, we have a finite partition Φ of C(m+ k) =

{(M, ā, b̄) :M∈C, ā∈Mm, b̄∈Mk} with measuring functions {hπ : π ∈Φ}⊆R

and defining L-formulas {ψπ(ȳ, z̄) : π ∈ Φ}. Define

π′ := {(M′, ā) : (M, ā, c̄M
′
) ∈ π},

where c̄M
′ ∈ Mk denotes the assignment in M′ of the tuple c̄ of constant

symbols. Then Φ′ := {π′ : π ∈ Φ} is a finite partition of C ′(m) with measuring
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functions {hπ : π′ ∈ Φ′}, where hπ(M′) := hπ(M), since for each π′ ∈ Φ′ we
have ∣∣∣|φ((M′)n, ā)| −hπ(M′)

∣∣∣= ∣∣∣|φ(Mn, ā, c̄M
′
)| −hπ(M)

∣∣∣
= o(hπ(M))

= o(hπ(M′))

for all (M′, ā) ∈ π′ as |M | → ∞. So part (i) is proved. Moreover, each π′ is
defined by the parameter-free L′-formula ψπ(ȳ, c̄). So part (ii) is proved.

The following lemma shows that to prove that a class C is an R-mec in L,
it suffices to show that the definition eventually holds for each L-formula:

Lemma 2.2.7. Suppose that the definition of a multidimensional exact class
(Definition 2.1.4) holds for φ(x̄, ȳ), R and the subclass

C(m)>Q := {(M, ā) : (M, ā) ∈ C(m) and |M |>Q}

of C(m), where m := l(ȳ), Q is some positive integer, and R contains the
constant function M 7→ k for each positive integer k ≤Q. Then the definition
also holds for φ(x̄, ȳ), R and C(m).

Proof. By the hypothesis of the lemma there exists a finite partition Φ of
C(m)>Q with measuring functions {hπ : π ∈Φ} and defining L-formulas {ψπ(ȳ) :

π ∈ Φ}. Let

Γi := {(M, ā) :M∈ C(m) \ C(m)>Q and |φ(Mn, ā)|= i}.

Then {Γi : 0 ≤ i ≤ Q} ∪Φ is a finite partition of C with measuring functions
{gi : 0 ≤ i ≤ Q} ∪ {hπ : π ∈ Φ}, where gi(M) := i for all M ∈ C. So the size
clause holds for C.

Let σQ be the L-sentence ∃x1 . . . ∃xQ∀y
∨

1≤i≤Q y = xi, i.e. σQ says that
there are at most Q elements, and let φi(ȳ) be the L-formula ∃!ix̄ φ(x̄, ȳ), i.e.
φi(ā) says that |φ(Mn, ā)|= i. Then the partition in the previous paragraph is
defined by the L-formulas {φi(ȳ)∧σQ : 1≤ i≤Q}∪{ψπ(ȳ)∧¬σQ : π ∈Φ}.

Corollary 2.2.8. Let C be a finite class of finite L-structures, where the largest
structure in C has size Q. If R is the set of functions {M 7→ k : k ∈N, k ≤Q},
then C is an R-mec in L.

Proof. Use the proof of Lemma 2.2.7.
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Remark 2.2.9. If we replace ‘multidimensional exact class’ with ‘multidi-
mensional asymptotic class’ in the statement of Lemma 2.2.7, then the proof
becomes easier: The size clause is handled by Remark 2.1.3(iv) and σQ takes
care of the definability clause.

Our last useful lemma is a compactness-like result:

Lemma 2.2.10. Let C be a class of finite L-structures. For L′ ⊆ L let CL′

denote the class of all L′-reducts of structures in C. If CL′ is an R-mac (resp.
-mec) in L′ for every finite L′ ⊆ L, then C is an R-mac (resp. -mec) in L.

Proof. This follows from Definition 2.1.2 (resp. Definition 2.1.4), whose first
(second-order) quantifier ranges over L-formulas, and the following two facts:
Firstly, L-formulas are finite and so any L-formula is an L′-formula for some
finite L′ ⊆ L. Secondly, for every L′-formula χ(ȳ) (where m := l(ȳ), for every
L′-reduct M′ of an L-structure M and for every ā ∈Mm, M′ |= χ(ā) if and
only if M |= χ(ā).

2.3 Examples and non-examples

We now go through a number of examples and non-examples of R-macs and
R-mecs. We start with a generic example that incorporates the previous frame-
work:

Example 2.3.1. Any N -dimensional asymptotic class (Definition 1.1.2) is an
R-mac, where the functions in R are of the form M 7→ µ|M |d/N for some
dimension–measure pair (d, µ).

A number of new examples have been found that do not fit into the previous
framework of N -dimensional asymptotic classes:

Example 2.3.2 (Theorem 4.3.2 in [25]). Let C be the class of all finite vector
spaces, where both the base finite field and the dimension vary freely. We
consider these vector spaces as two-sorted structures (V,K), with a sort V
in the language of groups with an abelian group structure, a sort K in the
language of rings with a field structure, and a function K ×V → V for scalar
multiplication. We call V the vector sort and K the field sort. (See pp. 5
and 12 of [58] for a summary of multi-sorted structures and languages.) Let
Q[V,K] denote the set of polynomials with rational coefficients and V and
K as indeterminants. Then C is a Q[V,K]-mac, where we define p((V,K)) :=

p(|V |, |K|) for p ∈Q[V,K] and (V,K) ∈ C.
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Remark 2.3.3. Building on the work of Granger in [26], in [2] it is shown
that expanding Example 2.3.2 by adding an orthogonal or symplectic bilinear
form V →K still yields a multidimensional asymptotic class (see § 19 of [3] for
the definitions of these terms). Note that the work in [1] is also relevant.

In order to prove the next example we’ll need to define the notion of a
disjoint union of classes and then prove a lemma:

Definition 2.3.4. Consider C1, . . . , Ck, where each Ci is a class of Li-structures.
Define the disjoint union of C1, . . . , Ck to be

C1 ⊔ · · · ⊔ Ck := {M1 ⊔ · · · ⊔Mk :Mi ∈ Ci},

where we define a first-order structure on M1 ⊔ · · · ⊔Mk as follows: The
domain is M1 ∪ · · · ∪Mk, which we make formally disjoint if necessary. The
language is L1 ⊔ · · · ⊔ Lk, which has a sort Si for each Mi and contains all
Li-symbols for every i ∈ {1, . . . , k}, with each Li-symbol being restricted to
the sort Si.

Lemma 2.3.5. Let Ci be an Ri-mac (resp. -mec) in Li. Then C1 ⊔ · · · ⊔ Ck is
an R-mac (resp. -mec) in L := L1 ⊔ · · · ⊔Lk, where R is the set generated by
R1 ∪ · · · ∪Rk under addition and multiplication.

Sketch proof. We restrict our attention to the case k = 2, the general case
following by induction.

Consider an L-formula φ(x̄1, x̄2; ȳ1, ȳ2), where x̄i and ȳi are of sort Si. By an
induction on the complexity of the formula, one can show that φ(x̄1, x̄2; ȳ1, ȳ2)
is equivalent to a finite disjunction of L-formulas of the form χ(x̄1, ȳ1) ∧
θ(x̄2, ȳ2), where χ is an L1-formula, θ is an L2-formula, and the disjuncts
are pairwise inconsistent. Since the domains of M1 ∈ C1 and M2 ∈ C2 are
disjoint, we have

|χ(M1 ⊔M2, ā1)∧ θ(M1 ⊔M2, ā2)|= |χ(M1, ā1)| · |θ(M2, ā2)|.

One then proceeds by using the facts that the disjuncts are pairwise inconsis-
tent, thus allowing summation, and that each Ci is an R-mac/-mec.

Example 2.3.6. Consider the class C of finite cyclic groups and for arbi-
trary k ∈ N+ define Ck := {C1 ⊕ · · · ⊕Ck : Ci ∈ C}. Let L be the language of
groups (with or without a constant symbol for the identity element – recall
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Lemma 2.2.6). Then Ck is a multidimensional exact class in L′, where L′ is L
adjoined with a unary predicate Pi for each part of the direct sum:

Pi
C1⊕···⊕Ck := {(0, . . . , 0, a

↑
ith place

, 0, . . . , 0) : a ∈ Ci}.

Proof. Theorem 3.14 in [50] states that C is a 1-dimensional asymptotic class
in L. Inspection of the proof of this theorem shows that C is in fact an exact
class. So by Lemma 2.3.5, C ⊔ · · · ⊔ C︸ ︷︷ ︸

k times

is an exact class in L⊔ · · · ⊔L︸ ︷︷ ︸
k times

. Since L′

is equipped with the predicates Pi, Ck and C ⊔ · · · ⊔ C are ∅-bi-interpretable
(Definition 2.4.2). Therefore Ck is an exact class by Proposition 2.4.6(ii).

Remark 2.3.7. We comment on Example 2.3.6.

(i) I conjecture that the Pi are necessary for the definability clause; that is,
I conjecture that Ck is a strictly weak exact class in L.

(ii) The disjoint-union technique can be used with other direct sums, e.g.
Question 5.6.

(iii) The class C of finite cyclic groups is a multidimensional exact class,
but it is not a 1-dimensional exact class. Indeed, there do not exist
N -dimensional exact classes, for the following reason: Consider two dis-
joint definable sets A and B with |A| = α|M |a/N and |B| = β|M |b/N ,
where a > b. Then their union A ∪ B, which is definable, has size
α|M |a/N +β|M |b/N , which cannot be expressed in the form µ|M |d/N for a
dimension–measure pair (d, µ). This is not an issue for an N -dimensional
asymptotic class, since |M |a/N swamps |M |b/N as |M | → ∞. It is also
not an issue for a multidimensional exact class, where one is not bound
to dimension–measure pairs.

Example 2.3.8 (Proposition 4.4.2 in [25]). Consider the class of homocyclic
groups

C := {(Z/pnZ)m : p is prime and n,m ∈ N+}

in the language L := {+}. This class is an R-mec, where R consists of functions
of the form

r∑
i=0

rd∑
j=−rd

cijp
m(in+j),

where r is the length of the object-variable tuple of the given L-formula (see
Remark 2.1.3(v)); d is a positive integer that is constructively determined by
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the L-formula; and the cij are integers that depend on the L-formula, with
cij := 0 whenever in+ j < 0. (Each group (Z/pnZ)m ∈ C is determined by
a triple (p, n,m), so by defining a function on such triples we also define a
function on C.)

Further examples will arise as the thesis progresses. We now turn our
attention to non-examples, which are often just as interesting.

Non-Example 2.3.9 (Example 3.1 in [50]). The class C of all finite linear
orders in (any extension of) the language L = {<} does not form a weak R-
mac for any R.

Proof. Let R be any set of functions from C to R≥0 and let φ(x, y) be the
formula x < y. Consider the finite linear order Mk := {a0 < · · · < ak}. Then
|φ(Mk, ai)| = i. So as we let k increase and let i vary we define arbitrarily
many subsets of distinct sizes. Thus no finite number of functions from R can
approximate |φ(Mk, ai)| for all k, i ∈ N. Let’s make that rigorous.

By way of contradiction, suppose that there exists R such that C forms a
weak R-mac. So for the formula φ(x, y) there exists a finite partition Φ of
C(1) with measuring functions {hπ : π ∈ Φ} ⊆ R. Let t := |Φ|. Consider the
sequence (Mdt)d∈N+ of structures from C. We have |Mdt| = |{a0, . . . , adt}| =
dt+1 and thus, since |Φ|= t, there exists π ∈Φ such that |πMdt| ≥ d+1, where
πMdt := {a ∈Mdt : (Mdt, a) ∈ π}. Therefore there exist ai(d), aj(d) ∈ πMdt such
that |i(d)− j(d)| ≥ d. Now consider the sequence (Mdt, ai(d))d∈N+ . Since Φ is
finite, an infinite subsequence S is contained within a single π0 ∈ Φ.

Set ε := 1
6t

. Let Q1 be such that (2.2) holds for π0, hπ0 and ε and, by
taking δ := 1

2
in Lemma 2.2.3, let Q2 be such that hπ0(M) ≤ 2|M | for all

M ∈ π1
0 := {M ∈ C : (M, a) ∈ π0 for some a ∈ M} with |M | > Q2. Define

Q := max{Q1, Q2, 3}. Consider some (Mdt, ai(d)) ∈ S with |Mdt|>Q. Then
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|Mdt| − 1

t
= d

≤ |i(d)− j(d)|

=
∣∣|φ(Mdt, ai(d))| − |φ(Mdt, aj(d))|

∣∣ (since |φ(Mk, ai)|= i)

=
∣∣|φ(Mdt, ai(d))| −hπ0(Mdt)

+hπ0(Mdt)− |φ(Mdt, aj(d))|
∣∣

≤
∣∣|φ(Mdt, ai(d))| −hπ0(Mdt)

∣∣
+
∣∣hπ0(Mdt)− |φ(Mdt, aj(d))|

∣∣ (triangle inequality)

≤ 1

6t
hπ0(Mdt)+

1

6t
hπ0(Mdt)

=
1

3t
hπ0(Mdt),

where the penultimate step follows because (Mdt, ai(d), aj(d)) ∈ π0 and |Mdt|>
Q1. Multiplying by 3t yields

3|Mdt| − 3≤ hπ0(Mdt).

Since |Mdt|> 3, 2|Mdt|< 3|Mdt| − 3 and thus

2|Mdt|< hπ0(Mdt).

But |Mdt|>Q2 and so hπ0(Mdt)≤ 2|Mdt|, a contradiction.

The following non-example is informative, as it shows that the choice of
language in Example 2.3.8 is important:

Non-Example 2.3.10. Let p be prime. Then the class {Z/pnZ : n ∈ N+} of
multiplicative monoids in (any extension of) the language L = {×} does not
form a weak R-mac for any R.

Proof. Let R be any set of functions from C to R≥0 and let φ(x, y) be the
formula ∃z (x = z × y). Then |φ(Z/pnZ, pi)| = pn−i. So as we let n increase
and let i vary we define arbitrarily many subsets of distinct sizes. Thus, by a
very similar argument to that given in the proof of Non-Example 2.3.9, no finite
number of functions from R can approximate |φ(Z/pnZ, pi)| for all n, i∈N.

Remark 2.3.11.

(i) Non-Examples 2.3.9 and 2.3.10 are special cases of the general fact that
an ultraproduct of a multidimensional asymptotic class cannot have the
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strict order property [2]. (See Definition 2.14 in [10] or Exercise 8.2.4
in [58] for a definition of the strict order property.)

(ii) The issue preventing Non-Example 2.3.10 from being an R-mac is the
unbounded exponent n. If the exponent is bounded, then one can have
an R-mac, as shown by the work of Bello Aguirre in [6] and [7], some of
which is discussed in Question 5.6.

The following two non-examples are due to appear in [2]. They concern
ultraproducts, the random graph and the random tournament,1 which are
covered extensively in the literature, e.g. [5], Exercise 2.5.19 in [53] and Exercise
1.2.4 in [58] (ultraproducts) and p. 232 of [14], p. 17 of [16], §§ 1–2 of [23], p.
435 of [43], pp. 50–52 of [53] and Exercise 3.3.1 in [58] (the random graph and
the random tournament).

Non-Example 2.3.12. The random graph is not elementarily equivalent to
an ultraproduct of a multidimensional exact class.

Proof. Let L := {E} be the language of graphs. By way of contradiction,
suppose that there exists a class C of finite L-structures with an ultraproduct
U such that C is an R-mec in L for some R and U is elementarily equivalent
to the random graph.

By a thinning-out argument (see e.g. Lemma 2.1 in [52]), we may find a
subclass of C ′ ⊆ C such that every infinite ultraproduct of C ′ is elementarily
equivalent to U . We may assume that C ′ = C, since C ′ is also an R-mec by
Remark 2.1.3(vii). Thus for every L-sentence σ, σ is true in the random
graph if and only if σ is cofinitely true in C. Thus, since the random graph
has quantifier elimination (Exercise 3.3.1 in [58]), C has eventual quantifier
elimination; that is, for every L-formula φ there exist Q ∈ N and a quantifier-
free L-formula χ such that for all G ∈ C with |G|>Q, φ and χ are equivalent
in G.

A graph is said to be d-regular if for any set A of at most d vertices, the
number of vertices that are adjacent to every vertex in A depends only on the
isomorphism type of the induced subgraph on A.

Let φ(x, y1, . . . , y5) :≡
∧

1≤i≤5E(x, yi), i.e. φ says that x is adjacent to each
yi. Since C is an R-mec, φ gives rise to a finite partition Φ of C(5) with defining

1 Due to its different guises, the random graph goes by various names, including the
‘Rado graph’ and ‘the generic (countable homogeneous) graph’. The random tournament
has similar aliases.
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L-formulas {ψπ(y1, . . . , y5) : π ∈ Φ}. By eventual quantifier elimination and
Remark 2.1.3(vii) we may assume that each ψπ is quantifier-free.

We use the ψπ to show that every G ∈ C is 5-regular. So consider some
arbitrary G∈ C and let ȳ := (y1, . . . , y5). Since ψπ(ȳ) is quantifier-free, whether
or not a tuple ā := (a1, . . . , a5) ∈ G5 of vertices satisfies ψπ(ȳ) is determined
entirely by the L-substructure on ā. But |φ(G, ā)| is precisely determined by
which ψπ holds for ā, since C is an R-mec (not just an R-mac). Moreover,
φ(G, ā) is the same for every ordering of the ai in ā. Thus |φ(G, ā)| depends
only on the isomorphism type of the induced subgraph on ā and so G is indeed
5-regular.

As discussed at the end of [9], a finite 5-regular graph is either (a) the
pentagon, (b) the line graph of K3,3 or (c) a complete multipartite graph.
Recall the characteristic property of the random graph, which is expressible as
a first-order axiom schema in L: For any two finite sets A and B of vertices,
there exists a vertex adjacent to every vertex in A and to no vertex in B.
So for any given |A| and |B|, this property is cofinitely true in C. But this
cannot be the case, since every graph in C is of the form (a), (b) or (c), a
contradiction.

Remark 2.3.13. This argument also shows that neither the generic countable
Kn-free graph nor its complement is equivalent to an ultraproduct of an exact
class. We will discuss the relationship between homogeneous structures and
exact classes further in Question 5.3.

Non-Example 2.3.14. The random tournament is not elementarily equiva-
lent to an ultraproduct of a multidimensional exact class.

