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Abstract 



In the posterior neural tube of vertebrate embryos, the secreted signalling 

molecules Sonic hedgehog (Shh) and bone morphogenetic proteins (BMPs) 

are expressed at opposite poles of the neural tube, and act antagonistically to 

pattern the dorso-ventral axis of the neural tube. In contrast, in the ventral 

diencephalon, in regions that will give rise to the hypothalamus, BMPs and 

Shh are initially co-expressed. Subsequently, Shh shows a dynamic pattern of 

expression, first undergoing a medio-Iateral expansion and then disappearing 

from ventro-medial cells that will form the infundibulum. 

In this study, I address how Shh is regulated within the hypothalamic 

infundibulum. Using a combination of fate mapping and gene expression 

analysis, I demonstrate that cells that initially co-express Shh and BMP7 give 

rise to the Shh-negative infundibulum. Furthermore, I demonstrate, both in vitro 

and in vivo, that BMP7 is necessary and sufficient to cause the down­

regulation of Shh in the infundibulum. 

Recent studies on the mouse Shh promoter (Jeong and Epstein, 2003) have 

revealed that aT-box binding site is necessary for the down-regulation of Shh 

in the infundibulum. Through analysis of Tbx genes, I have found that Tbx2 is 

expressed in the prospective infundibulum. Furthermore, my studies reveal 

that its expression is dependent on BMP activity 

Finally, my studies show that, in addition to their role in regulating Shh 

expression, BMPs and Tbx2 may also playa role in regulating the size of the 

infundibulum. Analysis with the M-phase marker, PH3, reveals that, following 

exposure to BMPs, prospective infundibular cells are transiently cell cycle 

arrested, entering a synchronised cell cycle once BMP activity is lost, and Tbx2 

is expressed. 

Together, my results suggest that BMPs act through Tbx2 in order to control 

the domain of Shh expression within the forming hypothalamus, whilst 

simultaneously controlling the size of this progenitor domain. 



Chapter 1 

Introduction 



1.0 Development of the nervous system 

The nervous system of vertebrates is the most complex of all biological 

organs. Millions of cells, composed of thousands of individual cell types, all 

act in co-ordination to mediate both simple reflexes and the complex 

behaviours exhibited by higher vertebrates. Such function is dependent on 

the precise spatial organisation of neuronal cells, and neuronal circuits. The 

assembly of these neuronal circuits is initiated during embryogenesis, and so 

studying neural development has, in recent years, proved to be a powerful 

tool towards understanding both normal neural function, and associated 

diseases. 

In vertebrates, the central nervous system (eNS) arises from the neural plate, 

a homogenous sheet of epithelial cells that forms dorsally in the gastrula 

stage embryo. Following a series of morphological movements, the neural 

plate rolls along its medio-Iateral axis to form the neural tube, which is grossly 

divided, along the anterior-posterior axis into the forebrain, midbrain, 

hindbrain and spinal cord (figure 1.1 a). Within these regions, distinct cell 

groups arise in a temporally and spatially restricted manner. Strict control of 

the formation, proliferation and migration of these cells, and the subsequent 

control of their axonal trajectories, goes on to produce the complex networks 

seen in the ad ult nervous system. 

1.1 Patterning of the neural tube 

In recent years a great deal of progress has been made into understanding 

the mechanisms by which the neural tube is patterned during embryogenesis. 

Signals from adjacent tissues establish crude patterns along the anterior­

posterior and dorso-ventral axes, which are then progressively refined 

throughout development. Signals act initially on the anterior-posterior axis and 

in the absence of caudalising signals, the entire neural tube assumes an 
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Figure 1.1 

Integration of signals along the dorso-ventral and anterior-posterior axis act to 

divide the neural tube into distinct regions, and generate multiple cell types 

according to their position. 

(a) Schematic representation of the neural tube and its anterior-posterior 

divisions. Coloured triangles represent graded anterior-posterior (yellow, 

green) and dorso-ventral (red, blue) signals. 

(b) Different cell types induced at the same dorso-ventral level according to 

their position along the anteroposterior axis. Different colours indicate 

regional differences in the cell types differentiating in response to different 

combinations of dorso-ventral and anterior-posterior signals. 
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Figure 1.1 
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F - Forebrain, M - Midbrain, H· Hindbrain, S.Cord - Spinal cord 
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Light blue - Ventral hypothalamic cells, Red· Floor plate, Dark blue - Basal ganglionic cells, 
Brown· Dopaminergic neurons, Yellow· Serotonergic neurons, Green· Motor neurons 



anterior identity (Briscoe and Ericson, 2001; Doniach, 1995; Harland, 2000). 

Transplantation studies in chick embryos and in vitro explant experiments 

have indicated that distinct forebrain, midbrain, hindbrain and spinal cord 

territories may be defined in response to anteriorising and posteriorising 

signals (Beddington and Robertson, 1999; Ericson et aI., 1995; Simon et aI., 

1995). Dorso-ventral signals then act on anterior-posterior patterned tissue in 

order to establish a Cartesian grid-like organisation of positional information, 

according to which, distinct cell types are induced with precise regional 

variation (figure 1.1b). Thus, for instance, motor neurons and interneurons 

are induced in ventral spinal cord regions, serotonergic neurons are induced 

in the ventral hindbrain, dopaminergic neurons in the fore- and midbrain, and 

basal ganglionic cells in the forebrain (Figure 1.1 b). Signals that act to confer 

anterior-posterior identity emanate from a number of tissues that lie in 

proximity to the developing neural tube, and include the anterior visceral 

endoderm, somites and node (Episkopou et aI., 2001; Foley et aI., 2000; 

Gavalas and Krumlauf, 2000; Martinez-Barbera et al., 2000; Muhr et aI., 

1999; Muhr et aI., 1997). Likewise, tissues immediately adjacent to the neural 

tube, namely notochord, prechordal mesoderm and surface ectoderm, act as 

the source of signals that initially confer dorso-ventral polarity on the neural 

tube (Dickinson et aI., 1995; Liem et aI., 1995a; Patten and Placzek, 2000; 

Placzek, 1995; Selleck and Bronner-Fraser, 1995)(Figures 1.1 and 1.2). 

1.2 Dorso-ventral patterning in the posterior neural tube 

The tissue interactions and signalling molecules that operate in development 

to pattern the dorso-ventral axis of the posterior neural tube, in particular the 

spinal cord and hindbrain, have been studied in particular depth over the last 

decade. The dorso-ventral pattern of the spinal cordI hindbrain is initially 

imposed by two main organiSing centres, the surface ectoderm and axial 

mesoderm cells of the notochord. These in turn induce the differentiation of 

organisers within the neural tube itself, the roof plate and floor plate, which 
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Figure 1.2 

Do rso-ventra I patterning of the spinal cord involves both dorsal and 

ventral signals. 

Signals from the surface ectoderm induce roof plate in the dorsal midline of 

the neural tube, whilst signals from the notochord induce floor plate in the 

ventral midline. Signals from these structures act in opposition in order to 

pattern the dorso-ventral axis of the spinal cord. 

Diagram taken from 'Principles of Development', Lewis Wolpert (Ed.), second 

edition. 
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Figure 1.2 
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are situated at the dorsal and ventral midlines respectively (figure 1.2). 

Signals from these regions act antagonistically to each other to induce 

different cell types in a spatio-temporally-restricted fashion (see section 1.3 

below). 

1.2.1 The role of Shh in posterior neural tube patterning 

Ventrally, the notochord synthesises Shh, a secreted signalling molecule, 

which induces cells at the ventral midline of the overlying neural tube to 

become floor plate. The floor plate also expresses Shh, and its secretion into 

the neural tube is believed to create a concentration gradient along the dorso­

ventral axis (Figure 1.3a), which then plays a critical role in patterning the 

entire dorso-ventral axis (Patten and Placzek, 2000). EctopiC Shh signalling 

from recombinant protein, or ectopically grafted notochord can suppress 

dorsal cell types and induce floor plate and other ventral cell differentiation in 

dorso-Iateral regions of the neural tube, whereas using antagonists or 

function blocking antibodies to Shh results in the loss of ventral cells (Briscoe 

and Ericson, 1999; Briscoe et aI., 2000; Patten and Placzek, 2002; Placzek et 

al., 1990). 

The ventral spinal cord contains five main classes of post-mitotic neurons, V3, 

V2, MN, V1, VO (figure 1.3b). The generation of these neurons at distinct 

dorso-ventral positions appears to be controlled by Shh, with ventral-most cell 

types, such as floor plate and V3 interneurons differentiating at high Shh 

concentrations, and motor neurons at slightly lower levels. At still lower 

concentrations, further away from the notochord and floor plate, more dorsal 

cell types form (Briscoe and Ericson, 1999; Ericson et aI., 1997a; Pierani et 

a!., 1999a). Experiments in vitro have shown that exposing naive neural 

tissue to small increases in extracellular concentrations of Shh results in the 

generation of these ventral neuronal classes, and the concentration of Shh 

required to induce them corresponds directly to their dorso-ventral position in 
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Figure 1.3 

Gradient model for the induction of ventral cell types by Shh. 

(a) Gradient of Shh signal moving from its sources of expression in the ventral 

neural tube and notochord. 

(b) Distinct ventral cell types differentiate at stereotyped positions in the 

ventral neural tube. FP - floor plate, MN - motor neurons, VO-V3 -

classes of interneurons generated at spinal cord levels. 

(c) The concentration of Shh required to induce specific cell types in vitro 

correlates directly with their dorso-ventral position in vivo. 

Diagram taken from Patten and Placzek, 2000 
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Figure 1.3 
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vivo (Figure 1.3c) (Ericson et aI., 1997a). Experiments have shown that the 

gradient of Shh controls the expression of homeodomain transcription factors 

that in turn direct specific neuronal fate (Box1). 

Box 1 

The homeobox code 

How is a graded Shh signal converted into discrete cellular subtypes? A 

number of homeodomain transcription factors are expressed in discrete 

domains of the neural tube, and analysis of their expression has led to the 

homeobox 'code' model (Briscoe and Ericson, 1999; Briscoe and Ericson, 

2001; Briscoe et al., 2000). In this model, transcription factors from the Pax, 

Dbx, Irx and Nkx family are expressed in restricted regions of the neural 

tube, creating five progenitor cell territories that give rise to different 

neuronal subtypes (Figure 1.4). 

Initially, there is no regional dorsa-ventral identity in the neural tube, and 

Pax and Msx transcription factors are expressed uniformly throughout, later 

becoming regionally restricted to dorsal regions. A number of studies have 

shown that Shh can repress these transcription factors from ventral cells 

(Ericson et al., 1996; Goulding et aI., 1993; liem et aI., 1995b). Pax3 and 

Pax7 are expressed in the dorsal most neural tube as they are sensitive to 

low concentrations of Shh, whereas PaxS, Dbx1, Dbx2 and Irx3 are 

repressed only by higher concentrations of Shh, and so their expression 

boundaries extend further ventrally (Briscoe et aI., 2000; Ericson et aI., 

1997b; Pierani et aI., 1999a). These proteins, whose expreSSion is 

repressed by Shh, have been termed 'class I' genes. The ventral limit of 

class I genes appears to correlate with the concentration of Shh required to 

repress them, leading to a graded repression of genes (Briscoe et al., 

2000). 
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A second set of transcription factors has also been identified, whose 

members include Nkx2.2 and Nkx6.1. These are referred to as the 'class II' 

genes, as their expression in the ventral neural tube seems to depend on 

the repression of class I genes by Shh. It is not clear if class II genes are 

induced directly by Shh or if their expression is wholly a consequence of 

derepression by class I genes, but the fact that in the paxS mutant, a dorsal 

expansion of Nkx6.1 is seen, suggests that its expression is an indirect 

consequence of Shh Signalling (Briscoe et aI., 2000; Ericson et al., 1997a). 

In the spinal cords of mice lacking Shh, expression of class I proteins 

becomes expanded ventrally, and class II progenitor proteins are not 

properly induced. This results in an absence of almost all ventral cell types, 

including floor plate, V3 interneurons, motor neurons, and VO, V1, and V2 

interneurons (Chiang et aI., 1996; Litingtung and Chiang, 2000). 

The dorsal expression of the class II genes abuts the ventral expression of 

those in class I, and once these progenitor domains are established, they 

can be maintained independently of Shh Signalling (Briscoe et aI., 2000; 

Briscoe et aI., 1999). This, in addition to experiments showing that ectopic 

Nkx expression in the dorsal neural tube can repress PaxS expression 

(Briscoe et aI., 1999), indicates that there is a reCiprocal inhibition 

functioning between the class I and class II genes. This would suggest that 

Shh acts initially to set up progenitor domains but these are then refined 

and maintained independently. However, there is evidence that Shh is still 

required at late stages of differentiation for some ventral cell types (Ericson 

et aI., 1996). The reciprocal inhibition demonstrated between class I and 

class II genes may serve to sharpen the boundaries, and allow for the 

maintenance of the progenitor domains in the expanding neural tube. 

14 



Figure 1.4 

The homeobox code 

(a) Shh mediates the repression of class I homeodomain proteins (Pax7, 

Dbx1, Dbx2, Irx3 and PaxS) at different threshold concentrations and the 

induction of expression of class II proteins (NkxS.1 and Nkx2.2) at 

different threshold concentrations. Class I and class II proteins that abut a 

common progenitor domain boundary have similar Shh concentration 

thresholds for repression and activation of protein expression, 

respectively. Shh signalling defines five progenitor domains in the ventral 

neural tube. 

(b) The pairs of homeodomain proteins that abut a common progenitor 

domain boundary (PaxS and Nkx2.2; Dbx2 and NkxS.1) repress each 

other's expression. 

(c) The relationship between neural progenitor (p) domains and the positions 

at which post-mitotic neurons are generated along the dorsoventral axis of 

the ventral spinal cord. 

Diagram taken from (Jessell, 2000) 
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Figure 1.4 
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1.2.2 The Hh signalling pathway 

How are the different extracellular concentrations of Shh interpreted by neural 

cells to direct different transcriptional responses? Analysis of the Shh 

signalling pathway has led to an understanding of how Shh is involved in 

setting up progenitor domains. 

Initially, insights into the signalling pathway were discovered by work done in 

Drosophila. Here, signalling by the homologous molecule Hedgehog (Hh) acts 

via the transmebrane proteins patched (ptc) and smoothened (smo) to trigger 

smo activity (figure 1.5). Activation of smo results in the release of the zinc­

finger transcription factor Cubitus interruptus (Ci), which is tethered by a 

cytoskeletal-associated complex that includes the proteins fused, suppressor 

of fused and costal (Aza-Blanc and Kornberg, 1999; Methot and Basler, 

2001). In the absence of Hh signal, Ci is proteolytically cleaved to a 75 kD 

repressor form (CiR), whereas in the presence of Hh signal this cleavage is 

prevented and Ci instead functions as a transcriptional activator (Aza-Blanc et 

aI., 1997; Ingham and McMahon, 2001; Methot and Basler, 1999). Hh 

signalling is also required to potentiate the transcriptional activity of Ci, 

possibly through increasing its nuclear accumulation (Chen et aI., 1999; 

Ohlmeyer and Kalderon, 1998; Wang and Holmgren, 2000). loss of Hh 

function results in all Ci being converted into CiR, thus resulting in a more 

severe phenotype in Hh mutants than in Ci mutants, which do not have CiR 

(Methot and Basler, 2001). 

Vertebrates have been shown to have three homologues of Ci: Gli1 Gli2 and 

Gli3, (Hui et aI., 1994; Ruppert et aI., 1990) all of which are expressed in the 

neural tube. There is a high degree of conservation of components of the Hh 

signalling pathway between different species, and all three Gli proteins have 

been implicated in vertebrate Hh signal transduction. However, the situation 

in vertebrates is more complicated, not only because there are three Gli 

genes, but also because these three Gli proteins also appear to have different 

17 



Figure 1.5 

Hh signalling pathway 

(A) In the absence of Hedgehog (Hh) the Hh receptor Patched (ptc) represses 

the activity of the transmembrane protein Smoothened (smo). The 

transcription factor Cubitus interruptus (Ci) is tethered to microtubules by 

the proteins Cos2 and Fused. This binding allows the cleavage proteins 

PKA and Slimb to cleave Ci into a transcriptional repressor that blocks 

transcription of particular genes. 

(B) The binding of Hh to ptc results in the release of inhibition of smo. Smo 

releases Ci from the microtubules (probably by adding more phosphates 

to cos2 and fused), and inactivates PKA and Slimb. The full length Ci 

protein can then act as a transcriptional activator of Hh responsive genes. 

Diagram taken from 'Developmental Biology', Scott F Gilbert (Ed.), seventh 

edition. 
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Figure 1.5 

(A) 

The Hh signalling pathway 

Smoothened 

\ 
Patched inhibits 
moothened 

y 

o transcription of 
Hedgehog-responsive 
genes 

(B) 
Hedgehog 

\ \ moothened o inhibit PKA 

S~ 0'\.fld limb 

S 
/Cos2 

)c:::c =~~~ 

Transcription of 
Hedgehog-response 
genes 



properties. As with Ci, both Gli2 and Gli3 can be cleaved into repressor forms, 

although only Gli3 is cleaved in a Hh-dependent manner. Gli1 on the other 

hand is resistant to cleavage (Aza-Blanc et aI., 2000; Dai et aI., 1999; 

Litingtung et aI., 2002; te Welscher et aI., 2002; Wang and Holmgren, 2000). 

1.2.3 The Gli genes and dorso-ventral patterning 

In recent years, a great deal of progress has been made into deCiphering the 

properties of the three Gli genes and their role in dorso-ventral patterning, 

through expression analyses, gain-of -function and loss-of-function studies in 

vivo, and biochemical studies in heterologous systems and cell lines (Jacob 

and Briscoe, 2003) 

Expression of each Gli gene appears to be differentially regulated. Gli1 is 

directly transcribed in response to Shh signalling, and therefore expressed 

immediately adjacent to Shh-expressing tissues, whilst Gli2 transcription is 

independent of Shh signalling, and is expressed throughout the neural tube 

during development. Likewise, Gli3 is initially expressed throughout the neural 

tube, but is later restricted to dorsal regions, being suppressed in response to 

Shh signals (Grindley et aI., 1997; Hynes et aI., 1997; Lee et aI., 1997; 

Litingtung and Chiang, 2000; Marigo et aI., 1996; Rowitch et aI., 1999). 

Mutations in Gli1 result in mice that are phenotypically normal (Park et aI., 

2000). However, ectopic expression of Gli1, but not Gli2 or Gli3, can induce 

expression of the floor plate marker, the basic helix-loop-helix transcription 

factor Foxa2 (HNF3J3) in the dorsal central nervous system (CNS) of mouse 

and frog embryos (Hynes et aI., 1997; Lee et aI., 1997; Marine et aI., 1997; 

Park et aI., 2000; Sasaki et aI., 1999). Mice with mutations in Gli2, however, 

die at birth and have defects in floor plate and V3 interneuron development 

(figure 1.6), as well as abnormalities in many other tissues (Bai et aI., 2002; 

Ding et al., 1998; Matise et aI., 1998; Mo et al., 1997; Motoyama et aI., 1998; 
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Park et aI., 2000). These data indicate that Gli2 is the major mediator of Shh 

signalling, whereas Gli1 is not required in development. However, studies in 

which Gli 1 was expressed in the same spatial and temporal manner as Gli2 

throughout development, by using a gene targeting knock-in approach to 

replace the Gli2-coding sequences with those of Gli1 (Bai and Joyner, 2001), 

show that Gli1 can functionally substitute for Gli2 in all developmental 

processes in mice. This raises the question as to why endogenous Gli1 does 

not compensate for the loss of Gli2 in mutant mice. One possible explanation 

is that Shh signalling acts through Gli2 in order to initiate Gli1 transcription. 

Therefore, in Gli2 mutants, Gli1 transcription would be decreased and unable 

to compensate for the lack of G1i2. Indeed, in Gli2 mutant embryos, 

expression of Gli1 is down-regulated (Ding et aI., 1998). However, when both 

copies of Gli2 are replaced with G1i1, lethality occurs due to new gain-of­

function defects, despite eNS patterning being normal. These defects are 

due, at least in part, to Gli1 interfering with Gli3 function. 

The differences seen in Gli1 and Gli2 function may be a consequence of post­

transcriptional modifications. Gli2 has been shown to have both activator and 

repressor domains, and can be cleaved in a Shh-independent manner, 

although only the activator function of Gli2 is required during mouse 

embryonic development (Bai and Joyner, 2001). Gli1 on the other hand is 

resistant to cleavage, and can act as a constitutive activator (Bai and Joyner, 

2001; Dai et aI., 1999; Sasaki et aI., 1999; Yoon et aI., 1998). It seems that 

when Gli2 or Gli3 are injected into ectopic sites in the dorsal neural tube, they 

are converted to their repressor forms, whereas Gli1 is not and so is able to 

induce ectopic ventral markers. This is supported by experiments where 

ectopic Gli1 has been expressed together with Gli2 or G1i3, and the ectopic 

activation function of Gli1 has been inhibited (Ruiz i Altaba, 1998). 

There is evidence that, prior to its repression by Shh to the dorsal spinal cord, 

Gli3 acts as a weak activator of Shh signalling in the ventral spinal cord. In 

the neural tube of Gli1 -1-; Gli2 -1- mutant mice, the patterning defects are 
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Figure 1.6 
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Gli2-/- ? 

GIi3-/- ? 

The role of Gli genes in dorso-ventral patterning of the spinal cord 
Schematic representation of the different cell types along the dorso-ventral axis 
of the spinal cord following null mutations of the Gli genes. In Shh -/- mutants, 
most ventral cell types fail to form, however, they are present in both Gli1-/- and 
Gli3-/- mice. Mutations in Gli2 result in the absence of floor plate, and defects 
in V3 interneuron development. 
The status of dorsal cell types that have not been generally assessed is denoted 
by a question mark, and in the case of the roof plate, by a broken line. 

Adapted from Ruiz i Altaba et ai , 2003 



much milder than those in Shh -/- mutants, for example, in the absence of 

Gli1 and G1i2, motor neurons are able to form, whilst in Shh -/- mutants no 

motor neurons are detected. This suggests that either Gli3 or a non-Gii 

activity induces/promotes the development of ventral cell fates (Park et aI., 

2000). In Gli2 -/-; GIi3-/- double mutants, the differentiation of ventral neuronal 

subtypes is more affected than in Gli2 mutants alone. Additionally, Gli3 

activates transcription from the promoters of Gli 1 and Ptc in cultured cells 

(Dai et al., 1999; Shin et aI., 1999). Furthermore, it has been shown that Gli3 

can induce floor plate and V3 progenitors in the rostral neural tube and only 

simultaneous inactivation of Gli2 and Gli3 can abolish motor neuron 

development (Motoyama et aI., 2003). Nonetheless, mice with a mutation in 

Gli3 (extra toes, Gli3 Xtj) have dominant dorsal brain defects and polydactyly, 

but have a relatively normal spinal cord (figure 1.6) (Ding et aI., 1998; 

Litingtung et aI., 2002; Theil et al., 1999). The lack of spinal cord phenotype 

seen in Gli3 mutants may be due to its weak activator function being 

compensated by Gli2 (Sasaki et al., 1999). 

1.2.4 Studies on Gli3 provide evidence for additional signalling pathways in 

dorso-ventral neural tube patteming. 

As with G1i2, Gli3 has an N-terminal repressor domain, and work by several 

labs has demonstrated that, in the absence of Shh, Gli3 is processed into a 

transcriptional repressor amino-terminal fragment (GIi3R) (Aza-Blanc et aI., 

2000; Dai et aI., 1999; Ruiz i Altaba, 1999; Wang and Holmgren, 2000). 

