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Abstract

Diffusion maps have been shown to model relations between points by con-

sidering the overall connectivity of the graph. This report outlines how we

can apply the diffusion framework to dense optical flow estimation where dif-

fusion maps are used to embed distributions of local spatial gradients. We

review the problem of dense optical flow estimation and several broad types

of approaches to computing accurate estimate of the flow. We then review

the diffusion framework and its predecessors in the manifold learning liter-

ature. Local image features are recorded by diffusion distances calculated

from the graph Laplacian whose kernel function depends on inter-pixel in-

tensity differences in a certain neighbourhood. These features are then used

in a correlational optical flow estimation algorithm to illustrate the improve-

ment to the dense estimate of optical flow by using a richer description of

features as the elementary unit in the estimation.

By considering systems of correlation vectors from image neigbourhoods,

we also increase the smoothness of the estimate. The present work com-

pares several smoothing principles, including the vector mean, vector me-

dian, marginal median which are based on both the maximum correlation

and minimum rank of correlation vectors from the correlation matrix.

A large number of very accurate estimates, spread through the image can

be identified based on level of consensus with the estimates from surrounding

pixels, which we term as confidence. We use this confidence information

as a basis for smoothing the motion estimate by filling regions with poor

confidence with estimates from neighboring high confidence regions.

The proposed methodology was applied on two distinct image sequences

from the Middlebury data set, as well as a fluid motion data set. Results

show the robustness of our method to the different types of input data.
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Chapter 1

Introduction

1.1 Background

Modeling features as well as dimensionality reduction for data representation

occupies an important place in fields such as information theory and machine

learning. Diffusion maps have been developed for representing data using

sets of mutual distances with the aim to define their relational structure [1].

The adjacency matrix representing the graph Laplacian is constructed with

the entries defined as probabilities of transition between any pair of points.

Similar to other data mining and machine learning methods [2, 3, 4, 5],

diffusion maps represent a graph-based approach employing data reduction

by means of the eigendecomposition of the adjacency matrix. The eigen-

values define the significance of the diffusion directions as indicated by the

eigenvectors. Here, diffusion maps are applied to representing local image

features with the aim of estimating the optical flow from image sequences.

Many optical flow estimation algorithms use pixel brightness as the fun-

damental unit on which the algorithms operate. Various regularization based

[6, 7] and registration based [8, 9] algorithms match individual or groups of

pixels to minimize the brightness discrepancy between the source of motion

in the first image, and its destination in the second image.

An alternative approach involves preprocessing the image to extract fea-

tures, such as edges, which are then used as the fundamental unit of the

optical flow estimation algorithm. While the features are well defined, their

extraction is prone to error and may be ambiguous from image to image. Zit-

nick, Jojic, and Kang [10] address the problem of ambiguous segmentations
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by formulating the problem of optical flow estimation and segmentation as

a single generative model with appearance and flow constraints. This pro-

duces temporally consistent segmentations that can be matched much more

accurately and efficiently. Ren [11] uses a contrast boundary map to calcu-

late the intervening contour [12] that defines the affinity between any pair

of points. Optical flow is calculated at corners and edges, where the most

robust flow information is usually present in shape motion. Finally, motion

elsewhere in the image is spatially integrated from the estimates at edges

and corners using the pairwise affinities.

Again, boundary-based optical flow estimation imposes limitations that

make those methods unsuitable for such data as the motion of fluids, where

hard boundaries do not exist. Corpetti et. al. used the vorticity-stream

formulation to recover dense motion of water vapours [7]. Similar to other

regularization based methods, the authors employed the continuity equation

which again uses the pixel brightness as the fundamental unit in optical flow

estimation.

1.2 Research Contribution

Chapter 2 reviews a broad range of methods for dense motion estimation

and manifold learning algorithms, including the diffusion framework and

commute times, which extend from the framework. Preliminary results show

that the diffusion framework [1] can be used to extract the key elements of

local features. This provides a representation based on diffusion distances

that is robust against noise, capable of detecting the direction of features and

describes how each point in the image relates to its broader neighbourhood

in the image. The improvement in optical flow estimation by preprocessing

images to extract dense feature information is demonstrated by applying a

correlational optical flow estimation algorithm.

In addition to simple correlational flow estimation, we examine several

statistics that aggregate neighbouring information in an attempt to provide

a better estimate. Using regional information can in general be a useful way

to mitigate the effects of noise, but some statistics will prove better than

others depending also on the image data.

We also look at a second way of incorporating regional information. The

confidence in the estimates is variable as the noise in an image is not uni-
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form, and certain well defined features will yield higher relative correlations.

For example, low textured regions will have similar correlations in a search

region compared to textures with greater pixel contrast. Thus, we propose

a confidence measure that identifies good estimates, and we use these higher

confidence estimates to fill in regions where estimates are less certain.

Several novel results are presented in this thesis. Firstly, we outline

how the properties of diffusion maps makes them suitable for representing

image features. Secondly, we analyze several methods for incorporating

regional information to improve the flow estimate. And thirdly, we introduce

a confidence measure that we show identifies estimates with small error rates.

1.3 Applications

Applications of our method extend beyond optical flow estimation. Two

potential applications are motion segmentation and video indexing.

In this thesis we mainly examine the applicability of diffusion distances to

optical flow estimation. However, commute times, which are related to dif-

fusion distances (see Section 3.5) have been shown to be applicable to scene

segmentation by Qiu and Hancock [13]. In their paper Qiu and Hancock

show that commute times naturally partition a non-uniformly distributed

set of points lying on a circle. In this case, using diffusion distances requires

tuning the scale parameter t, while commute times do not require parameter

tuning. In addition to these embeddings, we could use similarities between

the motion estimates to perform motion segmentation, similar to work by

Robles-Kelly et al [14] or more recently, Vidal et al [15]. In combination,

spatial and motion based segmentation can provide a good understanding

of the objects in a scene.

Video indexing can also be performed using optical flow estimates [16,

17]. It is possible as well to use features described by the diffusion maps

from Section 3.1 to find patterns in an image and use this information in

conjunction with optical flow information to provide a rich indexing method.

We begin by looking at the literature in optical flow estimate and man-

ifold learning in Sections 2 and 3, respectively. In Chapter 4, we introduce

the details of the feature representation, the optical flow estimation methods

and postprocessing. Then we present results from these stages of the flow

estimation in Chapter 5, and conclude in Chapter 6.
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Chapter 2

Dense optical flow estimation

Dense optical flow estimation, due to the sparseness of identifiable features,

such as edges and corners, has predominantly relied upon gradient-based

methods to compute the dense motion field [6, 7, 18]. Gradient based meth-

ods use the brightness constancy assumption in a global energy function op-

timization. The brightness constancy assumption states that points roughly

conserve their intensity, E, over displacements corresponding to the ground

truth motion, which is estimated by v:

dE

dt
= ∇E · v +

∂E

∂t
≈ 0. (2.1)

This one constraint is insufficient due to the aperture problem, which leads

to ambiguous optical flow estimates in untextured regions. Because of the

lack of meaningful variation in brightness in these regions, estimates from

other regions with higher signal-to-noise ratios, such as corners or edges,

must be used. Horn and Schunck’s [6] algorithm computed the flow in

untextured regions through an isotropic regularization term in the global

energy function,

∑

Ω

(

∇E(a, t) · v(a, t) +
∂E(a, t)

∂t

)

+ α (∇v(a, t)) , (2.2)

where v(a, t) is the estimate of the velocity at time t at point a = (x, y)

in the image place Ω. Recent gradient based algorithms use more complex

regularization terms to deal with anisotropic features in the image.

The image registration algorithm by Lucas and Kanade [8] is the second

seminal algorithm of optical flow estimation. The authors take a feature
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based approach as their algorithm matches local windows in a pair of images.

It involves finding a value of h for which two functions yield the best match.

This is done by finding the minimum of

E =
∑

(F (x+ h)−G(x)) , (2.3)

where x and h are two dimensional row vector coordinates and offsets, re-

spectively, in images F and G. The method iterates in a Newton-Raphson

like fashion until the h that corresponds to the best match is found. The

method can be generalized to match scaled, rotated or sheared objects by

incorporating the linear transformation A for G(x) = F (xA + h), into the

iteration.

In this chapter, we review extension of these two seminal optical flow

estimation algorithms, as well as combinations of the two and other feature

based methods. We also review several stochastic algorithms, which have

become more prevalent very recently in the field.

2.1 Regularization

Since the seminal work in dense optical flow estimation by Horn and Schunck

[6], many regularization schemes have been suggested. These schemes are

largely anisotropic, which reflects the relation of motion between neighbour-

ing points in an image. That is, all neighbouring points do not need to have

similar optical flow estimate, which can be seen most clearly at boundaries

of moving objects. Tschumperlé and Deriche apply anisotropic diffusion

PDEs to smooth the vector field [19]. Their method disassembles the reg-

ularization process into the smoothing itself and the underlying geometry

that drives the smoothing.

Penalty functions are often applied to each of the constraints in the

energy function being optimized in order to yield higher or lower degrees

of smoothing of the vector field with respect to the constraints. Horn and

Schunck applied a constant function α. Other work has used L1 [20] and L2

[7] norms as the penalty functions, the latter of which tends to smooth our

natural discontinuities in the motion field.

Recent gradient-based methods incorporate estimates of features such as

vorticity [7] or segments [21], into the energy minimization to regularize the

motion field. However, because the regularization is one constraint in opti-
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mization of the global energy function, gradient based methods are limited

by the choice of features, which are often specific to the properties of the

images in the sequence. There is also the problem that the features that

constrain the energy minimization are computed from (initially) very rough

estimates of motion based on differences in brightness that often contain a

lot of noise. This means that gradient descent methods, which are often

used for the optimization, may end up in a local minimum instead of the

global minimum, potentially resulting in a poor estimate of optical flow.

Memin et al [22, 7] have done several studies on optical flow in fluid data.

In [7], Corpetti et al. use an improvement to the brightness constancy as-

sumption called the continuity equation, and apply a regularization scheme

based on the divergence and vorticity of the current estimate of the motion

field. The authors use two aspects in the regularization to ensure conver-

gence on a smooth motion field that accurately depicts the divergence and

vorticity,

∑

Ω

|divx − ξ|2 + λf2(|∇ξ|) +
∑

Ω

|curlx− ζ|2 + λf2(|∇ζ|), (2.4)

where d is the displacement and f2 is the quadratic penalty function. The

divergence, div, and vorticity, curl, are defined as ∇x and ∇x⊥. ξ and ζ

are the current estimates of the divergence and vorticity. The quadratic

function is suitable in this case as hard boundaries generally do not exist in

the meteorological data set used. The first part of each integral encourages

a less erratic convergence of the divergence and vorticity, while the second

part yields more spatially smooth estimates of each.

