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Abstract

In this thesis, we introduce and assess a new adaptive methodfor solving non-linear

parabolic partial differential equations with fixed or moving boundaries, using a mov-

ing mesh with continuous finite elements. The evolution of the mesh within the interior

of the spatial domain is based upon conserving the distribution of a chosen monitor func-

tion across the domain throughout time, where the initial distribution is based upon the

given initial data. For the moving boundary cases, the mesh movement at the boundary

is governed by a second monitor function. The method is applied with different mon-

itor functions, to the semilinear heat equation in one spacedimension, and the porous

medium equation in one and two space dimensions. The effectsof optimising initial data

for chosen monitors will be considered - in these cases, maintaining the initial distribution

amounts to equidistribution. A quantification of the effects of a mesh moving away from

an equidistribution are considered here, also the effects of tangling, and then untangling a

mesh and restarting.
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Chapter 1

Introduction

“Imagination is more important than knowledge.” - Albert Einstein.

1.1 Background

This thesis extends a numerical technique developed by Baines, Hubbard and Jimack

[4] to solve nonlinear parabolic partial differential equations (PDEs) with moving mesh

methods. We will refer to the original algorithm as BHJ and the extension as BHJx.

Starting from the position of analysing physical problems,we are looking here at asecond

level of abstraction. That is to say, if the first level is to build a mathematical model of a

physical problem that leads to a system of PDEs to solve, the second level is a numerical

technique to solve the PDEs, but in some simplified, canonical form. For example, we

might study the diffusion equation (ut = uxx) with no reference to a mathematical model,

let alone any physical system.

This sets some guidelines, but also presents two main challenges for such a study. The

guidelines amount to providing a general numerical technique, rather than solving a spe-

cific class of mathematical models. The first challenge is to identify an area where the

current theory is worth extending. The second is to know the extensioncouldbe used by

mathematical modellers, or by other theorists fortheir extensions of the theory - almost a

1



Chapter 1 2

third level of abstraction there.

To address the first challenge, we note that moving mesh methods have been shown to

have great potential in solving problems with moving frontsand boundaries, problems

involving phenomena such as blow-up and problems in a wide range of applications for

which non-stationary features need to be tracked in time (see, for example, [15] and ref-

erences therein). However, there are many outstanding questions over accuracy and reli-

ability remaining and new methods of evolving the mesh for a given problem are clearly

worth considering.

On the second challenge, the question of applications, if there were no known applica-

tions of BHJ, this would be difficult. For some abstract theories, extensions have been

created on more esoteric grounds of elegance and satisfaction [32], sometimes coupled

with a rare insight that the extension will be useful in the physical world. However, we

can definitely say that mathematical modellers, looking forspecific key features in ab-

stracted studies, have used the BHJ algorithm. This can be seen in two papers, both by

Khassehkhan and Eberl. In the first [57], they have used BHJ specifically to provide a

workable algorithm for a moving mesh study, including the need for a moving boundary.

In the second paper [58], they have used BHJ as it provides a method of tracking steep

interfaces. The boundary and interface requirements can beconsidered as examples of

”localized moving singularities” [31], so we can specifically say that this is a key feature

mathematical modellers have used BHJ for. Since we are keeping this key feature, but

extending the algorithm to other monitor functions, and also presenting the algorithm in

a workable form, we claim this second challenge is met. Additionally, to go any further

in ensuring that BHJx definitely could be used by mathematical modellers would violate

the guidelines above, specifically that we wish to provide a general numerical technique,

rather than solving a specific class of mathematical models.

Given the foregoing, it remains to prove the new algorithm actually works and assess its

strengths and limitations. The thesis in its literal sense of providing new methods to solve
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parabolic partial differential equations will then be complete. This is addressed in the

work that follows, which has essentially five components:-

• Finite elements. The basics of this fundamental discretization technique, mainly

from the point of view of a static mesh. The reader may be familiar with this area,

but we suggest that at least the notation section (1.2.2) is studied, as it applies to the

rest of the thesis from that point.

• Adaptive techniques - moving meshes. All adaptive techniques are reviewed, but

we focus especially on adaptivity by allowing mesh points tomove.

• BHJ and BHJx. We discuss the evolution and context of the original algorithm,

which used only the mass monitor, and how it has been extendedto more general

monitors, and how it can use asecondmonitor to define boundary movement.

• Implementation of specific monitor functions and optimal initial meshes. The new

algorithm is assessed here, by using different monitor functions and different PDEs.

The effect of optimising the initial conditions is considered - this then amounts to

equidistribution. In the final chapter, where the arc-length monitor is studied, an

attempt is made to strictly enforce equidistribution. The algorithm also presented

some challenges for the algorithm in this last chapter, giving an opportunity to

mould and stretch it to meet these challenges.

• Analysis, discussion and future work. Conclusions and possible extensions, poten-

tially to solving hyperbolic PDEs.

1.2 Finite Elements

Finite elements are an approximation technique, where a PDEis solved in a “weak” sense

[27,85]. The domain under consideration is effectively dissected into smaller pieces, and
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an approximate piecewise polynomial solution found on eachof these pieces. This set of

pieces is known as a grid (or mesh). Finite elements started originally as an engineering

method, with analysis following later [11,85].

1.2.1 Basics

The finite element technique is an approximation technique,where the dependent variable

in a PDE is approximated by a function that is mathematicallysimple (only a piecewise

linear or other polynomial form), on a finite set of elements,approximating the domain of

the PDE. In terms of classical analysis, we could say we have moved from aninfinitesimal

(dx) to a finite elementδx [27]. Consider for example, this second order elliptic PDE

[40]:-

−△u






Ω
= f ; u







∂Ω
= 0, (1.1)

whereΩ is some simply-connected bounded region [3] inR
n. If we look at the simplest

example, which is 1D piecewise linear elements, then the domain is an interval on the real

line, and we take elements to be equal sections of that real line, as shown in Figure 1.1.

Figure 1.1: Finite Elements - 1D grid

As with finite differences, we are approximatingu by calculating its values at theN−1

points (or “nodes”)x = h,x = 2h, . . .x = (N− 1)h. In this case however, we are also
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specifying the form of the approximation between these points - in this example, a linear

form, so our approximation, which we will calluh, is actually a piecewise linear function

- see Figure 1.2.

Figure 1.2: Finite elements - 1D approximating function

We can realiseuh as a linear combination of “trial functions”w1,w2, . . .wN−1 (see Figure

1.3), these being a basis of theprojection spaceused to approximateu [27,79,85]:-

uh = u1w1 +u2w2+ · · ·+uN−1wN−1. (1.2)

Figure 1.3: Finite elements - 1D standard trial functions

To calculate the value ofuh at the nodes, i.e., finding theui in equation (1.2), Green’s

first theorem [27] can be used to show that solving the PDE in (1.1) is equivalent to this

statement [97]:-
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∫

Ω
(∇u.∇v)dx=

∫

Ω
f vdx, for all differentiablev such thatv







∂Ω
= 0. (1.3)

Now if uh in equation (1.2) was actually a solution, we could write (1.3) as1:-

(∇uh,∇v) = ( f ,v). (1.4)

That leads us to a method of approximation - we canuse(1.4), with a set oftest functions

{v} to find some{ui}, and so solve theweakform of the PDE, i.e., approximately solve

−△u = f .

Suppose we use the trial functions themselves for the{v}. So if we substitute the trial

functionswi , i = 1,2, . . .N−1 for v in (1.4), and expanduh, we have:-

(∇(u1w1 +u2w2 + · · ·+uN−1wN−1),∇wi) = ( f ,wi), i = 1,2, . . .N−1. (1.5)

Then writingKi, j = (∇wi ,∇w j),(i = 1,2, . . .N−1, j = 1,2, . . .N−1) and

fi = ( f ,wi), i = 1,2, . . .N− 1, as(∇wi ,∇w j) = (∇w j ,∇wi) ∀i, j, equation (1.5) can be

written:-

u1K1,1+u2K1,2+ · · ·+uN−1K1,N−1 = f1

u1K2,1+u2K2,2+ · · ·+uN−1K2,N−1 = f2

...

u1KN−1,1+u2KN−1,2 + · · ·+uN−1KN−1,N−1 = fN−1,

or equivalently:-

1Strang and Fix [85] also use this notation, though in some texts, if aninner productis being discussed,
you may see< · , · > instead. This text will always follow the(· , ·) notation.
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Ku = f , (1.6)

which is known as the finite element equation, withK being referred to as the stiffness

matrix [85], which we note is symmetric in this case. In practice, the simplicity of the

trial functions (see Figure 1.3) means thatK and f are fairly straightforward to calculate,

and allows computational gains to be made (compared to a standard Gaussian elimination

routine) in calculatingu, asK is sparse.

The addition of boundary conditions can be dealt with by noting the effects on the weak

formulation, and hence the finite element equation, and thenincorporating these into the

finite element scheme. For example, a non-zero Dirichlet boundary condition (in the 1D

case) of equation (1.1) atx = 0 can be allowed for by another trial functionw0 that has a

fixed valueu0 at x = 0. Equation (1.2) can then be amended to become:-

ũh = u0w0+uh (1.7)

leading to relatively simple amendments to the finite element equation.

Strictly speaking, the trial (and here test) functionswi are not differentiable, as required

by (1.3). However, it is only necessary when calculating(ν,wi), for any integrableν, to

integrate over the support ofwi , so the discontinuity in the derivative at the edge of the

support is irrelevant.

The method of projectingu onto a finite approximation space existed before finite el-

ements [85], but the basis then consisted of functions defined on the whole of the do-

main. This made it difficult - there then needs to be differentiable, or piecewise dif-

ferentiable functions created to fit a domain with an awkwardgeometry (particularly an

awkward boundary) when we have Dirichlet boundary conditions, and co-ordinate trans-

formations [90] may not solve this problem. This is especially true if we have moving

boundary problems (which form the bulk of the study in this thesis). The finite element
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method, when using the form for this PDE in equation (1.3) solves this problem, as some

of the elements will have an edge on the boundary.

When the span of the test functions is the same as that of the trial functions, as it is in

our case, then this is known as the Galerkin method [27, 76], otherwise it is known as

a Petrov-Galerkin method2 [51]). Unless otherwise stated, only the Galerkin method is

used in this thesis.

1.2.2 Notation

Unless otherwise stated, the symbolΩ always refers to some simply-connected bounded

region [3] inR
n, with ∂Ω referring to its boundary, and̂n the outward pointing unit-length

normal to∂Ω.

We will use the notation for the approximation (and discretization) for the dependent

variables, as seen in Section 1.2.1, so thatuh always refers to the approximation ofu.

We reserve the letterh there, so thatux,uy,ut refer to derivatives ofu, andui ,u j , . . . (and

u1,u2, . . . ) refer to the approximations ofu at nodesi, j, . . . (and 1,2, . . .). Rather than

theN used in Section 1.2.1, in future, unless otherwise stated,N will always be the total

number of nodes in a discretization, some of which may be boundary nodes, and so have

forced, static values, when Dirichlet conditions are applied.

We will denote the trial functions (the basis for the solution space) byw1,w2 . . .wN. The

above notation applies to other dependent variables, so forexample, we may write the

approximation ofφ asφh = ΣN
1 φiwi .

The equality we refer to as Green’s lemma [54] is also known asthedivergence theorem,

which is that for a vector function,F, and where such integrals exist:

∫

Ω
∇ ·FdΩ =

∫

∂Ω
F · n̂dS. (1.8)

2If a mesh is altered during a timestepping run, there can be different trial functions from the original
mesh, these new trial functions being dependent on the PDE - effectively local solutions. This approach is
known as multiscale [2]. The trial functions used in this thesis will always retain their essential form.
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If this is combined with the product rule for a scalar function λ (u) and a vectorF, that

∇ · (λF) = ∇λ ·F+λ∇ ·F, then we get the “integration by parts” formula:

∫

Ω
λ∇ ·FdΩ =

∫

∂Ω
λF · n̂dS−

∫

Ω
F ·∇λdΩ. (1.9)

When an algorithm is described, if we say, for example, that we will calculate somea

from someb by using this weak form:-

∫

Ω
awi dΩ =

∫

Ω
Lb wi dΩ, i = 1,2. . .N,

for some linear operatorL, then we mean that we are solving this by using the approxima-

tionsah = ΣN
1 aiwi , bh = ΣN

1 biwi , andah is then found by solving the system of equations

Ka = c (= Pb) to find a, whereKi, j = (w j ,wi), a = (a1,a2, . . .aN)T , Pi, j = (Lw j ,wi) and

b = (b1,b2, . . .bN)T , though we will give a more explicit description if this stepis at all

unclear.

1.2.3 Mesh Generation

As we saw in the analysis of the 1D case in Section 1.2.1, the practice of finite elements is

to construct the stiffness matrixK, the “forcing” vectorf and then solve the finite element

equationKu= f . This practice becomes more complex however, when we solve problems

in higher dimensions. We demonstrate this here for two dimensions, again looking at the

Poisson equation.

In the first place, the concept of finite elements in 2D is the same as that in 1D, in that our

approximation consists of simple functions built up on elements making up the computa-

tional domain. In the 2D case though, we might visualise thisas a set of “plates” rather

than single lines - see Figure 1.4.

As in the 1D case, it is possible to realiseuh as a linear combination of trial functions.

To illustrate the piecewise linear trial functions, suppose our domain is the square(0, l)×
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Figure 1.4: Finite element (2D plates) illustration

(0, l) in R
2 and our nodes and elements are arranged as in Figure 1.5.

Figure 1.5: Finite element 2D grid

As with the 1D case, a trial function has a value of 1 at one node, and 0 at all others, and

slopes linearly down to zero at neighbouring nodes. The trial function for node 6 (and

l = 1) is shown in Figure 1.6.

Note though, that each of these trial functions can be realised as the sum of smaller “el-

ement” functions, for every element that has a node in commonwith the primary (“one-

value”) node of the trial function. For example, a trial function centred on node 5 in Figure

1.5 can be considered as the sum of five simpler functions on all the elements containing

node 5. So when evaluatingK, eachKi, j can be built up from the element functions mak-

ing up each trial function, therefore we can loop through theelements to find them, rather
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Figure 1.6: Finite elements - 2D trial function

than loop through the nodes, and so greatly simplify the calculation.

1.2.4 Connectivity

When modelling the PDE in equation (1.1) with the grid shown in Figure 1.5, the math-

ematics and the algorithm are essentially the same as described for the 1D example in

Section 1.2.1, but there are some extra programming considerations regarding the 2D

case.

Looking at nodes 4, 5, 6 and 7 in Figure 1.5 for example, it is not sufficient to just list the

node co-ordinates. We also need to say that the triangles areformed by a line connecting

nodes 5 and 6 as shown, since a line connecting nodes 4 and 7 is apossible alternative.

We need then, aconnectivityarray, as well as defining the node positions. The convention

chosen in this thesis is that we start, for each element, withthe lowery co-ordinate, or

lower left, then proceed anti-clockwise around the triangle. For example, the triangle

on nodes 4, 5 and 6 in Figure 1.5 has a connectivity of “4 6 5”. A possible input file

describing this grid, whenl = 1 is:-

Finite Elements. Square of 8 nodes.

0.0 1.0 0.0 1.01

8 10
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0 0.000000000000000E+00 0.000000000000000E+00

0 0.100000000000000E+01 0.000000000000000E+00

0 0.100000000000000E+01 0.100000000000000E+01

0 0.000000000000000E+00 0.100000000000000E+01

1 0.500000000000000E+00 0.250000000000000E+00

1 0.250000000000000E+00 0.500000000000000E+00

1 0.750000000000000E+00 0.500000000000000E+00

1 0.500000000000000E+00 0.750000000000000E+00

0 4 5

0 1 4

1 6 4

0 5 3

4 6 5

1 2 6

5 7 3

5 6 7

6 2 7

7 2 3

22End of file.

The description of this is:-

Line 1: Title.

Line 2: Co-ordinates of Bottom left, Bottom right, Top left,Top right of Bounding Box.

This is for a Bounds check in the data.

Line 3: No. of nodes and No. of elements.

Line 4-11: Node flag (see below) and node co-ordinates.

Line 12-21: Element connectivity array, starting with “element O”.

Line 22: Integrity check - should be 22 lines.
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The node flag is zero for a Dirichlet boundary node, and 1 for aninternal node. The

numbering direction for the nodes (in this example) is anti-clockwise for bounding nodes,

starting near or on the origin, and then left to right, down toup. For the elements, it is left

to right, then down to up. Neither of these numbering conventions are important for the

algorithms in this thesis.

1.2.5 Element types and orders

In the 2D case, we have discussed the simplest form of element- piecewise linear on tri-

angles. Higher order than linear can be used - see Section 1.3below on “Adaptivity”. It is

also possible to use quadrilateral elements [34,85] - thesemight be used to model a rect-

angular area more easily. As for meshes, the type described in the connectivity section,

which is the only type used in this thesis, is actually referred to asunstructured, as we

are allowing the element-node relationship to be anything we declare in the connectivity

array. Alternatively, it is possible to usestructured elements(repeated geometry), which

need no connectivity array, and have a lot less cost than unstructured elements. For ex-

ample, for rectangles, this could be just a uniform grid, fortriangles, a grid where all the

triangles might be bottom-left to top-right, so that in array/matrix terms, it is formulaic

which elements are adjacent, and which nodes make up each element.

In practice, structured and unstructured can be mixed as appropriate, so for example, a

smooth part of an aerofoil would be best modelled with structured elements [90].

1.2.6 Time-dependent semi-discretization, the Method of Lines

If our PDE has a time derivative, it is possible to simply add time as another dimension,

so 2D triangles become tetrahedra for example. The problem with this approach is that

there can then be no known boundary conditions foru at (some)t = T, so there is an

open boundary, particularly with the parabolic PDEs considered in this thesis. For that

reason, a timestepping approach is used in this study, with the timestep being the same
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for all nodes. So what we are actually doing is discretizing only in space, or we could

saysemi-discretizing[14]. Looking at equation (1.2) for example, if we now have a PDE

with a time derivative in it, so that theui become functions of time, the discretization can

lead to solving a set of simultaneousODEs3 for theui. This solution technique is known

as theMethod of Lines[10,14,98]. This thesis will be using a Method of Lines approach,

though not always in a way a standard ODE solver would use.

1.2.7 Comparison with Finite Differences

Finite difference schemes tend to have very low cost (CPU) compared to finite elements,

they can actually be one third of the FE cost, because they do not have a mesh. They

lose out though, with complex geometries, where for example, it is difficult to accurately

model an awkward perimeter, and then if the PDE was 4th order say, the scheme is difficult

to implement at the spatial boundary.

1.3 Adaptivity

Adaptivity is the process of changing a mesh during the course of a computation in re-

sponse to changes in the dependent variable (or its approximation), to achieve greater

accuracy and/or greater efficiency (and possibly also to improve stability) of the numer-

ical scheme. As a simple example, if we were modelling pressure, and the pressure was

changing rapidly (in time) in one area of the grid, we might want to alter the mesh around

that area, possibly by adding more elements there, or re-distributing existing elements

towards that region. Another use of adaptivity would be to cope with phase-change prob-

lems (liquid/gas etc), as studied by Burman [21] or McCarthy[69], where there could

be an abrupt change in density in the region of the phase-change, and this needs to be

captured with greater resolution than elsewhere.

3Some ODE solving methods allow a variable timestep, and can even have a temporary negative timestep
to achieve convergence, but this timestep is still the same for all nodes.
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The focus of this thesis is applying adaptivity with finite elements, but we should point out

it can also be used with finite volumes and finite differences.For the former, an adaptive

method is explained in Thomas and Lombard [89], and for the latter, there is a study of

black holes with adaptive finite differences in Plewa [78].

