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Abstract 

I 

ABSTRACT 

Modern society is challenged by economic and environmental issues, requiring engineers to develop 

more efficient structures. Using cold-formed steel (CFS) frame in construction industry can lead to 

more sustainable design, since it requires less material to carry the same load compared with other 

materials. However, the application of CFS structural systems is limited to low story buildings due 

to the inherent weaknesses of premature buckling behaviour of members and the low ductility of 

connections. Consequently, current design guidelines of CFS systems are very conservative 

especially in the case of seismic design. Furthermore, there is no generic optimisation framework for 

the CFS elements, capable of taking into account both manufacturing/construction constraints and 

post-buckling behaviour. 

This study aims to better understand, to predict, and to optimise CFS elements based on their 

strength and post-buckling behaviour. The optimised elements can be then included in full-structure 

modelling to develop more efficient CFS structural connections with high ductility and energy 

dissipation capacity, suitable for multi-story buildings in seismic regions. 

The geometrical dimensions of manufacturable CFS cross-sections were optimised regarding their 

maximum compressive and bending strength. All the sections were considered to have a fix coil 

width and thickness while the optimisation was performed based on effective width method 

suggested in EC3. The optimised solutions were achieved using Particle Swarm Optimisation (PSO) 

algorithm. The accuracy of the optimisation procedure was assessed using experimentally validated 

nonlinear Finite Element (FE) analyses accounting for the effect of imperfections To allow for the 

development of a new ‘folded-flange’ beam cross-section, the effective width method in EC3 was 

extended to deal with the presence of multiple distortional buckling modes. Improved strength were 

achieved for CFS elements by using the proposed optimisation framework. 

A non-linear shape optimisation method was presented for the optimum design of CFS beam 

sections based on their post-buckling behaviour. A developed PSO algorithm was linked to the 

ABAQUS finite element programme for inelastic post-buckling analysis and optimisation. The 

results also demonstrate that the optimised sections develop larger plastic area, which is particularly 

important in seismic design of moment-resisting frames. 

An experimental programme was carried out at the University of Sheffield to investigate the design 

and optimisation, considering interactive buckling in cold-formed steel channels under compression 

and bending. Both standard and optimised sections were tested. The specimen imperfections were 

measured using a specially designed set-up with laser displacement. Material tests were also carried 

out to determine the tensile properties of the flat plate and of the cold-worked corners. A total of 36 

columns with three lengths and 6 back-to-back beams were completed. The column specimens were 

tested under a concentrically applied load and with pin-ended boundary conditions while the beams 

were tested in a four-point bending configuration. Based on the tests, numerical models were 

proposed and calibrated and the proposed optimisation framework was verified.  

A numerical study on the structural behaviour of CFS bolted beam-to-column connections under 

cyclic loading was presented. An innovative two node element which can take into account the 

slippage-bearing effects was proposed and implemented using an ABAQUS user defined subroutine. 

The connection performance in terms of strength, ductility, energy dissipation capacity and damping 

coefficient were investigated. The effects of bolt configuration, cross-sectional shapes and 

thicknesses on the connection performance were therefore examined. It is indicated that the proposed 

numerical model is robust and computationally efficient to simulate the failure modes and moment-

rotation response of CFS bolted moment resisting connections. 
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CHAPTER 1. Introduction 

 

 Background 1.1

Sustainable construction aims at reducing the environmental impact of buildings on human 

health and natural environment by efficiently using energy and resources as well as reducing 

waste and pollution. Steel is popular in multi-storey construction due to its high strength-to-

weight ratio and ductility. Hot-rolled steel sections have been successfully used for the 

construction of multi-storey buildings (Figure 1.1) for more than 150 years. However, hot-rolled 

sections are often available in a limited number of standard sectional profiles and lengths 

leading to up to 30% redundant material during the design process (Yu and Laboube 2010).  

 

Figure 1.1. A multi-storey hot-rolled steel frame in Sheffield 

Cold-formed steel (CFS) sections are more flexible in terms of cross-sectional profiles (made 

through cold-rolling and press braking) and, therefore, can lead to more efficient design 

solutions with less redundant material and waste during manufacturing (Lawson et al. 2005). 

Therefore, from an environmental and sustainable viewpoint, CFS structural systems are 

appropriate options for modular and multi-storey structures in residential and industrial 

construction (Figure 1.2). 
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(a)      (b) 

Figure 1.2. Cold-formed steel (a) portal frame and (b) framing residential building 

The advantages of constructing CFS framing systems (Figure 1.2) using CFS sections instead of 

conventional hot-rolled sections include high strength to weight ratio, off-site manufacturing, 

smaller foundations, pre-galvanised members with good durability, ease of fabrication that 

allows fast and large-volume production, and easy transportation. With relatively higher 

yielding strength and thinner plates, CFS elements are also easy to stack and erect with less 

labour. 

Optimisation of CFS portal frames (Phan et al. 2012) has shown that up to 20% material has 

been saved through the change of cross-sectional dimensions of members and frame topology. 

There is currently no generic framework for the optimum design of complex CFS structural 

systems capable of considering the manufacturing and construction constraints. However, 

before the development of a general framework for the optimisation of CFS structural systems, 

the following limitations need to be addressed: 

(1) Owing to their large flat width-to-thickness ratios, CFS elements are susceptible to 

local/distortional and global buckling, which can result in low buckling resistance and 

consequently low capacity and ductility (Sabbagh et al. 2012a). This shortcoming limits the 

performance of CFS systems in multi-storey buildings and makes them vulnerable to collapse 

under extreme load events (e.g. earthquake). 

(2) The flexibility of the manufacturing process allows the fabrication of cross-sections with 

various shapes. However, these are not always developed to comply with all of the criteria 

included in current proposed design specifications. In addition, existing CFS elements are not 

usually optimised to improve the non-linear inelastic performance of elements and connections 

based on a detailed analysis. 

(3) Thinner plates can cause premature local buckling failure along the connection-lengths, 

leading to a semi-rigid behaviour of the joints (Wrzesien et al. 2012) which has to be taken into 

account in the design. This may also cause excessive deflection under serviceability limit state 
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and the development of energy dissipation mechanisms of bolt slippage under extreme loading 

that are difficult to model and quantify. 

 Necessity of Research 1.2

The use of CFS sections as main structural components is generally restricted to stud-wall 

frames (Figure 1.2(b)) with relatively low deformability/ductility (Fulop and Dubina 2004). 

Compared with hot-rolled steel structures, the weaknesses of CFS structures are typically a 

result of premature local buckling in sections (due to large width/thickness ratios) and lack of 

strength and stiffness in connections (Sato and Uang 2010). As a result, CFS moment-resisting 

frames with bolted connections are usually limited to single-storey dwellings (Sato and Uang 

2009, Sato and Uang 2010). To use CFS moment-resisting frames for multi-storey buildings, 

there is a need to prevent premature local buckling of the CFS elements so as to allow the 

development of more plastic deformation. In addition, while the general view is that thin-walled 

CFS elements are not suitable for moment-resisting frames (Calderoni et al. 2009), recent 

studies at the University of Sheffield (Sabbagh et al. 2012a, Sabbagh et al. 2012b) and by Serror 

et al. (Serror et al. 2016) showed that, by using appropriate detailing, CFS beam-column 

moment resisting connections can be developed to meet the requirements of rigid and full 

strength joints with high ductility. 

1.2.1 Optimisation of CFS elements for maximum strength 

CFS members can be produced in a wide variety of section profiles and, typical characteristics 

such as intermediate stiffeners, inclined lips, folded plates, returned lips are easy to be rolled. 

Therefore, identifying optimised cross section geometries is of great interest to manufacturers 

and structural designers. However, this is a complex optimisation problem, since the strength of 

CFS members is controlled by local/distortional and global buckling and their interaction. 

Previous studies on the optimisation of CFS elements are mainly limited to varying dimensions 

of standard cross-sections (lipped channel beam (Lee et al. 2005b); channel columns with and 

without lips (Lee et al. 2006b); and hat, I and Z cross section CFS beams (Adeli and Karim 

1997)), which are not necessarily optimal sections. The Direct Strength Method (DSM), a newer 

design method of CFS specimens, has recently been used to obtain the optimum shape for open 

CFS cross section columns (Leng et al. 2011). However, these studies did not consider 

manufacturing and construction constraints and, proposed the use of highly complex shapes that 

are not suitable for practical applications due to high manufacturing costs and difficulty in 

connecting to other elements. In addition, the proposed sections did not necessarily comply with 

current design specifications in terms of shapes and cross-sectional plate width-to-thickness 

ratios. 
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1.2.2 Optimisation of CFS elements for improved post-buckling behaviour 

Optimisation of CFS elements on their maximum strength under bending and compression has 

led to significant reduction of material saving in the design process (Leng et al. 2014, Liu et al. 

2004, Ma et al. 2015, Tian and Lu 2004b). However, optimisation of CFS elements only based 

on their buckling strength does not always optimise their ultimate performance (i.e. post-

buckling behaviour and ductility). Optimisation of the flange shape for hot-rolled H beams has 

been shown to lead to an increased energy dissipation under monotonic and cyclic loads by 

combining an optimisation algorithm with detailed nonlinear Finite Element analysis (Pan et al. 

2007). In other research, the positions and thicknesses of the stiffeners of link members, 

working as passive control devices in hot-rolled eccentrically braced frames, was optimised for 

maximum energy dissipation (Deng et al. 2015). The flexibility of CFS members with respect to 

the manufacturing and construction processes offers great scope and potential to develop cross-

sections with high ductility and energy dissipation. 

However, no research has previously been carried out on the optimisation of CFS members to 

improve their post-buckling behaviour, ductility and energy dissipation capacity. 

1.2.3 Optimisation of CFS elements and experimental validation 

Experimental investigation on the ultimate strength has been conducted on CFS single beam 

section with simple and complex edge stiffeners (Wang and Zhang 2009, Yu and Schafer 2006, 

Yu and Schafer 2003), design equations and recommendations on single CFS beam sections 

were proposed based on these tests. CFS back-to-back sections, which are made from 

connecting two channel sections, are able to provide larger torsional rigidity. In order to study 

the flexural behaviour of cold-formed steel channel beams, an experimental research was 

conducted by Hsu and Chi (Hsu and Chi 2003) on the back-to-back CFS beams under the 

monotonic and cyclic load. An experimental and numerical study on the behaviour CFS built-up 

beam members was conducted by Laím et al. (Laím et al. 2013). It is found by researchers 

(Laím et al. 2013) that the behaviour of those beams was significantly affected by the screw 

distribution and the interaction of local/distortional and lateral-torsional buckling. It was also 

observed that in some of the specimens without load transfer plates, web crippling happened 

due to load concentration, as is the failure phenomena indicated by some researchers (Chen et al. 

2015). Manikandan et al. (Manikandan et al. 2014) studied the bending behaviour of innovative 

CFS back-to-back channel sections with folded flange and complex edge stiffeners 

experimentally and numerically. It is shown in their study that the sections with complex edge 

stiffener and folded flange possessed the maximum bending strength. More recently, Wang and 

Young (Wang and Young 2016a) experimentally investigated the behaviour of simply 

supported built-up section beams with different web intermediate stiffeners under four-point 

bending and three-point bending. The behaviour and design rule for built-up section beam were 
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presented with extended numerical study (Wang and Young 2016b). All of these tests were 

designed for the development of design guidelines on CFS specimens while no comparision 

between standard and optimised sections were presented. 

Therefore, newly proposed cross-sectional shapes and dimensions are not usually optimised on 

the basis of detailed numerical analyses and experimental validation and calibration. 

CFS elements have been optimised based on design codes such as AISI (AISI 2007), AS/NZS 

(AS/NZS 1996) and EC3 (CEN 2005a, CEN 2005b). The buckling strength of the CFS elements 

in these studies were determined by using the “effective width” concept (Von Karman et al. 

1932), which for non-conventional cross sections is cumbersome since a number of iterations 

are included due to the change of neutral axis and the interaction between different buckling 

modes. 

Free form optimisation of CFS elements based on DSM (Leng et al. 2011) may lead to non-

compliant shapes and plate width-to-thickness ratios. 

Failure to take into account all of these factors (e.g. ignores inter-element equilibrium and 

compatibility) may lead to insufficiently accurate results.  

1.2.4 Performance of CFS moment resisting connections 

Analytical and experimental investigations on the monotonic and cyclic behaviour of bolted 

moment resisting connections in CFS construction are still limited. Recent experimental and 

analytical studies have demonstrated that the buckling strength of CFS elements can be 

significantly improved by using new section shapes (Sabbagh et al. 2011, Sabbagh et al. 2012b, 

Serror et al. 2016). Premature buckling mode of typical CFS elements (local buckling of the 

flange) can be delayed by using curved flange sections, as shown in Figure 1.3(a). Feedback 

from industry, however, highlighted that curved sections are difficult to manufacture and 

connect to. 

More practical shapes need to be developed by taking into account both manufacturing and 

construction constraints (see for example Figure 1.3(b)). 

                               

Figure 1.3. CFS beams with (a) curved flanges and (b) folded flanges 

(a) (b) 
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Although numerical studies have been already carried out to study the rotational capacity of 

beams subjected to cyclic load (Serror et al. 2016), a reliable way of modelling the bearing and 

slippage behaviour of bolted connections has not yet been proposed.  

Further research is required in this field so as to develop more accurate predictive models for the 

optimum design of CFS bolted connections. 

 Aims and detailed objectives 1.3

The main aim of this research is to understand, predict, and optimise the strength of CFS 

elements. A framework to optimise CFS elements with energy dissipation capacity (ductility) 

for seismic applications will be also proposed. The optimised elements can be then included in 

full-structure modelling to develop more efficient CFS structural sub-frames with high ductility 

and energy dissipation capacity, suitable for multi-story buildings in seismic regions. The 

detailed objectives are as follows: 

(1) To develop a software for the calculation of gross and effective properties of CFS cross-

sections based on the “effective width” concept. Typical characteristics of intermediate 

stiffeners, inclined lips, returned lips should be taken into account. The software should be able 

to design columns, beams and beam-column connections. 

(2) To develop a framework to obtain optimised CFS standard elements by considering the 

local/distortional and global buckling and their interaction, as well as manufacturing and 

constructional constraints. All plate width-to-thickness ratios in EC3 will be considered as 

constraints and the load carrying capacity of the members will be set as the optimisation target.  

(3) To develop a new analytical model to predict the capacity of an innovative folded-flange 

CFS cross-section. Models to calculate the local, distortional buckling strength will be proposed 

and used to obtain optimum shapes. 

(4) To investigate experimentally and analytically the effectiveness of the proposed optimisation 

framework at improving the performance of CFS elements. The developed numerical models 

will be validated on the basis of the experimental results. 

(5) To optimise the energy dissipation capacity of CFS elements based on their post-buckling 

behaviour for seismic applications. The maximum plastic strain is used as a measure for 

rotational ductility, which is used as one of the constraints for optimisation. 

(6) To develop efficient CFS moment-resisting connections with higher stiffness and ductility 

by introducing innovative CFS sections along the connection-lengths. The performance of the 

connections will be assessed through detailed Finite Element (FE) models in ABAQUS.  
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(7) To evaluate the performance of the developed CFS moment-resisting connections under 

cyclic loads using FE models. The FE models will be calibrated/validated based on existing 

experimental data. The failure modes and response of CFS bolted connections will be studied to 

determine their strength, ductility and energy dissipation capacity.  

(8) To develop a reliable model for the analysis of CFS single lap connections subjected to 

cyclic loading. 

 Thesis layout 1.4

This thesis is divided into twelve chapters. The thesis combines three chapters written following 

the “traditional” thesis format (chapters 1, 2 and 12), and chapters consisting of “stand-alone” 

journal papers (chapters 3 to 11). A brief overview of each chapter is given in the following: 

Chapter 2 presents a literature review. The first section reviews research on different CFS 

sections, representative design guidelines, behaviour of CFS members, CFS connections, 

optimisation of CFS elements and CFS structural systems. The advantages and limitations of 

currently available optimisation techniques for CFS elements and CFS connections are 

discussed.  

Chapter 3 is based on Ma et al. (Ma et al. 2015) and discusses an optimisation strategy for the 

geometrical dimensions of all manufacturable C-shape cross-sections (i.e. with and without lip 

and middle stiffeners). For the optimisation, all of the sections were considered to have a fixed 

coil width and thickness while the optimisation was performed based on the load capacity 

obtained following the provisions of effective width method suggested in EC3 (2005). The 

optimised solutions were found using a Genetic algorithm.  

Chapter 4 is based on Ye et al. (Ye et al. 2016a) and develops a methodology for the 

optimisation of the flexural strength of CFS beams considering local, distortional and lateral 

torsional buckling. Six different CFS channel section prototypes are selected and then optimised 

with respect to their flexural strength, determined according to the effective width based 

provisions of Eurocode 3 (EC3) part 1-3. The accuracy of the optimisation procedure is assessed 

using experimentally validated nonlinear Finite Element (FE) analyses accounting for the effect 

of imperfections.  

Chapter 5 is based on Ye et al. (Ye et al. 2016b) and introduces a methodology for the 

development of optimised CFS beam sections with maximum flexural strength for practical 

applications. The optimised sections are designed to comply with Eurocode 3 (EC3) geometrical 

requirements as well as with a number of manufacturing and practical constraints. To allow for 

the development of a new ‘folded-flange’ cross-section, the effective width method in EC3 is 

extended to deal with the possible occurrence of multiple distortional buckling modes.  
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Chapter 6 discusses the seismic performance of CFS elements and introduces a methodology for 

optimising their post-buckling behaviour in the nonlinear inelastic range. A non-linear shape 

optimisation method is presented for the optimum design of CFS beam sections. The relative 

dimensions of the cross-section, the location and number of intermediate stiffeners and the 

inclined lip angle are considered as main design variables. All plate slenderness limit values and 

limits on the relative dimensions of the cross-sectional components, set by the EC 3, are taken 

into account as constraints on the optimisation problem. An additional constraint is considered 

where maximum equivalent plastic strain is restricted to ensure a sufficient level of ductility. 

Global optimal solutions are obtained through the Particle Swarm Optimisation (PSO) algorithm. 

The developed PSO algorithm is linked to the ABAQUS finite element programme for inelastic 

post-buckling analysis and optimisation.  

Chapter 7 describes an experimental programme carried out at the University of Sheffield to 

investigate the interaction of local and overall flexural buckling in cold-formed steel channels 

under axial compression. The results of a total of 36 column tests, including three different 

lengths and four different types of cross-section, are discussed and commented upon and 

comparisons with EC3 are made. 

Chapter 8 develops a reliable numerical model to investigate the interaction of local and global 

buckling modes in pin-ended CFS columns. The validated FE model is then used to assess the 

adequacy of the “effective width method” in EC3 and Direct Strength Method (DSM) in 

estimating the design capacity of a wide range of conventional and optimum design CFS 

channel column sections.  

Chapter 9 describes an experimental programme carried out at the University of Sheffield to 

investigate the local and distortional buckling behaviour of CFS beams. The beam specimens 

were assembled using channels, with a nominal thickness of 1.5 mm and depths ranging from 

180 mm to 270 mm, in a back-to-back configuration. The results of a total of six tests on back-

to-back beams, including three different cross-sectional geometries, are discussed and the 

behaviour of the specimens is compared to the predictions of EC3. 

Chapter 10 discusses the development of a reliable numerical model to investigate the flexural 

strength and failure modes of CFS back-to-back channels beams. The developed FE models are 

verified against experimental results and are then used to assess the adequacy of the effective 

width method in EC3 and Direct Strength Method (DSM) in estimating the design capacity of 

conventional and optimum design CFS channel beam sections.  

Chapter 11 presents an extensive parametric study on the structural behaviour of CFS bolted 

beam-to-column connections under cyclic loading. The performance of the connection is 

assessed in terms of strength, ductility, energy dissipation capacity and damping coefficient. 
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Furthermore, the effects of bolt distribution configuration, cross-sectional shapes, gusset plate 

and cross-sectional thicknesses on the connection performance are also examined. A two node 

element is also developed that can take into account the bolt slippage, bearing deformation and 

the bolt hole elongation. 

Finally, Chapter 12 summarises the research work, draws general conclusions and gives 

recommendations for future work. 
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This chapter reviews available research on structural performance of different CFS sections, 

CFS connections and CFS structural systems. The first part presents research on the different 

shapes of CFS sections and addresses issues of their structural behaviour. This is followed by a 

critical discussion on the main international design guidelines for CFS. The research of seismic 

behaviour of CFS elements and connections is then reviewed, followed by an analysis of 

previous research on the optimisation of CFS elements. A discussion on CFS structural systems 

is included at the end of this chapter. 

 

 

 CFS sections 2.1

CFS sections are generally produced by using a number of manufacturing processes i.e. coiling, 

uncoiling, flattening and cold-forming or press-braking process (Figure 2.1). This flexibility of 

the manufacturing process allows a number of commercially available cross-sections with 
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various shapes to be made (Figure 2.2(a)), and consequently favourable strength-to-weight 

ratios can be obtained. The manufacturing process is also applicable to cross-sections made 

from plain steel sheets and other forms. For example, CFS dimpling sections (Figure 2.2(b)) are 

produced by employing the dimpled steel sheets, which have been made from plain steel sheets 

using the UltraSTEEL® process in Hadley Industries plc (Hadley Industries plc). The process 

uses a pair of rolls which is designed with rows of uniquely shaped teeth that stretch the plain 

surface and form the dimples from both sides of the steel sheet. The dimpled sheet (Figure 

2.2(c))can then be progressively formed into the required products by using either the rolling or 

the press-braking machine, as shown in Figure 2.1.  

Steel sheet coil-uncoiling and flattening Roller-forming

Roller dies

Punch

Press-braking forming

Die

 

Figure 2.1. Manufacturing process for cold-formed steel members using roller or press-braking 

process (Amouzegar et al. 2016). 

 

Figure 2.2. (a)Different cross-sectional shapes (Yu and LaBoube 2010) (b) Variety of cross-sections 

made from dimpled steel sheets (Hadley Industries plc) (c) Dimpled steel sheets produced by the 

UltraSTEEL® process in Hadley Industries plc (Hadley Industries plc) 

As a result of the use of higher strength steels, CFS profiles are generally characterised by a thin 

wall thickness, which is inevitably accompanied by a reduced resistance to local/distortional 

buckling. The inherently low resistance to buckling is addressed by manufacturing highly 

stiffened sections with more folds and stiffeners (Davies 2000). This trend can be appropriately 

illustrated by the various modifications made to purlin sections. Starting from the conventional 

lipped channels and Zed sections, purlins have evolved into a number of more complex sections 

with stiffened webs and flanges, returned and inclined lips, as shown in Figure 2.3. 

(b) (c) (a) 
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Figure 2.3. Evolution of cold-formed Zed and Channel purlin sections (Davies 2000). 

Due to their flexibility in terms of cross-sectional shapes, CFS members are shaped for both 

structural and non-structural applications such as purlin & side rail systems, steel framing 

systems, window or door reinforcements, mezzanine floors, strut systems and industrial 

cladding systems, storage racks. By using these new and more complex shapes, CFS sections 

can be designed to have higher resistance to local-distortional buckling. To improve the 

buckling strength of CFS beams, a wide range of sections with different types of flange shapes 

have been developed, as shown in Figure 2.4. These include symmetrical I-beam with triangular 

hollow flanges (Avery et al. 2000), LiteSteel beam with rectangular hollow flanges (Anapayan 

et al. 2011), delta hollow flange beams (Mohebkhah and Azandariani 2015), unstiffened and 

stiffened rectangular hollow flange beams (Tondini and Morbioli 2015), open and closed drop 

Flanges (Magnucki et al. 2010) and also double box flanges (Magnucka-Blandzi and Magnucki 

2011). Experimental studies and analytical and numerical models were used to investigate 

cross-sectional local/distortional buckling, shear buckling, as well as member lateral torsional 

buckling. These studies have proven that those innovative sections possess better performance 

in terms of load bearing capacity and stiffness (Anapayan et al. 2011, Avery et al. 2000, 

Magnucka-Blandzi and Magnucki 2011, Magnucki et al. 2010, Mohebkhah and Azandariani 

2015, Tondini and Morbioli 2015, Uzzaman et al. 2016), and that they can meet the requirement 

of longer span in practical applications. 

 

 

 

 

 

 



Chapter 2. Literature review 

14 

   

                 (a)                                  (b)                                    (c)                                     (d) 

  

                     (e)                                  (f)                                              (g)                                  (h) 

Figure 2.4. Different shapes of cross sections of cold-formed channel beams with (a) Triangular 

hollow flanges (Avery et al. 2000) (b) LiteSteel beam with rectangular hollow flanges (Anapayan et 

al. 2011) (c) Delta hollow flanges (Mohebkhah and Azandariani 2015) (d) rectangular hollow 

flanges (Tondini and Morbioli 2015) (e) stiffened rectangular hollow flanges (Tondini and Morbioli 

2015) (f) open drop flanges (Magnucki et al. 2010) (g) closed drop flanges (Magnucki et al. 2010)and 

(h) double box flanges (Magnucka-Blandzi and Magnucki 2011) 

Since the elastic compressive stress in a column is generally more uniform than in beams, it is 

shown that column strengths can be more easily enhanced with more flexible cross-sections. 

This is due to the fact that (a) intermediate stiffeners are able to increase the local buckling 

strength of single plate among the cross-sections; (b) edge stiffeners contribute to the 

distortional buckling strength of compressive stiffeners and (c) cross-sectional dimensions are 

easier to be adjusted to change the gross cross-sectional properties which contribute to the 

global stability. Therefore, the design of columns with complex edge stiffeners, intermediate 

stiffeners, stiffeners with inclined angle have been investigated by many researchers (Chen et al. 

2010, Manikandan and Arun 2016, Yan and Young 2002, Young 2008b, Zhang et al. 2007a), as 

shown in Figure 2.5. 
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Figure 2.5. Columns with complex intermediate and edge stiffeners (Chen et al. 2010, Yan and 

Young 2002) 

 

Figure 2.6. Section geometries of the innovative steel columns (Narayanan and Mahendran 2003) 
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In order to further improve the buckling strength of columns, Narayanan and Mahendran 

(Narayanan and Mahendran 2003) conducted experimental and numerical studies on CFS 

columns with innovative cross-sectional shapes. All of the sections failed by distortional 

buckling and the local buckling was successfully delayed by using smaller flat plates in the 

sections, as shown in Figure 2.6. 

All of the sections above are generally manufactured by using the same steel coil and are either 

cold rolled or brake pressed into structural shapes, as the process shown in Figure 2.1. As a 

result, cold-formed steel sections are usually manufactured to be singly-, point-, or non-

symmetric open shapes. Open sections have relatively poor torsional properties and are weak in 

twisting compared to closed sections. Therefore, open sections would fail most probably by 

local/distortional buckling possibly coupled with global twisting/bending depending on the 

dimension of the cross-sectional shapes and the lengths of the members. Built-up sections, 

which are assembled from a number of single channel sections with connectors, have the 

potential to provide improved strength and stiffness when applied in longer spans. However, 

there are currently no mature guidelines for the design of cold-formed steel built-up sections. 

For example, Eurocode 3 (CEN 2005b) simply adds up the strength of individual CFS channels 

while the North American Specification standard(AISI 2007) adopted a modified slenderness 

ratio for built-up column design.  

 

Figure 2.7. Cold-formed steel built-up sections (Wang and Young 2016a, Wang and Young 2016b) 

The use of CFS built-up sections has attracted the attention of several researchers, For example, 

Piyawat et al. (Piyawat et al. 2012) studied the axial load carrying capacity of doubly symmetric 

built-up cold-formed sections with simple I and box shape. Zhang and Young (Zhang and 

Young 2015) investigated the design of cold-formed steel built-up open section columns with 

longitudinal stiffeners and more recently, Wang and Young (Wang and Young 2016a, Wang 
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and Young 2016b) conducted numerical and experimental studies on the performance of CFS 

built-up sections with intermediate stiffeners under bending (Figure 2.7) and developed DSM 

equations for design. 

The widespread use of CFS as construction material is also attracting more research on its use in 

composite structures. Hanaor (Hanaor 2000) conducted experimental research on the use of 

cold-formed sections as composite beams in concrete slab systems. Different CFS cross-

sectional shapes were tested with concrete slabs and extensive push-out tests of numerous types 

of connectors were conducted. A review on the cold-formed steel and concrete composite 

system can be found in research (Lawan et al. 2015). Other Cold-formed steel composite 

structures include bamboo–steel composite beams (Figure 2.9(a)) (Li et al. 2015, Li et al. 2012) 

and Cold-Formed Steel and wood floors (Figure 2.9(b)) (Kyvelou et al. 2015). 

 

Figure 2.8. Cold-formed and concrete composite beam (Hanaor 2000). 
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(a) 

 

(b) 

Figure 2.9. Cold-formed steel composite elements with (a) bamboo (Li et al. 2015, Li et al. 2012) and 

(b) wood (Kyvelou et al. 2015) 

 Design of CFS members 2.2

Three basic modes of buckling of CFS members can be identified (see for example Figure 2.10) 

(Schafer 2006). As defined in EC3, part 1-3 (CEN 2005b), local buckling is a mode involving 

flexural deformation in each individual plate without transverse deformation of the lines of 

intersection of adjacent plates. Distortional buckling is a mode of buckling characterised by the 

change in cross-sectional shapes excluding local buckling. Global buckling (torsional-flexural 

buckling, lateral-torsional buckling) is a mode in which compression members can bend and 

twist simultaneously without change of cross-sectional shapes.  
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Figure 2.10. Buckling modes of a lipped channel in compression using CUFSM (Schafer 2006) 

The development and introduction of different design specifications for cold-formed thin-walled 

structures have been represented by a number of design codes such as AISI (AISI 2007), ANZ 

(AS/NZS 1996) and EC3 specifications (CEN 2005b). The European design code EC3 (CEN 

2005b) and the AISI, Appendix 1 (AISI 2007), include two representative design concepts for 

cold-formed steel members, however, they are fundamentally different. 

2.2.1 EC3 

The European standard EC3 for CFS structures design is based on the well-known effective 

width concept, first proposed by Von Karman (Von Karman et al. 1932). This recognizes the 

fact that local buckling of the sectional plates has the effect of shifting the load-bearing stresses 

towards the corner zones, and reduces the efficiency of the central parts in carrying compressive 

loads. In addition, EC3 is consistent with the traditional design philosophy of steel structures, 

where a number of design curves for local/distortional and global buckling are used. 

The basic idea for the design of a CFS section according to EC3 (CEN 2005b) is to represent 

the reduction in the effectiveness of a locally and distortionally buckled plate with a non-

uniform stress distribution by using an effective plate under a simplified linear stress 

distribution, as shown in Figure 2.11. The effective widths of plate with different boundary 

conditions and stress gradients can be calculated according to EC3 (CEN 2005a). 

 

 

Local buckling 

Distortional 

buckling 

Global 

buckling 
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Figure 2.11. Effective width of plane element restrained along both edges (Davies 2000) 
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(a)   (b)   (c) 

Figure 2.12. Distortional buckling model: (a) flange with edge stiffener (b) flexural buckling of edge 

stiffener as a strut on elastic foundation and (c) flexural buckling curve for edge stiffener (CEN 

2005b) 

EC3 (CEN 2005b) bases the design for distortional buckling on the assumption that the 

effective parts of edge stiffener behave as a strut (Figure 2.12) continuously supported by elastic 

springs of stiffness K along its centroid axis. The buckling of edge stiffener is then taken into 

account by using a reduced thickness in the effective edge stiffener. EC3 (CEN 2005b) also use 

this model to calculate the reduced thickness of intermediate stiffeners. 

Instead of the gross cross-sectional properties, EC3 (CEN 2005b) subsequently uses the 

effective cross-section to design CFS members for global buckling. The method of effective 

width concept for design of CFS members according to EC3 is complex and requires the use of 

an iterative procedure; however, it is consistent with the design guidelines for class 1-class 3 

sections (CEN 2005c). Recent research on the improvement of the effective width method has 

been conducted by other researchers (Batista 2009, Bernuzzi 2015, Bernuzzi and Maxenti 2015, 

Bernuzzi and Simoncelli 2015, Dubina and Ungureanu 2014, He and Zhou 2014, Hui et al. 2016, 

Ungermann et al. 2014, Yu and Yan 2011). 

2.2.2 Direct Strength Method 

The Direct Strength Method (DSM) proposed in Appendix 1 of the AISI specifications (AISI 

2007) is an alternative to the traditional effective width method to predict the load carrying 

capacity of CFS members. This method integrates a computational stability analysis into the 

design process. In a first step, the elastic local, distortional and global buckling loads are 
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determined. Using these elastic buckling loads and the load that causes first yield, the strength is 

then directly predicted based on a series of simple empirical equations (AISI 2007). While 

calculation of the effective properties can be tedious for complex CFS cross-sections, only gross 

section properties are needed in the DSM. The elastic buckling loads of CFS members can be 

calculated using software such as CUFSM (Schafer 2006). A comprehensive review of the 

DSM has been presented by Schafer (Schafer 2008).  

Currently, the DSM has been proven to be efficient and effective for the design of typical and 

prequalified CFS sections (AISI 2007). However, plain channel and angle sections cannot be 

designed according to DSM. Initially, DSM was limited to a number of prequalified cross-

sections, was unable to design beam-columns, neglected the shift of effective centroid and could 

not account for interactive buckling (Ungermann et al. 2012). 

The DSM has been further developed to include the analysis of flexural beams, compression 

members, combined compression and bending, members deficient in shear and the interactive 

buckling of members. See for example design recommendations by researchers (Ajeesh and 

Jayachandran 2016, Kumar and Kalyanaraman 2014, Kwon et al. 2009, Landesmann and 

Camotim 2013, Landesmann et al. 2016) for the design of columns, by researchers (Anbarasu 

2016, Nandini and Kalyanaraman 2010, Pham et al. 2014a, Pham and Hancock 2013, Ren et al. 

2016, Wang and Young 2014) for beam and purlins, guidelines proposed by researchers 

(Degtyareva and Degtyarev 2016, Mahendran and Keerthan 2013, Pham et al. 2015, Pham et al. 

2014a, Pham et al. 2014b) for shear design and design recommendations (Kumar and 

Jayachandran 2016, Torabian et al. 2016, Torabian et al. 2015) for beam-columns and for 

interactive buckling (Cava et al. 2016, Dinis et al. 2012, Dinis and Camotim 2015, Martins et al. 

2016). 

With the development of DSM, the design procedure relies heavily on the buckling signature 

curve concept and this has led to a significant increase of research into the different methods for 

elastic buckling analysis of thin-walled steel sections. The conventional finite element method 

can be used whereas CFS sections are susceptible to local/distortional, global buckling and their 

interaction. Therefore, it is essential to isolate the individual buckling modes i.e. the pure local, 

distortional, global and shear buckling modes for computational efficiency in terms of design. 

The majority of the research in elastic buckling has concentrated on: a) the constrained finite 

strip method (cFSM) from Professor Schafer at the Johns Hopkins University and Professor 

Adany at Budapest University of Technology and Economics (Adany and Schafer 2006a, 

Adany and Schafer 2006b); b) the finite strip method (FSM) for shear buckling developed by 

Pham and Hancock at the University of Sydney (Hancock and Pham 2013); c) the general beam 

theory (GBT) mainly from Professor Camotim at the Universidade de Lisbon (Goncalves et al. 

2010) and d) an alternative modal decomposition method based on polarisation developed by Dr 
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Becque at the University of Sheffield (Becque 2015). Other researchers’ work on elastic 

buckling and modal decomposition can also be found in the literature (Camotim and Basaglia 

2013, Li and Becque 2016, Li et al. 2014, Naderian and Ronagh 2015, Silvestre 2007). 

Recent developments on the elastic buckling and modal decomposition can be mainly found in 

the field of shear and localised buckling analysis (Hancock and Pham 2015, Hancock and Pham 

2013), elastic buckling of perforated members (Nedelcu 2014, Smith and Moen 2014), and shell 

or finite element based analysis (Ádány 2016, Nedelcu 2014, Nedelcu 2012). 

 Seismic behaviour of CFS members 2.3

The CFS sections have been widely used as envelope structures such as secondary cladding, 

purlins and wall panels in moment-resisting frame systems. However, the application of CFS 

elements as primary structural components is generally restricted to one-storey portal frames 

and low-rise stud-wall frames with low ductility in non-seismic areas (Dubina et al. 2012). 

Compared with conventional hot-rolled steel structures, the CFS structures are susceptible to 

premature local/distortional buckling in sections with large width-to-thickness ratio. Also 

conventional CFS connections usually cannot provide high strength and ductility. This implies 

that the conventionally developed strong-column weak-beam, and strong-connection weak-

components seismic design philosophies adopted in seismic design codes (AISI 2005) cannot be 

directly used in CFS structures due to lack of ductility in CFS elements and connections. This 

restricts the application of multi-storey moment-resisting CFS framing systems in seismic 

regions (Dubina et al. 2012).  

Recent studies on CFS bolted systems showed that both beams and columns can be designed in 

accordance with the capacity design principles to remain elastic during a strong seismic event 

(Sato and Uang 2013, Sato and Uang 2010, Uang et al. 2010). In their proposed design 

methodology the seismic energy has been dissipated mainly through the slippage and bearing 

failure caused by bolt-sheeting connection, as shown in Figure 2.13(a). Another design 

philosophy was developed by Bagheri-Sabagh et al. (Sabbagh et al. 2012a, Sabbagh et al. 2011) 

by using appropriate detailing such as longitudinal and transverse stiffeners to prevent 

premature buckling in the vicinity of connections and new CFS cross-sections with added bent 

corners to increase the capacity of the CFS cross-sections. The seismic energy is thus dissipated 

through a mechanism by bolt slip and cross-section buckling similar to the plastic hinges 

behaviour in hot-rolled steel elements, as shown in Figure 2.13(b). This implies that with the 

development of more efficient CFS elements, high performance moment-resisting CFS framing 

systems can be achieved. 
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Figure 2.13. Responses of bolted CFS beam–column moment-resisting connections: (a) energy 

dissipation through slippage and bearing failure ;(b) through beam section (Sabbagh et al. 2012a) 

In order to fully understand the behaviour of CFS systems subjected to an earthquake scenario, 

there is a need to first expand current knowledge on CFS at member level. Existing research on 

cyclic behaviour of cold-formed steel members is still limited. An early investigation on the 

cyclic behaviour and energy dissipation associated with local buckling deformations in CFS 

beams subjected to cyclic bending (Calderoni et al. 2009) indicated that strength degrades 

rapidly in the initial cycles and remains almost the same in subsequent cycles. This was the 

result of localized inelastic buckling deformations (and fracture in the cross-section) gradually 

spreading through the cross-section as the number of cycles increased. The observed strength 

can be beneficial in the context of collapse analysis and design of CFS systems. An 

experimental program was conducted by Padilla-Llano et al. (Padilla-Llano et al. 2016) to 

investigate the cyclic bending behaviour and energy dissipation of CFS channel members 

experiencing local, distortional or overall buckling. CFS axial members were also tested under 

cyclic load by Padilla-Llano et al. (Padilla-Llano et al. 2014). The members were designed to 

fail by local, distortional or global buckling modes, and it was found that the total energy 

dissipated within a small length and decreased with increasing cross-sectional slenderness. 

More recently, tests were carried out on CFS lipped channel and curved channel beams in a 

moment-resisting frame subjected to cyclic bending (Serror et al. 2016). The effect of 

configurations with and without out-of-plane stiffeners on the energy dissipation, the moment 

strength and the ductility was investigated. Beams with curved section were proven to possess 

higher ductility and dissipate more energy. 

 Cold-formed steel connections 2.4

Unlike the design of hot-rolled steel structures, the design guidelines for CFS connections are 

still limited (CEN 2005d). Detailed design procedures for CFS connections are not always 

available in design codes due to the wide variety of joints used in the construction industry (Yu 

and LaBoube 2010) such as bolts or self-tapping screws (Lennon et al. 1999). The performance 

of single-lap bolted connections was examined (Bolandim et al. 2013, Chung and Ip 2001, 

Chung and Ip 2000, Kim et al. 2015, Kim et al. 2008, Teh and Gilbert 2014, Teh and Yazici 

2013, Yu and Panyanouvong 2013). Screwed connections were studied by a number of 
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researchers (Fiorino et al. 2007, Peterman et al. 2014, Rahmanishamsi et al. 2016, Ye et al. 

2016c, Zhao et al. 2014) and sheet or sheathing splitting, bearing failure and net section tension 

rupture were the most common failure modes observed in these single fastener studies. 

Bolted connections are frequently used on site due to their efficient assembly. The most 

commonly used CFS bolted connections consist of: 1) beam-to-column joints with gusset plate 

or apex joints used in portal frames and low-storey buildings (Figure 2.14(a)); 2) bolted 

connections used in truss elements (Figure 2.14(b)), and 3) sleeve or overlapped connections for 

beam-to-beam or purlins (Figure 2.15). 

 

(a)     (b) 

Figure 2.14. (a) Beam-column connection with stiffeners (Sabbagh et al. 2013) and(b) CFS truss 

bolted connection (Zaharia and Dubina 2006)  

 

(a)      (b) 

Figure 2.15. (a) Sleeve and overlapped connections (Yang and Liu 2012, Zhang and Tong 2008) and 

(b) Details of apex joint (Lim and Nethercot 2003) 

Design guidelines for CFS connections are limited to their fundamental strength prediction of 

bolted fastenings (CEN 2005d, AISI 2007). These design rules for individual fastenings have 

been typically developed from test data with limited ranges of material properties and 

geometrical dimensions (Bryan 1993, Fisher 1964, Rogers and Hancock 1998, Teh and Yazici 

2013) and therefore, should be carefully used in design and construction. While it is important 



Chapter 2. Literature review 

25 

to assess the load carrying capacity of connections, it is also crucial to examine the stiffness and 

deformation characteristics of CFS connections. The local carrying capacity and deformation 

characteristics of CFS sleeve joints or overlapped connections (Gutierrez et al. 2011, Ho and 

Chung 2006, Liu et al. 2015a, Liu et al. 2015b, Yang and Liu 2012), CFS apex joints (Elkersh 

2010, Lim and Nethercot 2004a, Lim and Nethercot 2004b, Lim and Nethercot 2003, Ozturk 

and Pul 2015) and bolted moment resisting connections have been investigated through 

experiments. Analytical formulas have also been proposed to predict the load-displacement 

curve and rotational stiffness (Bučmys and Daniūnas 2015, Bučmys and Šaučiuvėnas 2013). 

The behaviours of connectors in CFS storage racks were examined experimentally and 

numerically by researchers (Baldassino and Bernuzzi 2000, Bernuzzi and Castiglioni 2001, 

Gilbert and Rasmussen 2010, Markazi et al. 1997, Shah et al. 2016, Yin et al. 2016). 

Nevertheless, analytical and experimental investigations on the monotonic and cyclic behaviour 

of bolted moment resisting connections in CFS construction are still limited. Uang et al (Uang et 

al. 2010) presented an experimental study on joints, where double channel beams were 

connected to HSS columns. The beams were directly connected to the column only with bolts 

but without any other components as shown in Figure 2.16(a). A ductile yielding mechanism 

was achieved through the inelastic action of bolt slippage and bearing in the sheets. A model to 

simulate the cyclic behaviour of the connection was proposed. However, the width-to-thickness 

ratios were limited strictly to prevent the local buckling in the vicinity of connections. Although 

a relatively high ductility was achieved, this was at the expense of a reduction in rotational 

stiffness.  

Sabbagh et al. (Sabbagh et al. 2013, Sabbagh et al. 2012b) demonstrated that both high 

rotational stiffness and ductility could be achieved by using cross-sections with curved flanges 

(also see Figure 2.14). This was also studied and proved by other researchers (Serror et al. 2016). 

Also, vertical and horizontal stiffeners were used to prevent pre-mature buckling along the 

connection as shown in Figure 2.16(b) and moment-rotation behaviour with and without 

slippage were observed. The main disadvantage of the sections examined by Sabbagh et al. is 

that the curved-flange cross-sections are hard to manufacture and the additional welding work 

of the stiffeners creates a problem for fast and large-volume production of CFS products.  
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                (a)       (b) 

Figure 2.16. (a) connection presented by Uang et al. (Uang et al. 2010) and (b) by Sabbagh et al. 

(Sabbagh et al. 2012b) 

 Optimisation of CFS elements 2.5

CFS sections can be manufactured in a wide range of cross-sections and, therefore, identifying 

the optimised cross-sectional shapes for CFS elements is of great interest to both manufactures 

and designers. Optimisation of CFS profiles is a complex process since the strength of CFS 

members composed of thinner plates are determined by local, distortional, and global buckling 

modes and their interactions.  

Early research on the optimisation of cold-formed steel sections started by Seaburg and Salmon 

(Seaburg and Salmon 1971) with the minimum weight design. In their research, cold-formed 

hat-shaped sections were optimised according to the steepest descent method. Later, Adeli and 

Karim (Adeli and Karim 1997) optimised hat, I- and Z-shapes cross-sections using the neutral 

network method. Lee et al. (Lee et al. 2005b, Lee, Kim and Park 2006b) investigated the 

optimum design of channel beams and columns by using the micro genetic algorithms. Tian and 

Lu (Tian and Lu 2004a) investigated the minimum weight of the cold-formed C-channel 

sections with and without lips with a fix coil width subjected to a prescribed axial compressive 

load. Toward this, they have developed a simple optimisation procedure that assumes the 

simultaneous occurrence of all failure modes in a minimum weight structure. Different failure 

modes including yielding, flexural buckling, torsional-flexural buckling, and local buckling 

were considered, while the failure criterion was based only on the compressive strength. The 

accuracy of the developed analytical procedure was confirmed through experimental tests on the 

optimised C-sections with and without lips. In another study and using micro genetic algorithm 

(MGA), Lee et al. (Lee et al. 2006a) found the optimum design of CFS channel cross-sections 

with and without lips under axial compression. The optimum design formulation of CFS 

columns is derived based on the AISI specification (AISI 2001). The optimum results of 

different parameters were presented in the form of the design curves for different axial loads 

and column lengths. 
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Nevertheless, these research studies focused on the optimisation of the geometrical dimensions 

of conventional cross-sections and the solution space of other prototypes has not been 

considered. Thus, optimal solutions may not have been necessarily achieved.  

In past studies, the strength capacities of selected prototypes were either determined using the 

conventional “effective width method” ((CEN 2005b,  AISI 2007, Von Karman et al. 1932) or 

the more recently developed “direct strength method” (DSM) (AISI 2007) (e.g. by using finite 

strip method (FSM)) (Li and Schafer 2010b, Schafer 2006). Leng et al. (Leng et al. 2011) 

combined the DSM with the gradient-based steepest descent method as well as genetic and 

simulated annealing algorithms to obtain CFS sections with maximum capacity and their work 

resulted in the free-form sections shown in Figure 2.17. Gilbert et al. (Gilbert et al. 2012), and 

Moharrami et al. (Moharrami et al. 2014) conducted similar research while modified their 

optimisation algorithms to search for the minimum of the local, distortional and global buckling 

stress. The resulting shapes, although exhibiting significant improvement in strength, require 

very high manufacturing costs. Leng et al. (Leng et al. 2014) extended their previous works by 

incorporating constraints on the number of bent rollers, which resulted in reduced 

manufacturing costs. Additional work on the combination of DSM (Direct Strength Method) 

and GA (Genetic Algorithm) can be found in other references (Kumar and Sahoo 2016, Madeira 

et al. 2015, Wang et al. 2016a, Wang et al. 2016b). 

 

Figure 2.17. Optimal cross sections found by using GA and DSM (Leng et al. 2011) 

Sabbagh et al. (Sabbagh et al. 2012a) investigated the efficiency of six different shapes of CFS 

beams cross-sections (Figure 2.18) analytically. The results demonstrated that the strength and 

ductility of the CFS sections can be significantly improved through the introduction of bent 

rollers (from section 1 to section 6 in Figure 2.18). For example, Figure 2.19 shows that the 

premature buckling behaviour can be delayed by using the curved cross-sections. Nevertheless, 

curved cross-sections are difficult to manufacture and connect to other structural and non-

structural elements such as floor systems and more practical shapes should be developed. 
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Figure 2.18. Evolution of CFS cross-sections by adding bents (Sabbagh et al. 2012a) 
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Figure 2.19. Moment-rotation behaviour of the CFS cross-sections (Sabbagh et al. 2012a) 

Optimising the dimensions of cross-sectional shapes of the CFS elements can increase their 

ultimate strength. However, the limitation is that the known DSM strength equations were 

originally developed for pre-qualified beams or column sections, and were not validated 

(numerically or experimentally) for the design of more complex profiles. Therefore, for 

practical optimisation of non-predefined (or general) sections there is a need to develop suitable 

methods by considering manufacturing and construction constraints. Moreover, the optimisation 

of CFS cross-sectional shapes based on the buckling strength may not always optimise their 

energy dissipation capacity and ductility, which are especially important for seismic design 

applications. 

 CFS structural system 2.6

There are a number of structural systems available in the CFS construction, such as CFS truss 

roofs, CFS shear/stud wall system, CFS portal frame, CFS moment-resisting system and some 

other innovative structural forms (Dao and van de Lindt 2013). 

The shear/stud wall structures have been widely used in residential buildings and frames 

composed of shear/stud walls can be used for multi-story buildings. A great number of 

experimental studies have been conducted to investigate their shear performances under lateral 

loading scheme. Fülöp and Dubina (Fulop and Dubina 2004) conducted a full-scale shear test on 

a CFS stud wall system with various configurations like diagonal strap braces, door openings, 

sheathing with corrugated sheet or Oriented Strand Board (OSB). The tested results show that 

the hysteretic behaviour is characterised by significant pinching and reduced energy dissipation. 
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Similar research on the behaviour of sheathed stud wall was carried out in other research as well 

(Lin et al. 2014, Miller and Pekoz 1994, Pan and Shan 2011, Serrette et al. 1997). In more 

recent studies by Ye et al. (Ye et al. 2015, Ye, Wang and Zhao 2016c), the effects of sheathing 

material, stud dimensions, stud spacing and fastener spacing were investigated extensively. The 

behaviour of CFS shear walls comprising single and double-sided steel sheathing was examined 

experimentally by Mohebbi et al. (Mohebbi et al. 2015). In this research study, the failure 

modes of sheathing-to-frame connection failure and stud buckling were observed in detail. It 

was also found that the sheathing screw failure with a bearing type led to higher energy 

dissipation. Mohebbi et al. (Mohebbi et al. 2016) also conducted experiments on the seismic 

behaviour of steel sheathed CFS stud walls cladded by gypsum and fibre cement boards. 

Different types of cladding boards were combined with steel sheathing and it was observed that 

the use of cladding can lead to a safer and more efficient design and to an increased energy 

dissipation capacity.  

The dynamic behaviour of single and double story steel-sheathed CFS framed shear walls was 

examined experimentally by Shamim et al. (Shamim et al. 2013). Wang and Ye (Wang and Ye 

2016) conducted cyclic tests on two and three story CFS shear-walls with reinforced end studs 

and reported a very good performance in terms of shear strength and energy dissipation capacity. 

Dao and Lindt (Dao and van de Lindt 2014, Dao and van de Lindt 2013) used an experimentally 

validated numerical model to study the seismic performance of CFS V-braced buildings and 

found that the buildings performed very well compared with the required performance criteria at 

the global level.  

Schafer et al. (Nakata et al. 2012, Schafer et al. 2016) conducted a full-scale shake table test on 

CFS framed buildings. The experimental work was accompanied by an extensive numerical 

study and addressed various research issues, including: stud wall testing, characterisation, and 

modelling; cyclic beams and columns testing, characterization, and modelling; CFS screw 

connection testing, characterisation and modelling and whole building shake table testing, and 

modelling. Their research shows that it is essential to used more detailed numerical models to 

simulate the behaviour of full-scale CFS building system subjected to seismic load. 

As discussed above, the use of CFS stud wall systems to develop a higher shear resistance is 

common practise. However, stud wall system restricts the architectural flexibility, reduces open 

spaces and limits future planning modification. An alternative to CFS shear walls is the use of 

CFS portal frames that solely composed of fully CFS beams, columns and moment-resisting 

connections. CFS portal frames are being used more frequently and therefore, research on their 

structural performance is increasingly being undertaken. The ultimate strength of CFS sub-

frames was investigated by Lim and Nethercot (Lim and Nethercot 2004a, Lim and Nethercot 

2003), and Yu et al (Yu et al. 2005). Dundu (Dundu 2011) investigated the design approach for 
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CFS portal frames. The design of beams, columns and beam-columns were discussed by using 

the effective width method while recommendations were made for the design of CFS bolted 

moment-resisting connections. The limit of deflection of the frames was also discussed. Phan et 

al. (Phan et al. 2011) optimised the topology of CFS portal frames using Genetic Algorithm. 

The effect of wind action was investigated whereas serviceability limit state was not taken into 

consideration. Kim et al. (Rasmussen et al. 2016) and Zhang et al. (Zhang et al. 2015) 

developed a beam finite element method that enables the consideration and effect of 

local/distortional buckling deformations. It was realized that the development of 

local/distortional buckling reduces the stiffness of CFS members. The results were verified 

through the use of a shell based finite element method. Following the development of the 

element, second-order effects in locally and/or distortionally buckled frames were investigated 

by Zhang et al. (Zhang et al. 2016a) to more accurately capture the true deformations and 

internal forces and moments of the portal frames. Subsequently, an experimental program was 

conducted (Zhang et al. 2016b) to investigate the structural behaviour of CFS portal frames 

subjected to the occurrence of local/distortional buckling prior to global sway buckling. A 

critical evaluation was made on the accuracy of existing design guidelines to predict the 

ultimate strength of the frames tested.  

The stressed skin diaphragm action in CFS portal frame was investigated by Wrzesien et al. 

(Wrzesien et al. 2015) using experimental tests. Two types of joints with and without roof 

sheeting were used in the CFS frames. It was shown that due to the stressed skin action 

developed in the CFS frame, the internal portal frame with roof sheeting resisted about three 

times more lateral load than the bare frame and the deflection of the internal frame was reduced 

by 90% when compare to the bare frame in terms of serviceability limit state. Optimisation of 

CFS portal frame taking into account of the stressed skin diaphragm action was conducted by 

Phan et al. (Phan et al. 2015), who concluded that the material cost of a frame can be reduced by 

up to 53% when considering the stressed-skin action. 

The behaviour of CFS moment-resisting frame with concrete filled CFS column and CFS back-

to-back beams was investigated under cyclic load (Sabbagh et al. 2010). The tested CFS 

moment-resisting frames showed satisfactory seismic performance subjected to lateral cyclic 

load. In another study by Johnston et al. (Johnston et al. 2015a, Johnston et al. 2015b) , the 

collapse behaviour of CFS portal frames subjected to elevated temperatures was investigated. 

The test and numerical results showed the importance of connection rigidity in the modelling of 

CFS frame under fire. 

CFS trusses are commonly used structural forms for constructing light-weight floors and roofs 

of portal frame structures. The optimisation of CFS space structures was conducted firstly by 

Tashakori and Adeli (Tashakori and Adeli 2002), who considered strength, stability and 
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serviceability limits in their design approach. A flat-panel double layer grid structure and a 

spherical double layer space truss were optimised by the authors using the devised methodology. 

A neural dynamics model has been used as the optimisation algorithm for the minimum weight 

design. An experimental study on a truss assemblage and its composed pin-joints were tested by 

Mathieson et al. (Mathieson et al. 2016) and a good agreement was achieved between the 

experimental results and the finite element modelling in terms of stiffness. 

 Summary 2.7

From the review of the literature discussed above, the following research needs were identified 

and will be addressed in more detail in the following chapters: 

 It is apparent that the flexibility in the manufacturing of CFS sections allows the 

development of innovative shapes with improved resistance to local and distortional 

buckling. CFS sections can be stiffened by using intermediate stiffeners, edge stiffeners 

and increasing the folds among cross-sections. In addition, exploiting the composite 

action between CFS elements and other materials such as wood, bamboo and concrete 

can assist in developing a more economic design of CFS sections. However, the 

manufacturing and constructional restraints should be taken into account when 

innovative cross-sections are developed. 

 Understanding and studying the main aspects of structural behaviour, advantages and 

deficiencies of CFS sections is a first step to improve their performance and efficiency. 

Therefore, prior to the optimisation of different cross-sectional shapes of CFS sections, 

it is essential to develop a procedure that can be used for the design of CFS sections. 

Both the effective width concept and the DSM can be used for the optimisation of CFS 

members. However, the sections should be predefined for the design procedure. 

 The results of several studies indicated that optimising the profiles of CFS cross-

sections based on their inelastic post-buckling behaviour can offer a great potential to 

improve the seismic performance of CFS framing sub-structures and full-scale systems. 

 More practical cross sectional shapes should be developed to allow easier on-site 

connections by taking the manufacturing and construction factors into consideration. In 

addition, advanced numerical models should be developed to simulate the inelastic and 

cyclic behaviour of bolted connections with and without slippage so as to more 

accurately capture the behaviour of CFS connections. 

 The optimisation of CFS cross-sectional shapes based on the buckling strength may not 

always optimise their energy dissipation capacity and ductility, which are especially 

important for seismic design applications. 
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 The research on seismic behaviour of CFS truss and frame system is still limited. At the 

same time, CFS buildings with longer span and more flexible layouts are in demand for 

people’s requirements. Therefore, more research should be conducted on CFS bare 

frame and frame system considering the effect of cladding and stressed skin diaphragm 

action. 
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This chapter reports on the results of an investigation pertaining on the optimal design of cold-

formed steel (CFS) columns with respect to their maximum compressive strength. A total of 10 

channel cross-section were considered and their geometrical dimensions were optimised in pin-

ended columns with three different length; 1m, 2m, and 3m. In the optimisation procedure, the 

thickness and total coil width were retained to be constant. In order to comply with the 

manufacturing and constructional restraints, the selected prototypes and optimisation process 

satisfy the requirements of Eurocode 3 (EC3). The cross-sectional properties and flexural 

strength of the sections was determined based on the effective width method suggested in EC3, 

while the optimisation process was performed using particle swarm optimisation method. The 

flexural strength of the optimised sections were also obtained using the nonlinear finite element 

(FE) analysis and the results were compared with those of effective width method suggested in 

EC3.  
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 Introduction 3.1

There have also been a few studies on optimisation of cross-section of CFS columns. Literature 

review on the optimisation of CFS columns can be found in Section 2.5. As pointed out in 

Section 2.7. despite some research on size optimisation of CFS column with C-sections, no 

single research included the domain of all channel cross-sections commonly manufactured and 

used in construction industry. As a result, this study was aimed at optimising the geometrical 

dimensions of all manufacturable C-shape cross-sections (i.e. with and without lip and 

intermediate stiffeners). For the optimisation, all the sections were considered to have a fix coil 

width and thickness while the optimisation was performed based on the load capacity obtained 

following the provisions of effective width method suggested in EC3 (CEN 2005b). The 

optimised solutions were arrived using particle swarm optimisation (PSO) method while the 

results was also validated using the nonlinear FE analysis. To facilitate the procedure, both the 

optimisation and strength calculation were performed using a program developed in Matlab 

(Mathworks 2011, Appendix A.1). 

 Design of CFS columns based on EC3 3.2

It is clear according to EC3 that calculation of the effective properties requires an iterative 

procedure and the round corner effects are essential for consideration. In the optimisation 

process, the axial capacities of the sections were calculated according to the effective width 

method provisions of EC3. To provide a better illustration of the method, a summary of the 

requirements of this guideline in order to design CFS structural members under critical buckling 

conditions is provided in the following. 

3.2.1  Design for local buckling 

The local buckling design of CFS members are addressed in EC3 using the effective width 

concept, first proposed by Von Karman (Von Karman et al. 1932). It recognizes the fact that 

local buckling of the plates constituting the cross-section has the effect of shifting the load-

bearing stresses towards the corner zones, while the central parts of the plates become less 

effective in carrying load. The cross-section is consequently idealized with the “effective cross-

section” as shown in solid black line in Figure 3.1. This effective area is assumed to carry the 

full compressive load applied to the section.  
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       (a)                       (b) 

Figure 3.1. Effective area of (a) a plain C channel; and (b) a lipped channel with stiffener 

3.2.2  Design for distortional buckling 

Distortional buckling is considered as flexural-torsional buckling of plate subassemblies and 

therefore requires in-plane movement as well as out-of-plane movement of one or more plates. 

This is naturally accompanied by the intersecting lines of certain plates undergoing 

displacements out of their original positions, unlike what happens in local buckling. While EC3 

accounts for local buckling by a reduction of the effective width of the constituent plates, 

distortional buckling is taken into account by reducing the effective plate thickness. The elastic 

distortional buckling stress, necessary for the calculation of a distortional slenderness, is thereby 

obtained from a simplified model where the restraining effect of the adjacent plates is simulated 

by elastic springs as illustrated in Figure 3.2. 

 

 

Figure 3.2. Flange and web models of a lipped channel section for distortional buckling 

calculations. 
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3.2.3 Design for global buckling 

The design a CFS column for global buckling in EC3 requires the determination of the global 

slenderness, c  which is defined as 

  
eff y

c
cr

A f

N
 (3.1) 

where crN  is the minimum of the elastic flexural, torsional or flexural-torsional buckling loads 

based on the gross cross-section. It should be noted that the slenderness is calculated using the 

effective area of cross-section, effA  to account for local-global interaction buckling (i.e. the fact 

that local/distortional buckling erodes the global buckling stiffness). 

3.2.4 The shift of the effective centroid 

For a section lacking double symmetry, the centroid of the gross section and that of the effective 

section generally would not match, as depicted in Figure 3.1. A pin-ended column with a load 

applied at the centroid of the gross section will therefore sustain an additional bending due to 

the shift of the effective centroid once the local/distortional buckling takes place. EC3 accounts 

for this through an interaction equation for an axial force N  combined with a moment of 

 NM N e , where Ne  is the shift of the effective centroid. However, this phenomenon is not 

observed in a fixed-ended column as the shift in the line of action of internal force is balanced 

by a shift in the line of action of external force (Young and Rasmussen 1999). Hence, local 

buckling in a fix-ended column would not produce any extra bending. According to EC3, the 

axial force, sN  in a column without any external bending moment is defined by  
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where ,b RdN  is the buckling resistance of a compression member according to the flexural- 

torsional or torsional-flexural buckling depending on the relative slenderness and ,b RdM  

represents the design cross-section and member bending moment resistance of the weak axis 

and based on the effective bending properties. Also, Ne  is the shift of the centroidal axes as 

shown in Figure 3.1.  
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 Particle Swarm Optimisation method 3.3

The objective of the optimization was to maximize the bending capacity of CFS beams 

according to EC3, subjected to the design constraints and practical limitations listed in Table 1. 

Due to the high nonlinearity of the problem, a Particle Swarm Optimisation (PSO) method was 

adopted. PSO is a population-based algorithm, which is inspired by the swarming behaviour of 

biological populations such as flocks of birds or schools of fish. The mechanism has some 

parallels with evolutionary computational techniques, such as Genetic Algorithms (GA). An 

initial population of solutions is randomly selected, but unlike GA, solutions are optimised by 

updating generations without any evolution operators such as crossover or mutation. The 

potential solutions in PSO, called particles, move in the problem space by following the current 

optimum particles. This usually leads to a better efficiency in terms of computational time and 

cost and, therefore, a faster convergence rate compared to GA (Hassan et al. 2005, Jeong et al. 

2009). Also, the required parameters in the PSO is less than those in the GA (Beghi et al. 2012). 

PSO is inspired by the swarming behaviour of biological populations such as flocks of birds or 

schools of fish. An initial population of solutions is randomly selected and the solutions are 

optimised by updating generations without any evolution operators such as crossover or 

mutation (unlike GA). The potential solutions in PSO, called particles, move in the problem 

space by following the current optimum particles to search for the global optimal solution. A 

swarm is comprised of N particles moving around a D-dimensional search space, in which each 

particle represents a potential solution to the optimisation problem. The position and velocity 

vectors of i
th
 particle are  1 2, ,..., ,...,    i i i ij iD  and  1 2, ,..., ,...,i i i ij iDV v v v v , 

respectively，where 1,2,3,...i N . In each iteration step, the i
th
 particle updates its position and 

velocity based on a combination of its personal best position over its history, and the position of 

the particle within the swarm with the best position in the previous iteration. This can 

mathematically described as: 

    1
1 1 , 2 2/ /             k k k k k k

i i best i i best iV w V c r P t c r G t  (3.3) 

 1 1    k k k
i i iV t  (3.4) 

where the subscripts i and k denote the particle and the iteration number, respectively. t  is the 

time increment.  , 1 2, ,..., ,...,best i i i ij iDP p p p p  represents the best position of the i
th
 particle 

over its history up to iteration k, while  1 2, ,..., ,...,best j DG g g g g  shows the position of the 

best particle in the swarm in iteration k. The cognitive parameter 1c  indicates the degree of 

confidence in the solution Pbest,i obtained from each individual particle. The constant parameter 

2c  is a social parameter to reflect the confidence level that the swarm as a whole has reached a 
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favourable position. In addition, 1r  and 2r  factors are two independent random numbers 

uniformly distributed between 0 and 1, adding a random searching aspect within the feasible 

region. Finally w  is the inertial weight factor used to preserve part of the previous velocity of 

the particles to improve the convergence of the optimisation process.  

 Optimisation procedure 3.4

3.4.1 Problem definition 

This study was aimed at optimising the CFS columns with different length. A total of 10 cross-

sections were considered as the prototypes, as illustrated in Table 3.1. This table also 

summarizes the optimisation variables and constraints corresponding to each prototype. These 

shapes were selected considering the manufacturing and construction restraints. Each cross-

section was optimised individually with respect to its axial capacity determined according to 

EC3. All the limitations prescribed by EC3 on the slenderness values and the relative 

dimensions of the plate components in the cross-section were thereby taken into account as 

constraints on the optimisation problem in addition to a constant thickness of 1.5t mm  and a 

total coil width of 341l mm  for all prototypes. The optimised prototype with the maximum 

capacity then represented the overall optimum solution. The results of optimisation were also 

compared to a standard CFS cross-section (BW C17515) with the same total coil width and 

thickness as shown in Figure 3.3. The radius of all round corners, elastic modulus and Poisson’s 

ratio were assumed as 3 mm , 210 GPa  and 0.3 , respectively. The steel yield strength was 

considered to be 450yf MPa . the optimisation problem can be formulated as a minimisation 

problem, defined by  

 
min    , , 0min , , /   s b Rd c Rd Mf x N N N   

 min max iu x u   for  1, ...,i N  

(3.5) 

where  f x  is the design moment resistance of a column. sN  is the axial member resistance 

considering shift of centroid as described in Sections 3.2.4, ,b RdN  and ,c RdN  are the resistance 

of member and cross-section, respectively. Also, 
0

M  is the partial factor in ultimate limit state. 

It is worth mentioning that the inelastic reserve capacity is always taken into account according 

to EC3 when calculating the bending resistance. For each variable, ix , the lower and upper 

bounds, minu  and maxu  respectively, are considered according to EC3 as summarised in Table 

3.1. 



Chapter 4. Optimum design of CFS beams using Particle Swarm Optimisation Method 

39 

The sections were optimised for three different lengths (1, 2, and 3m). The effective lengths for 

bending and torsion were assumed to be identical. The optimisation was carried out for a pin-

ended column with warping allowed at the ends. This boundary condition considers the effect of 

the shift in effective centroid by using a beam-column interaction equation as described in 

Section 3.2. 