The brightness constancy assumption is broken is such cases as the oc-

clusion of an object, and in the motion of fluids, which are compressible.

The continuity equation, which is based on the density of a physical quan-

tity is used instead of the brightness constancy assumption. The continuity

equation given by,

∂ρ/∂t+ div(ρv) = 0, (2.5)

where ρ is the density and v is the velocity field. By analogy, the image

brightness represents the density of the clouds in the satellite images in

Figure 5.1. The relation to the brightness constancy equation can be seen
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in the case of zero divergence in the continuity equation in which case the

two are equal.

Cuzol, Hellier and Memin [22] also describe motion field in terms of

the divergence and vorticity. Their iterative algorithm, similar to Corpetti

et al [7], involves estimating the motion from the continuity equation and

estimating the vorticity and divergence at each iteration. However, the opti-

mization problem extracts the divergence and vorticity using the Helmholtz

decomposition, and uses a low dimensional representation f(γ, z) consisting

of the Dirac delta function centred at z and strength γ.

Xu et al. [21] introduce an algorithm that first estimates affine motion

of the parts of a segmented image. This sort of optical flow estimation

assumes that all objects are rigid, which introduces errors in the estimate

as the assumption generally does not hold for real and synthetic image se-

quences. To resolve this, their algorithm builds a confidence map from the

combined motion and colour segmentation that describes the confidence in

the initial flow estimate. The confidence map combines a pixel-wise coher-

ence estimate, and a segment-wise confidence estimate that excludes parts

of segments that undergo occlusion. The final estimate of the optical flow is

computed by optimizing a global energy function that gives higher influence

to more confident points.

2.2 Feature based methods

Many dense optical flow estimation algorithms do use the presence of fea-

tures for the regularization of the motion vector field [7, 19]. Feature based

methods differ from these as they employ features as the fundamental unit

of the optical flow estimation procedure. Several types of features can be

used in various ways to determine the optical flow. Feature based methods

can employ tracking the movement of specific features such as edges or cor-

ners, matching a block of an image to surrounding areas in the subsequent

image to see where it has moved, or performing an eigendecomposition on

a tensor based on a three dimensional (2 space and 1 time), gradient based

tensor to determine the principal components of the gradient, and hence the

direction the ’matter’ in the part of the image is moving.

Castelow et al. [23] present a least squares algorithm that estimates

the optical flow using Canny edgels and an area around the edgel called
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a support neighbourhood. The edgel representation from the Canny edge

detector provides a rich and accurate description of the edges in an image,

including the location, orientation and the strength of the edge defined by

the magnitude of the gradient at the point of inflection. Although only

optical flow perpendicular to the edge can be obtained, due to the same

aperture problem affecting pixel based comparisons, edges are sparser than

pixels leading to an improvement in computation time.

Traditionally, the problematic aspect of feature matching methods has

been locating the features that are later matched during the motion esti-

mation. One problem is that features may change shape, size, or brightness

making selecting the same feature and comparing the same locations of the

feature during optical flow estimation difficult. Castelow et al. match edgels

from the Canny edge detector to both previous and next frames to improve

consistency. Zitnick, Jojic and Kang take a stochastic approach to address

this issue. The authors use a generational model with spatial and temporal

constraints to produce consistent segmentations from which optical flow is

estimated [10]. Points that belong to a segment in one image must belong

to the same segment in the next image. Segments are defined by Gaussian

distributions representing their colours and coordinates. To make the algo-

rithm more tractable, the optimization is split into two parts based on the

colour and motion segmentations. The algorithm iterates between the two,

optimizing the similarity of the segments defined by either motion or colour.

Early work in feature based methods largely centred around matching

medium-sized windows in one image to the most similar window in a second

image. Measures of correlation such as the sum of squared differences are

often minimized to obtain the best measure of optical flow [24]. However,

feature based methods while simple in principle, have been less popular for

use in dense optical flow estimation due to several problems.

One problem is that windowing assumes rigid motion for the points in

the window. This assumption rarely holds, even for non-deformable object,

because movement in the third dimension will usually cause some linear

transformation of the object in the two dimensional image. The assumption

is especially unsuitable for data where the image does not contain rigid

objects, as is the case with fluids. Another problem is that the window

may contain points from more than one object. In this case, it is unclear

whether the optical flow estimate is accurate for either object, or neither.
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These problems can be somewhat alleviated using overlapping correlational

windows. Szeliski and Coughlan [25] propose an alternative that does not

require overlapping windows - a process that essentially involves computing

the optical flow many times at the same point. Their method uses 2-D

spline basis functions in the motion field representation. Five basis vectors,

weighted, are able to represent most of the variance in the flow. The flow

itself is estimated using the Levenberg-Marquardt algorithm with the splines

and the motion vectors at their centres being optimized.

Because the correlational approach tends to contain many local minima,

multi-scale (or hierarchical) techniques can be used to find a solution that is

closer to the global maximum. In this class of techniques, the correlational

approach is applied first on a lower resolution version of the original image.

The optical flow estimates from the lower resolution are used as priors in

progressively higher resolutions, in a coarse-to-fine methodology. Multi-scale

techniques also add to the smoothness of the final estimate.

Robust statistics have been proposed by Black and Anandan [18] to re-

solve the problem of outliers that especially affects methods such as Lucas

and Kanade [8] that attempt to provide one estimate from a window of

data that may contain several different motions. Optical flow estimation

algorithms that apply least squares estimation are particularly affected by

outliers, which are known to affect least square disproportionately. The au-

thors consider three broad classes of algorithms that use regression, correla-

tion and regularization. They show that simply applying robust ρ-functions

to the terms of the optimization preserves the estimation properties of the

terms, while making them more robust to outliers and substructures that

deviate from the consensus estimate.

Two similar methods by [26] and [27] determine the presence of piece-

wise affine motion of the image from the eigenvalues of a three-dimensional

structure tensor, with 2 spatial dimensions and a third time dimension. The

image sequence I(x) is defined in a volumetric fashion, with the third di-

mension being time. The eigenvalues of the structure tensor

Ap = 〈(∇Ip)(∇Ip)
T 〉, (2.6)

can be used to determine the type of motion in a local window, Ip, by

solving the ordinary eigenvalue problem, Ap~v = λ~v. Depending on whether
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0, 1, 2 or 3 eigenvalues are greater than zero, there is either no motion,

ambiguous motion because of the aperture problem, motion at a corner or

edge, or brightness variation in all directions meaning no coherent noise,

respectively.

Many modern algorithms have combined elements from local registra-

tion and global optimization involving regularization. One algorithm by

Bruhn, Weickert and Schnorr [28] directly combines the original algorithms

postulated by [6] and [8]. The authors note that the error term of Horn

and Schunck’s energy function is based on the gradient from just the central

pixel, while Lucas and Kanade use a neighbourhood of pixels. Thus fusing

the two methods can be accomplished by replacing the point based gradient

with an area based definition of the gradient,

E(w) =
∑

Ω

(

wTJρ(∇3f)w + α|∇w|2
)

dxdy, (2.7)

where w is the current estimate of the optical flow field, ρ is the standard

deviation of the Gaussian Jρ that defines the local gradient window, f is the

image data, and α is a parameter weighting the influence of the regulariza-

tion term. The combined local-global method yields a dense motion field,

while being less sensitive to noise because of the larger window for the error

term.

2.3 Probabilistic models

Other than Zitnick et al.’s [10] algorithm for optimizing the joint probability

distribution for colour and motion segmentation, several other stochastic

methods have been applied to optical flow estimation.

Markov random fields (MRFs) have been applied to several very recent

optical flow estimation algorithms. Lempitsky, Roth and Rother proposed

one such MRF based algorithm that incorporated a non-convex energy func-

tion [29]. The energy function is non-convex firstly because the data error

term (from the brightness consistency assumption) does not employ a lin-

earized constraint, and secondly because the penalty function is based on ro-

bust statistics which are also non-convex. The benefit of using a non-convex

energy function over a convex one can be seen at areas of discontinuity in

the motion field. Convex functions tend to smooth out real discontinuities,
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while non-convex ones do not.

Glocker et al. [30] employed MRFs in the context of multi-labeling

optimization, where the labels correspond to a quantized version of the

displacement space. The optimization involves assigning labels to the nodes

of the MRF based on an energy function,

EMRF (l) =
∑

p∈G

Vp(lp) +
∑

p∈G

∑

q∈N(p)

Vpq(lp, lq) (2.8)

where the unary potentials Vp represent the data and pairwise potentials

Vpq represent the smoothness term. G is a set of control points uniformly

distributed over the image domain, and N(p) are the neighbouring nodes

at control point, p. The optimization of the MRF is performed using the

Fast-PD method [31], which gives an approximately optimal solution.

A stochastic algorithm designed for the purposes of segmenting video

by Chan and Vasconcelos [32], is also suitable for tracking larger objects.

An image sequence can be represented using an observed variable yt and a

hidden state variable xt defined by

xt+1 = Axt + vt (2.9)

yt = Cxt + wt, (2.10)

where xt encodes the evolution of the video through a sequence of states,

while yt encodes the appearance, and vt and wt are their respective normally-

distributed noise processes. Thus, differences in A, which encodes the state

transition information, when combined with C, which decodes the observa-

tion information from the hidden state variable, contain the motion infor-

mation. In the implementation, the initial state p(xt), the state transition

p(xt+1|xt), and the observation information p(yt|xt) are all modeled as mul-

tivariate Gaussian distributions. The EM algorithm is used to learn the

parameters of the joint distribution over a time period 1, . . . , τ ,

p(xτ1 , y
τ
1 ) = p(x1)

τ
∏

t=2

p(xt|xt−1)
τ
∏

t=1

p(yt|xt). (2.11)
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2.4 Summary

We have reviewed various algorithms for optical flow estimation. Regulariza-

tion, or energy minimization based methods are a large class of algorithms

developed on the basis of these algorithms, and we have looked at several

modern algorithms that use the regularization approach. These are feature

based methods, which use spatial information to improve the flow estimate,

and probabilistic models that use methods from statistics to obtain an esti-

mate.

Most of these optical flow estimation algorithms perform quite well on

the Middlebury data set discussed in Section 5.4. The earliest methods

by Horn and Schunck [6] and Lucas and Kanade [8] are simpler, faster,

though have higher error rates. However, some recent methods that use

regularization, such as the structure- and motion-adaptive method by Wedel

et al [20], have similar or better runtimes and are capable of being adapted

for real-time flow estimation.

As we discuss in Section 5.4, the Middlebury data set does include various

types of features, high and low textured areas, but it is uncertain how well

the methods tested on the Middlebury set will perform on fluid data. For

example, Wedel et al’s algorithm [20] is designed to deal well with motion

field discontinuities, with other approaches also being designed to deal well

at boundaries [11, 21]. On the other hand, method such as Cuzol et al’s [22]

are designed specifically to regularize divergence and vorticity patterns. We

test our method on various types of data to show its robustness.

