
Implementing quantum algorithms using classical electrical

circuits: Deutsch, Deutsch-Jozsa and Grover

Charles Peter Pentland Dyson

M.Sc. (by research)

University of York

Department of Mathematics

March 2011

1

Abstract

We develop the means to implement Deutsch’s algorithm, the Deutsch-Jozsa algorithm

and Grover’s algorithm using electronic circuits, and review previous attempts to implement

quantum algorithms classically. We attempt to demonstrate that these are not fundamen-

tally quantum algorithms, but merely algorithms that scale exceptionally well on quantum

computers. Finally, we discuss a prototype design for an electrical Hadamard gate and

report experimental results.

Contents

1 Introduction 4

2 Digital computers 4

3 Quantum computation 5

3.1 Qubits and states . 5
3.2 States and linear algebra . 5
3.3 Gates . 6
3.4 The Hadamard gate . 7
3.5 Oracles . 7

4 Deutsch’s algorithm 7

5 Real quantum mechanics 9

6 An electrical implementation of the Deutsch algorithm 9

6.1 The Hadamard gate . 10
6.2 Implementing the algorithm . 11
6.3 Deutsch’s algorithm – electrical implementation 13
6.4 Determining f . 13
6.5 Discussion . 14
6.6 Existing work . 14

7 The Deutsch-Jozsa algorithm and scaling 16

7.1 The Deutsch-Jozsa algorithm . 16
7.2 The electrical implementation . 17
7.3 Existing work . 17
7.4 Scaling behaviour . 17
7.5 The Deutsch-Jozsa algorithm without Hadamard gates 18
7.6 The Deutsch algorithm without Hadamard gates 18

8 Grover’s algorithm 20

8.1 The electrical implementation . 21
8.2 Discussion . 22

9 Conclusion 22

2

A Op-amps 23

A.1 The inverting amplifier . 23
A.2 Summing gates . 24
A.3 Practicalities . 25

B A prototype Hadamard gate 25

B.1 The power supply . 25
B.2 The implementation . 26

C Experimental results 26

References 28

Acknowledgements

The author wishes to thank Dr Stefan Weigert, Dr Chris Fewster and Prof Paul Busch for patient
guidance and support.

Declaration

None of the following has been presented by the author in a previous submission.

3

1 Introduction

Quantum computation is the art of using quantum mechanics to perform computational tasks,
a task made difficult by the eccentricities of the quantum world. Despite this, a number of
examples of quantum algorithms exist, that appear to exhibit reduced computational complexity
– and thus are faster than – their classical equivalents.

The prototypical example is the Deutsch algorithm [4]. It is perhaps the simplest algorithm
demonstrating such a quality. Here, we are given one of the four possible functions f : Z2 → Z2,
without being told which one, and we must compute f(0) + f(1) mod 2 without explicitly
computing either value of f(·). This is made possible not by the collapse of a wavefunction
(no such collapse occurs), nor the use of complex coefficients (they are not present), but by
superposition alone.

Classical computation is generally performed on digital computers, in a world of sharply-
defined 0s and 1s, that may permit crude parallelism (by having more than one processing unit),
but lack the capacity for true superposition of states.

We propose the following: the Deutsch algorithm depends only on facilities afforded by
analogue computation; no quantum-mechanical phenomena are required to realise it, and that
there are forms of analogue computation that afford an effective alternative to the use of quantum-
mechanical superposition.

We present an electrical implementation of Deutsch’s algorithm, and generalise it to the
Deutsch-Jozsa algorithm [5]. We then show that both algorithms may be greatly simplified when
the stringencies of quantum mechanics are withdrawn, and indeed that more information may
be ascertained than the quantum implementation permits. We also consider the work of Calude
et al. [3, 1, 2] at ‘dequantising’ these two algorithms.

Finally, we turn our attention to Grover’s algorithm [6], commonly known as the quantum
search algorithm, and show that without quantum restrictions, it requires only a single iteration
to deliver the required result, rather than O(2

n
2) iterations.

2 Digital computers

We begin, for later comparison, with a summary of the properties of digital computer.
A bit is an element of the set Z2 = {0, 1}. A digital computer is a device acting on a state

space S = Z2
×N , for a fixed natural number N – i.e. the set of all sequences of 0s and 1s of

length N . A computer is provided with an initial state sin ∈ S, which it then passes through a
series of transformations, known as gates. The result is known as the output state: sout ∈ S.

A gate is any map S → S. There are no restrictions; in particular gates need not be reversible.
For example, let us fix N = 4 and let a, b, c, d be elements of Z2. An AND gate acting on the
second and third bits, could then be any one of� (a, b, c, d) 7→ (a, b AND c,X, d)� (a, b, c, d) 7→ (a,X, b AND c, d)� (a, b, c, d) 7→ (a, b AND c, b AND c, d)

for X either 0 or 1. Notice we have a choice as to where to store the result and what to put in
the new, spare bit.

Another example that we will revisit frequently, is the controlled-NOT gate (a, b) 7→ (a, a⊕b),
where by ⊕ we denote addition modulo 2.

4

We assume that no information is lost by reading the output state (or indeed any intermediate
state between gates), however the gates themselves may lose information, e.g. the trivial gate
S ∋ s 7→ (0, . . . , 0).

Example We represent the integers 0 to N − 1 in binary with elements in S, with the left-
most bit most significant – e.g. (1, 0, 0, . . . , 0) ∼ 2N−1. Fix N . Define the right-shift gate by
(aN , aN−1, . . . , a1) 7→ (0, aN , aN−1, . . . , a2). This gate then divides its input by two, ignoring
any remainder. For example, the number 23 undergoes the mapping

(1, 0, 1, 1, 1) 7→ (0, 1, 0, 1, 1), (1)

which is 11. Note that the outcome is deterministic, and that information is lost in exactly half
of all cases.

3 Quantum computation

Having discussed the fundamental elements of digital computation, we recall the elements of
quantum computation, drawing comparison appropriately.

3.1 Qubits and states

Just as bits are the building blocks of digital computers, so quantum bits – qubits – are the
building blocks of quantum computers. A qubit may be in a state |0〉, |1〉, or in any complex
linear combination of the two: α|0〉+β|1〉. Qubits enjoy a continuum of possible states, compared
to just two for ordinary bits.

The state space of an N -qubit quantum computer consists of the set of possible tensor prod-
ucts of N qubit states. For example, the state of a two qubit quantum computer is a complex
linear combination of the states |0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉, |1〉 ⊗ |1〉.

As a shorthand we write |0〉 ⊗ |1〉 as |0〉|1〉 or even |01〉. When we write |x〉, for a natural
number x, we understand |x〉 to be the tensor product of the binary expansion of x – e.g. for
x = 5 we would have |101〉. This convention does not apply to Greek letters.

States |x〉 are called computational basis states ; all other states are linear combinations of
these and are called superposition states; these may be written as |ψ〉 =

∑

x αx|x〉 where x is
taken to be the binary representation of the integers 0 to 2N − 1. The state space carries an
inner product structure: let |ψ〉 = ∑

x αx|x〉 and |ϕ〉 = ∑

x βx|x〉, then 〈ψ|ϕ〉 = ∑

x α
∗
xβx.

