
Matchin~ Al~orithms For Handlin~ Three Dimensional

Molecular Co-ordinate Data

A thesis submitted for the de~ree of Doctor of

Philosophy at Sheffield University

By

Andrew Timothy Brint

Deoartment Of Information Studies July 1987

IMAGING SERVICES NORTH
Boston Spa, Wetherby

West Yorkshire, LS23 7BQ

www.bl.uk

BEST COpy AVAILABLE.

VARIABLE PRINT QUALITY

IMAGING SERVICES NORTH
Boston Spa, Wetherby

West Yorkshire, lS23 7BQ

www.bl,uk

PAGE NUMBERSARE CUT

OFF IN THE ORIGINAL

Abstract

Various techniques for effici~ntly

dimensional co-ordinate data are reviewed.

handlin~ three

In particular,

four al~orithms for substructure searchin~ are compared, as

are two methods for findin~ the largest common

substructures between a set of molecules. A simulation

followed by an imolementation of a version of one of these

common substructure findin~ 81~orithms on a parallel

processor (transputer) system is also reported, with up to

eleven transputers bein~ used. Carryin~ on from this, a

brief attempt at a transputer implementation of distance

geometry is mentioned. Finally, ~ system for searchin~ a

file of one thousand molecular co-ordinates (taken from the

Cambridge Crystallographic D~ta Bank) in order to find

similar structures to ~ p~ttern moleculA, is described.

This system incorporates a screening stage usin~ screens

previously used for three dimensional substructure

searching, before ~oing on to a full comparison sta~e usin~

one of the algorithms mentioned above. Throu~hout the 8bove

work, the emphasis was placed on the efficiency of the

algorithms rather than on developin~ an inte~rated

operational system.

Acknowledgements

The author receive1 a research studentship from the Science

And Engineering Research Council and is grateful to many

people for their help during the project, including:-

my supervisor, Dr. Peter Willett,

Sue Jakes, for the use of programs to

Crystallographic Database and for

screening system,

read the

details

Cambridge

of the ~D

Dr. David Bawden, Jeremy Fisher, for providing ideas and

data throughout the project. (Also Frank Woodward for

writing the chemical structure drawing program used to

illustrate Chapter 8),

Dr. Gordon Manson, George Wilson, for their help and use of

their facilities when working with transputers.

CONTENTS

CHAPTER 1

CHEMICAL INFORMATION SYSTEMS IN DRUG DESIGN

1.1 STRUCTURE REPRESENTATION

1.1.1 Systematic Nomenclature

1.1.2 Linear Notations

1.1.3 Connection Tables

1.2 CHFMIC~L RETRIEVAL SYSTEMS

1.2.1 Graph Theory

1.2.1.1 Introductory Graph Theory

1.2.1.2 NP-Completeness

1.2.2 Structure Searching

1.2.3 Substructure Searchin~

1.2.3.1 Screenin~

1.2.3.2 Atom-By-Atom Searching

1.2.~.3 Two Dimensional Substructure

Search Systems

1.3 QUANTITATIVE STRUCTURE-ACTIVITY

RELATIONSHIPS

1.3.1 Hansch Analysis

1.3.2 The Free-Wilson Method

1.3.3 Pattern Recognition

1.3.4 An Overview Of OSAR

1.4 THE NEED FOR THREE DIMENSION~L METHODS

CHAPTER 2

COMPUTERS IN THREE DIMENSIONAL DRUG DESIGN

2

~

3

4

5

7

7

8

9

10

11

13

14

15

16

17

19

21

23

25

2.1 THE DRUG-RECEPTOR INTERACTION 25

2.2 THE AVAILABILITY OF ~D CO-ORDINATES 27

2.2.1 Obtainin~ 3D Co-ordinates 27

2.2.2 D~tabases Of Co-ord1n~tes 29

2.2.3 Relevance To The Ligand's Conformation 29

2.~ COMPUTER EXAMINATION OF THE RECEPTOR-LIGAND

INTERACTION ~1

2.3.1 Three Dimensional Computer Gr~phics 31

2.3.2 Distance Geometry 33'

2.4 DISCUSSION 35

CHAPTER 3

THREE DIMENSIONAL SUBSTRUCTURE SEARCHING 37

3.1 INTER-ATOMIC DISTANCE SCREENS 38

3.1.1 Basic Implementation 38

~.1.2 Modifications To The ftbove Method 39

3.1.3 Analysis Of The Screen Performance 40

3.2 PARTIAL MATCHING OF TOPOGRAPHIC PATTERNS 41

3.2.1 Reported Algorithms 41

3.2.2 Comparison Of Partial Matching

Al~orithms 4~

3.2.2.1 Lesk's Algorithm 43

,.2.2.2 A Set Reduction Algorithm 45

3.2.2.3 A Clique Detection Method 4R

3.2.2.4 Ullman's Subgraph Isomorphism

Al~orithm

3.2.3 A Worked Example

3.2.4 Results Of The Comparison

1.2.5 Discussion Of The Comparisons

~o

54

57

59

3.2.5.1 The Combinatorial Problem

Suff~red By The Reduction Methods 61

3.2.6 Searchin~ Macromolecules 63

3.2.6.1 Modifications To Lesk's Al~orithm 63

3.2.6.2 Results And Overview 65

3.3 COMMENTS 66

CHAPTER 4

COMMON ~D SUBSTRUCTURES 68

4.1 INTRODUCTION 68

4.2 CRANDELL AND SMITH'S ALGORITHM 69

4.2.1 Setting Up The Distance Tables 70

4.2.2 Growing 71

4.2.3 Naming 71

4.2.4 Comparing 72

4.2.5 Amending The Distance Tables 13

4.3 USING GRAPH THEORY TO FIND COMMON

SUBSTRUCTURES 73

4.3.1 Bron And Kerbosch's Algorithm 77

4.3.2 Golender And Rozenblit's Algorithm 78

4.3.3 Gerhards And Lindenberg's Algorithm 81

4.3.4 Loukakis And Tsouros' Algorithm 84

4.3.5 Loukakis' Algorithm 87

4.3.6 A Worked Example 90

4.3.7 Comparing The Algorithms 92

4.4 MODIFYING THE TWO APPROACHES FOR FINDING

COMMON SUBSTRUCTURES 96

4.4.1 Sortin~ The Growths In Crandell And

Smith's Al~orithm 97

4.4.2 Extendin~ The Clique Finding Algorithm

To More Than Two Molecules 99

4.5 COMPARING THE TWO APPROACHES 101

4.~.1 Comparin~ Two Molecules 101

4.5.1.1 Methodology 101

4.5.1.2 Discussion or The Results 103

4.5.2 Comparing More Than Two Molecules 105

4.6 EXTENDING THE MAXIMUM COMMON SUBGRAPH

ALGORITHM TO LARGER MOLECULES 106

4.7 OVERVIEW 109

CHAPTER 5

SIMULATING A MULTIPROCESSOR SYSTEM FOR FINDING

THE LARGEST COMMON SUBSTRUCTURE

~. 1 INTRODUCTION

5.2 PARALLEL COMPUTER ARCHITECTURES

5.2.1 Parallelism In "Conventional"

112

112

113

Architectures 114

5.2.2 Arrays or Processors 115

5.2.3 Data Flow Comouters 117

5.2.4 Multiple Independent Processors 120

5.~ MULTIPROCESSOR SIMULATIONS 121

5.3.1 Chemical Simulations 121

5.3.2 General Models 122

5.4 MODELLING THE CRANDELL AND SMITH ALGORITHM 123

5.4.1 PASSIM 123

5.4.2 The Processor Organisation 124

5.4.3 The Al~orithm 125

5.4.4 The PASSIM Model Of The Al~orithm 126

5.4.5 The Duration Of The Processes 127

5.4.6 The Parameters Of The Model 130

5.5 THE INITIAL RESULTS OF THE SIMULATION 132

5.5.1 The Partition Factors And

The D~ta Transfer Rate

5.5.2 Varying The Standard Deviations

5.5.~ Varying The Processor Overhead

5.5.4 Using Other Molecules

5.5.5 Comparing Three Molecules

5.6 COMMENTS

5.6.1 Limitations

5.6.2.Conclusions

CHAPTER 6

A TRANSPUTER IMPLEMENTATION OF CRANDELL AND

132

133

133

134

134

135

135

136

SMITH'S ALGORITHM WITH NO SORTING STAGE 1~8

6.1 TRANSPUTERS AND OCCAM 138

6.1.1 A Brief Introduction To Transputers 138

6.1.2 A Short Outline Of Occam 139

6.1.~ Structured Programmin~ And Occam 142

6.1.4 Sta~es In The Development Of Software

Environments For Parallel Processing 144

6.2 THE IMPLEMENTATION 145

6.2.1 The Tree Structure 147

6.2.2 Distributing The Algorithm Over

The Tree 149

6.3 EXPERIMENTAL RESULTS 151

6.4 CONCLUSIONS 152

CHAPTER 7

DISTANCE GEOMETRY CALCULATIONS USING MULTIPROCESSORS 155

7.1 AN OUTLINE OF DISTANCE GEOMETRY 156

7.1.1 Ti~htening The Inter-Atomic Bounds 156

7.1.1.1 The Triangle Inequality 156

7.1.1.2 The Inverse Trian~le Inequality 157

7.1.1.3 The Tetrangle Inequality 158

7.1.2 Finding Co-ordin8tes Which Satisfy

The Constraints 161

7.1.2.1 Obtaining Approximate

Co-ordinates 162

7.1.2.2 Cyclic Co-ordinate Descent 165

7.1.2.? Conjugate Gradient Method 166

7.2 A SEQUENTIAL ANALYSIS OF DISTANCE GEOMETRY 167

7.? A TRANSPUTER IMPLEMENTATION OF DISTANCE

GEOMETRY 171

7.4 CONCLUSIONS 174

CHAPTER 8

SEARCHING FOR THREE DIMENSIONALLY SIMILAR MOLECULES 177

8.1 THE THREE DIMENSIONAL SIMILARITY SEARCHING

SYSTEM

8.2 IMPLEMENTATION AND RESULTS

178

181

8.3

SUMMABY

REFERENCES

AL.""ERA11o~

8.2. 1 The Molecules And Clique f'indin'S

Al'Sorithm Chosen

8.2.2 The Performance Of The Two

Sta~e System

8.2. ~ The Addition Of A Third Stage

8.2. 4 An In termedia te Sta~e

8.2.5 The Structures Retrieved By

The System

CONCLUSIONS

CHAPTER 9

181

1R~

185

1B7

188

189

192

198

233

Note On Alterations

Several alterations were requested to be carried out by the examiners. Some

of these entailed changing odd sentences or phrases so as to try to improve the

readability, clarity and ease of comprehension of the thesis. As the original

word processing facilities were no longer available, it was decided for reasons

of neatness to mark the relevant sentences and paragraphs in the body of the

thesis and to give the new versions in a section headed "Alterations" at the very

end of the thesis.

For similar reasons, the requested extension to the final chapter was carried

out by adding extra pages numbered 196a, 196b and 196c before the original

last page of this chapter.

Andrew Brint October 1987

CHAPTER 1

CHEMICAL INFORMATION SYSTEMS IN DRUG DESIGN

Over the

increasingly more

methods involving

years,

expensive

drug

with

the synthesis

design

the trial

and testing

has

and

of

become

error

large

numbers of compounds, becoming less likely to succeed. This

is partly due to toe more rigorous standards demanded from

modern drugs with emphasis being put on their lack of side

effects, and also probably because the more easily

discoverable drugs (such as those like morphine which are

extracted from plants) have already been found [Gund80,

Aust84, Wyke87]. Therefore increasing emphasis has been put

on trying to reduce the chance element in drug design and

complex computer systems have been developed to aid in this

task.

Typically the launching of a new medicinal

product will have involved the synthesis and testing of

about ten thousand compounds, have cost between 40 and 100

million dollars and have taken 10 years (with at least 2

years in the pre-clinical test tube and animal trials, and

5 in the clinical trials on test groups of humans) [Wyke87,

Woo184]. Consequently, chemical information systems have

been designed to try to lower this by using knowledge of

some of the millions of compounds already known to the

chemical community and also of the tens of thousands a

pharmaceutical company has access to. This is achieved in a

variety of ways, including

1

1) Novelty checking -the comparing of a structure against a

database to find out whether any information is known about

it.

2) Synthesis planning -trying to find

chemicals held or easily obtainable by a

specified compound.

a pathway from

company, to a

3) Identification of compounds containing substructures of

interest.

4) Prediction of compounds' properties.

The net effect has been a growing use of

computers to assist in the search for new drugs with the

development of sophisticated retrieval systems [Wil187a],

of quantitative structure-activity relationships, and of

synthesis design techniques [Hend86] inter alia. This

chapter briefly reviews several of these areas as a

precursor to the more detailed description of techniques

for processing three dimensional (3D) chemical structure

data that forms the basis of this thesis.

1.1 STRUCTURE REPRESENTATION

In addition to the great demand for information

systems in the pharmaceutical industry, information systems

in chemistry have a large advantage over other scientific

fields in that chemical structures provide a very

convenient index to the data. A variety of different

structure representations have been developed for chemical

compounds partly for historical reasons, and partly for use

2

in specific applications, for instance structure-activity

oriented representations [Avid82]. The three main

unambiguous structure representations (that is where each

characterization defines a single compound) [Ash85,

Wil187a] are described very briefly below.

1.1.1 Systematic Nomenclature

Systematic nomenclature methods [Cahn79] are

algorithmic ways of assigning names which are of the

familiar chemical style to chemical compounds (for example,

calling SnC14 tin (4) chloride). However, computers cannot

easily manipulate data in this form, and so it has very

little use in chemical retrieval systems other than for

printed indexes. When it does occur it is usually for

historical reasons and software is used to convert the

systematic name into another structure

[Vand74].

1.1.2 Linear Notations

representation

Linear notations represent chemicals as a string

of alphanumeric characters and the main linear notation is

the Wiswesser Line-formula (WLN) [Vol183]. In WLN, commonly

occurring features such as certain rings, are represented

by only a few characters (eg. the hydroxyl pair O-H is

represented by Q) and saturated, branchless carbon chains

are denoted by the number of carbons in the chain. Examples

3

of the naming of structures using WLN are given in figure

1.1 (along with their intermediate steps).

The use of linear notations in present day

chemical information systems owes a great deal to history

in that before the general use of computers, linear

notations had the advantages of being relatively easy to

produce from a chemical structure diagram, not requiring

much storage and being easy to sort (to allow indexing) .
.

These advantages were also important when computers started

to be used in chemical information, but more recently the

increased power of computers has led to widespread use of

connection tables.

1.1.3 Connection Tables

Connection tables [Ash75], as their name

suggests, indicate which atoms are connected together and

the order of each bond. Normally, hydrogen atoms are not

included in connection tables since their presence can be

deduced from a knowledge of the connectivities, ie. the

number of attached non-hydrogen atoms, for each of the

atoms in the table. An example of a connection table is

given in figure 1.2.

The connection table of figure 1.2 includes some

redundancy in it in that each bond occurs in two places in

the table. This can be removed if storage space is short,

however this would have an adverse effect on the speed of

obtaining information from the table. Connection tables can

4

CH3 CH2 CH2 - NH - CH2 CH2 CH3
Intermediate Step 3 M 3

Final WLN Form 3M3

Figure 1.1(a) A Symmetric Example Of Wiswesser Line Notation

Intermediate Step

Final WLN Form

Br ,
CH 1 CH 1 - C - CH =0

I

2

ZXE2&VH

NH'l.

E
X
Z

VH

Figure 1.1(b) A More Complex Example Of Wiswesser-Line Notation

0
4

CH2 " 567 B Cl' - _ C3
l - 0 - CH1. - CH2, - OH

Connection Bond Connection Bond Connection

, Cl 2 1
2 C 1 1 3 1
3 C 2 1 4 2 5
4 0 3 2
5 0 3 1 6 1
6 C 5 1 7 1
7 C 6 1 8 1
8 0 7 1

Figure 1.2 A Structure Diagram And Its Corresponding
Connection Table

Bond

be made unique by using algorithms which specify the order

in which the atoms should occur in the table. Probably the

best known ordering algorithm is that described in [Morg65]

which assigns

connectivity,

a number

the sum

neighbours, and so on.

to an atom depending

of the connectivities

on its

of its

The chemical structures are not usually input

directly as connection tables but are more likely to be

input as two dimensional stiucture diagrams or in another

representation such as WLNj conversion software is then

used to produce the internal connection table

representation.

As was alluded to above, over the last 15 to 20

years connection tables have become the more attractive

means for structure representation in chemical information

systems because they allow more flexibility in substructure

searching as described in the next section [Bawd83, Ash85,

Wil187a]. (The user can choose to search for any fragment

he wants whereas WLN systems often place restrictions on

the type of fragments which can be searched for.) On

account of this, connection tables are the only type of

structural representation to be considered in the rest of

this thesis.

1.2 CHEMICAL RETRIEVAL SYSTEMS

All major chemical information systems include

powerful searching facilities with the two main types of

5

searches [Almo82] being:-

1) Structure searching where a database is analysed to see

whether it contains a molecule which is the same as the

query molecule (and it is used for the gathering of general

information on the molecule).

2) Substructure searching where molecules are looked for

which contain the query as a substructure. This type of

searching is used,· amongst other reasons, for the retrieval

of chemicals containing substructures thought to cause a

particular activity, the analysis of rival companies

products, obtaining information about reactions and

planning possible synthesis paths.

Recently there has been interest in generic

structure searching [Lync81] where classes of related

compounds are retrieved which differ in having, for

example, variant substituent groups and patterns. This is

of use in patent work where whole classes of related

compounds need to be retrieved.

Before considering the two main types of searches

in detail, the closely related mathematical field of graph

theory [Deo74] is introduced. In addition to its close

relationship with chemical searching and connection tables,

several of the algorithms used in future chapters will have

their foundations in graph theory. Therefore the next

section gives a brief introduction to graphs and the

following section introduces the related idea of NP

completeness (which is of importance when discussing the

complexity of graph theory algorithms).

6

1.2. 1 Graph Theory

The representation of a chemical structure as a

connection table is closely related to the concept of a

graph with the problems of structure and substructure

searching becoming those of graph and subgraph isomorphism.

Graph matching is also widely used in pattern recognition

for tasks such as identifying a machine part [Bol179] and

finger print identification [Isen86].

1.2.1.1 Introductory Graph Theory

A graph consists of a set of points (nodes) and a

set of arcs between pairs of these points. If each node has

a descriptor associated with it, then the graph is labelled

and if a descriptor is associated with each arc, then the

graph is weighted. A directed graph is when each arc has a

direction associated with it. A subgraph of a graph is a

subset of the nodes of a graph along with all the arcs of

the graph connecting these nodes. (However, some

definitions of a subgraph allow a subset of these arcs.)

Therefore a connection table can be regarded as a labelled,

undirected graph where the labels on the nodes are the

atomic numbers and the labels on the arcs are the bond

orders.

A graph isomorphism [Read77, Gati79] is a one to

one mapping between the arcs and nodes of one graph and the

arcs and nodes of another graph such that if an arc with

7

end points a, b maps onto an arc with end pOints x, y then

{a,b} maps onto {x,y}. A subgraph isomorphism is a graph

isomorphism between a graph and a subgraph of another

graph. Consequently, the problem of chemical structure

searching (exact matching) for purposes such as

registration is analogous to that of graph isomorphism, and

that of substructure searching (partial matching) is

analogous to subgraph isomorphism. Unfortunately, whereas

quick methods for structure searching exist (see Section

1.2.2) and it can- be shown that graph isomorphism problems

can be solved in a time which is a polynomial function of

the size of the graph for graphs of bounded valence

[Luks80], subgraph isomorphism is known to belong to the

NP-complete class of problems.

1.2.1.2 NP-Completeness

The concept of NP-completeness [Gare79, Papa82]

is concerned with the

worst possible case.

performance of algorithms in the

More specifically, the label NP-

complete identifies a class of problems for which no known

algorithm exists which can solve all cases of any of the

problems in a time which is a polynomial function of the

"size" of the problem, but for which no-one has proved that

such an algorithm does not exist. (The "size" is a

polynomial function of such things as the number of nodes

in the graphs.) Moreover, the NP-complete class is defined

so that if a polynomial algorithm is found for one member

8

of the class, then the algorithm can be modified to solve

any other member of the class in polynomial time. Hence, in

one sense, all NP-complete problems are of the same degree

of complexity.

The most well known NP-complete problem is that

of the Travelling Salesman Problem [Law185] which involves

finding a path between a set of cities which is of the

shortest possible length, which visits each city once and

which ends at the starting pOint, and the problem has been

extensively studied over many years. However, the

"intractability" of these problems only occurs in a very

low percentage of cases, and so the problem really becomes

that of finding an effective heuristic for the cases of

interest. But the NP-complete concept does indicate that

the chosen algorithm could have a poor performance in

adVerse conditions.

1.2.2 Structure Searching

With structure searching [Wil187a], if the

structure representation being used is a unique form such

as WLN, then the problem becomes the straightforward one of

string matChing. However, if connection tables are being

used they can either be put into a unique form using

Morgan's algorithm or some form of hash coding can be

applied. With this last method, the few hits from the

hashing stage can be passed on to the computationally more

expensive isomorphism examination [Bawd81]. A system which

9

incorporates

centres in

[Wipk74].

stereochemical

the matching

1.2.3 Substructure Searching

features, such as chiral

process has also been described

Another important method in computer assisted

drug design is chemical substructure searching (determining

whether a pattern of atoms is present in a chemical

compound) [Wil187a]. This can be either two dimensional

searching which uses the connectivity relations (or

topology) of the atoms, or three dimensional which uses

their 3D co-ordinates (or topography). Three dimensional

substructure searching is more directly related to drug

design because the binding of a drug to its target is very

heavily dependent on the drug's three dimensional shape,

and it will be considered in detail in Chapter 3.

Due to the computational expense of examining a

molecular structure to see whether it contains a particular

substructure, most substructure search systems have two

stages. The first (or screening) stage [Lync75] uses a

computationally inexpensive method to try to rule out from

consideration most of those structures in a machine

readable file which do not contain the substructure. The

structures which survive stage one, then pass on to an

atom-by-atom search to discover whether they actually

contain the required pattern. This involves atoms from the

query and the structure being compared with each other to

10

determine whether they have the same attributes (such as

having neighbours of the same atomic types).

Whilst screening systems have traditionally been

used for carrying out substructure searches on large files

of compounds, other techniques are now being developed

although their exact details are not clear. In particular,

[Bruc87] describes a method for entering the molecules in a

database into a tree structure by examining each atom, its

neighbours and so on, and using these to determine which

branch to take when building the tree structure. Similarly,

a query substructure descends down the tree until it comes

to its match and the molecules containing it can be read

out. The advantage of this method is that as the number of

molecules in the file increases, the search time goes up

sUb-linearly. Another alternative has been described by

Vladutz [Vlad87] and involves superimposing all the

molecules in a file on to a grid. A substructure search is

effected by !inding the grid sites corresponding to it and

intersecting these with those assigned to each compound.

However, neither of these techniques will be considered any

further in this thesis.

1.2.3.1 Screening

When the search system is set up, the relevant

screens are aSSigned to every structure in the database.

Then each substructure search involves determining the

screens "contained" in the substructure and extracting the

1 1

structures which contain all of these screens in their own

screen lists. These structures are then passed on to the

atom-by-atom search, with one of the primary aims of the

screening system being to minimise the number of incorrect

structures (or false drops) passed on to this step.

Ideally, each screen should be assigned to 50% of

the structures while being independent of all of the other

screens [Adam73a]. This cannot be achieved in practice due

to the uneven distribution of substructural features

[Adam71] and the interdependence of screens; while another

complicating factor is that the queries might not make an

even use of the screen set [Adam73c]. However, it leads to

the important principle that the screens should have as

even a distribution as possible.

In practice, how specific the screens should be

depends on how homogeneous the chemical structures are and

the probable nature of the queries. There are two main

methods of screen generation (although in reality some

combination of the two is often used). The first method was

developed at Sheffield University in the early 1970's

[Adam71, Adam73a, Adam73b] and uses bond centered fragments

(although atom and ring centered fragments were also

investigated). The screens are assigned with approximately

similar frequencies by having the commoner features

associated with larger bond centered fragments.

The second method [Feld75] was developed at

Walter Reed Army Institute of Research (WRAIR).

the

This

technique produces screens by "growing" atom/bond fragments

12

in a tree, each branch having a screen associated with it.

A branch is "pruned" back one stage when the relevant

screen has an assignment frequency below a specified level.

Additionally, Feldman and Hodes [Feld79] have described a

way of arranging the WRAIR screening system to deal with

queries of a varying degree of specificity.

An example of screen development in practice is

the design of the screens for the CAS ONLINE system and

this is described in [Ditt83].

1.2.3.2 Atom-By-Atom Searching

When the structure representation is a systematic

nomenclature or a linear notation, the atom-by-atom search

is similar to text searches. However, when a connection

table is used, the problem becomes that of subgraph

isomorphism. In the chemical field several algorithms have

been described for this task [Suss65, Figu72, Kitc82,

VonS84] and they all iteratively refine a mapping between

the structure and the substructure by considering whether

each atom in the structure which matches a particular

pattern atom, has neighbours which match the pattern atom's

neighbours. Further details of subgraph isomorphism

algorithms in the chemical field can be found in Chapter 3

whilst the relaxation class of algorithms [Pric85] which

includes [Kitc82, VonS84] is outlined in Section 5.3.1.

13

1.2.3.3 Two Dimensional Substructure Search Systems

Two dimensional (2D) substructure searching is

now a major feature of all large chemical information

systems and probably the most important searching system is

CAS ONLINE which is reviewed in [Ditt83, Stob85]. One of

the main features of this system is that it uses pairs of

microcomputers, which are connected to a larger computer

via a network, to do the search. Each pair is allocated a

section of the database to search and one of the pair does

the screening stage while the other does the atom-by-atom

search. Consequently, many of the microcomputers can be

active at the same time ("parallel computation"), leading

to the substructure search being completed quicker.

As CAS ONLINE is not available as an in-house

system, other important search systems such as the MACCS

software package [Polt82], have been developed. With all

these major search systems, sophisticated input facilities

are available for drawing structure diagrams of query

substructures on v.d.u. terminals.

To try to partially overcome the problem that a

drug's activity is dependent on its three dimensional

shape, another system [Elde84] allows three dimensional

features, such as atom-plane distance, to be added to the

substructure being searched for. The search first uses the

connectivity relations and, if a possible match is found,

it then goes on to the three dimensional constraints.

14

1.3 QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS

In the past, the molecules passed on to the

synthesis and testing stage of the drug design process were

selected fairly randomly and if the tests showed that they

were active, structurally similar molecules were also

synthesised so as to try to optimise the activity [Fran84].

However, as was mentioned at the start of this chapter,

this method is no longer adequate with the chance of

finding a new agent being estimated at one in ten thousand

and the cost at more than 40 million dollars. Therefore

there has been an increasing use of computers to select

which compounds it is thought worthwhile to synthesise and

the major technique for doing this is quantitative

structure-activity relationship (QSAR) methods [Mart81,

Top183, Hopf85]. These aim to correlate the structural

properties of the compounds under investigation in a

quantitative manner with the compounds' respective

biological properties. This is achieved by having a set of

chemicals whose structural properties and activities are

already known, to calibrate the methods. (The structural

properties which are used in QSAR's include physicochemical

properties, spectral characteristics and two or three

dimensional substructural features [Bawd83]. While the

activities can be classified as being either quantitative

that is where a measurement is taken and so the range of

values is continuous, or qualitative where the range of

values is discrete such as active or inactive [Will87b]).

15

The estimates of biological activity produced by

QSAR techniques, are used to reduce the number of compounds

needing to be synthesised and tested. There are two ways of

doing this:-

a) lead generation -where compounds are searched for which

have the required biological activity but are from

different structural classes from the structures currently

under investigation.

b) lead optimisation -where a potential new drug has been

found (maybe from lead generation) and small structural

modifications are made to it so as to increase its

activity.

There are three main classes of QSAR methods [Ash85] :-

Hansch Analysis, the Free-Wilson Method

Recognition.

1.3.1 Hansch Analysis

and Pattern

This uses physicochemical properties such as

hydrophobic and electronic components for the structural

features. Normally, the equation used is

activity = k1 + k2*pi + k3*sigma + k4*Es + k5*MR

where [Mart81] pi is the hydrophobic component (the effect

on the logarithm of the octanol-water partition

coefficient), sigma is the electronic component (the

16

logarithm of the effect on the acid dissociation constant

of benzoic acid), Es is the steric component (the relative

rates of hydrolysis of esters) and MR is the molar

refractivity (derived from the refractive index) providing

the dispersion contribution.

The parameter values k1, .. ,k5 are obtained using

multiple regression on the set of compounds whose activity

is already known. In some cases this approach has proved

unsatisfactory and more complex (non-linear) equations have

been used [Hans73, Mart81].

Hansch analysis has been widely applied and has

had a fair degree of success [Ash85] with it usually being

used for lead optimisation rather than lead generation.

Because of this interest in Hansch analysis, there has been

a corresponding interest in how to calculate the

physicochemical components (for example [Iwas85]) and this

need for knowledge of the physicochemical properties is one

of the main drawbacks with Hansch analysis [Crai75].

1.3.2 The Free-Wilson Method

The Free-Wilson method is based upon whether

certain groups are present or absent from specified ring

substituent positions in the compound and is described by

the equation

activity = K 1 +l}" * X •. .. 1J 1J
L'6

17

where Xij is an indicator variable which takes the value 1

if the ith group is present at the jth position but which

is otherwise 0, K .. is the contribution to the activity of
1J

the ith group being at the jth position and K1 is a

constant (being the mean of the activities in the data

set).

One of the drawbacks with this method is the

large number of compounds whose activity must be known in

order to be able to derive the values of Kij from a

statistical analysis. Other disadvantages are the need for

multiple substituent positions and the fact that all

molecules must belong to the same structural class

[Crai75]. Also all the compounds being considered need to

be similar, and so the method is unsuitable for lead

generation.

[Ash85] reports that Free-Wilson analysis has not

had that many successful applications cited in the

literature {maybe because the added computational

complexity makes it less attractive than Hansch analysis),

but that it has exported-the idea of indicator variables

into Hansch analysis. Additionally, it has led to the

important technique of substructural analysis [Ash85,

Cram74, Alm082, Adam74, Adam77, Hode77, Hode81) in which

the activity of a compound is regarded as being correlated

to the substructural features it contains but with no

account being taken of where these features occur. For

reasons of expediency, the fragments used have often been

drawn from existing retrieval systems, and so substructural

18

analysis has been a very appropriate method of QSAR for use

within computerised chemical information systems (where it

can be used with collections of thousands of molecules).

However, [Adam77] describes a more advanced system which is

basically Free-Wilson analysis without the substituent

positions.

whether

Some of the factors which influence the decision

to use Hansch or Free-Wilson analysis are

[Crai75]:-

1) If there are only one or two substituent positions, then

Free-Wilson analysis will probably yield nothing more than

a chemist's intuition is likely to produce, and so Hansch

analysis should be preferred.

2) Hansch analysis can deal with more disparate structural

classes. However, both methods have problems trying to

extrapolate to less similar compounds.

3) If both methods are applicable, then [Crai75] suggests

that Free-Wilson analysis should probably be used first.

1.3.3 Pattern Recognition

The third major class of QSAR methods is pattern

recognition techniques [Red174] and these are useful for

dealing with qualitative property data where parametric

statistical methods cannot be applied (and they are well

suited to deal

relationships).

problems where

with cases where there are discontinuous

An example of their use has been in

the number of substructural fragments was

19

very large in order to reduce the this number to a total

where Free-Wilson analysis could be used safely. However,

[Wold83] criticises many applications of this idea as

having an unsound statistical basis (see below).

Pattern recognition methods [Stup79] are made up

of three stages:-

1) A group of compounds whose activities have been tested,

are analysed and a set of structural attributes is

extracted which can be used to discriminate between the

ac t i vi ty classes. . .

2) A methodology is developed for assigning a new compound

to one or more of the activity classes present in the

original group of compounds, on the basis of the new

compound's structural attributes. The classification method

is usually based on either splitting the data up by using

hyper-planes which mark the boundaries of the data classes

or assigning a new data element to an activity class by

considering which activity class its nearest neighbours

belong to.

3) The appropriate compounds whose activities are unknown,

are assigned to the relevant activity classes by the

decision making process of step (2).

The structural attributes that can be used in

pattern recognition (which range from single atoms to 3D

patterns of atoms) are discussed in [Bawd83] along with

some of the criticisms of the results obtained using

pattern recognition [Matt75, Wold83]. These criticisms are

20

centered on when it is justified to extract features from a

data set and then to assign new data elements to classes on

the basis of a statistical analysis of these features. An

example of one of the problems is how large the ratio of

the number of elements in the data set divided by the

number of extracted features should be. However, it has

been successful [Ash85] and Jurs and Stuper [Stup16] give

details of a software package implementing it.

1.3.4 An Overview Of QSAR

If QSAR methods are used, then they are only one

step along the path of developing a drug; QSAR analysis

aims to give some indication of the biological activity of

a compound without having to synthesise it. If the

predicted activity is low, then the expense of synthesising

and testing the chemical is probably not worthwhile.

However, QSAR methods cannot help in avoiding the pitfalls

which occur at the clinical stage, and so the value of QSAR

analysis should be judged by the number of compounds

derived from QSAR techniques which reach the development

stage. Hopfinger [Hopf85] reports that at Searle the

required activity level is achieved from 42% of the drugs

developed with computer assistance, which is several times

the figure which would be obtained by chance. Furthermore,

in the last few years examples of drugs designed by QSAR

methods have begun to emerge [Hans84] (with the two quoted

examples arising from Hansch analysis being applied to a

21

series of molecules obtained by methodically varying the

substituents at each position).

One of the main drawbacks with QSAR methods is

that a molecule's three dimensional shape can be very

important in determining its biological activity.

Consequently, there has recently been interest in using

molecular shape indices as an extra parameter in Hansch

analysis [Hopf80, Walt84, Kier85] (although there is some

implicit 3D information in the steric component [Mart81])~

Additionally, the splitting up of QSAR methods into the

above three classes slightly over simplifies the issue as

in practice hybrids are quite likely to be used [Mart81]

(eg. the use of position dependent terms in Hansch

analysis).

[Wold83] has criticised many (about 50%) of the

papers on QSAR which were examined in a study, for using

incorrect statistical techniques which invalidated the

results. However, this is less of a problem now as people

are more aware of the dangers. Also the criticisms are not

likely to prove a disincentive to using QSAR's because of

the huge number of compounds which need to be examined. For

example, . [Fran84] discusses a molecule with a varying

number of ring substitution positions and (only) 50

substituents, and so the total number of compounds needing

to be examined is 50 to the power of the number of ring

positions.

22

1.4 THE NEED FOR THREE DIMENSIONAL METHODS

The very fast rate of increase of interest in

QSAR techniques has now slowed down [Aust84, Hopf85,

Cohe79] due to the fact that the amount of success that

they have achieved has not fulfilled the very high

expectations for them, a particular problem being in

predicting compounds from other chemical families which are

likely to be biologically active. This is partly due to the

geometric nature of drugs' interactions with their hosts,

and so it has led· to a rapid increase in the use of three

dimensional computer graphics in drug design.

Another very important factor in the rise of

molecular graphics is that computers are now powerful

enough to allow real time modification of three dimensional

molecules on the screen. Thus, because of technological

developments, the interest in chemical representation in

information ~ystems has moved from printed indexes and WLN,

through connection tables, and graphics based 2D systems to

3D co-ordinates.

A short introduction to these graphics based

techniques is given in the next chapter along with a

description of other methods for analysing the 3D nature of

the drug-receptor binding. After which, the rest of the

thesis considers the problem of developing efficient

algorithms for dealing with 3D co-ordinate data. In more

detail, Chapter 3 describes a screening system for 3D

substructure searching before comparing several algorithms

23

for the partial matching stage. Chapter 4 examines two

algorithms (along with various extensions) for finding the

3D substructures in common between molecules. Following on

from this, the next chapter reports the results of a

simulation of a parallel processor executing one of these

algorithms and Chapter 6 is concerned with an actual

parallel processor implementation of the algorithm. Chapter

7 describes the use of such a processor on one of the drug

receptor examining algorithms of Chapter 2, and Chapter 8

describes a system for searching

Crystallographic Database for patterns

provided one using the screening system of

the Cambridge

similar to the

Chapter 3 and

one of the algorithms of Chapter 4. As further background

material for all of this work, [Cohe85] gives an extensive

review of the use of 3D information in drug design.

24

CHAPTER 2

COMPUTERS IN THREE DIMENSIONAL DRUG DESIGN

The last chapter

review of some of the two

gave a brief, introductory

dimensional methods used in

computer assisted drug design. The current chapter

describes the (three dimensional) binding of a drug to its

receptor before summarising the main sources of

availability of a molecule's co-ordinates, and looking at

two computer bas€d methods for investigating the drug

receptor interaction.

2. 1 THE DRUG-RECEPTOR INTERACTION

The recognition of a drug by its receptor and

their subsequent interaction is dependent on the three

dimensional geometry of the two molecules, as can be seen

from the fact that different stereoisomers of the same

molecule mayor may not have any effect [DeRa84]. The

process is generally regarded as being similar to that of a

key fitting a lock [Gund79] with the forces which cause the

attraction and subsequent binding to occur being, in order

of decreasing energy, electrostatic, hydrophobic and van

der Waal's [Gund77, Koll84]. The attraction is a two way

process with the receptor being attracted to the ligand as

well as the ligand to the receptor. The pattern of the

drug's atoms which are attracted to the receptor, is called

a pharmacophore [Tol184].

25

However, this somewhat over simplifies the

situation as it is thought that the receptor and the ligand

undergo conformational changes during the binding [Gund79].

Burgen et al. [Burg75] have proposed a model of the

interaction where only parts of the pharmacophore initially

bind to the receptor and the ligand then assumes a

different conformation before the rest of the molecule

attaches itself to the ligand. (Even in this case though,

the interaction will occur very quickly). [Will77] whilst

discussing in detail the dynamic nature of the interaction,

points out that "static matching has a very important and

proven role to play".

When a drug binds to a receptor and produces a

normal biological response, it is called an agonist.

However, a drug may adhere to a receptor in a way that

prevents agonists binding to the receptor, and in this

case, the drug is called an antagonist [Gund77]. A molecule

may have the right pharmacophoric pattern of atoms but

still not produce the right effect because of, amongst

other factors, transport problems in arriving at the

receptor and having other atoms which are in positions

which prevent binding taking place [Gund77, Gund80]. On the

other hand, the pharmacophoric pattern may allow some of

the atoms to be in a range of positions or for some of the

positions to be occupied by atoms from a choice of types

[Gund77].

26

2.2 THE AVAILABILITY OF 3D CO-ORDINATES

One of the prime factors behind the increase in

the use of 3D methods in drug design has been the more

general availability of molecules' 3D co-ordinates. Before

describing computer methods for examining drug-receptor

binding, the sources of these co-ordinates (which form the

input for these methods) will be considered.

2.2.1 Obtaining 3D Co-ordinates

The main experimental method of obtaining the 3D

co-ordinates of molecules is X-ray crystal structure

analysis [Duch79]. This obtains the atomic co-ordinates

from an analysis of the X-ray diffraction patterns of

various orientations of the crystal. The regular structure

of single crystals acts like a diffraction grating, thus

providing information on the spacing of atoms. The

increasing power of computers has meant that the analysis

step has become less of an obstacle, and there has been an

increase in interest in polycrystalline materials and

protein . crystallography [Town85]. However, the main

drawbacks of X-ray crystallography are that it only

determines the co-ordinates for the conformation the

molecule adopts in its solid state, and that the co

ordinates of hydrogen atoms are difficult to determine

accurately. The problem with the conformation which is to a

greater or lesser extent a difficulty with all the

27

techniques for obtaining co-ordinates, will be discussed in

Section 2.2.3.

The other major experimental technique is Nuclear

Magnetic Resonance (NMR) spectroscopy [Jame75] which

determines the atomic positions for the liquid

conformations of molecules. This method works by putting

the compound in a varying magnetic field and measuring the

frequencies that ·the nuclei resonate at by way of the

photons which are emitted. The main drawback of NMR

spectroscopy is that it is difficult to provide the co

ordinates with enough precision.

Although quantum mechanics can provide molecular

co-ordinates, its high computational cost means that

molecular mechanics [Duch79, Boyd82] is the main

calculational technique for deriving the atomic positions.

It works by trying to minimise the strain energy of the

molecule and differs from quantum mechanics primarily in

that the electrons are not considered as a separate entity

in the calculations. By finding local minima, the co

ordinates for the different conformations of the molecule

are obtained. The initial co-ordinates that the molecular

mechanics technique works on, can be obtained by using the

standard bond lengths and angles or by using a simpler

optimising method such as distance geometry (which is

described in Section 2.3.2).

28

2.2.2 Databases Of Co-ordinates

Various databases (Murr84] of molecular co-

ordinates exist of which the most important are the

Cambridge Crystallographic Database (Alle79] and the

Brookhaven Protein Databank [Bern77, Abo18?]. The Cambridge

system provides the crystal co-ordinates of about 40,000

substances along with their connection tables and

references to relevant papers. Various searching facilities

are available for the connection table and bibliographic

files, with the latter being able to be searched for key

words. The structural data which is retrieved can be

displayed using a molecular plotting program. The

Brookhaven database contains the co-ordinates of more than

300 macromolecules along with literature citations and

details of secondary structures.

The data used in this thesis will be of the form

given in figure 2.1 which just gives the number of atoms,

their atomic numbers and their co-ordinates in units of

Angstroms (and in some instances the 6 letter reference

code used to identify the molecule in the Cambridge

Database). Additionally, the connectivities were also used

when screens were being assigned.

2.2.3 Relevance To The Ligand's Conformation

The above methods and databases for providing

molecular co-ordinates can be criticised when they are used

29

PHYLOC
16
6 3.55198765 3.53722382 5.30371952
6 4.55479240 2.71890545 4.69650745
6 4.19013596 2.51220417 3.41784763
6 4.90155602 1.88468552 2.31977463
6 4.26426029 1.99492455 1.11868191
6 1.77641964 2.12530136 2.82881069
6 1.85309982 0.770622551 3.50753021
6 0.794064224 -0.204578936 3.00818348
6 0.581916094 -0. 635992289E-O 1 1.52469444
6 1.70655537 0.654022151 0.859311163
6 3.01352310 2.77190304 0.925975025
6 2.96155167 3.96864319 1.88587952
6 2.89679909 3.14184284 3. 15484238
1 1.85309982 1.99810123 1.36471558
8 2.58661183 3.84462261 4.36563110
8 3.43015194 3.96864414 6.40906429

Figure 2.1 The Usual Form Of The Co-ord inate Data Used In This
Thesis

Figure 2.2 The Structure Diagram For The Molecule
Of Figure 2. 1

to study the receptor-ligand interaction because there is

no reason to believe that the conformation adopted by the

ligand is that of its least energy. This arises from the

presence of the (usually much larger) receptor which

provides distorting forces [ToI184, Mars79, Humb80,

Mars84]. Marshall [Mars84] suggests that all the

conformations within a certain energy range from the

conformation of least energy should be considered, but

there may well be many such conformations.

Gund [Gund77, Gund79] argues that there is likely

to be some attraction, if only a weak one, between one of

the major conformations of the drug and its receptor. He

also suggests that any interaction which takes place will

happen quicker if it occurs when the drug is in its ground

state conformation as there will be a higher concentration

of molecules in this state. However, consideration of the

various low energy conformations, or the use of

conformationally restricted analogues [Horn84] which try to

imitate the original drug but which have less

conformational flexibility, is still required.

Recently, the technique of radioligand binding

[Gour84] which involves using a radioactive ligand, has

provided an additional method for

receptor-ligand binding.

30

investigating the

2.3 COMPUTER EXAMINATION OF THE RECEPTOR-LIGAND INTERACTION

This section discusses two methods for analysing

the receptor-ligand interaction which try to overcome the

conformational flexibility mentioned above. In the first

(which is the much more widely used and important of the

two), the

graphics

two sets of co-ordinates

terminal and the user (a

are displayed on a

skilled chemist)

manipulates the two molecules into a docking position.

Whilst in the second method, the upper and lower bounds on

the inter-atomic distances of each molecule are compared so

as to try to find a common region (the pharmacophore).

However, the two methods should not be regarded as

alternatives but rather as two elements in the computer

assisted drug design field, some of whose other members

were described in Chapter 1 (and another one of which will

be described in the next chapter).

2.3.1 Three Dimensional Computer Graphics

The increasing availability of molecular co

ordinates coupled with the decreasing cost and greater

power of computer graphics hardware, has led to interactive

computer graphics playing a very important role in drug

design [Vint85, Hass85]. Instead of using the traditional

wire frame models, molecules can now be built and displayed

on graphics terminals [Tol184, Wil177, Ka085, Humb81]. The

3D shape of the molecule can be examined by rotating it or

31

by using depth cueing (in which points at a greater

distance from the user have a reduced intensity). Sections

of the molecule can also be examined more closely by

zooming in on portions of it. The image displayed may take

other forms rather than the traditional stick diagram, for

instance the electron densities can be displayed.

Besides simply viewing a molecule, two molecules

can be superimposed so as to examine their degree of

similarity. Alternatively, by rotating parts of the

molecule about various bonds, different conformations can

be produced and examined. Software can provide an

indication of the energy level of each of the new

positions. Dynamic docking of molecules can be simulated by

bringing the molecules closer together and then examining

the various conformations which they can take on [Buse83],

thus overcoming the criticisms of rigid pharmacophores met

in Sections 2.1 and 2.2.3.

The use of computer graphics techniques for the

examination of binding has been widely reported. This use

can either be independent of other computer assisted drug

design techniques, for instance [Feld78,. Palm83], or in

conjunction with them. The main example of this latter case

being the combining of Hansch analysis, X-ray

crystallography and computer graphics [Hans82, Caro84].

Here computer graphics aids in the understanding of how the

steric and hydrophobic coefficients

enables better values to be

coefficients.

32

are acting and thus

calculated for these

At present, because of the large numbers of atoms

which can need to be rotated, most molecular graphics

systems use vector-refresh (or line drawing) displays.

However, in the future, the decreasing cost and increasing

speed of raster graphics systems should lead to

increasingly more detailed molecular images being able to

be manipulated interactively by the user [Lang81].

2.3.2 Distance Geometry

Distance geometry [Crip81, Have83] is a technique

for finding a set of possible atomic co-ordinates given the

maximum and minimum bounds on every inter-atomic distance.