In the next chapter, we review manifold learning algorithms that are the

basis of our scheme to represent image features for improved optical flow

estimation.
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Chapter 3

Manifold Learning

Many areas of artificial intelligence and data mining involve processing large,

high dimensional data sets where finding meaningful relations between sets

of data points is complicated by problems related to the curse of dimension-

ality and their data distribution. For example, 64× 64 images of faces pho-

tographed with varying horizontal and vertical displacements of the camera

contain over 4,000 dimensions, though the intrinsic number of dimensions

in the data set will just be the two describing the viewing angle.

Classical dimensionality reduction methods such as PCA can extract

prevalent features from a set of images. However, the precision of these

methods is not adequate for dense optical flow estimation, which requires

an accurate depiction of individual features that can be matched between

frames to provide an estimate of the optical flow. The kernel eigenmap

algorithms [1, 13, 33, 2, 3, 4] reviewed in this chapter all perform eigen-

decompositions based on the local structure of the neighbourhoods, which

is preserved throughout the steps of the algorithm. By rooting the feature

extraction process in the local structure, it allows us to use the kernel eigen-

map methods for dense optical flow estimation, which requires local features

to be intact for an accurate estimate to be possible.

In this Chapter, we introduce the various manifold learning methods

that have been researched during the past 10 years. After introducing some

general concepts in Section 3.1 and outlining the major methods, we examine

computational limitations of these methods in Section 3.3. We then focus on

the manifold learning algorithms used in our feature representation scheme.

This scheme involves applying the diffusion framework in Section 3.4 and
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commute times in Section 3.5 on the image data. We discuss the details of

the application in Chapter 4.

3.1 Kernel eigenmap methods

A recently developed and powerful set of methods for manifold learning are

based on using eigenvectors to define the dimensions in a low dimensional

manifold on which the data lie. These methods include two fundamental

steps with several variations and extensions that we outline in this chapter.

The fundamental steps are

• constructing a graph that connects local neighbourhoods of points us-

ing a kernel function, and

• solving the generalized eigenvector problem for the graph.

The result is an embedding of the original data from the high dimensional

space, in a low dimensional manifold for which the basis vectors are the k

largest eigenvectors. The first in this class of algorithms were published in

2000 in two separate papers by Tenenbaum et al [33] and the second by

Roweis and Saul [2].

Tenenbaum et al introduced a geometric framework for nonlinear dimen-

sionality reduction with their isometric feature mapping algorithm, ISOMAP

[33]. Previous nonlinear methods were much less efficient computationally

and were not always guaranteed to converge. Their method, as with other

eigenmap methods, guarantees global optimality of the embedding as the

eigenvectors explaining the most variance can be easily selected (by taking

those eigenvectors with the highest corresponding eigenvalues) for the low

dimensional embedding.

There are 3 steps to Tenenbaum et al’s algorithm. The first step is to

define the relations between a point and its neighbours. These neighbours

can be chosen using a k − nearest − neighbours approach or by selecting

all points within some fixed distance, ǫ from the point. The latter method

involves selecting a value of ǫ that results in connected graph. The second

step of the algorithm is estimating geodesic distances dM (i, j) between all

pairs of points on the manifold M by computing the shortest path in the

graph. Finally, the graph G is embedded in a d-dimensional Euclidean space

Y by minimizing the cost function
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E = ‖τ(DG)− τ(DY )‖L2 (3.1)

where DY are the Euclidean distances and ‖.‖L2 is the L2 norm. The mini-

mization is achieved by taking the first d eigenvectors of matrix τ(DG).

The locally linear embedding (LLE) algorithm by Roweis and Saul [2]

also describes the global scope of the relationships between points in a data

set, though the eigenvectors are calculated from a matrix describing only

local relations between points. Specifically, points are represented as linear

combinations of their k−nearest−neighbours, where k is a free parameter.

The weights in the linear combination are selected so as to minimize the

error in reconstructing the original point. As with other manifold learning

algorithms in this class, the final step is to embed the points in a lower-

dimensional space based on the first d eigenvectors.

Belkin and Niyogi [3] further developed manifold learning theory by

showing how Gaussian-like weights between neighbours (Gaussian kernel)

in the graph relate to the heat equation, and by relating LLE to Lapla-

cian eigenmaps. The latter method embed the high dimensional data using

eigenvectors from the generalized eigenvector problem

Lf = λDf, (3.2)

where D is the diagonal matrix, Dii =
∑

j Wji and L = D − W is the

Laplacian matrix. Belkin and Niyogi show that LLE can be interpreted as

finding the eigenvectors of the iterated Laplacian, L2, which coincide with

the eigenvectors of L.

In Hessian eigenmaps, the Laplacian matrix is replaced by the Hessian

matrix in the generalized eigenvector problem. The method involves a n

eigendecompositions to calculate the tangent coordinates at the neighbour-

hoods of each point in the manifold. These tangent coordinates are required

to compute an approximation of the Hessian at a point in the high dimen-

sional manifold. Earlier eigenmap methods required that data on the high

dimensional manifold is globally isometric to a convex subset of a low dimen-

sional Euclidean space. Donoho and Grimes showed that the assumption of

convexity can be removed yielding unwarped embeddings for non-convex

data sets [4].
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The most recent manifold learning algorithm, diffusion maps [1], is the

one used in the present work. Coifman and Lafon show that the afore-

mentioned kernel eigenmap methods are a special case of a general class

of algorithms based on diffusion processes. The construction of the kernel

eigenmaps based on diffusion follows similar steps to the other eigenmap

algorithms. Points in the high dimensional space are related to their neigh-

bours using a Gaussian-like kernel, and the eigenvectors of the graph are

used to map the points from the original high dimensional space to the low

dimensional manifold. The authors apply a Markov process on the adjacency

matrix of the graph by taking higher powers prior to the eigendecomposi-

tion, which acts to define structures at different scales. Furthermore, they

define the notion of diffusion distances, which describe the distance between

a pair of points by considering their relation to all other points in the graph.

Diffusion distances and maps are discussed in more detail in Section 3.4 with

their application to feature representation described in Chapter 4.

3.2 Other manifold methods

Prior to work by Tenenbaum et al and Roweis and Saul, nonlinear manifold

learning algorithms based on MDS and PCA existed in two broad classes.

Local linear techniques [34, 35] were not designed to represent global struc-

ture, thus being unable to represent the data in a single coordinate system

and allow for the determination of the true underlying dimensionality of

the data. Nonlinear methods [36, 37] based on greedy optimization did at-

tempt to capture the global structure but were non-polynomial and did not

guarantee global optimality.

Locally smooth manifold learning can be used to produce smooth mani-

folds [5]. Kernel eigenmap methods assume local linearity, from which local

distances used for manifold learning are calculated. However, the assump-

tion of linearity may not hold due to a high curvature of the manifold or

noise data, making kernel eigenmaps potentially sensitive to the curse of

dimensionality. The easiest solution is to consider more data points to learn

the manifold, though this is not always possible and may require exponen-

tially more data points. Bengio and Monperrus [5] propose a method for

estimating the tangent plane around a point, x, using information from the

whole data set. The authors show that by using the whole data set, regular
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types of structures can be learned that may be used in various parts of the

manifold for improve tangent plane estimation. The tangent planes are esti-

mated by minimizing the relative projection error of the nearest neighbours

of x onto the tangent plane,

min
F,{wtj}

∑

t

∑

j∈N(xt)

‖F ′(xt)wtj − (xt − xj)‖
2

‖xt − xj‖2
, (3.3)

where xt is the central point in the tangent plane and xj are the neighbours.

The minimization is done for all points xt in the data set in order to learn

the optimal set of basis vectors, F ′(x), for the set of tangent planes. Note

that F ′(x)w is the projection of a local neighbour onto the tangent plane.

Tangent spaces were also used in Donoho and Grimes’s Hessian eigenmaps

algorithm for the estimation of the Hessian at each point in the high dimen-

sional manifold [4].

Langs and Paragios [38] applied diffusion maps to a segmentation task.

The authors model shape variation by aligning the landmarks of the shape,

adjusting for rotation, translation and scale with the remaining variation

modeled by a multivariate Gaussian. Diffusion distances are then used to

capture coherence around a set of landmarks and a clustering method is

then applied to perform the segmentation. The algorithm is suitable for

landmark tracking assuming that the landmarks are predefined.

Lefevre and Baillet [39] introduced the notion of optical flow estimation

on 2-Riemannian manifolds. The authors show that the brightness con-

stancy assumption and regularization methods like the one used by Horn

and Schunck can also be applied on data lying on a manifold. The manifold

itself is approximated by a tessellation, consisting of n nodes and t triangles,

representing the manifold.

3.3 Computational tractability

Issues of computational tractability generally do not arise for classical di-

mensionality reduction problems where the size of the data set is on the

order of hundreds. Tenenbaum et al. [33] used data sets of faces with differ-

ent orientation and lighting, and the number 2 with different handwritten

styling. Both these data sets contained about 100 points, meaning that the

adjacency matrix in the high-dimensional space is of size 100× 100. Belkin
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and Niyogi’s swiss roll data set contained 2000 points [3]. Sets of this size

start to warrant more efficient algorithms than the simple O(N2) pairwise

calculation for determining the neighbours.

The data sets that we consider are often many times bigger. An image of

size 640× 480 yields an adjacency matrix of size 307200× 307200. The first

step of the algorithm that involves determining the neighbours is trivial and

involves simply locating the surrounding pixels, which are already organized

sequentially in a 2-D image raster, rather than having to construct a graph

from unordered high dimensional data. Furthermore, calculating geodesic

distances between all pairs of points, as is the case for the ISOMAP algo-

rithm [33], is not necessary in our algorithm. We are applying the diffusion

framework to find a description of broader features from only a local set

of diffusion distances. Because of the ability of the diffusion distances to

describe the broader extent of the feature, we need only to calculate a lim-

ited number of local diffusion distances to get a good description of the

directions the feature extends from a given point. However, as with related

manifold learning methods, the diffusion framework requires computing the

eigendecomposition of the adjacency matrix in the high dimensional space.

For the case of the 640× 480 image mentioned above, this requires eigende-

composition for very high dimensional sparse matrices using methods such

Arnoldi and Lanczos iteration for Hermitian and non-Hermitian matrices,

respectively [40, 41].

