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Abstract 

There is an urgent need to reduce our dependency on fossil fuels, and to reduce 

greenhouse gas (GHG) emissions. In recent years, a conversion of lignocellulosic 

biomass from agricultural wastes to biofuel has been considered a promising solution 

to provide sustainable liquid fuels without competing with food production. At 

present, this is limited by the cost effectiveness of the production process, due to the 

recalcitrance of lignocellulosic biomass to digestion. One way to tackle this problem 

is to improve the digestibility of the biomass feedstock itself, which would help to 

decrease chemical and enzyme treatments necessary for converting biomass to 

fermentable sugars for bioethanol production. With this objective in mind, the aim of 

this study is to identify genes that affect the digestibility of rice straw. Rice (Oryza 

sativa), the third biggest cereal crop in the world, has a small diploid genome, and 

well-developed molecular genetics tools to underpin the use of Genome Wide 

Association Studies (GWAS), a powerful tool for identifying quantitative trait loci. 

The genotypic data of 151 varieties, containing 328,915 Single Nucleotide 

Polymorphism (SNPs), was analysed together with the phenotypic data from three 

different cell wall characterisation assays: (1) saccharification, (2) total lignin 

content, and (3) silica measurement by X-ray fluorescence. This resulted in the 

identification of 10 significant QTL for saccharification potential, 3 significant QTL 

for Silica content, and 8 significant QLTs for total Lignin. The digestibility QTL 

regions identified include three strong potential candidate genes which determine on 

digestibility:OsAT10 (Bartley, et al., 2013); OsIRX9 (Chiniquy, et al., 2013); and 

OsMYB58/63-L (Noda, et al., 2015). A strong correlation between silicon content 

and digestibility was also identified.  A QTL in chromosome 6 occurred in both 

GWAS for digestibility and silica, and revealed a contrasting bi-allelic effect 

between the amounts of sugar released and silica content. The OsAT10 gene, located 

in this common QTL region was validated using the straw from overexpression lines, 

showing that OsAT10 had large effect on both silica content and digestibility.   



 

3 

 

Table of Contents 

Abstract ....................................................................................................................... 2 

Table of Contents ........................................................................................................ 3 

List of Figures ............................................................................................................. 6 

List of tables ................................................................................................................ 8 

Acknowledgements ..................................................................................................... 9 

Declaration ................................................................................................................ 10 

Chapter 1 - Introduction........................................................................................... 11 

1.1 Biofuels ............................................................................................................. 11 

1.1.1 Relationship between fossil fuels and biofuels ............................................ 11 

1.1.2 First generation biofuels ............................................................................. 14 

1.1.3 Second generation biofuels ......................................................................... 15 

1.2 Biomass ............................................................................................................ 18 

1.2.1 Lignocellulose in plants .............................................................................. 19 

1.2.2 Silica in plants ............................................................................................ 33 

1.3 Using genomics to identify genes for biomass improvement .............................. 35 

1.3.1 Rice as a model for cereals and grasses, and as a sustainable cellulosic 

biomass feedstock ............................................................................................... 36 

1.3.2 Genome wide association studies ................................................................ 37 

1.4. Aim of the project ............................................................................................ 40 

Chapter 2 - Cell wall characterization ..................................................................... 41 

2.1 Material ............................................................................................................. 41 

2.2. Methods ........................................................................................................... 42 

2.2.1 Saccharification assay ................................................................................. 42 

2.2.2 Silica content measurement ........................................................................ 43 

2.2.3 Total lignin content..................................................................................... 44 



 

4 

 

2.2.4 Data analysis and heritability estimation ..................................................... 45 

2.3 Results .............................................................................................................. 46 

3.1 Saccharification ............................................................................................. 46 

2.3.2 Silicon and silica content ............................................................................ 48 

3.3 Total lignin content ....................................................................................... 49 

3.4 Correlation analysis ....................................................................................... 49 

2.3.1 Heritability of studied traits ........................................................................ 51 

2.4 Discussion ......................................................................................................... 52 

Chapter 3 - Association mapping for biomass and cell wall traits .......................... 55 

3.1 Method .............................................................................................................. 55 

3.1.1 Genotyping by Sequencing and SNP identification ..................................... 55 

3.1.2 Population stratification using GAPIT ........................................................ 59 

3.1.3 Mixed Linear Model (MLM) using Tassel .................................................. 61 

3.1.4 Ferulic acid and p-coumaric acid content .................................................... 62 

3.2 Results .............................................................................................................. 63 

3.2.1 SNP identification ...................................................................................... 63 

3.2.2 Pairwise relatedness/Population stratification ............................................. 65 

3.2.3 GWAS for digestibility/saccharification potential ....................................... 68 

3.2.4 GWAS for Silica content ............................................................................ 74 

3.2.5 GWAS for Lignin content ........................................................................... 78 

3.3 Validation of candidate gene OsAT10 for digestibility and silica content .......... 82 

3.3.1 Literature review ........................................................................................ 82 

3.3.2 Cell wall characterisation of the OsAT10 overexpression lines ................... 83 

3.3.3 Result of the validation ............................................................................... 83 

3.4 Discussion ......................................................................................................... 85 

3.4.1 HapMap resolution for GWAS ................................................................... 85 



 

5 

 

3.4.2 Population stratification .............................................................................. 85 

3.4.3 QTL and candidates gene selection ............................................................. 86 

Chapter 4 – Final Discussion .................................................................................... 92 

Appendix A - List of studied rice accessions .......................................................... 100 

List of Abbreviations .............................................................................................. 101 

References ............................................................................................................... 104 

  



 

6 

 

List of Figures 

Figure 1:  Oil producing countries map.. ..................................................................... 12 

Figure 2:Trend in CO2 emissions from fossil fuel combustion.. .................................. 13 

Figure 3: Predicted fossil fuel reserves, taken from CIA World Fact-book .................. 13 

Figure 4: Production of bioethanol per country or region in 2013. Data taken from 

Renewable Fuel Association (RFA, 2013) ................................................................... 15 

Figure 5: Reduction of greenhouse gas (GHG) emissions from cellulosic bioethanol and 

corns-derived bioethanol blends (I. Ceres, 2015) ......................................................... 16 

Figure 6: Pie chart representing the approximate distribution of the three primary 

components of plant cell walls—cellulose, hemicellulose, and lignin .......................... 20 

Figure 7: Three-Dimensional Illustration of Lignocellulose Meshwork. ...................... 21 

Figure 8:  Structure of cellulose in the plant cell wall. ................................................. 22 

Figure 9: General chemical structure of the most common types of hemicellulose in 

plant cell walls. ........................................................................................................... 24 

Figure 10: Lignin structure, taken from (Leisola, et al., 2012) ..................................... 28 

Figure 11: Lignin biosynthesis pathway adapted from Jinmi Yoon et al, 2015 ............. 28 

Figure 12: Rice stem sample ....................................................................................... 41 

Figure 13: (A) Cyclone mill machine; (B) Stem sample after milling .......................... 42 

Figure 14: High-throughput saccharification assay system developed by Leonardo 

Gomez since 2010 in CNAP ....................................................................................... 43 

Figure 15: The sample pellet and P-XRF machine ....................................................... 44 

Figure 16: Spectrophotometer: The detection of total lignin was carried out with a UV-

detector at 280 nm after Acetyl Bromide Assay........................................................... 45 

Figure 17: (A) Scatter plot graph adapted standard error values of 151 rice lines, 5 

biological replicates, grown in 2014, 2013 (B) Scatter plot graph adapted standard error 

values of 98 rice lines, 3 biological replicates, grown in 2013.. ................................... 47 

Figure 18: Correlation between 2013 vs 2014 sugar released....................................... 47 

Figure 19: Scatter plot with standard error bars for silicon and silica content in ........... 48 

Figure 20: Total Lignin content with standard error bars. ............................................ 49 

Figure 21: Correlation graph among three traits: Lignin vs Silica, Lignin vs digestibility, 

and Silicavs digestibility, respectively. ........................................................................ 50 

Figure 22: Rice plants growing in the glass house in Dundee. ..................................... 55 



 

7 

 

Figure 23:  Nucleic acid concentration and DNA quality range at 260/280 and 260/230 

Ratios ......................................................................................................................... 56 

Figure 24: (A) Gel electrophoresis checking the quality of DNA extracted from young 

rice plants; (B) Example of digested DNA by restriction enzyme HindIII and EcoRI .. 56 

Figure 25: Steps in GBS library construction. ............................................................. 58 

Figure 26: Flow chart showing the steps of a GBS ―Discovery Pipeline‖ analysis link 

together (variations on this approach are possible).. .................................................... 58 

Figure 27: Bar graph showing the distribution of identified SNP across the rice genome

 ................................................................................................................................... 64 

Figure 28: Phylogenetic tree in the form of kinship plot .............................................. 66 

Figure 29: Correlation graph among three traits. ......................................................... 67 

Figure 30: (a) Genome wide association study showing association between digestibility 

and markers across the rice genome  (b) Digestibility quantile–quantile (QQ) plot ...... 69 

Figure 31: Genome wide association study for saccharification potential over two year 

studies. The red arrow indicates the common QTL. ..................................................... 70 

Figure 32: (a) Genome wide association study linking silica content to QTL across the 

rice genome (b) Silica quantile–quantile (QQ) plot ..................................................... 75 

Figure 33: contrasting bi-allelic effect between the amount of sugar released and silica 

content at the SNP S6_23297154 ................................................................................ 77 

Figure 34: (a) Genome wide association study showing association between lignin 

content and SNP markers. (b) Lignin quantile–quantile (QQ) plot ............................... 79 

Figure 35:  Neighbor-joining tree generated from the alignment of the 12 proteins 

from O. sativaPF02458 family .................................................................................... 82 

Figure 36: Measurement of FA and p-CA, silica content, and digestibility 

(saccharification) of the overexpression line (Mut) and wild type (WT). ..................... 84 

Figure 37: Phylogenetic tree of protein sequence similarity for grass specific MYB 

clade for A. thaliana, B. distachyon and rice................................................................ 87 

 

  



 

8 

 

List of tables 

Table 1 Comparison of first, second generation biofuel and petroleum fuel (Naik, et al., 

2010) .......................................................................................................................... 17 

Table 2 Biomass feedstocks and their potential ethanol yield (ADFC, 2015) (Naik, et 

al., 2010) ..................................................................................................................... 18 

Table 3: Heritability of traits studied, which is based on the repeatability of phenotypic 

data. ............................................................................................................................ 51 

Table 4: Comparison of lignin content and digestibility based on amount of sugar 

release among different species. .................................................................................. 53 

Table 5: Silica and lignin content of rice plant parts, barley, oat, and wheat straws. ..... 53 

Table 6:  Example SNP file l ....................................................................................... 61 

Table 7: Example Trait File......................................................................................... 62 

Table 8: Example Q matrix file. The Q matrix file. ..................................................... 62 

Table 9: calculate Depth and Missingness from the unfiltered VCF file ...................... 64 

Table 10: Digestilibty QTL regions, the significant SNPs, and selected candidate genes 

in the QTL regions in 2014 ......................................................................................... 71 

Table 11: Number of genes in QTL regions using database of MSU Rice Genome 

Annotation Project ...................................................................................................... 74 

Table 12: Silica Significant SNPs................................................................................ 76 

Table 13: Lignin QTL regions, the significant SNPs, and candidates in the QTL regions 

in 2014 ........................................................................................................................ 80 



 

9 

 

Acknowledgements 

Firstly I would like to sincerely thank my supervisor, Simon McQueen-Mason, who has 

provided me with brilliant and enthusiastic guidance throughout my MSc. I would also 

like to thank my TAP committee members, Richard Waites and Frans Maathuis for their 

extremely helpful guidance and ideas. I also want to send many thanks to the Ministry 

of Agricultural and Rural Development (MARD) and Ministry of Education and 

Training (MOET) in Vietnam for funding my MSc, and to the University of York for 

hosting my research.  

I am really grateful all the research materials (rice seeds and rice straws) in the rice 

population that I received from my colleagues in Vietnam. The ones I would like to 

specially mention here are Dr. Duong Xuan Tu, head of Plant Biotechnology 

Department, and Ms. Nguyen Thi Huong, the researcher who has been growing and 

keeping the population in the Field Crops Research Institute (FCRI). Great thanks to 

Professor Bartley and her colleagues who provided the rice straw of OsAT10 

overexpression lines for confirmation studies of its effect on silica content and 

digestibility. 

Huge thanks to Dr. Leo D. Gomez who is not only such a nice co-supervisor with all 

idea and advice for my MSc but also the person who cares about my social activity 

while studying here in UK. Along with that, I cannot help but mention to kind helps 

from Rachel Hallam, senior technician of CNAP, who has been helping and instructing 

me through all the hard work of cell wall characterisation. I am deeply grateful to Dr. 

Andrea Harper for her help and instruction with the Genome Wide Association Studies, 

which is the key of the success of my research. 

I would like to thank all members of the McQueen-Mason group for always being so 

helpful and friendly in and out of the lab. That is really the most important thing giving 

me more power to keep my MSc going on smoothly.  To be studying overseas, my 

family at home always show their support, keep in frequent contact and cheer me up to 

get to the end of my MSc. To conclude about my thankfulness, I have to say that 

without help, advice, and support from everyone I mentioned above, I couldn‘t have got 

this done.  



 

10 

 

Declaration 

The work presented in this thesis is the sole effort of the author, except where explicitly 

stated. Reference to the work of others has been duly acknowledged. No portion of this 

work has been submitted for any other degree. Any reference to this work should be 

acknowledged. 

  



 

11 

 

Chapter 1 -Introduction 

1.1 Biofuels 

Humanity faces a dilemma: How to escape dependency on the fossil fuels and reduce 

the greenhouse gases (GHG) emissions without further exacerbating the environmental 

impact of agriculture. This issue faces us all, not only because GHG emissions that are 

produced locally have global impacts, but also because we now operate in a globalised 

economy, where commodities such as biofuels are traded on the world stage. Policy-

imposed quantifiable sustainability requirements applied to biofuels will help to ensure 

that they are fit for purpose in environmental terms. However, such measures alone are 

useless without the appropriate technological developments required to enable 

sustainable biofuels to be produced in an economically competitive manner. 

1.1.1 Relationship between fossil fuels and biofuels 

A biofuel is the product of recent biological processes, such as agriculture and anaerobic 

digestion, which uses biological materials as feedstock. Currently, bioethanol and 

biodiesel are the two most common types of biofuel for transport, mainly produced as 

substitutes for gasoline and diesel fuel respectively. According to the biofuel definition 

from greenfacts.org, ―biofuels are fuels produced directly or indirectly from organic 

material – biomass – including plant materials and animal waste‖. In that manner of 

speaking, fossil fuels somehow could be considered as the source of ancient biofuel, as 

defined by the geologists, ―fossil fuels – coal, petroleum oil, and natural gas – are 

concentrated organic compounds found in the Earth‘s crust and formed by natural 

processes such as anaerobic decomposition of prehistoric biological matter for several 

million years‖(Mann, et al., 2003). ‗Bio-refinery‘ is another term often mentioned 

associated with biofuel. This term was initially established by NREL in the1990s: ―A 

bio-refinery is a facility that integrates conversion processes and equipment to produce 

fuels, power, bio-product, and chemicals from biomass‖ (NREL, 2005). 

It is undisputed that fossil fuels make modern life possible – they have been used as 

sources of energy to generate steam and electricity, and to power transportation systems. 

To credit the importance of fossil fuel to mankind, the US Energy Information 
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Administration (EIA) emphasizes that it has brought ―one of the most profound social 

transformation in human history‖. However, we have to accept the reality that fossil 

fuels are not everlasting (see Figure 1). According to fossil fuel reserve and 

consumption data from CIA World Fact-book (Figure 3), our known oil deposits will be 

gone by 2052, if we increase gas and coal production to fill the energy gap left by oil, 

then those reserves will only take us as far as 2088. Arguably, the greatest downside of 

fossil fuel which has been widely realized is that the intensive use of fossil fuels has 

been resulting high levels of atmospheric pollution, releasing CO2 and irreversibly 

modifying the climate on the planet (Figure 2).   

Due to the limitations of using fossil fuel mentioned above, biofuels are being 

considered as the alternative source of liquid transportation fuels, and will need to be 

produced and used on a wide scale. Using biofuels as substitution for fossil fuels has the 

potential to mitigate emission of greenhouse gases. Although burning biofuel releases 

CO2there is a net balance in this as an equivalent amount is ―fixed‖ by the plants 

through photosynthesis. In a recent study, the carbon footprint of first generation 

biofuels and second generation biofuels was reported to reduce the greenhouse gas 

effect by 78% and 94%, respectively, when compared to the greenhouse gas effect 

caused by fossil fuels(Highina & Bugaje, 2014). 

 

Figure 1:  Oil producing countries map. Since oil fields are located only at certain 

places on earth (Rosss.W, 2013), only a select group of countries are oil-independent; 

the other countries depend on the oil-production capacities of these countries. 

https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html
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Figure 2:Trend in CO2 emissions from fossil fuel combustion. Source: Carbon Dioxide 

Information Analysis Centre, Oak Ridge National Laboratory, US Department of 

Energy, Oak Ridge, Tenn., United States. Key point: Since 1870, CO2 emissions from 

fuel combustion have risen exponentially. Data is taken from the International Energy 

Agency. 

 

Figure 3: Predicted fossil fuel reserves, taken from CIA World Fact-book 

https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html
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1.1.2 First generation biofuels 

First generation biofuels use food crops or animal fats as the main feedstock for 

production to extract directly starch, sugar, and oil for fermentation, esterification, and 

distillation process to produce bioethanol and biodiesel (Carroll & Somerville, 2009). 

The most commonly used crops for first generation of biofuels are corn, wheat, and 

sugarcane. It has been reported that sugarcane contributes 60% of total global 

bioethanol production (Demirbas, 2009). In Europe, there are only three crops being 

used to produce bioethanol commercially, which are wheat (50%), sugar beet (30%), 

and barley (20%). Remarkably in 2005, based on using these thee feedstocks, EU 

bioethanol production exceeded 910 million litres: an increase of 73 % on the previous 

year(STS, 2012). The countries which are considered as the main centres of EU 

bioethanol production are Spain, Germany, Sweden and France. In 2013, Brazil and the 

USA accounted for 84% of the bioethanol produced worldwide (Figure 4). In the USA, 

corn is still the major source of feedstock, used for 90 percent of the ethanol produced 

there(Goettemoeller & Goettemoeller, 2007). On the other hand, Brazil, the second 

largest ethanol producer in the world, chiefly uses sugarcane for biofuels 

production(RFA, 2014).  Looking at the cost aspect, although Brazil is not the largest 

bioethanol producer, the technology developed and improved along the years in Brazil, 

makes the Brazilian sugarcane bioethanol the cheapest in the world (Govinda R. & 

Shrestha, 2011) 

The contribution and influence of first generation biofuels to the world energy are worth 

recognizing, and it can satisfy our short term requirements to deal with fuel security. 