As the method employs random numbers to choose "trial"

distances from the allowed ranges, a search of conformation

space can be carried out by repeatedly applying the method.

A full description of the basic algorithm can be found in

Chapter 7, the present section is only concerned with

possible applications to receptor-ligand analysis.

Distance geometry was originally developed as a

means of determining macromolecular conformation [Crip79b,

Have79] but it has been used to generate a series of

possible conformations of the ligand whose elements are

then compared with the receptor's binding site so as to try

to find a match [Crip79a, CripBD]. The algorithm used for

this comparison [Levi72, Barr76, Kuhl84] will be considered

in more detail in Chapters 3 and 4 where it is used for

finding the maximum substructure in common between two or

33

more molecules.

The use of only one upper and one lower bound

matrix is inefficient as a large number of inter-atomic

distances will be correlated and consequently, [Ghos85] has

suggested a way of searching conformation space by discrete

rotations about bonds. Upper and lower bound matrices are

produced from the co-ordinates of the atoms before and

after each rotation, and the method avoids missing

conformations through having too large an angle of

rotation.

An alternative use of distance geometry [Sher86]

tries to find pharmacophores by combining the upper and

lower bound matrices of several ligands, with the distances

between atoms in different ligands but which are thought to

correspond to the same atom in the pharmacophore, being set

to zero. If suitable co-ordinates can be found which

satisfy the combined bound matrices, then these give a

possible pharmacophoric pattern.

Whilst they do not use distance geometry, it

seems appropriate because of their similarities to the

above methods to mention several algorithms developed by

Motoc et al •• [Moto86] describes a search of conformation

space using increments of rotation angles; the search

incorporates a quick check to see whether. van der Waal's

radii are infringed. Pharmacophores can be looked for by

picking functional groups from a set of molecules with a

pharmacophore existing if the intersection (over the set of

molecules) of the distance ranges between the functional

34

groups, is non-empty. The intersection ranges from

molecules considered first can be used to constrain the

conformational search of the later molecules. [Laba86]

details a molecular mechanics program where

geometric relationships can be maintained.

flexible molecules to be compared with a rigid

specified

This allows

pattern or

for specified atoms from two molecules to be correlated and

the possible conformations examined.

2.4 DISCUSSION

This chapter has considered the increasing

importance of 3D co-ordinate methods, especially computer

graphics, in computer assisted drug design. However, the

two methods reviewed in Section 2.3 are computationally

expensive and can only deal with small numbers of

molecules. Therefore the next chapter describes a system

for searching the Cambridge Crystallographic Database for

user specified pharmacophoric patterns (with the retrieved

compounds then being passed on for more detailed analysis

to the above methods). This use of a cruder method to

screen large collections of molecules is somewhat analogous

to the use of substructural analysis as opposed to Hansch

or pattern analysis when working with 2D data (see Chapter

1) •

Before moving on to describe the work carried out

for this dissertation, it is perhaps best to summarise the

computer-assisted drug design tools which have been

35

discussed above. QSAR techniques are useful when dealing

with large numbers of similar structures typically formed

using different ring substituents when trying to optimise

the activity of a drug, but they are less helpful in

generating new "lead" compounds. The 3D graphics methods

can provide valuable insights into inter-molecular binding,

and so can indicate which atoms are the active ones in a

drug. However, they can only deal with a handful of

molecules at a time and they require a large amount of

interaction from the user. The non-graphics approaches

described in this chapter are much more recent and less

widely used but are of use in the same sort of context as

the computer graphics approach. In any pharmaceutical

design setting, all of the above methods are likely to be

available (with the possible exception of the distance

geometry related approaches) and used at different points

in the design process. An example of such an integrated

system is described in [Klei86].

36

CHAPTER 3

THREE DIMENSIONAL SUBSTRUCTURE SEARCHING

As was mentioned in Chapter 2, the increased

availability of molecules' 3D co-ordinates along with

increased computer power and the 3D nature of drug receptor

interactions has led to widespread use of computer graphics

systems for docking molecules. As this involves the study

of pharmacophoric patterns, interest has also been shown in

determining whether a particular pharmacophore is present

in a molecule. [Gund77] has described a system for

searching a given molecule for a specified pharmacophore

and this program has been extended by Esaki [Esak82,

Esak83] to allow a comparison of electronic states. Work

has been carried out at Sheffield by Jakes to allow the

Cambridge Crystallographic Database of molecular co

ordinates to be searched for user specified pharmacophoric

patterns. Like the 2D substructure searches described in

Chapter 1, this system is composed of a screening stage

followed by a more computationally expensive (per molecule)

partial matching stage for compounds which pass the first

stage. A short description of the screening stage is given

(a fuller one can be found in [Jake87b]) before a

comparison

reported.

of several partial matching algorithms is

37

3.1 INTER-ATOMIC DISTANCE SCREENS

3.1.1 Basic Implementation

The 3D screening system has a similar role to a

2D screening system, however, whereas in the 2D case there

are many possible features on which a screen set may be

based, in the 3D case there is an obvious candidate in the

distances between pairs of atoms (although torsion angles

could also be considered). Therefore the screening system

was based on distances between the atoms, and only atoms

which were of types B, Br, C, Cl, F, I, N, 0, P or S were

used in the atom pairs as usually only these occur in

pharmacophoric patterns [Watt84]. Following an analysis of

the numbers of each type of atom pair present in the

database, Jakes decided to split each atom pair distance

range (that is the frequency distribution of the distances

between each possible pair of atomic types -figure 3.1

shows the distance versus frequency graph for the carbon

oxygen' pair) into blocks containing- approximately 1000

occurrences of the atom pair and these blocks then made up

the screen set. Additional screens were assigned for use

when the type of one of the original atoms in the atom pair

is not specified.

Connectivity information was also incorporated

into the description of the atoms but it is not considered

in this chapter as it is essentially a topological factor.

Molecules which are retrieved from the database

by the screening system are then subjected to a test to

::::
~
~

i:-
~ -.
~ :::;:,
~-
;.:
~

.s=.
~ , -"" ~ , -.. ,

?,! -0
0-
~

- I

1:1
..... ! - ' -,.. ,

~ I
~ , -=: 1 ..r

~I
" -5 '

I ~T

11
I

N
~

I >-
~

!
Sd

~
W --.;;;-, ~ ~

I I UJ 'F'
c::: -=== "'- ~ 0

I -- T (f') ~ , , - I I > ~

.;;; I
(f')

I UJ u -::;;::
< ...<:::= - 1. >-

$ cc 1:.")
i

C --=-=- I u ---..;::;; ...
0 ~

I -->- --< -~
c::: ~~- ~ -0
UJ --==--'-

~ - ~
:;:) - T ~ --

~2::
,

u ..r

1
os c-

I

1 N

c: 0 0 0
~ ::::

r-- -0 lf1 ..r r<1 N 0

Figur e 3.1 The Frequency Of Occ urrence Of The Oxygen- Carbon P~ir
When Plotted Against Distance For A Sample Of The Cambridge
Crystallographic Database (Tak8n From [Jake86])

determine whether they actually contain all of the required

distances. If they do, they are passed on to a partial

matching stage.

3.1.2 Modifications To The Above Method

The above outline of the generation of

topographic screens was modified in three ways:-

1) As carbon-carbon pairs are very common in the database

but are fairly infrequent in reported pharmacophores, Jakes

used a frequency of 2400 occurrences when splitting the

carbon-carbon distance range up into blocks, and a

frequency of 800 when dealing with other atom pairs.

2) Where particular atom pairs had a low frequency of

occurrence in the database despite a high occurrence for

the individual atom types, either extra screens were

allocated or several different atom types were merged

together so as to give a higher frequency for the atom

pair.

3) The inter-atomic distance against frequency graphs often

show peaks (an example is shown in figure 3.1) and it was

felt undesirable to have different screens allocated for

different parts of a peak. Therefore a threshold value was

introduced and a screen's distance range could only end at

a point on the atom pair's graph where the frequency was

below the threshold value. Of course, where the allowed

distance ranges in the query enclosed a screen boundary,·

molecules having either of the screens set were retrieved.

3.1.3 Analysis Of The Screen Performance

The screening system was analysed in [Jake87a]

where ten pharmacophoric patterns from [Watt84] were

searched against 12728 of the molecules in the Cambridge

Crystallographic Database and the performance is shown in

table 3.1 (taken from [Jake87a]). For some of the patterns,

not all of the distances between the atoms were specified.

Although the screens are efficient in that they

do "screen out" a substantial proportion of the molecules

in the database which do not contain the pattern, they are

less efficient in this sense than 2D substructu-re searching

screens. However, this can be partly explained by the fact

that the query patterns used for 2D searching are

considerably larger than those for 3D searching (which are

generally composed of between 3 and 6 atoms), and the large

amount of time and effort which has been put into designing

2D screening systems. More details of the screening system

can be found in [Jake87b].

Having established an appropriate methodology for

the implementation of the screening component of a 3D

substructure search system, the question then arises as to

how the second-level search, the 3D equivalent of atom

by-atom searching, should be carried out. This type of

40

search, which Jakes et al. refer to as geometric searching,

is considered in detail in this chapter.

3.2 PARTIAL MATCHING OF TOPOGRAPHIC PATTERNS

3.2.1 Reported Algorithms

Various 3D matching methods for determining

whether a topographic pattern of atoms is present in a

molecule have been reported by Sundaram et al. [Sund74],

Gund et al. [Gund74, Gund77, Gund79], Lesk [Lesk79], Kuntz

et al. [Kunt82], Golender and Rozenblit [Gole83], and

Danziger and Dean [Danz85]. ([Kuh184] also discusses the

method of Golender and Rozenblit but in the slightly

different context of determining how similar two molecules

are, and this will be considered in more detail in Chapter

4). However, [Sund74] is not very relevant in the present

context as it assumes that the position of one of the

pharmacophoric atoms is already known in the molecule under

investigation and then the dihedral angles are varied so as

to try to match other atoms with the rest of the query.

Once a correspondence is known, numerous algorithms have

been described for rotating and translating pattern atoms

on to specified structure atoms (including [Bari81] which

allows the molecules to be flexible by rotating about

single bonds). However these algorithms can only be used as

a final stage in the search because of the need for a

knowledge of which structure atoms match which pattern

atoms.

41
SHanCL[) ~
UNIVEr~~iTY ~

LIBRARY

Lesk has described an algorithm primarily for use

in searching for patterns in proteins but which can also be

used with smaller molecules. The algorithm assigns

candidate matches to each pattern atom on the basis of

whether an atom has other atoms at all the same distances

as the pattern atom. All of the molecule's atoms which are

not matched with any pattern atom are removed from

consideration and the candidate matches are checked again

to make sure that the removals have not led to candidates

no longer having other atoms at the required distances.

This process is repeated until no more eliminations can be

made. All the possible combinations produced from the

candidate/pattern atom groups are then tested to see

whether they match the pharmacophore by trying to rotate

the combination of atoms onto the pattern [McLa82].

The algorithm of Kuntz et al. tries to find an

optimal match between a ligand and a receptor by

successively matching atoms from the two structures which

have the highest number of distances to other atoms in

common. When four atoms have been matched, the molecules

are then compared by being rotated onto each other. Hence

the algorithm finds substructural features in common

between the two molecules rather than simply determining

whether one molecule is contained in the other. [Kunt82]

also mentioned that this algorithm can take "a few hours of

computer time", but in this example, macromolecules were

being used as receptors.

Danziger and Dean's method is a best match search

42

in that it determines the best geometric fit between

specified sets of points rather than checking whether part

of one molecule is the same as the other molecule. It uses

a tree search to match points from each step and pruning is

carried out by calculating a dissimilarity measure for each

branch. The depth of the tree search is the number of atoms

in the smaller molecule, although the number of atoms which

are attempted to be matched can be reduced by using null

correspondences.

Besides their use in conjunction with screening

systems which underlies the work reported in this chapter,

partial matching algorithms are also useful in fields such

as the steric difference QSAR method [Moto81]. Here a

series of biologically active compounds is superimposed on

to the most active compound's pharmacophoric pattern and a

weighting scheme is subsequently produced.

3.2.2 Comparison Of Partial Matching Algorithms

Four partial matching algorithms were coded in

FORTRAN 77 and their performances were compared. The four

methods were:

3.2.2.1 Lesk's Algorithm

This was chosen as it was designed specifically

to detect whether a 3D pattern occurs in a molecule or not,

and it was described in outline in Section 3.2.1. In more

43

detail, the algorithm consists of a series of steps:

1) Form an array of triples where each triple consists of

the distance between a pair of atoms and the two atom

types.

2) Associate two bit strings with each pattern atom, the

entries in the first string corresponding to the atom types

present in the pattern, and those in the second string to

the distances between atoms in the pattern.

3) For each pattern atom, set the bit in string one

associated with its atom type.

4) For each pair of pattern atoms, set the bits in the

second strings which correspond to the elements in the

"triple" array of step one which have the same atom types

as the pair and where the distance equals that between the

pair of atoms within the specified tolerances.

5) Associate the above two bit strings with all the

structure atoms under consideration.

6) For each of these structure atoms, set the bit in string

one associated with its type (if one exists).

7) For all pairs of these structure atoms, set the bits in

the second string in a similar manner to step 4.

44

8) Check whether each of the structure atoms being

considered has all the attributes (shown by ones in the bit

strings) of at least one pattern atom. If it does not,

remove it from the set of relevant structure atoms. If any

atom has been eliminated from the structure, return to step

5.

9) For each pattern atom form a list of the structure atoms

which are possible matches for it.

10) Form all possible combinations from step 9 and test to

see whether they are a match (by using a rotation if

necessary).

The coded version of the algorithm used arrays of

integers rather than bit strings so as to avoid the system

overheads which manipulating bits often cause.
o

(The use of

bit strings in the reported version of the algorithm

[Lesk79] stems from the fact that it was developed to deal

with macromolecules and this will be considered in Section

3.2.6).

3.2.2.2 A Set Reduction Algorithm

Set reduction [Suss65, Figu72] involves the

successive elimination of atoms from sets corresponding to

each pattern atom on the basis of an analysis of the atom's

neighbours and higher order connectivities. Lesk's

algorithm can be regarded as a variant of this technique

45

along with the algorithm described in this section, which

is that in use with the screening system of Section 3.1.

The n pattern atoms are labelled from 1 to nand

for each of the n*(n-1)/2 distances between atoms in the

pattern, a list of pairs of atoms from the query molecule

is produced. The distance between the atoms in these pairs

is equal to that between the pattern atoms to the allowed

tolerances, and the atom type of the first atom corresponds

with the type of the first pattern atom and similarly for

the second atom. Thus if the query atoms are both carbons,

two entries will be made in the list (the latter having the

atoms in an opposite order to the former).

The main stage consists of taking each pattern

atom in turn and finding the smallest list of pairs

associated with this atom. For each pair in this list,

checking that the atom in correspondence with the pattern

atom corresponds with the pattern atom in the pattern

atom's other (n-2) lists. If it does not, the pair is

removed from the list. When the list has been processed,

the pairs in the pattern atom's other lists are checked to

see whether the atom which corresponds to the pattern atom

does so in the list which was processed first. If it does

not, then again the pair is removed.

The main stage is repeated until no further

eliminations can be made. A final stage checks the possible

combinations which can be produced from the pair lists.

This is done by using a depth first search to try and find

a successful combination as follows (where Pi is the ith

46

pattern atom):-

1) (Initialisation) Set the level, L, of the search to the

value one, INDEX(1), the index into the pair list P1-P2, to

one and COMBIN(1), the structure atom currently matching

pattern atom 1, to the atom corresponding to P1 in the

first atom pair of P1-P2.

2) Set L=L+1 and COMBIN(L), the current structure atom

under consideration, to the atom corresponding to PL in the

INDEX(L-1)th atom pair in P1-PL.

3) Check the Pi-PL (i=2, .• ,L-1) pair lists to ensure that

the pairs (COMBIN(i), COMBIN(L»are present in the relevant

lists. If so then go to step 6 (the next level of the

search) .

4) (Backtrack) Find the first pair in the P1-PL list which

is greater than INDEX(L-1) and whose first atom is

COMBIN(1). Set INDEX(L-1) to the number of this pair,

COMBIN(L) to the second atom and go to step 3. If no pair

is found, . then go to step 5.

5) Set L=L-1. If L=1, then set INDEX(1) to INDEX(1)+1 and

go to step 2 (unless INDEX(1) is greater than the number of

pairs in the P1-P2 list when the program terminates as the

pattern is not contained in the structure), otherwise go to

step 4.

47

6) Set L:L+1. If L is greater than the pattern size, then

the pattern has been found and the program terminates,

otherwise find the first pair in P1-PL with the first atom

equalling COMBIN(1) and set INDEX(L-1) to be the number of

this pair and COMBIN(L) to be the second atom of the pair.

If no pair is found go to step 4, otherwise go to step 3.

Where only k of the distances in the pattern are

specified, the method is the same as that above but only k

lists are used. In fact, Gund [Gund79] has pointed out that

for n greater than 3 only 4*(n-3)+2 lists need to be used

as then not all of the n*(n-1)/2 distances in the pattern

are independent, with a similar observation applying to

Lesk's algorithm. However, a slight drawback is that,

whereas a molecule can be reconstructed from 4*(n-3)+2

suitably chosen exact inter-atomic distances, if the

distances are only specified as ranges of values, then two

"reconstructions" of the molecule using different values in

these ranges can magnify these differences. Also, this

economy only begins to have a significant effect when the

pattern is of size 9 or greater, and it was not employed

for the algorithms under test.

3.2.2.3 A Clique Detection Method

Graphs were briefly mentioned in Chapters one and

two and any 3D molecule can be regarded as being a

labelled, weighted graph, that is one where the arcs

48

between nodes ~re associated with real numbers (in this

case the distance between the atoms which the nodes

represent). A way of findin~ the 1ar~est subgraph in common

between two graphs has been described by Levi rLevi72J, and

Barrow et al. CBarr76, Earr81]. A graph can be transformed.

into a totally connected, weighted graph where the values

on arcs between nodes which were ori~inally unconnected,

have the number zero (and otherwise have the value one, or

their ori~inal weight if the ~raph was wei~hted).

A correspondence ~raph can be formed from the

transformed ~raphs of the two original graphs, by

1) creating the set of all pairs of nodes from the two

graphs such that the nodes of each pair are of the same

type.

2) formin~ a graph whose nodes are the pairs from (1). Two

nodes (A1,B1), (A2,B2) are connected if the values of the

arcs from A1 to A2 and B1 to B2 in the transformed ~raphs

are the same.

Maximal

cliques (subgraphs

common sub graphs then correspond to

where every node is connected to every

other node and which are not contained in any lar~er

subgraph with this property) of the correspondence graph,

and finrtin~ cliques in ~raphs is a problem which has been

widely studied. The efficiency of this method for finding

maximal common sub~raphs stems from the fact that tests

which would need to be made several times in a naive tree

search are only carried out once in settin~ up the

correspondence ~raph.

As an illustration of this method, consider the

unlabelled graphs A and B shown in figure 3.2. As the nodes

are all of the same type, the nodes of the correspondence

graph, C, are all the pairs (Ai,Bj) (i=1, .. ,3;j=1, .. ,4). If

these nodes are enumerated as C1=(A1,B1), C2=(A1,B2),

C3=(A1,B3), C4=(A1,B4), C5=(A2,B1), , then the

connectivity matrix for the correspondence graph is given

in figure 3.3. The subgraph isomorphisms now correspond to

subsets of nodes of C of size three where all the nodes are

connected to each other, ie. to the cliques that are

present. One example of such a clique is C1=(A1,B1),

C7=(A2,B3) and C12=(A3,B4) .

This method has been applied in the chemical

context by Kuhl et ale [Kuh184] and Golender and Rozenblit

[Gole83]. The latter have used it to find out if a pattern

occurs in a molecule by looking for cliques in the

correspondence graph whose size is the same as that of the

pattern and it was this method which was coded. The clique

detection was carried out by the algorithm of Bron and

Kerbosch [Bron73] which is one of the quickest of the

clique finding algorithms (others will be considered in the

context of finding the maximal common substructure between

molecules in Chapter 4).

3.2.2.4 Ullman's Subgraph Isomorphism Algorithm

As was mentioned above, 3D chemical structures

can be regarded as being weighted graphs, and so the

50

A,/r /B2"",
Bl B3 -----A 3 ~B4/ Graph A Graph B

Figure 3.2 Unlabelled Craphs Used To Illustrate The Clique
Finding Algorithm

Cl C2 C3 C4 CS C6 C7 ca C9 C10 C 11 C12
Cl 1 0 0 0 0 1 1 1 0 1 1 1
C2 0 1 0 0 1 0 1 0 1 0 1 0
C3 0 0 1 '0 1 1 0 1 1 1 0 1
C4 0 0 0 1 1 0 1 0 1 0 1 0
C5 0 1 1 1 1 0 0 0 0 1 1 1
C6 1 0 1 0 0 1 0 0 1 0 1 0
C7 1 1 0 1 0 0 1 0 1 1 0 1
cs 1 0 1 0 0 0 0 1 1 0 1 0
C9 0 1 1 1 0 1 1 1 1 0 0 0
Cl0 1 0 1 0 1 0 1 0 0 1 0 0
C 11 1 1 0 1 1 1 0 1 0 0 1 0
C12 0 1 0 1 0 1 0 0 0 0

Figure 3.3 The Connectivity Matrix For The Correspondence Craph
Formed From The Graphs Of Figure 3.1

where Cl=(A1,B1), C2=(A1,B2), ••• , C5=(A2,Bl), ••• ,C12=(A3,B4)

c c
b

Pattern Structure
S5 34

a
c

36

Figure 3.4 The Pattern And Structure Used To Illustrate
The Four 3D SUbstructure Searching Algorithms

problem of finding a pattern in 3 molecule becomes th~t of

sub~raDh isomorphism. Therefore it was decided to comDare

the above methods of pattern detection with a standard

sub~raph isomorphism al~orithm reported bv U11man rU11m76J.

The al~orithm be~ins with three main arrays A, B

and MO of sizes m*m, n*n and m*n respectively, where m is

the number of nodes in the pattern and n is the number in

the structure's ~r3ph. A and B are the connectivity

matrices while the elements of MO have the value one if the

relevant pattern and structure nodes could match each

other, and zero otherwise. The al~orithm uses a tree search

al~orithm to try to alter MO into a matrix M where each row

contains a sin~le one and each column contains no more than

one one, by changin~ ones into zeros. M represents a

permutation of the nodes of the structure's graph, and so,

if C is the matrix M*BtransDose*Mtranspose,

specifies 3 sub graph isomorphism if

C1 V i V j
I~~~m; I ~l~M

then M

The basic al~orithm works by formin~ a series of

matrices Md (d=1, .• ,m) each one bein~ created from its

predecessor M(d-1) by systematical1V chan~in~ all but one

of the ones in a row to zero. The final matrix is checked

to see whether it satisfies the conditions imposed on M, if

it does not, then backtrackin~ occurs.

Ullman modifies this naive tree search by adding

a refinement procedure. This procedure stems from the fact

that, for a sub graph isomorphism, if ~x is a nei~hbour of

51

aw in the pattern and bz in the structure matches with aw,

then there must exist a nei~hbour, by, of bz which matches

with ax (and the relevant entry for ax-by in M must be

one) . Therefore for any sub~raph isomorphism, if aw

corresponds with by, then

C2 (Y x)

',,::r~ ¥V\

The refinement procedure tests each one in Md to

see whether the condition is satisfied, changin~ the one to

zero if it is not. If any change took place, the procedure

is repeated. If Mm is left unchanged by condition 2, then

Mm represents a subgraph isomorphism.

The algorithm's steps can now be stated:-

1) Form matrices A, B and MO. Set D, the depth of th~ tree

search to 1. Set M equal to MO and then refine M. If the

new M has one row of all zeros, then go to step 5.

2) If there is no node in the structure's ~raph which could

match pattern node D and which has not already been

provisionally matched with an earlier pattern node, then ~o

to step 7.

~) Find, from M, the next potential match for pattern node

D. Set all other entries in the Dth row of M to zero and

refine M. If the new M has one row of all zeros, then go to

step 5.

~2

4) If D is equal to the pattern size, then a subgraph

isomorphism has been found otherwise ~o to step 6 (the next

level of the search tree).

5) If there are no more potential matches for pattern node

D (compare with step 2) ~o to step 7. Otherwise set M equal

to MD and ~o to step ~ (to try this new potential match).

6) Increase D by one (the next level of the tree search)

and ~o to step 2.

7) No match has been found at this point in the tree

search. If D=1 then terminate else subtract one from D, set

M equal to MD and backtrack to step 5.

An implementation of the refinement procedure in

hardware which allows a degree of parallel computation, is

also suggested, but this has not been constructed.

[Ullm76]'s statement of the method was modified

so as to deal with labelled, wei~hted ~raphs by changing

condition 2 to condition 3.

C3 < e)

where e is the allowed tolerance for two distances to be

"equal".

The various improvements to the algorithm

discussed in [McGr79, Chen81) were not coded.

53

3.2.3 A Worked Example

To illustrate the four algorithms, their

operation on the (very artificial) pattern and structure

shown in figure 3.4 will be examined. The nodes are all

taken to be of the same type and the inter-atomic distances

which are not marked are assumed to be different from those

present in the pat~ern.

Figure 3.5 shows the bit strings for Lesk's

algorithm which contain the information about the distances

each atom is from the other atoms. The first iteration

removes structure atom 6 as its bit string does not contain

any of the pattern's bit strings. The structure's bit

strings are then recalculated and the second iteration

removes structure atom 5 because it no longer has an atom

at a distance c from it. Finally, the third iteration

removes structure atom 4, and, as the fourth iteration does

not remove any structure atoms, the remaining three

structure atoms are passed on to the final stage of Lesk's

algorithm.

Figure 3.6 gives the pair lists produced by the

set reduction algorithm. The first atom and atom pair

examined by the algorithm are P1 and P1-P2. Structure atoms

2 and 4 are not a match for P1 because they are not present

in P1's column of the structure atoms in the P1-P3 pair

list. Therefore the s~-Sl and S4-S5 atom pairs can be

eliminated from the P1-P2 pair list. After processing the

P1-P2 list, the algorithm forms the set of possible matches

54

Distance
Atom a b c
P1 1 0 1
P2 1 1 0
P3 0 1 1

The bit strings associated with the pattern by Lesk's
Algorithm.

Distance
Atom a b c
S1 1 0 1
S2 1 1 0
S3 0 1 1
S4 1 1 0
S5 1 0 1
S6 0 0 1

The bit strings initially associated with the structure
by Lesk's Algorithm.

Distance
Atom a b c
S1 1 0 1
S2 1 1 0
S3 0 1 1
S4 1 1 0
S5 1 0 0

The structure's bit strings after the removal from
consideration of atom S6.

Distance
Atom a b c
S1 1 0 1
S2 1 1 0
S3 0 1 1
S4 0 1 0

The structure's bit strings after the removal of S5.

Distance
Atom a b c
S1 1 0 1
S2 1 1 0
S3 0 1 1

The structure's bit strings before entry to the final
stage of Lesk's algorithm.

Figure 3.5 Applying Lesk's Algorithm To The Pattern And
Structure Of Figure 3.3

Pattern Pair

Structure
Pairs

The initial pair lists

Pattern Pair

Structure
Pairs

P1 P2
S1 S2
S2 S1
S5 S4
S4 S5

for the set

P1 P2
S1 S2
S5 S4

P2 P3
S2 S3
S3 S2
S4 S3
S3 S4

reduction

P2 P3
S2 S3
S3 S2
S4 S3
S3 S4

P1 P3
S1 S3
S3 Sl
S5 S6
S6 S5

algorithm.

P1 P3
S1 S3
S3 S1
S5 S6
S6 S5

The pair lists after the elimination of pairs from Pl-P2
which did not have a first element which could match P1.

Pattern Pair

Structure
Pairs

I . I

P 1 P2
Sl S2
S5 S4

P2 P3
S2 S3
S3 S2
S4 S3
S3 S4

P1 P3
S 1 S3
S5 S6

The pair lists after the elimination of pairs from Pl-P3
which did not have a first element which could match Pl.

Pattern Pair

Structure
Pairs

P 1 P2
Sl S2
S5 S4

P2 P3
S2 S3
S3 S2
S4 S3
S3 S4

P1 P3
S1 S3

The pair lists after the elimination of pairs from P1-P3
which did not have a second element which could match P3.

Pattern Pair
Structure

Pairs

P 1 P2
S1 S2
S5 S4

P2 P3
S2 S3
S4 S3

P 1 P3
S1 S3

The pair lists after the elimination of pairs from P2-P3
which did not have a second element which could match P3.

Figure 3.6(a) The Set Reduction Algorithm Applied To The
Pattern And Structure Shown In Figure 3.3

Pattern Pair
Structure

Pairs

P 1 P2
S1 S2

P2 P3
S2 S3
S4 S3

P1 P3
S 1 S3

The pair lists after the elimination of pairs from P1-P2
which did not have a first element which could match P1.

Pattern Pair P 1 P2 P2 P3 P1 P3
Structure Pairs S1 S2 S2 S3 S1 S3

The pair lists before the final stage of the algorithm.

Figure 3.6(b) The Set Reduction Algorithm Applied To The
Pattern And Structure Shown In Figure 3.3

for P1, {S1,S2}, from this list. The pairs in P1-P3 whose

first atom is not in this set are then eliminated (these

being S3-S1 and S6-S5). The algorithm then proceeds by

applying a similar procedure in turn to the atoms P3 and

Pl. When no more eliminations can be made from the pair

lists, they are passed on to the final stage of the'

algorithm.

The clique finding algorithm produces the

correspondence graph from the graphs of the pattern and the

structure in exactly the same way as the illustration of

figure 3.2. For example, consider the nodes of the

correspondence graph C5=(Pl,S5), Cl0=(P2,S4) and

C18=(P3,S6), then

1) as the distances between Pl-P2 and S4-S5 are both a, C5

is connected to Cl0 in the correspondence graph.

2) as the distances between Pl-P3 and S5-S6 are both c, C5

is connected to C18.

3) the distances between P2-P3 and S4-S6 are not the same,

so C10 is not connected to C18.

'After setting up the correspondence graph, the

problem then becomes one of determining whether the

correspondence graph contains a clique of size 3.

For Ullman's algorithm the structure atoms were

re-ordered as (S5, S4, S2, S1, S3, S6) so as to avoid the

method immediately finding the match (Sl, S2, S3) in the

first 3 rows and columns of the matrix MO. The distance

tables for this new ordering are shown in figure 3.7. As

all the atoms are of the same type, any structure atom

55

1 2 3 2 3 4 5 6
1 0 a c 1 0 a X X X c
2 a 0 b 2 a 0 X X b X
3 c b 0 3 x x 0 a b X

4 X X a 0 c X
Distance 5 X b b c 0 X
Table A 6 : c X X X X 0

Distance Table B

Figure 3.7 Ullman's Distance Tables For The Example Of
Figure 3.3

where X indicates that the distance is not one of those
contained in the pattern.

1 2 3 4 5 6
1 1 0 0 1 0 0
2 0 1 1 0 0 0
3 0 0 0 0 1 0

Figure 3.8 Matrix M After Its First Refinement

i j x distance 'i Mxy Action
1 1 2 a 2 1
1 1 3 c 6 0 M (1 , 1) : =0
2 3 1 a 4 1
2 3 3 b 5 1 No change
2 2 1 a 1 0
2 2 3 b 5 1 M(2,2):=0
1 4 2 a 3 1
1 4 3 c 5 1 No change
3 5 1 c 3 1
3 5 2 b 2, 4 0, 1 No change

Figure 3.9 Refining Matrix M Of Figure 3.8 Using
Condition 3 Of Section 3.2.2.4

, 2 3 4 5 6
1 0 0 0 1 0 0
2 0 0 1 0 0 0
3 0 0 0 0 1 0

Figure 3.10 Matrix M After The Refinement Illustrated In
Figure 3.8

could possibly match any pattern atom, and so, MO is

initially a 3*6 matrix of ones. (A more sophisticated

approach might be to check that the structure atoms had

neighbours at the right distances.)

The first step in the algorithm requires M to be

set equal to MO and then refined. The refinement involves

finding each element (Mij) which has the value one and then

checking whether, for these values of i and j, whether

condition 3 holds. If it does not, (Mij) is set equal to

zero. The matrix M· after the first application of the

refinement procedure is shown in figure 3.8.

As the refinement procedure changed some elements

of M, it is reapplied to M. In more detail, figure 3.9

shows the working out of condition 3 for each non-zero

element of M. First i and j are assigned to be the row and

column numbers respectively of the non-zero element. Next x

and the relevant pattern distance are found from matrix A

before y is found from matrix B. Finally, the element (Mxy)

from M is examined and if it is zero, then (Mij) is set

equal to zero. Figure 3.10 shows M after the second

application of the refinement procedure and a match for the

pattern has been found in the structure without any

recourse to backtracking (and this was found to be the

usual case in the searches which were undertaken).

56

3.2.4 Results Of The Comparison

The first three algorithms were compared with a

small sample of the data output from the queries of Section

3.1.3 using the VAX 8600 system at Pfizer (U.K.). For

convenience reasons, patterns where all the distances were

specified were chosen. A further restriction was the fact

that Lesk's method uses the same error margin when

comparing a distance in the query molecule with one in the

pattern for all the pattern distances (although this

problem can be overcome by using an array containing the

error margins). The results are given in table 3.2, the

missing entry for Lesk's algorithm being caused by the fact

that one of the molecules contained multiple occurrences of

the pattern. When this occurs, the algorithm calls its

transformation stage at least n to the power r times where

n is the number of atoms in the pattern and r is the number

of disjoint (that is no atoms in common) occurrences of the

pattern.

Although the sample of data is very small, there

is a slight indication that the clique finding algorithm is

the quickest followed by the set reduction method with

Lesk's algorithm third. However, it was decided that a more

meaningful analysis would not be worthwhile because

1) the performances of the algorithms of Sections 3.2.2.2

and 3.2.2.3 were pretty similar

2) the time taken for the partial matching stage is much

smaller than that for the two screening stages which

57

typically take about 10 minutes of real time on the VAX

8600 [Jake87a]. (However, most of this time is taken up by

the database retrieval operations rather than the

calculations associated with the screening program.)

3) where there are a large number of structures to be

checked by the partial matching stage in table 3.1, there

is also a high success rate on the partial matching stage

due to the effectiveness of the screening system.

Therefore the algorithms were analysed in a less

specific setting than that of having small patterns, and

molecules which contain all the distances in the pattern.

This was done by taking molecules of various sizes and

extracting "patterns" of atoms of different sizes from

these molecules. These atoms were chosen to be mainly

carbons so as to make the problems more computationally

demanding due to the fact that most atoms in the molecules
•

are carbons. (Hence, it was a "worst case" test since

pharmacophoric patterns normally involve heteroatoms.) The

patterns were then slightly distorted so that the

algorithms would no longer find them in the molecules. The

distance error margin for two distances to be regarded as

matching was set at 0.25 A in all the runs.

These comparisons were run on a Prime 9950 and

the results are given in tables 3.3 to 3.11. To improve the

accuracy of the timing, each run involved 20 searches for

the pattern in the query molecule with the recorded time

being the time taken divided by 20. Some of the table

entries for Lesk's algorithm are not monotonically

58

increasing with respect to the pattern size because of the

combinatorial problem mentioned above and this also caused

the searching of the molecule of size 25 using Lesk's

algorithm to be prohibitively expensive. Additionally, only

Ullman's algorithm was used to search the molecule of size

106 atoms because of the computational cost.

A further comparison was carried out using 250

molecules from the. start of the Cambridge Crystallographic

Database. 10 molecules which were evenly spaced throughout

the 250, had patterns selected from them by using random

numbers to select 3, 5 and 7 carbons. The algorithms were

then run to see how many times these patterns occurred in

the 250 molecules and the means and standard deviations of

the times for these runs are given in tables 3.12.

Unfortunately, Lesk's algorithm suffered from its

combinatorial problem and no times were obtained for it.

Also only 9 patterns of size 5 and 8 of size 7 were used

because one of the molecules contained only 4 carbons and

another 5.

3.2.5 Discussion Of The Comparisons

While the patterns of atoms which were chosen

were very artificial, they do allow the various algorithms

to be compared in computationally expensive circumstances.

Bearing this in mind, the resulting comparison can only be

regarded as a fairly rough, general indication of their

performances. Clearly, in specific circumstances such as

59

being used in conjunction with the screening system of

Section 3.1 or to find whether a substructure common to two

molecules occurs in a third [Gole83], a detailed analysis

in that setting would be required. However, the following

points can be made:

1) Ullman's algorithm is the quickest with it giving

comparatively better performances as the pattern size

increases (although Gund's comment in Section 3.2.2.2 could

probably offset this to a certain extent). It is also

noticeable that it is quicker at unsuccessful searches than

successful ones. However, because the time taken for each

search is very low, it is hard to envisage any use for the

hardware proposed in Section 3.2.2.3 in this context.

2) The problem under investigation was to determine whether

a specific 3D pattern of atoms was present in a molecule,

and so, when a clique of the same size as the pattern was

found by the method of Section 3.2.2.3, the search was

successful and could terminate. If no clique of sufficient

size was present in the correspondence graph, then all the

cliques were generated by the algorithm so as to establish

this fact. Therefore this method tended to perform better

than the set reduction algorithm on successful searches and

worse on unsuccessful ones.

3) When it did not suffer from its combinatorial problem,

Lesk's algorithm was in the same performance range as the

60

clique finding and set reduction approaches, with it doing

relatively better with large patterns. The combinatorial

problem was exacerbated to some extent in the comparisons

by using mainly carbon atoms in the pattern and a distance

error range of 0.25 A. Steps 1 to 4 of the algorithm (see

Section 3.2.2.1) only need to be executed once for each

pattern which is a slight advantage if a large number of

structures are being searched for the same pattern.

3.2.5.1 The Combinatorial Problem Suffered By The Reduction

Methods

The simplest approach to the substructure search

problem is to test all the possible combinations of

structure atoms against the pattern, but this is hopelessly

expensive in practice because of the factorial nature of

the method. Both Lesk's and the set reduction algorithms

operate by trying to reduce the number of structure atoms

that are passed on to a final stage which is similar to

this simple approach. (However, the set reduction method

manages to avoid generating most of the possible

combinations by using the depth first search described in

Section 3.2.2.2 as a final stage.) Unfortunately, these

methods are not always able to reduce the number of

structure atoms to a number which the generating all

combinations approach can handle, and so Lesk's algorithm

can run into problems.

Consider the (pathological) pattern and structure

61

shown in figure 3.11 where the unmarked distances are

assumed not to be relevant and all the atoms are of the

same type. Lesk's algorithm is unable to eliminate any

atoms from the structure as each one has neighbours at the

required distances, while the performance of the set

reduction method is shown in figure 3.12 and again no

progress has been made at eliminating any of the atoms

(although the structure does not contain the pattern). In

this case, only a few atoms are passed to the final stage

of each algorithm, and so the fact that they have not been

able to eliminate some "unmatchable" structure atoms is not

significant. However, where there is a large amount of

symmetry in the structure, this failing to be able to

remove structure atoms can swamp the final stage of the

algorithm. An illustration of this was searching for

patterns of size 7 amongst the 250 molecules in Section

3.2.4, where one of the searches using the set reduction

method produced a final stage with 15 possible matches for

the first pattern atom, 16 for the second, 18 for the

third, 16 for the fourth, 14 for the fifth, 14 for the

sixth and 15 for the seventh. The simple approach for the

final stage was swamped by the number of possible

combinations and was aborted after it had used over 40

minutes of c.p.u. time. However, the depth first search ran

to completion in a fraction of second.

Lesk's algorithm can never eliminate more

structure atoms from consideration than the set reduction

approach as it is only interested in whether an atom has

62

c

Pattern

Structure

Figure 3.11 A Pattern And Structure Which Cause Problems For
The Reduction Techniques

Pattern Pair Pl P2 P2 P3
S1 S2 S2 S3

Structure S2 Sl S3 S2
Pairs S4 S5 S5 S6

S5 S4 S6 S5

The initial pair lists for the set reduction

Pattern Pair P1 P2 P2 P3
Sl S2 S2 S3

Structure S4 S5 S3 S2
Pairs S5 S6

S6 S5

The pair lists after eliminating atoms which
match Pl.

Pattern Pair
Structure

Pairs

P 1 P2
Sl S2
S4 S5

P2 P3
S2 S3
S5 S6

P1 P3
Sl S6
S6 Sl
S3 S4
S4 S3

algorithm.

Pl P3
Sl S6
S4 S3

could not

Pl P3
S 1 S6
S4 S3

The final pair lists which the reduction techniques cannot
make any smaller.

Figure 3.12 The Set Reduction Algorithm Applied To The
Pattern And Structure Of Figure 3.10

neighbours at the

these neighbours

relevant pattern

right distances, rather than whether

are also potential matches for the

atom. Unfortunately, the simple approach

has to be employed with Lesk's algorithm, and so, in cases

like the above, it cannot cope.

3.2.6 Searching Macromolecules

3.2.6.1 Modifications To Lesk's Algorithm

The molecules contained in the Cambridge

Crystallographic Database are all relatively small when

compared with proteins, and so, it was decided to search a

molecule containing 1807 atoms. Unfortunately, the storage

space required by the clique finding method and Ullman's

subgraph isomorphism algorithm was beyond the limits of the

Prime 9950. In addition, to save storage space, the code

for Lesk's algorithm was amended to use the bit strings

described in the statement of the algorithm instead of the

arrays of integers which were used when searching the

Cambridge Crystallographic Database. The manipulation of

bits on the Prime carries a considerable overhead when

compared with the corresponding manipulation of integers;

so as to get some idea of the extra cost the version of

Lesk's algorithm using bit strings was run to

(successfully) find the pattern of size 9 in the structure

of size 42 (see table 3.7). The time taken was 2.41 cpu

seconds compared with the original time of 0.99 cpu

seconds.

63

A further modification of the version of Lesk's

algorithm used above, was that the region occupied by the

molecule was split up into non-overlapping cubes of side

length equal to the maximum inter-atomic distance in the

pattern plus the error limit [Levi66, Katz72]. Step 7 of

Section 3.2.2.1 was altered so that additionally each

structure atom was associated with its relevant cube. The

purpose of the modification is that in step 7, when

distances from a structure atom to other structure atoms

are being considered to see if they match ~ inter-atomic

pattern distance, only structure atoms from the original

atom's cube and the cubes adjacent to this need to be

considered. To see the effect of this splitting up of the

molecule, two versions of Lesk's algorithm were used in the

search of the macromolecule, one not using cubes and the

other having 6*6*6 cubes arranged to make a larger cube.

(Any structure atoms not present in one of the 216 cubes

were assigned to the nearest cube.) The version of Lesk

used on the Cambridge Crystallographic Database did not use

cubes . because when the maximum inter-atomic pattern

distance is reasonably large when compared with the

distances in the molecule, the extra processing involved in

the cubes method leads to a significant degradation in the

performance of the algorithm.

Whereas with the searching of the molecules in

tables 3.3 to 3.12 the pattern was chosen so as to make the

search time consuming, it was decided that the searches of

the macromolecule should use less demanding patterns. Also

64

in order to investigate the use of the cubes under very

favourable conditions, consecutive atoms were extracted

from the molecule (thus keeping the maximum inter-atomic

distance in the pattern small). One set of twelve atoms was

taken from the "start" of the molecule and the other set

from the "middle". The error margin of 0.1 A when comparing

distances was lower than before so as again to cut down on

the computational cost. For the same reason, each search

was only run once as opposed to the twenty times used in

Section 3.2.4, but otherwise the method was the same as

that of the above section.

3.2.6.2 Results And Overview

The results of the searches are given in tables

3.13 to 3.16 and these indicate that Lesk's algorithm with

the addition of cubes performed best and the set reduction

algorithm worst. Again Lesk's algorithm suffered from

combinatorial problems and where these occurred, the time

used upto the final step in the algorithm is given and is

marked with a $ sign. However, a way round this problem

might be to use Ullman's or one of the other algorithms as

the final stage of Lesk's algorithm rather than using a

generate all possible combinations of atoms approach (that

is to use Lesk's method to reduce the number of structure

atoms under consideration to a level where one of the other

algorithms could be used). The number of structure atoms

under consideration at step 5 of the algorithm on each

65

iteration is also given.

Tables 3.13 to 3.16 show that it is possible to

search for fairly distinctive patterns in a macromolecule

without being devastatingly expensive in terms of the cpu

time used, especially when the fact that bit strings were

used is kept in mind. A way of reducing this cost could be

to split the molecule up into blocks and use a screening

system similar to that of section 3.1, treating each block

as though it was a separate molecule. Alternatively, work

is being carried o~t in Sheffield to try to use Lesk's

algorithm to reduce the number of atoms under consideration

to a level where Ullman's algorithm can be applied

[Davi87].

3.3 COMMENTS

A 3D substructure searching system

finding pharmacophoric patterns in the

Crystallographic Database has been described and

used for

Cambridge

various

partial matching algorithms have been compared. Although

the various tests indicate that Ullman's subgraph

isomorphism algorithm is the quickest, the highly

artificial nature of the patterns which were searched for

and the fact that the partial matching stage takes

relatively little time when compared with the screening

stage must be emphasised. Also using the algorithms to

search macromolecules was found to be expensive in terms of

the c.p.u. time used. As with the results in the rest of

66

this thesis, the performance figures of the algorithms can

only be regarded qua:l.itatively because of possible

inefficiencies in the coding, the performance of different

computers, compilers and languages, and most importantly of

all, the lack of use made of "parallel" bit handling

facilities. However, overall, 3D substructure searching can

be regarded as being easier than 2D substructure searching

in that it deals with weighted graphs. Additionally, it

seems that regarding the structures as graphs and then

using a standard subgraph isomorphism algorithm leads to a

better performance then the algorithms developed from a

chemical standpoint. The subgraph isomorphism used was

Ullman's standard one but any of several others [McGr79,

Chen81], some of which are claimed to be substantially

quicker, could have been used instead and might have also

given good results in this application.

A closely related problem to that of determining

whether a pattern is present in a molecule (subgraph

isomorphism) is that of determining what structure two or

more molecules have in common (maximal common subgraph) and

two algorithms for this will be considered in the next

chapter. Later in this thesis (Chapter 8), a description of

a program combining the screening system of Section 3.1 and

one of these algorithms will be given in an attempt to

provide a way of searching the Cambridge Crystallographic

Database for a molecule which has a similar 3D structure to

the pattern molecule.

