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Abstract

In this thesis, we introduce and assess a new adaptive méhawblving non-linear
parabolic partial differential equations with fixed or mogiboundaries, using a mov-
ing mesh with continuous finite elements. The evolution efrtiesh within the interior
of the spatial domain is based upon conserving the distobuaif a chosen monitor func-
tion across the domain throughout time, where the initiatribution is based upon the
given initial data. For the moving boundary cases, the mestement at the boundary
is governed by a second monitor function. The method is egpkith different mon-
itor functions, to the semilinear heat equation in one sghgension, and the porous
medium equation in one and two space dimensions. The efféofgimising initial data
for chosen monitors will be considered - in these cases, taiaing the initial distribution
amounts to equidistribution. A quantification of the effeot a mesh moving away from
an equidistribution are considered here, also the effé¢egling, and then untangling a

mesh and restarting.
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Chapter 1

Introduction

“Imagination is more important than knowledge.” - AlbernBiein.

1.1 Background

This thesis extends a numerical technique developed byeBaidubbard and Jimack
[4] to solve nonlinear parabolic partial differential etjoas (PDEs) with moving mesh
methods. We will refer to the original algorithm as BHJ anel ¢éixtension as BHJXx.
Starting from the position of analysing physical problems are looking here atsecond
level of abstraction. That is to say, if the first level is told@a mathematical model of a
physical problem that leads to a system of PDESs to solve gbergl level is a numerical
technique to solve the PDEs, but in some simplified, canbfdcen. For example, we
might study the diffusion equatiomk(= uyy) with no reference to a mathematical model,
let alone any physical system.

This sets some guidelines, but also presents two main dgaéefor such a study. The
guidelines amount to providing a general numerical tealmmigather than solving a spe-
cific class of mathematical models. The first challenge iglemiify an area where the
current theory is worth extending. The second is to know #tersioncould be used by

mathematical modellers, or by other theoriststfair extensions of the theory - almost a
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third level of abstraction there.

To address the first challenge, we note that moving mesh methave been shown to
have great potential in solving problems with moving froatgl boundaries, problems
involving phenomena such as blow-up and problems in a widge®f applications for
which non-stationary features need to be tracked in time, fee example, [15] and ref-
erences therein). However, there are many outstandingigne®ver accuracy and reli-
ability remaining and new methods of evolving the mesh foivamgproblem are clearly
worth considering.

On the second challenge, the question of applicationsgifethivere no known applica-
tions of BHJ, this would be difficult. For some abstract thesr extensions have been
created on more esoteric grounds of elegance and satmsfd82], sometimes coupled
with a rare insight that the extension will be useful in thggsbal world. However, we
can definitely say that mathematical modellers, lookingsjeecific key features in ab-
stracted studies, have used the BHJ algorithm. This candseisgwo papers, both by
Khassehkhan and Eberl. In the first [57], they have used Blddifsgally to provide a
workable algorithm for a moving mesh study, including theahér a moving boundary.
In the second paper [58], they have used BHJ as it providestlosh@f tracking steep
interfaces. The boundary and interface requirements cah&dered as examples of
"localized moving singularities” [31], so we can speciflgaday that this is a key feature
mathematical modellers have used BHJ for. Since we are kgdpis key feature, but
extending the algorithm to other monitor functions, ana gdeesenting the algorithm in
a workable form, we claim this second challenge is met. Adidlly, to go any further
in ensuring that BHJx definitely could be used by mathembatcalellers would violate
the guidelines above, specifically that we wish to providemaegal numerical technique,
rather than solving a specific class of mathematical models.

Given the foregoing, it remains to prove the new algorithtualky works and assess its

strengths and limitations. The thesis in its literal serfggaviding new methods to solve
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parabolic partial differential equations will then be cdetp. This is addressed in the

work that follows, which has essentially five components:-

e Finite elements. The basics of this fundamental discretizaechnique, mainly
from the point of view of a static mesh. The reader may be famiith this area,
but we suggest that at least the notation section (1.2.R)asesl, as it applies to the

rest of the thesis from that point.

e Adaptive techniques - moving meshes. All adaptive techescare reviewed, but

we focus especially on adaptivity by allowing mesh pointsiave.

e BHJ and BHJx. We discuss the evolution and context of theiraigalgorithm,
which used only the mass monitor, and how it has been extetodedre general

monitors, and how it can usesacondmonitor to define boundary movement.

e Implementation of specific monitor functions and optimatiah meshes. The new
algorithm is assessed here, by using different monitortfans and different PDEs.
The effect of optimising the initial conditions is considdr- this then amounts to
equidistribution. In the final chapter, where the arc-langronitor is studied, an
attempt is made to strictly enforce equidistribution. Thgodathm also presented
some challenges for the algorithm in this last chapter,ngivan opportunity to

mould and stretch it to meet these challenges.

e Analysis, discussion and future work. Conclusions andiptesextensions, poten-

tially to solving hyperbolic PDEs.

1.2 Finite Elements

Finite elements are an approximation technique, where aiBBd&lved in a “weak” sense

[27,85]. The domain under consideration is effectivelysdided into smaller pieces, and
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an approximate piecewise polynomial solution found on exi¢hese pieces. This set of
pieces is known as a grid (or mesh). Finite elements starigthally as an engineering

method, with analysis following later [11, 85].

1.2.1 Basics

The finite element technique is an approximation technigiere the dependent variable
in a PDE is approximated by a function that is mathematicsityple (only a piecewise
linear or other polynomial form), on a finite set of elemeafgproximating the domain of
the PDE. In terms of classical analysis, we could say we hamethfrom annfinitesimal
(dx) to afinite elementdx [27]. Consider for example, this second order elliptic PDE

[40]:-

—Au‘sz; u‘m:o, (1.1)

whereQ is some simply-connected bounded region [3Rih If we look at the simplest
example, which is 1D piecewise linear elements, then theadloia an interval on the real

line, and we take elements to be equal sections of that regldis shown in Figure 1.1.

r=0 x=h x=2h ... (N —1)h I{=Nh)
Figure 1.1: Finite Elements - 1D grid

As with finite differences, we are approximatindy calculating its values at thé — 1

points (or “nodes”)x = h,x = 2h,...x = (N — 1)h. In this case however, we are also
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specifying the form of the approximation between thesegaiim this example, a linear

form, so our approximation, which we will call,, is actually a piecewise linear function

- see Figure 1.2.

2

T T
r=0 =xz=h x=2h ... (N—1h [(=Nh)
Figure 1.2: Finite elements - 1D approximating function

We can realisel, as a linear combination of “trial functionsty, wo, ... wn_1 (see Figure

1.3), these being a basis of thmjection spaceised to approximate[27,79, 85]:-

Un = UgWq + UpWp + - - - 4 UN—1WN—1. (1.2)

(N—1h 1(=Nh)
Figure 1.3: Finite elements - 1D standard trial functions

To calculate the value afy, at the nodes, i.e., finding the in equation (1.2), Green’s

first theorem [27] can be used to show that solving the PDE.ih) (& equivalent to this

statement [97]:-
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/ (Ou.0v) dx = / fvdx for all differentiablevsuch thav| =0, (1.3)
Q Q

Now if up, in equation (1.2) was actually a solution, we could writ@JBs-:-

(Oup, Ov) = (f,v). (1.4)

That leads us to a method of approximation - we ga®(1.4), with a set ofest functions
{v} to find some{u;}, and so solve theveakform of the PDE, i.e., approximately solve
—Au=f.

Suppose we use the trial functions themselves for{tje So if we substitute the trial

functionsw;,i =1,2,...N—1forvin (1.4), and expandy, we have:-

(D(U1W1—|—U2W2+-~-+UN_1WN_1),DWi) = (f,Wi),i =12,..N—1 (1.5)

Then writingK j = (Owi, Ow;), (i=1,2,...N—-1,j=1,2,...N—1) and
fi=(f,w),i=1,2,...N—1, as(Ow;, Ow;) = (Owj,Ow;) Vi, j, equation (1.5) can be

written:-

UKy 1 +WKio+ - +un—1Kin-1 = B
UKo 1 + Koo+ +un—1Kon—1 = 2
UtKN-1,1 +WKn_12+ -+ Un-iKncan-r = e,

or equivalently:-

1strang and Fix [85] also use this notation, though in somestéaninner productis being discussed,
you may see< -,- > instead. This text will always follow the , -) notation.
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which is known as the finite element equation, wilbeing referred to as the stiffness
matrix [85], which we note is symmetric in this case. In piagtthe simplicity of the
trial functions (see Figure 1.3) means tKaand f are fairly straightforward to calculate,
and allows computational gains to be made (compared to datdiGaussian elimination
routine) in calculating, asK is sparse.

The addition of boundary conditions can be dealt with byngthe effects on the weak
formulation, and hence the finite element equation, and ith@rporating these into the
finite element scheme. For example, a non-zero Dirichlehaty condition (in the 1D
case) of equation (1.1) at= 0 can be allowed for by another trial functiag that has a

fixed valueug atx = 0. Equation (1.2) can then be amended to become:-

Uh = UgWo + Up, (1.7)

leading to relatively simple amendments to the finite eleregoation.

Strictly speaking, the trial (and here test) functiopsare not differentiable, as required
by (1.3). However, it is only necessary when calculatingw; ), for any integrabley, to
integrate over the support @f, so the discontinuity in the derivative at the edge of the
support is irrelevant.

The method of projectingl onto a finite approximation space existed before finite el-
ements [85], but the basis then consisted of functions difamethe whole of the do-
main. This made it difficult - there then needs to be diffeadyie, or piecewise dif-
ferentiable functions created to fit a domain with an awkwgedmetry (particularly an
awkward boundary) when we have Dirichlet boundary condgj@nd co-ordinate trans-
formations [90] may not solve this problem. This is espégiabie if we have moving

boundary problems (which form the bulk of the study in thissils). The finite element
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method, when using the form for this PDE in equation (1.3ye®this problem, as some
of the elements will have an edge on the boundary.

When the span of the test functions is the same as that ofigidunctions, as it is in
our case, then this is known as the Galerkin method [27, #8krwise it is known as

a Petrov-Galerkin methdd51]). Unless otherwise stated, only the Galerkin method is

used in this thesis.

1.2.2 Notation

Unless otherwise stated, the symBbhlways refers to some simply-connected bounded
region [3] inR", with 2Q referring to its boundary, anfithe outward pointing unit-length
normal tod Q.

We will use the notation for the approximation (and dis@aion) for the dependent
variables, as seen in Section 1.2.1, so thaalways refers to the approximation of
We reserve the lettdrthere, so thaitl, uy, U refer to derivatives ofi, andui, uj, ... (and
U, Up,...) refer to the approximations af at nodes, j,... (and 12,...). Rather than
theN used in Section 1.2.1, in future, unless otherwise stéealill always be the total
number of nodes in a discretization, some of which may be #aynodes, and so have
forced, static values, when Dirichlet conditions are agpli

We will denote the trial functions (the basis for the solotgpace) by, w»...wy. The
above notation applies to other dependent variables, sexiample, we may write the
approximation ofp as@, = Z?(gwi.

The equality we refer to as Green’s lemma [54] is also knowth@divergence theorem

which is that for a vector functior;, and where such integrals exist:

/D~FdQ= F.AdS (1.8)
Q 2Q

2If a mesh is altered during a timestepping run, there can fferelint trial functions from the original
mesh, these new trial functions being dependent on the PEfEctigely local solutions. This approach is
known as multiscale [2]. The trial functions used in thissiBavill always retain their essential form.
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If this is combined with the product rule for a scalar funotidb(u) and a vectof, that

O-(AF)=0A-F+AQO-F, then we get the “integration by parts” formula:

/)\D-FdQ:/ )\F-ﬁdS—/F-D)\dQ. (1.9)
Q 2Q Q

When an algorithm is described, if we say, for example, thatwill calculate some

from someb by using this weak form:-

/a\M dQ:/sb\M dQ, i=1,2...N,
Q Q

for some linear operatdt, then we mean that we are solving this by using the approxima-
tionsap = Z’I'a;wi, by = Z’I'biwi, anday, is then found by solving the system of equations
Ka=c (= Pb) to find a, whereK; ; = (wj,w;), a= (as,a,...an)", Bj = (£wj,w;) and

b = (by,by,...by)T, though we will give a more explicit description if this stipat all

unclear.

1.2.3 Mesh Generation

As we saw in the analysis of the 1D case in Section 1.2.1, thetipe of finite elements is

to construct the stiffness matrik, the “forcing” vectorf and then solve the finite element
equatiorKu = f. This practice becomes more complex however, when we sobidgms

in higher dimensions. We demonstrate this here for two dsioers, again looking at the

Poisson equation.

In the first place, the concept of finite elements in 2D is thmeesas that in 1D, in that our

approximation consists of simple functions built up on ed@ts making up the computa-
tional domain. In the 2D case though, we might visualise dsig set of “plates” rather

than single lines - see Figure 1.4.

As in the 1D case, it is possible to realiggas a linear combination of trial functions.

To illustrate the piecewise linear trial functions, supposr domain is the squa(®,l) x
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Figure 1.4: Finite element (2D plates) illustration

(0,1) in R? and our nodes and elements are arranged as in Figure 1.5.

2
(0.1) )

(0.0) ™ m (1,0)

Figure 1.5: Finite element 2D grid

As with the 1D case, a trial function has a value of 1 at one nade O at all others, and
slopes linearly down to zero at neighbouring nodes. Théfurrection for node 6 (and

| = 1) is shown in Figure 1.6.

Note though, that each of these trial functions can be ezhlEs the sum of smaller “el-
ement” functions, for every element that has a node in comwitinthe primary (“one-
value”) node of the trial function. For example, a trial ftina centred on node 5 in Figure
1.5 can be considered as the sum of five simpler functionsldheaélements containing
node 5. So when evaluatig eachK; j can be built up from the element functions mak-

ing up each trial function, therefore we can loop throughaleenents to find them, rather
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Figure 1.6: Finite elements - 2D trial function

than loop through the nodes, and so greatly simplify theutalon.

1.2.4 Connectivity

When modelling the PDE in equation (1.1) with the grid showifrigure 1.5, the math-
ematics and the algorithm are essentially the same as deddior the 1D example in
Section 1.2.1, but there are some extra programming caasioles regarding the 2D
case.

Looking at nodes 4, 5, 6 and 7 in Figure 1.5 for example, it issadficient to just list the
node co-ordinates. We also need to say that the trianglderaned by a line connecting
nodes 5 and 6 as shown, since a line connecting nodes 4 andpbssible alternative.
We need then, eonnectivityarray, as well as defining the node positions. The convention
chosen in this thesis is that we start, for each element, thghHowery co-ordinate, or
lower left, then proceed anti-clockwise around the triangFor example, the triangle
on nodes 4, 5 and 6 in Figure 1.5 has a connectivity of “4 6 5”. o&gible input file
describing this grid, wheh= 1 is:-

Finite Elements. Square of 8 nodes.
0.01.00.01.021
810
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0
0
0
0
1
1
1
1
0
0
1
0
4
1
5
5
6
7

0.000000000000000E+00
0.100000000000000E+01
0.100000000000000E+01
0.000000000000000E+00
0.500000000000000E+00
0.250000000000000E+00
0.750000000000000E+00
0.500000000000000E+00
4 5

[N
SN

N DN OO N DM oo o o
w N N wo o o wobd

22End of file.

The description of this is:-

Line 1: Title.

Line 2: Co-ordinates of Bottom left, Bottom right, Top Iefipp right of Bounding Box.

0.000000000000000E+00
0.000000000000000E+00
0.100000000000000E+01
0.100000000000000E+01
0.250000000000000E+00
0.500000000000000E+00
0.500000000000000E+00
0.750000000000000E+00

This is for a Bounds check in the data.

Line 3: No. of nodes and No. of elements.

Line 4-11: Node flag (see below) and node co-ordinates.

Line 12-21: Element connectivity array, starting with ‘i@ent O”.

Line 22: Integrity check - should be 22 lines.
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The node flag is zero for a Dirichlet boundary node, and 1 fom&rnal node. The
numbering direction for the nodes (in this example) is aldckwise for bounding nodes,
starting near or on the origin, and then left to right, downpo For the elements, it is left
to right, then down to up. Neither of these numbering corneastare important for the

algorithms in this thesis.

1.2.5 Elementtypes and orders

In the 2D case, we have discussed the simplest form of elenpeéatewise linear on tri-
angles. Higher order than linear can be used - see Sectidrelb® on “Adaptivity”. It is
also possible to use quadrilateral elements [34, 85] - theght be used to model a rect-
angular area more easily. As for meshes, the type descnibiak iconnectivity section,
which is the only type used in this thesis, is actually refdrto asunstructured as we
are allowing the element-node relationship to be anythiegleclare in the connectivity
array. Alternatively, it is possible to ustructured element§epeated geometry), which
need no connectivity array, and have a lot less cost thamuatsted elements. For ex-
ample, for rectangles, this could be just a uniform grid tf@ngles, a grid where all the
triangles might be bottom-left to top-right, so that in g/raatrix terms, it is formulaic
which elements are adjacent, and which nodes make up eanbrgle

In practice, structured and unstructured can be mixed aoppate, so for example, a

smooth part of an aerofoil would be best modelled with strrerd elements [90].

1.2.6 Time-dependent semi-discretization, the Method ofibes

If our PDE has a time derivative, it is possible to simply aiaet as another dimension,
so 2D triangles become tetrahedra for example. The problemtkns approach is that
there can then be no known boundary conditionsu@t (some} = T, so there is an
open boundary, particularly with the parabolic PDEs com®d in this thesis. For that

reason, a timestepping approach is used in this study, Wihimestep being the same



Chapter 1 14

for all nodes. So what we are actually doing is discretizintyon space, or we could
saysemi-discretizingl4]. Looking at equation (1.2) for example, if we now havelEP
with a time derivative in it, so that th& become functions of time, the discretization can
lead to solving a set of simultaneo@®ES’ for theu;. This solution technique is known
as theMethod of Line$10, 14,98]. This thesis will be using a Method of Lines agmio,

though not always in a way a standard ODE solver would use.

1.2.7 Comparison with Finite Differences

Finite difference schemes tend to have very low cost (CPUW)paved to finite elements,
they can actually be one third of the FE cost, because theyotdbave a mesh. They
lose out though, with complex geometries, where for examipie difficult to accurately

model an awkward perimeter, and then if the PDE was 4th oedetlse scheme is difficult

to implement at the spatial boundary.

1.3 Adaptivity

Adaptivity is the process of changing a mesh during the @uofsa computation in re-
sponse to changes in the dependent variable (or its appatigim), to achieve greater
accuracy and/or greater efficiency (and possibly also toovgstability) of the numer-
ical scheme. As a simple example, if we were modelling pressand the pressure was
changing rapidly (in time) in one area of the grid, we mightta alter the mesh around
that area, possibly by adding more elements there, or taklisng existing elements
towards that region. Another use of adaptivity would be tpecwith phase-change prob-
lems (liquid/gas etc), as studied by Burman [21] or McCaff8], where there could
be an abrupt change in density in the region of the phasegehamd this needs to be

captured with greater resolution than elsewhere.