3.4 The Diffusion Framework

Here we review the diffusion framework, which we use to extract feature

information from the image [1, 42]. For a set of points I = {x1, . . . , xn}, a

random walk is constructed by considering the probabilities of moving from

xi to its neighbours, {xj1 , . . . , xjk}. Neighbouring points can be selected by

various criteria discussed in Section 4.1. The choice to consider only the

relations between neighbours stems from work on manifold learning where

it is believed that relevant relational information can only be determined at

a local level [3, 2]. Probabilities arise from a kernel function, k(x, y) that

defines the similarity between two points, x and y. In the present application

to feature detection, we use the kernel function
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k(x, y) = e−(x−y)2/a, (3.4)

for two points x and y, and a scale factor, a. The kernel function guarantees

the symmetry of the adjacency matrix and yields non-negative probabilities

relating the points.

In order to construct a normalized graph Laplacian using the kernel

function, k(x, y), we can normalize the kernel by the local measure of degree

in the graph d(x) =
∑

z∈I k(x, z), and define the similarity of the pairs of

points as a probability:

p(x, y) =
k(x, y)

d(x)
. (3.5)

This probability of transition from x to y (note: k is symmetric but p

is not) can be thought of as occurring in one time step. If we define an

adjacency matrix, P , using these probabilities, we can consider probabilities

of transition, pt(x, y) for more than one time step by taking higher powers

of P forming Markov chains. The result from the Markov chain contains

feature information about the data set I, while higher values of t increase

the propagation of this information to the broader neighbourhood around

the point of origin, x.

The scale factor, a, from the kernel function is the other factor deter-

mining the extent of the Markov process from a starting point with lower

values of a inhibiting the propagation of information across noisier features.

Though we do not explore the effects of this parameter in this paper, suffice

to say that higher values of a may fail to record meaningful variations in

intensities resulting in poorer boundary marking.

Coifman and Lafon introduced the diffusion distance metric between two

points given by

Dt(x, y) =

(

∑

z∈I

(pt(x, z) − pt(y, z))
2

φ(z)

) 1

2

, (3.6)

where φ(z) is the stationary distribution defined by

φ(z) = d(z)/
∑

u∈I

d(u). (3.7)

The metric defines the distance between two points by considering the prob-
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abilistic relations between those points and all other points in the graph. In

particular, it integrates all the paths of length t starting at the points x or

z as calculated in the Markov process [43].

Diffusion distances are calculated with the formula derived in [1]:

Dt(x, y) =





∑

l≥1

λ2tl (ψl(x)− ψl(y))
2





1

2

, (3.8)

using the eigenvalues and eigenvectors of P from Pψl = λlψl. ψ0 is constant

and the corresponding l = 0 is omitted.

3.5 Commute Times

Qiu and Hancock [13] showed that diffusion distances can be replaced by

commute times, for a more robust estimate of the distance between two

points. Because diffusion distances use a fixed value of t, the path length,

they can be influenced by the specific choice of t that may not reflect the

overall connectivity of the graph very well. Commute times, however, are a

sum of all path lengths between two points, in both directions (i.e., going

from x to y and from y to x).

This can be shown analytically [13] by summing diffusion distances

Dt(x, y) between a given pair of points, (x,y), over all possible path lengths,

∞
∑

t=0

D2
t (x, y) =

∞
∑

t=0

m
∑

i=1

(λP )
2t
i (ψi(x)− ψi(y))

2 (3.9)

and using the properties of power series where
∑∞

t=0(λP )
2t
i = 1

1−(λP )i
to

get,

∞
∑

t=0

D2
t (x, y) =

m
∑

i=1

1

1− (λP )i
(ψi(x)− ψi(y))

2 =
m
∑

i=1

1

λ′i
(ψi(x)− ψi(y))

2,

(3.10)

which is identical to the commute time measure up to a constant [13].
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3.6 Summary

We have reviewed the major manifold learning algorithms in this chapter.

This class of algorithms finds the underlying relations between data points by

establishing correspondences between points and their nearest neighbours,

and using these correspondences to embed the data in a low dimensional

manifold. In addition to being able to extract meaningful information and

embed the data, some of the latest algorithms [1, 13] also define distances

between points in the low dimensional manifolds. The latter of these is

particularly important in the present work as it allows for a fine-grained

description of the features that are subsequently used in the optical flow

estimation. In the next chapter, we detail the diffusion distance based rep-

resentation and discuss optical flow estimation methods that use these dif-

fusion distances. We also introduce a confidence measure that can be used

to select accurate flow estimates.
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Chapter 4

Optical Flow estimation

using Diffusion Distances

In this chapter, we detail how the theoretical framework of diffusion maps

can be applied to dense optical flow estimation. There are three stages to

the estimation, which are the feature extraction and representation with dif-

fusion distances, estimation of the optical flow from the correlation matrix,

and propagating high confidence estimates in the postprocessing step.

The first stage involves representing local image features by diffusion

feature representations (DFRs). DFRs comprise each point’s diffusion dis-

tances to surrounding points. Correlations between local DFRs are stored in

a correlation matrix used in estimating the optical flow in the second stage.

The estimation of the flow can be done using any of a number of methods

that we introduce in Section 4.5. These methods aggregate correlations from

regions of the image using one of several statistics: vector mean, weighted

vector mean, vector median and marginal median. We also look at how

these aggregations compare with using just the estimate at each point.

In the final stage, we take the flow field and apply an iterative postpro-

cessing step based on a confidence measure. This step propagates estimates

at points with a high confidence isotropically.

4.1 Diffusion kernel

Let us consider a block of pixels B = {Ix|x = 1, . . . , d}. We evaluate the

anisotropic diffusion kernel for each of the blocks of pixels as k(Ix, Iy) =
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e−(Ix−Iy)2/a where Ix and Iy are the normalized image greyscale values in

the range [0,1) located at x and y, respectively, and a represents the scale of

the diffusion kernel. The negative exponential function and parameters used

yield high degrees of similarity for pixels of equal or close to equal brightness,

while yielding low similarity scores for pixels further away on the grey scale,

as is depicted in Figure 4.1. This allows for the detection of near equi-

luminescent features, while maintaining good sensitivity to boundaries in

the subsequent diffusion distance metric.

Figure 4.1: Gaussian functions of the normalized differences in pixel inten-
sity for two scale values that were used in our experiments a = 0.001 and
a = 0.0001.

Belkin and Niyogi [3] suggested minimum distance neighbourhoods and

n nearest neighbours to select the number of neighbouring points in the

adjacency matrix, P . The raster images used in the present application

allows for a fixed window around the central pixel scheme to be used. We

call this the kernel window.

4.2 Markov process and diffusion distances

Having computed the diffusion kernel, we proceed to run the Markov pro-

cess and compute the diffusion distances from its eigendecomposition as

described in the review of the diffusion framework.

The degrees of similarity defined in P are between the neighbouring

pixels in the image. The result of the Markov process, P t, is a metric of

similarity after t time steps. And finally, the diffusion distances provide a

metric of similarity by integrating all the paths in the image graph of length
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t between two points. Each of these stages provide an increasingly broad

description of the feature - the Markov process by propagating information

from immediate neighbours into the broader neighbourhood, and diffusion

distances by integrating path information from the whole image. Our results

confirm that the broader descriptions translate into more accurate estimates

of optical flow.

The DFRs from the final stage provide an efficient representation of fea-

ture orientation around a given pixel as it relates pairs of points based on all

paths of length t that connect the points. This also makes the representation

robust in the presence of noise as the distances are less affected by changes

to individual pixels. We give several examples of features represented by

diffusion distances in Figure 5.2.

4.3 Alternative representations

In addition to the representation based on diffusion distances, we use two

other representations of the image data and compare the effectiveness of

each in optical flow estimation.

The first representation is commute times which we have introduced

in Section 3.5 as a potential improvement on the representation based on

diffusion distances. For the optical flow estimation problem, we can simply

replace the diffusion features based on diffusion distances with ones based

on commute times. Much of the calculations remain the same, except we

are now using a representation that is based on paths of all lengths, which

may improve the feature representation and thus the optical flow estimate.

This has been discussed in detail in the aforementioned section.

The second alternative representative is our baseline, or the raw image

data. Similar to the commute times, we can replace the diffusion distance

based representation with the image data simply by taking overlapping re-

gions. This method is faster than the other two as it does not involve the

numerous eigendecompositions required for the eigenmap calculations.

4.4 Constructing the correlation matrix

In this approach we propose to use the diffusion framework in order to model

the local image features and to estimate the optical flow by matching the
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DFRs corresponding to two blocks of pixels from two different frames. The

match with the highest Pearson correlation coefficient provides the estimate

of the optical flow at the central pixel in the first image. This commonly

used coefficient is defined as,

r =
1

n− 1

n
∑

i=1

(

Xi − X̄

sX

)(

Yi − Ȳ

sY

)

, (4.1)

whereX and Y are the two feature vectors and sX and sY are their respective

standard deviations. The complex similarity measures, presented in this

paper, that serve as a representation of the features can also be adapted for

use in variational and other methods for estimating optical flow.

Two parameters that are analyzed in this study are the diffusion window

and the search window. The diffusion window defines the size of the DFR

blocks being correlated, while the search window defines the search area for

matching DFR blocks in constructing the correlation matrix. We define

the sizes of the two windows in terms of their respective radii, r, where

size = 2× r + 1, which we use in equation 4.2.

Thus, the final optical flow estimation involves finding the point in the

second image where the surrounding diffusion distances correlate maximally

with the diffusion distances from the source point in the first image:

v̄ = argmax
k,l

1

4r2d + 1

rd
∑

i=−rd

rd
∑

j=−rd

(

Dt,q(x+ i, y + j)− D̄

sD

)

(

Dt,q+1(x+ i+ k, y + j + l)− D̄

sD

)

, (4.2)

where p is the image in the sequence, rd is the radius of the diffusion window,

k and l are the offsets in the search window, with k, l ≤ rs, where rs is the

radius of the search window. t is the number of time steps for the Markov

chain, as defined earlier, while D̄ and sD are the sample mean and standard

deviation of the diffusion distances from the given block B.