However there are clear limitations as to how much biofuel can be produced, moreover, 

very large scale production will threaten global food security and biodiversity (Evans, 

2008). This is because we are using land and materials that would normally be used for 

food production and such practice adds pressure to global demand for food commodities 

and agricultural land. According to a scientific report published recently, biofuels 

production consume about 2-3% of the global water and land used for agriculture, 

which could feed about 30% of the malnourished population(Rulli, et al., 2016). This 

tension between food and fuel security together with the need to reduce greenhouse 

gases emissions, require us to consider more sustainable ways of producing biofuels 
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(Gomez, et al., 2008). The use of lignocellulosic plant biomass as a feedstock for 

biofuel production provides a logical way forward (Carroll & Somerville, 2009). 

 

Figure 4: Production of bioethanol per country or region in 2013. Data taken from 

Renewable Fuel Association (RFA, 2013) 

1.1.3 Second generation biofuels 

In the past few years, academia, industrial companies and governments have shifted 

their interest to alternative non-food sources of feedstock which have high potential for 

conversion to biofuels. Biofuels produced from non-food feedstock are referred to as 

―second generation‖ biofuels. Overcoming the ethical concerns around the first 

generation biofuel, second generation biofuels are being intensively researched and 

developed to be potential and efficient replacements for fossil fuel in the near future. 

Second generation biofuels can also help to solve almost all the disadvantages 

mentioned above with sustainable, affordable larger proportion of global fuel supply 

without threatening food security, and with greater environmental benefits based on its 

contribution to significant reduction in GHG emissions. Recently, the United States 
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Department of Energy‘s Centre for Transportation Research found that cellulosic 

ethanol has highest reduction of GHG emissions compared to corns-derived bioethanol 

as illustrated in Figure 5. 

 

Figure 5: Reduction of greenhouse gas (GHG) emissions from cellulosic bioethanol 

and corns-derived bioethanol blends (I. Ceres, 2015) 

Second generation biofuel can be produced from various types of lignocellulosic 

biomass. A major feedstock could be the cheap and abundant residue available after 

harvesting the food parts from plants and crops. This lignocellulosic structured-plant 

biomass also represents one of the most abundant and underutilized biological resource 

on the planet (Gomez, et al., 2008). Alternatively, some people propose the use of 

dedicated biomass crops that require low inputs for growth on land unsuitable for 

growing food crops. However, the main technical barriers to making liquid fuels from 

lignocellulosic biomass is the high cost of producing sugars for fermentation, which 

needs to be overcome before their conversion technologies can yield a product that is 

cost-effective (Neil, 2006). 
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Table 1showing comparison advantages and disadvantages of the 1
st
 generation biofuels 

and obvious advantages of 2
nd

generation biofuels. The utilization of biomass for 

sustainable development are more integral , where all parts of the plant such as leaves, 

bark, fruits, and seeds can be utilized to useful products (Naik, et al., 2010).  

Table 1Comparison of first, second generation biofuel and petroleum fuel (Naik, et al., 

2010) 

 Petroleum fuels First generation 

biofuel 

Second generation 

biofuel 

Feedstocks Crude petroleum Sugar cane, corn, 

milo, wheat. Barley 

and rice grain, 

potato, sweet 

potatoes. 

Agricultural waste, food 

waste, aquatic biomass. 

Products CNG, LPG, diesel, kerosene, 

petrol, jet fuel. 

FAME, ethanol, 

butanol, etc. 

Lignocelulosic ethanol, 

butanol, FT oil, bio-oil, 

hydro treating oil 

Problems Depletion of fossil fuel reverses, 

Environmental pollutions, 

Economic and ecological problems 

Limited sources Lengthy production 

process, High cost  

Benefits Low cost of processing  Environmentally 

friendly, economic 

and social security 

Not competing with food 

sources, cheap and 

abundant sources, 

Environmental friendly,  
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1.2 Biomass 

Biomass refers to the biological substance accumulated in living organism, or recently 

living organisms. In the context of biofuel production, waste biomass from non-food 

and non-feed material is often referred to as lignocellulosic biomass (BEC, 2012). 

Yearly, there are approximately 100 billion tonnes organic dry matter of land biomass, 

plus 50 billion tonnes aquatic biomass available on earth (Groombridge & Jenkins, 

2002). In total of the 150 billion tonnes biomass, there is only 1.25% used partly as 

feed, industrial raw materials, energy production, and the rest of the biomass is unused 

or recycled into the soil. Asia is reported as the largest potential producer of biofuel 

from crop residues and waste crops due to higher biomass availability; Table 2shows 

the biomass feedstocks and their potential ethanol yields(AFDC, 2015)(Naik, et al., 

2010) 

Table 2Biomass feedstocks and their potential ethanol yield (AFDC, 2015)(Naik, et 

al., 2010)  

Feedstock Potential ethanol yield, (litre per dry tonne of feedstock) 

Corn grain 470 

Corn stover 428 

Rice straw 416 

Cotton gin trash 215 

Forest thinnings 309 

Hardwood sawdust 382 

Bagasse 437 
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Feedstock Potential ethanol yield, (litre per dry tonne of feedstock) 

Mixed paper 440 

Switchgrass
a
 366 

a Switchgrass alamo whole plant. Source: U.S. Department of Energy Biomass Program, 

theoretical ethanol yield calculator and biomass feedstock composition and property database. 

 

1.2.1 Lignocellulose in plants 

Lignocellulose is the largest component of ―plant biomass‖, and this makes up the 

majority of the cheap and abundant non-food materials available from plants (Gomez, et 

al., 2008). The potential of lignocellulosic materials has been realized for a while and 

considered as a renewable source of sugars that could be used to produce biofuel or 

other final products. However, the sugar polymers that make up plant cell walls are 

highly recalcitrant, and according to US department of Energy (DOE) – 2015, ―biomass 

recalcitrance still remains the most important factor impeding the development of low-

cost biomass processing technology‖. Hence, before being able to take the full 

advantage of these resources we have to find a better way to reduce the high cost of 

lignocellulose conversion, which is crucially dependant and enzymatic deconstruction 

efficiency of the cell walls (Himmel, et al., 2007). Reducing the recalcitrance of 

biomass is the basic scientific task that needs to be worked on to improve the rate of 

enzymatic hydrolysis and fermentation process, and also increase the yield and 

concentration of fermentable sugars in fermentation medium(US.DOE, 2015). 

The modification of biomass recalcitrance requires of understanding the chemical and 

physical structure of plant cell walls, how they are synthesized, and how they can be 

deconstructed (Figure 6). Lignocellulosic material can generally be divided into three 

main components: cellulose (40-50%), hemicellulose (25-30%) and lignin (15-25%) 

(US.DOE, 2015). In general, cellulose and hemicellulose accounts for up to 70%-80% 

of total biomass in plants, these two dominant components are strongly associated to 

http://pubs.rsc.org/en/content/articlehtml/2015/ra/c5ra12735a#tab3fna
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lignin. The hydrophobic nature of lignin makes it highly resistant to physical and 

biochemical treatments, and hard to be broken down (Edye & Doherty, 2015). There has 

been a lot of work on understanding the composition and structure of lignocellulosic 

cell walls, which is informing work on how to improve digestibility (Figure 7) 

Efforts to alter the cell wall components based on reverse genetic and molecular 

technique have resulted in reducing cell wall recalcitrance, and thus improving the 

digestibility and/or saccharification of lignocellulosic biomass. (Marriott, et al., 2015).  

 

Figure 6: Pie chart representing the approximate distribution of the three primary 

components of plant cell walls—cellulose, hemicellulose, and lignin(US.DOE, 2015). 
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Figure 7: Three-Dimensional Illustration of Lignocellulose Meshwork. Researchers are 

using computational modelling to gain a molecular-level understanding of the plant cell 

wall and its major components, including cellulose fibbers (green), lignin molecules 

(brown wooden texture), and hemicellulose (light green). [Image courtesy Thomas 

Splett Stoesser, www.scistyle.com, for Oak Ridge National Laboratory] 

1.2.1.1 Cellulose 

Cellulose is a polysaccharide composed of long chains of at least 500 glucose molecules 

(Bruce Alberts, et al., 2002). A number of β1,4-linked glucan chains are synthesised in 

parallel arrays by protein complexes embedded in the plasma membrane to form 

cellulose micro-fibrils. These polysaccharide chains are bound together by hydrogen 

bonds to form microfibrils. The microfibrils, in turn, are bundled together to form 

macro-fibrils (Figure 8).The potential shape of cellulose microfibrils in cross sections of 

36-chain (Langan, et al., 2014), 24-chain and 18-chain (Fernandes, et al., 2011) 

microfibrils and the impact on interactions with other wall components are still a matter 

of debate(Cosgrove, 2014). Hydrogen bonds make the microfibrils of cellulose strong 

and resistant to digestion. For an extensive review on recent findings on cellulose 
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structure and synthesis, see (Cosgrove, 2014).  From a biofuel perspective, cellulose is a 

key target for digestion as it is entirely composed of glucose, which is easy to ferment 

(Marriott, et al., 2015). 

 

Figure 8:  Structure of cellulose in the plant cell wall.A: structure of the β-1,4 glucan 

chains that make up the cellulose microfibrils, showing the alternating glucose residues 

rotated 180°(Marriott, et al., 2015). 

In higher plants, cellulose is synthesized by plasma membrane-localized rosette 

cellulose synthase complexes (Li, et al., 2014). The plasma membrane rosettes contain 

the cellulose synthase catalytic protein subunits (CESA) that are encoded by the CESA 

genes (Doblin MS, 2012)(Somerville, 2006).It had been thought that each hexameric 

rosette is made up by six rosette subunits and that each rosette subunit comprises six 

CESA proteins, enabling the simultaneous synthesis of all the glucan chains in a single 

micro-fibril to produce, in parallel, 36 glucan chains, providing a total of thirty-six 

CESA proteins per rosette (Delmer, 1999); ;(Somerville, 2006). However, in recent 

studies on cellulose in celery collenchyma (primary wall) and in spruce wood 

(secondary wall) with the technical improvement and application of advanced physical 

methods, combined with modelling, it was proposed that 18–24 glucan chain models 

was probably closest to the reality, with a slight preference toward a 24-chain model 

(Fernandes, et al., 2011); (Newman, et al., 2013)(Thomas, et al., 2013). The CESA gene 

family in plant is different in number of genes for each species. For instance, rice has at 
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least nine (Keegstra & Walton, 2006), maize has at least 12 CESA genes (Appenzeller, 

et al., 2004), barley has at least 8 (Burton, et al., 2004), ten CESA genes are present in 

Arabidopsis, and 18 are the number of CESA in poplar (Djerbi, et al., 2005).On the 

other hand, high similarity is observed between sequence of CESA genes in algae and in 

higher plants (Roberts & Roberts 2004).  

Genetic approaches have been applied to discover more genes involved in cellulose 

biosynthesis, and it three candidates have been discovered: (1) the KORRIGAN gene, 

which encodes a b-1,4-glucanase (Lane, et al., 2001);(Szyjanowicz, et al., 2004); 

(2)KOBITO1, a plant-specific gene of unknown function (Gillmor, et al., 2005) but in it 

has a role in rapidly elongating cells (Pagant, et al., 2002); and (3) the COBRA (COB) 

gene encodes a glycophosphatidyl inositol (GPI)–anchored plant-specific protein of 

unknown function (Schindelman, et al., 2001),which might be involved in controlling 

cellulose microfibril orientation(Roudier, et al., 2005). 

1.2.1.2 Hemicelluloses 

Hemicelluloses are the non-cellulose cell-wall polysaccharides in plant that have β-

(1→4)-linked backbones with an equatorial configuration (Scheller & Ulvskov, 

2010).They exist in different structural types; and they are sorted into four classes based 

on the main type of sugar resides present: xylans, xyloglucans, mannans and 

glucomannans, and β-(1-3,1-4)-glucans (also known as mixed linkage glucan 

(MLG)(Ebringerová, et al., 2005). Unlike cellulose that contains only glucose and is 

unbranched, hemicelluloses can contain many different sugar monomers and are 

branched polymers consisting of shorter chains – 500–3,000 sugar units as opposed to 

7,000–15,000 glucose molecules per polymer(Gibson, 2012).―These linear polymers 

tend to be insoluble and, because of this, they are usually substituted with other sugar 

side-chains to prevent the formation of crystalline structure and to increase their overall 

solubility‖(Gomez, et al., 2008). Hemicelluloses can be partially extracted when the 

biomass is pre-treated with alkaline solution. After that, it can be hydrolysed by 

enzymes to produce two different types of sugars including hexoses such as glucose, 

mannose and galactose, and pentoses such as xylose, and (Demirbas, 2009). 
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Figure 9: General chemical structure of the most common types of hemicellulose in 

plant cell walls. A: xyloglucan; B: glucuronoxylan (GX); C: glucuronoarabinoxylans 

(GAX); D: mixed linkage glucan (MLG). Diagram adapted from Scheller and Ulvskov 

(Scheller & Ulvskov, 2010) 

Xylans are the most abundant hemicellulose in nature, found in plant cell walls and 

some algae (Pradea, 1996). Xylans are polysaccharides comprised of a backbone of β-

(1→4) linked D-xylose with different side chains depending on species (Hoch, 2007). 

Xylans make up of 15% to 30% of the total dry biomass in the xylem (Puls, 1997). O-

acetyl-4-O-methylglucuronoxylan and arabino-4-O-methylglucuronoxylans are the 

main xylan components in hardwoods and softwoods (Sixta, 2006).In vegetative part of 

grasses, heteroxylans, or so-called arabinoxylans, contain glucuronic acid and 4-O-

methyl glucuronosyl residues, hence named as glucoronoarabioxylans (GAXs) (Scheller 

& Ulvskov, 2010).Ester-linked ferulic acid is a crucial component of grass xylans. 

Ferulate esters linked to O-5 of some of the arabinofuranosyl residues lead to the 

increase in strength of the cell wall and limit hydrogen-bonding of the xylan to 

cellulose, decreasing the digestibility of cell walls(Wende & Fry, 1997).GAX and lignin 

are also assumed to be covalently cross-linked through ferulate ester (Grabber, 2005). 

This cross-link increases the resistance to microorganisms and herbivores, but it also 
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makes grass cell walls more recalcitrant and hard to be digested by enzyme during 

hydrolysis process (Buanafina, et al., 2008). It was originally thought that the 

biosynthesis of the xylan backbone would involve CSL genes due to the structure of the 

backbone being similar to β-1,4 glucans. However, there is not yet any research 

showing that these proteins play any function in xylan biosynthesis. Instead, 

characterization of a number of xylan-deficient mutants, has revealed that irx10 (a GT47 

enzyme), irx14, irx9 (two GT43 members), and their functionally redundant paralogs, 

irx10-like (irx10-L), irx9-L, and irx14-Lare the ones that carry out this function and are 

responsible for elongation of the xylan backbone(Cătălin Voiniciuc, et al., 2015). The 

name of these mutants, irx, comes from the observed irregular xylem phenotypes. 

―Xylem cells are under negative pressure and compromised load-bearing ability is 

associated with vessel collapse or irregular walls‖ (Scheller & Ulvskov, 2010). 

Recently, over-expression of the more closely related rice genes in complemented two 

well-characterized Arabidopsis irx mutants: irx9 and irx14 (Chiniquy, et al., 2013). This 

demonstrated that OsIRX9/OsIRX9L, and OsIRX14, have similar functions to the 

Arabidopsis IRX9 and IRX14 genes, respectively, and their role in stem strength 

(Chiniquy, et al., 2013). 

Xyloglucans (XyG) are the major hemicellulose compound in the primary cell wall of 

all land plant species except for grasses. Secondary walls of xylem seem to contain no 

xyloglucan(Fry, 1989). Xyloglucans consist of β-(1→4) linked D-glucose units with D-

xylose residues attached α- (1→6) to the glucan chain (Hoch, 2007). Xyloglucan is 

synthesized in the Golgi trans-cisternae and in the trans-Golgi network (TGN), and 

transported to the cell membrane by vesicles, where it is expelled and adsorbed on 

nascent cellulosic micro-fibrils (Moore & Staehelin, 1988). A study applying the 

approach of genomic comparison identified 862 XyG-related genes that included 293 

XTH sequences, 133 β-galactosidases, 53 β-glucosidases, 24 α-xylosidases, 91 β-

(1→4)-glucan synthases, 79 α-fucosyltransferases, 108 β-galactosyltransferases and 45 

α-xylosyltransferases (XXTs) (Del Bem & Vincentz, 2010). It is also thought that there 

are possibly also hydrolases involved in xyloglucan synthesis but none have yet been 

identified. It has also been determined that in Arabidopsis members of cellulose 

synthase like (CSL) genes, which form a superfamily of genes, play a role in the 

synthesis of backbone of XyG (Cocuron, et al., 2007). Although there has been many 

effort to discover novel genes underlying xyloglucan biosynthesis in recent years 
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(Zabotina, 2012);(Chou, et al., 2012); (Schultink, et al., 2013), we still don‘t 

comprehensively understand the structural organization and regulation of XyG and other 

polysaccharide synthase complexes. 

Mannans are a β-(1,4)-linked polysaccharides present not only in land plants but also in 

many algal species and have been divided in to various types including: pure mannans, 

galactomannans, glucomannans, and galactoglucomannans. The backbones of manans 

and galactomannanscontain only mannose, whereas glucomannans and 

galactoglucomannans have a backbone with combination glucose and mannose residues 

in a non-repeating pattern, and these backbones may be substituted with α-1,6-linked 

Gal side chains (Liepman, et al., 2007). It is believed that mannans are functionally 

diverse, and glucomannans have a structural role (Maeda, et al., 2000). There are 

evidences that CSLAs family involved in synthesising the backbones of mannan or 

glucomannan in vitro (Dhugga, et al., 2004); (Liepman, et al., 2005).Mutants of nine 

Arabidopsis CSLA genes demonstrate the role of CSLA2, CSLA3 and CSLA9 in 

synthesising all detectable glucomannan in Arabidopsis stems, and the role of CSLA7 in 

synthesising of glucomannan in embryos. The function of CSLA family in encoding 

glucomannan synthases was consolidated observing the glucomannan deficiency in 

CLSA mutant plants (Goubet, et al., 2009). A gene called ―mannan synthesis-related‖ 

(MSR), which is also important for mannan biosynthesis, and its lack of function mutant 

presents a decreased level of mannosyl residues in stem glucomannans of Arabidopsis 

(Wang, et al., 2013). 

(1,3)(1,4)-β-d-Glucan (also known as mixed-linkage glucan or MLG), is a 

characteristic hemicellulose in primary cell walls of grasses but have not been reported 

in dicots (Kiemle, et al., 2014).MLGs are unbranched and unsubstituted chains of β-

glucopyranosyl monomers linked through 30% (1,3) and 70% (1,4) linkages 

(Albersheim, et al., 2011). Biomass from certain grasses such as rice, Brachypodium 

distachyon, and sugarcane has a substantial amount of MLG (Souza, et al., 2013).MLG 

biosynthesis is produced by membrane spanning glucan synthase. 
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1.2.1.3 Lignin 

Lignin is the second most abundant organic polymers on Earth, exceeded only by 

cellulose, accounting for approximately 30% of the organic carbon in the biosphere 

(Boerjan, et al., 2003). These complex natural polymers are constituted from oxidative 

coupling of 4-phenylpropanoids and deposited predominantly in the walls of 

secondarily thickened cells, making them hydrophobic and pose a formidable barrier to 

wall-degrading enzymes (Vanholme, et al., 2010). Although lignin is ―waterproofs the 

cell wall, enabling transport of water and solutes through the vascular system, and plays 

a role in protecting plants against pathogens‖ (Erdtman , 1972), its structural integrity 

make it extremely recalcitrant and the most important limiting factors to digestion and 

conversion of plant biomass to pulp or biofuels (Gomez, et al., 2008). 