67

Partial
PATTERN N 0 Stage 1 Stage 2 Match

Anti-cholinerg ic 4 5 368 80 4
ab-ad renerg ic 5 6 325 24 0
Anti-leukemic 3 3 485 370 171
Anti-malarial 6 9 379 78 0

I Anti-neoplastic 3 3 283 56 0
Hallucinogenic 3 3 542 191 69
Serotoninerg ic 3 3 519 51 0
Prostaglandin-like 3 3 690 55 4
Steroid hormonal 4 3 1106 183 102
Analgesic 4 4 666 414 259

Table 3.1 Results Of The Screening System Of Section 3.1
(Taken From [Jake87a])

N is the number of atoms in the pattern
o is the number of distances in the pattern
Stage 1 is the initial screening stage
Stage 2 is the check to see whether the distances are
present

Number Of Number Of Time For
PATTERN Molecules Matches Lesk SR Clique

Anti-neoplastic 9 0 1.7 1.7 1.5
Hallucinogenic 19 1 4.4 4. 1 3.5
Serotoninergic 24 3 *** 3.5 2.9

Table 3.2 Comparison Of The Partial Matching Algorithms

Showing: the number of molecules considered
the number of molecules in which a match was found

The time is the cpu time (1n seconds) averaged over three
runs
SR is the set reduction algorithm of section 3.2.2.2
Clique is the clique finding algorithm of section 3.2.2.3

NB. Different distance error limits were used in tables
3.1 and 3.2.

Pattern Sizes
Algorithm 3 5 7 9
Lesk 17 7 13 23
Set reduction 3 7 9 13
Clique find ing 3 6 10 15
Ullman 3 4 6 8

Table 3.3 Times(*) For Successfully Finding A Pattern In
A Structure Of Si ze 14

Pattern Sizes
Alf!iorithm 3 5 7 9 ,

3 4 16 Lesk 9
Set reduction 2 4 7 10
Clique finding 3 6 11 16
Ullman 2 2 2 2

Table 3.4 Times(l) For lklsuccessfull y Finding A Pattern In
A Structure Of Si ze 14

Pattern Si zes
Algorithm 3 5 7 9 11
Lesk ** II .*. .** •• *
Set reduction 77 88 137 129 154
Clique find ing 16 39 75 128 195
Ullman 12 19 26 28 38

Table 3.5 Times(*) For Successfully Find ing A Pattern In
A Structure Of Size 25

Pattern Sizes
Algorithm 3 5 7 9 11
Lesk ** ** ** *.* ***
Set reduction 11 22 61 83 113
Clique find ing 18 62 148 263 446
Ullman 5 6 17 13 13

Table 3.6 Times(*) For lkl success full y Find ing A Pattern In
a Structure Of Size 25

* The cpu times are in hundredths of a second.

Pattern Sizes
Al~orithm 3 5 7 9 11 13
Lesk 148 26 54 99 143 205
Set reduction 15 33 59 92 134 168
Cl i que fi nd ing 10 30 54 89 131 160
Ullman 10 13 18 25 35 44

Table 3.7 Times(-) For Successfully Finding A Pattern In A
Structure Of Size 42

Pattern Si zes
Alsorithm 3 5 7 9 11 13
Lesk 31 22 46 83 125 169
Set reduction 14 35 63 97 137 181
Clique finding 10 34 69 115 166 200
Ullman 9 10 8 9 9 9

Table 3.8 Times(*) For Unsuccessfully Finding A Pattern In
A Structure Of Size 42

Pattern Si zes
AI~orithm 3 5 7 9 11 13 15
Lesk 45 136 88 131 198 291 454
Set reduction 24 59 89 129 194 277 407
Cl ique find ing 36 121 173 294 431 564 903
Ullman 20 27 32 43 58 73 92

Table 3.9 Times(*) For Successfully Find ing A Pattern In
A Structure Of Size 60

Pattern Si zes
All?jorithm 3 5 7 9 11 13 15
Lesk 29 139 83 126 188 274 412
Set reduction 19 51 94 138 196 269 409
Cl ique find ing 38 164 221 439 720 945 1693
Ullman 13 13 17 17 17 18 18

Table 3.10 Times(*) For Unsuccessfully Finding A Pattern In
A Structure Of Size 60

* The cpu times are in hundredths of a second.

Pattern present
Pattern absent

Pattern
3

118
76

Size
5

136
86

Table 3.11 TimesC·) For U1lman's Algorithm To Search A Molecule
Of Size 106 Atoms

• The cpu times are in hundredths of a second.

Pattern Si ze
3 5 7

Algorithm Mean S. D. Mean S. D. Mean S. D.
Set reduction 64 17 120 63 125 66
Clique finding 44 1 109 15 235 24
Ullman 31 2 37 10 33 10

Table 3.12 TimesC+) For Searching 250 Molecules For Patterns
Consisting Of Three, Five And Seven Carbons

+ The cpu times are in seconds.
S.D. is the standard deviation

FOR TABLES 3.13 TO 3.16:
The cpu times are in seconds
$ indicates that this time is the time upto step 10
Mk1 is the version which doesn't use cubes
Mk2 is the version which does use cubes

Algorithm
Set reduction
Lesk Mk1
Lesk Mk2

Pattern
6 8
73 103

$85 100
$33 53

Sizes
10

107
146
104

12
189
292
221

Table 3.13(a) Times For Successfully Finding Atoms From
The "Start" Of A Molecule Of Size 1807

Pattern Sizes
Number Of Iteration 6 8 10 12
First 1807 1807 1807 1807
Second 715 589 346 150
Third 258 103 11 12
Fourth 128 8 10
Fifth 56
Sixth 42
Seventh 35

Table 3.13(b) The Corresponding Number Of Structure Atoms
Under Consideration at Step 5 Of Lesk's Algorithm On Each
Iteration

Algorithm
Set Reduction
Lesk Mk1
Lesk Mk2

Pattern
6 8
41 65

$78 97
$26 56

Sizes
10
91

148
107

12
191
273
240

Table 3.14(a) Times For Unsuccessfully Finding Atoms From
The "Start" Of A Molecule Of Si ze 1807

Number of iteration
First
Second

6
1807

71

Pattern Si zes
8 10

1807 1807
144 136

12
1807

48

Table 3.14(b) The Corresponding Number Of Structure Atoms
Under Consideration At Step 5 Of Lesk's Algorithm On Each
Iteration

Algorithm
Set reduction
Lesk Mkl
Lesk Mk2

Pattern
6 8

105 187
92 146
46 107

Sizes
10

tmsr
260
231

12
tmsr

360
330

Table 3. 15(a) Times For Successfully Finding Atoms From
The "Middle" Of A Molecule Of Size 1807

Pattern Sizes
Number Of Iteration 6 8 10 12
First 1807 1807 1807 1807
Second 701 665 400 319
Third 158 78 14 12
Fourth 19 9 10
Fifth 6 8

Table 3.15(b) The Corresponding Number Of Structure Atoms
Under Consideration At Step 5 Of Lesk's Algorithm On Each
Iteration

Algorithm
Set red uc tion
Lesk Mkl
Lesk Mk2

6
167
106
62

Pattern Si zes
8 10

294 tmsr
171 307
136 283

12
tmsr

421
395

Table 3.16(a) Times For Unsuccessfully Finding Atoms From
The "Middle" Of a Molecule Of Size 1807

Pattern Sizes
Number Of Iteration 6 8 10 12
First 1807 1807 1807 1807
Second 806 740 469 360
Third 259 94 12 8
Fourth 60 3
Fifth 2

Table 3.16(b) The Corresponding Number Of Structure Atoms
Under Consideration At Step 5 Of Lesk's Algorithm On Each
Iteration

CHAPTER 4

COMMON 3D SUBSTRUCTURES

4.1 INTRODUCTION

Finding the 3D substructure in common between

several molecules can be loosely regarded as being a

generalization of 3D substructure searching. This problem

is of interest if several molecules which are biologically

active are known as large common regions may contain the

active site, ie. the part of the molecule which is

responsible for the activity. [Mot086] states that using an

algorithm for solving this problem in conjunction with the

molecular mechanics program described in his paper, could

lead to "a powerful, computationally integrated approach to

pharmacophore identification, validation, and assessment of

uniqueness".

This chapter describes and compares two

algorithms for the determination of common substructures.

The first of these is the method of Crandell and Smith

[Cran83a, Cran83b] which works by finding all common

substructures of size n and then "grows" these so as to

produce all those of size n+1. The other method is very

closely related to the clique finding algorithm of Section

3.2.2.3 and treats the molecules as weighted graphs (see

Section 3.2.2.3). The problem of finding maximal common

substructures becomes that of finding maximal common

subgraphs [Levi72, Barr76]. Before moving on to describe

68

the algorithms, it should perhaps be pointed out that the

problem of whether a graph contains a clique of size k or

greater is NP-complete (see Section 1.2.1.2) and the

problem of listing all the cliques of a graph has a running

time which may in "bad cases" increase exponentially with

the size of the graph as there can be an exponential growth

in the number of cliques [Das78J.

4.2 CRANDELL AND SMITH'S ALGORITHM

The method Crandell and Smith described [Cran83a,

Cran83bJ for finding the 3D substructures in common between

a set of molecules, involves taking all the common

substructures of size n associated with each molecule and

adding an extra atom to each of them. These enlarged

substructures are then canonically named so as to allow

them to be compared with the enlarged substructures

associated with other molecules. If a substructure is not

found in all of the other molecules' lists, it is deleted

from consideration. The surviving substructures form the

common substructures of size n+1. This type of growing and

comparing algorithm has also been used to compare 2D

molecular data [Vark79J.

The selection of an atom to add to a substructure

in the "growing" step is done by consulting a distance

matrix associated with each molecule. This contains the

distances between all atoms in the molecule and distances

which are not present in the current set of common

69

substructures are indicated by a minus sign (this amendment

of the distance tables being carried out after the

comparison step). Atoms for addition to a substructure are

those whose distances have not been negated.

The algorithm can be summarised as consisting of

the following steps:-

1) Setting up the distance tables

2) Growing the common substructures

3) Naming the substructures

4) Comparing the substructures

5) Amending the distance tables and returning to step 2.

[Cran83a] describes modifications to the method

to allow for a common starting substructure to be specified

which must be contained in any substructures produced by

the algorithm, and to cater for stereochemistry, but these

will not be considered here.

4.2.1 Setting Up The Distance Tables

So as to make the comparison between

substructures in step 4 simpler, the inter-atomic distances

in each molecule have an integer associated with them. This

is done by forming a list of inter-atomic distances present

in the molecules for each atom type pair. These lists are

then sorted into ascending order and the distances in them

are grouped together so that a distance belongs to the same

group as its predecessor if the difference in their values

70

is less than the tolerance value (which is usually taken to

be 0.09 A), otherwise a new group is formed. The groups are

then numbered starting from one and groups which do not

contain atom pairs from every molecule, have their numbers

negated. A distance table is associated with each molecule

and the (. .) th
~,J entry (i(>j) is the group number for the

inter-atomic distance between this molecule's ith and jth

atoms.

4.2.2 Growing

Each substructure associated with a molecule is

grown by enlarging its atom set by one by adding an atom

which is greater than any of the atoms in the atom set

(where greater just refers to the "natural" ordering of the

atoms resulting from their input) and whose "distances" in

the distance table to these atoms are non-negative. Where

it is possible to add several different atoms, a new

substructure is produced for each of them.

On the first iteration, the "grown" substructures

are taken to be the individual atoms in each molecule.

4.2.3 Naming

Each substructure node set produced from step 2

is given a canonical name by taking each of the (n-1)*n/2

atom pairs in the substructure (where n is the size of the

substructure) and forming a triple consisting of the two

71

atom types (with the larger coming first) and the relevant

"distance" entry in the molecule's distance table. These

(n-1)*n/2 triples are then sorted so that if X=(a,b,c) and

Y=(d,e,f) are two triples, then X occurs before Y if

1) a>d

2) a=d and b>e

or

3) a:d, b=e and c<f.

Once the triples have been sorted, each triple

need only be represented by its "distance" element as this

implicitly contains the atom type information. Hence each

substructure can be uniquely named (up to isomorphism) by

the list of its "distances" (ordered as above).

4.2.4 Comparing

For each of the molecules, its "named"

substructures are compared with those of the other

molecules. If another molecule is found which does not have

this substructure amongst its substructures, then the

substructure is deleted along with its node set. Hence, the

substructure~ surviving this step are the substructures in

common for this size.

72

4.2.5 Amending The Distance Tables

After the comparison stage, each non-negative

entry in the distance tables has its atom pair checked to

see whether it still occurs in the relevant molecule's list

of node sets. If it does not, the distance entry is negated

so as to avoid growing substructures which contain this

atom pair at some future moment in time.

4.3 USING GRAPH THEORY TO FIND COMMON SUBSTRUCTURES

The maximal common 3D substructures between two

molecules can be found by treating the molecules as

weighted graphs and then finding the maximal subgraphs in

common. One approach to this problem [Levi72, Barr76] was

described in Section 3.2.2.3 and is to produce the

correspondence graph of the two molecules and then to find

all the cliques in this graph. An alternative approach has

been described by McGregor [McGr82] involving a depth first

search tree in which each tree node represents the pairing

of a node from the first graph with one from the second.

The advantage of this approach is that it allows a wider

definition of subgraph to be employed than that of Levi

because a subgraph can now be defined as a subset of the

nodes of a graph along with a subset of the edges which

join these nodes. (As opposed to a subset of the nodes of

the graph and all the edges of the graph between these

points.) Figure 4.1 illustrates a graph and subgraph which

73

A2

A'/
SUB GRAPH 3

Figure 4.1 An Illustration Of The Different Definitions Of
A S~bgraph Employed By McGregor And Levi

A,~r~
A1 A2 A3 A4 A5

A1 1 1 1 , 0
A2 1 , 0 , 1
A3 , 0 , , 1

~1/A5 A4 , 1 1 , 0
A5 0 , , 0 1

A3

Figure 4.2 The Graph Used To Illustrate The Clique Finding
Algorithms

McGregor's definition allows but Levi's disallows (because

A1 is not connected to A3 in the subgraph). This approach

leads to the definition of a maximal common subgraph as

being the subgraph contained in both graphs which has the

largest number of edges. Hence, the emphasis is very much

on the edges of the graphs and the technique uses an m*n

matrix, MARCS, (where m is the number of edges in the first

graph and n is the number in the second) containing ones

and zeros. A one in the (r,s)th entry means that the rth

edge of the first graph is a potential match for the sth

edge of the second and the matrix is altered in a way

somewhat analogous to that of the matrix MO in Ullman's

subgraph isomorphism algorithm of Section 3.2.2.4.

In more detail, if a node x from graph one is

associated with a node y from graph two at a node of the

search tree, then any arc, r, connected with x can only

correspond with arcs connected to y (other entries in the

rth row being set to zero -and likewise for the relevant

columns). As is usual with tree searches, the efficiency of

the algorithm is closely linked with how soon "bad"

branches which cannot lead to a solution can be pruned. In

this case, this means trying to ensure that a common

subgraph with a large number of arcs is found early on in

the search and then backtracking whenever the number of

rows of MARCS which contain at least one one falls below

this number of arcs.

McGregor's approach has been applied in the

chemical information field to help identify the bond

74

changes that have occurred in chemical reactions [McGr81].

However, in the present context it is not very relevant as

1) it only finds a largest common subgraph whereas Levi's

method finds all the subgraphs which are not contained in a

larger subgraph.

2) all the nodes in a graph (or subgraph) are connected to

each other as the "weight" of the edge represents the

distance between the two atoms.

3) following on from (2), not only is McGregor's wider

definition of subgraph of no extra use, but the matrix

MAReS is now very large.

An alternative algorithm for the maximal common

subgraph problem which uses McGregor's definition of a

subgraph is described in [Wong83]. This method produces a

third graph from the two originals and then employs a depth

first tree search to find areas of maximum correspondence

in this new graph. Pruning is carried out by keeping a

matrix at each level of the search which gives the maximum

number of edges which can be obtained by a potential

pairing of nodes from the starting graphs. The algorithm

was designed for directed graphs and on conversion to

dealing with undirected graphs and the other definition of

subgraph, becomes very similar to the correspondence graph

method using Bron and Kerbosch's clique finding algorithm

described below.

Levi's method stems from the idea that, with his

definition of maximal common subgraph, it is likely that an

75

efficient algorithm will repeatedly have to test whether

the relationship between Ai-A j and Bi-B j (where Ak is an

element of the first graph and Bk is an element of the

second) is the same whenever (Ai,B i) and (Aj,B j) are

potential, correspondences. Hence, it is more economical to

store this information in a graph (the "correspondence

graph") and the problem is thus transformed into the well

studied clique detection problem.

In the last chapter, only the standard clique

finding algorithm of Bron and Kerbosch was used; however,

as finding common substructures is a more complex task than

determining whether a subgraph isomorphism exists, several

different clique finding algorithms were coded and compared

with each other (as opposed to the last chapter where a

single clique finding algorithm was considered). The

algorithms chosen were:-

1) Bron and Kerbosch's algorithm [Bron73] which is

generally regarded as being one of the most efficient of

the clique finding algorithms.

2) Golender and Rozenblit's algorithm [Gole83] which they

used with their common substructure detection system.

3) Version 1 of algorithm 1 described by Gerhards and

Lindenberg [Gerh79] as it was reported as performing better

than Bron and Kerbosch's algorithm on sparse graphs.

4) Loukakis and Tsouros' algorithm [Louk81] as it has been

reported as being quicker than that of Bron and Kerbosch. ~

5) Loukakis' algorithm [Louk83] which has been reported as

being quicker than algorithm (4).

76

Before giving a detailed description of these, it

is probably just as well to point out that, with the

exception of (3), they all employ a fairly similar depth

first, tree search strategy. This uses a set of nodes, A,

which is the current attempt at a clique, a set of nodes

from which elements are taken to enlarge A and some

indication of nodes which have previously been rejected

from A. Hence, the efficiency of the algorithms derives

from the data structures they use and the conditions

employed to "prune" branches of the search tree as soon as

possible. Therefore the descriptions of the algorithms are

rather mathematical with that of (2) being the simplest and

those of (3), (4) and (5) being the hardest. A reader who

is not interested in the exact details of the algorithms

can continue at Section 4.3.7 without losing any sense of

continuity.

4.3.1 Bron And Kerbosch's Algorithm

At each level, d, of the tree search, there are

two sets Nd and Cd of nodes of the graph which are

connected to every node in the set Md which consists of the

d nodes under consideration for inclusion in the next

clique. Nd contains the nodes which have already been tried

in the attempt to enlarge Md, and Cd those "candidate"

nodes which have yet to be tried. The algorithm moves to

the next level of the tree search by moving a candidate

node from Cd to the trial set Md (which then becomes

77

M(d+1». The sets N(d+1) and C(d+1) are then calculated by

removing from Cd and Nd those nodes not connected to the

candidate node.

When backtracking occurs, the node most recently

added to M(d+1) is added to Nd and removed from Cd, and the

level of the search becomes d (from its previous value of

(d+1». A clique is found when both Cd and Nd are empty (if

only Cd is empty, then Md is a subset of a clique which has

already been output).

The selection of a candidate node from Cd is done

so as to increase the likelihood of a point in Nd being

connected to all points in Cd. (When this happens, further

extensions to Md from Cd cannot remove this point from Nd.

Therefore Nd can never become empty by extending Md, and

so, backtracking needs to occur.) This can be done by

selecting the point, n, in Nd which is connected to the

most elements of Cd and then every time a candidate is

selected, choosing a point in Cd which is not connected

with n (because if backtracking occurs it is removed from

Cd).

4.3.2 Golender And Rozenblit's Algorithm

This method uses an array EXPAND(L) at each

level, L, of the search tree to hold the candidates for

addition to the array CLIQ which contains the current

attempt at finding a clique. When an element, J, for

addition to CLIQ is chosen, EXPAND(L+1) is produced from

78

EXPAND(L) by intersecting it with NEIGHBR(J), the set of

neighbours of J which are greater than J. Hence the

elements of EXPAND(I) are always connected to every element

of CLIQ and they are greater than every element of CLIQ. A

variable; K, is used to ensure that the cliques are not

generated twice. This is done by increasing K whenever a

new node is added to CLIQ, only decreasing K when

backtracking occurs and selecting an element from EXPAND(I)

to be the smallest element which is greater than K.

When no more elements can be added to CLIQ, the

following test is applied to determine whether a clique has

been produced as opposed to a subset of an earlier clique:-

TEST 1 For the last node, J, added to CLIQ, find a

neighbour, M, which is smaller than J and which is

connected to all elements of CLIQ. If no such M exists, a

clique has been found.

In order to improve the efficiency of this naive

search, a second test is used to try to prune the tree in

cases where any potential clique that the algorithm can

produce, will fail on test one. Jhis test is applied before

a new node, J, is added to CLIQ and can be stated as:-

TEST 2 Find M which is a neighbour of J but is not

contained in CLIQ, such that M(J and M is connected with

every element of EXPAND(L) and every element of CLIQ.

79

The point of the test is that enlarging CLIQ by

using elements from EXPAND(L) will always mean that a

clique cannot be produced because every element of CLIQ

will still be connected to M. A full statement of the

algorithm is:-

1) Set R, the root of the search, equal to one.

2) Set L, the level of the search equal to one, CLIQ(1)

equal to Rand EXPAND(1) equal to NEIGHBR(R).

3) Set K equal to R.

4) Select, J, the smallest element of EXPAND(L) which is

greater than K. If no such J exists, go to step 7.

5) Perform test 2. If a suitable M is found, go to step 10

so as to prune the tree.

6) Add a new vertex to CLIQ by increasing L by one,

producing EXPAND(L) and setting CLIQ(L) equal to J.

7) If no new vertex has been added to the search tree,

backtrack by going to step 10.

8) Perform test 1. If a suitable M is found, then CLIQ is

not a clique and backtracking occurs by going to step 10.

9) Output CLIQ (as it is a clique).

10) Backtrack by setting K equal to CLIQ(L), decrementing L

by one and if L<>O going to step 4.

11) Choose a new root by incrementing R by one. If R is

less than o~ equal to the size of the graph, go to step 2.

80

4.3.3 Gerhards And Lindenberg's Algorithm

[Gerh79] describes two clique finding algorithms

along with the results of various comparisons with the

algorithm of Bron and Kerbosch, and the first version of

the first algorithm was found to perform well with respect

to this algorithm on sparse graphs. The first algorithm is

based on the following theorem (the proof of which is given

in [Gerh79]):-

Every subset Q=(TGLE(i) union with K) of NGLE(i) is the

generating vertex set of a clique of B(i) if, and only if,

K, which is a subset of NGLE(i)\TGLE(i), is the vertex set

of a clique of the subgraph S*(i) of S(i) generated by

«NGLE(i)\TGLE(i» union with R(i» where R(i) is the

subset of NG(i)\NGLE(i) whose elements are connected in G

with all elements of TGLE(i).

where

G is the graph under consideration,

NG(i) is the set of elements of G which are connected to i

(including itself),

NGLE(i) is a subset of NG(i) containing those elements

which are less than or equal to i,

TGLE(i) is a subset of NGLE(i) containing those elements

which are connected to every element of NGLE(i),

B(i) is the subset of all cliques of G which contain i and

whose other vertices are less than i

81

and

S(i) is the graph whose node set is NG(i).

The basic algorithm consists of

1) Incrementing i, calculating NG(i) and NGLE(i) and then

finding B(i) by steps 2 to 8.

2) Applying a simple test (given below) to try and

determine whether B(i) is the empty set. If it is, return

to step 1.

3) Determining whether i is connected to any other

vertices. If it is not, then output B(i)={i} and return to

step 1.

4) Deriving TGLE(i) from the connection table of the graph

G.

5) If TGLE(i) is actually NGLE(i), then output B(i)=TGLE(i)

and go to step 1.

6) Determine R(i) which is the subset of NG(i)\NGLE(i)

whose elements are connected with all the elements of

TGLE (i) .

* 7) Determine X, the node set of S (i), from

X=«NGLE(i)\TGLEI(i» union with R(i».

8) Determine all the K's in the above theorem by calling a

subroutine K-CAL, and all the sets in B(i) from B(i)={K

union with TGLE(i)}. Then go to 1.

The test used in step 2 to try to determine

whether B(i)={} can be stated as

82

~ If NG(i)\NGLE(i) contains an element M such that M is

connected to every element of NGLE(i), then B(i)={}.

This follows from the fact that any clique whose

largest element was i would have every element connected to

M (>i), and so, would not be a clique (contradicting the

first statement).

In step 8, the set K is obtained by calling the

subroutine K-CAL which uses a tree search to generate the

subsets of NGLE(i)\TGLE(i), backtracking occurring when

either the present subset is the vertex set of a clique or

there are two nodes in the subset which are not connected

to each other. The test for a clique is carried out using:-

TEST Y is the vertex set of a clique of Z if, and only if,

Y is equal to the intersection of NZ(j) for every j in Y.

This comes from considering the intersection because if it

contains an element x which is not in Y, then Y cannot be a

maximal, complete subgraph as Y union with {x} is a

complete subgraph which contains it. On the other hand, if

there is an element, w, of Y which is not in the

intersection, then Y cannot be totally connected

(complete), and so, again it is not a clique.

83

4.3.4 Loukakis And Tsouros' Algorithm

An independent set of a graph, G, is a set of

nodes none of which are connected to each other. A maximal

independent set is an independent set which is not

contained in a larger independent set and it is closely

related to a clique in that a clique of a graph is a

maximal independent set of the complementary graph and vice

versa. (The complementary graph is formed from a graph by

removing all the edges and then connecting those nodes

which were originally unconnected.)

The search of this section generates the maximal

independent sets lexicographically in that it produces all

those containing node 1 before those which do not and

within these two groups it produces those containing node 2

first, and so on. It achieves this by using three disjoint

sets (SPLUS, SMINUS and STWIDDLES) of nodes of the graph.

SPLUS contains an independent set which is the basis of the

next maximal independent set. SMINUS contains the nodes

which have been removed from SPLUS when backtracking has

occurred. STWIDOLES consists of the nodes of G which are

not in SPLUS, SMINUS or connected to any element of SPLUS.

The algorithm operates by· trying to add elements of

STWIDDLES to SPLUS so as to create a larger independent

set, the lexicographic ordering being achieved by always

choosing the smallest possible element of STWIDDLES to add

on branching and removing the most recently added element

from SPLUS on backtracking.

84

To improve efficiency, the algorithm also makes

use of the following two propositions:-

P1 Let u, an element of STWIDDLES, be the branching vertex

and N(u) be a subset of (N(SPLUS) union with SMINUS), then

the vertex u is contained in any maximal independent set·

which contains SPLUS and no element of SMINUS.

where N(u) is all the nodes which are connected to u

and N(SPLUS) is all the nodes which are connected to at

least one element of SPLUS

Proof

The condition means that any extension to SPLUS (which does

not contain u) will not contain any neighbours of u, and

so, u can always be added to this extension and the

extension will still be independent.

P2 Let K be the set of elements of SMINUS which are not

connected to any element of SPLUS. If u is an element of K

and u is not connected to any element of STWIDDLES, then u

is contained in any maximal independent set which contains

SPLUS.

Proof

u is not connected to any element of SPLUS or STWIDDLES,

and so, extending SPLUS by taking elements from STWIDDLES

will still mean that u can be added to SPLUS without SPLUS

ceasing to be an independent set.

Proposition P1 means that u can be considered

85

along with its predecessor for backtracking purposes, and

P2 means that no maximal independent set can be produced

along this branch of the search and backtracking should

occur.

Loukakis and Tsouros' algorithm can now be given

in a step by step form:-

1) (Initialize) SPLUS={}, STWIDDLES=V (the nodes of the

graph) and SMINUS={}

2) Check whether STWIDDLES is empty in which case SPLUS is

a maximal independent set and the algorithm goes to step 5,

otherwise SPLUS is augmented by the first element of

STWIDDLES (which is recalculated).

3) If P1 is satisfied, mark the most recently added element

of SPLUS and go to step 2, else go to step 4.

4) If P2 is satisfied, go to step 5 else go to step 2.

5) (Backtrack) Find the most recently added unmarked

element in SPLUS, restore SMINUS to its state when this

element was added to SPLUS and add this element to SMINUS.

Remove this element and all the more recently added

elements from SPLUS and recalculate STWIDDLES. If SPLUS is

the empty set, go to step 6, otherwise go to step 4.

6) (Termination test) Apply P2, if it is satisfied then

terminate as no more backtracking is possible else go to

step 2.

86

4.3.5 Loukakis' Algorithm

This algorithm is very similar to that of the

previous section in that it finds the maximal independent

sets by using the sets SPLUS, SMINUS and STWIDDLES. The

theorem which the algorithm is based around can be stated

as:-

THEOREM SPLUS is a maximal independent set of a graph if,

and· only if, SMINUS is a subset of ADJ(SPLUS) and STWIDDLES

is the empty set.

(where ADJ(A) is the set of nodes which are connected to at

least one element of A)

Proof

The proof can be split up into three cases as follows:-

1) SMINUS is not a subset of ADJ(SPLUS)

Therefore if u is an element of SMINUS

ADJ(SPLUS), then SPLUS intersection with

but not of

ADJ(u) is the

empty set. (If this was not the case, then if w was an

element in this intersection, u would be an element of

ADJ(w) which is a subset of ADJ(SPLUS).) Hence, SPLUS union

with {u} is an independent set, and so, SPLUS cannot be a

maximal independent set.

2) STWIDDLES is not empty

STWIDDLES is defined to be

V\(the union of SPLUS, ADJ(SPLUS) and SMINUS) where V is

the set of nodes of the graph.

Therefore adding any element of STWIDDLES to SPLUS creates

a larger independent set.

87

3) SMINUS is a subset of ADJ(SPLUS) and STWIDDLES is empty

From the definition of STWIDDLES it follows that V is the

union of SPLUS and ADJ(SPLUS). Therefore any set larger

than SPLUS which contains SPLUS, must contain an element of

ADJ(SPLUS), and so, cannot be an independent set.

A condition closely related to this theorem is:

C1 If SMINUS is a subset of ADJ(SPLUS) and there exists an

element, u, of STWIDDLES sudh that ADJ(u) intersection with

STWIDDLES is empty, then u is contained in every maximal

independent set formed by adding elements of STWIDDLES to

SPLUS.

Proof

From the definition of STWIDDLES, the intersection of

ADJ(u) with the union of SPLUS and STWIDDLES is empty.

Therefore any expansion of SPLUS by elements of STWIDDLES

(which does not contain u) to form a new independent set,

can have u added to it and still remain independent.

The point of condition C1 is that u can be added

to SPLUS and when backtracking on u should occur, the

backtracking can be done on the predecessor of u in SPLUS

(because a maximal independent set formed from the elements

of SPLUS preceding u is forced to contain u).

As was mentioned above, the algorithm generates

the maximal independent sets by growing SPLUS by adding

elements of STWIDDLES. If SMINUS is a subset of ADJ(SPLUS),

then the theorem says that SPLUS should be extended by an

88

element of STWIDDLES and whenever such a "branch" occurs,

condition C1 is tested. When backtracking occurs, the last

element, v, added to SPLUS which is suitable for

backtracking (that is condition C1 was not met when it was

added to SPLUS) is found and SMINUS is restored to its

state when v was added to SPLUS. v is then removed from

SPLUS and added to SMINUS. Whenever SMINUS contains an

element v which is not in ADJ(SPLUS), the next element, w,

of STWIDDLES is chosen so that v is in ADJ(w). (Of course

if no such element exists, then backtracking must occur.)

The steps of the algorithm are:-

1) (Initialize) Set SPLUS={}, SMINUS={}, STWIDDLES=V (the

nodes of the graph) and u to be the element of the graph

with fewest neighbours. Go to step 3.

2) Test whether STWIDDLES is empty, if it is then the

theorem applies (because step 4 has already tested that

SMINUS is a subset of ADJ(SPLUS» and SPLUS is a maximal

independent set and backtracking occurs by going to step 5.

Otherwise u=the first element of STWIDDLES and proceed to

step 3~

3) If C1 is satisfied, then mark u as it can be associated

with the most recently added element of SPLUS when

backtracking.

4) Add u to SPLUS and recalculate STWIDDLES. If SMINUS is

not a subset of ADJ(SPLUS), then go to step 6. (So as to

try to choose an element of STWIDDLES to make this so.)

Otherwise carry on adding to SPLUS by going to step 2.

5) Backtrack by finding the most recently added, unmarked

89

element of SPLUS, restore SMINUS to its state when this

element was added to SPLUS, add this element to SMINUS and

remove it and all the more recently added elements from

SPLUS. Recalculate STWIDDLES and test for termination by

seeing whether the element, u 1, considered first in step 1

and all its neighbours are in SMINUS, if so, then the"

conditions of the theorem can never be met. Otherwise

proceed to step 6.

6) Try to ensure that SMINUS becomes a subset of ADJ(SPLUS)

by choosing an element, u, of STWIDDLES such that w is an

element of ADJ(u), is in SMINUS but not ADJ(SPLUS). If this

is possible then go to step 3 (so as to add u to SPLUS),

otherwise go to step 5 (so as to backtrack).

In the actual implementation of the algorithm,

STWIDDLES is not recalculated from scratch all the time but

rather on branching the elements subtracted from STWIDDLES

are stored and when backtracking occurs, they are added to

STWIDDLES.

4.3.6 A Worked Example

To illustrate the above algorithms, the way they

deal with the graph of figure 4.2 (figure 4.6 in the case

of the methods which find the maximal independent sets)

will be considered.

Figure 4.3 illustrates the operation of the Bron

and Kerbosch algorithm, Md is the set forming the basis of

90

LEVEL OF TREE SEARCH
1
2
3
2
1
2
3
2
1
1
2
1
1
2
1
1
1

Md
1
1 2
1 2 4
1 2
1
1 3
1 3 4
1 3
1
2
2 5
2
3
3 5
3
4
5

4

Nd
{}
{}
{}

2
{}
{}

4
2 3
1
{}

1 5
1
{}

1 5
123
2 3

Cd ACTION
2 3 4
4

{} Output Cl ique
{}

3 4
4

{} Output Clique
{}

4
4 5

{} Output Cl ique
4
4 5

{ } Output Clique
4

{}
{}

Figure 4.3 Bron And Kerbosch's Algorithm Applied To The
Graph Of Figure 4.2

LEVEL
1
2
3
2
1
2
3
2
1
2
1
1
2
1
2
1
1
2
1
2
1
1
1

J R
2 1
4 1
X 1
X 1
3 1
4 1
X 1
X 1
4 1
X 1
X 1
4 2
X I 2
5 2
X 2
X 2
4 3
X 3
5 3
X 3
X 3
X 4
X 5

K CLIQ
1 1
2 1 2
4 I 1 2 4
4 1 2
2 1
3 1 3
4 1 3 4
4 1 3
3 1
4 1 4
4 1

I 2 2
4 2 4
4 2
5 I 2 5
5 2
3 3
4 3 4
4 3
5 3 5
5 3
4 4
5 5

EXPAND
234
4

{}
4
234
4

{}
4
2 3 4

{}

234
4 5

{}

4 5
{}

4 5
4 5

{}
4 5
{}

4 5
{}
{}

ACTION

Output Cl ique

Output Clique

Backtrack

Backtrack

Output Cl ique

Backtrack

Output Clique

Backtrack
Finish

Figure 4.4 Golender And Rozenblit's Algorithm Applied To The
Graph Of Figure 4.~

The values are those after step 4 of the algorithm.
The value X indicates that a suitable J has not been found.

the next clique, Cd the candidates for addition to Md and

Nd the previously rejected elements of Md which are

connected to every element of Md. When a choice is possible

over which element from Cd should be used to extend Md, the

element which is connected to the least number of elements

of Nd is chosen.

Figure 4.4 shows Golender and Rozenblit's

algorithm in operation. The main idea is to increase CLIQ

so that it becomes a clique by adding elements from EXPAND

which are the smallest elements which are greater than K.

(Also R, the root of the search tree and J, the next

element to be added to CLIQ, are also given.)

Like Golender and Rozenblit's algorithm, Gerhards

and Lindenberg's method produces the cliques in

lexicographical order and figure 4.5 gives an outline of

the steps involved with the example of this section. For

each i, the set of cliques, B(1) , with i as their greatest

element is calculated using NG(i) (the set of elements

connected to i-including itself) , NGLE(i) (those elements

of NG(i) which are not greater than i) and TGLE(i) (those

elements of NGLE(i) which are connected to every other

element of NGLE(i».

The complementary graph of the graph of figure

4.2 is shown in figure 4.6 and, as figures 4.7 and 4.8

show, the operations of Loukakis and Tsouros' and Loukakis'

algorithms on it are very similar. They both try to

increase SPLUS by adding elements of STWIDDLES and mark (by

*) elements of SPLUS which should be associated with the

91

NG(1)={1, 2, 3, 4} NG(2)={1, 2, 4, 5} NG(3)={1, 3, 4, 5}
NG(4)={1, 2, 3, 4} NG(5)={2, 3, 5}
N GLE (1) = {1 } N GLE (2) = { 1, 2 } N GLE <3) = { 1, 3 }
N GLE (4) = { 1, 2, 3, 4 } N GLE (5) = { 2, 3, 5}

i=1
B(i)={} as 2 is connected to every element of NGLE(i)

i=2
B(i)={} as 4 is connected to every element of NGLE(i)

i=3
B(i)={} as 4 1s connected to every element of NGLE(i)

1=4
Step 2 The test is not able to determine whether B(i)={}
Step 3 B(i) is not isolated
Step 4 TGLE(i)={1, 4}
Step 5 B(i) is not equal to TGLE(i)
Step 6 R(i)={}
Step 7 X={2, 3}
Step 8 K={ {2}, {3} }

B(i)={ {1, 2, 4}, {1, 3, 4} }

1=5
Step 2 The test is not able to determine whether B(l)={}
Step 3 B(i) is not isolated
Step 4 TGLE(i)={5}
Step 5 B(i) is not equal to TGLE(i)
Step 6 R(i)=£}
Step 7 X={2, 3}
Step 8 K={ {2}, {3} }

BCi)={ {2, 5}, {3, 5} }

Figure 4.5 Gerhards And Lindenberg's Algorithm Applied
To The Graph Of Figure 4.2

Al A1 A2 A3 A4 A5
A2

""'A5
A1 1 0 0 0 1
A2 0 1 1 0 0
A3 0 1 1 0 0

/ A4 0 0 0 1 1
A5 1 0 0 1 1

A3 A4
The Adjacency

Matrix

Figure 4.6 The Complementary Graph Of The Graph Shown In
Figure 4.2

AFTER STEPS SPLUS STWIDDLES SMINUS ACTION
1,2 1 2 345 {}

3,4,2 1 2 4 {}

3,4,2 1 2 4 {} {}

3 1 2 4' I {} I {} I 4 is I I I

associated with 2 for backtracking purposes
2 1 2 4* {} {} Output MIS
5 1 3 4 2
4,2 1 3 4 I 2 I

I I

3 1 3* Associate 3 with 1
2 1 3* 4 {} I 2 I

3 1 3* 4* Associate 4 with 1
2 1 3* 4* {} 2 Output MIS
5 {} 2 3 4 5 1
6,2 2 4 5 1
3,4,2 2 4 {} 1
3,4
5 2 5 1 4
4,2 2 5 {} 1 4 Output MIS
3,2 2 5* 0 1 4
5 {} 345 1 2
6,2 3 4 5 1 2
3,2 3 4 {} 1 2
3,4
5 3 5 2 4
4,2 3 5 {} 2 4
3,2 3 5* {} 2 4 Output MIS
5,6 Terminate

Figure 4.7 Loukakis And Tsouros t Algorithm Applied To
The Graph Of Figure 4.6

AFTER STEPS SPLUS STWIDDLES SMINUS ACTION
1 , 3, 4 1 2 345 {}
2,3,4 1 2 4 {}
2,3,4 1 2 4* I { } I {} I 4 has been I I I

associated with 2 for backtracking purposes
2 1 2 4* {} {} Output MIS
5 1 3 4 2
6,3,4 1 3* 4 2
2,3,4 1 3* 4* {} 2
2 1 3* 4* {} 2 Output MIS
5 {} 234 5 1
6,3,4 5 2 3 1
2,3,4 5 2 {} 1
2 5 2· {} 1 Output MIS
5 5 3 1 2
6,3,4 5 3* {} 1 2
2 5 3* {} 1 2 Output MIS
5 TERMINATE

Figure 4.8 Loukakis l Algorithm Applied To The Graph Of
Figure 4.6

preceding element element of SPLUS when backtracking

occurs. However, Loukakis and Tsouros' algorithm generates

the maximal independent sets lexicographically while

Loukakis' algorithm chooses elements of STWIDDLES to try to

make SMINUS a subset of ADJ(SPLUS). Hence, when 1 is

removed from SPLUS and added to SMINUS, Loukakis and

Tsouros' algorithm chooses the element 2 from STWIDDLES

while Loukakis' algorithm chooses 5.

4.3.7 Comparing The Algorithms

The five algorithms described above were coded in

FORTRAN 77, with Bron and Kerbosch's being converted from

the ALGOL 60 given in [Bron73] while the others were coded

from their step by step descriptions. (The recursion

present in the ALGOL 60 code was dealt with by making

repeated copies of the subroutine which called itself and

then modifying the copies so that they called each other in

a chain.) A sort routine was also used with the algorithms

of Gerhards and Lindenberg, Loukakis and Tsouros, and

Loukakis so as to order the nodes of the graphs on how many

neighbours they possessed. The time taken for this sorting

stage is included in the times given below. for these

algorithms.

The code produced for the algorithms was

optimised [Metc85] so as to try to obtain highly efficient

implementations. However, it is unlikely that the resulting

versions of the algorithms were as efficient as the

92

authors' own and, in particular, the algorithm of Gerhards

and Lindenberg caused problems mainly because there is very

little description of the data structures to be used (and

those which are present are intended for when logical "AND"

and "OR" functions are available). On the other hand the

implementation of Loukakis and Tsouros produced code'

comparable with that in [Louk81] and the simplicity of

Golender and Rozenblit's approach leaves very little room

for inefficient coding. The code for [Louk83] is also

likely to be comparable with the author's own as the data

structures are explicitly stated.

In addition to the above five algorithms, a

modified version of Bron and Kerbosch's algorithm was also

tested. The modification was that when a node was added to

the list of nodes potentially making up the next clique, it

was checked to see whether it was connected to all the

candidates for addition to this list. If it was then, when

backtracking to this node occurred, the algorithm could

immediately backtrack to the node's predecessor in the list

(as the node is contained in any clique containing the

earlier nodes in the list.)

The algorithms were compared by taking a molecule

from the Cambridge Crystallographic Database and producing

"another" molecule from it by reordering the atoms. Both

molecules then had some of their atoms slightly distorted

so as to obtain two different but similar "molecules". The

first stage of Crandell and Smith's algorithm was then

applied to the molecules (this was so as to ensure that the

93

clique finding approach and Crandell and Smith's

produced the same common substructures)

algorithm

and the

correspondence graph WgS produced from the resultin~

"distance" tables. The clique finding algorithms were then

run (on a Prime Q950) on this correspondence graph.

The molecules chosen were of sizes 16 (14

carbons, 1 oxygen, 1 bromine), 2~ (20 carbons, 3 oxygens) ,

19 (11 carbons, 8 oxygens, 2 nitrogens) and 25 (15 carbons,

9 oxygens, 1 nitrogen) and the results are given in tables

U.1 to 4.4. Gerharns ~nd Lindenberg was aborted after it

had taken 40 minutes of cpu time when finding a

substructure of size 19 in table 4.3. Therefore no times

are ~iven for this algorithm in tables 4.3 and 4.4 (when a

similar problem occurred). Additionally, a very large

number of cliques of size 5 were produced when the

molecules in Table 4.3 which have a common substructure of

size 19 were distorted and this led to Bron and Kerbosch's

algorithm having to be termingted after it had used 40

minutes of cpu time. Hence there are no times in this table

for molecules with a small common substructure.

Tables 4.1 to 4.4 appear to indic8te (even after

taking into consider~tion the coding problems mentioned

above) that the extra heuristics introduced by the

algorithms of Gerhards and Lindenberg, Loukgkis and

Tsouros, and Loukakis increase the computation rather than

reduce it (the extra computation being consumed by the

calculation of the heuristics). This is probably due to the

correspondence graphs being "simpler" than the random

94

graphs that these algorithms were designed for in that, for

example, if n nodes are connected to each other and another

node is connected to the first (n-1) of these nodes, then

it is very likely to be connected to the nth. Hence, the

time consuming tests do not lead to a significant

improvement in the search tree. (This "less difficult"

property of the correspondence graphs stems from the fact

that not all the N*(N-1)/2 inter-atomic distances in the

mol~cule are independent.)

One of the reasons for Gerhards and Lindenberg's

poor performance can be seen in the figures given in

[Gerh79] (for random graphs of size 36) where the time for

a graph of edge density 10% is 0.5 seconds while that for

one where the density is 90% is 1131 seconds. Hence, in

practical applications (where the nodes are likely to be in

"clusters") the algorithm is likely to perform badly even

on sparse graphs.

Overall the algorithm of Bron and Kerbosch is

significantly quicker than the other algorithms. However,

the modified version of the algorithm is only very

marginally quicker than the original and it was the

original version which was used for the comparison with

Crandell and Smith's method.

Unfortunately, all the algorithms ran into

problems when dealing with the molecule of size 23 but this

was an extreme case as over 32000 cliques of size 5 were

present. However, as the size of the correspondence graph

increased, even Bron and Kerbosch's performance began to

95

deteriorate fairly rapidly and this will be considered in

more detail in Sections 4.5 and 4.6 where the clique

finding approach for finding the largest common

substructures will be compared with that of Crandell and

Smith. (The clustering of the inter-atomic distances using

the first step of Crandell and Smith's algorithm will also

be investigated in Section 4.5. The results of running the

two versions of Bron and Kerbosch's algorithm on the

correspondence graph produced by using a molecule composed

of 24 carbons and the actual inter-atomic distances rather

than the clustered ones is given in table 4.5. Of the other

algorithms, Gerhards and Lindenberg took 136 cpu seconds

when dealing with the common substructure of size 24 whilst

the rest ran into storage problems -having been coded to

optimise their speed of execution rather than to save

space.) However a more in depth look at the choice between

clustering or not clustering distances is given in Section

4.5.1.2 (tables 4.13 to 4.17).

