
IDENTIFICATION AND CONTROL
OF DYNAMIC SYSTEMS USING

NEURAL NETWORKS

by

Eliezer Colina Modes
M.Sc., SysterIls Eng.

A thesis presented to the

UNIVERSITY OF SHEFFIELD

for the degree of

DOCTOR OF PHILOSOPHY
in the Faculty of Engineering

Department of AutorIlatic Control and SysterIls Engineering,
University of Sheffield.

DECEMBER, 1993

DECLARATION

No part of the research referred to in this thesis has been submitted
in support of an application for another degree or qualification at
this or any other university or other institution of learning.

During the course of this research the following publications were presented

• E. Colina-Morles; N. Mort, "Self-Tuning Control Via Neural Network Para­

metric System Identification" .

Presented in the one day colloquium on "Application of Neural Networks in

Control and Modelling of Industrial Processes". Sir George Cayley Institute of

the Polytechnic of Central London, April 1991.

• E. Colina-Morles; N. Mort, "Identification and Control of Dynamic Systems

via Adaptive Neural Networks".

Department of Automatic Control and Systems Engineering, Research Report

Number 433, July 1991.

• E. Colina-Morles; N. Mort, "On-Line Control of Dynamic Systems Using Feed­

forward Neural Networks".

Department of Automatic Control and Systems Engineering, Research Report

Number 457, August 1992.

• E. Colina-Morles; N. Mort, "Neural Network-based Adaptive Control Design".

Journal of Systems Engineering, Vol. 3, Number 1, pp 9-14, London 1993.

• E. Colina-Morles "On-Line Control of Dynamic Systems Using Feedforward

Neural Networks".

2-Day Symposium on Postgraduate Research in Control and Instrumentation,

The University of Nottingham, March 1993.

• H. Sira-Ramirez, E. Colina-Morles, "A Sliding Mode Strategy for Adaptive

Learning in Adalines".

Submitted for publication to IEEE Trans. on Systems, man, and Cybernetics,

1993.

• E. Colina-Morles; N. Mort, "Inverse Model Neural Network-Based Control of

Dynamic Systems" .

Submitted to the lEE Fourth International Conference on ,Control-94.

ACKN OWLEDG EMENTS

The author would like to thank and express his sincere indebtedness to all who have

helped him in this work. Very particularly he would like to thank the University of

Los Andes in Merida, Venezuela, for the award in supporting his work. The author

is also grateful to his supervisor, Dr. N. Mort of the Automatic Control and Systems

Engineering Department at Sheffield University, for his encouragement in his work.

Finally, the author would like to thank his family for their continuing and

sustaining support over the years.

To my beloved wife, Rosa Ibett;

my daughter Ibett Sarai,

my son Elzerj

and all my family.

I I I

-~--- ------~ .- -~~----

ABSTRACT

The aim of this thesis is to contribute in solving problems related to the on-line

identification and control of unknown dynamic systems using feedforward neural

networks. In this sense, this thesis presents new on-line learning algorithms for

feedforward neural networks based upon the theory of variable structure system

design, along with mathematical proofs regarding the convergence of solutions given

by the algorithms; the boundedness of these solutions; and robustness features of

the algorithms with respect to external perturbations affecting the neural networks'

signals.

In the thesis, the problems of on-line identification of the forward transfer

operator, and the inverse transfer operator of unknown dynamic systems are also

analysed, and neural networks-based identification schemes are proposed. These

identification schemes are tested by computer simulations on linear and nonlinear

unknown plants using both continuous-time and discrete-time versions of the pro­

posed learning algorithms.

The thesis reports about the direct inverse dynamics control problems using

neural networks, and contributes towards solving these problems by proposing a

direct inverse dynamics neural network-based control scheme with on-line learning

capabilities of the inverse dynamics of the plant, and the addition of a feedback

path that enables the resulting control scheme to exhibit robustness characteristics

with respect to external disturbances affecting the output of the system. Computer

simulation results on the performance of the mentioned control scheme in controlling

linear and nonlinear plants are also included.

