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Abstract 

This thesis describes the testing of several prototype detectors, designed to be used in a 

radiation detector called the UoYTube. This detector can be used to detect charged particles 

emitted in fusion evaporation reactions.  

In this work, several UoYTube prototypes were designed, fabricated and characterised/tested. 

These included prototypes with different scintillator crystals (Caesium Iodide and plastic), 

prototypes with different geometries (truncated pyramid and cuboid), and prototypes that included 

different types of light guides (Acrylic and 3D Printed). 

These prototypes were characterised in terms of the signal-to-noise ratio, the optimum bias 

value, the energy resolution, the Acrylic versus 3D-Printed light guides, the number of counts and 

the optimum amplifier shaping time. Two different methods used to fabricate light guides (one 3D 

Printed and the other with the HURCO VMX60m Machining Centre), are also described. The light 

guides were then characterised and compared to each other in terms of their light output, energy 

resolution, and the optimum shaping time.  

Using these results, it was inferred that the plastic scintillator (with a truncated pyramid 

geometry) demonstrated the highest signal-to-noise ratio. The plastic scintillator (with a truncated 

pyramid geometry) and Caesium Iodide scintillator (with a truncated pyramid geometry), 

demonstrated a range of the optimum bias values, over which there was little variation in the 

measured signal-to-noise ratio. The Caesium Iodide scintillator (with a truncated pyramid 

geometry), demonstrated good energy resolution. The transmittance of light from the spectrometer 

through the 3D Printed light guide was significantly poorer than that of the acrylic light guide. The 

difference in recorded energy resolution between the light guides was not very significant. The 

recorded number of counts was greater for the Acrylic light guide, when compared to the 3D 

Printed light guide. It was also concluded that both the acrylic and 3D Printed light guided 

prototypes should be operated with the highest values of shaping time, corresponding to the best 

resolution. These results were then used to decide upon the optimum design for the next generation 

UoYTube detector.  
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1. Introduction and Motivation 

The radiation detector which will be the subject of this thesis is called the University of York 

Tube, or UoYTube. The purpose of the UoYTube is to detect charged particles emitted in fusion 

evaporation reactions. The original UoYTube was developed in 2013 [1] and consisted of 96 CsI 

(Tl) scintillators crystals, arranged as shown in Figure 1: -  

Figure 1: The original UoYTube consisted of 96 CsI (Tl) scintillators crystals, arranged as shown. 

The dimensions of each of the scintillator crystals were 2mm 2020  and mm 2 thick. The light 

output from the scintillator crystal was measured by PIN diodes [1]. 

The dimensions of each of the scintillator crystals were 2mm 2020  and mm 2 thick. The 

light output from the scintillator crystal was measured by PIN diodes. The UoYTube was originally 

designed to be used for the study of exotic proton-rich nuclei [1]. The motivation for constructing a 

new UoYTube is to improve its performance in terms of the efficiency of detection of charged 

particles emitted in fusion evaporation reactions.   
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The main aims of this thesis are to design and fabricate several UoYTube prototype detection 

systems and to then test the performance of these in order to try to establish which prototypes 

demonstrate the optimum performance. There are several different prototypes which will be tested. 

These include prototypes with different scintillator crystals (Caesium Iodide and plastic), prototype 

scintillators with different geometries (truncated pyramid and cuboid), and prototype detection 

systems that include different types of light guides (Acrylic and 3D Printed). The prototypes will 

then be characterised in terms of the signal-to-noise ratio, the optimum operating bias value, the 

energy resolution and the optimum spectroscopy amplifier shaping time. The results will then be 

used to inform upon the optimum design for the UoYTube detector. 

The UoYTube is designed to measure radiation; in this case, the radiation type will principally 

be protons and alpha particles. Protons and alphas interact with the scintillator crystals in the 

UoYTube and this occurs by way of the coulomb interaction between their positive charge and the 

negative charge of the scintillator’s atoms [2]. In this thesis, two different types of scintillators are 

tested; Caesium Iodide and plastic. 

 The scintillation process itself produces light that is measured by Silicon Photomultipliers, or 

SiPMs. In a SiPM, the incident photons transfer their energy onto electrons that are positioned in 

the valance band. The result of this is that the electrons gain energy and move to the conduction 

band. This process generates an electron-hole pair. If a reverse bias is applied to the SiPM, the 

incident photons generate a net current through the semiconductor and when the electric field is 

high enough, the electrons and holes are accelerated and collide with other charge carriers by way 

of an avalanching process. The result of this is that the charge is amplified to the point at which it 

can be measured macroscopically [3].  
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2. Background/Particle Detection Methods 

The UoYTube is a detector that is designed to measure ionising radiation such as alpha 

particles and conversion electrons. Each individual UoYTube cell is constructed from three key 

components. These are a scintillator, a light guide and a Silicon Photomultiplier (or SiPM).  

A scintillator is a material that produces light when exposed to ionising radiation. Examples of 

scintillators include Sodium Iodide, Caesium Iodide, Plastic and Lanthanum Bromide. Ideally, a 

scintillator should have the following characteristics: -  

1. It should be transparent to its own light. 

2. The scintillation efficiency should be high. 

3. The light yield should be proportional to the energy of the ionising radiation [2]. 

Light guides are optical components that are designed to channel light. The light is transmitted 

via the process of total internal reflection and the light guide should ideally transmit the light with 

as little loss of photons as possible. Light guides are typically manufactured from Acrylic Resin 

and glass [4]. In the UoYTube, the light guide is used to channel the light that is generated by the 

scintillator and focus it onto the SiPM, where it is measured.  

A Silicon Photomultiplier is a semiconductor device that is used in the UoYTube to detect the 

photons emitted from the scintillator. In a SiPM, the incident photons transfer their energy onto 

electrons that are positioned in the valance band. The result of this is that the electrons gain energy 

and move to the conduction band. This process generates an electron-hole pair. If a reverse bias is 

applied to the SiPM, the incident photons generate a net current through the semiconductor and 

when the electric field is high enough, the electrons and holes are accelerated and collide with 

other charge carriers by way of an avalanching process. The result of this is that the charge is 

amplified to the point at which it can be measured macroscopically [3].  
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3. Experimental Method 

a. UoYTube – Construction of the individual cells 

In the UoYTube detector, the scintillator crystal, light guide and SiPM are connected together 

to form an individual cell, as shown in Figure 2: -  

Figure 2: A schematic showing the geometry of each individual UoYTube cell. It is constructed 

from a scintillator, a light guide and a Silicon Photomultiplier.  

  

Underneath – Scintillator – Either 

CsI or plastic (20mmx20mm) 

Light guide (8mm height) 

Top - SiPM (6mmx6mm) 
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To fabricate an individual cell, the method is as follows: -  

1. Bind the scintillator crystal to the light guide using glue. 

2. Wire up the silicon photomultiplier. There should be two wires; one is the anode and the other 

is the cathode. 

3. Bind the silicon photomultiplier to the other side of the light guide using glue. Ensure that the 

front of the SiPM faces the light guide. The wires should face outward, away from the light 

guide. 

4. Wrap the entirety of the detector in white insulating tape, but ensure that the wires are not 

covered. 

5. Using a scalpel, cut into the white insulating material where the scintillator crystal face is 

positioned. Be careful not to scratch the scintillator with the scalpel. 

6. Clean the Mylar with isopropanol. Position two pieces of the Mylar material on top of the 

scintillator and attach using the white insulating tape. 

7. Cover the entirety of the detector (but excluding the Mylar covered surface) with the silver 

tape. 

Then, ninety-six of these individual cells are arranged in a frame to form the entirety of the 

detector. The arrangement of these components is as shown in Figure 3: - 

 

Figure 3: A schematic showing how the ninety-six individual cells are arranged in a frame to form 

the previous generation of the UoYTube detectors’ structure [5].  
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b. Calibration with Alpha and Conversion Electron Sources 

The UoYTube prototypes will each be characterised in terms of several parameters which 

include the signal-to-noise ratio, the optimum bias value, the energy resolution and the optimum 

shaping time. These experiments will be conducted in vacuum conditions. 

To ensure these parameters are measured and calculated correctly, it is first necessary to 

calibrate the detector. The calibration process allows the data and the spectrum produced from it to 

be fully understood and for parameters such as energy to be identified [6]. 

The computer programme that is used in the laboratory to collect the experimental data is 

called MAESTRO
®
. MAESTRO is a Multichannel Analyser (MCA) which when used alongside 

MCB hardware and a computer, can be used to process the nuclear data and present it in graphical 

form for analysis [7]. When the data are displayed on the computer screen, they are initially 

displayed such that the horizontal x axis is the Channel Number and the vertical y axis is the 

Number of Counts.  

To calibrate the data, it is necessary to describe the relationship between the Channel Number 

and Energy. To do this, you must begin by identifying the known decay products of the radioactive 

species which will be used as the source. For example, in these experiments the source used is a 

composite source, consisting of Plutonium-239, Americium-241 and Curium-244 (Serial Number 

NY332) [8]. Using the data sheets, [9] it is possible to infer that the decay products for the source 

will be three alpha particles with energies of 5156.59 keV, 5585.56 keV and 5804.77 keV. 

Therefore, the spectrum should show three characteristic peaks, each one corresponding to a 

different energy alpha particle. The spectrum for this source is as shown in Figure 4:-  
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Figure 4: A graph showing the spectrum obtained for the triple alpha source. There are three 

characteristic peaks, each one corresponding to a different kinetic energy alpha particle. Peak 1 is 

the Pu-239 alpha, Peak 2 is the Am-241 alpha and Peak 3 is the Cm-244 alpha. 

Once this is identified, it is then possible to use MAESTRO to select each of the peaks in turn 

and input their corresponding energies. Then, the scale is properly calibrated and the spectrum can 

be interpreted.  

To calibrate the data set with a conversion electron source instead of an alpha particle source, it 

is necessary to once again describe the relationship between the Channel Number and Energy by 

identifying the known decay products of the radioactive species which will be used as the source. 

In this case, the source used is a conversion electron source named Bismuth-207 (Serial Number 

SU486) [8]. The Bi-207 source has four conversion electron peaks and two gamma ray peaks 

which are normally visible in the spectrum [10]. One peak was visible in this spectrum, but 

unfortunately it is unclear as to which of the decay products this corresponds to. The spectrum for 

this source is as shown in Figure 5:-  
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Figure 5: A graph showing the spectrum obtained for the conversion electron source Bi-207. The 

Bi-207 source has four conversion electron peaks and two gamma ray peaks which are normally 

visible in the spectrum [10]. One peak was visible in this spectrum, but unfortunately it is unclear 

as to which of the decay products this corresponds to. 
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c. Experimental method used to characterise the UoYTube prototypes 

To characterise the UoYTube prototypes, a particular experimental method was followed. The 

equipment was set up as shown in Figure 6:-  

Figure 6: The experimental set-up used to measure the signal-to-noise and optimum bias values. 

The set-up includes the detector prototype, a radioactive source, the bias supply and the processing 

electronics. 

In these experiments, the radioactive source was first placed into the holder (using forceps) and 

then screwed into place. Then, the source was placed into a retort stand with two clamps. The 

source was then positioned on the bottom clamp. The prototype was then wrapped in bubble wrap 

(so it was not damaged by the clamp) and positioned on the top clamp, approximately 5cm away 

from the source. The scintillator was facing the source. The retort stand was then placed inside the 

vacuum chamber. 

The prototype has two connections, a blue wire and a yellow wire. The blue wire was attached 

to the bias supply and the yellow wire was connected to the port next to the bias supply (working 
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anticlockwise). These ports were located at the top of the vacuum chamber. The door of the 

vacuum chamber was then closed and the pressure set so that it was of the order of 0.1mbar. 

The signals from the silicon photomultiplier are amplified and processed by the Amplifier and 

the MCA respectively and then read at the computer terminal.  

In these measurements, the bias value is varied and spectra are taken at each different bias 

value. After the bias value is changed, the position of each of the three peaks will change. To 

compensate for this, after every change in the bias value, the fine and coarse gain settings on the 

electronics must be changed. This was to ensure that the peaks are always in the same position and 

that calibration of the x axis is the same for each of the spectra. This also ensures that a direct 

comparison between each of the spectra is possible.  
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d. Experimental method used to fabricate the light guide – 3D Printed 

 

Figure 7: A drawing constructed in AutoCAD Inventor that shows the truncated pyramid geometry 

of the 3D printed light guide. The largest face measures 20mmx20mm, the smallest face measures 

6mmx6mm and the height is 8mm. 