Proof. Let L := {˙} be the language of tournaments. We define the out-
neighbourhood of a vertex a in a tournament T to be Out(a) := {b ∈ T : a ˙ b}
and the in-neighbourhood to be In(a) := {b ∈ T : b ˙ a}.

By way of contradiction, suppose that there exists a class C of finite L-
structures with an ultraproduct U such that C is an R-mec in L for some R
and U is elementarily equivalent to the random tournament.

We can use the same argument from the proof of Non-Example 2.3.12 to
assume that for every L-sentence σ, σ is true in the random tournament if
and only if σ is cofinitely true in C. Thus, since the random tournament has
quantifier elimination (see [43]), C has eventual quantifier elimination.

A tournament T is said to be d-regular if |Out(a)| = d for all a ∈ T . A
tournament T is regular if T is d-regular for some d. We claim that any finite
regular tournament has an odd number of vertices.
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Let T be a d-regular tournament. Then
∑

a∈T |Out(a)| = nd, where n is
the number of vertices in T . We also have

∑
a∈T |Out(a)| = 1

2
n(n− 1), since(

n
2

)
= 1

2
n(n− 1) is the number of edges in the complete graph on n vertices.

(Recall that a tournament on n vertices is obtained from the complete graph
on n vertices by assigning a direction to each edge.) So nd= 1

2
n(n− 1), which

implies n = 2d+ 1. So n is odd, as claimed. Notice that we thus also have
|In(a)|= d for all a∈ T , since |In(a)|= (n−1)−|Out(a)|= (2d+1−1)−d= d.

Now consider the L-formula φ(x, y) :≡ y ˙ x. So for a tournament T ,
φ(T, a) =Out(a). Since C is an R-mec, φ(x, y) gives rise to a finite partition Φ

of C(1) with defining L-formulas {ψπ(y) : π ∈ Φ}. By eventual quantifier elim-
ination and Remark 2.1.3(vii) we may assume that the ψπ are quantifier-free.

We use the ψπ to show that every T ∈ C is regular. So consider some
arbitrary T ∈ C. Since ψπ(y) is quantifier-free, whether or not a vertex a ∈ T
satisfies ψπ(y) is determined entirely by the subtournament substructure on a.
But a is a single vertex and so there is only one tournament structure on a,
namely the empty structure. So we must have |Φ| = 1. Since C is an R-mec,
|φ(T, a)| is precisely determined by which ψπ holds for a and thus, since there
is only one ψπ, every out-neighbourhood has the same size. So T is indeed
regular.

For a pair a1 ˙ a2 ∈ T ∈ C we define the following subtournaments of T :

• X1(a1, a2) := Out(a1)∩Out(a2)

• X2(a1, a2) := Out(a1)∩ In(a2)

• X3(a1, a2) := In(a1)∩Out(a2)

• X4(a1, a2) := In(a1)∩ In(a2)

Recall the characteristic property of the random tournament, which is ex-
pressible as a first-order axiom schema in L: For any finite sets A and B

of vertices there exists a vertex c such that c ∈ Out(a) for every a ∈ A and
c ∈ In(b) for every b ∈ B. Thus, taking suitable A and B, we see that there
exists a cofinite subclass C ′ ⊆ C such that each Xi(a1, a2) is non-empty for
every a1 ˙ a2 ∈ T ∈ C ′. By Remark 2.1.3(vii) we may assume that C ′ = C. We
claim that each Xi(a1, a2) is a regular tournament.

We prove the claim for X2, the proofs for the other Xi being all but the
same. Consider the L-formula

χ(x; z, y1, y2) :≡ y1 ˙ z ∧ z ˙ y2 ∧ y1 ˙ x∧x ˙ y2 ∧ z ˙ x.
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Since C is an R-mec, we have a partition Γ of C(3) with defining L-formulas
{ψγ(z, y1, y2) : γ ∈Γ}. By eventual quantifier elimination and Remark 2.1.3(vii)
we may assume that the ψγ are quantifier-free. Thus |χ(T, b, a1, a2)| depends
only on the subtournament substructure on (b, a1, a2). But if we fix a1 and
a2 and let b ∈X2(a1, a2) vary, then the subtournament structure on (b, a1, a2)

remains constant. So |Out(b)| = |χ(T, b, a1, a2)| is constant for b ∈X2(a1, a2),
i.e. X2(a1, a2) is regular, as claimed.

For any a1 ˙ a2 ∈ T ∈ C we have

T =X1(a1, a2)∪X2(a1, a2)∪X3(a1, a2)∪X4(a1, a2)∪{a1, a2},

where the union is disjoint. So the number of vertices in T is equal to

|X1(a1, a2)|+ |X2(a1, a2)|+ |X3(a1, a2)|+ |X4(a1, a2)|+2. (2.7)

But each Xi(a1, a2) is a regular tournament and thus has odd size, which by
(2.7) implies that T has even size, a contradiction because T is also a regular
tournament.

Remark 2.3.15. The situation is quite different for asymptotic classes: The
random graph is elementarily equivalent to any infinite ultraproduct of the
class of Paley graphs, which is a 1-dimensional asymptotic class (Example 3.4
in [50]), and the random tournament is elementarily equivalent to any infinite
ultraproduct of the class of Paley tournaments, which is also a 1-dimensional
asymptotic class (Example 3.5 in [50]). This is an interesting phenomenon,
especially in light of Theorem 7.5.6 in [18] and Theorem 4.6.4. We will discuss
it further in Question 5.3.

2.4 Interpretability

In this section we show thatR-macs andR-mecs are closed under bi-interpretability
(Proposition 2.4.6), adapting work by Elwes in [21] on interpretations in N -
dimensional asymptotic classes.

Definition 2.4.1 (Interpretation of a structure). Let M be an L-structure
and N an L′-structure. Let A⊆M . The structure N is A-interpretable in M
if there exist

(i) r ∈ N+;
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2.4 Interpretability

(ii) an LA-definable set X ⊆M r;

(iii) an LA-definable equivalence relation E on X;

(iv) a function f : N →X/E; and

(v) an L′-structure on X/E, i.e. for each L′-symbol P there exists an LA-
definable, E-invariant subset of Xk (see below), where k is equal to the
arity of P ,

such that f is an L′-isomorphism. We write N ∗ for the induced L′-structure on
X/E. We say that N is parameter-interpretable in M if N is A-interpretable
in M for some A⊆M .

Some further explanation of point (v) is in order. Consider an n-ary re-
lation symbol P (y1, . . . , yn) in L′. Point (v) says that there exists an LA-
formula P̂ (x̄1, . . . , x̄n), where l(x̄i) = r for each i ∈ {1, . . . , n}, that defines
an E-invariant subset P̂ ((Mr)n)⊆Xn, where E-invariance means the follow-
ing: If E(ā1, b̄1), . . . , E(ān, b̄n), then M |= P̂ (ā1, . . . , ān) if and only if M |=
P̂ (b̄1, . . . , b̄n). Put another way: P̂ (Xn) is a union of E-equivalence classes.2

We may thus define the assignment of P in X/E to be P̂ (Xn)/E. So, mak-
ing the necessary minor adjustments for function and constant symbols, we
see that point (v) gives rise to an assignment in X/E for every symbol in L′,
which is the definition of an L′-structure on X/E. Some terminology: We call
P̂ (x̄1, . . . , x̄n) the L-translation of P .

Now suppose that N is parameter-interpretable in M via an interpretation
f : N →N ∗ and that M is parameter-interpretable in N via an interpretation
g : M→M∗; in such a situation we say that M and N are mutually parameter-
interpretable. Then f induces an L-isomorphism f ∗ : M∗ → M∗∗ for an L-
structure M∗∗ interpreted in N ∗ and hence also in M. Similarly, g induces an
L′-isomorphism g∗ : N ∗ →N ∗∗ for an L′-structure N ∗∗ interpreted in M∗ and
hence also in N . We say that M and N are parameter-bi-interpretable if there
exist interpretations f and g such that the isomorphisms f ∗g : M→M∗∗ and
g∗f : N →N ∗∗ are parameter-definable 3 in M and N respectively.

We say that M and N are ∅M-bi-interpretable if they are parameter-bi-
interpretable in such a way that no parameters from M are needed, i.e. we
further require that N be ∅-interpretable in M (via f) and that the isomor-
phism f ∗g be ∅-definable in M.

2 The equivalence relation E on X naturally gives rise to an equivalence relation on any
cartesian power Xs of X, namely E((ā1, . . . , ās), (b̄1, . . . , b̄s)) :⇐⇒

∧s
i=1 E(āi, b̄i).

3 ‘Parameter-definable’ means that parameters can be used, not that they must be: Any
∅-definable set is parameter-definable.

27



Chapter 2 Multidimensional asymptotic classes

We say that M and N are ∅-bi-interpretable if they are parameter-bi-
interpretable in such a way that neither parameters from M nor parameters
from N are needed, i.e. we require that N be ∅-interpretable in M (via f),
that M be ∅-interpretable in N (via g) and that the isomorphisms f ∗g and
g∗f be ∅-definable in M and N respectively.

Definition 2.4.2 (Interpretation of a class of structures). Let C and C ′ be
classes of L- and L′-structures respectively. We say that C ′ is parameter-
interpretable in C if there exists an injection α : C ′ →C such that each N ∈C ′ is
parameter-interpretable in α(N ) in such a way that N ∗ is uniformly parameter-
defined across C (see below for an explanation). We say that C and C ′ are
parameter-bi-interpretable if there exists a bijection α : C ′ → C such that for
each N ∈ C ′, N and α(N ) are parameter-bi-interpretable in such a way that
N ∗ and f ∗g are uniformly parameter-defined across C and that α(N )∗ and g∗f
are uniformly parameter-defined across C ′.

We say that C and C ′ are ∅C-bi-interpretable if they are parameter-bi-
interpretable in such a way that no parameters from structures in C are needed.

We say that C and C ′ are ∅-bi-interpretable if they are parameter-bi-
interpretable in such a way that neither parameters from structures in C nor
parameters from structures in C ′ are needed.

By the expression ‘the N ∗ are uniformly parameter-defined across C’ we
mean that the L-formulas that define N ∗ – i.e. that define the subset X =

XN ⊆ α(N )r, the equivalence relation E on X =XN , and the L-translations
of the L′-symbols in XN/E, as laid out in Definition 2.4.1 – are the same for
each N ∈ C ′. So, for example, the L-formula that defines each subset XN is
of the form χ(x̄, ȳ), where r = l(x̄), q := l(ȳ) and for every N ∈ C ′ there exists
c̄∈ α(N )q such that XN = χ(α(N )r, c̄). We call c̄ the translation parameter(s).
If no translation parameters are needed, then q = 0.

Elwes proved a result regarding interpretability in N -dimensional asymp-
totic classes:

Proposition 2.4.3 (Lemma 3.7 in [21]). Let C and C ′ be classes of L- and
L′-structures respectively.

(i) If C ′ is parameter-interpretable in C and C is a full N-dimensional asymp-
totic class in L, then C ′ is a weak N ′-dimensional asymptotic class in L′

for some N ′.
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(ii) If C and C ′ are ∅-bi-interpretable and C is a full N-dimensional asymp-
totic class in L, then C ′ is a full N ′-dimensional asymptotic class in L′

for some N ′.

Remark 2.4.4. Elwes actually stated a slightly stronger version of Proposi-
tion 2.4.3(ii), assuming only ∅C′-bi-interpretability. However, it would seem
that both his proof and that of Proposition 2.4.6(ii) require the stronger hy-
pothesis of ∅-bi-interpretability. We will explain this point later on when it
arises in our proof.

We state and prove a version of Proposition 2.4.3 for R-macs and R-mecs:

Definition 2.4.5. Let R be a set of functions from a class C to R≥0. We define

Frac(R) :=

{
n∑

i=1

gi
hi

: gi, hi ∈R, n ∈ N+ and hi(M) ̸= 0 for all M∈ C

}
,

where we define (
n∑

i=1

gi
hi

)
(M) :=

n∑
i=1

gi(M)

hi(M)

for all M∈ C.

Proposition 2.4.6. Let C and C ′ be classes of L- and L′-structures respec-
tively.

(i) If C ′ is parameter-interpretable in C and C is a full R-mac (resp. -mec)
in L, then C ′ is a weak Frac(R)-mac (resp. -mec) in L′.

(ii) If C and C ′ are ∅-bi-interpretable and C is a full R-mac (resp. -mec) in
L, then C ′ is a full Frac(R)-mac (resp. -mec) in L′.

We prove parts (i) and (ii) separately, although the proof of the latter
builds on the proof of the former. We prove the result only for R-macs, but
the proof for R-mecs is just a simpler version of the proof for R-macs. Many of
the key ideas in the proof are due to Elwes, although our approach is slightly
more direct than that in [21]. We use the notation and terminology given in
Definitions 2.4.1 and 2.4.2 throughout.

Proof of Proposition 2.4.6(i). Let φ′(x1, . . . , xn; y1, . . . , ym) be an arbitrary L′-
formula, where the semicolon separates the object and parameter variables
(Remark 2.1.3(v)). We need to show that this formula satisfies the size clause.

We translate the L′-formula φ′ into an L-formula φ: As discussed in Defini-
tion 2.4.1 and Definition 2.4.2, each L′-symbol has a uniform L-translation. So
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we replace each L′-symbol in φ′ with its L-translation. We leave any boolean
connectives and adapt any quantifiers in accordance with the new variables;
for example, if a variable x in φ′ is in the scope of a quantifier ∀x and x

becomes x̄ in φ, then the quantifier ∀x becomes ∀x̄ in φ. The resulting L-
formula is φ(x̄1, . . . , x̄n, ȳ1, . . . , ȳm), where l(x̄i) = l(ȳi) = r, r being such that
XN ⊆ α(N )r (see Definition 2.4.2 for definitions of α and XN ).

Since the L-translation of each L′-symbol defines an E-invariant subset of
XN (Definition 2.4.1(v)), φ(α(N )r·n+r·m)⊆Xn+m

N is a union of E-equivalence
classes (recall footnote 2). So for all N ∈ C ′ and for all a1, . . . , am ∈N we have

f(φ′(N n, a1, . . . , am)) = φ(α(N )r·n, f̃(a1), . . . , f̃(am))/E, (2.8)

where f̃ is a choice function on the set {f(a) : a∈N}, i.e. f̃(a) is some arbitrary
element of the equivalence class f(a), and where

f(φ′(N n, a1, . . . , am)) := {(f(b1), . . . , f(bn)) :N |= φ′(b1, . . . , bn, a1, . . . , am)}.

Note that, under the assumption of ∅C′-bi-interpretability, the L-translation
might require translation parameters from the structures in C; that is, the L-
translation of φ′ might actually be of the form φ(x̄1, . . . , x̄n, ȳ1, . . . , ȳm, c̄N ),
where c̄N is a tuple of parameters from α(N ). However, by Lemma 2.2.6(ii)
we can extend L to include constant symbols for these translation parameters,
so we can ignore this issue (although it will come up again in the proof of
Proposition 2.4.6(ii)).

Our goal is to show that φ′(x1, . . . , xn; y1, . . . , ym) satisfies the size clause,
which means that we need to calculate the approximate size of φ′(N n, a1, . . . , am).
By (2.8) we have

|φ′(N n, a1, . . . , am)|= |φ(α(N )r·n, f(a1), . . . , f(am))/E|. (2.9)

It thus suffices to calculate the right-hand side of (2.9), which, as we shall see,
we can do because C is an R-mac.

Note that we may safely assume that α is surjective, i.e. that C = {α(N ) :

N ∈ C ′}, since {α(N ) : N ∈ C ′} is a subclass of C and thus is also an R-mac
by Remark 2.1.3(vii).

We now calculate the approximate size of φ(α(N )r·n, b̄1, . . . , b̄m)/E for vary-
ing α(N ) ∈ C and (b̄1, . . . , b̄m) ∈ α(N )r·m. For brevity we henceforth write
ȳ := (ȳ1, . . . , ȳm) and b̄ := (b̄1, . . . , b̄m). The equivalence classes in φ(α(N )r·n, b̄)
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are uniformly defined by the L-formula

φ̃(x̄1, . . . , x̄n; b̄, d̄1, . . . , d̄n) :≡ φ(x̄1, . . . , x̄n, b̄) ∧
∧

1≤i≤n

E(x̄i, d̄i)

for tuples (d̄1, . . . , d̄n) ∈ Xn
N varying between equivalence classes. Note that

the L-formula E(v̄1, v̄2) that defines the equivalence relation E on Xn
N may

require parameters from each α(N ) ∈ C, but we can subsume these into c̄N .
Since C is an R-mac, the formula φ̃(x̄1, . . . , x̄n; ȳ, v̄1, . . . , v̄n) gives rise to a

finite partition Γ1, . . . ,Γk of C(r ·m+ r ·n) = {(α(N ), b̄, d̄1, . . . , d̄n) :N ∈C ′, b̄∈
α(N )r·m, d̄i ∈ α(N )r} with measuring functions h1, . . . , hk ∈R and defining L-
formulas {θj(ȳ, v̄1, . . . , v̄n) : 1≤ j ≤ k}.

Note that since φ is E-invariant, it is safe to assume that the hj respect
the equivalence relation – i.e. that for every b̄ ∈ α(N )r·m, if (d̄1, . . . , d̄n) and
(d̄′1, . . . , d̄

′
n) lie in the same equivalence class, then (α(N ), b̄, d̄1, . . . , d̄n) and

(α(N ), b̄, d̄′1, . . . , d̄
′
n) belong to the same Γi – for if they do not, then we

can rearrange the partition so that they do, since φ̃(α(N )r·n, b̄, d̄1, . . . , d̄n) =

φ̃(α(N )r·n, b̄, d̄′1, . . . , d̄
′
n).

Let Yj(α(N ), b̄) denote the union of the equivalence classes in φ(α(N )r·n, b̄)

that take the function hj. By the assumption in the previous paragraph
Yj(α(N ), b̄) ∩ Yj′(α(N ), b̄) = ∅ for j ̸= j′. The set Yj(α(N ), b̄) is uniformly
defined by the L-formula

φ̃j(x̄1, . . . , x̄n; b̄) :≡ φ(x̄1, . . . , x̄n, b̄)∧ θj(b̄, x̄1, . . . , x̄n).

Since C is an R-mac, the formula φ̃j(x̄1, . . . , x̄n; ȳ) gives rise to a finite parti-
tion πj1, . . . , πjej of C(r ·m) = {(α(N ), b̄) :N ∈C ′, b̄∈α(N )r·m} with measuring
functions gj1, . . . , gjej ∈R. Again, we may assume that this partition respects
the equivalence relation, i.e. that if b̄ and b̄′ lie in the same equivalence class,
then (α(N ), b̄) and (α(N ), b̄′) lie in the same πji.