Activation of the Shh response in the ventral spinal cord prevents formation of 

this repressor form, allowing the transcription of Shh-response genes(Aza­

Blanc et aI., 2000; Dai et aI., 1999; Marine et aI., 1997; Sasaki et aI., 1999; 

Shin et aI., 1999; Wang and H~lmgren, 2000). The negative role becomes 

prominent in the ventral spinal cord only if Shh function is absent (Chiang et 

aI., 1996). 
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Studies using a truncated Gli3 protein, which acts as a constitutive repressor 

that is insensitive to Shh signals, have demonstrated that the repressor form 

of Gli3 prevents expression of class II progenitor proteins, while mediating the 

ectopic expression of class I proteins in the ventral neural tube (Meyer and 

Roelink, 2003). It seems likely therefore, that the Shh gradient in the ventral 

neural tube acts directly to set up a gradient of Gli3R activity by preventing 

Gli3 processing. 

Analyses of GIi3-1-; Shh-/- double mutant mice reveals that loss of Gli3 

partially restores the Shh -1- phenotype, as evidenced by the restoration of 

most ventral cell types, including motor neurons, V1, and V2 inter-neurons, 

which are absent in Shh -/- mice (figure 1.7) (Litingtung and Chiang, 2000). 

This partial rescue of the Shh-/- phenotype by GIi3-/- suggests that Shh is 

required to expose a pre-existing pattern, hidden by G1i3, and imposed by a 

patterning signal other than Shh. 

One candidate molecule for the Shh independent patterning of the dorso­

ventral axis is retinoic acid (RA). Retinoids are expressed in the paraxial 

mesoderm and the notochord, and exposure to RA has been shown to induce 

ventral interneuron differentiation in a Shh independent manner (Pierani et aI., 

1999a). However, in the absence of Shh signalling, the differentiation of 

definitive dorsal cell types such as neural crest, roof plate, and dorsal 

interneurons is still restricted to the dorsal neural tube (Liem et aI., 1997) 

suggesting the additional action of 'dorsalising' inductive signals. 

1.2.5 BMPs act as dorsalising agents to pattern the dorso-ventral axis of the 

neural tube 

The most likely candidates for Shh independent patterning signals are 

members of the TGFJ3 superfamily (see box 2). The TGFJ3 superfamily of 

signalling molecules has two general branches, the BMP/GDF and 
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Figure 1.7 
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GIi3-/- results in a partial rescue of Shh-/- spinal cord. 
Schematic representation of the different cell types along the dorso-ventral 
axis of the spinal cord following null mutations of Shh and Gli3. 
Loss of Shh results in the loss of most ventral cell types in the spinal cord, 
however, a partial rescue is observed in Gli3-/-;Shh-/- double mutants, 
indicating a Shh independent signal is also acting to pattern the neural tube. 
The status of dorsal cell types that have not been generally assessed is 
denoted by a question mark. Multiple neuronal types within a single coloured 
domain indicates an overlap of cell types. 

Adapted from Ruiz et Altaba et ai, 2003 



TGF~/Activin/Nodal families, whose members have diverse, yet often 

complementary effects (Massague, 2000). It is thought that the BMPI GDF 

branch is responsible for dorso-ventral patterning as many members of this 

branch, including BMP4 and BMP7, are expressed in the ectoderm overlying 

the neural tube and later in the dorsal part of the neural tube, including the 

roof plate (Figure 1.2) (Lee et aI., 1998a; Liem et aI., 1997; Liem et al., 

1995a). It has been difficult to demonstrate an absolute requirement for BMPs 

in dorso-ventral patterning and dorsal cell fate speCification as mice lacking 

BMP2 or BMP4 activity die early in embryogenesis. Mice that lack BMP7 

functions have defects in growth and morphogenesis of the eye, but 

abnormalities in neural crest and dorsal spinal cord development have not 

been detected. The failure to demonstrate essential functions for specific 

BMPs in early dorso-ventral patterning of the neural plate may reflect 

functional redundancy between BMP family members (Barth et aI., 1999; 

Dudley and Robertson, 1997; Lee et aI., 1998a; Nguyen et aI., 2000). 

Despite the failure to demonstrate essential functions for speCific BMPs in 

early dorso-ventral patterning of the neural plate, a large body of evidence 

has accumulated to suggest that they do playa central role. Studies in vitro 

have shown that the induction of neural crest and roof plate cells by 

epidermal ectoderm in chick is mimicked by BMP4 and BMP7 (Basler et aI., 

1993; Liem et aI., 1997; Liem et aI., 1995a). Additionally, the generation of 

dorsal neuronal cell types has been shown to be dependent on BMP signals 

from the roof plate, as genetically ablating the roof plate or using BMP 

antagonists in vivo, results in the failure of dorsal cell types to form (Lee et aI., 

2000; Liem et aI., 1997). Moreover, mutations in the BMP family member 

GDF7, which is expressed at slightly later times within the roof plate, result in 

the elimination of the D1A class of dorsal neurons (Lee et aI., 1998b) 

Five distinct classes of dorsal interneurons have been described on the basis 

of their expression of LIM homeodomain factors (Lee et aI., 2000; Lee et aI., 

1999; Pierani et aI., 2001). These interneuron populations, D1A, D1B, D2, 03, 
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and 04, express LH2A, LH2B, Islet1, Lim1/2, Lmx1 b, respectively (figure 1.8). 

Recently, progress has been made in defining progenitor populations in the 

dorsal neural tube by their expression of bHLH factors (Gowan et aI., 2001; 

Timmer et aI., 2002). Cash1 (Chick Icheate-§cute homologue), Ngn1 

(Neurogenin 1), Ngn2 (Neurogenin 2) and Cath1 (Chick Itonal homologue1) 

are expressed in mutually exclusive domains in the dorsal neural tube, and 

their role in specifying distinct neuronal identities has been shown using 

Math1 (Mouse Itonal homologue1), Ngn1, and Ngn2 mutant mouse strains, 

as well as through the ectopic expression of these bHLH factors in chick 

neural tube (Gowan et al., 2001). 

Recent work has demonstrated a direct role for BMPs in regulating the 

expression patterns of these bHLH genes in the dorsal neural tube (Timmer 

et aI., 2002). BMPs were found to set the dorsal border of Cash1, as high 

levels of BMP repress its expression. Low levels of BMP signalling were 

found to induce the expression of Ngn1, again, setting up the expression of 

this gene at a specific distance from the roof plate (figure 1.8b). In addition to 

BMPs regulating the expression borders of these genes, the bHLH genes in 

this area have been shown to inter-regulate (Gowan et aI., 2001). Therefore, 

the expression of the bHLH genes are set at specific thresholds of BMP 

signalling activity, which ultimately results in populations of mature neurons 

differentiating along a gradient of BMP activity. However, any direct 

relationship between bHLH protein expression and cell fate is restricted to 

dorsal cells, as most of these bHLH proteins are also broadly expressed in 

ventral cells. 

Although BMPs do not appear to regulate intermediate cell types through the 

regulation of bHLH genes, they do play a role in regulating homeodomain 

proteins in this region. Specifically, activation of the BMP response causes a 

ventral shift in the boundary of the dorsally expressed homeodomain 

transcription factors PaxS, Pax7, Msx1, and Msx2, and represses expression 

of intermediate and ventral homeodomain proteins, such as Dbx1 and Dbx2 

(figure 1.8 a, c) (Pierani et aI., 1999b; Timmer et aI., 2002). These results 
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Figure 1.8 

BMP s~flC)fing regulates many aspects of neural tube patterning. 

(A) BMP singling regulates homeobox gene expression to define dorsal and 

intermediate cell fates. In co-operation with Shh singling, BMPs set the 

expression domain boundaries of PaxS and Pax7. The border between 

dorsal and intermediate cell fates, marked by the dorsal border of high 

level PaxS expression is refined by the BMP-mediated activation of Msx1 , 

which represses Dbx2 expression. 

(B) BMP signalling regulates the dorsal expression of bHLH proteins along a 

gradient of activity. bHLH protein expression boundaries are set by 

thresholds of BMP signalling. bHLH expression domains give rise to a 

limited number of types of terminally differentiated neurons. 

(C) BMP signalling promotes a diversity of intermediate cell fates. BMP 

regulation of Pax7 sets a dorsal limit on the generation of Evx1-

expressing neurons. BMP' regulation of the dorsal border of Dbx1-

expressing cells may help divide the Pax2 + , Lim1/2 + cells into two 

distinct progenitor populations. 

Diagram taken from Timmer et ai, 2002 
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Figure 1.8 
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demonstrate that the proteins which comprise the progenitor domains can be 

both Shh- and BMP-responsive. 

Regulation of both bHLH and homeodomain transcription factors by BMPs 

have been shown to be concentration dependent, suggesting that BMPs can 

also act as morphogens in generating patterning information (Lee et aI., 

1998b; Liem et aI., 1997; Pierani et aI., 1999b; Timmer et aI., 2002). 

Increasing evidence indicates that dorsally derived BMPs influence patterning 

in ventral regions of the neural tube. BMP antagonists expressed in the 

notochord are able to diffuse through the neural tube and regulate the activity 

of BMPs in ventral cells (Liem et aI., 2000; McMahon et aI., 1998; Patten and 

Placzek, 2002). Additionally, mutations in the BMP signalling pathway in 

zebrafish show an expansion of ventral neural fates, indicating that 

appropriate BMP levels are required for normal neural fate specification at all 

dorso-ventral levels of the neural tube (Barth et aI., 1999). Thus, Shh/Gli3 

independent patterning may rely, at least in part, on a gradient of BMP activity 

set up by BMP expression in the dorsal ectoderm and roof plate of the neural 

tube, and the expression of BMP antagonists in the notochord. 

Box 2 
TGF-~ signalling pathway. 

The TGF-j3 family of signalling molecules has two general branches (the 

BMP/GDF and TGF-j3/Activin/Nodal branches) whose members have diverse, 

yet often complementary, effects. TGF-ft signalling is mediated by a family of 

serinel threonine receptor kinases that are classed either type I or type II. 

Ligand binding leads to the association of these two receptor types, resulting 

in the phosphorylation of the type I receptor by the type II receptor. This in turn 

activates Smad transcription factors and propagates the intracellular signal 

(Massague, 2000). 
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Smad proteins activated through receptor activation are collectively referred to 

as receptor-phosphorylated Smads (R-Smads). These fall into two distinct 

categories, Smad1 and its two close homologues Smad5 and Smad8 are BMP 

receptor substrates, whereas Smad2 and Smad3 are substrates of the related 

TGF-rl and activin receptors in vertebrates (Kretzschmar and Massague, 1998; 

Massague, 2000). Phosphorlyation increases the affinity of R-Smads for 

Smad4, which is required for active transcriptional complexes to assemble, 

and to unmask its nuclear import function. As both BMP and TGF-rl/Activin 

pathways compete for the same Smad4 protein, this can result in a mutual 

antagonism of the two general branches. 

The response of cells to TGF-rl signalling is wide ranging and often context 

dependant. This is due to tight regulation at every level of the pathway. Firstly, 

there are many extracellular molecules which are able to bind the ligands, 

such as noggin, chordin, follistatin and cerberus, which prevent interaction with 

the receptors. Additionally, the TGF-j3Superfamily are active as dimers, and so 

co-expression of different family members can result in heterodimer formation, 

with the composition of these molecules dramatically affecting the signalling 

activity. Recent reports have suggested that BMP7/Nodai heterodimers can 

form, resulting in an antagonism of BMP signalling (Soubes et aI., in 

preparation). Each ligand may have a choice of several type I and/or type II 

receptors and a given cell may express different receptor forms. At the level of 

the Smads, numerous repressive and activational molecules have been found 

which dictate the transcription of speCific target genes (Massague, 2000). 

Seven type I or activin-like kinases (ALKs) and five type II receptors have been 

identified in vertebrates, yet only BMPR-1a (ALK-2), BMPR-1b (ALK-3), and 

ALK-6 appear to speCifically transduce BMP signals (Solloway and Robertson, 

1999), and the majority of responses to BMP signals are covered through the 

actions of BMPR-1a and BMPR-1b (Panchision et aI., 2001). 
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BMPR-1a is expressed throughout the neural tube and its activation results in 

the up-regulation of BMPR1b. BMPR1b is therefore expressed in and next to 

areas of BMP expression. It is thought that the serial action, first of BMPR1a, 

and then of both R1a and R1b, provides a mechanism for concentration and 

temporal differences in BMP signalling, as distinct roles have been suggested 

for the two receptors ( Panchision et al 2001). 

The complexities in the TGF-~ signal transduction pathway, and the many 

ways in which the competence of the cell to respond to these signals can be 

altered by other, external signals and developmental history, mean that the 

outcome of TGF-~ signalling is highly dependent upon the cellular context. 

Thus it seems that the cell itself determines the outcome of the signal , as a 

result of inductive and repressive cues, received both at the time of the signal 

transduction, and at earlier time points throughout development. 
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1.3 Integration of BMP and Shh signals: antagonism at multiple levels 

The weight of evidence, then, currently suggests that the integration of Shh 

and BMP signalling patterns the dorso-ventral axis of the neural tube in the 

normal embryo, and suggests largely that Shh and BMP7 exert antagonistic 

effects in dorso-ventral neural tube patterning. Indeed, numerous studies 

have shown that BMPs and Shh have antagonistic effects on one another, 

both at the level of protein interactions, and at the transcriptional level (Liem 

et aI., 2000; Monsoro-Burq and Le Douarin, 2001; Panchision et aI., 2001; 

Soubes et aI., in preparation; Watanabe et aI., 1998) 

Explants exposed to a fixed concentration of Shh will give rise to neurons and 

progenitor populations with a more dorsal identity when cultured with BMPs, 

than when cultured with Shh alone. Conversely, exposure of neural explants 

to BMP antagonists results in a dorsal-to-ventral switch in progenitor cell 

identity and neuronal fate (Arkell and Beddington, 1997; Basler et aI., 1993; 

Liem et aI., 2000). This indicates that there is an interaction down-stream of 

the protein, which modifies the response to Shh signalling. Moreover, the 

antagonism seen at the protein level also appears to work in the opposite 

direction, with Shh protein modulating the response of cells to BMP signals 

(Liem et aI., 1995a). 

There are a number of mechanisms by which the mutual modulation of these 

two signalling pathways may occur. Firstly, Gli proteins have been shown to 

form part of a complex which is involved in sequestering Smads (Liu et aI., 

1998), the transcriptional effectors of BMP signalling (see box 2). Thus, Shh 

and BMP signalling may converge in neural cells at the level of a 

transcriptional regulatory complex that contains both Smad and Gli proteins. 

Another way in which the two pathways can interact is through the regulation 

of BMP receptors by Shh. BMP signals are thought to act initially through 
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BMPR1a, which then causes the up-regulation of BMPR1b. However, Shh 

has been shown to antagonise this response, preventing the expression of 

BMPR1b (Panchision et al., 2001). 

Recent studies have indicated that BMPs are able to maintain the expression 

of Gli3 in explants (Meyer and Roelink, 2003), and it is likely that BMPs are 

also responsible for maintaining Gli3 expression in the ventral neural tube in 

the absence of Shh. Therefore BMP-mediated antagonism of the Shh signal 

may be through maintenance of Gli3 transcription (Figure 1.9). The action of 

BMPs in controlling intermediate cell fate appears to be through the regulation 

of homeodomain transcription factors. Signalling by BMPs appears to 

simultaneously induce expression of class I transcription factors, whilst 

promoting the expression of G1i3, which in turn represses the expression of 

class II proteins, creating dorsalised progenitor domains. Shh on the other 

hand promotes the expression of class II transcription factors whilst 

antagonising the repressive action of Gli3 on their expression. 

Additionally, Shh and BMPs can act antagonistically at the mRNA level. 

Beads soaked in BMP4 can down-regulate Shh mRNA expression lateral to 

the Node (Monsoro-Burq and Le Douarin, 2001). Similarly, explants of axial 

mesoderm cultured in BMPs show a decrease in Shh transcription (Soubes et 

aI., in preparation). 

Together, then, in most of the neuraxis, Shh and BMPs are expressed in cells 

at opposite poles along the dorso-ventral axis of the developing neural tube 

and exert mutually antagonistic effects, both at the level of mRNA 

transcription and by interfering with one another's downstream signalling 

pathways. 
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Figure 1.9 
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BMP - Shh antagonism through regulation of G1i3. 
Activation of the BMP response results in expression of class I 
genes and Gli3, which are thought to mediate dorsal differentiation. 
Activation of the Shh response represses Gli3 expression and 
conversion to Gli3R, whilst promoting expression of class II genes, 
thought to promote ventral cell fates. 

Diagram taken from Meyer and Roelink, 2003 



1.4 Shh and BMP interactions within the forebrain 

Although, as outlined in section 1.1, region-specific signals can alter the 

outcome of Shh and BMP signalling at different anterior-posterior levels, the 

basic model, whereby an antagonism between the two molecules results in 

the dorsa-ventral patterning of the neural tube, appears to operate throughout 

most of the neuraxis, including the midbrain, hindbrain and spinal cord. 

Likewise, in the forebrain, loss of Shh signalling results in the loss of ventral 

cell types, as well as cyclopia and holoprosencephaly. Conversely, over­

expression of BMPs through addition of protein-soaked beads or loss of BMP 

antagonists produces a very similar phenotype, which indicates that BMP-Shh 

signalling antagonism is required for correct morphogenesis and patterning 

(Anderson et aI., 2002; Golden et aI., 1999). 

Implantation of BMP-soaked beads into the telencephalon results in a down­

regulation of Shh mRNA in ventral cells that extend from the telencephalon 

through to the midbrain (Ohkubo et aI., 2002). Interestingly, follOwing the use 

of cycloheximide to block protein synthesis, Shh is still down-regulated from 

the retrochiasmatic (ventral telencephalon) area, but its expression remains in 

regions posterior to this. This indicates that the manner in which BMP 

antagonises Shh mRNA occurs very distinctly in different forebrain regions: 

BMPs down-regulate Shh directly in the retrochiasmatic region, but down­

regulate Shh indirectly in more posterior regions, including those that will form 

the hypothalamus. 

The ability of BMPs to down-regulate Shh, albeit indirectly, within the 

hypothalamus, under experimental conditions, presents something of a 

paradox, given earlier work. These earlier studies had shown that one area 

of the neuraxis in which the dorso-ventral antagonism of Shh and BMPs does 

not appear to behave in the same manner as in the rest of the neural tube, is 

the developing hypothalamus. Studies in both chick and rodent embryos 

have shown that, in contrast to other regions of the neural tube where Shh 
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and BMPs are expressed at opposite dorsa-ventral poles, in ventral-most 

regions of the hypothalamus that will form the hypothalamic infundibulum, and 

in underlying prechordal mesoderm, BMP7 is co-expressed with Shh. 

Moreover, the combined activity of Shh and BMP7 is required to induce a 

ventro-Iateral hypothalamic cell phenotype (Dale et aI., 1997; Dale et aI., 

1999; Ohyama et aI., in preparation). As yet, the mechanism by which Shh 

and BMP7 come to be co-expressed, and act co-operatively, rather than 

antagonistically, remains unclear. However, one possibility is suggested by 

studies in cell lines that show that, at high concentrations, Shh may initially 

activate, rather than suppress BMP transcription. In the mouse anterior 

pituitary, Shh is thought to induce ventral BMP2 expression (Burgess et aI., 

2002). Additionally, several Gli protein binding motifs have been found on the 

promoters for BMP4 and BMP7, and these promoters can be stimulated on 

co-transfection of Gli1 or Gli3 into COS-7 cells (Kawai and Sugiura, 2001). No 

such stimulation was detected when Gli proteins were transfected into Hos 

cells, indicating a cell context-dependent stimulation. However, these 

observations raise the possibility that, as has been observed with other 

signalling molecules (e.g. Nodal-Lefty), a Signalling molecule may, in some 

cases, induce expression of a repressor that subsequently limits the initial 

signal-activity . 

These observations, then, show an unusual co-expression of Shh and BMP7 

in prechordal mesoderm and prospective hypothalamic infundibular cells, at 

least at early stages of development. Further support for an unusual ventral 

action of BMPs within this region derives through analyses of the GIi2-/­

mutant mouse. In these mice, Gli3 is able to induce ventral character, 

including Shh expression, in diencephalic cells that will form the ventral 

hypothalamus, but is not able to induce Shh in posterior regions of the 

neuraxis (Motoyama et aI., 2003). Thus, the control of ventral character in the 

forming hypothalamus appears to be very different to that in posterior regions 

of the neural tube. A likely explanation is that the ventral expression of BMP7 

within the prechordal mesoderm and prospective infundibulum maintains Gli3 
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expression ventrally, where it is able to act as a positive regulator of Shh 

expression (see section 1.3). 

1.5 Transcriptional control of Shh 

The ability of BMPs to down-regulate expression of Shh, both directly and 

indirectly (see section 1.3) raises the question of how Shh expression is 

regulated at the transcriptional level. Direct analyses of cis-acting sequences 

that regulate Shh expression in zebrafish and mouse embryos has revealed 

discrete regulatory enhancers within the Shh promoter/introns that direct Shh 

expression in the notochord and ventral regions of the neural tube (figure 

1.10) (Epstein et aI., 1999; Jeong and Epstein, 2003)(Strahle et ai, 2004). 

In the mouse, three separate enhancer regions regulate Shh expression: Shh 

Qrain !nhancer 1(Sbe1), drives Shh expression in the ventral midline of the 

midbrain and caudal diencephalon, Shh ~oor Rlate !nhancer 1 (Sfpe1), drives 

floor plate expression caudal to the midbrain, and Shh ~oor Rlate !nhancer 2 

(Sfpe2), acts in conjunction with Sbe1 to drive expression in the floor plate, 

the diencephalic ventral midline and notochord (Epstein et aI., 1999). No 

combination of these enhancer regions resulted in the reporter construct 

being expressed in the telencephalon, indicating that the control of Shh 

expression in this region is through other areas of the promoter not looked at 

in these studies. 

Further analysis of the Sfpe2 region has revealed a number of conserved 

sequences which correspond to binding sites for various transcription factors 

expressed within the neural tube, including Foxa2 (HNF3~), Foxh1 (Fast1, a 

component of the Nodal signalling pathway), and a homeobox domain. 

Deletion/mutation studies show that these binding sites are required for the 

positive regulation of Shh expression (Jeong and Epstein, 2003). In addition, 

within the 88 bp sequence within Sfpe2 is a highly conserved binding site that 
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Figure 1.10 

anterior floor plate / hypothalamus notochord 

Zebrafish 
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floorplate, notochord 
a~A a~B a~C 

SBE1 SFPE2 

ventral brain ;/ 

floor plate 
notochord 

Schematic of the Shh locus in zebrafish (top) and mouse (bottom), showing coding exons (green boxes), 
non-coding sequences (solid line) and intronic enhancers (red ovals) . Homologous enhancer regions between 
species are shown by fading black lines. Areas in which individual enhancer regionshave been shown to drive 
Shh expression are indicated next to the enhancers. 

Diagram from Strahle et aI, 2004 



matches the consensus for homeodomain Tbx transcription factors. 

Mutational analysis reveals that, in contrast to Foxa2, Foxh1 and the 

homeodomain consensus binding sites, the Tbx binding site is required for 

the repression of Shh in the hypothalamic infundibulum. 

Together, these mutational analyses point to the ability of complex signalling 

networks to control Shh mRNA levels, both positively and negatively. Of 

particular interest to my studies is the observation that Shh can be negatively 

regulated within the mouse infundibulum (see section 3). 