Correlation has been used here to relate the DFRs as it is invariant to

changes in location and scale which is appropriate for use with the unnormal-

ized DFRs. However, a drawback to using correlations is that the number

of correlation operations required to construct the correlation matrix results

in a long computation time for each pair of images.
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4.5 Estimating optical flow from the correlation

matrix

After calculating the correlations of features based on diffusion distances or

commute times, or correlations of neighbourhoods of pixels from the raw

image data, a correlation matrix is obtained. The values in this matrix are

the correlations of the features or pixels centered at each point in the image,

to features or pixels centered at neighbouring points in a 7-by-7 search region

around the central pixel. 1

Here, we compare several methods for filtering the correlation matrix to

obtain a single optical flow estimate. The methods include,

• classical approach maximum correlation from the central point,

given in equation 4.2

• sum of the local correlations from a 7-by-7 neighbourhood around the

central point,

v̄ = argmin
i

∑

n∈N(z)

Rn(i) (4.3)

• diffusion-weighted (diffusion distance-weighted) sum of the local

correlations from a 7-by-7 neighbourhood around the central point,

v̄ = argmin
i

∑

n∈N(z)

D(n, i)Ṙn(i) (4.4)

• marginal median marginal median of the local correlations from a

7-by-7 neighbourhood around the central point,

v̄ = argmin
i
mediann∈N(z)Rn(i) (4.5)

• vector median of the local correlations from a 7-by-7 neighbourhood

around the central point,

v̄ = min



arg min
n∈N(z)

∑

m∈N(z)

√

∑

i

(Rn(i)−Rm(i))2



 (4.6)

1there is a distinction between the 7-by-7 search region which is the vector of correla-

tions and the 7-by-7 neighbourhood of points at which the vectors are centred
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where N(z) are the neighbouring pixels around z, Rn and Rm are the local

correlation vectors centred at n and m, respectively, i are the indices in the

correlation vector, and v̄ is the estimate of motion. Note that D(n, i) is the

diffusion distance between the image points n and i, and the indices in the

correlation vector correspond to two-dimensional coordinates from which

the offset or flow can be easily calculated.

With the classical method, the estimate consists of the maximum cor-

relation from the central pixel’s correlation vector. This method is among

the least accurate in terms of error rates as it incorporates the least amount

of information into the optical flow estimate. The remaining methods incor-

porate information from a 7-by-7 neighbourhood around the central point.

The sum method, which takes the sum of the local correlations the

neighbourhood around the central point, and selects the direction estimate

corresponding to the minimum of the local sum. The sum method is likely

to produce low consensus at edges or other areas where the optical flow field

is discontinuous. However, because the 7-by-7 region used is not particularly

large, the proportion of the points where the neighbourhood contains a

discontinuity in the flow field is small.

Nevertheless, we can exclude parts of the neighbourhood that corre-

spond to differing motions from the central point by using the diffusion

distances that we have already computed. In many cases, different objects

moving in different directions will also have different intensities. This differ-

ence in intensities will yield larger diffusion distances, which are used in the

diffusion-weighted method to calculate instead a weighted sum of correla-

tion vectors. The smaller diffusion distances between similar points weights

the estimate accordingly for the flow estimation.

The other two estimation methods investigated are based on the median

statistic, namely the marginal median and the vector median. Mean-

based statistics are biased by outliers and can thus yield poor results at

motion boundaries. There may be a significant number of outliers to deal

with in this case as the effects of noise have grown through the feature

representation and correlation stages. Thus we look at the whether median-

based statistics can provide an overall improvement by improving estimates

in such areas.

The first is the marginal median, which calculates the median from

the neighbourhood of vectors at each point in the search region. This statis-
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tic extends the sum statistic by treating each point in the search region

independently, but instead takes the median at that point instead of the

sum.

The vector medianmethod also uses the median statistic, except points

in the search region are not treated independently. Instead, the Euclidean

distance between each pair of vectors in the neighbourhood is calculated

and the one with the smallest sum of total distances is the vector median

[44]. From the median vector, the maximum correlation in its search region

is used as the estimate.

Finally, we incorporate a multiresolution approach for the detection of

large displacements. Our method calculates and stores the correlations be-

tween the features in the search region, and this requires significant time

and memory. Thus, repeating the correlation step at multiple resolutions is

significantly more efficient than correlating features in a larger search space.

Furthermore, our postprocessing method, described in the next section,

allows for some tolerance in finding correct estimates. If a correct estimate is

not found at all pixels in a region, this may not be a large concern as values

from neighbouring pixels will be used. We now look at the postprocessing

method.

4.6 An effective postprocessing method

In an evaluation of optical flow estimation algorithms in 1994, Barron et

al. [45] noted that there was a lack of confidence measure to highlighting

regions contributing to a good overall estimate of optical flow. Bruhn et al.

[28] suggested a confidence measure for variational methods based on the

contribution of the data term at various points to the overall energy. Areas

with low energy have small deviations from model assumptions, which are

smooth gradients and brightness consistency.

The flow estimation method in the present work is based on correlating

regions of the image. There is an implicit smoothness in the estimate which

can be extracted from the initial neighbourhood estimate. Because the flow

estimate in a given region of an image can be assumed to be smooth (an

assumption often made by modern algorithms), we can assume that the best

flow estimate will be the same in a given region. Furthermore, there may

be one estimate in the region that consistently produces high correlations,
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and this is very likely to be the true estimate of the flow.

The measure of confidence that we use is based on a function of the

aggregate correlational vector from one of the methods described in the

previous section. That is,

C(R) = max







(

min(R)
r

)4

∑

r∈R

(

min(R)
r

)4






(4.7)

where r ∈ R and R is a vector of ranks of correlations between source and

destination diffusion features of a size 7×7. This measure of confidence is

normalized to 1 with the denominator and the exponent has been determined

empirically. The measure takes the best correlational match and checks how

the estimate compares with other estimates in the vector. High values (close

to 1) imply that neighbouring vectors rank a particular estimate consistently

very high. We show in Section 5.3 that confident values are also more likely

to be accurate estimates.

Given high confidence estimates, we can employ various algorithms to

propagate estimates from high confidence areas to areas of low confidence,

similar to how energy minimization algorithms regularize the optical flow

field. We show in our experimental results (Section 5.3) how a trivial method

that propagates estimates at pixels with confidence above a certain threshold

produces good results.

4.7 Summary

In this chapter, we have detailed our algorithm for optical flow estimation

which comprises three stages. The first involves extracting image features

by computing an adjacency matrix based on a function of differences in

pixel intensities, and using the adjacency matrix to embed the image in a

low dimensional manifold. The aim is to have a representation that will

highlight the direction of a feature from a certain reference point, and to be

able to do so at every point in the image, allowing for a dense estimate of

optical flow. The representation that we use is based on diffusion distances

and it satisfies these criteria.

The second stage of the estimation involves aggregating information from

the correlation matrix. The correlation matrix has been calculated by corre-
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lating the representations based on diffusions distances. We propose several

statistics that address the issue of outliers, such as the vector median or a

weighted vector sum that uses diffusion distances to select for points that are

more related based on feature information. We also use the marginal median

and sum statistics to treat flow directions independently when aggregating.

The final stage involves using the confidence measure introduced in Sec-

tion 4.6 to improve estimates in areas where aggregation has not produced

a good flow estimate due to a larger variability in the flow estimates in that

region.

The advantage of our algorithm is that it is sequential and can be ana-

lyzed at each stage. However, these types of algorithms generally perform

poorer than ones that integrate the constraints of each step into one opti-

mization problem, as errors are not allowed to accumulate at each step. We

discuss in Section 6.2 how the diffusion distance based representation might

be integrated into other optical flow estimation methods that use the one

step optimization approach.

We now proceed to test our algorithm empirically in the next section.
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Chapter 5

Experimental results

In the following experiments we consider two different data sets: one is the

Middlebury data set from which we use the Dimetrodon and Venus image

sequences, while the other is an atmospheric image sequence showing cloud

movement. The images from the Dimetrodon and Venus sequences as well

as the cloud image are shown in Figure 5.1 (a), (b) and (d), respectively.

We show results at each of the three stages of the estimation algorithm.

The first stage is the computation of the diffusion distances for the diffusion

feature representations. In Section 5.1 we briefly discuss how diffusion dis-

tances will represent certain types of features, and display several example

representations.

The second stage is the estimation of the motion from the correlation

matrix. In Section 5.2, we show results from estimations using the five

methods described in Section 4.5 and discuss how these results relate to

other algorithms.

The third stage is the postprocessing on the flow estimate using the

confidence map. In Section 5.3 we motivate the use of the confidence measure

defined in equation 4.7 by looking at error rates at various intervals of the

confidence measure.

Finally, we look at several parameters that define diffusion distances in

Section 5.6 in order to ascertain their effect on error rates from the optical

flow estimation using the diffusion distance representation. We also include

qualitative and quantitative results from the Middlebury data set in Section

5.4 and the fluid motion data in Section 5.5.

Quantitative results are defined by two error measures that are com-
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(a) Dimetrodon sequence - first image (b) Venus sequence - first image

(c) Cloud sequence - first image (d) Colour Map

Figure 5.1: Images from the Dimetrodon (a) and Venus (b) image sequences
as well as the fluid motion sequence (c). Optical flow estimates for the
Middlebury data are coded using the colour map in (d).

monly used in evaluating optical flow estimation algorithms [45, 46]. These

measures are average angular error defined by

AE = arccos





ugtue + vgtve + 1
√

(u2gt + v2gt + 1)(u2e + v2e + 1)



 , (5.1)

and originally introduced in [45] and average flow error defined by

FE = sqrt[(ugt − ue)
2 + (vgt − ve)

2], (5.2)

where (ue, ve) is the estimated flow and (ugt, vgt) is the ground truth flow.

Errors for large flows are smaller using the AE measure, while the FE mea-

sure provides a less biased measure, especially for zero-flow areas.

We begin by looking at the feature vectors calculated from diffusion
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distances in the next section.

5.1 Diffusion distances as feature descriptors

We present several examples of features from the object and fluid data sets.

Diffusion distances within a certain feature, or in the direction the feature

extends, are small as compared to distances to points outside the feature.

In all the experiments we have chosen a = 0.001 from equation (3.4). The

kernel window, or feature size, was constant at 5×5, and the number of time

steps was t = 3. These values provided a good balance between the accuracy

of the feature description and computation time. We compare the results

from these values of kernel window and the scale factor a in Section 5.6. Note

that the kernel windows in Figure 5.2 are larger than the 5 × 5 used in the

correlation to show how the features extend in the broader neighbourhood

of pixels.

(a) (b) (c) (d)

Figure 5.2: Images and their respective diffusion feature representations
(DFRs). Note that the kernel windows in Figure 5.2 are larger than the
5× 5 used in the correlation to show how the features extend in the broader
neighbourhood of pixels. Darker areas represent smaller diffusion distances
from the central source pixel. Note that large diffusion windows are used to
illustrate the nature of the diffusion distance metric, whereas for increased
efficiency, smaller diffusion windows are used in the optical flow estimation.
a) and b) are from the object data set, while c) and d) are from the fluid
data set

The first pair of images in Figure 5.2 (a), illustrate the shortest diffusion
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distances (dark patch horizontally stretched) highlighting the gradient of

the shading in the pavement. The trees in the foreground do not affect the

description of this dominant feature, or the approaching vans on the right

side of the image (white patch).