Table 3.1. Optimisation prototypes, variables and constraints 

Prototype 
Prototype 

section 
Design 

variables 
Constraints based 

on EC3 minu
 maxu

 
Comments 

① 

b

h

b  

x=b/L 
b/t≤50 

h/t≤500 
0 0.220 

EN1993-1-
3 Clause 

5.2 

② 

b

R
×

h
h

b

s

θ
1

 

x1=b/L 

x2=R 

x3=θ1 

x4=s 

b/t≤50 

h/t≤500 

0.1≤R≤0.9 

π/6≤θ1≤π/2 

10≤s≤20 

0 

0.1 

π/6 

10 

0.220 

0.9 

π/2 

20 

EN1993-1-
3 Clause 

5.2 

③ 

b

h
R

×
h

R
×

h

b

s

s

θ
1

θ
1

 

x1=b/L 

x2=R 

x3=θ1 

x4=s 

b/t≤50 

h/t≤500 

0.1≤R≤0.4 

π/6≤θ1≤π/2 

10≤s≤20 

0 

0.1 

π/6 

10 

0.220 

0.4 

π/2 

20 

EN1993-1-
3 Clause 

5.2 

④ 

 

x1=c/b 

x2=b/L 

0.2≤c/b≤0.6 

b/t≤60 

c/t≤50 

h/t≤500 

0.2 

0 

0.6 

0.264 

EN1993-1-
3 Clause 

5.2 

⑤ 

b

h

b

c

c

θ1

θ1

 

x1=c/b 

x2=b/L 

x3=θ1 

0.2≤c/b≤0.6 

b/t≤60 

c/t≤50 

h/t≤500 

π/4≤θ1≤3/4π 

0.2 

0 

π/4 

0.6 

0.264 

3/4π 

EN1993-1-
3 Clause 

5.2 

⑥ 

R
×

h
h

c

b

c

s

θ1

θ1

θ
2

 

x1=c/b, 
x2=b/L 

x3=R 

x4=θ1 

x5=θ2 

x6=s 

0.2≤c/b≤0.6 

b/t≤60, c/t≤50 

h/t≤500 
π/4≤θ1≤3/4π 

π/6≤θ2≤π/2 
0.1≤R≤0.9 

10≤s≤20 

0.2 

0 

0.1 

π/4 

π/6 

10 

0.6 

0.264 

0.9 

3/4π 

π/2 

20 

EN1993-1-
3 Clause 

5.2 

b

h

b

c
c
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Prototype 
Prototype 

section 
Design 

variables 
Constraints based 

on EC3 minu
 maxu

 
Comments 

⑦ 

b

c

h
R

×
h

R
×

h

s

s
θ

2
θ

2

θ1

θ1

b
c

 

x1=c/b, 
x2=b/L 

x3=R 

x4=θ1 

x5=θ2 

x6=s 

0.2≤c/b≤0.6, b/t≤60 

c/t≤50, h/t≤500 

π/4≤θ1≤3/4π, 
π/6≤θ2≤π/2 

0.1≤R≤0.4, 10≤s≤20 

0.2 

0 

0.1 

π/4 

π/6 

10 

0.6 

0.264 

0.4 

3/4π 

π/2 

20 

EN1993-1-
3 Clause 

5.2 

⑧ 

b

h

c

d

θ1

b

c

d

θ
1

 

x1=c/b 

x2=d/b 

x3=b/L 

x4=θ1 

0.2≤c/b≤0.6, 
0.1≤d/b≤0.3 

b/t≤90, c/t≤60 

d/t≤50, h/t≤500 

π/4≤θ1≤3/4π 

0.2 

0.1 

0 

π/4 

0.6 

0.3 

0.264 

3/4π 

EN1993-1-
3 Clause 

5.2 

⑨ 

 

x1=c/b 

x2=d/b 

x3=b/L 

x4=R 

x5=θ1, x6=θ2 

x7=s 

0.2≤c/b≤0.6, 
0.1≤d/b≤0.3 

b/t≤90, c/t≤60 
d/t≤50, h/t≤500 
π/4≤θ1≤3/4π 

π/6≤θ2≤π/2 

0.1≤R≤0.9 

10≤s≤20 

0.2 

0.1 

0 

0.1 

π/4 

π/6 

10 

0.6 

0.3 

0.264 

0.9 

3/4π 

π/2 

20 

EN1993-1-
3 Clause 

5.2 

⑩ 

b

c

R
×

h
R

×
h

h

θ1

d

s

s

θ
2

b

c

θ
1

dθ
2

 

x1=c/b 

x2=d/b 

x3=b/L 

x4=R 

x5=θ1, x6=θ2 

x7=s 

0.2≤c/b≤0.6, 
0.1≤d/b≤0.3 

b/t≤90, c/t≤60 
d/t≤50, h/t≤500 
π/4≤θ1≤3/4π 

π/6≤θ2≤π/2 
0.1≤R≤0.4 

10≤s≤20 

0.2 

0.1 

0 

0.1 

π/4 

π/6 

10 

0.6 

0.3 

0.264 

0.4 

3/4π 

π/2 

20 

EN1993-1-
3 Clause 

5.2 

In the optimisation process, the starting point was set to be the commercially available C 

channel section, as shown in Figure 3.3. However, it also allowed for the more complex double 

edge folds, inclined edge folds and intermediate stiffeners. In addition, the effects of intersection 

angle and side length of intermediate stiffeners (ranged from 6  to 2  and 10 to 20 mm, 

respectively) were taken into account as constraints in the optimisation. Other constraints 

include the limits on the ratios of the plate width to thickness, relative dimension ratios, and 

internal angle of edge stiffeners 

 

Figure 3.3. Standard CFS column section (BW C17515) with the total coil length of 341mm 

b

h

c

d

θ1

b

c

d

θ
1

R
×

h

s

θ
2

 64

1
9

1
9

64

1
7
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3.4.2 Optimised results and comparison 

To facilitate the optimisation procedure, both optimisation algorithm and strength calculation 

were performed using a program developed in Matlab (Mathworks 2011, Appendix A.1). In the 

optimisation process, the population of particle swarm was taken as 100, and the same number 

was also used for iterations except for prototypes ⑨ and ⑩ where the program ran for 160 

iterations to obtain the optimum value. The maximum and minimum inertia weight factors in 

the PSO were 0.95 and 0.4, respectively. For optimisation, each of the pre-defined prototypes 

was run three times and the results with maximum compression capacity were chosen as the 

optimal cross-section. The selected prototypes were aimed at investigating the effect of 

geometrical details and positions of edge and intermediate stiffeners.  

Table 3.2 compares the axial capacities and geometric properties of the optimised cross-section 

are compared with those of the standard cross-section. Also, a schematic illustration of the 

optimised cross-sections for columns with three different lengths is provided in Table 3.3 where 

thick black lines represent the fully effective parts and lines with intermediate thickness indicate 

those have been reduced to consider for the distortional buckling of edge and intermediate 

stiffeners. The thin blue lines signify the ineffective portions of the cross-section. EC3 

determines the effective cross-sections under the axial load and the moment resulted from the 

shift of the centroid separately. Under a pure axial load, the effective areas of the optimal cross-

sections are listed under the column with symbol “A” in Table 3.3. The shift Ne  has significant 

effect on the resistance of the members. According to EC3, the effect of the shift in the centroid 

should be considered by controlling the worse scenarios of shifting on both direction (i.e. 

towards the web or edges). These two cases were determined in column B1 and B2 of for the 

edge stiffeners and the web part under compression, respectively.  
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Table 3.2. Comparison of the geometrical dimensions and axial capacity of the optimised sections 

with the standard section 

Prototypes 
Length 

(m) 

h 

(mm) 

b 

(mm) 

c 

(mm) 

d 

(mm) 

s 

(mm) 

θ1 

(deg) 

θ2 

(deg) 

Corner  

radius 

Optimal 

 strength 

(kN) 

Standard 

1  175 64   19  - -   - -  -  71.4 

2  175 64   19  - -   - -  -  52.1 

3  175 64   19  - -   - -  -  33.2 

① 

1  210  65  -  -  -  -  - -  55.3 

2  191  75  -  -  -  -  - -  40.3 

3 191   75  -  -  -  -  - -  26.1 

② 

1  176 75  - -   10  30  -  0.5 65.6 

2  176 75  -  -  10  30  -  0.5 51.5 

3  176 75  -  -  10  30  -  0.5 35.7 

③ 

1  159  75  - -   15  55 -   0.302 86.5 

2  172 75   - -   15  90  - 0.297  57.4 

3  172 75   - -   15  90  - 0.297  35 

④ 

1  132 65   39  -   -   90 -    -  102.1 

2  132 65   39  -   -   90 -    -  71.1 

3  132 65   39  -   -   90 -    -  42.6 

⑤ 

1 140  63  38 -  -  105   - -  102 

2 145  61  37  -  -   110 -  -  73.9 

3 150   60  36 -  -   120 -  -  46.3 

⑥ 

1 154   51  30 -  20  100 45   0.5  113.7 

2  159 54  33  -  14   110  90 0.5  79.1 

3  154  55 33     20  120  90 0.5  47.6 

⑦ 

1  136 50  30     20  115  55 0.287  135.2 

2  147  54  32    20  120  90 0.3  81.5 

3  145 54  33     20  120  90  0.297 49.5 

⑧ 

1  113 60  36   18 -   90 -   - 118.2 

2  128  59 35  13  -  90  -   - 73.9 

3 135  59  35  9   - 90  -   - 42.8 

⑨ 

1 94   60 36   18  20  90  70  0.5 148.7 

2 110   58 35  16  20  90   90  0.5 90.5 

3  104  59  36 18   20  90  90 0.5  47.7 

⑩ 

1 102 58 35 15 20 90 90 0.267 140.6 

2 103 58 35 14 20 90 90 0.32 76.1 

3 94 59 35 18 20 90 90 0.32 39.3 

 

 

 



Chapter 4. Optimum design of CFS beams using Particle Swarm Optimisation Method 

43 

 

 

 

Table 3.3.Effective cross-sections of optimised sections under compression and flexural moment 

Prototype 
L=1m L=2m L=3m 

A B1 B2 A B1 B2 A B1 B2 

① 

   

  

 

  

 

② 

         

③ 

   

      

④ 

         

⑤ 

   

   

   

⑥ 

   

   

   

⑦ 

   

      

⑧ 

   

 

 

 

   

⑨ 
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⑩ 

      

 

 

 

 

For the plain channel of prototype ①, the effective portions of both web and flange are quite 

small signifying the weakness of this cross-section under local buckling. As a result, a 

significant shift of centroid was observed in this section. Iteration procedures of the centroidal 

axes in order to calculate the effective properties of the plated assemblies are important in this 

prototype since it is sensitive to the shift value of centroid, Ne . Adding intermediate stiffener to 

this plain channel section can increase the axial capacity by up to 56% as observed in prototypes 

② and ③. However, this increment was not so significant for the 3m long columns. This can 

be attributed to the fact that adding intermediate stiffeners can increase the effective portions of 

the plates, improving local buckling strength for short columns whereas, the increased effective 

portions in web exacerbated the shift of centroid, which may decrease the axial compressive 

resistance of long columns. 

As indicated by the effective cross-sections of prototypes ④ and ⑤, the length of lips tends to 

be around 60% of the flange width which is identical to the allowed value in EC3. This can 

increase the moment of inertia of the edge stiffeners, providing more spring stiffness to prevent 

distortional buckling. In addition, changing the inclined angle of the edge stiffeners can result in 

keeping the centroid in its initial position and increasing the second moment of area to achieve 

high elastic critical buckling resistance for longer columns as observed from prototype ⑤ in 

which the inclined angle increased with the column length. However, angle of lips has just little 

effects on the ultimate resistance of columns. Introducing the web stiffeners in prototypes ⑥ 

and ⑦ resulted in reducing the flange width in these prototypes compared with prototype ⑤. 

Since the axial capacity of the columns is calculated based on the effective cross-sectional area 

and a reduction factor related to the relative slenderness ratio, it is governed by the interaction 

of the local and global buckling according to EC3. The stiffeners in the web can significantly 

improve the local buckling strength of the web plates. However, this will cause the shift of 

centroid and changes the gross cross-sectional properties which relates to the global buckling 

behaviour. 

With introducing the web stiffeners, the cross-sections of prototypes ⑨ and ⑩ showed to 

arrange themselves to a more stocky effective property. The flanges of these two cross-sections 

could be fully effective with narrower plates (smaller relative slenderness). However, the 

flanges adjusted to be wider to provide more effective portions toward the side of lips, 

preventing the centroidal axis of the effective cross-sections to shift toward web side. The 

interaction behaviour of the local/distortional and global buckling for columns in prototypes ⑨ 
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and ⑩ were less significant compared to the effective cross-section of prototype ⑧ which can 

be due to the higher local buckling resistance of these two prototypes achieved by the use of 

intermediate stiffeners. 

 Nonlinear FE analysis of the optimised columns  3.5

In order to evaluate the reliability of the optimisation procedure, the axial capacity of columns 

with the optimised and standard sections were also determined using the detailed nonlinear FE 

models considering the geometrical imperfections. The FE modelling and analyses were 

performed in ABAQUS (ABAQUS 2011).  

The three-dimensional (3D) FE model of the columns with optimised and standard sections 

were developed in the commonly used ABAQUS software. To model the characteristics of the 

CFS plate the general purpose S4R element, a 4-node quadrilateral shell element with reduced 

integration was employed. Through the sensitivity analysis the maximum mesh size has been 

selected to be equal to 5mm  with at least four elements in the corners. To simulate the material 

behaviour of CFS plate, the constitutive stress-strain model suggested by Haidarali and 

Nethercot (Haidarali and Nethercot 2011) as shown in Figure 3.4, was used. This model is 

comprised of the basic Ramberg-Osgood stress-strain relationship up to 0.2% proof stress 

followed by a straight line up to ultimate point. The slope of the linear part is equal to / 50E  

where E  stands for the initial elastic modulus. The stress-strain behaviour of the CFS material 

in this model is defined by 

 

0.2
0.2

0.2
0.2 0.2

= 0.002

50( )
=

 
  



 
   

 
  

 


 

n

for
E

for
E

 (3.6) 

where   and   are stress and strain, respectively. Also, 
2

0.2=450 / N mm  is the 0.2% proof 

stress, 0.2  is the total strain at 0.2 , n  stands for the shape parameter recommended by 

Gardner and Ashraf (Gardner and Ashraf 2006) to be taken as 28 for high strength steel (with

2350 450 / yf N mm ), and E  is the elastic modulus which is taken equal to 210GPa . 
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Figure 3.4. Stress-strain behaviour of CFS plate used in the FE modelling 

In the FE simulation, the effects of geometrical imperfections were also considered by scaling 

the critical buckling modes to specific amplitudes and superposing them into the initial perfect 

geometry. The shapes of the geometrical imperfections are generated using CUFSM (Li and 

Schafer 2010b), a finite strip software. Only the imperfection of the critical one of the local and 

distortional buckling modes observed in the signature curve obtained from CUFSM, was chosen 

to superpose as the localized imperfection while global imperfection magnitude was considered 

as L/1000 where L is the total length of the column. For prototypes ④ to ⑩ and the standard 

section (BW C17515) which were with edge stiffeners, the magnitudes of the local and 

distortional geometrical imperfections were considered based on the cumulative distribution 

function (CDF) values proposed by Schafer and Pekӧz (Schafer and Pekoz 1998). In such cases, 

the type 1 and type 2 imperfections with a CDF value of 50% which have 34% and 94% of the 

original thickness, respectively, were adopted in the FE modelling. However, the plain channel 

sections (i.e. prototypes ① to ③) don’t have a distortional buckling mode and the FE 

modelling with the imperfections of 50% CDF value showed a great deviation. To overcome 

this problem, the effect of imperfection for these three prototypes were considered as 25% of the 

cross-sectional thickness based on the study performed by Young and Yan (Young and Yan 

2002). 

Originally, Schafer et al. (Schafer et al. 2010) recommended boundary conditions on CFS 

collapse modelling, where they employed kinematic constraints at ends to force the member to 

bend and twist about known reference point to reflect the global behaviour of columns. Their 

suggested boundary condition prevents the warping of cross-sections. However, for pin-ended 

columns, EC3 typically allows the free warping at both ends of the members. Thus, the 

boundary conditions of the FE models were modified to simulate a pin-ended column, as shown 

in Figure 3.5. The longitudinal movement of the columns was precluded through restraining the 

nodal displacement of the mid-length cross-section while the horizontal displacement of the 

column was restricted by retraining the nodes at the end cross-sections. Consequently, the 

longitudinal displacements at both ends were intentionally retained free to allow the warping of 

the end cross-sections. Also, the axial forces were applied to the nodes of the end cross-sections. 
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Uniform compression 

at ends.

 23 boundary 

conditions are 

applied to the 

end nodes.

Symmetric section(3 

boundary condition is 

applied to the mid-span)

 

Figure 3.5. Schematic illustration of the FE model of the columns with pin-ended boundary 

conditions 

To build the geometrical modelling of the optimised cross-sections, the coordinates of the cross-

sections were determined using a program developed in Matlab (Mathworks 2011, Appendix 

A2 and A4). The information was then imported to CUFSM (Li and Schafer 2010b) to obtain 

the critical half-wavelengths and mode shapes using the classical elastic buckling analysis. For 

the local, distortional and global buckling modes, the magnitudes and directions for the 

deformations of the cross-sectional nodes can be determined from in the array “shapes” of 

CUFSM. Therefore, the shape of the initial imperfections was obtained from the array while the 

sinusoidal functions were used for the distribution of initial imperfections along the columns. 

The mesh density and material properties used in the FE modelling in ABAQUS were identical 

to those used in the finite strip method performed with CUFSM.  

To avoid the convergence problem during the nonlinear analysis, the load was applied with the 

displacement control method. The solution was arrived using the Riks method considering the 

effect of the large deformations to track the post-buckling behaviour. The maximum step sizes 

were modified to assure reliable results with at least 20 iterations before arriving at the peak 

bending moment (Schafer et al. 2010). 

The FE models were developed for the optimised columns with three different lengths (1m, 2m 

and 3m). The geometrical dimensions, thickness, and material properties such as elastic 

modulus and yield stress were assumed to be identical to those used in the optimisation 

procedure. It is worth noting that the round corners of the cross-sections were also modelled in 

all the FE analyses. 

 Description and comparison of the results 3.6

The axial capacities of the optimised and standard cross-sections obtained from the FE analyses 

are compared with those calculated according to EC3 in Figure 3.6, Figure 3.7 and Figure 3.8 
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for columns with 1m, 2m, and 3m in length. Despite some differences, a good agreement was 

observed between results obtained from FE analysis with those calculated based on EC3. 

For 1 m long columns, compressive capacities are more likely to be governed by the interaction 

of local/distortional and global buckling. For this type of columns, comparison of the results 

obtained from FE analysis and EC3 showed that, except for the standard BW columns, EC3 

slightly overestimates the capacities of columns. As observed in Figure 3.6, the compressive 

capacities of the plain channel columns without or with only one web stiffener are even lower 

than the standard BW cross-section which can be due to the more vulnerable behaviour to the 

interactive buckling. For prototypes ④ and ⑤, the FE results of 1 m channel column showed 

that the change of inclined angle of lips may lead to decrease of the compressive capacity, 

though the results from EC3 shows little effect. Even by just optimising the dimensions of the 

standard BW cross-section, the bending capacity can be enhanced by 43% and 23.6 % according 

to EC3 and FE results, respectively. However, the best prototype for 1m long column is 

prototype ⑨ in terms of compressive capacity where 108.3% and 77.1% increase can be 

achieved according to EC3 and FE modelling compared to the standard section. The results also 

indicated that despite prototype ⑩ occupies the biggest number of stiffeners; its compressive 

strength could not be necessarily the highest. Because of the intermediate and edge stiffeners in 

this prototype, the local buckling is unlikely to happen (see the effective cross-section shapes of 

prototype ⑩ in Table 3.3) and the stiffeners take up some of the material which could be better 

used for the development of gross sectional properties (the second moment of area about weak 

axis to prevent the shift of centroid). A similar trend was also observed from the results of 2m 

and 3m columns with the same prototype. 

For the column with 2m and 3m in length, there were some discrepancies between the FE and 

EC3 results in different cross-sections. It should be mentioned that for longer columns, the 

effect of local/distortional buckling behaviour is less important compared with 1m long columns. 

However, EC3 still considers the shift of centroidal axis by calculating the effective cross-

sectional properties based on the yield stress. Regarding the axial capacity, the best performance 

in columns with 3m length was observed in prototype 6 from both the FE results and EC3 while 

the axial capacity of prototype ⑨ calculated according to EC3 indicated highest strength for 2m 

long columns. The effect of edge stiffeners on the compressive capacity of 3m column is 

negligible since long columns fails under global buckling mode before the happening of 

local/distortional buckling mode. However, with the prototype ⑨, the compressive strength of 

columns with 2m in length can be increased by 73.7% and 59.2% according to EC3 and FE 

results, respectively compared to the standard cross-sections. For the columns with 3m in length, 

prototype ⑥ achieves 43.4% and 42.9% more than the standard BW cross-sections, 

accordingly. 
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Taking the manufacture cost into consideration, prototype ⑤ and ⑥offered numerous 

advantages compared to other cross-sections since they need only 4 and 7 rollers to shape the 

cross-sections while possess relatively high compressive capacities. Prototypes ①-③ are not 

good choices for application since their compressive capacities are relatively low though they 

are easy to manufacture. 

 

Figure 3.6. Comparison of the axial capacity of the standard and optimised columns with 1 m 

length 

 

Figure 3.7. Comparison of the axial capacity of the standard and optimised columns with 2 m 

length 
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Figure 3.8. Comparison of the axial capacity of the standard and optimised columns with 3 m 

length 

 Summary and conclusions 3.7

This chapter presents a framework for the optimisation of CFS columns to achieve the optimal 

compressive capacity with various cross-sections. As the prototypes, 10 channel cross-sections 

were selected and the geometrical dimensions of each individual prototype were optimised with 

respect to its axial capacity. The thickness and coil length of the prototypes were kept constant 

during the optimisation process. The selected prototypes were comprised of the plain channels, 

channels with single inclined lips, channels with double folded lips with one or two intermediate 

stiffeners incorporated into the web. All relative geometrical proportions recommended in EC3 

were taken into account as optimisation constraints. The optimisation procedure was performed 

using a program developed in Matlab.  

For comparison purposes, a commercially available standard cross-section with the same total 

coil width and thickness was selected and its axial capacity was compared with those of 

optimised cross-section in columns with 3 different lengths: 1m, 2m and 3m. The axial 

capacities of the optimised cross-sections determined based on EC3 were also verified against 

detailed nonlinear FE analysis considering the effect of geometrical imperfection. The 

compressive capacity has been found to be highly dependent on the shift of centroid and the 

effective cross-section of the prototypes. It was concluded that the axial capacity of the standard 

cross-section can be enhanced up to 108.3%, 73.7% and 43.4% according to EC3 but 77.1%, 

59.2% and 42.9% with regard to the FE modelling, in columns with 1m, 2m and 3m length, 

respectively. The largest axial capacity for columns with 1m and 2m in length was observed in 

prototype 9 (channel with double-fold lips and one web stiffener) while for 3m long column, 

prototype 6 (channel with single lip and one web stiffener) offered the highest axial capacity 
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Optimisation on CFS columns was presented in Chapter 3, in this chapter, a detailed 

investigation was conducted on the practical optimisation of CFS beams using a Particle Swarm 

Optimisation (PSO) method. Six different CFS channel section prototypes were selected and 

then optimised with respect to their flexural strength, determined according to the effective 

width based provisions of Eurocode 3 (EC3) part 1-3 (CEN 2005b). Comparing the capacities of 

the optimised sections to those of the original channel sections with the same amount of 

structural material, significant improvements were obtained. The accuracy of the optimisation 

procedure was assessed using experimentally validated nonlinear Finite Element (FE) analyses 

accounting for the effect of imperfections. The results indicated that, using the same amount of 

material, the optimum sections offered up to 25% and 75% more flexural strength for laterally 

braced and unbraced CFS beams, respectively, while they also satisfied predefined 

manufacturing and design constraints.. 

 Introduction 4.1

Cold-formed steel (CFS) structural elements and systems are widely used in the construction 

industry, for instance in trusses, modular building panels, stud walls, purlins, side rails, cladding 
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and even as the primary load-bearing structure in low- to mid-rise buildings. Compared to their 

hot-rolled counterparts, CFS members are often found to be more economical and efficient, due 

to inherent advantages such as a light weight, an ease and speed of erection and a greater 

flexibility in manufacturing cross-sectional profiles and sizes. Many cold-rolling companies 

have the ability to custom roll sections on demand, adapted to certain particular applications. It 

is this versatility on the manufacturing side which makes the problem of finding optimal cross-

sectional shapes of great interest to structural engineers. In general, cross-sectional optimisation 

methods of CFS members can be classified into two categories. One can either aim to determine 

an optimal cross-sectional shape without any initial restrictions on its form (shape optimisation), 

or optimise the relative dimensions of a cross-section with a predefined shape (size 

optimisation).  

As an example of shape optimisation, Liu et al. (Liu et al. 2004) introduced a knowledge-based 

approach for optimisation of CFS column sections. Initial knowledge about what constitutes a 

‘good’ design is thereby established by training a Bayesian classification tree learning 

algorithm. This knowledge is subsequently used to reduce the global design space to a lower 

dimensional expert-based feature space. The results showed that optimised cross-sectional 

shapes can demonstrate a much higher capacity (by up to 300%) compared to conventional 

cross-sections. Moharrami et al. (Moharrami et al. 2014) found the optimal shapes of open CFS 

cross-sections in compression, using a fixed coil width and plate thickness. The compressive 

strength of a given section was thereby evaluated using a combination of the Finite Strip 

Method (FSM) and the Direct Strength Method (DSM). However, their study did not consider 

manufacturing and construction constraints and, therefore, highly complex shapes were 

identified that are not suitable for practical applications due to their high manufacturing costs 

and the difficulty in connecting to other elements. The resulting shapes also did not classify as 

pre-qualified sections under the DSM rules, thus questioning the optimisation approach. Leng et 

al. (Leng et al. 2014b) later improved this method by incorporating end-user constraints and 

limiting the numbers of rollers in the manufacturing process. CFS columns with different 

lengths were optimised and more practical shapes were obtained, which however still did not 

meet the DSM pre-qualification conditions.  

Several research projects have previously been carried out aimed at optimising the relative 

dimensions of predefined conventional CFS cross-sections such as C  , Z  , or  shapes. 

Adeli and Karim (Adeli and Karim 1997) developed a Neural Network methodology for the 

optimum cross-sectional design of CFS beams, considering conventional hat, I  , and Z  

cross-sections. Using Micro Genetic Algorithms, Lee et al. (Lee et al. 2005a, Lee et al. 2006a) 

optimised the geometry of CFS channel beams and columns under a uniformly distributed load 

and a compressive axial load, respectively. Their numerical results were presented in the form 

of optimum design curves for various load levels. Tran and Li (Tran and Li 2006) presented a 
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theoretical study on the optimisation of lipped channel beams subjected to uniformly distributed 

transverse loading. The failure modes of local, distortional and global buckling, as well as 

yielding, in combination with deflection limits, were considered and the optimisation process 

aimed to minimize the coil width. The shape optimisation of CFS channel beams with ‘drop’ 

flanges (rounded return lips shaped like a water drop) was described by Magnucki et al. 

(Magnucki and Paczos 2009). They found that channel beams with closed drop flanges can offer 

better performance compared to beams with open drop flanges or standard lips. More recently, 

Ma et al. (Ma et al. 2015a) optimised CFS compression and bending members according to EC3 

(CEN 2005b) by using the genetic algorithm toolbox in Matlab. They investigated the influence 

of the column length and the shift of the effective centroid, induced by local/distortional 

buckling, on the optimum design solutions. The practicality of their solutions was guaranteed by 

constraining the overall shape of the cross-section to a channel, but no additional manufacturing 

or construction constraints were taken into account in the study. 

The research presented in this chapter aimed to develop a new practical framework to optimise 

CFS channel beam sections while considering both manufacturing and design constraints. The 

Particle Swarm Optimisation (PSO) method was thereby adopted to achieve optimum design 

solutions according to the European design guidelines for CFS structural members (CEN 2005a, 

CEN 2005b, CEN 2005c). The complexity of the non-linear optimisation problem was managed 

by using the Eurocode design regulations as a ‘black-box’ tool in the optimisation procedure. 

The adequacy of Eurocode 3 in predicting increasing/decreasing trends in capacity as a result of 

changing geometric parameters and adding features like stiffeners and return lips was then 

evaluated by modelling the optimal sections using detailed FE models accounting for material 

and geometric non-linearity, as well as imperfections. The developed FE models were first 

validated against existing experimental results. 

 Design of CFS beams based on EC3 4.2

In this study, the flexural strength of CFS sections was calculated based on the Effective Width 

Method, following the provisions of EN1993-1-3 (CEN 2005b) and EN1993-1-5 (CEN 2005a). 

The adopted design procedure is described briefly in the following sections. 

4.2.1 Design for local buckling 

In Eurocode 3, the effect of local buckling is considered through the effective width concept. It 

is based on the observation that local buckling causes a loss of compressive stiffness in the 

centre of a plate supported along both longitudinal edges (labelled an ‘internal’ plate element in 

EC3), or along the free edge of a plate supported along one longitudinal edge (an ‘outstand’ 

element) as a result of non-linear effects. The corner zones of the cross-section consequently 

become the main load-bearing areas and are idealized in the effective width concept as carrying 



Chapter 4. Optimum design of CFS beams using Particle Swarm Optimisation Method 

54 

the totality of the load. The effective area of a sample cross-section is indicated in solid black 

line in Figure 4.1. It is thereby noted that local buckling causes the centroid of the effective 

cross-section to shift over a distance eN relative to the original centroid of the gross cross-

section. According to EN1993-1-5 (CEN 2005a), the effective widths of internal and outstand 

compression elements  are given by (see Figure 4.1): 

 
l le

l l

1 0.055(3+ ψ)
1- for internal compression element

λ λb
ρ = =

b 1 0.188
1- for outstand compression element

λ λ

  
  
  


 
 
 

 (4.1) 
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


y

l
cr

f
 (4.2) 

In Equation (4.1),   is the reduction factor on the plate width and b  and eb  are the total and 

the effective width of the plate, respectively. The slenderness ratio l  relates the material yield 

stress yf  to the elastic local buckling stress of the plate cr  and   is the ratio of the end 

stresses in the plate. It is worth mentioning that, in principle, Eurocode 3 calculates the effective 

cross-section effA  using the yield stress yf  in Equation (4.2), while some design standards (in 

particular the North-American (AISI 2007) and Australian/New Zealand (AS/NZS 1996) 

specifications) use the global buckling stress of the beam. It should also be noted that the 

calculation of the effective cross-section in bending is an iterative process, since the neutral axis 

of the effective cross-section shifts over a distance which depends on the loss of effective 

section in the flange and the upper portion of the web and this, in turn, affects the stress 

distribution. Although not required by EC3 guidelines, full iterations to convergence were 

carried out in this study. 

   

(a)                        (b)      (c) 

Figure 4.1. Effective width of (a) lipped channel; (b) internal compression element; and (c) outstand 

compression element 
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4.2.2 Design for distortional buckling 

Distortional buckling of a CFS section is a process which requires in-plane as well as out-of-

plane displacements of some of the constituent plates. Specifically related to lipped channels, it 

can be seen as lateral-torsional buckling of the flange-lip subassembly, but distortional buckling 

can also occur in the web when intermediate stiffeners are included. 

While EC3 accounts for local buckling through a reduction of the effective width of the 

constituent plates, distortional buckling is instead taken into account by reducing the effective 

plate thickness. The elastic distortional buckling stress, required for the calculation of the 

distortional slenderness ,/ d y cr sf , is obtained through a simplified model where the 

restraining effect of the adjacent plates is simulated by elastic springs, as illustrated in Figure 

4.2. The elastic buckling stress of the plate-stiffener assembly ,cr s  is then given by: 

 ,

2
 

s
cr s

s

KEI

A
 (4.3) 

where E  is the modulus of elasticity, sI  is the second moment of area of the stiffener about an 

axis through its centroid parallel to the plate, K  is the spring stiffness per unit length and sA  is 

the stiffener area. The spring stiffness K is determined by applying a unit load f = 1 (per unit 

length) to the full cross-section at the centroid of the stiffener assembly and by calculating the 

corresponding displacement. 

 

Figure 4.2. Simplified models for distortional buckling calculations 

EC3 provides the option to refine the local slenderness ratio l of the plates using an iterative 

process based on the following equation: 

 ,  l red l d  (4.4) 

 

Edge Stiffener Is,As

Spring stiffness, K

Spring stiffness, K

Intermediate Stiffener
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where d  is a prescribed function of the distortional buckling slenderness d . When 

calculating d  in each iteration, fy should be replaced by =  com d yf . This option provided by 

EC3 was implemented in the study and the iterations continued until , ,(n 1)  d n d . 

4.2.3 Design for global buckling 

According to EC3, the design of CFS members for global buckling requires the calculation of a 

global slenderness. For CFS beam elements, the slenderness for lateral-torsional buckling is 

defined as: 

  
eff y

LT
cr

W f

M
 (4.5) 

where crM  is the elastic lateral-torsional buckling moment based on the gross cross-section, 

and effW  is the effective section modulus.  

 Definition of optimisation problem 4.3

The optimisation procedure aimed to optimise CFS cross-sections with regard to their bending 

capacity, determined according to EC3. The starting point of the optimisation was the 

commercially available channel section shown in Figure 4.3. The thickness of 1.2t mm  and 

the total coil width of 333l mm were kept constant in the optimisation process, so that the 

total material use was also kept identical for all cross-sections. The radius of the rounded 

corners (measured along the heart line of the section), the elastic modulus and the Poisson’s 

ratio were taken as 2.5 mm , 210 GPa  and 0.3 , respectively. The yield strength of the steel was 

assumed to be 350yf MPa . 

 

Figure 4.3. Standard CFS beam cross-section (TATA-A3709) 

To ensure that the optimisation process resulted in practically useful cross-sections, the 

following measures were taken: 
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1. The basic overall shape of the cross-section was restricted to a channel. In current 

construction practice, channels (and Z-sections) are the most commonly used CFS beam 

sections. The succession of flat plate elements within the cross-section permits a 

straightforward manufacturing process and allows for easy connections with trapezoidal 

steel deck or other roof/floor systems, as well as bridging, cleat plates, etc. This stands in 

contrast with the often complex and curved shapes typically encountered as the result of 

unrestricted shape optimisation procedures. This objective was achieved by considering 

six different prototypes, listed in Table 4.1. All prototypes are based on a channel shape, 

but they allow the inclusion of a single web stiffener, double web stiffeners, inclined lips 

and double-fold (return) lips. These additions are typically within the capability of 

commercial cold-rolling enterprises. Each prototype was optimised individually, after 

which the overall optimum among the six optimised prototypes was identified. 

2.  In practical situations, additional constraints typically come into play. These constraints 

may be quite case-dependent and may, for instance, be related to the ability to connect 

the beam to other elements, or be imposed by the manufacturing process itself. In this 

particular case the following constraints were imposed: 

a. The width of the flanges was required to be at least 30mm in order to connect 

trapezoidal decking or plywood boards to the beam by means of screws. This 

width was determined after consultation with the industrial partner on the project. 

b. The lip needs to be of a sufficient length. A lip of, for instance, 1mm or 2mm 

length cannot be rolled or brake-pressed. The industrial partner on the project 

suggested a minimum length of 5-10mm. Therefore, as indicated in Table 4.1, 

c≥10mm was imposed for a single lip and combined with d≥5mm for a return lip. 

c. The height of the web was specified to be at least 100mm in order to allow a 

connection to be made (e.g. to a cleat plate) with at least two bolts and/or for 

bridging to be connected. 

One of the major advantages of the PSO algorithm is that these constraints can easily be altered 

and others added. The constraints merely result in a restriction of the search space of the particle 

swarm. 

In addition to the practical constraints mentioned above, the EC3 design rules also impose 

certain limits on the plate width-to-thickness ratios, the relative dimensions of the cross-section 

and the angle of the edge stiffeners. These constraints were also taken into account in the 

optimisation procedure and are listed in Table 1 under the heading ‘Constraints based on EC3’. 
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Finally, the opening angle 2  and the length s of the intermediate stiffeners was limited within 

the ranges of 6  to 4  and 5 mm to 10 mm , respectively. The optimisation was conducted 

separately for laterally braced and un-braced beams, as discussed in the following sections.  

It is clear that both the choice of the prototypes and the addition of practical constraints 

significantly restrict the solution space. An unconstrained ‘free-form’ optimisation would most 

likely result in a cross-section with a higher ultimate capacity, with this ‘overall optimum’ 

solution not being contained within the current restricted search space. However, the aim of the 

research was to produce cross-sections with practical relevance and the prototypes in Table 4.1 

were decided on after consultation with the industry partner. 

It is also noted that, while the chosen constraints are quite specific, the proposed optimisation 

framework is generally applicable and can be used in combination with different prototypes and 

different constraints. 
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Table 4.1. Selected prototypes, design variables and constraints 

Prototype  
Prototype 

section 
Design 

variables 

Constraints 
based on 

EC3 
minu

 maxu
 

Comments 

Manufacturing 
& practical 
limitations 

(mm) 

① 

 

x1=c/b 

x2=b/l 

x3=θ1 

0.2≤c/b≤0.6 

b/t≤60 

c/t≤50 

h/t≤500 

π/4≤θ1≤3/4π 

0.2 

0.09 

π/4 

0.6 

0.216 

3/4π 

EN1993-1-
3 Table 5.1 

and 
Equation 

(5.2a), 

Clause 
5.5.3.2(1) 

h≥100 

b≥30 

c≥10 

② 

 

x1=c/b 

x2=b/l 

x3=R 

x4=θ1 

x5=θ2 

0.2≤c/b≤0.6 

b/t≤60 

c/t≤50 

h/t≤500 

π/4≤θ1≤3/4π 

π/6≤θ2≤π/2 

0.2 

0.09 

0.1 

π/4 

π/6 

0.6 

0.216 

0.9 

3/4π 

π/2 

EN1993-1-
3 Table 5.1 

and 

Equation 
(5.2a), 
Clause 

5.5.3.2(1)  

h≥100 

b≥30 

c≥10 

0.1≤R≤0.9 

③ 

 

x1=c/b 

x2=b/l 

x3=R 

x4=θ1 

x5=θ2 

0.2≤c/b≤0.6 

b/t≤60 

c/t≤50 

h/t≤500 

π/4≤θ1≤3/4π 

π/6≤θ2≤π/2 

0.2 

0.09 

0.1 

π/4 

π/6 

0.6 

0.216 

0.4 

3/4π 

π/2 

EN1993-1-
3 Table 5.1 

and 

Equation 
(5.2a), 
Clause 

5.5.3.2(1) 

h≥100 

b≥30 

c≥10 

0.1≤R≤0.4 

④ 

 

x1=c/b 

x2=d/b 

x3=b/l 

x4= θ1 

0.2≤c/b≤0.6 

0.1≤d/b≤0.3 

b/t≤90 

c/t≤60 
d/t≤50 

h/t≤500 

π/4≤θ1≤3/4π 

0.2 

0.1 

0.09 

π/4 

0.6 

0.3 

0.216 

3/4π 

EN1993-1-
3 Table 5.1 

and 

Equation 
(5.2a,b), 
Clause 

5.5.3.2(1) 

h≥100 

b≥30 

c≥10 

d≥5 

⑤ 

 

x1=c/b 

x2=d/b 

x3=b/l 

x4=R 

x5=θ1 

x6=θ2 

0.2≤c/b≤0.6 

0.1≤d/b≤0.3 

b/t≤90 

c/t≤60 
d/t≤50 

h/t≤500 

π/4≤θ1≤3/4π 

π/6≤θ2≤π/2 

0.2 

0.1 

0.09 

0.1 

π/4 

π/6 

0.6 

0.3 

0.216 

0.9 

3/4π 

π/2 

EN1993-1-
3 Table 5.1 

and 

Equation 
(5.2a,b), 
Clause 

5.5.3.2(1) 

h≥100 

b≥30 

c≥10 

d≥5 

0.1≤R≤0.9 

⑥ 

 

x1=c/b 

x2=d/b 

x3=b/l 

x4=R 

x5=θ1 

x6=θ2 

0.2≤c/b≤0.6 

0.1≤d/b≤0.3 

b/t≤90 

c/t≤60 
d/t≤50 

h/t≤500 

π/4≤θ1≤3/4π 

π/6≤θ2≤π/2 

0.2 

0.1 

0.09 

0.1 

π/4 

π/6 

0.6 

0.3 

0.216 

0.4 

3/4π 

π/2 

EN1993-1-
3 Table 5.1 

and 

Equation 
(5.2a,b), 
Clause 

5.5.3.2(1) 

h≥100 

b≥30 

c≥10 

d≥5 

0.1≤R≤0.4 
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 Optimisation of CFS beams 4.4

In practical applications, the boundary conditions of laterally braced and laterally unbraced 

beams represent two distinct situations. The laterally braced beams are representative, for 

instance, of floor beams connected to a steel deck with concrete topping, where the compression 

flange is continuously supported. On the other hand, roof purlins subject to wind uplift where 

the rotational stiffness of the roof diaphragm is insufficient to provide full restraint should be 

designed as laterally unbraced beams with a representative effective length, and the effects of 

lateral-torsional buckling should be taken into account. Therefore, in this study, laterally braced 

and unbraced beams are optimised independently. 

4.4.1 Laterally braced beams 

In many practical applications the CFS beams are laterally restrained, for instance by the 

presence of a floor system. In that case the optimisation problem can be formulated as a 

maximisation problem, defined by:  

 max   0 eff y Mf x W f             min max iu x u   for  1, ...,i N  (4.6) 

where  f x  is the design moment resistance of a cross-section about the major axis and effW  is 

the effective section modulus, as introduced in Section 4.2. Also, 0M  is the partial safety 

factor prescribed by EC3 for the ultimate limit state, which is equal to 1.0. For each design 

variable ix , the lower and upper bounds minu  and maxu  are determined by the EC3 design 

constraints as well as the manufacturing limitations summarised in Table 4.1.  

The selected prototypes in this study were aimed at investigating the effects of changing the 

relative geometric dimensions of the cross-section and the configurations of the edge and 

intermediate stiffeners (see Table 4.1). The optimisation framework required the development 

of two distinct pieces of software, developed in Matlab (Mathworks 2011): a programme 

implementing the EC3 design rules and further used as a ‘black box’, and a programme carrying 

out the PSO. The population of the particle swarm was taken as 100 for all prototype sections. 

To obtain good convergence, the number of iterations was set to 100 for prototypes ① to ④, 

while this was increased to 160 for prototypes ⑤ and ⑥ to accommodate the larger number of 

design parameters. The maximum and minimum inertial weight factors were chosen as 0.95 and 

0.4, respectively. Each of the prototypes was optimised three times to ensure consistent results 

were obtained. The maximum difference in ultimate capacity encountered between the three 

runs was less than 10%. Out of the three resulting cross-sections, the one with the highest 

capacity was selected. 
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Table 4.2. Dimensions of optimal solutions for laterally restrained beams 

Prototype 
h 

(mm) 
b 

(mm) 

c  

(mm) 

d 
(mm) 

θ1 

(o) 

θ2 

(o) 

s  

(mm) 
R  

① 227 32 20 - 90 - - - 

② 214 33 20 - 90 45 10 0.85 

③ 215 33 20 - 90 90 10 0.1 

④ 215 37 17 5 90 - - - 

⑤ 204 37 12 5 135 67 10 0.9 

⑥ 193 39 17 6 135 90 10 0.1 

 

Prototype ① ② ③ ④ ⑤ ⑥ 

Optimised 
sections 

      

*The bold lines indicate effective parts of the cross-section. 

Figure 4.4. Optimal cross-sections for laterally restrained beams using different prototypes 

Table 4.2 shows the dimensions of the optimised sections for prototypes ① to ⑥. The effective 

cross sections of the optimum solutions are also illustrated in Figure 4.4. The flexural strengths 

of the optimised cross-sections, as well as the standard cross-section taken as a starting point, 

are compared in Figure 4.5. The results indicate that the optimised shapes offer a significantly 

higher moment capacity (up to 25% higher) compared to the original section.  
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Figure 4.5. Comparison of the flexural strength of standard and optimised cross-sections for 

laterally braced beams 

The results in Figure 4.5 also indicate that the most efficient prototype is a lipped channel 

section with one stiffener placed in the web. While adding one stiffener increased the capacity 

of the optimised section by 25%, adding two stiffeners in a symmetric arrangement (prototype 

③) actually reduced the flexural capacity of the channel by 12.4% compared to prototype ①. 

This is due to the fact that, when the total developed length of the cross-section is kept constant, 

the height of the cross-section is reduced by adding the additional web stiffener, while, in a 

symmetric arrangement; the stiffener is ineffective in the tension zone. It is also noted that none 

of the imposed practical constraints, listed in the rightmost column of Table 4.1 turned out to be 

critical.  

4.4.2 Laterally unbraced beams 

Laterally unbraced beams with low lateral and/or torsional stiffness may buckle in combined 

bending about the minor axis and twisting. For a simply supported channel beam subjected to 

equal but opposite end moments about the major axis, the critical lateral-torsional buckling load 

crM  can be calculated in terms of the span length and the section properties of the gross section 

as follows: 

 
2

2

  
   

 

w
cr y

EI
M EI GJ

L L
 (4.7) 

where yEI  is the flexural rigidity about the minor axis, wEI  is the warping rigidity, GJ  is the 

torsional rigidity and L  indicates the span length. The EC3 reduction factor LT , accounting 
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for lateral-distortional buckling, can then be obtained using the slenderness LT  in Eq (5). The 

design moment resistance of a laterally unrestrained beam is calculated as: 

  
0

   LT eff y Mf x W f  (4.8) 

 with      
2 2

1
1.0


 
   

LT

LT LT LT

 (4.9) 

 and       20.5 1 0.34 0.2      
 

LTLT LT  (4.10) 

The optimisation was carried out for the first prototype (lipped channel), while considering four 

different lengths: 1, 2, 3 and 4 m. The optimised cross-sections and their corresponding flexural 

strengths are summarised in Figure 4.6 and Figure 4.7, respectively.  

Length  L=1m L=2m L=3m L=4m 

Optimum 
sectional 

dimensions 

 

 
 

 

Figure 4.6. Optimised results for member capacity of lipped channel beams 
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Figure 4.7. Comparison of the flexural strength of the optimised and standard cross-sections for 

laterally unbraced beams 

A comparison between the optimised results in Figure 4.6 indicates that the flange width 

becomes larger with increasing unbraced length, and consequently, the total height of the 

section is diminished to keep the total coil width constant. This is due to the fact that longer 

beams are more susceptible to lateral-torsional buckling, and thus the dimensions of the flanges 

increase while the lips turn outwards to enhance the torsional stiffness and the minor axis 

bending stiffness. In contrast, beams with shorter spans are predominantly affected by the 

interaction of local/distortional buckling and lateral-torsional buckling, rather than failing purely 

in the global mode. It is noted that serviceability criteria (deflections) were not considered in 

this study and that the optimisation is solely carried out with respect to the ultimate capacity.  

Figure 4.7 compares the flexural capacity of the optimised and the initial lipped channel 

sections for all four lengths. It is shown that a considerable increase in flexural capacity can be 

achieved by using the proposed optimisation method. While, for the same amount of material, 

the flexural capacity of a 1m long optimised beam is 26% higher than that of the standard 

section, the improvement is 75% for the 4m long beam. Once again, none of the practical 

constraints in the rightmost column of Table 4.1 turned out to be critical. 

 It is worth mentioning that the optimisation was carried out assuming a uniform bending 

moment in the beam and assuming the previously defined boundary conditions. When the 

laterally unbraced beams are exposed to a different applied loading (reflected in a different 

elastic lateral-torsional buckling moment) or different boundary conditions, the optimal sections 

will change. Besides, for longer beam elements, serviceability limits (in particular: maximum 

deflections) may govern the design. While serviceability criteria were not considered in the 

current scope, the proposed optimisation framework using PSO algorithm can easily be adapted 

to incorporate serviceability limits. 
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Figure 4.8. Comparison of the flexural strength of the optimised and standard cross-sections for 

laterally braced beams obtained using the DSM and EC3 

 

Figure 4.9. Comparison of the flexural strength of the optimised and standard cross-sections for 

laterally unbraced beams obtained using the DSM 

 

 

Table 4.3. Local and distortional ultimate strengths for laterally braced beams obtained using the 

DSM 

Section Local Buckling (kN·m) Distortional Buckling (kNˑm) 

Standard 5.52 4.98 

① 5.25 5.47 

② 7.34 5.68 

③ 5.71 5.16 

④ 5.27 5.27 

⑤ 5.94 5.74 

⑥ 6.07 5.56 
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Table 4.4. Local, distortional, and global ultimate strengths for laterally unbraced beams obtained 

using the DSM 

Length  

(m) 
Section 

Local Buckling 
Strength 

(kNˑm) 

Distortional Buckling 
Strength 

(kNˑm) 

Global Buckling 
Strength 

(kNˑm) 

1  
Standard 5.53 4.98 6.59 

Optimised 5.48 5.66 5.5 

 2  
Standard 5.53 4.98 3.94 

Optimised 5.54 5.28 5.2 

 3  
Standard 5.53 4.98 2.56 

Optimised 4.98 4.61 4.6 

 4 
Standard 5.53 4.98 1.47 

Optimised 4.22 4.15 3.4 

 

In this study the flexural strengths of the optimised as well as the original sections were 

determined based on the DSM (see Section 2.2), for both laterally braced and laterally unbraced 

conditions, for the purpose of comparison with the Eurocode. The results are shown in Figure 

4.8 and Figure 4.9. For the laterally braced beams, the flexural strength was determined as the 

minimum of the local and distortional strengths (Table 4.3). However, for laterally unbraced 

beams, the ultimate strength was determined based on the minimum of the local, distortional 

and lateral-torsional strengths (Table 4.4). The strength in local buckling thereby accounts for 

the possibility of local-global mode interaction.  

For both laterally braced and unbraced conditions, the results obtained from the DSM confirm 

that the flexural strengths of the optimised shapes have been considerably improved compared 

to the original cross-sections. Comparison between the results predicted by the DSM and EC3 

indicates that both methods show a very similar trend across the range of prototypes.  

However, it should be mentioned that only prototypes ① (lipped channel) and ② (lipped 

channel with one intermediate stiffener in the web) are ‘pre-qualified’ cross-sections according 

to Appendix 1 of AISI (AISI 2007). This means that, in principle, the DSM should not be 

applied to prototypes ③-⑥. 

 Nonlinear FE analysis considering initial geometric imperfections  4.5

The flexural capacity of the optimised cross-sections in this study was also determined using 

detailed nonlinear FE analyses performed with ABAQUS (2007). The results were used to 

assess the adequacy and performance of the proposed optimisation procedure. In this section, a 
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detailed description of the modelling approach is first presented, followed by its verification 

against experimental data available in the literature.  

4.5.1 FE modelling 

The FE models of the CFS sections were developed using a 4-node quadrilateral shell element 

with reduced integration (S4R). By performing sensitivity analyses, a mesh size of 10 10 mm  

was found to be optimal (as shown in Figure 4.13), so that further refinement did not result in 

any noticeable improvement in accuracy. However, smaller elements were used to model the 

rounded corner zones. The stress-strain behaviour of the CFS plates was simulated using the 

constitutive model proposed by Haidarali and Nethercot (Haidarali and Nethercot 2011), which 

is illustrated in Section 3.5. 

The solution was obtained using the displacement control method which has previously been 

shown capable of adequately modelling large deformations in the post-buckling range 

(ABAQUS 2011).  

4.5.2 Experimental verification of the FE model  

4.5.2.1 Laterally braced beams 

For the purpose of verifying the FE modelling approach with respect to CFS members failing by  

local/distortional buckling, the four-point bending distortional buckling tests performed by Yu 

and Schafer (Yu and Schafer 2006, Yu and Schafer 2007) were selected. Figure 4.10 presents a 

schematic illustration of the test set-up and also shows the cross-section of the test specimens. 

This test set-up was designed to prevent global buckling and, therefore, the test specimens acted 

as laterally braced beams.  

 

Figure 4.10. Schematic illustration of Yu and Schafer’s (Yu and Schafer 2006, Yu and Schafer 2007) 

distortional buckling test set-up and cross-sectional geometry 
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Table 4.5.Cross-sectional dimensions 

Specimen 
h 

(mm) 

b2 

(mm) 

d2 

(mm) 

ϴ2 

(deg) 

b1 

(mm) 

d1 

(mm) 

ϴ1 

(deg) 

r3 

(mm) 

r4 

(mm) 

r2 

(mm) 

r1 

(mm) 

t 

(mm) 

fy 

(MPa) 

D8.5Z120-4 196 53.4 19.4 54.2 49.8 20.8 50.2 7.5 7.5 7.5 7.5 3 423 

D8.5Z115-1 197 56.9 17 48.3 48.5 17.5 48.3 7.5 7.5 8.5 8.5 2.96 453 

D8.5Z092-3 198 55.6 20.6 51.9 49.1 20.1 51.6 5.9 5.9 6.9 6.9 2.27 397 

D8.5Z082-4 200 53.8 20.8 48.5 49.2 21.2 51.3 6 6 7 7 2.06 408 

D8.5Z065-7 199 51.3 17.3 50 49.9 16.9 49.3 7.2 7.2 8.2 8.2 1.63 430 

D8.5Z065-4 198 49.5 17.5 47.3 46.6 12.6 51.2 7.2 7.2 6.2 6.2 1.57 401 

D11.5Z092-3 270 75.3 19.3 49.3 76.3 18.3 49.5 6.9 6.9 6.9 6.9 2.26 483 

D11.5Z082-4 274 75.4 18.4 48.4 74.3 18.3 49.9 7 7 7 7 2.06 507 

 

The total length of the test specimens was 4878 mm, and the top and bottom flanges of the 

beams were unrestrained in the middle 1626mm long span to allow distortional buckling to 

occur. The dimensions of the cross-section and their material properties are summarised in 

Table 4.5. 

The beams were modelled using hinged boundary conditions about the horizontal axis, while 

the rotations about the vertical axis were prevented, as shown in Figure 4.11. The end sections 

were also fixed against warping (Figure 4.11) to prevent lateral-torsional buckling in the FE 

model. At both ends of the beam, the displacements of the end section nodes were coupled to 

those of the bottom corner using a single point constraint (SPC). The cross-sections underneath 

the application points of the load were defined as rigid bodies in order to prevent localised 

failure. Vertical downward displacements were then imposed on the reference points of these 

rigidized cross-sections at the top corners of the web. These boundary conditions are similar to 

the ones previously adopted by Haidarali and Nethercot (Haidarali and Nethercot 2011).  

Residual stresses were not included in the model. It has previously been demonstrated that the 

effects of membrane residual stresses can safely be neglected in open sections (Schafer et al. 

2010, Schafer and Pekoz 1998), while the (longitudinal) bending residual stresses are implicitly 

accounted for in the coupon test results, provided that the coupons are cut from the fabricated 

cross-section rather than from the virgin plate. Indeed, cutting a coupon releases the bending 

residual stresses, causing the coupon to curl (Jandera et al. 2008). However, these stresses are 

re-introduced when the coupon is straightened under tensile loading in the initial stages of the 

coupon test. Apart from introducing residual stresses, the cold-rolling process has the effect of 

increasing the material yield stress through work-hardening. This effect is most pronounced in 

the corner regions of the cross-sections. Schafer and Moen (Schafer et al. 2010) have in this 

respect proposed that, when residual stresses are not modelled, the increased properties of the 

corner regions should also not be modelled. Their rationale is that, while both effects have a 
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relatively minor influence on the ultimate capacity, the detrimental effect of the residual stresses 

will largely be offset by the gain in capacity resulting from the work-hardened corners. Their 

recommendation was followed in this chapter. 

  

Figure 4.11. FE model and boundary conditions 

The FE analysis included the effects of geometric imperfections. The local, distortional and 

global buckling modes were generated using the CUFSM finite strip software (Schafer 2006). 

The same cross-sectional discretization as in the FE mesh was employed in CUFSM. Sinusoidal 

functions with a wavelength equal to the critical local/distortional wavelength obtained from 

CUFSM were then used to propagate the cross-sectional local/distortional imperfection along 

the beams by adjusting the nodal coordinates of the FE mesh. It was thereby necessary to 

slightly adjust the wavelength in order to obtain an integer number of half-waves. 

 

(a) Negative imperfection                            (b) Positive imperfection 

Figure 4.12. Distortional imperfections in the FE model  
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Table 4.6. Comparison of the bending resistances obtained from FE analysis and experiment with 

different imperfection values in negative direction 

Specimen 
Flexural Strength (kNˑm) FE to experimental flexural strength  

Mtest M25% M50% M75% M25%/Mtest M50%/Mtest M75%/Mtest 

D8.5Z120-4 28.7 27.92 28.32 27.88 0.97 0.99 0.97 

D8.5Z115-1 26.8 28.47 27.8 26.66 1.06 1.04 0.99 

D8.5Z092-3 17.3 18.45 18.22 17.45 1.07 1.05 1.01 

D8.5Z082-4 14.3 15.98 15.31 15.12 1.12 1.07 1.06 

D8.5Z065-7 10.5 11.64 11.37 11.18 1.11 1.08 1.06 

D8.5Z065-4 9 10.93 10.56 10.21 1.21 1.17 1.13 

D11.5Z092-3 29.6 30.84 30.56 29.6 1.05 1.04 1.00 

D11.5Z082-4 26.4 27.4 26.32 25.48 1.04 1.00 0.97 

Average     1.08 1.06 1.02 

St. Dev.     0.07 0.06 0.06 

 

Table 4.7. Comparison of the bending resistances obtained from FE analysis and experiment with 

different imperfection values in positive direction 

Specimen 
Flexural Strength (kNˑm) FE to experimental flexural strength  

Mtest M25% M50% M75% M25%/Mtest M50%/Mtest M75%/Mtest 

D8.5Z120-4 28.7 28.66 28.12 27.49 1.00 0.98 0.96 

D8.5Z115-1 26.8 29.46 28.52 28.03 1.10 1.06 1.05 

D8.5Z092-3 17.3 18.1 17.46 16.93 1.05 1.01 0.98 

D8.5Z082-4 14.3 16.81 15.92 14.36 1.18 1.11 1.00 

D8.5Z065-7 10.5 12.21 11.36 10.94 1.16 1.08 1.04 

D8.5Z065-4 9 10.85 10.12 9.56 1.21 1.12 1.06 

D11.5Z092-3 29.6 32.98 30.83 30.69 1.11 1.04 1.03 

D11.5Z082-4 26.4 27.56 27.13 26.96 1.04 1.03 1.02 

Average     1.11 1.06 1.02 

St. Dev.     0.07 0.05 0.04 

 

The local and distortional imperfections were multiplied with a scale factor and superimposed. 

The magnitudes of the local and distortional imperfections were based on the cumulative 

distribution function (CDF) values proposed by Schafer and Pekӧz (Schafer and Pekoz 1998). 

Three different CFD values (i.e. 25%, 50%, and 75%) were considered, in both a positive and a 

negative direction, according to the convention shown in Figure 4.12, in order to study their 

effect on the load carrying capacity.  

A comparison of the experimental moment capacities with those obtained from FE analysis for 

the three different CDF values is provided in Table 4.6 and Table 4.7, for negative and positive 

imperfections, respectively. It is seen that, in general, good agreement was obtained between the 

models and the experimental results. The error was, on average, less than 7% for both positive 

and negative imperfections. The magnitude of the imperfection, in this particular case, did not 
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seem to have a major impact on the load-carrying capacity. In the remainder of this study, CDF 

values of 50% were used. This magnitude represents the ‘most probable’ imperfection and has 

also been suggested by other researchers (e.g. (Haidarali and Nethercot 2011)).  

The experimental load–deflection response of specimen D11.5Z092-3 (Table 4.7) is compared 

to the FE predictions in Figure 4.13. The results confirm the accuracy of the FE model in 

predicting the bucking and post-buckling behaviour of the CFS member, including its stiffness, 

ultimate strength and deflection at the peak load.  

 

Figure 4.13. Comparison between experimental results (Yu and Schafer 2006, Yu and Schafer 

2007) and results of FE analyses for laterally braced specimen D11.5Z092-3 for 3 mesh sizes (mesh 

sensitivity analysis) 

4.5.2.2 Laterally unbraced beams 

The FE models of the laterally unbraced beams were verified against tests conducted by Put et 

al. (Put et al. 1999). Table 4.8 shows the dimensions of the eight test specimens. In the 

experiment a special frame was attached to the cross-section at mid-span in order to apply the 

load through the shear centre by means of incremental weights. The beams were simply 

supported at their ends. The local/distortional imperfections of the test specimens were not 

measured and, in an identical approach to the one reported in Section 4.6.2.1, local and 

distortional imperfections with a CDF value of 50% were used in the FE model. An overall 

imperfection in the shape of the lateral-torsional mode with amplitude of L/1000 was also added 

(Kankanamge and Mahendran 2012). It was thereby found that, generally, adding a negative 

imperfection (with the cross-section rotated as shown in Figure 4.14) resulted in a lower 

ultimate moment capacity in the unbraced channels and was therefore more critical. Similar 

observations were reported by Kankanamge and Mahendran (Kankanamge and Mahendran 

2012). Therefore, only negative imperfections were considered in the FE studies covered in this 

chapter. Figure 4.15 illustrates the FE model and the boundary conditions. A reference point 

was defined at the shear centre of the cross-section at mid-span and all the nodes of the web at 
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the mid-span section were coupled to the reference point using rigid beams. A downward 

displacement was then imposed on the reference node without restricting its lateral displacement.  

The typical failure mode of the unbraced beams in the FE model was interaction of local 

buckling and lateral-torsional buckling, as illustrated in Figure 4.16. This is consistent with the 

experimental results reported by Put et al. (Put et al. 1999). Table 4.8 compares the ultimate 

capacities of the laterally unbraced braced beams obtained from the FE analyses to the 

experimental values. It shows that, on average, the FE models predict the ultimate strength of 

the laterally unbraced beams with less than 6% error. The load vs. lateral displacement curves 

from both the experiment and the FE analysis are shown in Figure 4.17 for specimen 10L17e0. 

The graph shows very good agreement between the FE model and the test results.  

 

Figure 4.14. CFS beam with negative lateral-torsional imperfection  

 

Figure 4.15. FE model and boundary conditions for laterally unbraced beams 

 

Figure 4.16. Typical failure mode of laterally unbraced beams (specimen 10L17e0 at ultimate load) 
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Table 4.8. Comparison of ultimate capacities obtained from FE analysis and experiment for 

laterally unbraced braced beams (lipped channels) 

Specimen 
h  

(mm) 

b 
(mm) 

t 

(mm) 

r 

(mm) 

d 

(mm) 

Lengt
h 

(m) 

Q  

(kN) 

Qtest 

(kN) 

Qtest/
Q 

- 

19L17e0 102 51 1.9 5 14.5 1.7 13.24 15.38 1.16 

19L19e0 102 51 1.9 5 14.5 1.9 12.11 12.68 1.05 

19L23e0 102 51 1.9 5 14.5 2.3 9.54 9.94 1.04 

19L25e0 102 51 1.9 5 14.5 2.5 7.79 8.65 1.11 

10L17e0 102 51 1 5 12.5 1.7 3.72 3.51 0.94 

10L19e0 102 51 1 5 12.5 1.9 3.18 3.46 1.09 

10L23e0 102 51 1 5 12.5 2.3 2.78 2.43 0.87 

10L25e0 102 51 1 5 12.5 2.5 2.3 2.8 1.22 

Average 
        

1.06 

St.Dev.                 0.11 

 

  

Figure 4.17. Comparison between experimental results and FE analysis for laterally unbraced 

specimen 10L17e0 (Put et al. 1999) 

 FE simulations of the optimised channel sections 4.6

The experimentally validated FE models were subsequently used to evaluate the efficiency of 

the optimised channel sections obtained in Section 4.4 and make a comparison with their 

standard counterpart.  

4.6.1 Laterally braced beams 

In the FE model, the laterally restrained beams were observed to fail by local and/or distortional 

buckling. As suggested by Shifferaw and Schafer (Shifferaw and Schafer 2012), the length of 

the FE models of both the optimised and the standard sections was taken as three times the 
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distortional buckling half-wave length calculated using the CUFSM (Schafer 2006) software. 

This was generally short enough to avoid lateral-torsional buckling. With respect to the 

boundary conditions, the member was pin-ended about the major axis and prevented from 

rotating about the minor axis, while the end sections were prevented from warping. Equal but 

opposite rotations were applied at both ends. Figure 4.18 illustrates the boundary conditions and 

loading of the FE models. Local/distortional imperfections with amplitude corresponding to the 

50% value of the CDF were used. Table 4.9 summarises the local and distortional critical 

moments and the associated buckle half-wave lengths of the standard and optimised cross-

sections of different prototypes obtained from CUFSM. The flexural strength of the optimised 

and the standard cross-sections obtained from FE analyses are compared in Figure 4.19. The 

results confirm that a considerable increase in the flexural capacity can be observed in the 

optimised shapes compared to the standard sections possessing the same amount of material (i.e. 

the same total coil width and thickness). 

 

Figure 4.18. Boundary conditions in the FE models of channel sections 

Table 4.9. The critical buckling modes and the buckling half-wave length for laterally restrained 

beams 

Section 
Buckling half-wave length (mm) Buckling moment (kNˑm) 

Local  Distortional Local Distortional 

Standard 100 400 4.79 4.81 

Opt①  120 600 4.12 6.09 

Opt ② 80 600 16.99 7.18 

Opt ③ 100 500 7.14 6.08 

Opt ④ 100 500 4.31 5.69 

Opt ⑤ 100 600 7.43 8.57 

Opt ⑥ 120 600 8.80 8.60 
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Figure 4.19. Comparison of FE predicted strengths of optimised and standard cross-sections for 

laterally braced beams 

4.6.2 Laterally unbraced beams 

The laterally unbraced beams were assumed to be simply supported at the ends (with respect to 

both in-plane and out-of-plane rotations) with no lateral restraints in between. Warping of the 

end sections was free to occur and the load was applied by imposing an end rotation about the 

major axis, as shown in Figure 4.20. Four different lengths (i.e. 1m, 2m, 3m, and 4m) were 

considered, both for the standard and the optimised CFS cross-sections. Local/distortional 

imperfections were modelled and combined with an overall imperfection of L/1000 in the shape 

of the lateral-torsional buckling mode.  

 

Figure 4.20. FE model for laterally unbraced standard and optimised beams 
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Figure 4.21. Moment-lateral deflection curves at mid-span of the optimised unbraced beams 

The (uniform) bending moments obtained from the FE analysis are plotted in Figure 4.21 

against the lateral displacement (at mid-span) of the optimised beams with four different lengths. 

The moment-lateral displacement curves illustrate the obvious fact that increasing the length of 

the CFS beams results in a decrease of the bending capacity due to lateral torsional buckling.  

The flexural strengths of the optimised and the standard cross-sections with different lengths 

obtained using FE analyses are compared in Figure 4.22. Confirming the results obtained from 

the effective width method in EC3, Figure 4.22 shows that the optimised shapes offer a much 

higher flexural capacity (up to 108% higher) compared to the standard sections with the same 

amount of material, particularly in longer beams where global buckling is the dominant mode. 

 

Figure 4.22. Comparison of FE predicted flexural strengths of optimised and standard cross-

sections for laterally unbraced beams 
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 Evaluation of the EC3 based approach 4.7

The results obtained from the experimentally validated FE models were treated as a benchmark 

to evaluate the accuracy of the DSM and the effective width method implemented in EC3. The 

EC3 and DSM predicted flexural strengths of the standard lipped channel and the optimised 

cross-sections obtained for all six prototypes (see Table 4.1) are compared in Table 4.10 for the 

laterally braced elements. For comparison purposes, the strength values are normalised with 

respect to the flexural strength obtained from FE analysis.  

The results obtained from EC3 and from the DSM are both in good agreement with their FE 

counterparts. However, for the laterally braced beams, the DSM provided slightly more accurate 

and slightly more conservative estimates of the strengths than EC3. EC3 overestimated the 

flexural capacity of the laterally braced sections by 11% on average.  

Table 4.10. Comparison of predicted strengths with FE results for laterally braced beams 

Strength ratio 
Section 

Average St. Dev. 
Standard ① ② ③ ④ ⑤ ⑥ 

EC3/FEM 1.07 1.09 1.16 1.15 1.12 1.14 1.08 1.11 0.036 

DSM/FEM 0.98 0.92 0.98 0.98 0.96 1 0.99 0.97 0.028 

 

Table 4.11. Comparison of predicted strengths with FE results for laterally unbraced beams 

Length (m) 
Standard section Optimised section 

EC3/FEM DSM/FEM EC3/FEM DSM/FEM 

1 0.97 1.15 0.98 1.02 

2 0.82 1.05 0.87 1.16 

3 0.87 1.24 0.81 1.28 

4 1.02 1.25 0.84 1.36 

Average 0.92 1.17 0.88 1.21 

St. Dev. 0.091 0.093 0.074 0.148 

For the unbraced beams, however, the findings are reversed. It is shown in Table 4.11 that the 

strengths calculated based on EC3 are conservative for the unbraced beams, while the DSM 

overestimated the flexural capacity of both the standard and the optimised sections by up to 36% 

and by 21% on average. Table 4.11 also indicates that the accuracy of the DSM decreased with 

increasing span length.  

The FE simulations carried out in this study generally confirmed the accuracy of the EC3 design 

rules and therefore its suitability to be used as a tool for optimisation. It is thereby noted that 

using EC3 as a basis for optimisation leads to a significant simplification of the process 

compared to the effort it would take to use detailed non-linear FE analyses as part of the 

optimisation process.  
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As a final summary, Figure 4.23(a) and Figure 4.23(b) compare the ultimate capacities obtained 

using EC3, the DSM and the FE models, made dimensionless with respect to the capacity of the 

standard section obtained using the same method, for all braced and unbraced channel beams. It 

is shown that, while the EC3 predicts gains which are consistently about 10% higher than the 

FE/DSM predictions for the braced beams, a very good match is obtained for the unbraced 

beams. Most importantly, however, the trends of increasing/decreasing capacity over the range 

of prototypes (for the braced beams) and over the range of lengths (for the unbraced beams) are 

very well predicted by EC3 when the FE simulations are taken as a benchmark. In particular, the 

EC3 predicted conclusion that prototype ② is the most efficient prototype for unbraced beams, 

is confirmed by the FE models. In general, the results indicate that the proposed optimisation 

method is accurate and reliable and provides a practical tool for manufacturers and structural 

engineers to optimise the capacity of CFS elements.  