The thesis also formulates a neural network-based internal model control scheme

with on-line estimation capabilities of the forward transfer operator and the inverse

transfer operator of unknown dynamic systems. The performance of this internal

model control scheme is tested by computer simulations using a stable open-loop

unknown plant with ouput signal corrupted by white noise.

Finally, the thesis proposes a neural network-based adaptive control scheme

where identification and control are simultaneously carried out.

\V

._- -

Contents

1 INTRODUCTION 1

1.1 IDENTIFICATION AND CONTROL OF DYNAMIC SYSTEMS US-

ING NEURAL NETWORKS 1

1.2 THESIS ORGANIZATION 3

2 OVERVIEW OF NEURAL NETWORKS 5

2.1 INTRODUCTION 5

2.2 HISTORICAL EVOLUTION 6

2.3 TAXONOMY OF NEURAL NETWORKS 8

2.4 CATEGORIZATION OF LEARNING ALGORITHMS " 13

2.4.1 LEARNING ALGORITHMS FOR PERCEPTRON NETWORKS 14

2.5 NEURAL NETWORK STRUCTURES 18

2.5.1 MULTILAYER PERCEPTRON NETWORKS. 18

2.5.2 HOPFIELD OR RECURRENT NETWORKS 20

2.5.3 SELF ORGANIZING NEURAL NETWORKS 21

2.6 SUMMARy................................ 23

3 VARIABLE STRUCTURE CONTROL-BASED-LEARNING AL-
GORITHMS FOR FEEDFORWARD NEURAL NETWORKS 25

3.1 INTRODUCTION " 25

3.2 VSC DESIGN .. 28

3.2.1 CONTINUOUS-TIME VSC DESIGN. 29

3.2.2 DISCRETE-TIME VSC DESIGN ~ 30

3.3 VSC LEARNING ALGORITHMS "'~ . .. 31

3.3.1 CONTINUOUS-TIME VSC LEARNING RULES 32

3.3.2 DISCRETE-TIME VSC LEARNING RULES 43

3.3.3 THE TWO LAYER NEURAL NETWORK CASE 48

3.3.4 THE THREE LAYER NEURAL NETWORK CASE 50

3.4 IMPLEMENTATION OF THE LEARNING ALGORITHMS 52

v

3.5 SUMMARy 52

4 DYNAMIC SYSTEM IDENTIFICATION USING FEEDFORWARD
NEURAL NETWORKS 53

4.1 INTRODUCTION 53

4.2 FTO MODELLING. .. 56

4.2.1 CONTINUOUS-TIME LINEAR FTO MODELLING 56

4.2.2 CONTINUOUS-TIME NONLINEAR FTO MODELLING .. 62

4.3 DISCRETE-TIME DYNAMIC SYSTEMS FTO MODELLING. . .. 64

4.4 INVERSE TRANSFER OPERATOR MODELLING 68

4.4.1 CONTINUOUS-TIME DYNAMIC SYSTEMS ITO MODELLING 68

4.4.2 DISCRETE-TIME DYNAMIC SYSTEMS ITO MODELLING 70

4.5 SUMMARy................................ 71

5 INVERSE MODEL NEURAL NETWORK-BASED CONTROL OF

DYNAMIC SYSTEMS 100

5.1 INTRODUCTION 100

5.2 DIRECT ITO CONTROL SYSTEM 102

5.3 CONTINUOUS-TIME LINEAR SYSTEMS CASE 104

5.4 CONTINUOUS-TIME NONLINEAR SYSTEMS CASE. 109

5.5 DISCRETE-TIME ALGORITHMS 112

5.6 SUMMARy................................ 113

6 OTHER NEURAL NETWORK CONTROL APPLICATIONS 123

6.1 INTRODUCTION 123

6.2 INTERNAL MODEL CONTROL SCHEME 123

6.2.1 NEURAL NETWORK-BASED IMCS 125

6.3 MODEL REFERENCE CONTROL 127

6.3.1 NEURAL NETWORK-BASED ADAPTIVE CONTROL SCHEME129

6.4 SUMMARy....

7 CONCLUSIONS

A Single Layer Neural Networks

A.1 Continuous-Time Computer Program.

A.2 Discrete-Time Computer Program.