4.4 MODIFYING THE TWO APPROACHES FOR FINDING COMMON

SUBSTRUCTURES

The two methods which have been used for finding

common substructures each have a major drawback. The basic

version of Crandell and Smith's algorithm described above

can compare several molecules with each other but it is

expensive in cpu time taken and storage space required if

there is a large common substructure. On the other hand,

96

the clique finding method can deal very well with comparing

two molecules which might have a large common substructure,

but extending the comparison to 3 molecules by using

triples (where one element comes from each molecule) to be

the nodes of the correspondence graph, instead of the

previous pairs, greatly increases the size of this graph

(in the worst case by a factor of the size of the third

molecule). Therefore the clique finding method runs into

difficulties when comparing more than two molecules.

4.4.1 Sorting The Growths In Crandell And Smith's Algorithm

Table 4.7(a) shows the cpu times (for a Prime

9950) taken by each step of the described version of

Crandell and Smith's method when comparing two slightly

distorted versions of a molecule of size 16, while table

4.6 shows the number of grown substructures after step 3'of

each generation. It can be seen that the comparison stage

consumes most of the time and, when there are two very

similar molecules, it is likely to be of the order of

n*n*(the time taken to check whether two

equal), where n is the number of growths after

growths are

step 3 of

the algorithm. (This is because, if we assume that

1) All the growths associated with a molecule have

different names

2) No growths are eliminated by the comparison stage

then, when comparing molecule A's growths with those of

B's, each of B's growths matches with one of A's. The

97

number of comparisons a

matches with growth j

growth from A undergoes if it

from B, is j. Therefore the total

number of comparisons undergone by A's growths is

the sum 1+ .. +n which is n*(n-1)/2

which is of the order of n*n.)

However, if each molecule's name list is sorted.

into ascending order, then, using pointers which are

increased if the relevant name is less than that pointed at

by the other pointers, the lists can be compared in order n

comparisons (with the above assumptions). A standard

sorting routine can carry out the extra sorting in order

n*log(n) time, which is significantly smaller than n*n as n

becomes very large.

This modification was coded (using the sorting

algorithm of [Sing69]) and its performance on the example

described at the start of this section is shown in table

4.7. It can be seen that the time taken by the amending

step is now of significance, and as this step is carried

out only to try to improve the efficiency of the algorithm,

it does not have to occur in the algorithm. Hence four

versions of the algorithm were tested depending on whether

the extra sorting and/or the amending stage was/were

present. (The performance of the versions which did not

have an amending stage on the above example are given in

tables 4.8 and 4.9.). Nevertheless, it should be pointed

out though that with very similar molecules the amending

step does not make very many modifications to the distance

tables, and so, the example given is almost a "worst case"

98

for the algorithms incorporating an amending stage.

(However, the situation is not quite this straightforward

as the time taken by the amending stage is likely to be

larger when the molecules are not nearly identical and this

will be considered in Section 4.5.1.2).

4.4.2 Extending The Clique Finding Algorithm To More Than

Two Molecules

As was m~ntioned in Chapter 3, the clique finding

approach has been used in the chemical context by Golender

and Rozenblit [Gole83J and by Kuhl et al. [Kuh184J, but

neither of these applications was interested in finding

common substructures for more than two molecules. The

former used common substructural features in structure

activity relationships, producing the featur~s by finding

common substructures between pairs of molecules and

determining whether they were present in the other

molecules by using a subgraph isomorphism algorithm. On the

other hand, Kuhl et al. were interested in finding

receptor-ligand binding positions in the context of

Crippen's "distance geometry" [CripS1] (which is a way of

producing 3D co-ordinates for a molecule from simple limits

on inter-atomic distances). Additionally, [Cone77J has

described a similar use of correspondence graphs in 2D

comparisons of molecules but again only comparisons of

pairs of molecules were used.

The approach adopted in this section to extending

99

the method to n molecules (n>2) is to select one of the

molecules and find its common substructures with each of

the other (n-1) molecules in turn. If the selected molecule

is of size m, then each common substructure can be

represented as a set whose elements are taken from 1, .. ,m.

Hence, the problem of finding substructures common to the n

molecules becomes one of intersecting (n-1) sets (one

coming from each of the (n-1) "groups" of common

substructures). Unfortunately, a naive approach of

generating all the possible intersections is likely to lead

to problems because, if there are K common substructures in

each group, then there are K(n-1) ways of intersecting the

sets. One way to tackle this problem is to "grow" the

subsets in common in an analogous way to Crandell and

Smith's and Varkony et al.'s [Vark79] methods grow the

common substructures. More specifically, for each gr6up, i,

the union of all the sets is taKen so as to form a set

UNION(i). A set INTERSECT is formed by intersecting all the

UNION(i)'s and the common substructures of size one are all

the elements of this set. The algorithm then proceed~ by

1) Growing each substructure by adding an element of

INTERSECT which is greater than every element of the

substructure. If there are several possible elements from

INTERSECT which can be added, then an enlarged substructure

is produced for each of these.

2) Every enlarged substructure is tested to see whether it

is contained in at least one set from each group. If it

ts not, it is eliminated.

100

3) Every element of INTERSECT is checked to see if it is

still contained in a substructure. If it is not, then it is

eliminated from INTERSECT and any of the sets it was

contained in. Any sets whose size is less than or equal to

the current substructure size are also eliminated and the

algorithm goes back to step (1).

4.5 COMPARING THE TWO APPROACHES

4.5.1 Comparing Two Molecules

4.5.1.1 Methodology

Molecules were chosen from the Cambridge

Crystallographic Database (CCDB), the atoms reordered and

both the original molecule and its copy were distorted

slightly (in a way analogous to that of Section 4.3.7). The

four versions of Crandell and Smith's method and the clique

finding approach using the unmodified clique detection

algorithm of Bron and Kerbosch, were run on the molecules

which were of sizes 14 (12 carbons, 1 oxygen, 1 nitrogen),

15 (10 carbons, 1 oxygen, 3 nitrogens, 1 chlorine) and 20

(13 carbons, 3 oxygens, 3 nitrogens, 1 sulphur), and the

results are given in tables 4.10 to 4.12. It is understood

from a referee's comments that the version of Crandell and

Smith's algorithm used in [Cran83a, Cran83b] did

incorporate the extra sorting stage and thus corresponds to

version 3 of Crandell and Smith's algorithm in the tables.

However, the two versions of the algorithm without the

extra stage were considered so as to provide indications of

101

the likely times for circumstances where unclustered

distances were being used. These were suggested in

[Cran83a] as a means of overcoming the difficulties

associated with the clustered distances (see Section

4.5.1.2) but they make it much more difficult to sort the

grown substructures.

Ideally, it would have been liked to use a

molecule of size around 35 with a common substructure of

size 14 or 15 but the clique finding approach took over

forty minutes of cpu time whilst Crandell and Smith

required too much storage for the Prime. This latter point

also meant that it was not possible to use this algorithm

when the common substructure was greater than size 15.

Instead, molecules were compared with the first

250,Vlk~ in the CCDB and collections of molecules were

formed which had substructures of size 7 or greater in

common with the query molecule. (For reasons of

convenience, the comparisons of inter-atomic distances when

setting up the correspondence graph involved the actual

distances rather than the "clustered distances" and an

error tolerance of 0.15 A was used for two distances to be

considered the same.) The algorithms then compared the

query molecule with the other molecules in each collection

and the times for these are given in tables 4.13 to 4.16

(for molecules of sizes 9 (8 carbons, 1 oxygen), 24 (24

carbons), 28 (27 carbons, 1 oxygen) and 15 (13 carbons, 2

oxygens». The clustering method was also investigated in

this comparison by using two versions of the clique finding

102

algorithm, one using the actual distances and an error

tolerance of 0.15 A and the other the distances clustered

with an error limit of 0.09 A (as in [Cran83a]). The effect

of varying the error limit when not using clustering is

shown in table 4.17 when the molecule of size 23 from the

molecule of size 9's collection is used.

4.5.1.2 Discussion Of The Results

sizes

The comparison of

14 and 15 produced

the distorted molecules of

results in line with the

discussion of Section 4.4.1 in that, for large common

substructures, adding a stage to sort the substructures

into order, and, to a much smaller (and less decisive)

extent, discarding the amending of the distance tables

stage led to a significant increase in speed. As the size

of the largest common substructure decreased, the

performances of the different versions of Crandell and

Smith's algorithm became much closer together as well as

getting closer to that of the clique finding approach.

The amending stage did sometimes lead to an

improvement of the algorithm when there is no sorting

stage. However, when this stage was present the amending

stage led to an increase in the time taken (because with

the sorting stage the comparison stage is nowhere near as

time consuming, and so a reduction in the number of

structures to be compared has relatively little effect -but

the fewer substructures to be compared does lead to some

103

saving in storage space). Reducing the common substructure

size often led to an increase in the time taken by the

amending stage because if a particular inter-atomic

distance was present in a small number of substructures,

'more substructures had to be examined before it was found.

The tables for the comparisons of the collections

of molecules also indicate that the clique finding approach

(using clustering) is faster than the various versions of

Crandell and Smith. However, the speeds of all of the

programs are reasonably close together as the largest

common substructure sizes are small. However, tables 4.13

to 4.16 do show a serious weakness in the clustering

technique in that clusters can be produced which contain

inter-atomic distances whose difference can be relatively

large. Hence, the large number of common substructures

which are found using the clustering method and this leads

to:-

1) Difficulties for the algorithms, with Crandell and Smith

running out of storage space and the clique finding method

taking much longer to finish.

2) Even if the algorithms terminate, in a practical

situation the common substructures which they output have

to be evaluated for their significance.

Unfortunately, despite the shortcomings of the

clustering approach, some way has to be used with Crandell

and Smith's algorithm for converting the inter-atomic

distances into integers if the "grown" substructures are to

be compared with each other efficiently.

104

On the other hand, Crandell and Smith's algorithm

should be better at dealing with molecules of size 40 say,

which have a small common substructure because the

correspondence graph for the clique finding approach then

becomes very large. However, in the examples which were

tried, the clustering caused there to be a large number of

common substructures and this led in turn to a storage

space problem.

4.5.2 Comparing More Than Two Molecules

The method described in Section 4.4.2 was used to

extend the clique finding approach to be able to deal with

more than two molecules and it was compared with the two

versions of Crandell and Smith's algorithm which use the

extra sorting. The results are shown in tables 4.18 to 4.26

with the times taken by the INTERSECT/UNION stage of the

clique finding approach being given in brackets, and with

some of the runs being repeated using different distortions

of the original molecules. The order of the molecules

affects the clique finding approach because it compares the

first molecule with each of the others in turn, and so

tables 4.18 to 4.23 give the maximum and minimum times for

the clique finding approach (as well as the maximum and

minimum times for the INTERSECT/UNION stage). However,

because the maximum and minimum times in these tables are

fairly close to each other, when more than four molecules

were being compared only one order was tested.

105

The results show that ~enerally the (n-1)

comparisons of pairs of molecules take more time than the

INTERSECT/UNION sta~e of the clique finding method (except

when the common substructure is very large). This was even

true where the comparison of pairs of molecules produced

very large numbers of cliques of size 5 or ~reater; for

instance the clustering method applied to the comparison of

six molecules produced more than 200 such cliques in the

comparison of some pairs of molecules in table 4.24.'

Therefore the clique finding approach is likely to be

roughly linearly related to the number of molecules being

considered.

Overall, the clique finding approach was again

superior to Crandell and Smith's algorithm which ran into

stora~e problems.

4.6 EXTENDING THE MAXIMUM COMMON SUBGRAPH ALGORITHM TO

LARGER MOLECULES

Unfortunately, the performance of the clique

finding approach runs into difficulties very rapidly as the

molecules under consideration become lar~er than about 35

atoms. If two molecules of ~reater size are compared then

there are problems over storin~ the resulting

correspondence ~raph and the clique finding algorithm

becomes much slower reflecting the exponential nature of

findin~ all cliques in a ~raph. Tn an attempt to ~et around

this problem, ~Bol179, Bol182] has suggested three

106

different techniques

consideration was to

template) :-

(although the

match a machine

problem under

part against a

1) Reducing the number of features in the template by

removing those which contribute little to the determination

of the orientation of the part.

2) Reducing the number of features to those within a

specified distance-of an "important" feature.

3) Screening out irrelevant features by applying the clique

finding approach to groups of features, eliminating the

groups which do not occur in large enough cliques and then

applying the clique finding method to the features in the

surviving groups.

Suggestions 1 and 2 are not suitable for

comparing two molecules where there is no a priori

information about the common substructure being looked for,

and so only method 3 was investigated. The implemented

algorithm grpups together atoms of the same atomic types

from the second molecule, with the size of these groups

being variable. All pairs whose first element is an atom

from the first molecule and whose second element is a group

from the other molecule such that both elements are of the

same atomic type, are formed. Two pairs are connected in

the correspondence graph if one of the inter-atomic

distances between atoms from the two groups corresponds to

the distance between the atoms from the first molecule.

Pairs which feature in cliques larger than a given size,

are marked and at the end of the clique finding stage, all

107

combinations of the atom from molecule one and one atom

from the group are formed for each marked pair. These then

go to make up the nodes of the second correspondence graph.

The results of running ~his algorithm on two

structures (one of size 63 atoms (45 carbons, 18 oxygens),

the other of size 67 (40 carbons, 27 oxygens», are given'

in tables 4.27 and 4.28 where the size of the groups and

the size of the relevant cliques were varied. Because of

storage considerations, a cut off of 1000 was placed on the

number of nodes allowed in a graph.

Using a tolerance of 0.09 A for considering two

inter-atomic distances to be equivalent, three common

substructures of size 8 were found. So as to make the

molecules more similar, 7 atoms (4 carbons, 3 oxygens) from

the molecule of size 67 were added to the other molecule

and the results of running the algorithm on the new

structures are shown in tables 4.29 and 4.30.

The examples of the use of the algorithm only

provide a brief look at its use with it clearly being

possible to have a multiple stage "screening" system,

however the times taken are much greater than those

reported earlier in this chapter when small molecules were

compared. This is mainly caused by the clique finding

algorithm taking longer owing to the increased density of

the graphs. Whilst the problem is a difficult one because

of the inherent combinatorial explosion, cpu times of the

order of five minutes are unlikely to be acceptable and

additionally large common substructures cannot be dealt

108

with because the method will not be able to eliminate

enough pairings. Therefore it seems likely that the best

method for dealing with very small common substructures is

that of Crandell and Smith with some form of modified way

of comparing distances, while comparing molecules with

large common substructures could possibly be done by using

some form of set reduction algorithm and eliminating all

atoms which do not have at least the cut off number of

neighbours.

4.7 OVERVIEW

Two methods for finding common 3D substructures

between two molecules have been compared (when the

substructures were of size 6 or larger) and the clique

finding approach has been found to be considerably quicker

than Crandell and Smith's algorithm. Various different

clique detecting algorithms were compared in this context,

and the widely used algorithm of Bron and Kerbosch was

found to be considerably superior to the others. However,

finding cliques in graphs of sizes greater than 1000

becomes very demanding in terms of storage and time.

Therefore the algorithm of Crandell and Smith could be

better if the molecules are of size, say, 40 with a small

common substructure. Unfortunately, the clustering method

used in conjunction with the algorithm leads to distances

being considered equivalent even though their difference is

quite large, and this in turn led to problems in trying to

109

find such an example. The problem with the clustering

method was another advantage of the clique finding approach

in that this initial stage was no longer necessary.

The clique finding approach was extended to deal

with more than two molecules and the results of the tests

which were carried out indicate that the time taken is

generally proportional to the number of molecules being

considered. The clique finding algorithm was also extended

to . try to deal more effectively with large molecules but

with very little success.

However, several riders must be applied to the

above work. Firstly, as it stands, the algorithm is only

likely to find the rings in a structure, and so some way of

representing a ring by using two points in space could well

be needed -as it is assumed that this bias towards ring

detection is undesirable. This leads on to another drawback

in that reported pharmacophores [Watt84] have tended to be

small, and so listing large common regions does not

guarantee that a small common pharmacophore will be found

(though th~pattern might be contained in a larger common

region). Another very serious qualification to the above

work is that it has only dealt with molecules' rigid

conformations whereas a molecule is quite likely to have a

fair degree of flexibility (see Section 2.1). Finally, in a

similar way to the last chapter, the structures chosen for

the test runs were very artificial.

In spite of its poor performance in the tests in

this chapter, the version of Crandell and Smith's algorithm

110

with no sorting stage is interesting in that it consists of

a large number of independent computations. Therefore it is

a prime candidate for implementation on parallel hardware

and this will be considered in the next two chapters; while

the clique finding approach will be met again in Chapter 8

which describes a system for finding molecules in the

Cambridge Crystallographic Database similar 3D structurally

to a query molecule.

111

KEY FOR TABLES 4.1 TO 4.5 :-

I The times are in cpu seconds
Band K 1 is the original version of Bron and Kerbosch
Band K 2 is the modified version of Bron and Kerbosch
G and R is (blend er and Rozenbl1t
G and L is Gerhards and Lindenberg
Land T is Loukakis and Tsouros
L is Loukakis

Largest Clique Size And
Number Of Cliques > Size 4

8 10 11 14 15
Algorithm 190 241 257 121 138
Band K 1 2.5 2.6 2.8 1.6 1.7
Band K 2 2.6 2.1 2.9 1.7 1.8
G and R 7.7 8.4 9.4 3.0 3.6
G and L 11.4 13.7 16.5 17.1 28.8
Land T 22.4 23.0 24.5 12.7 13.5
Loukakis 23.0 24.0 25.4 12.7 13.5

Table 4.1 Times(l) For Finding All Cliques In The
Correspondence Graph Of The Molecules Of Size 16

Algorithm
Band K 1
Band K 2
G and R
G and L
Land T
Loukakis

Largest Clique Si ze And
Number Of Cliques> Size 4

6 8 10 13 15 17 19
4 6 12 11 12 15 12

0.7 0.8 0.8 0.8 0.8 0.8 0.8
0.7 0.7 0.7 0.7 0.7 0.7 0.7
0.6 0.6 0.7 0.7 0.8 0.9 1.0
1.3 1.3 1.5 1.6 1.6 1.5 1.5
3.6 3.7 3.9 4.0 4.0 3.9 4.1
3.3 3.6 3.8 3.8 3.7 3.6 3.6

Table 4.2 Times(l) For Finding All Cliques In The
Correspondence Graph Of The Molecules Of Size 19

16
158
1.1
1.8
3.8

31.1
14.5
13.8

Largest Clique Size And
Number Of Cliques> Size 4

Algorithm
Band K 1
Band K 2
G and R
Land T
Loukakis

19 21
3654 632
20. 1 9.8
19.5 9.5

134.3 30.8
281.9 114.5
273.2 116.1

23
593
10.6
10.2
30.7

116.8
120. 1

Table 4.3 Times(*) For Finding All Cliques In The
Correspondence Q-aph Of The Molecules Of Size 23

Largest Clique Size And
Number Of Cl iques > Size 4

8 9 10 13 17 21
Alei°rithm 934 1293 1106 471 340 152
Band K 1 15.3 17.7 14.8 7.7 6.5 5.0
Band K 2 14.6 17.0 14.2 7.3 6. 1 4.7
G and R 80.3 102.4 78.4 25.5 19.3 11.5
Land T 154. 1 187.8 153.1 79.8 66.1 46.9
Loukakis 156.5 187.5 152. 1 77.2 62.4 46.2

Table 4.4 Times(.) For Finding All Cliques In The
Correspondence Q-aph Of The Molecules Of Size 25

Largest Clique Size And
Number Of Cliques> Size 4

12 14 19 24
Al~orithm 16 18 49 142
Band K 1 8.5 8.5 9.0 9.9
Band K 2 8.3 8.3 8.7 9.6

25
106
3.8
3.7
5.5

32.3
30.5

Table 4.5 Times(·) For Finding All The Cliques In The
Correspondence Graph Of The Molecules Of Size 24 Produced
Without Clustering The Inter-Atomic Distances

Iteration Number Of Growth s
Number Mol 1 Mol 2

1 16 16
2 111 113
3 450 472
4 1180 1195
5 2098 2212
6 2711 3023
7 2730 3081
8 2103 2246
9 1213 1266

10 506 517
11 144 145
12 25 25
13 2 2

Table 4.6 The Number Of Grown Substructures After
Step 3 Of Crandell And Smith's Algorithm When
Applied To The Example Of Section 4.5.1

Step Time Taken Step Time Taken
Initiali se
Grow
Name
Compare
Amend
Total

(a)

0.3
5

86
916
22

1029

Initiali se
Grow
Name
Compare
Amend
Extra Sort
Total

(b)

0.3
5

90
20
31
68

479

Table 4.7 The Times Taken By The Various Steps Of
Crandel! And Smith's Algorithm When Applied To The
Example Of Section 4.5.1

(a) I s the simple Crandell And Smith Algori thrn
(b) I s the ver sion where the grown sub structure s are sorted

The cpu time s are in second s. The di screpancie s between
the two" grow" and "name" step s can be attributed to the
inaccuracy of the system clock and rounding error s.

Iteration Number Of Growth s
Number Mol 1 Mol 2

1 16 16
2 11 1 1 13
3 450 472
4 1180 1195
5 2098 2212
6 2733 3032
7 2737 3082
8 2104 2330
9 1213 1302

10 506 526
1 1 144 146
12 25 25
13 2 2

Table 4.8 The Number Of Grown Sub structures After Step
3 Of Crandell And Smith's Algorithm With No Amending
Step When Applied To The Example Of Section 4.5.1

Step Time Taken Step Time Taken
Initiali se 0.3 Ini tiali se 0.3
Grow 5 Grow 5
Name 89 Name 91
ComEare 889 Compare 20
Total 983 Extra Sort 68

Total 184

(a) (b)

Table 4.9 The Times Taken By The Various Steps Of
Crandell And Smith's Algorithm With No Amending
Step When Applied To The Example Of Section 4.5.1

(a) I s the simple Crandell And Smith Algorithm
(b) I s the ver sion where the grown sub structure s are sorted

The cpu time s are in second s.

KEY FOR TABLES 4.10 TO 4.26 :-

I The time s are in cpu second s
C and S 1 is the simple ver sion of Crandell and Smith
C and S 2 is the simple ver sion with no amending of the

di stance table s
C and S 3 is the version with sorting, and amending of the

di stance table s
is the ver si on with sorting but no amending C and S 4

Clique is the clique finding approach u sing the original
version of Bron and Kerbosch's algorithm

No Clu ster

Clu ster

tmsr
lOMin+
41Min+

Algorithm
C and S 1
C and S 2
C and S 3
C and S 4
Clique

(wi th di stance clu stering)
is the clique finding approach with no di stance

clu stering
is the clique finding approach with di stance

clustering
too much storage required
indicate s that over 10 minute s of cpu time wa s used
indicates that over 41 minutes of cpu time was used

Size Of
7

8.4
8.4
5.0
4.5
2. 1

The Large st
8 10

9.4 25.5
9.4 24.4
6.1 14.0
5.3 12.0
2.3 2.4

Common
12

135.7
137.5
55.0
47.9
2.3

Sub structure
14

1388.7
1390.4
290.0
266.3

2.4

Table 4.10 The Times (I) Taken By The Maximal Common
Sub structure Algorithm s Examining The Molecule Of Si ze 14

Algorithm
C and S 1
C and S 2
C and S 3
C and S 4
Clique

Si ze Of
6
4.5
4.3
3. 1
2.6
1.5

The Large st
7 9
5.9 9.0
5.5 7.8
3.9 6.5
3.2 4.7
1.5 1.5

Common
11
42.0
45.0
21.7
19. 1
1.5

Sub structure
13 15

318.3 41Min+
332.9 41Min+
80.7 409.5
70.6 382.0

1.4 1.4

Table 4.11 The Times (I) Taken By The Maximal Common
Sub structure Algorithm s Examining The Molecule Of Si ze 15

Size Of The Large st Common Sub structure
Algorithm 6 7 9 11 14
C and S 1 52.9 93.9 103.3 435.8 tmsr
C and S 2 51.0 94. 1 121.7 497.6 tmsr
C and S 3 12.5 20.6 23.9 70.9 tm sr
C and S 4 8.6 14.6 19.0 59.8 tm sr
Clique 4. 1 4.0 3.6 3.8 3.8

Table 4.12 The Times (I) Taken By The Maximal Common
Suo structure Algorithm s Examining The Molecule Of Size 20

Molecule Size
Alsori thm Cligue Size 17 22 23 29 36

5 10 46 23 7 18
No 6 10 22 20 22 20

Clustering 7 1 2 3 1 2
8 1 3 2 2 0
9 0 0 0 1 2

5 4 21 32 37 23
With 6 10 8 44 32 27

Clustering 7 1 1 2 1 2
8 1 3 6 4 4

Table 4.13(a) The Number Of Cliques With And Without
Distance Clustering For The Molecules In The Collection
Of The Molecule Of Size 9

17
Molecule

22
Size

23 29 36
No Cluster
Cluster
C and S 1
C and S 2
C and S 3
C and S 4

1.2
1.5
3.3
3.4
3.3
3.2

2.2
3.5

11.2
9.4

12.4
9.8

2. 1
3.4

13.5
11.8
12.9
10.1

2.4
3.8
7.4
5.3
7.3
5.1

2.6
3.9
8.0
5.7
7.9
4.9

Table 4.13(b) Times (*) For Finding Common Substructures
Between The Molecule Of Size 9 And Its Collection
Of Molecules

Molecule Size
Alfjorithm Cligue Size 13 14 24 34

5 27 70 109 181
No 6 28 64 132 118

Clustering 7 16 56 86 31
8 2 10 28 7
9 0 0 0 1

10 0 0 0 6
11 0 0 0 2
12 0 4 8 0

5 2952 3368 15298
6 380 516 2670
7 168 176 442

With 8 56 48 136
Clustering 9 16 24 32

10 4 4 8
11 0 0 0
12 4 4 8

Table 4.14(a) The Number Of Cliques With And Without
Distance Clustering For The Molecules In The Collection
Of The Molecule Of Size 24

Molecule Size
13 14 24 34

No Cluster 6.7 7. 1 22.4 36.5
Cluster 28.4 29.4 109.9 40Min+
C and S 1 Too much storage required
C and S 2 Too much storage required
C and S 3 Too much storage required
C and S 4 Too much storage required

Table 4.14(b) Times (*) For Finding Common Substructures
Between The Molecule Of Size 24 And Its Collection
Of Molecules

Molecule Size
Algorithm Cligue Size 22 25 26 29 33

5 294 425 35 672 369
No 6 60 93 6 214 72

Clustering 7 22 24 7 75 17
8 6 13 0 34 2
9 0 0 0 8 0

10 0 0 0 7 0
11 0 2 0 1 0
12 0 0 0 5 0
13 0 0 0 1 0
14 0 0 0 0 0
15 0 0 0 2 0

5 13616 14730 31855
6 4815 4537 18432
7 1027 661 8535

With 8 161 65 4014
Clustering 9 27 18 1185

10 16 2 290
11 5 0 72
12 4 0 25
13 0 0 13
14 0 0 22
15 0 0 19
16 0 0 11
17 0 0 5

Table 4.15(a) The Number Of Cl iques With And Without
Distance Clustering For The Molecules In The Collection
Of The Molecule Of Size 28

Molecule Size
22 25 26 29 33

No Cluster 19.5 22.5 9.5 34.9 28.0
Cluster 10Min+ 97.2 82.3 218.9 10Min+
C and S 1 Too much storage required
C and S 2 Too much storage required
C and S 3 Too much storage required
C and S 4 Too much storage required

Table 4.15(b) Times (*) For Finding Common Substructures
Between The Molecule Of Size 28 And Its Collection
Of Molecules

Molecule Size
Alei°rithm Cligue Size 20 21 22 23 36

5 34 1 3 30 111
No 6 40 26 48 34 37

Clustering 7 21 4 11 22 2
8 6 0 0 5 0
9 3 0 0 2 8

10 0 0 0 0 4

5 174 40 64 117 1533
6 33 22 16 33 472
7 46 8 32 36 164

With 8 12 0 0 8 86
Clustering 9 0 0 0 0 32

10 4 0 0 4 4
11 0 0 0 0 2
12 0 0 0 0 2

Table 4.16(a) The Number Of Cliques With And Without
Distance Clustering For The Molecules In TIle Collection
Of The Molecule Of Size 15

Molecule Size
20 21 22 23 36

No Cluster 3.2 2.2 3.2 3.8 13.0
Cluster 5.7 3.9 5.6 6.4 36.5
C and S 1 39.2 11.5 10.6 49.6 tmsr
C and S 2 37.3 11.3 9.9 45.9 tmsr
C and S 3 27.9 9.0 9.3 28.4 tmsr
C and S 4 22.2 7.5 8.0 20.2 tmsr

Table 4.16(b) Times (*) For Find ing Common Substructures
Between The Molecule Of Size 15 And Its Collection
Of I'-b 1 ec ul es

Number Of
Cliques Of
Si ze

5
6
7
8
9

Time Taken
(cpu secs.)

Distance
0.05 0.10

16 0
10 20

1 5
o 1
o 0

1.7 1.8

Error Tolerance
o. 15 0.20

23 31
20 28
3 5
2 3
o 0

2.1 2.3

(In Angstroms)
0.25 0.35 0.50

26 37 91
34 38 50

1 2 4
222
222

2.4 2.7 3.3

Table 4.17 The Effect Of Varying The Error Limit When Using The
Clique Finding Method With No Distance Clustering When Comparing
Two Molecules Of Si zes 9 And 23

Algorithm
Cluster:

C And S 3
C And S 4

Max
Min

Large st
8

6.9 (2.5)
6.1 (1.8)

13.3
11.6

Common Sub struc ture Si ze
9 12 14

7.5 (2.9) 7.0 (3.3) 9.6 (5.5)
6.8 (2.2) 6.4 (2.7) 9.6 (5.5)

21.7 103.4 522.4
18.2 90.2 478.7

Table 4.18 Times(*) For Comparing Three Molecules Of Size 14

Algorithm
Cluster:

C And S 4

Max
Min

Large st
9

5.2 (1.5)
4:9 (1.2)

19. 1

I
I

Common Sub structure Size
10 11 14

5.4 (1.7) 6.1 (2.5) 9.6 (5.5)
4.3 (1.0) 5.3 (1.7> 9.6 (5.5)

26.6 48.4 478.7

Table 4.19 Times(*) For Comparing Three Molecules Of Size 14

Large st Common Sub structure Size
A1~orithm B 10 12 14
Clu ster: Max 16.4 (9.0) 11.9 (5.9) 13.8 (8.1) 16.8 (11.5)

Min 15.4 (B.O) 11.2 (5.4) 11.6 (6.0) B.8 (9.2)
C And S 3 46. 1 69.7 191.7 532.0
C And S 4 32.2 54.2 162.7 469.8

Table 4.20 Times(*) For Comparing Three Molecules Of Size 20

Algorithm
Cluster:

C And S 4

Max
Min

Large st
6

6.1 (1.1)
5.9 (1.1)

16.5

Common Sub structure Si ze
9 11 12

7.3,(2.0) 9.2 (4.1) 9.0 0.9)
7.0 (1.9) 8.8 (3.5) 8.8 (3.7)

36.1 72.8 103.4

Table 4.21 Times(*) For Comparing Three Molecules Of Size 20

Largest Common Sub struc ture Si ze
Algor! thm 7 8 J 9 12 I

Cluster: Max 15.8 (5. 1) 23.5 (10.8) 17.8 <7.3) 17.9 (8.3)
Min 14.9 (4.5) 21.6 (8.7) 17.0 (6.7) 15.7 (5.9)

C And S 3 33.6 60.6 77.4
C And S 4 25.5 47.9 62.0

Table 4.22 Times(') For Comparing Four Molecules Of Size 20

Algorithm
Large st
6

Common
8

Sub structure Si ze
9

191.8
155.3

12
Clu ster:

C And S 4

Max
Min

23.0 (12.4)
22.3 (11.6)

25.9

17.6 (8.75
16.9 (7.6)

50.6

16.0 (7.4)
15.3 (6.6)

60.6

17.7 (9.0)
16.6 (8.2)

198.5

Table 4.23 Times(') For Camparing Four Molecules Of Size 20

Algori thm
Clu ster
Crandell And Smith 3
Crandell And Smith 4

Large st
8

25.8 (8.0)
116.4
79. 1

Common
11

Sub structure Si ze

17.7 (4.3)
159.9
112.5

I 14
26.3 (13.9)

TMSR
TMSR

Table 4.24 Times(') For Camparing Six Molecules Of Size 20

Algorithm
Clu ster
Crandell And Smith 4

Table 4.25 Times(')

Algorithm
Cluster
Crandell And Smith 4

For

Largest
8

34.0 (15.6)
98.7

Comparing

Large st
7

43.6 (14.0)
209.0

Common Sub structure Size
12 I 14 I

22.5 <7.3) 28.2 (16.4)
245.1 TMSR

Six Molecule s Of Size 20

Common
9

Substructure Size
1 1

45.4 (15.0)
206.5

34.3 (11.0)
TMSR

Table 4.26 Times(,) For Comparing Nine Molecules Of Size 20

Group Minimum Number Of Nodes Time For
Size Clique Graph 1 Graph2 Set Up Clique 1 Clique2 Total

Si ze
2 ANY 1000+ *** '" ."., *,.,* *'*'*
3 6 792 603 85 172 22 279
3 7 792 177 84 171 2 258
4 6 576 1000+ 78 357 '**" *""
4 7 576 1000+ 78 355 *'*" "'" 4 8 576 436 78 355 12 445
5 8 468 1000+ 66 889 "'" **."

Table 4.27 Times(') For Comparing The Two Molecules Of
Section 4.6 Taking The Molecule Of Size 63 First

Group Minimum Number Of Nodes Time For
Si ze Clique Graph 1 Graph2 Set Up Clique 1 Cl ique2 Total

Size
2 ANY 1000+ '" '" "'" "',. "*"
3 6 762 645 76 1 61 26 264
3 7 762 207 75 161 3 240
4 6 615 1000+ 73 302 ,., .. ." ..
4 7 615 1000+ 71 303 , ,.
4 8 615 368 71 303 9 383
5 8 468 1000+ 66 675 .. ". ., ...

Table 4.28 Times(') For Comparing The Two Molecules Of
Section 4.6 Taking The Molecule Of Size 67 First

Group Minimum Number Of Nodes Time For
Si ze Cl ique Q-aph 1 Q-aph2 Set Up Cl ique 1 Cl1que2 Total

Size
2 ANY 1000+ -,- .,. ,.,,* '*,.* -""
3 5 875 1000+ 104 206 *'*'* '*"*
3 6 875 633 103 207 25 335
4 6 637 1000+ 93 434 '*"* '*'"
4 7 637 1000+ 88 430 If'_* ,*_ ••

Table 4.29 Times(*) For Comparing The Altered Molecules Of
Section 4.6 Taking The Molecule Of Size 70 First

Group Minimum Number Of Nodes Time For
Si ze Cl ique Graph 1 Graph2 Set Up Clique 1 Clique2 Total

Size
2 ANY 1000+ III *** **'** *1'" ••• ,*
3 5 869 1000+ 95 197 "_.,
3 6 869 651 94 197 26 317
4 6 682 1000+ 88 382 ,.," ,
4 7 682 810 88 383 40 510

Table 4.30 Times(') For Comparing The Altered Molecules Of
Section 4.6 Taking The Molecule Of Size 67 First

CHAPTER 5

SIMULATING A MULTIPROCESSOR SYSTEM FOR FINDING THE LARGEST

COMMON SUBSTRUCTURE

5.1 INTRODUCTION

Crandell and Smith's algorithm [Cran83a] for

finding the largest common substructure of two or more

molecules was considered in Chapter 4 and found to be very

computationally expensive if the common substructure was

greater than about eleven atoms. Additionally, it involves

a great number of largely independent computations, and so

it would appear that this algorithm could make efficient

use of a multiprocessor system. Unfortunately, the more

efficient version of the algorithm with an extra sorting

stage is less suitable for a parallel implementation. This

is because splitting up the arrays to be sorted into blocks

and then sortJng these blocks on separate processors before

merging the results back together, has the problem that the

elements of the arrays are lists. This means that the merge

stage is likely to be relatively expensive as the lists

being compared will be fairly similar. Additionally, it is

less easy to devise an efficient parallelization of the new

comparison stage. Thus, attention was restricted to the

basic version of the algorithm without the extra sorting

stage. The hypothesis that the algorithm should perform

well on a parallel computer was investigated in two stages;

in the first stage, which is described in this chapter, a

112

simulation was undertaken to determine whether the

potential for increases in efficiency did indeed exist. The

results of this work led to the implementation of an

operational system, and this system is described in the

next chapter.

5.2 PARALLEL COMPUTER ARCHITECTURES

It is thought unlikely that (in the foreseeable

future) improvements in the physical design of chips will

lead to the large increases in the speed of computers that

are required by many application areas [Kuck86]. This is in

contrast to the past where improvements in silicon

technology and VLSI led to much faster computers. Therefore

the use of concurrency in computers is being intensively

investigated [Hayn82, Hwan84, Zakh84].

In a conventional computer, a program counter

steps through the code with a single (central) processing

unit executing one instruction at a time. Major departures

from this approach are:-

1) to have several processors to carry out an instruction

(for example, inverting a matrix),

2) to have several functional units and to reject the idea

of a program counter; instead instructions are carried out

as soon as their input data are available,

3) to break the code up into blocks which are executed on

separate processors which can communicate with each other,

and these will be considered in Sections 5.2.2, 5.2.3 and

113

5.2.4 respectively. First, however, less radical

modifications to the above "von Neuman" computer will be

considered.

5.2.1 Parallelism In "Conventional" Architectures

Since the 1960's (and computers such as CDC's

6600 and 7600) pipelining has been extensively used in

conventional architectures as a way of obtaining a degree

of parallelism. The idea of pipelining is to split up an"

operation such as a memory access into several stages and

to enable another instruction to start stage one as soon as

the original instruction has passed on to stage two. (The

instructions being taken strictly sequentially from the

compiled code.) By using multiple pipelined processing

units, several arithmetic operations can be carried out at

the same time (in the ideal case, an instruction could be

assigned to an arithmetic unit every clock cycle, in

contrast to the von Neuman approach where an operation such

as division could take 18 clock cycles and no other

arithmetic instructions could start until it had finished).

However, some form of tagging has to be employed to ensure

that code such as

X:=A*X

B:=B+X

is carried out correctly.

The use of associative

regarded in a loose sense as

114

memory

having

can also be

a degree of

parallelism. Each element in an associative memory block

has two fields -the address field and the data field. When

an address is presented to the associative memory, it is

compared simultaneously with all the stored address fields

and the data field of any match is read out. In

conventional architectures it is often used for high speed

cache buffers where the contents of recently accessed

memory locations are stored, thus saving time if these
.

locations are accessed again a few lines later in the

program.

Vector processors such as the Crays and Cyber-

205, have some arithmetical units and registers designed to

handle vectors of numbers instead of individual elements.

Because of the saving on overheads and the parallelism

which can be introduced, a very high theoretical

performance is possible. However, the performance can be

very disappointing in practice because it is very hard to

vectorise most problems sufficiently well. In the parallel

computers described below an analogous problem is

encountered, that of granularity. This is the amount of

computation processes which are executing in parallel,

undertake before communicating with each other.

5.2.2 Arrays Of Processors

Problems such as matrix triangularization or the

forming of convolutions which are time consuming for a

single processor, can be solved by arrays of very simple,

115

identical "processors". [Kung82] gives the example of

calculating the convolution {Y1,Y2, ... } where

Yi=W1*Xi+W2*X(i+1)+ ... +Wk*X(i+k-1)

A possible linear array of processors for this problem is

shown in figure 5.1 where each processor just forms the

product of Win and Xin and passes it on to an adder whilst

also outputting Xin.

The very simple nature of the processors (with

them often consisting of only a handful of gates) mean~

that large numbers can be contained on one chip. However,

the problems that can be dealt with by using elementary

processors are fairly rare. On the other hand, distributed

array processors connect microprocessors together in arrays

with each microprocessor carrying out the same

instructions. An example of this type of architecture is

the ICL Distributed Array Processor (DAP) [Gost81] which

uses an array of 64*64 processors with each processor being

connected to its four neighbours. Each processor is also

connected to an ICL 2900 which can access the processor's

memory and from which it receives the current instruction.

The 2900 also has access to "conventional" memory and in

effect it "executes a section of program by carrying it out

itself if the code is marked as being sequential (when the

DAP is just used as ordinary memory) or by activating the

DAP and just providing la facilities if it is marked as

parallel. Hence, for tasks such as searching where the

memory to be searched can be broken up into small pieces

which are distributed to the processors, a large amount of

116

x

*

ADD ER

Figure 5.1 A Systolic Array For Calculating A Convolution

b: =x*a

x: =x+a

y:=x*a+b

z:=x+y

c:=a+b

Figure 5.2 The Code Used To Illustrate How Instructions
Need Not Be Carried Out In A Strict Sequential Order

A: :B*C+D*E

I:=I+1

X:=A-E*I

I: =K+C

Y:=I/A

Figure 5.3 The Program Code For The Dataflow Diagram Of Figure 5.4

A

parallelism can be obtained.

5.2.3 Data Flow Computers

The idea behind data flow computers can be

illustrated by the section of program in figure 5.2.

Traditional computers progress through the code from top to

bottom, and so they only carry out c:=a+b when the program

counter reaches this instruction (or at least, the

neighbourhood of this instruction). However, after the

first instruction in the list a and b do not change, thus

the line c:=a+b can be carried out as soon as b:=x*a is

completed. Therefore, if there are several functional units

(adders, multipliers, etc.), a degree of parallelism can be

achieved by executing instructions such as c:=a+b as soon

as the elements on the right hand side are available. Hence

data flow computers execute instructions when all the data

for the instructions is ready, rather than when the program

counter of traditional computers reaches the instructions.

Several data flow computers have been built and

the one which will be described here was produced at

Manchester [Gurd85, Gurd86]. To understand how it works,

consider the data flow diagram of figure 5.4 for the

program section of figure 5.3. The criterion for any of the

(circled) functions to start is only that the required

input values have been calculated. This is achieved by

labelling the output of a function with a destination

symbol and then storing these output tokens (consisting of

117

y x --- _. -- . - ----.---- _ ..

Figure 5.4 The Dataflow Diagram For The Code Of Figure 5.3

- HOST ~

1U1(i:N

" -+f r- ... f"TOKEN I
5~\"\c" i'O!OiN ¥ 1 0u.eu.e I

~

"fOI(Q\ ""
'liT

r~oce;s\~& A ~ODE .A
rt1f11Q\\~~ - U.~\T '" S1'O\l..E M~ UNIT -

£:;,)(G:I!i1\a(

Figure 5.5 !he Ring Used In The Manchester Dataflow Computer

label plus data) until the label can be matched with that

from another token. The tokens are then passed on to the

relevant functional unit as the input values have now been

calculated. In this somewhat simplified view of things, it

is necessary to have functional units (marked by S in the

diagram) to make duplicate copies of data output from a

functional unit which is used as an input to more than one

functional unit.

Figure 5.5 is the basic layout of the ring of

units in the Manchester computer and their basic functions

are as follows:-

1) The Switch provides the interface for input and output

operations (and allows several rings to be connected

together for increased speed).

2) The Token Queue is a first in, first out queue which

stores tokens when they are being produced by the

processing unit faster than the matching unit can deal with

them.

3) The Matching Unit tries to match the incoming token with

a token which has the same label and destination field. If

a match is found, the pair of tokens is sent to the node

store. If no match is found, then the token is stored in

the matching unit.

Ideally, the unit should be a· very large

associative memory, but as this would be extremely

expensive, hardware hashing is used to simulate associative

memory.

4) The Node Store really stores the program's "code". When

118

a matched pair of tokens arrives at the node store, the

tokens' destination field is used to index into it and the

relevant entry specifies the operation to be performed on

the tokens and the destination field for the output of this

operation. The executable package so produced, is sent to

the processing unit.

5) The Processing Unit is made up of a group of processing

elements -and it is the fact that many executable packages

can be being processed at the same time which leads to the

potential increase in speed over a conventional

architecture.

Overall, data flow computers have the potential

to very effectively exploit any concurrency in the code

because of the "fine-grain" parallelism used. They also

have the potential to be extremely powerful by connecting

many rings together (via the switch). However, it is not

clear [Gurd86, Hori86] whether the proposed increase in

parallel activity outweighs the extra processing that the

ring introduces or whether data flow architectures have any

use beyond being single user scientific computers.

Additionally, the preliminary figures of the Manchester

prototype machine compared unfavourably (5 to 10 times

slower) with a VAX 11/780, although a large part of this

was thought to be due to the inefficiency of the generated

code [Gurd85].

119

5.2.4 Multiple Independent Processors

Increasing interest has recently been shown in

processors which carry out their own blocks of code but

which can communicate with the other processors. This

communication can be carried out by means of shared memory

such as in the Cyba-M [Aspi84] (although memory contention

can be a problem if there are a large number of
.

processors), or by having communication channels associated

with each processor such as INMOS' Transputer [Aspi84,

Barr86] or Intel's iPSC series [Haye86] (where, because

each processor is only connected to a small number of other

processors, the data paths can become long and complex).

The individual processors can range from mini-

supercomputers as in the Cedar supercomputer [Kuck86] which

is trying to achieve a performance comparable with a Cray

2, to the iPSe and Transputer microprocessor chips. Where

microprocessors are used, the performance is obtained by

connecting large numbers of them together in a regular

architecture (for instance Intel's hyper or cosmic cube

[Seit85]). INMOS have developed the programming language

occam [INM084] which includes channel structures, so as to

allow the maximum exploitation of the provided parallelism.

However [Kuck86] feels that automatic restructuring of

conventional program codes is likely to be more significant

in the long term. A detailed description of the Transputer

and of occam will be given in the next chapter.

120

5.3 MULTIPROCESSOR SIMULATIONS

The multiprocessor systems described in Section

5.2.4 have only recently become commer~ially available

[Hock85], hence most of the work on multiprocessor'

algorithms has either been of a general abstract nature,

for example [Wah85], or has involved the simulation of

multiprocessor systems.

5.3.1 Chemical Simulations

Rogers

In the

In the

[Wipk84]

standard

chemical information area, Wipke and

simulated a system for subgraph matching.

sub graph matching algorithm, various

possible matches are produced for each atom in the pattern

and the final stage in the algorithm tests the possible

permutations of atoms using backtracking. Wipke and Rogers

eliminated backtracking by splitting a process into several

processes whenever a choice was possible for which atom of

the structure under study was to be assigned to a given

atom in the pattern. Consequently, a large number of non

interacting processes were created, thus enabling a

simulated multiprocessor machine to be used very

efficiently.