1.8 Summary 

Together, the studies outlined in the Introduction suggest that in the posterior 

neural tube, Shh and BMPs act antagonistically. However, in the 

hypothalamus, at early stages of development, BMP7 and Shh are initially co­

expressed within prechordal mesoderm and within ventral midline 

hypothalamic cells and can co-operate to induce ventro-Iateral hypothalamic 

cells. The co-expression and co-operation of BMP7 and Shh are highly 

unusual, and raise the question of whether this is a transient event, followed 

by a more predictable antagonism. The major aim of my thesis was to clarify 

this, in the developing chick embryo by: 

• Constructing a fate map of the early hypothalamus 

• Assessing the expression patterns of Shh and BMPs at various stages 

of hypothalamic development 

• Addressing whether, and how, BMPs act antagonistically to Shh at 

later stages of hypothalamic development. 

My studies show that: 

• Early hypothalamic cells that initially co-express Shh and BMPs and lie 
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adjacent to Shh+ BMP7+ prechordal mesoderm give rise to Shh­

hypothalamic cells. 

• BMP2 and BMP7 are expressed in and beneath hypothalamic 

infundibular cells that will down-regulate Shh. 

• BMPs can down-regulate Shh in prospective hypothalamic infundibular 

cells, and are required to down-regulate Shh in vivo. 

• BMPs govern expression of the T -box homeodomain transcription 

factor, Tbx2. Expression of Tbx2 is reciprocal to that of Shh, both 

normally and after experimental manipulation, suggesting a 

mechanism for the BMP-mediated down-regulation of Shh. 

• In addition to regulating expression of Shh, BMPsITbx may govern cell 

cycle within the forming infundibulum. 

Together, these studies suggest that BMPslTbx2 exert a dual effect on Shh­

expressing cells of the ventral hypothalamus, simultaneously regulating the 

character and spatial extent of a distinct progenitor domain, with cells within 

the domain synchronised in their ability to respond to further signals. 
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Chapter 2 

Materials and Methods 



2.1 In vivo manipulations 

2.1.1 Fate Mapping 

HH stage 9 embryos were accessed in ovo by opening a small window in the 

eggshell and removing the membranes overlying the embryo. Black Indian 

ink diluted in Leibowitz's L 15-Air medium (1:100) was then injected 

underneath the embryo in order to visualise it. In order to access the ventral 

neural tube, a small hole was made in the vitelline membrane above the 

forebrain, then an incision made in the dorsal neural tube (see fig 3.2). 

Prospective hypothalamic cells were identified by reference to their position 

relative to the underlying axial mesoderm, and focal injections were made 

using a picospritzer II microinjection system (General valve corporation), with 

a solution of Oil, 5mg/ml in absolute ethanol (Molecular Probes). After 

injecting, the embryos were removed and fixed immediately for analysis by in 

situ hybridisation, or the eggs were resealed and incubated for 24 hours until 

HH stage 16-18 prior to fixation and analysis by immunohistochemistry. 

2.1.2 Bead implantation 

Affigel blue beads (Biorad) were soaked in Chordin protein for 24 hours at 

4°C prior to implantation. HH stage 5-6 embryos were accessed in ovo 

through a small window in the eggshell, and visualised using Indian ink. 

Beads were then inserted under the vitelline membrane and positioned 

adjacent to the neural plate, above the prechordal mesoderm. The eggs were 

resealed and incubated for 30 hours until HH stage 16-18, prior to fixation 

and analysis by immunohistochemistry or in situ hybridisation. 
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2.1.3 Prechordal mesoderm ablations 

Embryos were prepared and maintained in New culture (New 1955; Stern 

and Ireland 1981) using Pannett-Compton saline (Pannett and Compton 

1924), such that the ventral surface of the embryo faced uppermost. The 

prechordal mesendoderm at HH stage 4/5, identified by morphology and 

comparison with gsc expression (not shown) was removed using a 

microsurgery knife. A cut was made horizontally through the endodermal 

and mesodermal layers at the anterior limit of Hensen's node prior to gentle 

scraping away of both endodermal and mesodermal tissue anterior to the 

node. Any embryos in which the epiblast layer was damaged were 

discarded. Following surgery, embryos were maintained in New culture for 

around 20 hours until stage 10. 

2.2 Explant culture 

All embryos were staged and dissected in cold L 15 medium (Gibco-BRL) 

Explants of anterior ventral midline from stage 7 were prepared by isolating 

the neurectoderm from the axial mesoderm using Dispase (1 mg/ml). Parallel 

cuts were made either side of the midline, and the section from the 

prospective forebrain removed, identifiable by its morphology. Explants were 

then cultured in collagen beds according to published techniques established 

in the lab (Placzek and Dale 1999). 

2.3 In situ hybridisatlon and immunohistochemistry. 

Embryos and explants were analysed by immunohistochemistry according to 

standard techniques (Placzek et al. 1993). Following cryostat sectioning 

(15J1m sections), the following monoclonal antibodies were used (dilutions in 

parentheses): 68.5E1, anti-Shh (1:50) (Ericson et al. 1996); anti­

Phosphorylated Histone H3 (anti-PH3) (Upstate; Hendzel et ai, 1997) 
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Secondary antibodies (Jackson Immunoresearch) were conjugated to Cy3 or 

fluorescein isothyocyanate (FITC). 

Embryos were processed for in situ hybridisation as described previously 

(Vesque et al. 2000). The following template DNAs were used to generate 

digoxygenin labelled antisense RNA probes (Vesque et al. 2000); Plasmid 

pcBMP2 containing a cDNA fragment encoding chick BMP2 was Iinearised 

with Hind III and transcribed with T3 RNA polymerase. Plasmid pBH2 

containing a cDNA fragment encoding chick BMP7 was linearised with Xho 1 

and transcribed with T3 polymerase. Plasmid pcBMP4 containing a cDNA 

fragment encoding chick BMP4 was Iinearised with BamH1 and transcribed 

with T3 RNA polymerase. Plasmid pCRIl containing a cDNA fragment 

encoding chick BMP6 was Iinearised with Xbal and transcribed with SP6 

polymerase. Plasmid pMT21 containing a cDNA fragment encoding chick 

Noggin was Iinearised with Xho 1 and transcribed with T3 polymerase. 

Plasmid pMT23 containing a cDNA fragment encoding chick Chordin was 

linearised with Eco R1 and transcribed with SP6 polymerase. Plasmid pcvhh 

containing a cDNA encoding chick sonic hedgehog was Iinearised with Sal-1 

and transcribed with SP6 polymerase. Plasmid pBS Sk containing a cDNA 

fragment encoding chick Tbx2 was Iinearised with Sal 1 and transcribed with 

T7 polymerase. Plasmid pBS Sk containing a cDNA fragment encoding chick 

Tbx3 was linearised with Not 1 and transcribed with T3 polymerase. Plasmid 

pBS Sk containing a cDNA fragment encoding chick Tbx4 was Iinearised with 

EcoR1and transcribed with T3 polymerase. Plasmid pBS Sk containing a 

cDNA fragment encoding chick Tbx5 was linearised with Not 1 and 

transcribed with T3 polymerase. Plasmid pBS Sk containing a cDNA 

fragment encoding chick Tbx15 was Iinearised with Not 1 and transcribed with 

T7 polymerase. Plasmid pBS Sk containing a cDNA fragment encoding chick 

Tbx18 was linearised with Bam H1 and transcribed with T7 polymerase. (Tbx 

genes courtesy of Malcolm Logan). 

Following development, embryos or explants were analysed as whole-mount 

preparations. In some cases, 15Jlm serial frozen sections were taken for 

detailed analysis of expression patterns. 
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2.4 Protein use 

2.4.1 Protein production 

Proteins were either obtained in purified form (hu BMP2, hu BMP7/0P1: 

Creative Biomolecules) were produced from transient transfections (chick 

chordin, chick BMP7,), or produced from baculovirus (chick chordin). 

Chick BMP7 and Chordin were produced after transfection of expression 

constructs into COS 7 cells. Cells were grown in DMEM containing 10% fetal 

calf serum (FCS), and transfections performed using lipofectamine (Gibco 

BRL). Following transfection, cells were grown in serum-free optimem 

medium (Gibco-BRL) for 24hrs prior to collection of supernatants. 

Chick Chordin was also generated by infection of S2 cells with baculovirus 

containing the VL 1 E chordin expression construct (see (Dale et al. 1999). 

2.4.2 Proteins in functional assays 

Proteins were tested for function in one of two ways: i) by addition to culture 

medium in in vitro assays; ii) after soaking to a bead, and bead implantation. 

i) Addition of proteins to culture supernatant. 

Purified proteins were used at defined concentrations - established in 

independent assays (Liem ~W!J.) and after Western blotting (Soubes et al). In 

all experiments using proteins produced through transient transfections, 

supernatants were concentrated ten-fold using Centri-plus columns (Amicon) 

and then diluted 1:10 in explant culture medium. In explant experiments, 

proteins were added to cultures at the start of incubation. BMP7 and BMP2 

were used at concentrations of 10-100nM respectively, unless otherwise 

stated (as in chapter 6). 
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ii} Attachment of proteins to beads 

Affigel Blue beads (Biorad) were washed 5 times in PBS and then soaked in 

protein overnight at 4°C prior to grafting. 

2.5 Quantitative RT -peR 

Total RNA was isolated from single pieces of tissue (anterior medial neural 

plate; see figure 5.1) after in vitro culture (see section 2.2), with Strataprep 

Total RNA microprep kit (Stratagene, La Jolla, CA). RNA was reverse 

transcribed with Superscript II (Gibco-BRL,) using random primers. For each 

sample, half of the RNA was used for reverse transcription and the other half 

for a minus reverse transcriptase control. 

Real time quantitative RT -PCR was performed using the ABI Prism 7700 

sequence detection system (Applied Biosystems). Primers and probes were 

designed with the Primer Express software (Perkin-Elmer). Primers were 

purchased from Gibco-Brl and the TaqMan fluorogenic probes from Applied 

Biosystems. The quantification of Shh was achieved with the forward primer 

5'-CGGCTTCGACTGGGTCTACT-3', reverse primer 

5'CGCTGCCACTGAGTITTCTG~3' (generating an amplicon of 76 bp) and 

the Taqman probe 5'-CGAGTCCAAGGCGCACATCCACT-3' (labelled with 

the reporter dye FAM on the 5' nucleotide and the quenching dye TAMRA on 

the 3' nucleotide). Amplification of ~-actin as an endogenous control was 

used to standardise the amount of RNA in each sample. The quantification of 

~ -actin was achieved with the forward primer 5'-

GGTCATCACCATTGGCAATG-3', reverse primer 5'-

CCCAAGAAAGATGGCTGGAA-3' (generating an amplicon of 66 bp) and the 

Taqman fluorogenic probe 5'-TTCAGGTGCCCCGAGGCCCT-3' (labelled 

with the reporter dye VIC on the 5' nucleotide and the quenching dye TAMRA 

on the 3' nucleotide). 
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Primer and probe optimisation for Shh and actin amplification were 

performed on notochord RNA isolated from HH st 15 chicks. Amplification of 

Shh was optimised with 50 nM forward primer, 900 nM reverse primer and 

100 nM Taqman probe. Amplification oC~-actin was optimised with 50 nM 

forward primer, 300 nM reverse primer and 100 nM Taqman probe. PCR 

amplification of Shh and ~-actin was done in separate tubes in a 25#1 

reaction volume with 1/8 of the cDNA obtained from the reverse transcription 

reaction. PCR conditions were as suggested by Applied Biosystems. 

Samples were run in triplicate. The minus reverse transcriptase controls were 

run at the same time to verify the lack of DNA contamination. 

Initially a validation experiment was performed to determine that amplification 

of Shh and J3-actin was equally efficient: Shh and ~-actin expression were 

quantified on serial dilutions of reverse transcribed products from stage 15 

notochord RNA, and the log of cDNA input versus the difference in Ct values 

of Shh and actin (Oct) plotted. The absolute value of the slope was inferior to 

0.1 indicating that amplification of Shh and b-actin was approximately equal. 

Thereafter relative quantification of Shh mRNA was calculated using the 

comparative OCt method. Ct values refer to the cycle number, during the 

exponential phase of PCR amplification, at which the fluorescence, and 

hence the PCR product, reaches a certain threshold - i.e the higher the Ct 

value, the lower the amount of mRNA extracted from the explant. The 

quantification of Shh was normalized to ~-actin; i.e. OCt = Ct Shh- Ct Actin. In 

some cases, the relative amount of Shh mRNA in control explants was 

directly compared to that in treated explants. In this case, the amounts were 

calculated using the formula: 2-(DDCt) where_ DDCt = OCt (control) - OCt 

(treated). In several cases, we converted the Oct levels, to express levels of 

Shh as a percentage of expression in explants exposed compared to 

unexposed explants. This was achieved using the calculation (2-DCt(exposed)l2-

DCt(unexpoaed» *100. Robust rank order tests (Siegel and Castellan, 1988) were 

used to determine statistical significance. 
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Chapter 3 

Fate Mapping 



3.1 Introduction 

3.1.1 Complex expression of Shh in the forming hypothalamus 

As outlined in the Introduction (sections 1.2 and 1.4), Shh acts as a 

ventralising agent throughout most of the neuraxis (Ericson et al., 1995). The 

idea that Shh acts as a general ventralising factor is supported by its 

expression profile. In most regions of the neuraxis, Shh is expressed in axial 

mesoderm underlying the neural tube, and then in neural tube cells that 

occupy ventral-most positions (the floor plate in the posterior neuraxis). 

Thus, in the telencephalon, midbrain, hindbrain and spinal cord, Shh is 

expressed in ventro-medial cells at early stages of embryogenesis, and is 

then maintained in these cells at later stages. In contrast, in the 

diencephalon, Shh is expressed in ventro-medial cells at early stages of 

embryogenesis, but at later stages, is no longer expressed in ventral-most 

regions, and is now expressed more laterally - i.e. within ventro-Iateral 

regions ofthe diencephalon (Jeong and Epstein, 2003; Mathieu et aI., 2002), 

and see section 3.2.1). The ventral diencephalon, which expresses Shh, will 

give rise to the hypothalamus, and so will be referred to as the 

hypothalamus! hypothalamic region hereafter (see figure 3.2). 

The relationship between the early population of ventral-most Shh­

expressing cells of the hypothalamus, and the later lateral Shh-expressing 

cells is unclear. One possibility is that cells initially located ventrally maintain 

Shh expression, but then migrate, to occupy a more lateral position. A 

second possibility is that the ventral cells remain at this ventro-medial 

position, but down-regulate Shh, while a second, more lateral population, 

comes to express Shh at a Slightly later stage of development. As a first step 

in understanding the relationship between Shh and BMPs within the forming 

hypothalamus, I set out to distinguish between these possibilities by 

performing fate mapping experiments in the prospective hypothalamus of the 

chick embryo. 
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3.2 Results 

3.2.1 Expression of Shh in the chick forebrain 

Previous studies in the chick embryo have revealed that the expression 

pattern of Shh mRNA is far more complex within the hypothalamus than in 

other regions of the neuraxis. To extend these analyses, I examined 

expression of Shh protein within the forming hypothalamus, and compared 

expression of Shh mRNA with that of Shh protein. As shown in figure 3.1, 

Shh mRNA and protein show an identical distribution within the ventral 

diencephalonl hypothalamus (in situs performed by MP). However, there are 

striking differences between expression of Shh in the spinal cord with that in 

the hypothalamus. In the spinal cord, Shh is conSistently expressed 

throughout early development in a narrow group of cells which form the 

ventro-medial floor plate, whereas expression in the hypothalamus is much 

more dynamic. At stage 7, Shh expression is fairly constant along the 

anterior-posterior axis, so that anteriorly, within the hypothalamus, 

expression is confined to the medial-most cells (figure 3.1 A, D). However, by 

stage 10, the expression domain in the hypothalamus has begun to expand, 

forming an oval shape (figure 3.1 e, E). Previous studies have suggested 

that the expansion of Shh, which begins at HH stage 9 (not shown), reflects a 

vertical induction from the underlying prechordal mesoderm, which appears 

itself to be broad (see figure 3.3 d). As the embryo develops further, Shh 

expression is lost in these ventro-medial cells, the prospective infundibular 

region of the hypothalamus, but is now expressed in the lateral cells of the 

forming hypothalamus (figure 3.1 C, F). 

In the interests of clarity, I have divided the forebrain of the stage 18 embryo 

into distinct regions, depending on morphology andl or Shh expression. 

Hereafter, the different regions of the forebrain will be referred to as in figure 

3.2. The diencephalon is composed of two main sections, the dorsal 

diencephalon, which will form the thalamus, and the ventral diencephalon, 
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Figure 3.1 

Shh is expressed dynamically in the ventral forebrain. 

(A-C) Whole-mount in situ hybridisation of Shh mRNA expression on isolated 

chick neuroepithelium at stages 7, 10 and 18. (D-F) Transverse sections 

taken through embryos of the same stages, at the level of the diencephalon, 

the ventral region of which will give rise to the hypothalamus and 

infundibulum. Sections were analysed for Shh protein by 

immunohistochemistry (red). 

Shh is expressed in a narrow group of cells at stage 7 (A, D). The expression 

pattern is similar along the entire anterior-posterior axis. At stage 10 (8, E), 

there is a marked expansion of Shh expression in the ventral diencephalon 

(prospective hypothalamus and infundibulum; arrow), whilst in more posterior 

regions, Shh expression remains in a narrow domain (arrowhead). At stage 

18, there is a loss of Shh in ventral most cells of the diencephalon (I), which 

will form the infundibulum (C, F), but it is expressed in lateral cells at this 

level (lateral hypothalamus; LH). Shh expression begins to be lost from the 

ventral diencephalic cells at around stage 15 (data not shown). (See also 

figure 3.2) 

D - Diencephalon, M - Midbrain, T - Telencephalon, H - Hindbrain, PM -

Prechordal Mesoderm, I - Infundibulum, LH - Lateral Hypothalamus 
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Figure 3.2 

Divisions in the forebrain 

In order to clarify areas of the forebrain subsequently referred to, divisions 

between different regions of the stage 18 embryo have been made, 

according to morphology and Shh expression. The dorsal diencephalon 

(DO) is composed of those cells between the midbrain (M) and 

telencephalon (T), dorsal to the region of Shh expression. The ventral 

diencephalon (VO) forms the hypothalamic area, and is composed of the 

following sections: the caudal hypothalamus (CH), which comprises the 

Shh positive diencephalic cells caudal to the zli; the lateral hypothalamus 

(LH), which forms the medial hypothalamic region and is composed of the 

Shh positive cells dorsal to the infundibulum; the infundibulum (I), which lies 

in the ventral medial hypothalamus and can be identified through its lack of 

Shh expression; the preoptic area (PO), which forms the rostral most point 

of the hypothalamus. 

The most important areas for this study are the lateral hypothalamus and the 

infundibulum. These areas are seen in cross-section in figure 3.1 F. 
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Figure 3.2 

T - Telencephalon, DD - Dorsal Diencephalon, M - Midbrain, 
H - Hindbrain, Zii - Zona limitans intrathalamica, ON - Optic 

nerve, VD - Ventral Diencephalon 
VD is further subdivided into: CH - Caudal hypothalamus, 

LH - Lateral hypothalamus, PO - Preoptic area, 
I - Infundibulum 



which will give rise to the hypothalamus. The hypothalamic region has been 

further divided into the caudal hypothalamus (the Shh positive cells between 

the midbrain-forebrain boundary and the zona limitans intrathalamica (ZIi», 

the infundibulum (the Shh negative region of the ventral hypothalamus), the 

lateral hypothalamus (the Shh positive cells dorsal to the infundibulum), and 

the preoptic area (the rostral-most Shh positive region) (figure 3.2). The 

regions that I will refer to most in this study are the lateral hypothalamus and 

the infundibulum. These areas are seen in cross-section in figure 3.1 F 

3.2.2 Fate-map of diencephalic cells 

Immediate questions raised by the pattern of expression of Shh in the 

forebrain are a) what causes the loss of Shh in the infundibulum? and b) is 

the expression of Shh seen in the lateral hypothalamus at HH stage 18 due 

to an expansion of the ventral Shh-positive population, to a migration of the 

ventral Shh-positive population or to the de novo induction of Shh in the 

lateral hypothalamic cells? 

In order to assess this, I performed fate-mapping studies of the area. Cells of 

the prospective hypothalamus were labelled at stage 9 or 10 using the 

lipophilic dye, Oil. As shown in figure 3.3, the embryo was first exposed by 

windowing the egg and removing the membranes. Indian ink was then 

injected underneath the embryo in order to visualise it, and a dorsal incision 

made in the neural tube so as to access the ventral cells. Oil was then 

injected into a small group of cells (10-30 cells) using compressed air at a 

controlled pressure and duration. The eggs were then re-sealed and the 

embryos developed to the required stage, HH stage 16-18. 

The prospective hypothalamic cells were identified according to the pOSition 

of the axial mesoderm, which lies directly beneath the ventral neural tube. 

Previous studies have shown that hypothalamic cells are induced and 

patterned by prechordal mesoderm, which forms a triangular shape that can 
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Figure 3.3 

A 
Embryo 

c 

Indian ink 

16--1-- Dorsal incision 

o 
o 

Fate-mapping technique 

B 

D 

(Prechordal 
mesoderm) 

o 0 
o 0 

(Notochord) 

o 
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(A) The embryo was accessed by making a small window in t he egg and 

removing the overlying membranes. Black Indian ink was then injected 

underneath the embryo in order to visualise it. (B) Surrounding the yolk of the 

egg is the vitelline membrane which had to be cut in order to access the embryo. 

(C) An incision along the dorsal midline of the neural tube was then made in 

order to access the ventral cells. (D) The hypothalamic cells could be identified 

by the underlying prechordal mesoderm, which forms a triangle shape that can 

be seen through the neuroepothelium. 



be seen through the neuroepithelium, as shown in schematic in figure 3.3 D. 

The junction of the prechordal mesoderm and notochord was judged to be 

the caudal-most point of the prospective hypothalamus, and measurements 

taken in relation to this point were used in order to target other cell groups. 

Before carrying out the fate mapping, I first confirmed that distinct cell groups 

could be targeted with fidelity and preciSion. This was done by injecting 

specific groups of cells, then analysing their position using a genetic marker. 

Previous studies have shown that BMP7 is expressed in the ventro-medial 

cells of the forebrain at stages 8-10 (Dale et aI., 1999), and in contrast to 

Shh, the expression of BMP7 remains in ventral-most cells over this period 

and does not expand. Therefore, BMP7 was used as a marker of ventro­

medial cells. Figure 3.4 shows the expression of BMP7 compared to that of 

Shh at stage 10. Superimposing the two images reveals that BMP7 is 

expressed in a medial subset of Shh-expressing cells at this stage (Fig 3.4C). 

Specific groups of cells were identified by dividing the ventral forebrain into 

grid-like domains, the ventro-medial most BMP7 expressing cells, termed 

M1, the ventro-medial Shh+ BMP7- cells, termed M2, and a region located 

lateral to the Shh-positive domain, termed L 1 (figure 3.40). Divisions were 

also made along the anterior-posterior axis, termed a, band c (figure 3.4C, 

E). Morphologically, group a cells are defined as those at the widest part the 

neural tube, at the point where the prechordal mesoderm ends, group b cells 

lie just posterior to these, and lie over the main area of prechordal 

mesoderm, and group c cells are those at the 'neck' of the neural tube. 

Once these distinct cell groups had been identified, embryos were injected in 

the M1 a, M1 b, M2a and M2b domains, and then fixed immediately and 

processed for BMP7 expression by in situ hybridisation. Figure 3.5 shows 

stage 9-10 embryos which have been injected with Oil, then processed for 

BMP7 expression. When injections have targeted the M1a (n=2) and M2a 

(n=2) populations, the Oil is seen to label cells anterior to the BMP7-

expressing region (figure 3.5 A, B), whilst when targeting the M1b population, 

Oil is expressed in the BMP7 positive midline (n=3; figure 3.5 C, E). When 
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Figure 3.4 

Shh and BMP7 define M1 and M2 domains in the prospective 

hypothalamus at stage 10. 