By optimising each CFS beam in a given structure for a particular length and boundary 

conditions, a structure with minimum weight and optimal material efficiency could be obtained. 

However, in reality it would not be economical to custom roll each individual member, since a 

definite cost is incurred when reconfiguring the rolling process. Moreover, smaller roll-forming 

companies might not have this capability in the first place. Considering the range of optimum 

sections over lengths from 1m to 4m (Figure 4.6), a question of a very practical nature could be 

which section to commercialize and mass-produce as a ‘general purpose section’. In the authors’ 

design experience, the effective lengths of roof purlins, after taking into account the rotational 

restraint of the cladding (and given the reality in the UK that the market for roof cladding is 

almost monopolized by a single type of roofing panel), usually range from 1.5m to 2.5m. 

Therefore, the optimum section proposed for a 2m length would be a good candidate for a 

commercial roof purlin. 
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Figure 4.23. Flexural strength ratio of the optimised sections to the standard section for (a) laterally 

braced beams and (b) for laterally unbraced beams using the same amount of material 

 Summary and conclusions 4.8

This chapter presents a practical method to obtain more economical CFS channel sections for 

use as laterally braced or unbraced beams by optimising the dimensions of the cross-section and 

allowing for the addition of double-fold (return) lips, inclined lips and triangular web stiffeners. 

The optimisation process is thereby based on the Particle Swarm Optimisation (PSO) 

Algorithm, while the flexural strength of the sections is determined using the Effective Width 

Method as implemented in EC3. Six different prototypes were considered based on practical 

considerations. Based on the results of this study, the following conclusions could be drawn: 

(1) By applying the proposed optimisation method to laterally braced beams, significant gains in 

cross-sectional bending capacity can be achieved: in the example, the bending capacity of a CFS 

cross-section was increased by up to 25% compared to the commercially available section taken 

as a starting point. The most effective cross-sectional prototype in this case was the lipped 

channel section with one stiffener located in the web. Using two stiffeners in a symmetrical 
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arrangement, while keeping the developed length constant, would again reduce the efficiency of 

the solution. 

(2) The flexural capacity of the optimised 1m, 2m, 3m and 4m long unbraced beams was 

increased by 26%, 25.8%, 61% and 75%, respectively, compared to a commercially available 

section with the same amount of material. Comparison between the optimised results indicated 

that, when increasing the unbraced length, the flange width of the optimum solution increased, 

and consequently the total height of the section was reduced.  

(3) The adequacy of the optimised sections was verified using detailed nonlinear FE analyses 

validated against experimental data, while also taking into account the effects of initial 

imperfections. The FE results, on average, showed less than a 6% error compared with the 

experimental data. The FE results of the commercially available and the optimised sections for 

both laterally braced and unbraced conditions generally showed good agreement with the 

flexural strengths estimated by EC3. The FE simulations also closely followed the increasing or 

decreasing trends in flexural capacity predicted by EC3 across the different prototypes. This 

demonstrates the reliability of the proposed optimisation method using the EC3 design rules.  

(4) The flexural strengths of the optimised and the commercially available sections were also 

determined based on the DSM. Overall, the strengths calculated using EC3 and the DSM 

displayed a similar trend. Compared to the FE results, EC3 overestimated the flexural strength 

of the laterally braced beams by up to 16%, but underestimated the strength of the laterally 

unbraced beams by up to 19%. While the DSM, in general, provided accurate estimates of the 

capacities of the laterally braced beams, the accuracy of the method was seen to decrease with 

an increase of unbraced span length. It was shown that the DSM may overestimate the flexural 

capacity of long span laterally unbraced beams by up to 36%. 
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In the last chapter, optimisation on conventional CFS beams was conducted. This chapter aims 

to develop a more efficient CFS beam section with maximum flexural strength for practical 

applications. The optimised sections are designed to comply with the Eurocode 3 (EC3) 

geometrical requirements as well as with a number of manufacturing and practical constraints. 

The flexural strengths of the sections are determined based on the effective width method 

adopted in EC3, while the optimisation process is performed using the Particle Swarm 

Optimisation (PSO) method. To allow for the development of a new ‘folded-flange’ cross-

section, the effective width method in EC3 is extended to deal with the presence of multiple 

distortional buckling modes. In total, ten different CFS channel cross-section prototypes are 

considered in the optimisation process. The flexural strengths of the optimised sections are 

verified using detailed nonlinear finite element (FE) analyses. The results indicate that the 

optimised folded-flange section possesses up to 57% higher bending capacity compared to other 
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optimum standard shapes with the same amount of material. The methodology presented in this 

chapter can be applicable to other innovative cross-sections. 

 Introduction 5.1

It has been pointed out that a folded flange cross-section (Figure 1.3(b)) can be better in terms 

of manufacturing and constructional aspects than a curved flange cross-section, as shown in 

(Figure 1.3(a)). However, the EC3 guidelines (CEN 2005, CEN 2005a, CEN 2005b) do not 

provide a direct procedure for the design of such cross-sections. In particular, there is a need to 

develop a design procedure that can account for the multiple distortional buckling modes which 

may occur in the folded-flange section.  

This study aims to develop such a design methodology in order to subsequently use it to 

optimise the CFS folded-flange section. The efficiency of the folded-flange beam section is 

investigated alongside nine more conventional channel prototypes which are aimed at 

investigating the effects of intermediate web stiffeners, return lips and inclined lips. All sections 

are optimised by maximising the cross-sectional flexural capacity for a given thickness and coil 

width (equal to the total developed length of the cross-section). A brief overview of the effective 

width method adopted in EC3 (CEN 2005b) is first given in Section 5.2. This method is then 

extended to deal with the presence of multiple distortional buckling modes in the folded-flange 

cross-section. The particle swarm optimisation (PSO) method, used to solve the optimisation 

problem, is described in Section 5.3 and the optimum solutions are presented in Section 5.4. The 

accuracy of the proposed design model and the efficiency of the optimisation procedure are 

investigated through detailed nonlinear FE modelling in Section 5.5. A comprehensive 

comparison of the optimised results is provided in Section 6. 

 Design of CFS members based on EC3 5.2

The CFS sections to be optimised are evaluated according to the cross-sectional strength and 

stability provisions in EC3 (CEN 2005b) accounting for both local and distortional buckling 

modes. The “notional flat widths of the plate assemblies are used to determine the cross-

sectional properties, which are then reduced by a factor ( ) to account for the influence of the 

rounded corners. A brief description of the EC3 provisions for the design of CFS members is 

provided in the following subsections. 

5.2.1 Local buckling 

In EC3, the effect of local buckling is considered through the effective width concept. It 

recognizes the fact that local buckling of the plates constituting the cross-section has the effect 

of shifting the load-bearing stresses towards the corner zones, in the process reducing the 

effectiveness of the central parts in carrying compressive stresses. The cross-section is 
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consequently idealized as an “effective cross-section”, shown in solid black line in Figure 5.1(b). 

This effective area is assumed to resist the full bending action applied to the section. According 

to Eurocode 3, Part 1-5 (CEN 2005a), the effective width of a (doubly supported) plate is given 

by: 
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where b  and eb  are the total and the effective width of the plate, respectively. 2 1  f f  is the 

stress ratio of the plate, as shown in Figure 5.1(c) and (d). An equation similar to Equation (5.1) 

is also provided for outstand elements. The slenderness ratio for local buckling, l , relates the 

material yield stress, yf , to the elastic local buckling stress of the plate, cr . It is worth 

mentioning that Eurocode 3, Part 1-3 (CEN 2005b) always calculates the effective cross-section, 

effW , based on the yield stress, yf , while some other design standards (e.g. the AISI (AISI 

2007) and AS/NZS (AS/NZS 1996) specifications) use the stresses at global buckling. 
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Figure 5.1. Local buckling mode of a folded-flange cross-section: (a) buckled shape, (b) effective 

area of the cross-section for local buckling, (c, d) web under stress gradient  

5.2.2 Distortional buckling 

Distortional buckling of CFS members is linked to any buckling mode causing a distortion of 

the shape of the cross-section, but excludes those deformations related to local buckling (Figure 

5.2(a)). As a result, distortional buckling is always associated with the displacement of one or 

more of the fold-lines of the section out of their original positions. Distortional buckling can 

also be interpreted as global (flexural or flexural-torsional) buckling of plate subassemblies 

within the cross-section. In line with this latter view, EC3 (CEN 2005b) bases the design for 

distortional buckling on the assumption that the plate subassembly at risk of buckling (which 

could be a stiffened web or a compressed flange-lip assembly) behaves as a strut continuously 

supported by elastic springs of stiffness K along its centroid axis. These springs replace the 

restraint experienced by the plate assembly from the omitted parts of the cross-section and 

(a) (b) (c) (d) 
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therefore depend on the flexural stiffness of the adjacent plates. The buckling behaviour can 

then be studied by considering an equivalent strut on an elastic foundation, as shown in Figure 

5.2(b). The elastic critical buckling stress of the strut ,cr s  is: 

 ,

2
 

s
cr s

s

KEI

A
 (5.3) 

where  E  is the modulus of elasticity, sI  is the second moment of the area of the stiffener 

about the axis through its centroid parallel to the plate element being stiffened, K  is the spring 

stiffness per unit length, and sA  is the effective cross-sectional area of the edge stiffener. The 

stiffness K is determined by applying a unit load u=1 (per unit length) at the centroid of the 

effective part of the edge stiffener assembly, as shown in Figure 5.4 for the case of a double-

fold stiffener. The stiffness of the equivalent springs thus depends on the flexural stiffness of the 

adjacent plane elements. 

u=1

                   

Edge Stiffener

Is,As

Spring stiffness, K

Spring stiffness, K

Intermediate Stiffener

Is,As

 

                             (a)                  (b) 

Figure 5.2. Distortional buckling mode of a channel section with intermediate and edge stiffeners 

(a) distortionally buckled shape and (b) equivalent struts 

This procedure cannot directly be applied to the design of the folded-flange cross-section shown 

in Figure 1.3(b), because of the possibility of not one, but two distinctively different distortional 

buckling modes occurring, depending on the length of the flange segments. As illustrated in 

Figure 5.3, when the length of flange segment 2 is relatively large compared to segment 1, 

distortional buckling type 1 is dominant (i.e. buckling of the assembly consisting of flange 

segment 2 and the lip). However, for sections where flange segment 1 is much longer than 

segment 2, distortional buckling of type 2 (illustrated in Figure 5.4) is critical (i.e. buckling of 

the assembly consisting of flange segments 1 and 2 and the lip). Considering the two structural 

systems shown in Figure 5.3 and Figure 5.4 (and ignoring any second order effects), the 

deflections 1  and 2  produced by concentrated forces 1u  and 2u , respectively, can be 

determined to be: 
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where the bending rigidity of the plate, D , is determined by: 

  3 2/12 1 D Et v  (5.6) 

In the above equations, e is the distance between the centroid of the edge stiffener (shown in 

Figure 5.3(b) and Figure 5.4(b))and the pivot point (which is the web-to-flange junction for type 

2 buckling and the junction between flange segments 1 and 2 for type 1 buckling), h is the 

height of the web, b is the length of flange segment 1 and 1  is the angle between flange 

segment 1 and segment 2 (see Figure 5.3(a) and Figure 5.4(a)). Furthermore, t is the plate 

thickness and E and v are the modulus of elasticity and the Poisson’s ratio, respectively. 

Distortional buckling is taken into account in EC3 (CEN 2005b) using a reduction factor dX on 

the thickness of the stiffeners. This method can be extended to deal with folded-flange cross-

sections by determining the elastic distortional buckling stress ,cr s , with Equation (5.3), using 

a stiffness K obtained from Equations.(5.4-5.5). The effective cross-section needs to be 

calculated separately for each of the two distortional modes, yielding two effective cross-section 

moduli. For a particular cross-section, the effective section modulus is then taken as the 

minimum value of the two. 
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Figure 5.3. (a) Actual system, and (b) simplified model to analyse distortional buckling of type 1 
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Figure 5.4. (a) Actual system, and (b) simplified model to analyse distortional buckling of type 2 

The design model developed for the folded-flange section is further used during the 

optimisation process in Sections 5.3 and 5.4. 

 Optimisation procedure 5.3

5.3.1 Problem definition 

The optimisation procedure in this study aimed to maximize the CFS cross-sections with respect 

to their bending capacity. The optimisation problem can be formulated as: 

 max (  ,  c Rd eff yM W x f ) min max id x d   for  1, ...,i N  (5.7) 

where ,c RdM  is the moment resistance of a cross-section about its major axis and  effW x  is 

the effective section modulus. For each design variable, ix , lower and upper bounds, mind  and 

maxd  , were determined based on a combination of the constraints imposed by EC3 (CEN 

2005b) and  certain manufacturing limitations and practical considerations , which will be 

explained further in this section.  Throughout the optimisation process, the thickness of the 

cross-sections was kept constant at 1.5 mm and the total developed length of the cross-section 

(the coil width) was also maintained at 415 mm. These values were taken from a commercially 

available channel section, shown in Figure 5.5, which was used as a benchmark and to which 

the performance of the optimised sections will be compared in section 4.2. 

The values of the radius of the rounded corners (measured along the heart-line), the elastic 

modulus and the Poisson’s ratio were taken as 3 mm , 210 GPa  and 0.3, respectively. The yield 

stress of the CFS material was assumed to be 450yf MPa . It is again noted that the 

optimisation was carried out with respect to the cross-sectional capacity, excluding lateral-

torsional buckling. This situation is representative, for instance, of purlins connected to a steel 

deck with concrete topping, where the compression flange is continuously supported, or even of 

roof purlins where the lateral and rotational stiffness of the roof diaphragm and/or the presence 

of sufficient bridging prevent any out-of-plane effects.  
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Figure 5.5. Selected commercial CFS beam cross-section 

To ensure the practicality of the optimised sections, the following additional constraints were 

imposed: 

(1) The basic overall shape of all the cross-sections was restricted to a channel. Channel sections 

are currently the most widely used CFS beams in practical applications. The fact that they are 

composed of flat plate elements  both allows for a straightforward manufacturing process and 

facilitates the connections to trapezoidal steel decking or roof/wall systems, as well as bridging, 

cleat plates, etc… Ten different prototypes were optimised, which are shown in Table 5.1. They 

include nine relatively conventional sections and the newly proposed folded-flange channel 

section. All prototypes are based on a channel shape, but they allow the addition of a single web 

stiffener, double web stiffeners, inclined lips and double-fold (return) lips. These features are 

commonly encountered within commercially available sections and do not impose any 

excessive demands on the fabrication process. Each prototype was individually optimised, after 

which the overall optimum among the ten optimised prototypes was identified. 

(2) In practice, additional constraints of a very concrete nature typically come into play. These 

constraints may be quite case-dependent and may, for instance, be related to the ability to 

connect the beam to other elements, or be imposed by the manufacturing process itself. In this 

particular case, the following constraints were imposed: 

a) The width of the flanges was required to be at least 50 mm in order to connect 

trapezoidal decking or plywood boards to the beam by means of screws. This width was 

determined after consultation with the industrial partner on the project. In the case of 

the folded flange section, it was the flat width of the central horizontal segment which 

was restricted to a minimum of 50 mm.  

b) The lip needs to be of a sufficient length. A lip of, for instance, 1 mm length cannot be 

rolled or brake-pressed. The industrial partner on the project suggested a minimum 

length of 5-15 mm. Therefore, as indicated in Table 5.1, c≥15 mm was imposed for a 

single lip and combined with d≥5 mm for a return lip. 
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c) The height of the web was specified to be at least 100 mm in order to allow a 

connection to be made (e.g. to a cleat plate) with at least two bolts and/or for bridging to 

be installed. An upper bound of 350 mm was also imposed limit the total floor depth. 

d) The ratio R (see Table 5.1) was restricted so that the intermediate web stiffener would 

be physically positioned within the web. 

One of the major advantages of the PSO algorithm is that these constraints can easily be 

accommodated and others added. The constraints merely result in a restriction of the search 

space of the particle swarm. 

In addition to the practical constraints mentioned above, the EC3 design rules (CEN 2005b) also 

impose certain limits on the plate width-to-thickness ratios, the relative dimensions of the cross-

section and the angle of the edge stiffeners. These constraints were also taken into account in 

the optimisation procedure and are listed in Table 5.1 under the heading ‘Constraints based on 

EC3’. 

Finally, the opening angle and the leg length of the intermediate stiffeners were limited to 6  

and 15 mm, respectively. 

Table 5.1. Selected prototypes, design variables and constraints 

Prototype  
Prototype 

section 
Design 

variables 
Constraints 

based on EC3 minu
 maxu

 

Manufacturing 
& practical 
limitations 

① 

b

h

b  

x=b/L 
b/t≤50 

h/t≤500 
0.1205 0.1807 

b≥50 

100≤h≤350 

② 

b

R
×

h
h

b  

x1=b/L 

x2=R 

b/t≤50 

h/t≤500 

0.1205 

0.1000 

0.1807 

0.9000 

b≥50 

100≤h≤350 

0.1≤R≤0.9 

③ 

b

h
R

×
h

R
×

h

b  

x1= b/L 

x2=R 

b/t≤50 

h/t≤500 

0.1205 

0.1000 

0.1807 

0.4000 

b≥50 

100≤h≤350 

0.1≤R≤0.4 

④ 

b

h

b

c

c

θ1

θ1

 

x1=c/b 

x2=b/L 

x3=θ1 

0.2≤c/b≤0.6 

b/t≤60, c/t≤50 

h/t≤500 

π/4≤θ1≤3/4π 

0.3000 

0.1205 

π/4 

0.6000 

0.2169 

3/4π 

b≥50 

100≤h≤350 

c≥15 
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Prototype  
Prototype 

section 
Design 

variables 
Constraints 

based on EC3 minu
 maxu

 

Manufacturing 
& practical 
limitations 

⑤ 

b

R
×

h
h

c

b

c

θ1

θ1

 

x1=c/b 

x2=b/L 

x3=R 

x4=θ1 

0.2≤c/b≤0.6 

b/t≤60, c/t≤50 

h/t≤500 

π/4≤θ1≤3/4π 

0.3000 

0.1205 

0.1000 

π/4 

0.6000 

0.2169 

0.9000 

3/4π 

b≥50 

100≤h≤350 

c≥15 

0.1≤R≤0.9 

⑥ 

b

c

h
R

×
h

R
×

h θ1

θ1

b

c

 

x1=c/b 

x2=b/L 

x3=R 

x4=θ1 

0.2≤c/b≤0.6 

b/t≤60, c/t≤50 

h/t≤500 

π/4≤θ1≤3/4π 

0.3000 

0.1205 

0.1000 

π/4 

0.6000 

0.2169 

0.4000 

3/4π 

b≥50 

100≤h≤350 

c≥15 

0.1≤R≤0.4 

⑦ 

b

h

c

d

θ1

b

c

d

θ
1

 

x1=c/b 

x2=d/b 

x3=b/L 

x4=θ1 

0.2≤c/b≤0.6, 
0.1≤d/b≤0.3 

b/t≤90, c/t≤60 

d/t≤50, h/t≤500 

π/4≤θ1≤3/4π 

0.3000 

0.1000 

0.1205 

π/4 

0.6000 

0.3000 

0.2169 

3/4π 

b≥50 

100≤h≤350 

c≥15 

d≥5 

⑧ 

b

h

c

d

θ1

b

c

d
θ
1

R
×

h

 

x1=c/b 

x2=d/b 

x3=b/L 

x4=R 

x5=θ1 

0.2≤c/b≤0.6 

0.1≤d/b≤0.3 

b/t≤90, c/t≤60 

d/t≤50 

h/t≤500 

π/4≤θ1≤3/4π 

0.3000 

0.1000 

0.1205 

0.1000 

π/4 

0.6000 

0.3000 

0.2169 

0.9000 

3/4π 

b≥50 

100≤h≤350 

c≥15, d≥5 

0.1≤R≤0.9 

⑨ 

b

c

R
×

h
R

×
h

h

θ1

d

b

c

θ
1

d

 

x1=c/b 

x2=d/b 

x3=b/L 

x4=R 

x5=θ1 

0.2≤c/b≤0.6 

0.1≤d/b≤0.3 

b/t≤90, c/t≤60 

d/t≤50, 
h/t≤500 

π/4≤θ1≤3/4π 

0.3000 

0.1000 

0.1205 

0.1000 

π/4 

0.6000 

0.3000 

0.2169 

0.4000 

3/4π 

b≥50 

100≤h≤350 

c≥15, d≥5 

0.1≤R≤0.4 

⑩ h

b

c

d

b

c

d

θ2θ1

θ2θ1

 

x1= θ1 

x2= θ2 

x3=b 

x4=c 

x5=d 

h/t≤500, 
7/12π≤θ1≤5/6π 

π/4≤θ2≤3/4π, 
30≤b≤48; 

50≤ c≤60; 

15 ≤d≤60 

7/12π 

π/4 

30 

50 

15 

5/6π 

3/4π 

48 

60 

60 

100≤h≤350 

 

5.3.2 Optimisation solutions 

To facilitate the optimisation process, both the design procedure and the optimisation algorithm 

were implemented in Matlab (Mathworks 2011). The population of the particle swam N was 

taken as 100, and 100 iterations maxk  were used to obtain the optimum results. The maximum 

and minimum inertial weight factors maxw  and minw  were taken as 0.95 and 0.4, respectively 

(Shi and Eberhart 1998). Each of the prototypes was optimised 3 times using a different set of 
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random initial particles and the result with the maximum bending capacity was retained as the 

optimum section. As an example, Figure 5.6 shows the iteration history of the bending capacity 

of prototype ⑩, where the convergence was practically achieved after about 50 steps. 

 

Figure 5.6. Iteration history of the maximum bending capacity of prototype ⑩ 

Table 5.2 summarises the dimensions and the bending capacity of the optimised cross-sections 

corresponding to each of the prototypes presented in Table 5.1. Table 5.3 illustrates the effective 

cross-section of the optimised prototypes, maintaining the same scale for all cross-sections. A 

thick black line represents a fully effective part of the cross-section, while a line with 

intermediate thickness indicates that the thickness has been reduced to account for distortional 

buckling. 

Table 5.2. Geometrical details and bending capacities of the optimised sections  

Section 
h  

(mm) 

b  

(mm) 

c 

(mm) 

d 

(mm) 

θ1 

(deg) 

θ2 

(deg) 
R  

Bending capacity 

(kNˑm) 

① 315 50 - - - - - 9.84 

② 305 50 - - - - 0.856 11.08 

③ 295 50       - 0.186 9.92 

Standard 

(Figure 5.7) 
231 75 17 - 90 - - 10.30 

④ 270 50 23 - 91 - - 13.38 

⑤ 263 50 21 - 92 - 0.79 13.66 

⑥ 234 50 20 - 90 - 0.223 12.69 

⑦ 242 50 29 7.5 90 - - 15.11 

⑧ 240 50 25 7 135 - 0.9 14.62 

⑨ 232 50 25 6.5 135 - 0.1 13.41 

⑩ 185 48 50 17 105 95 - 16.12 

It is clear from Table 5.3 that, in general, the optimised cross-sections tend to adopt the 

minimum specified flange width of 50 mm and, hence, have a large height-to-width ratio. 

However, prototypes ① to ③, which have the largest height, still show the lowest bending 
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capacity (one which is even lower than the standard non-optimised section taken as a starting 

point). This is due to the fact that the flanges without edge stiffeners are highly susceptible to 

local buckling and, therefore, the strength can only be marginally enhanced by adding 

intermediate stiffeners to the web in prototype ③. However, the optimised lipped channel 

section ④ shows that adding an edge stiffener can improve the bending capacity by more than 

25%. 

Adding an intermediate stiffener in prototype ⑤ increased the bending capacity of the optimum 

section by only 2%, compared to prototype ④. However, using two intermediate stiffeners in 

the web (prototype ⑥) actually reduced the flexural capacity of the optimum CFS section by 

5.2% compared to the optimum lipped channel with no stiffener (prototype ④). This is due to 

the fact that folding the intermediate stiffeners into the section (while keeping the total 

developed length constant) causes a reduction in total height, which impacts negatively on the 

effective modulus of the section. Moreover, in this symmetric arrangement the web stiffener in 

the tension zone is completely ineffective. It can be concluded in general terms that for CFS 

beam sections, edge stiffeners are much more efficient in increasing the section capacity than 

intermediate web stiffeners. 

The results also indicate that, using the same amount of material, the newly developed folded-

flange section (prototype ⑩) provides the maximum flexural strength compared to the other 

prototypes. Moreover, this cross-section can easily be manufactured and satisfies all the 

practical constraints which were imposed.  

It is also noted that the practical constraints imposed on the floor depth h of the sections (listed 

in the rightmost column of Table 5.1) never turned out to be critical. However, other practical 

restraints, in particular the minimum flange width and the restrictions on the ratio R and the 

angle θ1, were often found to govern the cross-sectional shape. 
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Table 5.3. Effective cross-sections of the optimised beams, presented at the same scale 

Prototypes ① ② ③ ④ ⑤ 

Effective 

sections 

   
  

Prototypes ⑥ ⑦ ⑧ ⑨ ⑩ 

Effective 

sections 

    
 

 

 FE analysis 5.4

Detailed geometric and material non-linear FE analyses were performed using ABAQUS 

(ABAQUS 2011) to evaluate the flexural behaviour and capacity of the optimised cross-sections 

for the ten considered prototypes (see Table 5.2) as well as the standard lipped channel taken as 

a starting point (Figure 5.5). The main purposes of the FE analyses were: (a) to examine the 

accuracy of the method proposed in Section 5.2 for the flexural design of folded-flange cross-

sections; and (b) to investigate the overall effectiveness of the developed optimisation 

framework in obtaining sections with increased capacity. 

5.4.1 FE modelling and parameters 

The FE models were developed in ABAQUS (ABAQUS 2011) using the general-purpose S4R 

element (Figure 5.7). This element is a 4-node quadrilateral shell element with reduced 

integration. Through a sensitivity analysis, a mesh size of 5 5mm mm  for the flat plate sections, 
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with smaller elements used in the rounded corner sections was found to be appropriate. No 

significant change on the ultimate capacity was observed by reducing the mesh size. 

Coupling the 

nodes of end 

section to the 

reference node 

of the web 

Ux=0 boundary 

condition is applied to 

the mid-span

Uy=Uz=Urx=Urz=0 

boundary conditions 

are applied to the 

reference node at 

ends)

Uniform 

rotation

 

Figure 5.7. FE model of the folded-flange beam subjected to local/distortional buckling 

The stress-strain behaviour of the CFS plate material was simulated using the constitutive model 

suggested by Haidarali and Nethercot (Haidarali and Nethercot 2011), as shown in Section 3.5.  

In the FE analysis, the effects of the geometric imperfections were included in the FE analysis 

by scaling the local and distortional modes to specific amplitudes and superposing them onto 

the initial perfect geometry. The critical buckling modes were obtained using CUFSM, a finite 

strip based software (Schafer 2006). The magnitudes of the local/distortional geometric 

imperfections were obtained from the cumulative distribution function (CDF) values presented 

by Schafer and Pekӧz (Schafer and Pekoz 1998). In particular, the local and distortional 

imperfections with a CDF value of 50% were considered, corresponding to values of d1/t and 

d2/t equal to 34% and 94%, respectively, with d1 and d2 illustrated in Figure 5.8. 

d1

  

d2

 

Figure 5.8. Geometric imperfections: (a) local buckling, and (b) distortional buckling 

To simulate pin-ended boundary conditions with warping prevented, the nodes of each end 

section of the CFS member were coupled to the central point of the web (acting as the master 

node) (Shifferaw and Schafer 2012). The external load was then applied in the form of uniform 

rotations of the end sections about the major axis using the Riks solver in ABAQUS . The 
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boundary conditions and the applied loading are illustrated in Figure 5.7. Large deformation 

effects were considered in the element formulation in order to be able to accurately track the 

post-buckling behaviour of the CFS beams. It is worth mentioning that the modelling techniques 

utilized in this study, including the type of elements, the material behaviour, the meshing and 

the imperfection modelling borrow heavily from the work by Haidarali and Nethercot (Haidarali 

and Nethercot 2011) and Shifferaw and Schafer (Shifferaw and Schafer 2012). These techniques 

have been extensively verified against experimental results (Yu and Schafer 2006, Yu and 

Schafer 2003), demonstrating excellent predictive capability with an average error typically less 

than 4%. 

5.4.2 FE analysis of folded-flange sections with varying dimensions 

This section presents the results of FE analyses used to evaluate the accuracy of the design 

approach proposed in Section 5.2 to calculate the flexural strength of folded-flange CFS cross-

sections. To achieve this, six folded-flange sections with a range of different dimensions were 

investigated. Table 5.4 provides the geometric details of all selected sections. The ratio b/c of 

the flange segments lengths (Table 5.1) and the angles of the inclined lips were varied. The 

sections failed by local buckling and/or distortional buckling of the two possible types described 

in Section 5.2. Since the CFS beams in the current study were laterally restrained, however, 

lateral-torsional buckling did not occur.  

As used by Galambos (Galambos 1998) , the lengths of the FE models were taken as three times 

the distortional buckling half-wave length.  

The flexural strengths of the selected sections obtained from detailed FE analyses are compared 

to those calculated using the proposed design method (Section 5.2) in Table 5.4. The results 

indicate that the proposed design methodology predicts the flexural capacity of the folded-

flange sections with reliable accuracy. The average and the standard deviation of the ratio of FE 

to EC3 results are 1.02 and 8%, respectively, as shown in Table 5.4.  

For illustrative purposes, the effective cross-sections calculated according to EC3, as well as the 

failed shapes at the ultimate load obtained from the FE analyses are presented in Table 5.5. With 

respect to the effective cross-sections it should be noted that the reduction in thickness of the 

black lines indicates distortional buckling of the section. These results show that the type 2 

distortional buckling mode (see Figure 5.4) is dominant for the folded-flange cross-section 

M2002, where the length of flange segment-1 is around 2 times of the segment-2. For all other 

folded-flange sections in Table 5.4, distortional buckling of type 1 (see Figure 5.3) is critical. 

This result was predicted by the design methodology and confirmed by the FE analysis results. 
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Table 5.4. Dimensions of the folded-flange cross-sections and bending capacity obtained from EC3 

and FEM 

Sections 

(Also see 

Table 5.5) 

Thickness 

(mm) 

Depth 

(mm) 

1  

(°) 

2  

(°) 

Flange1 

b(mm) 

Flange2 
c(mm) 

Lip 
d(mm) 

Corner 
radius 

(mm) 

Capacity 

(kNˑm) FEM/ 

EC3 
EC3 FEM 

M2001 1.4 200 135 135 18 66 18 2.8 10.14 10.06 0.99 

M2002 1.4 200 135 135 66 30 18 2.8 13.74 15.20 1.11 

M2003 1.4 200 135 135 40 40 18 2.8 12.71 11.77 0.93 

M2501 1.6 250 135 135 18 85 18 3.2 16.50 15.09 0.91 

M2502 1.6 250 120 90 30 61 30 3.2 19.76 21.30 1.08 

M2503 1.6 250 150 45 30 61 30 3.2 19.43 21.11 1.09 

Average 
Standard 
deviation 

         
1.02 

0.08 

The moment-rotation responses of the folded-flange sections obtained from FE analysis are 

plotted in Figure 5.9. It is seen that, with the exception of section M2503, all sections display, to 

a varying degree, some sort of “snap-back” behaviour past the peak load. This is a phenomenon 

which is not commonly observed in regular lipped channel sections and is more reminiscent of 

the post-peak behaviour of, for instance, cylindrical shells or strongly curved plates under 

compression (Figure 5.10). It appears that replacing the semi-circular flange shape in Figure 

1.3(a) by a segmental approximation for practical reasons causes the folded-flange section to 

‘inherit’ some of the typical snap-back behaviour of the former. 
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Table 5.5. Effective cross-sections and buckled shapes of the folded-flange beams (presented at a 

consistent scale) 

Range M2001 M2002 M2003 M2501 M2502 M2503 

Effective 
sections 

 

 
 

 
 

 

Buckling 
failure 
shapes 

 

 
  

 
 

 

 

Figure 5.9. Moment-rotation curve of the folded-flange sections 
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Figure 5.10. Schematic view of the behaviour of axially compressed panels (adapted from (Jones 

2006)) 

5.4.3 FE results of optimised cross-sections 

The bending moment capacities of the standard channel (Figure 5.5) and the optimised 

prototypes (Table 5.2) were determined using FE analysis. The adopted boundary conditions 

were identical to the models of the folded-flange sections previously described, and the load 

was again applied as uniform rotations at both ends. The lengths of the modelled beams (Table 

5.6) were selected as three times the distortional buckling half-wave length. For prototypes 

without edge stiffeners (prototypes ①, ②, ③) only the local buckling imperfection was 

incorporated, since local buckling was the dominant mode. Table 5.6 shows the bending 

capacities of the optimised and standard cross-sections obtained from the FE analyses and 

compares them to those determined based on the EC3 effective width method. Even though the 

results obtained from EC3 are slightly unconservative compared to the FE predicted capacities, 

this study shows that the effective width method is generally reliable and provides a reasonable 

prediction for the bending moment capacities of the selected CFS prototypes. The average ratio 

of the capacity determined using FEM to the capacity calculated using EC3 was 0.95 with a 

standard deviation of 5%. The failed shapes at ultimate capacity, obtained from FE analysis, are 

also illustrated in Figure 5.11. 
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Table 5.6. Comparison of the bending moment capacities of the optimised and standard sections 

obtained from EC3 and FE analysis 

Section 

Buckling half-wave 
lengths 

Modelling 
length (mm) 

Bending moment capacity 

(kNˑm) 
EC3/FEM 

Local 

(mm) 

Distortional 

(mm) 
EC3 FEM 

Standard 

Channel 
100 600 1800 10.30 10.40 0.99 

① 200 - 600 9.84 9.11 1.08 

② 200  600 11.08 11.22 0.99 

③ 200 - 600 9.92 9.41 1.05 

④ 140 600 1800 13.38 12.73 1.05 

⑤ 50 600 1800 13.66 12.08 1.13 

⑥ 50 600 1800 12.69 11.15 1.14 

⑦ 120 800 2400 15.11 14.09 1.07 

⑧ 100 800 2400 14.62 12.99 1.13 

⑨ 100 800 2400 13.41 12.33 1.09 

⑩ 100 800 2400 16.12 15.52 1.04 

Average  

Standard 
deviation 

     
0.95 

0.05 

 

   

   

   

  

Figure 5.11. Buckling shapes at peak load of the optimised and standard sections (Stress: MPa) 

Standard ① ② 

③ ④ ⑤ 

⑥ ⑦ ⑧ 
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 Comparison of the results and discussion 5.5

Figure 5.12 compares the EC3 predicted capacities of the optimised sections to the results 

obtained from detailed FE analysis. As a general conclusion, the FE results follow the trends 

predicted by the EC3 very well and confirm the reliability of the proposed optimisation method. 

The results also indicate that, for the same amount of material, the optimisation procedure can 

significantly increase the bending moment capacity of the CFS cross-sections. 

 

Figure 5.12. Comparison of the moment capacities of different prototypes 

It is shown specifically in Figure 5.12 that by only optimising the relative dimensions of the 

plates and the angles of the inclined lips (i.e. prototype ④), the bending capacity of the 

commercially available channel section taken as a starting point can be increased by more than 

30%. A comparison between the optimum results of prototypes ①, ④ and ⑦ indicates that the 

bending capacity of CFS channel sections can be significantly increased (by up to 55% in this 

case) by adding edge stiffeners which suppress the distortional mode. On the other hand, 

comparing the bending capacity of the prototypes ④ and ⑤, and also ⑦ and ⑧, it can be 

seen that adding intermediate stiffeners in the web does not necessarily increase the optimal 

bending capacity of the sections. This is also illustrated by the sections with two web stiffeners 

(prototypes ⑥ and ⑨), where the flexural capacity of the section with stiffeners was up to 13% 

less than the optimum channel section without web stiffener (prototype ④). The main reason 

for this behaviour is that, when placing the stiffener at the centre of the web or in a symmetric 

arrangement with one stiffener ending up in the tension zone of the beam, the stiffeners are not 

at their full effectiveness. At the same time, the total developed length of the cross-section is 

kept constant, so that folding the stiffeners into the section reduces the total height of the cross-

section and, therefore, its bending capacity. For practical reasons, however, it is not 

recommended to place the stiffeners in an asymmetric configuration since errors during the 

installation of the beams would almost be inevitable. Figure 5.12 also highlights the increased 
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efficiency of the proposed folded-flange prototype compared to any other prototype considered. 

It is shown that, for the same amount of material, prototype ⑩ leads to a maximum flexural 

capacity which is around 57% higher than the standard commercially available channel section 

and 22 % higher than the optimum lipped channel section (prototype ④). Folded-flange 

sections are also easy to manufacture and connect to typical floor systems and, hence, are ideal 

candidates for practical CFS beam sections. 

 Summary and conclusions 5.6

In this chapter, a practical framework is proposed to optimise CFS beam cross-sections while 

considering code-based design constraints as well as manufacturing issues and practical 

limitations. Using the framework, a commercially available CFS lipped channel section was 

optimised based on ten different prototypes, including a folded-flange cross-section, while 

keeping the material use constant. A modification of the EC3 design methodology was first 

developed in order to account for the multiple distortional buckling modes which may occur in 

the folded-flange cross-section. The cross-sectional buckling behaviour was taken into account 

by considering an equivalent strut in compression on an elastic foundation, where the stiffness 

of the foundation depends on the relative dimensions of the flanges. The particle swarm 

optimisation algorithm was then used to obtain the solutions with the maximum flexural 

strength. The accuracy of the modified design model and the effectiveness of the proposed 

optimisation framework were also evaluated using detailed non-linear FE analysis. The 

following conclusions can be drawn: 

 The FE simulations of the folded-flange sections confirm that the proposed additions to 

the effective width based design method in EC3 to account for the multiple distortional 

buckling modes in the folded-flange section lead to accurate predictions of the ultimate 

bending capacity. 

 By applying the proposed optimisation framework to laterally braced beams, the 

bending capacity of a commercially available CFS beam was increased by 30% by only 

optimising the relative dimensions of the flat plates and the inclination of the lips. The 

results also indicate that flanges with double fold lips have the potential to considerably 

increase the flexural capacity of CFS beams (by up to 50%), while using intermediate 

stiffeners in the web does not necessarily increase the capacity of the sections. As 

expected, plain CFS channel cross-sections provided the minimum flexural capacity, 

even when using intermediate web stiffeners.  

 Folded-flange sections, which can be easily designed and manufactured due to their 

simple sequence of straight plate segments with a relatively small number of folds, are 

shown to be viable and even superior alternatives to typical lipped channel sections. For 
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the same amount of material (i.e. the same total coil width and plate thickness), the 

folded-flange section possesses a flexural capacity which is 57% and 22% higher than 

the selected commercial section and the optimum lipped channel section, respectively. 
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While conventional building structures exceed their elastic limits in severe earthquakes, 

previous optimisation studies concentrated mainly on the optimum elastic buckling strength of 

CFS elements. This chapter aims to, for the first time, improve the seismic performance of CFS 

elements by optimising their post-buckling behaviour in the nonlinear inelastic range. A novel 

non-linear shape optimisation method is presented for the optimum design of CFS beam 

sections in moment‐resisting frames. The relative dimensions of the cross-section, the location 

and number of intermediate stiffeners and the inclined lip angle are considered as main design 

variables. All plate slenderness limit values and limits on the relative dimensions of the cross-

sectional components, set by the Eurocode 3, are taken into account as constraints on the 

optimisation problem. An additional constraint is considered where maximum equivalent plastic 

strain is restricted to ensure a sufficient level of ductility. Global optimal solutions are obtained 

through the Particle Swarm Optimisation (PSO) algorithm. The developed PSO algorithm is 
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linked to the ABAQUS (ABAQUS 2011) finite element programme for inelastic post-buckling 

analysis and optimisation.  

 Introduction 6.1

Cold-formed steel (CFS) elements are produced by bending relatively thin metal sheets into a 

variety of cross-sectional shapes by either cold-rolling or press braking. Structural systems 

composed of CFS members provide a wide range of advantages. They typically offer a high 

strength-to-weight ratio, are lightweight, and are easy to handle, transport and install. However, 

typically large width-to-thickness ratios of CFS cross-sectional plate assemblies, resulting from 

practical limitations on the sheet thicknesses which can be processed at room temperature, 

leaves CFS members susceptible to several instabilities including local, distortional and global 

buckling modes. The large width-to-thickness ratios of CFS members are also typically outside 

the limits prescribed by seismic design codes (AISC 341-05 2005, CEN 2008).  

Whilst some research has previously been carried out on the seismic behaviour of CFS stud 

walls (Nithyadharan and Kalyanaraman 2012, Wang et al. 2015), research into the plastic 

behaviour and the energy dissipation capacity of CFS primary load-bearing elements is still very 

limited.  

Calderoni et al. (Calderoni et al. 2009) conducted monotonic and cyclic tests to study the 

seismic behaviour of CFS channel beams. The results of their study showed substantial ductility 

and energy dissipation capacity in the CFS beam sections despite their full plastic moment 

capacity being reduced by local buckling. The axial cyclic behaviour of typical wall stud 

elements used as CFS framing members was investigated by Adilla-Llano et al. (Padilla-Llano 

et al. 2014). Their experimental tests showed a damage accumulation within the tested 

specimens. The results of their study indicated that the amount of dissipated energy in the stud 

elements varies with the dimensions and the shape of the profiles, typically decreasing with 

increasing cross-sectional slenderness ratio.  

Another research project on the development of elements and bolted connections for CFS 

moment-resisting frames has shown that their ductility and energy dissipation can significantly 

be improved by gradually adding intermediate folds into the flat plate sections to eventually 

form curved profiles (Sabbagh et al. 2012a), as shown in Figure 6.1. However, curved profiles 

are difficult to manufacture and connect to other elements and, therefore, more practical shapes 

could be developed by taking into account manufacturing and construction constraints. 

While typical CFS cross-sections are generally unable to prevent the local buckling in practical 

seismic design, the previous research has indicated that local buckling can be postponed by 
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optimising the shapes of CFS profiles to allow for development of ductility and energy 

dissipation (Sabbagh et al. 2012a). 

 

Figure 6.1. Development of CFS sections towards curved flanges to increase cross-sectional ductility 

(Sabbagh et al. 2012a)  

Pan et al. (Pan et al. 2007) developed an optimisation method to obtain H-beams with optimal 

flange shapes to increase the energy dissipation capacity of the elements under monotonic and 

cyclic loads. To achieve this, they combined Simulated Annealing optimisation algorithm with 

detailed nonlinear Finite Element Analysis. In a similar research project, Deng et al. (Deng et al. 

2015) optimised the length and shape of the straight part of U-shaped dampers, working as 

passive control devices in hot-rolled eccentrically braced frames, to maximise their energy 

dissipation capacity.  

The flexibility of CFS members with respect to the manufacturing and construction processes 

offers potential to develop cross-sections with high ductility and energy dissipation capacity. 

However, no research has previously been carried out on the optimisation of CFS members 

based on their post-buckling behaviour, ductility and energy dissipation. In this chapter, a new 

framework is proposed to optimise cold formed steel sections with respect to their maximum 

dissipated energy capacity. The relative dimensions of the cross-sections, the location and 

number of intermediate stiffeners and the angle of the inclined lips are considered as the main 

design variables. The commercially available FE program ABAQUS (ABAQUS 2011) is 

combined with a Particle Swarm Optimisation (PSO) algorithm to conduct the optimisation. 

During the optimisation process, the efficiency of the design solutions is investigated by using 

non-linear detailed FE models including the effects of imperfections. 

 Development of optimum CFS sections for seismic applications 6.2

In seismic design of hot-rolled steel members, the width-to-thickness ratios of the compressive 

plate assemblies of the cross-sections are often restricted in code of practice (AISC 341-05 2005 

and CEN 2008) to avoid local buckling before yielding, therefore allows for the development of 

plastic deformations. It is, however, almost impossible for typical CFS cross-sections to satisfy 

the width-to-thickness ratios stipulated in the seismic design code. Nevertheless, due to the 

flexibility in their manufacturing process, intermediate stiffeners and lips as well as additional 
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folds can be easily rolled into CFS cross-sections. As a result, the flat width-to-thickness ratios 

of the plate assemblies of the CFS cross-sections can be significantly reduced. 

(a) (b) (c) (d)  

Figure 6.2. Reduction of the width-to-thickness ratio by using intermediate stiffeners and folding 

the flanges 

Figure 6.2 illustrates a number of typical CFS sections that are generally easy to be 

manufactured and connected to other members and/or floor systems. It also indicates a process 

in which the flat width-to-thickness ratios of a conventional back-to-back CFS channel beam 

plate assemblies (Figure 6.2(a)) are reduced by gradually including intermediate stiffeners and 

bends in the cross-sections. Since the normal stress is maximum in the flange of CFS beam 

elements under bending, the intermediate stiffeners were introduced first in the flanges as shown 

in Figure 6.2(b). The web typically has high width-to-thickness ratio under the stress gradient 

and therefore intermediate stiffeners can be also added to the web to delay local buckling (see 

Figure 6.2(c)). The folded-flange cross-section shown in Figure 6.2(d) provide reduced width-

to-thickness ratios and therefore can be used as a good replacement for the curved sections.  

An analytical design model was developed in Chapter 5 for the flexural design of the folded-

flange cross-section, where the effective width method in EC3 was extended to deal with the 

possible occurrence of multiple distortional buckling modes. To show the efficiency of the 

folded-flange cross-sections, an optimisation method was conducted to maximise the flexural 

strength of CFS C sections with different shapes using the Particle Swarm Optimisation (PSO) 

algorithm.  

It is shown in Figure 5.12 that for the same amount of material, the optimised folded-flange 

section can provide a bending capacity which is up to 57% higher than other standard optimised 

shapes. More information about the adopted optimisation process can be found in Chapter 5. In 

the current study, the efficiency of the folded-flange sections in terms of energy dissipation 

capacity is investigated. 

 FE analyses of CFS beam sections  6.3

As discussed before, CFS sections are susceptible to local, distortional and global buckling 

failure modes under serviceability loads due to the large width-to-thickness ratios of the plate 

assemblies. Previous numerical and experimental research studies have shown that detailed 
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Finite Element (FE) models can accurately predict the ultimate load carrying capacity and 

collapse behaviour of CFS sections if appropriate element type, material parameters and 

imperfection profiles are selected (Haidarali and Nethercot 2011, Yu and Schafer 2007). In this 

study the ABAQUS FE package (ABAQUS 2011) is used to (1) determine the flexural capacity 

of CFS beams and to track the load-deflection behaviour of the beam sections, and (2) search 

for the optimum cross-sectional shape to maximise the energy dissipation capacity of the beams. 

Two types of analyses have been performed in ABAQUS (ABAQUS 2011): 

-Elastic Eigenvalue Buckling analysis using the linear perturbation procedure BUCKLE to 

capture the fundamental modal buckling shape to apply the initial imperfection. 

-Nonlinear inelastic analysis using the Static General step with displacement control method, 

which takes into account the stiffness degradation due to buckling and material softening. 

6.3.1 FE models 

The FE models of the CFS members were developed using an 8-node quadrilateral shell 

element with reduced integration (S8R). The stress-strain behaviour of CFS plates was 

simulated using the constitutive model presented in Section 3.4.  

The effect of geometrical imperfections has been included in the FE analysis. The first buckling 

mode shape is used as the initial geometrical imperfection distribution(Young and Yan 2002). 

To this end, an elastic eigenvalue buckling analysis is first conducted on  cantilever beam under  

end point displacement. The mode shape is then scaled and superimposed to the initial model. 

The amplitude of the imperfection in this study are selected according to the values 

recommended in (Schafer and Pekoz 1998). The magnitudes for local and distortional buckling 

modes are 0.34t and 0.94t, respectively, where t is the thickness of the profile. 

The external loads were applied as imposed displacements at the end of the beam elements (see 

Figure 6.4). The effect of large deformations was taken into account in the FE models to 

simulate the post-buckling behaviour of the CFS beams. 

6.3.2 Flexural strength and post-buckling behaviour of sections 

In this section, as a procedure towards shape optimisation of the CFS beam sections, the 

behaviour of six different CFS beams with cross-sectional dimensions shown in Figure 6.2 was 

first simulated by using the nonlinear FE model described in Section 6.3.1. The selected 

sections include: two conventionally back-to-back lipped channel sections, two back-to-back 

lipped channel sections strengthened with intermediate stiffeners, one curved flange and one 

folded flange section. The single channels are assembled and connected by using “Tie” in the 

webs. 
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A two meter long cantilever beam was selected as representative of a four meter span beam in a 

laterally loaded moment-resisting frame (i.e. up to inflection point). The material model in 

Equation (3.4) was adopted by assuming 0.2% proof stress 0.2%=275 Mpa . Details of the FE 

models including the boundary conditions, lateral restraints and the applied load are illustrated 

in Figure 6.4.  

According to AISC Seismic Provisions (AISC 341-05 2005) , Intermediate Moment Frames 

(IMF) and Special Moment Frames (SMF) should sustain at least 80% of their peak load 

carrying capacity at inter-storey drift angles of 0.02 and 0.04 rad, respectively. To check the 

eligibility of CFS beam sections for SMFs, a displacement of 150mm (equivalent to a drift 

angle of 0.075rad) was applied at the tip of the cantilever beam shown in Figure 6.3. For better 

comparisons, all the cross sections listed in Figure 6.4 had the same amount of material (i.e. 

identical coil width and thickness). Nonlinear inelastic post buckling analysis was conducted to 

track the load-displacement curve, by using displacement control scheme which considers 

stiffness degradation due to buckling. Figure 6.4 shows the failure shapes of six selected CFS 

beams obtained from detailed FE analysis. It is also shown that the buckling shape of curved 

flange and folded flange sections are very similar. The results also indicate that use of flange 

stiffeners could postpone the local buckling of the flange.  

 
Fixed end at x,y 

and z directions

Tied lines 

between webs

Lateral 

restraints

End displacement

 

Figure 6.3. Boundary conditions and loading points for the cantilever beam 
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Figure 6.4. Various cross-sectional shapes for back-to-back channel beams and their failure modes 

at a drift angle of 0.04rad (SMF limit) 

Figure 6.5 shows the moment rotation curves of selected beams up to a drift angle of 0.04rad. It 

is shown that there is a sudden loss of flexural capacity for the lipped channel C1, at a rotation 

less than 0.02 rad (i.e. IMF drift limit), due to the local buckling of the flanges. This is in 

agreement with the failure mode shown in Figure 6.5. By reducing the width of the flange and 

increasing the height of the section in C2, the flexural strength is improved by 19%, whereas 

there is no obvious benefit in the post buckling behaviour of the section. It is shown that the 

CFS section with intermediate stiffener in the flange (C3) has around 2% higher flexural 

capacity and less post-buckling strength degradation compared to the similar section without 

stiffener (C1). Comparison of C3 and C4 sections shows that use of the intermediate web 

stiffeners can improve the post buckling behaviour of the CFS section, while it has negligible 

effect on the flexural strength. The results shown in Figure 6.5 demonstrate again that, for the 

same amount of material, curved flange and folded flange sections provide the highest flexural 

strength compared to other sections. 
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Figure 6.5. Moment-rotation curves of the beams with the dimensions in Figure 6.5 

It is shown in Figure 6.5 that while C1 and C2 sections satisfy the drift requirement of IMF, 

they do not satisfy the SMF drift limits. Even by using intermediate stiffeners in the flange, C3 

section still does not satisfy the SMF drift requirement due to buckling of the web. However, by 

using intermediate stiffeners in both flanges and webs (C4), the CFS section satisfies the SMF 

inter-storey drift angle requirement. Both curved flange (C5) and folded flange (C6) sections 

reach up to a rotation of 0.04 rad without significant drop of strength, which implies they both 

satisfy the is the SMF requirement. 

6.3.3 Ductility capacity of sections 

In accordance with ASTM E2126-09 (ASTM 2009), the ductility of the six selected sections 

was calculated using the equivalent energy elastic-plastic (EEEP) bi-linear models as shown in 

Figure 6.6. This model assumes an ideal elastic-perfectly plastic response of the system based 

on the moment-rotation response of the cross-sections. As shown in Figure 6.6, the idealized bi-

linear curve includes two parts having the same areas above and below the curve ( 1 2A A ). The 

elastic part of the EEEP curve is defined using initial secant stiffness ( eK ) associated with the 

moment equal to 40% of the idealised yield moment of the cross-section. The second segment 

line and the post-yield slope is then specified by a line passing through the point corresponds to 

20% drop of the peak moment in the softening branch. 

IMF SMF 
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Figure 6.6. Equivalent energy elastic-plastic (EEEP) bi-linear models of the load-deformation 

curve(ASTM 2009) 

To investigate the effect of cross sectional shape on the ductility of the CFS beams, the moment 

rotation curves are used to calculate the ductility of the CFS sections based on the following 

equation: 

 





 u

y

 (6.1) 

where  y  is defined as the yield displacement based on the equivalent bi-linear curve and u  is 

the rotation corresponding to the 80% of the peak bending moment in the post buckling range as 

shown in Figure 6.6. The ductility of the six selected beam sections (with the specification 

shown in Figure 6.4) is compared in Figure 6.7. The results indicate that, in general, using 

intermediate stiffeners in the flange can increase the ductility of the CFS beam sections by to 36% 

compare to the standard section. Additional intermediate stiffener in the web can further 

increase the ductility of the section by another 37%. It can also be seen that, for the same 

amount of material, curved flange and folded flange sections exhibit more than two times higher 

ductility compared to the standard channel sections. 
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Figure 6.7. Ductility of the 6 selected CFS beams with the same amount of material 

It is worth mentioning that there is no significant difference between C5 and C6 in terms of 

strength and ductility even though there is a more complex manufacturing process for the 

curved flange cross-section C5, as stated in Section 6.2. This makes the folded flange sections 

as the best practical optimum solutions. 

6.3.4 Energy dissipation capacity of sections 

The failure of CFS beam elements under monotonic and cyclic loads usually starts by the flange 

local buckling in compression side followed by the web buckling and finally the fracture of the 

flanges (Calderoni et al. 2009, Padilla-Llano et al. 2014). Based on the previous research studies, 

the energy dissipation capacity of CFS beams is not negligible if sufficient ductility is provided 

(Calderoni et al. 2009). In general, the results of this study demonstrate that the energy 

dissipation capacity of CFS sections can be considerably improved by adding intermediate 

stiffeners and shape optimisation. Since the fracture of steel is mostly related to the equivalent 

plastic strain, in this study this parameter is used as the failure criterion for optimisation of CFS 

members towards maximum energy dissipation. The equivalent plastic strain ( ) p t  (EP) can be 

defined as following (Ohsaki and Nakajima 2012): 

 
0

2
( ) ( ) ( )

3
      

t
p p

p ij ijt d  (6.2) 

where ( ) p
ij  is the plastic strain tensor and  ·is the derivative with respect to time. In this study, 

the Von Mises yield criterion is used as the yield surface. The magnitude of the equivalent 

plastic strain reflects the plastic rotational deformation capacity of the members and it is 
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evaluated at each integration point in FE analysis. The equivalent plastic strain can be used to 

evaluate the ultimate plastic rotation and the ductility of CFS members. Here the energy 

dissipation through plastic deformations is calculated in ABAQUS by using the following 

equation:  

 
0

( ) ( )      
t

p
ij ij

V
E d dV  (6.3) 

where  ij  is the plastic strain tensor. Figure 6.8 compares the equivalent plastic strains and 

energy dissipation capacity of the six selected CFS beam sections at the drift ratio of 4%. It is 

shown that, in general, the conventional lipped channels (C1 and C2) exhibited higher 

equivalent plastic strains compared to other sections. 

 

 

Figure 6.8. Comparison of (a): maximum equivalent plastic strain; (b): Energy dissipation capacity 

By adding the intermediate stiffeners in the flanges and webs (C3 and C4), the equivalent 

plastic strains were significantly reduced though the amount of energy dissipated was not 

considerably improved. The curved section (C5) dissipated the most amount of energy, while its 

(a) 

(b) 
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maximum plastic strain demand was considerably smaller than that of the conventional lipped 

channels. It is shown in Figure 6.8 that the folded flange cross-section (C6) has the potential to 

have a high energy dissipation capacity (almost similar to the curved section), while it exhibits 

minimum equivalent plastic strains. This is in agreement with the ductility results presented in 

the previous section.  

In general the results presented in Figure 6.8 indicate that the post-buckling behaviour of CFS 

beam elements can be changed significantly by adjusting the dimensions and incorporating 

features such as intermediate stiffeners, inclined lips and bends. 

 Formulation of optimisation problem and optimisation method 6.4

This section aims to develop optimised cross-sectional shapes for CFS beams to have maximum 

energy dissipation capacity, which is especially important for seismic applications. A 

commercially available lipped channel section is taken as the starting point, whereas the 

optimisation process allows for the addition of inclined lips, rolled-in intermediate stiffeners in 

flange and web, and the folds of the plate to form more complex cross-sections. A folded flange 

cross-section is also considered in the optimisation process, since it was shown in Section 6.3 

that, in general, the folded flange cross-section has the potential to dissipate higher energy levels 

with minimum plastic strain demands. The members are optimised with regard to their 

maximum energy dissipation capacity, determined according to the results from detailed FE 

modelling considering geometric and material nonlinearity. All plate slenderness limit values 

and all limits on the relative dimensions of the cross-sectional components, set by the Eurocode, 

are taken into account as constraints on the optimisation problem. 

6.4.1 Problem formulation 

A cantilever beam is considered which is fully fixed at one end and loaded at the other end, as 

shown in Figure 6.9. The length of the beam is l=1400mm that represents the distance between 

inflection points of a beam length of 2800 mm in a moment resisting frame. The optimal cross-

sectional dimensions can be found for the beams subjected to a static loading defined by the end 

displacement at the tip as discussed before (see Figure 6.3). 

1400

Constrain the maximum

Equivalent Plastic Strain End displacement  

Figure 6.9. A cantilever beam model for optimisation process 
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In this study, the design variables were the dimensions and the angles of the plate assemblies as 

shown in Table 6.1. The same amount of material was used for all cross sections (i.e. same plate 

width). For practical applications, the selected cross sections were prequalified shapes according 

to EC3. The relative plate slenderness and limit values on the relative dimensions of the cross-

sections were set as the design constraints during the optimisation process.  

The optimisation procedure was aimed at optimising each CFS cross-section with regard to its 

energy dissipation capacity throughout the loading history until the drift ratio of 4% (i.e. SMF 

limit). Therefore, the optimisation problem was formulated to maximise the dissipated energy 

 E X as follows: 

  max E X  (6.4) 

  . .  p ps t X  (6.5) 

 , ( 1, , )  L U
i i ix x x i n  (6.6) 

where X  denotes the vector consisting the cross-sectional dimensions. U
X  and L

X indicate the 

upper and lower bounds of the design variable vector, respectively. The components of vectors 

are indicated with subscript, such as  1= , , nx xX , where n is the number of the design 

variables.  The upper bound  p  in Equation (6.5) is the maximum allowable equivalent plastic 

strain  p  of CFS steel material to prevent fracture under tensile loads. 
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Table 6.1. Selected prototypes, design variables and constraints 

Prototype  Prototype section 
Design 

variables 
Constraints 

based on EC3 
Comments 

① 

b

h

b

c
c

 

x1=c/b 

x2=b/L 

0.2≤c/b≤0.6 

b/t≤60 

c/t≤50 

h/t≤500 

EN1993-1-3 
Clause 5.2 

② 

b

h

b

c

c
θ1

θ1

 

x1=c/b 

x2=b/L 

x3=θ1 

0.2≤c/b≤0.6 

b/t≤60 

c/t≤50 

h/t≤500 

π/4≤θ1≤3/4π 

EN1993-1-3 
Clause 5.2 

③ 

b

h

c

θ1
0.5b

b

cθ1
0.5b

 

x1=c/b 

x2=b/L 

x3=θ1 

0.2≤c/b≤0.6 

b/t≤60 

c/t≤50 

h/t≤500 

π/4≤θ1≤3/4π 

EN1993-1-3 
Clause 5.2 

④ 

b

c

h
R

×
h θ1

θ1

b

c

0.5b

R
×

h

0.5b

 

x1=c/b 

x2=b/L 

x3=R 

x4=θ1 

0.2≤c/b≤0.6 

b/t≤60 

c/t≤50 

h/t≤500 

π/4≤θ1≤3/4π 

0.1≤R≤0.4 

EN1993-1-3 
Clause 5.2 

⑤ h

b

c

d

b

c

d

θ2θ1

θ2θ1

 

x1= θ1 

x2= θ2 

x3=b 

x4=c 

x5=d 

h/t≤500 

7/12π≤θ1≤5/6π 

π/4≤θ2≤3/4π 

30 ≤b≤48; 

50≤ c≤60; 

15 ≤d≤60 

-- 

In total, 5 different prototypes were considered in this study with the same thickness of 

1.5t mm  and total coil width of 415L mm , as shown in Table 6.1. The yielding stress yf , 

elastic modulus E and Poisson’s ratio   were 450MPa , 210GPa and 0.3, respectively. The 

start point of the optimisation was set to be the standard commercially available channel C1 

(with lip=17mm, flange=75mm, depth=231mm and thickness=1.5 mm). The optimisation 

process allowed for the inclined lips, flange and web triangular intermediate stiffeners and 

folded flanges. The position of the triangular intermediate stiffeners in the webs was varied 

during the optimisation process to investigate their effects on the energy dissipation capacity of 

the sections. The intermediate stiffeners consisted of two 10 mm legs with an intersecting angle 

of 60°. To investigate the effect of plasticity development on the energy dissipation capacity of 
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the sections, four levels of plastic strain 0.2, 0.15, 0.1 0.07 p and  were used as the upper 

bound range in Equation (6.5). The upper bound of plastic strain is generally depended on 

different steel grades. These plastic strain values were based on the coupon tests reported in 

(Quach and Huang 2011). It should be noted that these plastic strain limits are based on 

monotonic coupon test without taking into account the cyclic effect. 

6.4.2 Optimisation technique 

The purpose of the optimisation in this study was to demonstrate that the shape optimisation can 

be effectively applied to increase the energy dissipation capacity of CFS beams subjected to 

large deformations. The optimisation framework in this study was based on the result of detailed 

FE models by taking into account geometrical and material nonlinearities and imperfections, 

using a Particle Swarm Optimisation (PSO) method. The PSO method has been described in 

Section 3.3.  

The optimisation constraints in Equation (6.5) was incorporated by using a penalty function. 

Assume a penalty factor 0  , the objective function  E X is then transformed to: 

      max 0, 1      p pE EX X X  (6.7) 

The flowchart of the proposed optimisation method to link the detailed FE models in ABAQUS 

(ABAQUS 2011) to the PSO algorithm in Matlab (Mathworks 2011) is Figure 6.10. For each 

generation, the PSO algorithm generates new input data for the CFS cross-sections (i.e. new 

design value vectors). This data is then transmitted to ABAQUS pre-processing module 

(ABAQUS 2011) for creation of the cantilever beam model shown in Figure 6.3. The entire FE 

analysis was programmed using Python script language by taking into account the non-linear 

inelastic behaviour of material and the effects of imperfections (ABAQUS 2011). The Python 

script (Appendix A.6) consisted of the following steps: 

(1) The FE model of the cantilever beam is developed according to the dimensions 

generated from PSO algorithm using the material properties calculated from Equation 

(6.1). The load and boundary conditions are then applied to the FE model. 

(2) An elastic linear BUCKLE analysis in ABAQUS is conducted. The normalized 

displacements of each node in the first buckling mode are extracted and used for the 

incorporation of the initial geometrical imperfection. The displacement field is then 

scaled and applied to the initial meshed geometry to form the initially imperfect model 

for Standard Static analysis. Since the first buckling mode is either local or distortional, 

which is unknown, an unfavourable imperfection (0.94 times of thickness) is used 

(Schafer and Pekoz 1998). 
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(3) The Standard solver of ABAQUS is then used for the nonlinear FE analysis. The 

necessary data such as dissipated energy  E X  and maximum equivalent plastic strain 

  p
X  are extracted from the ABAQUS output files using the post processing module. 

(4) The extracted data from previous step are then returned to the PSO algorithm and new 

particle swarm is generated according to Equations (3.3) and (3.4). Subsequently, a new 

round of iteration is started from step 1. 

The PSO algorithm was developed separately in Matlab (Mathworks 2011) and was adopted to 

perform the optimisation process. The number of iterations was taken as 100 for all prototype 

sections. To obtain good convergence, the population of the particle swarm was set to 10 for 

prototypes ① to ③, while this was 15 for prototypes ④ and ⑤ to accommodate more design 

variables. The maximum and minimum inertial weight factors were chosen as 0.95 and 0.4, 

respectively. Due to the high computational efforts required, the non-linear analyses were 

conducted on iceberg, the University of Sheffield High Performance Computing server. 

PSO Algorithm

Generate dimensions of 

the cross-sections

Preprocessing (Python Script)

(1) Beam parts                 (4) Boundary and load

(2) Material and section   (5) Mesh

(3) Beam assembly          (6) Submit to ABAQUS

BUCKLE analysis

Output file

Job1.odb

Post processing (Python 

Script)

Dissipated Energy and 

Maximum Equivalent plastic 

strain

Output file

Job2.odb

Updating geometrical 

coordinates regarding 

first buckling mode

Static 

General

 

Figure 6.10. Flowchart of optimisation for maximum dissipated energy  

As an example, Figure 6.11 illustrates the iteration history of prototype ⑤ subjected to the 

restraint of equivalent plastic strains of 0.2, 0.15, 0.1 0.07and p
. The results demonstrate the 

good convergence of the proposed optimisation method to obtain the best design solution in all 

cases. It is shown that there is no obvious increase to the objective value (i.e. energy dissipation 

capacity) after around 60 generations, which confirms the adequacy of the number of iterations 

used in this study. 
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(a)       (b) 

 

(c)      (d) 

Figure 6.11. Iteration history of the objective of dissipated energy for folded flange channel section 

 Optimisation results and discussions 6.5

The selected prototypes in this study were aimed at investigating the effects of changing 

geometric dimensions of the cross-section and the positions of the edge and intermediate 

stiffeners (see Table 6.1). Optimal dimensions of the cross-sectional prototypes were found 

under monotonic loading condition and the optimum results were compared with those of the 

standard lipped channel section with the same amount of material. Optimal shapes 

corresponding to the constrained plastic strains of 0.2, 0.15, 0.1and 0.07 p
 are shown in 

Table 6.2. 
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Table 6.2. Dimensions and energy dissipation capacity of optimum design CFS cross-sections using 

different prototypes  

Prototypes  p
 

h(mm) b(mm) c(mm) d(mm) R Ɵ1 Ɵ2 E(J) 

Standard 0.2 231 75 17 -- -- -- -- 329 

Type ① 

0.2 256 50 30 -- -- -- -- 404 

0.15 226 73 22 -- -- -- -- 378 

0.1 187 78 36 -- -- -- -- 323 

0.07 150 83 49 -- -- -- -- 255 

Type ② 

0.2 228 59 35 -- -- 79 -- 405 

0.15 218 62 36 -- -- 130 -- 395 

0.1 212 66 36 -- -- 59 -- 376 

0.07 149 83 50 -- -- 87 -- 255 

Type ③ 

0.2 207 61 28 -- -- 96 -- 503 

0.15 226 50 30 -- -- 113 -- 496 

0.1 216 58 27 -- -- 89 -- 496 

0.07 131 89 38 -- -- 98 -- 280 

Type ④ 

0.2 205 50 25 -- 0.23 92 -- 528 

0.15 235 50 10 -- 0.32 95 -- 494 

0.1 196 50 30 -- 0.22 91 -- 493 

0.07 198 51 28 -- 0.37 131 -- 295 

Type ⑤ 

0.2 176 48 50 21 
 

135 57 516 

0.15 164 46 51 28 
 

132 104 480 

0.1 155 39 53 39 
 

116 101 473 

0.07 146 33 56 46 
 

102 94 280 

It is shown in Table 6.2 that the optimal shapes depend significantly on the selected plastic 

strain limit  p . For better comparison, Figure 6.12 compares the energy dissipation capacity of 

the optimum sections as a function of maximum plastic strain limit. It is shown that, in general, 

increasing  p leads to higher energy dissipation capacity levels especially for the lipped channel 

sections (Types ① and ②). The reason is that by using higher  p limits, optimum sections can 

develop more plastic deformations in the post buckling range. It can be noted that increasing  p

beyond 0.15 does not considerably increase the energy dissipation capacity of the CFS sections. 