The idea now is to show that for (α(N ), b̄)∈ πji, |Yj(α(N ), b̄)/E| is approx-
imately equal to gji(α(N ))

hj(α(N ))
. This is to be expected, since gji(α(N )) is approxi-

mately equal to |Yj(α(N ), b̄)| and hj(α(N )) is approximately equal to the size
of each equivalence class in Yj(α(N ), b̄). See Figure 2.1:

For brevity we henceforth write d̄ := (d̄1, . . . , d̄n). Let EN be a choice of
one d̄ ∈ Xn

N from each equivalence class in Xn
N ; that is, Xn

N/E = {d̄/E : d̄ ∈
EN} and |Xn

N/E| = |EN |. (We do not claim that EN is L-definable.) Then,
defining Nj(b̄) := EN ∩ θj(b̄, α(N )r·n), for every (α(N ), b̄) ∈ C(r ·m) and for
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Chapter 2 Multidimensional asymptotic classes

A1 A2 B1 B2 B3

Figure 2.1: Suppose that φ(α(N )r·n, b̄) = A1 ∪A2 ∪B1 ∪B2 ∪B3 for some
(α(N ), b̄) ∈ π1i ∩ π2i′ , where each A is an equivalence class of approxi-
mate size h1(α(N )) and each B is an equivalence class of approximate size
h2(α(N )). Then Y1(α(N ), b̄) = A1 ∪ A2 has approximate size g1i(α(N ))

and Y2(α(N ), b̄) = B1 ∪ B2 ∪ B3 has approximate size g2i′(α(N )). Thus
|Y1(α(N ), b̄)/E|, which is precisely equal to 2, is approximately equal to
g1i(α(N ))
h1(α(N ))

. Likewise |Y2(α(N ), b̄)/E|, which is precisely equal to 3, is approxi-

mately equal to g2i′ (α(N ))

h2(α(N ))
.

each j ∈ {1, . . . , k} we have

Yj(α(N ), b̄) =
⋃

d̄∈Nj(b̄)

φ̃(α(N )r·n, b̄, d̄), (2.10)

where the union is disjoint because equivalence classes are disjoint.
Consider some arbitrary j ∈ {1, . . . , k} and i ∈ {1, . . . , ej}. By the defini-

tions of Γj and hj we have∣∣∣|φ̃(α(N )r·n, b̄, d̄)| −hj(α(N ))
∣∣∣= o(hj(α(N ))) (2.11)

for all (α(N ), b̄, d̄) ∈ Γj as |α(N )| → ∞. By the definitions of πji and gji we
have ∣∣∣|Yj(α(N ), b̄)| − gji(α(N ))

∣∣∣= o(gji(α(N ))) (2.12)

for all (α(N ), b̄) ∈ πji as |α(N )| →∞.
Let ε > 0. Recall the ε–Q definition of the little-o notation (see the end of

Definition 2.1.2). Let Q1 ∈N be such that (2.11) holds for ε
2

and let Q2 ∈N be
such that (2.12) holds for ε

2
. Set Q := max{Q1, Q2} and t := |Yj(α(N ), b̄)/E|.

Notice that t= |Nj(b̄)|. Bear in mind that t depends on α(N ), b̄ and j.
Let (α(N ), b̄) ∈ πji be such that |α(N )| > Q. (If πji is bounded, then we
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have (2.18) by Remark 2.1.3(iv).) Then∣∣∣|Yj(α(N ), b̄)| − thj(α(N ))
∣∣∣

=

∣∣∣∣∣∣
∑

d̄∈Nj(b̄)

|φ̃(α(N )r·n, b̄, d̄)| − thj(α(N ))

∣∣∣∣∣∣ (by (2.10))

=

∣∣∣∣∣∣
∑

d̄∈Nj(b̄)

[
|φ̃(α(N )r·n, b̄, d̄)| −hj(α(N ))

]∣∣∣∣∣∣ (since t= |Nj(b̄)|)

≤
∑

d̄∈Nj(b̄)

∣∣∣|φ̃(α(N )r·n, b̄, d̄)| −hj(α(N ))
∣∣∣ (triangle inequality)

≤ ε

2
hj(α(N ))+ · · ·+ ε

2
hj(α(N ))︸ ︷︷ ︸

t times

=
tε

2
hj(α(N )),

where the penultimate step follows by applying (2.11) to Q and ε
2

for each
d̄ ∈Nj(b̄), which we can do because (α(N ), b̄, d̄) ∈ Γj if d̄ ∈Nj(b̄). Thus

−tε
2
hj(α(N ))≤ |Yj(α(N ), b̄)| − thj(α(N ))≤ tε

2
hj(α(N )),

which is equivalent to

− tε

2
hj(α(N ))≤ thj(α(N ))− |Yj(α(N ), b̄)| ≤ tε

2
hj(α(N )). (2.13)

Now, since (α(N ), b̄)∈ πji and |α(N )|>Q, we may also apply (2.12) to Q and
ε
2
, yielding

− ε

2
gji(α(N ))≤ |Yj(α(N ), b̄)| − gji(α(N ))≤ ε

2
gji(α(N )). (2.14)

Adding (2.13) and (2.14) gives

−ε
2
gji(α(N ))− tε

2
hj(α(N ))≤ thj(α(N ))− gji(α(N ))

≤ ε

2
gji(α(N ))+

tε

2
hj(α(N )).

Therefore

−εmax{gji(α(N )), thj(α(N ))} ≤ thj(α(N ))− gji(α(N ))

≤ εmax{gji(α(N )), thj(α(N ))}
(2.15)
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for all (α(N ), b̄) ∈ πji such that |α(N )|>Q. There are two cases:
Case 1: hj(α(N ))≤ gji(α(N )). Then (2.15) becomes

−εgji(α(N ))≤ thj(α(N ))− gji(α(N ))≤ εgji(α(N )),

which, after rearrangement and applying the identity t = |Yj(α(N ), b̄)/E|, is
equivalent to ∣∣∣∣|Yj(α(N ), b̄)/E| − gji(α(N ))

hj(α(N ))

∣∣∣∣≤ ε
gji(α(N ))

hj(α(N ))
.

Therefore, defining gji
hj
(α(N )) :=

gji(α(N ))

hj(α(N ))
, we have

∣∣∣∣|Yj(α(N ), b̄)/E| − gji
hj

(α(N ))

∣∣∣∣= o

(
gji
hj

(α(N ))

)
(2.16)

for all (α(N ), b̄)∈ πg
ji := {(α(N ), b̄)∈ πji : hj(α(N ))≤ gji(α(N ))} as |α(N )| →

∞.
Case 2: gji(α(N ))< thj(α(N )). Then (2.15) becomes

−εthj(α(N ))≤ thj(α(N ))− gji(α(N ))≤ εthj(α(N )),

which, after rearrangement and applying the identity t = |Yj(α(N ), b̄)/E|, is
equivalent to ∣∣∣∣|Yj(α(N ), b̄)/E| − gji(α(N ))

hj(α(N ))

∣∣∣∣≤ ε|Yj(α(N ), b̄)/E|.

Therefore ∣∣∣∣|Yj(α(N ), b̄)/E| − gji
hj

(α(N ))

∣∣∣∣= o
(
|Yj(α(N ), b̄)/E|

)
for all (α(N ), b̄)∈ πh

ji := {(α(N ), b̄)∈ πji : gji(α(N ))< thj(α(N ))} as |α(N )|→
∞. Thus by little-o exchange (Appendix A) we have∣∣∣∣|Yj(α(N ), b̄)/E| − gji

hj
(α(N ))

∣∣∣∣= o

(
gji
hj

(α(N ))

)
(2.17)

for all (α(N ), b̄) ∈ πh
ji as |α(N )| →∞.
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Since πji = πg
ji ∪ πh

ji, (2.16) and (2.17) together imply that∣∣∣∣|Yj(α(N ), b̄)/E| − gji
hj

(α(N ))

∣∣∣∣= o

(
gji
hj

(α(N ))

)
(2.18)

for all (α(N ), b̄) ∈ πji as |α(N )| →∞, which is what we wanted.
Before we move on, we need to deal with the case hj(α(N )) = 0, as we

can’t divide by zero. Since functions in R are eventually positive-definite
(Lemma 2.2.5), by taking a larger Q if necessary we may assume that hj is
positive-definite for all α(N ) with |α(N )| > Q. So for the case hj(α(N )) = 0

we define gji
hj

:= 0. Then (2.18) still holds, since for |α(N )| > Q we have that
hj(α(N )) = 0 implies |Yj(α(N ), b̄)/E| = 0. Defining gji

hj
selectively like this is

slightly out of kilter with the definition of Frac(R) (Definition 2.4.5), but not
in a serious way. Since gji is also eventually positive-definite, for large enough
α(N ) we have that hj(α(N )) = 0 implies gji(α(N )) = 0, and so defining gji

hj

in this way really just amounts to setting a convention within Frac(R) that
0
0
:= 0.

We now need to accomplish our task of calculating the approximate size
of φ(α(N )r·n, b̄1, . . . , b̄m)/E. For each j ∈ {1, . . . , k} we have a finite partition
Φj := {πji : 1 ≤ i ≤ ej} of C(r ·m). We use these k partitions to construct a
single finite partition Φ of C(r ·m). Define

π(i1,...,ik) :=
k⋂

j=1

πjij and I := {(i1, . . . , ik) : 1≤ ij ≤ ej, 1≤ j ≤ q}.

Then Φ := {π(i1,...,ik) : (i1, . . . , ik) ∈ I} forms a finite partition of C(r ·m). We
now need to show that this partition works.

We have

φ(α(N )r·n, b̄) =
k⋃

j=1

Yj(α(N ), b̄).

Since each Yj(α(N ), b̄) is a union of E-equivalence classes and is disjoint from
the other Yj′(α(N ), b̄), we thus have the following partition of φ(α(N )r·n, b̄)/E:

φ(α(N )r·n, b̄)/E =
k⋃

j=1

(
Yj(α(N ), b̄)/E

)
.

Hence

|φ(α(N )r·n, b̄)/E|=
k∑

j=1

∣∣Yj(α(N ), b̄)/E
∣∣ . (2.19)
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Let ε> 0 and consider some arbitrary (i1, . . . , ik)∈ I. For each j ∈{1, . . . , k}
let Q(j) ∈ N+ be such that (2.18) holds for ε

k
, where we take gji := gjij .

Set Q′ := max{Q(j) : 1 ≤ j ≤ k}. Then for every (α(N ), ā) ∈ π(i1,...,ik) with
|M |>Q′,∣∣∣∣∣|φ(α(N )r·n, b̄)/E| −

k∑
j=1

gjij
hj

(α(N ))

∣∣∣∣∣
=

∣∣∣∣∣
k∑

j=1

∣∣Yj(α(N ), b̄)/E
∣∣− k∑

j=1

gjij
hj

(α(N ))

∣∣∣∣∣ (by (2.19))

≤
k∑

j=1

∣∣∣∣|Yj(α(N ), b̄)/E| −
gjij
hj

(α(N ))

∣∣∣∣ (triangle inequality)

≤
k∑

j=1

ε

k

gjij
hj

(α(N ))

= ε
k∑

j=1

gjij
hj

(α(N )),

where the penultimate step follows by applying (2.18) to Q′ and ε
k

for each
j ∈ {1, . . . , k}, which we can do because (α(N ), b̄) ∈ π(i1,...,ik) ⊆ πjij . Therefore∣∣∣∣∣|φ(α(N )r·n, b̄)/E| −

k∑
j=1

gjij
hj

(α(N ))

∣∣∣∣∣= o

(
k∑

j=1

gjij
hj

(α(N ))

)
(2.20)

for all (α(N ), b̄) ∈ π(i1,...,ik) as |α(N )| →∞.
We now pull everything back to C ′. We define

π′
(i1,...,ik)

:= {(N , a1, . . . , am) ∈ C ′(m) : (α(N ), f̃(a1), . . . , f̃(am)) ∈ π(i1,...,ik)}.

Then Φ′ := {π′
(i1,...,ik)

: (i1, . . . , ik) ∈ I} is a finite partition of C ′(m). Note that
by our earlier assumption that each πji respects the equivalence relation, the
set π′

(i1,...,ik)
does not depend on the choice function f̃ . We also define

gji
hj

(N ) :=
gji
hj

(α(N ))

for N ∈ C ′. Then (2.9) and (2.20) together imply that for every (i1, . . . , ik)∈ I,∣∣∣∣∣|φ′(N n, a1, . . . , am)| −
k∑

j=1

gjij
hj

(N )

∣∣∣∣∣= o

(
k∑

j=1

gjij
hj

(N )

)
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for all (N , a1, . . . , am)∈ π′
(i1,...,ik)

as |N |→∞. So C ′ is a weak Frac(R)-mac.

We now come to the second part of the result. We recall the statement:

Proposition 2.4.6(ii). Let C and C ′ be classes of L- and L′-structures respec-
tively. If C and C ′ are ∅-bi-interpretable and C is a full R-mac (resp. -mec) in
L, then C ′ is a full Frac(R)-mac (resp. -mec) in L′.

Proof. Following on from the proof of Proposition 2.4.6(i), we now need to
show that the partition Φ′ of C ′(m) is definable. So consider some arbitrary
π′
(i1,...,ik)

∈Φ′. Since C is a full R-mac, each πji is definable and hence the inter-
section π(i1,...,ik) is also definable. Thus the partition Φ of C(r ·m) is definable;
let {ψπ(i1,...,ik)

(ȳ) : π(i1,...,ik) ∈ Φ} be the defining L-formulas. Note that this is
where Remark 2.4.4 becomes apparent: In the proof of Proposition 2.4.6(i)
we could ignore the translation parameters by applying Lemma 2.2.6(ii). We
cannot do that here though, since expanding C by constant symbols might
stop it from being ∅-interpretable in C ′. Thus, in order to guarantee that
each ψπ(i1,...,ik)

(ȳ) is parameter-free, it seems that we need to assume that no
translation parameters are required in the interpretation of C in C ′.

For brevity we henceforth write π and π′ for π(i1,...,ik) and π′
(i1,...,ik)

respec-
tively, since the subscript (i1, . . . , ik) is no longer relevant.

For all (N , ā) ∈ C ′(m) we have

(N , ā) ∈ π′ ⇐⇒ (α(N ), f̃(ā)) ∈ π (by the definition of π′)

⇐⇒ α(N ) |= ψπ(f̃(ā)) (since ψπ defines π)

⇐⇒ α(N )∗ |= ψπ(gf̃(ā)) (since g is an isomorphism).

(2.21)

Since α(N )∗ is the ∅-interpretation of α(N ) in N , we can find a parameter-free
L′-translation ψ′

π(ȳ
′) of ψπ(ȳ) such that

α(N )∗ |= ψπ(gf̃(ā)) ⇐⇒ N |= ψ′
π(g̃f̃(ā)), (2.22)

where g̃ is a choice function for g in the same way that f̃ is a choice function
for f . Since the isomorphism g∗f : N →N ∗∗ is uniformly ∅-definable across
C ′, we can find a parameter-free L′-formula ψ′′

π(y1, . . . , ym) such that

N |= ψ′
π(g̃f̃(ā)) ⇐⇒ N |= ψ′′

π(ā). (2.23)
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Together (2.21), (2.22) and (2.23) yield

(N , ā) ∈ π′ ⇐⇒ N |= ψ′′
π(ā).

So π′ is definable, as required.

Remark 2.4.7. We consider potential strengthenings of Proposition 2.4.6:

(i) If for every N ∈ C ′ the size of the equivalence classes in XN is constant,
then in Proposition 2.4.6(i) it suffices to assume that C is only a weak
R-mac (resp. -mec). Note that Lemma 3.2 in [21] is effectively this result
for the case where each equivalence class is a singleton.

Sketch proof. Let |EN | be the size of each equivalence class in XN . We
may then rewrite (2.9) as

|φ′(N n, a1, . . . , am)|= |φ(α(N )r·n, f(a1), . . . , f(am))|/|EN |.

So if hπ is the measuring function for φ(α(N )r·n, f(a1), . . . , f(am)), then
hπ/|EN | is the measuring function for φ′(N n, a1, . . . , am).

However, in general the hypothesis of Proposition 2.4.6(i) cannot be
weakened in this way, as shown by Example 2.4.8.

(ii) One cannot strengthen the conclusion of Proposition 2.4.6(i) to C ′ being
a full Frac(R)-mac (resp. -mec), even if C ′ is ∅-interpretable in C, as
shown by Example 2.4.9.

(iii) The hypothesis of Proposition 2.4.6(ii) can be weakened, since its proof
does not require the isomorphism f ∗g : M→M∗∗ to be definable (with
or without parameters). The surjectivity of α is also not essential.

(iv) We cannot weaken the hypothesis of ∅-bi-interpretability in Proposi-
tion 2.4.6(ii) to only ∅C-bi-interpretability, as shown by Example 2.4.9.
Note that Example 2.4.9 concerns only translation parameters, not pa-
rameters defining the isomorphism g∗f : N → N ∗∗. I strongly suspect
that it is also the case that one cannot weaken the hypothesis by allow-
ing parameters in the L′-definition of g∗f , but I do not have an explicit
counterexample.
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Example 2.4.8. We justify Remark 2.4.7(i).
Let L := {E,P}, where E and P are both binary relation symbols. We

define an L-structure Mn as follows: The assignments of E and P in Mn are
both equivalence relations. We first partition Mn into n P -equivalence classes,
which we denote by P1(Mn), . . . , Pn(Mn). We then partition each Pi(Mn) into
2(n− i) E-equivalence classes of size n and i E-equivalence classes of size 2n.
So |Pi(Mn)|= 2(n− i)n+ i · 2n= 2n2 for each i. Let C := {Mn : n ∈ N+}.

One can show that C has eventual quantifier elimination; that is, if φ is
an L-formula, then there exist Q ∈ N and a quantifier-free L-formula χ such
that if n > Q, then φ is equivalent to χ in Mn. Using this, one can then
show that C is a weak R0-mec in L, where R0 is generated under addition and
multiplication by the functions Mn 7→ n and Mn 7→ k for each k ∈ N. It is in
fact a strictly weak R0-mec because L cannot uniformly distinguish between
the different E- and P -equivalence classes.