Gillet et al. [Gil186] have also used a similar

simulation in the chemical field, but they were interested

in generic substructure searching (although the actual

simulation only used specific substructure searches) and a

121

relaxation algorithm was used. Relaxation methods [Davi81,

Pric85] independently assign possible labels to each pOint

and possibly an associated probability, the provisional

assignments for each point are then compared with

assignments for nearby points and any inconsistencies are

eliminated (or the probabilities adjusted). This comparison

stage is then repeated as many times as is required. Hence

some of the methods met earlier in this thesis, such as

Ullman's subgraph isomorphism algorithm, can be regarded as

belonging to the relaxation category as they only use

information about neighbours. The parallelism was obtained

by dividing some of the steps making up each iteration

using the independence of the various assignments and

comparisons. Although the amount of speed up predicted by

the model varied greatly depending on the structures being

examined, it averaged out at about a five-fold increase for

a twenty processor machine. However the actual transputer

implementatio~ [Lync87] partitioned the database, and each

structure-query matching process was carried out on a

single transputer.

5.3.2 General Models

The two examples described above both assume that

there is a pool of processors available any of which can be

allocated to any process. Each processor has access to a

region of memory shared with the other processors in

addition to its own local memory. No account is taken of

122

the architectural configuration of the processors, although

the time to transfer data to and from the shared memory is

estimated.

More complex models have been developed for

dealing with general combinatorial problems (for example

[McCo82a, McCo82b, McCa85]). These investigate such things

as:-

1) Which pattern for the communication channels between

processors is best,

2) Whether a busy processor should pass large or small

problems to an idle neighbour

and

3) Whether an idle processor next to a busy processor

should be detected by polling by the busy processor or by

polling by the idle processor.

5.4 MODELLING THE CRANDELL AND SMITH ALGORITHM

5.4.1 PASSIM

The simulation was carried out using PASSIM

[Shea82, Gil186, Stew87] which is a Pascal simulation

system developed in the Division of Economic Studies at

Sheffield University. This produces Pascal code from a

description of a simple queueing system which has processes

which take elements from one queue to another. The time

which the processes take can be specified to be modelled by

various probability distributions including the normal and

negative exponential distributions. Two other simulations

123

using PASSIM in the Department Of Information Studies have

been reported [Gill86, Stew87],

A large proportion of the reported simulations,

including [Wipk84, McCo82a, McCo82b, McCa85], have used the

programming language SIMULA 67 [Birt73]. The reason for the

development of PASSIM was to prevent the need for learning

a new programming language by generating code in an already

familiar language, namely Pascal. However, the facilities

offered by PASSIM and SIMULA 67 are very similar, with the

SIMULA system class SIMULATION corresponding to the PASSIM ,"

queueing structure. As both SIMULA 67 and Pascal were

derived from Algol 60, the PASSIM-produced Pascal code

allows similar- facilities to the SIMULA 67 code of a model.

5.4,2 The Processor Organisation

It was decided to model a multiprocessor system

similar to those in [Wipk84, Gill86] in that the processors

communicated by using a region of shared memory. The large

amount of extra effort needed to produce a more complex

model was considered not to be worthwhile. This was because

the study was intended to investigate whether it was likely

that the algorithm would run efficiently on a

multiprocessor system with a view to undertaking such an

implementation if the answer was the affirmative.

[Aspi84] reports trials with the Cyba-M (which is

a multiprocessor where the processors communicate with each

other via shared memory) which indicate that even under

124

adverse conditions the overall utilization (that is the

overall percentage of time the processors are busy) for a

16 processor application was over 92% (as long as

sufficient parallelism was present in the problem).

5.4.3 The Algorithm

The algorithm, which has been described in detail
.

in Chapter 4, can be regarded as being composed of four

steps. For each generation, the common substructures are

found by:-

1) "Growing" the previous generation's substructures using

the distance tables.

2) "Naming" the growths produced from step (1).

3) "Comparing" the named growths from each molecule with

those from all the other molecules in order to eliminate

the substructures which are not common to all of the

molecules.

4) "Amending" the distance table of each molecule in order

to eliminate the, \ distance pairs which no longer occur

in the set of compared growths.

5) Either stopping or increasing the generation number and

returning to step (1).

The serial version of the algorithm for two

molecules is shown in figure 5.6. As the only step which

requires interaction with the other molecule's growths or

distance table, is the compare stage, the algorithm can be

written in the parallel form shown in figure 5.7 (where

125

Set Up The Distance Table

I
I ---------------t

Grow The Next Generation Of
Molecule One's Substructures

Grow The Next Generation Of
Molecule Two's Substructures

Name Molecule One's Substructures

Name Molecule Two's Substructures

f
Compare Molecule One's Substructures
With Those From Molecule Two

Compare Molecule Two's Substructures
With Those From Molecule One

Amend Distance Table For Molecule One

Amend Distance Table For Molecule Two

Figure 5.6 The Serial Form Of Crandell And Smith's Algorithm
For Comparing Two Molecules

neither comparison stage can start until the

molecule's cycle has finished the naming stage).

5.4.4 The PASSIM Model Of The Algorithm

other

Each box in figure 5.7 represents a PASSIM

process. In fact, with the exception of the initialization

box, each of the boxes represents 50 identical PASSIM

processes, thus allowing up to 50 processors to be working

on the same stage at the same time. Each process takes a

processor from the processor queue when it starts and

returns it to this queue when it finishes. The initial size

of the processor queue is one of the parameters of each

simulation run (and represents the number of processors in

the multiprocessor machine). This is all achieved in the

PASSIM-generated Pascal code by trying to start a process.

When a process is found which can start (ie. there are

elements waiting in all the queues it uses), its finishing

time is stored in a table. When no more processes can

start, the "clock" is moved on to the earliest finishing

time in the table and any processes which can finish are

ended (and the elements they produce returned to the

relevant queues). The procedure of trying to start a

process is then repeated.

Some of the processes also take elements from

various "growth" queues when they start. Hence the sizes of

these queues at the start of each generation determine how

many "jobs" each stage is to be split up into (that is how

126

I
I

l'

Set Up The Distance Table

f
Grow The Next Generation
Of Molecule One's
Substructures

Name Molecule One's
Substructures

I
Grow The Next Generation
Of Molecule Two's
Substruc tures

I Name Molecule Two's
I Substructures

SYNCHRONISE

Compare Molecule One's
Substructures With
Those From Molecule Two

Amend Distance Table
For Molecule One

Compare Molecule Two's
Substructures With
Those From Molecule One

Amend Distance Table
For Molecule Two

Figure 5.7 The Parallel Form Of Crandell And Smith's Algorithm
For Comparing TWo Molecules

I
I

t

many separate procedures each of the original procedures is

divided into), and they are specified by the user.

Each process can only start when there are

elements waiting in the relevant queues. Additionally, by

extra code having been added to the Pascal generated from

the PASSIM model, the correct sequence of steps (in figure

5.7) is obeyed and the compare step of one molecule cannot

start until the other molecule is at the same stage.

5.4.5 The Duration Of The Processes

The c.p.u. time taken for each step of each

generation was found by running a FORTRAN 77 version of the

serial algorithm on a Prime 9950. However the time taken

for each molecule's comparison stage depends on how many

growths there are belonging to the other molecule and each

molecule's comparison stage reduces the number of growths

associated with this molecule. Hence, the time taken for

the comparison stage of molecule A when this is done before

the comparison stage for molecule B will be greater than or

equal to the time for this stage when it is done after B's

comparison stage. Therefore the program was run with both

orders of the molecules and the larger times for a

molecule's comparison stage were used.

To obtain the times for the procedures each stage

was split up into, it was assumed that each stage was made

up of a large number of small processes whose durations

formed a normal distribution. This assumption was made so

127

that sampling theory for normal distributions could be used

to obtain the times for the procedures each stage was split

up into in the simulation. The values obtained from the

runs were used to specify the mean duration times of the

stages in the model (ie. the sum of the durations of all

the small processes). The standard deviations for comparing

one growth with the growths from the other molecule were

estimated to be the means divided by root three. This was

because:-

If we assume that

1) All growths are matched with a growth in the other

molecule's growth list. (An approximation which was largely

true for the pairs of molecules that the test was run on.)

2) That this matching is a one to one correspondence.

and

3) That the time taken to compare any growth with the other

molecule's growth list is equal to the position in the list

of the growth that it matches (or at least proportional to

it).

Then, for a particular molecule's comparison stage,

N
the variance, v:s 2 , is (~ (i-m)2)/N

i=\

where N is the number of growths in one of the

molecules' growth lists (both lists are the same size

from assumption (2» and m and s are the mean and the

standard deviation for this comparison stage.

128

But

N
L i

2

i::::'

So

s2

But

m

Therefore

s2

=

=

=

=

=

=

N
= (Ei 2)/N _ 2m2 + m2

i=1

N
= ~ i 2) IN _ m2

i=\

N*(2*N+1)*(N+1)/6

(2*N+1)*(N+1)/6 _ m2

N
(E i)/N = (N+1)*N I (2*N)

i=1

= (N+1)/2

m*(2*N+1)/3 - m 2

m*(4*m-1)/3 -m 2

m*(m-1)/3

So, as most of the c.p.u. time is consumed when N

is very large, we have that the standard deviation, s,

becomes approximately m/SQRT(3). (The observation that we

are mainly interested in large N to some extent justifies

the initial three assumptions.)

Unfortunately, the assumptions needed to

undertake a similar analysis for the growing, naming and

amending stages were felt to be more dubious. Therefore the

129

standard deviations were estimated by splitting the

relevant stages up into tenths (or, in the case of the

amending stage, splitting up the calculation into pieces

each of which was associated with a different distance

table entry) and running the serial algorithm on a pair of

molecules with a common substructure of size 14. The

standard deviations were calculated (from these sets of 10

values) for the largest times for the growing, naming and
.

amending stages. Finally, using the assumption that the

standard deviations were linear functions of the means, the

standard deviations for the growing, naming and amending

steps were taken to be 0.19*m, 0.14*m and 1.78*m

respectively. (This last assumption is likely to be

approximately true for the amending stage due to its

similarities with the comparison stage dealt with above but

it is more suspect for the growing and naming stages.

However, the times for these steps were very small when

compared with the other two steps, and so this inexactitude

is fairly inconsequential.) The problems associated with

the probability distributions will be considered again in

Section 5.6.1.

5.4.6 The Parameters Of The Model

Besides being able to alter the number of

processors in the multiprocessor and the duration of each

process (by changing the means and standard deviations)

between each run of the simulation, it is also possible to

130

vary

1) The data transfer rate between the shared memory and the

processor's local memory.

2) The overhead incurred every time a task is allocated to

a processor.

3) The number of jobs each box in figure 5.7 is split into.

In more detail, when a job is allocated to a

processor, a variable representing the time for the

relevant data transfers is added to the mean of th~

process' duration. Before certain stages of the algorithm,

the PASSIM clock is moved forward to ,represent copying

information to all of the processors at the same time, for

example, the distribution of the growths before the

comparison stage.

The processor overhead is a constant which is

added to the mean of the process' duration for every

process. This is a "rough and ready" attempt to account for

the scheduling overheads in a multiprocessor system.

The partition factor (which is the number of jobs

each step in the algorithm is split into) allows many

processors to be working on the same step. The new means

and variances of the durations are taken to be the old ones

divided by the partition factor. This is an approximation

as it does not take into account the fact that the sum of

the times taken by all of the jobs should be equal to the

old mean.

There are in fact two partition factors, one for

the naming and growing stages, and the other for the

131

amending stage and the more computationally expensive

comparing stage.

5.5 THE INITIAL RESULTS OF THE SIMULATION

The simulation was run with the two molecules in

the model being the same 14 (non-hydrogen) atom molecule.

This data was chosen because, as the serial version of the

Crandell and Smith algorithm took over 29 minutes of c.p.u.

time on a Prime 9950, it was felt that this example would

provide ample scope for parallel processing.

5.5.1 The Partition Factors And The Data Transfer Rate

With the data transfer rate set at 2 Mbytes/S and

the processor overhead at zero, the number of processors

and the partition factors were varied. The factor for the

growing and naming stages was found to have very little

effect, and so it was set to be equal to the number of

processors, although this can lead to a poorer performance

if the processor overhead is very large. The partition

factor for the comparing and amending stages was found to

have a quite large effect and it was decided to vary this

parameter so as to achieve an optimal performance when

conducting later runs.

Varying the data transfer rate between 0.2 and 10

Mbytes/S only altered the simulated time taken by less than

3%, and so, this parameter was set at the value 2 Mbytes/S

132

which is a fairly typical rate for transferring data from a

backing store (and well below the maximum data transfer

rate of 25 Mbytes/S for off chip memory with the

Transputer).

5.5.2 Varying The Standard Deviations

Altering the factor by which

deviations are obtained from the means for

the

the

standard

growing,

naming and amending stages from their usual values to those

of 3, 6 and 9 had little effect on the simulated running

time. However, altering the factor for the comparing stage

had much more effect with the smaller the standard

deviation the shorter the simulated time for completion

(one of the reasons for this will be considered in Section

5.6).

5.5.3 Varying The Processor Overhead

For the first set of results the processor

overhead was set to zero and the number of processors was

varied between 1 and 50. Subsequent sets of results were

obtained by setting the overhead equal to one, ten and one

hundred times the number of processors. (The time being

measured in thousandths of a c.p.u. second.) The final set

was produced with the overhead having the value of 10 times

the number of processors squared.

The simulated times produced from the above runs

133

are given in table 5.1 and the corresponding graphs are

figures 5.8 and 5.9.

5.5.4 Using Other Molecules

The above example is an extreme case in that the

molecules were identical, and so the comparison stages were

very expensive in terms of c.p.u. time used. Therefore the

simulation was run on two other pairs of molecules, one

where the molecules were of size 19 and the largest common·

substructure was of size 12, and another where the values

were 14 and 9. The results of the runs (simulating a linear

processor overhead) are given in tables 5.2 and 5.3 and

figures 5.11 and 5.10 respectively.

Although in any multiprocessor problem the main

point of interest is how long the computer took to solve

it, figures 5.8 to 5.11 are of a reciprocal nature, and so

are not that easy to interpret. Consequently, figure 5.12

was plotted (for the no processor overhead cases of the

above examples) with the y values being the time taken when

one processor was used divided by the time taken when the x

co-ordinate number of processors was used (the co-ordinate

values are given in table 5.4).

5.5.5 Comparing Three Molecules

The basic technique outlined in figure 5.7 can be

extended to any number of molecules (the diagram for the

134

m m
<J 0+ "0"0

s:: s::
o 0
o 0
0> 0>
m m m

t..
0...0... 0
o 0 m
zz m

Q)

* * 0
0

..- 0 t..
0..- 0. . .