This is attributed to the fact that at the IMF drift ratio of 4%, the maximum equivalent plastic 

strains in most prototypes are close to the upper-bond limits, which makes this design constraint 

less critical. 
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Figure 6.12. Energy dissipation capacity of optimum sections versus maximum plastic strain limit 

Based on the results in Table 6.2, for typical lipped channels (prototype ①and ②), by 

increasing the equivalent plastic strain limits, the flange width of the optimal shape decreases 

while the height of the cross-sections increases. This can increase the energy dissipation 

capacity of the cross-sections in two ways: (a) By postponing the buckling of the flange due to 

using smaller width to thickness ratio ; and (b) Increases the extent of the plastic zone for a 

given drift ratio.  

 

 

Figure 6.13. Maximum energy dissipated of prototypes subjected to various maximum plastic strain 

constraints at 4% drift ratio 

To further demonstrate the efficiency of different prototypes, Figure 6.13 compares the energy 

dissipation capacity of the optimum sections, subjected to various maximum plastic strain limits, 
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compared to a standard commercially available section shown in Table 6.2 (first row). It should 

be noted that the dissipated energy of the standard section is not shown for maximum plastic 

strain limits of 0.1 and 0.07, since this section does not satisfy the maximum strain limits at the 

drift ratio of 4%. The following general observations can be made from the optimum dissipated 

energy results in Figure 6.13: 

- For low maximum plastic strain limits (i.e.  p = 0.07), the effect of cross-sectional shape on 

the energy dissipation capacity of the sections in negligible. The main reason is that these 

sections cannot develop high plastic deformations due to the strictly restrained plastic strain 

limits.  

- The results show around 23% improvement in the energy dissipation capacity of optimum 

lipped channel section (prototype ①) compared to the standard section. This implies that 

significant gains in the energy dissipation capacity of lipped channel sections can be achieved 

by adjusting the dimensions of the web, the flange and the lip. By relaxing the turned angle of 

lips in simple lipped channels, however, only an additional increase of 0.4% is achieved in the 

energy dissipation capacity of the optimum channel section (prototype ②). 

- It is shown that using intermediate stiffeners in the flanges will increase the energy dissipation 

of the optimum lipped channel sections by 30% (prototype ③). By comparing the energy 

dissipated between prototypes ③ and ④, it is shown that there is no significant improvement 

by incorporating intermediate stiffeners in the web. 

- The results indicate that the newly developed folded-flange section dissipated 28%, 27%, 16% 

and 10% more of energy than the optimal lipped channel section under plastic strain limitations 

of 0.2, 0.15, 0.1 and 0.07, respectively. Only a minor maximum reduction of 4% was observed 

by comparing the results of the folded-flange section (prototype ⑤) with prototypes ③ and ④. 

However, the number of bends to form prototype ⑤ is only 6, which is much smaller than 10 

and 15 bends required for prototype ③ and ④, respectively. The folded-flange sections are 

also easy to connect to typical floor systems and, hence, are ideal candidates for practical CFS 

beam sections. 

The optimal shapes and their distribution of von Mises stresses corresponding to 0.2 p  are 

shown in Figure 6.14, where the dark grey colour represents von Mises stress larger than 450 

MPa. It is shown that by optimising the dimensions of the lipped channel section, the plastic 

area in prototype ① is considerably increased in the flange. This leads to a significant 

improvement of the energy dissipation capacity of the channel section as discussed before. 

However, when the lip-flange angle was considered as a design variable in the optimisation 

process, the plastic region did not considerably change in prototype ②. This conclusion is in 
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agreement with the energy dissipation results presented in Figure 6.13. By adding intermediate 

stiffeners in the flanges, it is shown that the plastic region is expanded in both flanges and web 

in prototype ③. The plastic region is further expanded by adding an intermediate stiffener in 

the web, as shown in the stress distribution pattern of optimal prototype ④. It is also clear from 

Figure 6.14 that the plastic region in prototype ⑤ was developed uniformly in both flanges and 

web, whereas was smaller than the plastic region in prototypes ③ and ④. This can explain the 

reason that the amount of energy dissipated by prototype ⑤ was slightly smaller than 

prototypes ③ and ④ as discussed in the previous section.  

The results of this study, in general, indicate that the adopted optimisation method based on the 

post-buckling behaviour of CFS elements is robust and can considerably improve their ductility 

and energy dissipation capacity. These performance parameters are especially important for 

seismic design of CFS structural systems, where structures are expected to exceed their elastic 

limits in severe earthquakes. 

 

Figure 6.14. Distribution of von Mises stress of standard and optimal beams subjected to 0.2 p  

at drift ratio of 4% 

 Conclusions 6.6

A procedure is presented in this chapter to obtain optimised channel sections for maximum 

plastic dissipated energy for seismic applications. The EC3 design restraints were considered to 

reduce the design space. Five different prototypes were considered, including a standard lipped 

channel section, a channel section with inclined lips, a channel section with intermediate 

stiffeners in the flanges, a channel section with intermediate stiffeners in both web and flanges, 

and finally a folded-flange cross-section. A PSO algorithm was developed and linked to the 

 

①Standard

③
⑤④

②
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ABAQUS finite element programme for inelastic post‐buckling analysis and optimisation. 

Optimal shapes were obtained for CFS beams using different prototypes. According to the 

results of this study, the following conclusions can be drawn: 

(1) Use of intermediate web stiffeners can improve the post buckling behaviour of CFS 

sections, while their effects are negligible on flexural strength. The results indicate that, 

for the same amount of material, curved flange and folded flange sections provide the 

highest flexural strength compared to other alternatives. 

(2) In general, using intermediate stiffeners in the flange can considerably (up to 36%) 

increase the ductility of the CFS beams. Additional intermediate stiffener in the web 

can increase the ductility of the section by around 70% compared to the standard one. 

For the same amount of material, curved flange and folded flange sections can provide 

more than two times more ductility compared to their standard counterparts.  

(3) The amount of dissipated energy in CFS beam elements is increased with increasing the 

equivalent plastic strain limit  p , especially for the lipped channel sections. However, 

increasing  p beyond 0.15 does not considerably affect the energy dissipation capacity 

of the sections.  

(4) Only by optimising the web, flanges and lip dimensions of a lipped channel section, the 

dissipated energy can be increased up to 23%. By relaxing the turned angle of lips, only 

a negligible gain of 0.4% will be achieved. 

(5) Placing a stiffener in the compressive flange of simple optimum lipped channel section 

can increase the energy dissipation capacity of the optimum solution by 30%. However, 

no obvious change was observed in the energy dissipation capacity of the optimum 

sections by placing an intermediate stiffener in the web. By optimising the shape of 

CFS beam sections, in general, the plastic area of the beams was significantly increased. 

(6) The folded-flange section, for the same amount of material, dissipates 28%, 27%, 16% 

and 10% more energy than the optimal lipped channel section under plastic strain limits 

of 0.2, 0.15, 0.1 and 0.07, respectively. This emerge the folded flange sections as the 

best optimum solutions for seismic applications. 
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This chapter describes an experimental programme carried out at the University of Sheffield to 

investigate the design and optimisation, considering interaction of local/ overall buckling in 

cold-formed steel plain and lipped channels under axial compression. The design of the 

members to local/distortional and overall buckling was according to Eurocode 3, Part 1-3. Plain 

and lipped channel sections with a thickness of 1.5 mm and depths ranging from 125 to 200mm 

were tested under compression. The specimen imperfections were measured using a specially 

designed set-up with laser displacement transducers and the imperfections were statistically 

analysed. Material tests were also carried out to determine the tensile properties of the flat plate 

and of the cold-worked corners.  

A total of 36 column tests with three lengths were completed with the aim of investigating the 

design allowing for local and overall buckling interaction. Four types of cross-sections were 

considered, these cross-sections were manufactured using the same coil width and thickness.  
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The specimens were tested under a concentrically applied load and with pin-ended boundary 

conditions.  

 Introduction 7.1

Cold-formed steel (CFS) cross-sections can be found in a wide range of applications in 

secondary load-carrying members, such as roof purlins and wall girts. In recent years, however, 

CFS cross-sections are also increasingly being employed as primary structural elements in low- 

to mid-rise multi-storey buildings (Fiorino et al. 2014) and CFS portal frames with short to 

intermediate spans (Lim and Nethercot 2004b, Lim and Nethercot 2003). Compared to hot-

rolled members, CFS thin-walled members offer several advantages of economy and efficiency, 

including a high strength for a light weight, a relatively straightforward manufacturing process 

and an ease of transportation and erection. However, CFS framing components currently have 

the inevitable limitation of thin thickness, which make them susceptible to local, distortional, 

global buckling and their interaction, as shown in Figure 7.1. The steel sheet with thinner 

thickness requires more efforts to develop the design rules for more efficient design. This 

emphasizes the importance to investigate the complex failure modes and assess available 

mainstream design specifications in order to achieve optimal design of CFS elements. 

                   

      (a)      (b)        (c)              (d) 

Figure 7.1. Buckling modes of a lipped channel: (a) local, (b) distortional, (c) global and (d) 

interactive modes. 

Experimental investigations of the ultimate strength of CFS columns have previously been 

conducted on plain and lipped channel columns with pin ended (Young and Rasmussen 1999, 

Young and Rasmussen 1998, Zhang et al. 2007b) and fixed ended boundary conditions (Young 

2004, Young 2008a). More recently, CFS channel columns with intermediate web stiffeners and 

complex edge stiffeners have been tested with pin ended boundary conditions (Wang et al. 

2016c).  

The experimental work presented in this chapter is part of a wider study into the optimisation of 

CFS members (shown in Chapter 3-5), which is why all four cross-sections in the test 

programme were manufactured using the same coil width and thickness. However, the 
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experimental results are here presented independently of their wider context, as the results by 

themselves provide valuable data about the interactive buckling behaviour of CFS columns. A 

comparison with the relevant Eurocode 3 design guidelines (CEN 2005a, CEN 2005b, CEN 

2005c) is also carried out.  

In Chapter 3, Figures 3.6 and 3.7 shows that the simple prototype of lipped channel (prototype 

④) possesses relatively high strength which is an excellent choice for application when the 

required length is not less than 2m. Apart from that, the simple lipped channel is more 

economical and efficient in terms of manufacturing process, which can be more acceptable for 

cold-rolling production. The purpose of the test is to: (a) provide verification on the 

optimisation framework proposed in Chapter 3; (b) calibrate a more reliable FE model for future 

application on more efficient CFS structural design and (c) verify the accuracy of design 

procedures adopted in EC3 which can be crucial in the optimisation process. 

The experimental investigation included 36 tests on CFS channel columns, which were all 

performed at the Heavy Structures Laboratory at the University of Sheffield. All specimens 

failed by the interaction of local instability and flexural buckling about the minor axis. With 

respect to the boundary conditions, all columns were tested between hinged end plates which 

were allowed to rotate about the minor axis of the channel. 

 Specimen geometry  7.2

Four different cross-sections were considered in the test programme, of which the nominal 

dimensions are presented in Figure 7.2. The dimensions were measured between outer surfaces. 

All cross-sections had the same nominal thickness 1.5t mm  and the same total developed 

length (or coil width) 337l mm . 

The four types of cross-sections were labelled A-D, as shown in Figure 7.2. For each cross-

section, three different lengths were considered: 1.0 ,1.5 2.0eL m m and m . Three columns 

were tested for each cross-section and length, in order to assess statistical variation and increase 

confidence in the results, amounting to a total of 36 specimens. Table 7.1-Table 7.4 list the 

measured dimensions of the test specimens, using the nomenclature illustrated in Figure 7.2. 

The reported dimensions are average values of multiple measurements. The symbol r  is the 

radius of the rounded corner along the outer skin of the plate. L  is the length of the column. 

Each specimen is labelled according to its cross-section (A, B, C or D), followed by the nominal 

length of the column in mm and ‘a’, ‘b’ or ‘c’, indicating the repeat tests. 
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Figure 7.2. Symbol definitions and nominal cross-sectional dimensions 

Table 7.1.Measured dimensions of specimens with cross-section A (mm) 

Specimen L r t h b1 c1 b2 c2 

A1000-a 1000.1 4.2 1.51 174.94 64.45 17.72 64.09 18.21 

A1000-b 1000.0 4.0 1.52 174.85 64.23 17.76 64.13 17.62 

A1000-c 1000.0 4.1 1.50 174.89 64.27 17.82 64.12 17.51 

A1500-a 1499.8 4.3 1.53 175.23 64.35 17.80 64.15 17.82 

A1500-b 1500.0 4.1 1.50 174.97 63.84 18.50 63.68 17.03 

A1500-c 1500.0 4.0 1.53 174.90 64.17 17.74 64.24 17.46 

A2000-a 1999.8 4.1 1.52 175.62 63.86 18.86 64.09 18.11 

A2000-b 2000.0 4.1 1.50 175.40 64.12 17.48 64.10 17.98 

A2000-c 2000.1 4.0 1.51 175.33 64.74 18.57 64.23 16.77 

Average 
 

4.1 1.52 175.13 64.22 18.03 64.09 17.61 

St. deviation 0.1 0.01 0.28 0.28 0.48 0.16 0.48 

 

Table 7.2. Measured dimensions of specimens with cross-section B (mm) 

Specimen L r t h b1 c1 b2 c2 

B1000-a 1000.2 4.2 1.52 125.07 81.15 25.91 81.15 25.60 

B1000-b 1000.0 4.0 1.52 125.19 80.74 25.69 80.74 25.31 

B1000-c 1000.1 4.3 1.48 125.27 81.13 25.70 80.74 25.41 

B1500-a 1500.0 4.1 1.51 125.06 81.08 26.00 80.64 25.60 

B1500-b 1500.4 4.3 1.52 125.11 81.09 26.55 80.60 25.46 

B1500-c 1500.1 4.0 1.53 125.24 80.74 25.94 80.88 26.51 

B2000-a 2000.1 4.3 1.49 125.26 80.75 25.65 80.94 26.44 

B2000-b 2000.3 4.0 1.52 125.42 81.83 26.09 81.56 24.94 

B2000-c 2000.1 4.2 1.52 125.31 81.68 26.16 81.06 25.73 

Average 
 

4.2 1.51 125.22 81.13 25.96 80.92 25.67 

St. deviation 0.13 0.02 0.12 0.40 0.28 0.30 0.51 
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Table 7.3. Measured dimensions of specimens with cross-section C (mm) 

Specimen L r t h b1 b2 

C1000-a 1000.1 4.2 1.53 199.84 69.23 69.47 

C1000-b 1000.1 4.3 1.52 199.60 69.30 70.32 

C1000-c 999.8 4.0 1.53 199.85 69.53 69.44 

C1500-a 1500.0 4.1 1.53 199.87 69.48 70.44 

C1500-b 1500.1 3.9 1.53 199.66 70.30 69.43 

C1500-c 1500.2 3.8 1.52 199.90 69.83 69.53 

C2000-a 2000.4 4.2 1.51 199.82 70.55 69.52 

C2000-b 2000.3 4.1 1.52 199.83 70.50 69.52 

C2000-c 2000.0 4.0 1.49 199.92 69.57 69.48 

Average 
 

4.1 1.50 199.80 69.80 69.70 

St. deviation 0.16 0.01 0.11 0.51 0.40 

 

Table 7.4. Measured dimensions of specimens with cross-section D (mm) 

Specimen L r t h b1 c1 b2 c2 

D1000-a 1000.0 4.2 1.49 145.13 70.09 25.73 70.25 25.94 

D1000-b 1000.2 4.1 1.51 144.90 70.43 24.60 70.47 26.82 

D1000-c 1000.1 4.1 1.52 145.39 69.89 25.64 70.62 25.46 

D1500-a 1500.2 4.0 1.51 145.28 69.97 25.29 70.72 25.76 

D1500-b 1500.1 3.9 1.54 145.41 69.92 25.74 70.83 25.88 

D1500-c 1500.0 4.2 1.52 145.34 69.92 26.01 70.62 25.87 

D2000-a 2000.3 4.3 1.49 145.62 69.88 25.40 70.69 25.55 

D2000-b 2000.0 4.1 1.52 145.30 69.84 25.50 70.31 26.55 

D2000-c 2000.1 4.0 1.52 145.42 70.54 26.46 70.27 25.00 

Average 
 

4.1 1.5 145.30 70.10 25.6 70.50 25.90 

St. deviation 0.12 0.02 0.20 0.26 0.51 0.21 0.55 

 

Table 7.5. Critical buckling stress and buckle half-wave length for nominal cross-sections A-D 

Sections 
Buckle half-wave length (mm) Buckling stress (MPa) Tested buckling stress 

(MPa) Local Distortional Local Distortional 

A 130 600 80.2 167.0 87.1 

B 100 920 148.0 268.1 140.7 

C 240 -- 45.4 -- 40.0 

D 110 880 113.8 265.7 104.8 

 

The software package CUFSM (Schafer 2006), which implements the finite strip method for 

elastic analysis, was used to determine the elastic buckling stresses of each cross-section type. 

The results are listed in Table 7.5. It is seen that the local buckling stress is critical for all cross-

sections, while it is always smaller than the yield stress. The distortional buckling stress lies 

well above the local buckling stress for all cross-sections. Table 7.5 also compares the tested 

buckling stress to the values obtained through CUFSM (Schafer 2006), it is shown that the 

tested buckling stress has been well predicted by CUFSM (Schafer 2006). 
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 Material properties  7.3

All specimens were manufactured using a conventional brake pressing process. Tensile coupons 

were cut from the flat portions of all four cross-section types in order to determine their material 

properties (Figure 7.3(a)). For each cross-section one coupon was taken along the centre line of 

web and another one along the centre line of the flange. In order to investigate the effect of the 

cold-working process on the material properties, coupons were also cut from the rounded corner 

zones. The corner coupons were tested in pairs in order to avoid eccentric loading (Figure 

7.3(b)). All coupons were taken in the longitudinal direction from the end zones of the 1500 mm 

long columns after testing. The stresses during testing remained sufficiently low to justify this 

(Table 7.5). The coupons were tested in accordance with the specifications of the relevant 

European standard (ISO 2009). Table 6 lists the values of the Young’s modulus ( E ), the 0.2% 

stress ( 0.2% ) and the tensile strength (u ) resulting from the tests. 

       

                                              (a)                                                                    (b) 

Figure 7.3. Tensile material tests for: (a) flat coupons (b) corner coupons 
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Table 7.6. Tensile properties of the flat and corner regions 

 Imperfection measurements 7.4

The stability of thin-walled CFS members may in some cases be significantly affected by the 

presence of imperfections, especially when coupled instabilities are involved. The magnitude 

and the shape of the imperfections of each specimen were therefore recorded before testing.  

The set-up shown in Figure 7.4 was used to measure the imperfections. A laser was mounted on 

an aluminium cross beam, which was moved in the longitudinal direction of the frame at 

constant speed by an electrical motor. A second electrical motor allowed the laser to move in a 

perpendicular direction along the aluminium beam, thus enabling the laser to cover a rectangular 

surface area. The laser was able to measure the distance to the surface of the specimen with an 

accuracy of 0.0075 mm. The laser moved along high precision bars with minimal tolerances and 

its ability to maintain a level measuring plane was verified against measurements of the 

nominally flat table underneath in the absence of a test specimen. This flat table was guaranteed 

to be grade 3, providing a surface with a deviation from flatness of less than 0.06 mm (Standard 

2008). During the measuring process, the translational speed of the laser was set at 5 mm/s 

while the sampling rate was 5 Hz, resulting in one reading every one millimeter.  

The imperfections were measured along five lines for individual cross-section, as shown in 

Figure 7.5. The readings recorded along the lines of ①, ② and ③ indicated the imperfections 

relating to the overall flexural buckling and the local buckling of the web. The readings along 

lines ④ and ⑤ whereas provide data on the imperfections affecting the distortional buckling 

Sections Coupon Type E  (MPa) 0.2%  (MPa) u  (MPa) 

A1500A 

A01F Flat 196057 447.0 599.6 

A02F Flat 195355 448.5 599.1 

A03C 
Corner 221076 525.8 614.2 

A04C 

B1500A 

B01F Flat 196194 440.3 606.9 

B02F Flat 203486 441.2 594.9 

B03C 
Corner 211164 529.6 613.3 

B04C 

C1500B 

C01F Flat 208443 453.1 609.6 

C02F Flat 205302 459.0 621.5 

C03C 
Corner 218921 530.7 592.4 

C04C 

D1500A 

D01F Flat 200226 453.9 611.8 

D02F Flat 193743 448.5 603.2 

D03C 
Corner 205742 525.6 600.0 

D04C 
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mode. The maximum imperfections encountered in the webs of the channels were of the order 

of 0.95 mm, while the flange tips of the plain channels displayed imperfections of up to 1.60 mm. 

 

Figure 7.4. Imperfection measurement set-up 

① ② ③

④⑤

① ② ③

④⑤
 

Figure 7.5. Location of the imperfection measurement 
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Table 7.7. Maximum amplitudes of local, distortional and overall imperfections in tested columns 

Specimen Local Distortional Overall 

A1000-a 0.33 0.22 0.17 

A1000-b 0.25 0.14 0.24 

A1000-c 0.41 0.32 0.18 

A1500-a 0.54 0.38 0.18 

A1500-b 0.41 0.26 0.24 

A1500-c 0.26 0.41 0.27 

A2000-a 0.95 0.90 0.96 

A2000-b 0.45 1.30 0.23 

A2000-c 0.79 1.02 0.54 

B1000-a 0.30 0.38 0.29 

B1000-b 0.32 0.26 0.26 

B1000-c 0.31 0.28 0.27 

B1500-a 0.42 0.69 0.31 

B1500-b 0.27 0.46 0.29 

B1500-c 0.41 0.72 0.29 

B2000-a 0.41 1.03 0.26 

B2000-b 0.33 1.02 0.27 

B2000-c 0.51 1.03 0.22 

C1000-a 0.34 0.52 0.28 

C1000-b 0.24 0.63 0.19 

C1000-c 0.15 0.49 0.12 

C1500-a 0.31 0.74 0.22 

C1500-b 0.40 0.86 0.16 

C1500-c 0.42 0.78 0.27 

C2000-a 0.26 1.60 0.24 

C2000-b 0.17 1.57 0.19 

C2000-c 0.64 1.29 0.17 

D1000-a 0.22 0.31 0.21 

D1000-b 0.35 0.29 0.17 

D1000-c 0.23 0.34 0.22 

D1500-a 0.37 0.50 0.20 

D1500-b 0.40 0.62 0.22 

D1500-c 0.23 0.56 0.19 

D2000-a 0.27 1.43 0.31 

D2000-b 0.68 0.83 0.27 

D2000-c 0.29 1.04 0.18 

 Column tests 7.5

All 36 columns were loaded concentrically and tested between pin ended boundary conditions. 

Figure 7.6 illustrates the hinge assemblies used to achieve this. The location of the minor 

centroidal axis was scribed onto the flanges of each specimen and the same axis was also 

indicated on the top plates of the hinge assemblies, facilitating exact alignment. Four steel 

dowels were bolted into the top plates as an additional measure in order to hold the corners of 

the channel in place and prevent possible slippage Figure 7.6 illustrates the holes to 
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accommodate the dowels for all four cross-section types. The distance between the horizontal 

axis of the hinge and the top surface of the plate was measured to be 44 mm. Thus, the effective 

length eL of each column can be calculated by adding 88 mm to the measured specimen length 

L . 

       

Figure 7.6. Specimen boundary conditions 

The ultimate capacity and the behaviour of these columns are sensitive to the value of the initial 

load eccentricity (Becque and Rasmussen 2009a). While the specimens had been accurately 

positioned in the set-up with the assistance of scribed lines and the dowels on the end plate, a 

selected number of specimens were also instrumented with strain gauges at mid-height in order 

to allow an accurate verification of the initial loading eccentricity. Figure 7.7 and Figure 7.8 

illustrate the locations of those strain gauges and also the LVDTs at the mid-height to 

determinate the load eccentricity. It is assumed that the material of the columns behaves in a 

linear way before local buckling and the plane sections remains plane after bending. The 

eccentricity of the mid-height section 0e  can therefore be calculated based on the following 

equations (Becque 2008): 

 
1 2 1 2

0
2 1 1 2 2

 

 

 
 



xI D D
e

A y y
 (7.1) 

where 1  is the average reading from strain gauges SG1 and SG2, 2  is the average reading 

from strain gauges SG3 and SG4, y1 and y2 are the distances from the centroid of the section to 

the extreme fibers in compression and tension, respectively. xI  and A  are the second moment 

of inertia around x  axis and cross-sectional area, and 1D  and 2D  are the displacement readings 

from LVDTs 1M  and 2M , as shown in Figure 7.7. It is noted that 0 0e  indicates an 

eccentricity towards the web. 
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Figure 7.7. Test set-up 
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Figure 7.8. Positions of strain gauges and LVDTs at mid-height of columns 

An Amsler universal testing machine with a 2000 kN capacity was used to apply the 

compressive load, in combination with a load cell with a range of 150 kN. The specimens were 

tested in a load control regime at a consistent rate of 5 kN/min.  

The experiment was terminated when the load reached less than 20% of the peak load in the 

descending path. The descending branch was thereby obtained through a controlled release of 

the hydraulic pressure. 

 Test results 7.6

All specimens were observed to exhibit local buckling first, followed by eventual failure by 

interaction of local and overall flexural buckling about the minor axis.  No distortional buckling 

of any of the cross-sections was observed. Figure 7.9 and Figure 7.10 display the failed shapes 

of some of the specimens.  In the final stage of the tests, a local plastic mechanism was seen to 

form with yield lines in both the web and the flanges. 
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Figure 7.9. Failure modes of 1000 mm long columns with section type B 

 

Figure 7.10. Failure modes of 1000 mm long columns with section type C 

Local buckling causes the effective centroid of a mono-symmetric section to shift in pin ended 

columns. In the tested lipped channel sections the web constituted the most slender plate 

element in the cross-section and, therefore, triggered local buckling, with the effective centroid 

consequently shifting away from the web. This was confirmed by the experimental observation 

that all the lipped channels bent out towards their flanges after buckling locally (Figure 7.9). In 

the plain channels on the other hand, the flanges were the more slender elements, leading to a 

shift of the effective centroid towards the web. Consequently, the plain channels consistently 

buckled towards the web in flexure, as shown in Figure 7.10. In this latter case, the yield line 

mechanism formed mainly in the flanges.  

The ultimate capacities obtained for all specimens are listed in Tables 7.8-7.11 and the 

measured load-displacement curves of selected columns are presented in Figure 7.11. A good 

agreement was obtained within each set of repeat tests, with the ultimate capacities typically 

varying by less than 7% from the average. The dashed line shown in Figure 7.11 illustrates the 

buckling load levels and these values are used to calculate the tested buckling stress, which has 

been shown in Table 7.5. 
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Figure 7.11. Axial load versus end shortening curves for tested specimens 
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Table 7.8. Ultimate capacities of specimens with cross-section A 

Specimen 
Eccentricity 

(mm) 

Tested 
capacity 
Pu (kN) 

EC3 
with 

iteration 
Pu1 (kN) 

Shift of 
effective 
centroid 
e1 (mm) 

EC3 
without 
iteration 
Pu2 (kN) 

Shift of 
effective 
centroid 
e2 (mm) 

Pu1/Pu Pu2/Pu 

A1000-a -1.742 99.8 81.6 5.3  84.2 1.1 0.82 0.84 

A1000-b X 98.3 82.5 5.3  84.6 1.3 0.84 0.86 

A1000-c X 98.7 80.6 5.3 83.2  1.07 0.82 0.84 

A1500-a -1.864 95.1 75.4 5.3  76.9 1.35 0.79 0.81 

A1500-b X 85.3 72.5 5.4  74.3 1.2 0.85 0.87 

A1500-c X 91.4 75.3 5.2  76.7 1.35 0.82 0.84 

A2000-a -1.634 78.4 64.1 5.5  65.6 1.3 0.82 0.84 

A2000-b X 75.8 62.7 5.3  64.2 1.1 0.83 0.85 

A2000-c X 88.8 63.7 5.4  65.3 1.1 0.72 0.74 

Average       0.81 0.83 

St. Dev.       0.04 0.04 

Table 7.9. Ultimate capacities of specimens with cross-section B 

Specimen 
Eccentricity 

(mm) 

Tested 
capacity 

(kN) 

EC3 
with 

iteration 
Pu1 (kN) 

Shift of 
effective 
centroid 
e1 (mm) 

EC3 
without 
iteration 

Pu2 
(kN) 

Shift of 
effective 
centroid 
e2 (mm) 

Pu1/Pu Pu2/Pu 

B1000-a X 113.8 112.1 0.4 66.8 -6.6 0.99 0.59 

B1000-b -1.274 110.3 111.2 0.5 67.1 -6.4 1.01 0.61 

B1000-c X 107.7 107.3 0.3 62.8 -6.8 1.00 0.58 

B1500-a -1.343 103.8 99.8 0.4 61.6 -6.6 0.96 0.59 

B1500-b X 107.9 101.0 0.4 62.6 -6.5 0.94 0.58 

B1500-c X 106.2 102.0 0.4 63.6 -6.5 0.96 0.60 

B2000-a -1.436 99.6 88.2 0.3 54.6 -6.7 0.89 0.55 

B2000-b X 101.6 89.6 0.4 56.8 -6.6 0.88 0.56 

B2000-c X 105.3 90.1 0.3 56.9 -6.6 0.86 0.54 

Average       0.94 0.58 

St. Dev.       0.05 0.02 
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Table 7.10. Ultimate capacities of specimens with cross-section C 

Specimen 
Eccentricity 

(mm) 

Tested 
capacity 

(kN) 

EC3 
with 

iteration 
Pu1 (kN) 

Shift of 
effective 
centroid 
e1 (mm) 

EC3 
without 
iteration 

Pu2 
(kN) 

Shift of 
effective 
centroid 
e2 (mm) 

Pu1/Pu Pu2/Pu 

C1000-a X 33.6 24.5 -6.8 13.7 -7.4 0.73 0.41 

C1000-b +0.792 43.8 26.2 -6.7 13.8 -7.3 0.60 0.32 

C1000-c X 42.7 26.4 -6.8 13.5 -7.4 0.62 0.32 

C1500-a +0.683 36.3 21.3 -6.7 13.2 -7.3 0.59 0.36 

C1500-b X 35.2 21.1 -6.8 13.1 -7.4 0.60 0.37 

C1500-c X 37.1 22.0 -6.6 13.0 -7.4 0.59 0.35 

C2000-a +0.628 33.1 18.6 -6.8 12.3 -7.2 0.56 0.37 

C2000-b X 31.7 17.4 -6.8 12.3 -7.0 0.55 0.39 

C2000-c X 33.8 18.2 -6.8 12.2 -6.9 0.54 0.36 

Average       0.60 0.36 

St. Dev.       0.06 0.03 

 

Table 7.11. Ultimate capacities of specimens with cross-section D 

Specimen 
Eccentricity 

(mm) 

Tested 
capacity 

(kN) 

EC3 
with 

iteration 
Pu1 (kN) 

Shift of 
effective 
centroid 
e1 (mm) 

EC3 
without 
iteration 

Pu2 
(kN) 

Shift of 
effective 
centroid 
e2 (mm) 

Pu1/Pu Pu2/Pu 

D1000-a X 109.0 93.5 3.1 80.4 -1.9 0.86 0.74 

D1000-b X 110.8 96.1 2.9 82 -2.0 0.87 0.74 

D1000-c -1.806 109.3 96.3 3.2 84.8 -1.7 0.88 0.78 

D1500-a -1.492 95.0 87.1 3.2 76.5 -1.9 0.92 0.81 

D1500-b X 98.2 89.9 3.3 81.8 -1.5 0.92 0.83 

D1500-c X 99.6 88.1 3.2 79.1 -1.6 0.88 0.79 

D2000-a X 90.8 74.8 3.1 66.1 -2.1 0.82 0.73 

D2000-b -1.634 97.8 77.1 3.2 71.1 -1.5 0.79 0.73 

D2000-c X 89.6 77.2 3.2 70.8 -1.75 0.86 0.79 

Average       0.87 0.77 

St. Dev.       0.04 0.04 

 

Table 7.8-Table 7.11 also compare the test results with the Eurocode 3 predictions. It is noted 

that, when calculating the effective cross-sectional properties according to the Eurocode, full 

iterations were carried out (which are not strictly prescribed by the Eurocode). These iterations 

are necessary because the location of the neutral axis of the effective cross-section in bending is 

initially unknown and also because of the possible interaction between local and distortional 

buckling. The additional bending resulting from the shift of the effective centroid was accounted 

for by using the axial load-moment interaction equations in the Eurocode. The measured 

dimensions and the material properties obtained from the coupon tests were used in the process. 
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In general, Table 7.8-Table 7.11 illustrate that a reasonable agreement was achieved between 

the experimental and the calculated compressive capacities of the lipped channels, with the ratio 

of the Eurocode predicted values to the test results ranging from 0.81 to 0.94, depending on the 

cross-section type. Eurocode 3 is generally conservative in its predictions, especially so for the 

plain channel sections, for which the ratio of the predicted values to the test results was 

calculated to be 0.60. 

As stated above, EC3 refines the effective section properties of a CFS section by updating the 

compressive stress in the cross-section. Table 7.8-Table 7.11 compare the results with and 

without considering the iteration process. All the compressive capacities were calculated by 

adopting the measured dimensions and material properties from the coupon tests. It is shown 

that, when iterations were not taken into account, the calculated compressive capacities of the 

tested specimens were generally more conservative than the ones with iterations. A comparison 

between the calculated shifts of effective centroid with and without considering the iteration 

process indicates that the centroid of the effective cross-section, without considering the 

iteration process, may shift towards the wrong direction. The fact that the centroid of effective 

cross-section shifts towards the wrong direction does not necessarily lead to ultimate loads on 

the safe side for thin-walled members. 

 Conclusions  7.7

A total of 36 channel column tests, including four different cross-section geometries and three 

different lengths, were carried out with the aim of investigating the interaction of local and 

overall flexural buckling. The specimens were tested under a concentrically applied load with 

pin ended boundary conditions. The specimen imperfections were measured and material tests 

of the flat and rounded corner regions of each cross-section type were carried out. The following 

conclusions can be drawn: 

(1) The tests were successful in achieving interaction between local buckling and flexural 

buckling about the minor axis. Good agreement was obtained within each set of three 

identical tests, with the ultimate loads differing by less than 7% from the average.  

(2) Additional overall bending of the specimens, resulting from a shift of the effective 

centroid, was observed after the appearance of a local buckling pattern. Bending 

thereby occurred towards the web in the plain channels and towards the flanges in the 

lipped channels, consistent with expectations.  

(3) A comparison between the Eurocode 3 predictions and the experimental results 

indicates that Eurocode 3 is generally conservative in predicting the strength of pin-

ended axially compressed channel columns. The predictions are especially 
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conservative for plain channels, with an average ratio of the predicted to the measured 

capacity of 0.60. 

(4) The compressive capacities were calculated according to Eurocode 3 with and without 

considering the iteration process and were compared with tested results. It is found that 

ignoring the iteration process might lead to the effective centroid shift to the wrong 

direction. 
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CHAPTER 8. A numerical 

investigation of local-

flexural interactive 

buckling of standard and 

optimised columns 

 

 

This chapter aims to develop a reliable numerical model to investigate the interaction of local 

and global buckling modes in pin-ended CFS columns. The model incorporates non-linear 

stress-strain behaviour and enhanced corner properties obtained from 12 coupon tests as well as 

initial imperfections measured by specially designed equipment. The developed FE model was 

verified against a program of 36 laboratory tests on CFS plain and lipped channel columns and 

produced excellent predictions of ultimate strength and deformation behaviour of the specimens. 

The validated FE model was then used to assess the adequacy of the effective width method in 

EC3 and Direct Strength Method (DSM) in estimating the design capacity of a wide range of 

conventional and optimum design CFS channel column sections. 
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 Introduction 8.1

Due to their inherent weakness of thin-walled cross-section and complex buckling modes, the 

accurate prediction of the buckling and post-buckling behaviour of these elements becomes 

more difficult. Finite Element Analysis (FEA) has been widely and successfully used in the past 

to predict the non-linear behaviour of CFS elements. Young and Yan (Young and Yan 2002) 

developed a FE model to investigate the compressive strength of fixed ended CFS columns, 

using four node shell elements with five degrees of freedom per node. Reduced integration was 

used (SR4) in combination with linear perturbation analysis ‘BUCKLE’ to incorporate 

imperfection effects. Based on experimental results on CFS fixed-ended lipped channel 

columns, Young (Young 2004) used a nonlinear inelastic FE model to investigate the effect of 

inclined edge stiffeners on ultimate axial capacity. Similarly, Yan and Young (Yan and Young 

2004, Young and Yan 2004) experimentally and numerically studied the ultimate capacity of 

fixed-ended CFS channel columns with complex stiffeners. SR4 element type in ABAQUS 

(ABAQUS 2011) was used by taking into account initial geometric imperfections and material 

non-linearity. Zhang et al. (Zhang et al. 2007b) conducted an experimental test programme on 

pin-ended CFS columns with perpendicular and inclined edge-stiffeners and developed FE 

models using four-node shell element type with six degrees of freedom at each node in ANSYS 

(ANSYS 2012). The rigid region at each end of the column elements was modelled with a 

reference point, where rotations around both strong and weak axis of the end sections were 

allowed. In a recent study, Wang et al. (Wang et al. 2016c) conducted a series of experimental 

tests on pin-ended columns with complex cross-sectional edge and intermediate stiffeners and 

the results were compared with the FE models similar to one proposed by Zhang et al. (Zhang et 

al. 2007b). 

Compared with physical experiments, FEA is relatively inexpensive and time efficient, 

especially when a parametric study of cross-section geometry is involved. In addition, FEA is 

more suitable and convenient for investigations involving geometric imperfections and material 

nonlinearity of structural members, which could be difficult to investigate through physical 

tests. However, it is of crucial importance to obtain accurate and reliable FE models prior to any 

parametric study. 

This chapter aims to investigate the local-flexural interactive buckling of CFS plain and lipped 

channel columns. Detailed FE models are developed in ABAQUS (ABAQUS 2011) to predict 

the compressive behaviour and load carrying capacity of plain and lipped channel column 

sections. The results of an experimental investigation including 36 tests on CFS channel 

columns, which failed by the interaction of local instability and flexural buckling about the 

minor axis, were used to validate the models. Compared to previous studies, the advantage of 

the developed models is to incorporate the non-linear stress-strain behaviour and enhanced 
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material properties based on coupon tests as well as measured initial imperfections. The models 

are then used to assess the adequacy of Eurocode 3 design guide lines (CEN 2005a, CEN 

2005b, CEN 2005c) and Direct Strength Method (DSM) to design a wide range of conventional 

and optimum design CFS columns considering local/distortional and global buckling modes. 

 Direct strength method for CFS column design 8.2

Prior to the description of the numerical study, a brief induction is presented here to explain the 

Direct Strength Method (DSM). Eurocode 3 design guidelines to consider local, distortional and 

global buckling and their interaction in the compressive strength of CFS columns have been 

described in Chapter 3. 

The Direct Strength Method (DSM) proposed in AISI (AISI 2007) is an alternative to the 

traditional effective width method to predict the load carrying capacity of CFS members. This 

method integrates a computational stability analysis into the design process. In a first step, the 

elastic local ( crlP ), distortional ( crdP ) and global ( creP ) buckling loads are determined by using 

finite strip method. Using these elastic buckling loads and the load at first yield, the strength is 

then directly predicted based on a series of simple empirical equations. While calculation of the 

effective properties can be tedious for complex CFS cross-sections, only gross section 

properties are needed in the DSM. The elastic buckling loads of CFS members can be calculated 

using software such as CUFSM (Schafer 2006). 

The equations for calculating the axial strength for global buckling in AISI (AISI 2007) are 

presented in terms of the compressive yield load y g yP A f and the non-dimensional 

slenderness ratio  c y creP P , where: 
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The nominal axial strength of a column designed corresponding to local buckling and 

considering local–global interaction is related to the local–global slenderness ratio 

 l ne crlP P  , where: 
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Finally, the nominal axial strength corresponding to distortional buckling is calculated as a 

function of slenderness ratio  d y crdP P  , where: 
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 (8.3) 

The final axial strength of the column nP  is then determined by calculating the minimum value 

of axial strength values obtained from Equations (8.1) to (8.3) as follows: 

  min , ,n ne nl ndP P P P  (8.4) 

 Optimisation of CFS beam-columns 8.3

An optimisation framework was proposed in order to offer practical solutions for more efficient 

CFS elements by the authors (Chapters 3-5). Their proposed optimisation process is capable of 

taking into account the interactive buckling by allowing for the effect of shift of the effective 

centroid induced by local buckling (see section 2). Using the same framework, in this study the 

following objective function is considered for optimum design of beam-column elements 

around weak axes:  

 

1.25

0.8 0.8

, ,

1
max

(1/ ) ( / )

 
  

 
Ed

b Rd N b Rd

N
N e M

 (8.5) 

subjected to: 

 / 60, / 50, / 500  b t c t h t  (8.6) 

 0.2 / 0.6 c b  (8.7) 

 25c  (8.8) 

where h is the cross-sectional height, and b and c are the flange and lip width, respectively. 

Equations (8.6) and (8.7) represent the width-to-thickness ratio limits defined in EC3 (CEN 

2005b). Equation (8.8) is to consider the manufacturing and construction constraints. No 

flexibility is offered for the lip angles in order to adapt to the typical cold-rolling machines for 

the stud production. The optimisation was thereby conducted for pin-ended columns with the 

total lengths of 1.0 ,1.5 2.0eL m m and m . Particle Swarm Optimisation (PSO) algorithm was 

adopted to solve the optimisation problem defined in Equations (8.5) to (8.8). More information 

on the PSO optimisation method can be found in Chapter 3. 
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The nominal dimensions of the cross-sections for the numerical study in this chapter are 

presented in Figure 8.1. All the dimensions in this figure are defined by the outer to outer 

surface. The cross-sections of the tested specimens have the same nominal thickness 1.5t mm  

and coil width of steel sheet 337l mm . The cross-section A is a standard commercially 

available cross-section. Sections B and C are the optimum solutions with highest axial capacity 

subjected to constraints in Equations (8.6) to (8.8) for lipped and plain channels, respectively. 

Cross-section D is a complementary section (with a flange width between the flange widths of 

sections A and B) used for comparison purposes. For the numerical study, these CFS column 

sections are considered with the lengths 1.0 ,1.5 2.0eL m m and m . 

 

Figure 8.1. Symbol definitions and nominal cross-sectional dimensions 

 Numerical modelling 8.4

8.4.1 Material model 

The inelastic properties of CFS material were found to have significant effects on the ultimate 

capacity and post-buckling behaviour of CFS elements. As a part of this study, 12 tensile 

coupons from the flat plates and round corner region in the cross-sections were tested in order to 

determine their material properties. For example, a comparison between the engineering and 

true stress-strain curves of a flat and a corner coupon is compared in Figure 8.2. The results 

indicate that the 0.2% proof stress of the corner coupon is around 24% higher than the flat 

coupon in the same section. A comparison between the dynamic and static stress–strain curves 

of the coupon specimens shows that the stress reduced by around 5–8% at yield strength and 

ultimate strength during the static drop, which is also called “stress relaxation” (Huang and 

Young 2014). The static stress–strain curves are calculated from the dynamic stress–strain 

curves by removing the dynamic effects of the tensile test machine. The material model was 

then included in the FEM by using the true stress vs true strain curve, which was calculated 

from the following equations: 
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  1   true  (8.9) 

  ln 1  true  (8.10) 

where  and   are the measured engineering stress and strain based on the original cross-

section area of the coupon specimens. Tensile coupon tests were also performed in pair on 

smaller coupons taken from the round corner areas of the channels. The resulted stress-strain 

curves were incorporated into ABAQUS (ABAQUS 2011) and assigned to the rounded corner 

zones of the members. 

 
                                               (a)                                                                               (b) 

Figure 8.2. Stress–strain curves resulted from (a) flat and (b) corner coupon tests 

8.4.2 Boundary conditions  

Four groups of cross-sectional shapes were considered including a commercially available 

standard lipped channel; two optimised lipped and plain channel sections and a complementary 

lipped channel (see Figure 8.1). The CFS elements were tested under compression with pinned 

end conditions, which were achieved by means of specially designed hinge assemblies shown in 

Figure 8.3. The distance between the centre of the roller and the hinge top plate was 44 mm. In 

the FE models, the hinge assemblies were modelled as 38 mm deep solid blocks with an arc-

shaped groove, which were allowed to rotate about the longitudinal axis of the roller. The radius 

of the cylinder roller was measured 12mm. Figure 8.3 illustrates the developed FE model and 

the boundary conditions. The contact between the specimen and the end block was defined 

using a node-to-surface contact pair. The top surface of the block constituted the master surface 

while the edges of the channel were defined as a node-based slave surface. The contact normal 

to the surface was defined as “hard”, meaning that no penetration of the surfaces into each other 

was allowed. However, the slave nodes on the specimen were allowed to separate from the 

surface while no tensile stresses could be developed in the interface. The tangential properties 

were set to “rough”, indicating that friction restrained any tangential slip between the specimen 

and the hinge endplate. This reflects the actual test condition where the end sections were not 

allowed to expand laterally due to the Poisson effect as a result of friction. Contact pairs were 

also defined between the roller and the endplate using a surface-to-surface contact property.  
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Lubricating oil was used in order to reduce the friction effect that might produce restraints on 

the rotation of the endplate. Therefore, in the normal direction of the contact surface, “hard” 

property was used while in the tangent direction between the roller and the endplate, a friction 

factor was used. To obtain the most appropriate friction factor a sensitivity analysis was 

conducted by varying the friction properties between the roller and the endplate. Friction factors 

ranging from 0.1-0.4 were used and the corresponding relationships between axial load versus 

axial shortening were obtained as shown in Figure 8.4. The results indicate that the effect of 

friction factor on the rotational behaviour of the CFS column is not negligible. It is shown that 

the predicted compressive capacity decreases with the reduction of friction factor whereas no 

significant drop of the peak load is observed using friction factors smaller than 0.2. It will be 

shown in the following sections that a friction factor of 0.2 provides the best agreement between 

the predicted compressive strengths of CFS columns and the experimental results. 

Contact 
between 
roller and 
endplate

Fixed at 
the top 
surface 
of roller

Contact 
between 

channel and 
endplate

Coupling 
nodes of 

roller to the 
reference 

point
 

Figure 8.3. Boundary conditions of FE model against test 
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Figure 8.4. Axial load vs shortening of A1000-a specimen with various friction factors defined in the 

contact properties of FE analyses  

8.4.3 Element type and mesh size 

In the FE models, a four-node shell element with reduced integration (S4R) was selected from 

the available ABAQUS element library (ABAQUS 2011). This element uses three translational 

and three rotational degrees of freedom at each node. The element accounts for finite membrane 

strains and arbitrarily large rotations. Therefore, it is suitable for large-strain analyses and 

geometrically non-linear problems. Since the plate components constituting the cross-section 

are very slender, transverse shear deformations were not deemed to have a major effect on the 

solution. Nevertheless, they are accounted for in the S4R element formulation.  

For the modelling of the endplate and the roller support, an 8-node linear brick element with 

reduced integration (C3D8R) and hourglass control was used. A sensitivity analysis was 

performed to choose an appropriate mesh size to model the CFS channel sections. The mesh 

size of the endplate and the roller support was found to have little effects on the peak capacity of 

the channel sections; however, it could affect the convergence of the FE analyses. It was found 

that using a 10x10mm element dimension for CFS channel and 5x5x5 mm for the linear brick 

element provides a balance between computational time and accuracy. 

8.4.4 Imperfections 

The stability of thin-walled CFS members may in some cases be significantly affected by the 

presence of imperfections, especially when interactive buckling of different modes is involved. 

Before conducting the experimental tests, the imperfections of the test specimens were 

measured along the five longitudinal lines indicated in Figure 8.5, by means of reflected laser 

beams. In a first step, the raw data were decomposed into their respective Fourier series (Becque 

and Rasmussen 2009a, Becque and Rasmussen 2009b). The Fourier series were then filtered by 
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cutting off the high frequency vibrations originating from the driving mechanisms of the 

moving motors. This has resulted in a smoother profile when the measured imperfections were 

included. 

 

(a)                                                              (b) 

Figure 8.5. (a) The measured imperfection profiles; (b) Incorporating measured imperfections into 

FE models 

It should be noted it is essential to use a significant number of Fourier terms to represent the 

shape of measured imperfection accurately. In this study, 10-50 Fourier terms were used by a 

trial and error process, depending on the specimen length. As an example, Figure 8.5 displays 

the measured imperfection profile along line 3 of specimen A1000-a, with the truncated Fourier 

representation shown as a solid black line. The program to incorporate the imperfections is 

presented in Appendix A.2. 
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Figure 8.6. Imperfection inclusion 

To improve the accuracy of the predictions, the small eccentricities 0e of the applied loads were 

also measured and incorporated in the FE models by offsetting the specimen relative to the 
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centroid of the end blocks by a distance 0e . More information about the experimental tests can 

be found in Chapter 7. 

8.4.5 Numerical results 

Table 8.1 compares the ultimate load carrying capacity uP  resulting from the FE models with 

the results obtained from the experiments on the CFS plain and lipped channels. 1uP  is the 

predicted axial strength that takes into account the strain hardening effect of the material in the 

corner region but with a small horizontal 10N concentrated load in ABAQUS applied in the 

middle height of the column to incorporate the imperfection. 2uP  indicates the predicted 

capacity through FE analysis where only the effect of the measured imperfection was taken into 

account. The predicted capacity 3uP , on the other hand, considers both the measured 

imperfection and the strain hardening effect of the material in the corner region. It is shown in 

Table 1 that, in general, an excellent agreement was obtained between the FE predictions and 

the experimental results when measured imperfections were taken into account. The average 

ratio of the FE predicted load capacity 2uP  to the experimentally measured load carrying 

capacity uP  was 0.985, with a standard deviation of 0.066. In comparison, the average ratio of 

the FE predicted load capacity 3uP  to the experimentally measured load carrying capacity uP  

was 0.994, with a standard deviation of 0.067 while the average ratio of the FE predicted load 

capacity 1uP  to the experimentally measured load carrying capacity uP  was 1.114, with a 

standard deviation of 0.191. This indicates that the strength variation caused by the strain 

hardening effect of the round corner material in the current test series was not significant (less 

than 3%). The main cause for the low contribution of the strain hardening can be the relative 

small area of the round corners compared to the total cross section area in this case. By 

comparing the predicted axial strength 1uP  with 3uP , it is shown that the imperfection 

magnitude and distribution can have significant effects on the load carrying capacity, the 

variation is up to 20% for lipped channel columns and 40% for plain channel columns. 
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Figure 8.7. Axial load-axial shortening relationship resulting from FE against Test (A1000-a) 

 

Figure 8.8. Deformation of FE model vs actual specimen (A1000-a) at points a, b and c (see Figure 

8.7); stress (MPa) 

Figure 8.7 illustrates the tested axial load-axial shortening relationship between the experiment 

tests and the predicted results from numerical study. It is shown that the proposed FE model was 

able to capture the peak load and stiffness of both CFS plain and lipped channel columns. The 

proposed FE model could also accurately predict the failed shape of the tested CFS columns and 

the post-buckling behaviour. All of the tested columns in this study exhibited a local buckling 

which was then followed by interactive local and flexural buckling failure modes. Figure 8.8 

demonstrates the good agreement between the post-peak deformations of specimen A1000-a 

a b c 
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observed in the experimental tests with the results of the corresponding FE model at different 

loading stages. 

Table 8.1. Comparison of FE results with tested compressive strength 

Specimen 
Member 
length 
(mm) 

Pu 
(Test) 
(kN) 

Pu1 
(FE) 
(kN) 

Pu2 
(FE) 
(kN)  

Pu3 
(FE) 
(kN)  

Pu1/Pu Pu2/Pu Pu3/Pu 

A1000-a 1000.1 99.8 113.7 97.2 97.4 1.139 0.974 0.976 

A1000-b 1000.0 98.3 117.5 97.0 97.8 1.195 0.987 0.995 

A1000-c 1000.0 98.7 114.9 96.4 97.4 1.164 0.977 0.987 

A1500-a 1499.8 95.1 89.8 91.9 92.7 0.944 0.966 0.975 

A1500-b 1500.0 85.3 81.9 81 81.7 0.960 0.950 0.958 

A1500-c 1500.0 91.4 94.06 87.6 88.1 1.029 0.958 0.964 

A2000-a 1999.8 78.4 88.4 75.1 76.2 1.128 0.958 0.972 

A2000-b 2000.0 75.8 68.0 72.2 73.4 0.897 0.953 0.968 

A2000-c 2000.1 88.8 70.8 85.8 86.5 0.797 0.966 0.974 

B1000-a 1000.2 113.8 109.8 114.2 114.7 0.965 1.004 1.008 

B1000-b 1000.0 110.3 112.5 114.2 114.6 1.020 1.035 1.039 

B1000-c 1000.1 107.7 110.1 108.3 109.2 1.022 1.006 1.014 

B1500-a 1500.0 103.8 103.8 108.1 108.4 1.000 1.041 1.044 

B1500-b 1500.4 107.9 108.3 109.6 110.0 1.004 1.016 1.019 

B1500-c 1500.1 106.2 108.0 108.3 108.8 1.017 1.020 1.024 

B2000-a 2000.1 99.6 95.6 102.2 103 0.960 1.026 1.034 

B2000-b 2000.3 101.6 111.5 105.5 106.2 1.097 1.038 1.045 

B2000-c 2000.1 105.3 113.3 108.3 109.1 1.076 1.028 1.036 

(C1000-a) 1000.1 33.6 60.9 -- * -- * -- * -- * -- * 

C1000-b 1000.1 43.8 61.6 42.2 42.5 1.406 0.963 0.970 

C1000-c 999.8 42.7 60.2 44.1 44.6 1.410 1.033 1.044 

C1500-a 1500.0 36.3 43.7 33.5 33.6 1.204 0.923 0.926 

C1500-b 1500.1 35.2 51.1 32.8 32.9 1.452 0.932 0.935 

C1500-c 1500.2 37.1 54.0 35.6 35.7 1.456 0.960 0.962 

C2000-a 2000.4 33.1 34.9 29.5 29.9 1.054 0.891 0.903 

C2000-b 2000.3 31.7 34.8 28.1 28.9 1.098 0.886 0.912 

C2000-c 2000.0 33.8 36.1 29.9 30.6 1.068 0.885 0.905 

D1000-a 1000.0 109.0 129.4 106.0 107.0 1.187 0.972 0.982 

D1000-b 1000.2 110.8 125.4 109.1 112.2 1.132 0.985 1.013 

D1000-c 1000.1 109.3 130.1 108.0 108.7 1.190 0.988 0.995 

D1500-a 1500.2 95.0 100.3 94.2 94.6 1.056 0.992 0.996 

D1500-b 1500.1 98.2 104.5 101.5 101.9 1.064 1.034 1.038 

D1500-c 1500.0 99.6 101.9 98.1 99.7 1.023 0.985 1.001 

D2000-a 2000.3 90.8 96.1 86.4 86.9 1.058 0.952 0.957 

D2000-b 2000.0 97.8 94.2 93.3 94.2 0.963 0.954 0.963 

D2000-c 2000.1 89.6 93.9 85.8 85.9 1.048 0.958 0.959 

Average      1.114 0.985 0.994 

St. deviation      0.191 0.066 0.067 

* C1000-a experienced an sudden impact from other machine in the lab during the test 
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 Evaluation of EC3 and DSM design methods 8.5

The experimental results listed were compared with the predictions of the DSM and EC3 design 

equations presented in section 8.2 and 8.3. As shown in Table 8.2, in general, the DSM 

predictions for CFS lipped channel columns are found to be more accurate than the “effective 

width” based method in EC3. The ratio of the DSM predicted load capacity to the 

corresponding experimentally measured value was on average 0.945, with a standard deviation 

of 0.081. For the EC3 design method the average of the predicted load capacities to the 

experimental results was 0.804, with a standard deviation of 0.138. It is also evident that the 

EC3 design method generally leads to considerably more conservative predictions of the 

column axial load capacity. 

While DSM is not qualified for the design of CFS plain channel columns, EC3 predictions on 

the plain channel column design were very conservative, where the ratio of EC3 prediction to 

the tested result was as small as 0.54 (i.e. up to 46% underestimation). 

Table 8.2. Evaluation of the EC3 and DSM design methods against experimental results 

Specimen 
Member 
length 
(mm) 

Pu 
(Test) 
(kN) 

EC3 (kN) DSM (kN) EC3/Pu DSM/Pu 

A1000-a 1000.1 99.8 81.6 92.34 0.818 0.925 

A1000-b 1000.0 98.3 82.5 93.17 0.839 0.948 

A1000-c 1000.0 98.7 80.6 91.45 0.817 0.927 

A1500-a 1499.8 95.1 75.4 81.73 0.793 0.859 

A1500-b 1500.0 85.3 72.5 78.6 0.850 0.921 

A1500-c 1500.0 91.4 75.3 81.7 0.824 0.894 

A2000-a 1999.8 78.4 64.1 65.36 0.818 0.834 

A2000-b 2000.0 75.8 62.7 64.2 0.827 0.847 

A2000-c 2000.1 88.8 63.7 65.43 0.717 0.737 

B1000-a 1000.2 113.8 112.1 119.37 0.985 1.049 

B1000-b 1000.0 110.3 111.2 118.88 1.008 1.078 

B1000-c 1000.1 107.7 107.3 113.72 0.996 1.056 

B1500-a 1500.0 103.8 99.8 108.66 0.961 1.047 

B1500-b 1500.4 107.9 101.0 111.38 0.936 1.032 

B1500-c 1500.1 106.2 102.0 110.88 0.960 1.044 

B2000-a 2000.1 99.6 88.2 94.82 0.886 0.952 

B2000-b 2000.3 101.6 89.6 98.60 0.882 0.970 

B2000-c 2000.1 105.3 90.1 98.54 0.856 0.936 

C1000-a 1000.1 33.6 24.5 NA 0.729 --# 

C1000-b 1000.1 43.8 26.2 NA 0.598 --# 

C1000-c 999.8 42.7 26.4 NA 0.618 --# 

C1500-a 1500.0 36.3 21.3 NA 0.587 --# 

C1500-b 1500.1 35.2 21.1 NA 0.599 --# 

C1500-c 1500.2 37.1 22.0 NA 0.593 --# 

C2000-a 2000.4 33.1 18.6 NA 0.562 --# 

C2000-b 2000.3 31.7 17.4 NA 0.549 --# 
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Specimen 
Member 
length 
(mm) 

Pu 
(Test) 
(kN) 

EC3 (kN) DSM (kN) EC3/Pu DSM/Pu 

C2000-c 2000.0 33.8 18.2 NA 0.538 --# 

D1000-a 1000.0 109.0 93.5 102.82 0.858 0.943 

D1000-b 1000.2 110.8 96.1 105.39 0.867 0.951 

D1000-c 1000.1 109.3 96.3 106.21 0.881 0.972 

D1500-a 1500.2 95.0 87.1 94.48 0.917 0.995 

D1500-b 1500.1 98.2 89.9 97.92 0.915 0.997 

D1500-c 1500.0 99.6 88.1 95.67 0.885 0.961 

D2000-a 2000.3 90.8 74.8 79.22 0.824 0.872 

D2000-b 2000.0 97.8 77.1 82.16 0.788 0.840 

D2000-c 2000.1 89.6 77.2 82.36 0.862 0.919 

Average     0.804 0.945 

St. deviation     0.138 0.081 

# Unpredefined sections for DSM 

 Evaluation of the optimisation process 8.6

In this section, the efficiency of the optimisation method explained in section 8.3 is further 

investigated. While section A is a standard commercially available cross-section, sections B is 

the optimum solution with highest axial capacity subjected to constraints in Equations (8.6)-

(8.8) for lipped channels. The nominal cross-sectional dimensions of these sections are given in 

Figure 8.1.  

Figure 8.9 compares the ultimate capacity of the standard and optimised sections for the 1m, 

1.5m and 2m length columns obtained from the experimental results, detailed FE models and 

EC3 design method. Based on the experimental results, it is shown that the optimised shapes 

offer a much higher compressive capacity (up to 27% higher) compared to the standard lipped 

channel section with the same amount of material, particularly in longer columns where global 

buckling is the dominant mode. Similar results were obtained from FE models and EC3 design 

method, where the optimum design solutions showed, respectively, up to 35% and 43% higher 

compressive strength compared to the standard sections.  
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Figure 8.9. Compressive strength of the standard section compared to the optimised sections using 

the same amount of material 

It is worth noting that the trends of increasing/decreasing capacity over the range of lengths for 

the columns are very well predicted by EC3 when the tested results are taken as a benchmark. 

This indicates that the proposed optimisation method is accurate and reliable and provides a 

practical tool for manufacturers and structural engineers to improve the capacity of CFS 

elements.  

The results of this study in general demonstrate the accuracy and reliability of the developed FE 

models to predict the axial load bearing capacity of CFS columns with different cross sectional 

shapes and effective lengths. These validated models should prove useful in practical 

applications for more efficient design of CFS structural elements. 

(a) 

(b) 

(c) 



Chapter 8. A numerical investigation of local-flexural interactive buckling of columns 

158 

 Conclusions 8.7

In this chapter, a finite element (FE) model was developed to study the interaction of local and 

global buckling in CFS lipped channel columns. The model takes into account the non-linear 

stress–strain behaviour of CFS material, the strength hardening effects at the round corners due 

to the cold-working process, and the experimentally measured initial imperfections. The FE 

models were validated against an experimental program on a total number of 36 plain and 

lipped channel columns with the total lengths of 1.0 ,1.5 2.0eL m m and m . The validated 

models were then used to assess the accuracy of EC3 and DSM design methods for standard and 

optimum design solutions. Based on the results presented in this chapter, the following 

conclusions can be drawn: 

(1) The ultimate capacity of the sections predicted by the FE models was on average less 

than 1% different from the experimental results. The proposed FE model was also 

successful in capturing the failure shapes and predicting the compressive strength of 

CFS columns subjected to local and global buckling modes. 

(2) It was shown that the geometric imperfections can change the FE predictions by 

around 20% and 40%, respectively, for lipped and plain channel columns, while the 

strength variation caused by the strain hardening effect at the round corners material in 

general has negligible effects (less than 3%). 

(3) The ratio of predicted to experimentally measured axial strength was on average 0.945 

and 0.804 for DSM and EC3 design methods, respectively. The results show that EC3 

design method generally leads to conservative predictions, especially for plain channel 

column sections where the EC3 predictions where up to 46% lower than the 

experimental results. 

(4) The axial capacity of the optimised CFS columns obtained from validated FE models 

and EC3 design methods were up to 35% and 43% higher, respectively, compared to 

their standard lipped channel counterparts with the same amount of material. This 

improvement was more evident for longer columns where global buckling was the 

dominant failure mode. This demonstrated the efficiency of the proposed optimisation 

method to improve the compressive capacity of CFS sections.  

(5) The results of this study in general demonstrate the accuracy and reliability of the 

developed FE models to predict the axial load bearing capacity of CFS columns with 

different cross sectional shapes and effective lengths. These validated models should 

prove useful in practical applications for more efficient design of CFS structural 

elements 
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CHAPTER 9. Experimental 

investigation of the 

bending capacity of CFS 

back-to-back standard 

and optimised beams 

 

This chapter describes an experimental programme carried out at the University of Sheffield to 

investigate the interaction between local and distortional buckling in cold-formed steel (CFS) 

back-to-back beams, assembled from standard and optimised lipped channel sections. The 

channels, with a nominal thickness of 1.5 mm and depths ranging from 180 mm to 270 mm, 

were assembled in a back-to-back configuration using 12 mm diameter bolts, tightened with a 

constant torque of 15 N∙m. The geometric imperfections of the individual channels, as well as 

those of the back-to-back specimens, were recorded using a specially designed measurement rig. 

Tensile coupons were also extracted from the flat portions and the corner regions of the cross-

sections in order to determine the material properties.  

A total of six tests on back-to-back beams, including three different cross-sectional geometries, 

were completed. All cross-sections were manufactured using steel plate of the same coil width 

and thickness. The specimens were tested in a four-point bending configuration with simply 

supported boundary conditions, while being laterally braced at the loading points. 
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 Introduction 9.1

The literature review (Chapter 2) has shown that available tests on CFS single sections were 

generally designed for the development of design guidelines on CFS specimens while no 

comparision between standard and optimised sections were presented. Therefore, newly 

proposed cross-sectional shapes and dimensions are not usually optimised on the basis of 

detailed experimental validation and calibration. This may lead to non-compliant shapes and 

plate width-to-thickness ratios against available design guidelines during the optimisation 

process. 

The current experimental study on the behaviour of CFS back-to-back beam sections in this 

chapter is part of a wider study into the optimisation of CFS members (see Chapter 4 to Chapter 

5), which is why all four cross-sections in the test programme were manufactured using the 

same coil width and thickness. The purpose of the test is to: (a) provide verification on the 

optimisation framework on CFS beams proposed in Chapter 4; (b) calibrate a more reliable FE 

model for future application on more efficient CFS beam design and (c) verify the accuracy of 

design procedures adopted in EC3 which can be crucial in the optimisation process. However, 

the experimental results are here presented independently of their wider context, as the results 

by themselves provide valuable data about the interactive buckling behaviour of CFS back-to-

back beams. A comparison with the relevant Eurocode 3 design guidelines (CEN 2005a, CEN 

2005b, CEN 2005c) is also carried out. 

 Section geometry and labelling 9.2

The back-to-back specimens were assembled using lipped channels with three different cross-

sectional geometries. All channels were fabricated by brake pressing a pre-galvanized steel 

sheet with a width of 415 mm, a nominal thickness of 1.5 mm and a zinc coating of 0.04 mm 

thickness. The nominal yield stress of the sheet was 450 MPa. The back-to-back beams had a 

total length of 3300 mm and a distance between the end supports of 3100 mm. M12 zinc-plated 

bolts, tightened with a constant torque of 15 N∙m, were used to connect the individual channel 

sections through the web, as illustrated in Figure 9.1, at the cross-sections under the loading 

points and over the end supports. 
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Figure 9.1. Symbol definitions and nominal cross-sectional dimensions 

 

Table 9.1. Measured dimensions of specimens with cross-section A 

Specimen Channel 
r 

(mm) 

t 

(mm) 

h 

(mm) 

b1 

(mm) 

c1 

(mm) 

b2 

(mm) 

c2 

(mm) 

A230-1 
a 3.9 1.563 230.43 75.36 17.44 75.35 16.81 

b 4.3 1.551 230.35 75.33 17.44 75.33 16.86 

A230-2 
a 4.1 1.557 230.52 75.35 16.64 75.35 17.39 

b 3.7 1.564 230.48 74.90 16.09 74.90 17.25 

Average  4.0 1.559 230.45 75.24 16.90 75.23 17.08 

St. Dev.  0.15 0.01 0.07 0.22 0.66 0.22 0.29 

Table 9.2. Measured dimensions of specimens with cross-section B 

Specimen Channel 
r 

(mm) 

t 

(mm) 

h 

(mm) 

b1 

(mm) 

c1 

(mm) 

b2 

(mm) 

c2 

(mm) 

B270-1 
a 4.1 1.561 269.49 150.19 24.70 50.10 23.79 

b 4.0 1.565 270.59 151.33 23.24 49.71 23.47 

B270-2 
a 4.2 1.555 270.43 150.95 23.01 49.91 23.50 

b 4.1 1.546 270.55 151.34 23.29 50.25 22.84 

Average  4.1 1.557 270.30 151.00 23.60 50.00 23.40 

St. Dev.  0.08 0.01 0.52 0.54 0.77 0.23 0.40 

 

Table 9.3. Measured dimensions of specimens with cross-section C 

Specimen Channel 
r 

(mm) 

t 

(mm) 

h 

(mm) 

b1 

(mm) 

c1 

(mm) 

b2 

(mm) 

c2 

(mm) 

C180-1 
a 4.1 1.554 180.30 100.41 17.31 100.33 17.06 

b 3.9 1.567 180.20 100.38 17.53 100.14 16.80 

C180-2 
a 3.9 1.559 180.52 100.41 17.46 100.33 17.28 

b 4.2 1.554 180.41 100.43 17.34 100.32 16.75 

Average  4.0 1.559 180.36 100.41 17.41 100.28 16.97 

St. Dev.  0.15 0.01 0.14 0.02 0.10 0.09 0.25 

 

Each back-to-back specimen was labelled according to its cross-section, using the letters A, B or 

C (Figure 9.1), followed by the height of the cross-section in mm. As each test was repeated, the 

numbers 1 and 2 were used to differentiate between the first and second twin specimen. For 

each back-to-back specimen, the letters ‘a’ and ‘b’ were used to refer to the individual channels 
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which formed the back-to-back cross-section. The cross-sectional dimensions of each channel 

were measured prior to their assemblage. Table 9.1-Table 9.3 list the measured dimensions of 

the test specimens, using the nomenclature illustrated in Figure 9.1. All the reported values 

correspond to outer dimensions and they are the averages of several measurements taken along 

the length of the channels. 