Let C ′ := {Mn/E :Mn ∈ C}, considered as structures in the language L′ :=

{P}. Then C ′ is ∅-interpretable in C. However, C ′ is not a weak R-mac in L′

for any R, since |Pi(Mn)/E| = 2n− i and so we can define arbitrarily many
subsets of different sizes by letting n increase and i vary. We can make this
rigorous by adapting the argument given in Non-Example 2.3.9. So C is a
strictly weak R0-mac that interprets a class C ′ that is not a weak R-mac for
any R, as required.

Note that this example also applies to Proposition 2.4.3(i), since C is also
a strictly weak 1-dimensional asymptotic class.

Example 2.4.9. We justify Remark 2.4.7(ii) and Remark 2.4.7(iv).
Let L′ = {I}, where I is a binary relation symbol, and let C ′ be the class

of all finite L′-structures such that each N ∈ C ′ consists of exactly two I-
equivalence classes, one of size n and the other of size 2n. So each N ∈ C ′

has size 3n for some n ∈N+. Using eventual quantifier elimination (see Exam-
ple 2.4.8), one can show that C ′ is a weak R-mec in L′, where R is generated
under addition and multiplication by the functions N 7→ 1

3
|N | and N 7→ k for

each k ∈ N. It is in fact a strictly weak R-mec because L′ cannot uniformly
distinguish between the two equivalence classes without employing parameters.
Notice that C ′ is also a strictly weak Frac(R)-mec by Remark 2.1.3(vii), since
R contains the function N 7→ 1 and so R⊆ Frac(R).

Now consider the language L= {I, c}, where I is a binary relation symbol
and c is a constant symbol. Let C be the same as C ′, except that c is assigned
as a member of the smaller I-equivalence class in each M ∈ C. Since C ′ is a
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weak R-mec, C is a weak R-mec by Lemma 2.2.6(i). Furthermore, C is a full
R-mec, since the constant symbol allows L to uniformly distinguish between
the two equivalence classes.

We now come to the main point: C and C ′ are ∅C-bi-interpretable, since
C is interpretable in C ′ with parameters and C ′ is interpretable in C without
parameters. Using the notation from Definition 2.4.1, the isomorphisms f , g,
g∗f , etc. are simply identity maps and thus are ∅-definable. However, while
C is a full R-mec, C ′ is a strictly weak Frac(R)-mec. So Remark 2.4.7(ii) and
Remark 2.4.7(iv) are both justified.

Note that this example also applies to Proposition 2.4.3(ii), since C ′ and C
are also strictly weak and full 1-dimensional asymptotic classes respectively.
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Chapter 3

Smooth approximation and exact
classes

Smoothly approximable structures are ℵ0-categorical structures which can be
well approximated by finite structures.

Cherlin & Hrushovski, p. 2 of [18]

The goal of this chapter is to prove Proposition 3.2.1, which states that finite
structures smoothly approximating an ℵ0-categorical structure form a multidi-
mensional exact class (Definition 2.1.4). In §3.1 we define the notion of smooth
approximation and then provide some examples. In § 3.2 we state and prove
the result.

For the next two chapters we make extensive use of the Ryll-Nardzewski
Theorem (Appendix B), so we consider only countable languages.

3.1 Smooth approximation

The notion of smooth approximation was introduced by Lachlan in the 1980s,
arising as a generalisation of ℵ0-categorical, ℵ0-stable structures [17], in partic-
ular Corollary 7.4 of that paper. [13], [40], [44], [45] and [46] are also relevant,
but the key texts on smooth approximation itself are [35] by Kantor, Liebeck
and Macpherson and [18] by Cherlin and Hrushovski. A history of the de-
velopment of the notion is to be found in § 1.1 of [18] and there is a survey
article [48], which also contains improvements and errata to [35]. Smooth ap-
proximation also arises in the context of asymptotic classes in [20], [21], [50]
and [51].

41



Chapter 3 Smooth approximation and exact classes

Recall that for L-structures M and N we use the notation N ≤ M to
mean that N is an L-substructure of M.

Definition 3.1.1 (Homogenous substructure). Let M and N be L-structures.
N is a homogeneous substructure 1 of M, notationally N ≤hom M, if N ≤M
and for every k ∈N+ and every pair ā, b̄∈Nk, ā and b̄ lie in the same Aut(M)-
orbit if and only if ā and b̄ lie in the same Aut{N}(M)-orbit, where

Aut{N}(M) := {σ ∈ Aut(M) : σ(N) =N}.

Definition 3.1.2 (Smooth approximation). An L-structure M is smoothly
approximable if M is ℵ0-categorical and there exists a sequence (Mi)i<ω of
finite homogeneous substructures of M such that Mi ⊂Mi+1 for all i < ω and⋃

i<ωMi =M . We say that M is smoothly approximated by the Mi.

We provide some examples of smoothly approximable structures, starting
with a trivial example:

Example 3.1.3. Let M be a countably infinite set in the language of equality.
Enumerate M as (ai : i < ω) and let Mi = {a0, . . . , ai}. Then each Mi is a
finite homogeneous substructure of M and M=

⋃
i<ω Mi.

Example 3.1.4. Consider a language L := {I1, I2}, where I1 and I2 are binary
relation symbols. Let M be a countable L-structure where IM1 and IM2 are
equivalence relations such that IM1 has infinitely many classes, IM2 refines IM1 ,
every I1-equivalence class contains infinitely many I2-equivalence classes, and
every I2-equivalence class is infinite; that is, M is partitioned into infinitely
many I1-equivalence classes, each of which is then partitioned into infinitely
many I2-equivalence classes, each of which is infinite. Note that M is unique
up to isomorphism and hence ℵ0-categorical, since the structure is first-order
expressible in L.

Enumerate the I1-equivalence classes as (ai : i < ω) and the I2-equivalence
classes within each ai as (aij : j < ω). Finally, enumerate the elements of each
aij as (aijk : k < ω). Let M(r,s,t) := {aijk : i≤ r, j ≤ s, k≤ t}. Then each M(r,s,t)

is a finite homogeneous substructure of M and M=
⋃

r<ω M(r,r,r).
Note that this example straightforwardly generalises to the case of n nested

equivalence relations for any n < ω.
1 ‘Homogeneous substructure’ is defined as one term, not as the conjunction of two words;

that is, ‘homogeneous substructure’ does not mean a substructure that is homogeneous.
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3.2 Smooth approximation is exact

Example 3.1.5. Let M be the direct sum of ω-many copies of the additive
group Z/p2Z, where p is some fixed prime. Note that M is ℵ0-categorical,
which can be seen via Szmielew invariants (see Appendix A.2 in [31]). Let Mi

consist of the first i copies of Z/p2Z. Then each Mi is a finite homogeneous
substructure of M and M=

⋃
i<ω Mi.

3.2 Smooth approximation is exact

We now state and prove Proposition 3.2.1, leaving some necessary technical
lemmas until after the main proof.

Proposition 3.2.1. Let M be an L-structure smoothly approximated by finite
homogeneous substructures (Mi)i<ω. Then there exists R such that C := {Mi :

i < ω} is an R-mec in L.

Proof. Let φ(x̄, ȳ) be an L-formula with n := l(x̄) and m := l(ȳ).
We first cover the size clause. We use the Ryll-Nardzewski Theorem (Ap-

pendix B): Since M is ℵ0-categorical, Aut(M) acts oligomorphically on M
and thus Mm has only finitely many Aut(M)-orbits, say Θ1, . . . ,Θk. We use
these orbits to define a finite partition π1, . . . , πk of C(m) = {(Mi, ā) : i < ω, ā∈
Mi

m}:
(Mi, ā) ∈ πj :⇐⇒ ā ∈Θj.

Define πMi
j := {ā ∈Mi

m : (Mi, ā) ∈ πj} and let ā, b̄ ∈Mi
m. Then

ā, b̄ ∈ πMi
j ⇐⇒ ā, b̄ ∈Θj

=⇒ ā and b̄ lie in the same Aut{Mi}(M)-orbit

(since Mi ≤hom M)

=⇒ |φ(Mi
n, ā)|= |φ(Mi

n, b̄)|.

(3.1)

We justify the last implication: Since ā and b̄ lie in the same Aut{Mi}(M)-
orbit, there is some σ ∈ Aut{Mi}(M) such that σ(ā) = b̄. But σ ↾ Mi is an
automorphism of Mi (Lemma 3.2.2) and thus Mi |= φ(c̄, ā) if and only if
Mi |= φ(σ(c̄), σ(ā)). Therefore σ : φ(Mi

n, ā) → φ(Mi
n, b̄) is a bijection and

hence |φ(Mi
n, ā)|= |φ(Mi

n, b̄)|.
Define hj(Mi) := |φ(Mi

n, ā)|, where ā is some arbitrary element of πMi
j

(if no such ā exists, then the value of hj at Mi can be chosen to be anything,
say 0); this function is well-defined by (3.1). Then π1, . . . , πk and h1, . . . , hk

satisfy the size clause.
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Chapter 3 Smooth approximation and exact classes

We now come to the definability clause. We use the Ryll-Nardzewski The-
orem again: Each orbit Θj is the solution set of an isolated m-type and so the
L-formula isolating this type defines Θj in M; let ψj(ȳ) be the isolating for-
mula for Θj. So M |= ψj(ā) if and only f ā ∈Θj. We claim that the following
is eventually true, i.e. there exists Q ∈ N such that for each ψj, if i > Q, then

Mi |= ψj(ā) ⇐⇒ ā ∈ πMi
j (3.2)

for every ā ∈ Mi
m. By Lemma 2.2.7 this suffices to prove the definability

clause.
We prove this claim: Apply Lemma 3.2.7 to ψj to obtain Qj ∈N such that

if i > Qj and ā ∈Mi
m, then

M |= ψj(ā) ⇐⇒ Mi |= ψj(ā). (3.3)

Let Q := max{Qj : 1≤ j ≤ k}. Consider ā ∈Mi
m with i > Q. Then

Mi |= ψj(ā)
(3.3)
⇐⇒ M |= ψj(ā) ⇐⇒ ā ∈Θj ⇐⇒ ā ∈ πMi

j

and so (3.2) holds.

Lemma 3.2.2. Let M be an L-structure and let N ≤M. If σ ∈Aut{N}(M),
then σ ↾N ∈ Aut(N ), where σ ↾N is the restriction of σ to N .

Proof. This follows from the definitions of a substructure and of an isomor-
phism.

Definition 3.2.3 and Lemmas 3.2.4 to 3.2.7 are all in the context of Propo-
sition 3.2.1.

Definition 3.2.3 (Canonical language). We define the canonical language 2 of
M to be

L∗ := L∪{PΘ : Θ is a Aut(M)-orbit of M},

where each PΘ is a new unary predicate symbol. We expand M to an L∗-
structure M∗ by defining the assignment of each PΘ in M∗ to be Θ. We
expand each Mi to an L∗-structure Mi

∗ by defining the assignment of each
PΘ to be Θ∩Mi.

Lemma 3.2.4. Aut(M) = Aut(M∗).
2 Note that the term canonical language is sometimes used to refer to the smaller lan-

guage L∗ \L. We avoid this usage.
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3.2 Smooth approximation is exact

Proof. Since L⊆L∗, Aut(M∗)⊆Aut(M). It remains to show that Aut(M)⊆
Aut(M∗). So consider some σ ∈Aut(M). Suppose that M∗ |= PΘ(a) for some
a ∈M . Then a ∈ Θ and thus σ(a) ∈ Θ, since Θ is an Aut(M)-orbit. Hence
M∗ |= PΘ(σ(a)) and so σ ∈ Aut(M∗).

Lemma 3.2.5. Th(M∗) has quantifier elimination; in particular, any L∗-
formula is equivalent in Th(M∗) to a quantifier-free (L∗ \L)-formula.

Proof. Consider an L∗-formula χ(ȳ) with m := l(ȳ). By the Ryll-Nardzewski
Theorem, Mm has only finitely many Aut(M)-orbits, say Θ1, . . . ,Θk. By
Lemma 3.2.4, these are also the Aut(M∗)-orbits of (M∗)m. Now, if M∗ |=χ(ā)

and b̄ lies in the same Aut(M∗)-orbit as ā, then M∗ |= χ(b̄). So χ((M∗)m)∩
Θi = Θi or χ((M∗)m) ∩Θi = ∅ and hence χ((M∗)m) must be the union of
some of the Θi, say

χ((M∗)m) = Θi1 ∪ · · · ∪Θir .

(We could have χ((M∗)m) = ∅, in which case χ(ȳ) would be equivalent in
Th(M∗) to the quantifier-free (L∗ \L)-formula

∧
1≤i≤k ¬PΘi

(ȳ).) Therefore

M∗ |= ∀ȳ

(
χ(ȳ)↔

∨
1≤j≤r

PΘij
(ȳ)

)
.

But
∨

1≤j≤r PΘij
(ȳ) is a quantifier-free (L∗ \L)-formula, as required.

Lemma 3.2.6. M∗ is smoothly approximated by (Mi
∗)i<ω.

Proof. Since M is ℵ0-categorical, by Lemma 3.2.4 and the Ryll-Nardzewski
Theorem, M∗ is also ℵ0-categorical. Also note that each Mi

∗ is a finite L∗-
substructure of M∗. It remains to show that Mi

∗ ≤hom M∗. If ā, b̄ ∈ Mi
∗

lie in the same Aut(M∗){Mi}-orbit, then ā and b̄ lie in the same Aut(M∗)-
orbit, since Aut(M∗){Mi} ⊆Aut(M∗). Now suppose that ā, b̄ ∈Mi

∗ lie in the
same Aut(M∗)-orbit. By Lemma 3.2.4, ā and b̄ lie in the same Aut(M)-orbit.
Thus, since Mi ≤hom M, there exists σ ∈ Aut(M){Mi} such that σ(ā) = b̄.
But σ ∈ Aut(M∗){Mi}, again by Lemma 3.2.4, and so ā and b̄ lie in the same
Aut(M∗){Mi}-orbit.

Lemma 3.2.7. Let χ(ȳ) be an L-formula with m := l(ȳ). Then there exists
Q ∈ N such that if i > Q and c̄ ∈Mi

m, then

M |= χ(c̄) ⇐⇒ Mi |= χ(c̄).
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Proof. Consider M∗. By Lemma 3.2.5, T := Th(M∗) has quantifier elimina-
tion and thus there is a quantifier-free L∗-formula δ(ȳ) such that ∀ȳ (χ(ȳ)↔
δ(ȳ)) ∈ T . Thus by compactness there is an L∗-sentence τ ∈ T such that

τ |= ∀ȳ (χ(ȳ)↔ δ(ȳ)). (3.4)

By Lemma 3.2.6 and the ∀∃-axiomatisation of T (see the proof of Proposition
5.4 in [35]), there exists Q ∈N such that Mi

∗ |= τ for all i > Q. Now, consider
some arbitrary c̄ ∈Mi

m with i > Q. Since δ is quantifier-free and Mi
∗ ≤M∗,

M∗ |= δ(c̄) ⇐⇒ Mi
∗ |= δ(c̄).

Hence by (3.4) we have

M∗ |= χ(c̄) ⇐⇒ Mi
∗ |= χ(c̄)

because M∗ |= τ and Mi
∗ |= τ . But χ is an L-formula and thus

M |= χ(c̄) ⇐⇒ Mi |= χ(c̄),

as required.
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Chapter 4

Lie coordinatisation

This proof is like the Hydra – every time I think I’ve understood something,
a whole bunch of new questions pop up!

A perplexed PhD student . . .

The goal of this chapter is to use Lie coordinatisation to prove Theorem 4.6.4,
as conjectured by Macpherson. As such, our account of Lie coordinatisation is
streamlined for this purpose and we leave some important notions from [18] by
the wayside, most notably orientation and orthogonality. That being said, we
make explicit a number of details that are only implicit in [18], especially in
our proofs of Theorem 4.4.1 and Proposition 4.5.3. Our presentation is based
primarily on [18], with input from [19]; the reader may find it helpful to have
these texts to hand, especially the former.

The history of Lie coordinatisation is complex and we give only a very brief
summary; see § 1 of [15] and §§ 1.1–1.2 of [18] for a more detailed picture. The
notion was developed by Cherlin and Hrushovski as (inter alia) an attempt
to find a structure theory for smoothly approximable structures, building on
the work of Kantor, Liebeck and Macpherson in [35]. Deep links between
other model-theoretic notions were discovered through their investigation (§ 1.2
of [18]). In particular, it was shown that Lie coordinatisability and smooth
approximation are equivalent (Theorem 2 in [18]). Note that the classification
of finite simple groups plays a fundamental role, albeit in the background.

In contrast to its mathematical depth, Lie coordinatisation has made only
a shallow footprint in the literature, in part due to the development of simple
theories (see pp. 8–10 of [18]). The first publication on the topic was the

. . . for whom Goodstein’s theorem was of little consolation.
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paper [32] by Hrushovski, in joint work with Cherlin. Some technical issues
were found in this paper (see p. 7 of [18]) and corrected results were published
in [15], which is essentially an abridgement of the main text [18]. The paper
[19] by Chowdhury, Hart and Sokolović makes significant contributions and
Hrushovski has published some further work on quasifiniteness in [34]. There
are also some unpublished notes [29] by Hill and Smart. Lie coordinatisation
arises in the context of asymptotic classes in [20], [21], [50] and [51].

We now outline the structure of this chapter. In § 4.1 we go over the basic
concepts of Lie coordinatisation and in § 4.2 we provide two examples of Lie
coordinatisable structures. § 4.3 develops the notion of an envelope, which
is fundamental to the rest of the chapter. We then move on to § 4.4, where
we state and sketch a proof of a result (Theorem 4.4.1) that allows us to
apply Proposition 3.2.1 to obtain a short version of Macpherson’s conjecture
(Corollary 4.4.2). § 4.5 then provides us with the extra information needed to
prove the full version of the conjecture in § 4.6.

4.1 Lie geometries and Lie coordinatisation

In this section we state the definition of Lie coordinatisation. We need to go
over a number of preliminaries first, starting with Lie geometries. We refer the
reader to chapter 7 of [3] for the terminology and theory of vector spaces with
forms.