In Figure 7, the largest face (where the scintillator will be positioned) measures 20mmx20mm. 

The smallest face (where the Silicon Photomultiplier will be positioned) measures 6mmx6mm. The 

height of the light guide (length from the largest face to the smallest face) is 8mm. This drawing is 

then imported into the PreForm Software 1.8.2 [11] which allows you to change several printing 

parameters such as the orientation of the light guide, the type of resin, the thickness of each layer 

and the number of light guides arranged on the tray. In this experiment, the type of resin that was 

used was the “Clear Resin” which has the greatest optical transparency, the layer thickness was 

0.1mm and one light guide was arranged on the tray.  

The 3D printer is able to print the desired geometry by using a laser beam to set the 

photosensitive resin [12]. The resin is set using incremental layers of 0.1mm each and these are 

built up to form the truncated pyramid shape of the light guide. Once the light guide print was 

completed, it was then washed with water and Isopropanol and also polished (with a high grade 

sandpaper and metal polish) to give a smooth surface.  

  

Smallest face - SiPM 

(10mmx10mm) 
Height (8mm) 

Largest face – Scintillator 

(20mmx20mm) 
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e. Experimental method used to fabricate the light guide – Bulk Acrylic 

The device which was used to fabricate the light guides is called the HURCO VMX60m 

Machining Centre [13]. The first stage in this fabrication process is to use a drawing package such 

as AutoCAD Inventor which takes the scale drawings of the light guides and convert them into a 

3D models. Then, a Computer Aided Manufacturing Programme, in this case HyperMILL®, [14] is 

used to convert the 3D model into another file type that the HURCO VMX60m can read and 

interpret. This new file translates the 3D model into a set of movements that the machining centre 

can use to gradually file down the acrylic (with a slot drill) and form the shape required for the 

light guide. To ensure that the light guide is fabricated correctly, a vacuum pump was also used. 

This guaranteed that the acrylic stayed stationary whilst it was being machined. Once the light 

guide has been machined, it also needs to be polished with high grade sandpaper, to ensure that the 

surface is smooth and that the light transmission is maximised.  
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f. Experimental method used to characterise the light guides 

To characterise the light guide, the FILMETRICS® F10-RT spectrometer [15] was used to 

measure the Reflectance and Transmittance of light, recorded as a function of Wavelength. The 

first step when using this spectrometer, was to acquire data from two baseline samples, which 

could be used for the purposes of calibration. This data was collected using the spectrometer’s 

propriety software. In this case, as the light guides are made from plastic, the BK7 plastic sample 

was used as the first calibration data set. The second calibration set was from the background (this 

is, with no sample in the beam). Then, the spectrometer’s wavelength was varied from β00-

1100nm and the Reflectance and Transmittance of the light through the light guide was recorded. 
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4. Error Analysis 

Experimental error is defined as the deviation from the “true value” which occurs as a result of 

the measurement process [16]. These errors are inherent in the process of measurement and can be 

classified into two categories: systematic errors and random errors [17]: -  

g. Systematic and Random Errors 

 A Systematic Error is one which affects accuracy. These can originate from for example, an 

incorrect calibration of a measuring device or an incorrect reading of the device, made by the user. 

Random Errors are those that affect precision. These can originate from a fluctuation in a 

measurement (making it difficult to read) or the difficulty associated with reading a measurement 

which lies between two increments on a measuring scale [17]. 

It is possible to specify the uncertainty for a given measurement, by considering these errors. 

This is advantageous, as error analyses identify ways in which an experiment can be redesigned to 

reduce errors and allow direct comparison between different values, so confidence can be stated in 

the conclusions being made [16]. 

There are two different techniques used for error analysis. The first, referred to as the Type A 

mode of analysis, involves using statistics to analyse errors in the measurements. The second, 

referred to as a Type B mode of analysis, involves using known quantities, such as the resolution of 

a particular instrument, to analyse errors in the measurements. To calculate the error using this 

method, it is first necessary to establish the resolution of the instrument that is being used to make 

the measurement. This information can be inferred by examining the manufacturer’s specifications 

or by inspecting the instrument directly to establish the minimum increment [16]. These values are 

then displayed on the graphs as the plus and minus error bars for the data points. 
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h. Parameters calculated in MATLAB 

Once the data are collected, there is a requirement to fit the data to a particular distribution and 

extract values which describe how successful the fitting process it is. The following list describes 

the different fitting procedures which have been used, as well as parameters of interest, measured 

by MATLAB and Microsoft Excel, that describe how consistent the experimental results are with 

the fitting: -  

i. Gaussian Distribution 

A Gaussian distribution is described by three values in MATLAB [18] : A (the peak height), x

(the mean value) and   (the standard deviation). These values can then be used in the 

mathematical expression for a Gaussian distribution, as shown below: - 

  





















2

xx

2

1
expAxf  

ii. Full Width Half Maximum 

The Full Width at Half-Maximum is described via the following expression [19]: -  

 2ln22FWHM  

iii. Energy Resolution 

The energy resolution of a detector can be calculated using the following equation [20]: -  

CentroidPeak   FWHM  ResolutionEnergy   

Both the FWHM and Peak Centroid are measured in units of energy or channels. Thus, their 

units are either keV or Channels. The energy resolution can also be expressed as a percentage, by 

multiplying the above equation by 100. The energy resolution and FWHM will be calculated for 

each of the three different UoYTube prototypes and when using two different radioactive sources, 
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the Pu/Am/Cm triple alpha source (Serial Number NY332) and the Bi-207 conversion electron 

source (Serial Number SU486). This is as described in sections x, xii and xiii. 

iv. A1/B1/C1 Lower and Upper Bounds 

The lower and upper bounds of A1, B1 and C1 in a Gaussian distribution, as calculated by 

MATLAB, corresponding to values within 95% confidence. This is because MATLAB 

automatically sets the errors to be within two-sigma. These are expressed as the plus and minus 

error bars for A1, B1 and C1. 

v. Confidence Bound CB (%) 

A confidence bound is used to specify the width of an interval and the corresponding lower and 

upper values of that interval. By default, the confidence bound value is set at 95% by MATLAB. 

This indicates that there is a 5% probability that the fit will make an incorrect prediction and that 

there is a 95% probability that a prediction will be within the lower and upper bounds. This can 

also be referred to as the two sigma limit [21]. 

vi. Sum of Squares Due to Error (SSE) 

This value is a measure of how much the fit calculated by MATLAB, deviates from the actual 

experimental data. The SSE value should ideally be as close to zero as possible. This would imply 

that the random errors are smaller and that the fit is as more effective tool for prediction. It is 

defined in equation form as [22]: -  

 2ii

n

1i

i ŷywSSE 


 

vii. R-Square (R-sq) and Adjusted R-Square (Adj R-sq) 

The R-Squared (R-sq) value outlines the extent to which the fit is able to describe the variation 

in the experimental data. This value ranges from 0 to 1. This value should ideally be close to one; 

this would demonstrate that the fit is able to accommodate a larger proportion of the variance in the 

data. The Adjusted R-Squared (Adj R-sq) value uses the R-squared value and corrects it to 
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compensate for the number of residual degrees of freedom. This value can be any value less than or 

equal to one. This value should ideally be close to one; this would demonstrate that the fit is more 

accurate [22]. 

viii. Root Mean Squared Error (RMSE) 

The Root Mean Squared Error (RMSE) describes the standard deviation of the random aspect 

of the experimental data and should be as close to zero as possible. This would mean that the fit 

can be used more accurately when making predictions [22].  
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i. Error Propagation for the parameters of interest 

In this section, the specific methods used to analyse errors in the UoYTube characterisation 

process will be described. This will include the specific error values used in the data, how these 

were deduced from reference materials and/or MATLAB and how these errors were propagated 

through to the final results for the parameters of interest.  

The specific error values used for the data in this thesis are as follows in Table 1: -  

Parameter Unit Error Explanation/Reference 

Bias Volts ±0.01 Resolution of the digital multimeter 

Counts No Units Various A1 values, calculated by MATLAB [21]  

Angle of 

Polariser 
Degrees ±3 An estimate, based on inspection 

Wavelength nm ±2.5 Resolution of the spectrometer [23] 

Transmittance Percent ±0.02 Resolution of the spectrometer, for all wavelengths [23] 

Reflectance Percent ±0.002 Resolution of the spectrometer [23] 

Shaping Time Percent ±5 Based on the same MCA, in a different experiment [24] 

A1/B1/C1 

(LB and UB) 
Various Various Calculated by MATLAB [21] 

Signal-to-

Noise Ratio 
No Units Various A1 values, calculated by MATLAB [21] 

FWHM keV Various The LB and UB values, as calculated by MATLAB 

Energy 

Resolution 
Percent Various The LB and UB values, as calculated by MATLAB 

Table 1: This table lists the specific error values used for the data in this thesis. The table includes 

the name of the parameter, the unit of measurement, the error value, an explanation as to where the 

value comes from and a reference. 

Some of the errors depend on more than one measured parameter. This means that in order for 

them to be calculated, an error propagation must be performed. In this thesis, the parameters that 

require this type of error propagation are the signal-to-noise ratio, the Full Width Half Maximum 

and the energy resolution.  
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ix. Signal-to-Noise Ratio and Optimum Bias 

To perform the error propagation for the signal-to-noise ratio, the signal (counts) value and the 

noise (counts) value were first recorded. These values were calculated using MATLAB and the 

energy spectra data. Figure 8 demonstrates where the signal and noise values were taken from on 

the energy spectrum: -  

Figure 8: This figure demonstrates how the signal and noise values were taken from the energy 

spectrum. This Energy spectrum was measured at a bias of 27V. These results are for the UoYTube 

prototype made from a plastic scintillator (with a truncated pyramid geometry), and include a 

Gaussian fitted to the Am-241 source peak.   

The error for each of these parameters corresponds to the A1 value errors from the energy 

spectra. These errors are assumed to be within 95 percent confidence, as calculated by MATLAB. 

This is because MATLAB automatically sets the errors to be within two-sigma [21]. For a two 

variable function of the form, z = x/y (such as the S/N ratio), the equation for the error in z [25], 

labelled as Δz, is as follows: -  
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In this equation, x is the signal counts, y is the noise counts, Δx is the signal error 

corresponding to the A1 value errors, Δy is the noise error, also corresponding to the A1 value 

errors and z is the signal divided by the noise. Using this equation, Δz, the error in the signal-to-

noise ratio, can be calculated.  

x. Full Width Half Maximum and Energy Resolution 

To perform the error propagation for the FWHM and the energy resolution, B1 (the position of 

the peak centroid on the x axis) and C1 (equal to 2 , where   is the standard deviation) were 

first recorded. These values were calculated using MATLAB and the energy spectra data. Figure 9 

demonstrates where the peak centroid and standard deviation values were taken from on the energy 

spectrum and how the FWHM and energy resolution values were inferred from the data: - 

Figure 9: This figure demonstrates where the peak centroid and standard deviation values were 

taken from on the spectrum and how the FWHM and energy resolution values were inferred from 

the data. This Energy spectrum was measured at a bias of 27V. These results are for the UoYTube 

prototype made from a plastic scintillator (with a truncated pyramid geometry), and include a 

Gaussian fitted to the Am-241 source peak.   
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The error in C1 was assumed to be plus the Upper Bound and minus the Lower Bound, 

corresponding to values within 95 percent confidence, as calculated by MATLAB. This is because 

MATLAB automatically sets the errors to be within two-sigma. Using the error in C1, labelled as 

ΔC1 and the equation written below, the error in the FWHM [19], labelled as ΔFWHM was 

calculated: - 

1C
2

2ln22
FWHM   

The errors in B1 were assumed to be plus the Upper Bound and minus the Lower Bound, 

corresponding to values within 95 percent confidence, as calculated by MATLAB. This is because 

MATLAB automatically sets the errors to be within two-sigma. Using the errors in B1 and C1, 

labelled as ΔB1 and ΔC1, and the following equation [19] [25], the error in the energy resolution, 

labelled as ΔE, was calculated: - 
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xi. Analysis of the light output from the light guides 