Lignin derives from three major monolignols namely p-coumaryl, coniferyl and sinapyl 

alcohols, which are characterized by the number of methoxy side groups on the phenolic 

ring  (p-coumaryl, zero; coniferyl, one; sinapyl, two); when conjugated into the lignin 

polymer, the units resulting from the monolignols are called guaiacyl (G), syringyl (S), 

and p-hydroxyphenyl (H) units, respectively. These units can be bound together in a 

number of possible patterns (Figure 10).The variation in composition of lignin is seen 

among taxa, cell types, and different layers of cell wall; and the amount of lignin is 

influenced by developmental and environmental cues (Boerjan, et al., 2003). Although 

exceptions exist, dicotyledonous angiosperm (hardwood) lignin consists principally of 

G and S units and traces of H units, whereas gymnosperm (softwood) lignins are 

composed mostly of G units with low levels of H units (Boerjan, et al., 2003). Lignin 

from grasses (monocots) incorporates G and S units at comparable levels and more H 

units than dicots(Marie, et al., 1998). 

Lignin in plants is synthesized in two major stages: monolignol biosynthesis and the 

subsequent cross-linking of lignin monomers to form polymers, which then connect 

them to hemicellulose and cellulose(Xu, et al., 2009). Although, current research has 

mostly focused on monolignol biosynthesis, it has been proposed that laccases and 

peroxidases are involved in lignin polymerization and cross-linking of the monoligols, 

but more detailed mechanisms have yet to be unveiled (Liu, et al., 2014).  
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Figure 10: Lignin structure, taken from (Leisola, et al., 2012) 

 

Figure 11: Lignin biosynthesis pathway adapted from Jinmi Yoon et al, 2015 
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The first step of the phenylpropanoid pathway is the non-oxidative deamination of L-

phenylalanine by phenylalanine ammonia-lyase (PAL) yielding cinnamic acid (Marie, et 

al., 1998) (see Figure 11).There are four genes, PAL1 through PAL4, that encode PALin 

Arabidopsis (Raes, et al., 2003).The pal1/pal2 double mutant is reduced in parallel with 

an increase in the S to G ratio (Rohde, et al., 2004). The plants with the pal1 pal2 

pal3 pal4 quadruple mutation have stunted phenotype and lower lignin 

accumulation(Huang, et al., 2010). In rice, PAL genes (OsPALs) consist of a large gene 

family with 11 members (Michigan State University (MSU) rice genome database 

version 7.0) released from the MSU Rice Genome Annotation Project (MSU, 2009); 

(Kawahara, et al., 2013). Although the function of OsPALs has not been well-

confirmed, their involvements in pathogen resistance and their role in phytoalexin 

biosynthesis in rice leaves has been implied (Park, et al., 2013); (Duan, et al., 2014).  

Cinnamic acid 4-hydroxylase (C4H) is the second step in the pathway (see Figure 11), 

in which catalyses hydroxylation at C4 position cinnamic acid to p-coumaric acid (p-

CA).C4H is a cytochrome P450 monooxygenase, a membrane-bound enzyme involved in 

a wide range of biosynthetic pathways and usually found in microsomes. In 

Arabidopsis, C4H is encoded at a single locus, and widely expressed in various tissues, 

particularly in roots and cells undergoing lignification (Bell-Lelong, et al., 1997). 

Mutants in C4H gene in Arabidopsis show pleiotropic phenotypes, including dwarfism, 

male sterility and the development of swellings at branch junctions (Schilmiller, et al., 

2009). Recently, RNAi knock down of the C4H gene expression resulted in a 

significantly reduction of lignin content in transgenic plants and an increase of cellulose 

content without affecting plant‘s normal growth. The inhibition of C4H gene expression 

would be an approach to increase the quality of rice straw for bio-refinery 

purpose(Gengshou, 2013). 

4-Coumarate-coenzyme A ligase (4CL) is the third enzyme in the phenylpropanoid 

synthetic pathway, catalysing the formation of CoA thiol esters of 4-coumarate and 

other hydroxycinnamates in a two-step reaction involving the formation of an adenylate 

intermediate (Ehlting, et al., 2001). Functional studies of 4CL in plants have already 

been conducted in many species such as: in Pinus radiate, severe suppression of 4CL 

results in a dwarf phenotype (Wagner, et al., 2009). In switchgrass, silencing of 4CL 

(Panicum virgatum) leads to reduced lignin content in transgenic biomass and 
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remarkably increases the efficiency of fermentable sugar release for biofuel production 

(Xu, et al., 2011). In sorghum (Sorghum bicolor), the brown midrib2 (bmr2) mutant 

lacks function of the most highly expressed 4CL in sorghum stems, leaves and roots, 

both at the seedling stage and in pre-flowering plants. Missense mutations in the two 

bmr2 alleles show brown coloration in midrib sclerenchyma tissues (Saballos, et al., 

2012). In rice, five members of the 4CL gene family from rice were cloned and analysed 

(Gu, et al., 2011);(Sun, et al., 2013).Os4CL2 is associated with flavonoid biosynthesis, 

whereas the other 4CL genes (Os4CL1/3/4/5) are involved in channelling 

hydroxycinnamic acid derivatives for lignin synthesis(Gu, et al., 2011);(Sun, et al., 

2013). The suppression of Os4CL3 expression caused significant lignin reduction and 

shorter plants (Gu, et al., 2011). 

The following step in this pathway is mediated by p-coumarate 3-hydroxylase (C3H), 

which catalyses the hydroxylation at the C3 position of pCA to form CA. Defects in 

C3H cause p-coumarate esters to accumulate rather than p-coumaryl alcohol, and plants 

display developmental defects such as xylem collapse and a dwarf phenotype (Franke, 

et al., 2002). In rice, functional C3H genes have not yet to be identified. 

Hydroxycinnamoyl transferases (HCTs) activate the relocation of the cinnamoyl 

affiliation from hydroxycinnamoyl-CoA to various acyl acceptors such as shikimic acid, 

quinic acid, hydroxylated acid, and glycerol (Kim, et al., 2012). HCT gene repression 

via RNA silencing in Arabidopsis and N. benthamiana resulted in a dwarf phenotype 

and sterility. However, N. benthamiana silenced plants are altered soluble 

phenylpropanoids and lignin content and composition (Hoffmann, et al., 2004). In Rice, 

four HCT homologues were cloned their expression studied in different tissue.  

Caffeoyl-CoA O-methyltransferase (CCoAOMT) catalyses the methylation at C3 

position of the phenolic ring of caffeoyl-CoA into feruloyl-CoA. CCoAOMT was 

initially identified as an enzyme involved in the pathogen defence response of several 

dicotyledonous species (Pakusch & Matern, 1991); (Kneusel, et al., 1989). Analysis of 

expression of Arabidopsis AtCCoAOMT1 utilizing the GUS reporter gene, indicated that 

this gene is strongly expressed in the vascular tissues of stems and roots(Do, et al., 

2007). CCoAOMT was functionally studied in maize by RNA interference (RNAi), and 

this led to the decrease of lignin content and increase in cellulose content in the straw of 



 

31 

 

transgenic plants (Li, et al., 2013). Three rice CCoAOMT genes, OsCOA1, OsCOA20 

and OsCOA26, were identified and characterised (Zhao, et al., 2004).  

Cinnamoyl-CoA reductase (CCR) is the first enzyme in the monolignol-specific branch 

of the lignin biosynthesis pathway, where it catalyses the reduction of 

hydroxycinnamoyl-CoA thioesters to the corresponding aldehydes (Marie, et al., 1998). 

Two cinnamoyl-CoA reductase (CCR) genes in Arabidopsis, AtCCR1 andAtCCR2, were 

functionally and structurally characterised. AtCCR1 is involved in constitutive 

lignification whereas AtCCR2 is involved in the biosynthesis of phenolics whose 

accumulation may lead to pathogen resistance (Lauvergeat, et al., 2001). To confirm the 

function of AtCCR1 gene, a down regulation study on homozygous AtCCR1 plants 

reported 50% decrease of lignin content and changes in lignin composition and 

structure, as well as an increase in the enzymatic degradability (Goujon, et al., 2003). 

Recently, Poplar plants (Populus tremula x Populus alba) down-regulated for 

cinnamoyl-CoA reductase (CCR) were also examined and shown that ethanol yields are 

161% higher from trees that are most severely affected (Acker, et al., 2014).   

Coniferaldehyde 5-hydroxylase (F5H), a cytochrome P450-dependent monooxygenase 

distinct from C4H, has a key function in the formation of S units, catalysing the 

hydroxylation at the C5 position of ferulic acid, coniferaldehyde, and coniferyl alcohol 

in the pathways leading to sinapic acid and the syringyl unit of lignin(Marie, et al., 

1998). F5Hprotein is rather unstable, low abundance and membrane-bound, therefore it 

is not easy to target (Chapple, 1998). Rice was the first monocotyledonous plant used to 

isolate, characterizeF5H. OsFSHL is highly expressed in young leaves, whereas 

OsFSHL2 is most expressed in mature leaves, both genes are low expressed in the roots 

and stems. 

Caffeic Acid/5- Hydroxyferulic Acid O-Methyltransferase (COMT) catalyses the 

methylation of Caffeic Acid into ferulic acid (FA) and 5-hydroxyferulic acid (5OHFA) 

into (sinapic acid) SA, using S-adenosyl-L-methionineas methyl group donor (which is 

converted into S-adenosyl-L-homocysteine) (Marie, et al., 1998).Brachypodium COMT 

gene BdCOMT4, were characterized for enzyme activity having significant effect on a 

broad range of substrates with the highest preference for caffeic acid (Wu, et al., 2013).  
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Cinnamyl-alcohol dehydrogenase (CAD) catalyzes the last step in the biosynthesis of 

the lignin precursors, converting hydroxyl-cinnamaldehydes into their corresponding 

alcohols (Marie, et al., 1998)There are nineCAD-like genes in Arabidopsis, among 

them, the Arabidopsis – AtCAD4 (AtCAD-D) and AtCAD5 (AtCAD-C) are the primary 

genes involved in lignin biosynthesis in the floral stem of Arabidopsis thaliana by 

supplying both coniferyl and sinapyl alcohols  (Kim, et al., 2004); (Sibouta, et al., 

2005). In rice, there are 12 CADs in the genome, but few have been studied at functional 

or expression levels. The proteins encoded by OsCAD2 and OsCAD7 are known to 

function in monolignol biosynthesis(Hirano, et al., 2012). A flexible culm rice mutant 

(fc1) caused by T-DNA insertion into OsCAD7 resulted in reduction of secondary cell 

wall thickness and decreased mechanical strength of rice plants(Li, et al., 2009). This 

mutant exhibited an abnormal development phenotype, including late heading time and 

flexible culm phenotype as well as semi-dwarfism (Li, et al., 2009).On the other hand, 

among the OsCAD genes, OsCAD2 was the most abundantly expressed in the 

uppermost internode, followed by more than seven times lower was OsCAD1. The other 

OsCAD genes were either not expressed or expressed at very low levels (Hirano, et al., 

2012). The GOLD HULL AND INTERNODE2 (GH2) gene, which encodes a 

cinnamyl-alcohol dehydrogenase (CAD), was defined as OsCAD2. GH2 acts as a 

primarily multifunctional CAD to synthesize coniferyl and sinapyl alcohol precursors in 

rice lignin biosynthesis, and the mutant plants displayed the phenotype of reddish-

brown pigmentations in the panicle, internode, and basal leaf sheath at the heading stage 

(Zhang, et al., 2006). In 2014, the idea of combining superior lodging resistance, which 

can be obtained by introducing thick and stiff culm traits, with low lignin 

concentrations, which can be obtained using the gh2 variety, was initially developed for 

improved feed and bio energy production(Ookawa, et al., 2014). The functional studies 

has been also conducted in maize (Halpin, et al., 1998); in sorghum (Sattler, et al., 

2010), and in switchgrass (Saathoff, et al., 2011), and all show that the down regulation 

of CAD expression by RNA-silencing causes a decline in lignification and enhanced 

saccharification characteristics.  

Together, all the studies above show that lignin biosynthesis genes are expressed mainly 

in vascular tissues at various developmental stages as well as in shoot apical meristem 

(SAM), epidermis cells, and floral organs. Most mutation in lignin biosynthesis genes 

causes collapsed xylem element with growth retardation. It is also easy to realize that 
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mutants of the genes involved in the phenylpropanoid pathway can lead to increased 

digestibility together with undesirable traits (Yoon, et al., 2015).  

1.2.2 Silica in plants 

1.2.2.1 Silicon impact in plant growth 

Silicon (Si) is one of the most prevalent macro-elements, and it is important for normal 

growth and development in a number of plant species. In plants, silicon can act 

biochemically as silicic acid and physically as amorphous silica. ―It contributes to cell 

and plant strength and enables plants to respond adaptively to environmental stresses‖ 

(Cooke & Leishman, 2011). A number of studies have shown that Si is able to alleviate 

both physical stress, including drought, high temperature, UV, water logging, freezing, 

and chemical stress, including salinity, nutrient imbalance, and metal toxicity (Ma, 

2004). Several other studies have also reported that Si is effective in enhancing the 

resistance to pests and diseases, such as sheath blight, blast, powdery mildew, 

leafhoppers, leaf spiders, brown plant hoppers, and white back plant-hoppers (Ma, 

2004);(Saheb, et al., 2015). 

However, silica together with lignin is considered as two important limiting factors in 

term of digestibility. This has been studied in number of papers. Hasan reported that in 

rice plants with resistance to lodging, where the culm was short and reinforced with 

larger quantities of silica, were less digestible(Hasan, et al., 1993). It was also reported 

in another paper that decrease in silica content to less than 10% dry weight increased the 

in vivo dry matter digestibility of rice straw as well as the in vitro organic matter 

digestibility (Balasta, et al., 1989).  

1.2.2.2 Silicon form and structure in plant 

Silicon (Si) is one of the basic components in most soils(Sommer, et al., 2006). Because 

of its steady affinity with oxygen, in nature Si always exists as silica (SiO2) or silicates 

which are combined with various metals (Ma & Takahashi, 2002). In Soil, the Si 

content can vary dramatically from <1 to 45 % dry weight (Sommer, et al., 2006). The 

soil water, or the "soil solution, "contains silicon, mainly present in the form of as silicic 



 

34 

 

acid, H4SiO4, (or its ionized form, Si(OH)3O−, which predominates at pH > 9) allowing 

its uptake by plants (Currie & Perry, 2007).Plants take up silicon in the form of silicic 

acid and deposit it as amorphous silica. The ability to accumulate silica varies among 

species, with some plants containing only trace amounts, whereas in others, such as rice, 

silicon constitutes up to 10% the plant dry mass(Epstein, 1999). Due to the difference in 

the mechanisms of Si uptake and transportation, Si content differs remarkably in 

different plant tissue, such as roots, shoots, and leaves(Saheb, et al., 2015).  

1.2.2.3 Silicon transporters 

The uptake systems of Si in rice, cucumber and tomato have been investigated. The 

results suggest that ―both transporter-mediated transport and passive diffusion of Si are 

involved in the radial transport of Si and that the transporter-mediated transport is an 

energy-dependent process, and the presence of a transporter for xylem loading is 

responsible for the high Si accumulation in rice‖ (Mitani & Ma, 2005). The first two 

genes encoding a Si transporter were identified by Ma et al in 2006 and 2007, named as 

Low silicon rice 1 (Lsi1) and Low silicon rice 2 (Lsi2), which control silicon 

accumulation in rice. Rice is widely known as a typical silicon-accumulating plant 

which requires high Si for healthy growth and high production. This Lsi1belongs to the 

Nod26-like major intrinsic protein (NIP) subfamily of aquaporin-like proteins and is an 

influx transporter of silicic acid. Lsi2 encodes a putative anion transporter and is an 

active efflux transporter of silicic acid. Both Lsi1 and Lsi2 are constitutively expressed 

in the roots. Suppression of Lsi1or Lsi2expression resulted in reduced silicon uptake 

therefore bothLsi1 with Lsi2 are required for efficient uptake of Si in rice(Ma, et al., 

2006); (Ma, et al., 2007). The Si uptake and accumulation processes were revealed 

clearer by the discovery of another transporter named as Lsi6 by Yamaji et al in 2008. 

To start, Si transported via Lsi1 and Lsi2 into the stele is then translocated to the shoot 

by the transpirational flow through the xylem in the form of mono-silicic acid(Mitani & 

Ma, 2005). Finally, Si must be transported out of the xylem for the deposition as a 

polymer of hydrated amorphous silica.Lsi6 was indicated to be responsible for the 

transport of silicic acid from the xylem into xylem parenchyma cells, thereby having 

influence on the subsequent Si distribution in rice shoots(Yamaji, et al., 2008). 
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1.2.2.4 Silicon and the cell wall 

The interest in silica and its link to the cell wall have not yet been fully understood. It 

was first suggested by Schwarz (1973) that there are high level of intrinsic ―Si‖ found in 

plant pectin (Schwarz, 1973). In 2009, Currie & Perry demonstrated the role of the Si in 

the rigidity the cell wall by crosslinking, showing chemical evidence for intrinsic Si 

within Equisetum cell walls. Nevertheless, they were not able to point out the precise 

chemical link of the Si to the plant cell wall polymers(Currie & Perry, 2009). On the 

other hand, with high silica content, rice is always considered as the model species for 

these studies. In 2012, a study by Yamamoto et al, revealed the changes in cell wall 

organic components induced by Si deficiency in rice. The cell wall has been reported to 

become thicker, sugar content in the cellulosic fraction and lignin content increased in 

the absence of Si(Yamamoto, et al., 2012). Expression of the genes involved in 

secondary cell wall synthesis, OsCesA4, OsCesA7, OsPAL, OsCCR1 and OsCAD6 was 

also looked up. And all of them were up-regulated under -Si condition, excepting 

OsCesA1(which is known to be mainly involved in primary cell wall synthesis). The 

increase in secondary cell wall biosynthesis might be explained as a key factor that 

compensates for the reduction in stress resistance caused by Si deficiency since it is 

known that Si enhances resistance to physical and biotic stress(Yamamoto, et al., 2012). 

This suggests that rice might expend less energy for stress resistance by using inorganic 

Si instead of organic material. A recent report about a hemicellulose-bound form of 

silicon in rice and distinctive effect of silica to cell wall composition and major wall 

polymer features and lignocellulosic saccharification has strengthened the idea that 

there may be links between Si and wall components(He, et al., 2015); (Zhang, et al., 

2015). Silica levels are also reported positively correlated with three major wall 

polymers, indicating that silica is associated with the cell wall network(Zhang, et al., 

2015). 