Definition 4.1.1 (Linear Lie geometry). Let K be a finite field. A linear Lie
geometry over K is one of the following six kinds 1 of structures:

1. A degenerate space. An infinite set in the language of equality.

2. A pure vector space. An infinite-dimensional vector space V over K.

3. A polar space. Two infinite-dimensional vector spaces V and W over K
with a non-degenerate bilinear form V ×W →K.

4. A symplectic space. An infinite-dimensional vector space V over K with
a symplectic bilinear form V ×V →K.

5. A unitary space. An infinite-dimensional vector space V over K with a
unitary sesquilinear form V ×V →K.

1 We use the word ‘kind’ in order to avoid overuse of the word ‘type’.
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4.1 Lie geometries and Lie coordinatisation

6. An orthogonal space. An infinite-dimensional vector space V over K
with a quadratic form V → K whose associated bilinear form is non-
degenerate.

Remark 4.1.2. We comment on Definition 4.1.1.

(i) We consider linear Lie geometries as two-sorted structures (V,K), with
a sort V in the language of groups with an abelian group structure, a
sort K in the language of rings with a field structure, and a function
K × V → V for scalar multiplication. We call V the vector sort and K

the field sort. (See pp. 5 and 12 of [58] for a summary of multi-sorted
structures and languages.) The elements of K are named by constant
symbols.2 In the polar case, the vector sort is V ∪W in the language of
groups equipped with an equivalence relation with precisely two classes
V and W , each with an abelian group structure.

(ii) We have ignored quadratic Lie geometries (Definition 2.1.4 in [18]), as
we do not need to consider them, save only to rule them out in the proof
of Proposition 4.5.3. They arise from the fact that in characteristic 2
every symplectic bilinear form has many associated quadratic forms.

Fact 4.1.3. Every linear Lie geometry has quantifier elimination and is ℵ0-
categorical.

Proof. Lemmas 2.2.8 and 2.3.19 in [18].

Definition 4.1.4 (Projective Lie geometry). Let L be a linear Lie geometry.
Define an equivalence relation ∼ on L \ acl(∅) by a ∼ b :⇐⇒ acl(a) = acl(b),
where acl denotes the usual model-theoretic algebraic closure in L. The projec-
tivisation of L is then the quotient structure (L \ acl(∅)) /∼. A projective Lie
geometry is a structure that is the projectivisation of some linear Lie geometry.

Remark 4.1.5 (comment after Definition 2.1.7 in [18]). By quantifier elimi-
nation (Fact 4.1.3), algebraic closure is just linear span and so a projective Lie
geometry is a projective geometry in the usual sense.

Definition 4.1.6 (Affine Lie geometry). An affine Lie geometry is a structure
of the form (V,A,⊕,−), where V is the vector sort of a linear Lie geometry (but
not a degenerate space), A is a set, ⊕ : V ×A→ A is a regular group action
and − : A×A → V is such that a = v ⊕ b implies a− b = v. Here ‘regular’

2 Note that this is what the prefix ‘basic’ refers to in Definition 2.1.6 in [18]. Since we
will always name the field elements by constant symbols, we suppress this prefix.
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Chapter 4 Lie coordinatisation

means that for every a, b ∈ A there exists a unique v ∈ V such that a = v⊕ b.
In the polar case the structure is (V,W,A,⊕,−), where ⊕ : V ×A→ A is a
regular group action and − : A×A→ V is such that a= v⊕ b implies a− b= v.

The notions of canonical and stable embeddedness are fundamental to Lie
coordinatisation:

Definition 4.1.7. Consider an L-structure N and an L′-structure M such
that the underlying set M is an LN -definable subset of N . Let c ∈ N eq be a
canonical parameter for M . (See § 8.2 of [53] or § 8.4 of [58] for an introduction
to canonical parameters.)

(i) M is canonically embedded in N if the L′
∅-definable relations of M are

precisely the Lc-definable relations on M; that is, for every n ∈ N+, a
subset D⊆Mn is L′

∅-definable in the structure M if and only if it is Lc-
definable in the structure N . (The notation L′

∅ isn’t strictly necessary,
since L′ =L′

∅, but the subscript ∅ is added to emphasise ∅-definability.)

(ii) M is stably embedded in N if every LN -definable relation on M is LM -
definable in a uniform way; that is, for every L-formula φ(x̄, ȳ), where
n := l(x̄) and m := l(ȳ), if φ(N n, ā) ⊆Mn for every ā ∈Nm, then there
exists an L-formula φ′(x̄, z̄), where r := l(z̄), such that for every ā ∈Nm

there exists ā′ ∈M r such that φ(N n, ā) =φ′(N n, ā′). (Note that we need
not have m= r.)

(iii) M is fully embedded in N if M is both canonically and stably embedded
in N .

Intuitively, M is fully embedded in N if N cannot place any additional
structure on M.

We won’t need the following definition until § 4.5, but it follows on from
the previous definitions.

Definition 4.1.8 (Localisation). Let P be a projective Lie geometry, arising
from a linear Lie geometry L. Suppose that P is fully embedded in an L-
structure M. The localisation P/A of P over a finite set A⊂M is defined as
follows: Let f be the bilinear/sesquilinear form on L, where for a degenerate or
pure vector space we define f(v, w) := 0 for all v, w ∈ L and for an orthogonal
space f is the bilinear form associated to the quadratic form on L. Define

L⊥
A := {v ∈ L : f(v, w) = 0 for all w ∈ acl(A)∩L}
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4.1 Lie geometries and Lie coordinatisation

or, in the polar case,

L⊥
A := {v ∈ V : f(v, w) = 0 for all w ∈ acl(A)∩W}

∪ {v ∈W : f(v, w) = 0 for all w ∈ acl(A)∩V }.

Let L⊥
A/(L

⊥
A ∩ acl(A)) be the quotient space, in the usual sense of a quotient

of abelian groups. (This makes sense by Remark 4.1.5.) Then P/A is the
projectivisation of L⊥

A/(L
⊥
A ∩ acl(A)); that is, let ∼ be as in Definition 4.1.4

and then quotient L⊥
A/(L

⊥
A ∩ acl(A)) by ∼.

We are now ready to state the definition of Lie coordinatisation itself:

Definition 4.1.9 (Lie coordinatisation). Let M be an L-structure. A Lie
coordinatisation of M is an L∅-definable partial order < of M that forms
a tree of finite height with an L∅-definable root w such that the following
condition holds: For every a ∈M \ {w} either the immediate predecessor u of
a has only finitely many immediate successors (which implies a ∈ acl(u)) or, if
a ̸∈ acl(u), then there exist b < a and an Lb-definable projective Lie geometry
J fully embedded in M such that either

(i) a ∈ J or, if a ̸∈ J , then

(ii) there exist c ∈M with b < c < a and an Lc-definable affine Lie geometry
(V,A) fully embedded in M such that a ∈ A, the projectivisation of V
is J , and J < V < A,

where for subsets X, Y ⊂M the notation X < Y means that every element
of X lies in a lower level of the tree than every element of Y . We call the
Lie geometries J and (V,A) coordinatising geometries. By a Lie coordinatised
structure we mean a structure equipped with a Lie coordinatisation.

Definition 4.1.10 (Lie coordinatisability). An L-structure M is Lie coordi-
natisable if it is ∅-bi-interpretable (Definition 2.4.1) with a Lie coordinatised
structure that has finitely many 1-types.

Remark 4.1.11.

(i) We have actually defined so-called ‘weak Lie coordinatisability’ (p. 17
of [18]), since in Definition 4.1.9 we did not stipulate the orientation con-
dition relating to quadratic coordinatising geometries (Definition 2.1.10
in [18]). This condition is important and cannot be ignored in general,
but we can ignore it because we do not need to consider quadratic Lie
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geometries (Remark 4.1.2(ii)). For brevity we thus suppress the prefix
‘weak’, the sketch proof of Theorem 4.4.1 being an exception. Note that
the orientation condition is also ignored in [19] for the same reason (p.
517 of [19]).

Fact 4.1.12. If M is Lie coordinatisable, then M is ℵ0-categorical.

Proof. Lemma 2.3.19 in [18].

Remark 4.1.13. The distinction between Lie coordinatisation and Lie coor-
dinatisability is important to maintain in general, but we freely move from the
latter to the former by adding finitely many sorts from Meq to M.

The following is one of the deep results of [18]:

Fact 4.1.14. Let M be an L-structure. Then M is Lie coordinatisable if and
only if M is smoothly approximable.

Proof. Theorem 2 in [18].

4.2 Examples

We give two examples of Lie coordinatisable structures, returning to Exam-
ples 3.1.4 and 3.1.5. This is no coincidence, as shown by Fact 4.1.14.

Example 4.2.1. Consider a language L := {I1, I2}, where I1 and I2 are binary
relation symbols. Let M be a countable L-structure where IM1 and IM2 are
equivalence relations such that IM1 has infinitely many classes, IM2 refines IM1 ,
every I1-equivalence class contains infinitely many I2-equivalence classes, and
every I2-equivalence class is infinite; that is, M is partitioned into infinitely
many I1-equivalence classes, each of which is then partitioned into infinitely
many I2-equivalence classes, each of which is infinite. We claim that M is Lie
coordinatisable.

We first outline the tree structure. At the root we place ⌜M⌝ (the canonical
parameter of M in Meq, which is ∅-definable), above which we place the I1-
classes, as imaginary elements of Meq. Above each I1-class we then place the
I2-classes, again as imaginary elements of Meq, with every I2-class above the
I1-class in which the I2-class is contained. Finally, above each I2-class we place
the elements of M contained in that I2-class. So this tree has height 3 and
infinite width at each level.
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a

⌜a/I2⌝

⌜a/I1⌝

Figure 4.1: A finite fragment of the tree from Example 4.2.1, with the branch
leading to the element a in bold. The nodes are shaded according to member-
ship: The white node is ⌜M⌝, the crossed nodes are elements of M/I1, the
grey nodes are elements of (a/I1)/I2, and the black nodes are elements of a/I2.
The small dots represent the rest of the tree.

Let’s explain the notation used in Figure 4.1. So consider some arbitrary
a ∈M . For j = 1 or 2, let a/Ij denote the Ij-class that contains a and let
⌜a/Ij⌝ denote the same Ij-class but as a member of Meq; so ⌜a/Ij⌝∈Meq is a
canonical parameter for the a-definable subset a/Ij ⊂M . We define (a/I1)/I2

and ⌜(a/I1)/I2⌝ similarly.
We now use this notation to check that Definition 4.1.9 holds for the tree.

The imaginary element ⌜a/I1⌝ lies in the ⌜M⌝-definable degenerate projective
geometry M/I1 and ⌜M⌝ < ⌜a/I1⌝. The imaginary element ⌜a/I2⌝ lies in
the ⌜a/I1⌝-definable degenerate projective geometry (a/I1)/I2 and ⌜a/I1⌝ <

⌜a/I2⌝. Finally, the real element a lies in the ⌜a/I2⌝-definable degenerate
projective geometry a/I2 and ⌜a/I2⌝ < a. Adjoining a finite number of sorts
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from Meq (recall Remark 4.1.13), each of these geometries is fully embedded
in M. (Note that M/I2 is not fully embedded, since I1 defines extra structure
on M/I2 that is not definable within M/I2 using equality alone.) So M is
indeed Lie coordinatisable.

Remark 4.2.2. This example generalises to the case where we have n equiv-
alence relations I1, . . . , In such that there are infinitely many I1-classes, Ij+1

refines Ij and every Ij-class contains infinitely many Ij+1-classes (for 1 ≤ j ≤
n− 1), and every In-class is infinite. At the base of the tree (the 0th level)
we place ⌜M⌝. At the jth level (for 1 ≤ j ≤ n− 1) we place the Ij-classes, as
imaginary elements of Meq, with every Ij-class above the Ij−1-class in which
the Ij-class is contained. Finally, at the top of the tree (the nth level) we place
the elements of M , with each a ∈M placed above ⌜a/In⌝.

Example 4.2.3 (Example 2.1.11 in [18]). Let L := {0,+} and let p be a fixed
prime number. (The case p= 2 is allowed.) We define M to be the direct sum
of ω-many copies of Z/p2Z, i.e.

M := {(ai)i<ω : ai ∈ Z/p2Z and ai = 0 for all but finitely many i}.

(We specify the direct sum because it is countable, unlike the direct prod-
uct.) The set M naturally forms an L-structure M, the L-structure aris-
ing component-wise from the L-structure of the group Z/p2Z. Explicitly:
0M := (0)i<ω and (ai)i<ω + (bi)i<ω := (ai + bi)i<ω. For brevity we write 0 for
0M. We claim that M is Lie coordinatisable.

We first introduce some notation: For v ∈M let Mv := {a ∈M : pa = v},
where pa := a+ a+ · · ·+ a︸ ︷︷ ︸

p times

. Observe that M0 has a vector space structure over

Fp and thus is a linear Lie geometry over Fp. Let P (M0) be the projectivisation
of M0 (Definition 4.1.4). Then P (M0) =M0 \{0}/∼, where a∼ b if and only
if a= rb for some r ∈ Fp (recall Remark 4.1.5). So |a/∼|= p−1 for all a∈M0.
Adjoining a sort for P (M0) (recall Remark 4.1.13), we also have that P (M0)

is fully embedded in M.
We now outline the tree structure. At the root we place 0, above which we

place the elements of P (M0), considered as imaginary elements of Meq. On
the next level we place the elements of M0 \ {0}, with each a placed above
⌜a/∼⌝. Finally, the top level contains the elements of M\M0, with each
b ∈ Ma placed above a. So we have a tree of height 3 and infinite width
at each level, although the second level comprises an infinite amount of finite
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b

a

⌜a/∼⌝

Figure 4.2: A finite fragment of the tree from Example 4.2.3, with the branch
leading to the element b ∈ Ma in bold. The nodes are shaded according to
membership: The white node is the zero vector, the crossed nodes are ele-
ments of P (M0), the grey nodes are elements of a/∼, and the black nodes are
elements of Ma. Note that there are only finitely many (in fact p− 1) nodes
immediately above each crossed node. The small dots represent the rest of the
tree.

branching. Note that we’re using the fact here that if b∈M\M0, then b∈Ma

for some a ∈ M0. Proof: Suppose pb ̸= 0. So pb = a for some a ∈M . Then
pa = p(pb) = p2b = 0, since p2c = 0 for all c ∈M . So b ∈Ma and a ∈M0, as
required.

Let’s check that Definition 4.1.9 holds for this tree. So consider some
arbitrary non-zero a∈M0 and b∈Ma. See Figure 4.2 for an illustration. The
imaginary element ⌜a/∼⌝ lies in the 0-definable projective geometry P (M0),
which is fully embedded, as noted in the previous paragraph, and 0< ⌜a/∼⌝.
The real element a is algebraic over ⌜a/∼⌝, since a/∼ is ⌜a/∼⌝-definable and
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finite, again as noted in the previous paragraph, and ⌜a/∼⌝ < a. This leaves
us with the top level of the tree, which we deal with in the next paragraph.

Firstly, observe that 0<a< b. The real element a defines an affine geometry
(M0,Ma), where M0 is the Fp-vector space, Ma is the M0-affine space, and
the action M0 ×Ma → Ma is given by (u, v) 7→ u+ v. (This action is well-
defined, since p(u+ v) = pu+ pv = 0+ a= a and so u+ v ∈Ma.) As we have
already noted, the projectivisation of M0 is P (M0), which is a fully embedded,
0-definable projective geometry, and we have b ∈Ma by assumption. So the
tree structure does indeed satisfy the definition of Lie coordinatisation.

Remark 4.2.4. This example generalises to the direct sum of ω-many copies
of Z/pnZ, for any n ∈ N+. When n = 1, the tree structure is the same as in
the case n = 2, except that M0 \ {0} forms the top level, since M\M0 =∅.
When n ≥ 3, the first three levels (0, P (M0) and M0) are the same, but at
the third level one places the elements of {b ∈M : b ∈Ma for some a ∈M0},
instead of simply M\M0, and at the (j+1)th level (for 1≤ j ≤ n) one places
{c ∈M : c ∈Mb for some b in the jth level}. The (n+1)th level is the upper-
most level.

Remark 4.2.5. In both Example 4.2.1 and Example 4.2.3 the tree is nicely
stratified, namely root–degenerate–degenerate–degenerate in the former and
root–projective–algebraic–affine in the latter. This need not be the case, how-
ever: There are Lie coordinatising trees containing maximal chains of different
lengths. For example, one could take the disjoint union (in a suitable language,
with a common root) of two Lie coordinatising trees of different heights.

4.3 Standard systems of geometries and envelopes

In this section we develop the key notion of an envelope of a Lie coordinatised
structure. Our presentation is a simplified version of that given in [18], stream-
lined for the purpose of stating and proving Proposition 4.5.3. We begin with
the notion of a standard system of geometries:

Definition 4.3.1 (Standard system of geometries). Let M be a Lie coordina-
tised L-structure. A standard system of geometries on M is a ∅-definable func-
tion J : A→P(M) whose domain A is the set of realisations of a 1-type over
∅ in M and whose image is a set of projective coordinatising Lie geometries
of the same kind, i.e. J(a) and J(b) are isomorphic for every a, b ∈ A. By ‘∅-
definable’ we mean that there is an L-formula φ(x, y) such that φ(M, a) = J(a)

for every a ∈ A. We call A the domain of J , which we denote by dom(J).

56



4.3 Standard systems of geometries and envelopes

Definition 4.3.2 (Dimension function).

(i) Let J be a Lie geometry over a field K. An approximation of J is a
finite-dimensional geometry over K of the same kind as J . For example,
if J is the projectivisation of a pure vector space over a finite field K,
then an approximation of J is a finite-dimensional projective space over
K, or if J is a degenerate space, then an approximation of J is a finite
set in the language of equality.

(ii) Let M be a Lie coordinatised structure. A dimension function is a func-
tion µ on a finite set of S of standard systems of geometries on M that
assigns an approximation to each J ∈ S, i.e. µ(J) is an approximation of
J(a) for some a ∈ dom(J). (This is independent of the choice of a, since
J(a) is the same kind of projective Lie geometry for every a ∈ dom(J).)
We call S the domain of µ, which we denote by dom(µ).

Definition 4.3.3 (µ-Envelope). Let M be a Lie coordinatised structure. Then
a µ-envelope is a pair (E, µ) consisting of a finite subset E⊂M and a dimension
function µ for which the following three conditions holds:

(i) E is algebraically closed in M. (Note that this implies that E is a
substructure of M.)

(ii) For every a ∈M \E there exist J ∈ dom(µ) and b ∈ dom(J)∩E such
that acl(E)∩ J(b) is a proper subset of acl(E, a)∩ J(b).

(iii) For every J ∈ dom(µ) and for any b ∈ dom(J)∩E, J(b)∩E and µ(J)

are isomorphic.