States cannot be directly observed in general. Instead, the state |ψ〉 = ∑

x αx|x〉 collapses to
|x〉 with probability |αx|2/〈ψ|ψ〉, when performing a measurement in the computational basis.

The states |ψ〉 and λ|ψ〉 for λ ∈ C and λ 6= 0 are said to be physically equivalent because the
probabilities of the different outcomes are identical. We demand states be normalised – it is not
physically meaningful to allow their moduli to vary. We thus stipulate that any state |ψ〉 must
satisfy 〈ψ|ψ〉 = 1. If a general state is written |ψ〉 = ∑

x αx|x〉, then we require
∑

x |αx|2 = 1.

3.2 States and linear algebra

We may represent the state |ψ〉 of an N -qubit quantum computer with an element ψ ∈ C2N called
a state vector. For example the state α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉 could be represented

5

as (α00, α01, α10, α11)
T. In particular, the computational basis is represented as

|0〉 ∼
(
1
0

)

, (2a)

|1〉 ∼
(
0
1

)

. (2b)

We freely associate ψ with |ψ〉 from now on. The inner product in this representation is just the

standard inner product on C2N – i.e. (ψ, ϕ) = ψ†ϕ.

3.3 Gates

For an N -qubit quantum computer, a gate U is a bijection on the state space that preserves
inner product: 〈Uψ|Uψ′〉 = 〈ψ|ψ′〉. They are most easily defined by reference to state vectors:

in this way they are represented by endomorphisms on C2N – i.e. unitary matrices.
As a consequence, all gates are reversible. Digital gates such as AND, OR and the bitshift

operator are thus not permitted. This is a limitation, but as we will see, it is outweighed by the
capacity to turn computational states in to superposition states and back again.

The simplest example of a quantum gate is the identity gate: |ψ〉 7→ |ψ〉. An example familiar
from the digital world is the quantum-NOT gate T : |0〉 7→ |1〉, |1〉 7→ |0〉. This is also written
as |x〉 7→ |¬x〉, where ¬ is the classical NOT operation. In state-vector notation, also known as
matrix -notation, this is written as the matrix

T =

[
0 1
1 0

]

. (3)

The controlled-NOT gate can be redefined to act on quantum states as |ab〉 7→ |a〉|a⊕ b〉 for
a, b ∈ Z2 or explicitly as:

|00〉 7→ |00〉; (4a)

|01〉 7→ |01〉; (4b)

|10〉 7→ |11〉; (4c)

|11〉 7→ |10〉. (4d)

In matrix form this is:

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

. (5)

Clearly for M ≤ N we can embed M -qubit gates into N -qubit computers by choosing which
qubits to operate on. For example we can perform the controlled-NOT on a three-qubit computer
by sending |abc〉 7→ |a〉|a ⊕ b〉|c〉. Here we would say the first qubit is the source or control and
the second qubit the target, while the third passes through unchanged.

We may combine N - and N ′-qubit gates in to an (N + N ′)-qubit gate by taking the tensor
product. For example, the gate T ⊗ I would act as |0〉|a〉 7→ |1〉|a〉, |1〉|a〉 7→ |0〉|a〉 for a ∈ Z2.
The matrix for such a gate is of course just the matrix tensor product, also written T ⊗ I.

Gates may of equal dimension may be chained together. Just as in matrix multiplication and
function composition, the order in which gates appear is the reverse of the order of execution.
For example, consider the composition of the controlled-NOT followed by a quantum-NOT on

6

the second qubit, given by ψ 7→ T2Cψ, where C is the matrix specified in (5) and T2 is given by

I ⊗
[
0 1
1 0

]

. Intuitively, we might expect that this is equivalent to doing a quantum-NOT on the

first qubit, and then performing a controlled-NOT, and this conclusion is borne out by explicitly
computing the matrix products.

We refer to a finite, predetermined sequence of quantum gates as a quantum circuit. We refer
to the state to which this sequence is applied as the initial state and the resulting state as the
final state or output state.

3.4 The Hadamard gate

This is one of the vital ingredients in quantum computation. Acting on one qubit, it sends

|0〉 7→ |+〉 := (|0〉+ |1〉)/
√
2, (6)

|1〉 7→ |−〉 := (|0〉 − |1〉)/
√
2. (7)

It may therefore be written out in the computational basis as the matrix

H =
1√
2

[
1 1
1 −1

]

. (8)

We note that H = H†, thus since all gates are unitary we have H2 = I. This gate sends
computational states to superpositions and back again, paving the way for apparent parallel
computation.

3.5 Oracles

An oracle, sometimes known as a black box, is a gate of known size but unknown specification,
that may be subject to one or more known rules.

Example 1 Let F be the set of four functions Z2 → Z2, and in particular write fij for the
element of that set with fij(0) = i and fij(1) = j.

Let Uf for f ∈ F be a quantum gate acting on two qubits, that acts as |x, y〉 7→ |x, y⊕ f(x)〉.
We write Uij as a shorthand for Ufij . It is clear that U00 = I (the identity), U01 is the controlled-
NOT, U10 is the controlled-NOT with the qubits swapped and U11 is |x, y〉 7→ |x,¬y〉, where ¬
is the classical NOT operation. We could also write this as U11 = I ⊗ T .

It easily shown [9] that for any of the Uij , we have

Uij

[|00〉+ |10〉√
2

]

=
|0〉|f(0)〉+ |0〉|f(1)〉√

2
. (9)

So each oracle U can produce a state containing the complete description of the f from which
it is determined. If were able to observe such a state, we would know which f had been chosen.
If we were to measure it, it would collapse immediately to either |00〉 or |01〉, which would rule
out some of the possible values of f , but not conclusively determine it.

4 Deutsch’s algorithm

Deutsch’s algorithm, and its extension – the Deutsch-Jozsa algorithm – are regarded as the
prototypical examples that demonstrate that quantum information is in some way faster than
classical computation [4, 5, 9]. We begin with a review of the problem Deutsch’s algorithm solves:

7

� As before, let F be the set of four functions Z2 → Z2, and denote by fij the element of
that set with fij(0) = i and fij(1) = j.� Alice selects an f ∈ F , and gives Bob an oracle that that implements the chosen f , without
telling Bob which f was selected. For example, this could be a calculator-like device with
two buttons: ‘show f(0)’ and ‘show f(1)’.� Bob must compute f(0)⊕ f(1) where, as before, we use ⊕ to mean addition modulo 2. We
say f is balanced if f(0) 6= f(1) and constant otherwise.

A classical digital solution is obvious: Bob uses the oracle to extract f(0), then uses it again to
extract f(1), then determines f(0)⊕ f(1). We say ‘determines’ rather than ‘computes’, because
it is quite reasonable to assume that the four possible outcomes of f(0)⊕ f(1) are known to Bob
in advance. This requires two invocations of the oracle in all.

The quantum-mechanical solution – Deutsch’s algorithm – requires only a single invocation
of the oracle:� Alice selects an f ∈ F as before, and gives Bob the corresponding quantum oracle Uf as

defined in Example 1.� Bob constructs a quantum computer by chaining together Uf with two other gates in the
following order

H ⊗H → Uf → H ⊗ I, (10)

and sets its initial state |ψin〉 to |01〉.� The output may then be shown to be one of the two physically-equivalent states

|ψout〉 = ± 1√
2
|f(0)⊕ f(1)〉(|0〉 − |1〉). (11)� A measurement is then performed on the first qubit, which collapses to |f(0)⊕ f(1)〉, thus

delivering the sought result.