1.3Using genomics to identify genes for biomass improvement 

A possible route to improving the cost effectiveness of the production of biofuels is the 

generation of lignocellulosic biomass that has improved digestibility characteristics. It 

has been demonstrated that alteration of a number of cell wall components can affect 
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recalcitrance of lignocellulosic biomass and thus improve its saccharification and/or 

digestibility. This could be achieved by altering the plant cell wall properties through 

plant breeding (Foust, et al., 2008). Some work has been done indicating that improved 

digestibly can be achieved when cellulose crystallinity or hemicellulose composition is 

altered (Carroll & Somerville, 2009); (Vega-Sánchez & Ronald, 2010). However, most 

of the work has focused on increasing digestibility by altering the lignin structure and 

composition but this could lead to undesirable plant growth effects such as low biomass 

yield (Chen & Dixon, 2007); (Vega-Sánchez & Ronald, 2010). Although some 

important advances have been made to lay the foundations for plant genetic engineering 

for biofuel production, and the list of genes that can be manipulated for pathway 

engineering is growing, this science is still in its infancy and  there also several 

challenges outside the realm of genetic engineering that need to be addressed (Sticklen, 

2008).  

1.3.1 Rice as a model for cereals and grasses, and as a sustainable 

cellulosic biomass feedstock 

In recent years, interest has grown in using grass straw as a source of biomass for the 

production of second generation biofuels (Gomez, et al., 2008). Unfortunately, 

agriculturally important grasses typically have complex genomes and growth 

requirements that make them cumbersome for research purposes. The exception to this 

is rice (Oryza sativa), which is the third biggest cereal crop in the world, has a small 

diploid genome, and well developed molecular genetics tools (Gomez, et al., 2008). 

Much work has been done on understanding the synthesis and construction of cell walls 

in Arabidopsis (Fagard, et al., 2000) but, this research cannot directly be transferred to 

grasses as they differ to dicots in terms of both the composition and organisation of the 

various polymers found within their cell walls (Vogel, 2008). 

Up to 70% of rice straw biomass is comprised of polysaccharides with equal amounts of 

cellulose and arabinoxylan that could be converted to sugars for fermentation. This 

polysaccharide network is interpenetrated and coated by lignin, a highly resistant 

polyphenol, which protects the sugar polymers from enzymatic attack. A notable 

characteristic of rice straw is that it has low lignin and high silica compared with other 

straws(Van Soest, 2006).  After all, we can see that lignocellulosic materials not only 
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have potential for biofuel production but also value as animal feed, but the poor 

palatability and indigestibility of straw makes this inefficient.  

1.3.2 Genome wide association studies 

In plant and animal, studies of genetic sources of phenotypic variation have been the 

key to determining the cause of disease, improving agriculture and understanding 

adaptive processes.(Brachi, et al., 2011). Quantitative trait loci (QTL) were originally 

mapped in bi-parental crosses in plants(Flint-Garcia, et al., 2003). The bi-parental 

mapping population often have the highest genetic resolution of QTL maps ranged from 

10 – 30cM, which is due to the restricted number of meiotic events captured after a 

cross between two parental lines (Zhu, et al., 2008). There is only a small amount of all 

possible alleles that could be examined for linkage analysis in the population from 

which the parent (Pasam, et al., 2012). 

Genome wide association studies (GWAS) have been considered as a powerful 

approach to overcome the constraints inherent to linkage mapping, through studying in 

the variation in existing natural or designed population. Linkage disequilibrium (LD) 

mapping, or so called Association Mapping (AM) exploits historical recombination 

events that occurred throughout the whole genomes in the population; and all major 

alleles present are then taken into account to identify significant marker-phenotype 

associations(Pasam, et al., 2012). LD mapping was first applied in genetic mapping 

studies in humans (Hästbacka, et al., 1992). After over two decades, this mapping 

method has provided a powerful tool for fine structure localization of genes responsible 

for complex traits in many different species, including crops. The improvement of cost 

effective and high-throughput sequencing technology has made available mapped 

markers in many research objects. Using those sets of mapped markers and merged with 

the phenotypic data of studied traits, it is completely possible to identify the genomic 

regions with non-random associations of alleles at nearby loci (LD) which significantly 

associate to the trait variance in the research population. There are three key factors 

driving the success of mapping: the quality of phenotypic data, population size and the 

degree of LD present in a population(Mackay & Powell, 2007). The power of 

association studies generally depends on the degree of LD between genotyped marker 

and the functional polymorphisms(Pasam, et al., 2012). The decay of LD has been seen 
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varies greatly between species, among different population within one species among 

different loci within one species, and also among different loci within a given 

genome(Gupta, et al., 2005); (Caldwell, et al., 2006). 

Genome wide association study (GWAS) and re-sequencing of selected candidate genes 

are the two strategies of LD mapping(Hirschhorn & Daly, 2005). By exploiting marker 

polymorphism across all chromosomes with significantly high resolution, GWAS have 

become increasingly popular and powerful over the last few years.(Pasam, et al., 2012). 

There has also been increasing number of association studies based on the analysis of 

candidate genes (Thornsberry, et al., 2001); (Palaisa, et al., 2003); (Stracke, et al., 

2008); (Zhao, et al., 2007); (Singh, et al., 2009). Different from GWAS in humans, 

GWAS in crops usually use a population of diverse (and preferably homozygous) 

varieties that can be re-phenotyped for many traits and only needs to be genotyped 

once—and one can subsequently generate specific mapping populations for specific 

traits or QTL in crops (Huang & Han, 2014). So far, GWAS has been carried out 

successfully in many crops, including maize, rice, sorghum, and foxtail millet(Huang & 

Han, 2014). Rice is a selfing species and, like Arabidopsis, a good candidate for 

GWAS. Huang et al. identified an unbiased set of common SNPs that they used to 

identify strong associations between genetic loci and 14 agronomic traits, including 

heading date, grain size, and starch quality(Huang, et al., 2010).  

The advent of high-density single-nucleotide polymorphism (SNP) genotyping allowed 

whole-genomes scans to identify often small haplotype blocks that are significantly 

correlated with quantitative trait variation (Brachi, et al., 2011). Recently, Professor 

Claire Halpin and Professor Robbie Waugh at the University of Dundee and Professor 

Simon-McQueen Mason at the Centre of Novel Agricultural Products (CNAP), 

University of York have been using GWAS to identify QTL for cell wall 

saccharification potential in barley. This involved screening multiple replicates, over 

two growing seasons of more than 600 barley accessions, collected from around the 

world, for their susceptibility to hydrolysis with commercial cellulase using high-

throughput automated assay developed at York. Analysis of the data has allowed the 

identification of 12 significant QTL for this trait, one of which has been resolved to a 

cluster of lignin genes. 
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Based on the knowledge and achievements from the GWAS in barley, carrying out 

similar studies in rice will add great value to these studies. Firstly, the smaller, fully 

sequenced genome of rice will allow much finer resolution of QTL to individual genes 

in a shorter timeframe than in barley. Secondly, carrying out this work in a second 

cereal will allow insight into the transferability of observation between cereal species 

and reveal the extent of commonality between species. With the well-developed 

molecular genetics tools of rice, the advent of affordable large-scale DNA sequencing, 

and association genetic studies starting to reach their full potential, there is no doubt that 

the genome-wide association study (GWAS) has the potential to clarify the functional 

role of genes as well as to identify novel genes involved in complex traits such as cell 

wall synthesis and silica transportation in the rice. 

The present project builds from initial studies jointly funded by the BBSRC and 

Vietnamese Ministry of Science and Technology (MOST) and led by Simon McQueen-

Mason in the UK. In this work, I was working jointly at the Universities of Dundee and 

York assembling and genotyping a range of Vietnamese rice varieties to form a panel of 

plants for genome-wide association scans. A saccharification assay for the rice 

population of 116 varieties was also done in 2014, and ready as phenotypic data for 

association mapping. By the time I started my MSc by research in April, I already had 

the genotypic data of 172 varieties, which is a SNP panel of 300.000 Single Nucleotide 

Polymorphism. This data was collected from Genotyping by sequencing assays run on 

an Illumina platform in Susan Mc-Couch‘s Rice Laboratory, Cornel University, US. 

The sequencing data were run through Tassel GBS pipeline before getting the usable 

SNP files. In addition, I have been using straw produced from 151 of these varieties, 

which were grown in Vietnam.  

From the availability of genotypic and straw material we decided to carry out the 

following experiments: 

1. Determine the saccharification, lignin content and silica from 5 replicates of 151 

rice genotypes included in the association panel to conduct association mapping 

for those traits. 

2. Association analysis to identify QTL for the extended population and 2014 

population. 
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3. Explore the biochemical basis of QTL by carrying out compositional analysis in 

the rice straw of the highest and lowest saccharifiers with contrasting alleles. 

4. Clone the candidate genes associate with QTL from contrasting lines/varieties to 

identify polymorphisms. 

1.4. Aim of the project 

The aims of the proposed research are to carry out underpinning research to increase the 

attractiveness of rice straw as animal feed and for the production of biofuels by 

improving the quality of straw through crop breeding. To facilitate the advance in crop 

breeding, I will use the power of genome wide association studies (GWAS) to identify 

potential markers and candidate genes that: 1) increase digestibility of straw without 

impacting on grain yield, 2) decrease silica content without impacting on yield, and 3) 

increase the scientific understanding of biomass composition and biosynthesis. 
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Chapter 2 - Cell wall characterization 

2.1 Material 

The association panel comprises of 151 rice accessions from Vietnam, which originate 

from two Oryza sativa subspecies: indica and tropical japonica. These accessions were 

selected from a trial population derived from a breeding project at the Plant 

Biotechnology Division, Field Crops Research Institute (FCRI), 84 different varieties 

which are reserved in the Germplasm Bank of FCRI, 29 high-quality varieties which are 

popularly cultivated in different areas in Vietnam, and 38 landrace cultivars. These 

collected genotypes are expected to be highly inbred lines with homozygous genomic 

background. (Appendix A contains the list of the population used) 

The panel was grown in the field. Each straw sample was collected in 5 replicates after 

plants were cut to harvest grains.  The samples were taken from the main tiller (Figure 

12). The straws collected were dried for two days under sunny conditions in Vietnam. 

Straw samples were kept in separate paper bags and sent to Centre for Novel 

Agricultural Product (CNAP), University of York, UK for characterisation.  

At CNAP, rice stem samples (minus nodes) were cut into small pieces and then ground 

to a fine powder and stored in labelled tubes (Figure 13). These samples would be used 

for different assays including saccharification, silica content and total lignin content. 

 

Figure 12: Rice stem sample 
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A 

 

B 

Figure 13: (A) Cyclone mill machine; (B) Stem sample after milling 

2.2. Methods 

2.2.1 Saccharification assay 

The method use robotic system described by Gomez et al., (Gomez, et al., 2011). This 

could be summarized in brief as follow: the grinded straw samples were randomised 

before formatting in 96 well plates. For each sample, four technical replicates of 4mg 

were dispensed into the 96 well plates after weighing out by the robot (Labman 

Automation, Stokesley, North Yorkshire, UK)(Gomez, et al., 2010). The samples were 

screened using the liquid handling robot (Tecan LTD, UK), which utilised a programme 

involving a pre-treatment of water at 70
0
C for 20 minutes and an enzymatic incubation 

time of 8 hours at 50
0
C (Figure 14). The enzyme used for digestion is 4:1 mixture of 

commercial enzymes Celluclast (Cellulase from Trichoderma reesei) and Novozyme 

188 (cellobiose from Aspergillus niger) (Novozymes). Final step is to measure the 

reducing sugars release from the biomass material. This was done by doing colorimetric 

assay, using an adapted 3-methy-2benzothiazolinonehydrazone method 

(MBTH)(Gomez, et al., 2010),(Gomez, et al., 2011). Three standards of 50, 100 and 

150 nmol glucose (three replicates each) and filter paper disks (four replicates) – as 
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control were used to account for any change in enzyme concentration or condition 

through time. The plates containing samples, standard, filter paper disks were read 

through Tecan Sunrise microplate absorbance reader at 620nm to measure the variation 

in absorbance. 

 

Figure 14: High-throughput saccharification assay system developed by Leonardo 

Gomez since 2010 in CNAP 

2.2.2 Silica content measurement 

For silica analyses, the samples were further milled, using a Tissue Lyser II, with the 

grinding jar sets and stainless steel grinding balls at a vibration rate of 3000rpm for 70 

seconds. 

Powder from five biological replicates of each rice accession, 755 rice stem samples in 

total, was pelleted using a 10 ton manual hydraulic press (Specac, UK) (Figure 15). The 

pellets were analysed using a portable x-ray fluorescence spectrometer (Niton XL3t900 

GOLDD Analyzer; Thermo Scientific, UK) to determine the amount of silica present 

(Reidinger, et al., 2012) (Figure 15). A standard curve was produced using ―bush‖ as 

the certified reference materials (CRM); The sample pellets were read twice (each side 
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once), whereas ―bush‖ standards were scanned again after every 10 samples to check 

the stability and reliability of the assay.  

 

 

Figure 15: The sample pellet and P-XRF machine 

2.2.3 Total lignin content 

Lignin content was quantified using the method reported by Fukushima and Hatfield 

(Fukushima & Hatfield, 2004). Briefly, 4 mg ground samples were weighed into a 2ml 

tubes and 250µl freshly prepared acetyl bromide solution (25% v/v acetyl bromide/75% 

glacial acetic acid) were added in order to break phenol bonds in the biomass. Samples 

were then incubated at 50°C for 2 h, followed by a further 1 h with vortexing every 15 

min to solubilise the lignin. Samples were then cooled to RT before being transferred to 

5ml volumetric flasks. Subsequently 1 mL of 2 M NaOH was added to hydrolyse excess 

acetyl bromide, followed by 175 µl freshly prepared 0.5 M hydroxylamine 

hydrochloride. Samples were then made up to 5 ml with glacial acetic acid, mixed, 

before continuing to dilute 10 times by mixing 100ul sample with 900ul acetic acid, and 

the absorption read using a Shimadzu UV-1800 spectrophotometer at 280 nm (Figure 

16). Lignin content (µg mg-1 cell wall) was then determined using the following 

formula: (absorbance ÷ (coefficient x path length)) x ((total volume x 100%) ÷ biomass 
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weight)). Because the coefficient is different among plant when analysed, the 

coefficient for grass (17.75) was used for rice (Fukushima & Hatfield, 2004). 

 

Figure 16: Spectrophotometer: The detection of total lignin was carried out with a UV-

detector at 280 nm after Acetyl Bromide Assay 

2.2.4 Data analysis and heritability estimation 

I carried out analysis of digestibility, lignin content and silica content on straw samples 

(5 biological replicates) from field grown samples of the diversity panel grown in 

Vietnam. The raw data from these analyses were gone through post hoc analysis 

(Jaccard, et al., 1984) and corrected by the final LSD test linear model (Hayter, 1986) 

with Bonferroni‘s adjustment (Abdi, 2007). Based on the phenotypic data, the 

heritability was calculated for amount of sugar released, silica content, and for total 

lignin content. This is described by the document in the R program, which was used for 

most statistical analyses, which states that: ―Given a population where each genotype is 

phenotyped for a number of genetically identical replicates (either individual plants or 

plots in a field trial), the repeatability or intra-class correlation can be estimated by V_g 

/ (V_g + V_e), where V_g = (MS(G) - MS(E)) / r and V_e = MS(E). In these 

expressions, r is the number of replicates per genotype, and MS(G) and MS(E) are the 

mean sums of squares for genotype and residual error obtained from analysis of 

variance. In case MS(G) < MS(E), V_g is set to zero ( Singh et al. 1993); (Lynch and 

Walsh 1998. When the genotypes have differing numbers of replicates, r is replaced 

by \bar r = (n-1)^{-1} (R_1 - R_2 / R_1), where R_1 = ∑ r_i and R_2 = ∑ r_i^2. Under 
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the assumption that all differences between genotypes are genetic, repeatability equals 

broad-sense heritability; otherwise it only provides an upper-bound for broad-sense 

heritability” 

2.3 Results 

3.1 Saccharification 

The Saccharification results, reported in this thesis, are for two sets of data, spring 

season 2013 (93 lines) and summer season 2014 (151 lines). The range of digestibility 

in the 2014 data set is from 20 to 134 (nmol/mg.1hour), and in the 2014 data set is from 

23 to 72.8 (nmol/mg.1hour) (Figure 17). There is little correlation over two year data 

sets when observing the same 93 lines in term of saccharification (Figure 18). The lack 

of such correlation between two set of data might be because of environmental effects 

on population. Most rice varieties are adapted for growth in a specific growing season. 

Some may be adapted for both season, many are just suitable to grow in one season 

only. Therefore if they are grown in the unsuitable season, this could cause differences 

in biomass quality.  

Although there was no correlation between two sets of saccharification data, it is 

notable that the line U17 showed the highest digestibility consistently in two years (72.7 

and 134.4 nmol/mg.1hour in 2013 and 2014, respectively) (Figure 17), in 2014 data set 

it is even easy to see its outstanding digestibility with 6 fold higher than the lowest 

digestible one.  

These data sets show a high range of values within the population, which is essential for 

studying the association between the digestibility and the bi-allelic markers, which are 

SNPs stored in HapMap, across the genomes.  
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(A) 

 

(B) 

Figure 17: (A) Scatter plot graph adapted standard error values of 151 rice lines, 5 

biological replicates, grown in 2014, 2013 (B) Scatter plot graph adapted standard error 

values of 98 rice lines, 3 biological replicates, grown in 2013. The dot circled by the red 

oval is the line U17. 

 

Figure 18: Correlation between 2013 vs 2014 sugar released 
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2.3.2 Silicon and silica content 

The range of Si content in the rice population is from 0.815 to 2.57 (% in dry weight). 

These values of Si are multiplied by 2.14 to get the amount of silica (SiO2). We will 

then have the silica content in all the samples of population, which varies from 1.57 to 

5.5 (% in dry weight)(Figure 19).  

  

Figure 19: Scatter plot with standard error bars for silicon and silica content in 

151 rice lines: 2 technical and 5 biological replicates per line. Circle in red indicates U17 

Data were determined using X-ray fluorescence. 

Once again, we see a good amount of variation across the rice panel and it is interesting 

to note that the highly digestible U17 line has one of the lowest silica concentrations 

seen in the diversity panel at less than 2.0 % /dry weight silica. This line has a strong 

stem with abundant biomass material, high digestibility and low silica. Unfortunately, 

we only have Si data for the straw from the 2014 field trial as there was insufficient 

straw from 2013 to allow this measurement to be made. 

The silicon and silica content also shows sufficient variation among the varieties in the 

population to allow genome wide association studies to identify the QTL controlling the 

accumulation of silicon/silica in rice plants. 
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3.3 Total lignin content 

Examination of lignin content using the acetyl bromide method did not reveal as high 

levels of variation among rice accessions as was seen in digestibility and silica content. 

There is 26.3 % of lignin content in the highest variety, whereas the variety that present 

the lowest level contains 14.3 % of lignin (Figure 20). However, it is still at a useful 

level of variation to be used for genome wide association studies. In addition, once 

again, we see that the line U17 is belongs to the group that have lowest lignin content 

with only 15.9 % of lignin is found in the stem biomass of this line.  