The measurements of reflectance and transmittance will be measured using the 

FILMETRICS® F10-RT spectrometer [15] and will be for both the Acrylic and 3D Printed light 

guides. This is as described in section xi. To perform the error analysis for the measurements of 

reflectance and transmittance, the following error values were used: -  

1. Angle of Polariser ±3 degrees, this is an estimate based on how accurately the values could 

be established by inspection 

2. Wavelength ±2.5 nanometres, corresponding to the resolution of the spectrometer 

according to the manufacturer’s specifications [23]  

3. Transmittance ±0.02 percent, corresponding to the resolution of the spectrometer according 

to the manufacturer’s specifications, for all wavelengths [26] 
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4. Reflectance ±0.002 percent, corresponding to the resolution of the spectrometer according 

to the manufacturer’s specification [26] 

xii. Optimum Shaping Time 

For a Gaussian shaped pulse, shaping time is stated as being the standard deviation of that 

pulse, when the horizontal axis is measured in time [27]. The optimum shaping time of the 

amplifier, is defined as the shaping time that corresponds to the highest energy resolution. The 

measurements of optimum shaping time will be measured using the MCA for both the Acrylic and 

3D Printed light guides, using the Pu/Am/Cm triple alpha source (Serial Number NY332). This is 

as described in section xvii. To perform the error analysis for the measurements of the optimum 

shaping time, the following error values were used: - 

1. Shaping Time ±5 percent, this is an estimate based on the errors associated with the same 

Multichannel Analyser, but a different pre-amplifier and sensor [24] 

2. Energy Resolution various, but as calculated using the methods described in section x 

xiii. Energy Resolution as a function of the applied Bias 

To perform the error analysis for the measurements of the energy resolution as a function of the 

applied Bias, the following error values were used: - 

1. Bias ±0.01 Volts, corresponding to the resolution of the digital multimeter  

2. Energy Resolution various, but as calculated using the methods described in section x 
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5. Results and Analysis 

j. Characterisation of CsI and Plastic prototypes – S/N and Optimum Bias 

The experimental method used for these measurements, is as described in section c. The error 

analyses for these measurements, are as described in ix. The first parameter which will be used to 

characterise the UoYTube cells is the signal-to-noise ratio. The signal-to-noise ratio is defined as 

the signal height (in mV or counts) divided by the noise signal height (in mV or counts) [28]. 

Ideally, the signal-to-noise ratio should be as high as possible. Once the signal-to-noise ratio is 

measured, it will be then used to infer which of the bias values applied to the silicon 

photomultiplier, is the optimum value. 

There are three different UoYTube prototypes which were characterised in this experiment. In 

each case, the triple alpha Pu/Am/Cm source was used, (Serial Number NY332), where their 

kinetic energies are 5156.59 keV, 5585.56 keV and 5804.77 keV respectively. These prototypes are 

distinguished by the scintillator crystal used and their geometries. The three prototypes are: - 

1. Plastic scintillator (with a truncated pyramid geometry) 

2. Caesium Iodide scintillator (with a truncated pyramid geometry)  

3. Plastic scintillator (with a cuboid geometry) 

The results for the plastic scintillator (truncated pyramid geometry) are as shown in Table 2:- 
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Scintillator 
Source 

Peak 
Bias (V) 

Signal 

(Counts) 

Noise 

(Counts) 
S/N Ratio 

Plastic scintillator 

(truncated pyramid) 
Am-241 27.00±0.01 183±3 7±3 26±9 

Plastic scintillator 

(truncated pyramid) 
Am-241 28.00±0.01 236±3 5±3 47±28 

Plastic scintillator 

(truncated pyramid) 
Am-241 29.00±0.01 128±2 5±2 26±10 

Plastic scintillator 

(truncated pyramid) 
Am-241 30.00±0.01 268±3 23±3 12±1 

Plastic scintillator 

(truncated pyramid) 
Am-241 31.00±0.01 304±3 42±3 7±0 

Table 2: A table showing how the signal-to-noise ratio varies as the bias across the SiPM is 

changed. These results are for the prototype with a plastic scintillator (truncated pyramid 

geometry), acrylic light guide and the Am-241 source peak (of energy 5585.56 keV), from the 

triple alpha source. The Am-241 peak was used because this prototype has low energy resolution, 

and so only one peak is visible, even though there are actually three peaks for the triple alpha 

source. 

These results can also be shown in graphical form, as in Figure 10:- 

Figure 10: A graph showing how the signal-to-noise ratio varies as the bias across the SiPM is 

changed. These results are for the prototype with a plastic scintillator (truncated pyramid 

geometry), acrylic light guide and the Am-241 source peak, (of energy 5585.56 keV), from the 

triple alpha source. The Am-241 peak was used because this prototype has low energy resolution, 

and so only one peak is visible, even though there are actually three peaks for the triple alpha 

source. 
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The results for the Caesium Iodide scintillator (truncated pyramid geometry) vary depending 

upon which source peak is used to calculate the signal-to-noise ratio. The results for each of the 

three different source peaks are as shown in Table 3, Table 4 and Table 5:- 

Scintillator 
Source 

Peak 
Bias (V) 

Signal 

(Counts) 

Noise 

(Counts) 
S/N Ratio 

Caesium Iodide 

scintillator (truncated 

pyramid) 

Pu-239 
27.00±0.0

1 
645±7 36±7 18±4 

Caesium Iodide 

scintillator (truncated 

pyramid) 

Pu-239 
28.00±0.0

1 
595±7 38±7 16±3 

Caesium Iodide 

scintillator (truncated 

pyramid) 

Pu-239 
29.00±0.0

1 
721±7 31±7 23±5 

Caesium Iodide 

scintillator (truncated 

pyramid) 

Pu-239 
30.00±0.0

1 
816±9 40±9 20±5 

Caesium Iodide 

scintillator (truncated 

pyramid) 

Pu-239 
31.00±0.0

1 
746±8 33±8 23±6 

Table 3: A table showing how the signal-to-noise ratio varies as the bias across the SiPM is 

changed. These results are for the prototype with a Caesium Iodide scintillator (truncated pyramid 

geometry) and the Pu-239 source peak. 

Scintillator 
Source 

Peak 
Bias (V) 

Signal 

(Counts) 

Noise 

(Counts) 
S/N Ratio 

Caesium Iodide 

scintillator (truncated 

pyramid) 

Am-241 
27.00±0.0

1 
618±8 36±8 17±4 

Caesium Iodide 

scintillator (truncated 

pyramid) 

Am-241 
28.00±0.0

1 
572±6 38±6 15±2 

Caesium Iodide 

scintillator (truncated 

pyramid) 

Am-241 
29.00±0.0

1 
687±7 31±7 22±5 

Caesium Iodide 

scintillator (truncated 

pyramid) 

Am-241 
30.00±0.0

1 
816±9 40±9 20±5 

Caesium Iodide 

scintillator (truncated 

pyramid) 

Am-241 
31.00±0.0

1 
738±9 33±9 22±6 

Table 4: A table showing how the signal-to-noise ratio varies as the bias across the SiPM is 

changed. These results are for the prototype with a Caesium Iodide scintillator (truncated pyramid 

geometry) and the Am-241 source peak. 
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Scintillator 
Source 

Peak 
Bias (V) 

Signal 

(Counts) 

Noise 

(Counts) 
S/N Ratio 

Caesium Iodide 

scintillator (truncated 

pyramid) 

Cm-244 27.00±0.01 413±7 36±7 11±2 

Caesium Iodide 

scintillator (truncated 

pyramid) 

Cm-244 28.00±0.01 371±7 38±7 10±2 

Caesium Iodide 

scintillator (truncated 

pyramid) 

Cm-244 29.00±0.01 468±7 31±7 15±4 

Caesium Iodide 

scintillator (truncated 

pyramid) 

Cm-244 30.00±0.01 563±9 40±9 14±3 

Caesium Iodide 

scintillator (truncated 

pyramid) 

Cm-244 31.00±0.01 501±9 33±9 15±4 

Table 5: A table showing how the signal-to-noise ratio varies as the bias across the SiPM is 

changed. These results are for the prototype with a Caesium Iodide scintillator (truncated pyramid 

geometry) and the Cm-244 source peak. 

These results can also be shown in graphical form, as in Figure 11, Figure 12 and Figure 13:- 

Figure 11: A graph showing how the signal-to-noise ratio varies as the bias across the SiPM is 

changed. These results are for the prototype with a Caesium Iodide scintillator (truncated pyramid 

geometry) and the Pu-239 source peak. 
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Figure 12: A graph showing how the signal-to-noise ratio varies as the bias across the SiPM is 

changed. These results are for the prototype with a Caesium Iodide scintillator (truncated pyramid 

geometry) and the Am-241 source peak. 

Figure 13: A graph showing how the signal-to-noise ratio varies as the bias across the SiPM is 

changed. These results are for the prototype with a Caesium Iodide scintillator (truncated pyramid 

geometry) and the Cm-244 source peak. 

The results for the plastic scintillator (with a cuboid geometry) are as shown in Table 6:- 
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Scintillator 
Source 

Peak 
Bias (V) 

Signal 

(Counts) 

Noise 

(Counts) 
S/N Ratio 

Plastic scintillator 

(cuboid) 
Am-241 

27.00±0.0

1 
33±1 2±1 16±7 

Plastic scintillator 

(cuboid) 
Am-241 

28.00±0.0

1 
20±1 2±1 10±3 

Plastic scintillator 

(cuboid) 
Am-241 

29.00±0.0

1 
29±1 2±1 15±6 

Plastic scintillator 

(cuboid) 
Am-241 

30.00±0.0

1 
33±1 2±1 17±7 

Plastic scintillator 

(cuboid) 
Am-241 

31.00±0.0

1 
33±1 2±1 16±7 

Table 6: A table showing how the signal-to-noise ratio varies as the bias across the SiPM is 

changed. These results are for the prototype with a plastic scintillator (with a cuboid geometry) and 

the Am-241 source peak, (of energy 5585.56 keV), from the triple alpha source. The Am-241 peak 

was used because this prototype has low energy resolution, and so only one peak is visible, even 

though there are actually three peaks for the triple alpha source. 

These results can also be shown in graphical form, as in Figure 14:- 

Figure 14: A graph showing how the signal-to-noise ratio varies as the bias across the SiPM is 

changed. These results are for the prototype with a plastic scintillator (with a cuboid geometry) and 

the Am-241 source peak. 
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Table 7 shows a summary of the highest signal-to-noise values for each of the three prototypes 

and the corresponding optimum bias values: -  

Prototype Scintillator Geometry 
Source 

Peak 
S/N 

Optimum Bias 

Value(s) (V) 

1 Plastic 
Truncated 

pyramid 
Am-241 

26±9 27.00±0.01 

47±28 28.00±0.01 

26±10 29.00±0.01 

2a Caesium Iodide 
Truncated 

pyramid  
Pu-239 

23±5 29.00±0.01 

20±5 30.00±0.01 

23±6 31.00±0.01 

2b Caesium Iodide 
Truncated 

pyramid  
Am-241 

22±5 29.00±0.01 

20±5 30.00±0.01 

22±6 31.00±0.01 

2c Caesium Iodide 
Truncated 

pyramid  
Cm-244 

15±4 29.00±0.01 

14±3 30.00±0.01 

15±4 31.00±0.01 

3 Plastic  Cuboid Am-241 None None 

Table 7: A table showing the signal-to-noise ratio and corresponding optimum bias value for each 

of the three UoYTube prototypes. 

For each of these experiments, it would seem that the trend is such that, as the bias is increased, 

the signal-to-noise ratio increases. The exception to this is Figure 10, which seems to show the 

opposite that an increase in bias leads to a decrease in the signal-to-noise ratio. It is unclear as to 

why this is the case. The optimum bias value is the bias value which yields the highest signal-to-

noise ratio. Therefore, for the plastic scintillator (with a truncated pyramid geometry), the optimum 

bias values are 27.00±0.01, 28.00±0.01 and 29.00±0.01 volts. For the Caesium Iodide scintillator 

(with a truncated pyramid geometry), there are three peaks visible, and the optimum bias value for 

this prototype, should be inferred using the results for all three peaks. It should only be one value. 

Unfortunately, these optimum bias values cannot be said to be distinguishable from each other. 

Thus, for this prototype, the optimum bias values are 29.00±0.01, 30.00±0.01 and 31.00±0.01 

volts. For the plastic scintillator (with a cuboid geometry), the optimum bias value is unknown. 