B Two Layer Neural Networks

B.1 Continuous-time Computer Program

VI

· 132

137

~. 141

· 141

· 142

144

· 144

B.2 Discrete-Time Computer Program.

C Three Layer Neural Networks

C.1 Continuous-time Computer Program

C.2 Discrete-Time Neural Network

D Computer Programs For Implementing The IMCS

. 146

148

148

. 150

154

E Computer Programs For Implementing The Adaptive Control Scheme 160

\ / ((

Chapter 1

INTRODUCTION

1.1 IDENTIFICATION AND CONTROL OF DY­

NAMIC SYSTEMS USING NEURAL NET­

WORKS

The identification of dynamic systems using neural networks addressed in this thesis

may be succinctly formulated as follows:

Given a sequence of time-indexed input output measurements "u(t), f(u(t»",

t E [0,00), obtained from a plant "f", and given a feedforward neural network

represented by the function "i(W(t), u(t))" that depends upon the adaptable real­

valued matrix "WCt)" and the variable "u(t)", find the parameters "W·(t)" such

that

lIi(w·Ct),u(t» - f(u(t))1I ~ € (1.1)

for all admissible values of "W(t)", and € > O.

Observe that this identification problem may be interpreted as the problem of

finding a function "i(., .)" to approximate the function "f(.)" in the best possible

way, by means of a learning or adaptation process.

The existence of a best approximation is influenced by the learning process

used to adapt the values of the adjustable matrix "W(t)" . !n this thesis, both

continuous-time and discrete-time learning algorithms for the adaptation of "W(t)"

will be presented. These new learning algorithms are based on the theory~'of variable

structure control design [43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56] and

may be used on-line for making feedforward neural networks emulate the forward

transfer operator that represents an unknown dynamic system.

The thesis also reports about the problem of using these learning algorithms

1

for the on-line training of neural networks in order to represent the inverse trans­

fer operator corresponding to a certain time history of input-output measurements

obtained from an unknown dynamic system.

Both the forward dynamics and the inverse dynamics identification problems

have been extensively reported in the literature using different neural networks

topologies and a variety of learning algorithms [7, 15, 35, 39,40, 41, 42, 59, 60,

61, 62,63]. In most of the reported works however, the identification of the forward

dynamics or the inverse dynamics of an unknown system using multilayer neural

networks involves an off-line training phase where the adaptable network parame­

ters are adjusted with every input-output pair presentation to the network by using

an algorithm that solves the problem of minimizing an error function of these pa­

rameters.

In contrast to the off-line neural network training algorithms for system iden­

tification, in the on-line learning algorithms that will be presented in this work there

is no need for a training phase, and instead of minimizing an error function of the

adjustable parameters, the algorithms operate by forcing an error function of the

parameters to go to zero.

The information about the unknown system dynamics or its inverse provided

by the on-line trained neural network may be incorporated into control schemes

to actually control the system. There is a large number of neural networks-based

control schemes that have been recently reported in the literature [15, 16, 36, 60,

61, 65, 69, 70, 72, 75, 76] among many others.

The formulation of the direct inverse dynamics control problem that is consid­

ered in this thesis may be simplified as follows:

Given the input-output measurements "u(t), f(u(t))" obtained from the dy­

namic system "f", and given a desired plant output "Yr(t)" that may be assumed

that is the output of a known reference model; we want to determine an approxima­

tion of the inverse transfer operator "j-l" of "f" that enables the control law "u(t)",

t ~ to, to be generated in such a way that

lim If(u(t)) - Yr(t))1 ~ (
t-+oo

(1.2)

for some specified constant value (~ 0.

From the neural networks applications viewpoint it has been shown~'that using

neural network trained versions of the inverse transfer operator of the system being

considered enables the control input "u(t)" mentioned above to be implemented with

excellent control performance [7, 16, 75, 76, 83, 84].

In the neural network-based direct inverse control scheme that will be proposed

2

in this thesis the control action is generated based upon an on-line approximation

of the inverse transfer operator of the plant.

The thesis also contemplates a brief study of the internal model control problem

[74, 75, 79] and formulates an on-line trained neural network-based internal model

control scheme that is tested by computer simulations performed on an open-loop

stable linear unknown dynamic system.