 

Figure 20: Total Lignin content with standard error bars. Lignin was measured using 

the acetyl bromide method and data are result of 151 lines, 3 biological replicates per 

line. Circle in red indicates U17. 

3.4 Correlation analysis 

Correlation analysis was performed to check if any of three studied traits above 

correlate with each other (Figure 21). While there is only a very weak correlation 

between Lignin and Silica(R
2
 = 0.0036), there is a higher, but still rather weak negative 

correlation between Lignin content and digestibility (R
2
 = 0.0224) (Figure 21). In 

contrast, there is a much stronger negative correlation between Silica content and 

digestibility (R
2
 = 0.2385). This result agrees with published papers about the 
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relationship between silica and digestibility(Van Soest, 2006); (Binod, et al., 2010); 

(Zhang, et al., 2015). 

  

 

Figure 21: Correlation graph among three traits: Lignin vs Silica, Lignin vs digestibility, and Silica 

vs digestibility, respectively. The dot circled by the red oval is the line U17. 
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2.3.1 Heritability of studied traits 

Based on the phenotypic data, the heritability was calculated at 0.79 (2013) and 0.65 

(2014) for the amount of sugar released, 0.67 for silica content, and 0.62 for total lignin 

content (Table 3).Heritability is classified as low (5-10%), medium (10-30%) and high 

(>30%)(Dabholkar, 1992). The heritability of our studied traits is rather high and 

implies that on average about 62% to 79% of the individual difference observed on 

these traits in our population are attributable to genetic variation, and 21% to 38 % are 

attributable to the environmental variance. In 2010, a study looking for the QTL for 

silicon content in leave, using a Recombinant Inbred Lines (RIL) population has a much 

low heritability of silica, at 0.37(Norton, et al., 2010). This result shows similar level of 

heritability to other secondary compounds in evening primrose (Oenothera biennis) 

with the mean of 15 studied trait calculated at 0.68 (Johnson, et al., 2009). In wood, 

heritability estimates range from 0.16 to 0.97 for cell wall carbohydrate and 0.42 to 0.79 

for lignin content(Poke, et al., 2006)(Ukrainetz, et al., 2008). The high heritability of 

these traits indicates that there is good scope to improve the digestibility through 

crossing and selection of the line with good quality of straw.  

Table 3: Heritability of traits studied, which is based on the repeatability of phenotypic 

data. 

Trait Repeatability 
Genetic 

variance 

Residue 

variance 

Repeatability 

of Lines 

Average 

number of 

Replicate 

Confident 

Interval 

Sugar 

released 

(2013) 

0.79 88.32 3.12 TRUE 7.2 0.75 -0.84 

Sugar 

released 

(2014) 

0.65 242.01 130.1 TRUE 20 0.60 - 0.71 

Silica 

(2014) 
0.67 0.39 0.196 TRUE 4.5 0.60 - 0.73 

Lignin 

(2014) 
0.62 3.47 2.15 TRUE 3 0.58- 0.65 
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2.4 Discussion 

Throughout these analyses the cultivar, U17, showed remarkable straw quality through 

3 different experiments, showing high digestibility and low content in both silica and 

lignin. Interestingly, this cultivar is a commercial variety which has been cultivated in 

many areas in Vietnam. This variety was originally bred from hybrid combination of 

IR5 ´ [(IR8 ´ 813) ´ IR 1529-640-3-2] by scientists at the Field Crops Research Institute 

in 1988, and has been long well-known its resistance to submergence and water logging.  

The level of variation apparent in the population differs in each of the studied traits. 

There is much higher variation apparent in digestibility and silica content than there is 

in lignin content. 

The lignin content in our rice accession straws are at the similar level as for grasses in 

general and higher than in dicot but lower than in wood species (Vogel, 2008), 

(Shmulsky & Jones, 2011), (Rowell, et al., 2012), (Abramson, et al., 2012).Comparing 

our results with the other unpublished data (using the same method)in our laboratory 

shows that rice is in the top high lignin content and has highest range of digestibility in 

the studied grasses (Table 4).  

Previous reports indicate that rice typically contains 1-10% silica per dry weight 

(Epstein, 1999), (Ma & Takahashi, 2002); (Currie & Perry, 2007). The silica content 

found here is studied in the stem, whereas it is reported that leaves typically contain 

higher level of silica (Ma & Takahashi, 2002).  Recently, silica and lignin content were 

also measured in rice mature straw of 42 distinct rice cell wall mutants, its silica level 

ranged from 1.45%to 3.89%(Zhang, et al., 2015), which is rather closed to what we see 

from our results.  

According to the result of saccharification assay, acetyl bromide assay for total lignin, 

and silica measurement, we can see that silicon plays an important role in the 

digestibility. There is a clear correlation between silica content and digestibility, which 

is not seen between lignin and digestibility. This has been reported and discussed in 

some published papers before, indicating that, silica in rice, might have more influence 

to the quality of straw than lignin does, and the percentage dry weight of silica is also 

higher than lignin content in rice straw content, see Table 5. 
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Table 4: Comparison of lignin content and digestibility based on amount of sugar 

release among different species; published and unpublished data taken from Simon 

McQueen Mason’ lab. 

Species Lignin
(1) 

(%) 

Sugar release
(2)

 

(nmol.mg.1hour) 

Sorghum 28 54 

Spartina Marsh grass 37 5-120 

Sugarbeet 8 N/A
(3) 

Miscanthus 9 5-15 

Tomato 17 2-25 

Hemp 21 N/A 

Brachypodium 17 20 

Saccharium (sugarcane) 30 37 

Rice straw 20 20 - 134 

(1) Lignin contents were measured by Acetyl Bromide Soluble Lignin (ABSL) method  

(2) Sugar releases were measured through saccharification assay, using water for pre-treatment. 

(3) N/A: not available 

The physical and chemical role of silica and its effects on biomass enzymatic 

saccharification remain unknown, however a recent report suggests there may be the 

covalent crosslinks between silicon and the hemicellulose, (He, et al., 2015), and this 

might explain the correlation between silica content and straw digestibility. He et al, 

(2015) using the ICP-MS, had found an association between silicon and hemicellulose 

after looking separately at different cell wall component from cell wall extraction and 

fractionation. Recently, Zang et al, (2015) used a silicon-supplied hydroculture analysis 

to demonstrate that silica distinctively affects cell wall composition and major wall 

polymer features, including cellulose crystallinity (CrI), arabinose substitution degree 

(reverse Xyl/Ara) of xylans, and sinapyl alcohol (S) proportion in three rice mutants. 

They found that silica levels are significantly positively correlated with three major wall 

polymers, indicating that silica is associated with the cell wall network (Zhang, et al., 

2015). These studies together with the result from my research suggest that silica 

content is an important feature to consider in biotechnical application of rice straw. 

Table 5: Silica and lignin content of rice plant parts, barley, oat, and wheat straws: 

Compiled from (Doyle & Panday, 1990), (Jones & Handreck, 1967), (Soest, 1970), 

and (Soest, 1994). 
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Polished 

rice 

Rice 

bran 

Rice 

straw 

Rice 

hulls 

Rice 

joints 

Barley 

straw 

Oat 

straw 

Wheat 

straw 

SiO2(g/kg) 0.5 50 130 230 350 20 20–50 10–50 

Lignin 

(g/kg) 
– 30 52 ±16 160 120 110 140 

85–
140 
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Chapter 3 - Association mapping for biomass and cell wall 

traits 

3.1 Method 

3.1.1 Genotyping by Sequencing and SNP identification 

Plant growth and material 

172 genotypes were grown at The James Hutton Institute (JHI), Dundee for isolating 

DNA from young leaves. The seeds were treated Nitric acid (0.2% HNO3) 8-10 hours at 

28
0
C to break dormancy, then sterilized for 12-14 hours at 30

0
C and finally germinated 

on petri dishes after 4 days. The seedlings were then transplanted to 96 well trays first 

for 5-7 days before moving to the bigger pots with rice mixed compost. Plants were 

grown in a temperature controlled glasshouse at 25
0
C-28

0
C and lighting time, 12 hours 

daylight/ 12 hours night (Figure 22).  

 

Figure 22: Rice plants growing in the glass house in Dundee. 

DNA sample preparation 

After 3 weeks, the young leaves were collected and used for DNA extraction. The 

leaves after being harvested from the plants were immediately frozen in liquid nitrogen 

before extracting DNA, using DNeasy plant mini kit (Qiagen) according to the 

manufacturer‘s instructions (www.qiagen.com/handbooks). 

http://www.qiagen.com/handbooks
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DNA samples were analysed by 1% agarose gel electrophoresis (run with 0.5 x TBE) to 

check the quality. An example gel is shown in Figure 24. 

In parallel, the DNA samples were quantified and examined for purity by NanoDrop 

8000 spectrophotometer. The nucleic acid concentrations were in the range of 49.7 to 

190.3 (ng/µl), and the purity of DNA and nucleic acid were accessed by A 260/280 and 

260/230 Ratios (Figure 23).  

  

Figure 23:  Nucleic acid concentration and DNA quality range at 260/280 and 260/230 Ratios 

(A) 

 

(B) 

 

Figure 24: (A) Gel electrophoresis checking the quality of DNA extracted from young 

rice plants; (B) Example of digested DNA by restriction enzyme HindIII and EcoRI 
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Before sending the DNA samples for genotyping, I undertook trial digestion with 

restriction enzymes to further access the quality (Figure 24). The restriction enzyme 

HindIII and EcoRI were used for this experiment. The restriction digests were carried 

out with 10 µl of gDNA for 200 ng (20ng/µl), 0.4 µl of restriction enzyme (HindIII OR 

EcoRI), 3 µl of 10x NEB buffer 4, and made up to 30 µl with 16.2 µl of dH2O. The 

reaction was incubated for 2 h at a temperature recommended by the manufacturer 

(https://www.neb.com/). Products were run on a 1% agarose gel to confirm digestion 

had occurred. 

To process the genotyping by sequencing (GbS) assay requires at least about 100ng in 

10 µl, therefore we prepared 20 ng of 30 µl of all the DNA samples in two  96 well 

plates and these were sent to the Sequencing Lab at Cornell University Biotechnology 

Resource Center (BRC), US for processing GbS.  

Genotyping by sequencing assay 

The Genotyping by Sequencing (GbS) assay was conducted in the McCouch Ricelab, 

Department of Plant Breeding & Genetics - Cornell University, who carried out library 

construction, sequencing, data analysis, and SNP detection from HapMap, following the 

methods described in  (Elshire, et al., 2011).  

After processing the assay, the raw data was analysed by Katie Hyma in the McCouch 

Lab. The GBS analysis pipeline (Tassel Version: 3.0.166 Date: April 17, 2014) was 

applied to analyse the data after sequencing (Glaubitz, et al., 2014). The overview of 

pipeline is described in Figure 26. The report of the GbS work, including all the data 

and results provided by Katie Hyma could be also attached as supplementary document 

or provided upon request. In general the analysis process of the raw data are comprised 

of Filtering Raw Sequence Data, DNA sequence alignments, and Mapping.  

 

https://www.neb.com/
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Figure 25: Steps in GBS library construction. Note: Up to 96 DNA samples can be 

processed simultaneously for DNA sequencing 

(doi:10.1371/journal.pone.0019379.g002) 

 

Figure 26: Flow chart showing the steps of a GBS ―Discovery Pipeline‖ analysis link 

together (variations on this approach are possible). Light blue boxes represent files (or 

data structures) produced at each step of the analysis, and purple boxes represent the 

processes (Tassel3 plugins) that produced them, see the report for file description. 

8. Run on two lanes of 

Illumina flowcell 
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3.1.2 Population stratification using GAPIT 

Controlling for population structure is a standard procedure in GWAS. Patterns of 

population structure overlap with patterns of the phenotype and with patterns of 

environmental variation, increasing the rate of false positives in GWAS. The genotypes 

used in this research were collected from many different sources and includes both 

indica and tropical japonica varieties. Therefore, it is necessary to check the diversity 

level of the population before doing GWAS, in order to know if and how much the 

diversity of the population would contribute to the result of GWAS. 

To study stratification of the population or its structure, a phylogenetic tree was 

calculated and exported from GAPIT (Figure 28) (Zhang, et al., 2010); (Lipka, et al., 

2012). This was done based on the kinship matrix, which accounts for the degree of 

genetic relatedness or coefficient of relationship between individual members of the 

population. Kinship among lines was calculated according to Vanraden (2008) using an 

R implementation (www.R-project.org) available as part of GAPIT software libraries 

(VanRaden, 2008); (Lipka, et al., 2012). Using resultant distances, clustering was 

performed in R using the internal package ―hclust” with default parameters. 

The codes and library used are attached below: 

### Install all the packages and library in R program 

before importing the required files for running Gapit 

source("http://www.bioconductor.org/biocLite.R") 

biocLite("multtest") 

install.packages("gplots") 

install.packages("LDheatmap") 

install.packages("genetics") 

install.packages("scatterplot3d") 

install.packages("hclust") 

 

library(multtest) 

library(gplots) 

library(LDheatmap) 

library(genetics) 

http://www.r-project.org/
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library(compiler) #this library is already installed in R 

library("scatterplot3d") 

source("http://zzlab.net/GAPIT/gapit_functions.txt") 

source("http://zzlab.net/GAPIT/emma.txt") 

 

### Import all the required files 

setwd("//Biolpc2452/c$/R statistics/GWAS2015/Gapit") 

myG <- read.delim("gapit_rice_snp.txt", head = FALSE) 

myCV <- read.delim("Q Matrix file.txt", head = TRUE) 

rice_gapit<-GAPIT(G=myG, CV=myCV, SNP.test=FALSE) 

### Result in R console 

[1] "--------------------- Welcome to GAPIT ---------------

-------------" 

[1] "Converting genotype..." 

[1] "Converting HapMap format to numerical under model of 

Middle" 

[1] "Perform numericalization" 

[1] "Succesfuly finished converting HapMap which has bits 

of 1" 

[1] "Converting genotype done." 

[1] "Calculating kinship..." 

[1] "Number of individuals and SNPs are  146  and  328655" 

[1] "Calculating kinship with VanRaden method..." 

[1] "substracting P..." 

[1] "Getting X'X..." 

[1] "Adjusting..." 

[1] "Calculating kinship with VanRaden method: done" 

[1] "kinship calculated" 

[1] "Creating heat map for kinship..." 

[1] "Kinship heat map created" 

[1] "Adding IDs to kinship..." 

[1] "Writing kinship to file..." 

[1] "Kinship save as file" 

[1] "Kinship created!" 

[1] "GAPIT.Genotype.View .Two pdf generate.successfully!" 
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3.1.3 Mixed Linear Model (MLM) using Tassel 

Based on the genotypic data stored in the HapMap and the Phenotypic data collected 

from the analysis of saccharification (sugar released data), lignin content (% of total 

lignin), and silica content (% of silicon in dry weight), three GWAS were performed by 

merging two sets of data to examine the association between the markers and the 

studied trait to identify the Quantitative Trait Loci (QTL).   

GWAS was performed with the compressed mixed linear model approach, which 

includes both fixed and random effects(Yu, et al., 2006); (Zhang, et al., 2010) carried by 

TASSEL (Bradbury, et al., 2007) which also implemented the Efficient Mixed-Model 

Association (EMMA) (Kang, et al., 2008) for performing association mapping while 

simultaneously correcting for relatedness and population structure. 

The data were merged and manipulated in Tassel version 3.0 

SNP file (Table 6), Trait file for saccharification, lignin, and silica result (Table 7), and 

Q Matrix file (derived from PCA analysis of population structure) (Table 8). The Q 

Matrix file was created by Dr Zhesi He - Bioinformatics research associate at Centre for 

Novel Agricultural Products (CNAP), using PSIKO 

(http://www.uea.ac.uk/computing/pisko) on Linux platform.  

Table 6:  Example SNP file - SNP are in single letter format, including ambiguity 

codes, and missing data have a ―?‖ symbol 

<Marker> SNP_12345:1 SNP_54321:2 SNP_13542:3 

Accession1 A C T 

Accession2 W A ? 

Accession3 A C A 

 

 

http://www.uea.ac.uk/computing/pisko
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Table 7: Example Trait File, including sugar release (saccharification), silica, and lignin 

<Trait>      Sugar release  Silica   Lignin 

Accession1 59         5         21 

Accession2 70         4         25      

Accession3 34         2.5      18 

 

Table 8: Example Q matrix file. The Q matrix file, derived from PCA analysis of 

population structure, start with <Covariate> and then on the next line <Trait> followed 

by names for the population clusters Q1, Q2. 

<Covariate> 

<Trait> Q1 Q2 

Accession1 0.8 0.5 

Accession2 0.3 0.7 

 

3.1.4 Ferulic acid and p-coumaric acid content 

Ferulic acid and p-coumaric acid content in the straw were also quantified using a 

protocol based on Fry‘s method(Fry, 1988). Briefly about this protocol, 1000ul o 1 M 

NAOH was added to 10mg of biomass and incubated at 250C for 16 hours with gentle 

mixing. The ferulate and sodium ion were then separated by adding of 100ul of 99% 

TFA to bring to pH 1.0. The ferulate were split up in to organic phase by addition of 0.5 

ml of 1-butanol, vigorous shaking before spinning down. The ferulate in the upper 

organic phase was recovered in the new tubes before evaporating all the butanol in the 

speed vac. At last, the residues (pellets) were re-dissolved in pellet in 200 ul of 100% 

MeOH as original stock. Samples were run on the HPLC by Swen Langer, CNAP, the 

University of York. Ferulic acid and p-coumaric acid were detected and quantified with 

a Spectra SYSTEM® UV6000LP photo-diode array detector (Thermo Scientific), with 

UV–visible spectra collected at 240 – 400 nm, and analysed against a ferulic acid and p-
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coumaric acid standard at 5, 25, 50, 100, 150, 200 µM mix; the sample from original 

stock were diluted 30 time before running because of too high concentration. 

3.2 Results 

3.2.1 SNP identification 

Here I include some important result from the GbS pipeline analysis:  

Total number of good barcoded reads in lane 1 and lane 2 are 207,579,114 and 

220,050,998 respectively. Resulting tags after merging in two lanes are 25,375,094 and 

18,824,732 respectively 

Total number of Tags after Merging: 4,609,509 

Alignment Results:  

Total 4,609,509 tags  

3,649,813 (79.2%) were aligned to unique positions  

390,089 (8.5%) were aligned to multiple positions  

569,607 (12.4%) could not be aligned 

Resulting SNPs  

HapMap SNPs (unfiltered): 639,891; HapMap SNPs (filtered): 328,915; Variant Called 

Format (VCF) SNPs: 1,631,277  

VCFtools version [v0.1.11] was used to calculate Depth and Missingness from the 

unfiltered VCF file, taxa merged if available (Table 9). 
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Table 9: calculate Depth and Missingness from the unfiltered VCF file 

 Mean Median Standard Deviation 

Individual depth 7.817 7.262 2.798 

Site depth 7.817 6.503 6.699 

Individual missingness 0.179 0.172 0.093 

Site missingness 0.179 0.034 0.263 

We identified a total of 328,915 SNPs that were stored in the HapMap and used as 

genotypic data for the GWAS when merged with the phenotypic data (Figure 27: Bar 

graph showing the distribution of identified SNP across the rice genome), which 

would be the complex trait from cell wall characterisation of the same genotyped 

population, then the association between the markers and the trait studied would be 

looked for to identify the QTL.   