We distinguish here between adapting a grid for the representation of the appropriate

PDE solution, and the multigrid method [12,38] where a coarser grid is temporarily used

to speed up convergence.

1.3.1 h, p and r adaptivity

In finite element adaptivity, there are three main methods ofrefining a mesh:-

h-refinement - adding extra nodes.

p-refinement - increasing the order of the approximating polynomials.

r-refinement - changing position of existing nodes.

The focus of this thesis is r-refinement (the “r” is for re-distribution) in 1D and 2D, so this

method is discussed in detail in Section 1.5. We conclude this section with a short review

of h, p and r types of adaptivity. This review focuses on methods in 1D and 2D only, and

we mainly consider schemes that haveconformity, which we define generally here as the

approximation space being a subspace ofC0. In 1D, for example, this would imply values

agreeing at common nodes of adjacent segments [70].

It is possible to adapt nodes statically, i.e,. just adapt the mesh at each timestep, or dynam-

ically, so that the mesh parameters (No. of nodes, positions, etc) are actually functions

of time. This distinction is fully explained in Section 1.5,but for the purposes of this

review, it is enough to mention that it is not necessary to just move from one point in

time to the next in timestepping methods. In themultistepmethod [29, 53], ahistoryof

previous timesteps is used. This method can provide more accuracy, though it does add

to the complexity of the problem, and may require any interpolationbetweennodes to be

of consistent order [9].
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h-refinementis named thus ash is commonly used for the spatial incrementδx, which is

reduced in selected areas of the grid, so correspondingly, the number of elements increases

[62,73]. In 1D, conformity is simple to enforce, if we define the elements as lines joining

nodes. The situation is more complicated in 2D (or higher) though, where the way in

which an element (such as a triangle) is sub-divided can determine whether conformity is

maintained. In Figure 1.7 for example, we can see two ways in which a grid consisting of

two triangles can be sub-divided. In the first sub-division,shown in the middle grid, we

can see (at ’X’), there is a “hanging node”: an internal node that is geometrically part of

an element, yet that element (triangle T) does not have that node in its grid definition. The

result is that the node value at X may not be the average of nodevalues at A and B, so the

approximation does not have conformity and will be inconsistent. The grid on the far right

in Figure 1.7 shows an alternative sub-division which is conforming. Indeed, one way to

achieve conformity is to avoid hanging nodes, and two different methods of achieving

this are detailed in Bansch [7] and Speares and Berzins [84].An alternative approach is

to allow hanging nodes, but to constrain the solution valuesat these nodes [56] or have a

choice of basis function at and near to those nodes which imposeC0 [87].

Figure 1.7: Conformity illustration

The advantages of h-refinement are that there will be no mesh “tangling” (elements over-

lapping) and a high accuracy can be achieved in a particular area. The disadvantages are
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that it can be more difficult to use multistep, conformity issues as mentioned, and there

can be a high CPU cost.

p-refinementis where higher-order (than linear) trial functions are used on the elements

(hence p for polynomials). Conformity is harder to achieve here, especially in 2D and 3D,

though it is certainly possible [23]. A recent popular alternative is to use a DG (Discon-

tinuous Galerkin) method where the discontinuities are handled through the introduction

of a “penalty” to a minimising integral (in the variational setting), hence the difference in

a node value across elements is incorporated into a “flux integral”, and this is added as a

penalty function, whose minimisation is sought [82,96]. Aswith h-refinement, there will

be more CPU as a result of p-refinement, but better accuracy can be achieved. The advan-

tages of p-refinement are that there will be no mesh “tangling”(elements overlapping) and

a high accuracy can be achieved in a particular area, provided the solution has sufficient

regularity in that area. There is an algorithmic simplicityin this method, since in this

method, and only in this method, the number AND position of the nodes don’t change

in time. However, multistepping can still have problems, asinterpolation between nodes

may not be of consistent order. Comparing this method with h-refinement, in an area of

smoothly oscillating values (see Figure 1.8 for example), apolynomial could be used for

accuracy, but if the oscillations have low regularity (are only piecewise differentiable say,

as in Figure 1.9), then it would actually be more efficient to add more points, in which

case p-refinement would then be worse compared to h-refinement [80].

Figure 1.8: p-refinement illustration - smooth oscillations

r-refinementis defined as changing the position of existing nodes. The advantages of

this method are simple algorithm management - as the method has a constant number of
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Figure 1.9: p-refinement illustration - irregular oscillations

points and topology, the matrices have a constant sparsity structure. So once a mesh and

a program have been set up, there is no management of extra nodes that has to be done.

This can result in lower CPU cost, compared with h and p methods. It is possible with

h-refinement, for example, to achieve the same accuracy in anarea of “high activity” by

refining nodes there, and then, if that activity desists, losing said nodes (“derefinement”).

This clearly involves extra management and CPU, and is essentially losing the advantage

of thecontinuityof the r-refinement method. The disadvantages of r-refinement are that

it can be difficult to multistep, as the nodes have changed position. In fact, Davis [29] did

actually look at multistepping with r-refinement, but foundit was unnecessary, i.e., only

the previous timestep was needed. It can also be limited in its accuracy - for some cases,

there may not be enough nodes to achieve a given error threshold.

Further advantages of r-refinement can be found in Budd, Huang and Russell [15].

There is actually a form of mesh-adaptivity that can be considered neither h, p or r, and

that isedge-swapping. Figure 1.10 shows a 2D example of this - no nodes are added or

moved, and the interpolation order can be the same, but the edge swap can improve some

error measure, or some function (equi)distribution per element. More details can be found

in Piggott, Farrell, Wilson, Gorman and Pain [77].

1.4 Errors, Error Estimates and Spaces

There is an inherent error in the finite element method, due toit being a finite dimensional

approximation [25,85]. But in 2D cases and higher, in the case of a non-polygonal domain
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Figure 1.10: Edge-swapping example

shape, or rather its perimeter, there is also typically an error due to discretization of the

boundary [79]. There could also be an error in mathematically modelling, though all

the studies in this paper are of abstracted and simplified PDEs. The only other error

is the inherent rounding error due to using computational techniques - this needs to be

considered if we found, for example, that the difference in values ofuh at successive

timesteps were close to machine precision [68]. In the studies of the porous medium

equation in this thesis then, bothL2 and boundary errors will be given, as the analytic

solution is known.

The minimum needed for an estimate is a lower AND an upper bound, andError Control

then means checking those bounds are not exceeded, using a suitable norm (Davis [29]

usesL2 for example). This can be done by element - analysinguh on an elementeactually

gives an “error problem” for that element, we then need to solve another equation to find

ηh
ε , this being the error from the true solution. This can itselfbe estimated, for example,

by using the Bankweiser method [39]. There will, of course, be some CPU cost for this

estimate. As another example of Error Control, in the porousmedium equation studied

in this thesis for example, as we know the solution is generally dissipative, a warning is
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issued, or the program is halted, if the maximum value of|u| at any time exceeds twice

the value of the initial maximum value of|u|, as that definitely indicates a solution error,

as we know the analytic solution.

The space used in approximation in this thesis is simply piecewise polynomial space,

though there can be different bases, depending on our refinement type. For the solution,

it depends on the application - it may be onlyL2, up toC∞, and in between these, it could

be the Sobolev space [1]Ws,2, for some integers≥ 2. For the second order PDEs we

typically encounter,W2,2 is really the bare minimum (we could takeW2,1, but that causes

difficulties, and physically can amount to an infinite energy). We will not be exploiting

the features of these spaces here though.

1.5 Moving Meshes

In r-refinement, a fixed number of mesh points are moved, but keeping the same mesh

topology, hence the synonymous term “Moving Mesh”. There are two methods of moving

these points,location-basedand velocity-based. In the former, a method is found to

directly control the mesh points, in the latter, a method is used only to provide the mesh

velocity, with the position being found by a timestepping scheme, such as Forward Euler,

for example. These methods are explored in more detail in later sections, but this detail is

enough for a brief overview of two of the papers in this area, which are themselves review

papers. The emphasis of this overview has been a search for any moving mesh theory or

guidelines that can be utilised or tested against in this thesis.

The first of these is Hawken, Gottlieb and Hansen [41]. Their review in 1991 is mostly

focused on flow problems, using finite differences or finite elements. An extensive math-

ematical description is given of several methods, a few of them two-dimensional, fol-

lowed by a comprehensive discussion of their relative merits. Although the authors have

sometimes suggested improvements to these papers, there isno theory of moving meshes
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developed here. This paper does not discuss h or p refinement.

The second review paper that we discuss is by Budd, Huang and Russell [15]. This review

was published in 2009, and so has substantially more material than the first, but there is

also a moving mesh theory developed here. This theory is almost exclusively applied

to location-based methods. There are some 2D problems considered in this paper, but

no 3D ones. Only r-refinement is considered in depth in this paper - h and p methods

are discussed only briefly in the introduction. From this review, we can see if there is a

“moving mesh strategy”, it might be analytical if a location-based method is used, but is

more likely to be empirical if using a velocity-based method. The method used in this

thesis is a velocity-based method. Neither of these papers discusses elliptic problems.

1.5.1 Monitor functions - Concepts

Many moving mesh methods make use of amonitor function. We start with the idea of

equidistribution in a mesh. This simply means re-arrangingnodes so that some quantity

is equally (as practically possible) distributed, other than just distance, area or volume. If

we were looking at diffusion, this quantity might be mass. Itdoesn’t have to be a physical

quantity, if we want to cluster points near a “highspot” (seeFigure 1.11), we might choose

to equidistribute arc length.

The idea of the monitor function is to convert the intuitive but vague idea of “move the

mesh to where activity is highest” into a solid mathematicalstatement, or at least some-

thing that can be numerically quantified. If we consider the porous medium equation for

example [37,59], which can model a gas “bubble” spreading ina porous medium [4], we

might want to have more points where the mass density is highest. For a domainΩ, the

monitor function would then simply bem(u) = u, and we would want to equidistribute
∫

Ω m(u)dx, so for example, in 1D, if our domain was[0,1] which is to be sub-divided into

0 = x0,x1,x2, . . .xN = 1, then we would require that:-
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∫ xi+1

xi

m(u)dx=
1
N

∫ 1

0
m(u)dx, (1.10)

for i = 0,1, . . .N−1. As another example, referring to Figure 1.11, if we were trying to

cluster our grid points near a “high spot”, the diagram showswhat would happen if we

used arc length as the monitor function.

Figure 1.11: Adaptivity (arc length) illustration

When we look at equation (1.10), we can see a clue as how to actually achieve this equidis-

tribution - at each timestep we could alter the node positions so that (1.10) is satisfied.

This is called static re-gridding, but there are actually several ways of using these mon-

itor functions, and then several ways of tying these ways to solving the PDE. These are

considered in Section 1.5.2, where we look at how to apply monitor functions.

Following Budd, Huang and Russell [15], we will assume the monitor function is always

non-negative. On types of monitor functions, Ren and Russell [81] claim there are three

types of monitor function commonly used:-

• Arc length.

• Combination of gradient and curvature.

• Truncation error or solution residual.

Huang and Russell [49, 50] use an arc-length monitor. Budd, Huang and Russell [15]

also use an arc-length monitor, and they show how it has modelled areas of high activity
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successfully. This review paper also has details of other monitors used. An interesting

example there is of a monitor function in a matrix form, whichspecifies the shape, size

and orientation of the mesh elements.

We note two other monitors used:-

• A mass monitor (m(u) = u) is used by Baines, Hubbard and Jimack [4].

• A curvature monitor is used by Mackenzie and Robertson for a solution of a one-

dimensional phase-field problem [65]. This monitor actually has asech(x) term in

it. This is unusual as most monitor functions are only functions ofu and its spatial

derivatives, but one reason for having one as a function of x (and t) is to regulate

behaviour near an interface - as Cai, Fleitas, Jiang and Liao[22] have done.

1.5.2 Monitor functions - Applying

Static regridding is discussed in Section 1.5.1 - this simply means resetting the node

positions at each timestep, and a simple example of this is seen in Davis [29]. Even in this

relatively simple 1D example though, we can see a problem emerging, that of “tangling” -

referring to Figure 1.11, the node points can start to “over-distort”, for example, cross over

each other. Davis solves this problem by allowing the grid tonot exactlyequidistribute

the monitor function (he calls this having a sub-optimal grid), but not actually collapsing,

so the scheme isstable, i.e., it continues to its intended end-point in time.

We can see then that static regridding can be stable, howeverdynamicregridding, where

we consider the node positions to be variables to be solved aswell as solving the PDE [81],

is generally more efficient, i.e., we can use fewer nodesand larger time steps to achieve

the same error threshold [46]. Static regridding is also more difficult to apply in 2D

problems. Referring to Figure 1.11, in actually calculating the newx0,x1, . . . , we might,

for example, start at the left-hand end, and slowly increment x until we get our “quantum”

of the monitor integral in (1.10). In 2D though, there isn’t really a natural direction to
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“grow” our new distribution, and we could find it difficult to exactly allocate ourN nodes

successfully. For these reasons, we will only be considering dynamic regridding methods

in this thesis. In fact, nearly all moving mesh methods use dynamic regridding, with static

regridding being mostly being used by hp methods [15].

In all r-refinement methods, the underlying PDE and mesh equations can be solved by a

Method of Lines approach, either singlestepping or multistepping (See Section 1.2.6).

The general aim of any r-refinement method is to maintain an “optimal geometry”. Budd,

Huang and Russell [15] define this, in practice, as equidistribution of a monitor function,

but for the purpose of this thesis, we extend the definition tomeanmaintaining the initial

distributionof a monitor function. If the initial mesh is optimised, meaning that the initial

distribution is equidistributing the monitor function, then the two definitions concur, of

course.

So any r-refinement method needs a mesh evolving mechanism that maintains this optimal

geometry. The aim of this mechanism, and really the whole r-refinement method, is to

have a better error for a given number of nodes, though we are also looking for efficiency

and stability. For robustness of the method, the idea is to decrease the error for the same

number (N) of points, so that the error only depends on N, (or dx equivalently).

We now discuss how to incorporate a moving mesh into solving aPDE. In a short review

of 1D methods in 1992 by Ren and Russell [81], the view is takenthat any equidistribution

method amounts to a change in the co-ordinate system. However, we will continue with

the distinction of location-based and velocity-based methods.

1.5.3 Location-based methods

All moving mesh methods can be considered as a mappingF from a computational space

Ωc to a physical spaceΩp, both subsets ofRd [98]. There is some theory developed in

Budd, Huang and Russell [15] forF, for example “regularity” is defined as a measure

of how much variation there is in the elements, so a uniform mesh is the most regular,
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and this then leads to a mathematical definition in terms of the regularity (or smoothness)

of F in a Cn sense. Since this theory is only applied to location-based methods and not

velocity-based (which is the scope of this thesis), we will not discuss the theory further

here, but just detail the main types of location-based methods, with examples.

The two main types of location-based methods areoptimal transportand MMPDE (Mov-

ing Mesh PDE). The optimal transport method minimises
∫

|F(ξ )−ξ |2dξ , so its aim is

to be closest to a uniform mesh in a suitable norm, whereξ is the independent (spatial)

variable in the computational domain (a symbol commonly used in the literature). This

integral leads to a measure of deviation from the identity, so “smallest transport”.F is

actually written as the gradient of a mesh potentialP, the mimimizing statement above

then leads to an equation forP. More details can be found in Delzanno et al [30].

In the MMPDE method [16,18,24,45–47,49,50,98], the equidistribution requirement, or

a variational version of it, is used to define asecondPDE, that relates the equidistributed

co-ordinate (ξ ) to the fixed co-ordinate (x). This second PDE is the MMPDE. There was a

review of MMPDE methods in 2001 by Huang and Russell [47], butas a simple example,

we can take the 1D form of equidistribution in equation (1.10), and following White [95],

re-write it for dynamic regridding thus:-

∫ x(ξ ,t)

0
m(u)dx= ξ θ(t), (1.11)

whereθ(t) =
∫ 1

0 m(u)dx, andξ ∈ [0,1]. Following Huang and Russell [49, 50], we can

differentiate (1.11) with respect toξ :-

m(u)
∂x
∂ξ

= θ(t). (1.12)

And again:-

∂
∂ξ

(

m(u)
∂x
∂ξ

)

= 0, (1.13)
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so giving our MMPDE, which will have to be solved in combination with solving the

actual PDE. To illustrate this, suppose the monitor function was in the formm(x). Then it

may be possible to develop (1.11) to explicitly givex= f (ξ ), and recast the PDE in terms

of the new independent spatial variableξ . This is essentially the method studied in 1D by

Budd and Piggott [16].

In the variational method of the MMPDE, the equidistribution requirement is realised as

the minimising of an integral involving the monitor function (this may be done in a dis-

crete form). This variational equation can then be used in the Euler-Lagrange form [6,97]

to form the MMPDE. This is the approach taken by Huang and Russell [45, 46] who

study the problem in 2D. Zegeling and Kok [98] have studied itin 1D and 2D, looking at

reaction-diffusion equations, with finite differences used for the numerical examples. We

note that in Huang and Russell [45], the variational equation actually involves three mon-

itors - as well as adaptivity, there is also mesh smoothness and “orthogonality”. However,

the authors only look at the MMPDE, and do not actually solve aPDE in this paper.

1.5.4 Velocity-based methods

Velocity-based methods use a Lagrangian (moving) co-ordinate system to directly pro-

vide a mesh velocity. A Lagrangian co-ordinate system is where the spatial co-ordinates

are themselves functions of time, these functions being mappings from a conventional

fixed co-ordinate system (this can be thought of asΩc in the location-based theory) to a

moving one. The equidistribution question then becomes “How can this mapping be made

to equidistribute the Lagrangian co-ordinates for the monitor function?”. This question

has been approached in three main ways: the Geometric Conservation Law method, the

moving finite element method, and the Deformation Map method.

The Geometric Conservation Law (GCL) is akin to laws of mass and momentum con-

servation in fluid dynamics [52], but here we are saying it isspacethat must be con-

served. This might seem self-evidently true, but if a finite element cell was to become
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over-distorted, for example, the law could be violated. Mathematically, the Geometric

Conservation Law is:-

d
dt

∫

A(t)
dx=

∫

∂A(t)
ẋ ·dS, (1.14)

whereẋ is the mesh velocity andA(t) is an arbitrary fixed cell in the finite element system.

In 1979, Thomas and Lombard [89] used the GCL to simplify a finite difference calcula-

tion, so that it doesn’t need ”complicated averaging formulas”, which some schemes not

using the GCL do. In a similar vein,́Etienne et al [35], and Farhat et al [36] have studied

the GCL as an aid to quality of solutions, applied to fluid flow problems.

In studies by Cao, Huang and Russell [24] and Baines, Hubbardand Jimack [4] though,

we see the GCL essentially being used as an algorithmic device to obtain mesh velocities,

rather than guaranteeing mesh quality. In particular, we can use the GCL to eliminate

the Jacobian that relatesΩc to Ωp and relate the mesh velocities directly to the monitor

function as follows:-

Firstly, if we look at the moving meshmethodin isolation from a PDE, we can study

its features by letting the dependent variableu be some prescribed function, representing

an exact physical solution. This is the way Huang, Ren and Russell [50] have studied

the method, developing an MMPDE from the equidistribution principle, so although they

have used the arc-length monitor in 1D (m(∂u
∂x) =

√

(1+ (∂u
∂x)

2), they then studym as

m(x), not m(u). Cao et al [24] have taken this abstraction a stage further byanalysing

forms ofm(x) with no actual reference to any PDE. Both these papers have proved their

methods to a certain extent, though they left an open question of using the method to solve

actual PDEs.