Next, in Figure 5.2 (b) the trunk of the taxi is the main feature. Because

of the next near-equal intensity, the diffusion distances are very small for

the entire trunk, relative to the surrounding areas. As described earlier,

the optical flow estimation correlates DFRs from a point in the first image,

to neighbouring points in the second image. The optical flow estimation

correlates DFRs between consecutive frames. We demonstrate in Figure 5.3

the close resemblance between DFRs in consecutive frames of the taxi image

sequence.

Figure 5.3: A sequence of 4 consecutive frames from the Hamburg taxi
sequence. The central pixel has been adjusted to remain on the corner of
the trunk of the taxi to demonstrate the close resemblance of the DFR from
frame to frame.

In Figure 5.2 (c), the cloud patch of varying intensity maps to a fairly

smooth feature in the DFR. The side that extends toward the terminal of

the cloud is brighter (larger diffusion distances) than the side that sees a

longer extension of the feature. Diffusion distances incorporate all paths

between two points, and the direction in which the feature extends will

include more paths between the two points yielding a shorter distances. By

detecting how far a feature extends from the source point in this way, smaller

diffusion windows can be used to detect features that extend well beyond

the window proper.
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Finally, the near equi-luminescent concentric band around the centre of

the storm is the main feature in Figure 5.2 (d). Although no clear boundary

exists, diffusion distances are calculated from a kernel that yields greater

similarity hence shorter diffusion distances for pixels of similar intensity in

the band.

Thus, we see from these examples how the diffusion feature represen-

tations can highlight some important aspect of the relation between two

points in an image, such as the direction the equiluminant pixels extend,

while retaining the details required for dense optical flow estimation with

the pairwise relations. In Section 5.6 we quantify the benefits in using DFRs

by comparing error rates from the Middlebury data set. Next, we evaluate

several optical flow estimation methods based on the matrix of correlations

of DFRs.

5.2 Estimating optical flow from the correlation

matrix

As was described in Section 4.5, after calculating the correlations of features

based on diffusion distances or commute times, or correlations of neighbour-

hoods of pixels from the raw image data, a correlation matrix is obtained.

The values in this matrix are the correlations of the features or pixels cen-

tered at each point in the image, to features or pixels centered at neighbour-

ing points in a 7-by-7 search region around the central pixel 1.

Results from following methods, described is Section 4.5,

• classical approach maximum correlation from the central point,

• sum of the local correlations from a 7-by-7 neighbourhood around the

central point,

• diffusion-weighted (diffusion distance-weighted) sum of the local

correlations from a 7-by-7 neighbourhood around the central point,

• marginal median marginal median of the local correlations from a

7-by-7 neighbourhood around the central point,

1There is a difference between the 7-by-7 search region which is the vector of correla-

tions and the 5-by-5 neighbourhood of points at which the vectors are centred
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• vector median of the local correlations from a 7-by-7 neighbourhood

around the central point,

are compared. Correlations are ordered from highest (1) to lowest (49) for

the methods that use statistics on the ordered correlations rather than the

correlations themselves. The results are from the initial estimation using

the noted methods, prior to any postprocessing.

Figure 5.4 shows the results from using various methods of estimation.

Using information from the neighbourhood surrounding the central pixel

does improve the error rates, except in the case of the marginal median.

The improvement is not unusual, as the information can be noisy at several

points in a regions, while the estimate in general will point in the direction

of the actual motion.

A noteworthy result from Figure 5.4 is also the superiority of the vector

median over the marginal median. By treating the individual correlations in

their vectors independently, some important information is being lost. This

is unusual given that the estimate from the vector sum is quite good, and

could mean that the outliers being biased against in the marginal median

are contributing important information to the statistic. The vector median

does not necessarily bias against these outliers as they are tied in with the

complete set of correlations in the vector.

Figures 5.5-5.10 show the optical flow fields for the four of the estimation

methods. We see in Figure 5.5 that large areas of correct estimates in the

Dimetrodon sequence are very few, while in the Venus sequence there are

several such regions. The presence of well defined features in the Venus

images allows for accurate estimates at individual points. In the Dimetrodon

images, due to the low degree of texture, correlations between various points

in the search window will be quite similar. This, along with noise in the

image data and effects of outliers produces much poorer estimates when no

information from neighbouring estimates is used.

Figure 5.6 shows the best estimates of the optical flow from the methods

described in this section. Both the Dimetrodon and Venus estimates contain

large areas of smooth estimates that are close to the ground truth. However,

there is a bigger improvement in the Dimetrodon sequence estimate than the

Venus sequence estimate when compared to the classical approach. When

comparing larger regions of smooth flow estimate in the Venus sequence be-

tween Figures 5.5 and 5.6, we notice an overlap, with the smooth regions
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(a) Angular Error

(b) Flow Error

Figure 5.4: Average angular and flow errors for the different optical flow
estimation methods outlined in Section 5.2.

from the classical approach estimates being extended to surrounding re-

gions with the vector sum estimation method. This is not surprising given

that the vector sum method is using the estimates from the same smooth
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Dimetrodon - Classical Approach Venus - Classical Approach

Figure 5.5: Optical flow fields for the Dimetrodon and Venus data sets for
the classical approach using the diffusion distance based representation.

regions in the classical approach, while yielding improvements in other

regions from the aggregation of correlational information.

In the case when less information is aggregated in Figure 5.7, there

is a slightly decrease in the smoothness of the flow field. In Figure 5.8

where diffusion distances weight the correlation vectors proportional to their

(diffusion) distance from the central point, there is a further decrease in

smoothness. The diffusion distance weighting may have been expected to

improve the flow estimate at the boundaries between objects, though this

does not seem to have happened. In fact, the decreased weighting seems to

have led to an overall decrease in information proportional to the central

point in the neighbourhoods, leading to the slight increase in errors (Figure

5.4).

The flow estimates based on themarginal median can be seen in Figure

5.9. Using the median statistic aids in dealing with outliers, which is seen

here through the decrease in speckles among smooth regions. However, the

marginal median treats individual correlations within the correlation vector

independently when computing the statistic for a neighbourhood of vectors

which has instead led to larger speckles of poor estimates within regions

of smooth estimates in the Venus sequence. This effect can somewhat be

seen in the Dimetrodon flow estimate, although this estimate contains much

higher error rates and fewer smooth estimate regions.

The vector median is quite a different statistic than the vector sum but
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Dimetrodon - Vector Sum Venus - Vector Sum

Figure 5.6: Optical flow fields for the Dimetrodon and Venus data sets for
the vector sum using the diffusion distance based representation and a 7-
by-7 neighbourhood of correlation vector to compute the sum.

Dimetrodon - Vector Sum Venus - Vector Sum

Figure 5.7: Optical flow fields for the Dimetrodon and Venus data sets for
the vector sum using the diffusion distance based representation and a 5-
by-5 neighbourhood of correlation vector to compute the mean.
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Dimetrodon - Weighted Vector Sum Venus - Weighted Vector Sum

Figure 5.8: Optical flow fields for the Dimetrodon and Venus data sets for the
diffusion-weighted sum using the diffusion distance based representation
and a 5-by-5 neighbourhood of correlation vector to compute the weighted
sum.

Dimetrodon - Marginal Median Venus - Marginal Median

Figure 5.9: Optical flow fields for the Dimetrodon and Venus data sets for
the marginal median using the diffusion distance based representation.
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Dimetrodon - Vector Median Venus - Vector Median

Figure 5.10: Optical flow fields for the Dimetrodon and Venus data sets for
the vector median using the diffusion distance based representation.

in Figure 5.10 we see an estimate similar to Figure 5.6. Several smooth

regions are larger in the Venus estimate, while regions of poorer estimates

have appeared for both sequence for the vector median when compared with

the vector sum.

Figures 5.11 and 5.12 highlight the benefit of using an aggregate of in-

formation rather than a single data point at two different points in the

Dimetrodon data set. The left pair of images in the figures is the vector

of the central pixel, while the right pair is the mean of the vectors in a

7-by-7 neighbourhood. In one case (Figure 5.11), the correct estimate will

be made, although the peak is not particularly clear. However, in another

case (Figure 5.12), there are incorrect estimates, not similar to the correct

one, that will be selected.

Finally, we note that the estimates for the Venus sequence are worse

than for the Dimetrodon sequence, although this is not necessarily because

the data set is inherently difficult. We discuss potential reasons for this

when we evaluate the different representations of the data in Section 5.6,

where this effect is highlighted by comparing estimates using several different

representations of the data.

Overall, we have shown there is a clear benefit to using larger neighbour-

hoods to aggregate correlational vector data. It is likely that when these

neighbourhoods become too big, they begin to significantly overlap objects

that may be moving in different directions, causing even poorer estimates
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Figure 5.11: Meshes of 7-by-7 neighbourhoods of ordered correlations. The
minimum rank, which is chosen as the estimate, is much clearer when taking
the sum of the neighbourhood (right) rather than just using data from the
cenrtal pixel (left).

Figure 5.12: Same 7-by-7 meshes as above, but here using the vector from
just the central pixel will result in a poor estimate due to noise (left), while
the sum of the neighbourhood of vectors produces a clear peak.

at motion boundaries.

Next, we examine a postprocessing method that enhances the optical

flow estimates in areas where the estimates are more ambiguous or less

confident.
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5.3 An effective postprocessing method

As was introduced in Section 4.6, we are using a postprocessing step to

take advantage of the method described in that section for localizing high

confidence (see equation 4.7) and accurate optical flow estimates. Here, we

quantitatively show two effects of this type of estimate confidence. Firstly,

we show that when the ”true” estimate confidence ranks very high in terms of

correlation in a given region, these areas yield low flow error rates. Secondly,

we show that with decreasing confidence on the maximum correlation, there

is an increase in the error rate.

Figures 5.13 and 5.14 shows these two effects. There is a fairly consistent

decrease in both average errors (AE and FE) in both data sequences from

the Middlebury data set. Furthermore, this decrease holds irrespective of

representation of the data being correlated, even though the representations

may be quite different (as is the case of the raw data). The minimum error

is for the highest confidence bracket, which also hold the largest proportion

of the data (Figure 5.15).

Figure 5.16 (a) depicts the confidence measure described in Figures 5.13-

5.14. Lighter regions indicate higher degrees of confidence. Also shown is

the motion estimate from the diffusion distance feature representation using

the vector sum estimation method (b) and the ground truth flow (c). The

colour coding for the flows is shown in Figure 5.1 (c).

These results motivate the usage of our postprocessing method. We have

shown that the confidence measure corresponds to areas with small error

rates and that a fairly sizeable proportion of the two images contain high

confidence estimates. In order to produce a vector field with accurate flow

estimates throughout, the regions of high confidence should be fairly evenly

spread throughout the image. We see in Figure 5.16 that this is not really

the case, especially in the Venus confidence map. There are large areas at the

top-centre portion of the image where there are few high confidence pixels.