 Material properties 9.3

A series of tensile coupons were tested in order to determine the material properties of the test 

specimens. For each type of lipped channel used to construct the built-up specimens, one flat 

coupon was extracted from the center line of the web. Two corner coupons were also taken from 

the web-flange junctions in order to determine the effect of the cold-working process on the 

material properties. All coupons were taken from the end portions of test specimens after they 

were tested, since the beams were subject to strains in these regions which were low enough not 

to alter the material properties of the steel. 

The flat coupons had a nominal width of 12.5 mm and each of them was instrumented with a 50 

mm extensometer and two 5 mm strain gauges, one on each side of the coupon (Figure 9.2(a)). 

The corner coupons had a nominal width of 6 mm and were tested in pairs to avoid introducing 

unwanted bending moments due to their asymmetric cross-sectional shape. Each pair of corner 

coupons was instrumented with a 50 mm extensometer and a 5 mm strain gauge attached to the 

outside of each coupon, as shown in Figure 9.2(b). 

  

Figure 9.2. Tensile material tests for: (a) flat coupons (b) corner coupons 

All coupons were tested in accordance with the specifications of the relevant European standard. 

Table 9.4 lists the values of the material properties obtained for each flat coupon or set of corner 

coupons, where E is the Young’s modulus, σ0.2% is the 0.2% proof stress, σu is the ultimate 

tensile strength and εf  is the elongation after fracture, measured over a gauge length of 50 mm. 

For the pair of corner coupons belonging to section B270, the elongation after fracture reported 

in the table is lower than for the other corner coupons. This is due to the fact that the plastic 

(b) (a) 
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deformations localized slightly outside the gauge length. Therefore, this result should be 

disregarded. 

Table 9.4. Tensile properties of flat and corner coupons 

Section Types 
E 

(GPa) 

σ0.2% 

(MPa) 

σu 

(MPa) 

εf 

(%) 

A230 
flat 196 416 511 18 

corner 218 516 575 6 

B270 
flat 199 424 517 17 

corner 208 508 560 (4) 

C180 
flat 200 427 521 18 

corner 209 514 576 7 

 Imperfection measurements 9.4

Geometric imperfections may significantly affect the stability of thin-walled CFS members, 

especially when coupled instabilities are involved. For this reason, the magnitude and shape of 

the imperfections of each specimen were recorded before testing. As the beams were designed 

to fail by interaction of local and distortional buckling along the constant moment span (in 

between the loading points), only the out-of-plane imperfections along this region were of 

interest. 

The out-of-plane imperfections were recorded using the set-up described in chapter 7, in which 

two electric motors were used to move a laser sensor along high precision bars. The laser sensor 

was used to take readings along different longitudinal lines on the web and flanges of the 

channels, as shown in Figure 9.3, and was able to measure the distance to the surface of the 

specimen with an accuracy of 0.0075 mm. The straightness of the high precision bars was 

verified against measurements of the nominally flat table underneath, in the absence of a test 

specimen, which provided a surface with a deviation from flatness of less than 0.06 mm. During 

the measuring process, the translational speed of the laser was set at 5 mm/s, while the sampling 

rate was 5 Hz, resulting in one reading every millimeter. 

It was recognized that assembling the channels in a back-to-back configuration might alter the 

imperfection profile and, therefore, the imperfections were measured before and after the 

assemblage of the back-to-back specimens. Before the specimens were assembled, the 

maximum out-of-plane imperfections measured along the center line of the channel webs 

relative to the measurements taken along the corners were 0.66 mm, 0.53 mm and 0.32 mm for 

specimens B270, A230 and C180, respectively. Moreover, the flange tips of the channels 

exhibited maximum imperfections of 1.78 mm, 1.43 mm and 1.02 mm for specimens C180, 

B270 and A230, respectively. All of the measured imperfection magnitudes are show in Table 

9.5 and Table 9.6. 
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Figure 9.3. The set-up for imperfection measurement 

Table 9.5. Maximum amplitudes of local, distortional imperfections in single channel before 

assembling 

Specimen Local Distortional 

A230-1a 0.47 0.43 

A230-1b 0.42 0.36 

A230-2a 0.36 0.34 

A230-2b 0.41 0.32 

B270-1a 0.35 0.34 

B270-1b 0.37 0.63 

B270-2a 0.46 0.37 

B270-2b 0.32 0.85 

C180-1a 0.39 0.36 

C180-1b 0.36 0.52 

C180-2a 0.34 0.40 

C180-2b 0.27 0.50 

 

Table 9.6. Maximum amplitudes of local, distortional imperfections in single channel after 

assembling 

Specimen Local Distortional 

A230-1a 0.54 0.60 

A230-1b 0.37 0.54 

A230-2a 0.55 0.49 

A230-2b 0.45 0.48 

B270-1a 0.62 0.36 

B270-1b 0.57 0.39 

B270-2a 0.67 0.70 

B270-2b 0.68 0.71 

C180-1a 0.24 0.53 

C180-1b 0.64 0.62 

C180-2a 0.37 0.53 

C180-2b 0.37 0.58 
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 Test set-up 9.5

A total of six back-to-back beams were tested in a four-point bending configuration, as 

illustrated in Figure 9.4(a). The specimens were supported on rollers located 3100 mm apart. All 

specimens were bent about their major axis. The loading system consisted of an actuator with a 

maximum capacity of 160 kN which imposed the load, through a spreader beam, onto the test 

specimens at two discrete locations 1200 mm apart. The spreader beam was restrained against 

any out-of-plane movement by a specially designed guidance system, as shown in Figure 9.4(b). 

Nylon blocks were used as bearing pads between the spreader beam and the uprights in order to 

reduce vertical friction. A pin and a roller support were used to transfer the load from the 

spreader beam to the specimen. These supports were also designed to restrain any out-of-plane 

displacement of the top flange of the test specimen. Wooden blocks were packed tightly into the 

cross-section at the loading points and end supports to avoid localized bearing failure, as shown 

in Figure 9.5-Figure 9.7. Three potentiometers with a stroke of 25 mm were placed under the 

test specimen at mid-span and under the two loading points in order to record the vertical 

deflections of the beam. 

A displacement control scheme with a rate of 1 mm/min was used for all test specimens. The 

tests were halted for 4 minutes slightly before the peak load was reached, in order to eliminate 

strain-rate dependent effects. The tests were then continued until well into the post-peak range. 

 

Figure 9.4. Schematic view of: (a) experimental set-up (b) lateral support system 

 Test results 9.6

9.6.1 Deformed shape 

All test specimens failed within the constant moment span by interaction of local and 

distortional buckling. In specimens C180 pure local bucking was first observed in the top 

flanges. This was due to the high slenderness of the flanges, which had a width-to-thickness 

(a) (b) 
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ratio of 67, and the fact that they were subject to the highest compressive stress in the cross-

section. As the bending moment increased, superimposed distortional buckling was recorded, as 

shown in Figure 9.5. Participation of the webs of the channels was also observed before the 

ultimate capacity of the specimens was reached. 

Built-up specimens A230 also failed due to interaction between local and distortional buckling, 

as shown in Figure 9.6. However, in these specimens the webs constituted the most slender 

components of the cross-section and therefore triggered local buckling. As the load increased, 

the lips were unable to suppress the distortional mode.  

Specimens B270 had the maximum web height, combined with relatively narrow flanges. Local 

buckling was again first detected in the webs of the channels, with distortional buckling 

participating at a higher load (Figure 9.7).  

Past the peak load the buckling deformations localized in all specimens, forming an anti-

symmetric yield line pattern in both flanges of the back-to-back channels.All test specimens 

showed an anti-symmetric distortionally buckled shape in which the top flange of one channel 

moved upward while the flange in the other channel moved downward. It is thereby noted that 

the webs of the channels were not connected by intermediate fasteners within the constant 

moment span and that the observed shape was a result of contact between the channel webs 

alone. 

 



Chapter 9. Experimental investigation of the bending capacity of CFS back-to-back beams 

167 

 

Figure 9.5. Failure progression and Moment vs Mid-span deflection in beam C180-2 

 

Figure 9.6. Failure progression and Moment vs Mid-span deflection in beam A230-2 
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Figure 9.7. Failure progression and Moment vs Mid-span deflection in beam B270-2 

9.6.2 Ultimate capacity 

Figure 9.8 plots the bending moments against the mid-span deflections for all test specimens. 

The ultimate capacities of all test specimens are also listed in Table 9.7. In general, a good 

agreement was obtained within each set of twin specimens, with the ultimate capacities varying 

by less than 2% from each other. An exception to this occurred in specimens B270, where the 

ultimate capacity of specimen B270-1 was considerably lower than the one obtained for its 

counterpart. This was due to the fact that specimen B270-1 was tested without wooden blocks 

under the load application points. As a result, web crippling occurred under the loading points in 

combination with local buckling which extended all along the constant moment span. Therefore, 

the results of test B270-1 should be disregarded. 

g
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Figure 9.8. Moment vs mid-span deflection for all beams 

Table 9.7. Ultimate capacities of the test specimens  

Specimen Experiment 

(kN∙m) 

Eurocode 3 

(kN∙m) 

Eurocode 3 / 
Experiment 

C180-1 17.43 18.59 1.067 

C180-2 17.24 18.51 1.074 

A230-1 23.72 22.56 0.951 

A230-2 23.79 22.75 0.956 

B270-1 (25.83) 26.74 - 

B270-2 28.34 26.42 0.932 

Average   0.996 

St. Dev.   0.068 

Table 9.7 also compares the ultimate capacities obtained from the experiments with the 

predictions given by Eurocode 3. It is thereby noted that, when calculating the effective cross-

sectional properties according to the Eurocode, full iterations were carried out (which are not 

strictly prescribed by the Eurocode). These iterations are necessary because the location of the 

neutral axis of the effective cross-section is initially unknown and also because of the 

interaction between the local and distortional buckling modes. The measured dimensions and 

the material properties obtained from the coupon tests were used in the process. In general, 

Table 9.7 shows that a good agreement was achieved between the experimental and the 

calculated bending capacities of the back-to-back lipped channel beams, with the ratio of the 

Eurocode predicted values to the test results ranging from 0.932 to 1.074, depending on the 

cross-section type. The average ratio is 0.996 with a standard deviation of 0.07. 

 Conclusions 9.7

A total of six back-to-back beams, constructed from lipped channels with three different cross-

sectional geometries, were tested, with the aim of investigating the interaction between local 

and distortional buckling. The specimens were tested in a four-point bending configuration with 
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simply supported boundary conditions, while being laterally braced at the loading points. The 

geometric imperfections were recorded before and after the back-to-back specimens were 

assembled. Coupons extracted from the flat portions and the corner regions of each cross-

section type were also tested in order to determine the material properties. 

All specimens failed due to interaction of local and distortional buckling, with local bucking 

being the primary buckling mode. In specimens C180, which displayed the widest flanges and 

the shallowest webs, local buckling originated in the top flanges, while in specimens A230 and 

B270, having a deeper cross-section and a smaller flange width, local buckling was triggered by 

the web. 

A good agreement in the ultimate capacities was generally obtained within each set of twin 

beams, with the difference being less than 2 %. A comparison between the predictions given by 

Eurocode 3 and the experimental results indicated that Eurocode 3 is accurate in predicting the 

ultimate capacity of back-to-back lipped channel beams. The average ratio of the Eurocode 

predicted capacity to the experimental capacity was 0.996 with a standard deviation of 0.068. 
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CHAPTER 10. Local and 

distortional buckling of 

standard and optimised 

CFS Back-to-Back 

channels: a numerical 

study 

 

This chapter aims to develop a reliable numerical model to investigate the flexural strength and 

failure modes of CFS back-to-back channels beams. The model incorporates non-linear stress-

strain behaviour and enhanced corner properties obtained from coupon tests as well as initial 

imperfections measured in the actual specimens. To simulate the behaviour of a bolt bearing 

against a steel plate, a connector model is used that takes into account both slippage and bearing 

deformations. The developed FE models are verified against six four point bending tests on CFS 

bac-to-back channel beams, where an excellent agreement between the experimental results and 

FE predictions are achieved. The validated FE models are then used to assess the adequacy of 

the effective width method in EC3 and Direct Strength Method (DSM) in estimating the design 

capacity of conventional and optimum design CFS channel beam sections. The results indicate 

that both EC3 and DSM provide accurate predictions for the bending capacity of lipped channel 

beam sections. A comparison between FE predictions and tested results show that, on average, 

the geometric imperfections can change the FE predictions by around 6%, while the strain-
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hardening of CFS material at the round corners has negligible effects. The proposed FE model 

will be hopefully used for future verification of optimisation on CFS elements. 

 

 Introduction 10.1

Although the accurate prediction of the behaviour of CFS elements can be a difficult task due to 

their complex failure modes, Finite Element Analysis (FEA) has been widely used in the past to 

predict the flexural behaviour of CFS beams. Compared to physical experiments, FEA is 

relatively inexpensive and time efficient, especially when a parametric study of cross-section 

geometry is involved. In addition, FEA can be efficiently used for investigations including 

geometric imperfections and material nonlinearity of structural members, while this could be 

difficult to achieve through physical tests.  

Although FEA is a useful and powerful tool for the analysis of CFS structures, it is crucial to 

obtain accurate and reliable finite element models (FEM) prior to any analytical investigations. 

For example, Yu and Schafer (Yu and Schafer 2007) used nonlinear finite element models of 

CFS beams to develop the Direct Strength Method (DSM) design recommendations. They 

verified their FE models against four-point bending tests on local buckling (Yu and Schafer 

2003) and distortional buckling (Yu and Schafer 2006) of CFS C or Z beams in pair, using steel 

corrugated panels and hot-rolled tubes as lateral restraints  

Based on the experimental tests by Yu and Schafer (Yu and Schafer 2006, Yu and Schafer 

2003), Haidarali and Nethercot (Haidarali and Nethercot 2011) developed a simplified 

numerical model that can significantly increase the computational efficiency of the non-linear 

analyses. In their study, the geometrical imperfection profiles were determined by using the 

constrained finite strip software CUFSM (Schafer 2006), while the imperfection amplitudes 

were based on the statistic results presented by Schafer and Peköz (Schafer and Pekoz 1998). 

Translational springs were employed to the lip/flange junction of the beams to allow for the 

modelling of the local and distortional buckling modes separately. 

In another study, Kanganamge and Mahendran (Kankanamge and Mahendran 2012) 

investigated the behaviour of CFS beams subjected to lateral-torsional buckling. A detailed 

parametric study was conducted to simulate the lateral–torsional buckling behaviour and 

capacity of CFS beams under different boundary conditions using the four node shell element 

with five degrees of freedom per node and reduced integration (S4R) in ABAQUS(ABAQUS 

2011). The results of their study were used to verify the design guidelines for the lateral-

torsional buckling of CFS beams in different codes.  
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Dubina et al. (Dubina et al. 2013) developed a FE model to investigate the behaviour of CFS 

beams with corrugated web and discrete web-to-flange fasteners. In their research, four node 

shell elements were used to model the CFS components while the connector element 

CONN3D2 with six degrees of freedom per node in ABAQUS (ABAQUS 2011) was employed 

to simulate the behaviour of self-drilling screws and bolts according to single-lap tests (Dubina 

et al. 2015). In a more recent study, Wang and Young (Wang and Young 2016a, Wang and 

Young 2016b) proposed a numerical model to investigate the flexural behaviour of CFS built-up 

sections with intermediate stiffeners subjected to bending. The S4R shell element in ABAQUS 

(ABAQUS 2011) was used to model the CFS sections while C3D8R solid element was used to 

model screws. The surfaces of the screws were tied to the hole edges of the beam specimens, 

while surface interactions between the overlapped elements of the built-up sections were 

defined using the contact pairs (ABAQUS 2011). The FE and the experimental results showed a 

good agreement in terms of ultimate bending strengths and failure modes.  

This chapter aims to develop a numerical model to investigate the local/distortional buckling of 

CFS back-to-back channel beams. Detailed FE models are developed in ABAQUS (ABAQUS 

2011) to predict the flexural behaviour and bending strength of CFS beam sections. An 

experimental investigation including six tests on CFS back-to-back channel beams, which were 

failed by the local/distortional buckling about the major axis, was used to verify the FE models. 

Compared to previous studies, the advantage of the developed models is to incorporate the non-

linear stress-strain behaviour and enhanced material properties based on coupon tests, measured 

initial imperfections and a simplified/effective connector element to model the bolt behaviour. 

The models are then used to assess the adequacy of Eurocode 3 design guide lines (CEN 2005a, 

CEN 2005b, CEN 2005c) and Direct Strength Method (DSM) to design a range of conventional 

and optimum designed CFS beams considering local/distortional buckling modes. 

 Direct Strength Method (DSM) 10.2

Prior to the description of the numerical study on the CFS back-to-back beams, a brief induction 

is presented here to explain the Direct Strength Method (DSM). Eurocode 3 design guidelines to 

consider local, distortional and global buckling and their interaction in the flexural strength of 

CFS beams have been described in chapter 3. 

The Direct Strength Method (DSM) is a finite strip based method that integrates stability 

analysis into the design process. First the elastic local ( crlM ), distortional ( crdM ) and global 

( creM ) critical buckling moments of CFS members are calculated using software such as 

CUFSM (Schafer 2006). The ultimate strength of the section is then predicted based on a series 

of simple empirical equations using the calculated elastic buckling moments and the flexural 

yield moments. While calculation of the effective properties can be tedious for complex CFS 
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cross-sections, only gross section properties are needed in the DSM. The equations for 

calculating the nominal flexural strength for global buckling are a function of the flexural yield 

moment y y yM W f  and the critical elastic lateral-torsional buckling creM : 
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The nominal flexural strength of a CFS beam designed for local buckling and considering local–

global interaction is related to the local–global slenderness l ne crlM M : 
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The nominal flexural strength for distortional buckling is calculated as a function of slenderness 

 d y crdM M  : 
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Finally the flexural strength of the CFS beam is determined based on the minimum value 

calculated from Equations (10.1)-(10.3): 

  min , ,n ne nl ndM M M M  (10.4) 

 Optimisation of CFS beams 10.3

In this section an optimisation framework proposed by the authors (Chapter 4 to Chapter 5) is 

adopted for optimum design of a back-to-back channel section by taking into account the 

interaction between local and distortional buckling modes. The objective function is to obtain a 

design solution with maximum bending capacity as follows:  

  ,max  c Rd eff yM W x f  (10.5) 
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subject to: 

 / 60, / 50, / 500  b t c t h t  (10.6) 

 0.2 / 0.6 c b  (10.7) 

 50, 25 b c  (10.8) 

where h is the cross-sectional height, and b and c are the flange and lip width, respectively. 

Equations (10.6) and (10.7) represent the width-to-thickness ratio limits defined in EC3 (CEN 

2005b). Equation (10.8) is used to take into account the manufacturing and construction 

constraints. No flexibility is offered for the lip angles in order to adapt to the typical cold-rolling 

machines for the CFS beam production. Particle Swarm Optimisation (PSO) algorithm was 

adopted to solve the above constraint optimisation problem defined. More information on the 

PSO optimisation method can be found in Chapter 4. 

Figure 10.1 shows the nominal dimensions of the three different cross-sections used in this 

study. All the dimensions in this figure are defined by the outer to outer surface. The cross-

section A230 is a standard commercially available cross-section, while sections B270 is the 

optimum solution with the highest flexural strength subjected to constraints in Equations (10.6) 

to (10.8). Cross-section C180 is a complementary section (with a flange width between the 

flange widths of sections A230 and B270) used for comparison purposes. All cross-sections 

have the same nominal thickness 1.5t mm  and coil width of steel sheet 415l mm to use the 

same amount of material. The values for the radius of the round corner, the elastic modulus and 

the Poisson’s ratio used were taken as 3 mm , 210 GPa  and 0.3, respectively. The yield stress 

of the CFS plate was considered to be 450yf MPa . 
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Figure 10.1. Symbol definitions and nominal cross-sectional dimensions 

The above mentioned sections were manufactured by press breaking process and were tested 

around their major axis using a four-point bending set-up as shown in Figure 10.3 to obtain their 
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flexural strength. For each cross-section, two similar specimens with the same cross-section 

were tested to ensure the consistency of the results. The non-linear stress-strain behaviour and 

enhanced corner properties of the material were obtained based on the results of six tensile 

coupons. The geometric imperfections of the back-to-back specimens were recorded using a 

specially designed measurement rig. Tensile coupons were also extracted from the flat portions 

and the corner regions of the cross-sections in order to determine the material properties. More 

information about the conducted experimental tests can be found in Chapter 9. In the next 

section, detailed FE models will be developed and validated against the experimental results of 

the three sections shown in Figure 10.1. 

 Numerical modelling 10.4

10.4.1 Material model 

The inelastic properties of CFS material were found to have significant effects on the ultimate 

capacity and post-buckling behaviour of CFS beams. In this study, the results of the six tensile 

coupon test from the flat plates and round corner regions of the cross-sections were used to 

investigate the effects of forming process on the material properties. For example, a comparison 

between the engineering and true stress-strain curves of a flat and a corner coupon is compared 

in Figure 10.2 for the standard A230 section. The results indicate that the 0.2% proof stress of 

the corner coupon is around 24% higher than that of the flat coupon in the same section. 

Moreover, a comparison between the dynamic and static stress–strain curves of the coupon 

specimens shows that the stress reduced by around 5–8% at both yield and ultimate strengths 

during the static drop, which is also called “stress relaxation”(Huang and Young 2014). The 

static stress–strain curves are calculated from the dynamic stress–strain curves by removing the 

dynamic effects of the tensile test. The material model was then included in the FEM by using 

the true stress vs true strain curve, which was calculated from the following equations: 

  1   true  (10.9) 

  ln 1  true  (10.10) 

where  and   are the measured engineering stress and strain based on the original cross-

section area of the coupon specimens, respectively. The resulted stress-strain curves 

corresponding to the round corner areas were also incorporated into ABAQUS (ABAQUS 

2011). 
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Figure 10.2. Stress–strain curves resulted from (a) flat and (b) corner coupon tests 

10.4.2 Boundary conditions 

To simulate the boundary conditions of the experimental program, a simply supported condition 

was used at both ends of the FE models as shown in Figure 10.4. Two reference points were 

established at the positions of the roller and pin supports at the middle of the gap between the 

top two flanges of the CFS back-to-back beams to apply the external loads,. The nodes under 

the region of the supports were coupled to the related reference point corresponding to the pin 

and roller supports as indicated in Figure 10.4.  

In order to avoid the localised bearing failure of the CFS sections during the experimental tests, 

wooden blocks were packed into the cross-section at the loading points and end supports (see 

Figure 10.3). Therefore, the elastic modulus 10E  was used for the steel plates in the areas with 

the wood blocks. A rigid body constraint, with a reference point at the middle of the gap 

between the two bottom flanges of the CFS back-to-back beams, was used at both ends of the 

CFS beam to prevent localised failure at the supports. To simulate the roller supports at the tow 

ends of the CFS beams, the degrees of freedoms at the reference points were set to be 

U2=UR3=0 (see Figure 10.4). Regarding the reference points at the loading positions, the 

translations of U1 and U3 were fixed at the pin support while U1=0 was used at the roller 

(a) 

(b) 
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support. This was to prevent the lateral deformation and longitudinal displacement of the CFS 

beams. 

The CFS back-to-back beams were assembled by using two single channels with bolts as shown 

in Figure 10.4. A connector element was used to model the bolt behaviour as will be explained 

in section 10.4.4. Contact pairs were also defined between the two webs of each CFS single 

channel section using a surface-to-surface contact property. In the normal direction of the 

contact pairs, “hard” surface was used while in the tangent direction between the two profiles, a 

“frictionless” property was defined. 

 

Figure 10.3. Typical experimental setup of four-point bending tests of back-to-back beam sections 
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Figure 10.4. Boundary conditions of FE model against test 

10.4.3 Element type and mesh 

S4R was selected from the available ABAQUS element library for the modelling of the CFS 

beams. It is doubly curved, a four-node, quadrilateral and stress/strain shell element with 

induced integration and hourglass control. This shell element is chosen due to the fact that it is a 

general purpose element that takes account of transverse shear deformation. This element also 

uses three translational and three rotational degrees of freedom at each node. The element type 

has been successfully used in the modelling of CFS beam section behaviours (Haidarali and 

Nethercot 2011, Wang and Young 2016a, Yu and Schafer 2007).  

The effects of mesh size in the FE model on the behaviour of the CFS beams were firstly 

investigated. It was found that using a 10x10mm element dimension for CFS channel was able 

to provide a balance between computational time and accuracy. Therefore, 10x10mm elements 

were used for all of the FE simulations. However, for the modelling of the corners of the CFS 

sections, it was found that two elements were suitable for the modelling of each round corner. 

10.4.4 Bolt modelling 

It was found from reference experimental tests that the position and behaviour of bolts can 

considerably influence  the moment-rotation behaviour of CFS full-scale beams (Serror et al. 

2016), both slippage and bolt bearing deformation were observed. Therefore, it is important to 

develop an accurate detailed model in ABAQUS in order to simulate the load-deformation 

behaviour of a single bolt bearing against a single steel sheet. Lim and Nethercot (Lim and 
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3 
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Nethercot 2004a, Lim and Nethercot 2003) used a simplified bolt model which consisted of two 

perpendicular nonlinear springs to model the bearing behaviour of a single bolt by, In their 

study, good agreement was achieved between experimental test results and the modelled 

behaviour of CFS full-scale joint subjected to monotonic load. A more direct method to model 

bolt behaviour using FE analysis is to use solid brick element C3D8R and surface-to-surface 

contact interactions in ABAQUS(Gutierrez et al. 2015, Liu et al. 2015b, Öztürk and Pul 2015). 

The disadvantage of this model is that using solid elements makes the model more complex and, 

therefore, reduces the computational efficiency for cyclic modelling, especially in models with a 

large number of bolts. Besides, due to the presence of bolt rigid body movement and slippage, 

the convergence could be an issue (Liu et al. 2015b). A technique is therefore presented here to 

simulate the slippage and bearing behaviour of bolts in CFS back-to-back sections. 

In assembling of CFS back-to-back channels, a fastener tension (or preloading force) is 

developed by using a torque wrench applied to the head of the bolt. The torque–preloading 

relationship is often simplified by using a constant 0K , known as torque coefficient, as shown 

in the following equation (Bickford 1997, Juvinall and Marshek 2006): 

 0 0  bT K P d  (10.11) 

Where T (N∙mm) is the input tightening torque applied to the fastener head or nut, bP  (N) is the 

preloading force and d0 (mm) is the nominal bolt diameter. An approximate value of 0.20 has 

been provided for the torque coefficient (Bickford 1997,  Juvinall and Marshek 2006), therefore, 

an equivalent preloading force of 6.25bP kN  is obtained, which is close to the tested results 

presented in Croccolo et al. (Croccolo et al. 2011). The slippage behaviour of the bolts depends 

mainly on the distribution of initial friction forces, which in return rely on the bolt pretension 

force bP  for a given applied torque and friction coefficient   of the contact surfaces. A formula 

which is used to calculate the bolt slip resistance slipF  can be expressed as (Wong and Chung 

2002): 

 0  slip b bF P n  (10.12) 

Where 0  is the mean frictional coefficient given as 0.19 for galvanised steel surfaces(Wong 

and Chung 2002), and bn  is the number of slip planes.  

A bolt transfers the shear behaviour of CFS members through the bearing behaviour in addition 

to slippage described above. Once the slippage deformation overcomes the gap between bolt 

shank and the steel sheet, the bearing behaviour of the bolt against steel sheet will be activated. 

Fisher(Fisher 1964) proposed the following equation to calculate the bearing force and 

displacement, which reflects the bolt bearing force and the bearing deformation relationship: 
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where br  is the bearing deformation (mm), BR is the bearing force corresponding to the 

bearing deformation, ultR  is the ultimate bearing strength, t is the web thickness, d0 is the bolt 

diameter, u  is the tensile strength of the web plate material, which can be obtained from 

coupon tests. 2.718e  is the nature exponential while 1 5   and 0.55   are the regression 

coefficients presented by Uang et al. (Uang et al. 2010).  

In the current tests presented in chapter 9, the bolt shank diameter was 12mm. The bolt slippage 

behaviour is generally defined for a limited range of slip movement within the bolt hole 

clearance (typically ±1mm for standard bolts by assuming that the bolt shanks are centrally 

positioned). According to Equations (10.11)-(10.14), a slip-bearing relationship can be defined 

in Figure 10.5. 

 

Figure 10.5. Load-deformation relationship of a bolt slipping and bearing against a steel plate 

In order to model a group of bolts, the connector element in ABAQUS (ABAQUS 2011) was 

used, as shown in Figure 10.6. For each single bolt, a two-layer fastener configuration was used 

at the position of each individual bolt in the full-scale connection (see Figure 10.6(b)). The layer 

was connected by a node in one channel section and a point in its counterpart section using a 

connector element to define bolt property. The connector type of “Cartesian” with 3 

translational degrees of freedom at each node was employed. This connector was characterised 

by a parallel combination of “Elasticity” and “Plasticity” behaviours, as defined in ABAQUS 

(ABAQUS 2011). In the “Elasticity” behaviour, the rigid material definition was used in the 

corresponding shear direction. For the definition of “Plasticity” behaviour, the load-deformation 

relationship shown in Figure 10.5 was employed to represent the behaviour of a bolt which is 

 

Bolt slippage 

Bolt bearing 
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slipping and bearing against a steel plate. It should be noted that the “Elasticity” and “Plasticity” 

behaviours are defined in the directions of local coordinate system corresponding to the shear 

deformation of the bolts. 

The bolt slippage and bearing behaviour, which are defined in Equations (10.11)-(10.14), are 

included in the connector element shown in Figure 10.6(a). Therefore, it is important to exclude 

the bearing deformation stemmed from the bearing of each node at the bolt position. To achieve 

this, the constraints “Coupling” in ABAQUS (Abaqus/CAE User's Manual, 2011) was 

employed, and its definition is shown in Figure 10.6(b). Each node at the position of the bolt 

was thereby connected to the nearby nodes in the CFS steel plates using the constraint that 

couples the displacement and rotation. These nodes should lie in a reasonably big region in the 

plates to reduce the bearing deformation to the maximum level. 

Bolt position Coupling

Channel 1
Plastic

Rigid elastic

Connector
element

F

F (b)(a)

PbPb

μ
CouplingBolt position

Connector

Channel 2

Channel 1 Channel 2

Connector

 

Figure 10.6. Single bolt modelling in ABAQUS: (a) components defined in a connector; (b) reducing 

the bearing behaviour by coupling the node at bolt position to a number of nodes around  

10.4.5 Imperfections 

The stability of thin-walled CFS members may in some cases be significantly affected by the 

presence of imperfections, especially when interactive buckling of different modes is involved. 

In the reference experimental programme, the magnitude and the shape of the imperfections of 

each specimen were therefore recorded before the testing.  

The imperfections were measured along the five longitudinal lines indicated in Figure 10.7, by 

means of reflected laser beams. Since the span in pure bending (1200mm in length) is more 

critical, only the imperfection in this span was recorded. In a first step, the raw data were 

decomposed into their respective Fourier series. The Fourier series were removed after a finite 

number of terms to cut off the high frequency vibrations originating from the driving 

mechanisms of the moving motors. Using the approximation of Fourier series resulted in a more 

continuum node coordinates adjustment when the measured imperfections were included. 
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Figure 10.7. Measured imperfection in B270-1a (a) profile; (b) included in the FE model (magnified 

50 times) 

 

Figure 10.8. Measured imperfection profile and its Fourier representation 
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Figure 10.9. Imperfection inclusion 

It should be noted that, in general, it is essential to use a significant number of Fourier terms to 

represent the shape of measured imperfections. In this study, by a trial and error process, it was 

found that using 20 Fourier terms typically leads to accurate results As an example, Figure 10.8 

compares the measured imperfection profile along line 3 of specimen B270-1a, with the 

truncated Fourier representation shown as a solid black line. Within a given cross-section the 

magnitude of the imperfection at the location of each node of the FE mesh was determined by 

interpolation of the measurements. Quadratic interpolation was used for the web imperfections, 

while linear interpolation was used at the flanges, as show in Figure 10.9. The coordinates of 

each node were then adjusted to account for the imperfections. The program to incorporate the 

imperfections is presented in Appendix A.2. 

10.4.6 Numerical results 

Table 10.1 compares the ultimate load carrying capacity uM  resulting from the FE model 

against those obtained from the experiments in chapter 9 on the CFS lipped channel beams with 

different cross-sections. 1uM  is the predicted flexural strength that takes into account the strain 

hardening effect of the material in the corner region but without incorporating the imperfection.

2uM  indicates the predicted moment capacity where only the effect of the measured initial 

imperfection was taken into account. The FE predicted capacity 3uM , on the other hand, 

considers both the measured initial imperfection and the strain hardening effect of the material 

in the corner region. 

It is shown in Table 10.1 that an excellent agreement was obtained between experimental results 

and FE predictions. The average ratio of the FE predicted bending capacity 2uM  to the 

experimentally measured flexural strength uM  was 0.960, with a standard deviation of 0.019. In 

comparison, the average ratio of the FE predicted bending capacity 3uM  to the experimentally 

measured load carrying capacity uM  was 0.982, with a standard deviation of 0.013. This 

indicates that considering the strength variation caused by the strain hardening effect of the 

round corner material in the current test series could increase the accuracy of the bending 

capacity predictions by 2%, which is not significant. However, by comparing the predicted 
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flexural strength 1uM with 3uM , it is shown that the initial imperfection can have significant 

effects on the load carrying capacity. On average, the variation of flexural strength is 3% and 

1%with and without taking into account the imperfection, respectively. 

Figure 10.10 illustrates the tested moment versus mid-span deflection relationship between the 

experiment and the predicted results from numerical study. It is shown that the proposed FE 

model was able to capture the peak load and stiffness of CFS beam sections. 

The proposed FE model was also able to accurately capture the failed shape of the tested CFS 

beams. Figure 10.11-Figure 10.13 compares the failure shape of the tested specimens with the 

predicted deformation of the corresponding FE models. It is shown that the proposed FE model 

could predict the failure mode of the CFS beams with a very good accuracy. 

 

 

 

Figure 10.10. Moment versus mid-span deflection relationship resulting from FE against Test  
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Figure 10.11. Deformed shapes from the test of beam C180-2 and stress distributions (MPa) from 

the FE analysis, recorded at three stages of loading (see Figure 10.10) 

 

(a)
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Figure 10.12. Deformed shapes from the test of beam A230-2 and stress distributions (MPa) from 

the FE analysis, recorded at three stages of loading (see Figure 10.10) 

(d)
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Figure 10.13. Deformed shapes from the test of beam B270-2 and stress distributions (MPa) from 

the FE analysis, recorded at three stages of loading (see Figure 10.10) 
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Table 10.1. Comparison of FE results with tested flexural strength 

Specimen 
uM   

(kN∙m) 

1uM  

(kN∙m) 

2uM  

(kN∙m) 
3uM  

(kN∙m) 
1uM / uM  2uM /

uM  

3uM /

uM  

A230-1 23.72 25.31 23.12 23.56 1.067 0.975 0.993 

A230-2 23.79 25.58 22.39 23.01 1.075 0.941 0.967 

B270-1 (25.83) 28.87 25.95 26.17 -- -- -- 

B270-2 28.34 28.25 27.82 28.11 0.997 0.982 0.992 

C180-1 17.43 18.22 16.41 16.89 1.045 0.941 0.969 

C180-2 17.24 17.89 16.53 17.01 1.038 0.959 0.987 

Average     1.044 0.960 0.982 

St. Dev.     0.031 0.019 0.013 

 Evaluation of current design methods of EC3 and DSM 10.5

In this section, the experimental results are compared to the predictions of the DSM and EC3 

design equations presented in Section 10.2. As shown in Table 10.2, the DSM predictions on the 

design of CFS back-to-back beams are more accurate than the EC3 design method. The ratio of 

the DSM predicted load capacity to the experimentally measured load carrying capacity was 

0.960, with a standard deviation of 0.046. It is also evident that the “effective width” based 

method comprised in EC3 generally leads to slightly unconservative predictions of the beam 

strengths with an average ratio 1.051of EC3 prediction to test. 

Table 10.2. Evaluation of the design methods of DSM and EC3 

Specimen 
Test 

(kN∙m) 

EC 3 

(kN∙m) 

DSM 

(kN∙m) 
EC3 / Test DSM/Test 

A230-1 23.72 24.56 22.42 1.035 0.945 

A230-2 23.79 24.75 22.61 1.040 0.950 

B270-1 (25.83) 29.74 25.76 -- -- 

B270-2 28.34 29.42 25.38 1.038 0.896 

C180-1 17.43 18.59 17.42 1.067 0.999 

C180-2 17.24 18.51 17.40 1.074 1.009 

Average    1.051 0.960 

St. Dev.    0.018 0.046 

 

 Evaluation of the optimisation process 10.6

In this section, the efficiency of the optimisation method explained in Section 10.2 is further 

investigated. While section A230 is a standard commercially available cross-section, B270 is 

the optimum solution with highest flexural strength subjected to constraints in Equations (10.6)-

(10.8) for lipped channel beam. The nominal cross-sectional dimensions of these sections are 

given in Figure 10.1.  
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Figure 10.14 compares the ultimate bending capacity of the standard and optimised sections for 

the CFS beams obtained from the experimental results, detailed FE models and EC3 design 

method. Based on the experimental results, it is shown that the optimised shapes offer a much 

higher flexural strength (up to 19% higher) compared to the standard lipped channel section 

with the same amount of material. Similar results were obtained from FE models and EC3 

design method, where the optimum design solutions showed, around 20% higher flexural 

strength compared to the standard sections. 

 

Figure 10.14. Flexural strength of the optimised sections to the standard section using the same 

amount of material 

It is worth noting that the trends of increasing/decreasing capacity over the range of sections for 

the CFS beams are very well predicted by EC3 when the tested results are taken as a benchmark. 

This indicates that the proposed optimisation method is accurate and reliable and provides a 

practical tool for manufacturers and structural engineers to improve the capacity of CFS beams.  

The results of this study in general demonstrate the accuracy and reliability of the developed FE 

models to predict the flexural strength of CFS beams with different cross sectional shapes. 

These validated models should prove useful in practical applications for more efficient design of 

CFS back-to-back beams. 

 Conclusions 10.7

In this chapter, a finite element (FE) model was developed to study the local/distortional 

buckling behaviour in CFS lipped back-to-back channel beams. The model takes into account 

the non-linear stress–strain behaviour of CFS material, the strength hardening effects at the 

round corners due to the cold-working process, and the experimentally measured initial 

imperfections. The FE model was validated against an experimental program on a total number 

of six lipped channel back-to-back beams. The validated models were then used to assess the 
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accuracy of EC3 and DSM design methods for standard and optimum design solutions. Based 

on the results presented in this chapter, the following conclusions can be drawn: 

(1) The ultimate capacity of the sections predicted by the FE models was on average less 

than 2% in variation from the experimental results. The proposed FE model was also 

successful in capturing the failure shapes and predicting the compressive strength of CFS 

columns subjected to local and global buckling modes. 

(2) It was shown that, on average, the geometric imperfections can change the FE 

predictions by 6%, while the strength variation caused by the strain hardening effect at the 

round corners material in general has negligible effects (less than 2%). 

(3) The ratio of predicted to experimentally measured flexural strength was on average 

0.960 and 1.051 for DSM and EC3 design methods, respectively. The results show that 

DSM generally leads to conservative predictions, while EC3 generally leads to slightly 

unconservative predictions of the beam flexural strengths. 

(4) The bending capacity of the optimised CFS beams obtained from validated FE models 

and EC3 design methods were up to 20% higher, than their standard lipped channel 

counterpart sections with the same amount of material. This demonstrated the efficiency of 

the proposed optimisation method to improve the compressive capacity of CFS sections.  

(5) The results of this study in general demonstrate the accuracy and reliability of the 

developed FE models to predict the flexural strength of CFS beams with different cross 

sectional shapes. These validated models should prove useful in practical applications for 

more efficient design of CFS beam elements. 
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CHAPTER 11. Behaviour 

of CFS bolted 

connections: a numerical 

parametric study 

 

The ductility of cold-formed steel unbraced multi-story moment-resisting frame or portal frame 

mainly depends on the performance of beam-to-column connections and beam cross-sectional 

shapes. This trend emphasises the importance of investigating the behaviour of CFS bolted 

moment-resisting connections with complex sectional shapes for seismic application. This 

chapter aims at presenting an extensive parametric study on the structural behaviour of CFS 

bolted beam-to-column connections with gusset plate under cyclic loading. In order to simulate 

hysteretic moment–rotation behaviour and failure modes of CFS connection, an experimentally 

validated finite element model taking into account the material property and geometrical 

imperfection using ABAQUS (ABAQUS 2011) was developed. A simplified connector element 

was adopted to simulate the behaviour of full-scale CFS connection considering the slip-bearing 

action in a single bolt. The developed numerical model was then used to investigate the 

connection performance in terms of strength, ductility, energy dissipation capacity and damping 

coefficient. Furthermore, the effects of bolt distribution, cross-sectional shapes, gusset plate and 

cross-sectional thicknesses on the connection performance were examined. Section 

classification on the unconventional CFS cross-sectional shapes with characteristics such as 

intermediate stiffeners in the flange, folded flange and curved flange were also studied. It is 

shown that the proposed FE model is robust and computationally efficient to simulate the failure 

modes and moment-rotation responses of CFS bolted connections. 
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 Introduction 11.1

Cold-formed steel (CFS) cross-sections have traditionally been employed as secondary load-

carrying members in a wide range of applications, such as roof purlins and wall girts. In a more 

recent trend, CFS members are also increasingly being employed as primary structural elements 

in low- to mid-rise multi-storey buildings (Fiorino et al. 2014) and CFS portal frames with short 

to intermediate spans (Lim and Nethercot 2004a, Lim and Nethercot 2003). These have 

increased the demand for CFS elements in the application of architectural layout with large 

spans. Compared to hot-rolled members, CFS thin-walled members provide several advantages 

of economy and efficiency, including a high strength for a light weight, a relatively 

straightforward manufacturing process and an ease of transportation and erection. In addition, in 

the application of long span floors and roofs, the CFS built-up sections have been employed to 

improve strength and stiffness of structure. Therefore, research has been conducted on the CFS 

built-up sections (Laím et al. 2013, Manikandan et al. 2014, Wang and Young 2016a, Wang and 

Young 2016b) in order to provide increased strength and stiffness. However, there is a need to 

develop robust and ductile connection types which are suitable for steel frames with CFS 

sections, especially for seismic areas. 

The behaviour of beam-to-column CFS bolted moment resisting connections with gusset plate 

has been investigated experimentally and numerically under monotonic and cyclic loading 

conditions (Bučmys and Daniūnas 2015, Lim and Nethercot 2003, Sabbagh et al. 2012b, Serror 

et al. 2016, Uang et al. 2010, Wong and Chung 2002). It was found that CFS bolted moment 

resisting connections are able to provide high stiffness and ductility. The stiffness and ductility 

of CFS bolted connections were mainly determined by the bolt number and its bearing 

characteristics. An analytical research presented by Lim et al.(Lim et al. 2016) indicate that the 

bolt distributions in CFS connections have significant effect on the bending capacity of their 

connected sections. It was reported in (Calderoni et al. 2009, Padilla-Llano et al. 2016, Padilla-

Llano et al. 2014) that cold-formed steel sections have shown not negligible ductility and energy 

dissipation capacity even subjected to local/distortional buckling. Recent experimental and 

analytical research on the CFS moment resisting frames (Sabbagh et al. 2012a) at the University 

of Sheffield showed that by increasing the number of flange bends in CFS channel sections, 

local buckling in the flanges can be delayed. Consequently, higher strength, stiffness, and 

ductility were observed in curved flange beams shown in Figure 11.1(a). Nevertheless, this type 

of cross-section is hard to manufacture and is difficult to be connected to typical floor systems. 

Considering the construction and manufacture restraints, a curved flange was substituted with a 

folded flange cross-section as an approximation (Figure 11.1(b)). A comparison among different 

beam shapes proved that the optimised folded flange section provides a bending capacity up to 

57% higher than standard lipped channels (see Chapter 5). Therefore, It can be concluded that 

the ductility and amount of dissipated energy of CFS bolted connections are mainly related to 
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four factors: (a) material yielding and bearing around the bolt holes; (b) yielding lines resulted 

from the buckling of the CFS cross-sectional plates; (c) bolt distribution and (d) cross-sectional 

shapes of the CFS elements. 

     

(a)                                                            (b) 

Figure 11.1. Configuration of CFS moment resisting connections with (a) curved flange beam 

(Sabbagh et al. 2012a) and (b) folded flange beam (Ye et al. 2016b) 

This chapter therefore aims at presenting a numerical study on the structural behaviour of CFS 

bolted beam-to-column connections under cyclic loading, in order to achieve updated 

knowledge of such connection type and to promote the application of CFS connections. A 

nonlinear finite element model taking into account the geometrical imperfection and material 

nonlinearity was first developed. The FE model uncovers a simplified connector element to 

model the behaviour of a single bolt against CFS plate, which leads to improved calculation 

efficiency and convergence subjected to cyclic loading. The developed FE model was then 

verified against available experimental results of CFS bolted connections under cyclic loading 

and good agreement was achieved. Finally, an extensive parametric study was conducted in 

order to investigate the effects of various cross-sectional shapes, cross-sectional slenderness, 

bolt distributions and gusset plate thicknesses on the behaviour of such connections. The 

performance of bolted-moment connection with a curved flange section was compared with 

three practical cross-sectional shapes: a conventional lipped channel section (flat channel), a 

lipped channel with intermediate V-shape stiffener in the flange (stiffened flat channel) and a 

folded flange cross-section. Some aforementioned parameters show huge effect on the structural 

performance of the CFS bolted-moment connections in terms of maximum flexural moment 

capacity, ductility ratio, energy absorption and damping coefficient. Furthermore the 

performance of CFS bolted moment connections with and without slippage were briefly 

investigated. 
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 Finite element model 11.2

The numerical technique of Finite Element modelling has been previously applied to predict the 

behaviour of CFS bolted connections with gusset plate (Bučmys and Šaučiuvėnas 2013, Elkersh 

2010, Lim and Nethercot 2004b, Lim and Nethercot 2003, Öztürk and Pul 2015, Sabbagh et al. 

2013, Serror et al. 2016). Among these studies, two types of moment-rotation behaviours have 

been identified: (a) flexural deformation and local buckling in the beams and (b) slippage-

bearing action. Good agreement has been achieved from numerical studies against experimental 

works under both monotonic (Lim and Nethercot 2004a, Öztürk and Pul 2015) and cyclic 

loading (Sabbagh et al. 2013). Detailed non-linear FE analyses were developed and calibrated in 

this chapter using ABAQUS (ABAQUS 2011) to simulate the two types of deformation 

behaviour of CFS bolted-moment connections, which were tested by Sabbagh et al. (Sabbagh et 

al. 2012b). The main purposes of the FE analysis in this section are: (a) to examine the accuracy 

of the proposed FE model for the moment-rotation behaviour of tested specimens (Sabbagh et al. 

2012b); (b) to conduct a parametric study on the effect of beam cross-sectional shapes, bolt 

distribution and cross-sectional slenderness and so on; and (c) to uncover the detailed model for 

simulating single bolt behaviour in a connection assembly. The FE models include material 

nonlinearity, initial imperfections as well as bolt slippage that have been found affecting 

significantly the behaviour of CFS bolted connections (Sabbagh et al. 2013).  

11.2.1 Bolt modelling 

It was found that the position and movement of bolts had significant effect on the moment-

rotation behaviour of CFS full-scale connections (Gilbert and Rasmussen 2010, Sabbagh et al. 

2012b). Therefore, it is important to develop an acceptable detailed element in ABAQUS in 

order to simulate the load-deformation behaviour of a single bolt bearing against a single steel 

sheet. A simplified bolt model which consists of two perpendicular nonlinear springs has been 

used to model the slip-bearing behaviour of a single bolt by Lim and Nethercot (Lim and 

Nethercot 2004a, Lim and Nethercot 2003), good agreement was achieved for analysing the 

behaviour of CFS full-scale joint subjected to monotonic load. However, this element is not 

suitable for modelling the slip-bearing behaviour of a bolt under cyclic load since the unloading 

path is the same as the loading path. Sabbagh et al. (Sabbagh et al.  2013), therefore, used the 

connector element in ABAQUS (ABAQUS 2011) to model the behaviour of bolts under both 

monotonic and cyclic loading and good agreement against experiments has been achieved. A 

more direct method to model bolt behaviour using FE analysis is to use the solid element and 

surface-to-surface contact interactions in ABAQUS (Gutierrez et al. 2015, Liu et al. 2015b, 

Öztürk and Pul 2015). The disadvantage of using solid elements for the modelling of bolts is 

that it makes the model more complex and computational efficiency too low for cyclic 

modelling, especially in large models with large number of bolts. Besides, the convergence 

would be an issue in the presence of bolt rigid body movement and slippage (Liu et al. 2015b). 
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Figure 11.2. Relationship between a single bolts bearing against steel plate to full CFS connection 

Therefore, a simplified connector element which is similar to the concept of “component 

method” (DIN 1993) is adopted herein to simulate the CFS full-scale connection behaviour. 

Substantially, characteristic load-deformation behaviour of a single bolt bearing against a single 

CFS plate includes slippage of bolt and the bearing deformation, is schematically presented in 

Figure 11.2. The slip behaviour of the bolted connections depends mainly on the distribution of 

initial friction forces, which in return rely on the bolt pretension force bP  for a given applied 

torque and friction coefficient   of the contact surfaces. A formula which is used to calculate 

the bolt slip resistance slipF  can be expressed as (Sato and Uang 2009): 

   slip b bF P n  (11.1) 

Where   is the mean frictional coefficient given as 0.19 for galvanised steel surfaces (Uang et 

al. 2010), bn  is the number of slip planes.  

In order to model the bolt group, the point-based “Fastener” in ABAQUS (ABAQUS 2011) was 

employed, and its definition is shown in Figure 11.3. For each single bolt, a two-layer fastener 

configuration was used at the position of each individual bolt in the full-scale connection, as 

shown in Figure 11.3(a). Each layer was connected by a fastener point in beam section and a 

fastener point in the gusset plate, by the use of an element (connector element or MPC et al.) to 

define fastener interaction property. In the definition of fastener, a “physical radius” r  which 

was half of the bolt shank diameter was employed. Each fastener point was thereby connected to 

the CFS steel plates using a constraint that couples the average displacement and rotation of the 

nearby nodes to each fastener point. These nodes lie in a circular region in the plates which 

takes their corresponding fastener point as the centre, as show in Figure 11.2(a). 
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Figure 11.3. Single bolt modelling in ABAQUS: (a) definition of fastener; (b) components defined in 

a connector section and (c) slip-bearing relationship defined in a connector section 

In the definition of fastener section, the connector element in ABAQUS (ABAQUS 2011) was 

used, as shown in Figure 11.3(b). The connection type of “Cartesian” with 3 translational 

degrees of freedom was employed and this connector was characterised by a parallel 

combination of “Elasticity”, “Friction” and “Stop” behaviours, as shown in Figure 11.3(b). In 

the “Elasticity” behaviour, rigid behaviour was used in the corresponding shear direction. For 

the definition of “Friction” behaviour, the friction coefficient   and internal contact force bP  

defined in Equation (11.1) were employed. The “Stop” behaviour was thereby defined for 

limiting the range of slip movement within the bolt hole clearance (typically ±1mm  for standard 

bolts by assuming that the bolt shank are centrally positioned ). All of the behaviours should be 

defined in the directions of local coordinate system corresponding to the shear deformation of 

the bolts. The connector behaviour is then schematically presented in Figure 11.3(c) and its 

behaviour is concluded as following: 

(a) The connector is rigid up to the slip resistance slipF  before the slippage of bolts is activated. 

No slippage will be observed if the internal bolt force is smaller than the critical slip resistance. 
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(b) There is relative slip displacement between the two plates in each layer of the CFS 

connection (Figure 11.3(a)) subjected to the internal bolt shear force which is identical to the 

friction resistance slipF . The slippage will stop when the bolt shank has contacted the hole 

perimeter. 

(c) The bearing stiffness is infinite rigid when the relative displacement between two fastener 

points is larger thanslip . 

It is worth noting that reduced slip resistance was observed after a number of cycles in the 

experiment (Sabbagh et al. 2012b). This was mainly because that the applied high torque during 

the assembling process would cause change of the contact surface between plates and this 

slippage with be stabilised after a number of loading cycles. This effect will not be taken into 

account since it is not reliable for design consideration. 

11.2.2 Geometry, boundary conditions and element types 

The general-purpose S8R element, which is an 8-noded quadrilateral shell element with reduced 

integration in ABAQUS element library (ABAQUS 2011), was selected. The length and width 

of the elements were 20mm in the mesh. It was observed that further refinement of the mesh did 

not result in any significant increase in accuracy. The boundary conditions have been applied 

according to the details of the test set-up presented in (Sabbagh et al. 2012b) and Figure 11.4 

illustrates the details. The translational degrees of freedom Ux and Uy on top face of the back-

to-back channel columns were restrained while all of the translations on the bottom of the 

column were fixed. Since the back-to-back beam was assembled using bolts and filler plates, the 

web lines were connected together in the Ux, Uy and Uz directions using the “Tie” constraint in 

ABAQUS (ABAQUS 2011). At the positions where lateral frames were used (Sabbagh et al. 

2012b), lateral bracing in the x direction was applied, as shown in Figure 11.4. All the stiffeners 

in the FE model were tied accordingly to the sections at the corresponding positions in beams 

and columns. To apply the load, the nodes at the end of the CFS section were coupled to its 

centroid using a coupling constraint. Fasteners with connector element were used to model the 

bolts in the CFS gusset plate connections, as shown in Figure 11.5, the detailed explanation of 

fastener definition has been explained Section 11.2.1. 
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Figure 11.4. Boundary conditions of the FE model for beam-column connection 

 

Figure 11.5. FE model of the beam-column connection with fastener definition 

11.2.3 Material model 

The inelastic properties of CFS material were found to have significant effects on the ultimate 

capacity and post-buckling behaviour of CFS elements. As a part of the experimental test by 

Sabbagh et al.(Sabbagh et al. 2012b), tensile coupons from the flat plates in the connections 

(Type A and Type B) and gusset plate were used in order to determine their material properties. 

The Kinematic hardening rule was applied to the von-Mises yielding surface during the cyclic 

loading. The material properties of the gusset plate and cross-sectional profiles are presented in 

Figure 11.6 and Table 11.1. Elastic modulus of E = 210 GPa and Poisson’s ratio of υ = 0.33 

were used in the FE models 
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Figure 11.6. Stress-strain curve from the coupon test was used in the FE model(Sabbagh et al. 

2012b). 

Table 11.1. Basic properties of the gusset plates (Sabbagh et al. 2012b) 

Specimen 
Area Yielding stress Ultimate stress Elongation on 50 mm 

mm2 N/mm2 N/mm2 % 

A 100 353 516 31 

B 124 308 474 36 

 

11.2.4 Imperfections 

The lateral displacement has been restrained in the x direction in the experiment (Sabbagh et al. 

2012b), no global buckling was observed. Therefore, either a local or a distortional imperfection 

was incorporated into the model, depending on which mode had the lower critical buckling 

resistance. The amplitude of this imperfection was determined based on the work by Schafer 

and Pekӧz (Schafer and Pekoz 1998), which is in a situation that the thickness of steel sheet is 

less than 3mm. The 50% value of the Cumulative Distribution Function of the imperfections 

was thereby adopted, amounting to values of 0.34 and 0.94 times the thickness for the local and 

distortional imperfection, respectively. The cross-sectional shape of the imperfection was 

generated by using an eigenvalue buckling analysis in ABAQUS. The coordinates of the 

resulted Eigen modes from the analysis were stored in a file with an extension of “fil”, this file 

was subsequently applied as input for the “*IMPERFECTION” command in the ABAQUS “inp” 

file. In the case of monotonic load, a tip displacement in the -z direction was employed to 

conduct the eigenvalue buckling analysis, resulting in a unsymmetrical mode for including 

imperfection, as shown in Figure 11.7(a). However, in the case of cyclic loading, a tip 

displacement in the -y direction was used to generate a symmetrical imperfection pattern 

(Figure 11.7(b)). The imperfections corresponding to the local buckling or distortional buckling 

were therefore incorporated in the “Static, General” step. 
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Figure 11.7. Deformation at first buckling mode shape: (a) in the case of monotonic load (b) in the 

case of cyclic load (Sabbagh et al. 2012b) 

11.2.5 Solution technique and load regime 

A tip displacement was applied at a reference point at the end of the beam, as show in Figure 

11.4. A displacement corresponding to rotation of the connection was applied at the end of the 

beam. For the case of cyclic loading, a regime which is the same as the test (Sabbagh et al. 

2012b) with varying magnitude of displacements at the beam end is applied in the FE analysis, 

as shown in Figure 11.8. The loading protocol was also in accordance with the AISC Seismic 

Provisions (AISC 341-05 2005) for the performance evaluation of beam–column moment 

connections. The displacement control was employed as a solution technique and the nonlinear 

FE analysis taking into account of geometric and material non-linearity was performed.  

(a) 

(b) 
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Figure 11.8. Cyclic loading regime for the test (Sabbagh et al. 2012b) and numerical study 

11.2.6 Validation of FE modelling 

The experimental study on the behaviour of CFS bolted connections under cyclic loading have 

been carried out at the University of Sheffield and the detailed configuration and test set-up can 

be found in Sabbagh et al. (Sabbagh et al. 2012b). The moment-rotation hysteresis behaviour of 

CFS connections with and without slippage was recorded during the test. The FE model 

modelling of the connection behaviour was thereby verified through the beam-to-column 

connection test conducted by Sabbagh et al. (Sabbagh et al. 2012b). In the test, connection A1 

was designed to be controlled by bearing action in the bolts against steel plates while connection 

B2 was designed to activate the bolt slippage before the buckling of beam profile. The 

pretension force in the bolts was directly related to the torque applied, the torque was controlled 

by using a torque wrench in the test and the preloading-torque relationship was established by 

using a pretension measuring machine (Sabbagh et al. 2011). The applied pretension force was 

67 kN for the beam-to-gusset plate and 53 kN for the gusset plate-to-column, respectively 

(Sabbagh et al. 2011). Therefore, this preloading was applied according to the definition, shown 

in Equation (11.1). The physical radius was defined in accordance with the bolt shank diameter, 

which was 18mm (Sabbagh et al. 2011). Further details can be found in (Sabbagh et al. 2011). 

Using the loading protocol discussed in Section 11.2.5, the tested models of connection A1 and 

B2 was modelled numerically. Material nonlinearity and geometrical imperfection were 

incorporated according to Section 11.2.3 and Section 11.2.4. It is worth noting that for 

modelling the bolts, the simplified model in Figure 11.3 was used in both cases. However, only 

the slippage in the connection B2 was activated while the deformation of connection A1 was 

dominated by the buckling of the profiles and bolt slippage was not activated. To partially 

account for the effect of bolt elongation of the plate holes (Sabbagh et al. 2012b), the range of 

slippage of the stop element in Figure 11.3 was increased from 1 mm  to 2 mm  in the first 

lines of the bolts. The experimental and FE responses subjected to both monotonic and cyclic 
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loading are compared in terms of the moment-rotation curves in Figure 11.9 and Figure 11.11 

while the failure shapes are compared in Figure 11.10 and Figure 11.12, respectively. According 

to the results, the numerical simulation under cyclic load is generally in good agreement with 

the corresponding experimental results. However, the M-Ɵ curve subjected to monotonic load 

shows less strength degradation than the response under cyclic load. This is due to the cyclic 

deterioration effects which will not happen in the case of monotonic loading. The numerical 

study has successfully captured the shape and position of local/distortional buckling in the 

beams.  

 

 

Figure 11.9. Comparison between tested (Sabbagh et al. 2011) and analysed moment-rotation 

curves of connection A1: (a) monotonic load and (b) cyclic load  
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Figure 11.10. Comparison between tested and analysed buckled shape of the profiles of connection 

A1: (a) Failure shape from the test (Sabbagh et al. 2011); (b) monotonic load (MPa) and (c) cyclic 

load (MPa) at θ=0.07 rad (Point E in Figure 11.9) 

 

(a) 

(b) 

(c) 
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Figure 11.11. Comparison between tested (Sabbagh et al. 2011) and analysed moment-rotation 

curves of connection B2: (a) monotonic load and (b) cyclic load  
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Figure 11.12. Comparison between tested and analysed buckled shape of connection B2: (a) Failure 

shape from the test (Sabbagh et al. 2011); (b) monotonic load (MPa) and (c) cyclic load (MPa) at 

rotation of θ=0.09 rad (Point F in Figure 11.11) 

 

(a) 

(b) 

(c) 
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 Connection configurations for parametric study 11.3

A wide range of parametric study using the verified nonlinear inelastic FE analysis and the 

simplified method of bolt modelling were then performed to examine the cyclic response of the 

CFS bolted moment connections. Variations in the parametric study include beam cross-

sectional dimensions, beam thickness, bolt distribution and gusset plate thickness. Cold-formed 

steel plate assemblies are inherently with small width-to-thickness ratios, however, the flexible 

procedure to form cold-formed steel sections using cold-rolling or press-braking enables more 

complex shapes characterised by intermediate stiffeners or folded plates that typical hot rolled 

products do not possess. Therefore, as shown in Figure 11.13, the selected cross-sectional 

geometry consists of flat, stiffened flat, folded and curved shaped channel cross-sections. 

Different thicknesses of the channels (1, 2, 4, 6 mm) were used in the parametric study in terms 

of cross-sectional slenderness defined as: 

 



y

cr

f
 (11.2) 

where cr  is the critical buckling stress and yf  is corresponding to the yield stress.  

Bolt distribution has non-negligible effects on the strength and stress field of CFS bolted 

moment connections(Lim et al. 2016). Three types of bolt distributions including circle, 

diamond and square shapes were therefore considered, as shown in Figure 11.14. Also FE 

analysis was employed in order to investigate the effects of gusset plate thickness on the cyclic 

behaviour of the CFS connections. 

Flat-flange Stiffened-flange Curved-flange Folded-flange 

  
  

Figure 11.13. Details of the back-to-back beam sectional dimensions with L=2000 mm 
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Figure 11.14. Different bolt distribution patterns 

 Cross-sections classification 11.4

Before conducting cyclic analysis on the bolted moment connections, there is a need to 

recognize cross-section classification of the different cross-sectional shapes (Figure 11.13) with 

various thicknesses, since it is expected that the behaviour of connections will be related to the 

beam cross-section classifications. Based on the susceptibility of cross-sections to local 

buckling, EC3 (CEN 2005c) classifies cross-sections under four classes for steel members. EC3 

(CEN 2005c) divides cross-sections into individual plates which are subject to the either 

compression, bending or combined bending and compression. Therefore the cross-sectional 

classification is determined based on their width to thickness ratio (c/t), yield stress capacity, the 

edge boundary conditions, and the applied stress gradient of plate assembling. Regarding the 

edge boundary conditions, each plate is identified as an internal or outstand element, 

respectively (CEN 2005c). The overall classification of a cross-section is based on the highest 

(most unfavourable) class of its compression parts. According to this definition, the results of 

classification for each channel are listed in Table 11.2. As can be seen, classification for channel 

with flat, stiffened flat, and folded flanges are determined based on constituent internal or 

outstand element. 

The limitation for width-to-thickness ratio (c/t) in Eurocode 3 is defined just for channel with 

flat flanges and without lips, while there is no requirement for all of four channels which are 

used in this study. Hence, in order to obtain more reasonable classification of the cross-sections, 

Eurocode concepts (CEN 2005c) and Finite Strip Method (FSM) (Li and Schafer 2010a) were 

combined for section classification. 

11.4.1 Eurocode concept 

The concept of cross-sectional classification of EC3 is based on monotonic loading and used 

just for local buckling behaviour. Steel cross-sections are generally categorized into four classes 

as illustrated in Figure 11.15. Class 4 are those cross-sections in which local buckling happen 

before the attainment of the yield moment capacity (Mu<My). Class 3 correspond to cross-

Bolt arrangement-1 Bolt arrangement-2 Bolt arrangement-3 

Square Circle Diamond 

   



CHAPTER 11. Behaviour of CFS bolted connections: a numerical parametric study 

210 

sections in which local buckling happen after reaching yield moment capacity but before 

reaching their plastic moment capacity (My <Mu<Mp). Class 2 are the cross-sections which can 

reach their plastic moment capacity, but ultimate plastic rotation is limited by the occurrence of 

plastic buckling of compression part (Mp<Mu). Finally, class 1 can reach their plastic moment 

capacity with adequate plastic rotation developed due to the effects of redistribution of moment 

(Mp<Mu). Although it is not allowed to do plastic design in EN 1993-1-12 (CEN 2007), 

evaluation of class 1 and class 2 is specified in terms of R which is stipulated in EN 1993-1-1. 

R0 value which is the pure plastic rotation capacity based on moment-rotation response is 

defined as: 

 0

 






u p

p

R  (11.3) 

where u  is the ultimate rotation corresponding to the drop in moment-rotation curve up to 

plastic moment in the softening branch, and  p  is equal to rotation corresponding to plastic 

moment at the hardening branch. 

Moment

Mp

My

θu

Local buckling

4

3
2 1

P

Rotation

θp

θ

θy  

Figure 11.15. Cross-sectional classification based on moment-rotation curves 

For the purpose of a better classification according to the EC3 concept, FE analysis was 

employed using ABAQUS to obtain flexural behaviour for each single channel cross-section. 

Therefore, the main purpose of the FE analyses was to examine the accuracy of the provisions 

in EC3 for the classification of the channels with different flange shapes. Non-linear inelastic 

post-buckling analysis were performed on the single channels with flat, stiffened flat, folded and 

curved flanges with cross-sectional dimensions shown in Figure 11.16 and Figure 11.17. The 

single channels with a length of L =2 m was fixed at one end while the load with displacement 

control was applied to the centroid of other end. The centroid was coupled to the end cross-

section. The lateral supports were simulated by applying boundary conditions to prevent the 
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lateral movement of channel’s flanges at an interval of 1/3 channel length, as shown in Figure 

11.16. Other parameters of the FE models were defined as: shell element S8R in ABAQUS, 

mesh size 20 mm × 20 mm, and material behaviour and imperfections were applied the same as 

those defined in section 2 and 3. 

 

Figure 11.16. Typical boundary conditions, constrains and loading points of cantilever channels 

Cross-section classification can be achieved by comparing the maximum moment obtained from 

FE analysis with the yield moment ( yM ) and the plastic moment ( pM ). As shown in Table 11.2, 

all of the sections with 1, 2, 4, and 6 mm are identified as class 4, 3, 2 and 1, respectively. 

Comparison of the results between Eurocode classification and FE analysis shows that for the 

class 1 and 4 channels, Eurocode classification can be sufficient whereas this type of 

classification would not be accurate for the class 2 and 3 channels. 
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8  

Figure 11.17. Normalised moment–rotation responses for cross-section classification: (a) t=1 and 2 

mm and (b) t=4 and 6 mm 
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(b) 
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Table 11.2. Cross-sectional classification of the CFS cross-sections 

Section Thickness 

EC3 classification 

CUFSM  
EC3 

concept 
Flange lip 

(outstand) 
Web Overall 

Internal Outstand 

Flat 

1 4 - 4 4 4 
σl=0.2794 fy 

fy 
4 

Local 

2 4 - 3 3 4 
σD=1.0633fy 
Distortional 

3 

4 1 - 1 1 1 
σd =2.3122fy 

2 
Distortional 

6 1 - 1 1 1 
σd=3.7827fy 

1 
Distortional 

Stiffened 
Flat 

1 4 - 4 4 4 
σl=0.5029fy 

4 
Local 

2 1 - 3 3 3 
σd=1.1994fy  

3 
Distortional   

4 1 - 1 1 1 
σd=2.6401fy 

2 
Distortional   

6 1 - 1 1 1 
σd=3.1555fy 

1 
Distortional 

Folded 

1 4 4 - 4 4 
σl=0.3995fy 

4 
Local 

2 1 4 - 3 4 
σd=1.4895fy 

3 
Distortional 

4 1 3 - 1 3 
σd=3.24fy   

Distortional 
2 

6 1 1 - 1 1 
σd=5.2191fy  

1 
Distortional   

Curved 

1 - - - 4 4 
σl=0.5808fy 

4 
Local 

2 - - - 3 4 
σd=1.6887fy 

3 
Distortional 

4 - - - 1 3 
σd=3.6603fy 

2 
Distortional    

6 - - - 1 1 
σd=5.896fy  

1 
Distortional   

 

11.4.2 Finite strip method 

Elastic buckling FE analysis has been the most commonly used technique to calculate the elastic 

buckling load of CFS sections. However, CFS sections are susceptible to local, distortional, 

global buckling and their interaction. Therefore, numerical algorithms have been developed for 

mode decomposition and pure buckling modes are therefore can be distinguished(Ádány and 

Schafer 2006, Ádány and Schafer 2014). For example, the constrained finite strip software 

CUFSM (Li and Schafer 2010a) which implements the classical finite strip method is able to 
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examine and to calculate all elastic buckling modes and corresponding buckling capacity of 

thin-walled members. The members can be with arbitrary cross-section subjected to 

compression or/and bending. It was, therefore, used to determine the critical elastic buckling 

stress of the cross-sections in the parametric study. The critical buckling stress has been 

compared with the yield stress of the cross-sections to have a rough understanding of the cross-

sectional classification. The resulted critical buckling stress of the cross-sections is presented in 

Table 11.2. In general, the critical buckling stress is around 2-3 times of the yield stress for class 

2 sections while 1-1.5 times for the class 3 sections. For class 4 cross-sections, the critical 

buckling stress is generally smaller than the yield stress, however, for class 1 sections, the 

critical stress can be up to 3-6 times of the yield stress. 