Qualitatively: both input qubits |0〉 and |1〉 are symmetrised with Hadamard gates, sent
through Uf , then the first qubit is sent through another Hadamard gate. From the measurement,
we obtain a global property of f , which in the classical digital case would require two separate
evaluations of the function. Alternatively: Bob determines which Uf Alice used with a single
invocation, rather than two: both f(0) and f(1) appear to have been evaluated simultaneously
during the execution of the algorithm. It is in this sense that Deutsch’s algorithm is said to be
faster than its classical equivalent.

Unlike some other quantum algorithms, we notice that the full capabilities of the quantum-
mechanical arsenal do not appear to be employed. In particular, at no stage were complex
numbers used. Further, the measurement of the first qubit (the only one to carry useful infor-
mation) is entirely deterministic: it has already attained its final state when measurement is
performed.

What lends the algorithm its ability to know simultaneously both values of f(·) (even though
it can only produce a global property of them, not the individual values) is the power of super-
position.

Since superposition is not unique to quantum mechanics, we seek other systems within which
Deutsch’s algorithm may be implemented.

8

5 Real quantum mechanics

We simplify the task of finding alternative implementations of Deutsch’s algorithm by dispensing
with complex numbers. We note that Deutsch’s algorithm is not unique in not natively requiring
complex numbers – Grover’s algorithm in particular makes no use of them.1

Henceforth, if a qubit is in a state that may be expressed as a real linear combination of |0〉
and |1〉, we call it a rebit. A state with real coefficients of all the |x〉 we call a real state and we
will write e.g. |ψ] to distinguish such states. Thus in particular we might decompose a state as
|ψ] =

∑

x αx |x], where each αx ∈ R. The coefficients might instead be written αx = [x|ψ] as we
effectively inherit a real inner product.

We also inherit all the machinery of quantum gates, which retain their definition but now
act on a real state space. In the state vector representation, they are real orthogonal matrices,
rather than Hermitian as before.

6 An electrical implementation of the Deutsch algorithm

Since Deutsch’s algorithm requires no complex numbers, it can be implemented using two rebits.
At each stage of the calculation – initial, in between each pair of gates and final – the state may
be written

|Ψ] = [00|Ψ] |00] + [01|Ψ] |01] + [10|Ψ] |10] + [11|Ψ] |11] (12)

If we were to simulate or mentally compute the algorithm, we would need to keep track of four
real numbers [x|ψ] at each stage in the calculation, for each x.

It is possible to represent these four real numbers with voltages, and to model their changes
by passing current through electric circuits. We refer to each coefficient as a wire or line in an
electrical context, and make the following physical assumptions:

1. All circuits used share a common electromotive supply Vsup±. This supply exceeds the
maximum voltage that might be needed to represent a coefficient at any point in the
system.

2. Voltages may be measured without influencing the system significantly.

3. There exist analogue summing gates Σ, that take two or more wires as inputs and output
one wire, with voltage set to the algebraic sum of the input voltages. Their operation is
entirely linear and they draw a negligible amount of current.

4. There exist analogue multiplicative gates that take one wire of voltage V and output a
voltage λV for fixed λ ∈ [−1, 1]. In particular we call the gate with λ = −1 the analogue-
NOT gate. If 0 < λ < 1 then we call the gate an attenuating gate.

5. Both summing and multiplicative gates are able to source a reasonable amount of current
without inducing any detectable voltage drop.

Note that a multiplicative gate is not a quantum-mechanical gate: it acts on a single wire
(not a state), and cannot be represented by a unitary matrix. In particular, the analogue-NOT
gate is to be distinguished from the quantum-NOT gate.

All of these assumptions are physically realistic, and implementation details are given in
Appendix A.

1It is actually very easy to remove complex numbers from algorithms that really do employ them, by simply
adding an ancillary qubit effectively take the place of i – see [11].

9

By way of notation, we represent multiplicative gates by a rounded box encircling the multi-
plication factor:

Figure 1

Summing gates are represented by an encircled Σ:

Figure 2

As a special case, we represent gates that multiply by a factor of −1 by a small circle on
another gate’s input. This is analogous with the convention in digital circuitry for representing
digital negation:

Figure 3

6.1 The Hadamard gate

In this context, a real Hadamard acting on a wavefunction H : |ψ] 7→ |ψ′] is merely a map
between voltages representing the two numbers [0|ψ] and [1|ψ] – the map in question is:

[0|ψ] 7→ ([0|ψ] + [1|ψ]) /
√
2 = [0|ψ′] , (13a)

[1|ψ] 7→ ([0|ψ]− [1|ψ]) /
√
2 = [1|ψ′] . (13b)

This is readily implemented as a circuit:

Figure 4

The circuit is to be read left-to right. [0|ψ] and [1|ψ] are the two inputs while [0|ψ′] and [0|ψ′]
are the outputs. It is worth recalling the convention that wires meeting at a cross intersection
do not represent an electrical connection between the two.

The following is then clear:

10

� Setting the input [0|ψ] = 1, [1|ψ] = 0 yields the expected result [0|ψ′] = [1|ψ′] = 2−
1
2 .� Setting the input [0|ψ] = 0, [1|ψ] = 1 yields the expected result [0|ψ′] = − [1|ψ′] = 2−

1
2 .� The action of the gate is linear (subject to reasonable electric assumptions) in the two

variables.� Concatenating two copies of the gate yields an electrical identity map.

A prototype design is detailed in Appendix B, with experimental results detailed in Appendix
C. The prototype performed exactly as described, and with remarkable accuracy. We therefore
explore the possibilities afforded to us by analogue Hadamard gates.

6.2 Implementing the algorithm

Being able to implement a Hadamard gate electrically is not sufficient to implement the Deutsch
algorithm. We require gates that act on a pair of rebits, thus we require four wires instead of
two, one for each of the real coefficients of [00|ψ] to [11|ψ].

To implement Deutsch’s algorithm, we require the following gates:� H ⊗ I� H ⊗H� Uf for each f ∈ F

It is very easy to re-use our circuit for the one-qubit Hadamard gate to implement H ⊗ I as
follows. We use an encircled H as shorthand for the entire circuit described in Figure 4:

Figure 5

As a matrix, the gate H ⊗H takes the form

1

2

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

. (14)

To implement it electrically, we use four gates to attenuate the input by half, six analogue
NOT gates and four Σ gates – 14 gates in all. We simply attenuate the input, then take sums
with NOT gates in the appropriate places.

Alternatively, we note that H ⊗ H = (H ⊗ I)(I ⊗ H). We can implement I ⊗ H with the
following circuit:

11

Figure 6

So the complete H ⊗H circuit could be constructed thus:

Figure 7

This implementation requires 4 lots of two attenuation gates, two summing gates and a NOT
gate – 20 components in all.

Finally, we must implement all four of the Uf gates. These are in fact completely trivial
as they are just permutations of Z4: to implement them electrically one need only perform a
relabelling of the wires. For instance, to implement U01 (the controlled-NOT), we simply swap
the labels of |10] and |11] while leaving the others unchanged.