This is because the error bars for the signal-to-noise value are too large and therefore, the 

measurements cannot be said to be distinguishable from each other.  
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k. Characterisation of CsI and Plastic Prototypes – Energy Resolution 

The experimental method used for these measurements, is as described in section c. The error 

analyses for these measurements, are as described in x. The aim of these measurements is to 

establish the energy resolution of each of the three UoYTube prototypes. In the following three 

experiments, the equipment was setup as described in section c. The radioactive source that was 

used in these experiments was the Am/Cm/Pu composite source. This source has three main 

characteristic alpha peaks at 5157 keV, 5586 keV and 5805 keV. For each of the three prototypes, 

spectra were taken at the bias value of 27V. To calculate the energy resolution, each of the alpha 

peaks were then fitted to Gaussian distributions using MATLAB [18]. 

A Gaussian distribution is described by three values [19]: A1 (the height of the curve’s peak), 

B1 (the position of the peak centroid on the x axis) and C1 (equal to 2 , where   is the standard 

deviation). These values appear in the mathematical expression for a Gaussian distribution: - 

  















 


2

1C

1Bx
exp1Axf  

The Full Width at Half-Maximum is described via the following expression [19]: -  

1C
2

2ln22
FWHM   

The additional factor of 2 on the denominator is because the MATLAB Gaussian is missing a 

root two in its standard equation for the FWHM. Using the expression for the FWHM, the energy 

resolution can then be calculated using the following equation [20]: -  

CentroidPeak   FWHM  ResolutionEnergy   

Both the FWHM and Peak Centroid are measured in units of energy or channels. Thus, their 

units are either keV or Channels. The energy resolution can also be expressed as a percentage, by 

multiplying the above equation by 100. Based on this technique of analysis, the calculations of the 

energy resolution for each of the three prototypes are as shown in Table 8 and Table 9:-  
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Prototype Scintillator Geometry 
Source 

Peak 

A1 (No 

Units) 
B1 (keV) C1 (keV) 

1 Plastic 
Truncated 

pyramid 
Am-241 190±3 5317±12 1108±17 

2a 
Caesium 

Iodide 

Truncated 

pyramid  
Pu-239 681±7 5153±2 170±5 

2b 
Caesium 

Iodide 

Truncated 

pyramid  
Am-241 654±8 5496±3 142±6 

2c 
Caesium 

Iodide 

Truncated 

pyramid  
Cm-244 449±7 5791±4 145±9 

3 Plastic  Cuboid Am-241 35±1 5413±18 906±27 

Table 8: A table showing A1, B1 and C1 for each of the three UoYTube prototypes. 

Prototype Scintillator Geometry 
Source 

Peak 

Peak 

Centroid 

(keV) 

FWHM (keV) 

Energy 

Resolution 

(%) 

1 Plastic 
Truncated 

pyramid 
Am-241 5317±12 1845±28 35±1 

2a 
Caesium 

Iodide 

Truncated 

pyramid  
Pu-239 5153±2 283±9 6±0 

2b 
Caesium 

Iodide 

Truncated 

pyramid  
Am-241 5496±3 236±9 4±0 

2c 
Caesium 

Iodide 

Truncated 

pyramid  
Cm-244 5791±4 242±14 4±0 

3 Plastic  Cuboid Am-241 5413±18 1536±44 28±1 

Table 9: A table showing the Peak Centroid, Full-Width at Half-Maximum (FWHM) and energy 

resolution for each of the three UoYTube prototypes. 

These results can also be shown in graphical form, as in Figure 15, Figure 16 and Figure 17:- 
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Figure 15: A graph showing the Energy spectrum measured at a bias of 27V. These results are for 

the UoYTube prototype made from a plastic scintillator (with a truncated pyramid geometry), and 

include a Gaussian fitted to the Am-241 source peak.   

Figure 16: A graph showing the Energy spectrum measured at a bias of 27V. These results are for 

the UoYTube prototype with a truncated pyramid geometry. The scintillator used in this prototype 

is Caesium Iodide scintillator. The solid black line represents three fitted Gaussians, one for each 

of the alpha lines from the mixed Pu-239, Am-241, Cm-244 source. 
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Figure 17: A graph showing the Energy spectrum measured at a bias of 27V. These results are for 

the UoYTube prototype made from a plastic scintillator (with a cuboid geometry), and include a 

Gaussian fitted to the Am-241 source peak. 

To establish the quality of the fit, the R-Squared and Adjusted R-Squared values can be used. 

The R-Squared (R-sq) value ranges from 0 to 1. It should ideally be close to one; this would 

demonstrate that the fit is able to accommodate a larger proportion of the variance in the data. The 

Adjusted R-Squared (Adj R-sq) value can be any value less than or equal to one. It should ideally 

be close to one; demonstrating that the fit is more accurate. 

The Gaussian fit for Figure 16 seems quite reasonable, given the R-sq and Adj R-sq values of 

0.9582 and 0.9571, as shown in section 13, Appendix 2 – Gaussian Distributions. The Gaussian fits 

for Figure 15 and Figure 17 however, appear by inspection, to be quite poor. This is because it is 

not possible to resolve the three alpha peaks for the plastic prototypes, as the resolution of these 

prototypes is too low.  

Their R-sq and Adj R-sq values are 0.9639 and 0.9637 for Figure 15 and 0.8412 and 0.8406 for 

Figure 17. Interestingly, this implies that the fit for Figure 15 is actually better than Figure 16. It 

also implies (as initially expected) that the fit for Figure 17 is very poor in comparison to Figure 

16. 
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These results also question as to whether the optimum bias value was used; that is, the bias 

value that produced the best possible energy resolution and the best possible fit, for each of the 

prototypes. For each of the three prototypes and their corresponding figures, spectra were taken at 

the bias value of 27V. This was because this was initially believed to be the optimum value for the 

SiPM. The bias value was varied from 27 to 31 volts. However, the energy resolution as a function 

of the bias was not calculated for the plastic prototypes. It was however, calculated when 

comparing the Acrylic and 3D-Printed light guides, with the Bi-207 conversion electron source, 

and the Caesium Iodide scintillator, as shown in section xix. These results seemed to indicate that 

an increase in bias, leads to an increase in the energy resolution, but that there is levelling off point 

after 29 volts. Also, these results are for the Caesium Iodide prototype, so perhaps this is not a fair 

comparison.  

Based on these measurements, the Caesium Iodide scintillator (with a truncated pyramid 

geometry), is the most suitable for use in the UoYTube, as it has the highest energy resolution. Its 

energy resolution is calculated as between 4±0 and 6±0 percent, depending upon which source 

peak is used in the calculation. These values should be all approximately the same, for a given 

detector, so this indicates that the results are correct.  
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l. Analysis of the light output from the light guides 

The experimental method used for these measurements, is as described in section f. The error 

analyses for these measurements, are as described in xi. Figure 18, Figure 19, and Figure 20 show 

the three characteristic spectra (measurements of reflectance and transmittance) which were 

recorded for the light guides, using the FILMETRICS® F10-RT spectrometer [15]. The first 

spectrum is only the incident light with no light guide positioned in the path of the beam. The 

second spectrum is for a light guide made from a bulk Acrylic that was fabricated mechanically by 

Jason Flatt. In this case, the light guide was positioned in the path of the beam. The third spectrum 

is for the 3D printed light guide that was fabricated by myself, where the results were recorded 

with the light guide positioned in the beam. The aim of the measurements was to establish how the 

reflectance and transmittance varies depending upon the wavelength of the input light, and the type 

of light guide used. Both the acrylic and 3D printed light guides have the truncated pyramid 

geometry as described in Figure 7:- 

Figure 18: A graph of the Reflectance and Transmittance of light, recorded as a function of 

Wavelength, using the FILMETRICS® F10-RT spectrometer. This spectrum is with no sample. 
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Figure 19: A graph of the Reflectance and Transmittance of light, recorded as a function of 

Wavelength, using the FILMETRICS® F10-RT spectrometer. This spectrum is for a light guide 

made from bulk Acrylic. 

Figure 20: A graph of the Reflectance and Transmittance of light, recorded as a function of 

Wavelength, using the FILMETRICS® F10-RT spectrometer. This spectrum is for a light guide 

made using a 3D printer. 

The results from the measurements of reflectance and transmittance seem inconsistent. Firstly, 

the distribution of both the reflectance and transmittance measurements are the same; this is not 

intuitive, as it should be the case that as one increases, the other should decrease. 
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Secondly, the addition of reflectance and transmittance should equal 100%. This is not the case 

for either of the above graphs. This could be attributed to the fact that another parameter, the 

absorbance is not measured, and that this is required to ensure that the values add up to 100%. It 

could also be the case that the calibration was performed incorrectly. The calibration process 

involved the use of a known sample called BK7, which provided a baseline for the spectrometer’s 

software. This may have been an unsuitable sample, in that it may have different optical properties 

to the light guides. The results may also have been affected by ambient light, which was difficult to 

shield from the spectrometer during the measurement process. The ambient light would affect the 

results such that the recorded values would be higher than the actual values.  

The Silicon Photomultipliers that are used to detect the light, are designed to operate in the 

visible part of the electromagnetic spectrum, where the photon detection efficiency is greatest [29] 

i.e. 400-700nm. Therefore, when measuring the transmission of light guide, this is the region of 

interest. For the acrylic light guide, the transmission is between 65±0.02 and 80±0.02 percent, for 

the 400-700nm wavelength region. For the 3D printed light guide, the transmission is between 

0±0.02 and 2.5±0.02 percent, again for the 400-700nm wavelength region. This indicates that the 

acrylic light guide is more suitable for use in the UoYTube when compared to the 3D printed light 

guide. However, given the distributions observed and the difficulty associated with the calibration 

of the spectrometer, these values cannot be said with confidence.  

It is also unclear as to whether or not the light from the spectrometer is the same as the 

characteristic light produced by the scintillator (the range of wavelengths and the relative 

distribution of these wavelengths may be different than those emitted from the spectrometer). To 

identify if this is the case, if the transmission rate values are correct, the light guides will be 

attached to a scintillator and compared directly to each other. This will be discussed later in this 

thesis. 

It has been suggested by Professor David Jenkins, that the 3D printed light guide functions 

poorly as a light guide because it induces a polarisation effect on the input light, which results in a 

lower transmission rate. To test this hypothesis, a polarising film was introduced into the 

experiment, positioned directly in front of the light guide. If this light guide is indeed acting as a 
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polariser, it would be anticipated that as the polariser is rotated (from light to dark) the 

transmission rate would decrease. Consequently, spectra were recorded at different angles of 

rotation, to see if the transmission rate changed. The error values in the following figures are 

assumed to be; angle of polariser ±3 degrees, wavelength ±2.5 nanometres, transmittance ±0.02 

percent and reflectance ±0.002 percent. The results are as shown in Figure 21, Figure 22, Figure 23 

and Figure 24:- 

Figure 21: A graph of the transmission rate of the 3D printed light guide as a function of polariser 

angle of rotation. The wavelength of the light is 400nm. 
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Figure 22: A graph of the transmission rate of the 3D printed light guide as a function of polariser 

angle of rotation. The wavelength of the light is 500nm.  

Figure 23: A graph of the transmission rate of the 3D printed light guide as a function of polariser 

angle of rotation. The wavelength of the light is 600nm. 
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Figure 24: A graph of the transmission rate of the 3D printed light guide as a function of polariser 

angle of rotation. The wavelength of the light is 700nm. 

These results seem to indicate that there is some change in the transmission as the polariser is 

rotated. The results for the reflectance were also recorded, to see how this parameter changed as a 

function of polariser angle, as demonstrated in Figure 25, Figure 26, Figure 27 and Figure 28:- 

Figure 25: A graph of the reflectance of the 3D printed light guide as a function of polariser angle 

of rotation. The wavelength of the light is 400nm. 
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Figure 26: A graph of the reflectance of the 3D printed light guide as a function of polariser angle 

of rotation. The wavelength of the light is 500nm.  

Figure 27: A graph of the reflectance of the 3D printed light guide as a function of polariser angle 

of rotation. The wavelength of the light is 600nm. 
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Figure 28: A graph of the reflectance of the 3D printed light guide as a function of polariser angle 

of rotation. The wavelength of the light is 700nm.  

There appears to be no clear trend in the reflectance, as the wavelength and angle of polariser 

are varied. The errors are as described above, and are determined by the manufacturer’s 

specifications. So, assuming the spectrometer is functioning correctly, these should be correct. 