 Parametric finite element analysis results 11.5

A parametric study was therefore conducted in this section. The parametric study consisted of 

48 CFS bolted moment connections with different cross-sectional thicknesses (1, 2, 4, 6 mm), 

various beam channel shapes (flat, stiffened flat, folded, curved, as shown in Figure 11.13) and 

three bolt distribution configurations (circle, diamond, square, as shown in Figure 11.14). FE 

analysis using ABAQUS was employed to evaluate the cyclic behaviour of those connections. 

Column sectional dimensions, material properties, boundary conditions, loading protocol, and 

other FE parameters such as modelling of the bolts and mesh size are the same as those used in 

the experimental verification, which have been discussed in section 11.3. In order to trigger the 

dominant buckling modes in the beam of the connections, a thicker plate with 10 mm thickness 

was used for the gusset plate.  

The flat flange channels with various thicknesses (1, 2, 4 and 6 mm) and circle distribution of 

the bolts was selected here to show the typical reversed cyclic response of the connections 

without slippage in the bolts (Figure 11.18). Also, backbone curves of the moment-rotation 

cyclic response was plotted in the same figures. For the hysteresis curve, backbone curves in 

both the positive and negative rotation were first specified by plotting locus of all the peak 

moment points at the first cycle of the same rotation amplitude cycles. Then the same 

parameters were determined from the backbone curves such as dissipated energy which was 

defined as the area under the back bone curve.  
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Figure 11.18. Moment-rotation cyclic relationship and backbone curve of the connections with flat 

flange beam section and circular bolt distribution configuration 

t=1mm 

t=2mm 

t=4mm 

t=6mm 
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To provide a cyclic characterization of the bolted-moment connections performance, the EEEP 

models are presented. EEEP analysis which incorporates an energy balance approach was firstly 

introduced by Park (Park 1989), then modified by Foliente (Foliente 1996) , and was finally 

proposed in ASTM E2126 (Yu and Schafer 2006). In accordance with ASTM E2126-09, the 

equivalent energy elastic-plastic (EEEP) bi-linear model was used to extract the performance 

parameters of the connections. This model assumes an ideal elastic-perfectly plastic response of 

the system. Figure 6.7 indicates the general structural response of the connections obtained from 

cyclic analyses and was employed to idealize a moment–rotation curve based on EEEP model. 

The idealized bi-linear curve includes two parts. The line part utilizing an iterative graphical 

method that balances the size of the areas above and below of the curve (A1=A2). The elastic 

section of the EEEP curve is defined using initial secant stiffness (Ke) associated with the 

moment equal to 40% of the idealized yield moment of the connection. The second segment line 

and the post-yield slope should be specified by a line passing through the actual curve at the 

rotation corresponds to 20% drop of maximum moment in the softening branch. The 

characteristic parameter values of the EEEP model for all the cyclic modelling and the failure 

modes are presented in Table 11.3. For the class 4 flat channels, local buckling in the flanges is 

dominant, but for flat channel with other classes and also stiffened flat channel local buckling 

happen at both web and flanges. 

 

Table 11.3. Characteristic parameters of the EEEP model for all the cyclic modelling 

Bolt 
configuration 

Beam 
thickness 

Beam type 

Yield 
moment 

My 
(kN.m) 

Rotation 
at My 
(rad) 

Buckling 
mode  

AISC  FEMA  

Circle 

1 

Flat 5.8 0.006 LF × × 

Stiffened flat 6 0.006 LF-LW × × 

Folded 6.4 0.006 LW × × 

Curved 7 0.006 LW × × 

2 

Flat 18.6 0.01 LF-LW × × 

Stiffened flat 19.5 0.01 LF-LW  × 

Folded 20.5 0.01 LW × × 

Curved 21.6 0.009 LW × × 

4 

Flat 50.3 0.014 LF-LW  × 

Stiffened flat 51.3 0.014 LF-LW  

Folded 53.8 0.012 LW  × 

Curved 58.6 0.012 LW  × 

6 

Flat 84.5 0.014 LF-LW  

Stiffened flat 85.5 0.014 LF-LW  

Folded 93.7 0.013 LW  

Curved 99.8 0.013 LW  
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Bolt 
configuration 

Beam 
thickness 

Beam type 

Yield 
moment 

My 
(kN.m) 

Rotation 
at My 
(rad) 

Buckling 
mode  

AISC  FEMA  

Diamond 

1 

Flat 5.7 0.007 LF × × 

Stiffened flat 5.9 0.007 LF-LW × × 

Folded 6.2 0.007 LW × × 

Curved 7.4 0.007 LW × × 

2 

Flat 18.3 0.011 LF-LW × × 

Stiffened flat 18.6 0.011 LF-LW × × 

Folded 19.9 0.01 LW × × 

Curved 22.2 0.01 LW × × 

4 

Flat 47.6 0.014 LF-LW  × 

Stiffened flat 48 0.014 LF-LW  

Folded 50.8 0.013 LW  

Curved 55 0.014 LW  × 

6 

Flat 78.9 0.014 LF-LW  

Stiffened flat 79.2 0.014 LF-LW  

Folded 85.6 0.013 LW  

Curved 93.6 0.014 LW  

Square 

1 

Flat 6.8 0.006 LF × × 

Stiffened flat 6.6 0.006 LF-LW × × 

Folded 7.3 0.005 LW × × 

Curved 7.8 0.005 LW × × 

2 

Flat 22 0.011 LF-LW × × 

Stiffened flat 21.7 0.01 LF-LW  × 

Folded 23.3 0.009 LW × × 

Curved 24 0.009 LW × × 

4 

Flat 56 0.013 LF-LW  × 

Stiffened flat 55.5 0.014 LF-LW  

Folded 62 0.012 LW  × 

Curved 63.2 0.012 LW  × 

6 

Flat 106.1 0.015 LF-LW  

Stiffened flat 106.4 0.016 LF-LW  

Folded 117.6 0.013 LW  

Curved 119.7 0.013 LW  

 

11.5.1 AISC requirements for the connection 

AISC(AISC 341-05 2005) impose requirements for beam-to-column connections in the seismic 

force resisting system. AISC(AISC 341-05 2005) stipulate that the bolted-moment connection 

in special moment frame (SMF) should be able to incorporate at least 0.04 rad rotation at the 

connection while 20% drop happen after the peak moment. FEMA (FEMA 2000) suggested that 
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in order to satisfy the ductility requirements for SMF, the value of the inter-story drift angle 

capacity at the stage of connection failure, shall not be less than 0.06 rad. It means that at the 

rotation equal to 0.06 rad connection damage is so severe that continued ability to remain stable 

under gravity loading is unreliable. It is shown in Table 11.3 that the majority of bolted-moment 

connections with class 1 and 2 beam sections can satisfy AISC requirements for SMF, while 

according to the FEMA only class 1 cross-sections are able to satisfy the inter-story drift angle 

requirement of SMF. It is evident that the most of the cross-sections in class 3 and 4 are not 

sufficient to be utilised as SMF. 

11.5.2 Moment capacity of the connections 

It was shown that CFS channel sections with folded-flange and curved flange section can 

provide flexural moment capacity approximately 57% more than lipped channels (Sabbagh et al. 

2012b, Ye et al. 2016b). Nevertheless, Figure 11.19 proves that using bent flange channels 

(folded and curved) as a beam in the connection can withstand maximum moment only 10% 

more than plain flange channels (flat and stiffened flat), furthermore, the differences between 

two bent channels and also plain channels in terms of maximum flexural capacities are 

negligible. This conflict is mainly due to three significant reasons: (i) the bolts array in the web 

will result in the reduction of moment-capacity of the channel-sections at the connections due to 

the presence of bimoment (Lim et al. 2016), (ii) using channels with deep web reduced the 

effects of the flange on the moment capacity since bending moment are not able to transfer 

directly from web to flanges. (iii) the cross-sectional dimensions used in this study are not 

necessarily the optimum ones. 
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Figure 11.19. Strength to slenderness relationship of different sectional shapes 

11.5.3 Ductility ratio 

The fundamental definition of ductility ratio (µ) is defined as the ratio of ultimate rotation (θu) 

over the yield rotation ( y ), as follows:  

 / 1   u y  (11.4) 

In the calculation of ductility ratio, the value of µ is defined according to the rotation at 80% of 

post-ultimate moment (EEEP model). It can be observed from Figure 11.20 that the connection 

ductility ratio is highly related to the cross-sectional classification and shape of the beam as well 

as bolt distributions. Folded flange sections generally provide maximum ductility ratio which is 

especially evident for class 1 cross-sections (6mm thickness). Folded flange section provides 

higher ductility ratio up to 55%, 45% and 30 % compared with curved, flat and stiffened flat 

sections, respectively. In aspect of bolt configuration, it should be noted that the best 

configuration is related to cross-sectional classifications and shapes. For bent flange channels 

(folded and curved) which lie in class 1 and 2, diamond configuration has greatest ductility ratio 

while for class 3 and 4, circle configuration is considered as the best. In addition, for the 

specimens with plain flanges (flat and stiffened flat), circle configuration of the bolts provides 

higher ductility for all of the cross-section classifications. It is worth mentioning that the worst 

ductility ratio for all of the section shapes and classes belongs to conventional square 

configuration of the bolts. As an illustration, using circle and diamond bolt configuration leads 
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to up to 100% greater ductility ratio at the connection compared to conventional square 

configuration. Also, this trend will be more obvious when beam with smaller section 

slenderness (in higher class) would be employed. 

 

 

Figure 11.20. Ductility to slenderness relationship of different sectional shapes 

11.5.4 Energy dissipation 

The energy dissipation is the area under the moment-rotation curve. Therefore, bi-linear EEEP 

results for all the connections derived from the backbone curves of the hysteretic reversed 

cycles was used to obtain the energy dissipation capacity. The results are shown in Figure 11.21, 

it can be seen that the effect of cross-sectional shape and bolt configuration on energy 

dissipation capacity is only significant in the connections with class 1 and class 2 beam cross-

sections, however, the effect on energy dissipation capacity is negligible for all connections 

with beam cross-sections in class 3 and 4 (1 and 2 mm thickness). Due to the cross-sectional 

buckling, class 3 and 4 sections did not reach their plastic moment capacity, therefore the beams 

in the connection possessed less ability to dissipate energy. On the contrary, as discussed in 

Section 11.4.1, class 1 cross-sections can rotate up to 3 times more in terms of plastic 

deformation; hence class 1 is expected to dissipate more energy.  

Using the folded flange section as beam in the connections leads to up to 250%, 200% and 150% 

more energy dissipation capacity in connections compared to the flat, curved and stiffened flat 

sections, respectively. In general, diamond and circle distribution of the bolts can dissipate up to 
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250% more energy for beam with class 1 cross-section. Again similar to the ductility ratio, 

conventional square distribution of the bolts has the least ability in terms of energy dissipation 

capacity. 

 

 

Figure 11.21. Energy dissipation to slenderness relationship of different sectional shapes 

11.5.5 Damping coefficient 

The equivalent viscous damping coefficient eh , which is the measurement of the energy 

dissipation capability, can be derived by the plumpness of the hysteresis loop as shown in 

Figure 11.22, where the maximum plumpness happens after the limit bearing capacities (Points 

B and D). The equivalent viscous damping coefficient eh is then calculated employing the 

method recommended in (Bolong 1989, JGJ101-96 1997): 

 
1

2






ABC CDA
e

OBE ODF

S S
h

S S
 (11.5) 

where the area of  ABC CDAS S  is the amount of energy dissipated by the connection in one 

cycle at the expected rotation;  OBE ODFS S is the total strain energy of the connection at the 

expected rotation where the connection is assumed to behave in the elastic range.  

For all the connections studied, the results are provided in Figure 11.23, with two equivalent 

viscous damping coefficients. One is for the maximum moment in which the hysteresis loop 
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reaches the peak flexural capacity while the other one is for the ultimate state which is assumed 

to be near the point when the hysteresis loop reaches 20% drop from peak moment in the 

softening stage. It should be noted that lager eh  indicates a better energy dissipation capability 

of the connection.  

It is shown in Figure 11.24 that for all the connections studied, a relative high equivalent 

viscous damping coefficient was presented, which means that this kind of bolted moment 

connection in general has a high ability to damp energy. As it would be obvious there is 

significant improvement in the damping coefficient by using beams with larger thickness. 

However, cross-sectional shapes have a negligible effect on the damping coefficient. Damping 

coefficients at maximum moment loop show that using circle and diamond distribution of the 

bolts for the beam with class 1 and 2 cross-sections are more efficient, while conventional 

square distribution of the bolts leads to higher damping coefficient for class 3 and 4 cross-

sections. However, the ultimate (near failure) damping coefficient has less change than the 

damping coefficient at maximum moment. A comparison of these two damping coefficients at 

both two stages illustrates that, unlike class 1 and 2 cross-sections, class 3 and 4 achieve most of 

the amount of energy dissipation through the softening branch of the moment-rotation curve. 

 

Figure 11.22. Definition of the damping coefficient 
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Figure 11.23. Damping coefficient at maximum moment 

 

 

Figure 11.24. Damping coefficient at ultimate (near failure) 
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11.5.6 Effect of the thickness of gusset plate 

 

 

 

 

Figure 11.25. Effect of gusset plate thickness on the bending capacity of the connections 
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The effect of various gusset plate thicknesses on the cyclic behaviour of the bolted-moment 

connection was investigated using connection with flat flange channel as a beam and 

conventional square distribution of the bolts. For different flat channel classes (1, 2, 4, 6 mm 

thicknesses), various gusset plate thicknesses were selected. As can be seen from Figure 11.25, 

using the thickness which is the same as that of the beam causes premature local buckling at 

gusset plate and this local buckling shifted from beam to gusset plate. In addition, regarding the 

FE results when local buckling happens at beam, the effect of increasing gusset plate thickness 

on the global behaviour of the connections is negligible. 

 DSM design for cold-formed sections 11.6

The Direct Strength Method (DSM) is an alternative to the traditional effective width method to 

predict the load carrying capacity of CFS members. This method integrates a computational 

stability analysis into the design process. In a first step, the elastic local, distortional and global 

buckling loads are determined. Using these elastic buckling loads and the load that causes first 

yield, the strength is then directly predicted based on a series of simple empirical equations. 

While calculation of the effective properties can be tedious for complex CFS cross-sections, 

only gross section properties are needed in the DSM. Therefore, DSM is effective when dealing 

with innovative cross-sections with curved flange, stiffened flat and folded flange cross-sections. 

The elastic buckling loads of CFS members can be calculated using software such as CUFSM 

(Schafer 2006). 

11.6.1 Local buckling strength 

The nominal flexural strength for local buckling ( nlM ) is calculated from Section 1.2.2.2 of 

AISI S100-07 (AISI 2007) as follows: 

For 0.776 : M  Sl nl yM  (11.6) 

For 

0.4 0.4

0.776 : M 1 0.15

    
       

    
    

crl crl
Sl nl y

y y

M M
M

M M
 (11.7) 

where  

Sl : cross-sectional slenderness ( / ;M  sl y crl y f yM M Z f ); 

crlM : elastic local buckling moment of back-to-back sections ( crl f crlM Z f );  

fZ : section modulus about horizontal axis of the back-to-back sections; 
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crlf : elastic local buckling stress which was calculated by using finite strip method (Li and 

Schafer 2010a) 

11.6.2 Distortional buckling strength 

The nominal flexural strength for distortional buckling ( ndM ) is determined from Section 

1.2.2.3 of AISI S100-07 (AISI 2007) s follows: 

For 0.673: M  Sd nd yM  (11.8) 

For 

0.5 0.5

0.673: M 1 0.22
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Sd nd y

y y

M M
M

M M
 (11.9) 

where  

Sd : cross-sectional slenderness ( / ;M  sd y crd y f yM M Z f ); 

crdM : elastic local buckling moment of back-to-back sections ( crd f crdM Z f );  

fZ : section modulus about horizontal axis of the back-to-back sections; 

crdf : elastic local buckling stress which was calculated by using finite strip method (Li and 

Schafer 2010a) 

11.6.3 Comparison between FE results of CFS bolted-moment connections and DSM 

design rules for pure bending 

The ratio of peak point of FE moment rotation hysteretic curves corresponding to the starting 

point of buckling over to yield moment capacity of different sections  were specified in Figure 

11.26. It is shown in Figure 11.26 that FE results of connection capacity proved that the 

capacity of connections is less than those which were predicted by DSM method for bending of 

beam section. This also indicates that using bolts to connect webs of back-to-back channels 

reduces the capacity of CFS channels. Hence, envelop of FE results is employed to propose an 

empirical design equation for design of CFS beam used in bolted-moment connections: 

For 0.378: M  S nd yM  (11.10) 

For 

0.1 0.8

0.378 : M 1 0.6
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    

crd crd
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 (11.11) 
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Figure 11.26. Comparison between FE cyclic results of bolted moment connections and DSM for 

design of CFS sections under pure bending 

 Connections with slippage 11.7

11.7.1 Effect of slip resistance 

Generally, the simplified method of modelling slip action creates a horizontal shift in moment-

rotation curve while the global behaviours of the connections are the same. In addition, 

adjusting the bolt pretension in the connections with all cross-section classes will just change 

the starting point of slippage while the performances of connection in elastic and inelastic stage 

are considered as the same. In order to evaluate the effect of various slip resistance of bolts on 

the global moment-rotation behaviour of the connections with class 1 beam cross section (6mm 

thickness), different bolt pretension forces were applied on the connections with flat flange 

channels. The slip resistances were selected to be at least equal to the allowable slip resistance 

determined according to ASTM A325 (ASTM 2004). Monotonic analyses were carried out on 

the connection with three different bolts pretensions and were compared with the behaviour of 

connections without slippage of the bolts. Bolt pretensions were assumed be: Tm=90 kN which is 

corresponding to activation of slip in elastic behaviour of connection, Tm=270 kN leads to 

slippage of the bolts in inelastic behaviour of connection, and pretension level leads to fully 

clamped where no slippage happens. The moment-rotation behaviours of connections with 

various clamping forces are the same except for the starting point of bolt slippage. In addition, 

as it is expected for class 1 cross-sections, fully clamped connection and connection with 

slippage show a slightly different behaviour in the inelastic stage and especially after the local 

buckling, which is due to bolt configurations. It is worth noting that accommodating slippage in 

the connections with different bolt configurations does not change the failure modes.  

Equations (11.6), (11.7)

    

    
Equations (11.8), (11.9)

Equations (11.10), (11.11)
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Figure 11.27. The behaviour of connection with cross section class 1 using different bolt pretensions 

and configurations: (a) Circle; (b) Diamond; (c) Square 

(a) 

(b) 

(c) 
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11.7.2 Effect of bolt arrangement and channel thickness 

This parametric study consisted of 48 CFS bolted moment connections with different section 

classification (1, 2, 4, 6 mm), various beam channel shapes (flat, Stiffened flat, folded, curved) 

and different bolts configurations (circle, diamond, square). FE analysis using ABAQUS 

(ABAQUS 2011) was employed to evaluate the cyclic behaviour of those connections. All of 

the column and beam dimensions, material properties, boundary conditions, loading protocol, 

and mesh size were the same as those used in the modelling of connection without slippage. A 

through plate with thickness of 10 mm was used in the FE analysis.  

The flat flange channels with various thicknesses (1, 2, 4 and 6 mm) and circle distribution of 

the bolts was selected to show the typical reversed cyclic response of the connections with 

slippage of the bolts (Figure 11.28). Also, it is plotted along with the backbone curve of the 

connection. No significant differences were observed between the failure modes of connection 

with and without slippage of the bolts.  

 

 

Figure 11.28. Moment-rotation cyclic relationship and backbone curve of the connections with flat 

flange beam section and circular bolt distribution configuration (with slippage) 

11.7.3 Maximum moment capacity 

Comparison of the values of maximum moment capacity between connections with and without 

slippage of the bolts indicates that generally the effect of bolt slippage is quite small on the 

flexural capacity of the connections for all cross-section classes. However, regarding beam cross 

section class 1 with square distribution of bolts, there is slight reduction in flexural moment 

t=1mm t=2mm 

t=4mm 
t=6mm 
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capacity when slip action is activated in the connection. Generally, according to (Uang et al. 

2010), the centre of rotation in the bolted-moment connection tends to shift the centre of bolts 

due to the slipping deformation in the bolts. As discussed in Section 11.4.1, using class 1 cross-

section in the connection can rotate more than 0.1 rad at maximum moment capacity, which 

increases the variation of position of the rotation centre. It should be noted that shift of centre of 

rotation is more critical when square distribution of bolts is used. For the same cross-sectional 

class and distribution of the bolts; cross-sectional shape has a little effect on shifting of rotation 

centre. 

 

 

Figure 11.29. Comparison of moment capacities of connections with and without slippage  

11.7.4 Energy dissipation 

Generally, the capacity of energy dissipation reflects the ductility of the structures. Therefore, 

bi-linear EEEP results for all the connections derived from the backbone curves of the hysteretic 

reversed cycles was employed to obtain energy dissipation capacity. As shown in Figure 11.30, 

for both types of connections, the effects of cross-sectional shapes and bolt configurations on 

energy dissipation capacity are evident only when classes 1 and 2 beam cross-section are used, 

however, energy dissipation capacity is negligible for all connections with class 3 and 4 beam 

cross-sections (1 and 2 mm thickness). Due to the cross-sectional buckling, class 3 and 4 

sections does not reach their plastic moment capacity therefore the beams in the connection 

possess less ability to dissipate energy. On the contrary, class 1 cross-sections can rotate up to 3 

times more in terms of plastic deformation and are able to dissipate more energy. The effect of 
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cross-sectional shape is the same for connections with and without slippage of the bolts, also, 

using the folded flange section as a beam in the connections leads to more energy dissipated. 

The effect of bolt distribution is only obvious when class 1 beam cross-section is used. In 

addition, the efficient configuration for connection with slippage of the bolts is diamond while it 

is correlated to cross-sectional classifications and shapes. It is also shown in Figure 11.30 that 

the connections with bolt slippage generally dissipated more energy than the ones without 

slippage. 

 

 

Figure 11.30. Comparison of energy dissipation capacities of connections with and without slippage 

11.7.5 Damping coefficient 

As shown in Figure 11.31, there is obvious difference between damping coefficients of slip 

critical connection and without slippage connection especially when class 3 and 4 cross-sections 

are used. As discussed in section 11.7.1, failure modes for class 4 cross-sections happen in 

elastic stage of moment-rotation behaviour, and also class 3 cross-sections cannot reach the 

plastic stage. As a result, most of the dissipated energy by hysteretic loop at maximum moment 

is due to the smaller plastic region development of the connection which leads to lower damping 

coefficient. Since slip action of the bolts was adjusted in a way which occurs in elastic range of 

the connections, slip action in the connection with class 3 and 4 beam cross-sections is able to 

damp energy up to 3 and 5 times more than connection without slippage. However, damping 

coefficient at the stage which is near failure is greater than that at the peak moment because of 
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the development of plasticity around the bolt holes and in the connected sections. Hence, there 

is slightly increase in damping coefficient near failure when slip action is used. Consequently, 

using slip action of the bolts for the class 3 and 4 cross-sections increases damping coefficient 

regardless the value of slip resistance. However, it is noted that the changing the slip resistance 

and bolt hole clearance can make damping coefficient of the bolted-moment connections 

capable to be adjusted. 

Nevertheless, the results for class 1 and 2 cross-sections indicate that including slippage action 

in bolted-moment connection leads to declined damping coefficient up to 50% and 30% at 

maximum moment, respectively (Figure 11.31). As class 1 and 2 cross-sections are able to 

develop plasticity, so the main reason to justify this different behaviour is more bearing 

deformation and plasticity in the connected members for the connection without slippage of the 

bolts. While using slippage of the bolts reduces the bearing deformation and plasticity around 

the bolt holes, again it should be noted that damping coefficient at the failure point slightly 

decreases when slip action is included into the connections with class 1 and 2 sections. In this 

case, slip action happen in the elastic stages of the connections. As a consequence, in order to 

obtain higher damping coefficient for the connection with class 1 and 2 cross-sections, adjusting 

the slip resistance which is activated in the inelastic range of the connection is suggested.  

 

 

Figure 11.31. Damping coefficient up to maximum moment 
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Figure 11.32. Damping coefficient at ultimate (near failure) 

11.7.6 AISC requirements for the connection with slippage 

As described in Section 11.5.1, the AISC (AISC 341-05 2005) impose requirements for beam-

to-column, connections in the seismic force resisting system in order to satisfy ductility 

requirement of the connection using different seismic regions. Generally, as shown in Table 

11.4, while some of the connections with class 3 and 4 beam cross-sections without slippage do 

not satisfy neither the SMF nor the IMF requirements, including the slippage of the bolts in 

bolted-moment connection improve ductility of the connections. Consequently, since most of 

the conventional cross-sections in CFS building industry lie in the class 3 and 4 ranges, the 

importance of mobilising slippage in CFS bolted-moment connection used in high seismic 

regions is recommended. 
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Table 11.4. AISC requirements for the CFS bolted connection with slippage 

Bolt configuration Beam thickness Beam type 

AISC  

Without 
slippage 

With slippage 

Circle 

1 

Flat × IMF 

Stiffened flat IMF SMF 

Folded IMF SMF 

Curved × SMF 

2 

Flat IMF SMF 

Stiffened flat SMF SMF 

Folded IMF SMF 

Curved IMF SMF 

4 

Flat SMF SMF 

Stiffened flat SMF SMF 

Folded SMF SMF 

Curved SMF SMF 

6 

Flat SMF SMF 

Stiffened flat SMF SMF 

Folded SMF SMF 

Curved SMF SMF 

Diamond 

1 

Flat × IMF 

Stiffened flat IMF SMF 

Folded IMF SMF 

Curved IMF SMF 

2 

Flat IMF SMF 

Stiffened flat IMF SMF 

Folded IMF SMF 

Curved IMF SMF 

4 

Flat SMF SMF 

Stiffened flat SMF SMF 

Folded SMF SMF 

Curved SMF SMF 

6 

Flat SMF SMF 

Stiffened flat SMF SMF 

Folded SMF SMF 

Curved SMF SMF 

Square 

1 

Flat × IMF 

Stiffened flat × IMF 

Folded × SMF 

Curved × IMF 

2 

Flat × SMF 

Stiffened flat SMF SMF 

Folded IMF SMF 

Curved IMF SMF 
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4 

Flat SMF SMF 

Stiffened flat SMF SMF 

Folded SMF SMF 

Curved SMF SMF 

6 

Flat SMF SMF 

Stiffened flat SMF SMF 

Folded SMF  SMF 

Curved SMF SMF 

 

 Development of a two node element to model the slip bearing 11.8

behaviour of bolts 

In the analysis of the CFS bolted connections, it was found that the slippage of the bolts was 

activated only in the first half cycle when using the predefined connector elements in ABAQUS 

(ABAQUS 2011), as shown in Figure 11.33. This is due to the fact that the load-deformation of 

the connector elements in ABAQUS (ABAQUS 2011) is based on relative motion and it is 

suitable only for monotonic loading, as shown in Section 10.4.4. In cyclic loading, when the 

bearing action happens in one cycle, the slip of the connection cannot be activated again in the 

subsequent cycles in the FE analysis. Therefore, the connector elements cannot be used for the 

modelling of CFS bolted connections subjected to cyclic loading. Moreover, the slip range of 

the bolts grows when the bearing action elongates in the bolt holes during the large rotation 

cycles in the test. This was also noticed by (Uang et al. 2010) through the cyclic testing of 

bolted moment frame connections in which the connection rotation was dominated by the slip-

bearing action of the bolts. Proposed hysteresis rule of a bolt is shown in Figure 11.34. 

 

Figure 11.33. Moment-rotation curves of connection B2 with slippage-bearing action defined in 

ABAQUS (ABAQUS 2011) 
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Figure 11.34. Hysteresis rule for a bolt slipping and bearing against a steel sheet 

A user element subroutine (UEL) which is able to incorporate the hysteresis rule defined in 

Figure 11.34 is therefore developed to model the behaviour of bolts. ABAQUS has a library that 

contains a wide range of elements. However, there are still some types of elements which are 

not available in its element library, especially elements with a special purpose, for example to 

model the bolt behaviour. To overcome this limitation, ABAQUS allows users to define their 

own elements by programming a user element subroutine (UEL). A UEL is a FORTRAN based 

program written specifically for ABAQUS. Similar to other ABAQUS elements, user defined 

elements can be developed and assigned from an input file. However, no visualisation is 

provided for the user defined elements in ABAQUS (Ding 2015). 

A user element subroutine (UEL) cannot be called separately and conduct finite element 

analysis. It needs to be linked between FORTRAN and ABAQUS. Once linked, UEL will be 

called every time when ABAQUS requires the input information from the UEL (Figure 11.35). 

In each call by ABAQUS, the UEL will be provided with element geometry information 

(coordinates, displacement and etc.), UEL properties, and solution-dependent variables from the 

last increment and analysis procedures. By using the information provided by ABAQUS, the 

UEL calculates and returns to ABAQUS a Jacobian matrix and residual forces contributed by 

the UEL and the updated solution-dependent variables. Solution dependent variables are carried 

in a vector where users can save data to be used in the next increment (Ding 2015). 
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User element 

subroutine (UEL)
ABAQUS/Standard

UEL properties

Nodal displacement

Element stiffness matrix

Element nodal 

force vector
 

Figure 11.35. Relationship between the UEL and ABAQUS 

A two node element is firstly defined and the force-displacement relationship of a bolt bearing 

against a steel sheet for connection B2, which is presented in Figure 11.36, the FORTRAN 

subroutine is attached in the Appendix 7. The subroutine is then incorporated in the full-scale 

CFS connection modelling for the tested connection B2. All the material properties, boundary 

conditions and loading scheme have been described in Section 11.2. The only difference is that 

a bolt hole clearance of 1 mm  was defined and the bolt elongation is automatically taken into 

account in the UEL subroutine. Figure 11.37 illustrates the cyclic responses of the connection 

B2 subjected to cyclic loading. It is noted that the slippage defined in the analysis is 1mm, the 

two node element can take into account the bolt elongation by itself without defining an 

oversized hole prior to the analysis. The results also show that by using the proposed two node 

element, good agreement is achieved between experimental and numerical results. The proposed 

element should be proving useful for other forms of fastener modelling. 

 

Figure 11.36. Cyclic response of a single bolt during cyclic loading 
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Figure 11.37. Comparison between tested and analysed moment-rotation curves of connection B2 

with 1mm slippage defined 

 Summary and conclusions 11.9

In this chapter, nonlinear behaviour of CFS bolted connections under cyclic loading has been 

investigated by conducting extensive parametric geometric and material nonlinear analysis 

using the validated finite element model in ABAQUS. A simplified model that can be used to 

model the slip-bearing behaviour of a single bolt was developed. Cross-sections of different 

beam shapes that were connected in the connections have been classified according to Eurocode 

concept and nonlinear FE analysis. The factors of cross-sectional shapes, thicknesses of the 

beams and the bolt distribution configurations were analysed numerically, on the connection 

performance. The modes of failure and cyclic moment-rotation responses were compared to 

show the effects on the moment capacity, ductility, energy dissipation and damping coefficient. 

Based on the results of this study, the following conclusions could be drawn: 

(1) The bolted-moment connections with class 1 and 2 sections can satisfy AISC requirements 

for Special Moment Resisting Frame (SMF), while according to the FEMA only class1 cross-

sections are considered as SMF. It is shown that most of the class 3 cross-sections and 4 are not 

sufficient to utilize as SMF. 

(2) Using bent flange channels (folded and curved) as a beam in the connection can withstand 

maximum moment only 10% more than plain flange channels (flat and stiffened flat). Besides, 

the differences between two bent channels and the plain channels in terms of maximum flexural 

capacities are negligible. The bolts array in the web will result in the reduction of moment-

capacity of the channel-sections which are connected to the connections. A direct strength 

design curve which can predict the lower bound of the strength of the connections is proposed. 

(3) The connection ductility ratio is highly related to the cross-section classification, shape of 

the beam and the bolt distribution. Connections with folded flange section provides higher 

Ɵ(rad) 

M
/M

P
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FE modelling
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ductility ratio up to 55%, 45% and 30 % more than those with curved, flat and stiffened flat 

sections, respectively. In aspect of bolt configuration, it should be noted that the best 

configuration is related to cross-sectional classifications and shapes. For class 1 and 2 bent 

flange channels (folded and curved), diamond configuration has the largest ductility ratio while 

for class 3 and 4, circle configuration is considered as the best. For specimens with plain flanges 

(flat and stiffened flat), circle configuration of the bolts provides higher ductility for all of the 

cross-section classifications. It is worth mentioning that the worst ductility ratio for all of the 

section shapes and classes belongs to conventional square configuration of the bolts.  

(4) Using the folded flange section as beam in the connections leads to up to 250%, 200% and 

150% more energy dissipation capacity in connections compared to the flat, curved and 

stiffened flat sections, respectively. In general, diamond and circle distribution of the bolts can 

dissipate up to 250% energy for beam with class 1 cross-section. Conventional square 

distribution of the bolts has less capacity in terms of energy dissipation. 

(5) For all the connections studied, a relative high equivalent viscous damping coefficient was 

presented, which means that the bolted moment connection studied here with gusset plate 

generally has a high energy damping capacity. As it would be evident there is significant 

improvement in the damping coefficient by using beams with larger thickness. However, cross-

sectional shapes have a negligible effect on the damping coefficient. 

(6) Using the thickness the same as that of the connected beam may lead to premature local 

buckling at gusset plate of the connections. In addition, regarding the FE results when local 

buckling happens at the beams, the effect of gusset plate thickness on the global behaviour of 

the connections is negligible. 

(7) The effect of cross-sectional shapes is similar for connections with and without slippage of 

the bolts, also, using the folded flange section as a beam in the connections leads more energy 

dissipation capacity. However, the effect of bolt distribution is only obvious when class 1 beam 

cross-section is used for connections with slippage. In addition, the efficient configuration for 

connection with slippage of the bolts is diamond while it is related to cross-sectional 

classifications and shapes. It is also shown that the connections with bolt slippage generally 

dissipated more energy than the ones without slippage. 

(8) When the slippage of the bolts is not considered, the connections with class 3 and 4 beam 

cross-sections cannot satisfy the SMF and the IMF requirements. However, including the 

slippage of the bolts in bolted-moment connection can significantly improves the ductility of 

CFS bolted moment connections. 
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(9) The proposed two node element, which is defined in a UEL subroutine can take into account 

the slippage, bearing deformation and the bolt hole elongation. By using the proposed element, 

good agreement has been achieved to model the moment-rotation response of the full-scale 

tested connection. 
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 Summary and conclusions 12.1

The main aim of this research is to understand, predict, and optimise CFS elements based on 

their buckling and post-buckling behaviour. The optimised elements can then be included in 

full-structure modelling to develop more efficient CFS structural sub-frames with high ductility 

and energy dissipation capacity, suitable for multi-story buildings in seismic regions. This was 

achieved through the development of optimisation frameworks for CFS elements based on their 

bucking and post-buckling behaviour and experimental works were used to verify the 

effectiveness of the proposed methods. This chapter gives a brief summary and reports on the 

main conclusions from each part of the work. 
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12.1.1 Optimisation of CFS columns  

Ten channel cross-sections were selected and the geometrical dimensions of each individual 

prototype were optimised with respect to its axial capacity. The thickness and coil length of the 

prototypes were kept constant during the optimisation process. The selected prototypes were 

comprised of the plain channels, channels with single inclined lips, channels with double folded 

lips with one or two intermediate stiffeners incorporated into the web.  

For comparison purposes, a commercially available standard cross-section with the same total 

coil width and thickness was selected and its axial capacity was compared with those of 

optimised cross-section in columns with 3 different lengths: 1m, 2m and 3m. The axial 

capacities of the optimised cross-sections determined based on EC3 were also verified against 

detailed nonlinear FE analysis considering the effect of geometrical imperfection. The 

compressive capacity has been found to be highly dependent on the shift of centroid and the 

effective cross-section of the prototypes.  

It was concluded that the axial capacity of the standard cross-section can be enhanced up to 

108.3%, 73.7% and 43.4% according to EC3 but 77.1%, 59.2% and 42.9% with regard to the 

FE modelling, in columns with 1m, 2m and 3m length, respectively. The largest axial capacity 

for columns with 1m and 2m in length was observed in channel with double-fold lips and one 

web intermediate stiffener while for 3m long column, the channel with single lip and one 

intermediate web stiffener offered the highest axial capacity 

12.1.2 Optimisation of CFS beams 

A practical method to obtain more economical CFS channel sections for use as laterally braced 

or unbraced beams was developed by optimising the dimensions of the cross-section and 

allowing for the addition of double-fold (return) lips, inclined lips and triangular web stiffeners. 

Six different prototypes were considered based on practical considerations. Based on the results 

of the study, the following conclusions could be drawn: 

(1) By applying the proposed optimisation method to laterally braced beams, significant gains in 

cross-sectional bending capacity can be achieved: in the example, the bending capacity of a CFS 

cross-section was increased by up to 25% compared to the commercially available section taken 

as a starting point. The most effective cross-sectional prototype in this case was the lipped 

channel section with one stiffener located in the web. Using two stiffeners in a symmetrical 

arrangement, while keeping the developed length constant, would again reduce the efficiency of 

the solution. 

(2) The flexural capacity of the optimised 1m, 2m, 3m and 4m long unbraced beams was 

increased by 26%, 25.8%, 61% and 75%, respectively, compared to a commercially available 
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section with the same amount of material. Comparison between the optimised results indicated 

that, when increasing the unbraced length, the flange width of the optimum solution increased, 

and consequently the total height of the section was reduced.  

(3) The adequacy of the optimised sections was verified using detailed nonlinear FE analyses 

validated against experimental data, while also taking into account the effects of initial 

imperfections. The FE results, on average, showed less than a 6% error compared with the 

experimental data. The FE results of the commercially available and the optimised sections for 

both laterally braced and unbraced conditions generally showed good agreement with the 

flexural strengths estimated by EC3. The FE simulations also closely followed the increasing or 

decreasing trends in flexural capacity predicted by EC3 across the different prototypes. This 

demonstrates the reliability of the proposed optimisation method using the EC3 design rules.  

(4) The flexural strengths of the optimised and the commercially available sections were also 

determined based on the DSM. Overall, the strengths calculated using EC3 and the DSM 

displayed a similar trend. Compared to the FE results, EC3 overestimated the flexural strength 

of the laterally braced beams by up to 16%, but underestimated the strength of the laterally 

unbraced beams by up to 19%. While the DSM, in general, provided accurate estimates of the 

capacities of the laterally braced beams, the accuracy of the method was seen to decrease with 

an increase of unbraced span length. It was shown that the DSM may overestimate the flexural 

capacity of long span laterally unbraced beams by up to 36%. 

12.1.3 Development of more efficient CFS beam sections 

A practical framework was proposed to develop more efficient CFS beam cross-sections while 

considering code-based design constraints as well as manufacturing issues and practical 

limitations. Using the framework, a commercially available CFS lipped channel section was 

optimised based on ten different prototypes, including a folded-flange cross-section, while 

keeping the material use constant. A slight modification of the EC3 design methodology was 

first developed in order to account for the multiple distortional buckling modes which may 

occur in the folded-flange cross-section. The particle swarm optimisation algorithm was then 

used to obtain the solutions with the maximum flexural strength. The accuracy of the modified 

design model and the effectiveness of the proposed optimisation framework were also evaluated 

using detailed non-linear FE analysis. The following conclusions can be drawn: 

(1) The FE simulations of the folded-flange sections confirm that the proposed additions to the 

effective width based design method in EC3 to account for the multiple distortional buckling 

modes in the folded-flange section led to accurate predictions of the ultimate bending capacity. 

(2) By applying the proposed optimisation framework to laterally braced beams, the bending 

capacity of a commercially available CFS beam was increased by 30% by only optimising the 
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relative dimensions of the flat plates and the inclination of the lips. The results also indicate that 

flanges with double fold lips had the potential to considerably increase the flexural capacity of 

CFS beams (by up to 50%), while using intermediate stiffeners in the web did not necessarily 

increase the capacity of the sections. As expected, plain CFS channel cross-sections provided 

the minimum flexural capacity, even when using intermediate web stiffeners.  

(3) Folded-flange sections, which can be easily designed and manufactured due to their simple 

sequence of straight plate segments with a relatively small number of folds, were shown to be 

viable and even superior alternatives to typical lipped channel sections. For the same amount of 

material (i.e. the same total coil width and plate thickness), the folded-flange section possessed 

a flexural capacity which is 57% and 22% higher than the selected commercial section and the 

optimum lipped channel section, respectively. 

12.1.4 Optimisation of CFS beams based on their post-buckling behaviour 

A procedure was presented to obtain optimised channel sections for maximum plastic dissipated 

energy for seismic applications. The EC3 design restraints were considered to reduce the design 

space. Five different prototypes were considered, including a standard lipped channel section, a 

channel section with inclined lips, a channel section with intermediate stiffeners in the flanges, a 

channel section with intermediate stiffeners in both web and flanges, and finally a folded-flange 

cross-section. A  PSO algorithm was developed and linked to the ABAQUS finite element 

programme for inelastic post‐buckling analysis and optimisation. Optimal shapes were obtained 

for CFS beams using different prototypes. According to the results, the following conclusions 

can be drawn: 

(1) Using intermediate web stiffeners could improve the post buckling behaviour of CFS 

sections, while their effects were negligible on flexural strength. The results indicate that, for 

the same amount of material, curved flange and folded flange sections provided the highest 

flexural strength compared to other alternatives. 

(2) In general, using intermediate stiffeners in the flange could considerably (up to 36%) 

increase the ductility of the CFS beams. Additional intermediate stiffener in the web could 

increase the ductility of the section by around 70% compared to the standard one. For the same 

amount of material, curved flange and folded flange sections could provide more than two times 

more ductility compared to their standard counterparts.  

(3) The amount of dissipated energy in CFS beam elements was increased with increasing the 

equivalent plastic strain limit  p , especially for the lipped channel sections. However, 

increasing  p beyond 0.15 did not considerably affect the energy dissipation capacity of the 

sections.  
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(4) Only by optimising the web, flanges and lip dimensions of a lipped channel section, the 

dissipated energy could be increased up to 23%. By relaxing the turned angle of lips, only a 

negligible gain of 0.4% was achieved. 

(5) Placing a stiffer in the compressive flange of simple optimum lipped channel section could 

increase the energy dissipation capacity of the optimum solution by 30%. However, no obvious 

change was observed in the energy dissipation capacity of the optimum sections by placing an 

intermediate stiffener in the web. By optimising the shape of CFS beam sections, in general, the 

plastic area of the beams was significantly increased. 

(6) The folded-flange section, for the same amount of material, dissipates 28%, 27%, 16% and 

10% more energy than the optimal lipped channel section under plastic strain limits of 0.2, 0.15, 

0.1 and 0.07, respectively. This emerged the folded flange sections as the best optimum 

solutions for seismic applications. 

12.1.5 Experimental work on standard and optimised CFS columns 

A total of 36 channel column tests, including four different cross-section geometries and three 

different lengths, were carried out with the aim of investigating the interaction of local and 

overall flexural buckling. The specimens were tested under a concentrically applied load with 

pin ended boundary conditions. The specimen imperfections were measured and material tests 

of the flat and rounded corner regions of each cross-section type were carried out. The following 

conclusions can be drawn: 

(1) The tests were successful in achieving interaction between local buckling and flexural 

buckling about the minor axis. Good agreement was obtained within each set of three identical 

tests, with the ultimate loads differing by less than 7% from the average.  

(2) Additional overall bending of the specimens, resulting from a shift of the effective centroid, 

was observed after the appearance of a local buckling pattern. Bending thereby occurred 

towards the web in the plain channels and towards the flanges in the lipped channels, consistent 

with expectations.  

(3) A comparison between the Eurocode 3 predictions and the experimental results indicates 

that Eurocode 3 is generally conservative in predicting the strength of pin-ended axially 

compressed channel columns. The predictions are especially conservative for plain channels, 

with an average ratio of the predicted to the measured capacity of 0.60. 

12.1.6 Experimental work on standard and optimised CFS beams 

A total of six back-to-back beams, constructed from lipped channels with three different cross-

sectional geometries, were tested, with the aim of investigating the interaction between local 
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and distortional buckling of standard and optimised sections. The specimens were tested in a 

four-point bending configuration with simply supported boundary conditions, while being 

laterally braced at the loading points. The geometric imperfections were recorded before and 

after the back-to-back specimens were assembled. Coupons extracted from the flat portions and 

the corner regions of each cross-section type were also tested in order to determine the material 

properties. Based on the tested and analytical results, the following conclusions can be drawn: 

(1) All specimens failed due to interaction of local and distortional buckling, with local bucking 

being the primary buckling mode. In specimens C180, which displayed the widest flanges and 

the shallowest webs, local buckling originated in the top flanges, while in specimens A230 and 

B270, having a deeper cross-section and a smaller flange width, local buckling was triggered by 

the web. 

(2) A good agreement in the ultimate capacities was generally obtained within each set of twin 

beams, with the difference being less than 2%. A comparison between the predictions given by 

Eurocode 3 and the experimental results indicated that Eurocode 3 is accurate in predicting the 

ultimate capacity of back-to-back lipped channel beams. The average ratio of the Eurocode 

predicted capacity to the experimental capacity was 0.996 with a standard deviation of 0.068. 

12.1.7 Numerical study on optimised CFS columns 

A finite element (FE) model was developed to study the interaction of local and global buckling 

in CFS standard and optimised lipped channel columns. The model took into account the non-

linear stress–strain behaviour of CFS material, the strength hardening effects at the round 

corners due to the cold-working process, and the experimentally measured initial imperfections. 

The FE models were validated against an experimental program on a total number of 36 plain 

and lipped channel columns with the total lengths of 1.0 ,1.5 2.0eL m m and m . The validated 

models were then used to assess the accuracy of EC3 and DSM design methods for standard and 

optimum design solutions. Based on the results , the following conclusions can be drawn: 

(1) The ultimate capacity of the sections predicted by the FE models was on average less than 1% 

different from the experimental results. The proposed FE model was also successful in 

capturing the failure shapes and predicting the compressive strength of CFS columns subjected 

to local and global buckling modes. 

(2) It was shown that the geometric imperfections can change the FE predictions by around 20% 

and 40%, respectively, for lipped and plain channel columns, while the strength variation 

caused by the strain hardening effect at the round corners material in general has negligible 

effects (less than 3%). 
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(3) The ratio of predicted to experimentally measured axial strength was on average 0.945 and 

0.804 for DSM and EC3 design methods, respectively. The results show that EC3 design 

method generally leads to conservative predictions, especially for plain channel column sections 

where the EC3 predictions where up to 46% lower than the experimental results. 

(4) The axial capacity of the optimised CFS columns obtained from validated FE models and 

EC3 design methods were up to 35% and 43% higher, respectively, compared to their standard 

lipped channel counterparts with the same amount of material. This improvement was more 

evident for longer columns where global buckling was the dominant failure mode. This 

demonstrated the efficiency of the proposed optimisation method to improve the compressive 

capacity of CFS sections.  

(5) The results of this study in general demonstrate the accuracy and reliability of the developed 

FE models to predict the axial load bearing capacity of CFS columns with different cross 

sectional shapes and effective lengths. These validated models should prove useful in practical 

applications for more efficient design of CFS structural elements. 

12.1.8 Numerical study on optimised CFS beams 

A finite element (FE) model was developed to study the local/distortional buckling in CFS 

lipped back-to-back channel beams. The model took into account the non-linear stress–strain 

behaviour of CFS material, the strength hardening effects at the round corners due to the cold-

working process, and the experimentally measured initial imperfections. The FE model was 

validated against an experimental program on a total number of 6 lipped channel back-to-back 

beams. The validated models were then used to assess the accuracy of EC3 and DSM design 

methods for standard and optimum design solutions. Based on the results, the following 

conclusions can be drawn: 

(1) The ultimate capacity of the sections predicted by the FE models was on average less than 2% 

in variation from the experimental results. The proposed FE model was also successful in 

capturing the failure shapes and predicting the compressive strength of CFS columns subjected 

to local and global buckling modes. 

(2) It was shown that, on average, the geometric imperfections could change the FE predictions 

by 6%, while the strength variation caused by the strain hardening effect at the round corners 

material in general had negligible effects (less than 2%). 

(3) The ratio of predicted to experimentally measured flexural strength was on average 0.960 

and 1.051 for DSM and EC3 design methods, respectively. The results show that DSM 

generally led to conservative predictions, while EC3 generally led to slightly unconservative 

predictions of the beam flexural strengths. 
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(4) The bending capacity of the optimised CFS beams obtained from validated FE models and 

EC3 design methods were up to 20% higher, compared to their standard lipped channel 

counterparts with the same amount of material. This demonstrated the efficiency of the 

proposed optimisation method to improve the compressive capacity of CFS sections.  

(5) The results of this study in general demonstrate the accuracy and reliability of the developed 

FE models to predict the flexural strength of CFS beams with different cross sectional shapes. 

These validated models should prove useful in practical applications for more efficient design of 

CFS beam elements. 

12.1.9 Behaviour of CFS bolted connections 

The nonlinear behaviour of CFS bolted connections under cyclic loading has been investigated 

by conducting extensive parametric geometric and material nonlinear analysis using the 

validated finite element model in ABAQUS. A simplified model that can be used to model the 

slip-bearing behaviour of a single bolt was developed. Cross-sections of different beam shapes 

that were connected in the connections have been classified according to Eurocode concept and 

nonlinear FE analysis. The factors of cross-sectional shapes, thicknesses of the beams and the 

bolt distribution configurations were analysed numerically, on the connection performance. The 

modes of failure and cyclic moment-rotation responses were compared to show the effects on 

the moment capacity, ductility, energy dissipation and damping coefficient. Based on the results, 

the following conclusions could be drawn: 

(1) The bolted-moment connections with class 1 and 2 beam sections could satisfy AISC 

requirements for Special Moment Resisting Frame (SMF), while according to the FEMA only 

class1 cross-sections were considered as SMF. It is shown that most of the class 3 cross-sections 

and 4 were not sufficient to utilize as SMF. 

(2) Using bent flange channels (folded and curved) as a beam in the connection could withstand 

maximum moment only 10% more than plain flange channels (flat and stiffened flat). Besides, 

the differences between two bent channels and the plain channels in terms of maximum flexural 

capacities were negligible. The bolts array in the web would result in the reduction of moment-

capacity of the channel-sections which were connected to the connections. 

(3) The connection ductility ratio was highly related to the cross-section classification, shape of 

the beam and the bolt distribution. Connections with folded flange section provided higher 

ductility ratio up to 55%, 45% and 30 % more than those with curved, flat and stiffened flat 

sections, respectively. In aspect of bolt configuration, it should be noted that the best 

configuration was related to cross-sectional classifications and shapes. For class 1 and 2 bent 

flange channels (folded and curved), diamond configuration had the largest ductility ratio while 

for class 3 and 4, circle configuration was considered as the best. For specimens with plain 
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flanges (flat and stiffened flat), circle configuration of the bolts provided higher ductility for all 

of the cross-section classifications. It is worth mentioning that the worst ductility ratio for all of 

the section shapes and classes belonged to the conventional square configuration of the bolts.  

(4) Using the folded flange section as beam in the connections led up to 250%, 200% and 150% 

more energy dissipation capacity in connections compared to the flat, curved and stiffened flat 

sections, respectively. In general, diamond and circle distribution of the bolts could dissipate up 

to 250% energy for beam with class 1 cross-section. Conventional square distribution of the 

bolts had less capacity in terms of energy dissipation. 

(5) For all the connections studied, a relative high equivalent viscous damping coefficient was 

presented, which means that the bolted moment connection studied here with gusset plate 

generally has a high energy damping capacity. There was significant improvement in the 

damping coefficient by using beams with larger thickness. However, cross-sectional shapes had 

a negligible effect on the damping coefficient. 

(6) Using the same thickness as that of the connected beam might lead to premature local 

buckling at gusset plate of the connections. In addition, when local buckling happened at the 

beams, the effect of gusset plate thickness on the global behaviour of the connections was 

negligible. 

(7) The effect of cross-sectional shapes was similar for connections with and without bolt 

slippage, also, using the folded flange section as a beam in the connections led to better energy 

dissipation capacity. However, the effect of bolt distribution was only obvious when class 1 

beam cross-section is used for connections with slippage. In addition, the efficient configuration 

for connection with slippage was diamond bolt distribution while it was highly related to cross-

sectional classifications and shapes. It is also shown that the connections with bolt slippage 

generally dissipated more energy than the ones without slippage. 

(8) When the slippage of the bolts was not considered, the connections with class 3 and 4 beam 

cross-sections could not satisfy the SMF and the IMF requirements. However, including the 

slippage of the bolts in bolted-moment connection could significantly improve the ductility of 

CFS bolted moment connections. 

(9) The proposed two node element, which was defined in a UEL subroutine could take into 

account the slippage, bearing deformation and the bolt hole elongation. By using the proposed 

element, good agreement has been achieved to model the moment-rotation response of the full-

scale tested connections. 
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 Recommendations for future work 12.2

Based on the research results of current thesis, the following topics can be studied in the future 

research: 

(1) Experimental study should be conducted in order to investigate the CFS folded flange cross-

section to understand their performance and validate the design equations proposed in this thesis. 

(2) Based on the proposed framework for elements optimisation, a procedure to optimise full-

scale framing system should be developed in the future to take into account both ultimate limit 

state and serviceability limit state. 

(3) CFS elements can be optimised based on other objectives such as maximum ductility, 

minimum weight design by integrating detailed nonlinear FE models in Python of ABAQUS 

and optimisation algorithms. 

(4) Apart from the numerical study on CFS beam-to-column connections in this thesis, testing 

beam-column assemblies in different configurations with different CFS beam and column 

sections should be performed to investigate the deformation capacity and performance. 

(5) Single lap bolted connections should be tested with the specified bolt torque to verify the 

connection slip-bearing action behaviour to improve the accuracy of the connection design and 

FE analyses. FE models of single lap connections verified by test results can be performed for 

parametric study on the connection behaviour with different pretension forces, bolt sizes and 

frictional behaviour. 

 (7) Developing analytical models for slip-bearing behaviour of the full-scale connections based 

on the concept of instantaneous centre of rotation for both monotonic and cyclic loading. 

(8) It has been found that the bolt distribution pattern has significant effect on the strength and 

ductility of CFS connections, the calibrated FE models on connections can be combined with 

Python in ABAQUS and optimisation algorithm to maximise the strength, energy dissipation or 

ductility. 

(9) A direct strength design curve for CFS bolted connection has been proposed in the case of 

bending, equations on the shear and combined shear and bending design can be proposed. 

(10) A program to generate imperfections in CFS elements has been developed, new seismic 

resistant structural systems such as braced frames and dual frames can be proposed and detailed 

nonlinear FE models taking into account of imperfections and material nonlinearity can be used 

to analyse the behaviour of such structural systems. 



Chapter 12. Summary and conclusions, and recommendations for future work 

251 

(11) Currently there is no generic optimisation framework for optimum design of load-bearing 

CFS systems at the structural level taking into account the post-buckling behaviour of CFS 

elements and connections. Due to high computational effort, most existing optimisation 

techniques are not suitable for optimising complex CFS structural systems with a large number 

of non-linear structural elements and connections, therefore, a performance-based optimisation 

framework (structural level) that can simplify the optimum design of complex CFS structures 

for multiple performance levels, should be developed in the future. 
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APPENDIX Computer Programmes 

A.1 Computer programme to design CFS lipped channel elements 

function [pn]=opt1(x) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% 
% Main program 
% This program is used to design of CFS members subjected to bending 

and compression 
% This is the main program and it is used for optimisation and calling 

% the sub-programs 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% 
p=200;     %total length of plate in mm 
b1=x(2)*p; 
c1=x(1)*b1; 
b2=b1; 
c2=c1; 
theta1=x(3); 
theta2=x(3); 
theta3=pi/2; 
theta4=pi/2; 
h = p-2*b1-2*c1; 
r=0.1; 
tnom=0.95;    %nominal thick 
t=tnom;         %core thick 
fyb=350; 
fu=600; 
E=210000; 
v=0.3; 
G=E/(1+v)/2; 
rm0=1.00; 
rm1=1.00; 
%%%%%%%%%%%%%%%Apply loads%%%%%%%%%%%%%%%%%%%%%%%% 
NEd=1000000; 
L=2700;%the length of the column(mm) 
%dimensions measured to the middle points of round corner--used for 

the calculation of effective cross-section properties. 
cp1=c1-t/2*tan((pi-theta1)/2)-(r+t/2)*(tan((pi-theta1)/2)-… 

sin((pi-theta1)/2)); 
bp1=b1-t/2-(r+t/2)*(tan(theta3/2)-sin(theta3/2))-… 

t/2*tan((pi-theta1)/2)-(r+t/2)*(tan((pi-theta1)/2)… 

-sin((pi-theta1)/2)); 
hp=h-t/2-(r+t/2)*(tan(theta3/2)-sin(theta3/2))… 

-t/2-(r+t/2)*(tan(theta4/2)-sin(theta4/2)); 
bp2=b2-t/2-(r+t/2)*(tan(theta4/2)-sin(theta4/2))… 

-t/2*tan((pi-theta2)/2)- …  

(r+t/2)*(tan((pi-theta2)/2)-sin((pi-theta2)/2)); 

cp2=c2-t/2*tan((pi-theta2)/2)-(r+t/2)*(tan((pi-theta2)/2)- … 

sin((pi-theta2)/2)); 
delta=0.43*(r*(pi-theta1)/pi*2+r+r+… 

r*(pi-theta2)/pi*2)/(hp+bp1+cp1+bp2+cp2); 

  
%Section properties 
numj=6; 
nume=5; 
coordinates=[bp1-cp1*cos(theta1) cp1*sin(theta1); 
              bp1 0; 
              0 0; 
              0 hp; 



APPENDIX 

271 

              bp2 hp; 
              bp2-cp2*cos(theta2) hp-cp2*sin(theta2);]; 
elements=[ 1 2 t; 
           2 3 t; 
           3 4 t; 
           4 5 t; 
           5 6 t;]; 
%dimensions should be checked; 
[F,iy,iz,i0,IXX,IYY,XP,YP,y0,z0,PSI,IY,IZ,IXXC,IYYC,IT,IWW,XY] = 

section_properties(numj,nume,coordinates,elements,delta); 
[A_eff,ratiomax,eNy,eNz] = 

compression(h,b1,b2,c1,theta1,c2,theta2,t,r,fyb,fu,E,v);               

%axial compression 
[W_eff_c,W_eff_t] = 

bending_y(h,b1,b2,c1,theta1,c2,theta2,t,r,fyb,E,v,rm0,tnom);                  

%bending in major axis 
[W_eff_z_t1,W_eff_z_c1] = 

bending_z_lip(h,b1,b2,c1,theta1,c2,theta2,t,r,tnom,fyb,E,v,rm0);        

%bending in minor axis with lips compressive 
[W_eff_z_c2,W_eff_z_t2] = 

bending_z_web(h,b1,b2,c1,c2,theta1,theta2,t,r,tnom,fyb,E,v,rm0);        

%bending in minor axis with webs compressive 

  

  
%%%%%%%%%%%%%%%%%%%%%%for global buckling%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
miu = 1.0;%length coeffient 
%%%%%%%%%%%%%flexual buckling%%%%%%%%%%%%%%%%%%%% 
%%buckling about y-y axis 
lamda1 = pi*sqrt(E/fyb); 
Lcr_y = miu*L;                                 %buckling length 
Lcr_z = miu*L;                                 %buckling length 

  
%Buckling about y-y axis 

  
lamda_y = Lcr_y/iy*(sqrt(A_eff/F)/lamda1); 
alpha_y = 0.34;                                 %for buckling curve b; 
fi_y = 0.5*(1+alpha_y*(lamda_y-0.2)+lamda_y^2); 
if lamda_y <= 0.2||NEd/(pi^2*E*IY/Lcr_y^2) <= 0.04 
    X_y = 1; 
else 
    X_y = min(1/(fi_y+sqrt(fi_y^2-lamda_y^2)),1); 
end 

  
%Buckling about z-z axis 

  
lamda_z = Lcr_z/iz*(sqrt(A_eff/F)/lamda1); 
alpha_z = 0.34;                                 %for buckling curve b; 
fi_z = 0.5*(1+alpha_z*(lamda_z-0.2)+lamda_z^2); 
if lamda_z<=0.2||NEd/(pi^2*E*IZ/Lcr_z^2)<=0.04 
    X_z=1; 
else 
    X_z=min(1/(fi_z+sqrt(fi_z^2-lamda_z^2)),1); 
end 

  
%Torsional buckling 

  
Lcr_T = 0.7*L; 
Ncr_T = (G*IT+pi^2*E*IWW/Lcr_T^2)/i0^2; 
lamda_T = sqrt(A_eff*fyb/Ncr_T); 
alpha_T=0.34;                                  %For buckling curve b; 
fi_T=0.5*(1+alpha_T*(lamda_T-0.2)+lamda_T^2); 
if lamda_T<=0.2||NEd/Ncr_T<=0.04 
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    X_T=1; 
else 
     X_T=min(1/(fi_T+sqrt(fi_T^2-lamda_T^2)),1); 
end 

  
%Torsional-flexural buckling 

  
Lcr_TF = 0.7*L; 
Ncr_y = pi^2*E*IY/Lcr_y^2; 
beta = 1-(y0/i0)^2; 
Ncr_TF = Ncr_y/2/beta*(1+Ncr_T/Ncr_y-sqrt((1-

Ncr_T/Ncr_y)^2+4*(y0/i0)^2*Ncr_T/Ncr_y)); 
lamda_TF = sqrt(A_eff*fyb/Ncr_TF); 
alpha_TF = 0.34;                              %For buckling curve b; 
fi_TF = 0.5*(1+alpha_TF*(lamda_TF-0.2)+lamda_TF^2); 
if lamda_TF <= 0.2 || NEd/Ncr_TF<=0.04 
    X_TF=1; 
else 
     X_TF=min(1/(fi_TF+sqrt(fi_TF^2-lamda_TF^2)),1); 
end 

  
%lateral-torsion buckling 
%%calculate the elastic lateral torsional buckling load 
Mcry=pi/L*sqrt(E*IZ*(G*IT+pi^2*E*IWW/L^2)); 
lamda_lt=sqrt(W_eff_c*fyb/Mcry); 
alpha_lt=0.34; 
fi_lt=0.5*(1+alpha_lt*(lamda_lt-0.2)+lamda_lt^2); 
 if lamda_lt<=0.2 
   X_lt=1;                                     %Not need check 
else 
    X_lt=min(1/(fi_lt+sqrt(fi_lt^2-lamda_lt^2)),1); 
end 

  
%%%%minimum reduction factor for relevant buckling 
%%%%%%%%%%%%%%%%%%mode%%%%%%%%%%%%%%%%%%%%%% 
X = min([X_y,X_z,X_T,X_TF]); 
%X = min([X_y,X_z]); 
% X_y 
% X_z 
% X_T 
% X_TF 
%N_Y = X_y*A_eff*fyb/rm1 
%N_Z = X_z*A_eff*fyb/rm1 
%N_T = X_T*A_eff*fyb/rm1 
%N_TF = X_TF*A_eff*fyb/rm1 
NbRd = X*A_eff*fyb/rm1; 

  

  
%%%%%%%%%%%%%%%%%%%%%% for cross-section checks 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Axial compression with dimension of "N" 
NcRd = A_eff*fyb/rm0; 
%bending in minor axis with lip compression, moment with dimension 

"N*mm" 
Mcz_Rd_com1 = W_eff_z_c1*fyb/rm0;  
Mcz_Rd_t1   =W_eff_z_t1*fyb/rm0; 
%bending in minor axis with web compression 
Mcz_Rd_com2 = W_eff_z_c2*fyb/rm0; 
Mcz_Rd_t2   = W_eff_z_t2*fyb/rm0;    

  

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%Apply load and output 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%combined compression and bending considering shift of centroidal axes 
%local 
if eNz <= 0      %the lips compressive 
       pn1=1/(1/NcRd+abs(eNz)/Mcz_Rd_com1); 
else             %the web compressive 
       pn1=1/(1/NcRd+abs(eNz)/Mcz_Rd_com2); 
end 
%global 
if eNz<=0 
       pn2=1/((1/NbRd)^0.8+(abs(eNz)/Mcz_Rd_com1)^0.8)^1.25; 
else 
       pn2=1/((1/NbRd)^0.8+(abs(eNz)/Mcz_Rd_com2)^0.8)^1.25; 
end 

  
%pn=min([NcRd NbRd]);              %without considering the shift 
pn=min([NcRd NbRd pn1 pn2])      %with considering the shift 
%pn=W_eff_c*fyb 
%W_eff_c 
%pn=min(W_eff_c*fyb,X_lt*W_eff_c*fyb) %Considering lateral-

torsionalbuckling 

 

function 

[W_eff_c,W_eff_t]=bending_y(h,b1,b2,c1,theta1,c2,theta2,t,r,fyb,E,v,rm

0,tnom) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% 
% This function is used to calculate the effective properties of the 

CFS 
% section in bending  
% The effective modulus of the section is around its major axis 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% 
%bending about y-y axis 
% %the dimension of the section centre line 
%dimensions measured to the points of intersection of their middle 
%lines--used for the calculation of effective cross-section 

properties. 
theta3=pi/2; 
theta4=theta3; 
cp1=c1-t/2*tan((pi-theta1)/2)-(r+t/2)*(tan((pi-theta1)/2)- … 

sin((pi-theta1)/2)); 
bp1=b1-t/2-(r+t/2)*(tan(theta3/2)-sin(theta3/2))- … 

t/2*tan((pi-theta1)/2)-(r+t/2)*(tan((pi-theta1)/2)- … 

sin((pi-theta1)/2)); 
hp=h-t/2-(r+t/2)*(tan(theta3/2)-sin(theta3/2))- … 

t/2-(r+t/2)*(tan(theta4/2)-sin(theta4/2)); 
bp2=b2-t/2-(r+t/2)*(tan(theta4/2)-sin(theta4/2))- … 

t/2*tan((pi-theta2)/2)-(r+t/2)*(tan((pi-theta2)/2)- … 

sin((pi-theta2)/2)); 
cp2=c2-t/2*tan((pi-theta2)/2)-(r+t/2)*(tan((pi-theta2)/2)- … 

sin((pi-theta2)/2)); 
%Section properties 
numj=6; 
nume=5; 
coordinates=[bp1-cp1*cos(theta1) cp1*sin(theta1); 
              bp1 0; 
              0 0; 
              0 hp; 
              bp2 hp; 
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              bp2-cp2*cos(theta2) hp-cp2*sin(theta2);]; 
elements=[ 1 2 t; 
           2 3 t; 
           3 4 t; 
           4 5 t; 
           5 6 t;]; 
%[numj,nume,coordinates,elements,fya,hp,bp1,bp2,cp1,cp2]=idealise_sect

ion(h,b1,b2,c1,theta1,c2,theta2,t,r,fyb,fu); 
[A,iy,iz,IY,IZ,XY,XC,YC]=normal_properties(numj,nume,coordinates,eleme

nts); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
xd1=2.0; 
xd_upper=1.0; 
while abs(xd_upper-xd1)>=0.001 
        xd1=xd_upper; 
    sigma=fyb*xd_upper; 
%STEP 1 
%calculation of the effective length of upper flange 
stress_ratio_upper=XY(5,2)/XY(4,2); 
[beff21,beff22]=effectivelength_inter(stress_ratio_upper,XY(5,1)-

XY(4,1),t,sigma); 

  
%calculation of the effective length of the edge fold 
%single edge fold stiffener 
%for upper edge fold; 
[ceff2]=effectivelengthe_single_edgestiffener(cp2,bp2,sigma,t); 