But staying withmasm(x), if we differentiate equation (1.11) with respect toξ , wherem

is nowm(x):-



Chapter 1 28

m(x)
∂x
∂ξ

= θ(t). (1.15)

In 1D, the Jacobian is justJ = ∂x
∂ξ , so assuming (for the purposes of this analysis) a strictly

positivem(x), we can write (1.15) as:-

J =
θ(t)

m(x, t)
. (1.16)

In higher dimensions, this generalises as:-

J =
θ(t)

m(x, t)
, (1.17)

whereθ(t) is now the monitor total normalised relative to the domain size [15]:-

θ(t) =

∫

Ωp
m(x, t)dΩ
∫

Ωc
dξ

.

We now use the GCL to relateJ to ẋ, so that we can eliminateJ and directly relatėx to

the monitor function.

On the left-hand side of equation (1.14), if we change coordinates, so that corresponding

to A(t) in the physical space, there is a fixed cellAc in the computational spaceΩc:-

∂
∂ t

∫

A(t)
dx=

∂
∂ t

∫

Ac

J(ξ , t)dξ =

∫

Ac

D
Dt

(J(ξ , t))dξ , (1.18)

where D
Dt is the total derivative= ∂

∂ t + ẋ ·∇.

Applying Green’s lemma to the right-hand side of (1.14), andthen applying the change

of co-ordinates:-

∫

∂A(t)
ẋ ·dS=

∫

A(t)
∇ · ẋdx=

∫

Ac

∇ · ẋJdξ (1.19)

As Ac is arbitrary, (1.18) and (1.19) together imply:-
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D
Dt

(J(ξ , t)) = ∇ · ẋJ. (1.20)

Then assuming our monitor is non-degenerate, so thatθ(t) in equation (1.17) is non-zero,

we can write equation (1.20) as:-

∇ · ẋ = J−1DJ
Dt

. (1.21)

From equation (1.17):-

DJ
Dt

=
θ̇(t)

m(x, t)
−

θ(t)
m(x, t)2

Dm(x, t)
Dt

⇒

J−1DJ
Dt

=
θ̇(t)
θ(t)

−
1

m(x, t)
Dm(x, t)

Dt
. (1.22)

So combining (1.21) and (1.22):-

∇ · ẋ =
θ̇(t)
θ(t)

−
1

m(x, t)
Dm(x, t)

Dt
⇒

m(x, t)∇ · ẋ+
Dm(x, t)

Dt
= m(x, t)

θ̇(t)
θ(t)

⇒

m(x, t)∇ · ẋ+
∂m(x, t)

∂ t
+ ẋ ·∇m(x, t) = m(x, t)

θ̇(t)
θ(t)

⇒

∇ · (m(x, t)ẋ)+
∂m(x, t)

∂ t
= m(x, t)

θ̇(t)
θ(t)

. (1.23)

Ren and Russell [81] have used (1.23) in 1D to solve forẋ andθ̇ (t) simultaneously for a

given monitor function. This same principle, of using (1.23) to get a mesh velocity from

a monitor function has also been used in location-based methods. For example, Huang,

Ren and Russell [50] develop an MMPDE method from (1.23), andthen eliminateθ(t)
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from the system. In order to get uniqueness in solving forẋ in 2D and higher dimensions,

Cao et al [24] have developed a useful theoretical result to solve (1.23) (in the special

case wherėθ (t) = 0), which is to realisėx as the gradient of a potentialφ . An alternative

to this method is a variational form to getẋ. It is only this latter form that is studied

numerically in the Cao et al paper, and this confirms that the GCL is used here essentially

as an algorithmic device, as some meshes did become heavily skewed, though they did

not actually collapse.

The method of Baines, Hubbard and Jimack [4] which is described in Section 1.8, can

also be considered a GCL method. This is actually a small stepforward from the method

of Cao et al [24], and in particular, has two key elements fromthat study - a method of

using the monitor function to get mesh velocities, similar in form to equation (1.23) and

realising the mesh velocity as the gradient of a potentialφ , in a study of actual PDEs with

moving boundaries. We will just mention here, that like Cao et al, using the GCL has not

prevented tangling, so we again consider it an algorithmic device.

We conclude this section by discussing two other velocity-based methods. In the moving

finite element (MFE) method [55, 71, 72, 93], the node positions are just added as extra

variables to the finite element equation (1.6), but with connectivity remaining unaltered

during refinement. Jimack [55] applies this method to the evolution equation (population

growth), focusing on steady-state solutions. Note though,that the “new” finite element

equation will no longer be a linear system. In the Deformation Map method, the equidis-

tribution requirement is realised as a mapping between two domains inRn, and the mesh

velocities are constructed directly from this mapping [15]. A detailed study of this map

has been made by Liao and Anderson [63] for a fixed boundary - the map is realised asn

ODEs,n being the dimension of the domain (as inRn).
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1.5.5 Comparison of Location and Velocity-based methods

In the Ren and Russell 1992 review [81], both MMPDE and Lagrangian types can be

seen, and this paper does have numerical examples given, with actual PDEs solved. Other

comparisons tend to be more general and analytically based,the general consensus being

that the velocity-based methods are easier to implement, but are more prone to tangling.

The studies by Cao et al [24], and Baines, Hubbard and Jimack though, show that tangling

is not a major problem. A definite advantage of velocity-based methods is that no distinc-

tion is needed for boundary velocities [15]. The location-based methods certainly lend

themselves to more mathematical analysis. This does not appear to be an advantage in

itself, but it does affect the strategy we use to decide whichmethod to use - this might be

analytical if a location method is used, but is more likely tobe empirical if using velocity

methods.

Budd, Huang and Russell [15] have stated that in velocity-based methods, the solution

can move away from equidistributed solutions, though they have left an open question

as to what difference this actually makes to solution errors, or other criteria (this point is

actually addressed in this thesis, where we will attempt to force the maintaining of the

initial distribution).

1.5.6 Mesh problems

1.5.6.1 Tangling

A tangled mesh is one whose elements are actually intersecting, i.e., part or all of any two

elements are occupying the same space. In the 1D algorithm, we always assume the node

indices run left to right, and in the 2D case, we have assumed the elements are numbered

anti-clockwise. Therefore tangling is equivalent to element lengths or areas becoming

less than or equal to zero, which is what is checked for in the algorithm. Results are

generally unreliable following tangling, and we will normally consider a case completed
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on this condition, with results only evaluated up to the point where the tangling occurs.

1.5.6.2 Blow-up

A possible problem with clustering mesh points near a regionof high values (for example)

of u (the dependent variable) is that if this region actually contains a singularity, an ex-

cessive proportion of the mesh could effectively disappearinto the region. This is known

as theblow-upproblem. Budd and Williams [17] deal with this problem in a 2Dcase

by defining a new monitor function that is the average of a regularized monitor function

near the singularity and the old one away from it. This provedto be a stable method, and

moved a “substantial fraction” of the mesh points away from the singularity.

1.5.7 Applications of Moving Mesh methods

We mention a few applications here, which illustrate the wide scope of moving mesh

methods. A more comprehensive list can be found in Budd, Huang and Russell [15].

• Dorfi and Drury [33] use an MMPDE method to study Astrophysicsproblems in

1D, in particular, Sod’s shock tube problem and a supernova explosion.

• Mackenzie and Robertson [65] use a velocity-based method for solving

phase change (Stefan) problems in 1D.

• Tang and Tang [88] use an MMPDE method, in 1D and 2D, to study shock waves -

this is in a study of hyperbolic conservation laws, using finite volumes.

• An application in meteorology is the Eady problem [15], which is used to model

cyclones. Here, the Euler equations are modelled in 2D, the spatial co-ordinates

being latitude and height, the dependent variables being air velocity, pressure and

temperature. This is a location-based method, based on optimal transport ideas.
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1.6 Parabolic PDEs: Examples

By a parabolic PDE, we mean one of the form:-

ut = Lu, (1.24)

whereL is purely a second order spatial operator, and there is no second order time deriva-

tive term in this PDE. Two parabolic PDEs are studied in this thesis: the porous medium

equation and the semilinear heat equation.

1.6.1 The Porous Medium Equation

The porous medium equation (PME) models gas flows in porous media, spreading liquids

etc [37,59,92,93].

In a simplified form, with initial values and Dirichlet boundary conditions, it is:-

∂u
∂ t

= ∇ · (un∇u) (x ∈ Ω, t > 0),n being a positive integer;u






t=0
=u0(x);u







∂Ω
=0. (1.25)

This has a known solution, for appropriate initial conditions, of the form [74]:-

u(r, t) =















1
λ d(t)

(1− ( r
r0λ (t))

2)1/n, |r| ≤ r0λ (t),

0, |r| > r0λ (t),

(1.26)

whered is the space dimension,r the usual radial co-ordinate and where:-

λ (t) =
( t

t0

)
1

2+dn
andt0 =

r0
2n

2(2+dn)
. (1.27)
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1.6.2 The Semilinear Heat Equation

The semilinear heat equation describes the temperature of areacting medium, such as a

burning gas [20]. With a fixed boundary and Dirichlet boundary conditions, it takes the

form:-

ut = △u+up,x ∈ Ω, t > 0;u






t=0
= u0(x);u







∂Ω
= 0, p is a positive integer. (1.28)

No analytic solution of the semilinear heat equation is known to this author.

1.7 General factors in algorithm design

1.7.1 Closure

By closurewe mean introducing another condition to a set of equations to make them

uniquely solvable. There is nothing to say this has to be derived from physical principles,

but at least, we would want a condition imposed that is not physically unrealistic. For

example, Baines, Hubbard and Jimack [4] use a vorticity condition on the grid velocity,

whereas Budd and Piggott [16], when looking specifically at the porous medium equation,

impose a centre of mass condition on the gridpositions.

1.7.2 Scale Invariance

For aPDE to be invariant actually means that the form of the PDE is unchanged under

a set of transformations. Solutions that are unchanged under someof these transforma-

tions are referred to as self-similar solutions [66, 75]. Looking at the 1D porous medium

equation (ut = (uux)x) for example, Budd and Piggott [16] consider four “continuous

transformation groups”, two translations and two scaling symmetries. Effectively these

latter two are:-
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t → λ t,x→ λ
1
2x (1.29)

t → λ t,u→
u
λ

. (1.30)

The self-similar solutions are thentγv(
x

tβ ), where 2β − γ = 1, for some new functionv.

By using mass conservation, we can deduceγ = −1
3,β = 1

3, hence there are self-similar

solutions of the form [16]:-

u(x, t) = t−
1
3(a−

x2

t
2
3

), (1.31)

for some constanta.

As a simpler example, if we look at the wave equation in 1D [97], a classical method

of solving it is to change to new variablesξ = x− ct,η = x+ ct and find a very simple

solution in terms ofξ and η. The scale invariance of this new co-ordinate system is

expressed in classical terminology by saying that “along a characteristic”,xt is constant.

Hence some PDEs have an underlying, unchanging physical or mathematical feature -

a scale invariance, which we can exploit in designing the numerical techniques for their

solution, for example, by finding ascalingor other transformation of co-ordinates and

possibly the dependent variable, that gives us a new dependent variable that is constant

or slower-moving with time, or a new time-related co-ordinate. This slower changing

can lead to stability in solution methods [14, 16]. For example, in the blow-up problem

[16,20], the value ofu will become very large compared to the spatial co-ordinatex after a

certain time. We can require that the numerical, i.e., discrete co-ordinates are aligned with

this physical scaling. If using an MMPDE, this translates torequiring that the MMPDE

be scale-invariant (under the same set of transformations that the PDE is), which itself

leads to using a scale-invariant monitor function [16,20].

The method used in this thesis is an extension of the Baines, Hubbard and Jimack algo-
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rithm [4]. As the development of that algorithm was influenced by scale invariance, it will

also be a consideration in this work. For example, when the semilinear heat equation in

Chapter 3 is studied, the scale-invariant monitor functions employed by Budd, Huang and

Russell [20] are used as a first approach.

1.7.3 Timestepping methods

The timestepping scheme chosen in this thesis is Forward Euler. The main disadvantage

of this method is that it is explicit and so, for stability, a sufficiently small time step has

to be chosen. It is also only first order, however in practice the stability restriction on the

step size always dominates over accuracy because of the stiffness of the equations. To

minimise run times, the timestep has only been lowered as faras it needs to be. Having

set a timestep, as the spatial grid sizedxhas been halved, the timestep has been quartered.

This is following typical practice in some finite differencemethods, and can be seen to

be an adequate system in the original BHJ study [4]. In the porous medium equation

studies in this thesis, the timestep remains constant throughout the run. However, in the

study of blow-up in Chapter 3, we allow the timestep to further reduce as the value of the

dependent variableu becomes large.

1.8 The Method of Baines, Hubbard and Jimack

The BHJ method [4] is a velocity-based adaptive algorithm, as described in Section 1.5.4.

The Geometric Conservation Law (GCL) has been used as an algorithmic device to derive

the mesh velocity from the monitor function, but here, actual PDEs have been solved, and

so we see the monitor functionm as a function ofu (in fact, m(u) = u), rather than the

m(x) in the abstracted study by Cao et al [24]. As with the Cao study, the equations for

the mesh velocitẏx have been solved uniquely by realisingẋ as the gradient of a potential

φ . The finite element discretization is done with linear triangular elements. The PDEs
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considered are all of parabolic type, as described in Section 1.6, so are of the form:-

ut = Lu, (1.32)

whereL is purely a second order spatial operator, and there is no second order time deriva-

tive term.

The algorithm can generally be described as a Method of Linesapproach, with a ba-

sic explicit one-step timestepping [61] method used to solve the resulting ODE system.

However, it is only the mesh positionsx and a “mass total” that are updated from the

ODE system - the nodal values ofu are then recovered from a “distributed conservation

principle” [4], which can be visualised as “nodes carrying mass around”.

We first define the mass total:-

θ(t) =
∫

Ω(t)
udΩ. (1.33)

Then we calculate the distribution constants:-

ci =
1

θ(t)

∫

Ω(t)
wiudΩ, i = 1,2. . .N, (1.34)

wherewi are N piecewise linear basis functions, which form a partition ofunity [4].

The “distributed conservation principle” is then that theci remain constant throughout

the run. With this PDE set in a moving frame, so thatΩ is changing in time, equation

(1.34) provides a system to calculateu from the current values ofθ andx. But the same

equation also provides the algorithmic device needed to calculate the mesh velocities,

which we now detail. If we rewrite (1.34) as:-

ciθ(t) =

∫

Ω(t)
wiudΩ, i = 1,2. . .N. (1.35)

As theci remain constant, applying Leibnitz’s rule [60] (and using Green’s lemma):-
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ci θ̇(t) =
d
dt

∫

Ω(t)
wiudΩ

=

∫

Ω(t)

∂ (wiu)

∂ t
dΩ+

∫

∂Ω(t)
wiuẋ · n̂dS

=

∫

Ω(t)
wiutdΩ+

∫

Ω(t)
u

∂wi

∂ t
dΩ+

∫

Ω(t)
∇ · (wiuẋ)dΩ, i = 1,2. . .N,(1.36)

wheren̂ is the outward pointing, unit-length normal at any point on the surface ofΩ.

The wi have been chosen to advect with velocityẋ [4], therefore∂wi
∂ t = −ẋ ·∇wi , and

hence:-

ci θ̇(t)=

∫

Ω(t)
wiutdΩ+

∫

Ω(t)
u(−ẋ ·∇wi)dΩ+

∫

Ω(t)
∇ ·(wiuẋ)dΩ, i = 1,2. . .N. (1.37)

Expanding the last integral and simplifying:-

ci θ̇(t) =
∫

Ω(t)
wiutdΩ+

∫

Ω(t)
wi∇ · (uẋ)dΩ, i = 1,2. . .N. (1.38)

By using vorticity arguments [4], equation(s) (1.38) can beused to solve uniquely foṙx,

if θ̇ andu are known and∇× ẋ is specified. In fact,∇× ẋ is specified as zero, so thatẋ

can be written aṡx = ∇φ , for a velocity potentialφ . The issue of findinġθ is addressed

shortly, but first, writingẋ = ∇φ in equation (1.38) and using the original PDE (1.32), we

have:-

ci θ̇(t) =
∫

Ω(t)
wiLudΩ+

∫

Ω(t)
wi∇ · (u∇φ)dΩ, i = 1,2. . .N. (1.39)

In discrete terms, if we approximateφ by ΣN
i=1φiwi , then we now haveN equations in

N+1 unknowns, becausėθ is unknown as well as theφi . But we can add an equation for

just θ̇ by developing equation (1.33) in a similar manner to above. By settingwi ≡ 1 and
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using the same arguments, we arrive at:-

θ̇(t) =

∫

Ω(t)
LudΩ+

∫

Ω(t)
∇ · (u∇φ)dΩ. (1.40)

However, theseN + 1 equations are actually singular as they stand, as equation(1.40)

is effectively a sum of all the equations in (1.39). This is because thewi are a partition

of unity, as described earlier, and consequently the sum of the ci is also unity, from the

definition in (1.34). This can readily be rectified by eliminating one of theφi . Without loss

of generality, we will actually setφ1 = 0 (and also only solve (1.39) fori = 2,3. . .N), as it

is only∇φ we are interested in [4]. Note that this is the only stage of the algorithm where

the underlying PDE appears, as equation (1.34) is used as it stands to directly recoveru

from the current values ofθ andx.

Having foundφ , we then calculatėx from the weighted form oḟx = ∇φ :-

∫

Ω(t)
wi ẋdΩ =

∫

Ω(t)
wi∇φdΩ, i = 1,2. . .N. (1.41)

Boundary conditions are only applied weakly, by disregarding the appropriate boundary

integrals. For example, in equation (1.39), for the porous medium equation,

Lu = ∇ · (un∇u).

So
∫

Ω(t) wi∇ · (un∇u)dΩ will be calculated as:-

−
∫

Ω(t)
un∇u ·∇widΩ,

thus weakly forcing−
∫

∂Ω(t) wiun∇u · n̂dSto be zero.

The complete algorithm is:

1. From initial values ofu andx, calculate the initial mass totalθ and the monitor

distribution constantsci from (1.33) and (1.34).
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2. Recoveru from current values ofθ andx, using (1.35).

3. Solve equations (1.39) and (1.40) to findθ̇ and{φi}.

4. Solve equation (1.41) to finḋx.

5. Update (with Forward Euler timestepping)x andθ , usingẋ andθ̇ .

6. Return to step 2.

The above algorithm may be expressed more concisely as follows:-

Once only: Calculateθ ,ci

Loop:

θ ∗ci → u.

u→ (φ , θ̇) → ẋ.

Updateθ andx.

End Loop.
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We describe below, in Section 2.1, the main algorithm used inthis thesis, in its general

form. We refer to this as “BHJx”. This extends the BHJ algorithm described in Section

1.8 to any monitorm of the formm(u). It uses a differential form of the ALE to calculate

u̇ from ẋ [5], so that this can also be considered a Method of Lines approach (as described

in Section 1.2.6). Here though, we are directly updatingu andx at every timestep, from ˙u

andẋ. The finite element discretization is done with linear elements, triangular in the 2D

case. The primary development history of the BHJx algorithm, leading up to the algorithm

in 2.1, is described in Section 2.2 - numerous verification results are presented here.

2.1 The BHJx algorithm

Consider a general parabolic PDE, by which we mean one of the form:-

ut = Lu, (2.1)

on a time-dependent domainΩ(t), whereL is purely a spatial operator of the second

order. In particular, there is no second order time derivative term in this PDE. To make

calculation of integral terms tractable, we further constrain L to be of the form∇ ·F+G,

41
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whereF, G are operators onu, containing terms no higher than the first derivatives ofu,

for exampleF = ∇u, G = up for the semilinear heat equation (discussed in Chapter 3).