Remark 4.3.4.

(i) We often denote a µ-envelope by E, rather than (E, µ), leaving the di-
mension function as implicit. We similarly often use the term ‘envelope’,
rather than ‘µ-envelope’.

(ii) It may help the reader’s intuition to know that envelopes form homoge-
neous substructures of M (Lemma in 3.2.4 [18]). Indeed, this is how the
left-to-right direction of Fact 4.1.14 is proved (pp. 61–62 of [18]).

(iii) In general one can have countably infinite approximations and envelopes,
but we do not need to consider them.
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The following definition is fundamental to the work in §4.5 and arises from
Definitions 3.1.1.4(5) and 5.2.1 in [18]:

Definition 4.3.5. Consider a µ-envelope (E, µ), where dom(µ) = {J1, . . . , Js}.
For each Ji we define dE(J) := dimµ(J), where dimµ(J) := |µ(J)| if µ(J) is a
pure set. We further define d∗E(J) := (−√

q)dE(J), where q is the size of the base
finite field of µ(J), or, if µ(J) is a pure set, then we define d∗E(P ) := dE(P ).
(Taking −√

q, rather than just q, does initially look strange. It is done purely
for unitary spaces: see the end of the proof of Proposition 4.5.3.) Finally, we
define d̄∗(E) := (d∗E(J1), . . . , d

∗
E(Js)).

We illustrate the preceding definitions by returning to Examples 4.2.1
and 4.2.3:

Example 4.3.6 (continuation of Example 4.2.1). Put simply, an example of
an envelope in this case is a subset E ⊆ M that intersects a fixed number
(n1) of I1-classes, a fixed number (n2) of I2-classes within each of these I1-
classes, and a fixed number (n3) of elements within each of these I2-classes.
So, up to isomorphism, an envelope is given by a triple (n1, n2, n3). Using the
enumerations from Example 3.1.4, two examples of envelopes are

E1 := {aijk : 1≤ i≤ 3, 1≤ j ≤ 6, 1≤ k ≤ 1}

and E2 := {aijk : 19≤ i≤ 21, 3≤ j ≤ 8, 2015≤ k ≤ 2015}.

The triple for both E1 and E2 is (n1, n2, n3) = (3, 6, 1). Let’s explain this in
terms of standard systems of geometries and dimension functions.

Consider the following three standard systems of geometries:

• Jα : M→Meq, Jα(a) := ⌜M/I1⌝;

• Jβ : M→Meq, Jβ(a) := ⌜(a/I1)/I2⌝; and

• Jγ : M→Meq, Jγ(a) := ⌜a/I2⌝.

A dimension function µ on {Jα, Jβ, Jγ} assigns an approximation to each of
Jα(a), Jβ(a) and Jγ(a), where a∈M is arbitrary. An approximation of a given
geometry is determined by the dimension of the approximation, which in this
case is equal to the size of the approximation, since all the projective geometries
are degenerate. Thus µ is determined by a choice of triple (n1, n2, n3), as
mentioned in the previous paragraph. So, if µ= (n1, n2, n3), then a µ-envelope
is an envelope with associated triple (n1, n2, n3). Furthermore, again because
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all the projective geometries in this example are degenerate, we have d̄∗(E) =
(n1, n2, n3).

Example 4.3.7 (continuation of Example 4.2.3). Consider the standard sys-
tem of geometries J : {0}→Meq, where J(0) :=P (M0). A dimension function
µ on J assigns an approximation to P (M0), i.e. a finite-dimensional subspace
of P (M0). So, as in Example 4.2.1, µ is determined by an integer. A µ-
envelope is then a finite power of Z/p2Z; that is, a subset E := {(ai)i<ω ∈
M : ai ̸= 0 only if i= tj for some j} given by n integers t1, . . . , tn ∈ N+, where
n := dimµ(J). Thus E is determined, up to isomorphism, by n. Since the
base field is Fp, which has size p, we have d̄∗(E) = (−√

p)n. This is a 1-tuple
because there is only one standard system in the domain of µ.

4.4 Macpherson’s conjecture, short version

We now take a big step towards proving Theorem 4.6.4 by proving a shorter
version, namely Corollary 4.4.2, where the existence of a multidimensional
exact class is asserted but the nature of the measuring functions is not specified.
We first provide a sketch proof of part 2 of Theorem 6 in [18], as this result
is crucial to our proof of Corollary 4.4.2. The key ingredients needed to prove
the result are contained in [18], namely Propositions 4.4.3, 4.5.1 and 8.3.2
and their proofs, but the (non-trivial) argument putting them together is not
made completely explicit. We state the result in a way that is convenient for
our present purposes, but it is essentially the same as the original statement
in [18], the only significant difference being the use of the equivalence of Lie
coordinatisation and smooth approximation (Fact 4.1.14).

Theorem 4.4.1. Let L be a finite language and let d ∈ N+. Define C(L, d)
to be the class of all finite L-structures with at most d 4-types. Then there
is a finite partition F1, . . . ,Fk of C(L, d) such that the L-structures in each
Fi smoothly approximate an L-structure F∗

i . Moreover, the Fi are definably
distinguishable: For each Fi there exists an L-sentence χi such that for all
M∈ C(L, d) above some minimum size, M |= χi if and only if M∈Fi.

Sketch proof.3 We first show that there cannot exist infinitely many pairwise
elementarily inequivalent Lie coordinatisable L-structures with the same skele-
tal type, where a skeletal type is, roughly speaking, a full description of the

3 The main argument was given by Hrushovski in email correspondence and Macpherson
provided essential input by working out key details. The contribution of the present author
lay in working through further details and writing up the proof.
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Lie coordinatising tree structure in an extended language Lsk; see § 4.2 of [18]
for the full definition. So, for a contradiction, suppose that there are in fact
infinitely many such L-structures {Ni : i < ω} with the same skeletal type S.
Working in Lsk, by a judicious choice of ultrafilter we can take a non-principal
ultraproduct N ∗ of the Ni such that N ∗ ̸≡ Ni for all i < ω. We may assume
that N ∗ is countable by moving to a countable elementary substructure. Since
the skeletal type S is expressible in Lsk (this is a general fact of skeletal types,
not just S) and true in each Ni, by Łos’s theorem N ∗ is Lie coordinatised and
has skeletal type S. Work in chapter 4 of [18], especially Proposition 4.4.3
and its proof, shows that every Lie coordinatised structure is quasifinitely ax-
iomatised, and thus in particular N ∗ is quasifinitely axiomatised. Put roughly,
this means that Th(N ∗) is axiomatised by a sentence σ and an axiom schema
of infinity, where we consider Th(N ∗) as an L′-theory in a finite language L′

containing Lsk. This axiom schema of infinity holds for all the Ni because they
each have the same skeletal type as N ∗. Furthermore, again by Łos’s theorem,
there exists j < ω such that Nj |= σ. Thus N ∗ ≡Nj, a contradiction.

We now return to the original class C := C(L, d). We take an infinite ultra-
product U∗ of the structures in C. We take this ultraproduct in a non-standard
model of set theory, working with some suitable Gödel coding of formulas,
which allows us to consider U∗ as an L∗-structure, where L∗ is the ultrapower
of the language L; that is, L∗ extends L by including infinitary formulas with
nonstandard Gödel numbers, although the number of free variables in any
given formula remains finite. We may again assume that U∗ is countable by
moving to a countable elementary substructure. U∗ is 4-quasifinite (Definition
2.1.1 in [18]) and thus by Theorem 3 in [18] is weakly Lie coordinatisable. So
by Proposition 7.5.4 in [18] the L-reduct U of U∗ is also weakly Lie coordi-
natisable. The L-structure U thus has a skeletal type. By the first part of
the proof there can be only finitely many pairwise elementarily inequivalent
Lie coordinatisable L-structures with this skeletal type, say F∗

1 , . . . ,F∗
k . By

Proposition 4.4.3 each F∗
i has a characteristic sentence, say χi. The χi yield

a partition C = F1 ∪ . . .∪Fk, where each χi is true in all M∈Fi and false in
all M∈Fj for j ̸= i, potentially with the exception of some small structures.
Moreover, again by Proposition 4.4.3, this partition is such that each M∈Fi

is an envelope of F∗
i and so by work in chapter 3 of [18] the structures in Fi

smoothly approximate F∗
i .

Note that the work cited from chapter 4 of [18] is written in terms of Lie
coordinatisability, but inspection of the proofs shows that weak Lie coordinati-
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sability suffices.

Corollary 4.4.2 (Macpherson’s conjecture, short version). For any countable
language L and any d ∈ N+ there exists R such that the class C(L, d) of all
finite L-structures with at most d 4-types is an R-mec in L.

Proof. Let C := C(L, d). The reader should recall Remark 2.1.3(vii), as we will
use it at various points in this proof.

First suppose that L is finite. By Theorem 4.4.1, C can be finitely parti-
tioned into subclasses F1, . . . ,Fk such that the structures in each Fi smoothly
approximate an L-structure F∗

i . Thus by Proposition 3.2.1 each Fi is an Ri-
mec in L for some Ri. Let RL :=R1∪ · · · ∪Rk. We claim that C is an RL-mec
in L.

We prove this claim: Let φ(x̄, ȳ) be an L-formula with n := l(x̄) and m :=

l(ȳ). Since each Fi is an Ri-mec, we have a suitable finite partition Φi of each
Fi(m). Then Φ1∪ · · · ∪Φk is a finite partition of C(m) and so C is a weak RL-
mec in L. It remains to show that the definability clause holds. We again use
Theorem 4.4.1: For each Fi there is an L-sentence χi such that M|= χi if and
only if M∈Fi, for sufficiently large M. So, by conjoining χi to the defining
L-formulas of each Φi, we satisfy the definability clause, using Lemma 2.2.7 to
deal with the finite number of potential exceptions. So the claim is proved.

Now suppose that L is infinite. Consider some arbitrary finite L′ ⊂ L and
let CL′ denote the class of all L′-reducts of structures in C. Each structure in
CL′ has at most d 4-types, since a reduct cannot have more types than the
original structure. Thus, by the first part of the proof, CL′ is an RL′-mec in L′.
(It could be the case that CL′ is a proper subclass of the class of all finite L′-
structures with at most d 4-types, but that wouldn’t matter, since a subclass
of an R-mec is also an R-mec.) Let L be the set of all finite subsets of L and
define

R :=
⋃
L′∈L

RL′ .

Then each CL′ is an R-mec in L′ by Remark 2.1.3(vii). Therefore C is an R-mec
in L by Lemma 2.2.10.

Remark 4.4.3. The reader may well be wondering what’s so special about
4-types. Well, firstly, if there is a bound on the number of n-types, then there
is a bound on the number of k-types for all k ≤ n. So in the statement of
Theorem 4.6.4 we could replace 4-types with n-types for any n > 4 and the
result would still go through, since there would still be a bound on the number
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of 4-types. As for 4 itself, this is harder to explain. One explanation is that the
projective linear group preserves the cross-ratio, which is a projective invariant
on 4-tuples of colinear points. The classification of finite simple groups also
plays a role. The full details can be found in [35] and [48], the latter improving
the original bound on 5-types in [35] to one on 4-types. Macpherson has made
conjectures concerning bounds on 2- and 3-types: see Question 5.5.

4.5 Definable sets in envelopes

Corollary 4.4.2 provides no information about the structure of R, only its
existence. In this section we use Lie geometries to ascertain information about
the nature of R. We first need to define a notion of rank:

Definition 4.5.1 (Definition 2.2.1 in [18]). Let M be an L-structure and let
D ⊆M be a parameter-definable set. We define the CH-rank of D as follows:

(i) rk(D)> 0 if and only if D is infinite.

(ii) For n ∈ N, rk(D) ≥ n+1 if and only if there exist parameter-definable
subsets D1, D2 ⊂M and functions π : D1 →D and f : D1 →D2 such that

• rk(π−1(d)) = 0 for all d ∈D;

• rk(D2)> 0; and

• rk(f−1(d))≥ n for all d ∈D2.

If rk(D)> n for all n ∈ N, then we define rk(D) =∞.

Remark 4.5.2. It seems likely that CH-rank is equal to SU-rank (Definition
8.6.1 in [58]). I haven’t been able to prove this and there doesn’t appear to be
a clear answer in the literature, but note that the original paper [32] on Lie
coordinatisation predates the work of Kim and Pillay on simple theories [39]
and that SU-rank is used in [19]. Whether or not the two ranks are equal is
a moot point for our purposes, but imagining the two ranks to be equal may
help the reader’s intuition.

The following result provides us with information about the sizes of de-
finable sets in envelopes, which we will then use in § 4.6 to shed light on the
structure of R in Corollary 4.4.2. It uses Definition 4.3.5 and is a generalisation
of Proposition 5.2.2 in [18]. Proposition 5.2.2 is essentially about the formula
x= x, since it concerns the sizes of envelopes, rather than the sizes of definable
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subsets of envelopes, and arbitrary formulas with parameters arise only as part
of the proof. In contrast, Proposition 4.5.3 concerns arbitrary formulas with
parameters from the outset and so more complexity arises. We also go into
considerably more detail on certain points than in the proof given in [18].

Proposition 4.5.3. Let E be an ordered family of envelopes of a Lie coordi-
natised L-structure M such that dom(µ) = dom(µ′) for all (E, µ), (E ′, µ′) ∈ E
and such that the parity and signature of orthogonal spaces are constant on
the family, where by ‘ordered family’ we mean that for all (E, µ), (E ′, µ′) ∈ E
either E ⊆ E ′ or E ′ ⊆ E. Let ā ∈Mm (where m is arbitrary), let Dā ⊆M

be an Lā-definable set and let s be the size of the common domian of the di-
mension functions. Then there exists a polynomial ρ ∈ Q[X1, . . . ,Xs] and an
integer Q ∈ N such that |Dā ∩E| = ρ(d̄∗(E)) for all (E, µ) ∈ E with |E| > Q

and ā ∈ Em.

Remark 4.5.4. We offer a brief explanation of the parity/signature assump-
tion; full details can be found in § 21 of [3]. The parity of a finite-dimensional
orthogonal space V refers to dim(V ), distinguishing between odd and even
dimension. The signature refers to the quadratic form on V , there being only
two possibilities (up to equivalence); in the even-dimensional case this is de-
termined by the Witt index and in the odd-dimensional case by the hyperbolic
hyperplane. The assumption is important, but its use is restricted to the
calculations at the end of the proof, and there only in the orthogonal case.

Proof of Proposition 4.5.3. Let φ(x, ā) be the Lā-formula that defines Dā. So
Dā = φ(M, ā). By Fact 4.1.12 and the Ryll-Nardzewski Theorem we may
assume without loss of generality that φ(x, ā) defines the set of realisations of
a 1-type r(x) over ā in M; see Appendix B for the details. So Dā = r(M).
Also note that since E is ordered by ⊆, either |Dā ∩E| = ∅ for all (E, µ) ∈ E
or there exists Q ∈ N such that |Dā ∩E| ≠ ∅ for all (E, µ) ∈ E with |E| > Q.
In the former case we can set Q := 0 and ρ := 0. So we henceforce assume that
we are in the latter case. With these two assumptions in hand, we are now
in a position to start the main line of argument. We proceed by induction on
CH-rank.

First suppose that rk(Dā) = 0. Then Dā is finite. Let k := |Dā|. Since
Dā is both finite and ā-definable, Dā ⊆ acl(ā). Thus, since envelopes are
algebraically closed (Definition 4.3.3), Dā ⊆ E for all E ∈ E with ā ∈ Em. So
|Dā∩E|= |Dā|= k for all E ∈ E with ā ∈Em. Hence the constant polynomial
ρ := k suffices.
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Now consider the case rk(Dā) > 0. Then Dā is infinite. Assume as the
induction hypothesis that the result holds for any parameter-definable subset
of M with CH-rank strictly less than rk(Dā). Let d ∈Dā. For a contradiction,
suppose that every step in the tree below d is algebraic; that is, if c0 < c1 <

· · ·< ct = d is the chain leading to d, where c0 is the root of the tree, then each
ci+1 is algebraic over its immediate predecessor ci. We claim that d ∈ acl(∅).

We prove this claim. We proceed by induction on i to show that ci ∈ acl(∅)

for every i, and so in particular d = ct ∈ acl(∅). Since the root is ∅-definable
(Definition 4.1.9), c0 ∈ dcl(∅) ⊆ acl(∅). Now suppose that ci ∈ acl(∅). Then
ci+1 ∈ acl(acl(∅)), since ci+1 ∈ acl(ci) by our supposition. But acl(acl(∅)) =

acl(∅), since algebraic closure is idempotent, and hence ci+1 ∈ acl(∅). So the
claim is proved.

We now use the claim to derive a contradiction. Since d ∈ acl(∅), there
exists some L-formula χ(x) such that M |= χ(d) and χ(M) is finite. So
χ(x) ∈ tp(d/∅) ⊆ tp(d/ā) = r(x) and hence Dā = r(M) ⊆ χ(M) is finite, a
contradiction.

So by the contradiction there exists c≤ d such that c is not algebraic over
its immediate predecessor. Take c to be minimal, i.e. lowest in the tree. By
Definition 4.1.9 the non-algebraicity of c implies that c lies in a coordinatising
geometry J , where J is b-definable for some b < c. The minimality of c implies
that J is a projective Lie geometry, since the vector and affine parts of a
coordinatising affine Lie geometry lie above the projectivisation of the vector
part. Recalling Remark 4.1.2(ii), the same argument applies to quadratic
geometries: The affine part Q of a coordinatising quadratic geometry, namely
the set of quadratic forms on which the vector part V acts by translation, lies
above V in the tree, V being a symplectic space. So the minimality of c implies
that J is the projectivisation of V .

Case 1: The element b is the root. Then b∈ dcl(∅) and so J is ∅-definable.
We define a set that is central to our argument:

S := {(c′, d′) ∈M2 : tp((c′, d′)/ā) = tp((c, d)/ā)}.

Let Si be the projection of S to the ith coordinate. Then S1 is the set of
realisations of tp(c/ā) and S2 is the set of realisations of tp(d/ā), as proved
in the next paragraph. Then S1 ⊆ J , since c ∈ J and J is ∅-definable, and
S2 =Dā, since tp(d/ā) = r(x).