  
%STEP 2 
[IY_upper b2 

As_upper]=properties_edgestiffener(bp2,beff22,theta2,ceff2,t); 
%for upper flange 
As_bottom=0; 
kf_upper=As_bottom/As_upper; 
K1=E*t^3/(4*(1-v^2))/(b2^2*hp+b2^3+0.5*b1*b2*hp*kf_upper); %spring 

stiffness 
%calculation of the properties of stiffener 
sigma_upper=2*(K1*E*IY_upper)^(1/2)/As_upper; 
%Calculation of the reduction factor Xd for distortinal buckling 

according to 5.12 
%for upper stiffener 
[xd_upper,lamb_d_upper]=reduction_distortion(sigma_upper,fyb); 
end 

  
%Calculation of the effective properties of the web 
%Section properties 
numj=9; 
nume=8; 
coordinates=[bp1-cp1*cos(theta1) cp1*sin(theta1); 
              bp1 0; 
              0 0; 
              0 hp; 
              beff21 hp; 
              bp2-beff22 hp; 
              bp2 hp; 
              bp2-ceff2*cos(theta2) hp-ceff2*sin(theta2); 
              bp2-cp2*cos(theta2) hp-cp2*sin(theta2);]; 
elements=[ 1 2 t; 
           2 3 t; 
           3 4 t; 
           4 5 t; 
           5 6 0; 
           6 7 t*xd_upper; 
           7 8 t*xd_upper; 
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           8 9 0;]; 
[A,iy,iz,IY,IZ,XY,XC,YC]=normal_properties(numj,nume,coordinates,eleme

nts); 

  
%calculation of the effective length of web 
stress_ratio_web=XY(3,2)/XY(4,2); 
[heff1,heff2]=effectivelength_inter(stress_ratio_web, … 

XY(4,2)-XY(3,2),t,fyb); 
%%Calculation of the effective properties of the WHOLE section 
numj=11; 
nume=10; 
coordinates=[bp1-cp1*cos(theta1) cp1*sin(theta1); 
              bp1 0; 
              0 0; 
              0 YC+heff2; 
              0 hp-heff1; 
              0 hp; 
              beff21 hp; 
              bp2-beff22 hp; 
              bp2 hp; 
              bp2-ceff2*cos(theta2) hp-ceff2*sin(theta2); 
              bp2-cp2*cos(theta2) hp-cp2*sin(theta2);]; 
elements=[ 1 2 t; 
           2 3 t; 
           3 4 t; 
           4 5 0; 
           5 6 t; 
           6 7 t; 
           7 8 0; 
           8 9 t*xd_upper; 
           9 10 t*xd_upper; 
           10 11 0;]; 
[A_eff,iy_eff,iz_eff,IY_eff,IZ,XY_eff,XC_eff,YC_eff]=normal_properties

(numj,nume,coordinates,elements); 
IY_eff 
max(XY_eff(:,2)) 
%Calculation of the effective second moment of area and effective 

section modulus 
delta=0.43*(r*(pi-theta1)/pi*2+r+r+r*(pi-

theta2)/pi*2)/(hp+bp1+cp1+bp2+cp2); 
W_eff_c=IY_eff/max(XY_eff(:,2))*(1-2*delta); 
W_eff_t=IY_eff/abs(min(XY_eff(:,2)))*(1-2*delta); 

 

 
function[W_eff_z_t,W_eff_z_c]=bending_z_lip(h,b1,b2,c1,theta1,c2,theta

2,t,r,tnom,fyb,E,v,rm0) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% 
% This function is used to calculate the effective properties of the 

CFS 
% section in bending  
% The bending is around its minor axis with lips in compression 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% 
% %the dimension of the section centre line 
theta3=pi/2; 
theta4=theta3; 
cp1=c1-t/2*tan((pi-theta1)/2)-(r+t/2)*(tan((pi-theta1)/2)- … 

sin((pi-theta1)/2)); 
bp1=b1-t/2-(r+t/2)*(tan(theta3/2)-sin(theta3/2))- … 

t/2*tan((pi-theta1)/2)-(r+t/2)*(tan((pi-theta1)/2)- … 

sin((pi-theta1)/2)); 
hp=h-t/2-(r+t/2)*(tan(theta3/2)-sin(theta3/2))- … 
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t/2-(r+t/2)*(tan(theta4/2)-sin(theta4/2)); 
bp2=b2-t/2-(r+t/2)*(tan(theta4/2)-sin(theta4/2))- … 

t/2*tan((pi-theta2)/2)-(r+t/2)*(tan((pi-theta2)/2)- … 

sin((pi-theta2)/2)); 
cp2=c2-t/2*tan((pi-theta2)/2)-(r+t/2)*(tan((pi-theta2)/2)- … 

sin((pi-theta2)/2)); 
%Section properties 
numj=6; 
nume=5; 
coordinates=[bp1-cp1*cos(theta1) cp1*sin(theta1); 
              bp1 0; 
              0 0; 
              0 hp; 
              bp2 hp; 
              bp2-cp2*cos(theta2) hp-cp2*sin(theta2);]; 
elements=[ 1 2 t; 
           2 3 t; 
           3 4 t; 
           4 5 t; 
           5 6 t;]; 
%[numj,nume,coordinates,elements,fya,hp,bp1,bp2,cp1,cp2]=idealise_sect

ion(h,b1,b2,c1,theta1,c2,theta2,t,r,fyb,fu); 
[A,iy,iz,IY,IZ,XY,XC,YC]=normal_properties(numj,nume,coordinates,eleme

nts); 
%STEP 1 
xd1=2.0; 
xd_upper=1.0; 
while abs(xd_upper-xd1)>=0.001 
        xd1=xd_upper; 
    sigma=fyb*xd_upper; 
%calculation of the effective length of the edge fold 
%single edge fold stiffener 
%for bottom edge fold 
[ceff1]=effectivelengthe_single_edgestiffener(cp1,bp1,sigma,t); 
%for upper edge fold 
[ceff2]=effectivelengthe_single_edgestiffener(cp2,bp2,sigma,t); 

  
%%Calculation of the effective length of the webs 
%Section properties to calculate the stress ratio 
numj=8; 
nume=7; 
coordinates=[bp1-cp1*cos(theta1) cp1*sin(theta1); 
             bp1-ceff1*cos(theta1) ceff1*sin(theta1); 
              bp1 0; 
              0 0; 
              0 hp; 
              bp2 hp; 
              bp2-ceff2*cos(theta2) hp-ceff2*sin(theta2); 
              bp2-cp2*cos(theta2) hp-cp2*sin(theta2);]; 
elements=[ 1 2 0; 
           2 3 t; 
           3 4 t; 
           4 5 t; 
           5 6 t; 
           6 7 t 
           7 8 0]; 
[A,iy,iz,IY,IZ,XY,XC,YC]=normal_properties(numj,nume,coordinates,eleme

nts); 
%effective length of upper web 
stress_ratio_web2=XY(5,1)/XY(6,1); 
[be22,be21]=effectivelength_inter(stress_ratio_web2,XY(6,1)-

XY(5,1),t,sigma); 
%effective length of bottom web 
stress_ratio_web1=XY(4,1)/XY(3,1); 
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[be12,be11]=effectivelength_inter(stress_ratio_web1,XY(3,1)-

XY(4,1),t,sigma); 
%STEP 2 
[IY_upper b2 

As_upper]=properties_edgestiffener(bp2,be22,theta2,ceff2,t); 
[IY_bottom b1 

As_bottom]=properties_edgestiffener(bp1,be12,theta1,ceff1,t); 

  
%for upper flange 
kf_upper=As_bottom/As_upper; 
K1=E*t^3/(4*(1-v^2))/(b2^2*hp+b2^3+0.5*b1*b2*hp*kf_upper); %spring 

stiffness 
%calculation of the properties of stiffener 
sigma_upper=2*(K1*E*IY_upper)^(1/2)/As_upper; 
%for bottom flange 
kf_bottom=As_upper/As_bottom; 
K2=E*t^3/(4*(1-v^2))/(b1^2*hp+b1^3+0.5*b1*b2*hp*kf_bottom); %spring 

stiffness 
%calculation of the properties of stiffener 
sigma_bottom=2*(K2*E*IY_bottom)^(1/2)/As_bottom; 
%Calculation of the reduction factor Xd for distortinal buckling 

according 
%to 5.12 
%for upper stiffener 
[xd_upper,lamb_d_upper]=reduction_distortion(sigma_upper,fyb); 
%for bottom stiffener 
[xd_bottom,lamb_d_bottom]=reduction_distortion(sigma_bottom,fyb); 

  
end 

  
% xd_bottom=1;xd_upper=1; 
%%Calculation of the effective properties of the WHOLE section 
numj=12; 
nume=11; 
coordinates=[bp1-cp1*cos(theta1) cp1*sin(theta1); 
             bp1-ceff1*cos(theta1) ceff1*sin(theta1); 
              bp1 0; 
              bp1-be12 0; 
              XC+be11 0; 
              0 0; 
              0 hp; 
              XC+be21 hp; 
              bp2-be22 hp; 
              bp2 hp; 
              bp2-ceff2*cos(theta2) hp-ceff2*sin(theta2); 
              bp2-cp2*cos(theta2) hp-cp2*sin(theta2);]; 
elements=[ 1 2 0; 
           2 3 t*xd_bottom; 
           3 4 t*xd_bottom; 
           4 5 0; 
           5 6 t; 
           6 7 t; 
           7 8 t; 
           8 9 0; 
           9 10 t*xd_upper; 
           10 11 t*xd_upper; 
           11 12 0;]; 
[A_eff,iy_eff,iz_eff,IY_eff,IZ_eff,XY_eff,XC_eff,YC_eff]=normal_proper

ties(numj,nume,coordinates,elements); 
%calculation of section module 
delta=0.43*(r*(pi-theta1)/pi*2+r+r+r*(pi-

theta2)/pi*2)/(hp+bp1+cp1+bp2+cp2); 
W_eff_z_c=IZ_eff/max(XY_eff(:,1))*(1-2*delta); 
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W_eff_z_t=IZ_eff/abs(min(XY_eff(:,1)))*(1-2*delta); 

 

function 

[W_eff_z_c,W_eff_z_t]=bending_z_web(h,b1,b2,c1,c2,theta1,theta2,t,r,tn

om,fyb,E,v,rm0) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% 
% This function is used to calculate the effective properties of the 

CFS 
% section in bending  
% The bending is around its minor axis with webs in compression 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% 
theta3=pi/2; 
theta4=theta3; 
cp1=c1-t/2*tan((pi-theta1)/2)-(r+t/2)*(tan((pi-theta1)/2)- … 

sin((pi-theta1)/2)); 
bp1=b1-t/2-(r+t/2)*(tan(theta3/2)-sin(theta3/2))- … 

t/2*tan((pi-theta1)/2)-(r+t/2)*(tan((pi-theta1)/2)- … 

sin((pi-theta1)/2)); 
hp=h-t/2-(r+t/2)*(tan(theta3/2)-sin(theta3/2))- … 

t/2-(r+t/2)*(tan(theta4/2)-sin(theta4/2)); 
bp2=b2-t/2-(r+t/2)*(tan(theta4/2)-sin(theta4/2))- … 

t/2*tan((pi-theta2)/2)-(r+t/2)*(tan((pi-theta2)/2)- … 

sin((pi-theta2)/2)); 
cp2=c2-t/2*tan((pi-theta2)/2)-(r+t/2)*(tan((pi-theta2)/2)- … 

sin((pi-theta2)/2)); 
%Section properties 
numj=6; 
nume=5; 
coordinates=[bp1-cp1*cos(theta1) cp1*sin(theta1); 
              bp1 0; 
              0 0; 
              0 hp; 
              bp2 hp; 
              bp2-cp2*cos(theta2) hp-cp2*sin(theta2);]; 
elements=[ 1 2 t; 
           2 3 t; 
           3 4 t; 
           4 5 t; 
           5 6 t;]; 
%[numj,nume,coordinates,elements,fya,hp,bp1,bp2,cp1,cp2]=idealise_sect

ion(h,b1,b2,c1,theta1,c2,theta2,t,r,fyb,fu); 
[A,iy,iz,IY,IZ,XY,XC,YC]=normal_properties(numj,nume,coordinates,eleme

nts); 
%Calculation of the effective width of compressive plate 
stress_ratio_web=1; 
[heff1,heff2]=effectivelength_inter(stress_ratio_web,XY(4,2)-

XY(3,2),t,fyb); 
%Calculation of the effective properties of the web 
%Section properties 
numj=8; 
nume=7; 
coordinates=[bp1-cp1*cos(theta1) cp1*sin(theta1); 
              bp1 0; 
              0 0; 
              0 heff1; 
              0 hp-heff2; 
              0 hp; 
              bp2 hp; 
              bp2-cp2*cos(theta2) hp-cp2*sin(theta2);]; 
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elements=[ 1 2 t; 
           2 3 t; 
           3 4 t; 
           4 5 0; 
           5 6 t; 
           6 7 t; 
           7 8 t;]; 
[A,iy,iz,IY,IZ,XY,XC,YC]=normal_properties(numj,nume,coordinates,eleme

nts); 
%effective length of upper web 
stress_ratio_web2=XY(7,1)/XY(6,1); 
[be21,be22]=effectivelength_inter(stress_ratio_web2,XY(7,1)-

XY(6,1),t,fyb); 
%effective length of bottom web 
stress_ratio_web1=XY(2,1)/XY(3,1); 
[be11,be12]=effectivelength_inter(stress_ratio_web1,XY(2,1)-

XY(3,1),t,fyb); 
%%Calculation of the effective properties of the WHOLE section 
numj=12; 
nume=11; 
coordinates_eff=[bp1-cp1*cos(theta1) cp1*sin(theta1); 
              bp1 0; 
              XC-be12 0; 
              be11 0; 
              0 0; 
              0 heff1; 
              0 hp-heff2; 
              0 hp; 
              be21 hp; 
              XC-be22 hp; 
              bp2 hp; 
              bp2-cp2*cos(theta2) hp-cp2*sin(theta2);]; 
elements_eff=[ 1 2 t; 
           2 3 t; 
           3 4 0; 
           4 5 t; 
           5 6 t; 
           6 7 0; 
           7 8 t; 
           8 9 t; 
           9 10 0; 
           10 11 t; 
           11 12 t;]; 
[A_eff,iy_eff,iz_eff,IY_eff,IZ_eff,XY_eff,XC_eff,YC_eff]=normal_proper

ties(numj,nume,coordinates_eff,elements_eff); 
delta=0.43*(r*(pi-theta1)/pi*2+r+r+r*(pi-

theta2)/pi*2)/(hp+bp1+cp1+bp2+cp2); 
W_eff_z_c=IZ_eff/abs(min(XY_eff(:,1)))*(1-2*delta); 
W_eff_z_t=IZ_eff/max((XY_eff(:,1)))*(1-2*delta); 

 

 
function 

[A_eff,ratiomax,eNy,eNz]=compression(h,b1,b2,c1,theta1,c2,theta2,t,r,f

yb,fu,E,v) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% 
% This function is used to calculate the effective properties of the 

CFS 
% section in compression  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% 
% % %the dimension of the section centre line 
theta3=pi/2; 
theta4=theta3; 
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cp1=c1-t/2*tan((pi-theta1)/2)-(r+t/2)*(tan((pi-theta1)/2)- … 

sin((pi-theta1)/2)); 
bp1=b1-t/2-(r+t/2)*(tan(theta3/2)-sin(theta3/2))-t/2*tan((pi-

theta1)/2)-(r+t/2)*(tan((pi-theta1)/2)-sin((pi-theta1)/2)); 
hp=h-t/2-(r+t/2)*(tan(theta3/2)-sin(theta3/2))-t/2-

(r+t/2)*(tan(theta4/2)-sin(theta4/2)); 
bp2=b2-t/2-(r+t/2)*(tan(theta4/2)-sin(theta4/2))-t/2*tan((pi-

theta2)/2)-(r+t/2)*(tan((pi-theta2)/2)-sin((pi-theta2)/2)); 
cp2=c2-t/2*tan((pi-theta2)/2)-(r+t/2)*(tan((pi-theta2)/2)-sin((pi-

theta2)/2)); 
%Section properties 
numj=6; 
nume=5; 
coordinates=[bp1-cp1*cos(theta1) cp1*sin(theta1); 
              bp1 0; 
              0 0; 
              0 hp; 
              bp2 hp; 
              bp2-cp2*cos(theta2) hp-cp2*sin(theta2);]; 
elements=[ 1 2 t; 
           2 3 t; 
           3 4 t; 
           4 5 t; 
           5 6 t;]; 
[A,iy,iz,IY,IZ,XY,XC,YC]=normal_properties(numj,nume,coordinates,eleme

nts); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%compression 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Calculation of the stress ratio of web 
stress_ratio_web=1; 
[heff1,heff2]=effectivelength_inter(stress_ratio_web,hp,t,fyb); 
%calculation of the effective length of web 
kfi=4; 
lamb_web=hp/t/(28.4*sqrt(235*kfi/fyb)); 
ratio_3=lamb_web/0.673; 

  
%STEP 1 
xd1=2.0; 
xd_upper=1.0; 
while abs(xd_upper-xd1)>=0.001 
 xd1=xd_upper; 
sigma=fyb*xd_upper; 
%calculation of the effective length of bottom flange 
stress_ratio_bott=1; 
[beff11,beff12]=effectivelength_inter(stress_ratio_bott,bp1,t,sigma); 
%calculation of the effective length of upper flange 
stress_ratio_upper=1; 
[beff21,beff22]=effectivelength_inter(stress_ratio_upper,bp2,t,sigma); 

  
%calculation of the effective length of the edge fold 
%single edge fold stiffener 
%for upper edge fold 
[ceff2]=effectivelengthe_single_edgestiffener(cp2,bp2,sigma,t); 
%for bottom edge fold 
[ceff1]=effectivelengthe_single_edgestiffener(cp1,bp1,sigma,t); 

  
%STEP 2 
[IY_upper b2 

As_upper]=properties_edgestiffener(bp2,beff22,theta2,ceff2,t); 
[IY_bottom b1 

As_bottom]=properties_edgestiffener(bp1,beff12,theta1,ceff1,t); 
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%for upper flange 
kf_upper=As_bottom/As_upper; 
K1=E*t^3/(4*(1-v^2))/(b2^2*hp+b2^3+0.5*b1*b2*hp*kf_upper); %spring 

stiffness 
%calculation of the properties of stiffener 
sigma_upper=2*(K1*E*IY_upper)^(1/2)/As_upper; 

  
%for bottom flange 
kf_bottom=As_upper/As_bottom; 
K2=E*t^3/(4*(1-v^2))/(b1^2*hp+b1^3+0.5*b1*b2*hp*kf_bottom); %spring 

stiffness 
%calculation of the properties of stiffener 
sigma_bottom=2*(K2*E*IY_bottom)^(1/2)/As_bottom; 

  
%Calculation of the reduction factor Xd for distortinal buckling 

according 
%to 5.12 
%for upper stiffener 
[xd_upper,lamb_d_upper]=reduction_distortion(sigma_upper,sigma); 
ratio_1=lamb_d_upper/0.65; 
%for bottom stiffener 
[xd_bottom,lamb_d_bottom]=reduction_distortion(sigma_bottom,sigma); 
ratio_2=lamb_d_bottom/0.65; 
%As_bottom_redu=As_stiff_bottom*xd_bottom*fyb/rm0/fyb; 
%t_redu_bottom=t*xd_bottom; 
%Calculation of the effective properties of the web 
end 

  
%%Calculation of the effective properties of the WHOLE section 
new_numj=14; 
new_nume=13; 
new_coordinates=[bp1-cp1*cos(theta1) cp1*sin(theta1); 
                 bp1-ceff1*cos(theta1) ceff1*sin(theta1); 
                 bp1 0; 
                 bp1-beff12 0; 
                 beff11 0; 
                 0 0; 
                 0 heff1 
                 0 hp-heff2 
                 0 hp; 
                 beff21 hp; 
                 bp2-beff22 hp; 
                 bp2 hp; 
                 bp2-ceff2*cos(theta2) hp-ceff2*sin(theta2); 
                 bp2-cp2*cos(theta2) hp-cp2*sin(theta2);]; 
new_elements=[ 1 2 0; 
               2 3 t*xd_bottom; 
               3 4 t*xd_bottom; 
               4 5 0; 
               5 6 t; 
               6 7 t; 
               7 8 0; 
               8 9 t; 
               9 10 t; 
               10 11 0; 
               11 12 t*xd_upper; 
               12 13 t*xd_upper; 
               13 14 0;]; 
[A_eff,iy_eff,iz_eff,IY_eff,IZ_eff,XY_eff,XC_eff,YC_eff]=normal_proper

ties(new_numj,new_nume,new_coordinates,new_elements); 
delta=0.43*(r*(pi-theta1)/pi*2+r+r+r*(pi-

theta2)/pi*2)/(hp+bp1+cp1+bp2+cp2); 
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A_eff=A_eff*(1-delta); 
%Calculation of the shift of controidal axis 
eNz = XC_eff-XC; %shif of centroidal z-z axis 
eNy = YC_eff-YC; %shif of centroidal y-y axis 
ratiomax=max([ratio_1 ratio_2 ratio_3]); 

 

function [be1,be2]=effectivelength_inter(stress_ratio,b,t,fyb) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% 
% This function is used to calculate the effective properties of the 

%CFS single/internal plate element in compression  
% The plate is supported at two edges 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% 
if stress_ratio==1 
    kfi=4; 
elseif stress_ratio>=0&&stress_ratio<1 
    kfi=8.2/(1.05+stress_ratio); 
elseif stress_ratio>=-1&&stress_ratio<0 
    kfi=7.81-6.29*stress_ratio+9.78*stress_ratio^2; 
else 
    kfi=5.98*(1-stress_ratio)^2;   
end 
lamdap=b/t/(28.4*sqrt(235*kfi/fyb)); %relative slenderness 
if lamdap<=0.673 
    ro=1;%width reduction factor for internal compression elements 
else 
    ro=min((lamdap-0.055*(3+stress_ratio))/lamdap^2,1);%width 

reduction factor for internal compression elements 
end 
if stress_ratio==1 
    beff=ro*b; 
    be1=0.5*beff; 
    be2=0.5*beff; 
elseif stress_ratio>=0&&stress_ratio<1 
    beff=ro*b; 
    be1=2/(5-stress_ratio)*beff; 
    be2=beff-be1; 
else 
    beff=ro*b/(1-stress_ratio); 
    be1=0.4*beff; 
    be2=beff-be1;   
end 

 
function [ceff]=effectivelengthe_single_edgestiffener(bpc,bp,fyb,t) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% 
% This function is used to calculate the effective properties of the 

CFS 
% edge stiffener in compression 
% The plate is supported at one edges 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%% 
if bpc/bp<=0.35 
    kfi=0.5; 
elseif bpc/bp>0.35 
    r4=min(bpc/bp,0.6); 
    kfi=0.5+0.83*(r4-0.35)^(2/3); 
end 
lambda=bpc/t/(28.4*sqrt(235*kfi/fyb)); %relative slenderness 
if lambda<=0.748 
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    ro=1;%width reduction factor for outstand compression elements 
else 
    ro=min((lambda-0.188)/lambda^2,1);%width reduction factor for 

outstand compression elements 
end 
ceff=ro*bpc;           %effective width of single edge fold 

 
function 

[F,iy,iz,IY,IZ,XY,XC,YC]=normal_properties(numj,nume,coordinates,eleme

nts) 
%This program is to calculate the properties of arbitrary prismatic 

cross section 
%%%%%%%%%%input data%%%%%%%%%%%%%% 
%numj is the number of joints of arbitrary section 
%nume is the number of elements of arbitrary prismatic cross section 
%numij is the number of internal joints 
%array [a] is the coordinates with regard to arbitrary origin 
%c=[xi yi ti] represents the start, end joint number and thickness of 

each  
%elements; 
%%%%%%%%%%output data%%%%%%%%%%%%%% 
% F is the total cross sectional area 
% IXX,IYY,IXY are the moments of inertia about original X,Y axis and 

product of 
% inertia 
% PSI is the angle in RAIDANS to principle axis 
% IY,IZ are the moments of inertia about principle Y and Z axis. 
% numj=10; %number of joints 
% nume=9; %number of elements 
%XC YC is the position of centroid 

 
x=coordinates(:,1);% store the x-coordinates of the joints 
y=coordinates(:,2);% store the y=coordinates of the joints 
n1=elements(:,1);%first joint number of elements 
n2=elements(:,2);%second joint number of elements 
tt=elements(:,3);%store the thickness for every element 

  
F=0;IXX=0;IYY=0;IXY=0;SX=0;SY=0;dd=zeros(1,nume); 
for i=1:nume 
    dd(i)=sqrt((x(n2(i))-x(n1(i)))^2+(y(n2(i))-y(n1(i)))^2); 
    [ni,nj,y2,y1,x2,x1,d,t,s,c]=com(n1(i),n2(i),x(n2(i)),x(n1(i)), … 

y(n2(i)),y(n1(i)),dd(i),tt(i)); 
    F=F+d*t; 
    IXX=IXX+((x2+x1)/2)^2*d*t+d*t^3/12*c^2+t*d^3*s^2/12; 
    IYY=IYY+((y2+y1)/2)^2*d*t+d*t^3/12*s^2+t*d^3*c^2/12; 
    IXY=IXY+(y1+y2)*(x1+x2)/4*d*t+(d*t^3/12-d^3*t/12)*s*c; 
    SX=SX+x1*d*t-0.5*d^2*t*s; 
    SY=SY+y1*d*t+0.5*d^2*t*c; 
end 
XC=SX/F; 
YC=SY/F; 
IXXC=IXX-XC^2*F; 
IYYC=IYY-YC^2*F; 
XN=zeros(1,numj);YN=zeros(1,numj); 
for i=1:numj 
    XIC=x(i)-XC; 
    YIC=y(i)-YC; 
    XN(i)=XIC; 
    YN(i)=YIC; 
end 
IY=IYYC; 
IZ=IXXC; 
iy=sqrt(IY/F); 
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iz=sqrt(IZ/F); 
XY=[XN',YN']; 

  
function [NI,NJ,Y2,Y1,X2,X1,D,T,S,C]=com(N1,N2,XNJ,XNI,YNJ,YNI,DD,TT) 
NI=N1; 
NJ=N2; 
X2=XNJ; 
X1=XNI; 
Y2=YNJ; 
Y1=YNI; 
D=max([DD,0.00000000001]); 
T=TT; 
S=(X1-X2)/D; 
C=(Y2-Y1)/D; 
end 
end 

 
function [xd,lamb_d]=reduction_distortion(sigma,fyb) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%This program is to calculate the reduction factor due to 
%distortional buckling 
lamb_d=(fyb/sigma)^(1/2); 
if lamb_d<=0.65 
    xd=1.0; 
elseif lamb_d>0.65&&lamb_d<1.38 
    xd=1.47-0.723*lamb_d; 
else 
    xd=0.66/lamb_d; 
end 

 

function [IY b F]=properties_edgestiffener(bp,beff,theta,ceff,tt,r) 
%This function is to calculate the properties of an edge stiffener 

assembly. 
 numj=3; %number of joints 
 nume=2; %number of elements 
 coordinates=[0 0; 
              ceff*cos(theta) ceff*sin(theta); 
              -beff+ceff*cos(theta) ceff*sin(theta);]; 
 elements=[1 2 tt; 
           2 3 tt;]; 
x=coordinates(:,1);% store the x-coordinates of the joints 
y=coordinates(:,2);% store the y=coordinates of the joints 
n1=elements(:,1);%first joint number of elements 
n2=elements(:,2);%second joint number of elements 
tt=elements(:,3);%store the thickness for every element 

  
F=0;IXX=0;IYY=0;IXY=0;SX=0;SY=0;dd=zeros(1,nume); 
for i=1:nume 
    dd(i)=sqrt((x(n2(i))-x(n1(i)))^2+(y(n2(i))-y(n1(i)))^2); 
    

[ni,nj,y2,y1,x2,x1,d,t,s,c]=com(n1(i),n2(i),x(n2(i)),x(n1(i)),y(n2(i))

,y(n1(i)),dd(i),tt(i)); 
    F=F+d*t; 
    IXX=IXX+((x2+x1)/2)^2*d*t+d*t^3/12*c^2+t*d^3*s^2/12; 
    IYY=IYY+((y2+y1)/2)^2*d*t+d*t^3/12*s^2+t*d^3*c^2/12; 
    IXY=IXY+(y1+y2)*(x1+x2)/4*d*t+(d*t^3/12-d^3*t/12)*s*c; 
    SX=SX+x1*d*t-0.5*d^2*t*s; 
    SY=SY+y1*d*t+0.5*d^2*t*c; 
end 
XC=SX/F; 
YC=SY/F; 
IXXC=IXX-XC^2*F; 
IYYC=IYY-YC^2*F; 
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XN=zeros(1,numj);YN=zeros(1,numj); 
for i=1:numj 
    XIC=x(i)-XC; 
    YIC=y(i)-YC; 
    XN(i)=XIC; 
    YN(i)=YIC; 
end 
IY=IYYC; 
IZ=IXXC; 
XY=[XN',YN']; 
b=bp-XY(2,1); 
delta=0.43*(r*theta/pi*2)/(beff+ceff); 
F=F*(1-delta); 
IY=IY*(1-2*delta); 
end 
function [NI,NJ,Y2,Y1,X2,X1,D,T,S,C]=com(N1,N2,XNJ,XNI,YNJ,YNI,DD,TT) 
NI=N1; 
NJ=N2; 
X2=XNJ; 
X1=XNI; 
Y2=YNJ; 
Y1=YNI; 
D=max([DD,0.00000000001]);; 
T=TT; 
S=(X1-X2)/D; 
C=(Y2-Y1)/D; 
end 
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A.2 Computer programme to incorporate imperfections for CFS column 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%This program is used to generate imperfection for tested column 
%The imperfections were measured using a specially designed facility. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
c1=17.72; 
theta1=pi-pi/2; 
b1=64.45; 
theta2=pi/2; 
h=174.94; 
b2=64.09; 
theta3=pi/2; 
c2=18.21; 
theta4=pi-pi/2; 
r=3.2; 
t=1.51; 
%central line dimensions 
c11=c1 
b11=b1 
h11=h 
b22=b2 
c22=c2 
cp11=c1-t/2*tan(theta1/2); 
bp11=b1-t/2*tan(theta1/2)-t/2*tan(theta2/2); 
hp11=h-t/2*tan(theta2/2)-t/2*tan(theta3/2); 
bp22=b2-t/2*tan(theta3/2)-t/2*tan(theta4/2); 
cp22=c2-t/2*tan(theta4/2); 

  
nplate=5; %number of plates 
ncorner=nplate-1;%nuber of corners 
r=[r,r,r,r]; 
beta=[theta1,theta2,theta3,theta4]; 
beta=[-pi+beta(1),beta(1),beta(2),beta(3),beta(4)]; 
NR=[2,2,2,2];%the number of elements for every round corner. 
NP=[2,6,18,6,2];%the number of elements for every flat plate. 
L=[c11,b11,h11,b22,c22];%the length of every plate 
nodeco=zeros((sum(NR(:))+sum(NP)+1),2);% 
%nodeco(1,:)=[0,0] 
alpha=beta(1); 
k=1; 
for i=1:nplate-1 
    for j=1:NP(i) 
        nodeco(k+j,1:2)=[nodeco(k+j-

1,1)+L(i)/NP(i)*cos(alpha),nodeco(k+j-1,2)+L(i)/NP(i)*sin(alpha)]; 
    end 
    k=k+NP(i); 
    alpha=alpha-beta(i+1)/2/NR(i); 
    LL=abs(2*r(i)*sin(beta(i+1)/2/NR(i))); 
    k=k+1; 
    nodeco(k,1:2)=[nodeco(k-1,1)+LL*cos(alpha),nodeco(k-

1,2)+LL*sin(alpha)]; 

     
    for j=1:(NR(i)-1) 
        alpha=alpha-beta(i+1)/NR(i); 
        nodeco(k+j,:)=[nodeco(k+j-1,1)+LL*cos(alpha), … 

nodeco(k+j-1,2)+LL*sin(alpha)]; 
    end 
    k=k+NR(i)-1; 
    alpha=alpha-beta(i+1)/2/NR(i); 
end 
  for j=1:NP(nplate) 
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        nodeco(k+j,1:2)=[nodeco(k+j-

1,1)+L(i+1)/NP(length(NP))*cos(alpha),nodeco(k+j-

1,2)+L(i+1)/NP(length(NP))*sin(alpha)]; 
  end 
%plot(nodeco(:,1),nodeco(:,2),'.'); 
for i=1:length(nodeco(:,1)) 
    nodeco(i,2)=nodeco(i,2)-(h11/2-c11); 
end 

  
nodeco2=nodeco; 
%¶ÁÈëimperfectionÊý¾Ý 
hei=1000;%length of the column 
A = xlsread('imperfection.xlsx'); 
Alen=0:1:length(A(:,1))-1; 
meshsize=10;%this is the size of mesh in the longitudinal direction 
heiin=0:meshsize:1000; 
nodeco3d=zeros((sum(NR(:))+sum(NP)+1)*length(heiin),3); 

  
%Scaling facor 
sf=200.0; 
terms=10; 
[a,b,yfit] = Fseries(Alen,A(:,1)',terms);  
yi_spline1=-sf*Fseriesval(a,b,heiin);  

  
[a,b,yfit] = Fseries(Alen,A(:,2)',terms);  
yi_spline2=-sf*Fseriesval(a,b,heiin);  

  
[a,b,yfit] = Fseries(Alen,A(:,3)',terms);  
yi_spline3=-sf*Fseriesval(a,b,heiin); 

  
[a,b,yfit] = Fseries(Alen,A(:,4)',terms);  
yi_spline4=-sf*Fseriesval(a,b,heiin); 

  
[a,b,yfit] = Fseries(Alen,A(:,5)',terms);  
yi_spline5=-sf*Fseriesval(a,b,heiin); 

  
[a,b,yfit] = Fseries(Alen,A(:,6)',terms);  
yi_spline6=sf*Fseriesval(a,b,heiin); 

  
[a,b,yfit] = Fseries(Alen,A(:,7)',terms);  
yi_spline7=sf*Fseriesval(a,b,heiin); 

  
for i=1:length(heiin) 

  
nodeco=nodeco2; 
%for the first lip 
nodeco(1:NP(1),2)=nodeco(1:NP(1),2)+interp1([-b11-r(1) 0],[0 

yi_spline1(i)],nodeco(1:NP(1),1)','spline')'; 
%  
nodeco(NP(1)+1:NP(1)+NR(1),2)=nodeco(NP(1)+1:NP(1)+NR(1),2)+ … 

interp1([-b11-r(1) 0],[0 

yi_spline1(i)],nodeco(NP(1)+1:NP(1)+NR(1),1)','spline')'; 

  
nodeco((NP(1)+NR(1)+1):(NP(1)+NR(1)+NP(2)),2)=nodeco((NP(1)+NR(1)+1):(

NP(1)+NR(1)+NP(2)),2) ..., 
    +interp1([-b11-r(1) 0],[0 

yi_spline1(i)],nodeco((NP(1)+NR(1)+1):(NP(1)+NR(1)+NP(2)),1)','spline'

)'; 
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nodeco(length(nodeco(:,1))-NP(5)-NR(4)-NP(4):length(nodeco(:,1))-

NP(5)-NR(4),2)=nodeco(length(nodeco(:,1))-NP(5)-NR(4)-

NP(4):length(nodeco(:,1))-NP(5)-NR(4),2) ..., 
    +interp1([-b22-r(4) 0],[0 

yi_spline7(i)],nodeco(length(nodeco(:,1))-NP(5)-NR(4)-

NP(4):length(nodeco(:,1))-NP(5)-NR(4),1)','spline')'; 

  

  
nodeco((NP(1)+NR(1)+NP(2)+NR(2)+2):(NP(1)+NR(1)+NP(2)+NR(2)+NP(3)),1)=

nodeco((NP(1)+NR(1)+NP(2)+NR(2)+2):(NP(1)+NR(1)+NP(2)+NR(2)+NP(3)),1) 

..., 
    +interp1([-h11/2 0 h11/2],[yi_spline3(i) yi_spline4(i) 

yi_spline5(i)],nodeco((NP(1)+NR(1)+NP(2)+NR(2)+2):(NP(1)+NR(1)+NP(2)+N

R(2)+NP(3)),2)','spline')'; 

  
 nodeco3d((sum(NR(:))+sum(NP)+1)*(i-

1)+1:(sum(NR(:))+sum(NP)+1)*i,1:2)=nodeco; 
 nodeco3d((sum(NR(:))+sum(NP)+1)*(i-

1)+1:(sum(NR(:))+sum(NP)+1)*i,3)=ones((sum(NR(:))+sum(NP)+1),1)*(i-

1)*meshsize; 

  

  
end 

  
scatter3(nodeco3d(:,1),nodeco3d(:,2),nodeco3d(:,3),4,'o'); 
axis equal; 
for j=1:length(heiin) 
 for i=1:length(nodeco(:,1))-1 
     hold on; 
    plot3(nodeco3d(i+(sum(NR(:))+sum(NP)+1)*(j-

1):i+1+(sum(NR(:))+sum(NP)+1)*(j-

1),1),nodeco3d(i+(sum(NR(:))+sum(NP)+1)*(j-

1):i+1+(sum(NR(:))+sum(NP)+1)*(j-1),2), ..., 
        nodeco3d(i+(sum(NR(:))+sum(NP)+1)*(j-

1):i+1+(sum(NR(:))+sum(NP)+1)*(j-1),3),'b','LineWidth',1); 
 end 
end 
for j=1:length(heiin)-1 
 for i=1:length(nodeco(:,1)) 
     hold on; 
    plot3(nodeco3d([i+(sum(NR(:))+sum(NP)+1)*(j-1) 

i+(sum(NR(:))+sum(NP)+1)*j],1),nodeco3d([i+(sum(NR(:))+sum(NP)+1)*(j-

1) i+(sum(NR(:))+sum(NP)+1)*j],2), ..., 
        nodeco3d([i+(sum(NR(:))+sum(NP)+1)*(j-1) 

i+(sum(NR(:))+sum(NP)+1)*j],3),'b','LineWidth',1); 
 end 
end 
elem=zeros((sum(NR(:))+sum(NP))*(length(heiin)-1),5); 
for j=1:length(heiin)-1 
 for i=1:length(nodeco(:,1))-1 
%     %axis off; 
    %axis([min(nodeco(:,1))-4, max(nodeco(:,1))+4, min(nodeco(:,2))-

4,max(nodeco(:,2))+4]); 
    %axis equal; 
    elem((sum(NR(:))+sum(NP))*(j-1)+i,1:5)=[(sum(NR(:))+sum(NP))*(j-

1)+i i+(sum(NR(:))+sum(NP)+1)*(j-1) i+(sum(NR(:))+sum(NP)+1)*j 

i+1+(sum(NR(:))+sum(NP)+1)*j i+1+(sum(NR(:))+sum(NP)+1)*(j-1)]; 
    ax=nodeco3d([i+(sum(NR(:))+sum(NP)+1)*(j-1) 

i+(sum(NR(:))+sum(NP)+1)*j i+1+(sum(NR(:))+sum(NP)+1)*j 

i+1+(sum(NR(:))+sum(NP)+1)*(j-1)],1); 
    ay=nodeco3d([i+(sum(NR(:))+sum(NP)+1)*(j-1) 

i+(sum(NR(:))+sum(NP)+1)*j i+1+(sum(NR(:))+sum(NP)+1)*j 

i+1+(sum(NR(:))+sum(NP)+1)*(j-1)],2); 
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    az=nodeco3d([i+(sum(NR(:))+sum(NP)+1)*(j-1) 

i+(sum(NR(:))+sum(NP)+1)*j i+1+(sum(NR(:))+sum(NP)+1)*j 

i+1+(sum(NR(:))+sum(NP)+1)*(j-1)],3); 
    fill3(ax,ay,az,'red') 
    hold on; 
 end 
end 
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A.3 Computer programme to incorporate imperfections for CFS beam 

%This program is used to generate imperfection for tested beam. 
%The imperfections were measured using a specially designed facility. 
c1=17.72; 
theta1=pi-pi/2; 
b1=64.45; 
theta2=pi/2; 
h=174.94; 
b2=64.09; 
theta3=pi/2; 
c2=18.21; 
theta4=pi-pi/2; 
r=3.2; 
t=1.51; 
%central line dimensions 
c11=c1; 
b11=b1; 
h11=h; 
b22=b2; 
c22=c2; 
%dimensions measured to the points of intersection of their middle 
%lines--used for the calculation of effective cross-section 

properties. 
cp11=c1-t/2*tan(theta1/2); 
bp11=b1-t/2*tan(theta1/2)-t/2*tan(theta2/2); 
hp11=h-t/2*tan(theta2/2)-t/2*tan(theta3/2); 
bp22=b2-t/2*tan(theta3/2)-t/2*tan(theta4/2); 
cp22=c2-t/2*tan(theta4/2); 

  
nplate=5; %number of plates 
ncorner=nplate-1;%nuber of corners 
r=[r,r,r,r]; 
beta=[theta1,theta2,theta3,theta4]; 
beta=[-pi+beta(1),beta(1),beta(2),beta(3),beta(4)]; 
NR=[2,2,2,2];%the number of elements for every round corner. 
NP=[2,6,18,6,2];%the number of elements for every flat plate. 
L=[c11,b11,h11,b22,c22];%the length of every plate 
nodeco=zeros((sum(NR(:))+sum(NP)+1),2);% 
%nodeco(1,:)=[0,0] 
alpha=beta(1); 
k=1; 
for i=1:nplate-1 
    for j=1:NP(i) 
        nodeco(k+j,1:2)=[nodeco(k+j-

1,1)+L(i)/NP(i)*cos(alpha),nodeco(k+j-1,2)+L(i)/NP(i)*sin(alpha)]; 
    end 
    k=k+NP(i); 
    alpha=alpha-beta(i+1)/2/NR(i); 
    LL=abs(2*r(i)*sin(beta(i+1)/2/NR(i))); 
    k=k+1; 
    nodeco(k,1:2)=[nodeco(k-1,1)+LL*cos(alpha),nodeco(k-

1,2)+LL*sin(alpha)]; 

     
    for j=1:(NR(i)-1) 
        alpha=alpha-beta(i+1)/NR(i); 
        nodeco(k+j,:)=[nodeco(k+j-1,1)+LL*cos(alpha),nodeco(k+j-

1,2)+LL*sin(alpha)]; 
    end 
    k=k+NR(i)-1; 
    alpha=alpha-beta(i+1)/2/NR(i); 
end 
  for j=1:NP(nplate) 
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        nodeco(k+j,1:2)=[nodeco(k+j-

1,1)+L(i+1)/NP(length(NP))*cos(alpha),nodeco(k+j-

1,2)+L(i+1)/NP(length(NP))*sin(alpha)]; 
  end 
%plot(nodeco(:,1),nodeco(:,2),'.'); 
for i=1:length(nodeco(:,1)) 
    nodeco(i,2)=nodeco(i,2)-(h11/2-c11); 
end 

  
nodeco2=nodeco; 
hei=3300;%length of the column 
A = xlsread('imperfection.xlsx'); 
Alen=0:1:length(A(:,1))-1; 
meshsize=10;%this is the size of mesh in the longitudinal direction 
heiin=0:meshsize:hei; 
nodeco3d=zeros((sum(NR(:))+sum(NP)+1)*length(heiin),3);%ÈýÎ¬Êý×é´æ·Å½Ú

µã×ø±êÊý¾Ý 

  
%Scaling facor 
sf=200.0; 
terms=10; 
[a,b,yfit] = Fseries(Alen,A(:,1)',terms);  
yi_spline1=-sf*Fseriesval(a,b,heiin);  

  
[a,b,yfit] = Fseries(Alen,A(:,2)',terms);  
yi_spline2=-sf*Fseriesval(a,b,heiin);  

  
[a,b,yfit] = Fseries(Alen,A(:,3)',terms);  
yi_spline3=-sf*Fseriesval(a,b,heiin); 

  
[a,b,yfit] = Fseries(Alen,A(:,4)',terms);  
yi_spline4=-sf*Fseriesval(a,b,heiin); 

  
[a,b,yfit] = Fseries(Alen,A(:,5)',terms);  
yi_spline5=-sf*Fseriesval(a,b,heiin); 

  
[a,b,yfit] = Fseries(Alen,A(:,6)',terms);  
yi_spline6=sf*Fseriesval(a,b,heiin); 

  
[a,b,yfit] = Fseries(Alen,A(:,7)',terms);  
yi_spline7=sf*Fseriesval(a,b,heiin); 

  
for i=1:length(heiin) 

  
nodeco=nodeco2; 
%for the first lip 
nodeco(1:NP(1),2)=nodeco(1:NP(1),2)+interp1([-b11-r(1) 0],[0 

yi_spline1(i)],nodeco(1:NP(1),1)','spline')'; 
%  
%for the first round corner 
nodeco(NP(1)+1:NP(1)+NR(1),2)=nodeco(NP(1)+1:NP(1)+NR(1),2)+interp1([-

b11-r(1) 0],[0 

yi_spline1(i)],nodeco(NP(1)+1:NP(1)+NR(1),1)','spline')'; 

  
%for the second flat plate 
nodeco((NP(1)+NR(1)+1):(NP(1)+NR(1)+NP(2)),2)=nodeco((NP(1)+NR(1)+1):(

NP(1)+NR(1)+NP(2)),2) ..., 
    +interp1([-b11-r(1) 0],[0 

yi_spline1(i)],nodeco((NP(1)+NR(1)+1):(NP(1)+NR(1)+NP(2)),1)','spline'

)'; 
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%for the last lip and corner 
nodeco(length(nodeco(:,1))-NP(5)-

NR(4)+1:length(nodeco(:,1)),2)=nodeco(length(nodeco(:,1))-NP(5)-

NR(4)+1:length(nodeco(:,1)),2) ...,  
    +interp1([-b22-r(4) 0],[0 

yi_spline7(i)],nodeco(length(nodeco(:,1))-NP(5)-

NR(4)+1:length(nodeco(:,1)),1)','spline')'; 

  
%for the third flat plate 

  
nodeco((NP(1)+NR(1)+NP(2)+NR(2)+2):(NP(1)+NR(1)+NP(2)+NR(2)+NP(3)),1)=

nodeco((NP(1)+NR(1)+NP(2)+NR(2)+2):(NP(1)+NR(1)+NP(2)+NR(2)+NP(3)),1) 

..., 
    +interp1([-h11/2 0 h11/2],[yi_spline3(i) yi_spline4(i) 

yi_spline5(i)],nodeco((NP(1)+NR(1)+NP(2)+NR(2)+2):(NP(1)+NR(1)+NP(2)+N

R(2)+NP(3)),2)','spline')'; 

  

  

  
 nodeco3d((sum(NR(:))+sum(NP)+1)*(i-

1)+1:(sum(NR(:))+sum(NP)+1)*i,1:2)=nodeco; 
 nodeco3d((sum(NR(:))+sum(NP)+1)*(i-

1)+1:(sum(NR(:))+sum(NP)+1)*i,3)=ones((sum(NR(:))+sum(NP)+1),1)*(i-

1)*meshsize; 
end 

  
elem=zeros((sum(NR(:))+sum(NP))*(length(heiin)-1),5); 
for j=1:length(heiin)-1 
 for i=1:length(nodeco(:,1))-1 
%     %axis off; 
    %axis([min(nodeco(:,1))-4, max(nodeco(:,1))+4, min(nodeco(:,2))-

4,max(nodeco(:,2))+4]); 
    %axis equal; 
    elem((sum(NR(:))+sum(NP))*(j-1)+i,1:5)=[(sum(NR(:))+sum(NP))*(j-

1)+i i+(sum(NR(:))+sum(NP)+1)*(j-1) i+(sum(NR(:))+sum(NP)+1)*j 

i+1+(sum(NR(:))+sum(NP)+1)*j i+1+(sum(NR(:))+sum(NP)+1)*(j-1)]; 
    ax=nodeco3d([i+(sum(NR(:))+sum(NP)+1)*(j-1) 

i+(sum(NR(:))+sum(NP)+1)*j i+1+(sum(NR(:))+sum(NP)+1)*j 

i+1+(sum(NR(:))+sum(NP)+1)*(j-1)],1); 
    ay=nodeco3d([i+(sum(NR(:))+sum(NP)+1)*(j-1) 

i+(sum(NR(:))+sum(NP)+1)*j i+1+(sum(NR(:))+sum(NP)+1)*j 

i+1+(sum(NR(:))+sum(NP)+1)*(j-1)],2); 
    az=nodeco3d([i+(sum(NR(:))+sum(NP)+1)*(j-1) 

i+(sum(NR(:))+sum(NP)+1)*j i+1+(sum(NR(:))+sum(NP)+1)*j 

i+1+(sum(NR(:))+sum(NP)+1)*(j-1)],3); 
    fill3(ax,ay,az,'red') 
    hold on; 
 end 
end 
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A.4 Computer programme to mesh CFS cross-section 

%This program is used to generate the centreline element model for 

CUFSM analysis 
c11=6; 
theta1=pi-2.356; 
c12=17; 
theta2=2*pi/4; 
b1=39; 
theta3=pi/2; 
h=197.3; 
b2=39; 
theta5=pi/2; 
c21=6; 
theta6=2*pi/4; 
c22=17; 
theta7=pi-2.356; 
theta4=pi/2;          %Angle between the intermediate stiffener 
r=2.5; 
s=10;                 %Dimension of the intermediate stiffener 
RL1=13; %Distance from the intermedate stiffener intersection to the 

bottom flange, change the 0.5 coeffecient 
RL2=143; 
RL3=RL1; 
t=1.2; 
%central line dimensions 
c11=c11-(r+t)*tan(theta1/2); 
c12=c12-(r+t)*tan(theta1/2)-(r+t)*tan(theta2/2); 
b11=b1-(r+t)*tan(theta2/2)-(r+t)*tan(theta3/2); 
b22=b2-(r+t)*tan(theta7/2)-(r+t)*tan(theta6/2); 
c21=c21-(r+t)*tan(theta7/2); 
c22=c22-(r+t)*tan(theta6/2)-(r+t)*tan(theta7/2); 
RL11=RL1-(r+t)*tan(theta3/2)-(r+t)*tan((pi-theta4)/4); 
RL22=RL2-2*(r+t)*tan((pi-theta4)/4); 
RL33=RL3-(r+t)*tan(theta4/2)-(r+t)*tan((pi-theta5)/4); 
s=s-(r+t)*tan((pi-theta4)/2)-(r+t)*tan((pi-theta4)/4); 
%dimensions measured to the points of intersection of their middle 
%lines--used for the calculation of effective cross-section 

properties. 
cp11=c11-t/2*tan(theta1/2); 
cp12=c12-t/2*tan(theta1/2)-t/2*tan(theta2/2); 
bp11=b1-t/2*tan(theta2/2)-t/2*tan(theta3/2); 
bp22=b2-t/2*tan(theta7/2)-t/2*tan(theta6/2); 
cp21=c21-t/2*tan(theta7/2); 
cp22=c22-t/2*tan(theta6/2)-t/2*tan(theta7/2); 
RLp11=RL1-t/2*tan(theta3/2)-t/2*tan((pi-theta4)/4); 
RLp22=RL2-2*t/2*tan((pi-theta4)/4); 
RLp33=RL3-t/2*tan(theta4/2)-t/2*tan((pi-theta5)/4); 
sp=s-t/2*tan((pi-theta4)/2)-t/2*tan((pi-theta4)/4); 

  
nplate=13; %number of plates 
ncorner=nplate-1;%nuber of corners 
r=[r,r,r,r,r,r,r,r,r,r,r,r]; 
beta=[theta1,theta2,theta3,(pi-theta4)/2,-(pi-theta4),(pi-

theta4)/2,(pi-theta4)/2,-(pi-theta4),(pi-

theta4)/2,theta5,theta6,theta7]; 
beta=[-pi/2+beta(1),beta(1:12)]; 
NR=[4,4,4,4,4,4,4,4,4,4,4,4];%the number of elements for every round 

corner. 
NP=[4,4,4,2,2,2,15,2,2,2,4,4,4];%the number of elements for every 

plate. 
L=[c11,c12,b11,RL11,s,s,RL22,s,s,RL33,b22,c22,c21];%the length of 

every plate 
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nodeco=zeros((sum(NR(:))+sum(NP)+1),2);% 
%nodeco(1,:)=[0,0] 
alpha=beta(1); 
k=1; 
for i=1:nplate-1 
    for j=1:NP(i) 
        nodeco(k+j,1:2)=[nodeco(k+j-

1,1)+L(i)/NP(i)*cos(alpha),nodeco(k+j-1,2)+L(i)/NP(i)*sin(alpha)]; 
    end 
    k=k+NP(i); 
     alpha=alpha-(beta(i+1)/2/NR(i)); 
    LL=abs(2*r(i)*sin(beta(i+1)/2/NR(i))); 
    k=k+1; 
    nodeco(k,1:2)=[nodeco(k-1,1)+LL*cos(alpha),nodeco(k-

1,2)+LL*sin(alpha)]; 

     
    for j=1:(NR(i)-1) 
        alpha=alpha-(beta(i+1)/NR(i)); 
        nodeco(k+j,:)=[nodeco(k+j-1,1)+LL*cos(alpha),nodeco(k+j-

1,2)+LL*sin(alpha)]; 
    end 
    k=k+NR(i)-1; 
    alpha=alpha-(beta(i+1)/2/NR(i)); 
end 
  for j=1:NP(nplate) 
        nodeco(k+j,1:2)=[nodeco(k+j-

1,1)+L(i+1)/NP(length(NP))*cos(alpha),nodeco(k+j-

1,2)+L(i+1)/NP(length(NP))*sin(alpha)]; 
  end 
%plot(nodeco(:,1),nodeco(:,2),'.'); 
scatter(nodeco(:,1),nodeco(:,2),4,'o'); 
 for i=1:length(nodeco(:,1))-1 
%     %axis off; 
    axis([min(nodeco(:,1))-4, max(nodeco(:,1))+4, min(nodeco(:,2))-

4,max(nodeco(:,2))+4]); 
     hold on; 
    plot(nodeco(i:i+1,1),nodeco(i:i+1,2),'g','LineWidth',1); 
 end 
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A.5 Python script to generate ABAQUS model for CFS connection modelling (curved 

section with circular bolt distribution) 

from part import * 

from material import * 

from section import * 

from assembly import * 

from step import * 

from interaction import * 

from load import * 

from mesh import * 

from job import * 

from sketch import * 

from visualization import * 

from connectorBehavior import * 

from abaqus import * 

from abaqusConstants import * 

myModel = mdb.Model(name='Connection') 

#Dimentions 

###################Column channel######################### 

ch = 300;  cb = 150; ##profile dimenstions:web height, flange 

width, lip length 

mc = 9; nc = 2;                      ##number of bolt rows and 

columns 

vc = 50; hc = 200;                 ##bolt hole distance 

lc = 900;                               ##column height 

tc=10; 

ctheta=pi/2; 

tg = 8 

###################Beam channel######################### 

#import numpy as np 

R = 40; 

theta1 = pi; 

h = 200; ##profile dimenstions:web height, flange width, lip 

length 

hbolts=h-30; 

lb = 2100;                            ##beam height 

tb=3;                                    ##thickness of beam 

udisp=1;                        ##displacement applied 

imperf=h/200.0;                    ##imperfection applied 

#mb = 3; nb = 3;                     ##number of bolt rows and 

columns 

#vb = 85; hb = 85;                 ##bolt hole distance 

mb=8; 

rb=85; 

xb = 135; 

slipage=2; 

distanceb=((tg/2.0+tb/2.0)**2+slipage**2)**(0.5); 

distancec=((tg/2.0+tc/2.0)**2+slipage**2)**(0.5); 

###################Guesset plate######################### 

vedge = 75;hedge=60; edgev=150; edgeh=50;        ##vertical and 

horizontal edge distance of bolts 

bp1 = 320;            ##left width of gusset plate, 10mm is the 

redundant length. 

bp2 = 400-100-30;                             ##right width of 

gusset plate 
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hp1 = 550;                                  ##left height of 

gusset plate. 

hp2 = 250;          ##right width of gusset plate, 10mm is the 

redundant length. 

xp = xb+bp1; 

tbstiff=10; 

tcstiff=10; 

###################Gusset plate profile######################### 

 

mySketchG = myModel.ConstrainedSketch(name='Gussetprofile', 

sheetSize=bp1+bp2+50) 

mySketchG.Line(point1=(-bp1/2.0, hp1/2.0), point2=(bp1/2.0+50, 

hp1/2.0)) 

mySketchG.Line(point1=(bp1/2.0+50, hp1/2.0), point2=(bp1/2.0+bp2, 

hp2/2.0)) 

mySketchG.Line(point1=(bp1/2.0+bp2, hp2/2.0), 

point2=(bp1/2.0+bp2, -hp2/2.0)) 

mySketchG.Line(point1=(bp1/2.0+bp2, -hp2/2.0), 

point2=(bp1/2.0+50, -hp1/2.0)) 

mySketchG.Line(point1=(bp1/2.0+50, -hp1/2.0), point2=(-bp1/2.0, 

-hp1/2.0)) 

mySketchG.Line(point1=(-bp1/2.0, -hp1/2.0), point2=(-bp1/2.0, 

hp1/2.0)) 

 

 

myPartgusset = myModel.Part(name='Gussetplate', 

dimensionality=THREE_D,  

 type=DEFORMABLE_BODY) 

myPartgusset.BaseShell(sketch=mySketchG) 

 

##############################Partition of 

plate################################# 

t = 

myPartgusset.MakeSketchTransform(sketchPlane=myPartgusset.faces.

findAt((0.0,0.0,0.0)), sketchPlaneSide=SIDE1, origin=(0.0, 

0.0,0.0)) 

sketch1 = myModel.ConstrainedSketch(name='__profile__',  

    sheetSize=bp1+bp2, gridSpacing=50, transform=t) 

myPartgusset.projectReferencesOntoSketch(sketch=sketch1, 

filter=COPLANAR_EDGES) 

 

##left 

j=-(nc-1)/2.0 

while (j<=(nc-1)/2.0): 

 i=-(mc-1)/2.0 

 while (i<=(mc-1)/2.0-1): 

  sketch1.Line(point1=(j*hc,i*vc), 

point2=(j*hc,(i+1)*vc)) 

  i=i+1 

 j=j+1 

 

 

i=-(mc-1)/2.0 

while (i<=(mc-1)/2.0): 

 j=-(nc-1)/2.0 

 while (j<=(nc-1)/2.0-1): 

  sketch1.Line(point1=(j*hc,i*vc), 

point2=((j+1)*hc,i*vc)) 
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  j=j+1 

 i=i+1 

 

 

##right 

sketch1.CircleByCenterPerimeter(center=(0.0+xp-bp1/2.0, 0.0), 

point1=(rb+xp-bp1/2.0, 0.0)) 

 

for i in range(0, mb): 

 sketch1.Line(point1=(0.0+xp-bp1/2.0,0.0), 

point2=(rb*cos(2*pi/mb*i)+xp-bp1/2.0, rb*sin(2*pi/mb*i))) 

 

 

myPartgusset.PartitionFaceBySketch(faces=myPartgusset.faces.find

At((0, 0, 0)), sketch=sketch1) 

sketch1.unsetPrimaryObject() 

del myModel.sketches['__profile__'] 

 

 

###################Beam profile######################### 

mySketchB = myModel.ConstrainedSketch(name='Bprofile', 

sheetSize=500.0) 

xy1=[(R*(1-cos(theta1)) +tg/2.0+tb/2.0, -R*sin(theta1)-

h/2.0),(R+tg/2.0+tb/2.0 , -h/2.0) , (0 +tg/2.0+tb/2.0, -h/2.0) , 

(0 +tg/2.0+tb/2.0, 0), (0+tg/2.0+tb/2.0 , 

h/2.0),(R+tg/2.0+tb/2.0 , h/2.0) ,(R*(1-

cos(theta1))+tg/2.0+tb/2.0 , R*sin(theta1)+h/2.0)] 

 

mySketchB.ArcByCenterEnds(center=xy1[1], point1=xy1[0], 

point2=xy1[2],  

    direction=CLOCKWISE) 

mySketchB.Line(point1 = xy1[2], point2 = xy1[3]) 

mySketchB.Line(point1 = xy1[3], point2 = xy1[4]) 

mySketchB.ArcByCenterEnds(center=xy1[5], point1=xy1[6], 

point2=xy1[4],  

    direction=COUNTERCLOCKWISE) 

 

xy2=[(-R*(1-cos(theta1)) -tg/2.0-tb/2.0, -R*sin(theta1)-

h/2.0),(-R-tg/2.0-tb/2.0 , -h/2.0) , (0-tg/2.0-tb/2.0, -h/2.0) , 

(0-tg/2.0-tb/2.0, 0), 

   (0-tg/2.0-tb/2.0 , h/2.0),(-R-tg/2.0-tb/2.0 , 

h/2.0) ,(-R*(1-cos(theta1))-tg/2.0-tb/2.0 , R*sin(theta1)+h/2.0)] 

 

mySketchB.ArcByCenterEnds(center=xy2[1], point1=xy2[0], 

point2=xy2[2],  

    direction=COUNTERCLOCKWISE) 

mySketchB.Line(point1 = xy2[2], point2 = xy2[3]) 

mySketchB.Line(point1 = xy2[3], point2 = xy2[4]) 

mySketchB.ArcByCenterEnds(center=xy2[5], point1=xy2[6], 

point2=xy2[4],  

    direction=CLOCKWISE) 

 

###################Beam Part######################### 

myPartbeam = myModel.Part(name='Beam', dimensionality=THREE_D,  

 type=DEFORMABLE_BODY) 

myPartbeam.BaseShellExtrude(sketch=mySketchB, depth=lb) 

axisl=myPartbeam.DatumAxisByTwoPoint(point1=(0.0, 0.0, 

0.0),point2=(0.0,0.0,lb)) 
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datums=myPartbeam.datums 

 

t = 

myPartbeam.MakeSketchTransform(sketchPlane=myPartbeam.faces.find

At((0.0+tg/2.0+tb/2.0,0.0,lb/2.0)), 

sketchUpEdge=myPartbeam.edges.findAt((0.0+tg/2.0+tb/2.0,0.0,0)),  

    sketchPlaneSide=SIDE1, origin=(0.0+tg/2.0+tb/2.0, 0.0, 0.0)) 

sketch1 = 

mdb.models['Connection'].ConstrainedSketch(name='__profile__',  

    sheetSize=4219.01, gridSpacing=105.47, transform=t) 

sketch1.setPrimaryObject(option=SUPERIMPOSE) 

myPartbeam.projectReferencesOntoSketch(sketch=sketch1, 

filter=COPLANAR_EDGES) 

 

partitionplace=[500 , 1000, 1500]; 

for i in range(len(partitionplace)): 

 sketch1.Line(point1=(-partitionplace[i],0.0-hbolts/2.0), 

point2=(-partitionplace[i],0.0+hbolts/2.0)) 

 

 

sketch1.CircleByCenterPerimeter(center=(0.0-xb, 0.0), point1=(-

rb-xb, 0.0)) 

 

for i in range(0, mb): 

 sketch1.Line(point1=(0.0-xb,0.0), point2=(-

rb*cos(2*pi/mb*i)-xb, rb*sin(2*pi/mb*i))) 

 

 

myPartbeam.PartitionFaceBySketchThruAll(sketchPlane=myPartbeam.f

aces.findAt((0.0+tg/2.0+tb/2.0,0.0,lb/2.0)), 

sketchUpEdge=myPartbeam.edges.findAt((0.0+tg/2.0+tb/2.0,0.0,0)),  

    

faces=myPartbeam.faces.findAt(((0.0+tg/2.0+tb/2.0,0.0,lb/2.0),),

((0.0-tg/2.0-tb/2.0,0.0,lb/2.0),)),sketchPlaneSide=SIDE1, 

sketch=sketch1) 

sketch1.unsetPrimaryObject() 

del myModel.sketches['__profile__'] 

 

 

#######################patition for the web ties and lateral 

restraints######################### 

 

#reference point for load 

P1=myPartbeam.ReferencePoint(point=(0.0, 0.0, lb)); 

#refPoints=(R1[12], ) 

Q2 = myPartbeam.referencePoints; 

refPoints1=(Q2[P1.id], ); 

myPartbeam.Set(referencePoints=refPoints1, name='endnode'); 

 

 

## For beam : end cross-sections and start cross-sections for 

fix end 

EE = [] 

FF = [] 

V1 = myPartbeam.edges.findAt(((R*(1-

cos(theta1/2.0))+tg/2.0+tb/2.0 , -R*sin(theta1/2.0)-h/2.0 , 0),)) 

V2 = myPartbeam.edges.findAt(((R*(1-cos(theta1/2.0)) 

+tg/2.0+tb/2.0 , -R*sin(theta1/2.0)-h/2.0 , lb),)) 
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EE.append(V1) 

FF.append(V2) 

V1 = myPartbeam.edges.findAt(((-R*(1-cos(theta1/2.0))-tg/2.0-

tb/2.0 , -R*sin(theta1/2.0)-h/2.0 , 0),)) 

V2 = myPartbeam.edges.findAt(((-R*(1-cos(theta1/2.0))-tg/2.0-

tb/2.0 , -R*sin(theta1/2.0)-h/2.0 , lb),)) 

EE.append(V1) 

FF.append(V2) 

V1= 

myPartbeam.edges.findAt((((xy1[2][0]+xy1[3][0])/2.0,(xy1[2][1]+x

y1[3][1])/2.0,0),)) 

V2= 

myPartbeam.edges.findAt((((xy1[2][0]+xy1[3][0])/2.0,(xy1[2][1]+x

y1[3][1])/2.0,lb),)) 

EE.append(V1) 

FF.append(V2) 

V1= 

myPartbeam.edges.findAt((((xy1[3][0]+xy1[4][0])/2.0,(xy1[3][1]+x

y1[4][1])/2.0,0),)) 

V2= 

myPartbeam.edges.findAt((((xy1[3][0]+xy1[4][0])/2.0,(xy1[3][1]+x

y1[4][1])/2.0,lb),)) 

EE.append(V1) 

FF.append(V2) 

V1= 

myPartbeam.edges.findAt((((xy2[2][0]+xy2[3][0])/2.0,(xy2[2][1]+x

y2[3][1])/2.0,0),)) 

V2= 

myPartbeam.edges.findAt((((xy2[2][0]+xy2[3][0])/2.0,(xy2[2][1]+x

y2[3][1])/2.0,lb),)) 

EE.append(V1) 

FF.append(V2) 

V1= 

myPartbeam.edges.findAt((((xy2[3][0]+xy2[4][0])/2.0,(xy2[3][1]+x

y2[4][1])/2.0,0),)) 

V2= 

myPartbeam.edges.findAt((((xy2[3][0]+xy2[4][0])/2.0,(xy2[3][1]+x

y2[4][1])/2.0,lb),)) 

EE.append(V1) 

FF.append(V2) 

V1 = myPartbeam.edges.findAt(((R*(1-

cos(theta1/2.0))+tg/2.0+tb/2.0 , R*sin(theta1/2.0)+h/2.0 , 0),)) 

V2 = myPartbeam.edges.findAt(((R*(1-cos(theta1/2.0)) 

+tg/2.0+tb/2.0 , R*sin(theta1/2.0)+h/2.0 , lb),)) 

EE.append(V1) 

FF.append(V2) 

V1 = myPartbeam.edges.findAt(((-R*(1-cos(theta1/2.0))-tg/2.0-

tb/2.0 , R*sin(theta1/2.0)+h/2.0 , 0),)) 

V2 = myPartbeam.edges.findAt(((-R*(1-cos(theta1/2.0))-tg/2.0-

tb/2.0 , R*sin(theta1/2.0)+h/2.0 , lb),)) 

EE.append(V1) 

FF.append(V2) 

 

myPartbeam.Set(edges=EE,name='beamstart') 

myPartbeam.Set(edges=FF,name='beamend') 

 

## For beam : tie master lines 

ETM=[] 
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for i in range(len(partitionplace)): 

 V3 =  

myPartbeam.vertices.findAt(((0.0+tg/2.0+tb/2.0,hbolts/2.0,partit

ionplace[i]),),((0.0+tg/2.0+tb/2.0,-

hbolts/2.0,partitionplace[i]),)) 

 ETM.append(V3) 

 

myPartbeam.Set(vertices=ETM,name='mastertie') 

## For beam : tie slave lines 

 

ETS=[] 

for i in range(len(partitionplace)): 

 V4 =  myPartbeam.vertices.findAt(((0.0-tg/2.0-

tb/2.0,hbolts/2.0,partitionplace[i]),),((0.0-tg/2.0-tb/2.0,-

hbolts/2.0,partitionplace[i]),)) 

 ETS.append(V4) 

 

myPartbeam.Set(vertices=ETS,name='slavetie') 