However, as stated previously, there were other potential sources of error (calibration, ambient 

light, use of the BK7 sample), so confidence in these measurements, cannot be guaranteed.  
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m. Comparison of the 3D Printed and Acrylic light guides (Alpha Source) 

The experimental method used for these measurements, is as described in section c. The error 

analyses for these measurements, are as described in x and xii. The results from the spectrometer 

suggest that the light transmission from the 3D printed light guide is much poorer than the light 

transmission from the bulk acrylic light guide. Having said that, in the previous experiments, 

described in section l, the light guides were not attached to a scintillator crystal; the light source 

was instead originating from the spectrometers laser beam. The fluorescence radiation from the 

scintillator crystal has different wavelengths to those provided by the spectrometer, so in these next 

set of measurements, a scintillator crystal (in this case a Caesium Iodide crystal) will be attached to 

each of the light guides. This setup was then used to measure spectra from a triple alpha source 

containing Pu-229, Am-241 and Cm-244, with an activity of 31085.3   Bq. Using this data, the 

light guides will be compared to each other in terms of the energy resolution and the optimum 

shaping time.  
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xiv. Energy Resolution 

The first parameter which will be used to compare the Acrylic and 3D Printed light guide is the 

energy resolution. The aim of these measurements is to establish whether the observed energy 

resolution depends upon the material (Acrylic or the 3D Printed), used for the light guide. The 

spectra for each of the light guides at a bias value of 27 Volts is as demonstrated in Figure 29 and 

Figure 30:-  

Figure 29: A partial spectrum showing the triple alpha peaks from the mixed alpha source 

discussed in the text. These results were taken using a bias of 27V and the Acrylic light guide 

coupled to the UoYTube prototype detector made from a Caesium Iodide scintillator (truncated 

pyramid geometry). The solid lines show the results of Gaussian fits to each of the Pu-239, Am-

241 and Cm-244 principle alpha decay peaks.  
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Figure 30: A partial spectrum showing the triple alpha peaks from the mixed alpha source 

discussed in the text. These results were taken using a bias of 27V and the 3D Printed light guide 

coupled to the UoYTube prototype detector made from a Caesium Iodide scintillator (truncated 

pyramid geometry). The solid lines show the results of Gaussian fits to each of the Pu-239, Am-

241 and Cm-244 principle alpha decay peaks. 

Using these spectra, it is possible to determine the energy resolution. The peaks were fitted to a 

Gaussian distribution in MATLAB and then A1, B1 and C1 were calculated. The results for the 

Acrylic and 3D Printed light guides, with a truncated pyramid geometry and operated at a bias 

value of 27 Volts, are as given in Table 10 and Table 11:-  

  

0

10

20

30

40

50

60

70

80

90

5000 5200 5400 5600 5800 6000

C
o

u
n

ts
 

Energy (keV) 



63 

 

Scintillator Geometry 
Source 

Peak 

A1 (No 

Units) 
B1 (keV) C1 (keV) 

Caesium 

Iodide 
Truncated pyramid Pu-239 109±2 5152.00±2.00 120.90±3.75 

Caesium 

Iodide 
Truncated pyramid  Am-241 103±2 5479.00±2.50 121.80±4.50 

Caesium 

Iodide 
Truncated pyramid  Cm-244 72±2 5783.00±3.50 122.20±5.60 

Scintillator Geometry 
Source 

Peak 

Peak 

Centroid 

(keV) 

FWHM 

(keV) 

Energy 

Resolution 

(%) 

Caesium 

Iodide 
Truncated pyramid Pu-239 5152.00±2.00 201.31±6.24 3.91±0.12 

Caesium 

Iodide 
Truncated pyramid  Am-241 5479.00±2.50 202.81±7.49 3.70±0.14 

Caesium 

Iodide 
Truncated pyramid  Cm-244 5783.00±3.50 203.48±9.32 3.52±0.16 

Table 10: A table showing the A1, B1 and C1 parameters (see section iii) for each of the mixed 

alpha source peaks for the Acrylic Light guide. The table also shows the Peak Centroid, Full-Width 

at Half-Maximum (FWHM) in keV and energy resolution, expressed as a percentage. 
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Scintillator Geometry 
Source 

Peak 

A1 (No 

Units) 
B1 (keV) C1 (keV) 

Caesium 

Iodide 
Truncated pyramid Pu-239 64±2 5146.00±3.00 111.40±4.10 

Caesium 

Iodide 
Truncated pyramid  Am-241 63±2 5478.00±3.00 108.20±4.20 

Caesium 

Iodide 
Truncated pyramid  Cm-244 44±2 5788.00±3.50 111.70±5.80 

Scintillator Geometry 
Source 

Peak 

Peak 

Centroid 

(keV) 

FWHM 

(keV) 

Energy 

Resolution 

(%) 

Caesium 

Iodide 
Truncated pyramid Pu-239 5146.00±3.00 185.49±6.83 3.60±0.13 

Caesium 

Iodide 
Truncated pyramid  Am-241 5478.00±3.00 180.16±6.99 3.88±0.13 

Caesium 

Iodide 
Truncated pyramid  Cm-244 5788.00±3.50 185.99±9.66 3.21±0.17 

Table 11: A table showing the A1, B1 and C1 parameters (see section iii) for each of the mixed 

alpha source peaks for the 3D Printed Light guide. The table also shows the Peak Centroid, Full-

Width at Half-Maximum (FWHM) in keV and energy resolution, expressed as a percentage. 

The energy resolution values are 3.91±0.12, 3.70±0.14 and 3.52±0.16 percent for the Acrylic 

light guide and 3.60±0.13, 3.29±0.13 and 3.21±0.17 percent for the 3D Printed light guide. In terms 

of the energy resolution values themselves, it is apparent that the variation in performance between 

the light guides is quite small, indicating that they are both are suitable for use in the UoYTube 

detector, although the 3D Printed light guide is slightly better. 

The light guides can also be compared in terms of the number of counts A1 at each of the 

source peaks. Both experiments were conducted over a time period of five minutes for each bias 

value. The values are 109±2, 103±2 and 72±2 for the Acrylic light guide and 64±2, 63±2 and 44±2 

for the 3D Printed light guide. Therefore, the number of counts is greater in each case, for the 

Acrylic light guide. This is consistent with the previous measurements of the transmittance. It 

could be argued that the number of counts is a more important feature than the energy resolution, in 

this context. This indicates that the Acrylic light guide is more suitable for use in the UoYTube, 

when compared to the 3D Printed light guide.  
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xv. Optimum Shaping Time 

The third parameter which will be used to describe the performance of the light guides is the 

optimum shaping time. For a Gaussian shaped pulse, shaping time is stated as being the standard 

deviation of that pulse, when the horizontal axis is measured in time [27]. This shaping time refers 

to the shaping time of the amplifier used to process the signal. Optimum shaping time is defined as 

the shaping time that corresponds to the highest energy resolution. To establish the optimum 

shaping time, spectra were taken at various shaping time values on the spectroscopic amplifier 

(ORTEC® EASY-MCA). These were values of 0.5, 1.0, 2.0, 3.0, 6.0 and 10 microseconds. Then, 

the spectra were analysed in terms of their energy resolution. The optimum shaping time, was then 

established as the shaping time that corresponded to the highest energy resolution.  

Table 12, Figure 31, Figure 32, Figure 33, Figure 34, Table 13, Figure 35, Figure 36, Figure 37 

and Figure 38, show how the energy resolution for each of the triple alpha source peaks varies as a 

function of the shaping time, for both the Acrylic and 3D Printed light guides:-   

Shaping Time 

(µs) 

Energy 

Resolution 

(Peak 1) (%) 

Energy 

Resolution 

(Peak 2) (%) 

Energy 

Resolution 

(Peak 3) (%) 

Average Energy 

Resolution (%) 

0.5±0.0 4.05±0.36 4.71±0.36 3.74±0.36 4.17±0.36 

1.0±0.1 3.95±0.09 3.68±0.11 3.50±0.13 3.71±0.11 

2.0±0.1 3.79±0.09 3.58±0.10 3.46±0.13 3.61±0.11 

3.0±0.2 3.79±0.10 3.54±0.11 3.42±0.14 3.59±0.12 

6.0±0.3 4.15±0.37 4.15±0.37 3.81±0.37 4.03±0.37 

10.0±0.5 3.77±0.09 3.64±0.11 3.55±0.13 3.65±0.11 

Table 12: A table showing the energy resolution for each of the source peaks with the Acrylic 

Light guide. The average energy Resolution is also shown. 
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Figure 31: A graph showing the energy resolution as a function of shaping time for the Pu-239 

source peak with the Acrylic Light guide. 

Figure 32: A graph showing the energy resolution as a function of shaping time for the Am-241 

source peak with the Acrylic Light guide. 
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Figure 33: A graph showing the energy resolution as a function of shaping time for the Cm-244 

source peak with the Acrylic Light guide. 

Figure 34: A graph showing the Average energy resolution as a function of shaping time for all of 

the three peaks, with the Acrylic Light guide. 
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Shaping Time 

(µs) 

Energy 

Resolution 

(Peak 1) (%) 

Energy 

Resolution 

(Peak 2) (%) 

Energy 

Resolution 

(Peak 3) (%) 

Average Energy 

Resolution (%) 

0.5±0.0 3.82±0.09 3.47±0.09 3.36±0.12 3.55±0.10 

1.0±0.1 3.68±0.10 3.36±0.08 3.21±0.12 3.42±0.10 

2.0±0.1 3.70±0.08 3.26±0.08 3.06±0.10 3.34±0.09 

3.0±0.2 3.62±0.08 3.27±0.08 3.13±0.10 3.34±0.09 

6.0±0.3 3.62±0.08 3.26±0.07 3.23±0.10 3.37±0.09 

10.0±0.5 3.59±0.07 2.81±0.08 2.32±0.07 2.91±0.07 

Table 13: A table showing the energy resolution for each of the source peaks with the 3D Printed 

Light guide. The average energy resolution is also shown. 

Figure 35: A graph showing the energy resolution as a function of shaping time for the Pu-239 

source peak with the 3D Printed Light guide. 
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Figure 36: A graph showing the energy resolution as a function of shaping time for the Am-241 

source peak with the 3D Printed Light guide.  

Figure 37: A graph showing the energy resolution as a function of shaping time for the Cm-244 

source peak with the 3D Printed Light guide. 
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Figure 38: A graph showing the average energy resolution as a function of shaping time for all of 

the three peaks, with the 3D Printed Light guide. 

By considering the error bars, and looking at the trends of all the graphs, it can be concluded 

that the best resolution is obtained for the highest values of shaping time. The small deviations 

from this trend at lower shaping times, are not statistically significant when the errors are taken 

into consideration. 
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n. Comparison of 3D Printed and Acrylic light guides (Conversion Electrons) 

xvi. Signal-To-Noise Ratio and Optimum Bias 

The experimental method used for these measurements, is as described in section c. The error 

analyses for these measurements, are as described in ix. The first parameter which will be used to 

characterise the UoYTube prototypes with the Bi-207 source, is the signal-to-noise ratio. The Bi-

207 source has four conversion electron peaks and two gamma ray peaks which are normally 

visible in the spectrum [10]. One peak was visible in this spectrum, but unfortunately it is unclear 

as to which of the decay products this corresponds to. Thus, the calibration of the source and 

calculation of the parameters of interest, was performed using the channels on the x axis instead of 

energy. 

The results for the Acrylic light guide are as shown in Table 14:- 

Scintillator 

Source 

Peak  

(CE or γ) 
Bias (V) 

Signal 

(Counts) 

Noise 

(Counts) 
S/N Ratio 

Caesium Iodide 

scintillator (truncated 

pyramid) 

Bi-207 
27.00±0.0

1 
4195±68 344±68 12±2 

Caesium Iodide 

scintillator (truncated 

pyramid) 

Bi-207 
28.00±0.0

1 
7344±131 569±131 13±3 

Caesium Iodide 

scintillator (truncated 

pyramid) 

Bi-207 
29.00±0.0

1 
5572±100 430±100 13±3 

Caesium Iodide 

scintillator (truncated 

pyramid) 

Bi-207 
30.00±0.0

1 
5747±103 445±103 13±3 

Caesium Iodide 

scintillator (truncated 

pyramid) 

Bi-207 
31.00±0.0

1 
4917±87 544±87 9±1 

Table 14: A table showing how the signal-to-noise ratio varies as the bias across the SiPM is 

changed. These results are for the prototype with the bulk acrylic light guide, a Caesium Iodide 

scintillator (truncated pyramid geometry) and the Bi-207 source peak (either CE or ). These 

values are taken from the spectra of Bi-207 (Figure 5), with bias values from 27-31 volts. 
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These results can also be shown in graphical form, as in Figure 39: - 

Figure 39: A graph showing how the signal-to-noise ratio varies as the bias across the SiPM is 

changed. These results are for the prototype with the bulk acrylic light guide, a Caesium Iodide 

scintillator (truncated pyramid geometry) and the Bi-207 source peak (either CE or ). These 
values are taken from the spectra of Bi-207, with bias values from 27-31 volts. 