We prove the claim that S1 is the set of realisations of tp(c/ā): If c′ ∈ S1,
then it is immediate from the definition of S that c′ |= tp(c/ā). Now suppose
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that c′ |= tp(c/ā). By the Ryll-Nardzewski Theorem, M is saturated and
thus there exists σ ∈ Aut(M/ā) such that σ(c) = c′ (see Remark B.6; we’ll
use this remark several more times and henceforth won’t cite it explicitly).
Thus (c′, σ(d)) = (σ(c), σ(d)) ∈ S and hence c′ ∈ S1. So the claim is proved.
The proof of the claim that S2 is the set of realisations of tp(d/ā) proceeds
symmetrically.

Let’s now consider the intersection of Dā with an envelope. So take some
arbitrary (E, µ) ∈ E with |E| > Q and ā ∈ E. Since Dā ∩E ̸= ∅, we may
assume without loss of generality that d ∈ E, for if d /∈ E, then we may take
some d′ ∈Dā ∩E and repeat the previous arguments for this new element d′.

Define
SE := {(c′, d′) ∈ S : d′ ∈ E}.

We will use this set to calculate the size of Dā ∩E, but we first need to go
over some preliminaries. Let SEi be the projection of SE to the ith coordinate.
Then SE2 = S2 ∩E =Dā ∩E. We claim that SE1 = S1 ∩E.

We prove this claim. Let c′ ∈ SE1. Then (c′, d′) ∈ SE for some d′ ∈ E.
Now, c′ ≤ d′ and so c′ ∈ dcl(d′). Thus, since envelopes are algebraically closed
(by definition), c′ ∈ E. So c′ ∈ S1 ∩E (since SE1 ⊆ S1), as required. Now
let c′ ∈ S1 ∩E. Let d′′ ∈ D ∩E. Since tp(d′′/ā) = tp(d/ā), there exists σ ∈
Aut(M/ā) such that σ(d) = d′′. Let c′′ := σ(c). Then (c′′, d′′) ∈ SE. By the
same argument used earlier in this paragraph, c′′ ∈E. Now, tp(c′′/ā) = tp(c′/ā)

and so there exists σ′ ∈Aut(M/ā) such that σ′(c′′) = c′. Now, since envelopes
are homogeneous substructures (Lemma 3.2.4 in [18] and Definition 3.1.2) and
c′, c′′ ∈E, we may assume that σ(E) =E. Let d′ := σ′(d′′). Then d′ ∈E, since
d′′ ∈E. Hence (c′, d′)∈ SE and so c′ ∈ SE1, as required. So the claim is proved.

We introduce some further definitions: For c′ ∈ S1 let c′/S2 := {d′ : (c′, d′)∈
S} and c′/SE2 := {d′ : (c′, d′)∈ SE}, and for d′ ∈ S2 let d′/S1 := {c′ : (c′, d′)∈ S}
and d′/SE1 := {c′ : (c′, d′) ∈ SE}. The sizes of the c′/SE2 and the d′/SE1 are in
fact independent of c′ and d′, as we now show.

First consider some arbitrary c′ ∈ SE1. Let Dāc be the set of realisations of
tp(d/āc). Then, by the definition of S, Dāc = c/S2. Let d′ ∈ c′/SE2. Then, since
tp((c′, d′)/ā) = tp((c, d)/ā), there exists σ ∈ Aut(M/ā) such that σ(c′, d′) =
(c, d). We claim that σ : c′/S2 → c/S2 is a bijection. Injectivity is immediate. It
is well-defined, since if d′′ ∈ c′/S2, then σ(c′, d′′) = (c, σ(d′′)) ∈ S and so σ(d′) ∈
c/S2. It is surjective, since if d′′ ∈ c/S2, then σ−1(c, d′′) = (c′, σ−1(d′′)) ∈ S and
so σ−1(d′′) ∈ c′/S2. So the claim is proved. Now, as mentioned previously,
envelopes are homogeneous substructures. So, since d, d′ ∈ E, we may assume
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that σ(E) = E. Thus
|c′/SE2|= |c′/S2 ∩E|

= |c/S2 ∩E|

= |Dāc ∩E|

(4.1)

for all c′ ∈ SE1.
Now consider some arbitrary d′ ∈ SE2. Since c≤ d, c ∈ dcl(d). Thus, since

tp(d′/ā) = tp(d/ā), there exists a unique c′ ∈M such that (c′, d′) ∈ S. But
d′ ∈ E and so (c′, d′) ∈ SE. Hence

|d′/SE1|= 1 (4.2)

for all d′ ∈ SE2.
We are now in a position to calculate the size of SE and thereby also that

of Dā ∩E. Let’s first calculate |SE| in terms of |SE1|:

|SE|=
∑

c′∈SE1

|c′/SE2|

= |SE1| · |Dāc ∩E| (by (4.1)).
(4.3)

And now in terms of |SE2|:

|SE|=
∑

d′∈SE2

|d′/SE1|

= |SE2| (by (4.2)).
(4.4)

So, since SE2 =Dā ∩E, (4.3) and (4.4) yield

|Dā ∩E|= |SE1| · |Dāc ∩E|. (4.5)

First consider SE1. We previously proved that SE1 = S1 ∩E. We also
showed that S1 is the set of realisations of tp(c/ā) and that S1 is a subset of J .
By the Ryll-Nardzewski Theorem, tp(c/ā) is isolated and so S1 is ā-definable.
So S1 is an ā-definable subset of a projective geometry. Thus, as we will show
later (after Case 2), there exists a polynomial ρ1 ∈ Q[X1, . . . ,Xs] such that
ρ1(d̄∗(E)) = |S1 ∩E|.

Now consider Dāc, which is a parameter-definable subset of M , again by the
Ryll-Nardzewski Theorem. We have rk(Dāc)< rk(Dā), as proved in the follow-
ing paragraph, and thus by the induction hypothesis there exists a polynomial
ρ2 ∈Q[X1, . . . ,Xs] such that |Dāc ∩E|= ρ2(d̄∗(E)).
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We prove the claim that rk(Dāc)< rk(Dā). Let n := rk(Dāc). We previously
showed that Dāc = c/S2. We also showed that for every c′ ∈ S1 there exists
σ ∈ Aut(M/ā) such that σ(c/S2) = c′/S2, which thus means rk(c′/S2) = n

for every c′ ∈ S1. Define f : Dā → S1 by f(d′) := c′, where c′ is such that
(c′, d′) ∈ S. As we showed earlier, for every d ∈ S2 there is precisely one c′

such that (c′, d′) ∈ S, so f is well-defined. Then, since f−1(c′) = c′/S2, we have
rk(f−1(c′)) = n for every c′ ∈ S1. Also note that rk(S1)> 0, since S1 is infinite
(because c is not algebraic over its immediate predecessor). Thus, taking
D :=D1 :=Dā, D2 := S1 and π to be the identity map in Definition 4.5.1, we
see that rk(Dā)≥ n+1> rk(Dāc). So the claim is proved.

Define ρ := ρ1 · ρ2. Then (4.5) gives us the desired result:

|Dā ∩E|= |SE1| · |Dāc ∩E|

= ρ1(d̄∗(E)) · ρ2(d̄∗(E))

= ρ(d̄∗(E)).

End of Case 1.
Case 2: The element b is not the root. Since c is minimal, b and each

element below b (except the root) is algebraic over its immediate predecessor.
Thus, by the same induction used earlier in the proof, b ∈ acl(∅). Thus, by
inspection of Definition 4.1.9, we see that we may add to L a constant symbol
for b without affecting the Lie coordinatising tree. Adding the new constant
symbol preserves the inequality rk(Dāc) < rk(Dā), again since b ∈ acl(∅), but
it makes J ∅-definable. We may thus simply repeat the argument given in
Case 1 in the extended language Lb. End of Case 2.

We now prove our earlier claim of the existence of a polynomial ρ1 ∈
Q[X1, . . . ,Xs] such that ρ1(d̄∗(E)) = |S1 ∩E|. The set S1 is an Lā-definable
subset of J and thus, since J is fully embedded in M, S1 is ā-definable in
the language of J ; we may assume that ā lies in J by stable embeddedness.
We now consider the localisation J/ā of J at ā (Definition 4.1.8). J fibres
over J/ā, where two elements lie in the same fibre if and only if they have
the same algebraic closure over ā. These fibres all have the same finite size,
where this size is determined by tp(ā). Now, S1 might not respect these fibres;
that is, the intersection of S1 with each fibre might vary in size. However,
since the fibres are finite, there are only finitely many possible sizes for these
intersections and so we can ā-definably partition the set of fibres according to
size. We then consider the intersection of each part of the partition with E:
We calculate the size of the base of the fibres, which is a ∅-definable subset
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of J/ā, and then multiply this result by the size of the fibre. We then sum
these results to obtain |S1∩E|. So, in short, by localising J at ā, it suffices to
consider ∅-definable subsets of projective Lie geometries. It remains to do the
explicit calculations in each kind of projective Lie geometry. We use quantifier
elimination (Fact 4.1.3).

A projectivisation of a degenerate space. Projectivisation in this case is
trivial. The only ∅-definable set is the whole space itself. (We can rule out ∅
because Dā ∩E ̸=∅.) So S1 = J . Thus, since J ∩E = µ(J) (Definition 4.3.3),
where µ is the dimension function of E, we have |S1∩E|= dE(J), as required.

A projectivisation of a pure vector space. The only ∅-definable set is again
the whole space itself. So S1 = J . Thus, going via the approximation of the
linear space, which has dimension dimµ(J)+ 1, we have

|S1 ∩E|=
qdimµ(J)+1− 1

q− 1
= qdimµ(J) +1 = (−√

q)2 dimµ(J) +1 = dE(J)
2+1,

as required.
A projectivisation of a polar space. This is the same as the vector space

case, except that we can define either half of the space or the whole space. If
the former, then the answer is the same as that in the vector space case. If
the latter, then we multiply this answer by 2.

A projectivisation of a symplectic space. Since there is only one 1-type, this
case is the same as the pure vector space case.

A projectivisation of a unitary space. The calculations can be found in the
proof of Proposition 5.2.2 in [18]. Note that it is this case that forces us to
consider (−√

q)dimµ(J), rather than just qdimµ(J).
An projectivisation of an orthogonal space. The calculations can again be

found in the proof of Proposition 5.2.2 in [18]. Note that this is where the
assumption regarding constant signature and parity is used (Remark 4.5.4).
Also note that there is a small typographical error in the calculations: On p.
91 of [18] it should state n(2i+ j, α) = qin(j, α) + qj−1(q2i − qi), the original
term qin(i, α) being incorrect.

One final note: The calculations for unitary and orthogonal spaces in [18]
are actually done in the linear Lie geometry, rather than in the projectivisa-
tion. However, by a similar fibering argument to the one used earlier with the
localisation, this is sufficient.
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4.6 Macpherson’s conjecture, full version

4.6 Macpherson’s conjecture, full version

In this section, the last of the chapter, we introduce the notion of a polynomial
exact class, enabling us to state and prove Theorem 4.6.4, the main result of
this thesis.

Definition 4.6.1 (Polynomial exact class). Let L be a language and C a class
of finite L-structures. Then C is a polynomial exact class in L if there exist

• R⊆Q[X1, . . . ,Xk] for some k ∈ N+,

• L-formulas δ1(x̄1, ȳ1), . . . , δk(x̄k, ȳk) and

• ā1 ∈M l(ȳ1), . . . , āk ∈M l(ȳk) for each M∈ C

such that C is an R-mec in L where

h(M) = h
(
|δ1(Ml(x̄1), ā1)|, . . . , |δk(Ml(x̄1), āk)|

)
for every h ∈R and for every M∈ C.

Remark 4.6.2.

(i) If we replace ‘R-mec’ with ‘R-mac’ in Definition 4.6.1, then we define
a polynomial asymptotic class. In this case we allow polynomials with
irrational coefficients.

Note that any 1-dimensional asymptotic class is a polynomial asymptotic
class, since we may take δ to be the L-formula x = x and h to be the
polynomial µXd, where (d, µ) is the dimension–measure pair.

(ii) Definition 4.6.1 is a working definition and may be subject to change
before its final version appears in [60]. The idea is that only finitely
many δi are needed and that they do not depend on each L-formula.

Example 4.6.3. The class C of finite vector spaces in Example 2.3.2 is a
polynomial asymptotic class.

Theorem 4.6.4 (Macpherson’s conjecture, full version). For any countable
language L and for any d ∈N+ the class C(L, d) of all finite L-structures with
at most d 4-types is a polynomial exact class in L.

Proof. By Corollary 4.4.2 we know that C := C(L, d) is a multidimensional
exact class. It remains to show that the measuring functions are polynomial
in the sense of Definition 4.6.1.
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Chapter 4 Lie coordinatisation

Recall our use of Theorem 4.4.1 in the proof of Corollary 4.4.2: We par-
titioned C into subclasses F1, . . . ,Fk such that the L-structures in each Fi

smoothly approximate an L-structure F∗
i . By the work in [18] each Fi is a

class of envelopes for F∗
i , which is Lie coordinatisable. So Proposition 4.5.3 im-

plies that C is a polynomial exact class, since each coordinatising Lie geometry
is fully embedded in and thus (by definition) also definable in F∗

i .
We address some details arising from this proof. Firstly, by the Projec-

tion Lemma (Lemma 2.2.2) it suffices to consider L-formulas in one object
variable, as we do in Proposition 4.5.3. Secondly, by Lemma 3.2.7 the inter-
section φ(F∗

i , ā) ∩M is equal to the relativisation φ(M, ā) for all M ∈ Fi

above some minimum size, so by Lemma 2.2.7 it suffices to consider the in-
tersection. Thirdly, since C is an exact class, rather than just an asymptotic
class, the measuring functions are determined by the formula and thus it is not
necessary to show that the polynomials given by Proposition 4.5.3 are uniform
in the parameter ā; this point is important because the measuring functions
cannot depend on the parameters. Lastly, the hypothesis of constant parity
and signature in the statement of Proposition 4.5.3 can be satisfied by par-
titioning each Fi into (up to) four subclasses, each with constant parity and
signature.

Remark 4.6.5. Theorem 4.6.4 generalises Theorem 3.8 in [50] and Proposition
4.1 in [21].
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Open questions

In re mathematica ars proponendi quaestionem pluris facienda est quam
solvendi. (In mathematics the art of asking questions is more valuable than
solving problems.)

Georg Cantor

This was the last of the three theses defended by Cantor at his doctoral dispu-
tation at the Humboldt University of Berlin in 1867 [54]. Whether or not the
assertion is true is a matter of debate or perhaps just taste, but the importance
of insightful questions in driving mathematical progress cannot be denied. In
this vein, we pose a number of questions arising from the present work.

In this chapter we refer to the important model-theoretic notions of stability
and (super)simplicity, which we have so far only mentioned in passing. We do
not define these notions, but instead direct the reader to the vast literature on
them, [10], [38] and [58] being good introductions. We also consider the notion
of homogeneity, which is easier to define:

Definition 5.1. An L-structure M is homogeneous if M is countable and
every isomorphism between substructures of M extends to an automorphism
of M.

Note that the word ‘homogeneous’ is overused in mathematics, especially in
model theory. What we call ‘homogeneous’ might be called ‘ultrahomogeneous’
by other authors. See the comment after Definition 2.1.1 in [49].

Fact 5.2. Let L be a finite relational language.

(i) If M is a homogeneous L-structure, then M is ℵ0-categorical.
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(ii) If M is an ℵ0-categorical L-structure, then Th(M) has quantifier elim-
ination if and only if M is homogeneous.

(iii) If M is a stable homogeneous L-structure, then M is ℵ0-stable.

Question 5.3. By Fact 5.2 and Corollary 7.4 in [17], if L is a finite relational
language and M is a stable homogeneous L-structure, then M is smoothly
approximable and thus by Proposition 3.2.1 is elementarily equivalent to an
ultraproduct of a multidimensional exact class. Does the converse hold? That
is, if L is a finite relational language and M is a homogeneous L-structure
that is elementarily equivalent to an ultraproduct of a multidimensional exact
class, then is M necessarily stable?

Recalling Remark 2.3.15, answering this question might shed some light
on the role in Theorem 7.5.6 in [18] of the generic bipartite graph, which is
neither stable nor smoothly approximable.

Question 5.4. Is an infinite ultraproduct of a multidimensional asymptotic
class necessarily simple?

We cannot guarantee supersimplicity: Consider the subclass

C ′ := {(Z/pnZ)n : p is prime and n ∈ N+} ⊂ C,

where C is the class of homocyclic groups in Example 2.3.8. The class C ′ is an
R-mac by Remark 2.1.3(vii), but Theorem 4.4.1 in [25] states that any infinite
ultraproduct of C ′ is stable but not superstable. (Note that a structure is
superstable if and only if it is both stable and supersimple.) This is in contrast
to the context of N -dimensional asymptotic classes, as shown by Corollary
2.8 in [21], which states that any infinite ultraproduct of an N -dimensional
asymptotic class is supersimple of D-rank at most N .

Question 5.5. Macpherson conjectures that if L is a finite relational language
and C is a class of finite L-structures with a bound on the number of 2-types,
then C is a multidimensional asymptotic class. Can we prove this?

This conjectured variation of Theorem 4.6.4 is based on the work in [35], [48]
and [18], as discussed in Remark 4.4.3. The change from exact classes to
asymptotic classes is due to the potential emergence of finite fields, which form
only an asymptotic class, not an exact class. We sketch an example: Consider
the projective special linear group PSL3(q). This acts on PG2(q), the set of
1-spaces of F3

q, via its action on F3
q. The action is 2-transitive, i.e. for any two

pairs (a, b), (c, d) ∈ PG2(q) with a ̸= b and c ̸= d there exists g ∈ PSL3(q) such
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that g(a, b) = (c, d). Moreover, the action also preserves the ternary relation of
collinearity; that is, if three 1-spaces lie in a 2-space, then their images also lie
in a 2-space. So elements of PSL3(q) are automorphisms of PG2(q) and thus,
by 2-transitivity, there is only one 2-type in PG2(q). Now consider PG2(q) as
a structure with the ternary collinearity relation. In this structure one can
interpret the set of 2-spaces and hence the projective plane, namely the set of
1-spaces, the set of 2-spaces and an incidence relation between them, given by
containment. The projective plane is Desarguesian and so by a classical result
the field is uniformly parameter-interpretable in the projective plane (see pp.
222–223 of [31]).

The following weaker conjecture of Macpherson should be easier to prove:
If L is a finite relational language and C is a class of finite L-structures with a
bound on the number of 3-types such that the automorphism group is primitive
for cofinitely many structures in C, then C is a multidimensional asymptotic
class, where by ‘primitive’ we mean that the group acts transitively and pre-
serves no proper non-trivial partition.