3Some ODE solving methods allow a variable timestep, andwamlgave a temporary negative timestep
to achieve convergence, but this timestep is still the samalfnodes.
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The focus of this thesis is applying adaptivity with finitelents, but we should point out
it can also be used with finite volumes and finite differen¢&s.the former, an adaptive
method is explained in Thomas and Lombard [89], and for ttterlahere is a study of

black holes with adaptive finite differences in Plewa [78].

We distinguish here between adapting a grid for the reptaten of the appropriate

PDE solution, and the multigrid method [12, 38] where a ceagsid is temporarily used

to speed up convergence.

1.3.1 h, p and r adaptivity

In finite element adaptivity, there are three main methodsgfafing a mesh:-
h-refinement - adding extra nodes.

p-refinement - increasing the order of the approximatingmamials.

r-refinement - changing position of existing nodes.

The focus of this thesis is r-refinement (the “r” is for retdlzution) in 1D and 2D, so this
method is discussed in detail in Section 1.5. We concludestiction with a short review
of h, p and r types of adaptivity. This review focuses on mdsia 1D and 2D only, and
we mainly consider schemes that haemformity which we define generally here as the
approximation space being a subspacgbfin 1D, for example, this would imply values
agreeing at common nodes of adjacent segments [70].

Itis possible to adapt nodes statically, i.e,. just adapttlesh at each timestep, or dynam-
ically, so that the mesh parameters (No. of nodes, posijtee$ are actually functions
of time. This distinction is fully explained in Section 1Byt for the purposes of this
review, it is enough to mention that it is not necessary t¢ fasve from one point in
time to the next in timestepping methods. In thaltistepmethod [29, 53], distory of
previous timesteps is used. This method can provide monwgacy; though it does add
to the complexity of the problem, and may require any inttan betweemodes to be

of consistent order [9].
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h-refinements named thus asis commonly used for the spatial incremeé, which is
reduced in selected areas of the grid, so correspondihglyjumber of elements increases
[62,73]. In 1D, conformity is simple to enforce, if we defireetelements as lines joining
nodes. The situation is more complicated in 2D (or higheoutgh, where the way in
which an element (such as a triangle) is sub-divided canmé@te whether conformity is
maintained. In Figure 1.7 for example, we can see two waysicwa grid consisting of
two triangles can be sub-divided. In the first sub-divisgmwn in the middle grid, we
can see (at 'X’), there is a “hanging node”: an internal ndds ts geometrically part of
an element, yet that element (triangle T) does not have tia m its grid definition. The
result is that the node value at X may not be the average of valdes at A and B, so the
approximation does not have conformity and will be incotesis The grid on the far right
in Figure 1.7 shows an alternative sub-division which isfoaning. Indeed, one way to
achieve conformity is to avoid hanging nodes, and two dcffiémethods of achieving
this are detailed in Bansch [7] and Speares and Berzins f4palternative approach is
to allow hanging nodes, but to constrain the solution vahi¢kese nodes [56] or have a

choice of basis function at and near to those nodes whichse@d[87].

Figure 1.7: Conformity illustration

The advantages of h-refinement are that there will be no ntasigling” (elements over-

lapping) and a high accuracy can be achieved in a particudar & he disadvantages are
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that it can be more difficult to use multistep, conformityuges as mentioned, and there
can be a high CPU cost.

p-refinements where higher-order (than linear) trial functions aredusa the elements
(hence p for polynomials). Conformity is harder to achiegeshespecially in 2D and 3D,
though it is certainly possible [23]. A recent popular aiegive is to use a DG (Discon-
tinuous Galerkin) method where the discontinuities aredlehthrough the introduction
of a “penalty” to a minimising integral (in the variationatting), hence the difference in
a node value across elements is incorporated into a “flugiaté and this is added as a
penalty function, whose minimisation is sought [82, 96].v#ith h-refinement, there will
be more CPU as a result of p-refinement, but better accuracecachieved. The advan-
tages of p-refinement are that there will be no mesh “tanfl@ements overlapping) and
a high accuracy can be achieved in a particular area, provitesolution has sufficient
regularity in that area. There is an algorithmic simpliariythis method, since in this
method, and only in this method, the number AND position & tiodes don’t change
in time. However, multistepping can still have problemsirdsrpolation between nodes
may not be of consistent order. Comparing this method witefimement, in an area of
smoothly oscillating values (see Figure 1.8 for examplg@plgnomial could be used for
accuracy, but if the oscillations have low regularity (andy@iecewise differentiable say,
as in Figure 1.9), then it would actually be more efficient ol anore points, in which

case p-refinement would then be worse compared to h-refirtd8@&n

Figure 1.8: p-refinement illustration - smooth oscillagson

r-refinementis defined as changing the position of existing nodes. Tharadges of

this method are simple algorithm management - as the metf®d lsonstant number of
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Figure 1.9: p-refinement illustration - irregular oscikets

points and topology, the matrices have a constant spatsitgtsre. So once a mesh and
a program have been set up, there is no management of exiea tiwat has to be done.
This can result in lower CPU cost, compared with h and p methdidis possible with
h-refinement, for example, to achieve the same accuracy anenof “high activity” by
refining nodes there, and then, if that activity desistsnipsaid nodes (“derefinement”).
This clearly involves extra management and CPU, and is galigihosing the advantage
of the continuityof the r-refinement method. The disadvantages of r-refinemrenthat

it can be difficult to multistep, as the nodes have changeiiposin fact, Davis [29] did
actually look at multistepping with r-refinement, but fouhe&vas unnecessary, i.e., only
the previous timestep was needed. It can also be limited mcituracy - for some cases,
there may not be enough nodes to achieve a given error thdesho

Further advantages of r-refinement can be found in Budd, glaad Russell [15].

There is actually a form of mesh-adaptivity that can be ater&id neither h, p or r, and
that isedge-swappingFigure 1.10 shows a 2D example of this - no nodes are added or
moved, and the interpolation order can be the same, but tfeestap can improve some
error measure, or some function (equi)distribution pemeliet. More details can be found

in Piggott, Farrell, Wilson, Gorman and Pain [77].

1.4 Errors, Error Estimates and Spaces

There is an inherent error in the finite element method, ditdoing a finite dimensional

approximation [25,85]. Butin 2D cases and higher, in the cds non-polygonal domain
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Figure 1.10: Edge-swapping example

shape, or rather its perimeter, there is also typically aoretue to discretization of the
boundary [79]. There could also be an error in mathemagicalbdelling, though all
the studies in this paper are of abstracted and simplifiedsPDEhe only other error
is the inherent rounding error due to using computationgineues - this needs to be
considered if we found, for example, that the difference atugs ofu,, at successive
timesteps were close to machine precision [68]. In the stidf the porous medium
equation in this thesis then, botl and boundary errors will be given, as the analytic
solution is known.

The minimum needed for an estimate is a lower AND an upper thoamdError Control
then means checking those bounds are not exceeded, usingladesnorm (Davis [29]
used_? for example). This can be done by element - analysjnon an elemeng actually
gives an “error problem” for that element, we then need teesahother equation to find
ny, this being the error from the true solution. This can itbelfestimated, for example,
by using the Bankweiser method [39]. There will, of coursesbme CPU cost for this
estimate. As another example of Error Control, in the poroesium equation studied

in this thesis for example, as we know the solution is gehedagsipative, a warning is
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issued, or the program is halted, if the maximum valu¢upfit any time exceeds twice
the value of the initial maximum value @fi|, as that definitely indicates a solution error,
as we know the analytic solution.

The space used in approximation in this thesis is simplyguigse polynomial space,
though there can be different bases, depending on our refimetype. For the solution,
it depends on the application - it may be ohf; up toC®, and in between these, it could
be the Sobolev space [W}5?, for some integes > 2. For the second order PDEs we
typically encounteiv?2 is really the bare minimum (we could ta®¢*1, but that causes
difficulties, and physically can amount to an infinite engrgye will not be exploiting

the features of these spaces here though.

1.5 Moving Meshes

In r-refinement, a fixed number of mesh points are moved, bepikg the same mesh
topology, hence the synonymous term “Moving Mesh”. Theestan methods of moving
these points]ocation-basedand velocity-based In the former, a method is found to
directly control the mesh points, in the latter, a methodsiscduonly to provide the mesh
velocity, with the position being found by a timesteppingame, such as Forward Euler,
for example. These methods are explored in more detaileén $ctions, but this detail is
enough for a brief overview of two of the papers in this ardaiciv are themselves review
papers. The emphasis of this overview has been a searchyfon@ring mesh theory or
guidelines that can be utilised or tested against in thisishe

The first of these is Hawken, Gottlieb and Hansen [41]. Thairew in 1991 is mostly
focused on flow problems, using finite differences or finiengnts. An extensive math-
ematical description is given of several methods, a few efrthiwo-dimensional, fol-
lowed by a comprehensive discussion of their relative rmeAtthough the authors have

sometimes suggested improvements to these papers, timerénisory of moving meshes
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developed here. This paper does not discuss h or p refinement.

The second review paper that we discuss is by Budd, Huang asseR[15]. This review
was published in 2009, and so has substantially more mhbtieaia the first, but there is
also a moving mesh theory developed here. This theory isslexclusively applied
to location-based methods. There are some 2D problemsdayadiin this paper, but
no 3D ones. Only r-refinement is considered in depth in thepa h and p methods
are discussed only briefly in the introduction. From thiseey we can see if there is a
“moving mesh strategy”, it might be analytical if a locatibased method is used, but is
more likely to be empirical if using a velocity-based methdthe method used in this

thesis is a velocity-based method. Neither of these papsraskes elliptic problems.

1.5.1 Monitor functions - Concepts

Many moving mesh methods make use ahanitor function We start with the idea of
equidistribution in a mesh. This simply means re-arrangiodes so that some quantity
is equally (as practically possible) distributed, othertlust distance, area or volume. If
we were looking at diffusion, this quantity might be massldéesn’t have to be a physical
quantity, if we want to cluster points near a “highspot” (&gure 1.11), we might choose
to equidistribute arc length.

The idea of the monitor function is to convert the intuitiuet bague idea of “move the
mesh to where activity is highest” into a solid mathematstatement, or at least some-
thing that can be numerically quantified. If we consider tbeops medium equation for
example [37,59], which can model a gas “bubble” spreadirgporous medium [4], we
might want to have more points where the mass density is kigli®r a domaif, the
monitor function would then simply bea(u) = u, and we would want to equidistribute
Jo m(u)dx, so for example, in 1D, if our domain wg, 1] which is to be sub-divided into

0 = Xp,X1,X2,...Xn = 1, then we would require that:-
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Xi+1 1
/X m(u)dx:%/0 m(u) dx, (1.10)

fori=0,1,...N—1. As another example, referring to Figure 1.11, if we weyag to
cluster our grid points near a “high spot”, the diagram shawat would happen if we

used arc length as the monitor function.

Figure 1.11: Adaptivity (arc length) illustration

When we look at equation (1.10), we can see a clue as how talgcachieve this equidis-
tribution - at each timestep we could alter the node posstemthat (1.10) is satisfied.
This is called static re-gridding, but there are actuallyesal ways of using these mon-
itor functions, and then several ways of tying these wayotairsg the PDE. These are
considered in Section 1.5.2, where we look at how to applyitapfunctions.

Following Budd, Huang and Russell [15], we will assume thenitao function is always
non-negative. On types of monitor functions, Ren and RUESH| claim there are three

types of monitor function commonly used:-
e Arc length.
e Combination of gradient and curvature.

e Truncation error or solution residual.

Huang and Russell [49, 50] use an arc-length monitor. Budding and Russell [15]

also use an arc-length monitor, and they show how it has rfeatlateas of high activity



Chapter 1 23

successfully. This review paper also has details of othamitos used. An interesting
example there is of a monitor function in a matrix form, whggecifies the shape, size
and orientation of the mesh elements.

We note two other monitors used:-

e A mass monitor(u) = u) is used by Baines, Hubbard and Jimack [4].

e A curvature monitor is used by Mackenzie and Robertson falatisn of a one-
dimensional phase-field problem [65]. This monitor actubls asecl{x) term in
it. This is unusual as most monitor functions are only fumtsi ofu and its spatial
derivatives, but one reason for having one as a function aixl ¢) is to regulate

behaviour near an interface - as Cai, Fleitas, Jiang and[RBjdave done.

1.5.2 Monitor functions - Applying

Static regridding is discussed in Section 1.5.1 - this sympkans resetting the node
positions at each timestep, and a simple example of thigisiseDavis [29]. Even in this
relatively simple 1D example though, we can see a problemgingg that of “tangling” -
referring to Figure 1.11, the node points can start to “alistert”, for example, cross over
each other. Davis solves this problem by allowing the griddbexactlyequidistribute
the monitor function (he calls this having a sub-optimadiyrbut not actually collapsing,
so the scheme stable i.e., it continues to its intended end-point in time.

We can see then that static regridding can be stable, howlgwamicregridding, where
we consider the node positions to be variables to be solweelaas solving the PDE [81],
is generally more efficient, i.e., we can use fewer naeslarger time steps to achieve
the same error threshold [46]. Static regridding is alsoedtifficult to apply in 2D
problems. Referring to Figure 1.11, in actually calculgtine newxg, X, ..., we might,
for example, start at the left-hand end, and slowly incrememtil we get our “quantum”

of the monitor integral in (1.10). In 2D though, there isréally a natural direction to
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“grow” our new distribution, and we could find it difficult tocactly allocate ouN nodes
successfully. For these reasons, we will only be consigetymamic regridding methods
in this thesis. In fact, nearly all moving mesh methods usedyic regridding, with static
regridding being mostly being used by hp methods [15].

In all r-refinement methods, the underlying PDE and meshtensacan be solved by a
Method of Lines approach, either singlestepping or melgpiptng (See Section 1.2.6).
The general aim of any r-refinement method is to maintain atirftal geometry”. Budd,
Huang and Russell [15] define this, in practice, as equitligion of a monitor function,
but for the purpose of this thesis, we extend the definitioméanmaintaining the initial
distributionof a monitor function. If the initial mesh is optimised, m&amthat the initial
distribution is equidistributing the monitor function et the two definitions concur, of
course.

So any r-refinement method needs a mesh evolving mecharesmé#mntains this optimal
geometry. The aim of this mechanism, and really the wholfinement method, is to
have a better error for a given number of nodes, though welswdaoking for efficiency
and stability. For robustness of the method, the idea is toedese the error for the same
number (N) of points, so that the error only depends on N, xaglivalently).

We now discuss how to incorporate a moving mesh into solviR®E&. In a short review
of 1D methods in 1992 by Ren and Russell [81], the view is tdkathany equidistribution
method amounts to a change in the co-ordinate system. Howesevill continue with

the distinction of location-based and velocity-based mesh

1.5.3 Location-based methods

All moving mesh methods can be considered as a magpiingm a computational space
Q. to a physical spac@p, both subsets dkd [98]. There is some theory developed in
Budd, Huang and Russell [15] fdét, for example “regularity” is defined as a measure

of how much variation there is in the elements, so a unifornshmie the most regular,
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and this then leads to a mathematical definition in termsefeégularity (or smoothness)
of F in aC" sense. Since this theory is only applied to location-basethauds and not
velocity-based (which is the scope of this thesis), we woll discuss the theory further
here, but just detail the main types of location-based nusthwith examples.

The two main types of location-based methodsaptmal transporand MMPDE (Mov-
ing Mesh PDE). The optimal transport method minimigés (&) — &|°d&, so its aim is
to be closest to a uniform mesh in a suitable norm, widei®the independent (spatial)
variable in the computational domain (a symbol commonldusehe literature). This
integral leads to a measure of deviation from the identay,ssnallest transport”F is
actually written as the gradient of a mesh poterfiathe mimimizing statement above
then leads to an equation fBr More details can be found in Delzanno et al [30].

In the MMPDE method [16, 18,24,45-47,49,50, 98], the egitdiution requirement, or
a variational version of it, is used to define@condPDE, that relates the equidistributed
co-ordinate §) to the fixed co-ordinatex|. This second PDE is the MMPDE. There was a
review of MMPDE methods in 2001 by Huang and Russell [47],dsud simple example,
we can take the 1D form of equidistribution in equation (), 8®d following White [95],

re-write it for dynamic regridding thus:-

X(E)
/O m(u) dx= £6(t), (1.11)

wheref(t) = fol m(u)dx, and¢ € [0,1]. Following Huang and Russell [49, 50], we can
differentiate (1.11) with respect -

m(u)——= = 6(t). (1.12)

And again:-

9 (m(u)%) ~0, (1.13)
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so giving our MMPDE, which will have to be solved in combirmetiwith solving the
actual PDE. To illustrate this, suppose the monitor fumcti@s in the forrm(x). Then it
may be possible to develop (1.11) to explicitly giwe: f(&), and recast the PDE in terms
of the new independent spatial varial§leThis is essentially the method studied in 1D by
Budd and Piggott [16].

In the variational method of the MMPDE, the equidistribatr@quirement is realised as
the minimising of an integral involving the monitor funatigthis may be done in a dis-
crete form). This variational equation can then be usedarktler-Lagrange form [6,97]
to form the MMPDE. This is the approach taken by Huang and &up$5, 46] who
study the problem in 2D. Zegeling and Kok [98] have studied &D and 2D, looking at
reaction-diffusion equations, with finite differences diser the numerical examples. We
note that in Huang and Russell [45], the variational equedictually involves three mon-
itors - as well as adaptivity, there is also mesh smoothnassathogonality”. However,

the authors only look at the MMPDE, and do not actually sofR2é in this paper.

1.5.4 \Velocity-based methods

Velocity-based methods use a Lagrangian (moving) co-atdisystem to directly pro-

vide a mesh velocity. A Lagrangian co-ordinate system isreviiee spatial co-ordinates
are themselves functions of time, these functions beingpmag from a conventional

fixed co-ordinate system (this can be thought o£23sn the location-based theory) to a
moving one. The equidistribution question then becomesv'Elan this mapping be made
to equidistribute the Lagrangian co-ordinates for the nmwrfunction?”. This question

has been approached in three main ways: the Geometric GatiserLaw method, the

moving finite element method, and the Deformation Map method

The Geometric Conservation Law (GCL) is akin to laws of mas$ mmomentum con-

servation in fluid dynamics [52], but here we are saying ispscethat must be con-

served. This might seem self-evidently true, but if a finieneent cell was to become
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over-distorted, for example, the law could be violated. hématically, the Geometric

Conservation Law is:-

d )
9 ax= / d 1.14
dt/A(t) X dA(t)X S (1.19)

wherex is the mesh velocity and(t) is an arbitrary fixed cell in the finite element system.
In 1979, Thomas and Lombard [89] used the GCL to simplify d@didifference calcula-
tion, so that it doesn’t need "complicated averaging foastlwhich some schemes not
using the GCL do. In a similar veiiktienne et al [35], and Farhat et al [36] have studied
the GCL as an aid to quality of solutions, applied to fluid florelgems.

In studies by Cao, Huang and Russell [24] and Baines, Hubdraddlimack [4] though,
we see the GCL essentially being used as an algorithmic eévigbtain mesh velocities,
rather than guaranteeing mesh quality. In particular, weuse the GCL to eliminate
the Jacobian that relat€x; to Qp, and relate the mesh velocities directly to the monitor
function as follows:-

Firstly, if we look at the moving meshmethodin isolation from a PDE, we can study
its features by letting the dependent variablee some prescribed function, representing
an exact physical solution. This is the way Huang, Ren an&uUBH0] have studied
the method, developing an MMPDE from the equidistributiongiple, so although they
have used the arc-length monitor in 1m((%) =+/(1+ (%)Z), they then studyn as
m(x), notm(u). Cao et al [24] have taken this abstraction a stage furtheanayysing
forms of m(x) with no actual reference to any PDE. Both these papers havegtheir
methods to a certain extent, though they left an open questiosing the method to solve
actual PDEs.