 

Figure 27: Bar graph showing the distribution of identified SNP across the rice genome 
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Based on the results of our GbS, we have the resolution at approximately 1 SNP marker 

at every kb (1SNP/1Kb). This represents a density level of markers across the rice 

genome, which will definitely help us to narrow down the QTL regions around the 

significant SNPs from the association map.  

3.2.2 Pairwise relatedness/Population stratification 

After running GAPIT, the file ―GAPIT.Kin.VanRaden.pdf‖ was created, which is a heat 

map of the values in the values in the kinship matrix, showing the level of relatedness 

among the population. The results show that there are two subpopulations in our 

population (Figure 28). The profile indicates that the smaller subpopulation includes 22 

tropical japonica varieties with the other comprised of 129 indica varieties. Separating 

the population in cell wall characterisation data, we saw that the range of the variation 

in main and sub population are rather similar in digestibility and lignin content, but the 

varieties from sub population (tropical japonica) seem to have lower silica content than 

the ones in main population (T test for P = 3.81E-11) (Figure 29), which is ranging 

about 1.4% to 4% (mean = 2.77) and 1.8% to 6 % (mean = 3.45), respectively. In term 

of correlation analysis, we still see a significant correlation between digestibility vs 

silica in either main or sub population, with R
2 

= 0.166 (r = 0.407, p=1.4e-6) and R
2
 = 

0.3079 (r = 0.555, p < 0.00001) respectively (Figure 29). On the other hand, although 

we still could not see any significant correlation between lignin and digestibility in main 

population, we saw R
2
 = 0.066 (r = 0.2569, and the p value = 0.045, just right below 

0.05 which is significant point of correlation) when calculating the correlation between 

lignin and digestibility in the indica sub population. 

At the end, based on the phylogenetic tree, for the next step of GWAS we decided to 

remove the japonica subpopulation in order to help to reduce the chance of confounding 

effects of population structure in GWAS (Brachi, et al., 2011). 
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Figure 28: Phylogenetic tree in the form of kinship plot: A heat map of the values in the 

values in the kinship matrix. The heat map shows the level of relatedness among the 

population (the darker area showing highly related variety and also from different origin 

with the rest of the population) 



 

67 

 

 

 

 

Figure 29: Correlation graph among three traits: SiO2 vs digestibility, Lignin vs 

digestibility, and Lignin vs SiO2 respectively, observing 151 line, 3 biological reps. 
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3.2.3 GWAS for digestibility/saccharification potential 

A total of 83 significant SNPs were identified using mixed linear model (MLM) for the 

trait of digestibility (Table 10). The False Discovery Rate (FDR) of P-value was applied 

at FDR < 0.05 as the cut-off for selecting significant SNPs (see Figure 30, above the red 

line). These significant SNPs locate in different regions in different chromosomes (CH). 

Genetic effects of these QTL to phenotype variance were calculated as Phenotypic 

variance explained (PVE) by significant SNP (see Table 10). There is a cluster of 

significant SNPs (a QTL) in CH1 that accounts for 37% of the phenotypic variation. 

There are additional SNP cluster/QTL on CH2, CH6, Ch7, CH8, and CH11 which have 

PVE values range from 18% (at CH2_24.6 ± 0.2 Mb) to 56% (at CH7_26.4 ± 0.4 Mb) 

(see Table 10).  

Another GWAS, applying the same option and model (MLM) in TASSEL, was run on 

the digestibility data from 2013 (96 varieties overlapped with the varieties in 2014 

population) merging with the same SNP data to identify the QTL and look for the 

common QTL regions when comparing between two year GWAS for digestibility. We 

identified common QTL regions, on CH2, CH6, CH7, CH8, and CH11, coming up in 

both year‘s GWAS for digestibility (see Figure 31). This helps confirm the 

reproducibility and reliability of the GWAS for digestibility.  

To identify the candidate genes underlying the above QTL, we searched within 300 kb 

(±150 kb of the peak SNP) around the significantly identified loci based on the Linkage 

disequilibrium (LD) decay range, published in existing literature in rice(Mather, et al., 

2007),(McNally, et al., 2009). MSU Rice Genome Annotation Project 

(http://rice.plantbiology.msu.edu/) database was used to search for candidates. I selected 

the genes as candidates in those regions based on criteria such as: cell wall related 

genes, expression in stems, or/and their functional studies in rice or orthologous in other 

species that have already been published. The list of the candidate genes is included in 

Table 10, in which, LOC_Os06g39390 (OsAT10) (Piston, et al., 2010) and Os07g49370 

(OsIRX9)(Chiniquy, et al., 2013) are the strongest candidates as independent published 

worked has established a role for these in stem digestibility. The gene annotated as 

homologous to OsMYB58/63, which directly regulate OsCESA7(Noda, et al., 2015) is 

also a candidate that is worth to be more investigate. 

http://rice.plantbiology.msu.edu/


   

 

69 

 

 

(a) 

 

(b) 

 

 

Figure 30: (a) Genome wide association study showing association between digestibility and markers across the rice genome (Significant SNPs with 

P<0.001; MAF>5%). (b) Digestibility quantile–quantile (QQ) plot determines how GWAS results compare to the expected results under the null 

hypothesis of no association Results above the diagonal are most likely to be significant (They have p values higher than expected by chance). 
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Figure 31: Genome wide association study for saccharification potential over two year 

studies. The red arrow indicates the common QTL.
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Table 10: Digestibility QTL regions, the significant SNPs, and selected candidate genes in the QTL regions in 2014; The significant SNPs are 

selected by False Discovery Rate (FDR) < 0.05 

Chromosome 

(CH) 

QTL 

regions 

(Mbp) 

No of Significant 

SNPs in QTL 

regions 

Most Significant 

P-Val of SNP in 

QTL regions 

(a)
MAF 

 

(b)
PVE % 

 
Candidate genes 

1 
CH1_29.5 ± 

0.2 
9 4.88488E-07 0.179 37.00 

LOC_Os01g51260 (OsMYB26 TF) (Guo, et al., 2014) 

LOC_Os01g50720 Homologous to BdMYB48(Katiyar, et 

al., 2012)(Handakumbura, 2014) 

2 

 

CH2_19.3 ± 

0.2 
2 5.27001E-05 0.2 32.66 

 

CH2_24.6 ± 

0.4 
1 1.1263E-05 0.13 18.00 

LOC_Os02g39850(OsHCT2) (Kim, et al., 2012); 

http://rice.plantbiology.msu.edu/ 

CH2_28.5 ± 

0.2 
14 1.04809E-07 0.191 40.94 

LOC_Os02g46970 (4CL2) (Bruce Alberts, et al., 

2002);  LOC_Os02g46780   (OsMYB58/63 L) (Noda, et 

al., 2015) 

6 

 

CH6_6.2 ± 

0.2 
1 1.24167E-07 0.23 46.00 

 

CH6_23.3 ± 2 5.96102E-05 0.23 46.00 LOC_Os06g39470  (BADH) 
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Chromosome 

(CH) 

QTL 

regions 

(Mbp) 

No of Significant 

SNPs in QTL 

regions 

Most Significant 

P-Val of SNP in 

QTL regions 

(a)
MAF 

 

(b)
PVE % 

 
Candidate genes 

0.2 LOC_Os06g39390 (OsAT10) (Piston, et al., 

2010)(Bartley, et al., 2013);LOC_Os06g39970 

(CESA11)(Hazen, et al., 2002) 

7 

 

CH7_26.3 ± 

0.2 
7 3.87549E-09 0.18 56.00 

 

CH7_27.3 ± 

0.2 
10 2.54885E-07 0.14 30.29  

CH7_29.4 ± 

0.2 
8 3.26998E-08 0.14 24.40 Os07g49370 (OsIRX9): (Chiniquy, et al., 2013) 

8 

 

CH8_2.1 ± 

0.2 
4 1.36241E-09 0.18 42.90 

 

CH8_6.7 ± 

0.2 
2 7.82531E-06 0.075 18.72 

 

CH8_26.9 ± 

0.2 
2 4.95428E-05 0.088 23.74 

 

CH8_27.2 ± 3 1.61358E-06 0.2 46.72 LOC_Os08g43040 andLOC_Os08g43020(Orthologous 
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Chromosome 

(CH) 

QTL 

regions 

(Mbp) 

No of Significant 

SNPs in QTL 

regions 

Most Significant 

P-Val of SNP in 

QTL regions 

(a)
MAF 

 

(b)
PVE % 

 
Candidate genes 

0.2 to AT5G48930, HCT) 

CH8_28.0 ± 

0.2 
4 2.94809E-05 0.17 27.04 

 

11 

 

CH11_2.3 ± 

0.2 
3 2.73239E-07 0.16 54.75 

 

CH11_4.1 ± 

0.2 
4 3.65631E-07 0.2 36.12 LOC_Os11g07960 (Orthologous to AT5G48930, HCT) 

CH11_5.1 ± 

0.2 
1 5.66175E-06 0.18 20.75 

 

CH11_6.3 ± 

0.2 
4 3.09425E-07 0.17 27.72 

 

(a) 
Minimum Allele Frequency 

(b)
 Phenotypic variance explained by significant SNP 
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3.2.4 GWAS for Silica content 

For silica content significant SNPs were selected based on the cut-off at P < 0.001 and 

MAF > 0.05. The FDR for P value were not applied in this case because none of the 

SNPs could be qualified for FDR < 0.05. The clusters of significant SNPs were found in 

CH1, CH6, and CH11 respectively, which are also the three QTL for silica content 

(Figure 32). These QTL explained from 10.54% (at CH1_36.1 ± 0.3 Mb) to 15.14% 

(CH11_23.4± 0.5 Mb) of observed phenotypic variation (Table 12).  

The QTL and cluster of significant SNPs identified in CH6 is the same one found in 

GWAS for digestibility. Line with contrasting alleles for the peak SNP (the marker 

S6_23297154) showed significant differences in term of digestibility and silica content 

(Figure 33), this will be examined more in a later section. 

The candidate genes underlying these QTL were searched within 300 kb (±150 kb of the 

peak SNP) based on the Linkage disequilibrium (LD) decay range. The number of 

genes around the QTL regions is shown in Table 11. I looked for known genes, which 

already studied the function such as the silica transporters such as Low Silicon rice 1, 2, 

6 (Lsi1, Lsi2, Lsi3, and Lsi6) or their homologous. These transporters belong to the 

Nodulin-26-like intrinsic proteins NIP subfamily of aquaporins in rice (―facilitate 

transport of diverse small molecules including water and other small nutrients through 

biological membranes‖)(Park, et al., 2010), therefore any aquaporin genes might be 

worthy candidates for facilitating variation in silica content, but no such candidates 

were apparent (Table 12). Therefore, it appears that this work may lead to the 

identification of new genes affecting silica content in rice. 

Table 11: Number of genes in QTL regions using database of MSU Rice Genome 

Annotation Project http://rice.plantbiology.msu.edu/ 

QTL on CH Number of Genes in 300 Mbp around the QTL 

11 143 

1 84 

6 130 

http://rice.plantbiology.msu.edu/
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Figure 32: (a) Genome wide association study linking silica content to QTL across the rice genome (Significant SNP (P<0.001; MAF>5%). The 

QTL regions found in CH6 coincides with the one in GWAS for digestibility. (b) Silica quantile–quantile (QQ) plot determines how GWAS 

results compare to the expected results under the null hypothesis of no association Results above the diagonal are most likely to be significant (as 

they have p values higher than expected by chance) 

(a) 

 

(b) 
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Table 12: Silica Significant SNPs (P<0.001 MAF>5%) 

 

(a)
 Minimum Allele Frequency  

(b)
 Phenotypic variance explained by significant SNP 

Chromosome 

(CH) 

QTL regions (Mbp)  No of Significant 

SNPs 

Most Significant 

P-val of SNPs 

(a)
MAF 

(b)
PVE % Candidates genes 

1 CH1_36.1 ± 0.3 3 1.00E-04 0.40 10.54 LOC_Os01g62490.1; LOC_Os01g62490.1 

laccase precursor protein expressed 

6 CH6_23.3± 0.4 7 2.20E-04 0.25 15.00 LOC_Os06g39390.1, LOC_Os06g39470.1:  

transferase family protein, putative, expressed 

11 CH11_23.4± 0.5 9 1.91E-06 0.37 11.86  
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P - value = 3.2e-4 

 

P -value = 8.33e-09 

Figure 33: contrasting bi-allelic effect between the amount of sugar released and silica content at the SNP S6_23297154 
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3.2.5 GWAS for Lignin content 

 There were 75 significant SNPs detected based on the cut-off at P < 0.001 and MAF > 

0.05. The FDR for P value were not applied in this case because none of the SNPs 

would be qualified for FDR < 0.05. The significant SNPs were found in CH1, CH2, 

CH3, CH7, CH8, CH10, and CH11 (Figure 34). These significant SNPs explain from 

5.18 % (at CH10_19.2 ± 0.3 Mb) to 12.58% (at CH11_4.0 ± 0.2 Mb) of phenotypic 

variation (Table 13). The QTL at CH11_4.0 ± 0.2 Mb is at the same location as a QTL 

found on CH11 in GWAS for digestibility, although no common significant SNP were 

found between these two GWAS. 

The candidate genes underlying lignin QTL were searched within 300 kb (±150 kb of 

the peak SNP) around the significantly identified loci based on the Linkage 

disequilibrium (LD) decay range. The list of candidate genes in the QTL regions is 

presented in Table 13. Several QTL regions encompass genes known to be involved in 

lignin biosynthesis. A Hydroxycinnamoyltransferases (HCT) gene was found in CH11 

(CH11_4.0 ± 0.2 Mb), which is the common QTL region between GWAS for 

digestibility and Lignin. A number of peroxidase genes were found in QTL region of 

CH3_14.5 ± 0.4 Mb. In addition, a laccase 14 gene is located in the CH11_18.8 ± 0.3 

Mb which is surrounded by many cell wall genes including a wall – associated kinase 

(WAK), kinase, and receptor-like protein kinase, and glycosyl hydrolase (Xylanase 

inhibitor protein). 
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Figure 34: (a) Genome wide association study showing association between lignin content and SNP markers across the rice genome (Significant 

SNP (P<0.001; MAF>5%). The QTL regions found in CH11 (HCT candidate) coincides with the one in GWAS for digestibility. (b) Lignin 

quantile–quantile (QQ) plot determines how GWAS results compare to the expected results under the null hypothesis of no association Results 

above the diagonal are most likely to be significant (as they have p values higher than expected by chance).

(a) 

 

(b) 
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Table 13: Lignin QTL regions, the significant SNPs, and candidates in the QTL regions in 2014; the significant SNPs are selected by P-val < 

0.001 equal to Log10P-val > 3.0 

Chromosome 

(CH) 

QTL regions 

(Mbp) 

No of Significant 

SNPs in QTL 

regions 

Highest LogP-

val of SNP in 

QTL regions 

(a)
MAF 

 

(b) 
PVE % Candidate genes 

1 CH1_41.0 ± 0.3 8 4.86 0.24 7.09 

 

 

2 

 

CH2_5.5 ± 0.4 24 5.37 0.47 6.94 

 

CH2_6.5 ± 0.4 6 4.18 0.47 5.36 

 

CH2_8.8 ± 0.2 12 3.91 0.48 5.26 

 

3 CH3_14.5 ± 0.4 2 3.32 0.30 6.67 7 peroxidases 

7 CH7_15.8 ± 0.3 1 4.26 0.34 5.60 

 

8 CH8_8.8 ± 0.3 8 5.41 0.38 6.24 

 

10 
CH10_19.2 ± 

0.3 
3 5.01 0.44 5.18 
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Chromosome 

(CH) 

QTL regions 

(Mbp) 

No of Significant 

SNPs in QTL 

regions 

Highest LogP-

val of SNP in 

QTL regions 

(a)
MAF 

 

(b) 
PVE % Candidate genes 

 

11 

CH11_4.0 ± 0.2 2 3.13 0.17 12.58 HCT 

CH11_18.8 ± 

0.3 
9 3.88 0.38 5.84 LOC_Os11g47390.1  putative laccase 14 

 

(a)
 Minimum Allele Frequency  

(b)
 Phenotypic variance explained by significant SNP 
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3.3 Validation of candidate gene OsAT10 for digestibility and 

silica content 

3.3.1 Literature review 

Based on the result from searching candidates in the common QTL region of GWAS for 

digestibility and silica, the candidate gene LOC_Os06g39390 at CH6_23.3± 0.4 Mb had 

been selected as the strongest candidate. This gene and its close neighbour locus 

LOC_Os06g39470 both belong to family PF02458 for GAX feruloylation (Mitchell, et 

al., 2007)(Piston, et al., 2010). In 2010, Piston et al. showed that the transcript levels 

and ferulic acid (FA) content in the cell wall of Os06g39470 and Os06g39390 are both 

higher in the stems than in the leaves. In addition, down regulation of both genes by 

RNA interference (RNAi) construct also reduces ester-linked ferulate content in the 

transgenic lines (Piston, et al., 2010).  

 

Figure 35: Neighbor-joining tree generated from the alignment of the 12 proteins 

from O. sativaPF02458 family (putative arabinoxylan feruloyl transferase) – figure 

taken from Piston et al., 2010. 

This gene LOC_Os06g39390 has recently been named OsAT10 which is a BAHD 

acyltransferase (Bartley, et al., 2013). Overexpression study of this gene altered cell 

wall hydroxycinnamic acid content, which causes 60% reduction in matrix 

polysaccharide-bound FA and an approximately 300% increase in p-CA in young leaf 
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tissue and saccharification in rice (Bartley, et al., 2013).  However, no publications have 

described the effect of the mutant of this candidate with regards to silica content. This 

has raised the curiosity for us to find out if this candidate would give any effect to silica 

content when checking its mutant/overexpression line. We asked Bartley to send the 

biomass material of the OsAT10 and its wild types to York to conduct cell wall 

characterisation and confirm about the effect of this candidate to cell wall and silica. 

3.3.2 Cell wall characterisation of the OsAT10 overexpression lines 

Studies of OsAT10 have already proposed that the gene LOC_Os06g39390 located in 

our QTL regions is a p-CA transferase gene, and its overexpression line helps to 

increase saccharification, however the silica has not been investigated in these 

overexpression line, therefore we asked Barley and her colleagues to send the straw 

over to conduct the measurement of Si using the p-XRF machine (described in chapter 

2). In addition, I also carried out saccharification assays on these lines using the 

automated system at York (method also described in chapter 2 - saccharification). 

Ferulic acid and p coumaric acid content in the straw were also quantified using a 

protocol based on Fry‘s method(Fry, 1988).  

3.3.3 Result of the validation 

The biomass from the overexpression lines (mutants) showed 2 fold higher in 

digestibility than the biomass from the wild type (WT), which is about 60 

nmol/mg.1hour compares with 30 nmmol/mg.1 hour (Figure 36). The silica content of 

the overexpressor lines was also are about 3 fold higher than the wild type, which are 

14.6 % and 4.8 % respectively (Figure 36).  