Accordingly, the flow field is also much less smooth here and comparing

with the ground truth in Figure 5.20 (b) by inspection, there are higher

error rates.

This may be problematic for other images that have small regions mov-

ing independently as some may prove to have low confidence estimates that

may in fact be accurate. The postprocessing will then fill in these regions
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Figure 5.13: Angular error at different confidence thresholds: Higher con-
fidence ranges, in general yield lower errors. They reflect a consensus in
7-by-7 sized neighbourhoods of the optical flow estimate.

with poor estimates. For this reason, methods based on energy minimiza-

tion that compromise data correspondence with smoothness constraints may

provide a mechanism to ensure good estimates with lower confidence are not

unnecessarily overwritten.

It is also be possible to adapt the method in its present structure to pro-

duce a similar effect. We have chosen to use a strict threshold to select re-

gions from which estimates spread, but a more flexible approach might yield

more accurate estimates. By considering smaller confidence measurements

and weighting them proportionately, non-integer estimates would arise, and

good estimates with lower confidence could be taken into account. Such a

method could be combined with other weighting factors including diffusion

distances or the flow gradient, that would influence the rate of spreading in a

particular direction. Such weighting factors are analogous to the constraints
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Figure 5.14: Endpoint error at different confidence thresholds: Higher con-
fidence ranges, in general yield lower errors. They reflect a consensus in
7-by-7 sized neighbourhoods of the optical flow estimate.

in an energy minimization approach.

Next, we look in more detail at the results from the Dimetrodon se-

quence, we look at the Venus sequence from the Middlebury data set, and

finally see how well the method performs on fluid motion data.

5.4 Object data - Middlebury data set

The standard data set for comparing optical flow estimation algorithms has

been the Middlebury data set [46]. Since the original publication, a large

variety of algorithms have been developed and tested against this set, some of

which have been introduced in chapter 2. The data set includes ground truth

data for which several types of error measures are calculated. The original

image sequences have since been updated with newer image sequences.
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Figure 5.15: The proportion of data falling into each threshold range from
Figures 5.13 and 5.14.

The newer set of image sequences use hidden texture and synthetic im-

ages that correspond to the Dimetrodon and Venus data sets respectively. A

new class of images in a high-speed camera category include small regions in

the image moving at high speeds, while much of the remainder of the scene

remains stationary. This contrasts with the other images in the sequence

that usually contain motion of small magnitude throughout the entire im-

age. This type of data poses additional challenges for the flow estimation

algorithms due to increased flow difference across object boundaries. The

sequences can be found here [47].

In the present research, we used two sequences of images from the original

comparison in [46], namely the Dimetrodon and Venus image sequences. The

Dimetrodon sequence is a hidden fluorescent texture sequence, which is a

real scene that has been spattered with fluorescent paint and photographed.

Ground truth motion is computed by tracking the fluorescent paint which

46



(a) Dimetrodon - Confidence Map (b) Dimetrodon - Optical Flow Estimate

(c) Venus - Confidence Map (d) Venus - Optical Flow Estimate

Figure 5.16: Dimetrodon: (a) Map of confidence measurements from the
definition in 4.7 (b) Initial flow estimate using sum of neighbourhood vectors
Venus: (c) Map of confidence measurements from the definition in 4.7 (d)
Initial flow estimate using sum of neighbourhood vectors

is used as a marker. This approach allows for the computation of ground

truths from low texture data.

The Venus sequence is a synthetic scene generated using computer graph-

ics. This method of generating images yields highly accurate ground truths

and allows for the investigation of the accuracy of optical flow estimation

when different types of noise, such as motion blur, are incorporated into the

generated images.

We use the average angular (equation 5.1) and flow (equation 5.2) errors.

Results for our method and those tested in the original evaluation paper

by Baker et al [46] are shown in Table 5.1 for the Dimetrodon and Venus

image sequences. We have also included error rates from the original set of
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Table 5.1: Angular and flow errors from the Dimetrodon and Venus se-
quences for the method proposed in this thesis and methods from Baker et
al [46].

Angular Error Flow Error

avg rank Dimetrodon Venus Dimetrodon Venus

Black and Anandan 1.3 9.261 7.641 0.351 0.552
Bruhn et al 2.3 10.993 8.732 0.433 0.511
Pyramid LK 3.5 10.272 14.615 0.372 1.035
Proposed method 3.8 11.454 10.403 0.504 0.874
MediaPlayerTM 5.0 15.825 15.486 0.946 0.853
Zitnick et al 5.3 30.106 11.424 0.555 1.086

sequences in Figure 5.18.

Figure 5.17: The average angular error (AE) measure for the Middlebury
data set along with the scores for the top algorithms for each measure.

Figure 5.18: The flow error (FE) measure for the original Middlebury data
set along with the scores for the top algorithms for each measure as reported
in [46].

The results from the present research are similar to the results from the

best algorithms as published in that paper. Specifically, average angular and
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flow errors following postprocessing based on estimate confidence in Table

5.1, reveal an average AE values of 11.45 and 9.26, and average FE values

of 0.50 and 0.35, respectively, for our method and the best reported value in

[46] which is from Black and Anandan’s algorithm [18] in the Dimetrodon

image sequence. We have shown the estimates from the Dimetrodon image

sequence in Figure 5.19. The estimate and ground truth are coded using

the colour map shown in Figure 5.1. The angular and flow errors are coded

such that white regions represent 10 degrees and 1 unit (Euclidean) error.

(a) Optical Flow Estimate (b) Ground Truth

(c) Angular Error (d) Flow Error

Figure 5.19: Dimetrodon: Estimate following postprocessing (a) along with
the ground truth flow (b) with the colour map in Figure 5.1. We have
also drawn the angular error (c) with white regions marking 10 degrees or
greater error and darker regions with progressively less error. Similarly, the
flow error has been drawn in (d) with white regions marking errors greater
than 1.

In the Venus image sequence, average AE values of 10.40 and average
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FE values of 0.87 for our method also compare favourably with results from

algorithms tested in [46]. As with the Dimetrodon sequence, we have shown

the estimates from the Venus image sequence in Figure 5.20. The estimate

and ground truth are coded using the colour map shown in Figure 5.1.

The angular and flow errors are coded such that white regions represent 10

degrees and 1 unit (Euclidean) error.

(a) Optical Flow Estimate (b) Ground Truth

(c) Angular Error (d) Flow Error

Figure 5.20: Venus: Estimate following postprocessing (a) along with the
ground truth flow (b) with the colour map in Figure 5.1. We have also drawn
the angular error (c) with white regions marking 10 degrees or greater error
and darker regions with progressively less error. Similarly, the flow error has
been drawn in (d) with white regions marking errors greater than 1.

An important aspect to note about the postprocessed results is that the

propagated estimates do not extend far, if at all, past the object boundaries.

In the Dimetrodon sequence, this can be seen at the dinosaur’s tail in Fig-

ure 5.19. Looking at the confidence map in Figure 5.16, we see that high
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confidence estimates just inside and just outside the boundaries of the tail

have resulted in a balance that prevented undue propagation.

Similarly, for the Venus sequence, we observe in Figure 5.20 that at the

boundaries of the newspapers on the bottom left and bottom right, the

boundaries are conserved in the optical flow field. Again, this ties back to

the confidence map having high confidence estimates on both sides of the

boundaries as seen in Figure 5.16.

Thus we have comparable results to existing algorithms and we proceed

to examine the applicability of the method to a different class of data - fluid

motion.

5.5 Fluid data - cloud motion

The fluid flow data set from [22] contains a storm cloud rotating clockwise

around its eye. Unlike the object data in the previous section, the boundaries

in this image sequence are much less clear as thin and thick layers of clouds

occupy nearly the entire image. The complexity of this data sequence lies in

the changing and continuous nature of the features. This type of sequence is

particularly suitable for the present method, which we have already shown

to be robust to noisy data and well suited for describing continuous features

based on intensity gradients.

In Figures 5.21, 5.22 and 5.23 we show the results of applying our method

to the fluid motion data. In Figure 5.21 are the estimates using the vector

sum estimation method. In Figure 5.22 are the same data, but have been

smoothed by convolution with a 20-by-20 uniform filter, while in Figure 5.23

are the results after postprocessing. The smoothed and postprocessed results

show a good resemblance to the clockwise rotation of the storm clouds (see

animation: [48]). Furthermore, following postprocessing, Figure 5.21 shows

little or no motion in the bottom third of the image where there are no

clouds and hence there should be no motion noted there. Results in Cuzol

et al [49] do not motion in areas where there are no clouds due to the nature

of their algorithm.

Cuzol et al’s [22] optical flow estimation involves an non-linear opti-

mization of parameters that describe the motion in terms of vorticity and

divergence, that is essentially a regularization of the optical flow field with

respect to these two constraints. The proposed algorithm is a variation on
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the brightness consistency assumption, with the DFRs used for the motion

estimation instead of pixel intensity information. After postprocessing and

scale factor equal to 0.0001 (other parameters are also the same as for the

Middlebury data set), we see in Figure 5.24 (a) that the estimates of optical

flow largely resemble those of the algorithm by Cuzol et al. (Figure 5.24

(b)).

Thus, we have shown that our method works for a variety of data, in-

cluding low and high-textured data as well as fluid motion data.

(a) Scale factor a = 0.001 (b) Scale factor a = 0.0001

Figure 5.21: Flow estimates for scale factor values a = 0.001 and a = 0.0001
using the vector sum.

5.6 Comparison to other representations and esti-

mation methods

The results in this chapter have thus far described only one representation

of the image data combined with an estimation method. However, sev-

eral different representations with different parameters were investigated in

conducting this research (see Chapter 4). In this section we compare repre-

sentations based on diffusion distances and commute times, as well as simply

using the raw image data in the calculations for the correlation matrix.

First we show results from several parameter manipulations. The pa-

rameters we looked at in more detail are the size of the diffusion feature
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(a) Scale factor a = 0.001 (b) Scale factor a = 0.0001

Figure 5.22: Flow estimates for scale factor values a = 0.001 and a = 0.0001
using the vector sum and have been filtered with a 20-by-20 uniform filter.

(a) Scale factor a = 0.001 (b) Scale factor a = 0.0001

Figure 5.23: Flow estimates for scale factor values a = 0.001 and a = 0.0001
after our postprocessing method has been applied.

window and the scale factor, both of which affect the diffusion feature.

In general, there is an optimal medium for selecting the size of the com-

parison window used in a correlation or energy minimization as in Bruhn et

al [28]. Bruhn and colleagues used an isotropic Gaussian function to select

53



(a) Our algorithm (b) Cuzol et al (2005)

Figure 5.24: (a) The diffusion feature representation - DFR - estimate of
motion with postprocessing. (b) Optical flow estimates from Cuzol et al’s
work [49].