But staying withmasm(x), if we differentiate equation (1.11) with respectétpwherem

is nowm(x):-
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ox

m(x)ﬁ =

o(t). (1.15)

In 1D, the Jacobian is just= g—’g, so assuming (for the purposes of this analysis) a strictly

positivem(x), we can write (1.15) as:-

= 1.16
77 it (146

In higher dimensions, this generalises as:-
J= o(t) (1.17)

wheref(t) is now the monitor total normalised relative to the domane $iL.5]:-

pr m(x,t)dQ
o U€

We now use the GCL to relatkto x, so that we can eliminatéand directly relatex to

o(t)

the monitor function.
On the left-hand side of equation (1.14), if we change co@idis, so that corresponding

to A(t) in the physical space, there is a fixed a&llin the computational space;:-

0 0 D
E/Amdxz E/A;“f Hdé = /Aﬁu(f,t»dé, (1.18)

where®. is the total derivative= & +x - 0.
Applying Green’s lemma to the right-hand side of (1.14), #meh applying the change

of co-ordinates:-

/ X-dS— D~>'(dx=/D->'<JdE (1.19)
IA(t) A(t) Ac

As A is arbitrary, (1.18) and (1.19) together imply:-
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DAED) =05 (1.20)

Then assuming our monitor is non-degenerate, softatin equation (1.17) is non-zero,

we can write equation (1.20) as:-

312

o (1.21)

0% =

From equation (1.17):-

4DJ_ 6() 1 Dm(xt)
Vo T 6(t) m(x,t) Dt (1.22)

So combining (1.21) and (1.22):-

m(x,t) +X-0m(x,t) = m(x,t) == =

.0
m(x,t)0d- X+ ot

0"‘;’:’0 ~ mx.t) 20 (1.23)

0. (M(x,t)X) +

Ren and Russell [81] have used (1.23) in 1D to solve’<fand9(t) simultaneously for a
given monitor function. This same principle, of using ().&3get a mesh velocity from
a monitor function has also been used in location-basedadsthFor example, Huang,

Ren and Russell [50] develop an MMPDE method from (1.23), thed eliminated(t)
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from the system. In order to get uniqueness in solvingfior2D and higher dimensions,
Cao et al [24] have developed a useful theoretical resulbhees(1.23) (in the special
case wherd (t) = 0), which is to realis& as the gradient of a potenti@l An alternative
to this method is a variational form to get It is only this latter form that is studied
numerically in the Cao et al paper, and this confirms that t68& G used here essentially
as an algorithmic device, as some meshes did become hekeied, though they did
not actually collapse.

The method of Baines, Hubbard and Jimack [4] which is deedrib Section 1.8, can
also be considered a GCL method. This is actually a smallfetegard from the method
of Cao et al [24], and in patrticular, has two key elements fthat study - a method of
using the monitor function to get mesh velocities, simifafarm to equation (1.23) and
realising the mesh velocity as the gradient of a potegtiah a study of actual PDEs with
moving boundaries. We will just mention here, that like Caalgusing the GCL has not
prevented tangling, so we again consider it an algorithreicae.

We conclude this section by discussing two other velocégda methods. In the moving
finite element (MFE) method [55, 71, 72, 93], the node posgiare just added as extra
variables to the finite element equation (1.6), but with @mivity remaining unaltered
during refinement. Jimack [55] applies this method to thdugian equation (population
growth), focusing on steady-state solutions. Note thotigdt, the “new” finite element
equation will no longer be a linear system. In the Deformatdap method, the equidis-
tribution requirement is realised as a mapping between twoains inR", and the mesh
velocities are constructed directly from this mapping [1A]detailed study of this map
has been made by Liao and Anderson [63] for a fixed boundary midp is realised as

ODEs,n being the dimension of the domain (asRf).
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1.5.5 Comparison of Location and Velocity-based methods

In the Ren and Russell 1992 review [81], both MMPDE and Lagiam types can be
seen, and this paper does have numerical examples givéraetital PDEs solved. Other
comparisons tend to be more general and analytically b#sedeneral consensus being
that the velocity-based methods are easier to implemengreumore prone to tangling.
The studies by Cao et al [24], and Baines, Hubbard and Jinmacigh, show that tangling
is not a major problem. A definite advantage of velocity-lbasethods is that no distinc-
tion is needed for boundary velocities [15]. The locati@séd methods certainly lend
themselves to more mathematical analysis. This does n&aapgp be an advantage in
itself, but it does affect the strategy we use to decide whiekhod to use - this might be
analytical if a location method is used, but is more likelyogoempirical if using velocity
methods.

Budd, Huang and Russell [15] have stated that in velocigedamethods, the solution
can move away from equidistributed solutions, though thayeheft an open question
as to what difference this actually makes to solution efrar®ther criteria (this point is
actually addressed in this thesis, where we will attempbtod the maintaining of the

initial distribution).

1.5.6 Mesh problems
1.5.6.1 Tangling

A tangled mesh is one whose elements are actually intemggce., part or all of any two
elements are occupying the same space. In the 1D algoriteralwmays assume the node
indices run left to right, and in the 2D case, we have assutmedlements are numbered
anti-clockwise. Therefore tangling is equivalent to elemlengths or areas becoming
less than or equal to zero, which is what is checked for in therdhm. Results are

generally unreliable following tangling, and we will norilyaconsider a case completed
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on this condition, with results only evaluated up to the paihere the tangling occurs.

1.5.6.2 Blow-up

A possible problem with clustering mesh points near a regfdngh values (for example)
of u (the dependent variable) is that if this region actuallytaors a singularity, an ex-
cessive proportion of the mesh could effectively disapp®arthe region. This is known
as theblow-up problem. Budd and Williams [17] deal with this problem in a 2Bse
by defining a new monitor function that is the average of alegied monitor function
near the singularity and the old one away from it. This proeble a stable method, and

moved a “substantial fraction” of the mesh points away fromgingularity.

1.5.7 Applications of Moving Mesh methods

We mention a few applications here, which illustrate theenstope of moving mesh

methods. A more comprehensive list can be found in Budd, Blaga Russell [15].

Dorfi and Drury [33] use an MMPDE method to study Astrophygosblems in

1D, in particular, Sod’s shock tube problem and a superngpbpsion.

e Mackenzie and Robertson [65] use a velocity-based methagbfeing

phase change (Stefan) problems in 1D.

e Tang and Tang [88] use an MMPDE method, in 1D and 2D, to studglstvaves -

this is in a study of hyperbolic conservation laws, using&nolumes.

e An application in meteorology is the Eady problem [15], whis used to model
cyclones. Here, the Euler equations are modelled in 2D, phaéiad co-ordinates
being latitude and height, the dependent variables bemgetocity, pressure and

temperature. This is a location-based method, based omalgtiansport ideas.
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1.6 Parabolic PDEs: Examples

By a parabolic PDE, we mean one of the form:-

W = Lu, (1.24)

whereL is purely a second order spatial operator, and there is emdexrder time deriva-
tive term in this PDE. Two parabolic PDEs are studied in thésts: the porous medium

equation and the semilinear heat equation.

1.6.1 The Porous Medium Equation

The porous medium equation (PME) models gas flows in poroasangpreading liquids
etc [37,59,92,93].

In a simplified form, with initial values and Dirichlet bouay conditions, it is:-

% =0 (u"0u) (x € Q,t > 0),nbeing a positive integey ‘ t_Ozuo(x); u ‘ m:o. (1.25)

This has a known solution, for appropriate initial condigoof the form [74]:-

1 _ r _\2y1/n
(1= (Gm)) ™" Irl <roA(t),
urt) = A0 oA (1.26)

0, [r[ > ToA(t),

whered is the space dimensionthe usual radial co-ordinate and where:-

Alt)= (—) Zran andtp = _foh (1.27)
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1.6.2 The Semilinear Heat Equation

The semilinear heat equation describes the temperatureeafciing medium, such as a
burning gas [20]. With a fixed boundary and Dirichlet bouydawnditions, it takes the

form:-

U =Au+uP,xeQ,t>0;u o= Uo(X); u . 0, pis a positive integer (1.28)

No analytic solution of the semilinear heat equation is knosvthis author.

1.7 General factors in algorithm design

1.7.1 Closure

By closurewe mean introducing another condition to a set of equatiomaake them
uniquely solvable. There is nothing to say this has to bevddrirom physical principles,
but at least, we would want a condition imposed that is nosmaly unrealistic. For
example, Baines, Hubbard and Jimack [4] use a vorticity tmmdon the grid velocity,
whereas Budd and Piggott [16], when looking specificallyatgorous medium equation,

iImpose a centre of mass condition on the grigitions

1.7.2 Scale Invariance

For aPDE to be invariant actually means that the form of the PDE is angled under
a set of transformations. Solutions that are unchangedrismheeof these transforma-
tions are referred to as self-similar solutions [66, 75]okiog at the 1D porous medium
equation ¢ = (uuy)x) for example, Budd and Piggott [16] consider four “contiogo
transformation groups”, two translations and two scalipgetries. Effectively these

latter two are:-
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t— At,X— A2X (1.29)

tﬁ/\t,uﬁ/\ﬂ. (1.30)

_ : X .

The self-similar solutions are theh/(t—B), where B —y = 1, for some new function.
By using mass conservation, we can dedyxee—%,ﬁ = % hence there are self-similar
solutions of the form [16]:-

2

(a— t—%), (1.31)

Wi

u(x,t)=t"

for some constard.

As a simpler example, if we look at the wave equation in 1D [@/¢lassical method
of solving it is to change to new variablés= x— ct,n = x4 ct and find a very simple
solution in terms ofé andn. The scale invariance of this new co-ordinate system is
expressed in classical terminology by saying that “alongaracteristic” ¥ is constant.
Hence some PDEs have an underlying, unchanging physicabttematical feature -
a scale invariance, which we can exploit in designing the enical techniques for their
solution, for example, by finding scalingor other transformation of co-ordinates and
possibly the dependent variable, that gives us a new depemdgable that is constant
or slower-moving with time, or a new time-related co-ordeaThis slower changing
can lead to stability in solution methods [14,16]. For exéanm the blow-up problem
[16,20], the value ofi will become very large compared to the spatial co-ordiratier a
certain time. We can require that the numerical, i.e., digoro-ordinates are aligned with
this physical scaling. If using an MMPDE, this translatesequiring that the MMPDE
be scale-invariant (under the same set of transformatiwaitsthe PDE is), which itself
leads to using a scale-invariant monitor function [16, 20].

The method used in this thesis is an extension of the Bainasb&td and Jimack algo-
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rithm [4]. As the development of that algorithm was influethbg scale invariance, it will
also be a consideration in this work. For example, when thalsear heat equation in
Chapter 3 is studied, the scale-invariant monitor funciemployed by Budd, Huang and

Russell [20] are used as a first approach.

1.7.3 Timestepping methods

The timestepping scheme chosen in this thesis is Forwaret ETihe main disadvantage

of this method is that it is explicit and so, for stability, affeciently small time step has

to be chosen. It is also only first order, however in practigestability restriction on the
step size always dominates over accuracy because of theessfof the equations. To
minimise run times, the timestep has only been lowered aasfarneeds to be. Having
set a timestep, as the spatial grid silzehas been halved, the timestep has been quartered.
This is following typical practice in some finite differenogethods, and can be seen to
be an adequate system in the original BHJ study [4]. In they®medium equation
studies in this thesis, the timestep remains constant ginaut the run. However, in the
study of blow-up in Chapter 3, we allow the timestep to furtiegluce as the value of the

dependent variable becomes large.

1.8 The Method of Baines, Hubbard and Jimack

The BHJ method [4] is a velocity-based adaptive algorithsrdescribed in Section 1.5.4.
The Geometric Conservation Law (GCL) has been used as arnithlg@ device to derive
the mesh velocity from the monitor function, but here, aldRI2Es have been solved, and
so we see the monitor function as a function ol (in fact, m(u) = u), rather than the
m(x) in the abstracted study by Cao et al [24]. As with the Cao sttidyequations for
the mesh velocitx have been solved uniquely by realisixgs the gradient of a potential

@. The finite element discretization is done with linear tgalar elements. The PDEs
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considered are all of parabolic type, as described in Sedti®, so are of the form:-

W = Lu, (1.32)

wherelL is purely a second order spatial operator, and there is mmdewrder time deriva-
tive term.

The algorithm can generally be described as a Method of Lapgsoach, with a ba-
sic explicit one-step timestepping [61] method used toestihe resulting ODE system.
However, it is only the mesh positionsand a “mass total” that are updated from the
ODE system - the nodal values ofare then recovered from a “distributed conservation
principle” [4], which can be visualised as “nodes carryingsmaround”.

We first define the mass total:-

a(t) = /Q  Ua0 (1.33)

Then we calculate the distribution constants:-

1
Ci=—— wiudQ, 1=1,2...N, 1.34

wherew; are N piecewise linear basis functions, which form a partitionuafty [4].
The “distributed conservation principle” is then that @fy@emain constant throughout
the run. With this PDE set in a moving frame, so tkats changing in time, equation
(1.34) provides a system to calculaiérom the current values @@ andx. But the same
equation also provides the algorithmic device needed toutate the mesh velocities,

which we now detail. If we rewrite (1.34) as:-

ci6(t):/Q(t)WiudQ, i—12. N (1.35)

As thec; remain constant, applying Leibnitz’s rule [60] (and usingé&h’s lemma):-
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: d
co(t) = &/Q(t)WiUdQ

:/ 0(Wiu)dQ+ Wiux - AdS
ot Ot 2Q(t)

:/ Wiu[dQ+/ uMdQ+/ 0. (wu)dQ, i=1,2...N(1.36)
Q(t) o) ot Q(t)

wheref is the outward pointing, unit-length normal at any point ba surface of.

ow

Thew; have been chosen to advect with velocity4], therefore = —x - Ow;, and

hence:-

cié(t):/ WiutdQJr/ u(—X-Dwi)dQJr/ 0. (wu)dQ, i=1,2...N. (1.37)
Q) Q) Q)

Expanding the last integral and simplifying:-

GOt)= [ wuwdQ+ [ wD-(ux)dQ, i=12...N. (1.38)
Q) Q)

By using vorticity arguments [4], equation(s) (1.38) carulsed to solve uniquely fox,

if 6 andu are known and x X is specified. In fact[] x X is specified as zero, so that
can be written ag = O, for a velocity potentiatp. The issue of findind is addressed
shortly, but first, writingk = g in equation (1.38) and using the original PDE (1.32), we

have:-

Go(t) :/Q(t)wiLudQ+/Q(t)wiD-(chp)dQ, i—12...N. (1.39)

In discrete terms, if we approximate by Zi’\'zlcnwi, then we now havél equations in
N + 1 unknowns, becaud®is unknown as well as th@g. But we can add an equation for

just 8 by developing equation (1.33) in a similar manner to abowes@&tingw; = 1 and
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using the same arguments, we arrive at:-

éa):i/ LudQ%i/ 0. (u)dQ. (1.40)
Q) Q)

However, theséN 4+ 1 equations are actually singular as they stand, as equtié)
is effectively a sum of all the equations in (1.39). This isdnuese thev, are a partition
of unity, as described earlier, and consequently the surheo;tis also unity, from the
definition in (1.34). This can readily be rectified by elinting one of they. Without loss
of generality, we will actually sep; = 0 (and also only solve (1.39) for=2,3...N), as it
is only (¢ we are interested in [4]. Note that this is the only stage efalgorithm where
the underlying PDE appears, as equation (1.34) is used adsto directly recoveu
from the current values @ andx.

Having foundg, we then calculat& from the weighted form ox = O :-

/ NMQ:/ wi0pdQ, i=12...N. (1.41)
Q) o)

Boundary conditions are only applied weakly, by disregagdhe appropriate boundary

integrals. For example, in equation (1.39), for the poroesliom equation,
Lu= 0O (u"Ou).
S0 [or) Wil - (u"Du)dQ will be calculated as:-

—/ u"Ou- OwdQ,
Q(t)
thus weakly forcing- 5 Wiu"Du- hdSto be zero.

The complete algorithm is:

1. From initial values olu andx, calculate the initial mass tot&#l and the monitor

distribution constants; from (1.33) and (1.34).
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2. Recovewu from current values of andx, using (1.35).

3. Solve equations (1.39) and (1.40) to fiénd{q}.

4. Solve equation (1.41) to find

5. Update (with Forward Euler timesteppingand 8, usingx and®.

6. Return to step 2.

The above algorithm may be expressed more concisely asvi&Ho

Once only: Calculaté, c;
Loop:
0 xc — u.
u— (¢,0) — X
Update@ andx.

End Loop.
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BHJ - extended

We describe below, in Section 2.1, the main algorithm useatiisithesis, in its general
form. We refer to this as “BHJx”. This extends the BHJ aldguntdescribed in Section
1.8 to any monitom of the formm(u). It uses a differential form of the ALE to calculate
ufrom x [5], so that this can also be considered a Method of Linesagmbr (as described
in Section 1.2.6). Here though, we are directly updatimagdx at every timestep, from
andx. The finite element discretization is done with linear elatagtriangular in the 2D
case. The primary development history of the BHJx algorjtleading up to the algorithm

in 2.1, is described in Section 2.2 - numerous verificaticuits are presented here.

2.1 The BHJx algorithm

Consider a general parabolic PDE, by which we mean one obtine: {

W = Lu, (2.1)

on a time-dependent domaf(t), wherelL is purely a spatial operator of the second
order. In particular, there is no second order time derreaterm in this PDE. To make

calculation of integral terms tractable, we further caaistt to be of the form]-F+ G,

41
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whereF, G are operators on, containing terms no higher than the first derivatives,of

for exampleF = Ou, G = uP for the semilinear heat equation (discussed in Chapter 3).

2.1.1 ALE Formulation

In a Lagrangian system [4], with a moving co-ordinafe), i (the derivative with respect
to the fixed system), actually has two components: the timeateve of u with respect
to the moving frame, which we’ll call, and a component from the movemenkafself,

which is—[u- X, so equation (2.1) can be written in the form [5]:-

u—Ou-Xx = Lu, (2.2)

which we can also write as:-

U= Lu+Ou-x. (2.3)

This last form gives us a way of solving the PDE by timestegpirethods, as (2.1) does,
provided we have a means of definirg The algorithm that we will employ can be
generally described as calculating from values ofu, x at a given instant, then using
U, X to updateu, x at the next instant, and repeating the process forward i@.tim

In discrete termsx is the velocity of amoving meskandu the values of the dependent
variable at the nodes of the mesh, and we will actually catewi for a givenx by using

finite elements, and a weak differential form [5] of (2.3):-

/ WiUdQ:/ wi(Lu+0u-%)dQ, i=1,2...N, (2.4)
Q) Q)

wherew; areN piecewise linear basis functions, which form a partitiomoity [4].
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2.1.2 General Monitor Functions

The same distribution conservation ideas as developedimg8aHubbard and Jimack [4]
to calculatex from u are used, but we now extend it to more general monitor funstio
So given a monitor functiom(u), we aim to maintain the distribution of the monitor total

0:-

o(t) — /Q(t) m(u)dQ. (2.5)

This aim allows us to derive the mesh velocityfrom u, though we should stress that
this is an algorithmic device for determiningso we do not (generally) force the monitor
distribution to be exactly maintained.