The results for the 3D Printed light guide are as shown in Table 15: - 

Scintillator 

Source 

Peak 

(CE or γ) 
Bias (V) 

Signal 

(Counts) 

Noise 

(Counts) 
S/N Ratio 

Caesium Iodide 

scintillator (truncated 

pyramid) 

Bi-207 
27.00±0.0

1 
3919±70 418±70 9±2 

Caesium Iodide 

scintillator (truncated 

pyramid) 

Bi-207 
28.00±0.0

1 
4341±81 302±81 14±4 

Caesium Iodide 

scintillator (truncated 

pyramid) 

Bi-207 
29.00±0.0

1 
4095±78 321±78 13±3 

Caesium Iodide 

scintillator (truncated 

pyramid) 

Bi-207 
30.00±0.0

1 
3924±74 274±74 14±4 

Caesium Iodide 

scintillator (truncated 

pyramid) 

Bi-207 
31.00±0.0

1 
3924±71 210±71 19±6 

Table 15: A table showing how the signal-to-noise ratio varies as the bias across the SiPM is 

changed. These results are for the prototype with the 3D Printed light guide, a Caesium Iodide 

scintillator (truncated pyramid geometry) and the Bi-207 source peak (either CE or ). These 
values are taken from the spectra of Bi-207 (Figure 5), with bias values from 27-31 volts. 
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These results can also be shown in graphical form, as in Figure 40:- 

Figure 40: A graph showing how the signal-to-noise ratio varies as the bias across the SiPM is 

changed. These results are for the prototype with the 3D Printed light guide, a Caesium Iodide 

scintillator (truncated pyramid geometry) and the Bi-207 source peak (either CE or ). These 
values are taken from the spectra of Bi-207, with bias values from 27-31 volts. 

The Acrylic light guide seems to show a constant signal-to-noise ratio as the bias value is 

increased. The 3D Printed light guide seems to show that the signal-to-noise ratio increases as the 

bias value is increased, although this trend is marginal, so this trend cannot be stated with 

confidence. This slight difference in trend could be attributed to the fact that the light guides are 

fabricated using different methods, as well as the difference in the error values. Based on these 

results, the optimum bias value for the Bulk Acrylic light guide cannot be deduced. This is because 

there is little variation in the measured signal-to-noise ratio as the bias value is increased and 

because the error bars are too large. The optimum bias value for the 3D Printed light guide cannot 

be deduced. This is because as shown with the acrylic light guide, there is little variation in the 

measured signal-to-noise ratio as the bias value is increased and because the error bars are too 

large.  
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xvii. Energy Resolution as a function of the applied Bias 

The experimental method used for these measurements, is as described in section c. The error 

analyses for these measurements, are as described in xiii. The aim of these measurements, is to 

establish how the energy resolution varies according to the applied bias value, for both the Acrylic 

and 3D Printed prototypes. The Bi-207 source (Serial Number SU486) has four conversion electron 

peaks and two gamma ray peaks which are normally visible in the spectrum [10]. One peak was 

visible in this spectrum, but unfortunately it is unclear as to which of the decay products this 

corresponds to. Thus, the calibration of the source and calculation of the parameters of interest, was 

performed using the channels on the x axis instead of energy. For each of the prototypes, spectra 

were taken with a range of bias values from 27V to 31V. Then, to calculate the energy resolution, 

the peak was fitted to a Gaussian distribution using MATLAB.  

Based on this technique of analysis, the calculation of the energy resolution for the Acrylic 

prototype at various bias values, is as shown in Table 16 and Table 17:-  

Bias (V) Scintillator Geometry 

Source 

Peak 

(CE or γ) 

A1 (No 

Units) 

B1 

(Channels) 

C1 

(Channels) 

27.00±0.01 
Caesium 

Iodide 

Truncated 

pyramid 
Bi-207 4539±68 229±1 61±1 

28.00±0.01 
Caesium 

Iodide 

Truncated 

pyramid 
Bi-207 7913±131 210±1 51±1 

29.00±0.01 
Caesium 

Iodide 

Truncated 

pyramid 
Bi-207 6002±100 217±1 52±1 

30.00±0.01 
Caesium 

Iodide 

Truncated 

pyramid 
Bi-207 6192±103 229±1 55±1 

31.00±0.01 
Caesium 

Iodide 

Truncated 

pyramid 
Bi-207 5461±87 231±1 58±1 

Table 16: A table showing A1, B1 and C1 for the Acrylic light guided prototype. These values are 

taken from the spectra of Bi-207 (Figure 5). 
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Bias (V) Scintillator Geometry 

Source 

Peak 

(CE or γ) 

Peak 

Centroid 

(Channels) 

FWHM 

(Channels) 

Energy 

Resolution 

(%) 

27.00±0.01 
Caesium 

Iodide 

Truncated 

pyramid 
Bi-207 229±1 102±2 45±1 

28.00±0.01 
Caesium 

Iodide 

Truncated 

pyramid 
Bi-207 210±1 85±2 40±1 

29.00±0.01 
Caesium 

Iodide 

Truncated 

pyramid 
Bi-207 210±1 87±2 40±1 

30.00±0.01 
Caesium 

Iodide 

Truncated 

pyramid 
Bi-207 229±1 92±2 40±1 

31.00±0.01 
Caesium 

Iodide 

Truncated 

pyramid 
Bi-207 231±1 96±2 42±1 

Table 17: A table showing the Peak Centroid, Full-Width at Half-Maximum (FWHM) and energy 

resolution for the Acrylic light guided prototype. These values are taken from the spectra of Bi-207 

(Figure 5). 

These results can also be shown in graphical form, as in Figure 41:- 

Figure 41: A graph showing how the energy resolution varies as the bias is changed. These results 

are for the UoYTube prototype with an Acrylic light guide. The scintillator is made from Caesium 

Iodide (with a truncated pyramid geometry). Any bias between 28 and 30V would seem to be 

acceptable. 
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The calculation of the energy resolution for the 3D Printed prototype at various bias values, is 

as shown in Table 18 and Table 19:-  

Bias (V) Scintillator Geometry 

Source 

Peak 

(CE or γ) 

A1 (No 

Units) 

B1 

(Channels) 

C1 

(Channels) 

27.00±0.01 
Caesium 

Iodide 

Truncated 

pyramid 
Bi-207 4337±70 233±1 59±1 

28.00±0.01 
Caesium 

Iodide 

Truncated 

pyramid 
Bi-207 4643±81 248±1 57±1 

29.00±0.01 
Caesium 

Iodide 

Truncated 

pyramid 
Bi-207 4416±78 251±1 57±1 

30.00±0.01 
Caesium 

Iodide 

Truncated 

pyramid 
Bi-207 4198±74 234±1 53±1 

31.00±0.01 
Caesium 

Iodide 

Truncated 

pyramid 
Bi-207 4134±71 237±1 55±1 

Table 18: A table showing A1, B1 and C1 for the 3D Printed light guided prototype. These values 

are taken from the spectra of Bi-207 (Figure 5). 

Bias (V) Scintillator Geometry 

Source 

Peak 

(CE or γ) 

Peak 

Centroid 

(Channels) 

FWHM 

(Channels) 

Energy 

Resolution 

(%) 

27.00±0.01 
Caesium 

Iodide 

Truncated 

pyramid 
Bi-207 233±1 98±2 42±1 

28.00±0.01 
Caesium 

Iodide 

Truncated 

pyramid 
Bi-207 248±1 95±2 39±1 

29.00±0.01 
Caesium 

Iodide 

Truncated 

pyramid 
Bi-207 251±1 95±2 38±1 

30.00±0.01 
Caesium 

Iodide 

Truncated 

pyramid 
Bi-207 234±1 89±2 38±1 

31.00±0.01 
Caesium 

Iodide 

Truncated 

pyramid 
Bi-207 237±1 92±2 39±1 

Table 19: A table showing the Peak Centroid, Full-Width at Half-Maximum (FWHM) and energy 

resolution for the 3D Printed light guided prototype. These values are taken from the spectra of Bi-

207 (Figure 5).  



77 

 

These results can also be shown in graphical form, as in Figure 42:- 

Figure 42: A graph showing how the energy resolution varies as the bias is changed. These results 

are for the UoYTube prototype with a 3D Printed light guide. The scintillator is made from 

Caesium Iodide (with a truncated pyramid geometry). Any bias between 28 and 31V would seem 

to be acceptable. 

It is apparent that for the Acrylic light guided prototype, there is a range of optimum bias 

values. This range is between 28.00±0.01 and 30.00±0.01 volts, where each value corresponds to 

an energy resolution value of 40±1 percent. For the 3D Printed light guided prototype, there is also 

a range of optimum bias values. This range is between 28.00±0.01 and 31.00±0.01 volts, where 

each value corresponds to an energy resolution value of approximately 38±1 percent. 
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o. Measures of Efficiency 

The final parameter which will be discussed to characterise the UoYTube is the detector 

efficiency. There are three accepted variants of the detector efficiency parameter. These are the 

absolute, intrinsic and geometrical efficiencies. 

1. The absolute efficiency of a detector is determined by the distance of the source to the 

detector and involves the solid angle covered by the detector. It is defined as [2]: - 

source by the emitted quantaradiation  ofnumber 

recorded pulses ofnumber 
abs   

2. The intrinsic efficiency of a detector is determined by the detector thickness, the 

scintillator material and the energy of the source. It is defined as [2]: -  

detectoron incident  quantaradiation  ofnumber 

recorded pulses ofnumber 
int   

3. The geometrical efficiency is determined only by the source and detector geometry. It is 

defined below, where Ω is the solid angle between the source and the detector [30]: -  





4source by the emitted photons ofnumber 

detector  the towardsemitted photons ofnumber 
G  

4. To calculate the solid angle Ω for a point source and circular shaped detector, the 

following equation is used, where d is the distance of the detector from the source and r is 

the radius of the detector [30]: -  















22 rd

d
12  

5. The intrinsic efficiency, absolute efficiency and geometrical efficiency for isotropic 

sources (radiation which radiates uniformly in all directions) are related according to the 

following equation [2]: -  
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G

abs
int 


  

The geometrical efficiency of the previous generation UoYTube was estimated based on the 

opening angles at each end and the assumed gaps between detectors. The result of this was that the 

forward opening angle was reduced to 13.24 degrees and the backward angle was also reduced to 

19.98 degrees. Using PACE, it was calculated that the UoYTube would thus, have a coverage of 

96.7 percent [5].  

The efficiency was estimated by observing the suppression due to the applying of a charged-

particle veto. In the Kr70 experiment that ran in September 2014, the UoYTube was able to operate 

with an efficiency of 73% (one proton detection) and with an efficiency of 99% (for a 3p channel 

veto) [31]. Unfortunately, no data was taken to enable the actual detector efficiency to be 

determined. 

The geometrical efficiency of the current UoYTube prototype can be calculated using a solid 

angle calculator [32] [33]. The scintillator crystal is square in shape with a 20mmx20mm size and a 

thickness of 0.8mm. The alpha source was placed at a distance of 5cm away from the prototype 

and the conversion electron source was placed on top of the detector prototype, at a distance of 

0.5cm. Based on these measurements, the solid angle and geometrical efficiency values for each 

source are as follows in Table 20: -  

Serial 

Number 
Source 

Activity 

(Bq) 

Scintillator 

Thickness 

(mm) 

Distance 

to 

Detector 

(mm) 

Solid 

Angle 

(sR) 

Geometrical 

Efficiency (%) 

NY332 
Am/Cm/Pu 

(α) 3,850 0.8 50 0.154 

 

(0.154/12.56) × 100 = 

1.2 

 

SU486 
Bi-207 

(CE) 
32,330 0.8 5 3.709 

 

(3.709/12.56) × 100 = 

29.5 

 

Table 20: A table showing the solid angle and geometrical efficiency for the alpha and conversion 

electron sources. 
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6. Construction of the UoYTube 

Now that the scintillator, light guides and silicon photomultipliers have been characterised, and 

the method of fabrication decided, the next stage of development is to decide how each of the 

individual cells are going to be arranged to form the entirety of the UoYTube detector.  