Question 5.6. How does the work of Bello Aguirre on finite residue rings
in [6] and [7] generalise to R-macs?

Bello Aguirre has shown that for any l ∈ N+ the class {(Z/plZ) : p prime}
is an l-dimensional asymptotic class in the language of rings. He does this by
coordinatising each (Z/plZ) by (Z/pZ) and an asymptotic fragment, a notion
he developed for this purpose, and then applying Theorem 1.1.1. Using the
method of disjoint unions employed in the proof of Example 2.3.6, his result
thus shows that for any l1, . . . , lk ∈ N+ the class {(Z/pl1Z)⊕ · · · ⊕ (Z/plkZ) :
p1, . . . , pk prime} is a multidimensional asymptotic class in the language of
rings adjoined with a unary predicate for each part of the direct sum. His
notions of coordinatisation and asymptotic fragments appear to generalise to
multidimensional asymptotic classes, which he and the present author hope to
prove.

The following two questions were suggested to the present author by Ivan
Tomašić.

Question 5.7. What is the relationship between the work of Krajíček, Scanlon
and others on Euler characteristics and R-macs and R-mecs? [42], [57], [41],
[56], [59]

The notion of a generalised measurable structure, as developed in [2], also
appears to be related, but a thorough investigation has yet to be carried out.
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Question 5.8. What are the interactions between polynomial exact classes
and varieties with a polynomial number of points over finite fields?

The work of Brion and Peyre in [8] would be a good starting point for
research into this question, as it suggests that algebraic varieties homogeneous
under a linear algebraic group may provide a generic example of a polynomial
exact class.
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Appendix A

Little-o exchange

Lemma A.1. Let f, g : R→R. If |f(x)−g(x)|= o(g(x)), then |f(x)−g(x)|=
o(f(x)).

Proof. By way of contradiction, suppose that |f(x)− g(x)| ̸= o(f(x)). Then
there exists ε0 > 0 such that for every δ > 0 there exists x > δ such that
|f(x)− g(x)| > ε0|f(x)|. Now, since |f(x)− g(x)| = o(g(x)), for every ε >

0 there exists δ > 0 such that |f(x)− g(x)| ≤ ε|g(x)| for all x > δ. So, in
particular, for every n ∈ N+ we can find δn such that |f(x)− g(x)| ≤ ε0

n
|g(x)|

for all x > δn. Since |f(x)− g(x)| ≠ o(f(x)), for every n ∈ N+ we can find
xn > δn such that |f(xn)− g(xn)|> ε0|f(xn)|. So we have

ε0|f(xn)|< |f(xn)− g(xn)| ≤
ε0|g(xn)|

n
(A.1)

for every n ∈ N+. Multiplying by 1
ε0|g(xn)| yields

|f(xn)|
|g(xn)|

<
|f(xn)− g(xn)|

ε0|g(xn)|
≤ 1

n
.

(We haven’t divided by zero because (A.1) implies |g(xn)|> 0.) Thus |f(xn)|
|g(xn)| → 0

and |f(xn)−g(xn)|
|g(xn)| → 0 and hence

|f(xn)|
|g(xn)|

+
|f(xn)− g(xn)|

|g(xn)|
→ 0+0 = 0. (A.2)

But |g(xn)| − |f(xn)| ≤ |f(xn)− g(xn)| by the triangle inequality and so

1 =
|f(xn)|
|g(xn)|

+
|g(xn)| − |f(xn)|

|g(xn)|
≤ |f(xn)|

|g(xn)|
+

|f(xn)− g(xn)|
|g(xn)|

,

which contradicts the limit in (A.2).
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Remark A.2. For simplicity I have stated the lemma in terms of functions
from R to R, rather than in terms of the functions in the proof of Proposi-
tion 2.4.6(i), which is where little-o exchange is used. However, the lemma
and its proof can be straightforwardly adapted by taking the domain of both
f and g to be C (partially ordered by size) and the codomain to be R≥0.
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The Ryll-Nardzewski Theorem

In this appendix we discuss types, orbits and the Ryll-Nardzewski Theorem.1

Our goal is to explain how this theorem is used in § 3.2 and in the proof of
Proposition 4.5.3. Our treatment will be succinct and most proofs will be
omitted or only sketched, as the material is well established in the model-
theoretic literature, e.g. § 1.3 of [23], § 5 of [36], § 4.4 of [53] and § 4.3 of [58].

Definition B.1. An L-theory T is ℵ0-categorical 2 if T has exactly one count-
able model up to isomorphism. An L-structure M is ℵ0-categorical if Th(M)

is ℵ0-categorical.

There are many equivalent ways of stating the Ryll-Nardzewski Theorem.
We use Theorem 4.3.1 in [58]:

Definition B.2. Let T be an L-theory. Two L-formulas φ(x1, . . . , xn) and
ψ(x1, . . . , xn) are equivalent in T if ∀x1 . . . ∀xn (φ(x1, . . . , xn)↔ψ(x1, . . . , xn))∈
T . Note that the terminology equivalent modulo T is also used.

Theorem B.3 (Ryll-Nardzewski). Let T be a countable L-theory. Then T

is ℵ0-categorical if and only if for every n ∈ N there are only finitely many
L-formulas φ(x1, . . . , xn) up to equivalence in T .

One can use this result to prove a number of equivalences to ℵ0-categoricity
(Corollary B.5 below), but we first state several prerequisite definitions:

1 The theorem is sometimes called the ‘Engeler–Ryll-Nardzewski–Svenonius Theorem’,
since each author independently published a characterisation of countable ℵ0-categorical
theories in 1959; see p. 541 of [27] or Theorem 7.3.1 in [31]. We will use the term ‘Ryll-
Nardzewski Theorem’ for brevity and to follow the theorem’s most common name in the
literature.

2 The terms ‘ℵ0-categorical’ and ‘ω-categorical’ are used completely synonymously by
many model theorists (no doubt to many other logicians’ frustration).
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Definition B.4. Let T be an L-theory and M an L-structure.

(i) Let Ψ be a set of L-formulas in free variables x1, . . . , xn. Define x̄ :=

(x1, . . . , xn). Ψ is satisfiable if there exist an L-structure M and ā ∈Mn

such that M |= ψ(ā) for every ψ(x̄) ∈Ψ. For a given L-structure M, Ψ
is satisfiable in M if there exists ā ∈Mn such that M |= ψ(ā) for every
ψ(x̄) ∈ Ψ. Ψ is finitely satisfiable (in M) if every finite subset of Ψ is
satisfiable (in M).

Recall that the compactness theorem states that satisfiable and finitely
satisfiable are equivalent and that the completeness theorem states that
satisfiable and consistent (= no contradiction can be derived in a formal
proof system) are equivalent.

(ii) An n-type in T is a finitely satisfiable set p of L-formulas with free vari-
ables among x1, . . . , xn such that the following two conditions hold: (1)
T ⊆ p; and (2) for every L-formula φ(x1, . . . , xn), either φ(x1, . . . , xn)∈ p
or ¬φ(x1, . . . , xn) ∈ p. We call condition (2) maximal consistency. For
A ⊆ M , an n-type over A in M, or just an n-type in M if A = ∅,
is an n-type in the LA-theory Th(M, a)a∈A. Note that we often write
p(x1, . . . , xn) or p(x̄) to emphasise the free variables and that we may
sometimes omit the prefix n, writing only type, if n is understood. The
suffixes in T , over A and in M may also be omitted.

Claim. An n-type over A in M is finitely satisfiable if and only if it is
finitely satisfiable in M.
Proof. The right-to-left direction is immediate. We prove the contrapos-
itive of the left-to-right direction: Suppose that an n-type p(x̄) over A
in M is not finitely satisfiable in M. Then there exists a finite subset
{ψ1(x̄), . . . , ψk(x̄)} ⊂ p such that for every ā ∈Mn, M |= ¬

∧
i ψi(ā). So

¬∃x̄
∧

i ψi(x̄) ∈Th(M, a)a∈A. Thus, since Th(M, a)a∈A ⊂ p, {ψ1(x̄), . . . ,

ψk(x̄),¬∃x̄
∧

i ψi(x̄)} is a finite subset of p that is not satisfiable.

(iii) Sn(T ) denotes the set of all n-types in T .

(iv) If A⊆M and c̄ ∈Mn, then the type of c̄ over A in M is the set

tpM(c̄/A) := {ψ(x̄) : ψ(x̄) is an LA-formula and M |= ψ(c̄)},

which is straightforwardly shown to be an n-type. If A = ∅, then we
may write tpM(c̄) and refer to this type as the type of c̄ in M. We may
drop the suffix in M and use the notation tp(c̄/A) if M is understood.
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(v) An n-type p(x̄) is realised in M if there exists c̄∈Mn such that M|= p(c̄),
i.e. M|=φ(c̄) for every φ(x̄)∈ p(x̄). We say that such a tuple c̄ realises p
and write c̄ |= p. We call p(Mn) := {c̄∈Mn : c̄ |= p} the set of realisations
of p in M or the locus of p in M.3 The suffix in M may be omitted if
M is understood. If a type p is not realised in M, then we say that M
omits p.

Claim. Let p(x̄) be a type over A in M. If b̄ |= p, then p(x̄) = tp(b̄/A).

Proof. Let ψ(x̄) ∈ p(x̄). Since b̄ |= p, M |= ψ(b̄) and so ψ(x̄) ∈ tp(b̄/A).
Thus p(x̄) ⊆ tp(b̄/A). Hence p(x̄) = tp(b̄/A), since p is maximally con-
sistent.

(vi) M is κ-saturated if for every A ⊆M with |A| < κ, every n-type over A
is realised in M. M is saturated if M is |M |-saturated.

(vii) An L-formula χ(x̄) isolates a type p(x̄) in T if for every L-formula ψ(x̄),
ψ(x̄) ∈ p(x̄) if and only if ∀x̄ (χ(x̄) → ψ(x̄)) ∈ T . We say that p(x̄) is
isolated if such an L-formula exists. Note that if χ(x̄) isolates p(x̄), then
χ(x̄) ∈ p(x̄).

(viii) Aut(M) denotes the group of automorphisms of M, where the group
operation is composition. For each n ∈ N+ define a binary relation ∼n

on Mn by ā ∼n b̄ if and only if there exists σ ∈ Aut(M) such that
σ(ā) = b̄; this is an equivalence relation on Mn and we call the resulting
equivalence classes orbits. Aut(M) acts oligomorphically on M if for
every n ∈ N+, Aut(M) has only finitely many orbits on Mn.

For A⊆M we define two subsets of Aut(M):

• Aut(M/A) := {σ ∈ Aut(M) : σ(a) = a for all a ∈ A}; and

• Aut{A}(M) := {σ ∈ Aut(M) : σ(A) = A},

where σ(A) denotes the image of A under σ. So Aut(M/A) is the
set of automorphisms that fix A pointwise and Aut{A}(M) is the set
of automorphisms that fix A setwise. Note that both Aut(M/A) and
Aut{A}(M) are subgroups of Aut(M).

3 On page 18 of [18] the locus of an element a ∈ M over a set B ⊆ M is defined to be
the smallest B-definable subset of M containing a. In the present context of ℵ0-categoricity
the two definitions are equivalent – for finite B, which is the case that we’re concerned with
– since tpM(a/B) is isolated and thus its set of realisations in M is B-definable. Note that
we are using the fact that adding a finite number of parameters preserves ℵ0-categoricity
(Corollary 4.3.7 in [58]).
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Corollary B.5. Let L be a countable language, M a countable L-structure
and T := Th(M). Then the following are equivalent:

(i) T is ℵ0-categorical.

(ii) Sn(T ) is finite for every n ∈ N.

(iii) For every n ∈ N, M realises only finitely many n-types in T .

(iv) All types in T are isolated.

(v) Aut(M) acts oligomorphically on M.

Furthermore, (i) implies that M is saturated, although the converse does not
hold in general.

Remark B.6. Since we make extensive use of Corollary B.5(v), especially in
§3.2, we outline the key idea: It follows from the definition of an isomorphism
that in any L-structure M, if ā and b̄ lie in the same Aut(M/A)-orbit, then
tp(ā/A) = tp(b̄/A). If M is saturated (and |A|< |M |), then the converse also
holds (Propositions 4.2.13 and 4.3.3 in [53]). Thus in a saturated L-structure
types and orbits are in natural bijection. Saturation follows from Theorem B.3:
Consider an n-type p(x̄) in a countable ℵ0-categorical L-structure M. By
Theorem B.3 there are only a finite number of inequivalent L-formulas in p(x̄),
say ψ1(x̄), . . . , ψk(x̄). Since types are finitely satisfiable, there exists ā ∈Mn

such that M |=
∧

i ψi(ā). Thus, since every L-formula in p(x̄) is equivalent to
one of the ψi(x̄), ā |= p.

We will now justify the claim made in the proof of Proposition 4.5.3, namely
that since the structure M is Lie coordinatised and hence by Fact 4.1.12 is
ℵ0-categorical, we may assume without loss of generality that the Lā-formula
φ(x, ā) defines the locus of a 1-type over ā in M. (We’re abusing notation
here by conflating {ā} and ā.)

Let p1(x, ȳ), . . . , pk(x, ȳ) be the (1 +m)-types in M that contain the L-
formula φ(x, ȳ); there are only finitely many by Corollary B.5(ii). Let χ1(x, ȳ),

. . . , χk(x, ȳ) be the L-formulas that isolate these types, which exist by Corol-
lary B.5(iv).

Lemma B.7. Let ā ∈Mm. Then φ(M, ā) = χ1(M, ā)∪ · · · ∪χk(M, ā). Fur-
thermore, the union is disjoint: If i ̸= j, then χi(M, ā)∩χj(M, ā) =∅.
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Proof. We first show that χ1(M, ā) ∪ · · · ∪ χk(M, ā) ⊆ φ(M, ā). So let b ∈
χ1(M, ā)∪ · · · ∪χk(M, ā). Then M|= χi(b, ā) for some i. Thus M|= φ(b, ā),
since φ(x, ȳ) ∈ pi(x, ȳ) and χi(x, ȳ) isolates pi(x, ȳ). So b ∈ φ(M, ā).

We now show that φ(M, ā)⊆χ1(M, ā)∪· · ·∪χk(M, ā). So let b∈φ(M, ā).
Then M|= φ(b, ā) and so φ(x, ȳ)∈ tp(b, ā). Thus tp(b, ā) = pi(x, ȳ) for some i.
Hence M|= χi(b, ā), since χi(x, ȳ)∈ pi(x, ȳ). So b∈ χ1(M, ā)∪· · ·∪χk(M, ā).

Finally, we show that the union is disjoint. We prove the contrapositive.
So suppose that there exists b∈ χi(M, ā)∩χj(M, ā). Then (b, ā) realises both
pi(x, ȳ) and pj(x, ȳ), since χi(x, ȳ) and χj(x, ȳ) isolate these types. Hence
pi(x, ȳ) = tp(b, ā) = pj(x, ȳ) and so i= j.

This lemma partly justifies the claim: To prove that Proposition 4.5.3 holds
for φ(x, ā), it suffices to prove that it holds for each χi(x, ā), since for every
ā ∈Mm we have

|φ(M, ā)|= |χ1(M, ā)|+ · · ·+ |χk(M, ā)|.

It remains to show that each χi(x, ā) defines the locus of a 1-type over ā:

Lemma B.8. Let ā ∈Mm and suppose that χi(M, ā) ̸= ∅. Then pi(x, ā) :=

{ψ(x, ā) : ψ(x, ȳ)∈ pi(x, ȳ)} is a 1-type over ā in M and is isolated by χi(x, ā).

Proof. We first show that pi(x, ā) is finitely satisfiable. Since χi(M, ā) ̸= ∅,
there exists b∈M such that M|=χi(b, ā). Thus, since χi(x, ȳ) isolates pi(x, ȳ),
(b, ā) |= pi(x, ȳ) and so pi(x, ȳ) = tp(b, ā). Thus b satisfies every formula in
pi(x, ā) and so a fortiori pi(x, ā) is finitely satisfiable.

We now show that Th(M, ā) ⊂ pi(x, ā). This follows from the previous
paragraph: Let σ(ā) ∈ Th(M, ā). Then σ(ȳ) ∈ tp(b, ā) = pi(x, ȳ) and hence
σ(ā) ∈ pi(x, ā).

To prove that pi(x, ā) is a type, it remains to show that pi(x, ā) is maxi-
mally consistent. So consider an arbitrary Lā-formula ψ(x, ā). Since pi(x, ȳ)
is maximally consistent, either ψ(x, ȳ) ∈ pi(x, ȳ) or ¬ψ(x, ȳ) ∈ pi(x, ȳ). Thus,
by the definition of pi(x, ā), either ψ(x, ā) ∈ pi(x, ā) or ¬ψ(x, ā) ∈ pi(x, ā), as
required.

Finally, we show that χi(x, ā) isolates pi(x, ā). Since χi(x, ȳ) isolates pi(x, ȳ),

ψ(x, ȳ) ∈ pi(x, ȳ) ⇐⇒ M |= ∀x∀ȳ (χi(x, ȳ)→ ψ(x, ȳ)). (B.1)

We want to prove that ψ(x, ā) ∈ pi(x, ā) if and only if M |= ∀x (χi(x, ā) →
ψ(x, ā)).
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First suppose that ψ(x, ā) ∈ pi(x, ā). Then ψ(x, ȳ) ∈ pi(x, ȳ), since pi(x, ȳ)
and pi(x, ā) are types (if ¬ψ(x, ȳ) ∈ pi(x, ȳ), then ¬ψ(x, ā) ∈ pi(x, ā), a con-
tradiction). Hence, by applying (B.1) to the case ȳ = ā, we have M |=
∀x (χi(x, ā)→ ψ(x, ā)).

Now suppose that M |= ∀x (χi(x, ā) → ψ(x, ā)). For a contradiction, fur-
ther suppose that ψ(x, ā) ̸∈ pi(x, ā). Then ¬ψ(x, ā) ∈ pi(x, ā), since pi(x, ā)
is maximally consistent. Hence ¬ψ(x, ȳ) ∈ pi(x, ȳ) (by the argument given
in the previous paragraph) and so M |= ∀x∀ȳ (χi(x, ȳ)→¬ψ(x, ȳ)) by (B.1).
So in particular M |= ∀x (χi(x, ā) → ¬ψ(x, ā)). But M |= χi(b, ā) and thus
M |= ψ(b, ā)∧¬ψ(b, ā), a contradiction.
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