The first step in the algorithm is to derive distribution ciamésc;. From initial values of
u, we can calculate the value 6ft) from (2.5). Usingw; as described in (2.4), we then

calculate:-

1 .
G = %/Q(t)wim(u)dQ, i—12...N. (2.6)

We now use these constants to calculass follows. The weighted form of (2.5) is:-

GO(t) :/Q(t)wim(u)dQ, i—12...N. 2.7)

Assuming thes; remain constant and applying Leibnitz’s rule [60]:-

: d
cot) = &/Q(t)wim(u)dQ

:/ OWMMU) o+ [ wim(u)-AdS
Q(t) ot aQ(t)

/ Win”((u)utdQJr/ m(u)%quL/ wim(u)x-AdS i =1,2...N, (2.8)
Q(t) o~ ot aQ(t)
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wheren is the outward pointing, unit-length normal at any point be surface of2.

an _

Our w; have been chosen to advect with velocity4], therefore“t = —x - Ow;, and

hence:-

a(t) =/ Wit (U) dQ +/ m(u) (=X - Twg)dQ +/ wim(u)x-AdS i = 1,2...N.
Q(t) Q(t) 2Q(t)
(2.9
Using the vorticity arguments in [4], equation(s) (2.9) denused to solve uniquely for
X, if 8 andu are known andl x X is specified. In fact, we specify x x as zero, so that
can be written ag = (¢, for a velocity potentiatp. We also assune- fi is known at the
boundary € E -fi say). We will address this issue, along with that of findéhghortly,

but first, writingx = 0@ in equation (2.9) and using the original PDE (2.1), we have:-

+/ m(u) - DwidQ / winl LudQ+/ wim(u)é -AdS i = 1,2...N.
(2.10)
In discrete terms, if we approximate by ZI 1@wi, then we now havé&\ equations in
N+ 1 unknowns, becausgis unknown as well as thg. However we can add an equation

for 6 by developing equation (2.5) in a similar manner to abovertive at:-

_ / m(uludQ+ [ m(u)é-AdS (2.11)
Q(t) 2Q(t)

However, thes®&l + 1 equations are actually singular as they stand, as equatibh) is
effectively a sum of all the equations in (2.10). This cardigabe rectified by eliminating
one of they, sayg and the corresponding equation (wR). Without loss of generality,
we will actually setg = 0, as it is onlyllg that is of interest.

As already noted, the above argument assumes that we havare mecalculating or

estimatingx - f on the boundary. This is discussed in the next Section, Haotdéhis we
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complete our discussion of the algorithm.

Having foundg, we then calculat& from the weighted form ok = 0@ :-

/ wiXdQ:/ wi0pdQ, i=12...N. (2.12)
Q) o)

We now use these valuesxto calculateu from (2.4), and hence return batrandu, so

completing the algorithm.

The complete algorithm is:

1. From initial values ofi andx, calculate the monitor totdl and the monitor distri-

bution constants; from (2.5) and (2.6).

2. Solve equations (2.10) and (2.11) to fiidind @ (though® is not normally used,

unless we also wish to keep track@ft) as the solution progresses).
3. Solve equation (2.12) to find
4. Solve equation (2.4), using(and current values af andx), to find u.

5. Update (with Forward Euler timesteppia andx, from u andx, and so return to

step 1.

This can be described more simply as:-

BHJx algorithm

Loop:
u—(6,q)
(u,c) — @ — X.

(U,X) — U.

Ln this thesis we only use Forward Euler for simplicity. Théemsion to any explicit Runge-Kutta or
multistep scheme is straightforward [4] however. We havecnasidered implicit time-stepping schemes.
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Updatex andu.

End Loop.

We can compare this with the BHJ algorithm:-
Once only: Calculaté, c;
Loop:

0 xc — u.

u— (@,0) — X

Updated andx.

End Loop.

We can see the stage to calculatés essentially the same, but in BHJ, we recouer
directly from an updated and@, whereas in BHJx, a form of the ALE is used to calculate
u from x, and theru andx are updated.

The foregoing describes the BHJx algorithm in its most galinierm. However, there
were two further amendments made for use in this thesigyviatig early development of

the algorithm:-

e When solving equations (2.10) and (2.11), there was an acgumprovement ifp
was assumed to be zero on all boundary nodes, for the tes cassidered. This

is equivalent to assuming the tangential componentisfzero at the boundary [4].

e All the problems solved in this thesis have Dirichlet bounydaonditions, with the
dependent variable being zero on the boundary. To improve robustness, this has
been enforced strongly by only solving equation (2.4) feeinal nodes, witl Set

to zero for the boundary nodes. See Section 2.2 for morelsletathis.

Unless otherwise stated, these amendments apply to allraoden this thesis.



Chapter 2 47 BHJ - extended

2.1.3 Normal Boundary Velocity

As noted in the previous section, the extended version oBthéx algorithm requires an
estimate ofx - i on the boundary. This may be obtained in at least two diftenays,
both of which have been considered in this work.

In the following chapter (where monitor functions of therfom(u) = u¥ are explored),
we consider a particular case wheres known analytically on the boundary, in this case
zero. However, the principle is identical whenexés known explicitly or is a computable
function of the solutioru and/or its derivatives.

In the subsequent chapters, we solve problems for which wenaex - fi is not known
on the boundary. In these cases, it is necessary to appriexitnhased upon the use of
a mass monitor function. In these later chapters, monitbtiseoformu+a and/(1+
(ux)?) are considered. Note that in this latter cas@y) is replaced byn(uy), so a further
generalization of the method is described at that point.

A third possibility is to treak - h on the boundary as another unknown in the algorithm,
so it is solved for along with the internal mesh velocitiesisTwas the method used in
our development stage detailed in Section 2.2 for the masstanon(u) = u. However,
such an approach has proved unreliable for general moritgrs # u), and we do not

discuss it further here.

2.2 BHJx - Development History

This section provides a description of the development @BHJx algorithm, focusing

entirely on the casen(u) = u, as used in [4]. In addition to providing justification for
decisions made, the results presented also act as vahd#Htibe software that has been
developed. We repeat here, for convenience, the BHJ algodiescribed in Section 1.8,

in its simplest form, together with two of the principal etjoas:-

Once only: Calculaté, c;
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Loop:
6xc — u.
u— (@,0) — X
Updated andx.

End Loop.

a(t) = /Q , ude (2.13)

o) = Q(t)wiudQ, i=1,2...N. (2.14)

If we simply replaceu with m(u) in equations (2.13) and (2.14), then it is still possible
to develop (2.14) to get mesh velocities relating to the ggmaonitor functionm(u) as
shown in the previous section. In fact, the mathematicatlogobtainingx in BHJx is
almost identical to that in BHJ. There is a problem thoughtyying to recoveru from
(2.14) ifuis replaced there bgn(u), andm(u) is non-linear. So what was experimented
with is other ways of using to updates. Two methods were tried, both using an Arbitrary
Lagrangian-Eulerian (ALE) form of the PDE [5]. The first methuses a weak differential
form of the ALE. This was eventually the one selected, beiqgaéion (2.4) in Section

2.1:-

/ WiUsz/ wi(Lu+0u-3)dQ, i=12...N, (2.15)
o) o)

wherew; areN piecewise linear basis functions, which form a partitiomoity [4]. This
will be referred to in this section as thmn-conservativéALE as it may not conserve
mass (1). As described in Section 2.1, equation (2.15) is used texgffely converi to

u, so therx andu can be updated in a timestepping system.

The second method uses a waatlegral form of the ALE [5]:-



Chapter 2 49 BHJ - extended

d | |
dt /Q(t)W'UdQ - /Q(t)""'('-“+ 0-(ux))dQ, i=1,2...N. (2.16)

This will be referred to in this section as thenservativeALE as it will conserve mass
(u) under certain conditions, as explained below. If we writsirfgd to distinguish this

from themonitortotal 6):-

9 = / wiudQ, (2.17)
o()

then equation (2.16) allows us to calcul&erom x and updaté?; at each timestep. The
new values olu can then be recovered from (2.17). So a second algorithm neakin
the development stage, using the conservative rather tleandn-conservative ALE to
obtain an updated from x. We will refer to this as BHJx(c). In practice, this algorith
is essentially the same as BHJx, but instead of using (20li)dateu, we use (2.16) and

(2.17). We can describe it more simply as:-

BHJx(c) algorithm

Once only: Calculate initial values &
Loop:

Ji — u.

u—(6,q)

(U,G) — @ —X.

X — 9.

Updatex andd;.
End Loop.

Both the BHJx and BHJx(c) algorithms started with weak (ydroundary conditions
enforced, so that appropriate boundary integrals areghsded, as described in Section
1.8. Hence the calculation gf, ;) wiLudQ is simplified when calculating; for BHJx in

equation (2.15) and; for BHJx(c) in equation (2.16). Note that neither algoritkimctly
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enforces the “distribution constants]’ to be constant, as was the case in the original
BHJ algorithm. This does not prevent the algorithm from tiorang, but it does leave
an open question as to whether the distribution is being taiaied. In the case of the
initial conditions being optimised (equidistributed fbetmonitor), this question equates
to whether the monitor is actually being equidistributeddibtime. This question will be
addressed later in this thesis.

A comparison of the conservative and non-conservative turtine ALE, made by Baines,
Hubbard, Jimack and Jones when studying the porous mediuatieq, shows that the
conservative form is “preferable both in terms of accurawy@bustness” [5]. Atthe time
of development of the BHJx algorithm, research showed thegnausing the conserva-
tive ALE, strong boundary conditions (wheues forced to be zero at the boundary) gave
more accurate results than weak ones, again studying tlegaredium equation [51].
However, that same research also shows that this comhmnaitstrong boundary condi-
tions and conservative ALE enforces mass conservationadiicplar, for a PDE where

the spatial operator is of the form- F, mass will be conserved if [51]:-

(Fu+ux)-n=0 (2.18)

on the boundary, wherg is the outward pointing unit-length normal &2. Whilst this
may be a key property for some numerical PDE algorithms, utctalso be considered
unnecessarily restrictive for general PDE study. Theeefboth forms of the ALE were
studied, so that both BHJx and BHJx(c) were considered, laegktwith both weak and
strong boundary conditions. This and the need to start fivensblid foundation that
formed the original BHJ paper led to the code developmentixsihown in Table 2.1
(the acronym “NLP” stands for Non-Linear Parabolic).

All these codes were written in “C++” and model 2D problemse PME problem, which

is fully described in Section 1.6.1, is:-
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Code| PDE | Algorithm | Boundary Conditions Comments

BHJ1| PME BHJ Weak

BHJ2 | PME BHJ Weak SPARSKIT added

BHJ3 | Oxygen BHJ Weak

NLP1 | Oxygen| BHJx Weak

NLP2 | PME BHJx(c) Weak

NLP3| PME BHJx Strong Weak tried initially

NLP4 | PME BHJx(c) Strong Uses Petrov-Galerkin methqd

Table 2.1: Code development matrix

% =0 (u"Ou) (x € Q,t > 0),nbeing a positive intege ‘ t_Ozuo(x); u ‘ aQ:O' (2.19)
The oxygen PDE models diffusion of oxygen in an absorbingiomdsuch as tissue
[4,8]. This can be defined on a moving boundgxft) as follows:-

ou

E:Au—l(er,t>O); u t:Ozuo(x);u dQ:O:Du-n e (2.20)

We now detail the development history of these codes. Thebde, BHJ1, was a straigh-
forward conversion from the Fortran code used to study theysomedium equation in
the original BHJ paper [4]. The first test was to get agreemsatht that code, running
to 0.2s on a 545-node mesh, with a timestep of 0.0001 and &al iradius of 0.5. The
initial conditions for these runs were taken to be the knowlntgon in equations (1.26)
and (1.27) (this will usually be the case in this thesis wiesting for convergence). The
initial meshes are shown in Figure 2.1.

The BHJ1 final mesh differed from the Fortran one by no mora tha 1010 in values
of the mesh co-ordinatesy and the dependent variahleso the basic Fortran to 'C++’
conversion was considered complete. This first program asechplified version of the

BHJ algorithm, utilising the fact that the PME was mass-eovative. So sincé =
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Figure 2.1: Porous medium equation: initial conditionsrfed (left) and n=3 (right).

0, only a symmetric system needed to be solved when fingifrgm equations (1.39)
and (1.40). To allow for later development then, the symio@inly system solver was
replaced with a more general-purpose one, using the SPARB¥Aary [83], so forming
the BHJ2 program. Comparing this to BHJ1 with the same medltanditions as above,
there was a difference in the final mesh of BHJ2, as comparBeiid, of no more than
2 x 107? in the values of the mesh co-ordinatey and the dependent variahle

For the last part of these foundation codes, the PME problamreplaced by the oxygen
problem in BHJ2, to become BHJ3. This is a non-conservatigblpm, so is a further
test of the SPARSKIT addition. Furthermore, this problenalso used to provide a
first test of the BHJx algorithm, which is based upon the nonservative ALE method
(implemented in the code NLP1). As this has no known analyiction in 2D, the
testing here has to be partly qualitative. The initial cdiodss are shown in Figure 2.2.
Following [4], this mesh (of 615 nodes) was created usingkitn@vn solution for 1D
(&1 —x for x € [0,1]), which att = 0 is€~1 —r, wherer is the radius, with the initial
boundary set at= 1. The graphs in the top-right and bottom-left (respecyivil Figure

2.2 show final meshes for BHJ3 and a Fortran code suppliedrasfthe development
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of the BHJ paper [4], both of these runningTo= 0.07 with a timestep of @001s. We

can see a general agreement between the codes.
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Figure 2.2: Oxygen problem: initial conditions (top lelBHJ3 final mesh (top right),
Fortran code final mesh (bottom left), NLP1 final mesh (bottaht).

We can also show an extrapolated convergence for BHJ3. wréig.3, we show the
graph of6(t) (monitor total) for the same 615-node grid as above, but débreasing
timesteps. We can see a convergence to some solution indpb gthis is clearer in the
zoomed graph, as the plots have effectively merged in the graiph. 61 refers to0(t)
for dt =0.0001, and so on.
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Figure 2.3: Oxygen problen@(t) and zoom in (BHJ3).

The NLP1 code was developed next - this also studies the oxygilem, but with the
BHJ algorithm in BHJ3 replaced with the non-conservativeEAbhethod used in BHJX.
This was a first test of BHJx in its most general form - the nonservative ALE with
a problem known to lose mass. The first run was done with ex#etl same conditions
as for the BHJ3 run above, and the final mesh is shown in Fig@rédttom-right) for a
qualitative comparison with BHJ3. In addition to lookinguagpalent, a direct numerical
comparison of the final BHJ3 and NLP1 meshes was done - thigesha difference of no
more than %, when looking at the mesh co-ordinateg and the dependent variable
u, this being the absolute difference of the two values, @ity the maximum of them,

i.e., diff(xl,x2) = 422

max([x1},[x2])*

This result adds confidence to NLP1, from the point of
view of a solid foundation. Extrapolated convergence tes&se also done here, using
the same conditions as BHJ3, but to a longer run time of 0.@8s plots off(t), asdt
decreases, are shown in Figure 2.4, where we again see geneerto a solution.

These results for NLP1 gave sufficient confidence to movedditial testing phase - try-
ing out the alternative conservative ALE, and quantifyihg effects of weak vs strong

boundary conditions. This was done with the codes NLP2, 34rall modelling the
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Oxygen absorption/diffusion PDE: 8 vs time Oxygen absorption/diffusion PDE: 8 vs time
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Figure 2.4: Oxygen problen@(t) and zoom in (NLP1).

porous medium equation (the rest of the details are showmliteT2.1). For testing of
BHJx with the PME, we first note that NLP3 runs failed earlytwiteak boundary condi-
tions, for example, one 2113-node mesh witk 1 tangled (had negative element areas)
shortly afterT = 0.05, so that code was amended to have strong boundary corgjitio
and all comparisons from here on regarding NLP3 are with ttemg-BCs version. A
comparison is shown in Figure 2.5 of NLP3 with BHJ2 (which tesk boundary con-
ditions), for a 545-node mesh, initial radius 0.5, timesi€0.0001, running to T=2.0, for
both n=1 and n=3.

We can see both codes have completed their runs, and showadpimilar result,
except for the boundary. The “lifting” effect seen in the BHjraphs is actually caused
by the base plane of the graph being drawn at a lower “z-vdlurethese meshes, since
the values ofi at the boundary were actually a mix of small positive and tieg&alues,
due to boundary conditions being only weakly enforced.

Finally, we look at a study of the alternative (conservatMeE) BHJx(c) algorithm,
which also incorporates a weak/strong boundary condiwonsparison. The NLP2 code

was created from NLP1, by changing the PDE to the porous medguation, and the
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Figure 2.5: Porous medium equation: BHJ2 (n=1) final meghl&fi), BHJ2 (n=3) final
mesh (top right), NLP3 (n=1) final mesh (bottom left), NLP33) final mesh (bottom
right).

algorithm from BHJx to BHJx(c), keeping the boundary coiotis weak. NLP4 was
created from NLP2 by making the boundary conditions strdfalowing [51], this was
done in a “consistent” manner, so that mass conservatiordefasitely enforced. This
meant having a test space different from the trial spaceh@bthe test functions form
a partition of unity), hence this code is using a Petrov-@&aleapproach (see [51] for
more details). As the porous medium equation has a knownigoJuwe can estimate
accuracy of these codes. Orders of convergence for NLP2d 3 @me shown in Figure
2.6, forn=1 andn = 3, meshes (initial radius 0.5) of 545, 2113 and 8321 nodes (S0
dx decreasing by 50%), and a timestep of 0.0001 for 545 nodesréalucing to 25% for
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each mesh).
Convergence rates for NLP codes; porous medium equation (2D); n=1 Convergence rates for NLP codes; porous medium equation (2D); n=1
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Figure 2.6: Porous medium equation. Orders of convergarcé mesh error, n=1 (top
left), L2 boundary error, n=1 (top right),> mesh error, n=3 (bottom left),?> boundary
error, n=3 (bottom right).

We can see that NLP4 is generally the most accurate and hagpaoved order of accu-
racy over NLP2, when considering the boundary error, argllilwadly agrees with the
findings in [51]. We also note the orders of convergence, alldour cases (so all four
graphs in Figure 2.6) for NLP4, are comparable to the origsi&) study [4]. We can see
also though, that the order of convergence of NLP3 is as geddl#4, so as the NLP4

algorithm is more restrictive, as it may unnecessarily ergonass conservation, NLP3
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was taken forward as the candidate for more general monikmte that all the results in
this section, considering both the Oxygen problem and th& Fi¥low that BHJx with the
mass monitor gives broadly similar results to BHJ, therefany comparisons of BHJX
(non-mass monitor) with BHJx (mass monitor) are broadlyiejant to comparing BHJIx

(non-mass monitor) with BHJ.
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The blow-up problem

We consider here the semilinear heat equation, with a fixeddary and Dirichlet bound-

ary conditions:-

u =Au+uP.xe Q,t >0;u o™ Up(X);u . 0, pis a positive integer (3.1)

This equation describes the temperature of a reacting mediuch as a burning gas [20].