2.1.1 ALE Formulation

In a Lagrangian system [4], with a moving co-ordinatex(t), ut (the derivative with respect

to the fixed system), actually has two components: the time derivative of u with respect

to the moving frame, which we’ll call ˙u, and a component from the movement ofx itself,

which is−∇u · ẋ, so equation (2.1) can be written in the form [5]:-

u̇−∇u · ẋ = Lu, (2.2)

which we can also write as:-

u̇ = Lu+∇u · ẋ. (2.3)

This last form gives us a way of solving the PDE by timestepping methods, as (2.1) does,

provided we have a means of definingẋ. The algorithm that we will employ can be

generally described as calculating ˙u, ẋ from values ofu,x at a given instant, then using

u̇, ẋ to updateu,x at the next instant, and repeating the process forward in time.

In discrete terms,̇x is the velocity of amoving meshandu the values of the dependent

variable at the nodes of the mesh, and we will actually calculateu̇ for a givenẋ by using

finite elements, and a weak differential form [5] of (2.3):-

∫

Ω(t)
wi u̇dΩ =

∫

Ω(t)
wi(Lu+∇u · ẋ)dΩ, i = 1,2. . .N, (2.4)

wherewi areN piecewise linear basis functions, which form a partition ofunity [4].
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2.1.2 General Monitor Functions

The same distribution conservation ideas as developed by Baines, Hubbard and Jimack [4]

to calculateẋ from u are used, but we now extend it to more general monitor functions.

So given a monitor functionm(u), we aim to maintain the distribution of the monitor total

θ :-

θ(t) =
∫

Ω(t)
m(u)dΩ. (2.5)

This aim allows us to derive the mesh velocityẋ from u, though we should stress that

this is an algorithmic device for determiningẋ, so we do not (generally) force the monitor

distribution to be exactly maintained.

The first step in the algorithm is to derive distribution constantsci . From initial values of

u, we can calculate the value ofθ(t) from (2.5). Usingwi as described in (2.4), we then

calculate:-

ci =
1

θ(t)

∫

Ω(t)
wim(u)dΩ, i = 1,2. . .N. (2.6)

We now use these constants to calculateẋ as follows. The weighted form of (2.5) is:-

ciθ(t) =
∫

Ω(t)
wim(u)dΩ, i = 1,2. . .N. (2.7)

Assuming theci remain constant and applying Leibnitz’s rule [60]:-

ci θ̇(t) =
d
dt

∫

Ω(t)
wim(u)dΩ

=

∫

Ω(t)

∂ (wim(u))

∂ t
dΩ+

∫

∂Ω(t)
wim(u)ẋ · n̂dS

=
∫

Ω(t)
wim

′(u)utdΩ+
∫

Ω(t)
m(u)

∂wi

∂ t
dΩ+

∫

∂Ω(t)
wim(u)ẋ · n̂dS, i = 1,2. . .N, (2.8)
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wheren̂ is the outward pointing, unit-length normal at any point on the surface ofΩ.

Our wi have been chosen to advect with velocityẋ [4], therefore∂wi
∂ t = −ẋ ·∇wi , and

hence:-

ci θ̇ (t) =
∫

Ω(t)
wim

′(u)utdΩ+
∫

Ω(t)
m(u)(−ẋ ·∇wi)dΩ+

∫

∂Ω(t)
wim(u)ẋ · n̂dS, i = 1,2. . .N.

(2.9)

Using the vorticity arguments in [4], equation(s) (2.9) canbe used to solve uniquely for

ẋ, if θ̇ andu are known and∇× ẋ is specified. In fact, we specify∇× ẋ as zero, so thaṫx

can be written aṡx = ∇φ , for a velocity potentialφ . We also assumėx · n̂ is known at the

boundary (= ξ̇ · n̂ say). We will address this issue, along with that of findingθ̇ shortly,

but first, writingẋ = ∇φ in equation (2.9) and using the original PDE (2.1), we have:-

ci θ̇(t)+

∫

Ω(t)
m(u)∇φ ·∇widΩ =

∫

Ω(t)
wim

′(u)LudΩ+

∫

∂Ω(t)
wim(u)ξ̇ · n̂dS, i = 1,2. . .N.

(2.10)

In discrete terms, if we approximateφ by ΣN
i=1φiwi , then we now haveN equations in

N+1 unknowns, becausėθ is unknown as well as theφi . However we can add an equation

for θ̇ by developing equation (2.5) in a similar manner to above, toarrive at:-

θ̇(t) =
∫

Ω(t)
m′(u)LudΩ+

∫

∂Ω(t)
m(u)ξ̇ · n̂dS. (2.11)

However, theseN +1 equations are actually singular as they stand, as equation(2.11) is

effectively a sum of all the equations in (2.10). This can readily be rectified by eliminating

one of theφi , sayφκ and the corresponding equation (withwκ ). Without loss of generality,

we will actually setφ1 = 0, as it is only∇φ that is of interest.

As already noted, the above argument assumes that we have a means of calculating or

estimatingẋ · n̂ on the boundary. This is discussed in the next Section, but before this we
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complete our discussion of the algorithm.

Having foundφ , we then calculatėx from the weighted form oḟx = ∇φ :-

∫

Ω(t)
wi ẋdΩ =

∫

Ω(t)
wi∇φdΩ, i = 1,2. . .N. (2.12)

We now use these values ofẋ to calculate ˙u from (2.4), and hence return bothẋ andu̇, so

completing the algorithm.

The complete algorithm is:

1. From initial values ofu andx, calculate the monitor totalθ and the monitor distri-

bution constantsci from (2.5) and (2.6).

2. Solve equations (2.10) and (2.11) to findθ̇ andφ (thoughθ̇ is not normally used,

unless we also wish to keep track ofθ(t) as the solution progresses).

3. Solve equation (2.12) to finḋx.

4. Solve equation (2.4), usinġx (and current values ofu andx), to find u̇.

5. Update (with Forward Euler timestepping1) u andx, from u̇ andẋ, and so return to

step 1.

This can be described more simply as:-

BHJx algorithm

Loop:

u→ (θ ,ci)

(u,ci) → φ → ẋ.

(u, ẋ) → u̇.

1In this thesis we only use Forward Euler for simplicity. The extension to any explicit Runge-Kutta or
multistep scheme is straightforward [4] however. We have not considered implicit time-stepping schemes.



Chapter 2 46 BHJ - extended

Updatex andu.

End Loop.

We can compare this with the BHJ algorithm:-

Once only: Calculateθ ,ci

Loop:

θ ∗ci → u.

u→ (φ , θ̇) → ẋ.

Updateθ andx.

End Loop.

We can see the stage to calculateẋ is essentially the same, but in BHJ, we recoveru

directly from an updatedx andθ , whereas in BHJx, a form of the ALE is used to calculate

u̇ from ẋ, and thenu andx are updated.

The foregoing describes the BHJx algorithm in its most general form. However, there

were two further amendments made for use in this thesis, following early development of

the algorithm:-

• When solving equations (2.10) and (2.11), there was an accuracy improvement ifφ

was assumed to be zero on all boundary nodes, for the test cases considered. This

is equivalent to assuming the tangential component ofẋ is zero at the boundary [4].

• All the problems solved in this thesis have Dirichlet boundary conditions, with the

dependent variableu being zero on the boundary. To improve robustness, this has

been enforced strongly by only solving equation (2.4) for internal nodes, with ˙u set

to zero for the boundary nodes. See Section 2.2 for more details on this.

Unless otherwise stated, these amendments apply to all coderuns in this thesis.



Chapter 2 47 BHJ - extended

2.1.3 Normal Boundary Velocity

As noted in the previous section, the extended version of theBHJx algorithm requires an

estimate oḟx · n̂ on the boundary. This may be obtained in at least two different ways,

both of which have been considered in this work.

In the following chapter (where monitor functions of the form m(u) = uγ are explored),

we consider a particular case whereẋ is known analytically on the boundary, in this case

zero. However, the principle is identical wheneverẋ is known explicitly or is a computable

function of the solutionu and/or its derivatives.

In the subsequent chapters, we solve problems for which we assumeẋ · n̂ is not known

on the boundary. In these cases, it is necessary to approximate it, based upon the use of

a mass monitor function. In these later chapters, monitors of the formu+a and
√

(1+

(ux)
2) are considered. Note that in this latter case,m(u) is replaced bym(ux), so a further

generalization of the method is described at that point.

A third possibility is to treaṫx · n̂ on the boundary as another unknown in the algorithm,

so it is solved for along with the internal mesh velocities. This was the method used in

our development stage detailed in Section 2.2 for the mass monitor m(u) = u. However,

such an approach has proved unreliable for general monitors(m(u) 6= u), and we do not

discuss it further here.

2.2 BHJx - Development History

This section provides a description of the development of the BHJx algorithm, focusing

entirely on the casem(u) = u, as used in [4]. In addition to providing justification for

decisions made, the results presented also act as validation of the software that has been

developed. We repeat here, for convenience, the BHJ algorithm described in Section 1.8,

in its simplest form, together with two of the principal equations:-

Once only: Calculateθ ,ci
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Loop:

θ ∗ci → u.

u→ (φ , θ̇) → ẋ.

Updateθ andx.

End Loop.

θ(t) =

∫

Ω(t)
udΩ. (2.13)

ciθ(t) =

∫

Ω(t)
wiudΩ, i = 1,2. . .N. (2.14)

If we simply replaceu with m(u) in equations (2.13) and (2.14), then it is still possible

to develop (2.14) to get mesh velocities relating to the general monitor functionm(u) as

shown in the previous section. In fact, the mathematical logic in obtainingẋ in BHJx is

almost identical to that in BHJ. There is a problem though, intrying to recoveru from

(2.14) if u is replaced there bym(u), andm(u) is non-linear. So what was experimented

with is other ways of usinġx to updateu. Two methods were tried, both using an Arbitrary

Lagrangian-Eulerian (ALE) form of the PDE [5]. The first method uses a weak differential

form of the ALE. This was eventually the one selected, being equation (2.4) in Section

2.1:-

∫

Ω(t)
wi u̇dΩ =

∫

Ω(t)
wi(Lu+∇u · ẋ)dΩ, i = 1,2. . .N, (2.15)

wherewi areN piecewise linear basis functions, which form a partition ofunity [4]. This

will be referred to in this section as thenon-conservativeALE as it may not conserve

mass (u). As described in Section 2.1, equation (2.15) is used to effectively converṫx to

u̇, so thenx andu can be updated in a timestepping system.

The second method uses a weakintegral form of the ALE [5]:-
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d
dt

∫

Ω(t)
wiudΩ =

∫

Ω(t)
wi(Lu+∇ · (uẋ))dΩ, i = 1,2. . .N. (2.16)

This will be referred to in this section as theconservativeALE as it will conserve mass

(u) under certain conditions, as explained below. If we write (usingϑ to distinguish this

from themonitor totalθ ):-

ϑi =
∫

Ω(t)
wiudΩ, (2.17)

then equation (2.16) allows us to calculateϑ̇i from ẋ and updateϑi at each timestep. The

new values ofu can then be recovered from (2.17). So a second algorithm was tried in

the development stage, using the conservative rather than the non-conservative ALE to

obtain an updatedu from ẋ. We will refer to this as BHJx(c). In practice, this algorithm

is essentially the same as BHJx, but instead of using (2.15) to updateu, we use (2.16) and

(2.17). We can describe it more simply as:-

BHJx(c) algorithm

Once only: Calculate initial values ofϑi

Loop:

ϑi → u.

u→ (θ ,ci)

(u,ci) → φ → ẋ.

ẋ → ϑ̇i.

Updatex andϑi .

End Loop.

Both the BHJx and BHJx(c) algorithms started with weak (zero) boundary conditions

enforced, so that appropriate boundary integrals are disregarded, as described in Section

1.8. Hence the calculation of
∫

Ω(t) wiLudΩ is simplified when calculating ˙ui for BHJx in

equation (2.15) anḋϑi for BHJx(c) in equation (2.16). Note that neither algorithmstrictly
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enforces the “distribution constants”ci to be constant, as was the case in the original

BHJ algorithm. This does not prevent the algorithm from functioning, but it does leave

an open question as to whether the distribution is being maintained. In the case of the

initial conditions being optimised (equidistributed for the monitor), this question equates

to whether the monitor is actually being equidistributed for all time. This question will be

addressed later in this thesis.

A comparison of the conservative and non-conservative formof the ALE, made by Baines,

Hubbard, Jimack and Jones when studying the porous medium equation, shows that the

conservative form is “preferable both in terms of accuracy and robustness” [5]. At the time

of development of the BHJx algorithm, research showed that when using the conserva-

tive ALE, strong boundary conditions (whereu is forced to be zero at the boundary) gave

more accurate results than weak ones, again studying the porous medium equation [51].

However, that same research also shows that this combination of strong boundary condi-

tions and conservative ALE enforces mass conservation. In particular, for a PDE where

the spatial operator is of the form∇ ·F, mass will be conserved if [51]:-

(Fu+uẋ) · n̂ = 0 (2.18)

on the boundary, wherên is the outward pointing unit-length normal to∂Ω. Whilst this

may be a key property for some numerical PDE algorithms, it could also be considered

unnecessarily restrictive for general PDE study. Therefore, both forms of the ALE were

studied, so that both BHJx and BHJx(c) were considered, and these with both weak and

strong boundary conditions. This and the need to start from the solid foundation that

formed the original BHJ paper led to the code development matrix shown in Table 2.1

(the acronym “NLP” stands for Non-Linear Parabolic).

All these codes were written in “C++” and model 2D problems. The PME problem, which

is fully described in Section 1.6.1, is:-
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Code PDE Algorithm Boundary Conditions Comments
BHJ1 PME BHJ Weak
BHJ2 PME BHJ Weak SPARSKIT added
BHJ3 Oxygen BHJ Weak
NLP1 Oxygen BHJx Weak
NLP2 PME BHJx(c) Weak
NLP3 PME BHJx Strong Weak tried initially
NLP4 PME BHJx(c) Strong Uses Petrov-Galerkin method

Table 2.1: Code development matrix

∂u
∂ t

= ∇ · (un∇u) (x ∈ Ω, t > 0),n being a positive integer;u






t=0
=u0(x);u







∂Ω
=0. (2.19)

The oxygen PDE models diffusion of oxygen in an absorbing medium, such as tissue

[4,8]. This can be defined on a moving boundaryΩ(t) as follows:-

∂u
∂ t

= △u−1 (x ∈ Ω, t > 0); u






t=0
= u0(x);u







∂Ω
= 0 = ∇u · n̂







∂Ω
. (2.20)

We now detail the development history of these codes. The first code, BHJ1, was a straigh-

forward conversion from the Fortran code used to study the porous medium equation in

the original BHJ paper [4]. The first test was to get agreementwith that code, running

to 0.2s on a 545-node mesh, with a timestep of 0.0001 and an initial radius of 0.5. The

initial conditions for these runs were taken to be the known solution in equations (1.26)

and (1.27) (this will usually be the case in this thesis when testing for convergence). The

initial meshes are shown in Figure 2.1.

The BHJ1 final mesh differed from the Fortran one by no more than 1×10−10 in values

of the mesh co-ordinatesx,y and the dependent variableu, so the basic Fortran to ’C++’

conversion was considered complete. This first program useda simplified version of the

BHJ algorithm, utilising the fact that the PME was mass-conservative. So sincėθ =
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Figure 2.1: Porous medium equation: initial conditions forn=1 (left) and n=3 (right).

0, only a symmetric system needed to be solved when findingφ from equations (1.39)

and (1.40). To allow for later development then, the symmetric-only system solver was

replaced with a more general-purpose one, using the SPARSKIT library [83], so forming

the BHJ2 program. Comparing this to BHJ1 with the same mesh and conditions as above,

there was a difference in the final mesh of BHJ2, as compared toBHJ1, of no more than

2×10−9 in the values of the mesh co-ordinatesx,y and the dependent variableu.

For the last part of these foundation codes, the PME problem was replaced by the oxygen

problem in BHJ2, to become BHJ3. This is a non-conservative problem, so is a further

test of the SPARSKIT addition. Furthermore, this problem isalso used to provide a

first test of the BHJx algorithm, which is based upon the non-conservative ALE method

(implemented in the code NLP1). As this has no known analyticsolution in 2D, the

testing here has to be partly qualitative. The initial conditions are shown in Figure 2.2.

Following [4], this mesh (of 615 nodes) was created using theknown solution for 1D

(ex−1−x for x∈ [0,1]), which att = 0 is er−1− r, wherer is the radius, with the initial

boundary set atr = 1. The graphs in the top-right and bottom-left (respectively) in Figure

2.2 show final meshes for BHJ3 and a Fortran code supplied as part of the development



Chapter 2 53 BHJ - extended

of the BHJ paper [4], both of these running toT = 0.07 with a timestep of 0.0001s. We

can see a general agreement between the codes.
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Figure 2.2: Oxygen problem: initial conditions (top left),BHJ3 final mesh (top right),
Fortran code final mesh (bottom left), NLP1 final mesh (bottomright).

We can also show an extrapolated convergence for BHJ3. In Figure 2.3, we show the

graph ofθ(t) (monitor total) for the same 615-node grid as above, but withdecreasing

timesteps. We can see a convergence to some solution in the graph - this is clearer in the

zoomed graph, as the plots have effectively merged in the main graph.θ1 refers toθ(t)

for dt = 0.0001, and so on.
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Figure 2.3: Oxygen problem:θ(t) and zoom in (BHJ3).

The NLP1 code was developed next - this also studies the oxygen problem, but with the

BHJ algorithm in BHJ3 replaced with the non-conservative ALE method used in BHJx.

This was a first test of BHJx in its most general form - the non-conservative ALE with

a problem known to lose mass. The first run was done with exactly the same conditions

as for the BHJ3 run above, and the final mesh is shown in Figure 2.2 (bottom-right) for a

qualitative comparison with BHJ3. In addition to looking equivalent, a direct numerical

comparison of the final BHJ3 and NLP1 meshes was done - this showed a difference of no

more than 0.4%, when looking at the mesh co-ordinatesx,y and the dependent variable

u, this being the absolute difference of the two values, divided by the maximum of them,

i.e., diff(x1,x2) = |x1−x2|
max(|x1|,|x2|) . This result adds confidence to NLP1, from the point of

view of a solid foundation. Extrapolated convergence testswere also done here, using

the same conditions as BHJ3, but to a longer run time of 0.09s -the plots ofθ(t), asdt

decreases, are shown in Figure 2.4, where we again see convergence to a solution.

These results for NLP1 gave sufficient confidence to move to the final testing phase - try-

ing out the alternative conservative ALE, and quantifying the effects of weak vs strong

boundary conditions. This was done with the codes NLP2, 3 and4, all modelling the
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Figure 2.4: Oxygen problem:θ(t) and zoom in (NLP1).

porous medium equation (the rest of the details are shown in Table 2.1). For testing of

BHJx with the PME, we first note that NLP3 runs failed early with weak boundary condi-

tions, for example, one 2113-node mesh withn = 1 tangled (had negative element areas)

shortly afterT = 0.05, so that code was amended to have strong boundary conditions,

and all comparisons from here on regarding NLP3 are with the strong-BCs version. A

comparison is shown in Figure 2.5 of NLP3 with BHJ2 (which hasweak boundary con-

ditions), for a 545-node mesh, initial radius 0.5, timestepof 0.0001, running to T=2.0, for

both n=1 and n=3.

We can see both codes have completed their runs, and show a broadly similar result,

except for the boundary. The “lifting” effect seen in the BHJ2 graphs is actually caused

by the base plane of the graph being drawn at a lower “z-value”for these meshes, since

the values ofu at the boundary were actually a mix of small positive and negative values,

due to boundary conditions being only weakly enforced.