(A +B) Whole-mount in situ hybridisation on isolated neuroepithelium of stage 

10 embryos with probes against Shh (A) and BMP7 (B). BMP7 is expressed 

in the ventral-most cells of the diencephalon and midbrain, whilst Shh is 

expressed throughout the ventral midline and in an expanded domain in the 

diencephalon. 

(C) Schematic representation of the superimposed expression patterns of 

Shh (red) and BMP7 (blue), revealing BMP7 expression in a subset of the 

Shh positive cells. For the purpose of fate mapping, the diencephalon has 

been divided along the anterior-posterior axis into regions a, band c, as 

defined by the 'neck' of the neural tube (c), the area overlying the main body 

of the prechordal mesoderm (b), and the end of the prechordal mesoderm 

(a). 

(0) Schematic representation of a transverse section through the 

diencephalon. The expression of Shh (red) and Shh/BMP7 (blue) divide the 

ventral diencephalon into distinct populations, which express both BMP7 and 

Shh (M1), Shh alone (M2) or neither (L 1). Combining these medio-Iateral 

divisions with those along the anterior-posterior axis, as shown in (C), results 

in a grid-like division of the ventral diencephalonl prospective hypothalamus 

at this stage (E). 
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Figure 3.4 
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Figure 3.5 

Ventro-mec:lial and M1 and M2 cells of the ventral diencephalon can be 

accurately targeted. 

Stage 9-10 embryos were prepared as described in figure 3.3, and Oil (pink) 

was injected into the M1 (A, C), or M2 (B, 0) populations at levels a or b of 

the ventral diencephalon (see figure 3.4). The embryos were then fixed 

immediately and processed for BMP7 (blue) by in situ hybridisation. In both 

cases, the injection into the M1 cells is in the medial-most cells. When level a 

has been targeted, the Oil is anterior to the limit of BMP7 expression (A), 

whilst when targeting level b, the Oil is contained wholly within the BMP7 

positive midline (C). When the M2a cells were targeted, the Oil is again seen 

anterior to the BMP7 expression, and slightly to the right (B), whilst the M2b 

injection is seen within the anterior-posterior limit of BMP7 expression, but 

immediately adjacent to it (0). (E-F) Schematic representation of the level b 

injection sites in transverse sections (red = Shh, blue = Shh and BMP7). 
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injections were targeted to the M2b cells, the Oil is lateral to the BMP7 

positive cells (n=2; figure 3.50, F). These experiments show that the correct 

cells can be targeted accurately and consistently. 

Once accurate targeting of cells had been confirmed, the experiment was 

then repeated, this time allowing the embryos to develop to HH stage 16-18. 

Once developed, the embryos were sectioned and processed for Shh 

expression by immunohistochemistry. 

Initially, cells were targeted in the M1 domain. Surprisingly, cells targeted in 

the M1a region (n=1) did not appear to populate the ventral hypothalamus, 

but progeny of the labelled cells were found in both eyes, and the pre-optic 

area (figure 3.6). This result suggests that cells in region M1 a of the 

forebrain are composed of retinal precursors, but further analysis is required 

to confirm this as only one embryo was analysed. 

As cells of region M1a do not appear to populate the ventral hypothalamus at 

HH stage 16-18, the M1b population was targeted next (n=4). Figure 3.7 

shows a stage 9-10 embryo with the M1b population of cells labelled with Oil. 

Transverse sections through the same embryo at stage 18 reveal that the 

progeny of the cell injected in the M1 b region now populate the ventro-medial 

most cells of the Shh-negative infundibulum. Reconstruction of serial 

sections, as shown in the schematic in figure 3.7C, indicates that these cells 

contribute exclusively to the ventro-medial infundibulum. Oil labelled progeny 

were found at the most rostral end of the infundibulum but were no longer 

detected at the point where Shh is re-expressed in the pre-optic area. 

As the cells labelled in M1b populated only the ventro-medial most 

infundibulum, the M2b population was labelled in order to see whether these 

cells gave rise to more laterally located cells within the Shh-negative 

infundibulum, or whether they expanded in order to populate the lateral Shh 

positive rostral hypothalamus. The progeny of the M2b cells also appear to 

populate the Shh-negative infundibulum, but occupy a more lateral position 
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Figure 3.6 

Progeny of M1a cells occupy both optic vesicles. 
(A) Stage 9 embryo with Oil injection in the M1a domain (pink). (8 + C) VVholemountviews of left- and 
right-hand sides of the same embryo following development to stage 17. Dil labelling can clearly be 
seen in the optic vesicles at this stage (arrows). 



Figure 3.7 

Progeny of M1 b cells occupy the ventral infundibulum. 

(A) Stage 9 embryo with Oil injection (pink) in the M1b domain. 

(B) Transverse sections taken through the same embryo at the level of the 

medial hypothalamus! infundibulum, after development to stage 18. Shh 

(green) is shown in the lateral hypothalamus, whilst Oil labelling (pink) is 

seen in the ventre-medial most cells of the infundibulum. Cell nudei are 

labelled with OAPI (blue). 

(C) Schematic representation of reconstructed whole mount neuroepithelium 

showing region of Oil labelling (pink). Progeny of the labelled cells appear 

to contribute exclusively to the ventro-medial infundibulum (region M1) 

and are not seen within Shh (red) expressing regions. 
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compared to the progeny of M1 b cells (n=3; figure 3.8). Therefore, the 

progeny of the stage 10 M1/M2b cells divide the stage 18 infundibulum into 

two domains, the medial-most M1 cells, and the more lateral M2 cells. This 

then leads to the question of which cells give rise to the Shh-positive lateral 

hypothalamus? 

To test this, I injected Oil into L 1b of HH stage 9-10 embryos. Cells labelled 

in the L 1 b domain did not populate the lateral hypothalamus, but instead the 

progeny of this area were found in the eye (not shown). Surprisingly, the 

region that was found to populate the lateral, Shh positive hypothalamus 

were laterally-located cells immediately posterior to domain b, in a domain 

termed L 1 c (n=2), and occupying the 'neck' of the neural tube. The progeny 

of these cells populated not only the Shh-positive lateral hypothalamus, but 

also the caudal Shh-positive region of the hypothalamus and Shh-negative 

regions of the dorsal diencephalon (figure 3.9). As depicted in the schematic 

in figure 3.9 C, labelled L 1c progeny occupy the Shh-negative dorsal 

diencephalon, the Shh positive lateral hypothalamus, and have an anterior 

limit at the optic chiasm. Cells in the pre-optic area are not labelled. The fact 

that the L 1c cells give rise to both Shh positive and Shh negative cells 

indicates that their fate has not been specified by stage 10. It is also 

interesting to note that progeny of the L 1 c cells are at no time observed 

within the infundibulum, and that whilst these cells are initially situated 

caudally to the M1 and M2b cells which will form the infundibulum, their 

progeny occupy a far larger domain, covering the entire rostro-caudal extent 

of the diencephalon. 
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Figure 3.8 

Progeny of the M2b cells occupy the ventre-lateral infundibulum 

Transverse section taken at the level of the hypothalamus! 
infundibulum of a stage 18 embryo, labelled in the M2b domain at 
stage 9 (not shown). Shh (green) is seen in the lateral 
hypothalamus, whilst Oil labelling (pink) is detected in the ventro­
lateral cells of the infundibulum (M2 region). Oil is not detected in 
the Shh positive domain. 

Experiment done by Kyoji Ohyama 



Figure 3.9 

Progeny of the L 1c cells occupy the lateral hypothalamus 

(A) Stage 9-10 embryo with Oil injection in L 1c domain on both sides of the 

neural tube (arrows). 

(8) Transverse sections taken through the same embryo at the level of the 

medial hypothalamusl infundibulum, after development to stage 18. The 

lateral hypothalamus is co-labelled with Shh (green) and Oil (pink). Oil is 

also seen in regions dorsal to the Shh positive lateral hypothalamus. Cell 

nuclei are labelled with OAPI (blue). 

(C) Schematic representation of reconstructed whole mount neuroepithelium 

showing region of Oil labelling (pink). Progeny of the labelled cells appear 

to contribute to the entire anterior-posterior axis of the diencephalon, 

including the Shh negative dorsal diencephalon, Shh positive caudal 

hypothalamus, the Shh positive lateral hypothalamus, and have an 

anterior limit at the optic chiasm (see also figure 3.2). However, no Oil 

labelling is detected in the Shh negative infundibulum. 
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In summary, the fate mapping experiments yielded the following conclusions: 

1. The most ventro-medial parts of the Shh-negative infundibulum at HH 

stage 18 derive from ventro-medial M1 cells (region M1b) of the HH 

stage 9/10 embryo, which co-express Shh and BMP7. 

2. More lateral regions of the Shh-negative infundibulum derive from 

ventro-medial M2 cells (region M2b), which express Shh, but not 

BMP7, at HH stage 9/10. 

3. The lateral, Shh-positive hypothalamic cells at stage 18 are derived 

from cells which are initially Shh negative, and which lie caudal to the 

prospective infundibulum at HH stage 9/10. 

These results are summarised in table 3.1. 

Together these analyses show that the Shh-negative infundibulum derives 

from cells that expressed Shh at an earlier time in embryogenesis. 
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Table 3.1 

Stage 10 M1 M2 L1 
region Properties Fate-maps to Properties F ate-maps to Properties F ate-maps to 

BMP7 Shh (stage 18) BMP7 Shh (stage 18) BMP7 Shh (stage 18) 

a - + Optic vesicle! - + ? - - ? 
Pre-optic area 

Shh -ve medial Shh~e 

b + + - + ventl"eHaterai - - Optic vesicle 
infundibulum (M1) 

infundibulum (M2) 

C + + ? + ? Shh +ve lateral - - - hypothalamus (L 1) 

- --.~ ~-.-.--- -- ------- -



3.3. Discussion 

3.3.1 Shh is down-regulated from the developing infundibulum 

Analysis of Shh expression in the forebrain shows that there is an initial 

expansion along the medio-Iateral/ dorso-ventral axis that is thought to reflect 

a vertical induction from the broadening prechordal mesoderm (Vesque et aI., 

2000). This is followed by a loss of Shh in the broad ventro-medial cells, and 

a concomitant novel expression of Shh in lateral cells. My fate mapping 

studies reveal that the ventro-medial cells (M1 and M2) remain in a ventro­

medial position, and down-regulate Shh. My results also demonstrate that 

the lateral expression of Shh is not due to an expansion and/or migration of 

ventro-medial Shh-positive cells, but to the de novo expression of Shh in 

lateral cells. Together, these studies show that, although Shh and BMPs are 

initially co-expressed in prechordal mesoderm and in the ventro-medial 

hypothalamus (at least region M1), at later stages of development, Shh is 

down-regulated from ventro-medial hypothalamic cells (M1 and M2 

populations). 

3.3.2 Distinct compartments within the forming hypothalamus? 

My fate mapping studies reveal, therefore, that the Shh-negative 

infundibulum and the Shh-positive lateral hypothalamus initially derive from 

very different cells located at different anterior-posterior regions. Thus, their 

differential expression of Shh at HH stage 18 may reflect distinct intrinsic 

properties, set up during early patterning. However, as the progeny of the 

L 1 c population of cells populate both Shh positive and Shh negative regions 

of the stage 18 diencephalon, this suggests that these cells are not 

committed to a particular 'Shh-expressing' state by stage 10. The early 

expression of BMP7 within the M1 population, however, does imply an early 

specification; This is further supported by studies which suggest that cells of 

the ventral diencephalon are speCified at early stages of development as they 
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are derived from more posterior regions of the early embryo, close to the 

node, which then move rostrally to occupy their position in the forebrain 

(Dale et aL, 1999; Varga et aL, 1999; Woo and Fraser, 1995). 

Another indication that the Shh-negative ventro-medial cells that will form the 

infundibulum and the Shh-positive lateral hypothalamic cells may have 

distinct properties comes from the observation that cells labelled in the M1 b 

domain were never seen outside of the Shh negative infundibulum at stage 

18, but remained within the confines of the Shh negative area at all dorso­

ventral and rostro-caudal levels. Progeny from the L 1 c domain on the other 

hand, were never seen inside the Shh negative infundibulum at stage 18, 

although they did populate both Shh-positive and Shh-negative areas in other 

regions of the diencephalon. The finding that these two cell types contributed 

to very distinct populations may simply be explained by a tendency of cells to 

maintain close cohorts, and undergo little mixing/migration. Alternatively, it 

may indicate a difference between the cell adhesion properties of the two 

areas, resulting in the establishment of distinct compartments within the 

hypothalamus, similar to the compartments seen in the hindbrain (Dahmann 

and Basler, 1999; Fraser et aL, 1990) 

Although my experiments cannot distinguish between these two hypotheses, 

this idea of compartmentalisation within the hypothalamus is supported by 

recent experiments carried out in zebrafish. Here chimaeric fish were made 

in which cells of the ventral hypothalamus were unable to transduce signals 

by Nodal, a member of the TGF~ family of signalling molecules, which is also 

expressed in the developing forebrain. Cells which contained mutations in the 

Nodal pathway, and hence were unable to transduce Nodal Signals, were 

found to be excluded from their normal territory in the Shh-negative 

infundibular area, but populated the Shh positive ventro-Iateral hypothalamus 

(Mathieu et aL, 2002). This suggests differences in cell surface properties 

between wild-type infundibular cells and those unable to transduce Nodal. 

Indeed, analysis of Nodal signalling targets has indicated a role in the 

expression of cell adhesion proteins such as cadherins and ephrins, both of 
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which have been implicated in the establishment/maintenance of 

compartmental boundaries within the hindbrain (Wizenmann and lumsden, 

1997). Together these analyses suggest that Nodal may regulate specific 

cell surface properties in infundibular cells. 

An unknown question is whether BMP7 likewise plays a role in establishing 

cell surface properties within the hypothalamus. Targets of BMPs in the 

dorsal neural tube are proteins such as Slug 1 and Msx1, which are thought 

to play a role in cell adhesion and guidance in neural crest cells. Future 

studies are required to analyse the expression patterns of such markers, and 

of other specialised cell surface markers, within the hypothalamus. 

3.3.3 Shh expression within the optic vesicle 

Finally, experiments in zebrafish have indicated that ventral diencephalic 

cells are required to separate the two eye fields (Varga et aI., 1999). Initially, 

retinal precursors are thought to lie in a single domain in the anterior ventral 

neural tube. In this study Varga et al showed that the rostral movements of 

ventro-medial diencephalic precursors are responsible for separating the 

single eye field into the left and right optic vesicles. This supports my data, 

where cells labelled in the M1 a domain at stage 10 go on to populate both 

eyes at stage 18. Additionally, in the model proposed by Varga et ai, the 

rostral movement of the ventral hypothalamic cells through the eye field 

causes the medial-most cells to lie rostrally to the lateral diencephalic 

precursors. This would support my findings in chick, indicating some 

continuity between species. Moreover, my observation that the M1a domain 

expresses Shh at HH stage 10 suggests that the migration of these Shh 

positive cells may provide a mechanism for how Shh comes to be expressed 

within the eye. 
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Chapter 4 

BMP expression patterns 



4.1 Introduction 

4.1.1 BMPs in the diencephalon 

Previous studies in the chick embryo have revealed that BMP7 may play an 

active role in the development of the hypothalamus, speCifically in ventro­

lateral hypothalamic identity (Dale et aI., 1997; Ohyama et al., in 

preparation). Moreover, as suggested in the Introduction (section 1.4) 

studies in the GIi2-1- mouse provide evidence, albeit indirect, for a ventral role 

of BMPs in maintaining Gli3 expression in the hypothalamus. 

However, despite these suggestions that BMPs play an important role in cell 

fate specification within the hypothalamus, studies on mutant embryos 

provide no support for this view. In zebrafish that are mutant for BMP2 or 

BMP7, no hypothalamic defects are observed (Schmid et aI., 2000). 

Likewise, in the BMP7 knockout mouse, defects are seen in the eye and 

kidney, but no abnormalities have been reported in the hypothalamus (Zhao, 

2003). Why might this be? 

As discussed in section 1.S, analysis of BMP function using mouse 

knockouts has proved difficult owing to the large number of BMP family 

members expressed during development, and the degree to which they can 

be functionally interchangeable. The extent to which different ligands can 

substitute for one another is dependent on the cell type, with some 

embryonic cells being able to distinguish between ligands sharing a 90% 

identity, such as BMPS and BMP7, whilst others respond identically to 

ligands which are only SO% identical, such as BMP7 and BMP2 or BMP4 

(Solloway and Robertson, 1999). Thus, the most likely explanation for the 

lack of hypothalamic phenotype observed in BMP mutants is due to a 

functional redundancy. As yet, combinatorial knockout mice, such as a 

BMP7/BMP2 double mutant have not been generated, and so it is possible 

that when both signalling pathways are removed at the same time, this may 
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result in a hypothalamic phenotype. 

The lack of phenotype observed in the mouse and zebrafish mutants, 

therefore, together with the finding that additional BMPs are expressed in 

mouse ventro-medial cells, raises the possibility that BMPs additional to 

BMP7 are expressed in hypothalamic regions of the chick embryo. In the 

previous chapter, I have shown that ventro-medial (M1b) cells of the HH 

stage 9-10 hypothalamus, which are positive for both Shh and BMP7, later 

give rise to ventro-medial most regions of the Shh-negative infundibulum. 

likewise, ventro-medial (M2b) cells that initially express Shh, and that lie 

adjacent to BMP7 -expressing cells later give rise to more lateral regions of 

the Shh-negative infundibulum. Given the finding that, in experimental 

situations, BMPs can antagonise Shh by transcriptional repression (Monsoro­

Burq and Le Douarin, 2001; Soubes et al., in preparation), this raises the 

possibility that expression of BMP7, either on prechordal mesoderm or in 

ventro-medial M1 cells (or both) is responsible for down-regulating Shh in the 

forming infundibulum. However, before beginning to address this, I first 

performed a more widespread analysis of the expression patterns of other 

BMP molecules and BMP antagonists with a view to defining the extent of 

BMP expression in the hypothalamic area, and to indicate areas in which 

BMPs are likely to be active. 
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4.2 Results 

4.2.1 BMP2 and BMP7 are both expressed at HH stage 10 and 15 in ventro­

medial hypothalamic cells. 

To begin to examine the extent of BMP expression, and BMP activity within 

the forming hypothalamus, I initially set out to identify whether other BMPs 

are expressed there. Embryos were analysed by in situ hybridisation at 

stages 8, 10, 13, 15 and 18 for expression of BMP2, BMP4, BMP6 and 

BMP7. Expression patterns were analysed using both whole mounts and 

sections through the neural tube at different anterior-posterior levels. 

Figure 4.1 shows the expression pattern of BMP7 at stages 8-18. At stage 8, 

BMP7 is expressed in the prechordal mesoderm and notochord. In addition it 

is weakly expressed in ventro-medial neurectoderm cells at the level of the 

mid- and hindbrain (not shown), but not the forebrain or spinal cord. 

Expression of BMP7 within prechordal mesoderm and anterior-most 

notochord is maintained throughout stage 10, then down-regulated (not 

shown; Dale et al 1999). By stage 9, BMP7 is up-regulated in the forebrain, 

and comes to be expressed in the M1 b population (see figure 3.4), as well as 

showing continued expression in medial-most cells (occupying an M1 region) 

in the midbrain and hindbrain. No expression is detected in M1a cells (Dale 

et ai, 1999; and not shown). BMP7 is also expressed dorsally in the surface 

ectoderm of the spinal cord at this stage. By stage 13, BMP7 appears to be 

down-regulated in the M1b cells (arrow, fig 4.1 E), but expression is now 

detected in M2b cells. Expression remains in the ventral-most (M1) 

population of the midbrain and in the surface ectoderm more posteriorly. At 

stage 15, BMP7 is once again expressed in the M1b cells, while expression 

in M2b cells is maintained. However, expression is completely lost by stage 

18. 
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Figure 4.1 

BMP7 expression pattern 

Transverse sections through the neural tube of embryos processed for in situ 

hybridisation with a probe against BMP7. Sections are taken at the level of 

the diencephalon (A, C, E, G, I) and hindbrain or spinal cord (B, 0, F, H, J) at 

stages 8-18. 

At stage 8, BMP7 is expressed in the prechordal mesoderm underlying the 

prospective hypothalamus (A) but is not expressed at any point within the 

neuroepithelium, or notochord (B). At stage 10, BMP7 is still expressed in the 

prechordal mesoderm but is also expressed in the M1 population of 

prospective hypothalamic cells of the ventral diencephalon (C). In more 

posterior regions, BMP7 is expressed in the surface ectoderm (D). At stage 

13, BMP7 appears to be down regulated in the M1 population of ventral 

hypothalamic cells (arrow), but is expressed in the M2 cells (E), whilst there 

is no expression in the neuroepithelium in posterior regions, but the surface 

ectoderm expression remains (F). By stage 15, BMP7 is once again 

expressed in the ventral-most M1 population of the diencephalon as well as 

the M2 population (G), and expression in the dorsal spinal cord is detected 

(H). No BMP7 is detected in any part of the diencephalic neuroepithelium at 

stage 18 (I), although the dorsal expression remains posteriorly (J). 
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Analysis with BMP2 reveals that it is not expressed in any region of the axial 

mesoderm at any stage analysed. Likewise, no expression of BMP2 is 

detected within the neural tube at stage 8 (figure 4.2 A-B). However, BMP2 

is expressed in the ventral diencephalon at stage 10. Expression is limited to 

a short domain which appears to coincide precisely with M1b and M2b, as 

defined in chapter 3 (see figure 3.4). No expression is detected in the neural 

tube caudal to this. At stage 13, BMP2 is still expressed in the diencephalon, 

but it is expressed in dorso-Iateral regions, dorsal to L 1, and not in the ventral 

M1 or 2 domains (figure 4.2 E). Again, no expression is seen caudal to this 

(figure 4.2 F). As with BMP7, expression of BMP2 is detected once more at 

stage 15 within M1 band M2b. By stage 18, no BMP2 is detected anywhere 

in the diencephalon. 

No BMP4 or BMPS were detected in the axial mesoderm or within the 

diencephalon at any of the stages analysed (figure 4.3 and not shown). 

Furthermore, the only place BMP4 was detected was the dorsal spinal cord 

at stage 10 and 18 (fig 4.3 0, H) whilst BMPS was not detected in any part of 

the neural tube. 

These results show that BMP7 is expressed in prechordal mesoderm at 

stages 8-10. At HH stage 10, BMP2 and 7 are co-expressed in M1b and 

BMP2 is expressed alone in M2b. At stage 13, expression of both BMP2 and 

BMP7 shift laterally, so that BMP7 now marks M2b cells, and BMP2 is 

expressed in the thalamus. By stage 15, both BMP2 and BMP7 are re­

expressed in the M1b and M2b cells that form the infundibular region. 

4.2.2 Expression of the BMP antagonists Chordin and Noggin in axial 

mesoderm and ventral neural tube 

Previous studies have suggested that Chordin acts as a high affinity 

extracellular antagonist of BMP7, while Noggin acts as a high affinity 

extracellular antagonist of BMP2 (Dale et ai, 1999). Recent studies have 
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Figure 4.2 

BMP2 expression pattern 

Transverse sections through the neural tube of embryos processed for in situ 

hybridisation with a probe against BMP2. Sections are taken at the level of 

the diencephalon and hindbrain or spinal cord at stages 8-18. 

At stage 8, no BMP2 is detected at any level of the neural tube (A. B). At 

stage 10, BMP2 expression is seen in the M1 and M2 domains of the 

prospective hypothalamic cells of the ventral diencephalon (C), but not in the 

prechordal mesoderm, or at any level posterior to the diencephalon (0). At 

stage 13, BMP2 is no longer expressed in M1 or M2 cells, but expression has 

moved dorsally to occupy the dorso-Iateral cells of the diencephalon at this 

level (E). Again, no expression is detected posterior to the diencephalon (F). 