3.1 Background

No analytical solution of (3.1) is known to this author, tigbithere are conditions given
by Weissler [94] for solution existence when the domain ioaR" andp > 1. In that
case, he shows that under mild restrictions)(ip — 1) /2 < 1, non-negativé.P solutions
always blow-up inLP norm in finite time, and in(p—1)/2 > 1, global solutions exist,
given sufficient conditions on the initial data. For example will have blow-up in a

finite time in the 1D case, ip=2 or 3, and in 2D, ifp = 2.

59
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In this chapter, we consider a 1D version of (3.1) with a fimterval:-

U = Ux+UuP xe(0,1),t>0;

=0, pis a positive integer (3.2)

x=1

t=0

In this case, any solution of (3.2) will blow up at a singlengod*, at a timeT, if ug is “suf-
ficiently large” [20], so that as— T, u develops a narrowing peak arouxid Although
we do not have an analytical solution for (3.2), there is sasyamptotic knowledge. In

particular, forx near tox*, if we define the “kernel co-ordinatg’[20, 48] by:-

NI

H(xt) = (Xx=x#)[(T —t)(a —log(T —1))] 2, (3.3)

whereaq is a constant depending on the initial conditions, then wlpers constant, the

solutionu(x,t) of (3.2) follows this asymptote [20]:-

BPI1+ p?/4pB] B

u(x,t) — T 0P

ast —» T, (3.4)

where = 517

This asymptotic behaviour has been confirmed in a numertoalysby Budd, Huang
and Russell [20], using MMPDE methods. The equation exaslin (3.2) was studied
in 1D, with p = 2, the monitor functiorm(u) = u and up = 20sin(7x). Values ofx*
andT have actually been calculated analytically by using thergdgtic theory and the
MMPDEs, but we should emphasise this was possible becaussimgj this particular
method of solution, and so depend on that method. This steel¢ an adaptive timestep,
and we note that papers by Budd and Williams [19], and Ceogcand Hou [26] state that
adaptive timestepping is necessary to solve the semilimegir equation, with the latter

giving a specific formula for the adaptation:-
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dt = dto/||puP Y |es, (3.5)

wheredt is the initial timestep.
The results of this study do show the blow-up happening at@epointx* at a time T,
with x* being the peak point of the initial dataThis result has also been confirmed by

studies of this problem at the University of Reading [28,91]

3.2 Applying the BHJx algorithm

The algorithm is applied as in Section 2.1. As we have a fixathtary, the boundary
velocity (é) is set to zero in equations (2.10) and (2.11). The monitoctions have been
of the formm(u) = uY¥, as scale-invariance and similar studies [20, 48] have Bhbvg

form allows the mesh to evolve to correctly follow the asyatigtform, without ceasing

to evolve at any point.

3.3 Preliminary results

The first cases have been run with the same initial and boyramarditions and mesh
as in the Budd, Huang and Russell study [20], so that we hawenitial conditions
Up = 20sin(1x), with the interval[0.0, 1.0] split into 40 equally-spaced intervals between
41 nodes, and being forced to be zero at the boundary nodes. Followingstualy, the
monitor functionm(u) = u has been used for the= 2 case, and(u) = u? for p= 3. The
initial conditions and a plot ofimax(t) for the p = 2 run are shown in Figure 3.1, whilst
plots ofu(x) for p=2 andp = 3 at the algorithm breaking point of T are shown in Figure

3.2.

In a 2D study by Budd and Williams [17] of the semilinear hegation, on a circle and square, we
also see a single blow-up poixit at a timeT, thoughT is not given. As in the study by Budd, Huang and
Russell [20], we see the blow-up poiitis at the peak of the initial data.
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initial conditions for semilinear heat equation slhe(1D); 41 nodes; dt0=1E-3; T=0.0825025; p=2; m(u)=u
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Figure 3.1: Semilinear heat equation: initial grid (leihdumax(t) for p=2,m(u) = u,

41 nodes.

As predicted in [20], we get a single, narrowing peak rouh¢0.5 in both these cases),
with u — « ast — T, andx* is also the peak of the initial data.

The p = 2 run has reached a point T=0.0825025 withux = 14,000 before tangling
starts. The circled node in Figure 3.2 shows the tanglingtpand the zoom shows the
nodes about to overlap. This run did continue until T=0.G825 with umax= 18,000,

but the algorithm then broke down. Fpr= 3, the algorithm broke down immediately
after T=0.00128295 withunax = 3142. There was no tangling here, but the nodes are
very closely centred rounl, as the zoomed plot shows - this may be the cause of the
problem. We will discuss untangling and restarting theses im Section 3.6, but from

these first runs, we note:-

e The “pre-tangle” time of T=0.0825025 for the= 2 case is comparable with the
blow-up times of T=0.082291 (MMPDE4 method) and T=0.08228B/PDE6
method) of [20].

e These cases were run with adaptive timestepping, usingtheufa in (3.5). This

produced no significant difference in T omaxT), but it did reduce the program
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slhe(1D); 41 nodes; dt0=1E-3; T=0.0825025; p=2; m(u)=u slhe(1D); 41 nodes; dt0=1E-3; T=0.0825025; p=2; m(u)=u; zoomed
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. . . . . . . . . |
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X X
slhe(1D); 41 nodes; dt0=1E-3; T=0.00128295; p=3; m(u):u2 slhe(1D); 41 nodes; dt0=1E-3; T=0.00128295; p=3; m(u):L?; zoomed
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Figure 3.2: Semilinear heat equation (41 node grid): sohstiat the time when the algo-

rithm breaks down, fop = 2, m(u) = u (top) andp = 3,m(u) = u? (bottom).
run-time, so that for the = 2 case, an initial timestep of 1 10> with fixed
timestepping gave broadly the same results as an initigstiep of 1x 10~2 with
adaptive timestepping. With adaptive timestepping, reduthe initial timestep of
1 x 10~ had no benefit, and increasing it to more tharn 102 caused the algo-
rithm to fail very early on. We can see the benefit and justificafor adaptive
timestepping from the plot afimax(t) in Figure 3.1 - there is only slow growth in

Umax until near T. All runs in this chapter were done with adaptiwgestepping and
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an initial timestep of & 103, unless otherwise stated.

e The values olumaxT) were 14,000 fop = 2 and 3142 foip = 3. The value for
p = 2 is not as high as seen in [20], which is likely to be becauseatgorithm

breakdown has prevented a higher value being reached.

3.4 Accuracy

The two cases in Section 3.3, namgly= 2,3 with monitoruP~! have been run to ap-
proximately half the run-time there, with a decreasingigpatterval, to demonstrate that
the method is converging to something, though we do not hawvanalytical solution to
compare with. For example, fgqr= 2 andm(u) = u, the values ofinax (which will be
uatx®) at t=0.04, for 21/41/81/161 nodes are 33.1364, 33.2572988, 33.3030, to six
significant digits. Continuing that sequence, based uptmgalation, with an average of
the rates of decrease of successive steps, gives us a ndéimihaf 33.3062. With that as
the limit, the error of the solution is then 0.1698, 0.0484166, 0.0032. This has been
plotted againstlx, as a log-log graph, in Figure 3.3. We have also plotted threegasults

for p= 3, running tot = 0.0006, and to ensure this basic result is not dependent on the
monitor, we have also run the= 2 case with monitom(u) = u?, and thep = 3 case
with monitorm(u) = u to ensure the same limit is reached, which did indeed turnmut
be the case Log-log plots of error againstx have been added to the graph for these last
two cases. We can see from Figure 3.3 that we have a convergatecof approximately
second order for botp = 2 andp = 3, independently of the monitor, and that for= 2,

the actual errors are almost coincident, for the two mositsed.

2For p = 2 and monitor functiorm(u) = u?, the 161-node case did need a lower initial timestep of
1 x 10~* for the algorithm to commence.
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T
—+— Solution error(p=2, m|

—6— Solution error(p=2, m(u)=u’

Solution error(p=3, m|

+ Solution error(p=3, m(u)=u’)

— slope=2

Figure 3.3: Semilinear heat equation - accuracy.

3.5 Other monitors

The two cases run at the start of Section 3.3 were run, exastbtated there, but with
different monitors, so that fop = 2, the monitor wasn(u) = u?, and forp = 3, the
monitor wasm(u) = u. These cases were again run until just before tanglingsstant

the results are shown in Figure 3.4. We can see a lower peab2ofvas reached for the
first case, but in the second case, a much higher peaB8&2L.0’. The end times of these
runs were T=0.0769416 fqv = 2 and T=0.00128304071 fqr = 3. After these times,
both runs tangled. For the= 2 case, this was again at the nodes next to the boundary.
However, forp = 3, the tangling was at nodes near the spike. We can see tlarihéh
algorithm progressed further, and so reached a highgrwith them(u) = u monitor for

both p = 2 andp = 3, rather than using(u) = uP—.

3.6 Robustness

To investigate the tangling issue further, the- 2 case withm(u) = u monitor was run

with 81 and 161 nodes (with all other conditions being theesasifor the 41-node run in
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slhe(1D); 41 nodes; dt0=1E-3; T=0.0769416; p=2; m(u):u2 x10" Slhe(1D); 41 nodes; dit0=1E-3; 10=0.00128304071; p=3; m(u)=u;
250 T T T T T T T T T 3 T T T T T T T T T

25F
200

150

1001

501
05F

X

0 I I I I I I I I I 0 I R el f Ly oy oy
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
X X

Figure 3.4: Semilinear heat equation (41 node grid): sohstiat the time when the algo-
rithm breaks down, fop = 2, m(u) = u? (left) andp = 3, m(u) = u (right).

Section 3.3) until a failure in the algorithm. The 161-noda required a smaller initial
timestep of 1x 10~* to run. The graphs ofi(x) at the breaking point T are shown in
Figure 3.5. The 81-node run failed because of tangling ahthe-to-boundary nodes,
the 161-node run failed with a general algorithm breakdosenthat one of the matrix
systems was unsolvable. The break points for 81 and 161 weelesT=0.0824865 and
T=0.0824442 respectively, which are comparable with T8R5D25 for the 41-node case,
but the values ofimax are higher, being 116,000 for 81 nodes, and 329,929 for 18&3)o
compared with 14,000 for 41 nodes, suggesting a higher \edlugax can be reached as
dx— 0, before some form of algorithm breakdown.

To further investigate the effect of tangling, we have takenfour main cases, i.e., 41
nodes withp = 2, 3 and monitorsn(u) = u andm(u) = u?, and attempted to untangle and
restart these runs, at the point of tangling or algorithdufai The mesh at the pre-tangle
point for p = 2 andm(u) = u, together with the untangled version, is shown in Figure 3.6
The untangling was achieved by equidistributing the tashglants to a (piecewise linear)
shape defined by those points, using a monitera, a beingumaxT) (at the pre-tangle

point). So in Figure 3.6, we see the untangled mesh has alim@stame shape as the
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x10"  shhe(1D); 81 nodes; dt0=1E-3; T=0.0824865; p=2; m(u)=u x10°  slhe(1D); 161 nodes; dt0=1E-4; T=0.0824442; p=2; m(u)=u
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Figure 3.5: Semilinear heat equatiarix) for p= 2, m(u) = u, 81 and 161 nodes.

tangled one, but the points have been untangled, and alsech@away from the spike.

slhe(1D); 41 nodes; dt0=1E-3; T=0.0825025; p=2 slhe(1D); 41 nodes; dt0=1E-3; t0=0.0825025; p=2
T T T T T T T T T T T T
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10000+ 100001
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4000 4000~
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Figure 3.6: Semilinear heat equation: tangled mesh (leff)untangled mesh (right) for
p=2,mu)=u.

The final meshes, following untangling and restarting,ges 2,3 andm(u) = u,u? are
shown in Figures 3.7 and 3.8, at a point just before furthegltag or algorithm break-
down. Forp = 3 andm(u) = u, the mesh would not restart - there was tangling at the

first iteration, even with a reduced timestep. The fwg 2 cases needed a lower initial
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timestep of 1x 10~* to start.

x10°  shhe(1D); 41 nodes; dt0=1E-4; T=0.0825786; p=2; m(u)=u slhe(1D); 41 nodes; dt0=1E-4; T=0.0823411; p=2; m(u):u2
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Figure 3.7: Semilinear heat equation: meshes followintaresforp = 2 andm(u) =u
(left) andu? (right).

x10°  slhe(1D); 41 nodes; di0=1E-3; T=0.00128301; p=3; m(u):u2
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25F
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Figure 3.8: Semilinear heat equation: mesh following meéta p = 3 andm(u) = u?.

The value of T was extended from 0.0825025 to 0.0825786, laaddlue ofumay €X-
tended from 14000 to 2 10P for p = 2 andm(u) = u. The corresponding increases for
p =2 andm(u) = u? and forp = 3 andm(u) = u? were(0.0769416— 0.0823411202—
4511) and (0.00128295— 0.001283013142— 37059 respectively. No subsequent
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restarts were attempted.

3.7 Comparison with a location-based method

The cases fop = 2 andp = 3 with the monitoram(u) = u andm(u) = u? respectively,
with the same initial conditions, and with 41 and 81 nodesetmeen run with “movcol”,
a program based on an MMPDE method, described in Huang arseR[#4], allowing
us to compare BHJx directly with a location-based methode Movcol prograr was
run until the algorithm broke down at a time T. A plot@fax(t) for the p = 2 case with
41 nodes is shown in Figure 3.9, with the initial conditioapeated here for clarity. We
can see here the same pattern (as in BHJx) of very slow growthuntil we near the
blow-up time T. For 41 nodes, boifh= 2 andp = 3, movcol has reached higher values
of umax(T), these being 980,486 and 29,500 fo& 2 andp = 3 respectively, compared
with the BHJx values of 14,000 and 3,142 with the same mouiter?), though BHJx
did achieve aimay(T) of 27,800,000 foip = 3 with the monitom(u) = u for the 41 node
case. For 81 nodes, boph= 2 andp = 3, movcol again reached higher valuesighx(T),
these being 1,207,131 and 14,048 o 2 andp = 3 respectively, compared with the
BHJx values of 116,000 and 2307, also with the safté monitor.

For 41 nodes, the movcol values of T for= 2 andp = 3 are 0.0824369 and 0.00128093
respectively, which are comparable to the BHJx values 0826025 and 0.00128295.
For 81 nodes, the two movcol values for T are 0.0824363 and1@8093, which are
comparable to the BHJx values of 0.0824865 and 0.00128295.

The final grids at the algorithm breaking point of T are showrigure 3.10 for both
movcol 41-node cases, which can be compared with those fdxBHFigure 3.2. We do
not consider here any movcol runs with a monitor other tmém) = uP~? for a givenp,

as the MMPDE study by Budd, Huang and Russell [20] showsrtifaj = uP~! is best
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Case/Code | BHJx | movcol
p=2/41 nodes 15 132
p=2/81 nodes 225 | 7336
p=3/41 nodes 169 10
p=3/81 nodes 1552 | 176

Table 3.1: Efficiency comparison (CPU seconds) of BHJx andaolp for semilinear
heat equation

suited to the MMPDE method, when studying the semilineat égaation.

CPU times (in seconds) for the four movcol cases run are showable 3.1, along with
those for BHJIx. We can see BHJx is more efficient than movaalie p = 2 case, but

for p= 3, the reverse is true.

initial conditions for semilinear heat equation x10°  slhe(1D); 41 nodes; T=0.0824369; p=2; m(u)=u; movcol run
20 T T T T T T T T T 10 T T T T T T T T

0 . . . . . . . . . 0 I I I I I I I I
0 01 02 03 04 05 06 07 08 09 1 0 001 002 003 004 005 006 007 008 009
X X

Figure 3.9: Semilinear heat equation: initial grid (lehdumax(t) for p=2,m(u) = u,
41 nodes, movcol run.

3.8 Summary and Discussion

The preliminary results show the algorithm reflects thed&satures of the analysis and

the existing research, so that we see blow-up happening iagke ointx*, which is

3movcol is available for download at http://www.math.kwéduang/research/movcol/movcol.html.
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x10° slhe(1D); 41 nodes; T=0.0824369; p=2; m(u)=u; movcol run x10° slhe(1D); 41 nodes; T=0.00128093; p=3; m(u):uz‘ movcol run
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Figure 3.10: Semilinear heat equation (41 node grid): smistat the time when the
algorithm breaks down, fop = 2, m(u) = u (left) andp = 3, m(u) = u? (right) (movcol
runs).

also the peak of the initial data, and the results in the Aaoysection (3.4) are showing
convergence as the mesh is refined.

The results in the Robustness section (3.6), specificaflyirtbrease in nodes to 81 and
161, suggest converging to a value of T, perhaps from abaug,linited by tangling
problems, though the tangling may be obfuscating the is€rethe tangling issue, the
restarted runs in Section 3.6 show a way to overcome thisaat luntilunax reaches
the limit of the computational environment. The comparisdth the location-based
method “movcol” shows tangling is a major flaw in the BHJIx noethbut there is no
clear evidence in these results as to whether BHJx is moreserdfficient than movcol.
On choice of monitor, we see tingu) = u monitor being more robust than(u) = u? for
the p= 3 case. This is not at variance with scale-invariance rebesirggesting 1 is

the best monitor [20], as that specifically involved the MMP@ethod.



Chapter 4

The Area Monitor (PME)

In this chapter we study the porous medium equation in 2Dy(fl#scribed in Section

1.6.1):-

6u_

i 0. (u"0Ou) (x € Q,t > 0),nbeing a positive integet ’ t_Ozuo(x); u ‘ m:O. (4.1)

We will look at monitor functions of the formm+ a, where a is a non-negative constant.
We refer to this as thereamonitor, because whexis much larger than, equidistributing
Jo)(u+2a)dQ overN cells effectively means distributin itself into N equal areas.
Figure 4.1 shows the interpolated initial solutions on gkemesh, based upon the known
similarity solutions withn = 1 andn = 3 respectively. This mesh has 545 nodes, and is

centred on the origin, with a radius of 0.5.

4.1 Applying the BHJx algorithm

The algorithm is applied as in Chapter 2, with the normal (mé&sundary velocityi( :
A) estimated by using the mass monitor (as outlined belowke &duations to find the

velocity potential, and the mesh velocity from that potairdre repeated here for clarity:-

72
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05 05

-05 05

Figure 4.1: Porous medium equation: initial conditionsrfed (left) and n=3 (right).

GoOt)+ /[ m(u)De-OwdQ :/ Wirrf(u)LudQ+/ Wim(u)é-ﬁds i=12...N.
Q(t) Q(t) 2Q(t)

(4.2)

é“):ﬂ/ m(uludQ+ [ m(u)é-Ads (4.3)
Q) 20(t)

/ mmgz/ wiOpdQ, i=12.. N, (4.4)

Q) Q)

with Lu being the PME spatial operatat- (u"Ju). Before solving equations (4.2) and
(4.3) in the algorithm, the current values wfand x are used with the mass monitor
(m(u) =u) to estimatef on the boundary in the following steps, which are essenptiaé

core of the mesh velocity calculation in the original BHJaalthm in Section 1.8:-

A mass total is defined:-

5:/ udQ. (4.5)
Q)
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Then we calculate the distribution constants:-

1
=— wudQ, i=212...N. 4.6
. 8(t)/Qm. (4.6)

We calculate the (mass) mesh velocity potergidtom:-

y.f):/ wiLudQ+/ w0 (U0$)dQ, i=1,2...N, 4.7)
Q) Q)

and

3 :/ LudQ+/ 0. (ug)dQ, (4.8)
o) o)

with ¢, being set to zero to ensure uniqueness. The “mass derivatiiecalculated, but

not usedf is then calculated from the weighted formé’pf: O¢:-

/ wiédQ:/ wilpdQ, i=12...N. (4.9)
Q) Q)
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The whole algorithm can be described more simply as:-

BHJx algorithm (with mini-BHJ loop)

Loop:

u— (6,c)
u—(9,%)
(U y) — @.
o —¢&.