Finally, we look at a study of the alternative (conservativeALE) BHJx(c) algorithm,

which also incorporates a weak/strong boundary conditionscomparison. The NLP2 code

was created from NLP1, by changing the PDE to the porous medium equation, and the
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Figure 2.5: Porous medium equation: BHJ2 (n=1) final mesh (top left), BHJ2 (n=3) final
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algorithm from BHJx to BHJx(c), keeping the boundary conditions weak. NLP4 was

created from NLP2 by making the boundary conditions strong.Following [51], this was

done in a “consistent” manner, so that mass conservation wasdefinitely enforced. This

meant having a test space different from the trial space (so that the test functions form

a partition of unity), hence this code is using a Petrov-Galerkin approach (see [51] for

more details). As the porous medium equation has a known solution, we can estimate

accuracy of these codes. Orders of convergence for NLP2, 3 and 4 are shown in Figure

2.6, for n = 1 andn = 3, meshes (initial radius 0.5) of 545, 2113 and 8321 nodes (soa

dxdecreasing by 50%), and a timestep of 0.0001 for 545 nodes (and reducing to 25% for
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each mesh).
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Figure 2.6: Porous medium equation. Orders of convergence for: L2 mesh error, n=1 (top
left), L2 boundary error, n=1 (top right),L2 mesh error, n=3 (bottom left),L2 boundary
error, n=3 (bottom right).

We can see that NLP4 is generally the most accurate and has an improved order of accu-

racy over NLP2, when considering the boundary error, and this broadly agrees with the

findings in [51]. We also note the orders of convergence, overall four cases (so all four

graphs in Figure 2.6) for NLP4, are comparable to the original BHJ study [4]. We can see

also though, that the order of convergence of NLP3 is as good as NLP4, so as the NLP4

algorithm is more restrictive, as it may unnecessarily enforce mass conservation, NLP3
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was taken forward as the candidate for more general monitors. Note that all the results in

this section, considering both the Oxygen problem and the PME, show that BHJx with the

mass monitor gives broadly similar results to BHJ, therefore any comparisons of BHJx

(non-mass monitor) with BHJx (mass monitor) are broadly equivalent to comparing BHJx

(non-mass monitor) with BHJ.



Chapter 3

The blow-up problem

We consider here the semilinear heat equation, with a fixed boundary and Dirichlet bound-

ary conditions:-

ut = △u+up,x ∈ Ω, t > 0;u






t=0
= u0(x);u







∂Ω
= 0, p is a positive integer. (3.1)

This equation describes the temperature of a reacting medium, such as a burning gas [20].

3.1 Background

No analytical solution of (3.1) is known to this author, though there are conditions given

by Weissler [94] for solution existence when the domain is all of R
n and p > 1. In that

case, he shows that under mild restrictions, ifn(p−1)/2≤ 1, non-negativeLp solutions

always blow-up inLp norm in finite time, and ifn(p−1)/2 > 1, global solutions exist,

given sufficient conditions on the initial data. For example, we will have blow-up in a

finite time in the 1D case, ifp = 2 or 3, and in 2D, ifp = 2.

59
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In this chapter, we consider a 1D version of (3.1) with a finiteinterval:-

ut = uxx+up,x∈ (0,1), t > 0;

u






t=0
= u0(x);u







x=0
= 0;u







x=1
= 0, p is a positive integer. (3.2)

In this case, any solution of (3.2) will blow up at a single pointx∗, at a timeT, if u0 is “suf-

ficiently large” [20], so that ast → T, u develops a narrowing peak aroundx∗. Although

we do not have an analytical solution for (3.2), there is someasymptotic knowledge. In

particular, forx near tox∗, if we define the “kernel co-ordinate”µ [20,48] by:-

µ(x, t) = (x−x∗)[(T − t)(α − log(T − t))]−
1
2 , (3.3)

whereα is a constant depending on the initial conditions, then where µ is constant, the

solutionu(x, t) of (3.2) follows this asymptote [20]:-

u(x, t)→
β β [1+ µ2/4pβ ]−β

(T − t)β ast → T, (3.4)

whereβ = 1
p−1.

This asymptotic behaviour has been confirmed in a numerical study by Budd, Huang

and Russell [20], using MMPDE methods. The equation exactlyas in (3.2) was studied

in 1D, with p = 2, the monitor functionm(u) = u and u0 = 20sin(πx). Values ofx∗

andT have actually been calculated analytically by using the asymptotic theory and the

MMPDEs, but we should emphasise this was possible because ofusing this particular

method of solution, and so depend on that method. This study used an adaptive timestep,

and we note that papers by Budd and Williams [19], and Ceniceros and Hou [26] state that

adaptive timestepping is necessary to solve the semilinearheat equation, with the latter

giving a specific formula for the adaptation:-
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dt = dt0/||pu(p−1)||∞, (3.5)

wheredt0 is the initial timestep.

The results of this study do show the blow-up happening at a single pointx∗ at a time T,

with x∗ being the peak point of the initial data1. This result has also been confirmed by

studies of this problem at the University of Reading [28,91].

3.2 Applying the BHJx algorithm

The algorithm is applied as in Section 2.1. As we have a fixed boundary, the boundary

velocity (ξ̇ ) is set to zero in equations (2.10) and (2.11). The monitor functions have been

of the formm(u) = uγ , as scale-invariance and similar studies [20, 48] have shown this

form allows the mesh to evolve to correctly follow the asymptotic form, without ceasing

to evolve at any point.

3.3 Preliminary results

The first cases have been run with the same initial and boundary conditions and mesh

as in the Budd, Huang and Russell study [20], so that we have the initial conditions

u0 = 20sin(πx), with the interval[0.0,1.0] split into 40 equally-spaced intervals between

41 nodes, andu being forced to be zero at the boundary nodes. Following thatstudy, the

monitor functionm(u) = u has been used for thep= 2 case, andm(u) = u2 for p= 3. The

initial conditions and a plot ofumax(t) for the p = 2 run are shown in Figure 3.1, whilst

plots ofu(x) for p = 2 andp= 3 at the algorithm breaking point of T are shown in Figure

3.2.
1In a 2D study by Budd and Williams [17] of the semilinear heat equation, on a circle and square, we

also see a single blow-up pointx∗ at a timeT, thoughT is not given. As in the study by Budd, Huang and
Russell [20], we see the blow-up pointx∗ is at the peak of the initial data.
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Figure 3.1: Semilinear heat equation: initial grid (left),andumax(t) for p = 2,m(u) = u,
41 nodes.

As predicted in [20], we get a single, narrowing peak roundx∗ (0.5 in both these cases),

with u→ ∞ ast → T, andx∗ is also the peak of the initial data.

The p = 2 run has reached a point T=0.0825025 withumax = 14,000 before tangling

starts. The circled node in Figure 3.2 shows the tangling point, and the zoom shows the

nodes about to overlap. This run did continue until T=0.0825201, withumax= 18,000,

but the algorithm then broke down. Forp = 3, the algorithm broke down immediately

after T=0.00128295 withumax = 3142. There was no tangling here, but the nodes are

very closely centred roundx∗, as the zoomed plot shows - this may be the cause of the

problem. We will discuss untangling and restarting these runs in Section 3.6, but from

these first runs, we note:-

• The “pre-tangle” time of T=0.0825025 for thep = 2 case is comparable with the

blow-up times of T=0.082291 (MMPDE4 method) and T=0.082283(MMPDE6

method) of [20].

• These cases were run with adaptive timestepping, using the formula in (3.5). This

produced no significant difference in T orumax(T), but it did reduce the program
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Figure 3.2: Semilinear heat equation (41 node grid): solutions at the time when the algo-
rithm breaks down, forp = 2, m(u) = u (top) andp = 3,m(u) = u2 (bottom).

run-time, so that for thep = 2 case, an initial timestep of 1× 10−5 with fixed

timestepping gave broadly the same results as an initial timestep of 1×10−3 with

adaptive timestepping. With adaptive timestepping, reducing the initial timestep of

1×10−5 had no benefit, and increasing it to more than 1×10−3 caused the algo-

rithm to fail very early on. We can see the benefit and justification for adaptive

timestepping from the plot ofumax(t) in Figure 3.1 - there is only slow growth in

umaxuntil near T. All runs in this chapter were done with adaptivetimestepping and
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an initial timestep of 1×10−3, unless otherwise stated.

• The values ofumax(T) were 14,000 forp = 2 and 3142 forp = 3. The value for

p = 2 is not as high as seen in [20], which is likely to be because the algorithm

breakdown has prevented a higher value being reached.

3.4 Accuracy

The two cases in Section 3.3, namelyp = 2,3 with monitorup−1 have been run to ap-

proximately half the run-time there, with a decreasing spatial interval, to demonstrate that

the method is converging to something, though we do not have an analytical solution to

compare with. For example, forp = 2 andm(u) = u, the values ofumax (which will be

u at x∗) at t=0.04, for 21/41/81/161 nodes are 33.1364, 33.2578, 33.2906, 33.3030, to six

significant digits. Continuing that sequence, based upon extrapolation, with an average of

the rates of decrease of successive steps, gives us a nominallimit of 33.3062. With that as

the limit, the error of the solution is then 0.1698, 0.0484, 0.0156, 0.0032. This has been

plotted againstdx, as a log-log graph, in Figure 3.3. We have also plotted the same results

for p = 3, running tot = 0.0006, and to ensure this basic result is not dependent on the

monitor, we have also run thep = 2 case with monitorm(u) = u2, and thep = 3 case

with monitorm(u) = u to ensure the same limit is reached, which did indeed turn outto

be the case2. Log-log plots of error againstdxhave been added to the graph for these last

two cases. We can see from Figure 3.3 that we have a convergence rate of approximately

second order for bothp = 2 andp = 3, independently of the monitor, and that forp = 2,

the actual errors are almost coincident, for the two monitors used.

2For p = 2 and monitor functionm(u) = u2, the 161-node case did need a lower initial timestep of
1×10−4 for the algorithm to commence.
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Figure 3.3: Semilinear heat equation - accuracy.

3.5 Other monitors

The two cases run at the start of Section 3.3 were run, exactlyas stated there, but with

different monitors, so that forp = 2, the monitor wasm(u) = u2, and for p = 3, the

monitor wasm(u) = u. These cases were again run until just before tangling starts, and

the results are shown in Figure 3.4. We can see a lower peak of 202 was reached for the

first case, but in the second case, a much higher peak of 2.87×107. The end times of these

runs were T=0.0769416 forp = 2 and T=0.00128304071 forp = 3. After these times,

both runs tangled. For thep = 2 case, this was again at the nodes next to the boundary.

However, forp = 3, the tangling was at nodes near the spike. We can see then, that the

algorithm progressed further, and so reached a higherumaxwith them(u) = u monitor for

both p = 2 andp = 3, rather than usingm(u) = up−1.

3.6 Robustness

To investigate the tangling issue further, thep = 2 case withm(u) = u monitor was run

with 81 and 161 nodes (with all other conditions being the same as for the 41-node run in
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Section 3.3) until a failure in the algorithm. The 161-node run required a smaller initial

timestep of 1× 10−4 to run. The graphs ofu(x) at the breaking point T are shown in

Figure 3.5. The 81-node run failed because of tangling at thenext-to-boundary nodes,

the 161-node run failed with a general algorithm breakdown,so that one of the matrix

systems was unsolvable. The break points for 81 and 161 nodeswere T=0.0824865 and

T=0.0824442 respectively, which are comparable with T=0.0825025 for the 41-node case,

but the values ofumaxare higher, being 116,000 for 81 nodes, and 329,929 for 161 nodes,

compared with 14,000 for 41 nodes, suggesting a higher valueof umax can be reached as

dx→ 0, before some form of algorithm breakdown.

To further investigate the effect of tangling, we have takenthe four main cases, i.e., 41

nodes withp = 2,3 and monitorsm(u) = u andm(u) = u2, and attempted to untangle and

restart these runs, at the point of tangling or algorithm failure. The mesh at the pre-tangle

point for p= 2 andm(u) = u, together with the untangled version, is shown in Figure 3.6.

The untangling was achieved by equidistributing the tangled points to a (piecewise linear)

shape defined by those points, using a monitoru+a, a beingumax(T) (at the pre-tangle

point). So in Figure 3.6, we see the untangled mesh has almostthe same shape as the
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Figure 3.5: Semilinear heat equation:u(x) for p = 2, m(u) = u, 81 and 161 nodes.

tangled one, but the points have been untangled, and also moved away from the spike.
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Figure 3.6: Semilinear heat equation: tangled mesh (left) and untangled mesh (right) for
p = 2, m(u) = u.

The final meshes, following untangling and restarting, forp = 2,3 andm(u) = u,u2 are

shown in Figures 3.7 and 3.8, at a point just before further tangling or algorithm break-

down. Forp = 3 andm(u) = u, the mesh would not restart - there was tangling at the

first iteration, even with a reduced timestep. The twop = 2 cases needed a lower initial
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timestep of 1×10−4 to start.
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Figure 3.7: Semilinear heat equation: meshes following restarts forp = 2 andm(u) = u
(left) andu2 (right).
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Figure 3.8: Semilinear heat equation: mesh following restart for p = 3 andm(u) = u2.

The value of T was extended from 0.0825025 to 0.0825786, and the value ofumax ex-

tended from 14000 to 2×106 for p = 2 andm(u) = u. The corresponding increases for

p= 2 andm(u) = u2 and forp= 3 andm(u) = u2 were(0.0769416→ 0.0823411,202→

4511) and (0.00128295→ 0.00128301,3142→ 37059) respectively. No subsequent
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restarts were attempted.

3.7 Comparison with a location-based method

The cases forp = 2 andp = 3 with the monitorsm(u) = u andm(u) = u2 respectively,

with the same initial conditions, and with 41 and 81 nodes, have been run with “movcol”,

a program based on an MMPDE method, described in Huang and Russell [44], allowing

us to compare BHJx directly with a location-based method. The movcol program3 was

run until the algorithm broke down at a time T. A plot ofumax(t) for the p = 2 case with

41 nodes is shown in Figure 3.9, with the initial conditions repeated here for clarity. We

can see here the same pattern (as in BHJx) of very slow growth in u until we near the

blow-up time T. For 41 nodes, bothp = 2 andp = 3, movcol has reached higher values

of umax(T), these being 980,486 and 29,500 forp = 2 andp = 3 respectively, compared

with the BHJx values of 14,000 and 3,142 with the same monitor(up−1), though BHJx

did achieve aumax(T) of 27,800,000 forp = 3 with the monitorm(u) = u for the 41 node

case. For 81 nodes, bothp= 2 andp= 3, movcol again reached higher values ofumax(T),

these being 1,207,131 and 14,048 forp = 2 andp = 3 respectively, compared with the

BHJx values of 116,000 and 2307, also with the sameup−1 monitor.

For 41 nodes, the movcol values of T forp = 2 andp = 3 are 0.0824369 and 0.00128093

respectively, which are comparable to the BHJx values of 0.0825025 and 0.00128295.

For 81 nodes, the two movcol values for T are 0.0824363 and 0.00128093, which are

comparable to the BHJx values of 0.0824865 and 0.00128295.

The final grids at the algorithm breaking point of T are shown in Figure 3.10 for both

movcol 41-node cases, which can be compared with those for BHJx in Figure 3.2. We do

not consider here any movcol runs with a monitor other thanm(u) = up−1 for a givenp,

as the MMPDE study by Budd, Huang and Russell [20] shows thatm(u) = up−1 is best
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Case/Code BHJx movcol
p=2/41 nodes 15 132
p=2/81 nodes 225 7336
p=3/41 nodes 169 10
p=3/81 nodes 1552 176

Table 3.1: Efficiency comparison (CPU seconds) of BHJx and movcol, for semilinear
heat equation

suited to the MMPDE method, when studying the semilinear heat equation.

CPU times (in seconds) for the four movcol cases run are shownin Table 3.1, along with

those for BHJx. We can see BHJx is more efficient than movcol for the p = 2 case, but

for p = 3, the reverse is true.
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Figure 3.9: Semilinear heat equation: initial grid (left),andumax(t) for p = 2,m(u) = u,
41 nodes, movcol run.

3.8 Summary and Discussion

The preliminary results show the algorithm reflects the basic features of the analysis and

the existing research, so that we see blow-up happening at a single pointx∗, which is

3movcol is available for download at http://www.math.ku.edu/ huang/research/movcol/movcol.html.
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Figure 3.10: Semilinear heat equation (41 node grid): solutions at the time when the
algorithm breaks down, forp = 2, m(u) = u (left) andp = 3,m(u) = u2 (right) (movcol
runs).

also the peak of the initial data, and the results in the Accuracy section (3.4) are showing

convergence as the mesh is refined.

The results in the Robustness section (3.6), specifically the increase in nodes to 81 and

161, suggest converging to a value of T, perhaps from above, only limited by tangling

problems, though the tangling may be obfuscating the issue.On the tangling issue, the

restarted runs in Section 3.6 show a way to overcome this, at least untilumax reaches

the limit of the computational environment. The comparisonwith the location-based

method “movcol” shows tangling is a major flaw in the BHJx method, but there is no

clear evidence in these results as to whether BHJx is more or less efficient than movcol.

On choice of monitor, we see them(u) = u monitor being more robust thanm(u) = u2 for

the p = 3 case. This is not at variance with scale-invariance research suggestingup−1 is

the best monitor [20], as that specifically involved the MMPDE method.



Chapter 4

The Area Monitor (PME)

In this chapter we study the porous medium equation in 2D (fully described in Section

1.6.1):-

∂u
∂ t

= ∇ · (un∇u) (x ∈ Ω, t > 0),n being a positive integer;u






t=0
=u0(x);u







∂Ω
=0. (4.1)

We will look at monitor functions of the formu+a, where a is a non-negative constant.

We refer to this as theareamonitor, because whena is much larger thanu, equidistributing
∫

Ω(t)(u+ a)dΩ over N cells effectively means distributingΩ itself into N equal areas.

Figure 4.1 shows the interpolated initial solutions on a single mesh, based upon the known

similarity solutions withn = 1 andn = 3 respectively. This mesh has 545 nodes, and is

centred on the origin, with a radius of 0.5.

4.1 Applying the BHJx algorithm

The algorithm is applied as in Chapter 2, with the normal (mesh) boundary velocity (̇ξ ·

n̂) estimated by using the mass monitor (as outlined below). The equations to find the

velocity potential, and the mesh velocity from that potential are repeated here for clarity:-

72
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Figure 4.1: Porous medium equation: initial conditions forn=1 (left) and n=3 (right).

ci θ̇(t)+

∫

Ω(t)
m(u)∇φ ·∇widΩ =

∫

Ω(t)
wim

′(u)LudΩ+

∫

∂Ω(t)
wim(u)ξ̇ · n̂dS, i = 1,2. . .N.