Other control application of on-line trained neural networks that is analysed in

this work is the model reference adaptive control problem [15, 80, 82]. In this sense,

a neural network-based adaptive control scheme is proposed and its performance is

checked by computer simulations using unknown linear and nonlinear plants.

1.2 THESIS ORGANIZATION

In order to formulate the on-line variable structure control-based learning algorithms,

and to study the identification and control problems referred to in the previous

section, this thesis is organised as follows:

Chapter 2 presents an overview of neural networks that contains a historical

evolution of the field; a taxonomy of neural networks in terms of their topological

configurations and the type of learning algorithms supported; and a categorization of

the learning algorithms with a short explanation of the Widrow-Hoff delta rule, and

the ft-least mean square algorithm. These two algorithms constitute the basis for

other learning algorithms like the backpropagation algorithm. Finally, this chapter

also contains a succinct exploration on the salient features of some of the most

popular neural network structures: the multilayer perceptron networks, the hopfield

or recurrent networks, and the self-organizing or Kohonen networks.

The purpose of chapter 3 is to develop the variable structure control-based

learning algorithms for feedforward neural networks.In this sense, a very short intro­

duction to both continuous-time and discrete-time variable structure control design

is provided. The chapter includes a completely new type of continuous-time learn­

ing algorithms for on-line training of single layer, two layer, and three layer feedfor­

ward neural networks. Mathematical proofs on the convergence properties, on the

boundedness of solutions, and on the robustness features with respect to external
~,

perturbations of these new learning algorithms are also presented.

The discrete-time versions of the learning algorithms that are formulated here,

include a generalization of the algorithms developed in [60] that takes into account

time-varying neural networks' input and teaching signals. As in the continuous-time

cases, the discrete-time version of the algoritms are developed for single layer, two

3

layer, and three layer neural networks; and mathematical proofs on the convergence

characteristics, boundedness of solutions, and robustness features with respect to

external perturbations on the networks' signals are highlighted.

Chapter 4 covers the problems of on-line identification of the forward transfer

operator and the inverse transfer operator of unknown dynamic systems. Both

linear and nonlinear systems are considered, and examples on the performance of

the continuous-time and discrete-time learning algorithms embedded into neural

network-based identification schemes are reported. In these examples, the robustness

features of the identification schemes under the presence of perturbations on the

neural networks signals are studied. The chapter also presents computer simulation

results showing the convergence characteristics of the output of the neural networks.

Here, the approximation capabilities of single layer, two layer, and three layer neural

networks trained on-line with our proposed learning algorithms are illustrated.

In chapter 5, a direct inverse model neural network-based control scheme for

dynamic unknown systems is presented. The robustness characteristics with respect

to external perturbations affecting the system output that the proposed control

scheme exhibits are possible thanks to the on-line learning capabilities of the neural

network that emulates the inverse transfer operator of the unknown plant, and the

existence of a feedback path.

The chapter also includes an interpretation of the existence of the inverse trans­

fer operator of a linear system in terms of satisfying the controllability condition.

Here, the performance of the control scheme is tested by computer simulations using

a linear and a nonlinear plants. Both the continuous-time and the discrete-time

learning algorithms are used for the on-line training of the neural networks inverse

transfer operator emulators.

Chapter 6 covers other control applications of on-line trained neural networks.

In particular, a neural network-based internal model control scheme, and a neural

network-based adaptive control scheme are presented and their performances are

tested by computer simulations performed on unknown dynamic systems.

The last chapter is a summary of conclusions and recommendations for further

research work.

.~.

4

Chapter 2

OVERVIEW OF NEURAL
NETWORKS

2.1 INTRODUCTION

Since the nineteenth century, there have been different methods for studying the

operation of the human brain in a systematic way. Neuro-psychology is based upon

a method of analysing the relationships between anatomical features of the brain

and aspects of human behaviour. Using such methods it was shown that the motor

functions of the brain and its senses are precisely localised in its structure [1]. In

contrast, there are other methods which explain the operation of the brain as a

whole, taking a more global approach. The newest methods of analysis attempt to

study the brain in more detail, descending to the molecular level of the physical and

chemical processes involved in its operation.