(U6, &) — @.

Q— X.

(u,x) — u.

Updatex andu.

End Loop.

4.2 Accuracy and mesh control

As the porous medium equation has a known similarity sahytige can estimate accuracy
of BHJx by comparison against this case. Orders of convergfeam the solution and mesh
are shown in Figure 4.2, for= 1 andn = 3, for meshes of 545, 2113 and 8321 nodes
(sodx decreasing by 50%), and a timestep of 0.0001 for 545 nodekt{em reducing
by 25%), for different values o in the area monitom(u) = u+a. These runs were
done to T=0.1: two of the final meshes are shown in Figure 48 tlae known solution

at that time for the mesh positions in Figure 4.3,riet 1 andn = 3, are shown in Figure
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4.4, where we can see close agreement, qualitatively. Tlhhewvéora = 0 in the log-log
graphs correspond to the foundation established in the Bldyglopment (Section 2.2),

and are also comparable to the original BHJ study, using geesmmonitor [4].

Convergence rates for porous medium equation study (2D); n=1 Convergence rates for porous medium equation study (2D); n=1
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Figure 4.2: Porous medium equation, area monitors. Ordexsrvergence fort> mesh
error, n=1 (top left)L? boundary error, n=1 (top right).> mesh error, n=3 (bottom left),
L? boundary error, n=3 (bottom right).

For the solution errors, for botih= 1 andn = 3, we can see the values are slowly increas-
ing asa increases, with the rate of this increase lesseniraygets beyond 10. The order
of accuracy for the solution error remains at 2 foe 1, and 1 forn = 3 though, apart

from the one anomaly af+ 1 for then =1 case. A similar result is seen for the mesh
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Figure 4.3: Porous medium equation: meshes at T=0.1, fortoran+ 10000, 545-node
mesh,n = 1 (left) and n=3 (right), with approximation replaced by lnosolution.

Figure 4.4: Porous medium equation: meshes at T=0.1, fortoran+ 10000, 545-node
meshn= 1 (left) and n=3 (right).

error forn= 1, withu+ 1 being anomalous again. The mesh errorsifer3 are actually
decreasing in value, but the order of accuracy is also deicrghere. Foa= 100 and
a= 10000, the order of convergence (on the two most refined rsgfbrethe mesh error
in then = 3 case was B4 for both values - the slopes here coincide (bottom righplgra

of Figure 4.2).
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At a fundamental level, the algorithm works and shows the amenitor has a poorer
order of convergence than the mass monitor, with the errluegagetting higher aa
increases. We look more closely now at the action of the am@aitor. We expect it to
be equidistributing area if the initial area is equidisitdd, and a further case was run to
evaluate this, witta = 10°. This was done on the 545-node mesh, for n=3, but with n=1
initial conditions.. In this case, the slope at the boundary steepens as theagrepses
and there is therefore more mass per cell near the boundatty.thé mass monitor, we
would expect cells near the boundary to decrease in areaaittaim the mass/cell ratio
relative to the whole domain. With the area monitor, we expieese cells to retain their
initial area distribution, in this case an equidistribatid he graphs in Figure 4.5 (initial
mesh and zoom-in), Figure 4.6 (meshes at T=10 for mass aad@aeitors) and Figure
4.7 (zoom-in of graphs in Figure 4.6) confirm this result. STtioes leave the question of
whether the monitor distribution was maintained duragof the run - this question will

be addressed in Chapter 5.

05 PP
045
04

0.35

Figure 4.5: Porous medium equation, monitor comparisatiaimesh and zoome-in.

LIn the accuracy study in Section 4.2, all the errorsaer 10° were equal to those far= 10%, to two
decimal places.



Chapter 4 79 The Area Monitor (PME)

X
RO,

O
0N

XX
A
X

9K

B
KX

SR
K
o
X5

SHAKK

SRR
%
<
3

N
DS
YAV

V#‘

S

VA'

A
)
§ <7
Q

S
e
@N»;&‘{
A"‘( Vst
%‘V‘VAV
R
08X

K1
DKT>
SIS
Q«»‘%X’ei’
P XKT
e

KPRPRD
SR

<

aal
KRS

Figure 4.6: Porous medium equation, monitor comparisorshnpéanviews at T=10 for
mass monitor (left) and area monitor (a=1000000) (right).
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Figure 4.7: Porous medium equation, monitor comparisonnzof mesh planviews at
T=10 for mass monitor (left) and area monitor (a=100000@n().

4.3 Robustness

The last run in Section 4.2 shows some robustness, for ainalasty solution case, as
ann = 3 problem was run witih = 1 initial conditions, and completed through to T=10.0.
In addition to this, Figure 4.8 shows the result for a largesh of 33025 nodes and
initial radius 0.5, running to T=0.01 (this being as long asputational resources would

allow), for bothn = 1 andn = 3, this time with matching (im) initial conditions. The
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monitor wasu -+ 100 in this case.

Figure 4.8: Robustness test: area monitor final mesh for3808es, T=0.01, n=1 (left)
and n=3 (right). For a=100.

As a further robustness test, both mass and area monitoestde®n run on an initial
mesh that does not exhibit radial symmetry. The initial messhown in Figure 4.9 and
the meshes a = 0.01, T = 0.02 andT = 0.1 for both monitors are shown in Figures
4.10,4.11 and 4.12 respectively, running witk: 1. Although there is a slight difference
between the meshes for the two monitors at these times, wsegathe two initial peaks
merge as the meshes evolve for both monitors, and the solatnoling towards a radially
symmetric similarity solution.

With the same “twin-peak” initial conditions, the meshesric= 2 atT = 1.0 are shown
for the mass and area monitors in Figures 4.13 and 4.14. $nctse the area moni-
tor clearly preserves the shape of the initial mesh betian the mass monitor. This is
particularly obvious at the centre of the domain where this ege twisted by the mass
monitor.

As a final robustness test, both mass and area monitors hemednrg withn = 1, for two
domains where the initial mesh for n=1 (545 nodes, radiuss¥, 8hown in Figure 4.1

(left) has had its mesh positions sinusoidally perturbed @ach node keeping its value



Chapter 4 81 The Area Monitor (PME)

0.8

14 . 0.6

0.4

0.2

0.2

-04f

0.6

-0.8

I I I I I I I I I i
-1 -08 -06 -04 -02 0 02 04 06 08 1

Figure 4.9: Robustness test: Non (radially) symmetrigahdonditions with twin peaks.
Initial mesh (n=1, 545 nodes).
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Figure 4.10: Robustness test: Twin peak meshes at T=0.a1, Mass monitor on left,
area monitor on right.

of u), to form the mesh in Figure 4.15, with its plan view showmnthe right. For both
the mass and area monitor, the timestep was reduced by H&@0e runs tangled very

quickly with the usual timestépf 0.0001.

2Following this analysis, these runs were repeated with girdi0, and the final mesh positions and
values of u were equal to the dt/100 case, to four decimakplac
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Figure 4.11: Robustness test: Twin peak meshes at T=0.02, Mass monitor on left,
area monitor on right.

0.7 0.7
0.6) 0.6
0.5 0.5

0.4

SN

03 Y 27 AV YAV VAN

VA AN
\ \\

0.2,

0.1

Figure 4.12: Robustness test: Twin peak meshes at T=0.1, ks monitor on left,
area monitor on right.

For these initial conditions, the mass monitor ran to T=8.0@fore tangling, and the
mesh just before the tangling is shown in Figure 4.16 , with Aavoms near the element
about to tangle. In the closer zoom (bottom), the elemerjecadt to the circled node
may seem to be visibly pristine. However, when we look at #raespoint in the mesh, at

the same time, for the area monitor (wéh= 1 x 1) in Figure 4.17, we can see that the
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AV oo
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Figure 4.14: Robustness test: Twin peak mesh and planvidwi0, n=2, area monitor.

same node should have six lines emanating from it, but weghmlass monitor, there are
only five.

The mesh (and zoom) for the mass monitor at an earlier time=6f0075 are shown in

Figure 4.18, and now we can see that that “5-node” is act@aiynode with two edges
almost adjacent - at the time of tangling (one timestep d##€).008), these then overlap.

Hence the area monitor has proved more robust than the mastomat went further, to
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Figure 4.15: Robustness test: initial mesh (n=1, 545 nodebus = 0.5) sinusoidally
perturbed (1).

T=0.0125, before tangling. The mesh just before tangliogtife area monitor, is shown
in Figure 4.19, where we can see the same element is aboutdpsm®

Secondly, the above run was repeated, but with the sinugoédiurbation smaller than
the mesh shown in Figure 4.15, to see if the area monitor wauldight through to a cir-
cular domain, whereas the mass monitor would fail early am.tikese runs, the timestep
was reduced by 1/10 to dt=0.00001, from the usual timest€pQff01 The initial mesh
for these runs and its planview are shown in Figure 4.20. Tassnmonitor tangled at
T=0.232, and the mesh just before the tangle, with a planaiesvzoom, are shown in
Figure 4.21. The area monitor tangled at T=1.299, and thd fjuss before that run tan-
gled, with a planview and zoom, are shown in Figure 4.22. AR thie larger perturbation,
the area monitor has got further than the mass monitor b&dogding, in this case, more
than five times as far, and the mesh has proceeded throughaelmast circular domain,
though it has ultimately tangled. The zooms of the planviavesat the farthest point on
the left of the x-axis (on the line y=0). These show a pattéghsy different from the
first case, but still we see elements are about to have thgésettoss over, so that their

area becomes negative.
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Figure 4.16: Robustness test: perturbed mesh (1) at T=0[@0&ass monitor.

4.4 Summary and Discussion

The assessment has shown that the BHIx method applied tortwspmedium equation

in 2D, with area monitory+ a), and prescribed normal boundary velocity, essentially
works, and this for different values af When it has been compared to the mass monitor,
we see a poorer order of convergence as meshes are refinetthjsarsdgenerally wors-
ened as increases. Looking at the differences in monitors in mort@ijeve can see
that both monitors are actually doing what is expected ainth@ttempting to conserv-
ing their monitor distribution. For the area monitor, thshlaviour might seem to be a

disadvantage, as we have less accuracy. However, when wehalysed meshes which
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Figure 4.18: Robustness test: perturbed mesh (1) at T=B,87mass monitor.
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Figure 4.19: Robustness test: perturbed mesh (1) at T=B,Gd2 area monitorg

1x 10P).

are not (radially) symmetric, we can see the area monitoehaadvantage, in terms of

robustness.
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Figure 4.21: Robustness test: perturbed mesh (2) at T
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Chapter 5

The Arc-length Monitor (PME)

5.1 Background

In this chapter we study the performance of the BHJx algorjthsing a monitor that we
refer to as the arc-length monitor, applied to the porousiomeaquation. The bulk of
the work here is in 1D, but there is a short 2D study at the ertieothapter. This PDE

is fully described in Section 1.6.1. In 1D, it has the form:-

ou Jd , ,0u : Lo _
e a—x(u &) (xe [a(t),b(t)],t > 0),nbeing a positive integer;
o T Uo(X); u x=a(t) Oiu x=b(t) ° G

As the PME has a known analytical solution, we will look atwergence to that solution,
as well as robustness. We consider the effect of optimisiitgli conditions, so that
the initial mesh is equidistributed for the arc-length ntoni We also look beyond the
derivation of the mesh velocity purely as an algorithmicidev we will see if we can

actually maintain the initial distribution of the monitaurfctionm(u) - which amounts

91
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to keeping theg; in equation (2.6) constant throughout the time domain. ¢, fae will

look at a way of recovering that forces the values @ to be maintained, whilst still
robustly modelling the porous medium equation. This secuoethod will be referred to
in the sequel as “ALE+” as it takes the nodal values from theaUALE equation (2.4) as
a starting point, and applies an extra step to them. The fiethaod, i.e, using the nodal
values as they are, will be referred to as “ALE”. Hence the&# of moving away from

an equidistributed mesh will be quantified here.

5.2 Applying the BHJx algorithm

The algorithm is applied as in Chapter 2, with the normal (mé&®undary velocity es-
timated by using the mass monitor. The equations to find thecitg potential, and the

mesh velocity from that potential are repeated here fortglar

cié(t)+/ m(u)De- OwdQ :/ Wirrf(u)LudQ+/ Wim(u)é-ﬁds i=12...N.
Q(t) Q(t) 2Q(t)

(5.2)
é(t):/ mM(uludQ+ [ m(u)é-Ads (5.3)
Q) 20(t)
/ WiXdQ:/ wilpdQ, i=12...N, (5.4)
Q) Q)

with Lu being the PME spatial operatar- (u"(Ju). As in Chapter 4, we use the core of
the mesh velocity calculation in the original BHJ algoritimSection 1.8 to estimaté
from current values ofl andx. Specifically, before equation (5.2) in the algorithm, the

mass monitorrfi(u) = u) is used to provide the normal mesh veIocﬁtyas follows:-

A mass total is defined:-
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9:/ udQ. (5.5)
o)

Then we calculate the distribution constants:-

1
=— wudQ, i=212...N. 5.6

We calculate the (mass) mesh velocity potergidtom:-

M&::/‘ WﬁudQ41/ wiO-(u0p)dQ, i=12...N, (5.7)
o) o)

and

3::/) LudQ%—/j 0. (ug)dQ, (5.8)
o) o)

with ¢, being set to zero to ensure uniqueness. The “mass derivatiiecalculated, but
not used.

q" is then calculated from the weighted forméaf: O¢:-

./ médQ:i/ wiOpdQ, i=12...N. (5.9)
o) o)

In 1D, our domaim(t) becomes a moving intervé(t), b(t)] and equations (5.2), (5.3)

and (5.4) become:-

) b(t) dQow; b(t) -1b(t)
cio(t)+ " m(u)&W X= " wim' (u)Lu dx+ [W|m(u)f}a(t),l—l,2...N,
(5.10)
. b(t) .1b(t)
6(t)= [ mi(uLudxt [mué] L i=12..N, (5.11)
a(t) a(t)

and:-
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/ " i / Y%y =12\ (5.12)
Wi XaX= W — | = ... IN. .
a(t) | a(t) | ax X7 )

The monitor function for arc-length in 1D is:-

Jdu
= ﬂ1+(&)2)_ (5.13)

Note that this requires an amendment to equation (2.8) (amdss equations (5.10) and
(5.11)) since they assumeunwas a function ofi only. Specifically, we now deal with the

time derivative ofm( +) as follows:-

X) aX(Lu). (5.14)

Then writingv = d“ (so for the arc-length monitom(v) = 1/(1+V?)), equations (5.10)

and (5.11) (our moving mesh driver) become:-

<> d(pdw| 1b(t)
GO(t)+ () V)5 o /w. —Ludx+ [w. ()E}a(t),l_l,z...N, (5.15)

and

b(t)
i=12...N. (5.16)

:/az(;)nf(v)%wdm[m(v)é} i=1,

a(t)
With piecewise linear elements,is constant on each element, so the temfs) and

m'(v) are actually simpler to calculate than when we hiawa) terms. However, ak is
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a second order operator, we now have some third derivatimesten (5.15) and (5.16)
which we need to treat.
We can approximateu by lettingq = Lu and then manipulating the weak form of that

identity [5]:-

b(t) b(t)
/ wiqdx= [ wlLudxi=12...N. (5.17)
alt) alt)

For the PME this becomes:-

b(t) b(t) 0 ou
wig dx= wi—(u"—)dx i=1,2...N. 5.18
" iq o ax( 0..X> X, : (5.18)

As u = 0 on the boundary, integrating by parts gives:

b(t) bt) gw;  .du .
W dx:—/ Wy ax i =1.2.. N, 5.19
A(t) |q a(t) dX ( 0)() X7 ( )

which can be solved to fing, and so approximat@‘]'(;(—“‘) in equations (5.15) and (5.16).
This method of findind-u will be used in most of the following work, but we will also
look at one variation, where we use cubic splines [68] toweal_u, using only the nodal
values ofu.

The whole algorithm can be described more simply as:-

BHJx algorithm (with mini-BHJ loop andu estimation)

Loop:
u—(6,c)
u—(8,%)
(U y) — @.
&
u— ()
(u,Gi,&,G) — .
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Q— X.
(u,X) — u.
Updatex andu.

End Loop.

5.3 ALE results

5.3.1 Basic Cases

The initial conditions for this chapter have always beeivagerfrom the known similarity
solution [4], using equation (1.26). The following casegéall been run with the param-
eternsetto 1 - cases for= 3 are considered only in Section 5.5. In the first set of cases,
we sub-divide the interval-0.5,0.5] into 10, 20 and 40 equally-spaced intervals (and so
there are 11, 21 and 41 nodes), and ran the algorithmifon dime of T = 1.0. With an
initial radius of 0.5, the start time of these rundgs= 0.041667, from equation (1.27).
These initial conditions and the grids at the end of the thmes are shown in Figure 5.1,
together with the known solution for comparison.

We can see a convergence (in Figure 5.1) of the approximaitime known solution at
the internal nodes, but it is not clear if there is any congaog at the boundary and near-
boundary nodes. This is quantified in Figure 5.2, where we stiew the evolution of the
monitor distribution constants. In these evolution plots, the legend refers to the values of
¢ at three points in the first half of the interval, so for 21 n®tte example, the boundary

is Node 1, the “quarter-point” is Node 6 and the origin is Ndde For 11 nodes, the
guarter-point is taken as Node 3. The boundary error is teelate difference between
the approximated and the known boundary node positions. alesee a convergence
order that appears to be slightly higher th},ufor the L? error, and we can see there is
a convergence for the boundary error, with an order slighigjher than%f, which are

smaller orders than those obtained with the mass monitodhcerning the distribution
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Arc-length monitor(1D); initial conditions; 11 nodes; n=1; r0=0.5
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Figure 5.1: Grid evolution for ALE runs with unoptimised tial data (grid uniformly
spaced), 11, 21 and 41 nodes. Graphs show initial grid (tftp End exact (known)

solution and approximation at T=1.0.

constants @), we can see they are not staying constant at first, thougle tkesome
settling down later in the runs. Recall that, although namnhg a constant distribution

of the monitor is the driver for the node movement algoritkimeye is nothing in the final

Arc-length monitor(1D); grid plot at T=1.0; 11 nodes; n=1
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scheme that absolutely forces this (but see Section 5.4vipelo
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Figure 5.2: Convergence rates (solution and boundary)earcat monitor distribution
evolution for ALE runs with unoptimised initial data.

5.3.2 Effect of optimising initial data

The cases in Section 5.3.1 were repeated with the initial diatimised, so that the initial

node positions were re-arranged to equidistribute the toofarc length) function. Figure

5.3 shows the effect on the initial grid of this equidisttibu, for the 11-node case.