By stage 15, BMP2 is no longer expressed in the lateral diencephalic 

population, but is once again expressed in the ventral prospective 

hypothalamic cells, most obviously within M2 cells (G). Ventral expression of 

BMP2 was also detected in the midbrain at this stage (not shown) but at no 

levels posterior to this (H). No expression was detected at any level at stage 

18(I,J). 
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Figure 4.3 

BMP4 expression pattern 

Transverse sections through the neural tube of embryos processed for in situ 

hybridisation with a probe against BMP4. Sections are taken at the level of 

the diencephalon and hindbrain or spinal cord at stages 8-18. 

No BMP4 expression was detected in the diencephalon at any stages 

analysed (A, C, E, G), but dorsal expression was detected in the 

neuroepithelium of the spinal cord at stage 10 and 18 (0, H). 
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Figure 4.3 
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shown that the BMP antagonists Chordin and Noggin are expressed in the 

notochord and ventral neural tube in posterior regions of the neuraxis (Liem 

et aI., 2000; Patten and Placzek, 2002). I therefore wanted to analyse the 

expression of these genes within the diencephalon in order to establish 

whether the BMPs in the diencephalon were likely to be active. Figure 4.4 

shows the expression pattern of Chordin. At stage 7 Chordin is expressed in 

the ventro-medial neurectoderm cells and underlying axial mesoderm at all 

levels analysed, including prechordal mesoderm and diencephalon. 

However, its expression in the prechordal mesoderm and ventro-medial 

diencephalic cells, including those of the prospective hypothalamus, is very 

weak, and is down-regulated by stage 8 (not shown; Dale et al 1999). By 

stage 10, no expression is detected in the diencephalon, or the underlying 

prechordal mesoderm, however notochord cells are positive along the entire 

axis, and expression is detected in ventro-medial floor plate cells at the level 

of the mid- and hindbrain. Stage 13 embryos display a similar expression 

pattern to those at stage 10, whilst by stage 18, expression is restricted to the 

notochord underlying the spinal cord. 

The expression of Noggin was not detected within the neural tube or 

prechordal mesoderm at any stages analysed (figure 4.5), although it was 

detected in the notochord at the level of the mid- and hindbrain at stage 8 

(figure 4.5 B), and again at stage 10 in the notochord underlying the 

midbrain. However, no other expression was detected. 

Thus, whilst BMP7 expression is expressed in both prechordal mesoderm 

and anterior-most notochord, it is co-expressed with Chordin in the 

notochord. Only in the prechordal mesoderm, from ..... stage 7-8 is BMP7 

expressed in the absence of Chordin (see also Dale et aI1999; Vesque et ai, 

2000). In the ventral neural tube, expression of BMP7 extends from M1b 

cells in the diencephalon to the hindbrain at stage 10. However, it is co­

expressed with the antagonist Chordin at all levels other than the 

diencephalon, suggesting that BMP7 has no activity at posterior levels. 

These analyses suggest, therefore, that BMP7 has no activity at posterior 
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Figure 4.4 

Chordin expression pattern 

Transverse sections through the neural tube of embryos processed for in situ 

hybridisation with a probe against the BMP7 antagonist Chordin. Sections 

are taken at the level of the diencephalon (A, C, E, G) and hindbrain or spinal 

cord (B, 0, F, H) at stages 7-18. 

At stage 7, Chordin is expressed throughout the entire neuraxis in both the 

axial mesoderm, and the ventral midline (A, B). However, the expression in 

the prechordal mesoderm and diencephalon is very weak and both are down 

regulated by stage 8 (not shown). By stage 10 there is no Chordin expression 

in the diencephalon or the prechordal mesoderm (C), but expression remains 

in the notochord and the ventral midline of the hindbrain and anterior regions 

of the spinal cord (0). Chordin is not detected in the diencephalon at any of 

the later stages analysed (E, G), but expression remains in the notochord (F, 

H). 
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Figure 4.4 
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Figure 4.5 

Noggin expression pattern 

Transverse sections through the neural tube of embryos processed for in situ 

hybridisation with a probe against the BMP2/4 antagonist Noggin. Sections 

are taken at the level of the diencephalon (A, C, E, G) and hindbrain or spinal 

cord (B, 0, F, H) at stages 8-18. 

Noggin was not detected in the prechordal mesoderm or diencephalon at any 

of the stages analysed (A, C, E. G), but expression was detected in the 

notochord at mid and hindbrain levels of stage 8 and 10 embryos (B, D). No 

expression was detected at later stages (F, H). 
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levels, but is active in prechordal mesoderm and ventro-medial cells that will 

form the infundibulum. Likewise, since no expression of Noggin was 

detected in the diencephalon, this suggests that BMP2 may be active within 

cells that will form the future hypothalamic infundibulum. 

4.2.3 Co-expression of Shh with BMP2 and BMP7 

The expression patterns of BMPs were then compared to that of Shh. Figure 

4.6 shows the expression of Shh at the level of the hypothalamus (A, D, G, J) 

with comparable sections of embryos analysed for BMP7 and BMP2. Shh is 

initially expressed alone in prechordal mesoderm (not shown, (Dale et aI., 

1999; Patten et aI., 2003), but by HH stage 8 is co-expressed with BMP7. At 

these stages the prechordal mesoderm is wide and underlies both 

prospective M1 and M2 regions (level b). In the diencephalon, Shh is initially 

expressed alone, but by stage 10, it is co-expressed with both BMP2 and 

BMP7. Whilst BMP7 occupies only the M1 population (level b see figure 3.3), 

BMP2 is expressed in both the M1 and M2 domains (level b). At stage 13, 

Shh remains in M1 band M2b, whilst both BMPs are now down-regulated in 

M1 b. Whilst BMP7 now appears to be expressed exclusively in the M2 

domain, BMP2 is no longer expressed in the ventral midline, and instead is 

found in a fairly broad domain in the lateral diencephalon, dorsal to L 1. Shh 

begins to be down regulated in the infundibular region at stage 15, which 

coincides with the re-expression of both BMPs in this region. 

The expression profile of the regions of the neural tube and the adjacent axial 

mesoderm of the stage 10 embryo which fate map to the Shh negative 

infundibulum are shown in table 4.1. Both regions which give rise to the 

infundibulum (M11M2b) express both Shh and BMPs at stage 10, and the 

prechordal mesoderm underlying these regions expresses Shh, BMP7 and 

Nodal (Soubes et aI., in preparation). Regions of the neurectoderm adjacent 

to these areas, which do not express BMPs (M1a), or co-express BMPs with 

Chordin (M2b), do not populate the Shh negative infundibulum, but instead 
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Figure 4.6 

Co-expression of Shh and BMPs in the prospective hypothalamus 

Transverse sections through the neural tube of embryos processed for in situ 

hybridisation with a probe against Shh (A, 0, G, J), BMP7 (B, E, H, K) and 

BMP2 (C, F, I, L). Sections are taken at the level of the diencephalon at 

stages 8-15. 

Comparison of the BMP expression patterns in diencephalic sections taken 

from figures 4.1 and 4.2 with the expression of Shh at the same stages and 

anterior-posterior levels, reveals that at stage 8, Shh and BMP7 are co­

expressed in prechordal mesoderm that underlies M1 and M2 diencephalic 

cells (level b). At this stage, Shh is expressed in the diencephalic ventral 

midline before expression of BMP7 is detected (A, B). At stage 10, BMP7 is 

expressed in the M1 sub-domain of Shh positive cells (see chapter 3), whilst 

BMP2 is expressed in both M1 and M2 domains at this stage. By stage 13 

both BMPs have been down regulated in the M1 domain, whilst Shh remains 

expressed here (G-I). BMP2 is expressed in the dorso-Iateral diencephalon, 

whilst BMP7 appears to be expressed in the M2, Shh positive domain. At 

stage 15, Shh is down regulated in the ventral midline (M1 and M2) and is 

expressed in the lateral hypothalamic cells (J). Both BMPs are once again 

expressed in the ventro-medial M1 and M2 cells of the infundibulum (K, L). 
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give rise to Shh positive regions of the hypothalamus (however, M1a cells 

are found in the optic vesicles which are not Shh positive at stage 18, but do 

express Shh later, see chapter 6). As the regions of interest for this study 

are the M1/M2b areas, future reference to M1 and M2 cells at stage 18 will 

indicate the 'level b', Shh negative infundibulum, unless otherwise stated. 

Table 4.1 Expression profiles of the stage 10 ventn>-medial neurectoderm and adjacent 

prechordal mesoderm, and the stage 18 region they fate map to. 

Adjacent Fate maps to: 
Neurectoderm Mesoderm (stage 18) 

M1a Shh N/A Optic vesicles, 

pre-optic area 

Ventro-medial 
M1b Shh, BMP7, BMP2 Shh, BMP7, Nodal 

infundibulum, 

Shh negative 

Ventro-Iateral 
M2b Shh, BMP2 Shh, BMP7, Nodal infundibulum, 

Shh negative 

? Possibly Shh 
M1c Shh, BMP7, Shh, BMP7, 

positive caudal 
Chordin Chordin hypothalamus 

These results show a precise correlation between regions of the 

hypothalamus that initially are underlain by BMP7 -expressing prechordal 

mesoderm, and later co-express Shh and BMPs, and the future Shh-negative 

territories of the infundibulum. No BMPs appear to be expressed in the 

ventral neural tube at any other anterior-posterior level, except when co­

expressed with an antagonist. Likewise, no down-regulation of Shh is 

detected in ventro-medial cells of the neural tube at any anterior-posterior 

level other than the hypothalamic infundibulum (not shown, and fig 1.3). 
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4.3 Discussion 

4.3.1 Shh is down-regulated in cells that co-express BMPs and are underlain 

by BMP-expressing prechordal mesoderm 

My expression analysis data has shown that BMP7 is expressed in 

prechordal mesoderm underlying regions M1 b, M2b. In addition, BMP7 and 

BMP2 are co-expressed with Shh in M1b cells at stage 10, and BMP2 is co­

expressed with Shh in M2b cells. Both BMPs are transiently down-regulated 

within M1 domains at stage 13, whilst Shh remains expressed here. 

However, when Shh is down-regulated from M1b and M2b cells at stage 15, 

both BMPs are re-expressed in these cells. The absence of BMP antagonists 

in the diencephalon at any of the stages analysed suggests that BMPs are 

likely to be active in this area. In contrast, BMP7 is expressed ventrally in the 

mid- and hindbrain, but the co-expression of chordin here suggests that 

BMP7 is not active (see also Dale et aI1999). Therefore, the extent of BMP 

activity in the ventral neural tube appears to be confined to those cells that 

will give rise to the Shh-negative infundibulum. 

4.3.2. Regulation of BMPs in the hypothalamus 

My analyses show a complex expression of BMP7 and BMP2 within the 

forming hypothalamus. What controls these patterns of expression? 

Previous experiments have shown that the expression of BMP7 within M1 

cells can be regulated by BMP7 itself, and that prechordal mesoderm can 

mediate this effect. Conversely, blockade of BMP7 activity in prechordal 

mesoderm abrogates its ability to induce/maintain BMP7 in M1 cells (Dale et 

a11997, 1999). Together, these experiments indicate that BMP7 is required, 

either for the induction, or the maintenance of BMP7 in M1 cells. Expression 

of BMP7 within the prechordal mesoderm itself can be controlled through 

BMP signalling from the adjacent anterior endoderm (Vesque et aI., 2000). 
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Together, these results suggest a model in which a cascade of homeogenetic 

induction events involving BMPs specify BMP7 expression in M1 cells. In 

this model, BMPs expressed in the anterior endoderm induce expression of 

BMPs in prechordal mesoderm, and hence enable the prechordal mesoderm 

to induce/maintain BMP7 in overlying M1 cells. Such homeogenetic 

induction of BMPs is not without precedent: in posterior regions of the 

neuraxis, BMPs that derive from the surface ectoderm appear to induce their 

own expression within dorsal spinal cord cells (Lee and Jessell, 1999). 

Three questions, however, remain unclear. First, do other signals contribute 

to the expression of BMP7 in M1 cells, for instance inducing BMP7 

expression that is then maintained by BMP7? Second, is expression of BMP2 

likewise regulated by BMP7 from underlying prechordal mesoderm? And 

third, why is BMP7 expression restricted to M1 cells, whereas BMP2 is 

expressed in both M1 and M2 cells? My current studies do not allow me to 

address these questions. However, other studies provide some possible 

explanations. 

First, in recent experiments, the signalling molecule Nodal appears to be able 

to induce BMP7 expression in M1 cells (Ohyama et aI., in preparation). This, 

together with other studies shOwing that Nodal is required for ventro-medial 

hypothalamic cell induction in zebrafish (Mathieu et aI., 2002) suggests a 

model in which Nodal induces M1 cells, including BMP7 expression, and 

BMP7 maintains this expression. An unknown question remains that of 

whether Nodal or BMP7 might also induce expression of BMP2 within M1 

and M2 cells, raising the possibility that prechordal mesoderm expression of 

BMP7 is responsible for inducing BMP2 in the hypothalamus. A model in 

which Nodal induces BMP7, but BMP7 induces BMP2 might explain why 

BMP2 is initially expressed in both M1 and M2 cells, whereas BMP7 is 

restricted to M1 cells. Additionally, it is conceivable that the M1 and M2 

regions have distinct characters, and are differentially competent to express 

BMP2 and BMP7. Another possibility is that Shh is acting, possibly in co­

operation with other factors, to induce BMP2 in this region. Studies in the 
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developing pituitary (Treier et aI., 2001) have shown that Shh is required for 

BMP2 expression in these areas. Future experiments are needed to 

distinguish between these possibilities. 

A final unknown question is that of how the very dynamic patterns of 

expression of BMP2 and BMP7 are controlled within the different 

subdomains of the hypothalamus at the stages I have analysed. Again, my 

studies do not provide answers to these questions. However, again, it is 

possible that horneogenetic inductions mediate these complex expression 

patterns, or that rapidly acting feedback loops contribute to the patterns of 

expression. 
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Chapter 5 

BMPs down-regulate Shh in 

the prospective infundibulum 



5.1 Introduction 

The expression studies in chapter 4 indicate that at stage 8, prechordal 

mesoderm that expresses BMP7 underlies Shh-positive M1 and M2 cells, 

while at stage 10, both BMP2 and BMP7 are co-expressed with Shh in M1 

and M2 cells. The fate mapping studies described in chapter 3 show these 

(M11M2) to be the precise populations of Shh-positive cells which later down­

regulate Shh and give rise to the Shh-negative infundibulum at stage 18. As 

described in section 1.7, evidence from previous studies has indicated that 

BMPs and Shh can act antagonistically both at the level of the protein and at 

the transcriptional level. At the transcriptional level, experimental over­

expression of BMPs in the neural tube has been shown to result in the down­

regulation of Shh mRNA in the ventral midline (Arkell and Beddington, 1997; 

Ohkubo et aI., 2002), and ectopic application of BMPs has been shown to 

down-regulate Shh mRNA in axial mesoderm in vitro (Soubes et aI., in 

preparation). The loss of Shh in the infundibulum, which is derived from cells 

which initially express Shh, then co-express Shh and BMPs, led me to ask 

whether the early expression of BMPs, either from underlying prechordal 

mesoderm, or from the cells themselves, causes the down-regulation of Shh 

seen at later stages. 

In this chapter I have used in vitro and in vivo methods to analyse the effects 

of BMP activity on Shh expression in the prospective infundibulum. My 

results indicate that BMPs are able to down-regulate Shh in this tissue, and 

show that blocking BMP activity prevents the down-regulation of Shh in the 

prospective infundibulum in vivo. 
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5.2 Results 

5.2.1 BMP2 and BMP7 can down-regulate Shh in prospective hypothalamic 

ventro-medial cells in vitro. 

To test whether BMPs can down-regulate Shh in the prospective 

infundibulum, I initially tested whether BMP2 or BMP7 can down-regulate 

Shh in these cells in an experimental condition. To do so, explants of 

prospective hypothalamus (regions M1 and M2: levels a, b, c) (see fig 5.1 

and 3.4) were dissected from HH stage 7 embryos. Explants were cultured 

in collagen beds in the absence or presence of BMPs (figure 5.1) then 

analysed for expression of Shh. Ventral diencephalic cells at this stage have 

already been induced to express Shh, and so explants from this region, when 

cultured alone, also express Shh. BMPs, however, are not induced by this 

stage, and likewise, are not expressed in explants of these cells cultured 

alone (Dale et al., 1999). 

Explants cultured in the presence or absence of BMP2 or BMP7 were then 

analysed for Shh expression by immunohistochemistry, in situ hybridisation 

and quantitative RT-PCR. To ensure that the BMPs were present and active, 

I first analysed their expression by Western blotting (collaboration with Pam 

Ellis: data not shown), and then measured their activity in an independent 

assay (collaboration with Sandrine Soubes: not shown). BMP7 was used at 

a concentration of -1 nM in all three experiments, and BMP2 at a 

concentration of -2.5nM in all three experiments. 

5.2.18 Down-regulation of Shh protein by BMP2 and BMP7 

Explants were initially cultured for 20 hours in control media (figure 5.2 A; 

n=6), in BMP7- (B; n=6) or in BMP2-conditioned media (C; n=6), then 

analysed for Shh protein by CO-labelling of sectioned explants with CAPI (not 
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Figure 5.1 

Explant culture in collagen beds 

(A) Forebrain ventral midline cells were dissected from a stage 7 embryo. 

The rectangle indicates the region which was removed, comprising cells 

of the M1/2 domain, level a-c. Shh expression at this stage is shown in 

red. 

(B) The tissue (red) is then transferred to a collagen bed which is then 

covered by a second layer of collagen. This is then covered with culture 

media, to which can be added BMP protein. 

(C) Transverse sections through stage 7-8 embryos at the level of the 

diencephalon. The ventral midline cells express Shh but not BMP7 or 

BMP2. 
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shown) and anti-Shh antibody. The DAPllabelling was used to count the total 

number of cells in each section of the explant, and the number that co­

expressed Shh. The percentage of Shh-positive cells was then calculated 

and the average for each condition taken, as displayed in the form of a bar 

chart (D). A 50-60% reduction of Shh positive cells was seen in explants 

exposed to BMPs compared to the control. This reduction was statistically 

significant (Students T test, t=4.59 , p=0.001 , df=17 ). 

5.2.1 b Down-regulation of Shh mRNA by BMP2 and BMP7 

To establish whether the down-regulation of Shh protein is underlain by a 

down-regulation of Shh mRNA, identical cells (ie M1, M2 cells, levels a-c) 

were once again dissected from stage 6-7 embryos and cultured for 20h in 

the presence or absence of BMPs. The explants were then analysed by in 

situ hybridisation for expression of Shh mRNA. In order to quantify the 

amount of mRNA detected, each explant was sectioned, scored as positive 

or negative for Shh and an average Shh expression calculated (D). Although 

this method is less accurate as the results can vary according to the plane of 

section, I again detected a large reduction in the average amount of Shh in 

BMP-exposed explants compared to the control (Figure 5.3). 

As analysiS by in situ hybridisation does not provide a quantitative way of 

measuring mRNA levels, I next undertook a quantitative RT -peR approach. 

This method involves culturing prospective explants (as before) in collagen 

beds (figure 5.1), for 20 or 40h, both in the presence or absence of BMP2 or 

BMP7. The RNA from the explants was then isolated, and cDNA made by 

RT -peR (see Materials and Methods). Shh cDNA was then amplified through 

peR, using a Shh-specific fluorescent probe that binds to the Shh cDNA and 

emits fluorescence on each peR cycle (figure 5.4). This method allows the 

level of fluorescence to be measured in a quantitative fashion, and is 

representative of the amount of peR product produced. The level of 
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Figure 5.2 

Analysis of explants exposed to BMPs for 20 hours by 

immunohistochemistry. 

(A-C) Sections of explants (15IJm) analysed by immunohistochemistry for 

Shh expression following 20 hours culture. When cultured in the presence of 

BMP protein, little or no Shh is detected (B, C) compared to the control (A). 

(0) Explants were co-labelled with DAPI (not shown) in order to quantify the 

number of Shh expressing cells per section. The total percentage of Shh 

positive cells per explant has been calculated for each condition and 

displayed as a bar chart. A 50-60% reduction is seen in the number of cells 

expressing Shh in explants exposed to BMPs compared to the control. 
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Figure 5.2 
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Figure 5.3 

Analysis of explants exposed to BMPs for 20 hours by in situ 

hybridisation. 

(A-C) Sections of explants analysed by in situ hybridisation for Shh 

expression following 20 hours culture. Little of no Shh mRNA is detected 

when explants are cultured in the presence of BMPs (B, e), whereas 

labelling is detected on a large proportion of control sections (A). 

(0) The amount of mRNA detected per condition was quantified by scoring 

sections positive or negative for Shh expression. The percentage of Shh 

positive sections is displayed for each condition in the form of a bar chart. A 

significant decrease is seen in the number of Shh expressing sections taken 

from explants cultured in the presence of BMP2 or BMP7, compared with the 

control. 
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Figure 5.3 
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Figure 5.4 

Quantitative RT ·peR 

Explants are cultured for a set period of time in collagen beds, as in figure 

5.1. 

(A) Explants from each condition are then homogenised and the mRNA 

converted to cDNA by reverse transcription. 

(8) cDNA from each experiment is then amplified by PCR, using primers for 

Shh, and a fluorescent probe, which is specific for Shh, and contains a 

fluorescent molecule and a quencher molecule. 

(C)As the PCR progresses, the quencher molecule is released, allowing the 

emiSs ,on of fluorescence, which can be recorded in a quantitative 

fashion. 

(D) The amount of fluorescence emitted increases with each PCR cycle, and 

can be plotted on a graph. The number of PCR cycles required to 

produce a certain level of fluorescence is called the CT value, and is 

dependent on the amount of Shh cDNA present in the original sample. 

The CT value is relative, and can not be compared directly to other CT 

values obtained in different conditions, so it is therefore necessary to 

obtain a OCT value using a control of a ubiquitously expressed protein (in 

this case actin). 
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Figure 5.4 
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fluorescence is then plotted on a graph against the PCR cycle number, and 

from this, a aCT' level can be calculated, which, when analysed with a control 

sample, gives a L\CT value. The L\CT value gives a representation of the 

relative concentration of Shh cONA present in the sample, thus providing a 

quantitative measurement for the level of Shh mRNA present in the explant. 

Figure S.S shows the reciprocal L\CT values of explants cultured in BMP7 for 

20 hours (A) and 40 hours (B), and in BMP2 for 20 hours (e), plotted against 

the control (Le. explant cultured in the absence of BMPs). In each case, there 

is a statistically significant reduction in the level of mRNA in the explants 

exposed to BMPs compared to the control (BMP7 20hours, t=-4.4S, p=0.002, 

df=S; BMP7 40 hours, t=-S.49, p= 0.014, df=2; BMP2 20 hours, t=-S.97, 

p=0.027, df=2). The same data is represented as the percentage of the 

mRNA in BMP exposed explants compared with the control experiments (O­

F). This shows that after 20 hours culture in BMP7, the levels of Shh mRNA 

are Significantly reduced, and reduced to negligible levels after 40 hours. 

After 20 hours culture with BMP2, the levels of mRNA have been already 

been reduced to negligible levels. This may reflect differences in the 

concentrations used of the two proteins, or it may indicate that BMP2 is more 

potent at down-regulating Shh than BMP7. 

These results indicate that both BMP2 and BMP7 are able to down-regulate 

Shh at the level of transcription in prospective hypothalamic cells in vitro. 

Furthermore, the concomitant down-regulation of Shh protein suggests that 

Shh is a relatively unstable protein, with a high turnover rate. 

5.2.2 BMPs are required in vivo for the down-regulation of Shh in the 

prospective hypothalamus. 