 

## For beam : lateral restraints 

ltplace=[500,1000,1500]; 

 

for i in range(len(ltplace)): 

 d = myPartbeam.DatumPointByCoordinate(coords = 

(0.0,0.0,ltplace[i])) 

 myfaces= myPartbeam.faces 

 e=myPartbeam.DatumPlaneByPointNormal(point=datums[d.id], 

normal=datums[axisl.id]) 

 myPartbeam.PartitionFaceByDatumPlane(datumPlane=datums[e.i

d], faces=myfaces) 

 

LT=[] 

for i in range(len(ltplace)): 

 V1 = myPartbeam.edges.findAt(((R*(1-

cos(theta1/2.0))+tg/2.0+tb/2.0 , -R*sin(theta1/2.0)-h/2.0 , 

ltplace[i]),)) 

 LT.append(V1) 

 V1 = myPartbeam.edges.findAt(((R*(1-

cos(theta1/2.0))+tg/2.0+tb/2.0 , R*sin(theta1/2.0)+h/2.0 , 

ltplace[i]),)) 

 LT.append(V1) 

 V1 = myPartbeam.edges.findAt(((-R*(1-cos(theta1/2.0))-

tg/2.0-tb/2.0 , -R*sin(theta1/2.0)-h/2.0 , ltplace[i]),)) 

 LT.append(V1) 

 V1 = myPartbeam.edges.findAt(((-R*(1-cos(theta1/2.0))-

tg/2.0-tb/2.0 ,  R*sin(theta1/2.0)+h/2.0 , ltplace[i]),)) 

 LT.append(V1) 

 i=i+1; 

 

myPartbeam.Set(edges=LT,name='beamlateral') 

 

###################Column profile######################### 

mySketchC = myModel.ConstrainedSketch(name='Cprofile', 

sheetSize=500.0) 

xyc1=[(cb+tg/2.0+tc/2.0 , -ch/2.0),(0+tg/2.0+tc/2.0 , -

ch/2.0),(0+tg/2.0+tc/2.0 , 0),(0+tg/2.0+tc/2.0 , 

ch/2.0),(cb+tg/2.0+tc/2.0 , ch/2.0)]; 
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for i in range(len(xyc1)-1): 

 mySketchC.Line(point1 = xyc1[i], point2 = xyc1[i+1]) 

 

xyc2=[(-cb-tg/2.0-tc/2.0  , -ch/2.0),(0-tg/2.0-tc/2.0  , -

ch/2.0),(0-tg/2.0-tc/2.0  , 0),(0-tg/2.0-tc/2.0  , ch/2.0),(-cb-

tg/2.0-tc/2.0  , ch/2.0)]; 

 

for i in range(len(xyc2)-1): 

 mySketchC.Line(point1 = xyc2[i], point2 = xyc2[i+1]) 

 

###################Column Part######################### 

myPartcolumn = myModel.Part(name='Column', 

dimensionality=THREE_D,  

 type=DEFORMABLE_BODY) 

myPartcolumn.BaseShellExtrude(sketch=mySketchC, depth=lc) 

axisl=myPartcolumn.DatumAxisByTwoPoint(point1=(tg/2.0+tc/2.0,0.0

,lc/2.0),point2=(tg/2.0+tc/2.0,0.0,lc)) 

axis2=myPartcolumn.DatumAxisByTwoPoint(point1=(tg/2.0+tc/2.0,0.0

,lc/2.0),point2=(tg/2.0+tc/2.0,ch,lc/2.0)) 

datums=myPartcolumn.datums = 

myPartcolumn.MakeSketchTransform(sketchPlane=myPartcolumn.faces.

findAt((0.0+tg/2.0+tc/2.0,0.0,lc/2.0)), 

sketchUpEdge=myPartcolumn.edges.findAt((0.0+tg/2.0+tc/2.0,0.0,0)

),  

    sketchPlaneSide=SIDE1, origin=(0.0+tg/2.0+tc/2.0,0.0, 0.0)) 

sketch1 = 

mdb.models['Connection'].ConstrainedSketch(name='__profile__',  

    sheetSize=4219.01, gridSpacing=105.47, transform=t) 

sketch1.setPrimaryObject(option=SUPERIMPOSE) 

myPartcolumn.projectReferencesOntoSketch(sketch=sketch1, 

filter=COPLANAR_EDGES) 

 

j=-(nc-1)/2.0 

while (j<=(nc-1)/2.0): 

 i=-(mc-1)/2.0 

 while (i<=(mc-1)/2.0-1): 

  sketch1.Line(point1=(-lc/2.0-i*vc,j*hc), point2=(-

lc/2.0-(i+1)*vc,j*hc)) 

  i=i+1 

 j=j+1 

 

i=-(mc-1)/2.0 

while (i<=(mc-1)/2.0): 

 j=-(nc-1)/2.0 

 while (j<=(nc-1)/2.0-1): 

  sketch1.Line(point1=(-lc/2.0-i*vc,j*hc), point2=(-

lc/2.0-i*vc,(j+1)*hc)) 

  j=j+1 

 i=i+1 

 

myPartcolumn.PartitionFaceBySketchThruAll(sketchPlane=myPartcolu

mn.faces.findAt((0.0+tg/2.0+tc/2.0,0.0,lc/2.0)), 

sketchUpEdge=myPartcolumn.edges.findAt((0.0+tg/2.0+tc/2.0,0.0,0)

),  

    

faces=myPartcolumn.faces.findAt(((0.0+tg/2.0+tc/2.0,0.0,lc/2.0),

),((0.0-tg/2.0-tc/2.0,0.0,lc/2.0),)),sketchPlaneSide=SIDE1, 

sketch=sketch1) 
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sketch1.unsetPrimaryObject() 

del myModel.sketches['__profile__'] 

 

## For column : top and bottom cross-sections 

EE = [] 

FF = [] 

for i in range(len(xyc1)-1): 

 V1 = 

myPartcolumn.edges.findAt((((xyc1[i][0]+xyc1[i+1][0])/2.0,(xyc1[

i][1]+xyc1[i+1][1])/2.0,0),)) 

 V2 = 

myPartcolumn.edges.findAt((((xyc1[i][0]+xyc1[i+1][0])/2.0,(xyc1[

i][1]+xyc1[i+1][1])/2.0,lc),)) 

 EE.append(V1) 

 FF.append(V2) 

 V1= 

myPartcolumn.edges.findAt((((xyc2[i][0]+xyc2[i+1][0])/2.0,(xyc2[

i][1]+xyc2[i+1][1])/2.0,0),)) 

 V2= 

myPartcolumn.edges.findAt((((xyc2[i][0]+xyc2[i+1][0])/2.0,(xyc2[

i][1]+xyc2[i+1][1])/2.0,lc),)) 

 EE.append(V1) 

 FF.append(V2) 

 

myPartcolumn.Set(edges=EE,name='columnbottom') 

myPartcolumn.Set(edges=FF,name='columntop') 

 

 

###################COLUMN stiffener 

profile######################### 

mySketchSC = myModel.ConstrainedSketch(name='SCprofile', 

sheetSize=500.0) 

xySC1=[(cb+tg/2.0+tc/2.0 , -ch/2.0),(0+tg/2.0+tc/2.0 , -

ch/2.0),(0+tg/2.0+tc/2.0 , 0),(0+tg/2.0+tc/2.0 , 

ch/2.0),(cb+tg/2.0+tc/2.0 , ch/2.0)]; 

 

for i in range(len(xySC1)-1): 

 mySketchSC.Line(point1 = xySC1[i], point2 = xySC1[i+1]) 

 

mySketchSC.Line(point1 = xySC1[i+1], point2 = xySC1[0]) 

 

xySC2=[(-cb-tg/2.0-tc/2.0  , -ch/2.0),(0-tg/2.0-tc/2.0  , -

ch/2.0),(0-tg/2.0-tc/2.0  , 0),(0-tg/2.0-tc/2.0, ch/2.0),(-cb-

tg/2.0-tc/2.0, ch/2.0)]; 

 

for i in range(len(xySC2)-1): 

 mySketchSC.Line(point1 = xySC2[i], point2 = xySC2[i+1]) 

 

mySketchSC.Line(point1 = xySC2[i+1], point2 = xySC2[0]) 

###################COLUMN stiffener 

part######################### 

myPartstiffC = myModel.Part(name='StiffenerC', 

dimensionality=THREE_D,  

 type=DEFORMABLE_BODY) 

myPartstiffC.BaseShell(sketch=mySketchSC) 

 

 

CSTIFFSLAVE = [] 
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for i in range(len(xySC1)-1): 

 V1 = 

myPartstiffC.edges.findAt((((xySC1[i][0]+xySC1[i+1][0])/2.0,(xyS

C1[i][1]+xySC1[i+1][1])/2.0,0.0),)) 

 CSTIFFSLAVE.append(V1) 

 V1= 

myPartstiffC.edges.findAt((((xySC2[i][0]+xySC2[i+1][0])/2.0,(xyS

C2[i][1]+xySC2[i+1][1])/2.0,0.0),)) 

 CSTIFFSLAVE.append(V1) 

 

myPartstiffC.Set(edges=CSTIFFSLAVE,name='CSTIFFSLAVE') 

##############################Partition for the COLUMN 

stiffeners################################## 

partitionplace=[50 , 150 , lc-150 , lc-50]; 

for i in range(len(partitionplace)): 

 d = myPartcolumn.DatumPointByCoordinate(coords = 

(0.0,0.0,partitionplace[i])) 

 myfaces= myPartcolumn.faces 

 e=myPartcolumn.DatumPlaneByPointNormal(point=datums[d.id], 

normal=datums[axisl.id]) 

 myPartcolumn.PartitionFaceByDatumPlane(datumPlane=datums[e

.id], faces=myfaces) 

 

CSTIFF1=[] 

j=0;  

for i in range(len(xyc1)-1): 

 V1 = 

myPartcolumn.edges.findAt((((xyc1[i][0]+xyc1[i+1][0])/2.0,(xyc1[

i][1]+xyc1[i+1][1])/2.0,partitionplace[j]),)) 

 CSTIFF1.append(V1) 

 V1= 

myPartcolumn.edges.findAt((((xyc2[i][0]+xyc2[i+1][0])/2.0,(xyc2[

i][1]+xyc2[i+1][1])/2.0,partitionplace[j]),)) 

 CSTIFF1.append(V1) 

 

myPartcolumn.Set(edges=CSTIFF1,name='CSTIFF1') 

 

CSTIFF2=[] 

j=1;  

for i in range(len(xyc1)-1): 

 V1 = 

myPartcolumn.edges.findAt((((xyc1[i][0]+xyc1[i+1][0])/2.0,(xyc1[

i][1]+xyc1[i+1][1])/2.0,partitionplace[j]),)) 

 CSTIFF2.append(V1) 

 V1= 

myPartcolumn.edges.findAt((((xyc2[i][0]+xyc2[i+1][0])/2.0,(xyc2[

i][1]+xyc2[i+1][1])/2.0,partitionplace[j]),)) 

 CSTIFF2.append(V1) 

 

myPartcolumn.Set(edges=CSTIFF2,name='CSTIFF2') 

 

CSTIFF3=[] 

j=2;  

for i in range(len(xyc1)-1): 

 V1 = 

myPartcolumn.edges.findAt((((xyc1[i][0]+xyc1[i+1][0])/2.0,(xyc1[

i][1]+xyc1[i+1][1])/2.0,partitionplace[j]),)) 

 CSTIFF3.append(V1) 
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 V1= 

myPartcolumn.edges.findAt((((xyc2[i][0]+xyc2[i+1][0])/2.0,(xyc2[

i][1]+xyc2[i+1][1])/2.0,partitionplace[j]),)) 

 CSTIFF3.append(V1) 

 

myPartcolumn.Set(edges=CSTIFF3,name='CSTIFF3') 

 

CSTIFF4=[] 

j=3;  

for i in range(len(xyc1)-1): 

 V1 = 

myPartcolumn.edges.findAt((((xyc1[i][0]+xyc1[i+1][0])/2.0,(xyc1[

i][1]+xyc1[i+1][1])/2.0,partitionplace[j]),)) 

 CSTIFF4.append(V1) 

 V1= 

myPartcolumn.edges.findAt((((xyc2[i][0]+xyc2[i+1][0])/2.0,(xyc2[

i][1]+xyc2[i+1][1])/2.0,partitionplace[j]),)) 

 CSTIFF4.append(V1) 

 

myPartcolumn.Set(edges=CSTIFF4,name='CSTIFF4') 

 

#----------------------------------into assembly module --------

----------------  ---------------# 

myModel.rootAssembly.DatumCsysByDefault(CARTESIAN) 

myModel.rootAssembly.Instance(name='Column', part=myPartcolumn, 

dependent=ON) 

myModel.rootAssembly.Instance(name='Beam', part=myPartbeam, 

dependent=ON) 

myModel.rootAssembly.Instance(name='Gussetplate', 

part=myPartgusset, dependent=ON) 

myModel.rootAssembly.Instance(name='Stiffenerc1', 

part=myPartstiffC, dependent=ON) 

myModel.rootAssembly.Instance(name='Stiffenerc2', 

part=myPartstiffC, dependent=ON) 

myModel.rootAssembly.Instance(name='Stiffenerc3', 

part=myPartstiffC, dependent=ON) 

myModel.rootAssembly.Instance(name='Stiffenerc4', 

part=myPartstiffC, dependent=ON) 

session.viewports['Viewport: 

1'].assemblyDisplay.geometryOptions.setValues( 

    datumPoints=OFF, datumAxes=OFF, datumPlanes=OFF, 

datumCoordSystems=OFF) 

##Locate the gusset plate 

a1 = myModel.rootAssembly 

a1.rotate(instanceList=('Gussetplate', ), axisPoint=(0.0, 0.0, 

0.0),  

    axisDirection=(1, 0.0, 0.0), angle=90.0) 

#: The instance Gussetplate was rotated by 90. degrees about the 

axis defined by the point 0., 0., 0. and the vector 1., 0., 0. 

a1 = mdb.models['Connection'].rootAssembly 

a1.rotate(instanceList=('Gussetplate', ), axisPoint=(0.0, 0.0, 

0.0),  

    axisDirection=(0.0, 0.0, 1), angle=90.0) 

#: The instance Gussetplate was rotated by 90. degrees about the 

axis defined by the point 0., 0., 0. and the vector 0., 0., 1. 

a1 = mdb.models['Connection'].rootAssembly 

a1.translate(instanceList=('Gussetplate', ), vector=(0.0, 0.0, 

lc/2.0)) 
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#: The instance Gussetplate was translated by 0., 0., LC/2. with 

respect to the assembly coordinate system 

 

##Locate the beam 

a1 = myModel.rootAssembly 

a1.rotate(instanceList=('Beam', ), axisPoint=(0.0, 0.0, 0.0),  

    axisDirection=(1, 0.0, 0.0), angle=-90.0) 

#: The instance Beam was rotated by 90. degrees about the axis 

defined by the point 0., 0., 0. and the vector 1., 0., 0. 

a1 = mdb.models['Connection'].rootAssembly 

a1.translate(instanceList=('Beam', ), vector=(0.0, xp-bp1/2.0-xb, 

lc/2.0)) 

#: The instance Beam was translated by 0., 0., LC/2. with 

respect to the assembly coordinate system 

 

##Locate the Stiffener 

a1 = myModel.rootAssembly 

a1 = mdb.models['Connection'].rootAssembly 

a1.translate(instanceList=('Stiffenerc1', ), vector=(0.0, 0.0, 

partitionplace[0])) 

 

##Locate the Stiffener 

a1 = myModel.rootAssembly 

a1 = mdb.models['Connection'].rootAssembly 

a1.translate(instanceList=('Stiffenerc2', ), vector=(0.0, 0.0, 

partitionplace[1])) 

 

##Locate the Stiffener 

a1 = myModel.rootAssembly 

a1 = mdb.models['Connection'].rootAssembly 

a1.translate(instanceList=('Stiffenerc3', ), vector=(0.0, 0.0, 

partitionplace[2])) 

 

##Locate the Stiffener 

a1 = myModel.rootAssembly 

a1 = mdb.models['Connection'].rootAssembly 

a1.translate(instanceList=('Stiffenerc4', ), vector=(0.0, 0.0, 

partitionplace[3])) 

##-----------------------------Build a set for the attached 

points------------------------------------## 

## For beam : bolts 

XX = [] 

 

for i in range(0, mb): 

 V1 =  myPartbeam.vertices.findAt(((0.0+tg/2.0+tb/2.0 , 

rb*cos(2*pi/mb*i) ,rb*sin(2*pi/mb*i)+xb),)) 

 V2 =  myPartbeam.vertices.findAt(((0.0-tg/2.0-tb/2.0 , 

rb*cos(2*pi/mb*i) ,rb*sin(2*pi/mb*i)+xb),)) 

 XX.append(V1) 

 XX.append(V2) 

 

V1 =  myPartbeam.vertices.findAt(((0.0+tg/2.0+tb/2.0 , 0.0 , 

xb ),)) 

V2 =  myPartbeam.vertices.findAt(((0.0-tg/2.0-tb/2.0 , 0.0 , 

xb ),)) 

XX.append(V1) 

XX.append(V2) 
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myPartbeam.Set(vertices=XX,name='beambolts') 

 

## For column : bolts 

 

YY  =  [] 

j = -(nc-1)/2.0 

while (j <= (nc-1)/2.0): 

 i = -(mc-1)/2.0 

 while (i <= (mc-1)/2.0): 

  V1 =  

myPartcolumn.vertices.findAt(((tg/2.0+tc/2.0,j*hc,i*vc+lc/2.0),)) 

  V2 =  myPartcolumn.vertices.findAt(((-tg/2.0-

tc/2.0,j*hc,i*vc+lc/2.0),)) 

  YY.append(V1) 

  YY.append(V2) 

  i=i+1 

 j=j+1 

 

myPartcolumn.Set(vertices=YY,name='columnbolts') 

 

## For gusset plate : bolts 

 

ZZC  =  [] 

j =  -(nc-1)/2.0 

while (j <= (nc-1)/2.0): 

 i =  -(mc-1)/2.0 

 while (i <= (mc-1)/2.0): 

  V1 =  myPartgusset.vertices.findAt(((j*hc,i*vc,0.0),)) 

  ZZC.append(V1) 

  i=i+1 

 j=j+1 

 

myPartgusset.Set(vertices=ZZC,name='gussetcolumnbolts') 

 

ZZB  =  [] 

for i in range(0, mb): 

  V1=myPartgusset.vertices.findAt(((xp-

bp1/2.0+rb*cos(2*pi/mb*i),rb*sin(2*pi/mb*i),0.0),)) 

  ZZB.append(V1) 

 

V1 =  myPartgusset.vertices.findAt(((xp-bp1/2.0+0.0, 0.0,0.0),)) 

ZZB.append(V1) 

 

myPartgusset.Set(vertices=ZZB,name='gussetbeambolts') 

 

##-----------------------------Material properties--------------

----------------------## 

 

##1,material property builded as follow:------------------------

---------- 

p=myModel.Material(name='beammat') 

p.Elastic(table=((210000.0, 0.33), )) 

p.Plastic(table=((323.84831, 0.0), (591.06742, 0.26764))) 

p.plastic.setValues(hardening=KINEMATIC) 

 

p=myModel.Material(name='columnmat') 

p.Elastic(table=((210000.0, 0.33), )) 
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p=myModel.Material(name='cstiffenermat') 

p.Elastic(table=((210000.0, 0.33), )) 

 

p=myModel.Material(name='gussetmat') 

p.Elastic(table=((210000.0, 0.33), )) 

p.Plastic(table=((308.0, 0.0), (474.0, 0.36))) 

p.plastic.setValues(hardening=KINEMATIC) 

 

myModel.HomogeneousShellSection(name='beamsec',  

    preIntegrate=OFF, material='beammat', thicknessType=UNIFORM, 

thickness=tb,  

    thicknessField='', idealization=NO_IDEALIZATION, 

poissonDefinition=DEFAULT,  

    thicknessModulus=None, temperature=GRADIENT, useDensity=OFF,  

    integrationRule=SIMPSON, numIntPts=5) 

 

myModel.HomogeneousShellSection(name='columnsec',  

    preIntegrate=OFF, material='columnmat', 

thicknessType=UNIFORM, thickness=tc,  

    thicknessField='', idealization=NO_IDEALIZATION, 

poissonDefinition=DEFAULT,  

    thicknessModulus=None, temperature=GRADIENT, useDensity=OFF,  

    integrationRule=SIMPSON, numIntPts=5) 

 

 

myModel.HomogeneousShellSection(name='cstiffnersec',  

    preIntegrate=OFF, material='cstiffenermat', 

thicknessType=UNIFORM, thickness=tcstiff,  

    thicknessField='', idealization=NO_IDEALIZATION, 

poissonDefinition=DEFAULT,  

    thicknessModulus=None, temperature=GRADIENT, useDensity=OFF,  

    integrationRule=SIMPSON, numIntPts=5) 

 

myModel.HomogeneousShellSection(name='gussetsec',  

    preIntegrate=OFF, material='gussetmat', 

thicknessType=UNIFORM, thickness=tg,  

    thicknessField='', idealization=NO_IDEALIZATION, 

poissonDefinition=DEFAULT,  

    thicknessModulus=None, temperature=GRADIENT, useDensity=OFF,  

    integrationRule=SIMPSON, numIntPts=5) 

 

 

import regionToolset 

 

pickregion = 

regionToolset.Region(faces=myModel.parts['Beam'].faces) 

myPartbeam.SectionAssignment(region=pickregion, 

sectionName='beamsec', offset=0.0,  

    offsetType=MIDDLE_SURFACE, offsetField='',  

    thicknessAssignment=FROM_SECTION) 

 

pickregion = 

regionToolset.Region(faces=myModel.parts['Column'].faces) 

myPartcolumn.SectionAssignment(region=pickregion, 

sectionName='columnsec', offset=0.0,  

    offsetType=MIDDLE_SURFACE, offsetField='',  

    thicknessAssignment=FROM_SECTION) 
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pickregion = 

regionToolset.Region(faces=myModel.parts['StiffenerC'].faces) 

myPartstiffC.SectionAssignment(region=pickregion, 

sectionName='cstiffnersec', offset=0.0,  

    offsetType=MIDDLE_SURFACE, offsetField='',  

    thicknessAssignment=FROM_SECTION) 

 

 

pickregion = 

regionToolset.Region(faces=myModel.parts['Gussetplate'].faces) 

myPartgusset.SectionAssignment(region=pickregion, 

sectionName='gussetsec', offset=0.0,  

    offsetType=MIDDLE_SURFACE, offsetField='',  

    thicknessAssignment=FROM_SECTION) 

 

######-----------------------------------------step module------

-------------------------###### 

myModel.StaticStep(name='Step-1', previous='Initial',  

    initialInc=0.1, nlgeom=ON) 

 

##-------------------------------------------interaction module-

-------------------------------------------------## 

 

a = myModel.rootAssembly 

region1=a.instances['Beam'].sets['mastertie'] 

region2=a.instances['Beam'].sets['slavetie'] 

myModel.Tie(name='webconnect', master=region1, slave=region2,  

    positionToleranceMethod=SPECIFIED,positionTolerance=tg+tb, 

adjust=OFF, tieRotations=OFF,  

    thickness=ON) 

 

 

a = myModel.rootAssembly 

region1=a.instances['Column'].sets['CSTIFF1'] 

region2=a.instances['Stiffenerc1'].sets['CSTIFFSLAVE'] 

myModel.Tie(name='stifftocolumn1', master=region1, slave=region2,  

    positionToleranceMethod=COMPUTED, adjust=OFF, 

tieRotations=OFF,  

    thickness=ON) 

 

a = myModel.rootAssembly 

region1=a.instances['Column'].sets['CSTIFF2'] 

region2=a.instances['Stiffenerc2'].sets['CSTIFFSLAVE'] 

myModel.Tie(name='stifftocolumn2', master=region1, slave=region2,  

    positionToleranceMethod=COMPUTED, adjust=OFF, 

tieRotations=OFF,  

    thickness=ON) 

 

a = myModel.rootAssembly 

region1=a.instances['Column'].sets['CSTIFF3'] 

region2=a.instances['Stiffenerc3'].sets['CSTIFFSLAVE'] 

myModel.Tie(name='stifftocolumn3', master=region1, slave=region2,  

    positionToleranceMethod=COMPUTED, adjust=OFF, 

tieRotations=OFF,  

    thickness=ON) 

 

a = myModel.rootAssembly 
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region1=a.instances['Column'].sets['CSTIFF4'] 

region2=a.instances['Stiffenerc4'].sets['CSTIFFSLAVE'] 

myModel.Tie(name='stifftocolumn4', master=region1, slave=region2,  

    positionToleranceMethod=COMPUTED, adjust=OFF, 

tieRotations=OFF,  

    thickness=ON) 

##---------------------------------------------Rigid body for 

point load----------------------------------------## 

 

 

region1=myModel.rootAssembly.instances['Beam'].sets['endnode'] 

region2=myModel.rootAssembly.instances['Beam'].sets['beamend'] 

mdb.models['Connection'].Coupling(name='endcouple', 

controlPoint=region1,  

    surface=region2, influenceRadius=WHOLE_SURFACE, 

couplingType=KINEMATIC,  

    localCsys=None, u1=ON, u2=ON, u3=ON, ur1=OFF, ur2=OFF, 

ur3=OFF) 

 

##----------------------------------------define connector------

----------------------------## 

import connectorBehavior 

 

#define for beam-to-gusset 

mdb.models['Connection'].ConnectorSection(name='ConnSect-1',  

    translationalType=CARTESIAN) 

friction_0 = 

connectorBehavior.ConnectorFriction(table=((54000.0, ), ),  

    frictionModel=USER_CUSTOMIZED, slipStyle=COMPUTE) 

friction_0.TangentialBehavior(table=((0.19, ), )) 

cp0 = connectorBehavior.ConnectorPotential(componentNumber=2) 

cp1 = connectorBehavior.ConnectorPotential(componentNumber=3) 

friction_0.setValues(connectorPotentials=(cp0, cp1, )) 

friction_0.ConnectorOptions() 

stop_1 = connectorBehavior.ConnectorStop(components=(2, 3), 

minMotion=-3.0,  

    maxMotion=3.0) 

mdb.models['Connection'].sections['ConnSect-

1'].setValues(behaviorOptions =( 

    friction_0, stop_1, ) ) 

 

#define for column-to-gusset 

mdb.models['Connection'].ConnectorSection(name='ConnSect-2',  

    translationalType=CARTESIAN) 

elastic_0 = connectorBehavior.ConnectorElasticity(components=(1, 

2, 3),  

    behavior=RIGID) 

elastic_0.ConnectorOptions() 

mdb.models['Connection'].sections['ConnSect-

2'].setValues(behaviorOptions =( 

    elastic_0, ) ) 

 

 

##---------------------------------------------Fasteners 

definition---------------------------------------## 

 

a = mdb.models['Connection'].rootAssembly 

#v3 = a.instances['Column'].vertices 
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#Beam to gusset plate 

 

for i in range(0, mb): 

 V1 =  

a.instances['Beam'].vertices.findAt(((0.0+tg/2.0+tb/2.0,rb*cos(2

*pi/mb*i)+xp-bp1/2.0, rb*sin(2*pi/mb*i)+lc/2.0),)) 

 V2 =  a.instances['Beam'].vertices.findAt(((0.0-tg/2.0-

tb/2.0,rb*cos(2*pi/mb*i)+xp-bp1/2.0, rb*sin(2*pi/mb*i)+lc/2.0),)) 

 V3 =  a.instances['Gussetplate'].vertices.findAt(((0.0, 

xp-bp1/2.0+rb*cos(2*pi/mb*i), rb*sin(2*pi/mb*i)+lc/2.0),)) 

 wi1=a.WirePolyLine(points=((V3[0], V1[0]), ), 

mergeType=IMPRINT, meshable=OFF) 

 edge1 = a.edges.findAt( ((tg/4.0+tb/4.0,xp-

bp1/2.0+rb*cos(2*pi/mb*i),rb*sin(2*pi/mb*i)+lc/2.0), ) ) 

 region=regionToolset.Region(edges=edge1) 

 csa = a.SectionAssignment(sectionName='ConnSect-1', 

region=region) 

 wi2=a.WirePolyLine(points=((V3[0], V2[0]), ), 

mergeType=IMPRINT, meshable=OFF) 

 edge2 = a.edges.findAt( ((-tg/4.0-tb/4.0,xp-

bp1/2.0+rb*cos(2*pi/mb*i),rb*sin(2*pi/mb*i)+lc/2.0), ) ) 

 region=regionToolset.Region(edges=edge2) 

 csa = a.SectionAssignment(sectionName='ConnSect-1', 

region=region) 

 

 

V1 =  

a.instances['Beam'].vertices.findAt(((0.0+tg/2.0+tb/2.0,xp-

bp1/2.0, lc/2.0),)) 

V2 =  a.instances['Beam'].vertices.findAt(((0.0-tg/2.0-

tb/2.0,xp-bp1/2.0, lc/2.0),)) 

V3 =  a.instances['Gussetplate'].vertices.findAt(((0.0, xp-

bp1/2.0, lc/2.0),)) 

wi1=a.WirePolyLine(points=((V3[0], V1[0]), ), mergeType=IMPRINT, 

meshable=OFF) 

edge1 = a.edges.findAt( ((tg/4.0+tb/4.0, xp-bp1/2.0, lc/2.0), ) ) 

region=regionToolset.Region(edges=edge1) 

csa = a.SectionAssignment(sectionName='ConnSect-1', 

region=region) 

wi2=a.WirePolyLine(points=((V3[0], V2[0]), ), mergeType=IMPRINT, 

meshable=OFF) 

edge2 = a.edges.findAt( ((-tg/4.0-tb/4.0,xp-bp1/2.0 , 

lc/2.0), ) ) 

region=regionToolset.Region(edges=edge2) 

csa = a.SectionAssignment(sectionName='ConnSect-1', 

region=region) 

 

 

#Column to gusset plate 

j = -(nc-1)/2.0 

while (j <=(nc-1)/2.0): 

 i =  -(mc-1)/2.0 

 while (i <= (mc-1)/2.0): 

  V1 =  

a.instances['Column'].vertices.findAt(((tg/2.0+tc/2.0,j*hc,i*vc+

lc/2.0),)) 
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  V2 =  a.instances['Column'].vertices.findAt(((-

tg/2.0-tc/2.0,j*hc,i*vc+lc/2.0),)) 

  V3 =  

a.instances['Gussetplate'].vertices.findAt(((0.0 , j*hc , 

i*vc+lc/2.0),)) 

  wi1=a.WirePolyLine(points=((V3[0], V1[0]), ), 

mergeType=IMPRINT, meshable=OFF) 

  edge1 = a.edges.findAt( ((tg/4.0+tb/4.0 , j*hc , 

i*vc+lc/2.0), ) ) 

  region=regionToolset.Region(edges=edge1) 

  csa = a.SectionAssignment(sectionName='ConnSect-2', 

region=region) 

  wi2=a.WirePolyLine(points=((V3[0], V2[0]), ), 

mergeType=IMPRINT, meshable=OFF) 

  edge2 = a.edges.findAt( ((-tg/4.0-tb/4.0 , j*hc , 

i*vc+lc/2.0), ) ) 

  region=regionToolset.Region(edges=edge2) 

  csa = a.SectionAssignment(sectionName='ConnSect-2', 

region=region) 

  i=i+1 

 j=j+1 

 

 

##-------------------------------------------load module--------

------------------------------------------## 

## Apply the boundary conditions and load 

a = mdb.models['Connection'].rootAssembly 

region = a.instances['Column'].sets['columntop'] 

mdb.models['Connection'].DisplacementBC(name='topcolu',  

    createStepName='Initial', region=region, u1=SET, u2=SET, 

u3=UNSET,  

    ur1=UNSET, ur2=UNSET, ur3=UNSET, amplitude=UNSET, 

distributionType=UNIFORM,  

    fieldName='', localCsys=None) 

 

a = mdb.models['Connection'].rootAssembly 

region = a.instances['Column'].sets['columnbottom'] 

mdb.models['Connection'].DisplacementBC(name='bottomcolu',  

    createStepName='Initial', region=region, u1=SET, u2=SET, 

u3=SET,  

    ur1=UNSET, ur2=UNSET, ur3=UNSET, amplitude=UNSET, 

distributionType=UNIFORM,  

    fieldName='', localCsys=None) 

 

a = mdb.models['Connection'].rootAssembly 

region = a.instances['Beam'].sets['beamlateral'] 

mdb.models['Connection'].DisplacementBC(name='lateralrest',  

    createStepName='Initial', region=region, u1=SET, u2=UNSET, 

u3=UNSET,  

    ur1=UNSET, ur2=UNSET, ur3=UNSET, amplitude=UNSET, 

distributionType=UNIFORM,  

    fieldName='', localCsys=None) 

 

a = mdb.models['Connection'].rootAssembly 

region = a.instances['Beam'].sets['beambolts'] 

mdb.models['Connection'].DisplacementBC(name='boltbeam',  

    createStepName='Initial', region=region, u1=SET, u2=UNSET, 

u3=UNSET,  
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    ur1=UNSET, ur2=SET, ur3=SET, amplitude=UNSET, 

distributionType=UNIFORM,  

    fieldName='', localCsys=None) 

 

a = mdb.models['Connection'].rootAssembly 

region = a.instances['Column'].sets['columnbolts'] 

mdb.models['Connection'].DisplacementBC(name='boltcolumn',  

    createStepName='Initial', region=region, u1=SET, u2=UNSET, 

u3=UNSET,  

    ur1=UNSET, ur2=SET, ur3=SET, amplitude=UNSET, 

distributionType=UNIFORM,  

    fieldName='', localCsys=None) 

 

a = mdb.models['Connection'].rootAssembly 

region = a.instances['Gussetplate'].sets['gussetcolumnbolts'] 

mdb.models['Connection'].DisplacementBC(name='gussetcolumnbolt',  

    createStepName='Initial', region=region, u1=SET, u2=UNSET, 

u3=UNSET,  

    ur1=UNSET, ur2=SET, ur3=SET, amplitude=UNSET, 

distributionType=UNIFORM,  

    fieldName='', localCsys=None) 

 

a = mdb.models['Connection'].rootAssembly 

region = a.instances['Gussetplate'].sets['gussetbeambolts'] 

mdb.models['Connection'].DisplacementBC(name='gussetbeambolt',  

    createStepName='Initial', region=region, u1=SET, u2=UNSET, 

u3=UNSET,  

    ur1=UNSET, ur2=SET, ur3=SET, amplitude=UNSET, 

distributionType=UNIFORM,  

    fieldName='', localCsys=None) 

 

a = mdb.models['Connection'].rootAssembly 

region = a.instances['Beam'].sets['endnode'] 

mdb.models['Connection'].DisplacementBC(name='endbolt',  

    createStepName='Initial', region=region, u1=SET, u2=UNSET, 

u3=UNSET,  

    ur1=UNSET, ur2=SET, ur3=UNSET, amplitude=UNSET, 

distributionType=UNIFORM,  

    fieldName='', localCsys=None) 

 

mdb.models['Connection'].TabularAmplitude(name='protocol', 

timeSpan=STEP,  

    smooth=SOLVER_DEFAULT, data=((0.0, 0.0), (1.0, 6.79125), 

(2.0, 0.0), (3.0,  

    -6.79125), (4.0, 0.0), (5.0, 6.79125), (6.0, 0.0), (7.0, -

6.79125), (8.0,  

    0.0), (9.0, 6.79125), (10.0, 0.0), (11.0, -6.79125), (12.0, 

0.0), (13.0,  

    6.79125), (14.0, 0.0), (15.0, -6.79125), (16.0, 0.0), (17.0, 

6.79125), ( 

    18.0, 0.0), (19.0, -6.79125), (20.0, 0.0), (21.0, 6.79125), 

(22.0, 0.0), ( 

    23.0, -6.79125), (24.0, 0.0), (25.0, 9.055), (26.0, 0.0), 

(27.0, -9.055), ( 

    28.0, 0.0), (29.0, 9.055), (30.0, 0.0), (31.0, -9.055), 

(32.0, 0.0), (33.0,  

    9.055), (34.0, 0.0), (35.0, -9.055), (36.0, 0.0), (37.0, 

9.055), (38.0,  
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    0.0), (39.0, -9.055), (40.0, 0.0), (41.0, 9.055), (42.0, 

0.0), (43.0,  

    -9.055), (44.0, 0.0), (45.0, 9.055), (46.0, 0.0), (47.0, -

9.055), (48.0,  

    0.0), (49.0, 13.5825), (50.0, 0.0), (51.0, -13.5825), (52.0, 

0.0), (53.0,  

    13.5825), (54.0, 0.0), (55.0, -13.5825), (56.0, 0.0), (57.0, 

13.5825), ( 

    58.0, 0.0), (59.0, -13.5825), (60.0, 0.0), (61.0, 13.5825), 

(62.0, 0.0), ( 

    63.0, -13.5825), (64.0, 0.0), (65.0, 13.5825), (66.0, 0.0), 

(67.0,  

    -13.5825), (68.0, 0.0), (69.0, 13.5825), (70.0, 0.0), (71.0, 

-13.5825), ( 

    72.0, 0.0), (73.0, 18.11), (74.0, 0.0), (75.0, -18.11), 

(76.0, 0.0), (77.0,  

    18.11), (78.0, 0.0), (79.0, -18.11), (80.0, 0.0), (81.0, 

18.11), (82.0,  

    0.0), (83.0, -18.11), (84.0, 0.0), (85.0, 18.11), (86.0, 

0.0), (87.0,  

    -18.11), (88.0, 0.0), (89.0, 27.165), (90.0, 0.0), (91.0, -

27.165), (92.0,  

    0.0), (93.0, 27.165), (94.0, 0.0), (95.0, -27.165), (96.0, 

0.0), (97.0,  

    36.22), (98.0, 0.0), (99.0, -36.22), (100.0, 0.0), (101.0, 

36.22), (102.0,  

    0.0), (103.0, -36.22), (104.0, 0.0), (105.0, 54.33), (106.0, 

0.0), (107.0,  

    -54.33), (108.0, 0.0), (109.0, 54.33), (110.0, 0.0), (111.0, 

-54.33), ( 

    112.0, 0.0), (113.0, 72.44), (114.0, 0.0), (115.0, -72.44), 

(116.0, 0.0), ( 

    117.0, 72.44), (118.0, 0.0), (119.0, -72.44), (120.0, 0.0), 

(121.0, 90.55),  

    (122.0, 0.0), (123.0, -90.55), (124.0, 0.0), (125.0, 90.55), 

(126.0, 0.0),  

    (127.0, -90.55), (128.0, 0.0), (129.0, 108.66), (130.0, 0.0), 

(131.0,  

    -108.66), (132.0, 0.0), (133.0, 108.66), (134.0, 0.0), 

(135.0, -108.66), ( 

    136.0, 0.0), (137.0, 126.77), (138.0, 0.0), (139.0, -126.77), 

(140.0, 0.0),  

    (141.0, 126.77), (142.0, 0.0), (143.0, -126.77), (144.0, 

0.0), (145.0,  

    144.88), (146.0, 0.0), (147.0, -144.88), (148.0, 0.0), 

(149.0, 144.88), ( 

    150.0, 0.0), (151.0, -144.88), (152.0, 0.0))) 

 

#a = mdb.models['Connection'].rootAssembly 

#region = a.instances['Beam'].sets['endnode'] 

#mdb.models['Connection'].DisplacementBC(name='endload',  

#    createStepName='Step-1', region=region, u1=UNSET, u2=UNSET, 

u3=-150.0,  

#    ur1=UNSET, ur2=UNSET, ur3=UNSET, amplitude=UNSET, fixed=OFF,  

#    distributionType=UNIFORM, fieldName='', localCsys=None) 

 

##-------------------------------------------Mesh module--------

------------------------------------------## 
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import mesh 

##Beam 

elemType1 = mesh.ElemType(elemCode=S8R, elemLibrary=STANDARD) 

p = myModel.parts['Beam'] 

f = p.faces 

pickregion = 

regionToolset.Region(faces=myModel.parts['Beam'].faces) 

p.setElementType(regions=pickregion, elemTypes=(elemType1,)) 

 

p = myModel.parts['Beam'] 

p.seedPart(size=20.0, deviationFactor=0.1, minSizeFactor=0.1) 

p.generateMesh() 

 

##column 

elemType1 = mesh.ElemType(elemCode=S8R, elemLibrary=STANDARD) 

p = myModel.parts['Column'] 

f = p.faces 

pickregion = 

regionToolset.Region(faces=myModel.parts['Column'].faces) 

p.setElementType(regions=pickregion, elemTypes=(elemType1,)) 

 

p = myModel.parts['Column'] 

p.seedPart(size=20.0, deviationFactor=0.1, minSizeFactor=0.1) 

p.generateMesh() 

 

##column stiffners 

elemType1 = mesh.ElemType(elemCode=S8R, elemLibrary=STANDARD) 

p = myModel.parts['StiffenerC'] 

f = p.faces 

pickregion = 

regionToolset.Region(faces=myModel.parts['StiffenerC'].faces) 

p.setElementType(regions=pickregion, elemTypes=(elemType1,)) 

 

p = myModel.parts['StiffenerC'] 

p.seedPart(size=20.0, deviationFactor=0.1, minSizeFactor=0.1) 

p.generateMesh() 

 

##Guesset plate 

elemType1 = mesh.ElemType(elemCode=S8R, elemLibrary=STANDARD) 

p = myModel.parts['Gussetplate'] 

f = p.faces 

pickregion = 

regionToolset.Region(faces=myModel.parts['Gussetplate'].faces) 

p.setElementType(regions=pickregion, elemTypes=(elemType1,)) 

 

p = myModel.parts['Gussetplate'] 

p.seedPart(size=20.0, deviationFactor=0.1, minSizeFactor=0.1) 

p.generateMesh() 

 

##-------------------------------------------Job module---------

-----------------------------------------## 

import job 

 

mdb.Job(name='boltconnectioin', model='Connection', 

description='connection performance') 

 

mdb.jobs['boltconnectioin'].submit(consistencyChecking=OFF) 
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#: The job input file "beam-OPT.inp" has been submitted for 

analysis. 

mdb.jobs['boltconnectioin'].waitForCompletion() 
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A.6 Python script for optimisation of CFS elements based on their post-buckling 

behaviour 

from part import * 

from material import * 

from section import * 

from assembly import * 

from step import * 

from interaction import * 

from load import * 

from mesh import * 

from job import * 

from sketch import * 

from visualization import * 

from connectorBehavior import * 

from abaqus import * 

from abaqusConstants import * 

import os 

os.chdir(r'D:\Python\connections\pythonopt') 

myModel = mdb.Model(name='Channelbeam') 

#Dimentions 

###################Beam channel######################### 

import numpy as np 

p=415;        #total length of plate in mm 

a = area[0];  

b = area[1];  

c = area[2]; 

h = p-2*a-2*b-2*c; ##profile dimenstions:web height, flange 

width, lip length 

theta1 = area[3]; 

theta2 = area[4]; 

lb = 1400;                            ##beam height 

tb=1.5;                                    ##thickness of beam 

disp=56; 

###################Beam profile######################### 

mySketchB = myModel.ConstrainedSketch(name='Bprofile', 

sheetSize=500.0) 

xy1=[(a*sin(theta2)+b-c*cos(theta1) , -h/2.0 + 

a*cos(theta2)+c*sin(theta1)) , (a*sin(theta2)+b , -h/2.0 + 

a*cos(theta2)) , (a*sin(theta2), -h/2.0 + a*cos(theta2)) , (0.0, 

-h/2.0), (0.0, 0) ,  

  (0.0 , h/2.0) , (a*sin(theta2), h/2.0 - 

a*cos(theta2)) , (a*sin(theta2)+b, h/2.0 - a*cos(theta2)) , 

(a*sin(theta2)+b-c*cos(theta1), h/2.0 - a*cos(theta2)-

c*sin(theta1))] 

 

for i in range(len(xy1)-1): 

 mySketchB.Line(point1 = xy1[i], point2 = xy1[i+1]) 

 

 

###################Beam Part######################### 

myPartbeam = myModel.Part(name='Beam', dimensionality=THREE_D,  

 type=DEFORMABLE_BODY) 

myPartbeam.BaseShellExtrude(sketch=mySketchB, depth=lb) 

axisl=myPartbeam.DatumAxisByTwoPoint(point1=(0.0, 0.0, 

0.0),point2=(0.0,0.0,lb)) 

datums=myPartbeam.datums  
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partitionplace=[300 , lb/2.0 , lb-300]; 

for i in range(len(partitionplace)): 

 d = myPartbeam.DatumPointByCoordinate(coords = 

(0.0,0.0,partitionplace[i])) 

 myfaces= myPartbeam.faces 

 e=myPartbeam.DatumPlaneByPointNormal(point=datums[d.id], 

normal=datums[axisl.id]) 

 myPartbeam.PartitionFaceByDatumPlane(datumPlane=datums[e.i

d], faces=myfaces) 

 

#reference point for load 

P1=myPartbeam.ReferencePoint(point=(0.0, 0.0, 0)); 

#refPoints=(R1[12], ) 

Q2 = myPartbeam.referencePoints; 

refPoints1=(Q2[P1.id], ); 

myPartbeam.Set(referencePoints=refPoints1, name='endnode'); 

 

## For beam : end cross-sections AND start cross-sections for 

fix end 

EE = [] 

FF = [] 

for i in range(len(xy1)-1): 

 V1 = 

myPartbeam.edges.findAt((((xy1[i][0]+xy1[i+1][0])/2.0,(xy1[i][1]

+xy1[i+1][1])/2.0,0),)) 

 V2 = 

myPartbeam.edges.findAt((((xy1[i][0]+xy1[i+1][0])/2.0,(xy1[i][1]

+xy1[i+1][1])/2.0,lb),)) 

 EE.append(V1) 

 FF.append(V2) 

 

myPartbeam.Set(edges=EE,name='beamend') 

myPartbeam.Set(edges=FF,name='beamstart') 

 

 

## For beam : lateral restraints 

LT=[] 

for i in range(len(partitionplace)): 

 V3 =  

myPartbeam.edges.findAt((((xy1[3][0]+xy1[4][0])/2.0,(xy1[3][1]+x

y1[4][1])/2.0,partitionplace[i]),((xy1[4][0]+xy1[5][0])/2.0,(xy1

[4][1]+xy1[5][1])/2.0,partitionplace[i]),)) 

 LT.append(V3) 

 

for i in range(len(partitionplace)): 

 V5 =  

myPartbeam.edges.findAt((((xy1[6][0]+xy1[7][0])/2.0,(xy1[6][1]+x

y1[7][1])/2.0,partitionplace[i]),)) 

 LT.append(V5) 

 V5 =  

myPartbeam.edges.findAt((((xy1[1][0]+xy1[2][0])/2.0,(xy1[1][1]+x

y1[2][1])/2.0,partitionplace[i]),)) 

 LT.append(V5) 

 

myPartbeam.Set(edges=LT,name='beamlateral') 

  

#----------------------------------into assembly module --------

----------------  ---------------# 
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myModel.rootAssembly.DatumCsysByDefault(CARTESIAN) 

myModel.rootAssembly.Instance(name='Beam', part=myPartbeam, 

dependent=ON) 

 

 

##-----------------------------Material properties--------------

----------------------## 

 

##1,material property builded as follow:------------------------

---------- 

p=myModel.Material(name='beammat') 

p.Elastic(table=((210000.0, 0.3), )) 

p.Plastic(table=((350.0, 0.0), (400.0, 0.000310257), (450.0, 

0.002474433), (480.0, 0.00961729), ( 

    520.0, 0.019141099))) 

 

myModel.HomogeneousShellSection(name='beamsec',  

    preIntegrate=OFF, material='beammat', thicknessType=UNIFORM, 

thickness=tb,  

    thicknessField='', idealization=NO_IDEALIZATION, 

poissonDefinition=DEFAULT,  

    thicknessModulus=None, temperature=GRADIENT, useDensity=OFF,  

    integrationRule=SIMPSON, numIntPts=5) 

 

import regionToolset 

 

pickregion = 

regionToolset.Region(faces=myModel.parts['Beam'].faces) 

myPartbeam.SectionAssignment(region=pickregion, 

sectionName='beamsec', offset=0.0,  

    offsetType=MIDDLE_SURFACE, offsetField='',  

    thicknessAssignment=FROM_SECTION) 

 

######-----------------------------------------step module------

-------------------------###### 

myModel.StaticStep(name='Step-1', previous='Initial',  

    initialInc=0.1, nlgeom=ON) 

mdb.models['Channelbeam'].steps['Step-1'].control.setValues( 

    allowPropagation=OFF, resetDefaultValues=OFF, 

discontinuous=ON,  

    timeIncrementation=(8.0, 10.0, 9.0, 16.0, 10.0, 4.0, 12.0, 

20.0, 6.0, 3.0, 50.0)) 

##---------------------------------------------Rigid body for 

point load----------------------------------------## 

a = myModel.rootAssembly 

region3=a.instances['Beam'].sets['beamend'] 

a = myModel.rootAssembly 

r1 = a.instances['Beam'].referencePoints 

refPoints1=(r1[P1.id], ) 

region1=regionToolset.Region(referencePoints=refPoints1) 

myModel.RigidBody(name='endregid', refPointRegion=region1,  

    pinRegion=region3) 

 

##-------------------------------------------load module--------

------------------------------------------## 

## Apply the boundary conditions and load 

 

a = mdb.models['Channelbeam'].rootAssembly 
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region = a.instances['Beam'].sets['beamstart'] 

mdb.models['Channelbeam'].DisplacementBC(name='endfix',  

    createStepName='Initial', region=region, u1=SET, u2=SET, 

u3=SET, ur1=SET,  

    ur2=SET, ur3=SET, amplitude=UNSET, distributionType=UNIFORM, 

fieldName='',  

    localCsys=None) 

 

a = mdb.models['Channelbeam'].rootAssembly 

region = a.instances['Beam'].sets['beamlateral'] 

mdb.models['Channelbeam'].DisplacementBC(name='lateralrest',  

    createStepName='Initial', region=region, u1=SET, u2=UNSET, 

u3=UNSET,  

    ur1=UNSET, ur2=UNSET, ur3=UNSET, amplitude=UNSET, 

distributionType=UNIFORM,  

    fieldName='', localCsys=None) 

 

a = myModel.rootAssembly 

r1 = a.instances['Beam'].referencePoints 

refPoints1=(r1[P1.id], ) 

region = regionToolset.Region(referencePoints=refPoints1) 

myModel.DisplacementBC(name='endload',  

    createStepName='Step-1', region=region, u1=UNSET, u2=-disp, 

u3=UNSET,  

    ur1=UNSET, ur2=UNSET, ur3=UNSET, amplitude=UNSET, fixed=OFF,  

    distributionType=UNIFORM, fieldName='', localCsys=None) 

 

##-------------------------------------------Mesh module--------

------------------------------------------## 

import mesh 

##Beam 

elemType1 = mesh.ElemType(elemCode=S8R, elemLibrary=STANDARD) 

p = mdb.models['Channelbeam'].parts['Beam'] 

f = p.faces 

pickregion = 

regionToolset.Region(faces=myModel.parts['Beam'].faces) 

p.setElementType(regions=pickregion, elemTypes=(elemType1,)) 

 

p = myModel.parts['Beam'] 

p.seedPart(size=20.0, deviationFactor=0.1, minSizeFactor=0.1) 

p.generateMesh() 

 

##-------------------------------------------Job module---------

-----------------------------------------## 

import job 

 

mdb.Job(name='beam-OPT1', model='Channelbeam', description='Beam 

optmization') 

 

mdb.jobs['beam-OPT1'].submit(consistencyChecking=OFF) 

#: The job input file "beam-OPT.inp" has been submitted for 

analysis. 

mdb.jobs['beam-OPT1'].waitForCompletion() 

 

##-------------------------------------------visualization 

module--------------------------------------------------## 

from visualization import * 

from  odbAccess import* 
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odb = openOdb(r'D:\Python\connections\pythonopt\beam-OPT1.odb') 

myPart=odb.rootAssembly.instances['BEAM'] 

step1=odb.steps['Step-1'] 

##---------------------------------------------------

displacement output---------------------------------------------

---------------## 

#lastFrame=step1.frames[-1] 

#displacement=lastFrame.fieldOutputs['U'] 

#endr=odb.rootAssembly.instances['BEAM'].nodeSets['ENDNODE'] 

#u1=displacement.getSubset(region=endr) 

#dispvalues=u1.values 

#for v in dispvalues: 

# print v.nodeLabel,v.data 

history = step1.historyRegions['Assembly ASSEMBLY'] 

energdata = history.historyOutputs['ALLPD'].data 

#print energdata[-1][-1] 
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A.7 ABAQUS User Defined Element for modelling of a bolt 

C###########################################################################

######################## 

C  USER DEFINED ELEMENT:2D 4NODES ISOPARAMETER LINEAR-ELASTIC 

MATERIA  

C  THIS CODE IS PROGRAMMED IN ONE PURPOSED:  

C  To implement complement the combination of UEL and UMAT      

C--------------------------------------------------------------------------------------------------C 

 

C###########################################################################

######################## 

      SUBROUTINE UEL(RHS,AMATRX,SVARS,ENERGY,NDOFEL,NRHS,NSVARS, 

     1     PROPS,NPROPS,COORDS,MCRD,NNODE,U,DU,V,A,JTYPE,TIME,DTIME, 

     2     KSTEP,KINC,JELEM,PARAMS,NDLOAD,JDLTYP,ADLMAG,PREDEF, 

     3     NPREDF,LFLAGS,MLVARX,DDLMAG,MDLOAD,PNEWDT,JPROPS,NJPROP, 

     4     PERIOD) 

C   

c      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

       INCLUDE 'ABA_PARAM.INC' 

C 

      DIMENSION RHS(MLVARX,*),AMATRX(NDOFEL,NDOFEL), 

     1     SVARS(*),ENERGY(7),PROPS(9),COORDS(MCRD,NNODE), 

     2     U(NDOFEL),DU(MLVARX,*),V(NDOFEL),A(NDOFEL),TIME(2), 

     3     PARAMS(*),JDLTYP(MDLOAD,*),ADLMAG(MDLOAD,*), 

     4     DDLMAG(MDLOAD,*),PREDEF(2,NPREDF,NNODE),LFLAGS(4), 

     5     JPROPS(*) 

C 

C 

C***** DEFINE  PARAMETERS AND M      

 

      PARAMETER (HALF=0.5D0,ZERO= 0.D0,ONE = 1.D0,TWO=2.D0,THREE=3.0D0) 

      PARAMETER (TWELVE=12.D0) 

      DIMENSION B(NDOFEL,NDOFEL),D(NDOFEL,NDOFEL),S(NDOFEL,NDOFEL) 

      DIMENSION T(NDOFEL,NDOFEL),TT(NDOFEL,NDOFEL),DD(NDOFEL,NDOFEL) 

      DIMENSION SSTRAIN(NDOFEL),SSTRESS(NDOFEL),UUU(NDOFEL)          

C 

C      LFLAGS(1)=1,2  

C  

c 

       NN=NDOFEL 

       DX=COORDS(1,2)-COORDS(1,1) 

       DY=COORDS(2,2)-COORDS(2,1) 

       DL2=DX**2+DY**2 

       DL=SQRT(DL2) 

       HDL=DL/TWO 

       ACOS=DX/DL 

       ASIN=DY/DL      

       K1=PROPS(2) 

       UU1=PROPS(1) 

       K2=PROPS(4) 

       UU2=PROPS(3) 

       K3=PROPS(6) 

       UU3=PROPS(5) 

       K4=SVARS(7) 

       KN=PROPS(8) 

       AM=PROPS(9) 
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C       

C------------------------------------ 

C---------------------------------- 

       IF (KSTEP .EQ. ONE .AND. KINC .EQ. ONE) THEN 

         F=0 

         SVARS(1)=F 

         UMA=0 

         FMA=0 

         UMI=0 

         FMI=0 

         FLIMP=0 

         FLIMN=0 

         SVARS(2)=UMA 

         SVARS(3)=FMA 

         SVARS(4)=UMI 

         SVARS(5)=FMI 

         FLAG=0 

         DO I =1, NDOFEL 

           DO KRHS = 1, NRHS 

             RHS(I,KRHS) = ZERO 

           ENDDO 

           DO J = 1, NDOFEL 

            AMATRX(J,I) = ZERO 

           ENDDO 

         ENDDO 

        END IF 

            DO I=1,NN 

              DO J=1,NN 

               B(I,J)=ZERO 

               S(I,J)=ZERO 

               D(I,J)=ZERO 

              ENDDO 

            ENDDO 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCC 

C          Make B Matrix  in Natural Coordinate System                  C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCC     

           

                B(2,2)=-1.0D0*ONE/DL 

                B(8,8)=ONE/DL                       

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCC 

C                         MAKE D-MATRIX                          

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCC             

            

C              

             F1=UU1*K1 

             F2=F1+(UU2-UU1)*K2 

             F3=F1+(UU3-UU2)*K3 

             UU=U(8)-U(2) 

             DUU=DU(8,1)-DU(2,1) 

             F0=SVARS(1) 

            IF(F0 .GE. ZERO)THEN 

50           UMA=SVARS(2) 

             FMA=SVARS(3) 
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             UMI=SVARS(4) 

             FMI=SVARS(5) 

             IF (DUU .GE. ZERO) THEN 

               IF (UMA .LE. UU2) THEN 

                IF(UU .LE. UU2)THEN 

                 KD=K1 

                 D(2,2)=KD 

                 D(8,8)=KD 

                 D(2,8)=-1.0D0*KD 

                 D(8,2)=-1.0D0*KD 

                 F=F0+KD*DUU 

                 IF(F .GT. F1) THEN 

                  F=F1 

                  KD=0 

                 END IF 

                END IF 

                IF(UU .GT. UU2 .AND. UU .LE. UU3)THEN 

                 KD=K3 

                 D(2,2)=KD 

                 D(8,8)=KD 

                 D(2,8)=-1.0D0*KD 

                 D(8,2)=-1.0D0*KD 

                 F=F1+K3*(UU-UU2) 

                END IF 

                IF(UU .GT. UU3)THEN 

                 KD=K4 

                 D(2,2)=KD 

                 D(8,8)=KD 

                 D(2,8)=-1.0D0*KD 

                 D(8,2)=-1.0D0*KD 

                 F=F3+K4*(UU-UU3) 

                END IF 

               END IF 

               IF (UMA .GT. UU2) THEN 

                IF(UU .LE. UU2)THEN 

                 KD=K1 

                 D(2,2)=KD 

                 D(8,8)=KD 

                 D(2,8)=-1.0D0*KD 

                 D(8,2)=-1.0D0*KD 

                 F=F0+KD*DUU 

                 IF(F .GT. F1) THEN 

                  F=F1 

                  KD=0 

                 END IF 

                END IF 

                IF(UU .GT. UU2 .AND. UU .LE. UU3)THEN 

                 KD=K1 

                 F=F0+KD*DUU 

                 FLIMP3=K3*(UU-UU3)+F3 

                 FLIMP4=K4*(UU-UU3)+F3 

                 IF(F .GT. FLIMP3 .AND. FLIMP3 .LT. F3) THEN 

                  F=FLIMP3 

                  KD=K3 

                 END IF 

                 IF(FLIMP3 .GE. F3) THEN 

                  F=FLIMP4 
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                  KD=K4 

                 END IF 

                 D(2,2)=KD 

                 D(8,8)=KD 

                 D(2,8)=-1.0D0*KD 

                 D(8,2)=-1.0D0*KD 

                END IF 

                IF(UU .GT. UU3)THEN 

                 KD=K1 

                 F=F0+KD*DUU 

                 FLIMP3=K3*(UU-UU3)+F3 

                 FLIMP4=K4*(UU-UU3)+F3 

                 IF(F .GT. FLIMP4) THEN 

                  F=FLIMP4 

                  KD=K4 

                 END IF 

                 D(2,2)=KD 

                 D(8,8)=KD 

                 D(2,8)=-1.0D0*KD 

                 D(8,2)=-1.0D0*KD 

                END IF 

               END IF 

               IF(UU .GT. UMA)THEN 

                 UMA=UU 

                 FMA=F 

               END IF 

               IF(UU .LT. UMI)THEN 

                 UMI=UU 

                 FMI=F 

               END IF 

               SVARS(1)=F 

               SVARS(2)=UMA 

               SVARS(3)=FMA 

               SVARS(4)=UMI 

               SVARS(5)=FMI 

             END IF 

             IF (DUU .LT. ZERO) THEN 

               KD=K1 

               D(2,2)=KD 

               D(8,8)=KD 

               D(2,8)=-1.0D0*KD 

               D(8,2)=-1.0D0*KD 

               F=F0+KD*DUU 

               IF(F .LT. ZERO) THEN 

                F=F-KD*DUU 

                GO TO 60 

               END IF 

               IF(UU .GT. UMA)THEN 

                 UMA=UU 

                 FMA=F 

               END IF 

               IF(UU .LT. UMI)THEN 

                 UMI=UU 

                 FMI=F 

               END IF 

               SVARS(1)=F 

               SVARS(2)=UMA 
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               SVARS(3)=FMA 

               SVARS(4)=UMI 

               SVARS(5)=FMI 

             END IF 

             GO TO 70  

            END IF 

            IF(F0 .LT. ZERO)THEN 

60           UMA=SVARS(2) 

             FMA=SVARS(3) 

             UMI=SVARS(4) 

             FMI=SVARS(5) 

             IF (DUU .LE. ZERO) THEN 

              IF (UMI .GE. (-1.0D0*UU2)) THEN 

                IF(UU .GE. (-1.0D0*UU2))THEN         

                 KD=K1 

                 D(2,2)=KD 

                 D(8,8)=KD 

                 D(2,8)=-1.0D0*KD 

                 D(8,2)=-1.0D0*KD 

                 F=F0+KD*DUU 

                 IF(F .LT. -1.0D0*F1) THEN 

                  F=-1.0D0*F1 

                  KD=0 

                 END IF 

                END IF 

                IF(UU .GE. -1.0D0*UU3 .AND. UU .LT. -1.0D0*UU2)THEN 

                 KD=K3 

                 D(2,2)=KD 

                 D(8,8)=KD 

                 D(2,8)=-1.0D0*KD 

                 D(8,2)=-1.0D0*KD 

                 F=K3*(UU+UU2)-F1 

                END IF 

                IF(UU .LT. -1.0D0*UU3)THEN 

                 KD=K4 

                 D(2,2)=KD 

                 D(8,8)=KD 

                 D(2,8)=-1.0D0*KD 

                 D(8,2)=-1.0D0*KD 

                 F=K4*(UU+UU3)-F3 

                END IF 

              END IF 

              IF (UMI .LT. (-1.0D0*UU2)) THEN 

                IF(UU .GE. (-1.0D0*UU2))THEN         

                 KD=K1 

                 D(2,2)=KD 

                 D(8,8)=KD 

                 D(2,8)=-1.0D0*KD 

                 D(8,2)=-1.0D0*KD 

                 F=F0+KD*DUU 

                 IF(F .LT. -1.0D0*F1) THEN 

                  F=-1.0D0*F1 

                  KD=0 

                 END IF 

                END IF 

                IF(UU .LT. (-1.0D0*UU2) .AND. UU .GE. (-1.0D0*UU3))THEN 

                 KD=K1 
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                 F=F0+KD*DUU 

                 FLIMP3=K3*(UU+UU3)-F3 

                 FLIMP4=K4*(UU+UU3)-F3 

                 IF(F .LT. FLIMP3 .AND. FLIMP3 .GT. (-1.0D0*F3)) THEN 

                  F=FLIMP3 

                  KD=K3 

                 END IF 

                 IF(FLIMP3 .LE. (-1.0D0*F3)) THEN 

                  F=FLIMP4 

                  KD=K4 

                 END IF 

                 D(2,2)=KD 

                 D(8,8)=KD 

                 D(2,8)=-1.0D0*KD 

                 D(8,2)=-1.0D0*KD 

                END IF 

                IF(UU .LT. (-1.0D0*UU3))THEN 

                 KD=K1 

                 F=F0+KD*DUU 

                 FLIMP3=K3*(UU+UU3)-F3 

                 FLIMP4=K4*(UU+UU3)-F3 

                 IF(F .LT. FLIMP4) THEN 

                  F=FLIMP4 

                  KD=K4 

                 END IF 

                 D(2,2)=KD 

                 D(8,8)=KD 

                 D(2,8)=-1.0D0*KD 

                 D(8,2)=-1.0D0*KD 

                END IF 

              END IF 

              IF(UU .GT. UMA)THEN 

                 UMA=UU 

                 FMA=F 

              END IF 

              IF(UU .LT. UMI)THEN 

                 UMI=UU 

                 FMI=F 

              END IF 

               SVARS(1)=F 

               SVARS(2)=UMA 

               SVARS(3)=FMA 

               SVARS(4)=UMI 

               SVARS(5)=FMI 

             END IF 

             IF (DUU .GT. ZERO) THEN 

               KD=K1 

               D(2,2)=KD 

               D(8,8)=KD 

               D(2,8)=-1.0D0*KD 

               D(8,2)=-1.0D0*KD 

               F=F0+KD*DUU 

               IF(F .GT. ZERO) THEN 

                F=F-KD*DUU 

                GO TO 50 

               END IF 

              IF(UU .GT. UMA)THEN 
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                 UMA=UU 

                 FMA=F 

              END IF 

              IF(UU .LT. UMI)THEN 

                 UMI=UU 

                 FMI=F 

              END IF 

               SVARS(1)=F 

               SVARS(2)=UMA 

               SVARS(3)=FMA 

               SVARS(4)=UMI 

               SVARS(5)=FMI 

             END IF 

             GO TO 70  

            END IF 

70          CONTINUE  

            D(1,1)=KN 

            D(7,7)=KN 

            D(1,7)=-1.0D0*KN 

            D(7,1)=-1.0D0*KN  

CCCC 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCC 

C                         MAKE S-MATRIX                                 C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCC 

           DO I=1,NN 

                DO K=1,NN 

                   DO J=1,NN 

                      S(I,K)=S(I,K)+D(I,J)*B(J,K) 

                   ENDDO 

              ENDDO 

           ENDDO              

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCC 

C               CALCULATE STRESSES AND STRAINS                          C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCC 

           DO I=1,NN 

              DO J=1,NN 

                SSTRAIN(I)=SSTRAIN(I)+B(I,J)*UUU(J) 

              ENDDO 

           ENDDO 

           DO I=1,NN 

              DO J=1,NN 

                SSTRESS(I)=SSTRESS(I)+D(I,J)*SSTRAIN(J) 

              ENDDO 

           ENDDO 

           DO I=1,NN 

              SVARS(I+5)=SSTRAIN(I) 

              SVARS(I+5+NN)=SSTRESS(I) 

           ENDDO 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCC 

C ASSEMBLE RHS AND LHS                          C 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCCC 
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C 

       DO I=1,NN 

              DO J=1,NN 

c              T(I,J)=ZERO 

c              TT(I,J)=ZERO 

              DD(I,J)=ZERO 

              ENDDO 

            ENDDO 

C 

c      T(1,1)=ACOS 

c      T(1,2)=ASIN 

c      T(2,1)=-ASIN 

c      T(2,2)=ACOS 

c      T(7,7)=ACOS 

c      T(7,8)=ASIN 

c      T(8,7)=-ASIN 

c     T(8,8)=ACOS 

C 

c      TT(1,1)=ACOS 

c      TT(1,2)=-ASIN 

c      TT(2,1)=ASIN 

c      TT(7,7)=ACOS 

c      TT(7,8)=-ASIN 

c      TT(8,7)=ASIN 

c      TT(8,8)=ACOS 

C 

C         DO I=1,NN 

C                DO K=1,NN 

C                   DO J=1,NN 

C                      DD(I,K)=DD(I,K)+TT(I,J)*D(J,K) 

C                   ENDDO 

C             ENDDO 

C           ENDDO 

             DO I=1,NN 

                DO K=1,NN 

                      AMATRX(I,K)=AMATRX(I,K)+D(I,K) 

              ENDDO 

           ENDDO    

            DFORCE = D(2,2)*(U(8)-U(2)) 

            RHS(2,1) = RHS(2,1)+F 

            RHS(8,1) = RHS(8,1)-F 

      write(6,100)(F) 

      write(6,100)(FLAG)   

      write(6,100)(SVARS(I),I=1,(TWO*NN+5))   

      write(6,*) 'D:'      

      DO I=1,NN 

       write(6,100)(D(I,J),J=1,NN) 

      END DO     

      write(6,*) 'RHS:' 

      write(6,100)(RHS(I,1),I=1,NN) 

      write(6,*) 'AMATRX:' 

      DO I=1,NN 

       write(6,100)(AMATRX(I,J),J=1,NN) 

      ENDDO 

100    format(12e12.5)  

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCCCCCCCCCCC 
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      RETURN 

      END   

C###########################################################################

####################### 

 

 

 

 

 