Figure 5.4 shows the solution grids for the optimised data, ihappears there is little

difference from the unoptimised grids in Figure 5.1. In fdobking at Figure 5.5, the

orders of convergence for thé and the boundary error are similar to those for the unop-
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Figure 5.3: Initial grids for 11 nodes, n=1, unoptimisedtfland optimised (right) for
arc-length monitor.

timised data in Figure 5.2. The plot of the distribution danss in Figure 5.5 is different
from the unoptimised case in Figure 5.2, but still we can beesame general pattern of
only staying constant at later times. Note that in Figure(&ri some later ones), the
distribution constants for the quarter-point and origi@®are virtually identical, so the
plots coincide.

Further cases with longer times and more refinement haversisowilar convergence
orders and the same pattern for the distribution constartgpt that for 81 nodes in the
optimised data case, there was a breakdown in the algorntltdatermining the next grid
positions, afl = 0.259. The grid just before the breakdown is shown in Figure \sith

a zoom on the circled nodes. The zoomed plot shows two nodgsci@se together,
relative to the adjacent inter-node distances, and thishmag caused an ill-conditioning
in solving the matrix system in equations (5.2) and (5.3)esehthere would be a high
relative ratio of successive valueslai;, or it may be caused by the nodes tangling at the

next step.
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Figure 5.4: Grid evolution for ALE runs with optimised iratidata, 11, 21 and 41 nodes.
Graphs show initial grid, and exact (known) solution andragjnation at T=1.0.

5.3.3 Methods of imposing boundary velocities

When using equations (5.2) and (5.3), the boundary ve&schiave beemfluencedby
the normal boundary velocity estimafe but we have not actually forced them to be
equal toé. We now consider the effect of directly forcing this, by regentingx, as
élwl + (XoWo + - - + XN_1WN-_1) + ENWN (so forcing the boundary velocities), and then

recasting the discrete form of equation (5.12), so it is @olyed for internal nodes:-
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Arc-length monitor(1D); n=1; T=1.0; optimised data.
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Figure 5.5: Convergence rates (solution and boundary)earzadt monitor distribution
evolution for ALE runs with optimised initial data.
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Figure 5.6: Grid and zoom-in at T=0.259 for ALE run with optsed initial data, 81
nodes.

5.3.3.1 Results

Mesh evolution, convergence and monitor distribution$for unoptimised initial data
are shown in Figures 5.7 and 5.8, and for optimised initighda Figures 5.9 and 5.10.
Looking at the unoptimised plots, we can see the accuracini@a®ved when compared
with the results in Section 5.3.1, and the convergence plotsshow orders of approx-
imately 15 for the L? error and 125 for the boundary error. When the initial data is
optimised, Figures 5.9 and 5.10 show a further improvenvattt,convergence orders of
2 and 1.5 for the solution errokf) and the boundary error respectively. The order for the
solution error thus agrees with the original study [4], thlothe mesh error (for BHJX) is
slightly less. As for the distribution constargs we see a different pattern compared to
runs where the boundary velocity is not forced (in Sectié13, though they are still not
remaining constant for early times. The algorithm has pdawere robust - longer times
and further mesh refinement have produced results conswinthe above. Given the
improvements these changes have made, we assume in thé @Gstpier 5 that unless

stated otherwises iS always applied directly.
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Arc-length monitor(1D); initial conditions; 11 nodes; n=1; r0=0.5 Arc-length monitor(LD); n=L; 11 nodes; T=L0; unoptimised data
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Figure 5.7: Grid evolution for ALE runs with unoptimisedtial data, forced boundary
velocities, 11, 21 and 41 nodes. Graphs show initial grig (&ft), and exact (known)
solution and approximation at T=1.0.

5.3.4 Strong vs Weak boundary conditions

We discuss here the effect of only applying the boundary itimmd weakly, so equation
(2.4) (in 1D form for the PME) is now solved for all nodes, but
f:((tt)) w2 k()u”%) dxis evaluated as- f:ét)) 24 (un9Y) dx, so effectively weakly imposing
t
[wi u”@} as zero.
at)

Mesh plots for 11-node runs to T=0.1 and 1.0, for optimis@thirconditions, are shown
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Figure 5.8: Convergence rates (solution and boundary)earsadt monitor distribution
evolution for ALE runs with unoptimised initial data and éed boundary velocities.

in Figure 5.11. We can see the grid has lifted up and evengtdaenerated, so this

change has not produced a desirable effect, and grid refimelnagl no effect on this

result. Consequently, we only consider strong boundarylitions foru in subsequent

tests.
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Arc-length monitor(1D); initial conditions; 11 nodes; n=1; r0=0.5; optimised for arc length Arc-length monitor(1D); n=L1; 11 nodes; T=1.0; optimised data
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Figure 5.9:Grid evolution for ALE runs with optimised initial data, foed boundary velocities,
11, 21 and 41 nodes. Graphs show initial grid, exact (knowtition and approximation at T=1.0.

5.3.5 Accuracy of third derivative terms

If we expand the second derivative terms of the porous medmunation PDE in equation
(5.1):-
o(ugy) 9% ,0u

ax 2 +nu"™ % (5.23)

then another method of evaluatiggn equation (5.17) is to use the nodal valuesuof

to create a set of cubic splines [68] that estimaie the PDE domain. The first and
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Figure 5.10: Convergence rates (solution and boundary)esr@l monitor distribution
evolution for ALE runs with optimised initial data and foccboundary velocities.

second derivatives of these splines, and the nodal val@sssttives, can then be used

to estimate the nodal values bti from equation (5.23). This method was tried, as a

possible alternative to the approach used to find the thirtvatese terms, as evaluated

by the weighted method described in Section 5.2. Howeverpied not to be a robust

method, giving non-symmetric results and causing meshlitengAn example plot is

shown in Figure 5.12 for 41 nodes to a run time of T=0.045hgsptimised data - the

mesh completely collapsed shortly after this time.



Chapter 5 107 The Arc-length Monitor (PME)

1D; 11 nodes; n=1; optimised for arc-length; T=0.1; weak BCs 1D; 11 nodes; n=1; optimised for arc-length; T=1.0; weak BCs
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Figure 5.11: Grids at T=0.1 and 1.0 for ALE run, with optindseitial data and weak
boundary conditions, 11 nodes.

Arc-length monitor(1D); n=1; 41 nodes; T=0.0457; optimised data
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Figure 5.12: Grid and exact (known) solution at T=0.0457A&E run with optimised
initial data, 41 nodes, where cubic splines were used talztethird derivative terms.

5.4 ALE+ (Forcing the distribution constants)

5.4.1 Mathematical Description

In the first part of this chapter on the arc-length monitorhaee seen that the algorithm
has been successful in terms of accuracy and robustne®s,aerthin conditions, but the

¢i have not actually remained constant throughout the run. ®Veconsider adding a
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constraint to the method that forces this. The valua &f updated in the usual way via
the ALE equation (2.4) and the valuexfs also updated from. However, that value of

u is now taken as the initial value in an additional algorithwherex is fixed, but we let
the nodal values ail vary, until thec; regain their starting value. Specifically, we solve

these equations:-

/()Wim(v)dx:cie(t), i—12...N, (5.24)
Q(t

whereQ(t),w, ¢ and 6(t)(using theupdatedvalue, viad from equation (5.3)) are all
constant, but (and sov(= ‘9—2)) varies. If we writef (U) = (Jo) Wim(v)dx) —ciB(t), i =

1,2...N, then our goal is to solve the system of equations:-
F(u=0,i=12...N. (5.25)
Writing F(u) = (F1(u),Fa(u),...Fy(u))T andu = (ug, up,...un)T, solving (5.25) is
equivalent to solving the single vector equation:-
F(u)=0. (5.26)

A Newton-Krylov method [13] was used to solve this systemicltonly requires us to
supply a functiorf of a vector functioru and an initial guessg. The derivative-product
F'(u)h is then approximated by:-

_Flu+ah)— F(u)

F(uh~ = , (5.27)

for a scalaw [13]. This algorithm was implemented with the SUNDIAL syie], which

performs the approximation in (5.27).
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5.4.2 Basic Cases

The cases in Section 5.3.1 were repeated for the ALE+ meffoelgrid plots af = 1.0
are shown for 11, 21 and 41 nodes in Figure 5.13, and the snlatinvergence and moni-
tor evolution plots are shown in Figure 5.14. Comparing¢heth the ALE unoptimised
plots in Figures 5.7 and 5.8, we can see that the approximétinot converging to the
solution for ALE+ as fast as ALE, when refining the mesh fromnbtles to 21 nodes.
However, on further refinement, the order of the ALE+ methodglincrease, and nearly
to order 3 in the case of the? solution error. As for the distribution constants, we caa se
they are staying constant for the 11-node run, but on furéferement, they are showing
the same pattern as in Figure 5.8. We can see the order ofrg@mee has improved as
the distribution evolution has got poorer (the distribotamnstants not staying constant),
and the mesh has been refined. At the higher node runs thodgbn{&ards), we can
see that, comparing the ALE+ runs with the ALE runs, justrafieng to maintain the
distribution by using equation (5.26) has improved the oad&€onvergence.

More pertinent however, is that the distribution constamesnot staying constant, even
though this has supposedly been forced by solving equaii@®é). In fact, the default
tolerance in the SUNDIAL suite [42] is approximatelk 105, so that if|F| is less than
this tolerance in equation (5.26), it is considered to be,zand the Newton-Krylov iter-
ation terminates. Experiments were done to lower this doleg, to see if the distribution
evolution could be improved. The result of one such expeamnirseshown in Figure 5.15
for 21 nodes, where the tolerance was lowered:std.D°. We can see the approximation
is worse than that in Figure 5.13 for 21 nodes, but the digiolb constants are now stay-
ing constant. The 41 and 81 node cases would not run at teistate though - causing a
failure in the SUNDIAL suite to reach convergence.

Concluding here, we can see that just attempting to forcstalalition to be maintained
has gained an order of convergence for the solution erroif ke actually do force the

Ci to be constant, the algorithm fails.
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Arc-length monitor(1D); initial conditions; 11 nodes; n=1; r0=0.5 Arc-length monitor(1D); n=1; 11 nodes; T=1.0; unoptimised data
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Figure 5.13: Grid evolution for ALE+ runs with unoptimisedtial data, 11, 21 and 41
nodes. Graphs show initial grid, and exact (known) soludéind approximation at T=1.0.

5.4.3 Effect of optimising initial data

The cases in Section 5.3.1 were repeated for the ALE+ methidial the initial data op-
timised, so that the initial node positions were re-arranigeequidistribute the monitor
(arc length) function. When these cases were run with theutlEeSUNDIAL tolerance of
1x 1075, as described in Section 5.4.2, the distribution constaatsa poor evolution,
showing a similar pattern to those in Figure 5.10. They wieedfore (successfully) re-

peated at a lower tolerance ok110~?, following the results in Section 5.4.2. For these
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Arc-length monitor(1D); n=1; T=1.0; unoptimised data Arc-length monitor(1D); n=1; T=1.0; unoptimised data
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Figure 5.14: Convergence rates (solution and boundary)earal monitor distribution
evolution for ALE+ runs with unoptimised initial data.

reduced tolerance runs, the gridsTat= 1.0 are shown for 11, 21 and 41 nodes in Fig-
ure 5.16, and the solution convergence and monitor evelygiots are shown in Figure

5.17. Comparing these with the unoptimised case, we carhegadsh approximation is
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Arc-length monitor(1D); n=1; 21 nodes; T=L.0; unoptimised data Arc-length monitor(1D); Monitor distribution; 21 nodes; n=1; T=1.0; unoptimised data;
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Figure 5.15: Grid and monitor distribution evolution for Ek run with unoptimised
initial data, 21 nodes. SUNDIAL tolerance lowered te 10,

poorer, now being only of order 1, but the distribution cans$ are now staying constant.
Following these successful runs to maintain the distrdsutiurther cases were run to test
the robustness of the method. Using the same SUNDIAL toteraf 1x 10~°, the 161
nodes was run. This ran up = 0.4375, at which point the SUNDIAL suite failed
to reach convergence. The SUNDIAL tolerance was then iseckantil the 161 node
case ran tol = 1.0. At a tolerance of % 1079, the run did not reacii = 1.0, but at

4 %1079, it did. The distribution evolution for these two cases«(10~° and 4x 10~9)

is shown in Figure 5.18. We can see a slight increasg ifboundary constant) for the
lower tolerance, but a higher increase for the higher talszaeven though that ran for
the longer time. In both cases though, the relative increakmaver than we see for 41
and 81 nodes in the case where the initial data is unoptimised Figure 5.14.

Finally, the 41-node case was run for a longer timd&@ of 10.0 at the lower tolerance of

1x 107°, and the grid and monitor distribution evolution are showFigure 5.19.
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Arc-length monitor(1D); initial conditions; 11 nodes; n=1; r0=0.5; optimised for arc length Arc-length monitor(1D); n=1; 11 nodes; T=L1.0; optimised data
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Figure 5.16: Grid evolution for ALE+ runs with optimised tiai data, 11, 21 and 41
nodes. Graphs show initial grid, and exact (known) soludéind approximation at T=1.0.
SUNDIAL tolerance lowered to & 10~°.

Comparing this with thd = 1.0 run for the same 41-node case, shown in Figures 5.16
and 5.17, we can see the monitor distribution has again beamamed.

Concluding here, we can see it is possible to maintain ardexjtibution, though it does
involve an extra parameter - the SUNDIAL tolerance. We alsterihe effect of forc-

ing an equidistribution is to lose one order of converger@a.the other hand, we can
say allowing the distribution to deviate from an equidlaition has gained an order of

convergence.
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Figure 5.17: Convergence rates (solution and boundary)esr@l monitor distribution
evolution for ALE+ runs with optimised initial data. SUNDIAtolerance lowered to
1x10°5.

5.5 n=3cases

We consider here the cases where the porous medium equeijgrerametern) is set to

3. In this case, the similarity solution has an infinite slapthe moving boundary, which
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Arc-length monitor(1D); Monitor distribution; 161 nodes; n=1; optimised data

xAig=length monitor(1D); Monitor distribution; 161 nodes; n=1; optimised data
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Figure 5.18: Monitor distribution evolution for ALE+ runsithr optimised initial data,
161 nodes, SUNDIAL tolerance of 210~° (partial run) and SUNDIAL tolerance of
4% 1072 (full run to T=1.0).
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Figure 5.19: Grid and monitor distribution evolution for Bk runs with optimised initial
data, 41 nodes, T=10.0. SUNDIAL tolerance of 10~°.

makes numerical simulation more of a challenge than fomteel case. Furthermore,

this similarity solution is a stable attractor, so that tbé&ugon tends towards it, for all

initial

data.

As with then = 1 cases, we will look at the ALE and ALE+ codes, running adgains



Chapter 5 116 The Arc-length Monitor (PME)

unoptimised and optimised initial conditions. The ALE cddes the boundary velocities
imposed directly, as described in Section 5.3.3. The intbaditions for 21 nodes are
shown in Figure 5.20, where we can see much steeper slopkee hbtindary than for

n=1.

1D initial mesh; n=3; 21 nodes; r0=0.5 1D initial mesh; n=3; 21 nodes; r0=0.5; optimised for arc length
T o T T X T T T

091 R 09r
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3 05F 1 3050
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031 R 03

0.2r R 0.2f

0.1r 1 0.1F

Figure 5.20: Initial conditions fon = 3, 21 nodes, unoptimised and optimised initial
conditions.

5.5.1 ALE with unoptimised initial conditions

The cases in Section 5.3.1 were repeatednfer 3, but with 11, 21, 41 and 81 nodes.
Although thelL? approximation error decreased as the grid was refined fromoties

to 41 nodes, it actually increased from 41 nodes to 81 nodas. gfids for 41 and 81
nodes are shown in Figure 5.21, along with the monitor distion evolution for these
two cases. We can see the internal nodes “bunching” towakel€éntre, so that the
approximation is actually getting worse as this bunchirtgnsifies. It is also clear this
behaviour is preventing the monitor distribution being mained. We can see some
similarity here with the ALEG = 1) case shown in Figure 5.6, where the grouping of

nodes may have caused an ill-conditioning problem.
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Figure 5.21: Meshes at T=1.0 and monitor distribution etrotufor ALE runs with un-
optimised initial data, 41 and 81 nodes, n=3.

5.5.2 ALE with optimised initial conditions

The cases in Section 5.5.1 were repeated with the initiaditioms optimised, to equidis-
tribute arc-length. Only the 11 and 21 node cases ran all Hyetiwough tol = 1.0. In
the case of 41 and 81 nodes, there was a breakdown in thetafgan determining the
next grid positions (not in the SUNDIAL suite). The final gfat 21 nodes, and the grid
for 41 nodes, just before the algorithm broke down, are shawigure 5.22. We can see

the “bunching” behaviour again, as we saw for the unoptichisms, but we also see a
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steeper mesh here, which has caused a loss of robustnessnrethod. It is clear from
the mesh plots that the monitor distributia) (s not being maintained, as the initial data

had an equidistributed arc length.

Arc-length monitor(1D); n=3; 21 nodes; T=1.0; optimised data Arc-length monitor(1D); n=3; 41 nodes; T=0.0924; optimised data
1 T T T T T T T 1 T T T T T T T
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Figure 5.22: Meshes at T=1.0 for 21 nodes and T=0.0924 forotles for ALE runs
with optimised initial data, n=3.

5.5.3 ALE+ with unoptimised initial conditions

The cases in Section 5.5.1 were repeated for the ALE+ codsesmw try to force the
G to be constant. In this case, the 11, 21 and 41 node cased tae alay through to
T = 1.0, but the 81-node mesh tangled (element lengths becamav&dgand there was
then a failure in the SUNDIAL suite to converge. The convaggerates, and meshes for
21 and 41 nodes are shown in Figure 5.23. As withrtke 1 cases ran for the ALE+
code in Section 5.3.1, just attempting to maintain the ithistion has improved the order
of convergence (though only up to the 41 node case), but algoth then = 1 case, we
have not actually maintained the distribution, as can ba se€igure 5.24. These runs
were all done with the default SUNDIAL tolerance ok110~° - attempts to lower this

tolerance caused the SUNDIAL suite to fail befdre= 0.16 was reached, for all cases.
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As with the ALE code for then = 3 cases, we can see a “bunching” of nodes towards

the centre in the mesh plots (Figure 5.23), though thereeaaverfnodes doing this, than

there were in the ALE case. This is reflected in the monitotugian plot for 21 nodes

in Figure 5.24, where we can see the quarter-point valuerttasased. This difference

can also be seen in Figure 5.25, showing the 81-node case-d1.2, shortly before the

SUNDIAL suite failed to converge.
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Figure 5.23:Convergence rates (solution and boundary error) and mes$fesl.0 for 21 nodes
and 41 nodes for ALE+ runs with unoptimised initial data, n=3
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Figure 5.24: Monitor distribution evolution for ALE+ runsithr unoptimised initial data,

21 and 41 nodes, n=3.
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Figure 5.25: Mesh and monitor distribution evolution for Bt run with unoptimised

initial data, 81 nodes at T=0.2, n=3.