Figure 8

12

In fact, viewing the action of the Uij in this light, we see that Deutsch’s problem is actually
to find whether the number of transpositions is even (f(0)⊕ f(1) = 0) or odd (f(0)⊕ f(1) = 1).
We shall return to this point in the case of the Deutsch-Jozsa algorithm later.

6.3 Deutsch’s algorithm – electrical implementation

Alice chooses a function f ∈ F , and gives Bob a circuit implementing Uf , without specifying
which f she chose.

Bob then� connects the following three circuits in order:

INPUT → H ⊗H → Uf → H ⊗ I → OUTPUT, (15)� connects a voltage2 V to the |01] input of the first circuit, while holding the other three
inputs at ground and� measures the voltage at the |00] output of the final circuit.

If the measured voltage is ±V/
√
2, then f(0) ⊕ f(1) is 1; if the measured voltage is zero then

that quantity is zero.

6.4 Determining f

We mentioned before that the different Uij may be thought of in terms of transpositions. We
expound upon that idea. Let t be 1 if |00] and |01] are swapped, and let t′ be 1 if |10] and |11]
are swapped, in both cases let them be zero otherwise. Thus U00 corresponds to t = t′ = 0 etc.

The state of the wavefunction after the first pair of Hadamards H ⊗H is

|Ψ] =
1

2
(|00]− |01] + |10]− |11]) . (16)

After passing through Uij this becomes

|ϕ] =1

2
(−1)t(|00]− |01] + |10]− |11])+ (17)

1

2
(−1)t

′

(|00]− |01]− |10] + |11]) (18)

We then have the following cases:

2 |ϕ] =

|00]− |01] t = 0; t′ = 0

|10]− |11] t = 0; t′ = 1

−|10] + |11] t = 1; t′ = 0

−|00]− |01] t = 1; t′ = 1

(19)

Thus we may expand our previous conclusion. Suppose Bob measures both |00] and |10],
then:� If Bob finds V/2 at |00] then f(0) = 0 and f(1) = 0.

2For technical reasons the chosen voltage should lie well within Vsup±; see Appendix A for details.

13

� If Bob finds −V/2 at |00] then f(0) = 1 and f(1) = 1.� If Bob finds V/2 at |10] then f(0) = 0 and f(1) = 1.� If Bob finds −V/2 at |10] then f(0) = 1 and f(1) = 0.

So we discover that the electronic implementation actually gives us more information than
we asked for! We note that it may appear that Bob is making four separate measurements, and
that it might be concluded that this invalidates the notion that the this method is faster, or more
powerful, than the quantum Deutsch algorithm. However, it would be trivial for Bob to build
a circuit that illuminates a single light for each of the four possibilities – in this case familiar
digital logic circuitry will suffice to complete the task.

It is worth noting that all this turns the Deutsch algorithm from a modular arithmetic
routine into a simple (and deterministic) search algorithm. We shall see later that a classical
implementation creates new possibilities for Grover’s quantum search algorithm.

6.5 Discussion

Just as with the quantum mechanical implementation of Deutsch’s algorithm, Bob is able to
deduce f(0) ⊕ f(1) with a single invocation of the oracle, something that would be impossible
for a digital logic computer. As with the quantum implementation, the result is sharp and
deterministic.

One might be tempted to dismiss this as a crude simulation of a quantum computer, but this
is in fact a legitimate implementation of the algorithm in its own right. We note that existing
quantum implementations of Deutsch’s algorithm [9, 7] are considerably more involved.

Furthermore, because it is not constrained by quantum-mechanical limitations, we may sim-
plify it in ways not permitted in the quantum case. As we have seen, Bob need only measure
one voltage – the other three do not contribute to his findings. This means we need not imple-
ment the full H ⊗ I gate at the end, but only enough components to produce the |00] output.
Furthermore, rather than implement the H ⊗H gate at the beginning, we may omit it entirely
and apply an input +V,−V,+V,−V to the Uf directly – we do not need the factor of one half,
and producing these voltages requires no additional circuitry.

Alternatively, if Bob is prepared to measure two voltages, he is even able to determine f
exactly – something beyond the reach of the original algorithm.

Thus, not only can we implement Deutsch’s algorithm without a quantum computer, we can
do so either with considerable simplification, or with greater results.

6.6 Existing work

In [3] Calude dequantises (his term) the Deutsch algorithm by considering the same problem
expressed on the space Q[i] = {a + bi : a, b ∈ Q}. The functions fij are now thought of as
functions on this space, rather than on {0, 1}. The oracles Ufij are replaced with functions Cfij

defined as:
Cfij : (a+ bi) 7→ (−1)0⊕f(0)a+ (−1)1⊕f(1)bi. (20)

We use Cij as a shorthand for these functions, and it may be shown that:

C00 : x 7→ x∗; (21a)

C01 : x 7→ x; (21b)

C10 : x 7→ −x; (21c)

C11 : x 7→ −x∗. (21d)

14

It is then shown that f(0) ⊕ f(1) = 1 if and only if (i − 1)Cf (1 + i) is real. Thus one need
only evaluate a single expression to know a global property of f .

The construction arises by replacing the usual Hilbert space with a subset of C. Since we
only use the real part of C2 in the quantum/analogue constructions, the spaces are effectively
the same size. It is immediate that an equivalent construction may be performed on R2 owing
to the isomorphism between that space and C. In such a construction, Cf would take the form

Cf =

[
(−1)f(0) 0

0 (−1)1+f(1)

]

, (22)

and (i− 1)Cf (1 + i) becomes
[
(−1)f(0)+1 + (−1)f(1)+1 (−1)f(0) + (−1)f(1)+1

(−1)f(0)+1 + (−1)f(1) (−1)f(0)+1

]

. (23)

The condition (i−1)Cf (1+i) is real is thus equivalent to (recalling that the off-diagonal elements
play the role of the imaginary parts) (−1)f(0)+1 + (−1)f(1) = 0, which in turn is the same as
f(0)⊕ f(1) = 0.

We note for comparison that the explicit formula for Uf is

1− f(0) f(0) 0 0
f(0) 1− f(0) 0 0
0 0 1− f(1) f(1)
0 0 f(1) 1− f(1)

, (24)

thus this is not quite a literal translation of the original idea (as this matrix is not the same as
I ⊗ Cf or something similar), though the principle of operation is much the same.

Calude’s notion of dequantisation implies that the algorithm may be deployed classically in
some sense. However, translating this algorithm back in to the space R2, it becomes:

(
1
0

)

→
[
1 −1
1 1

]

→ Cf →
[
1 1
−1 1

]

→ OUTPUT, (25)

where the output vector is:
(
(−1)f(0)+1 + (−1)f(1)+1

(−1)f(0) + (−1)f(1)+1

)

, (26)

which appears to be very similar to the original algorithm. Just as with the quantum Deutsch
algorithm, one starts with a vector, transforms it, sends it through an oracle, then transforms it
back to something more tangible. The resulting vector takes distinct values for each of the four
possible fij , and thus the algorithm actually determines f completely.

So to actually execute Calude’s algorithm requires matrix multiplication (or equivalently
complex arithmetic), in much the same way as computational simulation of the quantum Deutsch
algorithm. Thus it is hard to see how it is any more dequantised than a matrix interpretation of
the Deutsch algorithm – it is merely a refinement.