Figure 43 shows the geometry of the previous generation UoYTube: -  

 

Figure 43: A schematic showing the structure of the previous generation UoYTube. It shows how 

each of the ninety-six individual cells are arranged in a frame [5]. 

An idealised design for the UoYTube would have scintillator crystals covering the entirety of 

the inside of the detector. This would ensure that the detector would have the highest probability of 

recording an event. Unfortunately, the previous design, is such that the length of the detector is 

covered well, but the end caps are not covered so well. This was due to restrictions, at that time, of 

the scintillator and light guide geometries (the scintillators were all of a square geometry and the 

light guides, all a truncated pyramid geometry). 

In this new design, the length of the detector is again covered with the truncated pyramid cells, 

but the end caps also have diamond-like shaped individual cells as well. This means that the end 

caps have much better coverage than previously. This is as shown in Figure 44, Figure 45, Figure 

46 and Figure 47, which outline the exact measurements of the length, end caps and each 
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individual cell (truncated pyramid and diamond-like geometries. They also show explicitly how 

each of the individual cells are arranged in the detector lattice: -  

Figure 44: A diagram showing the length of the detector. There are six of these sections, each one 

corresponding to a different face. Each of these faces has eight UoYTube cells, each with the 

truncated pyramid geometry. The largest face of the light guide measures 20mmx20mm and the 

smallest face of the light guide measures 6mmx6mm [34]. 
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Figure 45: A diagram showing the end caps of the detector. There are two of these, each one 

corresponding to a different end. Each end cap contains twelve UoYTube cells; six with the 

truncated pyramid geometry and six with the diamond-like geometry [35]. 



83 

 

 

Figure 46: A drawing that shows the geometry of the truncated pyramid light guide. The largest 

face measures 20mmx20mm, the smallest face measures 6mmx6mm and the height is 7.85mm 

[36]. 
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Figure 47: A drawing that shows the geometry of the diamond-like light guide. The smallest face 

measures 6mmx6mm and the height is 7.85mm [37]. 

The final stage of the design is to establish how these cells are actually attached to the frame 

and to the additional electronics which are needed to collect the signals from the SiPMs. The 

UoYTube is fabricated such that the brackets are attached to the Printed Circuit Board (PCB). The 

SiPMs are mounted onto the PCB where their signals are collected. The scintillator crystals, light 

guides and SiPMs (now with the PCB attached) are then bound to each other with glue. Figure 48 

describes how each of these components would be arranged and connected in practice: -  
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Figure 48: A drawing that shows the geometry of all of the required components. Item 1 is the 

PCB; Item 2 is the scintillator crystal; Item 3 is the light guide; Item 4 is the bracket; Item 5 is the 

SiPM. The height of the PCB is 1.5mm. The height of the scintillator, light guide and SiPM is 

10.5mm [34]. 

 

 

 

 

4

2 3

1

5



86 

 

7. Uses of the UoYTube detector 

It has been discussed in section 5 how the UoYTube can be used to detect different types of 

radiation, including alpha particles and conversion electrons (although it is not technically designed 

to measure conversion electrons). The main purpose of the UoYTube is to detect charged particles 

emitted in fusion evaporation reactions. A use for the UoYTube detector will be now be discussed; 

to study the properties of 
70

Kr. 

The aim of this experiment was to use the recoil-  tagging technique [5], to determine which 

transitions occur for the 
70

Kr nucleus, specifically the 2+ and 4+ states. Then, this data was used to 

identify the triplet energy differences for the isobars of mass 70 [31]. 

This experiment was conducted at the University of Jyväskylä (JYFL) by other physicists’. I 

did not conduct this experiment, nor did I analyse any of the experimental results. In this 

experiment, a beam of 
32

S was bombarded at a target of natural Calcium. This reaction generated 

the 
70

Kr isotope via two neutron evaporation from the compound nucleus [31].  

A diagram of the experimental set-up is as shown below, in Figure 49: -  

  



87 

 

Figure 49: A diagram of the current experimental set-up. This set-up includes the JUROGAM II 

array, the GREAT spectrometer and the UoYTube. The UoYTube is located inside the JUROGAM 

II array [38]. 

There were several detectors in the set-up, including the UoYTube, each with their own role. 

These detectors are listed below: -  

1. The JUROGAM II array (composed of 24 Eurogam II clover detectors [39] and 15 

Eurogam phase I/GASP [40] [41] detectors), used to measure prompt gamma rays 

2. A Double-sided silicon strip detector (DSSSD), used to measure the recoiled fusion 

evaporation products. The DSSSD is a component in the Gamma Recoil Electron Alpha 

Tagging (GREAT) [42] spectrometer 

3. A multi-wire proportional counter (MWPC), used to register the recoils being implanted 

into the DSSSD. 

4. The UoYTube, used to veto those events that occur in coincidence, with particles ejected 

from the fusion evaporation reaction [31]  

  

JUROGAM II array 

GREAT 

spectrometer 

UoYTube 
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In this experiment, the UoYTube suppressed those channels, and many others too, 

corresponding to the 
69

As (3p evaporation) and 
70

Se (2p evaporation). This meant that the 

UoYTube was able to operate with an efficiency of 73% (one proton detection) and with an 

efficiency of 99% (for a 3p channel veto) [31]. 

The results of the experiment provided the first identification of two gamma rays in 
70

Kr 

(which are assumed to correspond to the   02  and   24  transitions), thus allowing a first 

study of the isobaric analogue states in the mass 70 nuclei 
70

Kr, 
70

Br and 
70

Se. 
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8. Conclusion 

This thesis describes the testing of several prototype detectors, designed to be used in a 

radiation detector called the UoYTube. The objectives in this work were to design and fabricate 

several UoYTube prototypes. These included prototypes with different scintillator crystals 

(Caesium Iodide and plastic), prototypes with different geometries (truncated pyramid and cuboid), 

and prototypes that included different types of light guides (Acrylic and 3D Printed). 

These prototypes were then characterised in terms of the signal-to-noise ratio, the optimum 

bias value, the energy resolution, the Acrylic versus 3D-Printed light guides, the number of counts 

and the optimum amplifier shaping time. These results were then used to inform upon the optimum 

scintillation material and light collection materials to be used for the next UoYTube detector 

design.  

A use for the UoYTube in terms of the detection and veto of charged particles emitted in fusion 

evaporation reactions is briefly described. The specific experiment discussed aimed to identify 

transitions from the first few Yrast states in the nucleus 
70

Kr.  

Firstly, each of the different components that make up the UoYTube cells (scintillator, light 

guide and SiPM) were described individually, and then a description of how they were fabricated 

was presented. Following this, the UoYTube prototypes were characterised in terms of their signal-

to-noise ratio. In these experiments, the bias was varied and the signal-to-noise ratio calculated at 

each different bias value. Then, the optimum bias value was inferred by establishing which bias 

value corresponded to the highest signal-to-noise. Using these results, it was deduced that the 

plastic scintillator (with a truncated pyramid geometry) was the best performing in terms of the 

signal-to-noise ratio.  
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The optimum bias value corresponded to the highest signal-to-noise ratio. Both the plastic 

scintillator (with a truncated pyramid geometry) and Caesium Iodide scintillator (with a truncated 

pyramid geometry), demonstrated a range of the optimum bias values, over which there was little 

variation in the measured signal-to-noise ratio. For the plastic scintillator (with a cuboid geometry), 

the optimum bias value was unknown. This was because the error bars for the signal-to-noise 

values were too large and therefore, each data point was said to not be distinguishable from each 

other. 

The energy resolution for each of the prototypes was then measured using the triple alpha 

source. The data were fitted to Gaussian distributions by MATLAB. In terms of the energy 

resolution value achieved, the Caesium Iodide scintillator (with a truncated pyramid geometry), 

was the best performing and most suitable for use in the UoYTube, as it had good energy 

resolution. 

Two different methods used to fabricate the light guides, one involving the use of a 3D Printer 

and the other involving the use of the HURCO VMX60m Machining Centre, was then outlined. 

The light output was analysed with a spectrometer and the Reflectance and Transmittance of light 

as a function of Wavelength was recorded. The transmittance of light for the 3D Printed light guide 

was significantly poorer than that of the acrylic light guide. This indicated that the acrylic light 

guide was more suitable for use in the UoYTube when compared to the 3D printed light guide. 

Similarly, there was also a direct comparison of the light guides, when the light source originated 

from a scintillator crystal and not a spectrometer. The light guides were then compared to each 

other in terms of the energy resolution, number of counts and the optimum shaping time, using the 

triple alpha source.  

In terms of the energy resolution, the variation in performance between the light guides was not 

very significant. Thus, both can be said to be suitable for use in the UoYTube detector. The light 

guides were also compared in terms of the number of counts A1 at each of the source peaks. The 

number of counts was greater in each case, for the Acrylic light guide. This indicated that the 

Acrylic light guide was more suitable for use in the UoYTube, when compared to the 3D Printed 

light guide.  
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The light guides were also characterised in terms of the optimum shaping time, where the 

optimum shaping time corresponded to the highest energy resolution value. To establish the 

optimum shaping time, spectra were taken at various shaping time values and then the energy 

resolution was calculated. Using these results, it was concluded that the best resolution was 

obtained for the highest values of shaping time. The small deviations from the observed trend at 

lower shaping times, were not statistically significant when the errors were taken into 

consideration. 

Using the conversion electron source, the Acrylic and 3D Printed prototypes, were 

characterised in terms of the signal-to-noise ratio, optimum bias value and the energy resolution (as 

a function of the applied bias). The optimum bias values for the Bulk Acrylic and 3D Printed light 

guides could not be deduced. This was because there was little variation in the measured signal-to-

noise ratio as the bias value was increased and because the error bars were too large. Both the 

Acrylic and 3D Printed light guided prototypes demonstrated a range of the optimum bias values, 

over which there was little variation in the measured energy resolution. Thus, both were 

demonstrated to be suitable for use in the UoYTube.  

The geometrical efficiency of the previous generation UoYTube was estimated based on the 

opening angles at each end and the assumed gaps between detectors. Using PACE, it was 

calculated that the UoYTube would thus have a coverage of 96.7 percent. The actual efficiency 

was established by observing the suppression due to the applying of a charged-particle veto. In the 

experiment that ran in September 2014, the UoYTube was able to operate with an efficiency of 

73% (one proton detection) and with an efficiency of 99% (for a 3p channel veto). 

The geometry used in the UoYTube was then described, specifically how each of the 

individual cells fit together and how the geometry was optimised to ensure maximum surface area 

coverage. It was also established how the cells are attached to the frame and to the additional 

electronics, which are used to collect the signals from the SiPMs.  
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A use for the UoYTube was then described; to detect charged particles emitted in fusion 

evaporation reactions. The aim of this experiment was to use the recoil-  tagging technique, to 

determine which transitions occur for the 
70

Kr nucleus, specifically the 2+ and 4+ states. Then, this 

data was used to identify the triplet energy differences for the isobars of mass 70. These results 

provided the first identification of two gamma rays in 
70

Kr (which are assumed to correspond to the 

  02  and   24  transitions), thus allowing a first study of the isobaric analogue states in the 

mass 70 nuclei 
70

Kr, 
70

Br and 
70

Se. 

In terms of further work, the UoYTube could be further characterised by calculating the 

efficiency of the detector in its entirety and also by establishing how well the detector is able to 

measure other nuclei. I would also be beneficial to characterise the UoYTube performance in terms 

of its temperature dependence. 
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9. Health and Safety 

When conducting experimental work, Health and Safety procedures should always be 

considered. In this section of the thesis, an assessment of the risks associated with experimental 

work will be described, alongside the methods used to reduce these risks. 

An aspect of this work which has an element of risk associated with it, is the handling of 

radioactive sources. The sources used were the composite triple alpha source, consisting of 

Plutonium-239, Americium-241 and Curium-244 (Serial Number NY332) and the conversion 

electron source Bismuth-207 (Serial Number SU486) [43]. Both these sources are sealed sources, 

which means that they are encapsulated in plastic to reduce the risk associated with their handling 

[44]. It is essential that forceps are used when handling the sources, particularly when they are 

transferred from their container to the holder used for the testing of the UoYTube prototypes.  