5.5.4 ALE+ with optimised initial conditions

The cases in Section 5.5.2 were repeated for the ALE+ codejesnow try to force

the ¢; to be constant, with the initial conditions optimised, so ave starting with the

arc-length being equidistributed. For these cases, thelBANSsuite failed to converge
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after a very short time, so only runs up to T=0.01 for 11, 21 4hehodes are discussed
here. The meshes @t= 0.01 and two of the monitor distributions are shown in Figures
5.26 and 5.27. The monitor distribution has been maintaifié® meshes show a poor

approximation though, and in fact, thé solution error actually increased as the mesh

was refined.

Arc-length monitor(1D); n=3; 11 nodes; T=0.01; optimised data

Arc-length monitor(1D); n=3; 21 nodes; T=0.01; optimised data
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Figure 5.26: Meshes at T=0.01 for 11, 21 and 41 nodes for ALES with optimised
initial data, n=3.
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Arc-length monitor(1D); Monitor distribution; 21 nodes; n=3; T=0.01; optimised data Arc-length monitor(1D); Monitor distribution; 41 nodes; n=3; T=0.01; optimised data
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Figure 5.27: Monitor distribution evolution for ALE+ runstiv optimised initial data, 21
and 41 nodes, n=3.

56 2D Cases

In 2D, preliminary results show a mesh pattern similar ta thathe 1D case, and a
consequent lack of robustness. A plot of the mesh is showmgur& 5.28, for then =

1 case, 545 nodes, running to T=0.1, where we can see theahirdlus of cells in
from the boundary has become compressed. A zoomed plot ofi¢lsé for 8321 nodes,
also running to T=0.1 and far= 1, is shown in Figure 5.29, which shows the annulus
compressing even further. This compression causes medityquablems, leading to
poor accuracy, and can be compared with Figures 5.9 and &t2Bd 1D case. For the

n = 3 case, this compression has led to mesh tangling and sudrgecpllapse in this
annulus, this tangling starting at the four “45-degree&finwhere there is a change of

mesh geometry.
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Figure 5.29: Zoomed mesh at T=0.1 for 2D run, 8321 nodes,1.
5.7 Summary and Discussion

In the bulk of this chapter we have considered an extensidragplication of the BHJx
algorithm for the arc-length monitor in one space dimensiorder to achieve this, as in
the previous chapter, the normal boundary veloéityﬁ is determined by using the BHJ

approach using a mass monitor. Furthermore, the derivafidhe algorithm has been
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extended from that for a general monitor functiafu) to one involving a monitom(%),
depending upon the first spatial derivative of u. In testirgggerformance of the resulting
algorithm, two distinctive implementations were consaterThe first of these, known as
ALE, was based upon the standard ALE approach, @il been obtained. The second,
known as ALE+, uses the ALE calculationwés a first estimate in an algorithm that then
attempts to find new values of that actually force the distribution to be maintained (kee
C; constant).

For the n=3 cases, there was a general lack of robustned® oint where there was
insufficient data to estimate orders of convergence. OntheénALE+ case with unopti-
mised data can we show an order of convergence, though tahigarable to the original
BHJ values [4]. It may be that the steep slopesfer 3 at the boundary are causing the
robustness problems. This is a known problem with the PMHE, [93 nonetheless we
have to say the BHJx algorithm did not work for this case.

For the n=1 cases, initial results showed the importanceapbsing the normal boundary
velocity £-i strongly, and so this approach, as outlined in Section p\8a3 adopted
throughout. Furthermore, the application of the boundarnddionu = 0 strongly was
also found to be superior to only enforcing it weakly. A camsence of using a monitor
function of the formm(%) IS that it becomes necessary to estimate an integral ofé thir
derivative ofu in the resulting method. Our approach to overcoming thisaseld upon
the projection O% onto the space of piecewise linear functions, and then appigte-
gration by parts. This was found to be superior to calcutgtive cubic spline interpolant
of u and then taking its third derivative. We also saw (in SecBdh3.1) that accuracy
was improved by having initial conditions optimised (so wertswith an equidistribution
of the arc-length monitor), to the point where the order aivesgence in the solution
error is comparable to that in the original BHJ algorithm [4]

For the n=1 cases, we saw that the ALE+ approach can be bahafiterms of accuracy,

provided that the constraint that thegemains constant is not imposed too strictly. Indeed,
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with unoptimised initial conditions (an equally-spacedyrthird order accuracy was
achieved for the solution error. With optimised initial citions, we see it is possible
to strictly enforce theg; being constant (and so equidistributing the monitor), big t
has cost us an order of accuracy. We can also view this lagt gessa quantification of

accuracy gain or loss, if we allow a distribution to move avrayn an equidistribution.
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Conclusions

We present four aspects of the results in this thesis, thawegto not claim these to be

exhaustive, and we then consider the matter of possiblesutark.

6.1 Providing a general numerical technique

In the guidelines set out in the introduction of this thesis, have sought to provide a
general numerical technique, rather than solving a spaextdgs of mathematical models.
It is for this reason that the PDEs have been studied in a giathlcanonical form, as
discussed in the introduction. In fact, BHJIx has been asddss two different parabolic
PDEs (semilinear heat equation and porous medium equattmee different monitor
functions (power, area and arc-length), and in 1D and 2Du@haot all combinations
of these three factors), and has been tested against mésltdsate been untangled,
and then restarted (in the blow-up study). We also note thtdte 2D PME chapter, the
algorithm has been assessed against non (radially) symemmetshes and in the arc-length
chapter, against unoptimised and optimised initial coodg, to ensure the algorithm’s
basic functionality is not dependent on just one set ofahitonditions. Over all these
criteria, the BHJx algorithm has been robust enough to alletudy of its accuracy, with

the one exception in the arc-length study, where the poradium equation parameter

126
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n (as ind(u"0u)) was 3.

Let us now scrutinize the changes made to the algorithm girout the numerical study
as well as its definition. In the definition of the algorithmSection 2.1, we have stated
that the velocity potential is taken to be zero on all boupd@des and that boundary con-
ditions are enforced strongly. For the former conditiors ththe same as the assumption
made in the original BHJ study [4], when applied to the ponmeslium equation in 2D,
and is equivalent to requiring that the tangential boundatgcity is zero (which is triv-
ially true for our study of the semilinear heat equation, wehthe boundary is fixed) and
IS, in any case, very easily changed in the algorithm impleaten (this might be re-
quired in 1D, if we have non-symmetric initial conditionEpr the latter, it was shown in
Chapter 5 that BHJx did not function there with weak boundamyditions, but again it is
a straightforward change to make in such an implementatfiemer needed.

A significant feature of the algorithm is the need to prescalmormal mesh velocity at
the domain boundary. Where this is not available explicitlg estimated here by using
a secondmonitor function. We have assessed this for the porous medguation with
mass as the second monitor, and with both area and arc-lgrgtte first (interior) mon-
itor. However, the algorithm could (theoretically) be usgth any monitor to prescribe
the normal boundary velocity, provided it has a first deneat the calculation (in Sec-
tion 4.1, for example) is shown for the second monitor beinlgut the logic is the same
for a more general monitor. We have also imposed no conditionthe main (interior)
monitorm(u), save that it has a first derivativeThis assumption also applies to monitor
functions of the forrm(v), wherev = %, as studied in Chapter 5, and it is worth noting
that the method there is provided for a genen&l), even though we have only assessed
it in 1D for the arc-length monitor, whenre= \/(1+v2). We should point out here that
the algorithm then has a slightly different form, as we neeestimate third order spatial
derivatives.

In the arc-length chapter, where we have attempted to fdree;tto be constant, in
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the "ALE+” method, we do have, as things stand, a parametdrdapends on initial
conditions and mesh refinement - the SUNDIAL tolerance. Iigaar, this parameter
requires different values for unoptimised and optimisatiahconditions. We would
argue that this parameter could be amended to be adjustalie algorithm, so that if
it is required to maintain a distribution (keep tbeconstant), the SUNDIAL tolerance
will be reduced from its default value until this is achiev®de concede though, that this
may not always be possible, i.e., the SUNDIAL suite may noiveoge, so we have then
provided a general method, but may have lost robustneseg iprttess of doing so, from
the point of view of supplying an algorithm thaiustmaintain the distribution. However,
we have shown in the arc-length studyd the 2D-PME study, that the monitors there
can do what might be expected of them - attempt to conseruedis&ibution, at least in

the long term.

6.2 Comparison with other techniques and monitors

The main performance criteria in this thesis have been acgueind robustness, and it
will be these that we use here to compare BHJx with other igdes. In the case of
the porous medium equation, since we showed in the foundatiody in Section 2.2
that BHJx had comparable orders of accuracy with BHJ for tlassymonitor, this is
effectively a comparison of other monitors with the mass noon

We will review the thesis results from the aspect of accuaay robustness, in the order
in which they appear. In Chapter 3, studying the blow-up [@al) we have seen second
order accuracy (for an extrapolated result), but robustihes been a problem, mostly
due to tangling, and this tangling being mostly near to thendlary. The fact thaii
as a monitor allowed a higheay to be reached thaw? for the p = 3 case (the PDE

is i = Au+ uP) agrees with findings by Twigger [91], who also uses a vejooised

1To simplify some of the calculus in some cases, we have assthmem(u) has a second derivative.
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adaptive method, but in general, BHJx has not reached asahigiiue ofuyax as the
study by Budd, Huang and Russell [20]. There has been agreemith [20] on the
blow-up happening at a single pokit(which is at the peak of the initial data, as found in
both [20] and [17]), and the blow-up tinTe has been comparable with the study in [20].
In fact, since we have basic agreementdmandT, if we then compare only with [20],
that leaves us with looking at the highest valueugfy that can be reached before the
algorithm breaks down. This value has not been as high asntha0], though it was
getting higher as the mesh was refined, and also after tangdeties were untangled, and
the run restarted. We see then, that BHJx has second ordermagtere, and has some
robustness, but is not as robust as [20], mostly due to taggli

In Chapter 4, we studied the area monitor in 2D, applied tgthreus medium equation.
Here we found that the area monito#- a was less accurate than the mass monitax as
increases, but can be more robust for non (radially) symometeshes. This robustness
appears to be due to the intrinsic nature of the area momitthat it seeks to maintains
an area distribution - this point will be explored more clgse Section 6.4.

Finally, in Chapter 5, we studied the arc-length monitor i, Applied to the porous
medium equation. With the algorithm applied in the usual W&y E”), but with the
adjustment of the normal boundary velocity being appliedatly, we see robustness, and
for optimised initial conditions, an order of accuracy cargble to the original BHJ study
[4], though all this is only fon = 1. In the cas@ = 3 there is not even enough robustness
to measure any accuracy! In the special cases where we farchistribution (s@;) to be
constant ("ALE+"), we achieved order 3 accuracy in the solufor unoptimised initial
conditions, just byattemptingo keepc; constant, though this was not robust whendthe
were actually forced to be constant. For optimised init@lditions and ALE+, we were
able to maintain the distributicend achieve robustness, though this reduced the order of
accuracy to 1 (from 2 obtained in BHJ [4]). This last resuttirectly comparable to BHJ,

as that also forces theg to be constant - this forcing its method of calculating (see
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Section 1.8).

Generally, we can see here that the BHJx method has had stngtmess problems in

1D, and in both 1D and 2D, the area and arc-length monitor havbeen as accurate as
the mass monitor, when studying the porous medium equakivere have however, been

two notable exceptions to this statement:-

¢ In 1D, with unoptimised initial conditions, the arc-lengtfonitor was able to

achieve third order accuracy, by attempting to maintaimtleaitor distribution.

e In 2D, for the porous medium equation, the area monitor candre robust than the
mass monitor for some domains, as it can prevent (for a welitahents shrinking

to the point of disappearing.

6.2.1 Comparison specifically with BHJ

We note from Section 6.2 that BHJx has generally been lesgraecand robust than
BHJ when using area and arc-length monitors, with the mastie exception being the
area monitor in Chapter 4, where BHJx was more robust. We Isarstate here that the
CPU time for BHJx in Chapter 4 was generally twice that of BBdd this can mostly
be attributed to derivation of the normal boundary velqasythis is effectively repeating
a large part of the algorithm with the mass monitor. Furtheantthis, in the arc-length
study in Chapter 5, the “ALE+” version did, in the worst catke up to four times as
much CPU time as the “ALE” version, due to the extra constrairiorcing thec; to be
constant. We can say generally then, that as it stands, B&lixake at least twice the
CPU time of BHJ, due to the derivation of boundary velocjteasd is less accurate and

robust, except for the area monitor in 2D, which showed mobestness than BHJ.
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6.3 Tangling issues

There have been tangling problems with the BHJx algorithh¢lvmay be due to its very
imposition of trying to maintain a distribution. It has bestated in the 2009 review paper
by Budd, Huang and Russell [15] that velocity-based metlfedsh as BHJx) are more
prone to tangling than location-based methods (such as MB)P&nd this is certainly
borne out by the blow-up study in Chapter 3. In that chaphbertangling was overcome
to some degree by untangling and restarting meshes. Thidomgesmanually, but it would
be feasible to incorporate this untangling and restartiitimthe algorithm, leading to
a more robust method, and allowing a highggx to be reached. In that sense, we could
say that tangling has not caused a problem, though therebwidd limit to how much
untangling can be done, as we saw in the case for the monitatiéuin m(u) = u and

p = 3, which would not restart at all. A better approach for thislgpem, in the blow-up
modelling, might be to have some form of smoothing or regiylapplied, as in general,
reducing the timestep did not prevent the tangling problédmChapter 4, we saw the
area monitor was actually less prone to tangling than thesmamitor. Furthermore,
the area monitor by itself can be used to prevent (or at leastppne) tangling, which
has the advantage of needing no extra mesh managementhtboong accuracy may be
lost. For the arc-length monitor, tangling has not reallgrban issue fon = 1, but for
n=3, it has been a problem, though the BHJx algorithm itselkbmown in some cases
here before tangling (potentially) occured, so it is noaclehether even untangling or
applying smoothing or regularisation would help here.

In general then, we see that there have been tangling prebietin BHJxX, though they
can be surmounted, and using one monitor, the area moratoactually attenuate these

problems by its very nature.
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6.4 Knowledge gained beyond the BHJx assessment

The purpose of this thesis is to introduce and assess the 8gdxthm. However, there
are some other, more general results we can find here. In &haptie saw that the area
monitor could be used to model the porous medium equatioe netrustly than the mass
monitor for a non (radially) symmetric domain. A qualitaianalysis showed that both
monitors, at least in the long-term, were conserving thatridution, as we expected
them to. Thus the question of what effect maintaining a ithgtion has on robustness has
been partly answered - we can say in the case mentioned ahavéd,the area monitor
does maintain its distribution, this can give us increasédstness. On the other hand, we
can view the results in the arc-length chapter ("ALE+” cass)giving us information on
what happens if a mesh moves away from an equidistributiomsaw there that, looking
at those results in the opposite order, moving away from ardejribution has gained us
an order of accuracy. So although the aim of a monitor fundsdo maintain an initial
distribution (an equidistribution for optimised initiaboditions), we do not necessarily
achieve the best accuracy if we achieve that aim, convetiselyesult with unoptimised
initial conditions show we can improve accuracy by jagemptingto maintain a distri-
bution. We also note that usiiggo monitors has been far more successful than one - this

is one of the key features of the BHJx algorithm.

6.5 Future work

There was an open question raised in Section 6.4 on how tdifyutire effects of main-
taining (or moving away from) an (equi)distribution, on aacy and robustness, and
it would be worth using BHJx to explore this further. The fipstrt of call here would
be to look more closely at the arc-length results, partitplahere there was third-order
accuracy, which was when the initial conditions were urmoged for the arc-length mon-

itor (so the grid was just equally spaced) in the ALE+ casetiSe 5.4.2). This needs



Chapter 6 133 Conclusions

scrutinising, not just because it is a positive result, lrdanse we have to ask ourselves
if it was the attempt to force thg to be constant that actually improved the order, and
then why did actually forcing theg to be constant essentially fail (the failure being in the
SUNDIAL suite). It might be that the attempt to force theto be constant moved the
evolution of thec; closer to an idealised evolution for the porous medium egoéivhich

is simple enough to define for the central and boundary nagasy the known solution),
and so produced a more accurate result.

In the first place though, more refinement is needed to seeifhind order accuracy
holds, as it is only being seen over three points in the lapgi@ph (Figure 5.14). When
the initial conditions were optimised (in Section 5.4.8g ¢; did remain constant, but an
order of accuracy was lost, so if we assume thattliemaining constant correlates with
losing accuracy, then as tloe remain constant for the 11-node case with unoptimised
initial conditions, but not for higher refinements, we mighjpect that the third order
accuracy would continue as the grid is refined.

Secondly, as the accuracy results are takdn-atl.0, but we can clearly see the evolution
of ¢; settling down at that time, it would be worth repeating theses at some smaller
times, to see what the accuracy is there. Further than timag, could be done with an-
other PDE, with a known solution, such as the Oxygen probledD (see Section 2.2).
We could also try the area monitor, for the Oxygen problemDn(and 2D), to further
investigate robustness effects, when a distribution is\taaied.

Another extension could be to monitors with second or higitder spatial derivatives,
such as a curvature monitor. This will ultimately requiréireates of these higher order
derivatives, which can be made by a weak formulation - a @®eanilar to findingﬂ(a#x‘”

in Chapter 5, though the process will need to be repeated4Ftm example, on dealing
with fourth order PDES).

Considering a more general extension, this thesis hassessése BHJx algorithm for

parabolic problems, so a possible next stage is to assesshyperbolic problems. For
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example, a study could be made of the non-linear Schrodiegeation [64, 67, 86, 91].
One form of this is:-

—ihu = h—ZAu+U(u2)u, (6.1)

2m

whereh is Planck’s constantn is mass andJ represents non-linear effects. The de-
pendent variable is a complex number, but can be found irntipeaby representing as
u=Vv+iw, or by separating variables. As with the semilinear heatggn, studied in
Chapter 3, we could use a fixed boundary, and so prescribetheahboundary velocity
as zero. Equation (6.1) was originally used by Schrodingeorrectly predict frequen-
cies of the Hydrogen atom [43]. He did not originally prebens as having a physical
meaning, but it was later thought of as an “essence”, and #stgiving rise to a prob-
ability density of a particle (or other physical measurethbring in a particular region
of space. From a computational and scientific point of vieantlwe can see it as a non-
linear hyperbolic PDE, though its abstract nature makessi# bbvious what a monitor
function should be, from a conservative or distributionpaf view. However, from a
computational point of view, using scale-invariance, Badd Piggott [16] have used the
monitor functionm(u) = |u|?. In fact, ifU (u?) =constant in 6.1, the probability of finding
a particle in a regiof of space isf, |u|?dQ, therefore/yq |u|?dQ must be 1, which does
mean we have an overall “conservation of probability” to 1.
Another form, the radially symmetric non-linear Schragbnequation, is:-

Ux + uluf?, 6.2)

—IUt = Uyx+
XX X

whered is the dimension of the domain ards the distance from the origin. It is used to
model water waves and plasma waves [16]. We can see that it tHouces to the first
form. The first form has known similarity solutions and a glbsolution, but the second,

for 2D and higher has a blow-up problem [16] at the origin.
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The BHJx method could be used to study the first form, whereamestudy robustness
and accuracy items. For 2D, we can focus on providing anredtiete method to Budd

and Piggott [16] of modelling the blow-up problem.
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