Having established that BMPs are able to down-regulate Shh in prospective 

hypothalamic cells, I next determined if they are required for the down­

regulation of Shh seen in vivo in the infundibular region. In order to assess 
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Figure 5.5 

Analysis of explants exposed to BMPs for 20 or 40 hours by 

Quantitative RT -peR. 

(A-C) the reciprocal OCT is shown with that of the control for explants 

exposed to BMP7 for 20 hours (A), and 40 hours (B), and to BMP2 for 20 

hours (C). In each case, a significant reduction in the amount of mRNA in the 

BMP-exposed explant is seen compared to the control. 

(D-F) The results shown for the BMP-exposed explants in A-C are shown as 

a percentage of the control. 
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this, BMP activity was blocked in the prechordal mesoderm/prospective 

hypothalamus using the BMP antagonist, chordin. Affigel blue beads were 

soaked in chordin protein, and then implanted adjacent to the neural plate at 

the level of the prechordal mesoderm at stage 5-6 (figure 5.6 A). Embryos 

were prepared in the same way as for the fate mapping experiments (see 

figure 3.2 and Materials and Methods). Once the embryos reached stage 16-

18, they were removed and sectioned, then analysed for Shh by 

immunohistochemistry . 

Figure 5.6 shows transverse sections through the prospective hypothalamus 

of an embryo which has been cultured with a control bead (B) and one 

cultured with a bead soaked in chordin (C, experiment done by Kyoji 

Ohyama). In the control embryo, Shh has been down-regulated from ventro­

medial M1 and M2 cells and is now expressed in lateral L 1 hypothalamic 

cells. However, in the embryo implanted with a chord in-soaked bead, the 

down-regulation of Shh in the infundibular area is only in a very small domain 

on the side opposite the bead implant, whilst on the side of the bead implant 

Shh is still expressed in cells that occupy an M1 and M2 position (5.6 C). 

These results show that BMPs are able to down-regulate Shh in prospective 

hypothalamic cells and that they are required in vivo for the down-regulation 

of Shh seen in the infundibulum at stage 15. 
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Figure 5.6 

Blocking BMP signalling in the prechordal mesoderrn/ventral 

diencephalon results in the maintenance of Shh in the infundibulum at 

stage 18. 

(A) Schematic representation of a stage 5 embryo with a chordin soaked 

bead (blue) implanted on the neural plate, adjacent to the prechordal 

mesoderml ventral diencephalon. The prechordal mesoderm can be seen 

through the neural epithelium providing accurate indication of prospective 

hypothalamic cells. 

(B) Transverse section through hypothalamic region (at the level of the 

infundibulum) of a stage 18 embryo cultured from stage 5 with a control 

bead. Shh expression (green) has been down regulated in the 

infundibulum and is expressed in the lateral L 1 population. Position of 

bead indicated by * 

(C) Transverse section through hypothalamic region (at the level of the 

infundibulum) of a stage 18 embryo cultured from stage 5 with a bead 

soaked in chordin. Blocking BMP activity has resulted in the maintenance 

of Shh in the M1 and M2 populations of the infundibular cells (arrow) on 

the side of the bead implant (bead indicated by *). A dorsal expansion is 

also seen in the lateral Shh-positive domain on this side (arrow head). 

(Experiment done by Kyoji Ohyama) 
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Figure 5.6 
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5.3 Discussion 

5.3.1 BMPs act indirectly to down-regulate Shh in the infundibulum 

The results obtained in this chapter indicate that BMPs are required to down 

regulate Shh expression in the cells of the ventro-medial hypothalamus that 

will form the infundibulum. Although decreased, explants cultured in the 

presence of BMP7 for 20 hours generally still have some Shh expression 

(figures 5.2 -5.4), whilst this is reduced further to negligible levels following 

incubation for 40 hours (figure 5.5 A, B, and 0, E). This suggests that the 

BMPs work indirectly to cause the down regulation of Shh in these cells, as a 

direct effect would be more immediate. This is supported by earlier studies 

where BMPs have been over expressed in the chick forebrain and been 

found to down-regulate ventral expression of Shh (Ohkubo et aI., 2002). In 

these studies, Shh expression was lost in both the telencephalon and the 

diencephalon. However, when cycloheximide was used, in order to block 

protein transcription, Shh was still down regulated in the ventral 

telencephalon, but expression remained in the ventral diencephalon. This 

suggests that BMPs directly down-regulate telencephalic Shh expreSSion, but 

are unable to down-regulate Shh directly in the diencephalon. It is possible 

that earlier inductive events during development have blocked the ability of 

cells in the ventral diencephalon to respond directly to BMP Signals in this 

way. Instead these studies suggest that BMPs act to down-regulate Shh in 

the infundibulum through the induction/up-regulation of other protein(s), 

which in turn decrease Shh transcription. 

5.3.2 Blockade of BMP activity does not affect cell migration of M1/M2 or L 1 

cells. 

As discussed in chapter 3, my fate mapping experiments, combined with 

studies in zebrafish (Mathieu et aI., 2002), suggest that the Shh-negative 

infundibulum (M1, M2 cells) may form a separate compartment to the 
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neighbouring lateral hypothalamic L 1 Shh-positive cells. If this is the case, 

and if BMP7 were partly responsible for the maintenance of one of these 

compartments, then it could be argued that the Shh expression seen in the 

ventral midline of the chord in-exposed embryo (figure 5.6 C) is a result of 

Shh positive cells from the lateral L 1 region migrating ventrally to populate 

the ventral M1 and M2 domains. One way of testing this would be to fate map 

the M1/M2 or L 1 domains whilst simultaneously blocking BMP signalling with 

a BMP antagonist. If this is the case, then cells labelled in the L 1 domain at 

stage 9-10 would be expected to populate the M1/M2 domains at stage 18, 

whilst cells labelled at stage 9-10 in the M1/M2 domains would be expected 

to either have died or moved dorsally. However, preliminary experiments by 

M. Placzek indicate that this is not the case, and the progeny of labelled cells 

remain at the same dorso-ventral level in the absence of BMP signalling as 

they do when BMP signalling is present. Together, these studies indicate that 

blockade of BMP activity does not affect the migration of M1/M2 or L 1 cells. 

5.3.3 Chordin is an effective antagonist of BMP activity. 

One question that arises from my results is that of why chordin-soaked beads 

are so effective in abrogating BMP activity. Chordin has been shown to be 

particularly effective in antagonising BMP7 signalling, whilst BMP2 has been 

shown to be antagonised more specifically by noggin (Dale et aI., 1999). The 

fact that Shh down-regulation is blocked by chordin alone suggests that 

either only BMP7 is required to cause this down-regulation in vivo, that 

chordin is also able to antagonise BMP2, or, that BMP7 is required for the 

expression of BMP2. 

Of these possibilities, the most likely explanation is that the high levels of 

Chordin used on the beads are effective antagonists of both BMP7 and 

BMP2. Additionally, studies have shown that Chordin is a potent inhibitor of 

BMP7/BMP4 heterodimers (Piccolo et aI., 1996), as BMP2 and BMP4 share 

a high sequence homology, it is possible that BMP7/BMP2 heterodimers 

form in the infundibulum, and so can be antagonised by chordin. The 
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alternate explanations are less likely. First, I have shown that BMP2 is 

capable of down-regulating Shh in the ventral forebrain (perhaps more 

potently than BMP7, figure 5.5) in vitro, making it unlikely that BMP2 is 

unable to down-regulate Shh in vivo. Second, if BMP7 is required for the 

expression of BMP2 in the diencephalon (see Discussion, chapter 4), then in 

the BMP7 knockout mouse, BMP2 would not be induced and so a stronger 

hypothalamic phenotype would be expected. 

5.3.4 Regulation of Shh in both M1/M2 and L 1 cells by BMPs 

In addition to the maintenance of Shh in the ventral midline of the 

infundibulum in embryos where BMP signalling has been blocked, there is 

also a dorsal expanSion of Shh expression in the lateral L 1 domain (figure 5.6 

C). This indicates that BMP activity is required, both to regulate Shh 

expression in the M1/M2 domain and to set up the dorsal border of Shh 

expression in the L 1 domain. Although I have not examined expression of 

BMP2 in the chordin-exposed embryos, one possibility is that expression of 

BMP2 in the dorsal diencephalon at HH stage 13/15 (fig 4.2) regulates the 

dorsal border of Shh in L 1 cells. Experiments in the spinal cord reveal a 

similar mechanism for the maintenance of the dorsal border of Shh 

expression in the floor plate. When BMP Signals from the roof plate are 

antagonised or removed, a dorsal expansion of Shh from the floor plate is 

seen (Patten and Placzek, 2002). Thus is appears that BMPs can regulate 

the domain of Shh expression at different rostro-caudallevels. 
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Chapter 6 

T-box genes 



6.1 introduction 

6.1.1 A T-box gene is involved in the down-regulation of Shh in the 

infundibulum. 

In previous chapters, I have shown that cells which initially co-express Shh 

and BMPs give rise to the Shh negative infundibulum of the ventral 

hypothalamus, and that the BMPs expressed in these cells are required for 

the down-regulation of Shh seen at stage 15. As discussed in section 5.3, the 

down-regulation of Shh by BMPs is not immediate as it does not appear to be 

complete after 20 hours of culture, and has been shown to be dependent on 

the ability of the cells to synthesise new protein (Ohkubo et al., 2002). This 

indicates that BMPs are likely to be acting through another factor in order to 

mediate the down-regulation of Shh. 

A recent study analysing the mouse Shh promoter has indicated that aT-box 

protein may be required for the down-regulation of Shh in the infundibulum 

(Jeong and Epstein, 2003). In this study, constructs were made using the 

SBE 1 (Shh brain enhancer) enhancer region, which had previously been 

shown to drive reporter gene expression in the midbrain and caudal 

diencephalon (Epstein et a!., 1999), in combination with a section of the 

SFPE2 (Shh floor plate enhancer) enhancer, termed HR-c (figures 6.1 and 

1.10). Sequence analysis of the HR-c fragment has revealed a number of 

binding sites including a homeodomain binding site, binding sites for Foxh 1 / 

Fast1and Foxa2, and a T-box protein binding site. When the SBE1 construct 

was used in conjunction with three copies of the HR-c fragment, reporter 

activity was detected in the floor plate of the spinal cord, the midbrain and the 

caudal diencephalon, but no reporter activity was detected rostral to the zona 

limitans intrathalamica (figure 6.1 c). However, constructs in which point 

mutations were introduced in the T -box binding site resulted in reporter 

construct expression in the ventral midline of the rostral hypothalamus. 

Figure 6.1 c shows reporter construct expression in mouse embryos which is 

driven by the wild type HR-c construct (i, iii) and the T-box binding site 
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Figure 6.1 

Mutations in the Tbx binding site on the Shh enhancer results in 

ectopic expression of Shh in the infundibular region of the ventral 

hypothalamus in mice. 

(A) Schematic representation of the Shh locus showing the location of coding 

exons (black boxes), non-coding sequences (solid line) and intronic 

enhancers (grey oval, SBE1; yellow oval, SFPE2). Comparison of mouse 

sequence with human, chicken and zebrafish revealed three regions of 

high sequence homology corresponding to homology region-a (HR-a, 

blue, homeobox binding site), HR-b(green, Foxh1 binding site) and HR-c 

(red, T-box binding site). 

(B) Reporter construct with the full-length SBE1 (grey oval), and three copies 

of the HR-c region (red ovals) of the SFPE2. 

(C) Whole mount salmon-gal staining of transgenic embryos at 9.5 dpc 

expressing either (i) wild type construct, or (ii) construd containing a 

mutated T -box binding site. (iii-iv) Transverse sections through the rostral 

diencephalon of transgenic embryos expressing either (iii) wild type 

construct, or (iv) mutated T -box construct, double stained for lacZ reporter 

activity (salmon-gal) and Shh mRNA (blue). The arrows in (i) and (ii) point 

to the rostral limit of salmon-gal staining detected at the level of 

prosomeres 3 and 5, respectively. The blue arrowhead points to the 

expression of endogenous Shh mRNA in the lateral hypothalamus. The 

salmon coloured arrowhead in panel (iv) points to the ectopic reporter 

activity in the ventral midline of the infundibular region. The asterisk 

marks the floor plate of the hindbrain. 

Taken from (Jeong and Epstein, 2003) 
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mutated HR-c construct (ii, iv). Transverse sections at the level of the 

prospective hypothalamus show that in the wild type no reporter expression 

is detected in the infundibular region, whereas in the absence of T -box 

binding sites, ectopic reporter expression is driven in these cells. 

These experiments indicate that aT-box protein is acting to repress Shh 

transcription in the infundibular region of the ventral hypothalamus. Given 

that I have already shown that BMPs are also required for this purpose, this 

led me to ask whether a T-box protein could be acting downstream of BMP 

activity in this area. 

6.1.2 T-box genes. 

T -box (Tbx) genes are a family of transcription factors, which share a 

conserved binding motif, known as the T-box, which encodes a 180-190 

amino acid DNA-binding domain. The Tbx genes share a high sequence 

homology within the T-box domain due to their role in DNA binding, which 

has required a high degree of conservation between species. However, 

greater variations are seen in the domains involved in protein-protein 

interactions. The fitj(member of the T-box family to be characterised was the 

mouse Brachyury in 1990 (Herrmann et aI., 1990), which is involved in the 

development of posterior mesoderm during gastrulation. Studies of the 

Xenopus Brachyury gene (Xbra) have indicated that this transcription factor 

regulates developmental events in a dose-dependent way, by controlling 

gene transcription in specific tissues during embryogenesis. To date, more 

than 20 members have been identified, in species including mouse, chick, 

Xenopus, zebrafish, amphi oxus, ascidians, drosophila, C.Elegans and 

humans. 

Tbx genes have been shown to play a role in cell type specification and 

morphogenesis in various tissues, including the nervous system, limb buds, 

skeleton, kidney, lungs, mammary gland and muscle (Papaioannou and 
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Silver, 1998; Smith, 1999; Tada and Smith, 2001). Mutations in T-box genes 

can have drastic effects on development, leading to a number of 

developmental defects and syndromes. Mutations in Tbx5 lead to Holt-Oram 

Syndrome, which is characterised by defects in cardiac and forelimb 

development (Bruneau et aI., 1999; Li et aI., 1997), whilst Ulnar-mammary 

syndrome, characterised by defects in limbs, apocrine gland, teeth and 

genitals, results from mutations of Tbx3 (Bamshad et aI., 1997). In mice, null 

mutation of Tbx6 causes posterior somites to become neural, thus forming 

three correctly patterned neural tubes (Chapman and Papaioannou, 1998). 

In the case of chick limb development, two very closely related Tbx genes, 

Tbx4 and Tbx5, are expressed in the hindlimb and forelimb buds 

respectively. Misexpression of Tbx5 in the hindlimb bud represses 

Tbx4expression and leads to the development of a wing-like structure. By 

contrast, misexpression of Tbx4 in the forelimb transforms a wing into a leg­

like structure, whilst it does not affect Tbx5 expression (Rodriguez-Esteban et 

aI., 1999; Takeuchi et aI., 1999). 

Tbx genes have shown to be induced by factors such as TGF~s and FGFs. 

In chick, Tbx6 is induced in caudal mesoderm by FGF4, activin and retinoic 

acid. The specificity of the T -box genes may be due to interactions of the Tbx 

gene with other factors, including each other. Recent studies have indicated 

that T-box specificity is determined by an association with cofactors, 

including FGFs, Nkx and Sox proteins (Firnberg and Neubuser, 2002; Habets 

et aI., 2002; Vitelli et aI., 2002). 

The most likely candidates to act as repressors of Shh signalling are Tbx2 

and Tbx3, as of all the T -box genes, only Tbx2, Tbx3 and orthologs of these 

genes have been shown to act as transcriptional repressors (Carreira et aI., 

1998; He et aI., 1999; Sinha et aI., 2000). There is also evidence that Tbx2/3 

can be induced by BMP signalling. Studies have indicated that Tbx2 is 

induced by BMP2 during early cardiogenesis (Yamada et aI., 2000), and the 

expressions of Tbx2/3 in the optic vesicle require a BMP-mediated signal, but 
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their expression is suppressed by Shh misexpression (Sasagawa et al., 

2002). 

In order to assess the role of Tbx genes in the hypothalamus, I have 

analysed the expression patterns of a number of Tbx proteins to determine 

whether any are expressed in the prospective infundibulum. My studies 

reveal that Tbx2 is expressed in the infundibular region from stage 13. 

Furthermore, Tbx2 is induced in a concentration-dependent manner by both 

BMP2 and BMP7 in vitro, whilst blocking BMP signalling results in a down­

regulation of Tbx2 in vivo. These results provide a mechanism by which 

BMPs can act to down-regulate Shh in the infundibulum of the ventral 

hypothalamus. 
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6.2 Results 

6.2.1 Tbx2 is expressed in the ventral hypothalamus from stage 13. 

In order to assess whether a Tbx protein is expressed in the prospective 

infundibulum, I initially analysed embryos at HH stages 10-18 by in situ 

hybridisation with anti-sense probes against different Tbx genes. Analysis of 

the expression patterns of Tbx2, Tbx3, Tbx4, Tbx5, Tbx14 and Tbx15 were 

carried out. Of these, only Tbx2 was found to be expressed in the ventral 

forebrain (Figure 6.2 and not shown). Analysis of wholemount embryos, and 

of transverse sections taken through the hypothalamus reveals that no 

expression ofTbx2 is detected at stage 10 (Figure 6.2 A, B), but by stage 13, 

Tbx2 is co-expressed with Shh in the ventral hypothalamus. Expression 

appears to be confined to the M1 and M2 domains, that is, correlates 

precisely with the expression domains of active BMP7 and BMP2 (D-F). Tbx2 

expression remains in M1 and M2 domains at stages 15 and 18 (G, H, J, K), 

and following the down-regulation of Shh at stage 15, the proteins appear to 

be expressed in complementaryl mutually exclusive domains (H and I, K and 

L). Other than the optic vesicle, Tbx2 was not detected in any part of the 

forebrain outside of the infundibular region. Figure 6.3 shows a comparison 

of Tbx2 and Shh expression in the stage 18 wholemount. The region of Tbx2 

expression in the ventral hypothalamus appears to correlate precisely with 

region of Shh down-regulation in the infundibulum. 

This data, taken together with the promoter analysis described in section 6.1, 

strongly suggests that Tbx2 is involved in the down-regulation of Shh in the 

infundibulum. 
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Figure 6.2 

Tbx2 ia expressed in the Shh negative infundibulum. 

Expression of Tbx2 by in situ hybridisation in whole mount embryos (A, 0, G, 

J) and in transverse sections taken at the level of the hypothalamus (B, E, H, 

K), compared with Shh expression in transverse sections taken at the same 

level (C, F, I, L). Shh is expressed in the ventral hypothalamus at stage 10 

(C), no expression of Tbx2 is detected in this region at this stage (A-B). By 

stage 13, both Tbx2 and Shh are expressed in the cells of the ventral 

hypothalamus (D-F). Shortly after, at stage 15, Shh is down regulated in the 

infundibular cells, but is expressed in the lateral hypothalamus (I, L), whilst 

Tbx2 remains expressed in ventral M11M2 cells (G, H). At stage 18, Tbx2 

remains expressed in the ventral hypothalamus (J, K), in the region which 

corresponds to the Shh negative infundibulum (L). 
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Figure 6.3 

B 

Tbx2 is expressed in the Shh negative infundibulum at stage 18. 

Comparison of the Shh expression pattern at stage 18 (A; figure taken from 

figure 3.1C) in wholemount neuroepithelium, with the expression of Tbx2 in a 

whole mount of the same stage (8), reveals a tight correlation of the region of 

Tbx2 expression with the region of Shh down-regulation in the infundibulum 

(asterisk). 



6.2.2 BMPs induce the expression of Tbx2 in explants, in a concentration 

dependent manner. 

To analyse whether Tbx2 could be acting downstream of BMP2/7 in the 

infundibulum, I performed in vitro experiments to assess whether BMPs could 

induce Tbx2 expression in these cells. As shown in figure 5.1, explants of the 

prospective infundibulum (prospective M1, M2, levels a-c) were taken from 

the ventral midline of stage 7 anterior neuroepitheliun and cultured in 

collagen beds. As previously described (section 5.2.1) such explants have 

not yet been exposed to BMP signalling in vivo. Explants were cultured, 

either without addition of exogenous BMPs, or in increasing concentrations of 

either BMP7 or BMP2 for 20 hours. Figure 6.4 shows whole mount explants 

analysed for Tbx2 expression by in situ hybridisation. In the absence of BMP 

protein, no expression of Tbx2 mRNA is detected in the explants (A, E). In 

contrast, in the presence of 50nM BMP2, strong expression of Tbx2 is 

detected (B). The level of induced Tbx2 appears to peak upon addition of 2-

fold greater levels of BMP2, and then remain constant. Thus, both 100nM 

and 500nM BMP2 appear to induce maximal levels of Tbx2 within all the cells 

(C-D). Addition of BMP7 to the culture media likewise results in an induction 

of Tbx2 (E-H), although BMP7 appears less potent than BMP2 in inducing 

Tbx2 (compare B and G). The decreased potency of BMP7 to govern Tbx2 

expression means that the effect of increasing the BMP7 concentration is 

much more apparent. Treatment of explants with 25nM BMP7 induces only a 

small amount of Tbx2 expression (F), whilst increments in the BMP7 

concentration result in increased Tbx2 expression (G-H). 

These results indicate that both BMP2 and BMP7 are able to induce Tbx2 

expression in the M1 and M2 populations of cells of the ventral 

hypothalamus. 
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Figure 6.4 

Tbx2 is up-regulated in vitro in a concentration-dependent manner by 

both BMP2 and BMP7. 

Explants taken from prospective forebrain ventral midline at stage 7 were 

cultured for 20 hours with increasing concentrations of either BMP2 (A-D), or 

BMP7 (E-H), and analysed for Tbx2 expression by in situ hybridisation. No 

expression of Tbx2 was detected in the absence of BMPs (A, E), but in the 

presence of BMP2, strong expression was detected at all concentrations 

used (B-D). Low concentrations of BMP7 resulted in weak expression of 

Tbx2 in the explants (F). whilst the amount of Tbx2 mRNA detected 

increased with increasing concentrations of BMP7 (G-H). 
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6.2.3 BMP signalling is required for the expression of Tbx2 in the ventral 

hypothalamus. 

Having established that Tbx2 is expressed in cells which also express BMPs, 

and that BMP activity is able to induce the expression of Tbx2 in these cells, I 

next wanted to establish whether BMPs are required in vivo to induce Tbx2 

expression. 

To assess this, BMP activity was blocked in vivo using chordin-soaked 

beads, as described in section 5.2.2 (n=2). Following implantation of beads 

soaked in chordin at stage 6, the embryos were allowed to develop to HH 

stage 15-16, then analysed for Tbx2 expression by in situ hybridisation. In 

control embryos, Tbx2 is expressed in the ventral diencephalon, occupying 

the M1b and M2b domains as defined in chapter 3 (Figure 6.5A). In contrast, 

embryos cultured with chordin-soaked beads show a marked reduction of 

Tbx2 in the M1/2 domains as compared with the control (Figure 6.5B). 

Expression is completely down-regulated in the ventral hypothalamus 

ipsilateral to the bead, but remains weakly expressed on the contralateral 

side (arrowhead). In addition to the down-regulation of Tbx2 in the ventral 

hypothalamus, a down-regulation is also seen in the ipsilateral optic vesicle 

(arrow) compared to that on the opposite side (asterisk). 

These results show that BMP activity is required for the expression of Tbx2 in 

the infundibular region of the ventral hypothalamus, and provides a 

mechanism by which BMPs may be acting to inhibit Shh transcription. 
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Figure 6.5 

Blocking BMP signalling results in a down regulation of Tbx2 in the 

M11M2 infundibular cells at stage 15. 