Finally, we note that Calude asserts that Deutsch’s algorithm is non-deterministic. This is
not strictly accurate: while a quantum (or indeed electrical) implementation of the algorithm
will yield a small amount of error in the final result, the algorithm itself produces entirely sharp
and deterministic output.

During preparation, we became aware of the work of the pre-existing work of Kaan [8], noting
that Hadamards and hence the Deutsch and Deutsch-Jozsa algorithms could be implemented
electrically. The document appears to be incomplete however, as a full implementation of a
Hadamard gate is not shown.

15

7 The Deutsch-Jozsa algorithm and scaling

We note that solving Deutsch’s algorithm on a computer is just evaluating the matrix product
ABCv. We might be tempted to work out the product ABC and then apply v, resulting in
many unnecessary calculations.

In fact, we only need to know the first row of the result, so we evaluate A1bBbcCcdvd. This is
the sum of 43 = 64 products of four numbers, 192 operations in all; hardly an efficient classical
algorithm it would seem.

The worth of an algorithm really depends not on how many operations it requires in one
scenario, but how it scales with the amount of data to be processed. To this end, we recall the
Deutsch-Jozsa algorithm, which is a generalisation of the Deutsch algorithm.

This time we have n+ 1 qubits, rather than the original two. The function f : Z2n → Z2 is
either balanced (zero for exactly half its input) or constant (always zero or always one).

The oracle Uf keeps its definition as the map |x〉|y〉 7→ |x〉|y ⊕ f(x)〉, but this time |x〉 is an
n-qubit register – i.e. 0 ≤ x < 2n. Now if we fix a particular x = x0, this is either the map

|x0〉|0〉 7→ |x0〉|0〉, |x0〉|1〉 7→ |x0〉|1〉, (27a)

if f(x0) = 0, or the quantum-NOT if f(x0) = 1:

|x0〉|0〉 7→ |x0〉|1〉, |x0〉|1〉 7→ |x0〉|0〉. (27b)

So, as before, Uf could be described in terms of permutations. Because of the restrictions on
f either:� Uf is the identity;� Uf |x〉|y〉 = |x〉|¬y〉;� Uf |x〉|·〉 is the quantum-NOT for exactly half the possible values of x.

The first two occur when f is constant, the final possibility when f is balanced. If we wish to
determine which is the case digitally, the obvious solution is to work out if Uf |0〉|·〉 is the identity
or a quantum-NOT, then Uf |1〉|·〉 etc. until one of the following conditions occurs:� After performing the experiment from x = 0 to x = 2n−1+1, we only see one type of map,

and conclude f is constant;� We see both types of map in the first 2n−1 examinations, and conclude f is balanced.

This requires at least two and at most 2n−1 + 1 invocations of the oracle.

7.1 The Deutsch-Jozsa algorithm

The quantum solution to the problem is a simple extension of the quantum Deutsch algorithm.
This time we have n + 1 qubits. f and Uf are as above. The initial state is |0〉⊗n|1〉, which is
then passed through H⊗n+1, Uf and H⊗n ⊗ I successively:

|0〉⊗n|1〉 → H⊗n+1 → Uf → H⊗n ⊗ I (28)

We ignore the final qubit, commonly called the ancilla (which as before is in the state (|0〉 −
|1〉)/

√
2), and concentrate on the initial n, which at the end of the procedure will be in the state

[9]:

2−n
∑

x,y

(−1)x·y+f(x)|y〉 (29)

16

Here, x · y means the bitwise product of the two numbers – e.g. if x = 6 = 110b and
y = 3 = 2 + 1 = 011b, then x · y = 0 + 1 + 0 = 1.

We write |0〉 for the |00 . . .0〉 computational basis state of the n-qubit register. Examining
the coefficient of |0〉:

2−n
∑

x

(−1)f(x), (30)

we see that if f is balanced, all the ±1 contributions cancel, and thus the coefficient is zero, so
the final state is not |0〉. Thus we conclude: after measurement, f is balanced if and only if the
final state is |0〉 up to a phase factor.

We note that as before no use of complex numbers is made.

7.2 The electrical implementation

The Deutsch-Jozsa algorithm is of course readily translated into an electrical algorithm. We note
that

H⊗n = (H ⊗ I ⊗ I ⊗ · · · ⊗ I)(I ⊗H ⊗ I ⊗ · · · ⊗ I) . . .
︸ ︷︷ ︸

n factors

(31)

As is evident from previous diagrams, each of factors terms individually requires n Hadamard
gates to implement electrically. We would thus require n2 one-rebit Hadamards just to implement
H⊗n!

With that in mind, we take advantage of the many conveniences of the electrical world: we
note that since H⊗(n+1)|0〉|1〉 = (H |0〉)⊗nH |1〉 = |+〉⊗n|−〉, we may skip the initial H⊗(n+1) and
simply apply 2−n/2(+1,−1,+1,−1, . . .) as our input state. Electrically this is just the sequence
of voltages +V,−V,+V,−V, . . . , which we apply directly to Uf . As before, the attenuating
factor is not important. This allows us to perform the calculation using just the 2n2 one-rebit
Hadamards needed to make H⊗n ⊗ I.

7.3 Existing work

In [2], Abbott and Calude consider the three-qubit case of the Deutsch-Jozsa algorithm, extending
the presentation in [3]. In particular, Cf is now a map C2 → C2:

Cf :

(
a1 + b1i
a2 + b2i

)

7→ (−1)f(00)
(
a1 + (−1)f(00)⊕f(10)b1i
a2 + (−1)f(10)⊕f(11)b2i

)

. (32)

It is then noted that the value of
1 + i

2
Cf

(
1 + i
1 + i

)

(33)

is sufficient to determine whether f is constant or balanced. Again, to actually implement this
variation on the algorithm requires involved matrix calculations. In [1] this method is revisited,
although not fully generalised to n ≥ 3.

7.4 Scaling behaviour

As before, we are effectively computing a product of matrices, but this time the matrices are
of size 2n+1. Assuming we require the whole state vector at the end, we have to compute
AiαBαβCβγvγ , then check the values of up to half of the output vector’s entries (we need only
check either the even or odd entries as the final rebit has known value). So we require 2n rows,
and each row requires the computation of 23n products – an exponential scaling.

17

Consider the case n = 10. We would require three matrices of size 2048× 2048 and an initial
vector of length 2048. The number of products we’d need to compute is 1073741824. This is
approximately 109 operations. Assuming each one takes 10 cycles on a 1GHz processor, that
would take around 10 seconds.

A quantum computer needs n+1 qubits and 2n+1 times n+1-qubit Hadamards; 11 qubits
and 21 Hadamards in this case.

The electrical method requires (at most) 2n+1 lines or n+ 1 rebits – i.e. 2048 separate wires
which then pass through n2 = 100 one-qubit Hadamard gates. They can then be sent through a
classical OR gate (something forbidden in real quantum information) and a light may be made
to turn on for each of the two possible outcomes.

So both digital and analogue are exponential in some sense, the former takes 23n operations,
the latter requires 2n+1 wires.

Consider the case n = 20. By the same reasoning, the digital computer would take a few
hundred years to do this calculation. To do it the analogue way, we would need 2097152 lines and
400 Hadamards, pushing the limits of available silicon technology, but not perhaps completely
impossible.