Table 5.2: Angular and flow errors with variable feature sizes.

Dimetrodon Venus

Representation Feature Size AE FE AE FE

Raw Image Data
5x5 1.36 21.07 1.69 23.52
9x9 3.11 39.41 1.52 18.23

Diffusion Distances
5x5 0.76 15.32 2.00 30.70
9x9 2.06 29.22 1.95 26.38

Commute Times
5x5 1.14 23.63 2.43 38.54
9x9 4.03 48.36 3.05 36.93

the feature size, which was bigger than the original single pixel data term

used by Horn and Schunck [6]. We used two feature, or diffusion window

(see Section 4.4) sizes, that are then correlated. These are of size 5-by-5 and

9-by-9.

Our results show (in Table 5.2) that in fact using the smaller feature

size produces no advantages in terms of error rates rather than the larger

one. In fact, for the Dimetrodon data, using a larger feature size results in

a large increase in error rates. This is less true for the Venus data set as the

errors are about the same or slightly smaller for the larger feature size.

A second parameter that we investigated deeper is the scale factor from

the initial adjacency matrix relating the points in the image based on their
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Table 5.3: Angular and flow errors for the three representations and scale
factor values a=0.001 and a=0.0001.

Dimetrodon Venus

Representation scale factor AE FE AE FE

Raw Image Data n/a 21.0652 1.3595 23.5198 1.6883

Diffusion Distances
0.0001 15.3172 0.7552 30.6981 1.9998
0.001 23.787 1.0757 35.5188 2.242

Commute Times
0.0001 23.629 1.1412 38.5388 2.4302
0.001 23.1382 1.1543 34.041 2.1889

brightness (see equation 3.4). A larger scale factor results in a higher mea-

sure of similarity for points with bigger brightness differences. This is be-

cause the adjacency matrix is normalized to 1. We have plotted the functions

relating points by their intensity in Figure 4.1.

Because the higher scale parameter discriminates less poorly between

brightness intensities, the representation of the Dimetrodon images, which

is largely composed of low texture data, is poorer. This leads to a bigger

deterioration in the error rates than for the Venus sequence, which has more

clear textures and higher contrasts between regions in an image. Table 5.3

shows results from two scale parameter values, 0.001 and 0.0001, using the

vector sum estimation method described in Section 4.5.

Table 5.3 also shows results prior to postprocessing for the three repre-

sentations based on feature vectors of the raw image data, diffusion distances

and commute times. We note especially the improvement in estimate when

using the diffusion distance feature vectors compared with the raw image

data in the Dimetrodon sequence. As previously mentioned, this sequence

contains mainly low textured data which, when noisy, can result in a noisy

correlation matrix. Using diffusion distances is an attempt to mitigate this

effect by incorporating a broader stretch of the features around a given point,

which may overcome the noise in some cases.

In the Venus image sequence, there is a much better defined texture and

the improvement from using diffusion distances is not apparent in this case.

In fact, using diffusion distances yields a poorer result in terms of error rates.

This is because the transformation of the data is lossy and some details that

would have improved the correlations between image regions are lost.
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Thus, we see there are some limitations to using the diffusion distance

feature vectors over the raw image data.

5.7 Summary

In this chapter, we have verified that the three steps in our optical flow

estimation algorithm can produce good flow estimates for different types of

data.

In Section 5.1, we showed how the representation based on diffusion

distances represents various types of features, including well defined features

such as a car boot, and low texture features such as a road with a vertical

intensity gradient, or a segment of a cloud.

Next, we evaluated several statistical estimation methods in Section 5.2.

For each method, we compared the average angular and average flow er-

rors using the Dimetrodon and Venus image sequences. This allowed us to

compare these methods for two data sets with different degrees of texture.

Finally, in Section 5.3 we showed that our confidence measure can iden-

tify pixels with low error rates. We use an isotropic propagation method to

fill in areas with lower confidence values to obtain a more accurate optical

flow field.

It is worth noting the robustness of our postprocessing step. The simple

method proposed has been used in very different types of data, including

object data from the Middlebury data set as well as fluid motion data used

by Cuzol et al [49].

In the next chapter, we summarize these results in more detail and dis-

cuss several extensions and improvements to the estimation algorithm pre-

sented in this thesis.
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Chapter 6

Conclusions

6.1 Summary

In this thesis, we have reviewed the general approaches to optical flow es-

timation algorithms, as well as manifold learning algorithms in order to

examine the possibility of applying the latter to optical flow estimation. We

reviewed flow algorithms that use regularization, feature based algorithms

as well as probabilistic models for optical flow estimation. Manifold learning

was introduced, along with two distance metrics defined in the low dimen-

sional manifold, namely diffusion distances and commute times.

Our present results have shown how the diffusion framework can be used

for dense optical flow estimation. An anisotropic kernel is used to define the

similarity between pairs of pixels in a neighbourhood. A Markov chain is

used in order to model the diffusion process beyond the given neighbourhood.

Finally, diffusion distances are computed to calculate the relation between

pairs of pixels by considering the overall connectivity of the graph.

Diffusion distances are used to model local image features, and hence

can serve as a less noisy fundamental unit in optical flow estimation than

raw pixel intensities. This increased robustness can be used to improve

optical flow estimates of existing regularization schemes. Correlations of

locally defined diffusion distances are used for dense optical flow estimation.

The proposed methodology is applied on various image sequences including

complex atmospheric movement.

The resulting vector field are used as initialization for a smoothing algo-

rithm based on a confidence measure that we have also proposed here. This
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iterative algorithm uses the confidence defined at points in the image and

propagates estimates at points with high confidence isotropically. This is

repeated until all points have estimates that correspond to high confidence

measures associated with the initial estimate or one that was propagated to

that point.

The algorithm we propose in this thesis computes measures such as dif-

fusion distances in Equation 3.6, our confidence measure in Equation 4.7,

and the correlation matrix, that could be used in other applications. Com-

mute times, which are related to diffusion distances (see Section 3.5) have

been shown to be applicable to scene segmentation by Qiu and Hancock [13].

Similarly, the correlation matrix can be used for segmentation based on the

similarities between the motion estimates as demonstrated by Robles-Kelly

et al.[14].

We tested our algorithm on two sequences from the Middlebury data

set [46] and a fluid motion image sequence. When comparing the diffusion

distance based representation of the image to using the raw image data,

we observed a bigger improvement in the Dimetrodon sequence than the

Venus sequence, when using the diffusion distance based representation. We

attribute this effect to the nature of the data. Namely, that the Dimetrodon

sequence comprises low textured image, while the Venus sequence image

have clearer textures.

We discuss in more detail in the next section how these measures can

be extended, and how various aspects of our algorithm can be extended or

adapted to fit into existing algorithms for optical flow estimation.

6.2 Future Work

There are still many aspects of the diffusion distance and commute time

based feature representations and their ability to represent noisy features

that need to be assessed. The optical flow estimation methods where these

representations could be applied have also not been investigated. And fi-

nally, while we have assessed several estimation methods using the correla-

tion matrix, the postprocessing method used in the present algorithm uses

the confidence measures in a simple way that could in future research be

replaced by a more refined method, potentially yielding better results.

In the results from work to date, we see that diffusion distances are well
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suited for representing features around a certain point in an image. This

result is, however, qualitative at present, but can be tested quantitatively.

One way of doing so is to take the central point in a circle or square, a

observe the change in local diffusion distances as the point is shifted closer

to the edges of the shape. The sensitivity of the diffusion distances will

depend on the scale-related parameters t from the Markov process.

We use the correlation between DFRs to construct the matrix from which

optical flow estimates are inferred. However, the correlation approach to

optical flow estimation is not a particularly fast or sophisticated one and

could be replaced by other methods for the computation of the correlation

matrix or its analogue. One such way would be to extend the correlational

approach by including steps to exclude outliers that will skew correlations,

or to replace correlation altogether with a different relation metric such as

least squares.

A second alternative to using correlation is to incorporate the DFR rep-

resentations into an existing optical flow estimation algorithm. Various past

algorithms use constraint based energy minimization that contain a term

based on the image data. We have shown in this thesis improvements in the

flow estimate using the correlation based approach, where the image data

has been replace by the DFR. In a similar way, the data term in the energy

minimization approaches could be replaced by the diffusion distance based

representation.

Such a replacement extends beyond the correlation step into the aggre-

gation and estimate spreading analogues of our method, as the energy mini-

mization is an iterative approach that not only matches the data terms, but

also regularizes the flow field. Even though energy minimization algorithms

are not structured sequentially like the present algorithm is, aspects such

as estimate aggregation and use of confidence measures can be incorporated

into these methods. For example, we have mentioned a confidence measure

in Section 4.6 noted by Bruhn and colleagues [28]. However, those authors

have only mentioned the measure to track the confidence of estimates at any

point in the image, without necessarily using the confidence. In the present

work, we have applied the confidence measure to affect the spreading of es-

timates throughout the flow field. The diffusion distance can also be used

as the regularization term in an energy equation similar to the anisotropic

vector gradient norm used by [19]. Finally, other methods, including proba-
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bilistic methods remain to be explored as well, in terms of how the diffusion

distance representation could be incorporated into the flow estimation.

With all these replacements of the correlation based method, it is im-

portant to have a better understanding of how diffusion features describing

similar objects relate to each other. Correlation has proven successful, but

the reasons for this success will remain unclear without a more detailed

investigation of the structure and statistical properties of the diffusion fea-

tures.

The present method does not incorporate any smoothness measure than

might eliminate problematic small areas that retain an incorrect estimate.

The method also takes only integer estimates of motion due to maximum

statistic from the processed vector and propagates this integer estimate. A

better method would take weighted sums based on confidence, and perhaps

include a term related to the gradient to resolve the smoothness issue.

In the present work, a two dimensional kernel was used to compute the

diffusion distances. This kernel is well suited to describe the features of a

particular image, though optical flow occurs in three dimensions because of

the extra time dimension. Thus, a natural extension of the work is to use a

three dimensional kernel to estimate how the intensity of the image (i.e., the

mass of the objects in the image) diffuses in time. Such an approach would

likely include several frames of the image sequence in the diffusion maps.

We can also see similarities of this approach to eigenvalue methods by

[26] and [27]. These eigenvalue methods only determine the main direction

of the feature in a small (though adaptively sized) window, but diffusion

distances are defined between the central point and all other points in the

window, resulting in significantly richer feature information. The feature

information from the eigendecomposition of the adjacency matrix defined

in our method may or may not benefit from further feature detection were

diffusion distances to be used in the place of image gradient information in

an eigenvalue method.

Overall, the fact that we have proposed a new way of representing the

data that can improve the optical flow estimate of a previously used algo-

rithm, there are many possibilities that remain to be explored to see how

the new representation might be used in other algorithms.
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