To minimise risk further, these sources are stored in a lead-lined box, so the radiation cannot 

escape. This box is locked with a key, and this key is stored in a password protected safe. This is to 

ensure that only those who have permission to access these sources, can do so [44]. Also, whilst 

working in the laboratory, a sign should be positioned next to the source, to indicate that the source 

is being used nearby.  

To reduce risk further, it was also necessary to complete the online training programme. This 

programme is designed to teach the user about radiation safety including, safe dose limits, the 

effects of radiation on the body, the different types of radiation used in the laboratory and the 

University of York’s policy on working with radioactive sources [45]. 

Another risk was the risk associated with working with Isopropanol, when preparing the 3D 

Printed light guide. Isopropanol is an irritant to the skin and eyes, and so it was necessary to wear 

gloves when working with this liquid, to reduce the risk of harm [12]. 
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10. Abbreviations used in the Appendices 

The following table contains a list of the abbreviations and their corresponding meanings, used 

in the Appendices of this thesis: -  

Abbreviation Meaning 

x The x variable 

y The y variable 

x Error The error of the x variable 

x Units The unit of measurement for the error of the x variable 

y Error The error of the y variable 

y Units The unit of measurement for the error of the y variable 

S/N The signal-to-noise ratio of the detector 

E Res The energy resolution of the detector 

Av E Res The average energy resolution of the detector 

A1 The height of the Gaussian curve’s peak as calculated by MATLAB 

A1 (Units) The unit of measurement for the height of the Gaussian curve’s peak 

A1 LB 
The lower bound of the height of the Gaussian curve’s peak as calculated 

by MATLAB 

A1 UB 
The upper bound of the height of the Gaussian curve’s peak as calculated 

by MATLAB 

B1 The position of the peak centroid on the x axis as calculated by MATLAB 

B1 (Units) 
The unit of measurement for the position of the peak centroid on the x axis 

as calculated by MATLAB 

B1 LB 
The lower bound of the position of the peak centroid on the x axis as 

calculated by MATLAB 

B1 UB 
The upper bound of the position of the peak centroid on the x axis as 

calculated by MATLAB 

C1 
Equal to 2 , where   is the standard deviation, as calculated by 

MATLAB 

C1 (Units) The unit of measurement for C1 as calculated by MATLAB 

C1 LB The lower bound of C1 as calculated by MATLAB 

C1 UB The upper bound of C1 as calculated by MATLAB 

CB (%) 
The confidence bounds for a given fit as calculated by MATLAB and 

expressed as a percentage 
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SSE The sum of squares due to error as calculated by MATLAB 

R-sq/ Adj R-sq 
The R-Squared and degrees of freedom Adjusted R-Squared values as 

calculated by MATLAB 

RMSE The Root Mean Squared Error as calculated by MATLAB 

Reflect/Trans 
The Reflectance and Transmittance of light as measured by the 

spectrometer 

AOP The Angle of the Polariser 

 



96 

 

11. Appendix 1 – Errors for x and y axes 

Figure(s) x x Error x Units y y Error y Units 

Figure 4 

& 

Table 8 

& 

Table 9 

& 

Figure 16 

Energy ±18 keV Counts ±18 None 

Figure 5 Energy ±17 keV Counts ±17 None 

Table 2 

& 

Figure 10 

Bias ±0.01 Volts S/N 
±9, ±28, ±10, 

±1, ±0 
None 

Table 3 

& 

Figure 11 

Bias ±0.01 Volts S/N 
±4, ±3, ±5,  

±5, ±6 
None 

Table 4 

& 

Figure 12 

Bias ±0.01 Volts S/N 
±4, ±2, ±5,  

±5, ±6 
None 

Table 5 

& 

Figure 13 

Bias ±0.01 Volts S/N 
±2, ±2, ±4,  

±3, ±4 
None 
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Figure(s) x x Error x Units y y Error y Units 

Table 6 

& 

Figure 14 

Bias ±0.01 Volts S/N 
±7, ±3, ±6,  

±7, ±7 
None 

Table 8 

& 

Table 9 

& 

Figure 15 

Energy ±21 keV Counts ±21 None 

Table 8 

& 

Table 9 

&  

Figure 17 

Energy ±23 keV Counts ±23 None 

Figure 18 

& 

Figure 19 

&  

Figure 20 

Wavelength ±2.5 nm Reflect ±0.002 % 

Figure 18 

& 

Figure 19 

&  

Figure 20 

Wavelength ±2.5 nm Trans ±0.02 % 

Figure 21 

& 

Figure 22 

& 

Figure 23 

& 

Figure 24 

AOP ±3 Degrees Trans ±0.02 % 

Figure 25 

&  

Figure 26 

& 

Figure 27 

& 

Figure 28 

AOP ±3 Degrees Reflect ±0.002 % 
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Figure(s) x x Error x Units y y Error y Units 

Figure 29 

&  

Figure 30 

& 

Table 10 

& 

Table 11 

Energy ±22 keV Counts ±22 None 

Table 12 

&  

Figure 31 

Shaping 

Time 

±0.0, ±0.1, ±0.1, 

±0.2, ±0.3, ±0.5 
µs E Res 

±0.36, ±0.09, 

±0.09, ±0.10, 

±0.37, ±0.09 

% 

Table 12 

&  

Figure 32 

Shaping 

Time 

±0.0, ±0.1, ±0.1, 

±0.2, ±0.3, ±0.5 
µs E Res 

±0.36, ±0.11, 

±0.10, ±0.11, 

±0.37, ±0.11 

% 

Table 12 

&  

Figure 33 

Shaping 

Time 

±0.0, ±0.1, ±0.1, 

±0.2, ±0.3, ±0.5 
µs E Res 

±0.36, ±0.13, 

±0.13, ±0.14, 

±0.37, ±0.13 

% 

Table 13 

&  

Figure 35 

Shaping 

Time 

±0.0, ±0.1, ±0.1, 

±0.2, ±0.3, ±0.5 
µs E Res 

±0.09, ±0.10, 

±0.08, ±0.08, 

±0.08, ±0.07 

% 

Table 13 

&  

Figure 36 

Shaping 

Time 

±0.0, ±0.1, ±0.1, 

±0.2, ±0.3, ±0.5 
µs E Res 

±0.09, ±0.08, 

±0.08, ±0.08, 

±0.07, ±0.08 

% 

Table 13 

&  

Figure 37 

Shaping 

Time 

±0.0, ±0.1, ±0.1, 

±0.2, ±0.3, ±0.5 
µs E Res 

±0.12, ±0.12, 

±0.10, ±0.10, 

±0.10, ±0.07 

% 
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Figure(s) x x Error x Units y y Error y Units 

Table 12 

&  

Figure 34 

Shaping 

Time 

±0.0, ±0.1, ±0.1, 

±0.2, ±0.3, ±0.5 
µs 

Av E 

Res 

±0.36, ±0.11, 

±0.11, ±0.12, 

±0.37, ±0.11 

% 

Table 13 

&  

Figure 38 

Shaping 

Time 

±0.0, ±0.1, ±0.1, 

±0.2, ±0.3, ±0.5 
µs 

Av E 

Res 

±0.10, ±0.10, 

±0.09, ±0.09, 

±0.09, ±0.07 

% 

Table 14 

& 

Figure 39 

Bias ±0.01 Volts S/N 
±2, ±3, ±3,  

±3, ±1 
None 

Table 15 

& 

Figure 40 

Bias ±0.01 Volts S/N 
±2, ±4, ±3,  

±4, ±6 
None 

Table 16 

& 

Table 17 

&  

Figure 41 

Bias ±0.01 Volts E Res ±1 % 

Table 18 

& 

Table 19 

& 

Figure 42 

Bias ±0.01 Volts E Res ±1 % 
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12. Appendix 2 – Gaussian Distributions 

Figure(s) Parameters 

Figure 4 

& 

Table 7 

& 

Table 9 

& 

Figure 16 

(Peak 1) 

A1±Error A1 Units B1±Error B1 Units C1±Error 

681±7 Counts 5153.00±2.00 keV 170.10±5.35 

C1 Units CB (%) SSE 
R-sq/Adj 

R-sq 
RMSE 

keV 95 1.71E+05 
0.9582, 

0.9571 
23.14 

Figure 4 

& 

Table 7 

& 

Table 9 

& 

Figure 16 

(Peak 2) 

A1±Error A1 Units B1±Error B1 Units C1±Error 

654±8 Counts 5496.00±3.00 keV 141.70±5.50 

C1 Units CB (%) SSE 
R-sq/Adj 

R-sq 
RMSE 

keV 95 1.71E+05 
0.9582, 

0.9571 
23.14 

Figure 4 

& 

Table 7 

& 

Table 9 

& 

Figure 16 

(Peak 3) 

A1±Error A1 Units B1±Error B1 Units C1±Error 

449±7 Counts 5795.00±3.50 keV 145.10±8.60 

C1 Units CB (%) SSE 
R-sq/Adj 

R-sq 
RMSE 

keV 95 1.71E+05 
0.9582, 

0.9571 
23.14 

Figure 5 

A1±Error A1 Units B1±Error B1 Units C1±Error 

4539±68 Counts 229±1 Channels 61±1 

C1 Units CB (%) SSE 
R-sq/Adj 

R-sq 
RMSE 

Channels 95 1.77E+07 
0.9744, 

0.9742 
245.60 

Table 7 

& 

Table 9 

& 

Figure 15 

A1±Error A1 Units B1±Error B1 Units C1±Error 

190±3 Counts 5317.00±12.00 keV 1108.00±17.00 

C1 Units CB (%) SSE 
R-sq/Adj 

R-sq 
RMSE 

keV 95 7.26E+04 
0.9639, 

0.9637 
12.73 
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Figure(s) Parameters 

Table 7 

& 

Table 9 

& 

Figure 17 

A1±Error A1 Units B1±Error B1 Units C1±Error 

35±1 Counts 5413.00±18.00 keV 905.70±26.65 

C1 Units CB (%) SSE 
R-sq/Adj 

R-sq 
RMSE 

keV 95 1.35E+04 
0.8412, 

0.8406 
5.03 

Figure 29 

& 

Table 10 

(Peak 1) 

A1±Error A1 Units B1±Error B1 Units C1±Error 

109±2 Counts 5152.00±2.00 keV 120.90±3.75 

C1 Units CB (%) SSE 
R-sq/Adj 

R-sq 
RMSE 

keV 95 2.80E+04 
0.9270, 

0.9257 
7.84 

Figure 29 

& 

Table 10 

(Peak 2) 

A1±Error A1 Units B1±Error B1 Units C1±Error 

103±2 Counts 5479.00±2.50 keV 121.80±4.50 

C1 Units CB (%) SSE 
R-sq/Adj 

R-sq 
RMSE 

keV 95 2.80E+04 
0.9270, 

0.9257 
7.84 

Figure 29 

& 

Table 10 

(Peak 3) 

A1±Error A1 Units B1±Error B1 Units C1±Error 

72±2 Counts 5783.00±3.50 keV 122.20±5.60 

C1 Units CB (%) SSE 
R-sq/Adj 

R-sq 
RMSE 

keV 95 2.80E+04 
0.9270, 

0.9257 
7.84 

Figure 30 

& 

Table 11 

(Peak 1) 

A1±Error A1 Units B1±Error B1 Units C1±Error 

64±2 Counts 5146.00±3.00 keV 111.40±4.10 

C1 Units CB (%) SSE 
R-sq/Adj 

R-sq 
RMSE 

keV 95 1.62E+04 
0.8999, 

0.8981 
5.96 

Figure 30 

& 

Table 11 

(Peak 2) 

A1±Error A1 Units B1±Error B1 Units C1±Error 

63±2 Counts 5478.00±3.00 keV 108.20±4.20 

C1 Units CB (%) SSE 
R-sq/Adj 

R-sq 
RMSE 

keV 95 1.62E+04 
0.8999, 

0.8981 
5.96 
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Figure(s) Parameters 

Figure 30 

& 

Table 11 

(Peak 3) 

A1±Error A1 Units B1±Error B1 Units C1±Error 

44±2 Counts 5788.00±3.50 keV 111.70±5.80 

C1 Units CB (%) SSE 
R-sq/Adj 

R-sq 
RMSE 

keV 95 1.62E+04 
0.8999, 

0.8981 
5.96 
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