Neurons are nerve cells that constitute the primordial elements of the central

nervous system. In general, neurons are able to receive signals coming from other

neurons, process these signals, generate nerve pulses, conduct these pulses, and

transmit them to other neurons. Morphologically, a neuron has a pyramidial or

spherically shaped cell body, which contains the nucleus. The cell body carries

out the necessary transformations to the life of the neuron .. Surrounding the cell

body there are tubular extensions called dendrites, which are the receptors of the

neuron. Finally, the axon which differs from the dendrites in shape, is tb,e outgoing

connection for signals emitted by the neuron. Figure 2.1 illustrates a typical neuron.

In a human brain, neurons are interconnected in complex spatial topologies to form

the central nervous system.

The operation of the neuron is usually explained as a process in which the

5

Dendrites

Axon

Figure 2.1: Neuron and its components.

cell carries out a summation of the signals arriving on the dendrites. When this

summation is greater than a certain threshold, the neuron responds by transmitting

a pulse through its axon. If the summation is less than the threshold, the neuron is

inactive. In this simple conceptual model, the operation of the neuron is interpreted

as an electrical phenomenon. Figure 2.2 shows the electric analog model of figure

2.1.

An artificial neural network is a model designed to emulate some of the func­

tions of the human brain. These types of models include both the functional charac­

teristics as well as topological configurations of neurons in the brain. The historical

origins of this study area are diverse. The next section summarizes some facts in

the evolution of artificial neural networks.

2.2 HISTORICAL EVOLUTION

The pioneering work on artificial neural networks was put forward in 1943 by Mc­

Culloch and Pitts [2], with the first mathematical models to study the capabilities

of interconnected neurons to calculate certain logical functions. In 1949,-Hebb pub­

lished a study indicating the relevance of the connection between synapses to the

process of learning, and pointing out the adaptation laws involved in neural systems.

The ideas of McCulloch and Pitts, Hebbs, and others were influential in the work

of Rosenblatt, who published his first technical report about the perceptron in 1957

6

Oendrnes
-{r--------...)I--_-----,

Threshold

!
Axon -

1
Summation

Figure 2.2: Electric model of a neuron.

[3, 4]. In his first report, Rosenblatt used the term "perceptron" to refer to an au­

tomation, instead of a class of models of the central nervous system. The aim of his

work however, was to show the feasibility of designing an adaptive neural network

with a rich interconnectivity and synapse-like nonlinearity to mimic some defined

functions. The initial era of neural networks ended with the publication of a work

by Minsky and Papert in 1969 [5]. This paper showed the theoretical limitations of

single layer perceptrons to solve the "exclusive or" logical problem.

Despite the fact that the idea of merging control engineering, information sci­

ence, and neural science under the banner of cybernetics, was first proposed by

Wiener in 1948 [6] , the tendency during the sixties was centrifugal for each of these

disciplines: Since then, the research on artificial neural networks has kept some of

the control engineering tools, like the use of gradient methods, mean-square error

techniques, and measurements with numerical or logical values, made of some state

process or object, together with the tradition in artificial intelligence of addressing

problems that are not formulated with a high degree of mathematical structure [7].

In 1976, Grossberg published a work based on biological and psychological evidence,

where neural feature detectors were introduced to exploit novel charac;.~eristics of

different configurations of nonlinear dynamic systems [8]. New impetus was given

to the field of neural networks when Hopfield published a paper entitled "Neural

networks and physical systems with emergent collective computational abilities" in

1982 [9]. In this paper, Hopfield proposed a model which was capable of imple­

menting a content-addressable memory. His idea, although it was based on many

7

previous results, suggested the existence of a stable dynamic behaviour of the ner­

vous system, where neighbouring states tend to approach a stable state. Also, he

showed that during the evolution of this stable dynamic behaviour, an energy func­

tion is locally minimized, emulating the behaviour of spin isinglasses, and enabling

some results from statistical physics to be used in neural networks. Another strong

impulse to the research interest in the area of neural networks was propelled by

the new results and the rediscovery of Werbos' backpropagation algorithm [10], by

LeCum in 1985 [11], Parker in 1985 [12], and Rumelhart, Hinton, and Williams in

1986 [13]. The collection of papers by Anderson and Rosenfeld [14], is an excel­

lent source of information to follow the development of models of neural networks.