Beads soaked in the BMP antagonist Chordin were implanted into the region 

of the prospective hypothalamus at stage 5 (see figure 5.6 A), and the 

embryos allowed to develop to stage 15. (A-B) Transverse sections through 

stage 15 embryos at the level of the prospective infundibulum, analysed for 

Tbx2 expression by in situ hybridisation (blue). (A) Control embryo showing 

Tbx2 expression in the M1/M2 cells, and in the optic vesicles. (B) Embryo 

cultured with chordin-soaked bead. Tbx2 expression on the side of the bead 

(arrow) has been down regulated, whilst expression on the far side is weak 

compared to the control (arrowhead). Expression is also lost from the optic 

vesicle on the side of the bead implantation, whilst it remains on the opposite 

side (asterisk). 
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6.3 Discussion 

In this chapter I have shown that Tbx2 is expressed in the M1b and M2b 

domains of the ventral hypothalamus, which coincide with the expression of 

BMPs which are actively signalling (section 4.2.2). In addition, I have shown 

that BMP signalling in this area is both necessary and sufficient for the 

expression of Tbx2. 

6.3.1 A role for Tbx2 in the down-regulation of Shh in the infundibulum 

Comparison of figure 6.5 B with figure 5.6 C shows the complementary 

expression patterns of Shh and Tbx2 when embryos are cultured in the 

presence of chord in-soaked beads. Similarly, Shh and Tbx2 show a 

complementary expression pattern in wild type embryos (figure 6.2, 6.3). This 

data, combined with studies showing that Tbx2 functions as a transcriptional 

repressor (Carreira et aI., 1998), and the analysis of the Shh promoter 

described in section 6.1 (Jeong and Epstein, 2003), strongly suggest that 

Tbx2 is responsible for the down-regulation of Shh in the ventral 

hypothalamus at stage 15. This therefore provides a mechanism by which 

BMPs cause the down regulation of Shh, as shown in chapter 5. However, 

further analysis involving blocking of Tbx2 function is required to confirm this. 

The expression of Tbx2 in the eye may explain why the Shh positive cells of 

the M1a domain which fate map to the optic vesicles (section 3.2) no longer 

express Shh. However, Shh is expressed in the eye at later stages, which 

may be due to a down-regulation of Tbx2. My studies show that blocking 

BMP signalling in the diencephalon prevents expression of Tbx2 in the optic 

vesicles as well as in the infundibulum (figure 6.5). Analysis of Shh 

expression following implantation of a Chord in-soaked bead would indicate 

whether Tbx2 is also responsible for repressing Shh expreSSion in the eye. 
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6.3.2 A wider role for Tbx2 within the forming infundibulum 

My studies suggest a role for Tbx2 in Shh regulation within the infundibulum. 

However, it remains possible that Tbx2 plays a wider role in governing the 

character of the infundibulum. As discussed in section 6.1.2, Tbx genes 

have been shown to have wide-ranging functions throughout development 

(Papaioannou and Silver, 1998; Smith, 1999; Tada and Smith, 2001). 

Although Tbx2 has repressor activity, there are also instances where it can 

have activator function, as the cellular context can influence the effect on 

gene expression (Chen et aI., 2001). Recent studies have indicated that T­

box specificity is determined by an association with cofactors, including 

FGFs, Nkx and Sox proteins (Firnberg and Neubuser, 2002; Habets et aI., 

2002; Vitelli et aI., 2002). In particular, studies have shown that Tbx2 can 

combine with Nkx2.S in the heart primordium in order to repress expression 

of atrial natriuretic factor. It is therefore possible that Tbx2 is playing more 

than one role in the ventral hypothalamus, as members of each of these 

families are expressed in this region (Scully and Rosenfeld, 2002; Takuma et 

aI., 1998; Vriz et aI., 1996). One experimental approach may be to disrupt the 

assossiation and function of these factors, and then analyse expression of 

later region speCific markers. Preliminary experiments have shown that 

members of the emx, dach and eya families are also expressed in the 

hypothalamus at later stages (not shown), and therefore could potentially be 

used to indicate changes in normal hypothalamic development. 

6.3.3 Control of Tbx2 in the forming infundibulum 

Although I have shown that Tbx2 is governed by BMP activity in the ventral 

hypothalamus, my studies do not show the precise mechanism of action of 

BMP. Two major questions remain outstanding. First, is BMP signalling 

required for controlling Tbx2 expression within the hypothalamus? And 

second, does BMP activity induce Tbx2 expression, or does it alleviate a 

Tbx2 repressor? 
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Currently I have no direct evidence as to whether BMP signalling is actively 

required to control Tbx2 expression. However, future experiments aim to 

target a dominant negative BMP receptor to M1 and M2 cells, and ascertain 

how this affects Tbx2 expression. However, indirect evidence suggests that 

BMP signalling may not operate to control Tbx2 expression. Components of 

the BMP signalling pathway, including Smad 1/5 and Smad 6, are present on 

lateral (L 1) hypothalamic cells, but not on M1 and M2 cells. Likewise, the 

BMP signalling response gene, Msx1, is expressed on L 1 cells, but not on 

M1 or M2 cells. This raises the possibility that BMP activity controls Tbx2 

expression indirectly, by altering signalling by a second factor. Thus, for 

instance, recent evidence has shown that BMPs can counteract Nodal 

signalling, either by heterodimer formation (Soubes et aI., in preparation), or 

through competition for common processing enzymes (Yeo and Whitman, 

2001). Nodal is expressed both on prechordal mesoderm and on forming 

infundibular cells (Soubes et al., in preparation) raising the possibility that 

Tbx2 expression is controlled indirectly by BMP activity. 

Likewise, preliminary evidence suggests that BMPs may act as a permissive 

factor for Tbx2 expreSSion, rather than acting as instructive inductive signals. 

Preliminary analyses indicate that BMPs are unable to induce Tbx2 in neural 

cells other than those of the prospective hypothalamus (Table 6.1). Explants 

taken from stage 7/8 lateral anterior neural tube or regions of the floor plate, 

and cultured with BMP2 did not express Tbx2, whilst anterior midline tissue 

did. Additionally, explants taken from Area A (the cells which will give rise to 

the ventral midline of the anterior neural tube) at stage 4, were also found not 

to express Tbx2 following culture with BMPs (Table 6.2). Together, these 

analyses indicate that BMPs can only up-regulate Tbx2 expression within 

prospective infundibular cells that are already committed to a degree. 
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Table 6.1. Explants taken from stage 7/8 embryos and analysed for Tbx 2 expression 

following 20 hours culture. 

Tbx2 expression 

Region of neural tube dissected Control +BMP2 

Anterior midline - + 

Anterior lateral neural tube - -
Anterior floor plate - -
Posterior floor plate - -

Table 6.2. Explants taken from Area a of stage .. embryos, analysed for Tbx2 expression 

following 20 hours culture 

Tbx2 

Control -
+BMP2 -
+BMP7 -

If expression of Tbx2 is indeed controlled by the co-ordinate action of multiple 

signals, what might these be? As outlined above, many other inductive 

signals are present in prechordal mesoderm and could contribute to Tbx2 

regulation, including Nodal, FGF10 and Shh. Fgfs have been implicated in 

regulating Tbx2 expression in nasal regions (Firnberg and Neubuser, 2002), 

and so it is possible that a similar role is played in the infundibulum. 

Additionally, there is evidence that Tbx2 can be induced by Shh (Gibson­

Brown et aI., 1998; Takabatake et aI., 2002), although expression of Tbx2 

has been shown to suppress Gli1 and G1i2, suggesting a negative feed-back 

loop. An interesting observation in the GIi2-/- mouse is that Shh expression is 
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not down-regulated in the ventral hypothalamus (Park et aI., 2000). This may 

indicate a requirement for Shh signalling through Gli proteins as a permissive 

factor for Tbx2 expression in these cells. 

In addition to cell type specification, T -box genes have been implicated in the 

regulation of morphogenetic movements during development. In mice, the T­

box gene, Eornesodermin is required for the correct movements of 

prospective mesodermal cells into the primitive streak during gastrulation 

(Russ et aI., 2000), whilst in zebrafish the T-box gene, spadetail, is involved 

in the control of convergent extension (Griffin et al., 1998). Recent analysis of 

Tbx2 function by microarray has indicated that Tbx2 is involved in down­

regulating Tenascin C and cadherin 3, molecules thought to playa role in cell 

movement and cell adhesion (Chen et aI., 2001). Thus Tbx2 may also playa 

role in controlling the morphological movements of the ventral hypothalamic 

cells, and indeed, misexpression of Tbx2/3 in Xenopus causes inhibition of 

the bilateral division of the eye field (Takabatake et aI., 2002), which is 

reminiscent of the detects caused by loss of Shh signalling (Chiang et aI., 

1996). However, in chick, Tbx2 is expressed in the ventral hypothalamus at 

stage 13, by which time these cells have already undergone convergent 

extenSion, and bilateral division of the eye field has occurred. Therefore, it 

may be that molecules involved in convergent extension are down-regulated 

subsequent to the division of the eye field, and following Tbx2 induction, 

allowing for different interactions to occur between the hypothalamic cell 

types. 

141 



Chapter 7 

Cell cycle 



7.1 Introduction 

7.1.1 The role ofTbx genes in cell cycle control 

The studies outlined in chapters 3-6 suggest that BMPs operate through 

Tbx2 to mediate Shh down-regulation in the prospective hypothalamic 

infundibulum. As summarised in chapter 6 (section 6.1.2), the T-box family 

of transcription factors has been shown to play a wide role in cell identity 

during embryogenesis. In addition, however, more recent studies on cultured 

rodent cells have implicated Tbx2 in the control of cellular proliferation, acting 

to by-pass proliferation arrest. These studies revealed that induction of the 

cell cycle inhibitor, p19, in cultured cells, results in a p53-dependent 

proliferation arrest. Expression of Tbx3 within these cultures results in a 

bypass of the cell arrest, possibly through the inhibition of p19 

(Brummelkamp et aI., 2002) (see Box 3). 

Box 3 

The cell cycle 

The process by which cells grow, replicate their DNA, and then subsequently 

divide to produce two daughter cells, which then repeat this process, is called 

the cell cycle. The cell cycle is broadly divided into four stages. Following 

mitosis (M-phase), the cell enters a gap phase (G1) in which growth and 

production of proteins occur. This is then followed by S-phase, during which 

DNA is synthesised, which in turn is followed by a second gap phase (G2). 

During M-phase, the DNA condenses into visible chromosomes which are 

then pulled to opposite poles before the cell undergoes cytokinesis. Because 

the cell needs time to grow, the cycle is usually quite long (around 8-5 hours), 

although early embryonic cells often do not have gap phases, and pass 

directly from M to S-phase and back, which can reduce the cell cycle time to 

under an hour. 
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In addition to these stages, cells can also move from G1 to Go, a resting 

phase, where they can remain arrested from the cell cycle for as long as years 

before resuming proliferation. 

Progression through the cell cycle is tightly regulated by two key families of 

proteins; the cyclin-dependent protein kinases (Cdk), which induce down­

stream processes by phosphorylating selected proteins, and the cyclins, which 

bind to Cdk molecules and control their ability to phosphorylate target 

proteins. Vertebrates possess multiple Cdks and cyclins, and progress 

through the cell cycle is determined by the presence and activity of phase­

specific cyclin-Cdk complexes, with the accumulation, or degradation of 

specific cyclins driving, or preventing progression into the next phase. In 

addition to the Cdks and cyclin proteins, cells also contain multiple Cdk 

inhibitors (such as p15, p21 and p27), and multiple phosphQtases (cell­

division-cycle genes; Cdc), which control specific steps in the cell cycle. These 

proteins therefore provide the cell with a series of checkpoints between each 

phase that guard crucial transitions in the cell cycle in order tOBlsure proper 

progression through the cell cycle, and co-ordination of growth and division. 

For example, in the event of DNA damage, an increase of p53 would occur, 

which in turn would induce p21 mediated inhibition of cyclinD-cdk, leading to 

G 1 arrest, therefore ensuring that only cells with undamaged DNA replicate 

their chromosomes. 



7.1.2 The role of TGF~s in cell cycle control 

Members of the TGF~ superfamily have likewise been shown to have a 

prominent role in the regulation of cell proliferation. The effects of TGF~s on 

the cell cycle are complex, exerting their actions through both transcriptional, 

post-transcriptional and post-translational mechanisms (Alexandrow and 

Moses, 1995). In most cases, TGF~s have been shown to have anti­

proliferative effects, by inhibiting the activity of cdks through the induction of 

cdk inhibitors, such as p15 or p21, preventing progression of the cell cycle 

(Derynck et aI., 2001; Frost et aI., 2001; Horsfield et aI., 1998; Moustakas et 

aI., 2002; Rots et aI., 1999) (Massague, 2000). As discussed in chapter 1, 

box 1, the effects of TGF~ signalling is often context-dependent. In a minority 

of circumstances, they have been shown to have a proliferative effect 

(Bhardwaj et aI., 2001). However, their main effect on cell cycle appears to 

be anti-proliferative. TGF~ induced cell arrest is most common at the G1-S­

phase checkpoint (Massague, 2000), although arrest at the G2-M-phase 

checkpoint has also been observed (Negre et aI., 2003). In some cases the 

arrest is associated with terminal differentiation or apoptosis, but in most 

cases the arrest is reversible . 

Members of the BMP family have been speCifically implicated in anti­

proliferative behaviour. In Drosophila, the BMP2/BMP4 homologue 

decapentaplegic (dpp) is responsible for taking cells of the morphogenetic 

furrow (MF) in the eye imaginal disc into G1 arrest (Horsfield et aI., 1998), 

whilst in chick, BMP2 and BMP4 are required for the inhibition of proliferation 

in chondrocytes (Enomoto-Iwamoto et aI., 1998), and have been shown to 

promote cell cycle withdrawal and differentiation in neural cells (Li et aI., 

1998). 

Together, these studies suggest that BMPs and Tbx repressor genes might 

exert OPPOSite behaviours on cell cycle, BMPs showing a propensity to 

induce cell arrest and Tbx2 repressors acting to by-pass proliferation arrest. 
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I therefore wanted to assess whether I could find evidence in the 

hypothalamic infundibulum for changes in the cell cycle, and ask whether 

these correlated with the expression of BMPs or Tbx2. 

In this chapter, I have examined the state of cell cycle in the hypothalamic 

infundibulum at stages 8-13. My studies show that at stage 10, M1/M2 cells 

appear to be in cell cycle arrest, whilst at stage 13, M1/M2 cells 

synchronously re-enter the cell cycle. Thus a transient cell cycle arrest at 

stage 10 correlates with the period of BMP activity in this region, whilst the 

re-entry in to cell cycle correlates with the transient down-regulation of BMPs 

and the up-regulation of Tbx2. 
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7.2 Results 

7.2.1 A reduction in the number of M-phase cells in the prospective 

infundibulum coincides with their exposure to/expression of BMPs 

In order to analyse the state of cell cycle in the prospective hypothalamus, I 

used the polyclonal antibody phosphorylated histone H3 (PH3). This antibody 

labels cells at the G2-M transition phase (see figure, box 3). Embryos were 

analysed by taking transverse sections through the neural tube, then co­

labelling with antibodies against PH3, Shh and CAPI. Shh was used to locate 

ventro-medial cells, and CAPI allowed me to calculate the percentage of pH3 

positive cells in a given area by labelling individual cell nuclei. 

In order to assess whether I could find a correlation in BMP and Tbx 

expression with states of cell cycle, I compared the number of M-phase cells 

in the prospective infundibulum at stage 8, prior to their exposure to, and 

expression of BMPs, at stage 10, once exposed to, and expressing, BMPs 

(figure 7.1 E, F) and at stage 13, when BMPs are transiently down-regulated 

and Tbx2 is expressed. Cell identity was followed using an anti-Shh 

antibody. Transverse sections were taken through stage 8, 10 and 13 

embryos at both the level of the prospective infundibulum, and, as a control, 

at posterior levels of the neuraxis, where cells are exposed to Shh, but not to 

BMPs or Tbx2. Sections were analysed by immunohistochemistry for 

expression of PH3, Shh and CAPI. 

Initially, I compared cell cycle at HH stage 8 and HH stage 10. At each 

stage, the number of PH3-positive cells in Shh-positive ventro-medial cells 

was counted in the forming infundibulum (M1/M2 cells) and in posterior 

hindbrain/spinal cord. The percentage of PH3 positive cells was then 

calculated for each region. The number of cells in M-phase was then 

compared at stage 8 and stage 10, and a comparison performed between 

M1/M2 prospective infundibular regions and with more posterior floor plate 

regions of the same stages. 
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Figure 7.1 

Expression of BMPs in the stage 10 Infundibulum coincides with a 

decrease in the number of M-phase cells detected. 

(A-D) Transverse sections taken through the neural tube at the level of the 

forming infundibulum, labelled with antibodies against Shh (red), PH3 (M­

phase marker; green) and DAPI (blue). At stage 8, cells are seen in M-phase 

throughout the ventricular zone (A), including the ventro-medial Shh­

expressing cells (shown magnified in C). By stage 10, however, although 

cells are seen in M-phase throughout lateral and dorsal regions (B), ventro­

medial cells are rarely seen in M-phase (D). (E, F) The apparent arrest of cell 

cycle in the ventro-medial cells coincides with the expression of BMPs in 

these cells. (G) Bar chart showing the average percentage of cells in M­

phase at stage 8 and 10. The prospective hypothalamic cells (infundibulum) 

are compared with floor plate regions of the spinal cord and hindbrain of the 

same stages. 

148 



Figure 7.1 

!!l 

B 
co =c 
Q) 

E e -c 
~ 

c 
o 
"in 
I/J 

~ 
a. 
~ 
a.. 
~ m 

[ ----- StS -- 1 St 10 

Average percentage of cells m M-phase 

I' 
I~ 

14 

12 

10 

• 
~ 

4 

2 

0+1---'---' 
~ ______________________________ ~I G ... sUO 

• Ventral hypothalamic cells 

• Floor plate cells 



Figure 7.1 shows sections through the prospective infundibulum (M 11M2 

cells, level b) at stages 8 and 10, following analysis with anti-Shh and anti­

PH3 (A - D). At stage 8, prior to their exposure to BMPs, there appears to be 

a uniform number of cells in M-phase throughout the ventricular zone of the 

diencephalic neural tube, including the M1/M2 ventro-medial Shh-positive 

population. However, at stage 10, following exposure to BMPs and induction 

of BMPs in M1/M2 cells, the number of M-phase cells drops significantly and 

PH3-positive cells are rarely detected in Shh-positive M1/M2 cells. The 

average number of PH3-positive cells in Shh-positive ventro-medial cells, per 

section, per embryo (n=6) is shown in the form of a bar chart (figure 7.1 G). 

This shows that at HH stage 8, 15% of M1/M2 cells express PH3. Similarly, 

17% of ventro-medial floor plate cells in the spinal cord express PH3. By 

contrast, at HH stage 10, only 1% of M1/M2 cells in the infundibulum express 

PH3, whereas 17% spinal cord floor plate cells continue to express PH3. 

Thus, there is a specific reduction in the number of M-phase cells in ventro­

medial cells of the prospective infundibulum over the period HH stage 8-10. 

This reduction coincides with the exposure of the cells to BMPs and their 

onset of expression of BMPs. 

7.2.2 A synchronous re-entry into cell cycle of M1/M2 cells at HH stage 13 

The exposure to and expression of, BMPs in prospective infundibular cells 

coincides with the apparent arrest of the cell cycle in these cells. I next 

wanted to test whether additional changes in cell cycle are apparent in 

forming infundibular cells at HH stage 13, when BMPs are transiently down­

regulated and Tbx2 is expressed. 

HH stage 13 embryos were sectioned and again analysed with anti-PH3, 

anti-Shh and OAPI. Analysis of M1/M2 cells revealed a huge increase in the 

number cells in this area expressing PH3 (figure 7.2 A, B). The percentage of 

PH3 expressing cells in M1/M2 increased from around 1% at stage 10, to 

70% at stage 13 (Figure 7.2 F). Given that the anti-PH3 antibody labels just a 
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Figure 7.2 

Cells of the stage 13 infundibulum are in synchronised cell cycle. 

(A, B) Transverse sections through stage 13 embryos at the level of the 

forming infundibulum, labeled with antibodies against Shh (red), PH3 (M­

phase marker; green) and DAPI (blue). The number of M-phase cells in the 

Shh positive ventro-medial cells has increased dramatically compared to 

more dorsal or posterior regions of the neural tube. (0, E) Shh positive 

region is shown at a greater magnification. (C) Transverse section through 

stage 13 embryo at the level of the forming infundibulum, follOwing in situ 

hybridisation with a probe for BMP7. The region undergoing increased 

proliferation coincides with the area in which BMP has been down regulated 

at this stage. (F) Bar chart showing the average percentage of M-phase cells 

per section, per embryo the level of the hypothalamus/infundibulum, 

compared with floor plate regions, at stages 8,10 and 13 (see also figure 

7.1). Before expression/ exposure to BMPs at stage 8, the percentage of M­

phase cells in the prospective infundibulum is 17%. This number drops to 

only 1 % at stage 10, following exposure of these cells to BMP2 and BMP7. 

When BMPs are down-regulated in the prospective infundibulum at stage 13, 

the number of M-phase cells rises to 70%. 
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Figure 7.2 
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small percentage of the cell cycle, this indicates a synchronous re-entry into 

cell cycle of the ventral midline cells that were arrested at stage 10. 

Comparison of the cells undergoing synchronised M-phase with the 

expression of BMPs in the same region, shows that they appear to 

correspond precisely to the area in which both BMPs have been down 

regulated (figure 7.2 B, C) and in which Tbx2 is now expressed. In contrast 

to this dramatic change in cell cycle in hypothalamic infundibular cells, no 

change in cell cycle is detected in more posterior floor plate cells. 

7.2.3 Prechordal mesoderm ablations prevent exposure of M1/M2 cells to 

BMP activity and prevent cell arrest. 

As a first step in establishing a causal link between BMPslTbx2 in regulating 

the cell cycle within prospective infundibular cells, I performed experiments 

(with MP) to analyse the effects of prechordal mesoderm ablations. 

Prechordal mesoderm cells have previously been shown to specify the 

hypothalamic infundibulum through a series of signalling events (Dale et aI., 

1997; Ohyama et aI., in preparation; Patten et aI., 2003). 

Prechordal mesoderm was ablated from HH stage 6 embryos, a time at 

which Shh is already induced in prospective M1/M2 cells, but BMPs are not 

(see section 5.2). Embryos were further cultured to HH stage 10. In 

prechordal mesoderm-ablated embryos, BMP7 failed to be induced in M1 

cells of the forming infundibulum. Likewise, analysis of PH3 revealed that 

16% M1 cells continued to express PH3 (figure 7.3, bar chart). Thus the 

absence of BMP correlates with the failure of cell arrest that is normally 

detected in the forming infundibulum at HH stage 10. 
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Figure 7.3 

Cells of the prospective infundibulum no longer express BMP7 and are 

in cycle at stage 10 following ablation of prechordal mesodenn. 

(A) Stage 9 embryo processed for BMP7 expression by in situ hybridisation, 

following prechordal mesoderm ablation at stage 5. BMP7 is expressed 

in the midbrain (blue) but is not detected in the diencephalon. 

(B) BMP7 expression in wild type neurectoderm. BMP7 expression extends 

into the ventral diencephalon. 

(C, D) Transverse sections through the prospective infundibulum of stage 10 

embryos, following prechordal mesoderm ablation at stage 5, analysed 

by immunohistochemistry for expression of PH3 and Shh. PH3 positive 

cells can be seen in the Shh positive ventral cells. 