7.5 The Deutsch-Jozsa algorithm without Hadamard gates

Consider the state before Uf is applied. Ignoring normalisation, it takes the form:

2n−1∑

x=0

(|x] |0]− |x] |1]) . (34)

We apply Uf – whenever f(x0) = 1, the sign for that term will flip. This means the state
after Uf takes the form:

2n−1∑

x=0

(−1)f(x) (|x] |0]− |x] |1]) . (35)

This is enough information to give us the full specification of f , without the use of any
Hadamard gates whatsoever (we recall that they are superfluous). It does not however solve the
original problem – to determine whether or not f is balanced. We will go one step further.

Suppose f(x) = 0 for all x. Then we would expect the electrical output to be V,−V, V,−V, . . .
for some V – call this the voltage list. For each x such that f(x) = 1, the xth pair of voltages is
swapped from (V,−V) to (−V, V).

Define Va to be the algebraic sum of the first, third, fifth, etc. elements of the voltage list. We
note (see Appendix A) that such a value is easily computed electrically. We then have: f(x) = 0
for Va/V values of x. Thus f is balanced if and only if Va/V = 2n−1.

This yields more information than the quantum solution, and requires no explicit use of
Hadamard gates. We are able to determine more information about f than before, and without
making use of Hadamard gates. Indeed, since Uf consists only of a switchboard of transpositions,
only the voltage-summing at the end requires non-trivial circuitry.

7.6 The Deutsch algorithm without Hadamard gates

The method described above of course applies in the n = 1 case, thus we are able to compute
the solution to Deutsch’s algorithm without recourse to Hadamard gates. Recall as before that
we are able to think of Uf as one of four possible transposition mappings. When implemented
as an electric circuit, the Uf merely act as a relabelling of the wires. From the above discussion
we have a new procedure for solving Deutsch’s problem:

18

� Alice selects an f , and gives Bob an appropriate Uf circuit – a black box with four wires
leaving from one side and four leaving from the other. The inside of the box contains one
of the four valid permutations of the wires.� Bob applies a voltage V to the first and third wires, and a voltage −V to the remaining
two. If the output is 0V , then f(0)⊗ f(1) = 1.

How the algorithm works is immediate from the four circuit diagrams:

Figure 9

For the Deutsch-Jozsa problem, this algorithm of course scales so that there are 2n input and
output wires from the oracle box. Bob still applies an alternating sequence V,−V, V,−V, . . . to
the inputs and if the output is 0V then the function is balanced.

This solution can be translated back in to the language of matrices: we note that any Uf

may be expressed as

Uf =

n⊕

i=0

Mi (36)

where each of the Mi are either the NOT-gate T (where there is a transposition) or the identity
gate I (where there is none). It is evident that for any such matrix, computing

(1, 0, 1, 0 . . .)TUf (1,−1, 1,−1, . . .) (37)

yields 0 if and only if exactly half of the Mi are equal to I.
Thus for instance in the Deutsch case (n = 2) with f01 we have Uf = I ⊕ T and we compute

(
1 0 1 0

)

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1
−1
1
−1

=
(
1 0 1 0

)

1
−1
−1
1

= 0. (38)

As far as scaling is concerned, 2n wires are required for a function of n values, but only one
Σ box is ever required. However, summing 2n voltages creates practical problems – the voltages

19

would have to be so small that electrical noise becomes a problem. Instead, voltages would have
to be summed in batches, then attenuated and summed again in O(log 2n) = O(n) stages, which
means that although computation time is theoretically instant, it still requires a large number
of components and a very large number of wires for large n.

8 Grover’s algorithm

The quantum search algorithm, or Grover algorithm [6], is another example of a quantum algo-
rithm with no dependence on complex numbers, and limited dependency on the notion of state
collapse.

For a detailed description of the algorithm see [9]. We assume the reader is familiar with the
workings of the procedure, so we merely summarise the formulation.

Let f : Zn
2 → Z2 be an unknown function such that f(y) = 1 for some y and all other values

are zero. We define the oracle gate O on n+ 1 qubits by

O|x〉|q〉 = |x〉|q ⊕ f(x)〉, (39)

where |x〉 is an n-qubit address register, and |q〉 is a single qubit called the target register. We
note that O has the following useful property:

O|x〉|−〉 = (−1)f(x)|x〉|−〉, (40)

where as before |±〉 = 2−
1
2 (|0〉 ± |1〉). We also define the shorthand |ψn〉 = |+〉⊗n.

We define the Grover gate, G by

G = (2|ψn〉〈ψn| − I)O. (41)

The algorithm is then as follows:
Fix n. Alice selects an integer 0 ≤ y < 2n and gives Bob the oracle O corresponding to the

function f with f(y) = 1. Bob uses an n+ 1-qubit quantum computer and� initialises its state to |ψn〉|−〉,� applies the Grover gate R times where R =
⌈
π
√
2n/4

⌉
,� measures the state, taking the value of the first n qubits to be the bitstring for y.

The state before measurement is approximately |y〉|−〉, with high probability, though there
is a non-zero probability in general the measurement will give the wrong answer. This is not
always the case, however.

Example Fix n = 2. Then the initial state is |+〉|+〉|−〉 or just |++〉|−〉. After applying the
oracle O, the state is

{|++〉 − |y〉} |−〉

and applying the rest of G leaves us with

{2|++〉〈++| − I} {|++〉 − |y〉} |−〉
= {2|++〉〈++|++〉 − |++〉 − 2|++〉〈++|y〉+ |y〉} |−〉.

Noting that |++〉 = 1
2 (|00〉 + . . .) we see that 〈++|y〉 = 1

2 so this simplifies to |y〉|−〉. Thus in
the n = 2 case the algorithm is deterministic.

20

Consider the general case. The initial state is

|ψn〉|−〉 =
[

α
2n−1∑

x=0

|n〉
]

|−〉,

where we set α = 2n/2 for convenience. After we apply O the state is

[|ψn〉 − 2α|y〉] |−〉,

and after applying the rest of G we have

(2|ψn〉〈ψn| − I) (|ψn〉 − 2α|y〉)
= 2|ψn〉 − 4α|ψn〉 〈ψn|y〉

︸ ︷︷ ︸
α

−|ψn〉+ 2α|y〉.

The final state after a single iteration is therefore

|ϕout〉 = [(1− 4α2)|ψn〉+ 2α|y〉]|−〉. (42)

The coefficients of ϕout are then given by

〈ϕout|x,−〉 =
{

(1− 4α2)α x 6= y

(1− 4α2)α+ 2α x = y.
(43)

One may show that the ratio of the latter quantity to the former tends to 3 as n→ ∞, and that
the latter is always larger than the former.

Thus, if the final state can be accurately known, the algorithm is deterministic after a single
iteration. Thus in principle an electrical implementation can complete the search in a single
iteration.

8.1 The electrical implementation

We note that at no stage did complex numbers have a part to play in the preceding calculation,
and we have shown that collapse plays no part in the calculation itself, it is merely an obstacle
to be overcome. From our previous consideration of Deutsch’s algorithm, it is clear that the
algorithm may be implemented with an electric circuit – we only require a single Grover gate,
and this may be implemented easily enough with the techniques already described.