We also saw a higher content of p-coumaric acid in mutant (129 uM) than in the wild 

type (85 uM), but we could not see much difference in term of ferulic acid content 

(Figure 36). LOC_Os06g39470 is a gene that encoded a coumarate transferase rather 

than a ferulate transferase. 

Overall, we could conclude that the overexpression line of LOC_Os06g39470 has 

effects on coumarate and silica content, as well as digestibility, supporting its potential 

role in determining variation in these traits around this QTL. More work needs to be 
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done to confirm about the link between silica and cell wall, that underlies the effects on 

silica content and digestibility in our population. 

 

 

 

Figure 36: Measurement of FA and p-CA, silica content, and digestibility 

(saccharification) of the overexpression line (Mut) and wild type (WT). 
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3.4 Discussion 

3.4.1 HapMap resolution for GWAS 

Because we are interested in enabling genome wide association studies (GWAS) in rice, 

a species in which genome-wide linkage disequilibrium decay rates for subspecies like 

indica and japonica landrace are estimated at ~123 kb and ~167 kb (Huang, et al., 

2010), and cultivated rice has a longer range 100 kb to over 200 kb (McNally, et al., 

2009), we need to identify markers that give sufficient dense coverage such that 

causative polymorphisms stand a reasonable chance of being in LD with one or more 

markers. In our research we detected average number of 1 SNP in every kb, which is a 

desirable resolution of marker for association mapping, and this has helped us to 

identify small haplotype blocks that were significantly correlated with such complex 

traits as digestibility in rice straw. 

3.4.2 Population stratification 

In our research population, based on the pairwise studies for relatedness among the 

varieties, indica varieties were grouped into the main population and tropical japonica 

varieties were grouped into the smaller one, which is considered as the sub population. 

The japonica subpopulation was removed to reduce the chance the GWAS results were 

misleading by confounding factors. The false positive and false negative in GWAS can 

occur when patterns of population structure overlap with patterns of the phenotype and 

with patterns of environmental variation(Brachi, et al., 2011). 

These two populations appear consistent in terms of correlation between silica content 

and digestibility. However, silica content was generally higher in the main population 

than in the sub population (Figure 29). This indicates that the indica varieties in our 

studied population have higher ability to accumulate silica than tropical japonica 

varieties. However, this study still needs to be repeated and broadened to include more 

varieties to confirm this. When the population was separated, we also saw a slight 

correlation between lignin content and digestibility in the subpopulation (Figure 29), 

which was not apparent in the main population and the whole population. The lignin 

effect on the cell wall in general and its impact on digestibility in grasses and cereal 
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have been recognised for a while(Zeng, et al., 2014). Other authors have suggested a 

role for silica in determining digestibility in some grasses, especially rice (Van Soest, 

2006). It seems likely that in rice, the effects of lignin are perhaps masked in varieties 

that accumulate higher levels of silica, suggesting a potential redundant function. 

3.4.3 QTL and candidates gene selection 

One striking result is the common QTL for both digestibility and silica content on CH6, 

which showed a contrasting bi-allelic effect between the amount of sugar released and 

silica content (Figure 33). The QTL on CH11 also appears in both GWAS for 

digestibility and lignin content, although it is not clearly showing the bi-allelic effect 

between these traits. This together with the phenotypic correlation shows that, in rice, 

silica might be playing a more important role in straw digestibility than lignin, and this 

may contrast with other cereal species which have generally lower levels of silica 

accumulation.  

Digestibility  

Seven common digestibility QTL found in two separate season‘s data. Among these, 

three of the searched regions encompass candidate genes previously shown to effect 

stem digestibility. The first one, LOC_Os06g39390 (OsAT10) a p-coumaroyl coenzyme 

A transferase (BADH family) involved in glucuronoarabinoxylan modification altering 

rice cell wall hydroxycinnamic acid content and saccharification (Piston, et al., 2010); 

(Bartley, et al., 2013), The second, LOC_Os07g49370 (OsIRX9)plays the function in 

building the xylan backbone in the secondary and primary cell walls. The expression of 

OsIRX9 in the irx9 mutant resulted in XylT activity of stems that was over double that 

of wild type plants, and the stem strength of this line increased to 124% above that of 

wild type (Chiniquy, et al., 2013). The third is locus LOC_Os02g46780 next to the SNP - 

S2_28582605 (p = 1.05E-07), identified as OsMYB58/63 L (Hirano, et al., 2013), which 

is a homologous to OsMYB58/63 which was found to directly up-regulate the 

expression of a rice secondary wall-specific cellulose synthase gene, cellulose synthase 

A7 (OsCesA7) (Noda, et al., 2015).  
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The significant SNP on CH1, S1_29469728 (p = 3.65E-06), was located inside the locus 

LOC_Os01g51260, which is known as the transcription factor OsMYB26 TF(Guo, et al., 

2014). This OsMYB26 TF (LOC_Os01g51260) corresponds to the Arabidopsis MYB TF 

AT3G13890 (also known as AtMYB26), which has been identified as an activator of 

secondary wall thickening (Yang, et al., 2007). Another locus LOC_Os01g50720 on 

CH1, 50kb from S1_29188922 (p = 2.29E-05), is homologous to BdMYB48(Katiyar, et 

al., 2012), which is a grass specific activator capable of regulating secondary cell wall 

biosynthesis; over expression of BdMYB48 showed upregulation level of secondary cell 

wall biosynthesis genes (Handakumbura, 2014).  

 

Figure 37: Phylogenetic tree of protein sequence similarity for grass specific MYB 

clade for A. thaliana, B. distachyon and rice. (Handakumbura, 2014). The red arrow 

points out the LOC_Os01g50720 and BdMYB48. 
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On CH2, LOC_Os02g39850, located at 400 kb from S2_24691620 (p = 1.13E-05), is 

the OsHCT2(Kim, et al., 2012). LOC_Os02g39850, which encodes a gene, is highly 

homologous to and clustering with Arabidopsis HCT (AT5G48930) as out-group in 

extended Mitchell Clade of BAHD Acyltransferases in grasses (Bartley, et al., 2013). 

By exploiting the substrate flexibility of this At HCT, Eudes et al., succeeded to reduce 

lignin content and improve biomass saccharification by engineering transgenic lines that 

overproduce one of the HCT non-canonical acceptors(Eudes, et al., 2016). The 

LOC_Os02g46970 found near with S2_28615156 (p = 3.08E-06) is a 4-Coumarate: 

coenzyme A ligase (4CL) catalysing the conversion of hydroxycinnamates into 

corresponding CoA esters. However Sun et al., pointed out that this gene was an 

Os4CL2 specifically expressed in the anther and was strongly activated by UV 

irradiation, suggesting its potential involvement in flavonoid formation(Bruce Alberts, 

et al., 2002).  

On Ch6, I found a potential candidate, LOC_Os06g39970, a cellulose synthase catalytic 

subunit(OsCESA11)(Hazen, et al., 2002). However, at the time of writing, there is not 

any published literature on the function of this gene in rice.  

On Ch8, two transferase family protein Loci, LOC_Os08g43040 and LOC_Os08g43020 

were found next to the SNP - S8_27288702 (p = 2.78E-06). The results of blasting the 

protein sequence of these two genes in rice genome database 

(http://rice.plantbiology.msu.edu/analyses_search_blast.shtml) shows that they have 

high protein sequence similarity to the four OsHCT 1-4. They are also orthologous to 

AT5G48930, only AtHCT gene known in Arabidopsis. However, their functions have 

not been described at the time of writing. 

A transferase protein family, LOC_Os11g07960, was found in the QTL region, 

CH11_4.0 ± 0.2, over two seasons of GWAS. This gene shows high protein sequence 

homolog to the four HCT genes found in the rice genome, including the two found in 

other QTL regions described above, LOC_Os08g43040 and LOC_Os08g43020. 

Although this candidate also has not been published on, it should be considered as 

another potential candidate for further functional studies. 

http://rice.plantbiology.msu.edu/analyses_search_blast.shtml
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Silica  

So far, there are just a few genes that have been identified as involved in silicon uptake 

in rice, which are the silicon transporters: Lsi1, Lsi2, Lsi3, and Lsi6(Ma, et al., 

2006),(Ma, et al., 2007), (Yamaji, et al., 2015). The other molecular mechanisms 

involved in silica accumulation are poorly understood. Based on the knowledge about 

those silicon transporters and their homologous in the Nodulin-26-like intrinsic proteins 

NIP subfamily of aquaporins in rice, I was trying to look for if any of those appeared in 

the QTL regions that we identified from Silica GWAS, but no clear candidates could be 

seen. I have selected the regions to look for the candidates within 300 kb (±150 kb of 

the peak SNP) around the significantly identified loci based on the Linkage 

disequilibrium (LD) decay range. There were 84, 130, and 143 genes located in the 

QTL regions in CH1, CH6, and CH11 respectively. This means that there might be 

potentially novel silica -related genes in these QTL regions. Interestingly, we found four 

genes that located closely or next to the peaks of CH1 and CH6. On CH1, 

LOC_Os01g62480.1 and LOC_Os01g62490.1, encode two laccase family proteins. 

Plant laccases are involved in phenolic compounds oxidation and it has been thought 

that peroxidases and laccase both play the role in catalysing the oxidation of monolignol 

(Wang, et al., 2015). On CH6, LOC_Os06g39390.1 and LOC_Os06g39470.1 encode 

two transferase family proteins related to arabinoxylan biosynthesis in this plant (these 

two transferases were also the candidates on CH6 in GWAS for digestibility). 

Arabinoxylans make up the major hemicellulose in rice straw. Recently, based on 

looking at cell wall fractions studies, He et al., found an apparent covalent association 

between Si and hemicellulose in rice cell wall as determined by inductively coupled 

plasma-mass spectrometry (ICP-MS) (He, et al., 2015). Therefore, the two transferases 

we found here might not only have effect on digestibility but also have effect on the 

silica accumulation due to the hypothetical link between silica and hemicellulose.  

Lignin 

I scrutinised the lignin QTL regions to look for the cell wall related genes, especially 

those involved in the monolignol biosynthesis or the polymerisation process of lignin 

formation. There is a Hydroxycinnamoyltransferases (HCT) gene on CH11 (CH11_4.0 

± 0.2 Mb), which is the common QTL region between GWAS for digestibility and 



 

90 

 

lignin content. This candidate is highly homologous with four OsHCT 1-4 and the other 

two loci, LOC_Os08g43040 and LOC_Os08g43020, found in digestibility QTL region 

in CH8. Reduced expression of HCT in Alfalfa has been shown to increase stem 

digestibility, but also lead to dwarfing (Chen & Dixon, 2007). 

In addition, there were cluster of 7 peroxidase genes located right next to the peak in the 

QTL region on CH3_14.5 ± 0.4, and a laccase located in QTL region CH11_18.8 ± 0.3, 

LOC_Os11g47390.1. Peroxidases together with laccases have been long proposed to 

perform the polymerization of monolignols into lignin (Marie, et al., 1998).  Down 

regulation or disruption of these enzymes led to the reduction of lignin content in plants 

(Blee, et al., 2003); (Berthet, et al., 2011); (Zhao, et al., 2013). These could be potential 

candidate related to the lignin biosynthesis in rice cell wall.  

OsAT10 plays its role in both silica and digestibility 

The availability of straw from the OsAT10 overexpression lines and its wild types 

allowed me to characterize these for digestibility, ferulic and coumaric acid, and silica 

content. The overexpressor lines showed a 2 and 3 fold difference in both digestibility 

and silica content, compared to wild type. Barley et al (2013), published that the 

OsAT10 had 300% increase in p-CA and 60% reduction in matrix polysaccharide-bound 

FA in young leaf; in my assay, we measured the FA and p-CA content in the straw and 

the result showed 51.7% increase in p-CA and 8% decrease in FA. . These results 

confirmed that OsAT10 is a p-coumaroyl coenzyme A transferase involved in 

glucuronoarabinoxylan modification. Our results raise a potentially important question; 

if OsAT10 is responsible for the variation in silica seen at this QTL, how does it do this 

if its primary function is arabinoxylan coumaroylation. The addition of feruloyl and 

coumaroyl esters to arabinoxylan appears to take place prior during polysaccharide 

biosynthesis and prior to secretion(Buanafina, 2009). One possibility is that a bond is 

formed between ester linked coumaric acid and silica, and this could potentially occur 

intracellularly or post polysaccharide secretion. Although there are no reports of such a 

linkage, a number of studies have indicated that covalent or other association may exist 

between silica and hemicellulose polymers in rice(Inanaga & Okasaka, 1995);(Inanaga, 

et al., 1995); (He, et al., 2015) . It seems that this observation of a potential role for 

OsAT10 in determining cell wall silica content may open the way for a deeper 
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understanding of the role of silica in grass cell walls, and this appears a potentially 

fruitful area for further study. 

  



 

92 

 

Chapter 4 – Final Discussion 

Rice straw as a research model and potential feedstock for biofuel 

production 

The use of crop residue biomass provides a more suitable route for biofuel production 

than do first generation processes that compete with food for feedstock. Because rice 

straw is an abundantly available and globally underutilised resource, it provides an 

attractive feedstock for biofuel and bio-refining (Binod, et al., 2010).  However, to take 

full advantage of this resource, we need to improve its saccharification potential and 

make it more easily digestible with industrial enzymes in order to allow the production 

of cost-competitive sustainable biofuels by fermentation. The research in this thesis 

focuses on rice biomass, from a diversity panel assembled from rice germplasms in 

Vietnam, which is one of the top four-rice exporting countries the in the 

world(Workman, 2016). Using rice straw as feedstock for biofuel production will also 

help to reduce the pollution from straw burning, as almost 90 % of this is burned in the 

field.  In addition, rice is a model cereal with a small sized diploid genome (~430 Mb), 

well-developed molecular genetics tools, and has representative cell wall characteristics 

of grasses, making it an important science discovery tool (Yuan, et al., 2001). This is 

important because our understanding of the biosynthetic gene machinery and molecular 

structure and biosynthetic gene of plant cell walls remain incomplete and the molecular 

basis of biomass digestibility even more so. Rice is also notable for the high levels of 

silica it accumulates, and the deposition of silica and the linkage with other cell wall 

components is only now beginning to emerge(Zhang, et al., 2015)(He, et al., 2015).  

It is generally accepted that lignin plays an important role in determining cell wall 

digestibility in plants, and that silica may also have a role in conferring recalcitrance in 

rice. The basis of the research presented in this thesis was to use a GWAS approach in 

rice to identify QTL for straw digestibility, lignin content, and silica content. Studies 

were undertaken to provide a high density SNP map for 172 rice cultivars that were then 

phenotyped for straw digestibility and silica content, and a much weaker association 

between lignin and digestibility. Using the results of this work, I was able to identify a 

number of QTL for all three parameters tested and proposed a number of candidate 

genes associated with some of these QTL. 
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Silica has an important role in rice biomass digestibility. 

In the 2014 samples, the results show that higher variation is apparent in digestibility 

with lower variation in silica and lignin content. These levels of variation among the 

varieties in the population allow genome wide association studies to identify the QTL 

controlling the traits studied. We found a significant correlation between silica content 

and digestibility, which was not seen between lignin and digestibility. This indicates 

that, in rice, silica has a greater impact on digestibility than lignin does, and this agrees 

with the published observation that in general rice has low lignin and high silica 

compared with other cereal straws (Van Soest, 2006).  A negative association between 

silica and digestibility has been reported in previous studies (Khush, et al., 1987); 

(Balasta, et al., 1989); (Hasan, et al., 1993); (Enishi, 2002). Hasan et al. (1993) 

compared straws of differing lodging resistance relative to silica contents and 

digestibility and found that silica content in the culm was higher in resistant types and 

lower in susceptible types. Correlation between silica and digestibility across all the 

varieties was −0.664 (Hasan, et al., 1993) 

Our studies identified a common QTL shared between digestibility and silica content, 

and we identified OsAT10 as a potential candidate gene that might be responsible for 

the variation associated with this QTL. OsAT10 has previously been shown to play a 

role in determining rice straw digestibility through its action as a coumaroyl transferase 

responsible for the coumaroylation of arabinoxylans in rice (Bartley, et al., 2013). I 

examined the silica content of OsAT10 overexpression lines and found that they also 

exhibit higher levels of Si. This strongly suggests a connection between arabinoxylan 

coumaroylation and silica in rice cell walls. Interestingly, there is a small number of 

published reports that indicate that there may be chemical bonds between rice 

hemicellulose and silica (Inanaga & Okasaka, 1995);(Inanaga, et al., 1995); (He, et al., 

2015);(Zhang, et al., 2015). However, none of these publications was able to directly 

demonstrate the nature of chemical link between hemicellulose and silica. 
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U17, a commercial cultivar, may be a good feedstock for biofuel 

production. 

Based on the overall cell wall characterisation, the accession U17 showed outstanding 

straw quality with the highest digestibility in both years, and low content in both silica 

and lignin in the 2014 samples. This is a commercial cultivar and has been well-known 

for lodging and submergence resistance. This curious observation runs contrary to the 

association between silica, digestibility and lodging susceptibility observed by Hasan et 

al. (1993).  However, the fact that U17 is known for lodging resistance and has low 

silica and high digestibility suggests that it may be possible to develop rice varieties that 

produce good yield, and also highly digestible straw in future breeding programs. 

GWAS is a powerful tool to identify QTL for complex traits such as 

digestibility, silica content and lignin content 

Recently, many studies have taken a reverse genetic approach, modifying the cell wall 

through alteration of specific cell wall synthesis genes to increase lignocellulose 

digestibility in Arabidopsis(Berthet, et al., 2011); (Brown, et al., 2011); (Lee, et al., 

2012); (Goujon, et al., 2003); (Acker, et al., 2013).This thesis aimed to use a forward 

genetic GWAS approach to identify QTL, linked to genes that affect the digestibility of 

rice straw. GWAS provides a powerful alternative to traditional linkage analysis based 

on recombinant inbred mapping populations, which can overcome limitations of 

pedigree based QTL mapping because of its higher mapping resolution, reduced time, 

and greater number of alleles available(Oraguzie, et al., 2007); (Zhu, et al., 2008). To 

achieve the association studies we used a diversity panel of rice accessions from 

Vietnam, characterising these for digestibility, silica content and lignin content and well 

as producing a high density map for these lines. After this the phenotypic data were 

merged with a panel of SNP markers to determine any bi-allelic marker in linkage 

disequilibrium with the studied trait(Gupta, et al., 2005).  

GWAS for digestibility: The saccharification assays were performed on the straw 

samples collected over two different growing seasons (spring and summer) in two years 

(2013 and 2014), using a high throughput platform (Gomez, et al., 2011). Little 

correlation was seen between data sets over two years. The heritability was calculated at 
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0.79 (2013) and 0.65 (2014) for the amount of sugar released. Interestingly, there were 

only 8 lines in the top of 25% for digestibility in the 2013 experiment, which were 

found in the top 25% in 2014. This might be because of environmental effects on the 

population and different day length requirement for different varieties (Vergara, 1985), 

(Krishnan, et al., 2011). The effect of the environment, including water, temperature, 

light, and atmosphere to the growth, developmental morphology, and biomass yield in 

many plant species has been long realized (Haferkamp, 1988), (Ventura, et al., 2011), 

(Hatfield & Prueger, 2015), (Aurangzaib, 2015). Despite this lack of correlation, it 

proved possible to identify seven QTL that were common for both years of analysis, 

when the data was analysed separately. This indicates a strong level of consistency at 

the population level that was not apparent in a simple correlation analysis.  