Today, the first practical applications of neural networks are emerging in a variety

of engineering fields ranging from signal processing and pattern recognition devices

to experimental robot controllers. In the context of control and identification of

dynamic systems the paper by Narendra and Parthasarathy [15], the compilation

book by Miller, Sutton, and Werbos [7], and the survey paper by Hunt, Sbarbaro,

Zbikowski, and Gawthrop [16], among many others, represent an updated panorama

of the state of the art in research activities in these fields.

In the literature, different names have been used to represent neural networks.

Titles like connectionist models, parallel distributed processing models, and neu­

romorphic systems, are used as synonyms for neural networks, which has became

a multi-disciplinary area of research with thousands of periodical publications in

journals covering biology, psychology, mathematics, physics, and electronics among

other disciplines.

The next section presents a classification of neural networks in terms of their

input signals, training environment, and topological configurations.

2.3 TAXONOMY OF NEURAL NETWORKS

The basic constituent element of most neural network configuration is the adaptive

neuron, also known as perceptron or adaline. In general, these adaptive neurons

represent the processing elements of the network, and may be, considered to have

the following components:

• a weighted input summer junction,

• a nonlinear activation function,

• a learning rule.

8

Nonlinear function

Leaming Teaching signal
~A~~~m~hm~ __ ~ ____ _

Figure 2.3: Adaptive neuron.

Figure 2.3 illustrates a neuron as an adaptive element. Observe that from figure

2.3,

11.

L Wi(t) Xi(t) + Wn+1(t) b,
i=l

(2.1)

(2.2)

The computational power, or the representation capabilities of a neural network

depends upon the interconnectivity among its constituent neurons and the learning

rule used to adjust its weights. It is possible to think of a neural network as a

classifier designed to perform a specific task. For example, the classical decision

theory problem of identifying which class best represents an input pattern can be

tackled with a multilayer perceptron neural network; or the problem of retrieving

data given an incomplete input pattern, can be solved by designing a recurrent neural

network that operates like a content-addressable memory. Similarly, a self organizing

feature map neural network can be used to deal with image and speech transmission

problems of data compression. The taxonomy presented by Lippmann [17], shows

six topologies of classifier neural networks for fixed patterns. This taxonomy is
arranged in a tree, with the upper branch divided between networks with binary-

valued inputs, a.nd networks with continuous-valued inputs. Below this branch,

networks are grouped between those trained with supervision, and those trained in

an unsupervised environment. Figure 2.4 illustrates this taxonomy. Observe that

the algorithms listed at the bottom of the tree are those classical algorithms which

9

NEURAL NETWORK ClASSIFIERS FOR FIXED PATIERNS

BINAR INPUT CONTINUOUS-V LUED INPUT

SUPE~RVISED SUPE~ERVISED

~Aoo CARPENTER! PE~ \NEN
NETY\QRKS NETY\QRKS GROSSBERG WLTlLAYER SELF-ORGANIZlNG

I
CLASSIFIER

I
PERCEPTRON FEATURE MAPS

I I I
C~~ x~~~J C~~~~ _~T x~_

Figure 2.4: Taxonomy of six classifier neural networks.

are similar to, or perform the same function as their corresponding neural networks.

For example, the Hamming network [17] is a neural network implementation of the

optimum classifier for binary input patterns corrupted by random noise, whereas

Kohonen networks [18] form a pre-specified number of clusters as in the k-means

algorithm, where "k" refers to the number of clusters formed. The classification

of neural networks by Lippmann does not differentiate between adaptive and fixed

training rules.

Another way to classify neural networks is by using the unifying model pro­

posed by Hunt et al [16]. This model contemplates that many of the basic processing

elements of the network, are formed by three components:

• a weighted summer,

• a linear dynamic si so system,

• and a non-dynamic nonlinear function.