0004-0

4-04-04-0
0 <J 0+

000 t..
0>

"0"0"0.0
ro ro ro ~
ID ID ID
~~~I:: 
t.. t.. t.. 

0 ID ID 0> 0> 
> > > .c -< o 0 0 .j..) 

W ....,- m m m Cl) ...... m m m . .-1 
~ 0> ID ID 
W 0000... 

> 000 0 <J 0+ t..t..t..z 0 0.0.0. 
ID 

Q::: ro ro ro t.. 
0 0> 

m m m .c en • .-1 • .-1 • .-1 ~ 

en 
w +0'1 u 
0 
~ 
0.... 

~ <J. 0+ <: 
W 
~ ------l 

<J 0+-

<J C+ 

<J C+ 

<J C+ 

<JB; 
<J6 

<J(3 

<:8 
<S 

<8 

0002: 00£1 0001 ee; 
SONOJ3S N I 3WI 1 

Figure 5.8 Comparing Two Molecules With A Largest Common 
Substructure Of Size 14 With A Linear Processor Overhead 

0 
Lf") 

0 
v-

(.f) 

er:::: 
0 
U) 

g(.f) 

W 
U 
0 
c::: 
CL 

LL 
0 

00:::: 
NW 

CJ ..,-

~ 

0 

~ 
I 

r , 
,0 

0 



if) 

0::: 
o 
if) 
if) 

ill 
U 
o 
0::: 
0.... 

LL 
o 
ill 
0::: 
<:: 
::J 
o 
if) 

o 
t-

---I 
<:: 
::J 
o 
ill 

o 
<:: 
ill 
I 
0::: 
ill 
:> 
o 

0002: 

E9 

17) 
"0 s:: 
o 
() 
Q) 
17) 

C\I 17) 

P-t t.. 
o 0 
ZI7) 

17) i * Q) . 
() , 

.... 0 
o t.. 
00. . 

o Or,..., 
r,...,r,...,0 
o 0 t.. 

Q) 
"0"0.0 

I ~ * ~ :.~..s:: s:: 
'" t.. Q) Q) Q) 

> >..s:: o 0 ~ 

17) 17) 17) 
17) 17) • .-1 

, Q) Q) 

() () P-t 
000 
t.. t..Z 
0.0. 

Q) 
Cl! Cl! t.. 

Q) 
17) 17)..s:: 

• .-1 • .-1 ~ 

+0 

E9 

00£1 0001 
SONOJ3S NI 

o + 

o + 

EH 

EH 
EB 

G-

00£ 
3WIl 

o + 

0+ 

0+ 

0+ 

Figure 5.9 Comparing Two Molecules With A Largest Common 
Substructure Of Size 14 With The Processor Overhead 
Equal To The Square Of The Number Of Processors 

U) 
0:: 
o 

oU) 
MU) 

W 
U 
o 
0:: 
0.... 

LL 
o 

00:: 
NW 

CD 
Z 
:::> 
z 



0 
<: 
W 
:r: 
~ 
W 
:> 
0 

~ 
0 
U) 
U) 

W 
U 
0 
~ 
Cl.. 

~ 
<: 
w 
z 
..-
-1 

8\ 

~ 

rJj 

'0 + 0 
s::: 0 If") 
0 
0 
ID 
fIl 

fIl 
p..t.. 
o 0 
ZfIl 

fIl 

* (I.) 

0 
..- 0 i 
ot.. 
00. I 

ooe... 
-CS) 0 0 + .,.. e...e... 

o 0 t.. 
ID 

'0'0.0 
, 

11! 11! !3 
(I.) ID 

..s:::..s:::s::: 
t.. t.. 
ID ID ID I 

»..s::: 
00":' I 

(f) 
!7l fIl fIl a:: 
fIl fIl 'M 

0 ID ID 

<Sl(/) 
0 Op.. 
000 
t..t..Z 0 + ("l(/) 
0.0. 

W ID 

U 11! 11! t.. 
ID 

0 fIlfll..s::: 
.... ·M ~ ! a:: 
+0 Cl. 

lL. 
0 

0 + On::: 
f-N W 

m 
:z: 
::::::> 

0 + z 

0 + 

0 + 
CS) 

0 + 

0+ 
0+ 

0+ 
0+ 

0+ 
G-

I CS) 

91 !d II 01 8 9 v l 0 
SONOJ3S N I 3W I 1 

Figure 5.10 Comparing Two Molecules With A Largest Common 
Substructure Of Size 9 



(/l"IJ 
s::: t-'
o-OtI 
tJl s::: 
('"1"'"l 
'"l CD 

§Ul 
('"1". 
s:::~ 
'"l ~ 

CD n 
0 0 
'""'la 

'0 
(/llll 
1-'_ '"l 
N t-'
CD ::l 

0tI 
~ 

N~ 
o 

~ 
t-' 
CD 
o 
s::: 
t-' 
CD 
tJl 

~ 
t-'
('"1" 
::r 
:> 
r
III 
'"l 

()Q 

CD 
tJl 
('"1" 

n 
o 
~ 
o 
::l 

<Sl 

~-, 

gg J rn 
M 

<Sl 
If) 

(J)N 

o j z 
~ 0<Sl 

Uo 
W N 

~QJ ID 
~ If") 

~ 

~o j Ulffi 
A 
ill I-- <Sl 

(91 
U. 

~ fj, 

GJ 
Q 

LINEAR PROCESSOR OVERHEAD 

+ 
tJ 
~ 

fj, 
6 

Q Q 

is a process overhead of 0 
is a process overhead of 0.001 • NoP seconds 
is a process overhead of 0.010 * NoP seconds 
where NoP is the number of processors 

fj, 
{j, 6 

9 ~ ~ 

<Sl ·1 I I I I I o 10 20 30 10 50 

NUMBER OF PROCESSORS 



z'"Zl 
o ~ 

(Jq 

"'CIS:: 
"'S "'S 
o (l) 

o 
(l)U1 
tJl • 
tJl ..... 
o I\) 

"'S 
t-'3 

O::J" < (l) 
(l) 
"'S en 
::r'O 
(l) (l) 
III (l) 
0.0. 

.a: 
~ 
(l) 

:3 

(") 
o 
El 
'0 
III 
"'S 
1-" 
:3 

(Jq 

t-'3 
~ 
o 
:s: o ..... 
(l) 
o 
s:: ..... 
(l) 

tJl 

~ 
~ 
~ 
::J" 

CS> 

co 

CL (j)-

~ I 

~ ~ U)<r" + 

+ 0 
++ ~ 6 

+~~ 
+f'J 

N1 r1 
+ 
~ 

m 

SPEED UP WITH NO PROCESSOR OVERHEAD 

+ 
0 

+ 

+ 0 
6 

0 6 

6 

+ 
o 

6 

+ 

o 

6 

+ 
o 

6 

+ is when the common substructure was of size 14 
Cl is when the common substructure was of size 12 
~ is when the common substructure was of size 9 

(S) I I I I I I o 10 20 30 10 50 

NUMBER OF PROCESSORS 



three molecule case is given in figure 5.13). As an example 

of this, three molecules of size 14 and with a largest 

common substructure of size 11 were considered and the 

results of the simulation are given in table 5.5 and figure 

5. 14. 

5.6 COMMENTS 

5.6.1 Limitations 

The principal problem area for the simulation was 

with the durations of the procedures formed by splitting up 

larger procedures. As the FORTRAN 77 program took over 29 

minutes of c.p.u. time (on a Prime 9950) when there was a 

common substructure of size 14, it was clearly not possible 

to obtain these times experimentally. Therefore 

approximations to the standard deviations for the lengths 

of the larger procedures were obtained and assuming that 

the smaller procedures could be regarded as samples drawn 

from a normal distribution, the durations of the smaller 

procedures were estimated. The difficulties with this 

approach are:-

1) The assumption that the samples are drawn from a normal 

population (but the theory would be much more difficult if 

some other distribution was used). 

2) The approximation to the standard deviations, with one 

of the problems being the assumption that the ratios 

between the standard deviations and the means of the four 

stages were the same for all molecules (although as Section 

135 



Set Up The Distance Table 

Grow The Next Grow The Next Grow The next 
Generation Of Generation Of Generation Of 
Molecule One's Molecule Two's Molecule Three's 
Substructures Substruc tures Substruc tures 

f f f 
Name Molecule Name Molecule Name Molecule 
One's Two's Three's 
Substructures Substructures Substruc tures 

I SYNCHRONISE I 

:< >: 
I I 

Compare Molecule Compare Molecule Compare Molecule 
One's Two's Three's 
Substructures Substructures Substructures 
Wi th Those From With Those From Wi th Tho se From 
Molecules Two Molecules One Molecules One 
And Three And Three And Two 

f f f 
Amend Distance Amend Distance Amend Distance 
Table For Table For Table For 
Molecule One Molecule Two Molecule Three 

I 
I' 

;J ~ 4 

Figure 5.13 The Parallel Form Of Crandell And Smith's Algorithm 
For Comparing Three Molecules 



CIl'Yi 
Ct-'
o'(JQ 
tIlC 
(T"1 
"1(\) 
C 
()U'l 
(T' 
C ...... 
"1~ 
(I) 

Cl 
00 
1-1)8 

'd 
CIlIll 
...... "1 
Nt-'
(I);=j 

(JQ 

-->t-3 
:J" 
"1 
(I) 
(I) 

~ 
I-' 
(I) 
() 

C 
I-' 
(I) 
tIl 

:e: ...... 
(T 
:J" 

P 

["'" 
III 

~ 
(I) 
tIl 
('1" 

Cl 
o 
8 
8 
o 
;=j 

CS) 
In., 
N 

CS) 
CS) 
N 

(f) 

o 
ZCS) 
Olf) 
U
W 
(f) 

Z 
........ 

IS> 
CS)-

W-
L 

f-

CS) 
In 

ID 

& 

& 

tB~~ /). 

4J /). 

ij} 

/). 

41 

THREE MOLECULES: LINEAR OVERHEAD ~ 

/). /). 

Ijl ijl 

+ is a process overhead of 0 
[] is a process overhead of 0.001 * NoP seconds 
~ is a process overhead of 0.010 * NoP seconds 

where NoP is the number of processors 

/). 
/). 

/). 

It1 9 ~ 

CS) I r r r r I 
o 10 20 30 10 50 

NUMBER OF PROCESSORS 



5.5.2 indicated the only si~nificant st~ndar~ deviation was 

that of the comparison stage). 

~) The f~ct that the sum of the deviations of the smaller 

procedures is unlikely to be the duration of the lar~er 

process. 

Another problem was that 

4) The C.o.U. times used were taken from a large 

minicomputer. 

5.6.2 Conclusions 

The aim of the simulation was to provide a rough 

~uide as to whether the version of Crandell and Smith's 

algorithm with no sortin~ stage is suitable for a 

multiprocessor system and to orovide some indication of the 

speed up likely to be produced if such a system were to be 

implemented. Consequently, a comoromise had to be made 

between ease of implementation and the various drawbacks 

mentioned in Section 5.6.1. ( .. See. "A-lter-oJ~'\ fO" ~~l~ f.eA-+4?t\CCs~ 
After sayin~ which, table 5.4 (alon~ with fi~ure 

5.12) seems to indicate that usinR SO· processors can 

produce a speed up of about 8 and a speed up of around ~ 

for 16 processors if the problem is sufficiently 

computationally expensive (and assuming no processor 

overhead). However, table 5.6 (with fi~ure 5.14) shows a 

speed up of over 12 when three molecules were bein~ 

compared (which is in accordance with the extra parallelism 

that the extra molecule introduces). 

136 



This speed up was well below the expected value 

bearing in mind the largely independent nature of the 

computations making up each stage and the time taken by 

some of the stages. Part of the reason why the speed up is 

not equal to the number of processors is the high standard 

deviation (when compared with the mean) for the comparison 

stage because this leads to some of the procedures which 

the stage is broken up into taking much longer than the 

others and the next stage cannot begin until all of the 

procedures have finished. The high standard deviation also 

leads to the fact that the durations of the smaller 

procedures can add up to a value lower than the original 

duration. Hence the runs with a few processors (where this 

effect is more significant) take less time than they should 

(by up to about 15%), leading to a lowering in the speed 

up. 

All in all, the simulation does indicate a 

significant gecrease in the time taken when a simulated 

multiprocessor system is used. So it was decided to go 

ahead and implement the algorithm on a set of transputers 

and this is described in the next chapter. A point which 

has not been brought out in the above description is the 

way varying the number of procedures each stage was split 

up into had an unpredictable effect on the overall time 

taken and this led to the transputer implementation of the 

algorithm allowing this number to be input by the user (and 

will be met again in Section 6.4). 

137 



Number Of 
Processors 

1 
2 
3 
4 

5 
6 
8 

10 
12 
16 
20 
30 
40 
50 

Overhead Added 
o .001*I 

1698 1698 
1010 1010 
745 746 
666 667 
588 589 
561 561 
500 503 
426 429 
374 377 
330 333 
297 301 
241 243 
210 215 
202 208 

To A Process' Duration Time 
.01*I .1*I .001*I*r 

1700 1726 1698 
1013 1043 1010 
750 799 746 
672 725 669 
595 659 592 
568 639 565 
525 625 520 
453 641 453 
402 626 408 
362 616 376 
338 626 370 
294 654 383 
272 710 436 
269 799 497 

Table 5.1 The TimesC*) Taken By The Simulation For Comparing 
Identical Molecules Of Size 14 

Number Of 
Processors 

1 
2 
3 
4 
5 
6 
8 

10 
12 
16 
20 
30 
40 
50 

Overhead Added 
o 

306 
211 
161 
138 
122 
115 
103 
92 
80 
65 
57 
47 
41 

38 

To A Process' 
.001*r 

306 
212 
162 
139 
123 
116 
104 
95 
84 
69 
61 
52 
48 
45 

Duration Time 
.01*1 

307 
216 
165 
144 
128 
122 
1 1 1 
107 
104 
98 
92 
87 
92 
97 

Table 5.2 The Times(') Taken By The Simulation For Comparing 
Molecules With A Common Substructure Of Size 12 

(*) The simulated c.p.u. times are in seconds 



Number Of Overhead Added To A Process' Duration Time 
Processors 0 .001*I 

1 16.5 16.7 
2 11.7 12. 1 
3 3.8 9.3 
4 7.6 8. 1 
5 6.8 7.4 
6 6.3 7.0 
8 5.7 6.5 

10 5.4 6.4 
12 5.0 6.2 
16 4.2 6.2 
20 3.8 6.3 
30 3.3 6.8 
40 3: 1 7.1 
50 2.9 7.5 

Table 5.3 The Times(') Taken By The Simulation For Comparing 
Molecules With A Common Substructure Of Size 9 

Number Of 
Processors 

1 
2 
3 
4 
5 
6 
8 

10 . 
12 
16 
20 
30 
40 
50 

Largest Common Substructure Size 
14 12 9 

1 .00 1 . 00 1 • 00 
1.68 1.45 1.41 
2.28 1.90 1.88 
2.55 2.22 2.17 
2.89 2.51 2.43 
3.03 2.66 2.62 
3.40 2.97 2.89 
3.99 3.33 3.06 
4.54 3.83 3.30 
5.15 4.71 3.93 
5.72 5.37 4.34 
7.05 6.51 5.00 
8.09 7.46 5.32 
8.41 8.05 5.69 

Tab 1 e 5.4 The Speed Up In The Ca se Of No Processor 
Overhead For The Cases Of Tables 5.1 To 5.3 

(*) The simulated c.p.u. times are in seconds 



Number Of 
Processors 

1 
2 
3 
4 
5 
6 
8 

10 
12 
16 
20 
30 
40 
50 

Overhead 
o 

211 
121 

87 
66 
60 
57 
48 
41 
36 
30 
27 
22 
19 
17 

Added To A 
.001'I 

211 
121 

87 
66 
60 
58 
50 
42 
38 
32 
29 
25 
23 
22 

Process' Duration Time 
.01'I 

212 
125 

91 
70 
65 
62 
59 
52 
51 
47 
46 
49 
55 
61 

Table 5.5 The Times{*) Taken By The Simulation Of Comparing 
Three Molecules With A Common Substructure Of Size 11 

* The simulated c.p.u. times are in seconds 



CHAPTER 6 

A TRANSPUTER IMPLEMENTATION OF CRANDELL AND 

SMITH'S ALGORITHM WITH NO SORTING STAGE 

The results of a simulation of a multiprocessor 

system for Crandell and Smith's al~orithm were described in 

the last chapter. Although the results did not indicate as 

lar~e ~ speed up as had been hoped for, nevertheless they 

were favourable enough for a multiprocessor implementation 

to be undertaken. Because of their ready availability, 

transputers were chosen to be the processors making up the 

multiprocessor and before describin~ the implementation and 

its results, a short review of transputers will be given. 

6.1 TRANSPUTERS AND OCCAM 

6.1.1 A Brief Introduction To Transputers 

Various parallel processin~ systems were 

considered in Section 5.2 and transputers were briefly 

mentioned there. Basically, they are microprocessors which 

can communicate with their neighbours by using "channels", 

thus allowing a powerful multiprocessor to be built. In 

more detail, each transputer consists of (see figure 6.1) 

1) A conventional microprocessor which has a relatively low 

number of commands in its instruction set and all of them 

have the same format. Hence the transputer can be regarded 

as a reduced instruction set computer (RISC) [Taba87]. 

2) Four links which each have an input and an output 



System 

Serv ices 

On 

Chip 

RAM 

Memory 

Interface 

B 

u 

s 

, 
'-

Figure 6.1 A Block Diagram Of A Transputer 

Processor 

Link 0 

Link 

Link 2 

Link 3 



channel for connection to another transputer. 

3) 2K of on chip RAM with a maximum data transfer rate of 

80 MBytes/second. 

4) A memory interface for allowing off ::'~l pRAM wi th 

maximum data transfer rate of 25 MBytes/second. 

a 

5) Various extra pins for use in booting the system, error 

tracing and the like (these are labelled as 

services). 

6) A bus to connect them all together. 

system 

The figures given above are taken from the 

description of the T414A Transputer in [INM085] and give 

some indication of the performance values for transputers 

even though these figures will be slightly different for 

other members of the family. 

Transputers have been designed so that 

programs written for a particular configuration of 

transputers can be executed on any other network of 

transputers. This is achieved by allowing a transputer to 

carry out two or more occam processes in parallel by time 

slicing (with the time slice for 

approximately 800 microseconds). 

6.1.2 A Short Outline Of Occam 

the T414A being 

Occam [May84, INM084] is a high level language 

which is quite similar to Pascal but which does not have 

such elaborate data structures (eg. records and pointers). 

Although it has been developed principally for the 

139 



transputer (and is pitched at a level just above the 

transputer's assembly language for ease of compilation), it 

is also intended to be a language which can be used on 

other concurrent systems [Fish86]. Blocks of code (the 

equivalent of code between the delimiters BEGIN and END in 

Pascal) are labelled as processes in occam and a named 

process is analogous to a procedure in Pascal. The major 

features of occam are:-

1) Concurrent execution in contrast to Pascal where if 

ProcA, ProcB are two procedures/processes, then BEGIN 

ProcA; ProcB END means execute ProcA and when it has 

finished execute ProcB (sequential execution), occam allows 

the two processes to be executed simultaneously. This is 

done by using the PAR (or parallel) construct:-

PAR 

ProcA 

ProcB 

If it is required to execute ProcA and ProcB sequentially 

then PAR is replaced by SEQ. 

2) To avoid competition for variables and hence non

deterministic execution, a process is not allowed to change 

variables which are being used by processes operating in 

parallel with it. Communication between parallel processes 

has to be carried out using channels and in a process they 

appear as a line giving the channel name, whether the data 

is being sent or received and the name of the data element. 

On reaching such a line, the execution of a process is 

suspended until the process that is being communicated with 

140 



reaches its corresponding communication line. If a ring of 

processes waiting to communicate with each other but no two 

of which are at corresponding communication lines develops 

(a deadly embrace or deadlock), then the program will never 

terminate. 

3) The ALT construct allows input to be selected from one 

of several channels. For example, the code 

ALT 

ChannelA ? DataA 

SEQ 

BodyForA 

ChannelB ? DataB 

SEQ 

BodyForB 

will receive code from ChannelA and then execute the 

associated code if the data is waiting on ChannelA when the 

ALT is first met. If there is no data waiting on ChannelA, 

then if there is any data waiting on ChannelB, it is 

received and the relevant body of code is executed, 

otherwise the process waits at the ALT until there is data 

available on one of the channels. 

There are several differences between the 

original version of occam [INM084] and occam 2 [Poun86] , 

the version currently being supplied for use on 

transputers. The major ones are:-

1) Abbreviations -to increase efficiency, sections of 

arrays can be abbreviated ego 

matrix.reduced IS [matrix FROM 1 FOR 3]: 

141 



where matrix is a one dimensional array, assigns to 

matrix.reduced three elements of matrix. 

2) Two and three dimensional arrays are catered for whereas 

the first version of occam only allowed one dimensional 

arrays. 

3) Originally, occam only had the single type INT 

(integer), now LOGICAL and (on some installations) REAL are 

provided. 

4) .The types of data it is allowed to send on a channel 

have to be stated in occam 2 so that compile time checks 

for correct usage can be implemented. However, the version 

of occam 2 used for the implementation of Crandell and 

Smith's algorithm did not have this extra typing and no 

further mention will be made of it. 

To give more of a feel for occam, a short example 

program is given in figure 6.2. The illustration ~rocess 

receives a stream of integers on channel "in" and sends the 

answers back out on channel "out". Internally there are 

four blocks of code being carried out in parallel one of 

which decides which of the two processing blocks to send 

the data to, and another block to receive the returned 

data. The process terminates when it receives the value 

zero on channel "in". 

6.1.3 Structured Programming And Occam 

try to 

One of the design aims lying behind occam is 

make the programmer using occam write 

142 

to 

well 



PROC take.square.roots(CHAN in, out) 
C HA N fr om • a, to. a, fr om • b, to. b, to. e nd : 
PAR 

SEQ 
LOGICAL flag: 
INT number, returned.value: 
SEQ 

flag:=TRUE 
WHILE flag 

SEQ 

SEQ 

ALT 
in ? number 

SEQ 
IF 

number > 0 
to.a number 

number < 0 
to.b number 

number = 0 
flag: =FALSE 
to.a ! 0 
to.b ! 0 
to.end 0 

LOGICAL fl ag .receive: 
INT returned.value: 
SEQ 

f1 ag .recei ve: =TR UE 
WHILE flag.receive 

ALT 
to.end ? returned.value 

flag.receive:=FALSE 
from.a ? returned.value 

out-! returned.value 
from.b ? returned.value 

out! returned.value 

Figure 6.2 An Example Of An Occam Process For Reading In 
A Stream Of Integers And Finding Their Square Roots 
(Continued On The Next Page) 



SEQ 
LOGICAL flag.a: 
INT number.a, returned.value.a: 
SEQ 

flag.a:=TRUE 
WHILE flag.a 

SEQ 

SEQ 

to.a ? number.a 
IF 

number.a <> 0 
SEQ 

square.root(number.a, returned.value.a) 
from.a ! returned.value.a 

number.a = 0 
flag .a: =FALSE 

LOGICAL flag.b: 
INT number.b, returned.value.b: 
SEQ 
flag.b:=TRUE 
WHILE flag.b 

SEQ 
to.b ? number.b 
IF 

number.b <> 0 
SEQ 

square.rootC-number.b, returned.value.b) 
from.b ! returned.value.b 

number.b=O 
flag.b: =FALSE 

Figure 6.2 (Continued) An Example Of An Occam Process For 
Reading In A Stream Of Integers And Finding Their Square Roots 

.' 



structured pro~rams rDah172]. Some examples 

philosophy are:-

of this 

1) The lack of a GO TO construct (the main constructs being 

WHILE, FOR and IF). However, althou~h the problems 

resulting from the misuse of GO TO's have been reco~nised 

for many years rDijk68J, the issue as to whether they 

should be totally avoided has always been controversial 

rKnut74J. 

2) The level of nesting of a line of a pro~ram is 

determined by how far the statement is indented rather 

than, say Pascal's BEGIN/END structure. Hence the occam 

programmer is forced to "layout" his code properly. The 

disadvanta~e is that making alterations to the code is more 

difficult (and the code is less easy to read) and again 

there is a degree of controversy over the worth of 

indenting programs rShei81]. 

3) The folding editor (which is part of INMOS's transputer 

development system) works in an analogous way to 

hierarchies of menus in that lines of code can be "entered" 

to reveal the details of the underlyin~ "procedure" which 

may in turn contain lines which can be entered (figure 6.3 

gives an illustration of this). The overall effect is to 

encourage a program to be broken up into 

small, largely self-contained blocks 

si~nificant part of the definition 

143 

a hierarchy of 

-which is a 

of structured 



PROC take.square.roots(CHAN in, out) 

C HA N fr om • a, to. a, fr om • b, to. b, to. e nd : 

PAR 
· .. · .. 
· .. 

receive.data 
process.a 
process.b 
output.data 

Figure 6.3 (a) The Top Level View Of The Program 

{process .b 
SEQ 

} 

LOGICAL flag.b: 
INT number.b, returned.value.b: 
SEQ 
flag.b: :TR UE 
WHILE fl ag. b 

SEQ 
to.b ? number.b 
IF 

number.b <> 0 
SEQ 

square.root(-number.b, returned.value.b) 
from.b ! returned.value.b 

number.b=O 
flag.b: =FALSE 

Figure 6.3 (b) Fold Process.b 

Figure 6.3 An Example Of The Folding Editor Applied To The Program 
Of Figure 6.2 



programming. 

4) In the original version of occam, if none of the 

alternatives following an IF are true, the program 

continues by executing the next instruction. However, with 

occam 2, the program halts at the IF statement, thus 

forcing the programmer to consider all eventualities. 

Unfortunately, in .practice it is quite likely that a TRUE 

SKIP (the equivalent of ELSE BEGIN END; in Pascal) will be 

included at the end of every IF statement. 

6.1.4 Stages In The Development Of Software 

Environments For Parallel Processing 

[Denn86] outlines four stages in the production 

of a software environment for use with parallel processors. 

Stage 1 is when parallelism is used with a single processor 

(eg. pipelining) and this is nearly invisible to the 

programmer, only requiring a slight restructuring of the 

code for vector or array processors. The next stage is the 

use of languages such as occam where the parallel execution 

of pieces of code on different machines is up to the 

programmer to control. However, this adds a far greater 

complexity to software development and [Denn86] suggests 

that functional languages will become widely used on 

parallel machines (stage 3). This is because the lack of 

variables means that if we are to try to evaluate 

f(g(2),h(3» where f, g and h are functions, then g(2) and 

144 



h(3) can be computed at the same time. [Gaud86] has 

proposed a design for a machine of this type based on 

transputers and using the data flow programming language 

SISAL. However, [Denn86] argues that functional languages 

cannot be easily applied to a wide range of problems and 

this will lead to a much higher level interface (stage 4). 

where a knowledge-based system will lead the user through 

the design process. 

6.2 THE IMPLEMENTATION 

Although, as was mentioned above, an occam 

program written for a particular configuration of 

transputers can run on any other configuration (running on 

a single transputer if necessary), there is quite likely to 

be a significant loss of efficiency. Therefore in a 

situation where an algorithm is being run on varying 

numbers of transputers, the implementation of the algorithm 

could be very different depending on the number of 

transputers being used. So as to avoid this problem (and 

the complexity and the extra work involved), Crandell and 

Smith's algorithm was broken up into stages which were in 

turn broken 

5. These jobs 

transputers 

up into "jobs" in an analogous way to Chapter 

were then distributed to the individual 

which were connected to form a tree structure. 

A tree structure was chosen as opposed to other "regular" 

extensible patterns because the presence of closed loops 

seems to complicate the problem as 

145 



1) If they are used to allow alternative routes for jobs to 

reach the same destination, then intermediate transputers 

have the problem of not being aware of the whole situation. 

2) If they are used as rings, then the path length the jobs 

have to travel is increased. 

While neither of these reasons is strong enough 

to rule out the use of a structure containing rings (for 

example, (1) could be circumvented by using the "top" 

transputer to control the destination of jobs rather than 

the local control method described in the next section), 

they do provide some rationale for the assumed greater 

simplicity of a tree structure. Once a tree structure has 

been chosen, it seems natural to use as "thick" a tree as 

possible, that is one where transputers near the root of 

the tree use all four of their channels (thus minimising 

the path length from a transputer to the root transputer). 

The highly regular hypercube architecture which has been 

used with Intel's iPSe chip [Haye86] is not suitable for 

the current range of transputers as in an n-cube each node 

is connected to n other nodes. Chains of transputers have 

been compared with ternary trees in [Lync87] with the 

double linked chain performing surprisingly well, probably 

on account of the increased communication band width for 

data transfers between transputers. 

146 



6.2.1 The Tree Structure 

Figure 6.4 shows 5 transputers making up a branch 

of the tree. Assuming that each "job" consists of reading a 

number from an array on Tran1, sending it to a transputer, 

undertaking a calculation using this number and returning 

the result to Tran1, then the occam executed by Tran11 can 

be split up into the processes shown in figure 6.5. These 

pro~esses all execute in parallel and their basic 

structures are:-

1) CHECKING 

This process is used to access a three element array giving 

information on whether Tran111, Tran112 and Tran113 are 

waiting for another data element to be sent, are executing 

or have closed down as all the data has been processed. The 

array is stored in a process so that it is protected from 

simultaneous accesses from processes executing in parallel 

(these processes have to communicate with CHECKING via 

channels). 

2) RECEIVE FROM TRAN1 

It receives data from Tran1, asks the CHECKING process for 

the name of a free transputer and then sends the data to 

this transputer. 

3) RECEIVE_FROM_TRAN11* 

Receives data from Tran111, Tran112 or Tran113, informs 

CHECKING that this transputer is waiting for further data 

and then passes the data on to TRAN1. 

Tran111, Tran112 and Tran113 just receive data 

147 



Tran1 

/ 
/1\ 

Tran111 Tran112 Tran113 

Figure 6.4 A Five Transputer Branch Of The Tree Structure 

Receive From Tranl 

I 
I 

~ 
\,--

I 
I 

Checking 
I _____ ...,1 

\ 
Receive From Tran11* 

Figure 6.5 The Parallel Processes Executed By Tran 11 

Tran 1 

Tran 11 

/~ 
Tranl11 Tran113 

Tran12 

\ 
Tran122 

2n~ 
Tran131 Tran133 

Tran 112 Tran121 Tran123 Tran132 

Figure 6.6 A Thirteen Transputer Branch Of The Tree Structure 



elements, perform the calculation and then transmit the 

result, whilst Tran1 receives data, stores it and sends out 

the new data. The code avoids deadlocks because data is 

only sent to Tran11 if one of Tran111, Tranl12 or Tranl13 

can receive it. Hence, RECEIVE_FROM_TRANl does not ever 

have to wait in mid-stream to input or output (apart from 

temporarily waiting its turn for CHECKING). Consequently no 

circle of processes halted in mid execution can occur, and 

so there cannot be a deadlock. 

RECEIVE_FROM_TRAN11* informs CHECKING that a 

transputer has finished before sending the data to TRANl 

because otherwise TRANl could send the next piece of data 

to this transputer before its flag has been set and it 

could then be reset by RECEIVE_FROM_TRAN1. The tree is 

closed down by sending out a flag instead of a fresh data 

element every time Tranl receives a result but has sent out 

all its data. 

This basic structure can be extended by having 

Tran1 and Tranll perform the same job processing function 

as Tran111, Tran112 and Tranl13 in parallel with their 

"administrative activities". Also, additional branches can 

be added to Tran1 to give the 13 transputer tree shown in 

figure 6.6 (although only 11 transputers were available for 

use when the work described below was carried out). More 

transputers can be used by changing the arrays in CHECKING 

so that they indicate the number of free transputers down 

each of the branches (and making corresponding changes in 

the RECEIVE's so that these elements are 

148 



incremented/decremented instead of being set or reset). 

6.2.2 Distributing The Algorithm Over The Tree 

The three stages in the loop of Crandell and 

Smith's algorithm, namely the grow_and_name, compare and 

amend steps, were split up into 2, x and y (where x and y 

could be varied) separate jobs which were then distributed 

over the tree. The growing and naming stage was only 

divided into two jobs because 

1) growing a common substructure can lead to many candidate 

substructures being produced. This causes a problem as 

extra storage has to be allocated to take account of the 

worst possible case and memory requirements are as equally 

important as cpu time constraints on restricting the common 

substructure size. This situation is exacerbated by having 

several processes executing in parallel on one transputer 

as this causes several copies of the large data arrays used 

by tha algorithm to be stored. 

2) the added complexity of splitting up this stage further 

was not felt to be worthwhile as the time taken by this 

stage of the algorithm in the cases where the algorithm 

takes a long time to run, is relatively low (see the 

results given in Chapter 4) • Additionally, the purpose 

lying behind the implementation was to analyse the 

performance of transputers on a chemical information 

149 



problem with a large apparent degree of parallelism rather 

than producing the fastest possible version of the 

algorithm at any cost. 

In addition to distributing these jobs (and 

receiving their output), the root transputer also sends out 

global data in between the stages so as to keep the other 

transputers informed of the progress of the algorithm. The 

first of these stages is to send the distance table to the 

other transputer which is involved in the growing and 

naming stage. The other two distributions are the sending 

out of the named growths (ie. the n*(n-1)/2 inter-atomic 

"distances" for generation n) and the growth sets (ie. the 

n atoms making up each growth), and the sending out of the 

compared growth sets. These both involve the communication 

between transputers of very large three dimensional arrays, 

only a part of which is being used. As occam 2 only allows 

abbreviations to be used to take a slice of an array in one 

dimension only, it was decided to send out the arrays one 

row at a time and, on receiving one of these rows, a 

transputer makes three copies of it so that it can pass it 

on to the three transputers connected to it which are lower 

down in the tree, in parallel. (An alternative way of 

distributing the arrays would have been to send out the 

whole array in one go including the bits which are not 

relevant.) The implementation of the algorithm for the root 

transputer is shown in figure 6.7 where each box has to 

finish before the next one can begin. 

150 



INITIALISATION 

I 
I 

---------------~ 
DISTRIBUTE THE DISTANCE TABLES 

GRa.-I AND NAME 

DISTRIBUTE NAMED GROWTHS AND GROWTH SET 
l' ~ 

COMPARISON 

DISTRIBUTE COMPARED GROWTH SETS 
~ 

AMENDING 

Figure 6.1 The Implementation Of The Crandell And Smith Algorithm 



6.3 EXPERIMENTAL RESULTS 

A prototype version of the algorithm was run on a 

Prime using Fisher's occam compiler [Fish85] before moving 

on to a Nimbus-hosted T414A transputer network where the 

algorithm was developed on one transputer before running it 

on more than one. 

The algorithm was run using a distorted molecule 

of size 14 (9 carbons, 4 nitrogens, 1 oxygen) with a common 

substructure of size 12, an undistorted molecule of size 11 

(5 carbons, 5 oxygens, 1 nitrogen), an undistorted molecule 

of size 8 (6 carbons, 2 bromines) and the same molecule 

distorted to have a common substructure of size 7. The 

number of transputers was varied for each structure and the 

number of jobs the comparing and amending stages were split 

into was also varied so as to try to produce - the lowest 

possible times. The results are given in tables 6.1 to 6.4 

where the entries are the lowest obtained for the given 

structures using the stated number of transputers ie. the 

compare and amend entries might have been obtained using 

different values for the number of jobs the algorithm was 

split into. The relevant values for the speed up, ie. the 

increase in speed over one transputer, are given in tables 

6.5 to 6.7 and the corresponding graphs are figures 6.8 to 

151 



6.4 CONCLUSIONS 

While it should be emphasised that the results 

are only relative in the sense that transputers with higher 

clock speeds (20 MHz as opposed to 12.5) and faster links 

are now available, tables 6.5 to 6.1 show that a high speed 

up can be obtained if there is a sufficiently large amount 

of computation to be undertaken. This concept of how much 

com~utation can be undertaken before communication has to 

take place (granularity) is at the root of how useful a 

parallel processing system is and the results indicate a 

small amount of speed up even when the granularity is Quite 

low. Interestingly the speed up for the comparison stage 

when there was a common substructure of size 12 was higher 

than the number of transputers being used, stemming from 

the fact that the ordering of the substructures had 

been changed from splitting the compare stage up into many 

jobs. (The ordering for the next generation being the order 

in which the "packets" of compared growths are received 

back by the root transputer, and so it is likely that the 

"more oftenly occurring" growths move to the start of the 

list.) In retrospect, the growing and naming stage should 

have been split up into more than two jobs, but the 

problems over the extra storage needed must not be 

overlooked as it is storage considerations rather than the 

magnitude of the run times which prevents larger common 

substructures from being used. 

It is very hard to compare the results obtained 

152 



Speed Up For The Comparison Slage 
N -, 

+ 
'>:j 

+ is a common substructure of size 12 + ..... 
()q Cl is a common substructure of size 11 s:: 
'"'S 6 is a common substructure of size 8 CD CS) 

0'> X is a common substructure of size 7 + . 
CX> 0 
0-3 + 0 ::;,-
CD 0 
{/l co + 
'0 0 CD 
CD 
P- a... + 
c => 0 
'0 
Ul 0 
'>:j 

-OlD + 
0 (J) 

'"'S (J) 0 
0-3 a... 
::;,-

U) [) CD 

Cl 
0 ~ 6. 8 6. '0 Cl 6. 
III 
'"'S 6. ..... 6. 6. 6. 6. Ul 
0 X X X X 
;J m 6. X X X X 
{/l N X 
("1" 6. 
III X ()q 
CD ~ Ul 

CS) I I I I 
0 2 " 6 8 10 12 

Number Of Transpuiers 



N 
Speed Up For The Amending Sluge 

'"Xl 
f-' . (S) 

QQ 
c: 
'"S 
Cl> 

0\ 

\D 

~ roj 
+ is a common substructure of size 12 .., 
0 is a common substructure of size 11 ~ 

11 is a common substructure of size 8 
Cl> 

()) X is a common substructure of size 7 -0 
Cl> 
Cl> 
0-

c:: """OU) 

-0 Q) 

CIJ 
Q) 

'"Xl a.. 
0 

(J) '"3 .., 
~ ... Cl> 

+ + + + + + :t> 

+ 3 

+ 0 Cl> 

0 0 
::s 
0-

D 
f-' . 

0 0 0 ::s + 0 0Cl N + 
()) 

~ ~ ~ . ~ ~ ~ ~ ~ ~ ~ 

~ III m UQ 
Cl> 
C/l 

(Sll I I 
10 12 0 2 'I 6 8 

Numbe r Of T ran 5 put e r 5 



'Tl 
1-" 

()q 
C 
'"l 
CD 

0\ 

o 
>-3 
::r
CD 

>-3 
o 
eT 
PJ 
f-' 

(J) 
"0 
CD 
CD 
Cl. 

C 
"0 
CI.l 

a.. 
=> 

N 

tSl 

Cl) 

""OUJ 
<!) 

<!) 

a.. 
(f) 

~ 

N 

ToloL Speed Up 

+ is a common substructure of size 12 
D is a common substructure of size 11 
~ is a common substructure of size 8 
X is a common substructure of size 7 

[!J 

~ 

,.. 

+ o 

6 
X 

+ 
o 

6 
X 

+ 

o 

6 
X 

+ 

o 

{j, -

X 

+ 

o 

{j, 

X 

+ 

o 

6 

X 

+ 

o 

6 
X 

+ 

o 

{j, 

X 

+ 

o 

{j, 

X 

"" 1 ~ , , , , , , 
o 2 'I 6 8 10 12 

Numb er Of T r anspulers 



from running the algorithm on transputers with those 

obtained from the PASSIM simulation described in Chapter 5 

because it was only possible to simulate a shared memory 

multiprocessor system, the clock times used for the length 

of the PASSIM activities,were taken from a Prime 9950 and 

fairly crude estimates had to be made for the probability 

distributions of the various steps of the algorithm. 

However, it seems that the simulation does to some extent 

underestimate the amount of , speed up which can be achieved 

if there is a large common substructure (bearing in mind 

that in the simulation the growing and naming stage was 

also split up into as many jobs as desired rather than the 

two in the actual implementation). On the other hand, the 

model was only intended to give a rough indication of 

whether a transputer implementation would be worthwhile. 

Additionally, it also highlighted the very unpredictable 

way that the number of jobs which the stages were split 

into affected the overall execution times. An example of 

this was when using eleven transputers to compare the 

undistorted molecules of size 8, splitting the comparison 

stage up into 36 jobs led to a time of 20 whilst splitting 

it into 28 led to a time of 25 and 34 a time of 22 (the 

units of time being 16 milliseconds). This is presumably 

caused by the relatively large standard deviation of the 

comparison stage (see Section 5.4.5) and would be a problem 

for any practical system. 

As it stands, a transputer implementation of the 

above version of Crandell and Smith's algorithm is not very 

153 



useful because Chapter 4 showed that the clique finding 

approach and the version of Crandell and Smith with an 

extra sorting stage were superior. However, as has been 

mentioned previously, a possible way around the problem of 

trying to extend the common sUbstructure finding capability 

to molecules with larger common substructures might be to 

use the Crandell and Smith algorithm but with no distance 

clustering. The growths would then contain the end points 

for the range of values each inter-atomic distance could 

take and the comparison stage would then involve 

determining whether the ranges overlapped rather than a 

simple comparison of integers [Cran83a]. Therefore the net 

effect is likely to make the compare stage take appreciably 

longer with the growing and naming stage likely to be of 

similar duration to what it was originally (because there 

is essentially no structural change in this stage). 

Consequently, the algorithm without distance clustering is 

likely to take much longer to run than the version with 

clustering with most of the extra time being spent in the 

compari~on stage, and so a transputer implementation might 

be an attractive way to speed up the algorithm. 

154 



KEY FOR TABLES 6.1 TO 6.4 :-

Send 1 is the distribution of the distance tables 
Send 2 is the distribution of the named growths with their 

growth sets 
Send 3 is the distribution of the compared growth sets 
The times are in units of 16 milliseconds 

Number Of Transputers 
2 3 4 5 6 7 8 9 

Set Up 11 11 11 11 11 11 11 11 1 , 
Grow 1379 724 724 724 724 724 724 724 724 
Amend 722 380 349 228 242 213 223 216 214 

10 
11 

724 
213 

, , 
11 

724 
216 

Compare 25477 11279 7067 5286 4254 3594 3142 2882 2588 2280 2175 
Send 1 3 3 3 3 3 3 3 3 3 3 
Send 2 119 144 157 235 235 259 259 260 260 260 
Send 3 32 39 43 63 63 63 66 66 66 69 
Total 27590 12656 8417 6511 5538 4844 4449 4125 3881 3575 3457 

Table 6.1 Common Substructure Of Size 12 

Number Of Transputers 
1 2 3 4 5 6 7 8 9 10 11 

Set Up 7 7 7 7 7 7 7 7 7 7 7 
Grow 590 312 313 313 313 312 312 312 312 312 312 
Amend 148 114 91 75 70 69 71 67 56 57 51 
Compare 5490 2472 1580 1184 998 878 803 718 648 622 601 
Send 1 2 2 2 2 2 2 2 2 2 2 
Send 2 50 62 68 99 99 108 105 110 1'0 110 
Send 3 14 18 19 28 28 28 30 30 30 31 
Total 6235 2985 2080 1666 1512 1397 1333 1240 1165 1140 1116 

Table 6.2 Common Substructure Of Size 11 

Number Of Transputers 
1 2 3 4 5 6 7 8 9 10 11 

Set Up 4 4 4 4 4 4 4 4 4 4 4 
Grow 40 24 24 24 24 24 24 24 24 24 24 
Amend 17 14 12 11 11 12 13 12 12 12 12 

Compare 78 44 34 27 26 26 27 24 22 21 20 
Send 1 1 1 1 1 1 1 1 1 1 1 
Send 2 4 6 6 8 8 8 9 9 9 9 
Send 3 2 2 2 3 3 3 3 3 3 3 
Total 139 92 83 75 77 77 79 77 75 74 73 

Table 6.3 Common Substructure Of Size 8 



Set Up 4 
Grow 16 
Amend 11 
Compare 23 
Send 1 
Send 2 
Send 3 
Total 54 

Table 6.4 Common 

Number Of 
Transputers 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

Number Of Transputers 
2 3 4 5 6 
4 4 4 4 4 

1 1 1 1 11 11 11 
10 9 8 7 8 
16 12 10 10 10 

1 1 1 1 1 
2 3 3 4 4 
1 1 1 1 1 

43 40 38 38 39 

Substructure Of Si ze 7 

Common SUbstructure 
12 11 8 

1.00 1.00 1.00 
2.26 2.22 1.77 
3.61 3.47 2.29 
4.82 4.64 2.89 
5.99 5.50 3.00 
7.09 6.25 3.00 
8.11 6.84 2.89 
8.84 7.65 3.25 
9.84 8.47 3.55 

11.17 8.83 3.71 
11. 71 9. 13 3. 90 

1 
4 

11 
8 

10 
1 
4 
1 

39 

Size 
7 

1.00 
1.44 
1.92 
2.30 
2.30 
2.30 
2.30 
2.56 
2.56 
2.56 
2.56 

Table 6.5 The Speed u:> For The Comparison Stage 

Number Of 
Transputers , 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

Common Substructure 
12 11 8 

1.00 1.00 1.00 
1.90 1.30 1.21 
2.07 1.63 1.42 
3.17 1.97 1.55 
2.98 2.11 1.55 
3.39 2.14 1.42 
3.24 2.08 1.31 
3.34 2.21 1.42 
3.37 2.64 1.42 
3.39 2.60 1.42 
3.34 2.90 1.42 

Size 
7 

1.00 
1. 10 
1.22 
1.38 
1.57 
1. 38 
1. 38 
1.22 
1.22 
1.38 
1.22 

Table 6.6 The Speed ~ For The Amend Stage 

8 9 10 1 1 
4 4 4 4 

11 11 11 11 
9 9 8 9 
9 9 9 9 
1 1 1 1 
4 4 4 4 
2 2 2 2 

40 38 38 39 



Number Of 
Transputers 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
i'1 

Common Substructure 
12 11 8 

1.00 1.00 1.00 
2.18 2.09 1.51 
3.28 3.00 1.67 
4.24 3.74 1.85 
4.98 4.12 1.81 
5.70 4.46 1.81 
6.20 4.68 1.76 
6.69 5.03 1.81 
7. 11 5. 35 1 • 85 
7.72 5.47 1.88 
7.98 5.59 1.90 

Si ze 
7 

1.00 
1.26 
1.35 
1.42 
1.42 
1.38 
1.38 
1. 35 
1.42 
1.42 
1.38 

Table 6.7 The Speed LP For The Whole Algorithm 



CHAPTER 7 

DISTANCE GEOMETRY CALCULATIONS USING MULTIPROCESSORS 

The previous chapter described a multiprocessor 

implementation of an algorithm for finding the largest 

substructure in common between two molecules. However, 

although the work was of theoretical interest in that it 

illustrated the capabilities of a multiprocessor system, it 

had no practical value because the chosen algorithm 

performed very badly when compared with other common 

substructure finding algorithms in Chapter 4, and also the 

value of being able to find common substructures is 

unclear. Therefore the current chapter examines the 

possibilities of using multiprocessors to perform distance 

geometry calculations (see Section 2.3.2); the reason for 

choosing the distance geometry field stems from the facts 

that a Monte Carlo method is used to generate different 

conformations and this can be carried out in parallel, and 

that a transputer system for use in the closely related 

field of molecular graphics is being developed commercially 

by Chemical Design Limited, Oxford. Additionally using 

distance geometry to try to find common pharmacophores is 

very computationally expensive, as can be seen from the 3.5 

cpu hours used on a VAX 11/785 with floating point 

accelerator by [Sher86]. 

155 



7.1 AN OUTLINE OF DISTANCE GEOMETRY 

Chapter 2 mentioned that the use of distance 

geometry in chemistry has been developed by Crippen et al. 

[Crip81, Have82, Have83] as a means of finding possible 

conformations of a molecule given upper and lower bounds on 

the inter-atomic distances. The method comprises two 

stages, the first of which tries to remove any slack from 

the original upper and lower bounds by using geometrical 

considerations suph as the triangle inequality. The second 

stage chooses a set of points which satisfy some of the 

inter-atomic distance bounds and attempts to refine these 

points until all the bounds are satisfied. 

7.1.1 Tightening The Inter-Atomic Bounds 

7.1.1.1 The Triangle Inequality 

The triangle inequality says that if D(i,j) is 

the distance between the pOints i and j, then 

D(i,j) <= D(i,k)+D(k,j) 

for all points k. So if U(i,j) is the upper bound for the 

distance from i to j (and L(i,j) is the lower bound), then 

D(i,j) <= D(i,k)+D(k,j) <= U(i,k)+U(k,j) 

for any point k. Therefore U(i,j) can be set to the minimum 

of U(i,j) and U(i,k)+U(k,j). Consequently, a tightening of 

the upper bound matrix can be obtained by iteratively 

refining all the U(i,j) in this way until no more slack can 

be removed [Crip81]. However, [Have83] points out that this 

156 



is just equivalent to finding the shortest paths between 

points using the upper bound matrix -a problem for which a 

simple, highly efficient algorithm [Drey69, Floy62] exists. 

Alternatively, the shortest paths can be found by 

repeatedly applying Dijkstra's algorithm for finding the 

shortest paths from one point to all others in a graph 

[Ah074]. 

7. t. 1.2 The Inverse Triangle Inequality 

The triangle inequality says that 

D(i,j) )= D(i,k)-D(j,k) 

for all points k. But 

D(i,k)-D(j,k) )= L(i,k)-U(j,k) 

and so L(i,j) can be set equal to the greater of L(i,j) and 

the right hand side of this equation. The presence of 

U(j,k) in the equation means that the upper bounds need to 

be lowered before attempting to raise the lower bounds. 

Similarly, L(i,j) is also bounded below by 

L(j,k)-U(i,k), and it can be shown [Have83] that repeatedly 

raising the lower bounds using these two constraints until 

no more lower bounds can be raised, is equivalent to 

setting L(i,j) equal to 

MAX m{ MAXK{L(k,m)-U(i,k)} -U(j,m)} 

Hence, by maximising L(k,m)-U(i,k) with respect to k first 

and then maximising the result minus U(j,m) with respect to 

rn, any "inverse triangle inequality" slack can be removed. 

The maximising of L(k,m)-U(i,k) can be carried out using a 

157 



variant of Dijkstra's algorithm for finding the shortest 

paths from one point to all others in a graph [Aho74]. The 

idea is to select any point, raise the lower bounds using 

any paths passing through it and then to remove this point 

from any further consideration; more details can be found 

in [Have83]. However, [Have84] performs the tightening of 

bounds by transforming the problem into that of finding the 

shortest paths between all points i and j where 

1 <= i <= n and n+1 <=j <=2n 

(n being the number of points) in the graph G where 

G(k,m)=U(k,m) if k <= n and m <= A 

G(k,m)=U(k,m) 

G(k,m)=-L(k,m) 

G(k,m)=O 

if 

if 

if 

n < k 

k <= n 

n < k 

and 

and 

and 

n < m 

n < m 

m <=n 

The shortest path between i and j is then the negative of 

the inverse triangle bound between these points. 

7.1.1.3 The Tetrangle Ineguality 

For four points, the cosine of the dihedral angle 

phi about the axis between points 1 and 2 (see figure 7.1) 

can be given in terms of the 6 inter-point distances as 

[Have83] (although the equation 

incorrectly in this reference):-

is 

COS(phi) = (g + h) / (SQRT(e * f» 

actually stated 

where e=4*D(1,4)*D(1,4)*D(1,2)*D(1,2)

(D(1,4)*D(1,4)+D(1,2)*D(1,2)-D(2,4)*D(2,4»**2 

f=4*D(1,2)*D(1,2)*D(2,3)*D(2,3)-

158 



o 

/ 3 

Figure 7.1 The Dihedral Angle About The Axis 1-2 (Taken 
Fran [Have83]) 

P1 Pl 
u u u u 

Figure 7.2 Checking Whether P4 Can Lie On P1-P2 When They Are 
As Far Apart As Possible. If It Can Then The Tetrangle Inequality 
Doe s Not Provide A Con straint On The Maximum Di stance Between. 
P1 And P2 (Taken From [Have83]) 

Pl 
u L-U U L-U 

Figure 7.3 Checking Whether P4 Can Lie On P1-P2 When They Are 
As Close Together As Possible. If It Can Then The Tetrangle 
Inequality Does Not Provide A Con straint On The Minimum Di stance 
Between Pl And P2 (Taken Fran [Have83]) 



(D(1,2)2+D(2,3)2_D(1,3)2)**2 

g:(D(1,4)2+D(1,2)2_D(2,4)2)* 

(D(1,2)2+D(2,3)2_D(1,3)2) 

h:2*D(1,2)2* 

(D(2,4)2+D(1,3)2_D(1,2)2_D(3,4)2) 

Given the 5 distances other than D(3,4), then 

varying phi shows that the maximum ann minimum values of 

D(3,4) occur when all 4 points lie in a plane. Further, it 

can be proved that [Have83] 

Theorem Consider 5 of the 6 inter-point distances. If the 

upper and lower bounds on these distances prevent any three 

points becomin~ collinear, then the value for the sixth 

distance given by the above equation for COS(phi), attains 

its maximum and minimum when the 5 distances are at some 

combination of their upper and lower bounds. 

Consequently, a tetrangle inequality can be 

obtain~d betw~en 4 points for limitin~ an inter-point 

distance by takin~ the 64 combinations of the 5 other 

distances at their upper and lower bounds and COS(phi) 

equal to 1 or -1. Hence the upper and lower bound matrices 

can be tightened by iteratively takin~ sets of four points 

at a time until no more slack can be removed. However three 

checks need to be carried out in conjunction with the 

tetrangle inequality:-

1) The non-colinearity of the points under analysis needs 

159 



to be tested. Consider first the tetrangle inequality 

applied to the upper bound between points P1 and P2 and 

assume that 

U(P1,P3)+U(P2,P3) > U(P1,P4)+U(P2,P4), 

then it is required to determine whether P4 can be on the 

line from P1 to P2 when P1 and P2 are at the maximum 

distance apart that the triangle inequality allows. This is 

done by considering the two triangles in figure 7.2 and the 

two limits on the distance for P3 to P4 which they produce 

(which can be found by using simple trigonometry). If this 

distance range overlaps with the allowed upper-lower bound 

range for P3-P4, then the tetrangle inequality cannot be 

used to lower the upper bound for this distance because the 

triangle inequality upper bound can be obtained when three 

pOints are collinear. Therefore the theorem cannot be 

invoked to try to lower this limit. 

In a similar way the tetrangle inequality can 

only be applied to the lower bound between P2 and P4 if at 

least one of the inverse triangle inequality limits is 

positive (otherwise the points are not necessarily 

distinct) and for each positive limit (say L(P1,P2)

U(P4,P1» the allowed range of values for D(P3,P4) in 

figure 7.3 does not overlap with the interval L(P3,P4) to 

U(P3,P4). 

2) The distances being passed to the tetrangle inequality 

need to be checked to ensure that the triangle inequality 

holds between them (as they will be a mixture of distances 

160 



from the upper and lower bound matrices). This check is 

needed because the above equation for COS(phi) is obtained 

by using the law of cosines. It is also necessary to check 

that when considering the distance P3-P4 neither P1, P2 and 

P3 nor P1, P2 and P4 are collinear (as then phi in figure 

7.1 is undefined). 

3) After the tetrangle inequality has tightened a distance, 

the triangle and inverse triangle inequalities need to be 

reapplied to the upper and lower bound matrices. This can 

be achieved quickly by noting that if U(Pi,Pj) was changed, 

then the new U(Pk,Pm) is the old one or 

U(Pk,Pi)+U(Pi,pj)+U(Pj,Pm) or U(Pk,Pj)+U(Pi,Pj)+U(Pi,Pm). A 

similar idea applies to the lower bound matrix. 

In theory similar checks can be· devised for 

pentangles, hexangles, etc., but the calculations involved 

become very difficult. 

7.1.2 Finding Co-ordinates Which Satisfy The Constraints 

After the two bound matrices have been tightened 

(by using the method of Section 7.1.1.1 followed by that of 

Section 7.1.1.2 and finally that of Section 7.1.1.3), a 

trial distance, TD(i,j), is chosen from each L(i,j) to 

U(i,j) interval by using a pseudo random number generator. 

Unfortunately, because there are less than n*(n-1)/2 

degrees of freedom (where n is the number of points under 

161 



consideration), the resultin~ entries in the trial distance 

matrix need not even obey the trian~l~ inequality. Inde~d a 

knowled~e of all the inter-dependencies (correlations) of 

the distances is rou~hly equivalent to the whole problem, 

but the use of a more simple correlation index to cut down 

on the geometric violations rather than just usin~ random 

numbers, has been put forward (CripB1]. 

7.1.2.1 Obtainin~ Approximate Co-ordinates 

A basic result from linear algebra is that an n*n 

real symmetric matrix, RSM, has n real eigenvalues and n 

orthogonal ei~envectors. Therefore if E1, •• ,En are the 

eigenvalues in order of decreasing absolute value, U" .• 'Un 
are the corresponding unit length eigenvectors and V is the 

matrix whose ith column is Ui ' then 

RSM = V * E1 0 0 0 * V_transpose 
0 E2 0 0 
0 0 E3 0 

0 0 0 0 
0 0 0 En 

Hence, 

RSM(i,j) = Ek * Uk(i) * Uk(j) 

But the only assumption about RSM was that it was a real 

symmetric matrix, so if RSM(i,j) is defined to be the 

scalar product of the vectors, Ri and Rj' from some origin 

to i and j, then 

162 



RSM(i,j) = 