The initial state is |ψn] |−]. Ignoring normalisation, this is (1,−1, 1,−1, . . .). The output is
a sequence of pairs (V,−V), except for the yth pair, which will be greater in magnitude. The
algorithm is then specified as follows:

Let n be fixed for all time. Alice chooses a suitable function f , and gives Bob an electrical
implementation of the respective oracle O. Bob builds an n-rebit computer by connecting the
following circuits:

INPUT → O → (2 |ψn] [ψn | − I) → OUTPUT, (44)

where the input is the set of numbers (1,−1, 1,−1, . . .). The output will all be ±V for some
fixed number V , except for the 2y− 1 and 2yth elements, which will be substantially (∼ 3 times
for large n) greater in magnitude.

We note that Bob need not take out his multimeter and test each and every voltage (which
would somewhat undermine the idea of using a search algorithm!) Instead, simple circuitry could
be inserted that lights an appropriate lamp only when the voltage is sufficiently high. An array
of LEDs have the convenient property of only illuminating above a threshold voltage, and thus
would be ideal. This is purely a matter of display, not of searching.

21

8.2 Discussion

In both the quantum and electrical case, the value to be found is already known, and contained
within, the oracle. This is quite different to looking for the solution to an equation – indeed, it
bears better comparison with picking a lock.

Whoever builds the oracle – quantum or electrical – must already know the value of y. It
is therefore not entirely surprising that it can be deduced in a single iteration. In fact, in the
electrical case, merely applying (1,−1, 1,−1, . . .) to O is sufficient to determine the answer – the
yth pair (1,−1) will be subject to a sign change, while all other elements will remain unchanged.

9 Conclusion

Our initial aim was to show that an electrical device capable of executing Deutsch’s algorithm
could be constructed. That we succeeded should not be altogether surprising – as we have em-
phasised, the algorithm merely consists of simple matrix/vector multiplication problem. Indeed,
there are doubtless many other physical systems that could be used to implement the algorithm.

Since the Deutsch-Jozsa algorithm is an extension of the same idea, it is also unsurprising that
an electrical implementation is possible. Here though the comparison becomes more interesting.
In the quantum implementation, to double the size of the function’s domain from 2n values to
2n+1 requires one additional qubit. In our classical implementation, the number of electrical
lines must also double. In both cases, the time of execution is constant, but the complexity of
construction is exponentially worse in the electrical case.

It is often claimed that the remarkable property of the Deutsch and Deutsch-Jozsa algorithms
is that multiple values of a function f are apparently evaluated at once. However, the complete
description of f is contained in the oracle – f has already been evaluated. We can see this more
clearly when we think of the oracle as a switchbox (see Figure 8), with a transposition for the
ith pair of wires whenever f(i) = 1 (for i = 0, . . . , 2n − 1). It is then very easy to query multiple
values of f at once and aggregate the results (Figure 9).

In the previous section, we turned our attention to Grover’s algorithm, which to date has
not appeared in the dequantisation literature. We observed that in a classical implementation, a
single iteration of the Grover gate suffices to complete the search. Unlike our implementations of
the Deutsch-Jozsa algorithm, this is a true reduction in the order of execution time – it becomes
a fixed time operation – but at the same exponential cost in components and complexity of
construction. Again, all this is possible because the oracle already contains the solution we seek,
and without quantum-mechanical limitations, we are able to read out states directly.

Due to scaling restrictions, none of this is likely to have great practical application. We hope
however that it will cast new light on a subtle question: “why are quantum computers faster?”
We contend that the answer lies firstly in the capacity to perform certain matrix operations in
constant time, and secondly in that only one qubit is required to double the size of the matrices
concerned, rather than the more abstract notion of executing multiple oracle queries simulta-
neously. We have shown in particular that the Deutsch and Deutsch-Jozsa algorithms do not
require quantum mechanics, they merely scale excellently when implemented on a quantum com-
puter. Thus they should be celebrated not for doing something that cannot be done classically,
but adapting to the restrictive rules of quantum mechanics and scaling beyond the capacity of
digital computers.

22

A Op-amps

We present an overview of the fundamentals of operational amplifiers. We consider the properties
of ideal electronic components, but touch briefly on practical limitations and considerations at
the end of this appendix. For more details see [12] or similar texts.

As outlined in §6, we require two types of sub-circuits: summing gates and multiplicative
gates. We can implement both of these with operational amplifiers (hereafter: op-amps). These
are represented in circuit diagrams as follows – by convention we omit the power supply:

Figure 10

An op-amp is an electrical device that takes two input voltages, labelled V+ and V−, and
produces an output voltage Vout, specified by

Vout = (V+ − V−)G, (45)

where G is an extremely large real number, and is called the open-loop gain of the amplifier. The
amplifier is supplied by power rails of voltage Vsup+

and Vsup−
. The output Vout is constrained

to lie between these values – the amplifier is said to be saturated if Vout takes either extreme.
We use the term ground to mean the constant voltage (Vsup+

− Vsup−
)/2. Without any loss of

generality, we take this quantity to be zero volts.
We make the following physical assumptions:� G is so large that we may in all practical cases only consider the limit G→ ∞.� The amplifier permits only a negligible current to flow through the input terminals V+ and
V− – it merely measures the voltages and uses them to determine Vout.� A reasonable amount of current may be drawn from the output terminal Vout without Vout
changing appreciably.� The voltages we deal with lie well within (Vsup−

, Vsup+
) – we may always rescale to ensure

this is the case.

A.1 The inverting amplifier

At first glance it may appear that the device is only ever likely to emit Vsup±
. To make the

device amplify a voltage linearly, we have to provide negative feedback: we siphon off some of
the output current to change the voltage at the V− terminal.

A design for a simple inverting amplifier is:

23

Figure 11

Note that the V+ terminal is connected to ground, and thus plays no part in the amplification.
The voltage at the V− pin is then determined by a potential divider between Vout and Vin.

Let I be the current flowing from Vout. Then by applying Ohm’s law twice:

(Vout − Vin) = I(Rf +Rin), (46)

(V− − Vin) = IRin. (47)

Taking the difference, we find V− = Vout − IRf and substituting the top equation back in for
I we conclude

V− =
RinVout + RfVin

Rf +Rin
.

Substituting this into the gain equation and re-arranging, we find

Vout

(

1−Rin
G

Rf +Rin

)

=
G

Rf +Rin
︸ ︷︷ ︸

X

RfVin.

Vout =
1

X−1 −Rin
·RfVin,

Vout ≈ −Rf

Rin
Vin.

By careful choice of these two resistor values, this is enough to implement our attenuating
gates for α < 0, where α is the factor of attenuation. If we require α > 0, we may simply use
two inverting amplifiers in series.

A.2 Summing gates

A slight modification of the previous circuit may be used to produce a gate that takes a sequence
of N voltages V1, · · · , Vn and produces an output Vout = −∑

Vi:

24

Figure 12

Note that all resistors here take the same value, which should be large to avoid dissipating
too much heat.

By using N of these in parallel, we are able to implement the N rebit summing gate, albeit
with an unwanted change of sign. We could of course use the previous circuit to right this, but
since all lines will necessarily be negated, this is irrelevant to the computation and can merely
be adjusted for in the interpretation of the output.