(4.2)

θ̇(t) =

∫

Ω(t)
m′(u)LudΩ+

∫

∂Ω(t)
m(u)ξ̇ · n̂dS. (4.3)

∫

Ω(t)
wi ẋdΩ =

∫

Ω(t)
wi∇φdΩ, i = 1,2. . .N, (4.4)

with Lu being the PME spatial operator∇ · (un∇u). Before solving equations (4.2) and

(4.3) in the algorithm, the current values ofu and x are used with the mass monitor

(m(u) = u) to estimateξ̇ on the boundary in the following steps, which are essentially the

core of the mesh velocity calculation in the original BHJ algorithm in Section 1.8:-

A mass total is defined:-

ϑ =
∫

Ω(t)
udΩ. (4.5)
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Then we calculate the distribution constants:-

γi =
1

ϑ(t)

∫

Ω(t)
wiudΩ, i = 1,2. . .N. (4.6)

We calculate the (mass) mesh velocity potentialϕ from:-

γiϑ̇ =

∫

Ω(t)
wiLudΩ+

∫

Ω(t)
wi∇ · (u∇ϕ)dΩ, i = 1,2. . .N, (4.7)

and

ϑ̇ =

∫

Ω(t)
LudΩ+

∫

Ω(t)
∇ · (u∇ϕ)dΩ, (4.8)

with ϕ1 being set to zero to ensure uniqueness. The “mass derivative” ϑ̇ is calculated, but

not used.ξ̇ is then calculated from the weighted form ofξ̇ = ∇ϕ:-

∫

Ω(t)
wi ξ̇dΩ =

∫

Ω(t)
wi∇ϕdΩ, i = 1,2. . .N. (4.9)
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The whole algorithm can be described more simply as:-

BHJx algorithm (with mini-BHJ loop)

Loop:

u→ (θ ,ci)

u→ (ϑ ,γi)

(u,γi) → ϕ.

ϕ → ξ̇ .

(u,ci, ξ̇ ) → φ .

φ → ẋ.

(u, ẋ) → u̇.

Updatex andu.

End Loop.

4.2 Accuracy and mesh control

As the porous medium equation has a known similarity solution, we can estimate accuracy

of BHJx by comparison against this case. Orders of convergence for the solution and mesh

are shown in Figure 4.2, forn = 1 andn = 3, for meshes of 545, 2113 and 8321 nodes

(so dx decreasing by 50%), and a timestep of 0.0001 for 545 nodes (and then reducing

by 25%), for different values ofa in the area monitorm(u) = u+ a. These runs were

done to T=0.1: two of the final meshes are shown in Figure 4.3, and the known solution

at that time for the mesh positions in Figure 4.3, forn = 1 andn = 3, are shown in Figure
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4.4, where we can see close agreement, qualitatively. The values fora = 0 in the log-log

graphs correspond to the foundation established in the BHJxdevelopment (Section 2.2),

and are also comparable to the original BHJ study, using the mass monitor [4].
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Figure 4.2: Porous medium equation, area monitors. Orders of convergence for:L2 mesh
error, n=1 (top left),L2 boundary error, n=1 (top right),L2 mesh error, n=3 (bottom left),
L2 boundary error, n=3 (bottom right).

For the solution errors, for bothn= 1 andn= 3, we can see the values are slowly increas-

ing asa increases, with the rate of this increase lessening asa gets beyond 10. The order

of accuracy for the solution error remains at 2 forn = 1, and 1 forn = 3 though, apart

from the one anomaly ofu+ 1 for then = 1 case. A similar result is seen for the mesh
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Figure 4.3: Porous medium equation: meshes at T=0.1, for monitor u+10000, 545-node
mesh,n = 1 (left) and n=3 (right), with approximation replaced by known solution.
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Figure 4.4: Porous medium equation: meshes at T=0.1, for monitor u+10000, 545-node
mesh,n = 1 (left) and n=3 (right).

error forn = 1, with u+1 being anomalous again. The mesh errors forn = 3 are actually

decreasing in value, but the order of accuracy is also decreasing here. Fora = 100 and

a = 10000, the order of convergence (on the two most refined meshes) for the mesh error

in then = 3 case was 3/4 for both values - the slopes here coincide (bottom right graph

of Figure 4.2).
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At a fundamental level, the algorithm works and shows the area monitor has a poorer

order of convergence than the mass monitor, with the error values getting higher asa

increases. We look more closely now at the action of the area monitor. We expect it to

be equidistributing area if the initial area is equidistributed, and a further case was run to

evaluate this, witha = 106. This was done on the 545-node mesh, for n=3, but with n=1

initial conditions1. In this case, the slope at the boundary steepens as the run progresses

and there is therefore more mass per cell near the boundary. With the mass monitor, we

would expect cells near the boundary to decrease in area, to maintain the mass/cell ratio

relative to the whole domain. With the area monitor, we expect these cells to retain their

initial area distribution, in this case an equidistribution. The graphs in Figure 4.5 (initial

mesh and zoom-in), Figure 4.6 (meshes at T=10 for mass and area monitors) and Figure

4.7 (zoom-in of graphs in Figure 4.6) confirm this result. This does leave the question of

whether the monitor distribution was maintained duringall of the run - this question will

be addressed in Chapter 5.
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Figure 4.5: Porous medium equation, monitor comparison: initial mesh and zoom-in.

1In the accuracy study in Section 4.2, all the errors fora = 106 were equal to those fora = 104, to two
decimal places.
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Figure 4.6: Porous medium equation, monitor comparison: mesh planviews at T=10 for
mass monitor (left) and area monitor (a=1000000) (right).

Figure 4.7: Porous medium equation, monitor comparison: zoom of mesh planviews at
T=10 for mass monitor (left) and area monitor (a=1000000) (right).

4.3 Robustness

The last run in Section 4.2 shows some robustness, for a non-similarity solution case, as

ann= 3 problem was run withn= 1 initial conditions, and completed through to T=10.0.

In addition to this, Figure 4.8 shows the result for a larger mesh, of 33025 nodes and

initial radius 0.5, running to T=0.01 (this being as long as computational resources would

allow), for bothn = 1 andn = 3, this time with matching (inn) initial conditions. The
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monitor wasu+100 in this case.

Figure 4.8: Robustness test: area monitor final mesh for 33025 nodes, T=0.01, n=1 (left)
and n=3 (right). For a=100.

As a further robustness test, both mass and area monitors have been run on an initial

mesh that does not exhibit radial symmetry. The initial meshis shown in Figure 4.9 and

the meshes atT = 0.01, T = 0.02 andT = 0.1 for both monitors are shown in Figures

4.10, 4.11 and 4.12 respectively, running withn = 1. Although there is a slight difference

between the meshes for the two monitors at these times, we cansee the two initial peaks

merge as the meshes evolve for both monitors, and the solution tending towards a radially

symmetric similarity solution.

With the same “twin-peak” initial conditions, the meshes for n = 2 atT = 1.0 are shown

for the mass and area monitors in Figures 4.13 and 4.14. In this case the area moni-

tor clearly preserves the shape of the initial mesh better than the mass monitor. This is

particularly obvious at the centre of the domain where the cells are twisted by the mass

monitor.

As a final robustness test, both mass and area monitors have been run, withn = 1, for two

domains where the initial mesh for n=1 (545 nodes, radius = 0.5), shown in Figure 4.1

(left) has had its mesh positions sinusoidally perturbed (but each node keeping its value
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Figure 4.9: Robustness test: Non (radially) symmetric initial conditions with twin peaks.
Initial mesh (n=1, 545 nodes).
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Figure 4.10: Robustness test: Twin peak meshes at T=0.01, n=1. Mass monitor on left,
area monitor on right.

of u), to form the mesh in Figure 4.15, with its plan view shownon the right. For both

the mass and area monitor, the timestep was reduced by 1/100,as the runs tangled very

quickly with the usual timestep2of 0.0001.

2Following this analysis, these runs were repeated with justdt/10, and the final mesh positions and
values of u were equal to the dt/100 case, to four decimal places.
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Figure 4.11: Robustness test: Twin peak meshes at T=0.02, n=1. Mass monitor on left,
area monitor on right.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−1

−0.5

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−1

−0.5

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4.12: Robustness test: Twin peak meshes at T=0.1, n=1. Mass monitor on left,
area monitor on right.

For these initial conditions, the mass monitor ran to T=0.008 before tangling, and the

mesh just before the tangling is shown in Figure 4.16 , with two zooms near the element

about to tangle. In the closer zoom (bottom), the elements adjacent to the circled node

may seem to be visibly pristine. However, when we look at the same point in the mesh, at

the same time, for the area monitor (witha = 1×106) in Figure 4.17, we can see that the
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Figure 4.13: Robustness test: Twin peak mesh and planview atT=1.0, n=2, mass monitor.
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Figure 4.14: Robustness test: Twin peak mesh and planview atT=1.0, n=2, area monitor.

same node should have six lines emanating from it, but with the mass monitor, there are

only five.

The mesh (and zoom) for the mass monitor at an earlier time of T=0.0075 are shown in

Figure 4.18, and now we can see that that “5-node” is actuallya 6-node with two edges

almost adjacent - at the time of tangling (one timestep afterT=0.008), these then overlap.

Hence the area monitor has proved more robust than the mass monitor - it went further, to
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Figure 4.15: Robustness test: initial mesh (n=1, 545 nodes,radius = 0.5) sinusoidally
perturbed (1).

T=0.0125, before tangling. The mesh just before tangling, for the area monitor, is shown

in Figure 4.19, where we can see the same element is about to collapse.

Secondly, the above run was repeated, but with the sinusoidal perturbation smaller than

the mesh shown in Figure 4.15, to see if the area monitor wouldrun right through to a cir-

cular domain, whereas the mass monitor would fail early on. For these runs, the timestep

was reduced by 1/10 to dt=0.00001, from the usual timestep of0.0001 The initial mesh

for these runs and its planview are shown in Figure 4.20. The mass monitor tangled at

T=0.232, and the mesh just before the tangle, with a planviewand zoom, are shown in

Figure 4.21. The area monitor tangled at T=1.299, and the mesh just before that run tan-

gled, with a planview and zoom, are shown in Figure 4.22. As with the larger perturbation,

the area monitor has got further than the mass monitor beforetangling, in this case, more

than five times as far, and the mesh has proceeded through to analmost circular domain,

though it has ultimately tangled. The zooms of the planviewsare at the farthest point on

the left of the x-axis (on the line y=0). These show a pattern slightly different from the

first case, but still we see elements are about to have their edges cross over, so that their

area becomes negative.
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Figure 4.16: Robustness test: perturbed mesh (1) at T=0.008, for mass monitor.

4.4 Summary and Discussion

The assessment has shown that the BHJx method applied to the porous medium equation

in 2D, with area monitor (u+ a), and prescribed normal boundary velocity, essentially

works, and this for different values ofa. When it has been compared to the mass monitor,

we see a poorer order of convergence as meshes are refined, andthis is generally wors-

ened asa increases. Looking at the differences in monitors in more detail, we can see

that both monitors are actually doing what is expected of them - attempting to conserv-

ing their monitor distribution. For the area monitor, this behaviour might seem to be a

disadvantage, as we have less accuracy. However, when we have analysed meshes which
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Figure 4.17: Robustness test: perturbed mesh (1) at T=0.008, for area monitor (a = 1×
106).
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Figure 4.18: Robustness test: perturbed mesh (1) at T=0.0075, for mass monitor.
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Figure 4.19: Robustness test: perturbed mesh (1) at T=0.0125, for area monitor (a =
1×106).

are not (radially) symmetric, we can see the area monitor hasan advantage, in terms of

robustness.
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Figure 4.20: Robustness test: initial mesh (n=1, 545 nodes,radius = 0.5) sinusoidally
perturbed (2).
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Figure 4.21: Robustness test: perturbed mesh (2) at T=0.232, for mass monitor.
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Figure 4.22: Robustness test: perturbed mesh (2) at T=1.299, for area monitor (a = 1×
106).



Chapter 5

The Arc-length Monitor (PME)

5.1 Background

In this chapter we study the performance of the BHJx algorithm, using a monitor that we

refer to as the arc-length monitor, applied to the porous medium equation. The bulk of

the work here is in 1D, but there is a short 2D study at the end ofthe chapter. This PDE

is fully described in Section 1.6.1. In 1D, it has the form:-

∂u
∂ t

=
∂
∂x

(un∂u
∂x

) (x∈ [a(t),b(t)], t > 0),n being a positive integer;

u






t=0
= u0(x);u







x=a(t)
= 0;u







x=b(t)
= 0. (5.1)

As the PME has a known analytical solution, we will look at convergence to that solution,

as well as robustness. We consider the effect of optimising initial conditions, so that

the initial mesh is equidistributed for the arc-length monitor. We also look beyond the

derivation of the mesh velocity purely as an algorithmic device - we will see if we can

actually maintain the initial distribution of the monitor functionm(u) - which amounts

91
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to keeping theci in equation (2.6) constant throughout the time domain. In fact, we will

look at a way of recoveringu that forces the values ofci to be maintained, whilst still

robustly modelling the porous medium equation. This secondmethod will be referred to

in the sequel as “ALE+” as it takes the nodal values from the usual ALE equation (2.4) as

a starting point, and applies an extra step to them. The first method, i.e, using the nodal

values as they are, will be referred to as “ALE”. Hence the effects of moving away from

an equidistributed mesh will be quantified here.

5.2 Applying the BHJx algorithm

The algorithm is applied as in Chapter 2, with the normal (mesh) boundary velocity es-

timated by using the mass monitor. The equations to find the velocity potential, and the

mesh velocity from that potential are repeated here for clarity:-

ci θ̇(t)+
∫

Ω(t)
m(u)∇φ ·∇widΩ =

∫

Ω(t)
wim

′(u)LudΩ+
∫

∂Ω(t)
wim(u)ξ̇ · n̂dS, i = 1,2. . .N.

(5.2)

θ̇(t) =

∫

Ω(t)
m′(u)LudΩ+

∫

∂Ω(t)
m(u)ξ̇ · n̂dS. (5.3)

∫

Ω(t)
wi ẋdΩ =

∫

Ω(t)
wi∇φdΩ, i = 1,2. . .N, (5.4)

with Lu being the PME spatial operator∇ · (un∇u). As in Chapter 4, we use the core of

the mesh velocity calculation in the original BHJ algorithmin Section 1.8 to estimatėξ

from current values ofu andx. Specifically, before equation (5.2) in the algorithm, the

mass monitor (m(u) = u) is used to provide the normal mesh velocityξ̇ as follows:-

A mass total is defined:-
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ϑ =

∫

Ω(t)
udΩ. (5.5)

Then we calculate the distribution constants:-

γi =
1

ϑ(t)

∫

Ω(t)
wiudΩ, i = 1,2. . .N. (5.6)

We calculate the (mass) mesh velocity potentialϕ from:-

γiϑ̇ =

∫

Ω(t)
wiLudΩ+

∫

Ω(t)
wi∇ · (u∇ϕ)dΩ, i = 1,2. . .N, (5.7)

and

ϑ̇ =

∫

Ω(t)
LudΩ+

∫

Ω(t)
∇ · (u∇ϕ)dΩ, (5.8)

with ϕ1 being set to zero to ensure uniqueness. The “mass derivative” ϑ̇ is calculated, but

not used.

ξ̇ is then calculated from the weighted form ofξ̇ = ∇ϕ:-

∫

Ω(t)
wi ξ̇dΩ =

∫

Ω(t)
wi∇ϕdΩ, i = 1,2. . .N. (5.9)

In 1D, our domainΩ(t) becomes a moving interval[a(t),b(t)] and equations (5.2), (5.3)

and (5.4) become:-

ci θ̇(t)+
∫ b(t)

a(t)
m(u)

∂φ
∂x

∂wi

∂x
dx=

∫ b(t)

a(t)
wim

′(u)Lu dx+
[

wim(u)ξ̇
]b(t)

a(t)
, i = 1,2. . .N,

(5.10)

θ̇(t) =

∫ b(t)

a(t)
m′(u)Lu dx+

[

m(u)ξ̇
]b(t)

a(t)
, i = 1,2. . .N, (5.11)

and:-
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∫ b(t)

a(t)
wi ẋdx=

∫ b(t)

a(t)
wi

∂φ
∂x

dx, i = 1,2. . .N. (5.12)

The monitor function for arc-length in 1D is:-

m(
∂u
∂x

) =
√

(1+(
∂u
∂x

)2). (5.13)

Note that this requires an amendment to equation (2.8) (and so also equations (5.10) and

(5.11)) since they assumedmwas a function ofu only. Specifically, we now deal with the

time derivative ofm(∂u
∂x) as follows:-

∂
∂ t

(

m

(

∂u
∂x

))

= m′

(

∂u
∂x

)

∂
∂ t

(

∂u
∂x

)

= m′

(

∂u
∂x

)

∂
∂x

(

∂u
∂ t

)

= m′

(

∂u
∂x

)

∂
∂x

(Lu). (5.14)

Then writingv = ∂u
∂x (so for the arc-length monitor,m(v) =

√

(1+v2)), equations (5.10)

and (5.11) (our moving mesh driver) become:-

ci θ̇(t)+
∫ b(t)

a(t)
m(v)

∂φ
∂x

∂wi

∂x
dx=

∫ b(t)

a(t)
wim

′(v)
∂
∂x

Lu dx+
[

wim(v)ξ̇
]b(t)

a(t)
, i = 1,2. . .N, (5.15)

and

θ̇ (t) =

∫ b(t)

a(t)
m′(v)

∂
∂x

Lu dx+
[

m(v)ξ̇
]b(t)

a(t)
, i = 1,2. . .N. (5.16)

With piecewise linear elements,v is constant on each element, so the termsm(v) and

m′(v) are actually simpler to calculate than when we havem(u) terms. However, asL is
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a second order operator, we now have some third derivative terms in (5.15) and (5.16)

which we need to treat.

We can approximateLu by lettingq = Lu and then manipulating the weak form of that

identity [5]:-

∫ b(t)

a(t)
wiqdx=

∫ b(t)

a(t)
wi Ludx, i = 1,2. . .N. (5.17)

For the PME this becomes:-

∫ b(t)

a(t)
wiq dx=

∫ b(t)

a(t)
wi

∂
∂x

(un∂u
∂x

) dx, i = 1,2. . .N. (5.18)

As u = 0 on the boundary, integrating by parts gives:

∫ b(t)

a(t)
wiq dx= −

∫ b(t)

a(t)

∂wi

∂x
(un∂u

∂x
) dx, i = 1,2. . .N, (5.19)

which can be solved to findq, and so approximate∂q(=Lu)
∂x in equations (5.15) and (5.16).

This method of findingLu will be used in most of the following work, but we will also

look at one variation, where we use cubic splines [68] to evaluateLu, using only the nodal

values ofu.

The whole algorithm can be described more simply as:-

BHJx algorithm (with mini-BHJ loop andLu estimation)

Loop:

u→ (θ ,ci)

u→ (ϑ ,γi)

(u,γi) → ϕ.

ϕ → ξ̇ .

u→ (qi)

(u,ci, ξ̇ ,qi) → φ .
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φ → ẋ.

(u, ẋ) → u̇.

Updatex andu.

End Loop.

5.3 ALE results

5.3.1 Basic Cases

The initial conditions for this chapter have always been derived from the known similarity

solution [4], using equation (1.26). The following cases have all been run with the param-

etern set to 1 - cases forn = 3 are considered only in Section 5.5. In the first set of cases,

we sub-divide the interval[−0.5,0.5] into 10, 20 and 40 equally-spaced intervals (and so

there are 11, 21 and 41 nodes), and ran the algorithm for arun time of T = 1.0. With an

initial radius of 0.5, the start time of these runs ist0 = 0.041667, from equation (1.27).

These initial conditions and the grids at the end of the threeruns are shown in Figure 5.1,

together with the known solution for comparison.

We can see a convergence (in Figure 5.1) of the approximationto the known solution at

the internal nodes, but it is not clear if there is any convergence at the boundary and near-

boundary nodes. This is quantified in Figure 5.2, where we also show the evolution of the

monitor distribution constantsci . In these evolution plots, the legend refers to the values of

ci at three points in the first half of the interval, so for 21 nodes for example, the boundary

is Node 1, the “quarter-point” is Node 6 and the origin is Node11. For 11 nodes, the

quarter-point is taken as Node 3. The boundary error is the absolute difference between

the approximated and the known boundary node positions. We can see a convergence

order that appears to be slightly higher than1
2 for the L2 error, and we can see there is

a convergence for the boundary error, with an order slightlyhigher than1
4, which are

smaller orders than those obtained with the mass monitor [4]. Concerning the distribution
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Figure 5.1: Grid evolution for ALE runs with unoptimised initial data (grid uniformly
spaced), 11, 21 and 41 nodes. Graphs show initial grid (top left), and exact (known)
solution and approximation at T=1.0.

constants (ci), we can see they are not staying constant at first, though there is some

settling down later in the runs. Recall that, although maintaining a constant distribution

of the monitor is the driver for the node movement algorithm,there is nothing in the final

scheme that absolutely forces this (but see Section 5.4 below).
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Figure 5.2: Convergence rates (solution and boundary error) and monitor distribution
evolution for ALE runs with unoptimised initial data.