There has been also number of studies using association mapping to look for QTL for 

digestibility in different types of plant biomass.  Only a few candidate genes have been 

identified and validated from association mapping for saccharification so far. In alfalfa, 

20 simple sequence repeat (SSR) markers were predicted to be associated with fiber-

related quality traits (Heritability, H
2
 = 45 to 73.6); no specific candidates gene were 

reported but their finding helped to facilitate marker assisted breeding programmers for 

introgression of alleles into locally well adapted germplasm (Wang, et al., 2016). In 

sorghum, by screening 703 SSR markers against the low and high saccharification 

(glucose release by cellulase) pools identified two markers on the sorghum 

chromosomes 2 (23-1062) and 4 (74-508c) associated with saccharification yield; these 

marker were physically close to genes encoding plant cell wall synthesis enzymes such 

as xyloglucan fucosyltransferase (149 kb from 74-508c) and UDP-D-glucose 4-

epimerase (46 kb from 23-1062) (Wang, et al., 2011). In Maize, a GWAS for lignin 

abundance and sugar yield of the 282- member maize Association Panel provided 

candidate genes in the eleven QTL, using pyrolysis molecular-beam mass spectrometry 

to establish stem lignin content and an enzymatic hydrolysis assay to measure glucose 

and xylose yield (Penning, et al., 2014).  

In my research, by looking at the regions around the significant SNPs in seven common 

and 3 uncommon QTL, we identified 12 candidate genes, which included  transcription 

factors, OsMYB26 TF, OsMYB58/63 L, and the ortholog of BdMYB48, OsHCT2 and 

three homologs of HCT, Os4CL2, OsCESA11, OsAT8 and OsAT10 (BAHD family), and 
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OsIRX9 (GT43). In this list, the OsAT10, OsIRX9, and OsMYB58/63L were considered 

to be the strongest candidates, which locate in the common QTL over two years. The 

function of OsAT10 has been already studied by characterising its overexpression lines 

and has been proposed to be a coumaryl transferase due to the dramatic increase in 

coumaric acid content in the mutant plants (Bartley, et al., 2013). The overexpression of 

OsIRX9 in the well-characterized Arabidopsis irregular xylem (irx9) mutant increased 

stem strength and XylT activity and proved its role in xylan biosynthesis (Chiniquy, et 

al., 2013). The OsMYB58/63L was found to be a transcriptional activators in yeast cells, 

and its expression level was high in culm internodes and nodes(Noda, et al., 2015). A 

close homolog of this candidate, OsMYB58/63, had already been shown directly 

regulating rice secondary wall-specific cellulose synthase gene, OsCesA7(Noda, et al., 

2015). The fact that some of our candidate genes have previously been implicated in 

roles in biomass digestibility gives support to validate our results. 

GWAS for Silica content: Unfortunately, there was insufficient straw from 2013 to 

allow the measurement of lignin and silica to be made. It was proposed that genotypic 

differences in Si concentration was associated with ecotypes (subspecies), implying that 

the Si uptake ability might be different between japonica and indica(Derena, et al., 

1992).  Our rice research accessions included both indica and tropical japonica 

subspecies; and tropical japonica varieties seem to have lower silica content than indica 

varieties (T test for P = 3.81E-11). This result is opposite to what was found before, that 

japonica rice had a higher Si concentration than indica rice in Si-deficient soil 

conditions(Winslow, et al., 1997). We decided to remove the japonica subpopulation in 

order to help reducing the chance of confounding effects of population structure in 

GWAS (Brachi, et al., 2011). The results of silica quantification between studies are 

also hard to compare when the organs used to measure are different in each study(hull, 

root, stem, or leaf). It was realized that silica is mostly deposited in leaves and hulls (Ma 

& Takahashi, 2002). In addition, the Si concentration in the soil is also one of the major 

factors responsible for the variation in silica content for the same genotype (Ma & 

Takahashi, 2002)(Ma, 2004). On the other hand, different quantification methods lead 

to the variation in silica content. There are several methods that have been commonly 

applied to determine Si: Alkaline fusion or acid digestion of the plant material (Masson, 

et al., 2007), spectrometric analyses of the obtained filtrate, using atomic absorption 

spectrometry (AAS) (Hauptkorn, et al., 2001), inductively coupled plasma spectrometry 
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(ICP) (Molinero, et al., 1998), or colorimetric techniques (Fox, et al., 1969); (Allen, 

1989). These methods are all based on the total destruction of the plant matrix, a process 

that can lead to element losses due to incomplete solubilization and, particularly in the 

case of Si, volatilization, reducing the accuracy of the determination(Baffi C, 2002); 

(Reidinger, et al., 2012). In our research, we used a portable X-ray fluorescence 

spectrometer (P-XRF) (Reidinger, et al., 2012) to rapidly, and safely analyse the Si 

content, producing a very little bias. The repeatability and precision of the 

measurements is as good as or better than that of other methods. 

The phenotypic differences in Si concentration in rice are controlled by multiple 

genes(Majumder, et al., 1985); (Wu, et al., 2006). In my research, the GWAS for silica 

discovered three QTL in chromosome 1, 6, and 11. These QTL are novel and not co-

localized with other QTL that were detected in previous studies. To date, there is a 

number of QTL analysis on silicon content, using recombinant inbred lines (RILs) from 

different indica/japonica crosses. A total of 10 QTL for silicon content in different rice 

organs under paddy field conditions were detected on chromosomes 1, 5, 6, 11 and 12 

(Dai, et al., 2005). Other 10 QTL for silicon uptake in rice seedlings in nutrition 

solution were detected on chromosomes 1, 3, 7, 8 and 9 (Wu, et al., 2006). And 2 QTL 

for silicon content in the leaves under paddy field condition were detected on 

chromosomes 5 and 10 (Norton, et al., 2010). Recently, a genetic mapping using an F6 

population and a GWAS with 350 accessions from the Rice Diversity Panel 1 identified 

6 SNPs (4 loci) that co-localise with previously detected QTL for rice silicon or arsenic 

and A single significant SNP identified in the GWAS mapping within the tropical 

japonicas accessions was detected within 200 kb of Low Silicon 2 (Lsi2) transporter 

gene on chromosome 3 (Talukdar, et al., 2015).  

All the QTL that I discovered from my GWAS for silica content are novel and none of 

the known silica transporter genes appear in these QTL regions. Interestingly, the QTL 

on CH6 coincides with the QTL detected from GWAS for digestibility. TheOsAT10 is 

located close to the most significant SNPs on CH6. Notably, OsAT10 appears to be a 

co-expression partner with a putative laccase gene Lac4 (LOC_Os01g62490) found next 

to the highest peak of the QTL in CH1 (weighted PCC = 0.624856) 

(http://ricefrend.dna.affrc.go.jp/). This raises an interesting question as to whether there 

http://ricefrend.dna.affrc.go.jp/
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might be a connection between the candidate genes associated with these two silica 

QTL. 

GWAS for lignin content: Phenotyping for amount of lignin involve a range of 

methods, however the inconsistencies among them were found (Moreira-Vilar, et al., 

2014). Recently, a report, (Moreira-Vilar, et al., 2014), showed that the Acetyl Bromide 

method (Hatfield, et al., 1999), applied in my research, is faster, simpler and presents 

better recovery of lignin in different herbaceous tissues than Klason (Bunzel, et al., 

2011) and Thioglycolic Acid based methods (Suzuki, et al., 2009). Recently, the 

approach of association mapping based on examining individual genes and alleles at the 

loci responsible for lignin content has been applied to identify significant associated 

SNPs. An intronic SNP in the candidate gene LpCCR1 in poplar was found significantly 

associated with cell wall digestibility and Klason lignin content in stem material based 

on association mapping (Parijs, et al., 2016). By doing association mapping across 40 

candidate genes associated with lignin content measured by Pyrolysis Molecular-Beam 

Mass Spectrometry (PyMBMS), a total of 13 significant single marker associations 

were found for nine candidate genes in black cottonwood (Populus trichocarpa).  

In this study, the GWAS identified 8 QTL regions, in which one in CH11 coincides 

with one found in GWAS for digestibility. This is different from the results in Maize 

Recombinant Inbred Population, which revealed no overlapping QTL for lignin 

abundance and saccharification yield (based on glucose and xylose yield) (Penning, et 

al., 2014). The lignin abundance together with other cell-wall polysaccharides in 

Penning‘s work was measured by PyMBMS. 

A homolog of HCT was found in CH11 at the same regions of QTL for digestibility. 

Although there are no reports about functional studies of any OsHCT in rice yet, a study 

of a HCT by reducing its expression in Medicago resulted in an increase in stem 

digestibility, but this was accompanied by a dwarfing phenotype (Chen & Dixon, 2007).  

There is a cluster of 7 peroxidase genes located next to the QTL peak on CH3 and a 

laccase gene in the QTL region CH11_18.8 ± 0.3. There are some reports on the impact 

of modifying peroxidase genes in the lignin content in Arabidopsis and tobacco (Blee, 

et al., 2003);(Berthet, et al., 2011); (Zhao, et al., 2013).  These candidates might be 
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playing the role in polymerization of monolignols into lignin in rice and worthy to be 

investigated more in functional studies.  

Conclusion and future work 

In conclusion, the association mapping for three traits associated with rice straw quality: 

digestibility, lignin and silica content, have succeeded in identifying a candidate gene 

that has high effect on both silica content and digestibility, and many other potential 

candidate genes. This forward genetic approach appears to be a powerful way to 

identify the known and novel genes involved in these processes. The result of this 

research will lead to further studies in two directions (1) to look for the linkages 

between silica and hemicellulose (2) to scrutinise the potential candidate genes and 

carry out functional studies to confirm their roles in cell wall biosynthesis in order to 

facilitate their application in breeding programs aiming to select plants with improved 

digestibility but without a yield-penalty. 
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Appendix A - List of studied rice accessions 

No Genotype O. sativa species No Genotype O. sativa species No Genotype O. sativa species No Genotype O. sativa species

1 09L140 Indica 48 BT7 Indica 95 Lua_nuong_3 Tropical Japonica 142 Te_meo Indica

2 09L15 Indica 49 BT7_IR64 Indica 96 Lua_nuong_63 Tropical Japonica 143 Te_nuong Indica

3 09L17 Indica 50 BTS7 Indica 97 N46 Indica 144 Te_ruong__2 Indica

4 09L28 Indica 51 BT_LT2 Indica 98 N46__B6 Indica 145 Toc_lun Indica

5 09L33 Indica 52 BT_ST Indica 99 N46__B6 Indica 146 Tran_chau_huong Indica

6 1094-1 Indica 53 BT_ST Indica 100 N91 Indica 147 U17 Indica

7 10L140 Indica 54 BT__B5 Indica 101 NH_N46 Indica 148 AC10 Indica

8 10L142 Indica 55 Belecsec Tropical Japonica 102 Nep358 Indica 149 X_mai Indica

9 10L144 Indica 56 Beo_Buot_Vang Tropical Japonica 103 Nep_98 Indica 150 Xi23 Indica

10 10L150 Indica 57 CL8_AC5 Indica 104 Nghi_Huong_1 Indica 151 nep_meo_luong Tropical Japonica

11 10L155 Indica 58 CL8_LT2 Indica 105 Nghi_Huong Indica

12 10L164 Indica 59 CL8_P6 Indica 106 OM2517 Indica

13 10L182 Indica 60 Caren Indica 107 OM3536 Indica

14 11L108 Indica 61 D139 Indica 108 OM4325 Indica

15 11L12 Indica 62 D381_Q5 Indica 109 OM4900 Indica

16 11L162 Indica 63 DT7_LT2__BT7 Indica 110 OM5451 Indica

17 11L17 Indica 64 HD1 Indica 111 OM5451 Indica

18 142M12 Indica 65 HDT2 Indica 112 OM5494 Indica

19 AC10_Fukus Indica 66 HDT4 Indica 113 OM5626 Indica

20 AC5 Indica 67 HDT5 Indica 114 OM5930 Indica

21 AC5 Indica 68 HDT7 Indica 115 OM6613 Indica

22 AC5_149_13 Indica 69 HDt8 Indica 116 OM68__ Indica

23 AC5_BB1_4 Indica 70 HT1 Indica 117 OM9218 Indica

24 AC5_CH133 Indica 71 HT6__B5 Indica 118 Om6377 Indica

25 AC5_HT1 Indica 72 Huong_com Indica 119 P13 Indica

26 AC5_Q5__AC4 Indica 73 IR1561__B__ Indica 120 P6 Indica

27 AC5_Q5__AC4 Indica 74 IR24 Indica 121 P6_ST Indica

28 AC5_Q5__C70 Indica 75 IRBB13 Indica 122 P6_ofodiki__P6 Indica

29 AC5_Q5__C70 Indica 76 IR_ Indica 123 Perai_BT7 Indica

30 AG_504 Indica 77 IR_ Indica 124 Perai_P6__HT1 Indica

31 A__hung_cha Indica 78 Jasmin_AC5 Indica 125 Pet_muong_canh_vang Tropical Japonica

32 A__hung_cha_2 Indica 79 KD18 Indica 126 Pet_muong_canh_vang_1 Tropical Japonica

33 BB10 Indica 80 KG_4900 Indica 127 Q5 Indica

34 BB1_10_LT2 Indica 81 Kham_Duc Indica 128 Q5_Fukus__Q5 Indica

35 BB1_11 Indica 82 Khau_dien_lu Tropical Japonica 129 Que_Thom Indica

36 BB21 Indica 83 Khau_giang Tropical Japonica 130 RD354 Indica

37 BB3 Indica 84 Khau_lan_gan_monTropical Japonica 131 SH4 Indica

38 BB3_7 Indica 85 Khau_lan_gan_mon__1Tropical Japonica 132 S_c_tr_ng Indica

39 BB4_10 Indica 86 Khau_mu_lai_dong_1Tropical Japonica 133 TET4247 Indica

40 BB4_11 Indica 87 Khau_mumeeng Indica 134 TET_ Indica

41 BB4_7 Indica 88 Khau_mumoong Tropical Japonica 135 Tam_du Indica

42 BB5 Indica 89 Khau_munuong Tropical Japonica 136 Tan_nhe Tropical Japonica

43 BB5 Indica 90 LT2 Indica 137 Tan_nhe_2 Tropical Japonica

44 BB5_7 Indica 91 LT3 Indica 138 Tan_nhe_3 Tropical Japonica

45 BB7 Indica 92 Lua_ngoi Indica 139 Tan_nhe__1 Tropical Japonica

46 BB7 Indica 93 Lua_nuong_1 Tropical Japonica 140 Te_Ka_cham_pi__1 Tropical Japonica

47 BC15 Indica 94 Lua_nuong_2 Tropical Japonica 141 Te_ka_cham_pi Tropical Japonica
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List of Abbreviations 

4CL – Hydroxycinnamate-CoA ligase 

2n – Diploid 

A – Absorbance  

A – Adenine  

AAS _ Atomic Absorption Spectrometry 

AIR – Alcohol insoluble residue 

Alfalfa – Medicago sativa 

ANOVA – Analysis of variance  

Arabidopsis – Arabidopsis thaliana 

BAHD – Superfamily named after the first four members of the family to be 

biochemically characterised (BEAT: benzylalcohol acetyltransferases, AHCT: 

anthocyanin hydroxycinnamoyl transferase, HCBT: anthranilate 

hydroxycinnamoyl/benzoyl transferase, DAT: deactylvindoline acetyltransferase) 

bp – Base pairs 

bm– Brown mid-rib mutant 

Brachypodium – Brachypodium distachyon 

C – Cytosine  

C3H – 4-Courmarate-3-hydroxylase 

C4H – Cinnamate-4-hydroxylase 

CAD – Cinnamyl-alcohol dehydrogenase 

CCoA-3H – 4-Hydroxycinnamoyl-CoA 

CCoA-OMT – 5-Hydroxyferuloyl-CoA-O-methltransferase 

CCR – Cinnamoyl-CoA-reductase 

CH _ Chromosome 

CO2 – Carbon dioxide 

Csl – Cellulose synthase-like 

DNA – Deoxyribonucleic acid 

E5 – Blend of fuel containing 5% ethanol 

E10 – Blend of fuel containing 10% ethanol 

F5H – Ferulate-5-hydroxylase 

FA – Ferulic Acid 
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FDR – False Discovery Rate 

g – Gram 

G – Guanine  

G – Guaiacyl lignin monomer 

GAX – Glucuronoarabinoxylan 

GWAS – Genome Wide Association Study 

GHG – Greenhouse gas 

GlcA – Glucuronic acid 

GT – Glycosyltransferase 

GUX – GLUCURONIC ACID SUBSTITUTION OF XYLAN 

h – Hour 

H – p-Hydroxyphenyl lignin monomer 

H
2
 – Broad sense heritability 

H2O – Water 

H2SO4 – Sulphuric acid 

H4SiO4 – Monosilic acid 

HCl – Hydrochloric acid 

HCT – Hydroxycinnamoyl-CoA shikimate/quinate transferase 

irx – Irregular xylem mutant 

ICP _ Inductively Coupled Plasma 

KOR – KORRIGAN 

L – Litre 

LOD – Logarithm of the odds 

MBTH – 3-methy-2benzothiazolinonehydrazone 

M – Molar 

Mbp – Mega base pairs 

MeGlcA – Methyl glucuronic acid 

mg – Milligram 

min – Minute 

ml – Millilitre 

MLG – Mixed linkage glucan 

Mm – Millimetre 

mM – Millimolar 
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NaOH – Sodium hydroxide  

nmol – Nanomole 

OMT – O-methyltranserase 

P – Probability 

p-CA – p-Courmaric Acid 

PAL – Phenylalanine-ammonia lyase 

PCA – Principle component analysis 

PCC _ Pearson Correlation Coefficient 

PCR – Polymerase chain reaction 

Poplar – Populus  

PyMBMS _ Pyrolysis Molecular-Beam Mass Spectrometry 

QTL – Quantitative trait loci 

RNA – Ribonucleic acid 

RIL _ Recombinant Inbred Lines 

RT – Room temperature 

S – Syringyl lignin monomer 

SD – Standard deviation 

Si – Silica  

SiO2 – Silicon dioxide 

Si(OH)4 – Silicic acid 

SNP – Single nucleotide polymorphism 

SSR _ Simple Sequence Repeat 

T-DNA – Transfer DNA 

v/v – Volume to volume 

w/v – Weight to volume 

wild-type – Wild-type 

VG – Genotype variance 

VE – Environmental variance 

VT – Total variance 

XAT – XYLAN ARABINOSYLTRANSFERASE 

XAX – XYLOSYL ARABINOSYL SUBSTITUTION OF XYLAN 

XRF – X-ray fluorescence 

°C – Degrees Celsius 
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