Equating terms in the two expressions for RSM(i,j) gives 

Ri (k) = SQRT(Ek) * Uk(i). 

As RSM is a distance matrix, it has a rank of at most three 

and so the co-ordinates of the the point i are given by the 

above equation with k taking the values 1, 2 and 3. 

Using the law of cosines it can be shown that 

RSM(i,j) is equal to 

(01S(i,0)2 +01S(j,0)2 -01S(i,j)2) 12 

where "0" is the origin and 01S(k,l) is the distance 

between points k and 1. Furthermore [Have83] proves that if 

the centre of mass is taken as the origin, then the 

distance from the origin, 01S(i,o), is the square root of 

n 
CbOIS(i,j)2) In 
js1 

n n 
(~E. D1S(j,k)2) In 2 

j9 k=~~ 

If instead of using actual distances the trial 

distances from TO are used, then more than three 

eigenvalues may be non-zero. However, an approximation to 

the co-ordinates of each point can be obtained by taking 

the three eigenvalues of largest absolute value (provided 

that they are all positive -if one of the three eigenvalues 

is negative then this method cannot be applied). These 

approximate co-ordinates can then be passed on to an 

optimization stage to try to make them obey the original 

upper and lower distance bounds. 

The three largest eigenvalues of a matrix can 

163 



easily be calculated by using the power method [~tki8~J 

which relies on the fact that any vector can be written as 

a linear sum of the ei~envectors U1 to Un 

X = O,*U, ~ 02*U2 + ••••• + 0n*Un 

where 01 to On are real numbers. Multiplyin~ by the matrix 

just changes the coefficient of each term from 0i to 8 i *01 

where Ei is the relevant eigenvalue, and so multiplying by 

the matrix m times leads to the coefficients beln~ Ei to 

the m, times 01. Therefore, assuming that the lar~est 

eigenvalue has only one eigenvector and that the 

coefficient 01 is non-zero, repeatedly multiplying X by the 

matrix will converge on the ei~envector associated with the 

eigenvalue of largest magnitude. (Because of rounding 

errors on real number oper~tions these two assumptions are 

likely to be valid, but if the absolute values of the 

eigenvalues are close together or if the original vector 

had a very small 01 value, then the convergence is likely 

to be very slow.) The other eigenvectors can be obtained 

using dsflation [Atki831 which relies on the fact that if 

B = A - E1 * U1 * Z1transpose 

where A is the original matrix with eigenvalues E" •• ,En 

and eigenvectors U" •. ,Un and Z, is any vector such that 

Z1transpose * U1 =1 

then the eigenvalues of Bare O,E 2 , •. En and U2 , .• ,Un are 

~iven in terms of the eigenvectors w2 , •. ,Wn of B by 

Ui = (Ei-E1) * Wi + E1 * (Z1transpose * Wi ) * U1 

This result can be proved by substituting the expressions 

for U2 and A in A*U2=E2*U2· 

164 



The importance of the above result about taking 

the centre of mass as the origin is that in the 

approximation the distances from the origin get 

disproportionately weighted compared to the other inter

point distances. 

7.1.2.2 Cyclic Co-ordinate Descent 

After approximate values for the atomic co

ordinates have been obtained from the eigenvectors, they 

are refined by decreasing the value of the function E which 

is the sum (over 1 <= i < j <=n) of 

«D(i,j)**2/U(i,j)**2)-1)**2 for D(i,j) > U(i,j) 

«D(i,j)**2/L(i,j)**2)-1)**2 for D(i,j) < L(i,j). 

As E is a quartic in each co-ordinate, differentiating with 

respect to a co-ordinate gives a cubic whose roots will 

give the minimum value for E obtained by varying this co

ordinate independently of the others. As the roots of a 

cubic can be found arithmetically, it is thus easy to apply 

the cyclic co-ordinate method [Baza79] to reduce E. This 

just cycles through the co-ordinates taking the root giving 

the lowest value of E until the roots chosen are all the 

same as the ones chosen on the last cycle through the 

roots. 

165 



7.1.2.3 Conjugate Gradient Method 

The cyclic co-ordinate technique only provides a 

fairly rough and ready way of improving the co-ordinates, 

so after this stage the method of conjugate gradients 

[Baza79] is applied to the function F defined to be the sum 

(over 1 <= i < j <=n) of 

«D(i,j)**2/U(i,j)**2)-1)**2 for D(i,j) > U(i,j) 

«L(i,j)**2/D(i,j)**2)-1)**2 for D(i,j) < L(i,j). 

The idea is to take the gradient of F and then to find 

lambda such that 

F(Y + lambda * G) is a minimum 

where lambda is greater than zero, Y are the current co

ordinates and G is the gradient. The new value of Y is then 

set equal to Y plus lambda times G, and the process is 

repeated. However, to avoid obtaining a "poor direction" on 

nearing a stationary point, the conjugate gradient method 

(as opposed to that of steepest descents) also takes into 

account the previous value of G when it calculates the new 

value of G. 

The value of lambda was calculated using the 

golden section method [Baza79] which evaluates the function 

at two points inside the interval. Then it moves the nearer 

end point to the interior point which has the highest 

function value before repeating the process. The efficiency 

and the name of the algorithm stems from taking the 

interior points to be 0.618 times the length of the 

interval, from one end point. Hence when the interval is 

166 



shortened one of the previous interior points remains as an 

interior point. Strictly speaking, the golden section 

method is designed to be used on intervals where the 

function is convex. F is not convex but [Have83] points out 

that F is likely to be "almost" convex in small 

neighbourhoods and the golden section method was found to 

be perfectly adequate in the work carried out below. An 

alternative and perhaps more efficient way of calculating 

lambda, would have been to use the Newton-Raphson method. 

Other functions could be optimised rather than 

just the functions E and F described above if particular 

features wish to be incorporated in the final conformation. 

In fact [Have83] also uses a function C in order to 

preserve chiral centres but it is not described here as it 

was not used in the experimental work reported below. 

7.2 A SEQUENTIAL ANALYSIS OF DISTANCE GEOMETRY 

A FORTRAN 77 program was written to implement the 

basic distance geometry algorithm on a Prime 9950. The 

upper and lower distance bounds used were those for a 

molecule of size 18 given in [Weng82] and those for 

molecules of sizes 22, 23 and 36 obtained by applying the 

technique outlined in [Weng82]. This consists of specifying 

the upper and lower bounds to be the same if the two atoms 

are connected to each other or to a common third atom -the 

distances being found using standard bond lengths and 

angles. The distances between atoms for which the shortest 

167 



path between them goes through two other atoms is given 

using standard bond lengths and angles and a dihedral angle 

of 0 or 180 degrees. The lower bounds between other atoms 

were set at 2.0 A whilst the upper bounds were set at 10 

times the cube root of the number of atoms (this last 

figure was the value used in [Weng82]). However, in 

obtaining the limits for the above molecules the bond 

lengths and angles were obtained from the actual co

ordinates given in the Cambridge Crystallographic Database 

rather than from a set of tables or a molecular 

construction program. Also no account was taken of the 

extra rigidity constraints imposed by rings, and so the 

upper and lower bounds used were looser than they would 

normally be. This looseness led to it being difficult to 

find a set of random numbers for which the three 

eigenvalues of largest absolute value were positive for 

molecules of sizes 22 and 36. Therefore, as far as these 

molecules are concerned, only the results for the bound 

tightening stages are given below. 

Two other sets of bounds were produced by firstly 

combining the molecules of sizes 18 and 23 to form a set of 

41 points. This is useful for finding whether the original 

two molecules have a common pattern [Sher86] and is 

achieved by setting the lower bounds to zero when one atom 

is from one molecule and one from the other. The upper 

bounds are set to a high value in the same case except 

where the atoms concerned are conjectured to be 

"corresponding" atoms in the common pattern, when the upper 

168 



bounds are set to a minimum tolerance value. In the present 

case, three atoms from a ring were chosen as the common 

pattern and the tolerance was set at 0.2 A. The second new 

set of bounds was obtained by repeating the process with 

the molecule of size 18 again. However, this last extension 

is clearly very artificial. 

Table 7.1 shows the results of an analysis of the 

bound tightening stage of the algorithm. Dijkstra's and 

Floyd's algorithms for the triangle inequality are very 

similar performance wise but the inverse triangle 

inequality procedure given in [Have84] is significantly 

quicker than that of [Have83]. The performance of the 

tetrangle stage was very poor, but this is in line with 

[Have82] which says that "The TRNGL and TRINV algorithms 

[ie. the triangle and inverse triangle tightening 

algorithms using Dijkstra's algorithm] described there are 

quite efficient and completely reliable. Unfortunately, 

they are not capable of detecting the majority of 

violations of three dimensiona1ity that can occur in the 

bounds. The TTRGL algorithm [the tetrang1e algorithm] is 

capable of reliably detecting violations of an additional, 

and more significant, set of constraints but at its present 

state of development it is not an efficient algorithm. The 

EMBED algorithm [the production of eigenva1ues and the 

smoothing of the resulting bound violations] is the only 

one we have that is capable of accounting for the complete 

set of constraints. It is neither highly efficient nor 

completely reliable." 

169 



The performance of the rest of the algorithm 

after the bound smoothing, was analysed by attempting to 

produce a series of conformations for the bound sets of 

sizes 18, 41 and 59. The conjugate gradient method was 

carried out for 50 iterations (or until the value of F was 

below 0.075). The results showing the amount of time spent. 

in calculating lambda and in determining the gradient are 

shown in tables ~.2 and 1.4. The first two of these only 

deal with the cases where' all 50 cycles were required~ 

there were several instances for the structure of size 41 

where F fell below the desired value before then, and the 

lowest time of these was 52.2 seconds. 

Clearly the number of iterations employed by the 

power method in determining the eigenvalues and by the 

golden section algorithm in calculating lambda are a major 

factor in how much time is spent in each stage. The former 

was taken to have a maximum value of 100 (with the actual 

value being less if the eigenvalue had been determined to 

the desired accuracy). The latter was set at 25 and the 

starting interval was 0 to 0.1 A. Thus the timings given in 

tables 7.2 to 7.4 can only provide an illustration of the 

likely times for a "real life" application of distance 

geometry. 

Bearing in mind that [Sher86] fixed the number of 

iterations in the conjugate gradient algorithm at 1000, the 

above results suggest that a multiprocessor system with 

each processor generating 

lead to a speed up for the 

a possible conformation, could 

conjugate gradient stage of 

170 



about 12.9 when generating 13 solutions (the number used in 

[Sher86] was 25) for the data set of 59 points -the speed 

up figure being obtained by summing all the times and 

dividing by the largest. 

7.3 A TRANSPUTER IMPLEMENTATION OF DISTANCE GEOMETRY 

Although the results of the previous section show 

that most of the time taken by the algorithm is spent in 

steps that are difficult to write parallel code for, it was 

decided to go ahead with a transputer implementation. This 

was because of the ability to generate different 

conformations concurrently using different sets of random 

numbers. Once a serial occam version had been written (and 

its results checked against the FORTRAN 77 program as they 

both used the same pseudo random number generator 

[Knut81]), as many of the steps as possible were 

parallelised in order to examine the capabilities of 

transputers in dealing with a much finer grain parallelism 

than that met in Chapter 6 (and as a lesser goal to improve 

the overall performance of the algorithm). Despite the fact 

that the tetrangle inequality step is very time consuming 

and appears to be able to be split up into sections which 

can be executed concurrently, it was not implemented in the 

occam version of the algorithm as it would still have been 

a very time consuming stage whose net worth is far from 

clear (with it being likely to depend on the source of the 

original upper and lower bounds). Additionally, it is not 

171 



used in the more recent accounts of work carried out using 

distance geometry [Have84, Sher86]. 

The bound tightening via the triangle and inverse 

triangle inequalities was carried out using a parallel 

version of Floyd's algorithm put forward in [Deo80]. The 

concurrency stems from the fact that all the j loops in 

figure 7.4 can be carried out simultaneously (that is in 

occam, instead of writing the line SEQ j=1 FOR ... , the 

line PAR j=1 FOR ••. could be written). This is because a 

problem can only occur if one of the other processes going 

on in parallel changes U[j,i] or U[i,k]. However, U[j,i] 

can only be changed by the procedure under consideration, 

and U[i,k] can only be altered by setting j=i which in fact 

leads to no change. As can be seen from figure 7.4 though, 

the resulting parallelism is very fine grain in nature. 

Parallelizing the conjugate gradient method is 

difficult because of the problem of trying to find the 

value of lambda which produces a minimum of the function. A 

concurrent determination of the gradient is much simpler as 

it is composed of 3*n (where n is the number of atoms) 

independent calculations, these being composed of tests to 

see whether the distances from each point to the point 

under consideration, are out of bounds and if they are, 

taking the relevant partial derivative. However, it did not 

prove possible to formulate a way of parallelizing the 

calculation of lambda. Unfortunately, the concurrent 

implementation of the conjugate gradient method in [Seag86] 

only deals with the special case of symmetric linear 

172 



SEQ i FROM TO number.of.points 
SE~ j FROM 1 TO number.of.points 

IF U[j,i] < maximum.value THEN 
SEQ k FROM 1 TO number.of.points 

IF U[j,k] < CU[j,i] + U[i,k]) THEN 
U[j,k] .- U[j,i] + U[i,k] 

E~D IF 
END SEQ 

END IF 
END SEQ 

END SEQ 

Figure 7.4 Pseudo Code For Floyd's Shortest Path Algorithm 



systems. 

It is also not clear how to parallelize the 

cyclic descent algorithm as splitting up the determination 

of which roots to use into batches of co-ordinates, could 

possibly lead to the situation where choosing a particular 

root for co-ordinate A reduces the value of the function E, 

and similarly for B, but using both these choices at the 

same time increases E. On the other hand, the initial step 

of calculating the various cubic roots could clearly be 

carried out in parallel as any calculation on a cubic is 

independent of calculations on~ther cubics. However, 

this was not undertaken in the implementation. 

Before giving the results of the attempts at a 

parallel implementation, attention should be given to the 

differences in the time taken in various stages of the 

algorithm between the FORTRAN 77 version run on the Prime 

9950 and the occam version run on a T414A transputer. 

Tables 7.7 and 7.8 give the times for the stages of the 

algorithm when trying to determine a conformation for the 

sets of 41 and 59 points (as mentioned earlier, the times 

can be compared because using the same random number 

generator. ensured that the calculationi carried out were 

the same). Because of the similarities between the two 

programs (due to the occam version being derived very 

closely from the FORTRAN), the differences in the relative 

times stem from the different capabilities of the two 

computers. The T414A transputers which the program was 

executed, on carry out floating point operations by calling 

173 



software subroutines, and so real number calculations are 

very slow. This was not a problem with the bound tightening 

via the triangle and inverse triangle inequalities as the 

bounds were represented as integers, but from the 

determination of the eigenvalues onwards, real numbers were 

used. However, T800 transputers have hardware for floating 

point operations, but they had not been commercially 

released at the time the above work was carried out (though 

they are expected to replace the T414 in becoming the most 

widely used member of the transputer family). Hence the 

Prime figures give a better indication of the relative 

expense of each stage. 

The parallel pieces of code were executed on up 

to four transputers, with one of the transputers (the 

"root") executing the whole algorithm. On encountering a 

concurrent section of the program, it splits the section up 

into the number of transputers it is attached to, pieces 

and distributes them to these transputers. Unlike the 

program reported in Chapter 6, the root transputer did not 

carry out any of these parallel pieces of code. This was in 

order to try to minimise any overheads keeping in mind the 

fine grain nature of the parallelism. 

7.4 CONCLUSIONS 

In the principal example of distance geometry 

being used to find pharmacophoric patterns [Sher86], the 

large number of iterations of the conjugate gradient stage 

174 



meant that this stage consumed the vast majority of the 

time spent executing the algorithm. The above results seem 

to indicate that a multiprocessor system geared for real 

number calculations can achieve substantial speed ups when 

the "natural" parallelism of generating a different 

conformation on a different processor is used. However, it 

appears very difficult to make a significant improvement on 

this speed up figure by introducing parallelism into the 

determination of each conformation. 

The original version of distance geometry 

[Crip81] used an iterative method for both the triangle and 

inverse triangle inequality bound tightening procedures. 

This was expensive computationally and involved a large 

number of calculations which could be carried out in 

parallel. However the time spent in this stage can be 

reduced to a very low amount by using a shortest path 

algorithm, and so the more efficient implementation has 

reduced some of the scope for parallelism. The speed up (or 

rather the lack of it) obtained by using a parallel version 

of Floyd's shortest path algorithm was far below that 

reported in [Deo80] for Denelcor's HEP [Smit78, Hock85, 

Hiro86] where a speed up of between 7.8 and 6.5 was 

obtained for 40 node graphs. Some of the better performance 

by the HEP might be due to the different graphs used, 

however the more significant part follows on from its more 

tightly coupled architecture. This is based on a pipelined 

processor which is capable of having instructions from upto 

8 different processes in the pipeline at a time, but with 

175 



the restriction that there can never be two instructions 

from the same process in the pipeline. Access to memory is 

via a switch and thus several processors can be joined 

together to create a multiprocessor with data being rapidly 

"transferred" between processors by altering the switch. 

The calculation of the gradient showed a speed up 

of 2.19 in both cases when four transputers were used, but 

using a transputer with hardware for floating point 

operations will clearly reduce this (by how much is 

obviously not certain). However, as it was not possible to 

parallelize the calculation of lambda stage, the above just 

serves to illustrate the relationship between speed up 

obtained and the granularity of the parallelism. 

So far this thesis has described work involving 

the searching of a database for a given pharmacophoric 

pattern and techniques which could be used to discover such 

a pattern using as input a small number of molecules which 

are thought to act in the same way. The next chapter 

extends this by giving details of a system which allows a 

database to be searched to discover molecules which have a 

similar 3D structure to the query. 

176 



Structure Size 
Step 18 22 23 36 41 59 
TRNGL O. 1 Q.l O. 1 0.5 0.7 2. 1 
FLOYD O. 1 0.2 0.2 0.6 0.8 2.0 
TRINV 0.4 0.7 0.8 3.1 4.6 14.2 
INVFLOYD 0.2 0.3 0.3 1.2 1.7 5.1 
TETRAN 76.5 75.3 98.4 III 769.6 III 

Table 7.1 Times(l) For The Various Stages Involved In 
Tightening The Upper And Lower Distance Bounds 

I The times are in cpu seconds for a Prime 9950 
TRNGL is the triangle inequality procedure using Dijkstra 
FLOYD is the triangle inequality procedure using Floyd 
TRINV is the inverse triangle inequality procedure given in 

[Have83 ] 
INVFLOYD is the inverse triangle inequality procedure using 

the shortest paths approach in conjuction with Floyd 
TETRAN is the tetrangle smoothing procedure 

Calculating Calculating Total 
Lambda The Gradient Time 

107.8 I 63.7 171.5 . I 

107.0 I 60.7 167.7 I 

109.7 79.9 189.6 
108. 1 69.7 177 .8 
108.9 74.4 183.3 
108.3 62.8 171. 1 
108.3 63.3 171.6 
110. 1 77.4 187.5 
107.0 56.8 163.8 
108.7 65.3 174.0 
108.5 66.4 174.9 
108.6 65.3 173.9 
108.0 65. 1 173.1 
107.3 57.4 164.7 

Table 7.2 Times(l) Taken For 50 Iterations Of The 
Conjugate Gradient Method On The Data Set Of 59 Points 

• The times are in cpu seconds for a Prime 9950 



Calculating 
Lambda 

53.8 
53. 1 
53.8 
53. 1 
53.0 
54.3 
54.0 
53.6 
54.4 
54. 1 
54. 1 
54.3 
53.7 
50.6 

Calculating 
The Gradient 

40.7 
36.6 
43. 1 
36.7 
34.7 
45.6 
39.3 
35.3 
41.6 
39. 1 
39.7 
39.7 
38.5 
33.8 

Total 
Time 
94.5 
89.7 
96.9 
89.8 
87.7 
99.9 
93.3 
88.9 
96.0 
93.2 
93.8 
94.0 
92.2 
84.4 

Table 7.3 Time s( *) Taken For 50 Iteration s Of The 
Conjugate Gradient Method On The Data Set Of 41 Points 

Calculating 
Lambda 

4.2 
6. 1 
3.9 
3.9 
6.2 
6.2 
4.8 
7.3 

13.6 
13.9 
4.2 
3.6 
6.4 
4.8 

Calculating 
The Gradient 

3.9 
5.5 
3.5 
3.5 
6.2 
5.9 
4.5 
7.2 

13.0 
14.3 
3.8 
3.3 
6.0 
4.4 

Total 
Time 
8. 1 

1 1.6 
7.4 
7.4 

12.4 
12. 1 
9.3 

14.5 
26.6 
28.2 
8.0 
3.9 

12.4 
9.2 

Number Of 
Iteration s 

15 
22 
14 
14 
22 
22 
17 
26 
50 
50 
15 
13 
23 
17 

Table 7.4 Times(*) Thirteen Conformational Calculations 
On The Data Set Of 18 Points 

* The time s are in cpu second s for a Prime 9950 



41 
Eigenvalue 

SIZE 
59 

Eigenvalue 
De term i n a t ion 

Cyclic 
De scent De term in a t 1 on 

Cyclic 
De scent 

2.04 
3.01 
2.21 
2.42 
2.49 
2.35 
1.85 
2.43 
2.93 
2.77 
3. 10 
2.76 
2.71 
1.54 

3.54 
2.48 
4.95 
2.92 
3.75 
2.82 
9.73 
3.46 
3.23 
3.43 
5.25 
5.49 
3.29 
2.24 

7.60 
4.84 
3.66 
5.45 
5.01 
5.72 
7.40 
5. 19 
5.31 
3.66 
5.51 
5.70 
6.96 
5.52 

17.9 
10.8 
8.2 

1 1. 8 
10. 1 
8.6 

15.4 
16.0 
14.6 
9.7 

10.6 
9. 1 
8.9 

12.7 

Table 7.5 Times(*) Taken By Thirteen Instances Of The 
Eigenvalue Determination And Cyclic De scent Stage s 

Structure 
Size 

18 
22 
23 
36 
41 
59 

Triangle Inequality 
Number Of Tran sputer s 
123 
10 29 30 
16 41 42 
19 45 45 
60 105 101 
85 138 129 

232 301 261 

Inver se Triangle Inequality 
Number Of Tran sputer s 

1 2 3 
17 86 72 
30 121 104 
32 134 117 

128 296 234 
190 388 316 
555 802 630 

Table 7.6 Times(.) Taken For The Bound Tightening Steps On A 
Tran sputer Sy stem 

* These times are in cpu second s for a Prime 9950 
+ Tran sputer time s are in units of 16 milli second s 



Number Of Tran sputer s 
Stage FORTRAN 77 1 3 4 
Triangle 0.8 85 
Inver se 1.7 190 The Same As 
Eigenvalue 2.0 1115 For One 
Cyclic 3.5 1504 Tran sputer 
Lambda 53.8 24625 
Grad ient 40.7 10097 6185 4611 

Table 7.7 Times For Finding A Conformation For The Data Set Of 
Size 41 Using 50 Iterations Of The Conjugate Gradient Method 

Number Of Tran sputer s 
Stage FORTRAN 77 1 3 4 
Triangle 2.0 232 
Inver se 5. 1 555 The Same As 
Eigenvalue 7.6 4131 For One 
Cyclic 17.9 11005 Tran sputer 
Lambda 107.8 50467 
Grad ient 63.7 16346 9772 7471 

Table 7.8 Times For Finding A Conformation For The Data Set Of 
Size 59 Using 50 Iterations Of The Conjugate Gradient Method 

* These times are in cpu second s for a Prime 9950 
+ Transputer times are in units of 16 milliseconds 
The figure s for one tran sputer are for the serial algor! thm 
No figure s are given for two tran sputer sas thi s corre spond s to 
the serial algorithm being carried out on one of the tip tran sputer s 
The figure s for three and four tran sputer s are when there were two 
and three tip tran sputer s re specti vely (the root tran sputer carrying 
out no work) 



CHAPTER 8 

SEARCHING FOR THREE DIMENSIONALLY SIMILAR MOLECULES 

Chapter 3 described a system for searching for 

known pharmacophoric patterns whilst in Chapter 4, two 

algorithms for comparing a set of molecules to find their 

common 3D substructures were compared. The current chapter 

reports on work involving the combining of the 3D screening 

sysiem used in substructure searching with the clique 

finding approach to finding the maximum common 

substructure, so as to try to find an efficient way of 

searching the Cambridge Crystallographic Database for 

molecules with a similar 3D shape to a pattern molecule. 

Thus, rather than comparing two (or more) molecules to 

identify the maximum common substructure, a single target 

molecule is matched against all of the molecules in a 

database so as to identify those which are most similar to 

it. This could be of possible use for situations such as 

where a potential new drug has been identified by lead 

generation, and similar compounds are needed to attempt to 

improve the activity (and also give information on where 

the features leading to the activity are situated). 

Additionally, it could be of use in interpreting spectra by 

way of a facility to find similar structures and seeing 

whether they have similar spectra. A somewhat analogous 

system has been described for 2D browsing [Will86, Wi1187b] 

but a very different representation and measure of 

similarity were used. 

177 



8.1 THE THREE DIMENSIONAL SIMILARITY SEARCHING SYSTEM 

In order to try to produce a system which could 

be used interactively, the search program was split up into 

two stages in an analogous way to the search systems 

described in Chapters 1 and 3. The first stage tried to 

remove molecules which were dissimilar to the pattern 

molecule by a computationally inexpensive check. The 

remaining molecules were then passed on to a full 

comparison stage so as to produce a measure of their 

similarity with the pattern molecule. The similarity 

measure used was the size of the largest common 

substructure mainly because it was suitable for the 

applications outlined above and the fact that it was easy 

to calculate using one of the algorithms of Chapter 4. 

More explicitly, the first stage used the 3D 

screens developed by Jakes et al. [Jake86, Jake87a] so as 

to produce an upper bound for the similarity measure 

between a query molecule and the pattern. This was done by 

forming a graph of the same size as the pattern molecule. 

The connectivities were determined by taking each inter

atomic distance in the pattern molecule and checking 

whether the screen corresponding to this distance and the 

two relevant atomic types was set in the query molecule 

(hence the screens using unknown X atoms were not used, but 

a system interested in finding molecules of similar shape 

without regard for atomic types, could use them). If it 

was, then a 1 was entered in the graph at position (i,j) 

178 



where i and j were the p~ttern atoms involved, otherwise ~ 

o was entered. After which the ~raph was examined to find 

the size of the lar~est clique. This value then placed a 

maximum upper bound on the size of a common substructure 

between the pattern molecule and the query structure. This 

was because if a substructure was in common between the two 

molecules then, for the atoms corresponding to this 

substructure in the pattern molecule, each inter-atomic 

distance must occur in the query. Therefore, the screens 

for these distances would be set in the query molecule's 

screen list and all the relevant pattern molecule's atoms 

would therefore be connected to each other in the graph. 

To illustrate this process, consider the molecule 

BARGOQ shown in fi~ure 8.1 and suppose that it is being 

compared with a hypothetical molecule A. If A's screen list 

does not contain a screen corresponding to the dist~nce 

between the two oxygens, then they cannot both be present 

in a common s~bstructure and the two oxygens are therefore 

unconnected in the graph. Hence, they cannot belong to the 

same clique. Alternatively, if the relevant oxygen-oxy~en 

screen is set, then the two oxygens could possibly belon~ 

to the same common substructure, and so they ~re regarded 

as being connected, thus allowing them to both be present 

in the same cliaues. Consequently, each common substructure 

must be contained in a cliaue of the screen-based ~r~ph. 

If the upper bound value for the size of the 

maximum common substructure was above a 

expressed as some minjmum number of atoms) then 

179 

threshold, 

the auery 



~ 

I 
~!e 

Figure 8.1 The Structure Diagram For The Molecule With 
Identifier BARGOQ 

H 

Figure 8.2 The Structure Diagram For The Molecule With 
Identifier CEGLCA 

Figure 8.3 The Structure Diagram For The Molecule With 
Identifier BAGTOS 



structure was analysed in detail usin~ the efficient 

correspondence graph/clique finding approach of Chapter 4. 

As explained in detail there, this method basically 1ust 

combines the graphs of the pattern and query structures 1n 

such a way that common substructures correspond to the 

cliques of the new g~aph. However, the times taken by 

clique finding al~orithms increase very rapidly with the 

size of the graph, and so it was hoped that eliminating 

some compounds from consideration by carrying out a rough 

and ready check using a small graph, would lead to a 

significant improvement in performance. 

The aim here, as elsewhere in this thesis, has 

been the development of efficient procedures for ~D 

structure matchin~; accordingly, our evaluation of this 

proposed best match searching system will be based upon its 

computational requirements, that is its efficiency, rather 

than the chemical nature of the molecules which are 

retrieved in the search. 

All the times given in this chapter will be 

solely for the clique finding sta~es of the method unless 

otherwise stated; the time taken to set up the screens and 

the graphs will not be considered. This is because this 

latter time is likely to be small and to be heavily 

influenced by file access times (and the availability of 

the bit handling functions allowing the intersection and 

union of sets used in [Jake86, Jake8 7 al). 

180 



8.2 IMPLEMENTATION AND RESULTS 

8.2.1 T~e Molecules And Cliaue Findin5 Al~orlthm C~osen 

Nine hundred and ninety nine structures evenly 

spaced throu~hout the Cambrid~e Crystal10~r~phic Database 

(CCD) with an avera~e size of 20.3 (non-hydro~en) atoms, 

were used as the basic data for the study. Where several 

sets of co-ordinates were available 1n the CCD for a 

molecule, only the first of these was used. The screens for 

the structures were stored as a list of TRUE/FALSEs whilst 

the co-ordinates were stored separately because of their 

bulk. 

A variable tolerance was used when checking to 

see whether a pattern distance had a screen set for the 

query structure (the relevant screens to be considered 

bein~ found usin~ a table look up). The cliques of the 

resultin~ screen-generated graph were enumerated using 

three of the algorithms of Section 4.~. The al~orithms 

chosen were the standard algorithm of Bron and Kerbosch 

(Bron7~1, the simple al~orithm of Golender and Rozenblit 

(Go1e83J and the maximal independent set algorithm of 

Loukakis and Tsouros rLouk81J. However, only Bron and 

Kerbosch's algorithm was used to analyse the correspondence 

~raph formed for a "hit" as the other al~orithms had 

already been shown to be inferior in the work reported in 

Chapter 4. Unfortunately, if the correspondence graph has 

more than about 1000 nodes, severe problems emer~e when 

trying to list all the cliques (see Chapter 4). Therefore 

181 



hits where the correspondence ~raph was of sizp. ~reater 

than 1000 had to be ignored, but these were extremely rare 

and in fact did not occur in any of the runs reported 

below. 

The above method was coded in FORTRAN 77 on an 

IBM 308? and Bron and Kerbosch's al~orithm was again found 

to be better overall than the other two clique findin~ 

methods. However, compared with Chapter 4, Golender and 

Rozenblit performed extremely badly while Loukakis and, 

Tsouros performed much better sometimes bein~ ~ to 4 times 

quicker than Bron and Kerbosch on ~raphs containin~ a large 

clique. This further illustrates the fact that the lack of 

"randomness" found in the graphs produced from three 

dimensional co-ordinate data can lead to algorithms which 

perform very well on randomly generated ~raphs, performin~ 

badly. The results of comparin~ two molecules whose 

(structure diagrams are given in fi~ures S.' and 8.2) with 

sections of the database are given in table 8.1. It should 

be pointed out that Bron and Kerbosch's algorithm given in 

rBron73] is recursive and so, as the FORTRAN 77 comoiler 

used did not allow recursion, multiple copies of the 

subroutine were created. An alternative non-recursive 

formulation is given in rKuhlR4J. Additionally, the graphs 

were held as arrays of one byte logicals rather than the 

default of four bytes in order that the program should use 

less than 3 MBytes of core storage. 

182 



8.2.2 The Performance Of The Two Stage System 

In fact, the above description of the algorithm 

was modified by recording which pattern atoms occurred in 

at least one relevant clique for the graph formed from 

considering the screen information. Then, when the 

correspondence graph was formed, only these atoms were 

allowed to be the first atoms in the pairs of atoms which 

made up the nodes of the correspondence graph. This stemmed 

from the fact that the maximum clique size that a pattern 

atom occurred in in the correspondence graph, could not be 

greater than its maximum clique size for the screen-

generated graph. As an illustration of the improved 

performance possible from using this extra information, 

CEGLCA was searched against the section of the database 

from molecule 801 to molecule 900 with an error tolerance 

of 0.15 A and a minimum clique size of 4. When the minimum 

number of non-carbons that had to be present in a clique 

was set to zero the time for the version of the algorithm 

using the extra information to reduce the size of the 

correspondence graph was 24.8 seconds of cpu time whilst 

that without the additional data was 25.2 seconds. However, 

specifying that at least two non-carbons had to be in every 

clique led to times of 15.9 seconds and 25.2 seconds 

respectively. 

Molecules were chosen randomly from the intervals 

to 200, 201 to 400 and 401 to 600 of the database (with 

their structure diagrams making up figures 8.3 to 8.5), and 
183 



Y---~'!e 

Figure 3.4 The S':.ru~ture Diagra:n For The !1olecule vii th 
Ide~tifier CAVROG 

('le 

~C(= 
o Me 

Figure 8.5 The Structure Diagram For The 110lecule With 
Identifier ETCOHX 

Figure 3.6 The Structure Diagram For The Molecule With 
Identifier GLYCIN 



the results of the searches are given in tables 8.2 and 

8.3. Table 8.2 shows the effect of varying the error 

tolerance limits for the first of these molecules while 

table 8.3 gives the times for the three molecules when this 

limit was set to the value 0.15 A (and this value was also 

used for tables 8.4 to 8.9). As it stands, the algorithm 

just tends to locate rings because these are of a rigid 3D 

shape and usually contain more atoms than the other common 

3D structures. Consequently, it was decided to allow the 

minimum number of non-carbons in the common substructure to 

be specified and the results of using this extra constraint 

are also included in table 8.3. Table 8.4 gives the number 

of molecules eliminated from consideration by stage one in 

the searches listed in table 8.3 (along with the total 

number of molecules having an appropriate substructure). 

The results given in the various tables were 

obtained by using the standard FORTRAN compiler on the IBM 

3083. However, an optimising compiler which carried out 

such things as register and branch optimization along with 

code-movement (the latter possibly leading to logic changes 

in the program) [Metc85], was also available and to give 

some indication of the improved performance in terms of 

speed that it gives molecule CAVROG was compared with the 

database using an error margin of 0.15 Angstroms, a minimum 

clique size of 4 and no restriction on the number of non

carbons. The resulting time of 398 cpu seconds was almost 

half the original time of 700 seconds. 

As the times taken in table 8.3 are quite high, 

184 



the three smaller molecules shown in fi~ures 8.6 to R.B 

(each one havin~ a reasonable percenta~e of non-carbons) 

were searched a~ainst the database. Table 8.5 shows that 

the times now taken are far less than with the lar~er 

molecules. 

8.2.3 The Addition Of A Third Stage 

The results of table 8.? show that it is the time 
. 

spent in the comparison sta~e which dominates that of the 

screenin~ sta~e. Consequently, an extra, hi~her precision 

screenin~ sta~e was added after the first screenin~ stage 

in a similar manner to the "distance search" of the 3D 

substructure searching system of Section ~.1. As with the 

original screening stage, a ~raph of the same s~ze as the 

pattern molecule was used. To determine whether the nodes i 

and j were connected in the graph, the distance between the 

ith and jth pattern atoms was formed. If one of the query 

structure's inter-atomic distances was the same as this 

distance and if the relevant atoms were of the correct 

types, the i and j nodes were connected, otherwise they 

were unconnected. This was determined by retrievin~ a 

sorted list of all the query's inter-atomic distances and 

then performin~ a binary search on this list. Thus the 

exact distance checking sta~e only connected two nodes if 

their pattern distance definitely occurred in the query 

structure. This contrasted with the stage based on the 

substructure searching screens which connected the two 

185 



OH OH 

Figure 8.7 The Structure Diagram For The Molecule IH th 
Identifier ill1ALAC 

o 

" Me ". 
~~ 

I 
Me 

Figure 8.8 The Structure Diagram For The :·1olecule With 
Identifier MSTNAM 

Figure 8.9 The Structure Diagram For The r·lolecule With 
Identifier DPPRAM 



nodes if the screens allowed the pattern distance to be in 

the query. 

Table 8.6 gives the results of tests usin~ this 

two stage screeninq system with the fi~ures 1n brackets 

being a co~parison with the pro~ram when only a one 9ta~e 

screenin~ system was used (the structure dia~rams for the 

molecules are ~iven in figures 8.3 to 8.11). The ~iven 

times include the times for the binary searches. The times 

for the full search with no screening sta~e for molecules 

DPPRAM, NBENDC and PRPENC were 233.2, 259.2 and 241.3 

seconds respectively while the times for the first part of 

the screening sta~e were 2.1, 2.7 and 2.6 seconds. 

Whilst table 8.6 indicates that this extra stage 

coulrl lead to a significant improvement when two non

carbons were specified as being required, it had, very 

little effect when cliques containing only carbons were 

allowed. One reason for this lay in the fact that the 

screenin~ system of Section 3.1 assigned many more screens 

to the carbon-carbon distance ranqe than to those between 

other atomic types (for example, there were 19 screens for 

the oxygen-oxygen range and 61 for the nitrogen-carbon 

range, while the carbon-carbon range had 153 screens). 

Hence, the screening system could more accurately predict 

whether a particular carbon-carbon distance was present, as 

opposed to an oxygen-oxygen distance. 

186 



H 

Figure 8.10 The Structure Diagram For The Molecule With 
Ident ifi er NBENDC 

M 

Me 

Figure 8 . 11 The Structure Diagr am For The ~olec ule Wi t h 
Identifier PRP~ NC 

F'igur e a. 12 The St r uc tur e Diag r am Fo r The rlo lecul e IH t h 
I de nt ifi er BE~L IY 

The ato~s mar ked i~ r ed be l ong to a common subs tr uc t ure . 



8.2.4 An Intermediate Sta~e 

The above sta~es form a graph either by 

associating each individual query structure atom in turn 

with each pattern atom (as long as the atomic types are the 

same) or by associatin~ all the query atoms with each 

pattern atom as in the second screenin~ sta~e. Two nodes of 

the ~raphs so produced are connected if the distance 

between the pattern atoms is equal to one of the distance~ 

formed by takin~ a auery structure atom from the first 

pattern atom's set and one from the second atom's set, 

subject to the atomic types bein~ equal. Therefore an 

intermediate stage was developed by splitting the atoms of 

the auery molecule up into two sets and then formin~ a 

graph where each node was composed of ~ pattern atom and 

one of the query structure sets (the ~r~ph being of twice 

the size of the pattern molecule). This idea was met 

previously in Section 4.6 where it was used with very 

limited success to try to increase the size of the 

molecules that the clique findin~ approach could deal with, 

and it has also been described by rBol179'~ 

In the actual implementation of this intermediate 

stage, only pattern atoms that occurred in cliques of a 

sufficient size in the screening stage were used as input. 

The output from the intermedia.te sta~e also reduced the 

inout to the full comparison stage in a similar way, as 

well as "screening out" some of the query molecules because 

they contained no cliaues of sufficient size. 

187 



Additionally, it was possible for this stage to restrict in 

which half of the structure matches for the pattern atom 

should be sought from when setting up the correspondence 

graph for the final stage. The query structure was split 

into two sets by just taking the first half of its atoms as 

they occurred in the database. Clearly, much more elaborate 

methods could be devised and they could well have a 

significant effect on the overall performance. The results 

of runs using this intermediate stage are given in table 

8.7 with the figures in brackets being those for when only 

a two stage screening system was used; the figures include 

the time taken for the binary searches but the three lists 

of inter-atomic distances for each query structure which 

were used by this stage, were assumed to have been 

presorted. It can be seen that the intermediate stage 

consumed a significant proportion of the total cpu time and 

this nearly always outweighed the gain in speed for the 

final stage •. Although this result was disappointing, it 

ties in with the findings of Section 4.6 where trying to 

extend the clique finding method to deal with larger 

molecules led. to similar results. 

8.2.5 The Structures Retrieved By The System 

So far only the efficiency of the system has been 

considered, and so figures 8.12 to 8.19 and figures 8.20 to 

8.23 show some of the molecules retrieved for pattern 

structures of BAGTOS and DPPRAM respectively. The molecules 

188 



Figure 8 .13 The Structure Diag ram for The Molecule With 
Identifier 3ZPYRB 

figure 3 .14 The Structure Diagram fo r The Molecule Hith 
Identifier CEDLUS 

o 

8 . 15 Th e St ructure D ~ ag ram Fo r The Molecule With 
I dentifier DMfMES 

The atoms marked i n red bel ong to a common subst ructure. 



Me 

< 

: igur e 3 . 16 ~ je S~ !" uc tu r e i)i ~g ram ror The Mo lecul e Ih th 
Ije~t if ie !" EX33UN 

:igure 8 .1 7 The Structure Diagram For T:Je ~Io lecul e Hi th 
Identifier PHETME 

c 

!-le 

8 . 18 The St r ucture Diagram For The Molecul e Hit h 
Identifier C r~GXT 

The a to~S marked in r ed belong to a common s ubstructure . 



M 

Figure 8.19 The Structure Diagram For The Molecule With 
Identifier PIPGFA 

Figure 8.20 The Structure Diagram For The Molecule With 
Identifier BALKEE 

Figure 8.21 The Structure Diagram For The Molecule With 
Identifier BOCSOB 

The atoms marked in red belong to a common substructure. 



Figure 8.22 The Structure, Diagram For The Molec ule With 
Identifier CANKEH 

Me 

~----+--Me 

Me e 

Me 

Figure 8.23 The Struc ture Diagram For The Mol ec ule Wi th 
Identifier TBDHZO 

The atoms marked in red belong to a common substructur e. 

, " 



illustrated are those containing the largest common 

substructure with the pattern molecule when the minimum 

number of non-carbons was set to 1 and 2. More specifically 

BEWLIY, BZPYRB, CEDLUS, DMFMES, EXBSUN and PHETME have a 

substructure in common with BAGTOS of size 8 containing one 

non-carbon, whilst CFMBXT and PIPGFA have a common 

substructure of size 5 containing two non-carbons. For 

DPPRAM, CANKEH has a common substructure of size 6 

containing two non-carbons while BALKEE and BOCSOB have a 

substructure of the same size containing one non-carbon. 

Finally, TBDHZO has a shared substructure of size 5 

containing two non-carbons. The common atoms are marked in 

red in figures 8.12 to 8.23 (for reasons of legibility, 

only those belonging to the first common substructure of 

the relevant size in a query molecule are shown). 

As the diagrams show, the the system has a bias 

towards retrieving rings, but figure 8.13 is of interest as 

the sixth atom in the ring does not belong to the common 

substructure (due to the effects of the error tolerance 

limit). 

8.3 CONCLUSIONS 

Part of the screen out obtained from the first of 

the screening stages could be provided by just checking 

that the query molecule does contain at least the required 

number of atoms of the correct type to meet the minimum 

number of non-carbon atoms in a common substructure 

189 



condition. Table 8.8 gives this screen out figure for the 

molecules of table 8.6 (but with no check being carried out 

to see whether there are enough carbons in a molecule to 

allow clique sizes of, say, size 8 to be produced). 

Comparing the two tables seems to indicate that up to about 

half the screen out could be attributed to this factor, but 

generally it was significantly less than this. However, the 

initial screening stage takes relatively very little time, 

and so it is not unreasonable to eliminate molecules which 

do not contain enough atoms of the right type by using it. 

The addition of an exact checking stage after the 

initial, screen-based stage in this work proved to be far 

less effective than this stage had been when used for 3D 

substructure searching (see Section 3.1) where it produced 

a significant improvement. This poorer performance was 

probably partly due to the pharmacophore s which were used 

in the substructure searching containing several non

carbons separated by several bond lengths. This meant that 

the distances between these atoms fell in regions where the 

screens were sparse. 

To give some indication of the upper bound sizes 

the various stages produce and the actual common 

substructure sizes, tables 8.9 and 8.10 give some of the 

upper bounds produced by the exact distance checking stage 

and the intermediate stage along with the largest actual 

common substructure size when searching the database for 

structures similar to CAVROG with no restriction on the 

number of non-carbons. These show that even after the 

190 



intermediate stage the upper bounds are quite often much 

greater than the largest common substructure size. ~It 

should be pointed out though that CAVROG was the compound 

from table 8.6 which led to the largest 

substructures being found in the database.~) 
common 

Unfortunately, the net results produced by the 

searching system with its various screening stages, were 

not as large an improvement on using a system with no 

screening stage as had been hoped for, but as the size of 

the required common substructures increased, there was a 

significant improvement. However, a more efficient way of 

dealing with non-carbons would be to use a lexicographic 

clique finding algorithm where non-carbons are always 

chosen as the first elements of any potential clique, 

rather than the standard algorithm of Bron and KerbosQh. 

It is not clear what structures would/should be 

used as a pattern, however the aim of this kind of best 

match searching is to provide an unbiased way of browsing 

through a database as an addition to the more usual 

searching facilities. This type of automated facility has 

the added value in three dimensions that humans find it 

very hard to visualize the extra dimension. 

(* __ .. ~ A Co n-ecbj \.l~fSlo j\,; o~ -BUs ~Q.r\C.e..- is. col V€ 1'- L l\

"n l±Q.ro..-tw \\S ~ 

191 



Pattern And Its Positions Error Algorithm 
Position In Compared Tolerance 
The Database 'fli th In A BK GR 

BARGOQ 101 1 to 100 0.05 1. 81 20.06 
CC:GLCA 401 301 to 900 0.05 0.47 1. 84 
CEGLCA 401 aOl to 900 0.15 0.49 2.45 

Table 8.1 The Performance(·) Of The Three Clique Finding 
Algorithms On The Graph Produced From Considering Wnich 
Screens Are Set 

8K is Bron and Kerbosch's algorithm 
GR is Golender and Rozenblit's algorithm 
LT is Loukakis and Tsouros' algorithm 

Minimum : . Error Tolerance (In 
Cligue Size 0.05 0.15 

4 213.0 239.9 
6 192.4 232.2 
8 142.7 218.0 

Angstroms) 
0.25 

259.3 
257.1 
250.4 

Table 8.2 Times(·) For Searching The Database With No 
Restriction On The Number Of Non-Carbons And A Pattern 
Molecule Of 8AGTOS 

Minimum Pattern Molecule 
Clique 

LT 
3. 19 
0.68 
0.62 

Size 8AGTOS CAVROG ETCOHX 
No Screening 240.5 701.5 543.8 

Stage 2.8 8.6 8.2 

No Restriction 4 239.9 700.1 540.4 
S On Number Of 6 232.2 690.2 528.8 
T Non-Carbons 8 218.0 672.3 502.4 
A 
G At Least One 4 200.8 532.4 484.8 
E Non-Carbon 6 194.6 524.4 476.7 

8 176.8 506.3 449.4 
T 
W At Least Two 4 105.0 303.4 365.1 
0 Non-Carbons 6 103.4 302.5 361. 7 

3 97.5 298.6 347.4 

Table 8.3 Times(·) Taken For Searching The 999 ~olecules Using 
An Error Tolerance Of 0.15 Angstroms 

* The times are in cpu seconds for an IBM 3033 

No Screening is the time when no screening stage is used. 



Minimum Pattern Molecule 
Clique 
Size BAGTOS CAVROG ETCOHX 

No Restriction 4 24 (893) 19 (905) 11 (896) 
On Number Of 6 83 (488 ) 71 (503 ) 73 ( 137) 
Non-Carbons a 272 (31 ) 161 ( 67) 222 (2 ) 

At Least One 4 102 (284 ) 117 (431) 76 (381 ) 
Non-Carbon 6 240 (22 ) 207 (91) 136 (28 ) 

8 410 (1) 321 (24 ) 278 (1) 

At Least Two 4 473 ( 19 ) 475 ( 107) 281 (117) 
Non-Carbons 6 575 (1) 520 (34 ) 325 (7) 

a 680 (1) 571 (22 ) 426 (1) 

Table 8.4 The Numter Of Molecules Eliminated From 
Consideration By Stage One 

The number of molecules actually containing the required 
substructure are given in brackets. 

Pattern Molecule 
GLYCIN HMALAC METNAM 

No Screening 14.6 40.0 15. 1 

Stage One 0.6 1.2 0.7 

S No Restriction 
T On The Number 8.7 31.3 9.6 
A Of Non-Carbons 
G 
E At Least One 8.7 31.2 9.5 

Non-Carbon 
T 
W At Least Two 8.7 25.4 9.5 
0 Non-Carbons 

Table 8.5 Times (t) For Comparing Smaller Molecules Against 
The Database With A Minimum Clique Size Of 4 And An Error 
Tolerance Of 0.15 Angstroms 

• The cpu t~es are in seconds 

No Screening is the time when no screening stage is used. 



inimum Minimum Time For 2nd Time For Screen 
Num Of Non Clique Screening Final Out 
Carbons Size Stage Stage Total 

EAGTOS 
0 6 4.6 231 • 1 (232.2) 112 (S3 ) 
1 

~ 4. , 184.4 (194.6) 295 (240) 0 

2 6 2.0 42.7 (103.4) 833 (575 ) 
0 3 3.5 210.3 (218.0) 331 (272 ) 
0 10 1.9 111. 3 735 (632 )' 

CAVROG 
0 6 14.0 687.2 (690.2) 88 (71) 
1 6 11.0 506.8 (524.4) 228 (207) 
2 6 4.9 215.0 002.5) 654 (520 ) 

ETCOHX 
0 6 13.7 525.2 (528.8) 96 (73) 
1 0 13.3 464.8 (476.7) 167 (136 ) 
2 6 9.6 305.6 (361.7) 432 (325 ) 

GLYCIN 
0 4 0.5 7.4 (8.7) 591 (500) 
1 4 0.5 7.4 (8.7) 591 (500 ) 
2 4 0.5 7.4 (8.7) 591 (500 ) 

HMALAC 
0 4 2.0 30.4 (31.3) 286 (256 ) 
1 4 2.1 30.4 (31.2) 286 (256) 
2 4 1.6 23.3 (25.4) 515 (462 ) 

METNAM 
0 4 0.7 7.6 (9.6) 588 (441 ) 
1 4 0.7 7.6 (9.5) 588 (441 ) 
2 4 0.7 7.6 (9.5) 588 (441) 

DPPRAM 
0 5 3.7 225.6 124 ( 1 0 1 ) 
1 5 2.9 169.3 223 (, 91) 
2 5 0.8 26.2 822 (696 ) 

NBENDC· 
0 5 6.0 255.1 56 (43) 
1 5 5.4 210.0 227 (215) 
2 5 3.5 134.2 511 (427) 

PRPENC 
0 :; 4.5 235.0 92 (82 ) 
1 5 4.0 190.3 193 ( 178) 
2 5 2.2 102.4 550 (445) 

Table 8.6 The Performance Of The Search System Using A 
Two Stage Screening System 

The times are in cpu seconds for an IBM 3083. 
The figures in brackets are for when only a one stage screening 
system was used (when the figures were available). 



Minimum Minimum Time For Time For 
Num Of Non Clique Inter.nediate Final 

Screen 
Out 

Carbons Size 3t~ge 3t~ge I Total 

BAGTOS 
o 
1 
2 
o 

CAVROG 
o 
1 
2 

. 
ETCOHX 

o 
1 
2 

6 
6 
6 