5.3.2 Effect of optimising initial data

The cases in Section 5.3.1 were repeated with the initial data optimised, so that the initial

node positions were re-arranged to equidistribute the monitor (arc length) function. Figure

5.3 shows the effect on the initial grid of this equidistribution, for the 11-node case.

Figure 5.4 shows the solution grids for the optimised data, and it appears there is little

difference from the unoptimised grids in Figure 5.1. In fact, looking at Figure 5.5, the

orders of convergence for theL2 and the boundary error are similar to those for the unop-
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Figure 5.3: Initial grids for 11 nodes, n=1, unoptimised (left) and optimised (right) for
arc-length monitor.

timised data in Figure 5.2. The plot of the distribution constants in Figure 5.5 is different

from the unoptimised case in Figure 5.2, but still we can see the same general pattern of

only staying constant at later times. Note that in Figure 5.5(and some later ones), the

distribution constants for the quarter-point and origin nodes are virtually identical, so the

plots coincide.

Further cases with longer times and more refinement have shown similar convergence

orders and the same pattern for the distribution constants,except that for 81 nodes in the

optimised data case, there was a breakdown in the algorithm in determining the next grid

positions, atT = 0.259. The grid just before the breakdown is shown in Figure 5.6, with

a zoom on the circled nodes. The zoomed plot shows two nodes very close together,

relative to the adjacent inter-node distances, and this mayhave caused an ill-conditioning

in solving the matrix system in equations (5.2) and (5.3), where there would be a high

relative ratio of successive values of∇wi , or it may be caused by the nodes tangling at the

next step.



Chapter 5 100 The Arc-length Monitor (PME)

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Arc−length monitor(1D); initial conditions; 11 nodes; n=1; r0=0.5; optimised for arc length

x

u

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

                   Arc−length monitor(1D); n=1; T=1.0; optimised data

x

u

 

 
Exact
Apprx

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

                    Arc−length monitor(1D); n=1; T=1.0; optimised data

x

u

 

 
Exact
Apprx

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

                    Arc−length monitor(1D); n=1; T=1.0; optimised data

x

u

 

 
Exact
Apprx

Figure 5.4: Grid evolution for ALE runs with optimised initial data, 11, 21 and 41 nodes.
Graphs show initial grid, and exact (known) solution and approximation at T=1.0.

5.3.3 Methods of imposing boundary velocities

When using equations (5.2) and (5.3), the boundary velocities have beeninfluencedby

the normal boundary velocity estimatėξ , but we have not actually forced them to be

equal toξ̇ . We now consider the effect of directly forcing this, by representing ˙xh as

ξ̇1w1 +(ẋ2w2 + · · ·+ ẋN−1wN−1)+ ξ̇NwN (so forcing the boundary velocities), and then

recasting the discrete form of equation (5.12), so it is onlysolved for internal nodes:-
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Figure 5.5: Convergence rates (solution and boundary error) and monitor distribution
evolution for ALE runs with optimised initial data.

∫ b(t)

a(t)
wi ẋhdx=

∫ b(t)

a(t)
wi

∂φh

∂x
dx, i = 2. . .N−1.(5.20)

⇒
∫ b(t)

a(t)
wi(ξ̇1w1 +ΣN−1

j=2 ẋ jw j + ξ̇NwN)dx=
∫ b(t)

a(t)
wi

∂φh

∂x
dx, i = 2. . .N−1.(5.21)

⇒
∫ b(t)

a(t)
wi(ΣN−1

j=2 ẋ jw j)dx=
∫ b(t)

a(t)
wi

∂φh

∂x
dx−

∫ b(t)

a(t)
wi(ξ̇1w1 + ξ̇NwN)dx, i = 2. . .N−1.(5.22)
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Figure 5.6: Grid and zoom-in at T=0.259 for ALE run with optimised initial data, 81
nodes.

5.3.3.1 Results

Mesh evolution, convergence and monitor distribution plots for unoptimised initial data

are shown in Figures 5.7 and 5.8, and for optimised initial data in Figures 5.9 and 5.10.

Looking at the unoptimised plots, we can see the accuracy hasimproved when compared

with the results in Section 5.3.1, and the convergence plotsnow show orders of approx-

imately 1.5 for theL2 error and 1.25 for the boundary error. When the initial data is

optimised, Figures 5.9 and 5.10 show a further improvement,with convergence orders of

2 and 1.5 for the solution error (L2) and the boundary error respectively. The order for the

solution error thus agrees with the original study [4], though the mesh error (for BHJx) is

slightly less. As for the distribution constantsci , we see a different pattern compared to

runs where the boundary velocity is not forced (in Section 5.3.1), though they are still not

remaining constant for early times. The algorithm has proved more robust - longer times

and further mesh refinement have produced results consistent with the above. Given the

improvements these changes have made, we assume in the rest of Chapter 5 that unless

stated otherwise, ˙x is always applied directly.
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Figure 5.7: Grid evolution for ALE runs with unoptimised initial data, forced boundary
velocities, 11, 21 and 41 nodes. Graphs show initial grid (top left), and exact (known)
solution and approximation at T=1.0.

5.3.4 Strong vs Weak boundary conditions

We discuss here the effect of only applying the boundary conditions weakly, so equation

(2.4) (in 1D form for the PME) is now solved for all nodes, but
∫ b(t)

a(t) wi
∂
∂x(u

n∂u
∂x) dx is evaluated as−

∫ b(t)
a(t)

∂wi
∂x (un∂u

∂x) dx, so effectively weakly imposing
[

wiun ∂u
∂x

]b(t)

a(t)
as zero.

Mesh plots for 11-node runs to T=0.1 and 1.0, for optimised initial conditions, are shown
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Figure 5.8: Convergence rates (solution and boundary error) and monitor distribution
evolution for ALE runs with unoptimised initial data and forced boundary velocities.

in Figure 5.11. We can see the grid has lifted up and eventually degenerated, so this

change has not produced a desirable effect, and grid refinement had no effect on this

result. Consequently, we only consider strong boundary conditions for u in subsequent

tests.
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Figure 5.9:Grid evolution for ALE runs with optimised initial data, forced boundary velocities,
11, 21 and 41 nodes. Graphs show initial grid, exact (known) solution and approximation at T=1.0.

5.3.5 Accuracy of third derivative terms

If we expand the second derivative terms of the porous mediumequation PDE in equation

(5.1):-

∂ (un∂u
∂x)

∂x
= un∂ 2u

∂x2 +nun−1∂u
∂x

, (5.23)

then another method of evaluatingq in equation (5.17) is to use the nodal values ofu

to create a set of cubic splines [68] that estimateu in the PDE domain. The first and
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Figure 5.10: Convergence rates (solution and boundary error) and monitor distribution
evolution for ALE runs with optimised initial data and forced boundary velocities.

second derivatives of these splines, and the nodal values themselves, can then be used

to estimate the nodal values ofLu from equation (5.23). This method was tried, as a

possible alternative to the approach used to find the third derivative terms, as evaluated

by the weighted method described in Section 5.2. However, itproved not to be a robust

method, giving non-symmetric results and causing mesh tangling. An example plot is

shown in Figure 5.12 for 41 nodes to a run time of T=0.0457, using optimised data - the

mesh completely collapsed shortly after this time.
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Figure 5.11: Grids at T=0.1 and 1.0 for ALE run, with optimised initial data and weak
boundary conditions, 11 nodes.
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Figure 5.12: Grid and exact (known) solution at T=0.0457 forALE run with optimised
initial data, 41 nodes, where cubic splines were used to calculate third derivative terms.

5.4 ALE+ (Forcing the distribution constants)

5.4.1 Mathematical Description

In the first part of this chapter on the arc-length monitor, wehave seen that the algorithm

has been successful in terms of accuracy and robustness, under certain conditions, but the

ci have not actually remained constant throughout the run. We now consider adding a
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constraint to the method that forces this. The value ofu is updated in the usual way via

the ALE equation (2.4) and the value ofx is also updated from ˙x. However, that value of

u is now taken as the initial value in an additional algorithm,wherex is fixed, but we let

the nodal values ofu vary, until theci regain their starting value. Specifically, we solve

these equations:-

∫

Ω(t)
wim(v)dx= ciθ(t), i = 1,2. . .N, (5.24)

whereΩ(t),wi,ci andθ(t)(using theupdatedvalue, viaθ̇ from equation (5.3)) are all

constant, butu (and sov(= ∂u
∂x)) varies. If we writeFi(u) = (

∫

Ω(t) wim(v)dx)−ciθ(t), i =

1,2. . .N, then our goal is to solve the system of equations:-

Fi(u) = 0, i = 1,2. . .N. (5.25)

Writing F(u) = (F1(u),F2(u), . . .FN(u))T andu = (u1,u2, . . .uN)T , solving (5.25) is

equivalent to solving the single vector equation:-

F(u) = 0. (5.26)

A Newton-Krylov method [13] was used to solve this system, which only requires us to

supply a functionF of a vector functionu and an initial guessu0. The derivative-product

F′(u)h is then approximated by:-

F′(u)h ≈
F(u+σh)−F(u)

σ
, (5.27)

for a scalarσ [13]. This algorithm was implemented with the SUNDIAL suite[42], which

performs the approximation in (5.27).



Chapter 5 109 The Arc-length Monitor (PME)

5.4.2 Basic Cases

The cases in Section 5.3.1 were repeated for the ALE+ method.The grid plots atT = 1.0

are shown for 11, 21 and 41 nodes in Figure 5.13, and the solution convergence and moni-

tor evolution plots are shown in Figure 5.14. Comparing these with the ALE unoptimised

plots in Figures 5.7 and 5.8, we can see that the approximation is not converging to the

solution for ALE+ as fast as ALE, when refining the mesh from 11nodes to 21 nodes.

However, on further refinement, the order of the ALE+ method does increase, and nearly

to order 3 in the case of theL2 solution error. As for the distribution constants, we can see

they are staying constant for the 11-node run, but on furtherrefinement, they are showing

the same pattern as in Figure 5.8. We can see the order of convergence has improved as

the distribution evolution has got poorer (the distribution constants not staying constant),

and the mesh has been refined. At the higher node runs though (21 onwards), we can

see that, comparing the ALE+ runs with the ALE runs, just attempting to maintain the

distribution by using equation (5.26) has improved the order of convergence.

More pertinent however, is that the distribution constantsare not staying constant, even

though this has supposedly been forced by solving equation (5.26). In fact, the default

tolerance in the SUNDIAL suite [42] is approximately 1×10−6, so that if|F| is less than

this tolerance in equation (5.26), it is considered to be zero, and the Newton-Krylov iter-

ation terminates. Experiments were done to lower this tolerance, to see if the distribution

evolution could be improved. The result of one such experiment is shown in Figure 5.15

for 21 nodes, where the tolerance was lowered to 1×10−9. We can see the approximation

is worse than that in Figure 5.13 for 21 nodes, but the distribution constants are now stay-

ing constant. The 41 and 81 node cases would not run at this tolerance though - causing a

failure in the SUNDIAL suite to reach convergence.

Concluding here, we can see that just attempting to force a distribution to be maintained

has gained an order of convergence for the solution error, but if we actually do force the

ci to be constant, the algorithm fails.
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Figure 5.13: Grid evolution for ALE+ runs with unoptimised initial data, 11, 21 and 41
nodes. Graphs show initial grid, and exact (known) solutionand approximation at T=1.0.

5.4.3 Effect of optimising initial data

The cases in Section 5.3.1 were repeated for the ALE+ method,with the initial data op-

timised, so that the initial node positions were re-arranged to equidistribute the monitor

(arc length) function. When these cases were run with the default SUNDIAL tolerance of

1×10−6, as described in Section 5.4.2, the distribution constantshad a poor evolution,

showing a similar pattern to those in Figure 5.10. They were therefore (successfully) re-

peated at a lower tolerance of 1×10−9, following the results in Section 5.4.2. For these
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Figure 5.14: Convergence rates (solution and boundary error) and monitor distribution
evolution for ALE+ runs with unoptimised initial data.

reduced tolerance runs, the grids atT = 1.0 are shown for 11, 21 and 41 nodes in Fig-

ure 5.16, and the solution convergence and monitor evolution plots are shown in Figure

5.17. Comparing these with the unoptimised case, we can see the mesh approximation is
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Figure 5.15: Grid and monitor distribution evolution for ALE+ run with unoptimised
initial data, 21 nodes. SUNDIAL tolerance lowered to 1×10−9.

poorer, now being only of order 1, but the distribution constants are now staying constant.

Following these successful runs to maintain the distribution, further cases were run to test

the robustness of the method. Using the same SUNDIAL tolerance of 1×10−9, the 161

nodes was run. This ran up toT = 0.4375, at which point the SUNDIAL suite failed

to reach convergence. The SUNDIAL tolerance was then increased until the 161 node

case ran toT = 1.0. At a tolerance of 3× 10−9, the run did not reachT = 1.0, but at

4×10−9, it did. The distribution evolution for these two cases (1×10−9 and 4×10−9)

is shown in Figure 5.18. We can see a slight increase inc1 (boundary constant) for the

lower tolerance, but a higher increase for the higher tolerance, even though that ran for

the longer time. In both cases though, the relative increaseis lower than we see for 41

and 81 nodes in the case where the initial data is unoptimised- see Figure 5.14.

Finally, the 41-node case was run for a longer time ofT = 10.0 at the lower tolerance of

1×10−9, and the grid and monitor distribution evolution are shown in Figure 5.19.



Chapter 5 113 The Arc-length Monitor (PME)

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Arc−length monitor(1D); initial conditions; 11 nodes; n=1; r0=0.5; optimised for arc length

x

u

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

                          Arc−length monitor(1D); n=1; 11 nodes; T=1.0; optimised data

x

u

 

 
Exact
Apprx

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

                          Arc−length monitor(1D); n=1;  21 nodes; T=1.0; optimised data

x

u

 

 
Exact
Apprx

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

                          Arc−length monitor(1D); n=1; 41 nodes; T=1.0; optimised data

x

u

 

 
Exact
Apprx

Figure 5.16: Grid evolution for ALE+ runs with optimised initial data, 11, 21 and 41
nodes. Graphs show initial grid, and exact (known) solutionand approximation at T=1.0.
SUNDIAL tolerance lowered to 1×10−9.

Comparing this with theT = 1.0 run for the same 41-node case, shown in Figures 5.16

and 5.17, we can see the monitor distribution has again been maintained.

Concluding here, we can see it is possible to maintain an equidistribution, though it does

involve an extra parameter - the SUNDIAL tolerance. We also note the effect of forc-

ing an equidistribution is to lose one order of convergence.On the other hand, we can

say allowing the distribution to deviate from an equidistribution has gained an order of

convergence.
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Figure 5.17: Convergence rates (solution and boundary error) and monitor distribution
evolution for ALE+ runs with optimised initial data. SUNDIAL tolerance lowered to
1×10−9.

5.5 n=3 cases

We consider here the cases where the porous medium equation [92] parameter (n) is set to

3. In this case, the similarity solution has an infinite slopeat the moving boundary, which
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Figure 5.18: Monitor distribution evolution for ALE+ runs with optimised initial data,
161 nodes, SUNDIAL tolerance of 1× 10−9 (partial run) and SUNDIAL tolerance of
4×10−9 (full run to T=1.0).
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Figure 5.19: Grid and monitor distribution evolution for ALE+ runs with optimised initial
data, 41 nodes, T=10.0. SUNDIAL tolerance of 1×10−9.

makes numerical simulation more of a challenge than for then = 1 case. Furthermore,

this similarity solution is a stable attractor, so that the solution tends towards it, for all

initial data.

As with the n = 1 cases, we will look at the ALE and ALE+ codes, running against
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unoptimised and optimised initial conditions. The ALE codehas the boundary velocities

imposed directly, as described in Section 5.3.3. The initial conditions for 21 nodes are

shown in Figure 5.20, where we can see much steeper slopes at the boundary than for

n = 1.
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Figure 5.20: Initial conditions forn = 3, 21 nodes, unoptimised and optimised initial
conditions.

5.5.1 ALE with unoptimised initial conditions

The cases in Section 5.3.1 were repeated forn = 3, but with 11, 21, 41 and 81 nodes.

Although theL2 approximation error decreased as the grid was refined from 11nodes

to 41 nodes, it actually increased from 41 nodes to 81 nodes. The grids for 41 and 81

nodes are shown in Figure 5.21, along with the monitor distribution evolution for these

two cases. We can see the internal nodes “bunching” towards the centre, so that the

approximation is actually getting worse as this bunching intensifies. It is also clear this

behaviour is preventing the monitor distribution being maintained. We can see some

similarity here with the ALE(n = 1) case shown in Figure 5.6, where the grouping of

nodes may have caused an ill-conditioning problem.
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Figure 5.21: Meshes at T=1.0 and monitor distribution evolution for ALE runs with un-
optimised initial data, 41 and 81 nodes, n=3.

5.5.2 ALE with optimised initial conditions

The cases in Section 5.5.1 were repeated with the initial conditions optimised, to equidis-

tribute arc-length. Only the 11 and 21 node cases ran all the way through toT = 1.0. In

the case of 41 and 81 nodes, there was a breakdown in the algorithm in determining the

next grid positions (not in the SUNDIAL suite). The final gridfor 21 nodes, and the grid

for 41 nodes, just before the algorithm broke down, are shownin Figure 5.22. We can see

the “bunching” behaviour again, as we saw for the unoptimised runs, but we also see a
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steeper mesh here, which has caused a loss of robustness in the method. It is clear from

the mesh plots that the monitor distribution (ci) is not being maintained, as the initial data

had an equidistributed arc length.
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Figure 5.22: Meshes at T=1.0 for 21 nodes and T=0.0924 for 41 nodes, for ALE runs
with optimised initial data, n=3.

5.5.3 ALE+ with unoptimised initial conditions

The cases in Section 5.5.1 were repeated for the ALE+ code, sowe now try to force the

ci to be constant. In this case, the 11, 21 and 41 node cases ran all the way through to

T = 1.0, but the 81-node mesh tangled (element lengths became negative), and there was

then a failure in the SUNDIAL suite to converge. The convergence rates, and meshes for

21 and 41 nodes are shown in Figure 5.23. As with then = 1 cases ran for the ALE+

code in Section 5.3.1, just attempting to maintain the distribution has improved the order

of convergence (though only up to the 41 node case), but also as with then = 1 case, we

have not actually maintained the distribution, as can be seen in Figure 5.24. These runs

were all done with the default SUNDIAL tolerance of 1×10−6 - attempts to lower this

tolerance caused the SUNDIAL suite to fail beforeT = 0.16 was reached, for all cases.
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As with the ALE code for then = 3 cases, we can see a “bunching” of nodes towards

the centre in the mesh plots (Figure 5.23), though there are fewer nodes doing this, than

there were in the ALE case. This is reflected in the monitor evolution plot for 21 nodes

in Figure 5.24, where we can see the quarter-point value has increased. This difference

can also be seen in Figure 5.25, showing the 81-node case atT = 0.2, shortly before the

SUNDIAL suite failed to converge.
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Figure 5.23:Convergence rates (solution and boundary error) and meshesat T=1.0 for 21 nodes
and 41 nodes for ALE+ runs with unoptimised initial data, n=3.
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Figure 5.24: Monitor distribution evolution for ALE+ runs with unoptimised initial data,
21 and 41 nodes, n=3.
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Figure 5.25: Mesh and monitor distribution evolution for ALE+ run with unoptimised
initial data, 81 nodes at T=0.2, n=3.