In fact, setting the input resistors to differing values Ri for i = 1, . . . , n and letting Rf denote
the resistance of the remaining resistor, we can take a weighted sum

Vout = −Rf

∑

i

Vi
Ri

, (48)

thus obviating the need for some of the attenuating gates.

A.3 Practicalities

A real op-amp does not quite live up to the idealisations in this discussion, but for all practical
purposes if more than suffices and the above circuit designs may be assumed to be accurate
to around 1%. It should be noted [12] that real op-amps are unable to produce Vout within a
certain percentage of Vsup±, thus input voltages should be constrained to lie within a subinterval
of (Vsup−, Vsup+).

B A prototype Hadamard gate

We present a simple prototype circuit for the implementation of minus the real Hadamard gate.

B.1 The power supply

We require three voltage rails – three lines from which one can draw current. We call these Vsup−,
Vsup+ and ‘ground’. We require that ground be the arithmetic mean of the other two. Such a
supply is easily created by wiring two 9V batteries in series and taking the connection between
the two as ground. Alternatively, a single power source may be split in two by a potential divider,
and then buffered.3

3Buffering is a process by which one stabilises a voltage so that current may be drawn without loss of potential.
In this case it may be achieved by connecting the output of the potential divider to the V+ of an op-amp (an
LM741 will do), then connecting the V− to the Vout pins, and taking that wire as the buffered output.

25

B.2 The implementation

We divide the process in two: first we take the original two lines [0|ψ] and [1|ψ] and create a
third: − [1|ψ], by using an inverting amplifier as described above. We call this amplifier I.

The output [0|ψ]′ is then the attenuated sum of the two original wires, while the output [1|ψ]′
is the attenuated sum of the [0|ψ] and − [1|ψ] wires – in both cases we use summing amplifiers as
described above. We use P to denote the former and Q to denote the latter summing amplifiers.

To effect the attenuation, weight the inputs to P and Q by careful choice of resistor value.
We note that

√
2 ≈ 47/33. Conveniently, resistors of the value 47× 10n and 33× 10n Ohms are

readily available for n = 0, 1, 2,
We are now in a position to draw a suitable circuit diagram. Note that power supply require-

ments have been omitted for clarity.

Figure 13

We specify the following components:� 1 × ST Microelectronics TSM104WIN quad op-amp, or similar.4 Three LM741 op-amps
would also do, but would increase clutter and effort.� Resistors: RP3 and RQ3 = 33kΩ, all others 47kΩ.

C Experimental results

The circuit in Figure 13 was constructed on a breadboard, as shown in the diagram:

4The unused op-amp on this chip should have Vout connected to V− and V+ connected to ground to prevent
it interfering with the operation of the remaining three [10].

26

Figure 14: Implementation of a real −H gate on a breadboard

It is worth noting that pins 7 and 8 on the integrated circuit relate to unused functionality,
and are left open-circuit. A fourth op-amp on the chip, comprising pins 9, 10 and 11, was also
unused, and was connected such as to avoid interference with the operation of the remaining
three – see [10].

Finally, note that the pin GND on the integrated circuit refers to what we call Vsup− – i.e. the
negative supply, and not ground.

To power the circuit, we used a 9V battery to provide Vsup±. Ground, and two intermediate
voltages slightly above and below ground, were provided by employing buffered potential dividers.

The following results were obtained in order:

27

No. VBat GND− VSup− VSup+ − GND |0]in |1]in |0]out |1]out |0]exp |1]exp
1 8.93 4.46 4.46 0.78 0.00 -0.54 -0.54 -0.55 -0.55
2 8.93 4.47 4.47 0.00 0.78 -0.54 0.55 -0.55 0.55
3 8.92 4.46 4.46 0.00 -0.77 0.54 -0.54 0.54 -0.54
4 8.91 4.45 4.45 -0.77 0.00 0.54 0.54 0.54 0.54
5 9.12 4.55 4.55 0.79 0.79 -1.11 0.00 -1.12 0.00
6 9.11 4.55 4.55 -0.78 -0.78 1.11 0.00 1.10 0.00
7 9.09 4.54 4.54 0.00 0.00 0.00 0.00 0.00 0.00
8 9.09 4.54 4.54 -0.78 0.79 0.00 1.11 -0.01 1.11
9 9.07 4.53 4.53 0.79 -0.78 0.00 -1.10 -0.01 -1.11

All figures are given in volts and the columns have the following meanings:� VBat: The voltage across the terminals of the battery.� GND− VSup−: The potential difference between GND (ground) and the negative terminal of
the battery.� VSup+ − GND: The potential difference between the positive terminal of the battery and
GND.� |0]in and |1]in: The voltages applied as inputs to the circuit, representing [ψ|0] and [ψ|1]
respectively.� |0]out and |1]out: The voltages measured at the outputs of the circuit – i.e. the experimental
(measured) values of −Hψ.� |0]exp and |1]exp: The expected values of the two components of −H |ψ].

As no appreciable current is drawn during the course of the circuit’s operation, slight changes
in the voltage of the battery are attributable to changes in ambient temperature. There was
a short delay between results 4 and 5, which is consistent with this theory. All voltages were
measured using a standard digital multimeter, with a displayed precision of ±0.01V . We thus
note that every single result fell within the tolerance of the measurement equipment. Assuming
the measurements are as accurate as they are precise, we can put the circuit’s overall tolerance
at within 1%.

As discussed in §6.2, implementing Deutsch’s algorithm will require six of these connected
appropriately. This is an easy exercise left to the reader.

References

[1] A. A. Abbott. The deutsch-jozsa problem: De-quantisation and entanglement. 2009.
http://arxiv.org/abs/0910.1990v3.

[2] A. A. Abbott and C. S. Calude. Understanding the quantum computational
speed-up via de-quantisation. In Developments in Computational Models, 2010.
http://arxiv.org/abs/1006.1419.

[3] C. S. Calude. De-quantizing the solution of Deutsch’s problem. International Journal of
Quantum Information, 5(3):409–415, June 2007. http://arxiv.org/abs/quant-ph/0610220.

[4] D. Deutsch. Quantum theory, the Church-Turing principle and the universal quantum
computer. Proc. R. Soc. Lond. A, 400(1818):97–117, July 1985.

28

[5] D. Deutsch and R. Jozsa. Rapid solutions of problems by quantum computation. Proc. R.
Soc. Lond. A, 439(1907):553–558, December 1992.

[6] L. K. Grover. A fast quantum mechanical algorithm for database search. May 1996.
http://arxiv.org/abs/quant-ph/9605043.

[7] J. A. Jones and M. Mosca. Implementation of a quantum algorithm on a nuclear magnetic
resonance quantum computer. J. Chem. Phys., 109(1648), 1998.

[8] O. Kaan. Deutsch algorithm on classical circuits. 2008. http://arxiv.org/abs/0803.3183.

[9] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cam-
bridge University Press, 2000.

[10] J. Posvic. What shall we do with the unused op-amp?
http://www.scribd.com/doc/20697674/What-shall-we-do-with-a-unused-OP-Amp.

[11] T. Rudolph and L. K. Grover. A 2 rebit gate universal for quantum computing. October
2002. http://arxiv.org/abs/quant-ph/0210187.

[12] J. Watson. Mastering Electronics. Macmillan Press Ltd, fourth edition, 1996.

29