10 

6 
6 
6 

6 
6 
6 

36.3 
30.3 
5.7 

15.0 

360.6 
274.2 
104.2 

160.4 
154.7 
107.4 

225.5 (231.1) 
166.7 (184.4) 
28.4 (42.7) 
72.4 (111.3) 

679.2 (687.2) 
454.9 (506.8) 
143.8 (215.0) 

515.8 (525.2) 
440.3 (464.8) 
256.6 (305.6) 

130 (112) 
321 (295) 
347 (333) 
815 (735) 

106 (88) 
260 (228) 
662 (654) 

116 (96) 
189 (167) 
466 (432) 

Table 8.7 The Performance Of The Search System Using A Two 
Stage Screening System Along With The Intermediate Stage 

The times are in cpu seconds for an IBM 3083. 
The figures in brackets are for when only a two stage 
screening system was used. 

BAGTOS 
CAVROG 
ETCOHX 
GLYCIN 
HMALAC 
METNAM 
DPPRAM 
NBENDC 
PRPENC 

Minimum Number Of 
1 

68 
70 
68 
70 

178 
70 
70 

178 
70 

Non-Carbons 
2 

161 
197 
161 
227 
313 
197 
557 
313 
227 

Table 8.8 The Numbers Of Molecules Which Could Have Been 
Screened Out From The Searches Of Table 8.6 On An Analysis 
Of The Atomic Types That They Contain 



Upper Bound For Size Of Actual Size Of Number Of 
Common Substructure Substructure Molecules 

16 4 9 
16 5 15 
16 6 21 
16 7 9 
16 8 7 
16 Above 9 3 
17 4 2 
17 5 9 
17 6 5 
17 7 15 
17 8 4 
18 8 1 
18 9 2 

Table 8.9 Some Of The Upper Bounds Produced By The Exact 
Distance Check Screening Stage For CAVROG With No 
Restriction On The Number Of Non-Carbons 

Upper Bound For Size Of Actual Size Of Number Of 
Common Substructure Substructure Molecules 

16 5 4 
16 ~ 4 0 

16 7 9 
16 8 4 
16 9 1 
17 4 2 
17 5 4 
17 6 2 
17 7 6 
17 8 2 
17 9 

Table 8.10 Some Of The Upper Bounds Produced By The 
Intermediate Stage For CAVROG With No Restriction 
On The Number Of Non-Carbons 



CHAPTER 9 

SUMMARY 

Two dimensional graph algorithms have a well 

established place in chemical information systems and as 

there is increasing interest in the use of three 

dimensions, there is a need for analogous algorithms here. 

This rising interest in 3D structural data has been based 

on the increased availability of 3D co-ordinates and 

improved computer performance generally, and especially in 

molecular graphics systems. This thesis has been concerned 

with techniques for handling 3D chemical information with a 

particular emphasis being placed upon algorithms for 

identifying and searching for pharmacophores. The stress 

throughout the thesis has been placed on the efficiency of 

the algorithms rather than their effectiveness in 

operational environments. 

In greater detail, Chapter 3 described Jakes' 

screening system [Jake86] based on inter-atomic distances 

which allows 3D substructure searches to be carried out on 

the Cambridge Crystallographic Database. The structures 

which pass the screening stage are passed on to a partial 

matching stage and four algorithms for this stage were 

compared. On the results of the tests performed, Ullman's 

subgraph isomorphism algorithm [Ullm76] was substantially 

quicker than the other methods. Although this should 

probably be regarded as recommending subgraph isomorphism 

algorithms from the computer science literature (as opposed 

192 



to specifically chemical algorithms) as a whole rather than 

as a an endorsement of Ullman's algorithm in particular. 

However, the patterns searched for were very artificial 

being obtained by taking some of the structure's atoms 

(mainly carbons) and distorting them slightly. Another 

major criticism that could be levelled at the work is that 

the performances of all of the algorithms were pretty good, 

and the time taken in this stage is always likely to be 

substantially less than the time taken by the disc 

accessing in the screening stage. As a follow on from this 

work two of the methods were used to search a macromolecule 

and the results implied that Lesk's algorithm [Lesk79] was 

the only one of the four techniques suitable for the task. 

@However, its run times were very large and so work is 

currently being undertaken in the department to try to 

lessen this by using Lesk's algorithm to reduce the number 

of atoms being passed on to Ullman's algorithm and/or 

having an initial screening stage which restricts which 

structure atoms can match which pattern atoms [Davi87].*) 

Chapter 4 compared two different methods for 

finding the 3D substructures in common between two 

molecules. The clique finding approach was found to be far 

more efficient, particularly when there was a sizeable 

common substructure. This method was extended to deal with 

more than two molecules at a time and the results suggested 

that the time taken was very roughly linearly related to 

the number of molecules. However, the same kind of 

criticism that was made above can be made again here in 

f I L \" n I ( . L' I "'1\1 L /' \I 
\lQrs<Ot\-- o~ -tr~ Mo.rl'0X li/l,a~ LS' ~ \iQt\.. tit tt\LQ.ntt:lO,tS I 

193 



that the structures being compared were very artificial. 

Additionally, the clique finding program was unable to cope 

with structures of size greater than about 35 atoms. 

Additional work could attempt to devise a method of coping 

with larger structures but finding a successful solution is 

likely to be difficult as can be seen from the poor 

performance of Bolles' suggestion [BoI179]. 

Following on from Chapter 4, the next two 

chapters considered a parallel implementation of a version 

of Crandell and Smith's algorithm first through a 

simulation and then through an actual implementation. The 

simulation was only intended as a fairly crude measure of 

the potential speed up that a multiprocessor system might 

offer, so as to give some indication as to whether a full 

implementation would be worthwhile. The main problems with 

it were difficulties over trying to estimate the 

distributions of the times each stage would take when they 

were split up into several jobs, the use of a Prime 9950 

system clock rather than a system clock comparable with 

that of a transputer, and the fact that for simplicity, a 

pooled processor system with each processor carrying out 

identical programs was assumed. Therefore it was not 

possible to really correlate the actual figures produced by 

the simulation and those produced using transputers. The 

latter results showed that a near linear s~eed up could be 

produced for eleven transputers with regard to the 

comparison stage if, and only if, the stage involved enough 

computation. Unfortunately, the results are rather academic 

194 



as this is often not the case and as the implemented 

version of Crandell and Smith's algorithm performed very 

badly in Chapter 4, both against a version which had an 

extra sorting stage and against the clique finding 

algorithm. However, a version of Crandell and Smith using 

exact distances rather than clustered distances could be a 

way of dealing with the problem of comparing larger 

molecules. This would lead to a computationally more 

expensive comparison stage but this is the stage which can 

be effectively parallelized. Additionally, if distance" 

ranges are used, as suggested in [Cran83a], then the more 

efficient form of the algorithm, which sorts the grown 

structures before comparing them, becomes less practicable. 

The academic nature of the parallel 

implementation of Crandell and Smith's algorithm led to 

interest in applying concurrency to try to discover 

pharmacophoric patterns via Crippen's distance geometry 

[Sher86]. This method generates a series of "conformations" 

of a "molecule" formed from the molecules under 

investigation by way of different sets of random numbers 

and then compares the proposed pharmacophoric regions using 

a least squares fitting routine. The computational expense 

of this approach can be seen in the time of 3.5 cpu hours 

for a VAX 11/780 quoted for finding 25 conformations by 

[Sher86], and so generating each conformation on a 

different processor was thought likely to lead to a 

significant improvement in performance. 

out in Chapter 7 seemed to confirm 

195 

The work carried 

this but the main 



figures were produced by repeatedly running the algorithm 

on a serial computer rather than running the system once on 

a multiprocessor. A version of the algorithm was run on a 

transputer system but it performed very badly due to the 

floating point operations being carried out by software 

subroutines. This version also showed that it would be very 

difficult with the current algorithm to substantially 

improve the performance by using a cluster of transputers 
. 

instead of a single one to generate each conformation. A 

way around this might be to use a different optimisation 

procedure other than the conjugate gradient method. Another 

potential area of interest would be to compare the distance 

geometry approach to pharmacophore identification with that 

proposed by Motoc et al. [Mot086, Laba86] (see Section 

2.3.2) as they are both intended for use in the same kind 

of environment. 

Finally, the 3D screening system of Chapter 3 was 

combined with the clique finding algorithm of Chapter 4 so 

as to try to create an efficient means of searching the 

Cambridge Crystallographic Database in order to find 3D 

structurally similar molecules to the starting molecule. 

The effectiveness of the "screening" stage was found to be 

heavily dependent on whether a minimum number of non-

carbons was specified to be in the common substructure. In 

cases where this value was set to zero and the minimum 

common substructure size of interest was set to four, 

relatively little speed up was obtained, but this was very 

much a "worst case" situation. 

196 



To briefly summarize the main numerical results of this thesis, the tests 

reported in Chapter 3 indicated that Ullman's algorithm was generally at least 

twice as quick as the other algorithms when trying to find a pattern of size 

5 in a molecule. This better preformance increased as the size of the pattern 

increased. 

The comparison of the two algorithms for finding common substructures 

between molecules in Chapter 4 showed that the clique finding approach was at 

least twice as quick as the fastest version ofCrandell and Smith's algorithm when 

finding a largest common substructure of size 7 between two distorted versions of 

the same molecule. This difference in performance very rapidly widened as the 

size of the largest common substructure increased. A similar situation occurred 

when more than two molecules were being considered. Finally, when a molecule 

was being compared with a collection of similar molecules, the clique finding 

approach was usually a minimum of 3 times quicker and sometimes had a far 

greater speed advantage than this. An additional advantage of using cliques was 

that the distance clustering stage (which caused severe problems for Crandell 

and Smith) was no longer necessary. 

The simulation of a multiprocessor version ofCrandell and Smith's algorithm 

in Chapter 5 predicted that when there was a largest common substructure 

of size 12 between two molecules, a speed up of 8 would be obtained when 

using 50 transputers (and assuming no processor overheads). In the same case 

but using 5, 10 and 20 transputers predicted speed ups were 2.5, 3.3 and 5.4 



respectively. In the actual implementation, when there was a largest common 

substructure of size 12 between two molecules of size 14, the speed ups for 5 and 

10 transputers were 4.98 and 7.72. These figures are probably artificially inflated 

because breaking up the comparison stage into pieces led to a reordering of the 

"growths" which in turn led to an increase in speed. Therefore the speed ups 

over the two transputer case could well be more realistic and these were 2.28 and 

3.54 respectively. However, as the molecules became less similar the amount of 

processing needed decreased and the resulting speed ups became much smaller. 

No overall speed up figures can reasonably be quoted for the implementation 

of distance geometry on transputers as the lack of transputers with floating 

point hardware and not being able to obtain the standard bond angles for the 

molecules used in [Sher86] meant no comparison with the 3.5 hours of cpu time 

used by a VAX 11/785 could be undertaken. However, the fact that using 

transputers to find all the shortest paths in a graph led to no speed up on 

the graphs considered whilst Denelcor's IIEP has been reported as having very 

high speed ups (virtually linear for eight processors) for graphs of the same size 

[De086] seemed to indicate that transputers are not suited to very fine grain 

parallelism. 

Chapter 8 involved comparing a molecule against 999 molecules in the Cam

bridge Crystallographic Database so as to find three dimensionally similar mol

ecules. There was a large variation in the times taken using different pat

tern molecules. However, to give some indication of the general performance, 

t9~ b 



ETCOHX (see figure 8.5) took about 480 cpu seconds on an IBM 3083 when 

using a cut off for the first screening stage of a predicted largest common sub

structure size of at least 6 atoms of which at least one had to be a non-carbon. 

However, this time could be almost halved if the optimise option is used on the 

FORTRAN 77 compiler. 



Number Of Overhead Added To A Process' Duration Time 

Processors 0 .001 *1 .01 *1 

1 1.00 1.00 1.00 

2 1.74 1.74 1.70 

3 2.43 2.43 2.33 

4 3.20 3.20 3.03 

5 3.52 3.52 3.26 

6 3.70 3.64 3.42 

8 4.40 4.22 3.59 

10 5.15 5.02 4.08 

12 5.86 5.55 4.16 

16 7.03 6.59 4.51 

20 7.81 7.28 4.61 

30 9.59 8.44 4.33 

40 11.11 9.17 3.85 

50 12.41 9.59 3.48 

Table 5.6 The Speed Ups Obtained By The Simulation Of Comparing Three 

Molecules With A Common Substructure Size Of 11 

where I is the number of processors 



this 

Apart from Chapter 7, all the 

thesis has dealt with fixed 

work reported in 

(crystallographic) 

conformations and because of this drawback, can only be 

used at a very early stage in the computer assisted drug 

design process. However, future work might involve trying 

to incorporate the 3D comparison algorithms into one of the 

various QSAR methods, possibly along the lines suggested by 

Motoc [Moto81]. 

The work summarised above has indicated 

algorithms which appear to be sufficiently efficient for 

practical implementations in 3D chemical information 

systems. It is hoped that practical tests of these ideas 

will follow shortly. 

197 



REFERENCES 

[Abo185] E.E.Abola, F.C.Bernstein, 

Protein Data Bank"; pp.139-144 in "The 

T.F.Koetzle; "The 

Role Of Data In 

Scientific Progress"; 

The 9th International 

Holland), 1985 

Editor: P.S.Glaesen; Proceedings Of 

CODATA Conference Elsevier (North 

[Adam71] G.W.Adamson, M.F.Lynch, W.G.Town; "Analysis Of 

Structural Characteristics Of Chemical Compounds In A Large 

Computer Based File 2 Atom-Centered Fragments"; Journal Of 

The Chemical Society (C), (1971) pp.3702-3706 

[Adam73a] G.W.Adamson, J.Cowell, M.F.Lynch, A.H.W.Mclure, 

W.G.Town, A.M.Yapp; "Strategic Considerations In The Design 

Of A Screening System For Substructure Searches Of Chemical 

Structure Files"; Journal Of Chemical Documentation, vol 13 

num 3 (1973) pp.153-157 

[Adam7~b] G.W.Adamson, S.E.Creasey, M.F.Lynch; "Analysis Of 

Structural Characteristics Of Chemical Compounds In The 

Common Data Base"; Journal Of Chemical Documentation, vol 

13 num 3 (1973) pp.158-162 

[Adam73c] G.W.Adamson, V.A.Clinch, M.F.Lynch; "Relationship 

Between Query And Data Base Microstructure In 

substructure Search Systems"; Journal Of 

Documentation, vol 13 num 3 (1973) pp.133-136 

198 

General 

Chemical 



[Adam74] G.W.Adamson, J.A.Bush; "Method For Relating The 

Structure And Properties Of Chemical Compounds"; Nature, 

vol 248 (1974) pp.406-407 

[Adam77] G.W.Adamson, D.Bawden; "A Substructural Analysis 

Method For Structure-Activity Correlation Of Heterocyclic 

Compounds Using Wiswesser Line Notation"; Journal Of 

Chemical Information And Computer Sciences, vol 17 num 3 

(1977) pp.164-171 

[Aho74] A.Aho, J.E.Hopcroft, J.Ullman; "The Design And 

Analysis Of Computer Algorithms"; Addison-Wesley, 1974 

[Alle79] F.H.Allen, S.Bellard, M.D.Brice, B.A.Cartwright, 

A.Doubleday, H.Higgs, T.Hummelink, B.G.Hummelink-Peters, 

O.Kennard, W.D.S.Motherwell, J.R.Rodgers, D.G.Watson; "The 

Cambridge Crystallographic Data Centre: Computer-Based 

Search, Retrieval, Analysis And Display Of Information"; 

Acta Crystallographica B, vol 35 (1979) pp.2331-2339 

[Almo82] J.R.Almond, H.M.Welsh; "Chemical 

Searching Industrial Applications 

Systems"; Drexel Library Quarterly, vol 

pp.84-105 

18 

Substructure 

And Commercial 

num 2 (1982) 

[Ash75] J.E.Ash; "Connection Tables And Their Role In A 

System"; Chapter 11 in "Chemical Information Systems"; 

Editors: J.Ash, E.Hyde; Ellis Horwood, Chichester, 1975 

199 



[Ash85] J.Ash, 

"Communication, 

P.Chubb, S.Ward, S.Welford, P.Willettj 

Storage And Retrieval Of Chemical 

Information"; Ellis Horwood, Chichester, 1985 

[Aspi84] D. Aspinall; "Closely Coupled Sys tems" (a) 

"Architecture", Chapter 15 pp.219-229, (b) "Cyba-M", 

Chapter 19 pp.267-276 in "Distributed Computing"; Editors: 

F.B.Chambers, D.A.Duce, G.P.Jones; Academic Press, London, 

1984 

[Atki83] L.V.Atkinson, P.J.Harley; "An Introduction To 

Numerical Methods With Pascal"; Addison Wesley, London, 

1983 

[Aust84] V.Austel; "Drug Design: Principles And 

Techniques"; Chapter 24 pp.441-460 "in "X-Ray 

Crystallography And Drug Action"; Editors: A.S.Horn, C.J.De 

Ranter Oxford University Press, Oxford, 1984 

[Avid82] V.Avidon, I.A.Pomerantsev, V.E.Golender, 

A.B.Rozenblit; "Structure-Activity Relationship Oriented 

Languages For Chemical Structure Representation"; Journal 

Of Chemical Information And Computer Sciences, vol 22 num 4 

(1982) pp.207-214 

[Bari81] L.Barino; "Use Of A Least-Squares Best Molecular 

Fit Routine In A Steric Comparison Of Flexible Molecules"; 

Computers And Chemistry, vol 5 num 2-3 (1981) pp.85-90 

200 



[Barr76] H.G.Barrow, R.M.Burstall; 

Matching Relational Structures 

"Subgraph Isomorphism, 

And Maximal Cliques"; 

Information Processing Letters, vol 4 num 4 (1976) pp.83-84 

[Barr81] H.G.Barrow, J.M.Tenebaum; "Computational Vision"; 

Proceedings Of The IEEE, vol 69 num 5 (1981) pp.572-595 

[Barr86] I.M.Barron; "The Transputer And Occam" in 

"Information Processing 86"; Editor: H.-J. Kugler; Elsevier 

Science Publishers B.V. (North-Holland) IFIP (pp.259-265 in 

Participants Edition) 1986 

[Bawd81] D.Bawden, J.T.Catlow, 

M.F.Lynch, P.Willett "Evaluation 

Topological Codes For Online 

T.K.Devon, J.M.Dalton, 

And Implementation Of 

Compound Search And 

Registration"; Journal Of Chemical Information And Computer 

Sciences, vol 21 num 2 (1981) pp.83-86 

[Bawd83] D.Bawden; 

Handling Techniques 

Molecular Property 

"Computerized Chemical Structure

In Structure-Activity Studies And 

Prediction"; Journal Of Chemical 

Information And Computer Sciences, vol 23 num 

pp.14-22 

(1983) 

[Baza79] M.S.Bazaraa, C.M.Shetty; "Nonlinear Programming: 

Theory And Algorithms"; Wiley, Chichester, 1979 

201 



[Bern77] F.C.Bernstein, T.F.Koetzle, G.J.B.Williams, 

E.F.Meyer, M.D.Brice, J.R.Rodgers, O.Kennard, 

T.Shimanouchi, M.Tasumi; "The Protein Data Bank A 

Computer-Based Archival File For Macromolecular 

Structures"; Journal Of Molecular Biology, vol 112 num 3 

(1977) pp.535-542 

[Birt73] G.M.Birtwistle, 

"SIMULA Begin"; Auerbach 

1973 

O-J.Dahl, B.Myhrhaug, K.Nygaard; 

Publishers Inc., Philadelphia, 

[Bol179] R.C.Bolles; "Robust Feature Matching Through 

Maximal Cliques"; Proceedings Of The Society Of Photo

Optical Instrument Engineers, vol 182 (1979) pp.140-149 

[Bol182] R.C.Bolles, R.A.Cain; "Recognising And Locating 

Partially Visible Objects: The Local-Feature-Focus Method"; 

International Journal Of Robotics Research, vol 

(1982) pp.57-82 

num 3 

[Boyd82] D.B.Boyd, K.B.Lipkowitz; "Molecular Mechanics: The 

Method And Its Underlying Philosophy"; Journal Of Chemical 

Education, volume 59 num 4 (1982) pp.269-274 

[Boyd83] D.B.Boyd; "Quantum Mechanics In Drug Design: 

Methods And Applications"; Drug Information Journal, vol 17 

(1983) pp.121-131 

202 



[Bron73] C.Bron, J.Kerbosch; "Algorithm 457 Finding All 

Cliques Of An Undirected Graph [H]"; Communications Of The 

ACM, vol 16 num 9 (1973) pp.575-577 

[Bruc87] P.Bruck; ,"Retrieval Of Substructures From Very 

Large Files Using Tree-Structured Databases"; in 

"Proceedings Of Chemical Structures: The International 

Language Of Chemistry"; Chemical Structures Association (In 

Preparation) 

[Burg75] A.S.V.Burgen, G.C.K.Roberts, J.Feeney; "Binding Of 

Flexible Ligands To Macromolecules"; Nature, vol 253 (1975) 

pp.753-755 

[Buse83] B.Busetta, I.J.Tickle, T.L.Blundell; "DOCKER, An 

Interactive Program For Simulating Protein Receptor And 

Substrate Interactions"; Journal Of Applied 

Crystallography, vol 16 (1983) pp.432-437 

[Cahn79] R.S.Cahn, C.O.Dermer; "Introduction To Chemical 

Nomenclature"; 5th Edition, Butterworths, London 1979 

[Caro84] A.Carotti, C.Hansch, M.M.Mueller, J.M.Blaney; 

"Actinidin Hydrolysis Of Substituted- Phenyl Hippurates: A 

Quantitative Structure- Activity Relationship And Graphics 

Comparison With Hydrolysis By Papain"; Journal Of Medicinal 

Chemistry, vol 27 num 11 (1984) pp.1401-1405 

203 



[Chen81] J.K.Cheng, T.S.Huang; "A Subgraph Isomorphism 

Algorithm Using Resolution"; Pattern Recognition, vol 13 

num 5 (1981) pp.371-379 

[Cohe79] N.C.Cohen; "Beyond The 2-D Chemical Structure"; 

Chapter 18 pp.371-381 in "Computer Assisted Drug Design"; 

Editors: E.C.Olson, R.E.Christoffersen; American Chemical 

Society, Washington D.C., 1979 

[Cohe85J N.C.Cohen; "Drug Design In Three Dimensions"; 

Advances In Drug Research, vol 14 (1985) pp.41-145 

[Cone77] M.M.Cone, 

"Molecular Structure 

R.Venkataraghavan, F.W.McLafferty; 

Comparison Program For The 

Identification Of Maximal Common Substructures"; Journal Of 

The American Chemical Society, vol 99 num 23 (1977) 

pp.7668-7671 

[Crai75] P.N.Craig; "Structure/Property Correlations"; 

Chapter 16 pp.259-268 in "Chemical Information Systems"; 

Editors: J.Ash, E.Hyde; Ellis Horwood, Chichester, 1975 

[Cram74] R.D.Cramer, G.Redl, C.E.Berkoff; "Substructural 

Analysis: A Novel Approach To The problem Of Drug Design"; 

Journal Of Medicinal Chemistry, vol 17 num 5 (1974) pp.533-

535 

204 



[Cran83a] C.W.Crandell, D.H.Smith; "Computer-Assisted 

Examination Of Compounds For Common Three-Dimensional 

Substructures"; Journal Of Chemical Information And 

Computer Sciences, vol 23 num 4 (1983) pp.186-197 

[Cran83b] C.W.Crandell; "Computers In Chemistry"; Ph.D. 

Thesis, University Of Stanford, California, 1983 

[Crip79a] G.M.Crippen; "Distance Geometry Approach To 

Rationalizing Binding Data"; Journal Of Medicinal 

Chemistry, vol 22 num 8 (1979) pp.988-997 

[Crip79b] G.M.Crippen; "Distance Constraints On 

Macromolecular Conformation The Effectiveness Of The 

Experimental Studies On The Tobacco Mosaic Virus Protein"; 

International Journal Of Peptide And Protein Research, vol 

13 (1979) pp.320-326 

[Crip80] G.M.Crippen; "Quantitative Structure-Activity 

Relationships By Distance Geometry: A Systematic Analysis 

Of Dihydrofolate Inhibitors"; Journal Of Medicinal 

Chemistry, vol 23 num 6 (1980) pp.599-606 

[Crip81] G.M.Crippen; "Distance Geometry And Conformational 

Calculations"; Research Studies Press, Wiley, New York, 

1981 

205 



[Dah172] O.-J.Dahl, E.W.Dijkstra, C.A.R.Hoare; "Structured 

Programming"; Academic Press, London, 1972 

[Danz85] D.J.Danziger, P.M.Dean; "The Search For Functional 

Correspondences In Molecular Structure Between Two 

Dissimilar Molecules"; Journal Of Theoretical Biology, vol 

116 num 2 (1985) pp.215-224 

[Das78] S.R.Das, C.L.Sheng, Z.Chen; "An Algorithm For 

Finding All Maximal Complete Subgraphs And An Estimate Of 

The Order Of The Computational Complexity"; Comput. And 

Elect. Engineering, vol 5 (1978) pp.365-368 

[Davi81] L.S.Davis, A.Rosenfeld; "Cooperating Processes For 

Low-Level Vision: A Survey"; Artificial Intelligence, vol 

17 (1981) pp.245-263 

[Davi87] H.Davies; M.Sc. Thesis, Department Of Information 

Studies, University Of Sheffield, (In Preparation) 

[Denn86] P.J.Denning; "Parallel Computing And Its 

Evolution"; Communications Of The ACM, vol 29 num 12 (1986) 

pp.1163- 1167 

[Deo74] N.Deo; "Graph Theory With Applications To 

Engineering And Computer Science"; Prentice-Hall, Englewood 

Cliffs, New Jersey, 1974 

206 



[DeoBO] N.Deo, C.Y.Pang, R.E.Lord; "Two Parallel Algorithms 

For Shortest Path Problems"; Proceedings Of The 19BO 

International Conference On Parallel Processing (IEEE), New 

York, pp.244-253, 1980 

[DeRaB4] C.J.De Ranter; "Crystals, X-ray Crystallography, 

And Drugs"; Chapter 1 pp.1-22 in "X-ray Crystallography And 

Drug Action"; Editors: A.S.Horn, C.J.De Ranter; Oxford 

University Press, Oxford, 1984 

[Dijk68] E.W.Dijkstra; "Go To Statement Considered 

Harmful"; Communications Of The ACM, vol 11 num 3 (1968) 

pp.147-148 

[Ditt83] P.G.Dittmar, N.A.Farmer, W.Fisanick, R.C.Haines, 

J.Mockus; "The CAS ONLINE Search System 1 General System 

Design And Selection, Generation And Use Of Search 

Screens"; Journal Of Chemical Information And Computer 

Sciences, vol 23 num 3 (1983) pp.93-102 

[Drey69] S.E.Dreyfus; "An Appraisal Of Some Shortest-Path 

Algorithms"; Operations Research, vol 17 num 3 (1969) 

pp.395-412 

207 



[Duch79] D.J.Duchamp; "Molecular Mechanics And Crystal 

Structure Analysis In Drug Design"; Chapter 3 pp.79-102 in 

"Computer Assisted Drug Design"; Editors: E.C.Olsen, 

Washington R.C.Christoffersen; American Chemical Society, 

D.C., 1979 

[Elde84] M.Elder, P.Machin, S.E.Hull; "CDA: An Interactive 

Program For The Comparative Analysis Of Crystal Structure 

Co-ordinate Data";. Journal Of Molecular Graphics, vol 2 num 

3 (1984) pp.70-78 

[Esak82] T.Esaki; "Quantitative Drug Design Studies 5 

Approach To Lead Generation By Pharmacophoric Pattern 

Searching"; Chemical And Pharmaceutical Bulletin, vol 30 

num 10 (1982) pp.3657-3661 

[Esak83] T.Esaki; "Fundamental Studies On Quantitative Drug 

Design"; Ph.D.Thesis, Nagoya University, Japan, 1983 

[Faug82] O.D.Faugeras; 

Matchi~g"; Proceedings 

Acoustics, Speech And 

pp.1162-1165 

"Image 

IEEE 

Signal 

Understanding And Graph 

International Conference On 

Processing, vol 2 (1982) 

[Feld75] A.Feldman, L.Hodes; "An Efficient Design For 

Chemical Structure searching, 1. The Screens"; Journal Of 

Chemical Information And Computer Sciences, vol 15 num 3 

(1975) pp.147-152 

208 



[Feld78] R.J.Feldman, D.H.Bing, B.C.Furie, B.Furiej 

"Interactive Computer Surface Graphics Approach To Study Of 

The Active Site Of Bovine Trypsin"; Proceedings Of The 

National Academy Of Science USA, vol 75 num 11 (1978) 

pp.5409-5412 

[Feld79] A.Feldman, L.Hodesj "Substructure Search With" 

Queries Of 

Information 

pp.125-129 

Varying Specifity"; Journal 

And Computer Sciences, vol 

Of Chemical 

1 9 n urn 3 (1 9 7 9 ) 

[Figu72] J.Figueras "Substructure Search By Set Reduction" 

Journal Of Chemical Documentation, vol 12 num 4 (1972) 

pp.237-244 

[Fish85] A.J.Fisher; "Occam On The Prime Users' Manual 

(Revised)"j Department Of Computer Science, University of 

Hull, 1985 

[Fish86] A.J.Fisher; "A Multiprocessor Implementation Of 

Occam"; Software Practice And Experience, vol 16 num 10 

(1986) pp.875-892 

[Floy62] R.W.Floyd; "Algorithm 97 Shortest Path"; 

Communications Of The ACM, vol 5 num 6 (1962) p.345 

[Fran84] R.Franke; "Theoretical Drug Design Methods"; 

Elsevier, Oxford, 1984 

209 



[Gare79] M.R.Garey, D.S.Johnson; "Computers And 

Intractability: A Guide To The Theory Of NP-Completeness"; 

Freeman, New York, 1979 

[Gati79] G.Gati; "Further Annotated Bibliography On The 

Isomorphism Disease"; Journal Of Graph Theory, vol 3 num 2 

(1979) pp.95-109 

[Gaud86J J.L.Gaudiot, M.Dubois, L.T.Lee, N.G.Tohme; "The 

TX16: A Highly P~ogrammable Multi-Processor Architecture"; 

IEEE Micro, vol 6 num 5 (1986) pp.18-31 

[Gerh79] L.Gerhards, W.Lindenberg; "Clique Detection For 

Nondirected Graphs: Two New Algorithms"; Computing, vol 21 

(1979) pp.295-322 

[Ghos85] A.K.Ghose, G.M.Crippen; "Geometrically Feasible 

Binding Modes Of A Flexible Ligand Molecule At The Receptor 

Site"; Journal Of Computational Chemistry, vol 6 num 5 

(1985) pp.350-359 

[Gill86] V.J.Gillet, S.M.Welford, M.F.Lynch, P.Willett, 

J.Barnard, G.M.Downs, G.Manson, J.Thompson; "Computer 

Storage And Retrieval Of Generic Chemical Structures In 

Patents 7 Parallel Simulation Of A Relaxation Algorithm For 

Chemical Substructure Search"; Journal Of Chemical 

Information And Computer Sciences, vol 26 num 3 (1986) 

pp.118-126 

210 



[Gole83] V.Golender, A.Rozenblit; "Logical And 

Combinatorial Algorithms For Drug Design"; Research Studies 
Press, Letchworth, 1983 

[Gost81] R.W.Gostick; "Software And Hardware Technology For 

The ICL Distributed Array Processor"; Australian Computer 

Journal, vol 13 num 1 (1981) pp.1-6 

[Gollr84] D.R.H.Gourley; "Receptors- A Review Of Recent 

Progress"; Chapter 6 pp.95-112 in "X-ray Crystallography 

And Drug Action"; Editors: A.S.Horn, C.J.De Ranter; Oxford 

University Press, Oxford, 1984 

[Gund74] P.Gund, W.T.Wipke, R.Langridge; "Computer 

Searching Of A Molecular Structure File For Pharmacophoric 

Patterns"; Proceedings International Conference Computers 

In Chemical Research And Education, Ljubljana, July 12-17 

1973, vol 3 (1974) pp.33-38 

[Gund77] P.Gund; "Three-Dimensional Pharmacophoric Pattern 

Searching"; Progress In Molecular And Subcellular Biology, 

vo15 (1977) pp.117-143 

[Gund79] P.Gund; "Pharmacophoric Pattern Searching And 

Receptor Mapping"; Annual Reports In Medicinal Chemistry, 

vol 14 chapter 29 (1979) pp.299-308 

211 



[Gund80] P.Gund, J.D.Andose, J.B.Rhodes, G.M.Smith; "Three 

Dimensional Molecular Modelling And Drug Design"; Science, 

vol 208 num 4451 (1980) pp.1425-1431 

[Gurd85] J.R.Gurd, C.C.Kirkham, I.Watson; "The Manchester 

Prototype Dataflow Computer"; Communications Of The ACM, 

vol 28 num 1 (1985) pp. 34-52 

[Gurd86] J.R.Gurd, C.C.Kirkham; "Dataflow: Achievements And 

Prospects" in "Information Processing 86"; Editor: H.-J. 

Kugler; Elsevier Science Publishers B.V. (North-Holland) 

IFIP (pp.61-68 in Participants Edition) 1986 

[Hans73] C.Hansch, J.M.Clayton; "Lipophilic Character And 

Biological Activity Of Drugs .II. The Parabolic Case"; 

Journal Of Pharmaceutical Science, vol 62 num 1 (1973) 

pp.1-21 

[Hans82] C.Hansch, 

"Comparison Of The 

Lactobacillus Casei 

Ren-li Li, J.M.Blaney, R.Langridge; 

Inhibition Of Escherichia Coli And 

Dihydrofolate Reductase By 2,4-

Diamino- 5- (Substituted- Benzyl) Pyrimidines: Quantitative 

Structure- Activity Relationships, X-ray Crystallography, 

And Computer Graphics In Structure- Activity Analysis"; 

Journal Of Medicinal Chemistry, vol 25 num 7 (1982) pp.777-

784 

212 



[Hans84] C.Hansch; "On The State Of QSAR"; Drug Information 

Journal, vol 18 (1984) pp.115-122 

[Hass85] C.H.Hassel; "Computer Graphics As An Aid To Drug 

Design"; Chemistry In Britain, vol 21 num 1 (1985) pp.39-46 

[Have19] T.F.Havel, G.M.Crippen, I.D.Kuntz; "Effects Of 

Distance Constraints On Macromolecular Conformation 2 

Simulation Of Experimental Results And Theoretical 

Predictions"; Biopolymers, vol 18 num 1 (1979) pp.13-81 

[Have82] T.F.Havel; "The Combinatorial Distance Geometry 

Approach To The Calculation Of Molecular Conformation"; 

Ph.D. Thesis, University Of California, Berkely, 1982 

[Have83] T.F.Havel, I.D.Kuntz, G.M.Crippen; "The Theory And 

Practice Of Distance Geometry"; Bulletin Of Mathematical 

Biology, vol 45 num 5 (1983) pp.665-120 

[Have8~] T.F.Havel, K.Wuthrich; "A Distance Geometry 

Program For Determining The Structures Of Small Proteins 

And Other Macromolecules From Nuclear Magnetic Resonance 

Measurements Of Intramolecular 1H-1H Proximities In 

Solution"; Bulletin Of Mathematical Biology, vol 46 num 4 

(1984) pp.613-698 

213 



[Haye86] J.P.Hayes, T.Mudge, Q.F.Stout, S.Colley, J.Palmer; 

"A Microprocessor-Based Hypercube Supercomputer"; IEEE 

Micro, vol 6 num 5 (1986) pp.6-17 

[Hayn82] L.S.Haynes, R.L.Lau, D.P.Siewiorek, D.W.Mizeu; "A 

Survey Of Highly Parallel Computing"; Computer, vol 15 num 

1 (1982) pp.9-24 

[Hend86] J.B.Hendrickson, A.G.Toczko; "Systematic Synthesis 

Design By Computer" Chapter 9 pp.86-97 in "Mathematics And 

Computational Concepts In Chemistry"; Editor: N.Trinajstic; 

E1lis Horwood, Chichester, 1986 

[Hiro86] R.Hiromoto; "Some Issues In Parallel Processing As 

Encountered On The Dene1cor HEP"; Parallel Computing, vol 3 

num 2 (1986) pp.111-127 

[Hock85] R.W.Hockney; "MIMD Computing In The USA -1984"; 

Parallel Computing, vo1 2 num 2 (1985) pp.119-136 

[Hode77] L.Hodes, G.F.Hazard, R.I.Geran, S.Richman; "A 

Statistical Heuristic Method For Automated Selection Of 

Drugs For Screening"; Journal Of Medicinal Chemistry, vol 

20 num 4 (1977) pp.469-475 

214 



[Hode81] L.Hodes; "Computer-Aided Selection Of Compounds 

For Antitumour Screening: Validation Of A Statistical-

Heuristic Method"; Journal Of Chemical Information And 

Computer Sciences, vol 21 num 3 (1981) pp.128-132 

[Hopf80] A.J.Hopfinger; "A QSAR Investigation Of 

Dihydrofolate Reductase Inhibition By Baker Triazines Based 

Upon Molecular Shape Analysis"; Journal Of The American 

Chemical Society, vol 102 num 24 (1980) pp.7196-7206 

[Hopf85] A.J.Hopfinger; "Computer-Assisted Drug Design"; 

Journal Of Medicinal Chemistry, vol 28 num 9 (1985) 

pp.1133-1139 

[Hori86] H.Horikoshi, Y.Inagami; "Dataflow: From Its 

Practical Viewpoints" in "Information Processing 86"· , 

Editor: H.-J. Kugler; Elsevier Science Publishers B.V. 

(North-Holland) IFIP (pp.69-72 in Participants Edition) 

1986 

[Horn84] A.S.Horn; "Conformationally Restricted Analogues 

Of Neurotransmitters And Drugs"; Chapter 14 pp.235-255 in 

"X-ray Crystallography And Drug Action"; Editors: A.S.Horn, 
C.J.De Ranter; Oxford University Press, Oxford, 1984 

[Humb80] C.Humblet, G.R.Marshall; "Pharmacophoric 

Identification And Receptor Mapping"; Annual Reports In 

Medicinal Chemistry, vol 15 chapter 28 (1980) pp.267-276 

215 



[Humb81] C.Humblet, G.R.Marshall; "Three-Dimensional 

Computer Modelling As An Aid To Drug Design"; Drug 

Development Research, vol 1 num 4 (1981) pp.409-434 

[Hwan84] K.Hwang, F.A.Briggs; "Computer Architecture And 

Parallel Processing"; McGraw-Hill, New York, 1984 

[INM084] INMOS Limited; "Occam 

Prehtice-Hall, London, 1984 

Programming Manual"; 

[INM085] INMOS Limited; "Transputer Reference Manual"; 1985 

[Isen86] D.K.Isenor, S.G.Zaky; "Fingerprint Identification 

Using Graph Matching"; Pattern Recognition, vol 19 num 2 

(1986) pp.113-122 

[Iwas85] K.lwase, K.Komatsu, S.Hirono, S.Nakagawa, 

I.Moriguchi; "Estimation Of Hydrophobicity Based On The 

Solvent-Accessible Surface Area Of Molecules"; Chemical And 

Pharmaceutical Bulletin, vol 33 num 5 (1985) pp.2114-2121 

[Jake86] S.E.Jakes, P.Willett; "Pharmacophoric Pattern 

Matching In Files Of 3D Chemical Structures: Selection Of 

Interatomic Distance Screens"; Journal Of Molecular 

Graphics, vol 4 num 1 (1986) pp.12-20 

216 



[Jake87a] S.E.Jakes, N.J.Watts, P.Willett, D.Bawden, 

J.D.Fisher; "Pharmacophoric Pattern Matching In Files Of 3D 

Chemical Structures: Evaluation Of Search Performance"; 

Journal Of Molecular Graphics, vol 5 num 1 (1987) pp.41-48 

[Jake87b] 

Information 

Preparation) 

S.E.Jakes; 

Studies, 

[Jame75] T.L.James; 

Ph.D. Thesis, 

University Of 

"Nuclear Magnetic 

Department 

Sheffield, 

Resonance 

Biochemistry"; Academic Press, New York, 1975 

Of 

(In 

In 

[Kao85] J.Kao, C.Eyermann, L.Watt, R.Maher, D.Leister; "A 

Versatile, Efficient, And Interactive Program To Build 

Molecular Structures For Theoretical Calculations And 

Chemical Information Systems"; Journal Of Chemical 

Information And Computer Sciences, vol 25 num 4 (1985) 

pp.400-410 

[Katz72] 

Graphics 

L.Katz, C.Levinthal; 

And Representation 

"Interactive Computer 

Of Complex Biological 

Structures"; Annual Review Of Biophysics And 

Bioengineering, vol 1 (1972) pp.465-504 

[Kier85] L.B.Kier; "A Shape Index For Molecular Graphs"; 

Quantitative Structure-Activity Relationships, vol 4 (1985) 

pp.109-116 

217 



[Kitc82] L.Kitchen, E.V.Krishnamurthy; "Fast, Parallel 

Relaxation Screening For Chemical Patent Data-Base Search"; 

Journal Of Chemical Information And Computer Sciences, vol 

22 num 1 (1982) pp.44-48 

[Klei86] T.E.Klein, C.Huang, T.E.Ferrin, R.Langridge, 

C.Hansch; "Computer-Assisted Drug Receptor Mapping 

Analysis"; Chapter 13 pp.147-158 in "Artificial 

Intelligence Applications In Chemistry"; 

T.H.Pierce, B.A.Hohne; American Chemical Society 

Series, vol 306, American Chemical Society, 1986 

Editors: 

Symposium 

[Knut74] D.E.Knuth; "Structured Programming With Go To 

Statements"; Computing Surveys, vol 6 num 4 (1974) pp.261-

301 

[Knut81] D.E.Knuth; "The Art Of Computer Programming Volume 

2 Seminumerical Algorithms"; Addison Wesley, Second 

Edition, London, 1981 

[Kol184] P.Kollman; "Drug-Receptor Binding Forces"; Chapter 

4 pp.63-82 in "X-ray Crystallography And Drug Action"; 

Editors: A.S.Horn, C.J.De Ranter; Oxford University Press, 

Oxford, 1984 

[Kuck86] D.J.Kuck, E.S.Davidson, D.H.Lawrie, A.H.Sameh; 

"Parallel Supercomputing Today And The Cedar Approach"; 

Science, vol 231 num 4741 (1986) pp.967-974 

218 



[Kuhl84] F.S.Kuhl, G.M.Crippen, D.K.Friesen; "A 

Combinatorial Algorithm For Calculating Ligand Binding"; 

Journal Of Computational Chemistry, vol 5 num 1 (1984) 

pp.24-34 

[Kung82] H.T.Kung; "Why Systolic Architectures?"; Computer,' 

vol 15 num 1 (1982) pp.37-46 

[Kunt82] I.D.Kuntz, J.M.Blaney, S.J.Oatley, R.Langridge, 

T.E.Ferrin; "A Geometrical Approach To Macromolecule-Ligand 

Interactions"; Journal Of Molecular Biology, vol 161 num 2 

(1982) pp.269-288 

[Laba86] J.Labanowski, LMotoc, C.B.Naylor, D.Mayer, 

R.A.Dammkoehler; "Three-Dimensional Quantitative Structure

Activity Relationships 2 Conformational Mimicry And 

Topographical Similarity Of Flexible Molecules"; 

Quantitative Structure-Activity Relationships, vol 5 (1986) 

pp.138-152 

[Lang81] R.Langridge, T.E.Ferrin, I.D.Kuntz, 

"Real-Time Color Graphics In Studies 

Interactions"; SCience, volume 211 number 

pp.661-666 

M.L.Connolly; 

Of Molecular 

4483 (1981) 

[Lawl85] E.L.Lawler, J.K.Lenstra, A.H.G.Rinnoy Kan, 

D.B.Shmoys; "The Traveling Salesman Problem"; Wile~, 

Chichester, 1985 

219 



[Lesk79] A.M.Lesk; "Detection Of Three-Dimensional Patterns 

Of Atoms In Chemical Structures"; Communications Of The 

ACM, vol 22 num 4 (1979) pp.219-224 

rLevi66] C.Levinthal; "Molecular Model-Buildin~ By 

Computer"; Scientific A~erican, vol 214 num 6 (1966) pp.44-

52 

[Levi72] G.Levi; "A Note On The Derivation Of Maximal 
. 

Common Sub~raphs Of Two Directed Or Undirected Graphs"; 

Calcolo, vol 9 (1972) pp.341-352 

[Lori75J H.Lorin; "Sorting And Sort Systems"; Addison-

Wesley, London, 1975 

[Louk81] E.Loukakis, C.Tsouros; "A Depth First Search 

Algorithm To Generate The Family Of Maximal Independent 

Sets Of ~ Graph Lexico~raDhically"; Computing, vol 27 num 4 

(1981) pp.349-366 

[Louk83] E.Loukakis; "A New Backtrackin~ Al~orithm For 

Generating The Family Of Maximal Independent Sets Of A 

Graph"; Computers And Mathematics With Applications, vol 9 

num 4 (1983) pp.583-589 

220 



[LuksBO) E.M.Luks; "Isomorphism Of Graphs Of Bounded 

Valence Can Ee Tested In Polynomial Time"; Proceedin~s Of 

The 21st IEEE Foundations Of Computer Science Symposium, 

IEEE, New York, pp.42-49, 19BO 

[Lync75J M.F.Lynch; "Screening Lar~e Chemical FlIes"; 

Chapter 12 in "Chemical Information Systems"; Editors: 

J.A~h, E.Hyde; Ellls Horwood, Chichester, 1975 

[LyncB1J M.F.Lynch, J.M.Barnard, S.M.Welford; "Computer 

Stora~e And Retrieval Of Generic Chemical Structures In 

Patents 1 Introduction And General Strate~y"; Journal Of 

Chemical Information And Computer Sciences, vol 21 num ~ 

(1981) pp.148-150 

[Lync87] M.F.Lynch, G.A.Manson, P.Willett, G.A.Wl1son; "The 

Application Of Reconfigurable Microprocessors To 

Information Retrieval Problems"; British Library Research 

And Development Report, March 1987 

rMars79] G.R.Marshall, C.D.Barry, H.E.Bosshard, 

R.A.Dammkoehler, D.~.Dunn; "The Conformational Parameter In 

Drug Design: The Active Analo~ Approach"; Chapter 9 pp.205-

226 in "Computer Assisted Drug Design"; Editors: E.C.Olson, 

R.E.Christoffersen; American Chemical Society, Washington 

D.C., 1979 

221 



(Mars841 G.R.Marshall; 

Ch~pter 1 pp.~-20 in 

"Computer-Aided Dru~ 

"Computer-Aided Molecular Desi~n"; 

Conference Transcript, London, October 1984; Oyez 

Scientific And Technical Services Limited, London, 1985 

(Mart~1J 

Role Of 

Y.C.~artin; "A Practitioner's Perspective Of The 

Quantitative Structure-Activity Analysis In 

Medicinal Chemistry"; Journal Of ~edicinal Chemistry, vol 

24 num 3 (1981) po.220-237 

(Matt75J R.J.Matthews; "A Comment On ~tructure-Activity 

Correlations Obtained Usin~ Pattern Reco~nition Methods"; 

Journal Of The American Chemical Society, vol 97 num 4 

(1975) pp.Q35-9~6 

[May84J D.May, R.Taylor; "Occam An Overview"; 

Microprocessors And Microsystems, vol ~ num 2 (1984) 00.73-

79 

rMcCa85] J.T.McCall, J.G.Tront, F.G.Gray, R.M.H8ralick, 

W.M.McCormack; "Parallel Computer Architectures And Problem 

Solving Strategies For The Consistent Labellin~ Problem"; 

IEEE Transactions On Computers, vol 34 num 11 (1985) 

pp.973-9 80 

222 



[McCo82a] W.M.McCormack, F.G.Gray, R.M.Haralick; "A 

Simulation Model Of A Multi-Computer System ~olvin~ A 

Combinatori3l Problem"; Proceedjngs Of The 1982 Winter 

Simulation Conference, vol 1 (1982) po.261-266 

[McCo82b] W.M.McCormack, F.G.Gray, J.G.Tront, R.M.Haralick, 

G.S.Fowler; "Multi-Computer Parallel Architectures For 

Solvin~ Combinatorial Problems"; pp.431-451 in 

"Multicomputers And Image Processing Algorithms And 

Programs"; Editors: K.Preston, L.Uhr; Academic Press, New 

York, 1982 

[McGr79] J.J.McGre~or; "Relational Consistency Algorithms 

And Their Application In Finding Subgraph And Graph 

Isomorphisms"; Information Sciences, vol 19 (1979) pp.229-

250 

[McGrR1) J.J.McGregor, P.Willett; "Use Of A Maximal Common 

Subgraph Al~orithm In The Automatic Identification Of 

Ostensible Bond Chan~es Occurrin~ In Chemical Reactions"; 

Journal Of Chemical Information And Computer SCiences, vol 

21 num 3 (1981) pp.137-140 

[McGr82) J.J.McGregor; "Backtrack Search Algorithms And The 

Maximal Common Subgraph Problem"; Software Practice And 

Experience, vol 12 num 1 (1982) pp.23-34 

223 



[McLa82] A.D.McLachlan; "Rapid Comparison 

Structures"; Acta Crystallo~raphica, vol 

pp.871-873 

Of Protein 

A 38 (1982) 

[Metc85J M.Metcalf; "FORTRAN Optimization"; Academic Press, . 

London, (Revised Edition) 1985 

[Mor~651 H.L.Morgan; "The Generation Of A Unique Machine 

Descriotion For Chemical Structures: A Technique Developed 

At Chemical Abstracts Service"; Journal Of Chemical 

Documentetion, vol 5 (1q65) op.107-113 

[Moto81] I.Motoc; "An Improved Version Of The Steric 

Difference Method"; Dru~ Research, vol 31-2 num 

po.290-29~ 

(1981) 

rMoto86J I.Motoc, R.A.Dammkoehler, D.Mayer, J.Labanowski; 

"Three-Dimensional Quantitative Structure-Activity 

Relationships 1 General Approach To The Pharmacophore Model 

Validation"; Quantitative Structure-Activity Relationships, 

vol 5 num 3 (1986) pp.99-105 

rMurr841 P.Murray-Rust; "Databases Of Molecular Structure"; 

Chapter 11 op.187-1 Q4 in Computer-Aided Molecular Desi~n 

Conference transcript, London, October 1984; Oyez 

Scientific ftnd Technical Services Limited, London, 1985 

224 



[Palm83J R.A.Palmer, J.H.Tickle, I.J.Tickle; "Acetylcholine 

Receptor Site: ~ Proposed Model"; Journal Of Molecular 

Graphics, vol 1 num 4 (198~) pp.94-106 

[Papa821 C.H.Papadimitriou, K.Stei~litz; "Combinatorial 

Optimization: Algorithms And Complexity"; Prentice-Ha1l, 

New Jersey, 1982 

[Polt82] D.J.Polton; "Installation And Operational 

Experiences With MACCS (Molecular Access System)"; On1ine 

Review, vol 6 num ~ (1Q82) pp.235-242 

[Poun~6J D.Pountain; "A Tutorial Introduction To Occam 

Programming"; INMOS Limited, July 1986 

[Pric85J K.E.Price; "Relaxation Matching Techniques -A 

Comparison"; IEEE Transactions On Pattern Analysis And 

Machine Intelligence, vol 7 num 5 (1985) pp617-623 

[Read77] R.C.Read, D.G.Corneil; "The Graph Isomorphism 

Disease"; Journal Of Graph Theory, vol 1 num 4 (1977) 

pp.339-363 

[Red174J G.Redl, R.D.Cramer, C.E.Berkoff; "Quantitative 

Drug Desi~n"; Chemical Society Reviews, vcl 3 (1Q74) 

pp.273-2 Q2 

225 



[Seag86] M.K.Seager; "Parallelizin~ Conju~ate Gradient For 

The CRAY X-MP"; Parallel Computin~, vol 3 num 

pp.35-47 

(1986) 

[Seit851 C.L.Seitz; "The Cosmic Cube"; Communications Of 

The ACM, vol 28 num 1 (1Q85) pp.22-3~ 

[SheaB2J D.C.S.Shearn; "PASSIM 

System"; Division Of Economic 

Sheffie11, 1Q82 

A Pascal Simulation 

Studies, University Of 

(Shei81] B.A.Sheil; 

Programming"; Computing 

pp.101-120 

"The Psychological 

Surveys, vol 13 

Study Of 

num (1981) 

rSher86] R.P.Sheridan, R.Nilakantan, J.S.Dixon, 

R.Venkataraghavan; "The Ensemble Approach To Distance 

Geometry: Aoplication To The Nicotinic Pharmacophore"; 

Journal Of Medicinal Chemistry, vol 29 num 6 (1986) pp.899-

906 

rSing69J R.C.Singleton; "Algorithm 347 An Efficient 

Al~orithm For Sorting With Minimal Storage [M11"; 

Communications of the ACM, vol 12 num ~ (1969) pp.185-187 

[Smit78] B.J.~mith; "A Pipelined Shared Resource MIMD 

Computer" IEEE Proceedings 1978 International Conference On 

Parallel Processing (1978) pp.6-8 

226 



[StewS7] M.Stewart, P.Willett; "Nearest Nei~hbour Searchin~ 

In Binary Search Trees: Simulation Of A Multiprocessor 

System"; Journal Of Documentation, (In Press) 

[Stob85] R.E.Stobaugh; "Chemical Substructure Searching"; 

Journal Of Chemical Information And Computer SCiences, vol 

25 num 3 (1985) pp.2 7 1-275 

[Stup761 A.J.Stuper, P.C.Jurs; "ADAPT:A Computer System Fo~ 

Automated Data Analysis Using Pattern Reco~nition"; Journal 

Of Chemical Information And Computer Sciences, vol 16 num 2 

(1976) pp.9g-105 

rStup79J ~.J.Stuper, W.E.Bru~ger, P.C.Jurs; "Computer

Assisted Studies Of Chemical Structures And Biolo~ical 

Function"; Wiley, New York, 1979 

[Sund74] K.Sundaram, S.Mahajan, R.K.Mishra; "A Quantitative 

Approach To The Comparison Of Biomolecular Topographies"; 

Physiolo~ical Chemistry ~nd Physics, vol 6 (1974) po.469-

478 

[Suss65] E.H.Sussenguth; "A Graoh-Theoretic Al~orithm For 

Matching Chemical Structures"; Journal Of Chemical 

Documentation, vol 15 nurn 5 (1965) po.36-4~ 

(Taba87] D.Tabak; "RISC Architecture"; Research Studies 

Press, Letchworth, 1987 

227 



~Toll841 J.P.Tollenare, H.Moereels, L.A.Raymaekers; 

"Molecular Modellin~ By Comcuter Techniaues And 

Pharmacophore Identification"; Chacter 25 pc.461-48~ in "X

ray Crystallography And Dru~ Action"; Editors: A.S.Horn, 

C.J.De Ranter; Oxford University Press, Oxford, 19R4 

rTop183] J.G.Topliss (Editor); "Quantitative Structure

Activity Relationships In Drugs"; Academic Press, New York, 

198~ 

[Town85] W.G.Town, M.F.Lynch, P.Willett, G.C.Ford, 

D.W.Rice; "Advanced Comcutational Sucport For Biotechnolo~y 

Research"; Commission Of The European Communities 

X11/600/85-EN ITTTF/CUBE, May 1985 

[Ullm761 J.R.Ullman; 

Isomorphism"; Journal 

pp.31-42 

"An Algorithm 

Of The ACM, vol 

For Sub~raph 

2~ num 1 (1 Q76) 

rVand74] G.G.Vander Stouw, P.M.Elliott, A.C.Isenbergj 

"Automated Conversion Of Chemical Substance Names To Atom

Bond Connection Tables"; Journal Of Chemical Documentation, 

vol 14 nurn 4 (1974) pp.185-193 

[Vark79] T.H.Varkony, Y.Shiloach, D.H.Smith; "Computer

Assisted Examination Of Chemical Compounds For Structural 

Similarities"; Journal Of Chemical Information And Computer 

Sciences, vol 19 num 2 (1979) pp.104-111 

??~ 



IVint85] J.G.Vinter; "Molecular Graphics For The Medicinal 

Chemist"; Chemistry In Britain, vol 21 num 1 (1985) pp.~2-

38 

rVlad87] 

Compound 

Storage 

G.E.V13rlutz; "ft Hyperstructure Of Superposed 

And Reaction Dia~r9ms For Joint Reaction/Compound 

And Retrieval"; tn "Proceedings Of Chemical 

Structures: The International Lan~ua~e Of Chemistry"; 

Chemical Structures Association (In Preparation) 

rVoll831 J.Vollmer; "WLN.An Introduction"; Journal Of 

Chemical Fducation, vol 60 num ~ (1Q8~) pp.192-196 

(VonS84] A.von Scholley; "A Relaxation Algorithm For 

Generic Chemical Structure Screening"; Journal Of Chemical 

Information And Computer Sciences, vol 24 num 4 (1Q84) 

pp.235-241 

rWah85] B.W.Wah, G.J.Li, C.F.Yu; "Multiprocessin~ Of 

Combinatorial Search Problems"; Computer, vol 18 num 6 

(1985) pp.9~-108 

rWalt841 D.E.Walters, A.J.Hopfinger; "Applications Of 

Molecular Shape Analysis To aSAR"; pp.27Q-286 in "QSAR In 

Desi~n Of Bioactive Compounds"; Proceedings of the 1st 

Telesymposium on Medicinal Chemistry February 29, 1984; 

J.R.Prous International Publishers, Barcelona, 1984 

~?q 



[W~tt84] N.Watts; "Creation Of A B~se Of Pharm~cophores For 

Use In 3D Substructure Searchin~ Of Computer-Based Chemical 

Information Systems"; M.Sc. Thesis, Deoartment Of 

Inform~tion Studies, Sheffield University, 1984 

[Wen~82] J.C.Wen~er, D.H.Smith; "Deriving Three-Dimensional 

Reoresentations Of Molecular Structure From Connection 

Tables Au~mentAd With Confi~uration Desi~nations Using 

Distance Geometry"; Journal Of Chemical Information And 
. 

Computer Sciences, vol 22 num 1 (1q82) po.29-~4 

(Wil177) R.J.P.Williams; "F12xible Dru~ Molecules And 

Dynamic Receptors"; An~ewandie Chemie International Edition 

In English, vol 16 num 11 (1977) pp.766-777 

[Wil186J P.Willett, V.Winterman, D.Bawden; "Implementation 

Of Nearest Neighbour Searching In An Online Chemical 

Structure Search System"; Journal Of Chemical Information 

And Computer Sciences, vol 26 num 1 (1986) pp.36-41 

[Wil187a] P.Willett; "A Review Of Chemical Structure 

Retrieval Systems"; Journal Of Chemometrics, (In Press) 

[Wil187bl P.Willett; "Similarity And Clustering In Chemical 

Inform~tion"; Research Studies Press, Letchworth, 1987 

230 



[Wipk741 W.T.Wipke, T.M.Dyott; "Stereochemically Uniaue 

N~min~ Al~orithm"; Journal Of The American Chemical 

Society, vol 96 num 15 (1974) pp.4834-4842 

[WiOk84] W.T.Wipke, D.Ro~ers; "R~pid Sub~raph Search Usin~ 

Parallelism"; Journal Of Chemical Information And Computer 

Sciences, vol 24 num 4 (1984) pp.255-262 

[Wold83] S.Wold, 

Structure-Activity 

W.J.Dunn; "Multivariate Quantitative 

Relationships <QSAR): Conditions For 

Their Applicability"; Journal Of Chemical Information And 

Computer Sciences, vol 2? num 1 (1981) pp.6-13 

[Won~8~J ~.K.C.Wong, F.A.Akinniyi; "An Algorithm For The 

Lar~est Common Subgraph Isomorphism Using The Implicit 

Net"; IEEF Proceedings International Conference On Systems, 

Man And Cybernetics, 29 December 198~ to 7 January 1984, 

Bombay and New Delhi, India, pp.197-201 

[Woo184J K.R.H.Woolridge; "The Virtues Of Present 

Strategies For Dru~ Discovery"; Chapter 11 pp.?09-216 in 

"Drug Design: F~ct Or Fantasy?"; Editors: K.R.H.Woolridge, 

G.Jolles; Academic Press, London, 1984 

[Wyke87) A.Wyke; "Pharmaceuticals"; The Economist, 7 

February 1987 pp.~-1~ 

231 



[Zakh84J V.Zakharov; "Parallelism And Array Processing"; 

IEEE Transactions On Computers, vol ~3 nurn 1 (1984) pp.45-

78 

232 



Alterations 

Several paragraphs and sentences in the mam body of the thesis have been 

marked as requiring clarification. This section gives the amended versions with 

which they should be replaced. 

Page 136 The following sentences should be added to the end of the first para

graph of Section 5.6.2 

" For example, although it was not possible in view of the cpu times involved to 

obtain the durations of each process by running a serial version as in [Stew87], 

some limited form of statistical test such as chi squared could have been un

dertaken to analyse how closely the actual distributions correlated with the 

estimated ones. However, this would have led to considerably more work being 

involved." 

Page 151 The following paragraph should be added to the bottom of the page 

"As the times recorded were the lowest times, the speed ups obtained when using 

several processors as opposed to a single one, are higher than would normally be 

obtained in practice where the partition factors have to be determined before

hand. Some indication of the spread of times is given in Section 6.4 but because 

of the sheer volume of data, the other less optimal figures are not included here. 

(However, they can be obtained by directly contacting the author)." 

233 



Page 191 The sentence starting on line 2 should read 

"It should be mentioned though that CAVROG was chosen for this analysis 

because it was the compound from table 8.6 which led to the largest common 

substructures being found in the database." 

Page 193 Lines 14 to 19 should be replaced by 

"This was because the other three algorithms ran into storage problems. How

ever, its run times were very large and so work is currently being undertaken in 

the department [Davi87] to try to lessen the overall time taken by a search by 

using Lesk's algorithm as a screening stage. The atoms which pass this stage 

are then passed on to Ullman's (quicker) algorithm." 