5.5.4 ALE+ with optimised initial conditions

The cases in Section 5.5.2 were repeated for the ALE+ code, sowe now try to force

the ci to be constant, with the initial conditions optimised, so weare starting with the

arc-length being equidistributed. For these cases, the SUNDIAL suite failed to converge
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after a very short time, so only runs up to T=0.01 for 11, 21 and41 nodes are discussed

here. The meshes atT = 0.01 and two of the monitor distributions are shown in Figures

5.26 and 5.27. The monitor distribution has been maintained. The meshes show a poor

approximation though, and in fact, theL2 solution error actually increased as the mesh

was refined.
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Figure 5.26: Meshes at T=0.01 for 11, 21 and 41 nodes for ALE+ runs with optimised
initial data, n=3.
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Figure 5.27: Monitor distribution evolution for ALE+ runs with optimised initial data, 21
and 41 nodes, n=3.

5.6 2D Cases

In 2D, preliminary results show a mesh pattern similar to that in the 1D case, and a

consequent lack of robustness. A plot of the mesh is shown in Figure 5.28, for then =

1 case, 545 nodes, running to T=0.1, where we can see the thirdannulus of cells in

from the boundary has become compressed. A zoomed plot of themesh for 8321 nodes,

also running to T=0.1 and forn = 1, is shown in Figure 5.29, which shows the annulus

compressing even further. This compression causes mesh quality problems, leading to

poor accuracy, and can be compared with Figures 5.9 and 5.22 for the 1D case. For the

n = 3 case, this compression has led to mesh tangling and subsequent collapse in this

annulus, this tangling starting at the four “45-degree” lines, where there is a change of

mesh geometry.
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Figure 5.28: Mesh at T=0.1 for 2D run, 545 nodes,n = 1.
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Figure 5.29: Zoomed mesh at T=0.1 for 2D run, 8321 nodes,n = 1.

5.7 Summary and Discussion

In the bulk of this chapter we have considered an extension and application of the BHJx

algorithm for the arc-length monitor in one space dimension. In order to achieve this, as in

the previous chapter, the normal boundary velocityξ̇ · n̂ is determined by using the BHJ

approach using a mass monitor. Furthermore, the derivationof the algorithm has been
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extended from that for a general monitor functionm(u) to one involving a monitorm(∂u
∂x),

depending upon the first spatial derivative of u. In testing the performance of the resulting

algorithm, two distinctive implementations were considered. The first of these, known as

ALE, was based upon the standard ALE approach, onceẋ had been obtained. The second,

known as ALE+, uses the ALE calculation ofu as a first estimate in an algorithm that then

attempts to find new values ofu, that actually force the distribution to be maintained (keep

ci constant).

For the n=3 cases, there was a general lack of robustness, to the point where there was

insufficient data to estimate orders of convergence. Only inthe ALE+ case with unopti-

mised data can we show an order of convergence, though that iscomparable to the original

BHJ values [4]. It may be that the steep slopes forn = 3 at the boundary are causing the

robustness problems. This is a known problem with the PME [93], but nonetheless we

have to say the BHJx algorithm did not work for this case.

For the n=1 cases, initial results showed the importance of imposing the normal boundary

velocity ξ̇ · n̂ strongly, and so this approach, as outlined in Section 5.3.3, was adopted

throughout. Furthermore, the application of the boundary conditionu = 0 strongly was

also found to be superior to only enforcing it weakly. A consequence of using a monitor

function of the formm(∂u
∂x) is that it becomes necessary to estimate an integral of a third

derivative ofu in the resulting method. Our approach to overcoming this is based upon

the projection of∂
2u

∂x2 onto the space of piecewise linear functions, and then applying inte-

gration by parts. This was found to be superior to calculating the cubic spline interpolant

of u and then taking its third derivative. We also saw (in Section5.3.3.1) that accuracy

was improved by having initial conditions optimised (so we start with an equidistribution

of the arc-length monitor), to the point where the order of convergence in the solution

error is comparable to that in the original BHJ algorithm [4].

For the n=1 cases, we saw that the ALE+ approach can be beneficial in terms of accuracy,

provided that the constraint that theci remains constant is not imposed too strictly. Indeed,
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with unoptimised initial conditions (an equally-spaced grid), third order accuracy was

achieved for the solution error. With optimised initial conditions, we see it is possible

to strictly enforce theci being constant (and so equidistributing the monitor), but this

has cost us an order of accuracy. We can also view this last result as a quantification of

accuracy gain or loss, if we allow a distribution to move awayfrom an equidistribution.



Chapter 6

Conclusions

We present four aspects of the results in this thesis, thoughwe do not claim these to be

exhaustive, and we then consider the matter of possible future work.

6.1 Providing a general numerical technique

In the guidelines set out in the introduction of this thesis,we have sought to provide a

general numerical technique, rather than solving a specificclass of mathematical models.

It is for this reason that the PDEs have been studied in a simplified, canonical form, as

discussed in the introduction. In fact, BHJx has been assessed for two different parabolic

PDEs (semilinear heat equation and porous medium equation), three different monitor

functions (power, area and arc-length), and in 1D and 2D (though not all combinations

of these three factors), and has been tested against meshes that have been untangled,

and then restarted (in the blow-up study). We also note that in the 2D PME chapter, the

algorithm has been assessed against non (radially) symmetric meshes and in the arc-length

chapter, against unoptimised and optimised initial conditions, to ensure the algorithm’s

basic functionality is not dependent on just one set of initial conditions. Over all these

criteria, the BHJx algorithm has been robust enough to allowa study of its accuracy, with

the one exception in the arc-length study, where the porous medium equation parameter

126
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n (as in∇(un∇u)) was 3.

Let us now scrutinize the changes made to the algorithm throughout the numerical study

as well as its definition. In the definition of the algorithm inSection 2.1, we have stated

that the velocity potential is taken to be zero on all boundary nodes and that boundary con-

ditions are enforced strongly. For the former condition, this is the same as the assumption

made in the original BHJ study [4], when applied to the porousmedium equation in 2D,

and is equivalent to requiring that the tangential boundaryvelocity is zero (which is triv-

ially true for our study of the semilinear heat equation, where the boundary is fixed) and

is, in any case, very easily changed in the algorithm implementation (this might be re-

quired in 1D, if we have non-symmetric initial conditions).For the latter, it was shown in

Chapter 5 that BHJx did not function there with weak boundaryconditions, but again it is

a straightforward change to make in such an implementation,if ever needed.

A significant feature of the algorithm is the need to prescribe a normal mesh velocity at

the domain boundary. Where this is not available explicitlyit is estimated here by using

a secondmonitor function. We have assessed this for the porous medium equation with

mass as the second monitor, and with both area and arc-lengthfor the first (interior) mon-

itor. However, the algorithm could (theoretically) be usedwith any monitor to prescribe

the normal boundary velocity, provided it has a first derivative - the calculation (in Sec-

tion 4.1, for example) is shown for the second monitor beingu, but the logic is the same

for a more general monitor. We have also imposed no conditions on the main (interior)

monitorm(u), save that it has a first derivative1. This assumption also applies to monitor

functions of the formm(v), wherev = ∂u
∂x , as studied in Chapter 5, and it is worth noting

that the method there is provided for a generalm(v), even though we have only assessed

it in 1D for the arc-length monitor, wherev =
√

(1+v2). We should point out here that

the algorithm then has a slightly different form, as we need to estimate third order spatial

derivatives.

In the arc-length chapter, where we have attempted to force the ci to be constant, in
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the “ALE+” method, we do have, as things stand, a parameter that depends on initial

conditions and mesh refinement - the SUNDIAL tolerance. In particular, this parameter

requires different values for unoptimised and optimised initial conditions. We would

argue that this parameter could be amended to be adjustable by the algorithm, so that if

it is required to maintain a distribution (keep theci constant), the SUNDIAL tolerance

will be reduced from its default value until this is achieved. We concede though, that this

may not always be possible, i.e., the SUNDIAL suite may not converge, so we have then

provided a general method, but may have lost robustness in the process of doing so, from

the point of view of supplying an algorithm thatmustmaintain the distribution. However,

we have shown in the arc-length study,and the 2D-PME study, that the monitors there

can do what might be expected of them - attempt to conserve their distribution, at least in

the long term.

6.2 Comparison with other techniques and monitors

The main performance criteria in this thesis have been accuracy and robustness, and it

will be these that we use here to compare BHJx with other techniques. In the case of

the porous medium equation, since we showed in the foundation study in Section 2.2

that BHJx had comparable orders of accuracy with BHJ for the mass monitor, this is

effectively a comparison of other monitors with the mass monitor.

We will review the thesis results from the aspect of accuracyand robustness, in the order

in which they appear. In Chapter 3, studying the blow-up problem, we have seen second

order accuracy (for an extrapolated result), but robustness has been a problem, mostly

due to tangling, and this tangling being mostly near to the boundary. The fact thatu

as a monitor allowed a higherumax to be reached thanu2 for the p = 3 case (the PDE

is ut = △u+ up) agrees with findings by Twigger [91], who also uses a velocity based

1To simplify some of the calculus in some cases, we have assumed thatm(u) has a second derivative.
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adaptive method, but in general, BHJx has not reached as higha value ofumax as the

study by Budd, Huang and Russell [20]. There has been agreement with [20] on the

blow-up happening at a single pointx∗ (which is at the peak of the initial data, as found in

both [20] and [17]), and the blow-up timeT has been comparable with the study in [20].

In fact, since we have basic agreement onx∗ andT, if we then compare only with [20],

that leaves us with looking at the highest value ofumax that can be reached before the

algorithm breaks down. This value has not been as high as thatin [20], though it was

getting higher as the mesh was refined, and also after tangledmeshes were untangled, and

the run restarted. We see then, that BHJx has second order accuracy here, and has some

robustness, but is not as robust as [20], mostly due to tangling.

In Chapter 4, we studied the area monitor in 2D, applied to theporous medium equation.

Here we found that the area monitoru+a was less accurate than the mass monitor asa

increases, but can be more robust for non (radially) symmetric meshes. This robustness

appears to be due to the intrinsic nature of the area monitor,in that it seeks to maintains

an area distribution - this point will be explored more closely in Section 6.4.

Finally, in Chapter 5, we studied the arc-length monitor in 1D, applied to the porous

medium equation. With the algorithm applied in the usual way(“ALE”), but with the

adjustment of the normal boundary velocity being applied directly, we see robustness, and

for optimised initial conditions, an order of accuracy comparable to the original BHJ study

[4], though all this is only forn= 1. In the casen= 3 there is not even enough robustness

to measure any accuracy! In the special cases where we force the distribution (soci) to be

constant (“ALE+”), we achieved order 3 accuracy in the solution for unoptimised initial

conditions, just byattemptingto keepci constant, though this was not robust when theci

were actually forced to be constant. For optimised initial conditions and ALE+, we were

able to maintain the distributionandachieve robustness, though this reduced the order of

accuracy to 1 (from 2 obtained in BHJ [4]). This last result isdirectly comparable to BHJ,

as that also forces theci to be constant - this forcingis its method of calculatingu (see
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Section 1.8).

Generally, we can see here that the BHJx method has had some robustness problems in

1D, and in both 1D and 2D, the area and arc-length monitor havenot been as accurate as

the mass monitor, when studying the porous medium equation.There have however, been

two notable exceptions to this statement:-

• In 1D, with unoptimised initial conditions, the arc-lengthmonitor was able to

achieve third order accuracy, by attempting to maintain themonitor distribution.

• In 2D, for the porous medium equation, the area monitor can bemore robust than the

mass monitor for some domains, as it can prevent (for a while)elements shrinking

to the point of disappearing.

6.2.1 Comparison specifically with BHJ

We note from Section 6.2 that BHJx has generally been less accurate and robust than

BHJ when using area and arc-length monitors, with the most notable exception being the

area monitor in Chapter 4, where BHJx was more robust. We can also state here that the

CPU time for BHJx in Chapter 4 was generally twice that of BHJ,and this can mostly

be attributed to derivation of the normal boundary velocity, as this is effectively repeating

a large part of the algorithm with the mass monitor. Further than this, in the arc-length

study in Chapter 5, the “ALE+” version did, in the worst case,take up to four times as

much CPU time as the “ALE” version, due to the extra constraint of forcing theci to be

constant. We can say generally then, that as it stands, BHJx can take at least twice the

CPU time of BHJ, due to the derivation of boundary velocities, and is less accurate and

robust, except for the area monitor in 2D, which showed more robustness than BHJ.
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6.3 Tangling issues

There have been tangling problems with the BHJx algorithm, which may be due to its very

imposition of trying to maintain a distribution. It has beenstated in the 2009 review paper

by Budd, Huang and Russell [15] that velocity-based methods(such as BHJx) are more

prone to tangling than location-based methods (such as MMPDE), and this is certainly

borne out by the blow-up study in Chapter 3. In that chapter, the tangling was overcome

to some degree by untangling and restarting meshes. This wasdone manually, but it would

be feasible to incorporate this untangling and restarting within the algorithm, leading to

a more robust method, and allowing a higherumax to be reached. In that sense, we could

say that tangling has not caused a problem, though there willbe a limit to how much

untangling can be done, as we saw in the case for the monitor function m(u) = u and

p = 3, which would not restart at all. A better approach for this problem, in the blow-up

modelling, might be to have some form of smoothing or regularity applied, as in general,

reducing the timestep did not prevent the tangling problem.In Chapter 4, we saw the

area monitor was actually less prone to tangling than the mass monitor. Furthermore,

the area monitor by itself can be used to prevent (or at least postpone) tangling, which

has the advantage of needing no extra mesh management, though some accuracy may be

lost. For the arc-length monitor, tangling has not really been an issue forn = 1, but for

n = 3, it has been a problem, though the BHJx algorithm itself broke down in some cases

here before tangling (potentially) occured, so it is not clear whether even untangling or

applying smoothing or regularisation would help here.

In general then, we see that there have been tangling problems with BHJx, though they

can be surmounted, and using one monitor, the area monitor, can actually attenuate these

problems by its very nature.
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6.4 Knowledge gained beyond the BHJx assessment

The purpose of this thesis is to introduce and assess the BHJxalgorithm. However, there

are some other, more general results we can find here. In Chapter 4, we saw that the area

monitor could be used to model the porous medium equation more robustly than the mass

monitor for a non (radially) symmetric domain. A qualitative analysis showed that both

monitors, at least in the long-term, were conserving their distribution, as we expected

them to. Thus the question of what effect maintaining a distribution has on robustness has

been partly answered - we can say in the case mentioned above,that if the area monitor

does maintain its distribution, this can give us increased robustness. On the other hand, we

can view the results in the arc-length chapter (“ALE+” case), as giving us information on

what happens if a mesh moves away from an equidistribution - we saw there that, looking

at those results in the opposite order, moving away from an equidistribution has gained us

an order of accuracy. So although the aim of a monitor function is to maintain an initial

distribution (an equidistribution for optimised initial conditions), we do not necessarily

achieve the best accuracy if we achieve that aim, converselythe result with unoptimised

initial conditions show we can improve accuracy by justattemptingto maintain a distri-

bution. We also note that usingtwo monitors has been far more successful than one - this

is one of the key features of the BHJx algorithm.

6.5 Future work

There was an open question raised in Section 6.4 on how to quantify the effects of main-

taining (or moving away from) an (equi)distribution, on accuracy and robustness, and

it would be worth using BHJx to explore this further. The firstport of call here would

be to look more closely at the arc-length results, particularly where there was third-order

accuracy, which was when the initial conditions were unoptimised for the arc-length mon-

itor (so the grid was just equally spaced) in the ALE+ case (Section 5.4.2). This needs
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scrutinising, not just because it is a positive result, but because we have to ask ourselves

if it was the attempt to force theci to be constant that actually improved the order, and

then why did actually forcing theci to be constant essentially fail (the failure being in the

SUNDIAL suite). It might be that the attempt to force theci to be constant moved the

evolution of theci closer to an idealised evolution for the porous medium equation (which

is simple enough to define for the central and boundary nodes,using the known solution),

and so produced a more accurate result.

In the first place though, more refinement is needed to see if the third order accuracy

holds, as it is only being seen over three points in the log-log graph (Figure 5.14). When

the initial conditions were optimised (in Section 5.4.3), theci did remain constant, but an

order of accuracy was lost, so if we assume that theci remaining constant correlates with

losing accuracy, then as theci remain constant for the 11-node case with unoptimised

initial conditions, but not for higher refinements, we mightexpect that the third order

accuracy would continue as the grid is refined.

Secondly, as the accuracy results are taken atT = 1.0, but we can clearly see the evolution

of ci settling down at that time, it would be worth repeating theseruns at some smaller

times, to see what the accuracy is there. Further than that, runs could be done with an-

other PDE, with a known solution, such as the Oxygen problem in 1D (see Section 2.2).

We could also try the area monitor, for the Oxygen problem in 1D (and 2D), to further

investigate robustness effects, when a distribution is maintained.

Another extension could be to monitors with second or higherorder spatial derivatives,

such as a curvature monitor. This will ultimately require estimates of these higher order

derivatives, which can be made by a weak formulation - a process similar to finding∂ (Lu)
∂x

in Chapter 5, though the process will need to be repeated (see[4] for example, on dealing

with fourth order PDEs).

Considering a more general extension, this thesis has assessed the BHJx algorithm for

parabolic problems, so a possible next stage is to assess it for hyperbolic problems. For
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example, a study could be made of the non-linear Schrödinger equation [64, 67, 86, 91].

One form of this is:-

−ihut =
h2

2m
△u+U(u2)u, (6.1)

whereh is Planck’s constant,m is mass andU represents non-linear effects. The de-

pendent variable is a complex number, but can be found in practice by representing as

u = v+ iw, or by separating variables. As with the semilinear heat equation, studied in

Chapter 3, we could use a fixed boundary, and so prescribe the normal boundary velocity

as zero. Equation (6.1) was originally used by Schrödingerto correctly predict frequen-

cies of the Hydrogen atom [43]. He did not originally prescribe u as having a physical

meaning, but it was later thought of as an “essence”, and later as giving rise to a prob-

ability density of a particle (or other physical measurement) being in a particular region

of space. From a computational and scientific point of view then, we can see it as a non-

linear hyperbolic PDE, though its abstract nature makes it less obvious what a monitor

function should be, from a conservative or distribution point of view. However, from a

computational point of view, using scale-invariance, Buddand Piggott [16] have used the

monitor functionm(u) = |u|2. In fact, ifU(u2) =constant in 6.1, the probability of finding

a particle in a regionΩ of space is
∫

Ω |u|2dΩ, therefore
∫

Rd |u|2dΩ must be 1, which does

mean we have an overall “conservation of probability” to 1.

Another form, the radially symmetric non-linear Schrödinger equation, is:-

−iut = uxx+
d−1

x
ux +u|u|2, (6.2)

whered is the dimension of the domain andx is the distance from the origin. It is used to

model water waves and plasma waves [16]. We can see that in 1D,it reduces to the first

form. The first form has known similarity solutions and a global solution, but the second,

for 2D and higher has a blow-up problem [16] at the origin.
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The BHJx method could be used to study the first form, where we can study robustness

and accuracy items. For 2D, we can focus on providing an alternative method to Budd

and Piggott [16] of modelling the blow-up problem.
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