(E) Bar chart showing the average percentage of M-phase cells in the 

forming infundibulum of stage 10 embryos follOwing prechordal 

mesoderm ablation at stage 5. Comparison of the floor plate regions of 

the same embryos reveals a close correlation in the number of PH3 

positive cells detected, whilst comparison of a wild type embryo of the 

same stage shows an increase in PH3 positive cells detected in the 

infundibulum from 1% in the wild type, to 16% in the prechordal 

mesoderm ablated embryo. 
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Figure 7.3 
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7.3 Discussion 

In this chapter, I have shown that prospective infundibular cells that are 

initially cycling appear to go into cell cycle arrest by HH stage 10. This arrest 

is transient and is followed by a synchronous re-entry into cell cycle by HH 

stage 13. The cell cycle arrest correlates with the exposure of prospective 

infundibular cells to BMPs in wild-type embryos. Likewise, in an 

experimental situation that removes BMP activity, i.e. prechordal mesoderm 

ablations, an inverse correlation is observed - in the absence of BMPs, no 

cell cycle arrest occurs. Future studies are now required to establish a 

causal link between exposure of prospective infundibular cells to BMPs and 

their cell cycle arrest. Another method by which the necessity of BMPs in the 

removal of cells from cycle could be assessed in vivo would be to block BMP 

activity prior to stage 10 using Chord in or Noggin soaked beads. If BMPs 

were required to take cells of the ventral hypothalamus out of cycle, then 

blocking their activity would prevent the arrest seen at stage 10. 

The synchronised re-entry into cycle of prospective infundibular cells by HH 

stage 13 coincides with both a transient down-regulation of BMPs and with 

the initiation of Tbx2 expression in these cells (see chapter 6). Tbx2 has a 

high homology with Tbx3, which has recently been shown to allow the by­

pass of cell cycle arrest. It is therefore a strong possibility that the induction 

of Tbx2 in the forming infundibulum is responsible for the re-entry of the 

arrested cells into cycle. If this is the case, and BMPs are responsible for 

both the initial arrest seen at stage 10, and the induction of Tbx2, this would 

provide the cells of the infundibulum with a feedback mechanism by which 

the proliferation of this area can be tightly controlled. 

An issue arising from my data which requires further study is that of what 

purpose is served by arresting prospective infundibular cells and then 

releasing them from arrest so that they are synchronised in cell cycle? One 
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possibility is that this mechanism serves to expand a progenitor population. 

As discussed in chapter 3, it is possible that the subset of hypothalamic cells 

that later form the infundibulum (i.e. M1/M2 cells), form a separate 

compartment from the surrounding cells. The tight and regulated control of 

the cell cycle that I have observed over the period HH stage 10-13 may serve 

to synchronously expand this population. Studies have shown that the phase 

of cell cycle can determine a cell's response to a particular signal (Gomer 

and Ammann, 1996; Horsfield et a\., 1998; Negre et a\., 2003). It is possible, 

therefore, that the prospective infundibular cells of the hypothalamus are 

exposed to a further developmental signal(s) around HH stage 13, to which 

they can respond appropriately and uniformly. 
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Chapter 8 

Discussion 



In this thesis, I set out to address whether BMPs can antagonise Shh within 

the developing hypothalamus. My studies show that in one particular region 

of the forming hypothalamus, the prospective infundibulum, BMPs do 

antagonise Shh, acting to down-regulate Shh mRNA. Moreover, my studies 

indicate that BMP down-regulation of Shh is likely to be mediated through the 

T-box transcriptional repressor, Tbx2. 

My studies raise a number of specific questions, which I have already 

discussed (sections 3.3,4.3, 5.3, 6.3, and 7.3). In addition, my studies raise 

a number of general issues and questions, which I now discuss below. 

8.1 Compartments 

My fate mapping studies (chapter 3) show that the ventro-medial part of the 

hypothalamus, the prospective infundibulum, and lateral hypothalamus are 

derived from different regions of the early embryo. The Shh-negative 

infundibulum is derived from the initially Shh-positive M1/2 b populations (as 

defined in section 3.2.2), while the Shh-positive lateral hypothalamus is 

derived from the L 1c population, which is initially Shh negative. A number of 

observations have led me to question whether these two regions form 

separate compartments. Firstly, the progeny of fate-mapped cells were never 

found to populate both the Shh-negative infundibulum and the Shh-positive 

lateral hypothalamus. Oil injections into the M1 b domain at stage 9 gave rise 

to labelled progeny which occupied exclusively the infundibulum (figure 3.2). 

Labelled cells were found throughout the anterior-posterior axis of this region, 

however, no labelled cells were detected in adjacent Shh-positive cells of the 

pre-optic area, or the caudal diencephalon. Likewise, although progeny of 

cells labelled in L 1 c at stage 9 populate a large expanse of the diencephalon, 

including Shh-negative regions of the dorsal diencephalon, and Shh-positive 

regions of the lateral hypothalamus that border the infundibulum, on no 

occasion were labelled cells detected within the infundibulum (see figure 3.7). 
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As discussed in section 3.3, the case for infundibular cells forming a separate 

compartment is further supported by experiments carried out on zebrafish 

(Mathieu et al., 2002). In this study, cells which were unable to transduce 

Nodal signals were excluded from the Shh-negative infundibulum, but were 

able to populate other regions of the hypothalamus. This implies that Nodal is 

involved in regulating differences in cell surface properties within infundibular 

cells. The inability of cells which can not receive Nodal signals to intermingle 

with cells that can is suggestive of a compartment. 

Although both lines of evidence described above indicate that the 

infundibulum forms a separate compartment from the rest of the 

hypothalamus, neither experiment is conclusive. In order to assess whether 

there are indeed separate compartments in this area, it is first necessary to 

understand precisely what is defined by the term 'developmental 

compartmenf. Most tissues are composed of a number of different cell types 

which can be free to intermingle, but sometimes segregate from each other, 

therefore sub-dividing the tissue into non-intermingling sets of cells, which 

are termed compartments. With a compartment, cells are free to mix, 

however, at the compartment boundary, a cell-segregation mechanism exists 

in order to prevent mixing with cells outside of this group, therefore forming a 

straight interface. The most popular hypothesis for a cell-segregation 

mechanism involves differential cell adhesion properties between the two 

groups. In this model, an inherited factor within a population (such as Nodal, 

or a down-stream component of Nodal) results in the expression of a 

particular cell surface marker, such as ephrins or cadherins, resulting in a 

higher affinity of these cells to each other than to cells not inheriting this 

factor, or a repulsion between the two groups. Ultimately, this would result in 

the segregation of the two cell types (Dahmann and Basler, 1999). 

In the vertebrate hindbrain, cells of the rhombomeres have been shown to 

form compartments. Oil injected into rhombomeres can disperse freely 

through the individual rhombomere, but is prevented from crossing the 

boundary between odd and even-numbered rhombomeres. Additionally, 
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whilst cells taken from odd or even-numbered rhombomeres have been 

shown to mix in cell aggregation experiments, cells from odd- and even­

numbered rhombomeres have been shown to segregate (Wizenmann and 

Lumsden, 1997). This cell sorting is thought to be due to the differential 

expression of receptor tyrosine kinases EPHA4, EPHB2 and EHPB3 by odd­

numbered rhombomeres, and ephrin-B1, -B2 and -B3 by even-numbered 

rhombomeres. The EHP-receptor-ephrin interactions at the rhombomere 

boundaries are thought to restrict intermingling between the two cell groups. 

Therefore, in order to show the existence of compartments in the 

hypothalamus, two approaches can be taken. Firstly, fate-mapping of both 

the M1/2b and L 1 populations of cel~simultaneously, using Oil (pink) and DiO 

(green), would show more conclusively whether a compartment boundary 

does exist, and is generated at a particular time in development. Additionally, 

double-labelling of cells within the same 'compartment' would indicate 

whether the cells of this region intermingle with each other, or whether the 

apparent compartmentalisation is merely a result of the tendency of the 

progeny of labelled cells to remain in tight cohorts. Cell aggregation studies 

could also be performed, where cells from each region are removed from the 

embryo, labelled and then disassociated from each other. The cells from the 

different regions would then~iXed together and cultured. If the two cell 

groups are from separate compartments, as in the case of the rhombomeres, 

the differentially labelled cells will segregate into two groups, whereas if a 

compartment is not present, and the two cell groups do not express different 

adhesion molecules, no segregation will occur. 

A question arising from the discovery of compartments is what is their 

purpose in development? As discussed in section 1.1, in embryogenesis, 

different cell types are patterned via signals secreted from speCial organising 

centres, such as the Node or floor plate. The pOSition of these organising 

centres in relation to the cells they act upon is critical; however, in rapidly 

proliferating tissues, cell mixing can occur. An important function of 

compartmentalisation therefore, is to maintain the position of organising 
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Figure 8_1 
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Compartment boundaries are lineage borders linked to a cell segregation mechanism and serve to 
maintain the position and shape of organizers during growth of a tissue (exemplified by the 
Drosophila anteroposterior compartment boundary in the wing imaginal disc). (a) A tissue is 
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s gregahon system IS termed the compartment boundary (dashed line). (b) The selector gene directs 
the expression of the short-range signalling molecule HH. The short-range signalling molecule moves 
to the adjacent 'selector gene off' cells, where it induces the expression of the morphogen DPP (red) in 
a few rows of cells, which act as an organizer. The morphogen moves away from its site of expression 
forming a graded distribution (red dots). The morphogen induces expression of target genes in a 
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border betw n 'on' and 'off' celis leads to an irregular and spatially unstable organizer incapable of 
directing precise patterning (left panel). In contrast, the compartment boundary between 'on' and 
'off' cells I ads to a straight and stable organizer and thereby to a precise patterning of the tissue 
(nght pan I), Furthermore, the position of the organizer is maintained during growth of the tissue. 

Taken from Dahmann and Basler. 1999 



centres in growing tissues. An example of compartment boundaries being 

used to stabilise an organiser is seen in the Drosophila wing imaginal disc, as 

shown in figure 8.1. Likewise, recent studies provide increasing evidence that 

the rhombomeres in the vertebrate hindbrain function as organising centres, 

playing an important role in lineage restriction and maintenance of 

rhombomere-specific expression patterns of transcription factors controlling 

anterior-posterior cell identity (Seitanidou et aI., 1997). 

Box 4 
The hypothalamus 

The hypothalamus is a primitive part of the brain whose role is central to 

the maintenance of body homeostasis, which is achieved by the 

integration of autonomic response with behaviour. By contrOlling the 

release of hormones, the hypothalamus regulates physiological needs 

such as control of body temperature, energy metabolism, reproduction, 

stress response, blood pressure and electrolyte composition. As the 

hypothalamus plays such a fundamental role in basic autonomic 

function, there is a high degree of structural conservation between 

species. Sensory information is received from almost all areas of the 

body; neural information from the visceral sensory system, olfactory 

system and retina synapses directly with the hypothalamus, whilst 

internal sensory neurons are sensitive to changes in temperature and 

chemical composition of the blood, such as osmolarity, glucose and 

sodium levels. Circulating levels of hormones such as angiotensin II and 

leptin can also interact directly with hypothalamic neurons. 
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Changes detected in the sensory input results in co-ordinated signals 

being relayed from hypothalamic neurons to the underlying pituitary in 

order to effed the synthesis and release of hormones in the anterior 

pituitary, or the release of neurohormones directly in to the blood-stream 

of the posterior pituitary (figure 8.2). In order to precisely co-ordinate the 

responses to these inputs, the cells of the hypothalamus are organised 

into specialised nuclei each with different functional roles. 

The anterior hypothalamus is composed of pre-optic nuclei, which are 

mainly involved in the integration of different kinds of sensory information. 

The medial hypothalamus contains the dorsomedial, ventromedial, 

paraventricular, supraoptic and arcuate nuclei, which playa major role in 

autonomic regulation. Other nuclei in this region regulate complex 

integrative functions such as control of growth, feeding, maturation and 

reproduction. The medial hypothalamus overlies the pituitary gland, to 

which it is connected via the infundibulum (figure 8.2). Neurons from the 

medial hypothalamus project down through the infundibulum and synapse 

on either the anterior pituitary, where neurotransmitters are released into 

the local portal circulation, then carried down to the endocrine cells in this 

region (figure 8.2a) or onto the posterior pituitary, where neurohormones 

from the hypothalamic cells are released directly into the blood stream to 

be circulated around the body (figure 8.2b). The posterior hypothalamus is 

composed of the mammillary body and the overlying posterior 

hypothalamic area, which includes the tuberomammillary nucleus, a group 

of histaminergic cells important in regulating wakefulness and arousal. 

(See also figure 3.1 c). 
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Figure 8.2 
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Neurons from the hypothalamus project through the infundibulum to release 
neuropeptides into the capillary beds of the anterior pituitary (a) in order to 
regulate hormone release and production, or project into the posterior 
pituitary (b), where nerurohormones are released directlyinto the systemic 
clrculatmg blood. 

Figure taken from 'Neuroscience, exploring the brain', 
Bear, Connors and Paradiso 



8.2 The infundibulum as an organiser 

What is the functional importance of the infundibulum? As described above 

(Box 4), the hypothalamus consists of a complex network of neurons, which 

are grouped into nuclei and project through the infundibulum to the pituitary 

gland. Thus, classical anatomical studies have described the infundibulum 

simply as an axonal tract. 

My experiments, however, point towards a growing body of evidence that 

suggest that the infundibulum functions as an embryonic organiser. In 

particular, my studies, together with on-going work in the lab (MP, KO) 

suggest a model in which the infundibulum acts first to pattern the early 

developing neurogenic region of the hypothalamus and second, to guide 

developing hypothalamic axons to pituitary targets. Such a model, in which 

the infundibulum serves as an organising centre in both hypothalamic 

patterning and axon guidance would ensure the co-ordinated regulation of 

patterning and guidance of neurons required for function. Such a role for 

ventro-medial cells is reminiscent of the floor plate, which is involved in both 

the pattering of the dorso-ventral axis of the spinal cord, and the guidance of 

axons along or across the ventral midline in this region. 

An important question to address in future studies will be that of whether the 

infundibulum co-ordinately patterns the neurogenic region of the 

hypothalamus and the anterior pituitary. Both classical embryological 

experiments and genetic analysis in mice have identified the infundibulum as 

a key organiser of the developing pituitary (Oasen and Rosenfeld, 2001). 

The pituitary gland has dual embryonic origin; the anterior pituitary, which is 

composed of hormone-secreting endocrine cells, is derived from oral 

ectoderm, whilst the posterior pituitary, composed of axonal prOjections 

emanating from the hypothalamus, is derived from neural ectoderm. In 

addition to the anterior pituitary, the oral epithelium gives rise to the roof of 

the mouth and its derived structures (reviewed in Oasen and Rosenfeld, 
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2001). Following interactions with the infundibulum, a thickening of the oral 

ectoderm occurs, which later invaginates to form Rathke's pouch. In mice, 

BMP4 expressed in the infundibular region is thought to be responsible for 

the initial commitment of these cells to a pituitary fate, in part by repressing 

Shh expression from surface ectoderm cells that will form Rathke's pouch. 

This absence of Shh has led to the proposal of the existence of a 

compartment boundary in this region (Dasen and Rosenfeld, 2001). In 

addition to BMPs, the infundibulum also expresses members of the FGF 

family of signalling molecules, which have been shown to play critical roles in 

pituitary patterning and morphogenesis. The infundibular FGFs form a dorso­

ventral gradient, which is antagonised by Shh from oral-ectoderm (figure 8.3). 

Together, these studies show that BMPs expressed in the infundibulum play 

vital roles in the development of both the hypothalamus and the pituitary. 

Future studies will address the role of FGFs in hypothalamic patterning. 

8.3 Shh: its role in ventral cell identity in the hypothalamus 

If the infundibulum is the main organising centre for the hypothalamic region, 

then what role is played by Shh? As outlined in the Introduction (section 1.2), 

Shh patterns ventral regions of the neural tube. Most of the evidence 

supporting a role for Shh in neural patterning derives through studies in the 

posterior neural tube. However, an increasing body of evidence suggests a 

similar role for Shh within the anterior neural tube, the prospective forebrain 

(section 1.4). As outlined in the Introduction, Shh can induce the ectopic 

expression of lateral hypothalamic cells, and is required for lateral cells in the 

neurogenic region of the hypothalamus (Dale et al., 1997; Ohyama et aI., in 

preparation). A question that arises through my studies is that of how Shh 

can pattern the lateral hypothalamus when it is not expressed in the 

infundibulum? The most likely explanation, suggested through recent 

experiments in the lab (KO) is that lateral hypothalamic cells are specified 

earty in development at around HH stage 5-6, i.e. several hours before Shh is 
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Figure 8.3 

Shh~ 

BMP4 and FGFs in the mouse infundibulum (I) form 
a dorso-ventral gradient across Rathke's Pouch (RP). 
Shh from the oral ectoderm (oe) induces ventral 
expression of BMP2, which acts antagonistically to 
the dorsal FGFs. 

Figure adapted from Scully and Rosenfeld 2002 



down-regulated in the infundibulum. This suggests that prospective 

infundibular cells can provide an early source of Shh. Further experiments, 

however, are needed to establish whether additional sources of Shh, 

including prechordal mesoderm, and lateral cells themselves, likewise pattern 

the lateral hypothalamic cells 

8.4 Induction of infundibular cells. 

In the spinal cord, hindbrain, midbrain and telencephalon, Shh appears to be 

required, both for the differentiation of neurogenic cells that will form in 

ventro-lateral domains, and for the differentiation of ventro-medial cells (i.e. 

the floor plate in posterior regions, and the Shh-positive ventro-medial cells of 

the telencephalon). What is the evidence that Shh is required for the 

differentiation of ventro-medial cells of the infundibulum? 

In mouse embryos that lack Shh (Shh-I- mutants), the entire hypothalamus 

appears absent, including ventro-medial infundibular cells. In chick embryos, 

however, recent experiments have suggested that Shh does not act alone to 

induce infundibular cells, but instead, co-operates with Nodal to induce their 

differentiation (Patten et aI., 2003). A potential role for Nodal in the induction 

of infundibular cells is likewise suggested through recent studies in zebrafish. 

These studies have shown that induction of the zebrafish infundibulum does 

occur in fish that lack the fundion of Smoothened, an essential 

transmembrane modulator of Hedgehog (Hh) activity (Chen et aI., 2001; Rohr 

et aI., 2001; Varga et aI., 2001), but fails to occur in Nodal mutant embryos. 

Somewhat paradoxically, these studies reveal that in the zebrafish, the 

infundibulum appears to be suppressed by Hh. 

My studies suggest a model that may reconcile the apparent requirement for 

Shh in mouse infundibular development with the obseNation in zebrafish that 

Shh suppresses infundibular development. This model suggests that the 

combined action of Nodal and Shh are required for the initial induction of 
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hypothalamic ventral midline cells, but that at later stages of development, 

Shh is no longer required and may actually act to repress infundibular 

character. 

8.5 The role of BMPs in hypothalamic cell speCification 

In addition to providing a model for the role of Shh in infundibular patterning, 

my fate-mapping experiments suggest how BMPs can operate to 

differentially pattern the forming hypothalamus. Analysis of downstream 

targets of BMPs has shown that whilst BMPs are produced by prechordal 

mesoderm cells and infundibular cells, known downstream targets of BMP 

signalling, such as Msx1, are found only in lateral Shh-positive hypothalamic 

cells, and are not expressed in the infundibulum. A question that arises is 

why these two regions of the hypothalamus might show a very different 

response to BMPs. One possibility is that BMPs induce Msx1 in a 

concentration-dependent manner, with appropriate levels only normally 

detected by lateral hypothalamic cells. However, a second possibility, raised 

by my fate-mapping experiments, is that prospective infundibular cells and 

lateral hypothalamic cells arise from very different progenitor cells in the 

embryo, each of which has different competence to respond to BMP 

Signalling. This view is supported by fate-mapping studies of the HH stage 4 

chick embryo, which show that infundibular cells arise from a very discrete 

region of the early epiblast, termed area a (Patten et aI., 2003). Further 

support for this view cornes through analysis of the expression of 

components of the BMP Signalling pathway. In particular, 

immunohistochemical analyses have revealed that both Smad 1 and Smad 5 

are expressed on lateral hypothalamic cells, but excluded from infundibular 

cells. This provides evidence that BMP signalling does not operate to specify 

infundibular cells. 

Together, these obseNations, and further experimental studies (Dale et al., 

1999; Mathieu et aI., 2002) suggests that the combined action of Nodal and 

170 



Shh induces infundibular cells (i.e. M1/M2 cells), whereas the combined 

action of BMPs and Shh induce lateral hypothalamic cells (i.e. L 1). As 

discussed in chapter 3, it is likely that the action of either Nodal or BMPs 

induce different downstream targets which may include cell adhesion 

molecules. 

8.8 Regulation of Tbx2 within the infundibulum 

Although the weight of evidence suggests that infundibular cells might be 

unable to respond to BMP signalling, this appears to contradict the results of 

chapter 6 which indicate that prospective infundibular cells respond to BMPs 

by up-regulating Tbx2. There are two possibilities to reconcile this paradox: 

1. Tbx2 is induced by BMPs in the prospective infundibulum via the 

activation of a signalling pathway, but the components of this pathway are 

distinct to those in the L 1 lateral hypothalamic cells. 

2. BMP activity is required for Tbx2 expression, but by a mechanism which 

is independent of a signalling pathway. 

As outlined in chapter 6, one way in which this second model might work 

would be if Tbx2 expression is activated by a factor other than BMPs in the 

infundibular cells (factor y), but then repressed by another molecule found in 

this region (factor x). The expression of BMPs could then allow Tbx2 

expression by alleviating its factor x repression (figure 8.4), in effect, 

repressing the repression of Tbx2. A candidate molecule for factor x might 

be Nodal. As discussed earlier, Nodal is required for the induction of 

prospective infundibular cells, and is expressed in the ventral diencephalon. 

BMP7 and Nodal are able to physically interact in ways that significantly alter 

their signalling properties, through mutual repression (Soubes et aI., in 

preparation; Yeo and Whitman, 2001). It is therefore possible that factor y 

(one candidate would be FGF10) acts to induce Tbx2 expression in the 

infundibulum, which is in tum repressed by Nodal. Interactions between the 
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Figure 8.4 

a) 

BMP --... Tbx ----tl Shh 

y 
b) 

1 
X ITbx IShh 

T 
BMP 

c) FGF 

1 
Nodal------IITbx ----il Shh 

T 
BMP 

Po_ible mechanl8ma for TbX2 regulation In the chick Infundibulum. 
a) BMPs could be acting directly to induce the expression ofTbx2, 
which then represses Shh expression. 
b) Another factor (Y) may induce Tbx2 expression in the infundibular 
cells, but then this is repressed by a second factor (X). BMP may then 
ad to repress the repression of factor X, thereby allowing Tbx2 
expression in these ceUs. 
c) Nodal and FGFs are possible candidates for molecules X and Y 
respectively. 



Nodal and BMP molecules may then prevent Nodal from repressing Tbx2 in 

this way, thus providing BMPs with a mechanism to allow Tbx2 expression, 

without employing a signalling pathway. 

A number of methods could be used to test this theory. Firstly, the 

electroporation of dominant negative Smads would block any BMP Signalling 

activity, indicating whether or not the signalling pathway was required for the 

induction of Tbx2 in the infundibular cells. Secondly, the activity of FGF10 

could be assessed by electroporating FGF10 siRNA into either prechordal 

mesoderm or prospective infundibular cells. This would result in a repression 

of FGF10 expression, and its requirement in Tbx2 expression could be 

analysed. Additionally, electroporation of FGF10 into the L1 cells could be 

used to analyse subsequent expression of Tbx2 in this domain. If the model 

in figure 8.4c is correct then FGF10 would induce Tbx2 expression in the 

lateral medial hypothalamic cells, and as Nodal is not expressed in this 

region, Tbx2 expression would not be repressed. Such experiments will be 

the focus of future studies in the lab. 
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