A schematic representation of the unifying model of a neuron is, depicted in figure

2.5. From figure 2.5, the weighted summer is described by ...

n m

Vi(t) = LaiiYi(t) + L bikUk(t) + Wi, (2.3)
i=l k=l

which can be conveniently expressed in vector-matrix notation as

V(t) = A Y(t) + B U(t) + W, (2.4)

10

LINEAR

DYNAMICS

NON-LINEAR

FUNCTION

Figure 2.5: Unifying model of a neuron.

where A E ~nxn, Y(t) is a vector of outputs from other neurons, B E ~nxm, U(t)

is a vector of external inputs, and W is a vector of constant elements. The linear

dynamic siso system on the other hand, may be described by its transfer function as

(2.5)

or equivalently, in the time domain, by the equation

(2.6)

where H(s) and h(t) form a Laplace transform pair. A possible choice for H(s) is

the following
1

H(s) = ,
aos + a1

(2.7)

which is equivalent to selecting

1 (~)t h(t)=-exp-ao ,
ao

(2.8)

that corresponds to the time domain input-output relationship

(2.9)

Finally, the non-dynamic nonlinear function gives the neuron output Yi as a function

of the linear dynamics output Xi. This is

(2.10)

11

where usual choices for g(.) are threshold functions, sigmoid functions, gausslan

functions, etc.

Depending on the selection of the linear dynamic siso system, neural networks

may be classified as static and dynamic networks. For example, if the transfer

function of the linear dynamic system is H(s) = 1, then an assembly of neurons can

be represented by a set of algebraic equations of the type

X(t)

Y(t)

A Y(t) + B U(t) + W,

g(X(t)),

(2.11)

(2.12)

with the dimensions of A and B depending on the number of the outputs and

external inputs to the neural network, respectively. If on the other hand, the linear

dynamic system is described, for example by H(s) = T:+1 then, the neural network

mathematical model can be written as the differential equation

T X(t) + X(t)

Y(t)

AY(t) + B U(t) + W,

g(X(t)).

(2.13)

(2.14)

In terms of particular topologies, equations 2.11 and 2.12 may be regarded as

representing a static multilayer feedforward network, whereas equations 2.13 and

2.14 may be considered as representing a recurrent network. Other network archi­

tectures are viewed as extensions or refinement of the ones described above.

Neither the neural network taxonomy proposed by Lippmann [17] nor the

classification in the paper by Hunt et al [16], are general enough to encompass the

variety of neural network topologies and learning algorithms used to train them. As

an example, the neural network structures used in this work can operate both with

discrete-time or continuous-time inputs, in a supervised learning environment which

supports adaptive on-line training, for a multilayer perceptron topology whose neu­

rons have continuous time variable weights. Figure 2.6 illustrates the type of neural

networks used in this work. Notice that the training environment for the multi­

layer perceptron network shown in figure 2.6, includes an error correction based

algorithm. There are other types of training algorithms, based ,upon different per­

formance objectives. The next section presents a categorization of learning rules for

neural networks. ".

12

NEURAL NElWORK

TYPE OF INPUT -TIME INPUT

/
TRAINING ENVIRONMENT ERROR CORRECTION-BASED ALGORITHM

1
ADAPTNE

NETWORK TOPOLOGY MUL TILA YER lERCEPTRON

1
CONTINUOUS-TIME VARIABLE WEIGHTS

Figure 2.6: A particular type of neural networks.

2.4 CATEGORIZATION OF LEARNING AL­

GORITHMS

Perhaps the most important characteristic of neural networks is their ability to

learn by adjusting their connection weight values to capture information that can

be recalled. All learning methods can be grouped into two categories:

• supervised learning methods,

• unsupervised learning methods.

In supervised learning, which can be further classified into structural learning and

temporal learning, a teacher guides the network at each stage of learning, indicat­

ing the correct result. The aim in supervised structural learning is to find the best

possible input-output relationship corresponding to each input pattern, as in pat­

tern matching and pattern classification problems. Supervised temporal learning

on the other hand, is concerned with capturing a sequence of patterns necessary to

achieve a final goal, such as in prediction and control problems. Example!!,of super­

vised learning algorithms include error-correction learning, reinforcement learning,

stochastic learning, and hardwired systems. The unsupervised learning is a self

organizing process which relies on local information with no need of any external

teacher. Examples of unsupervised learning algorithms are the hebbian learning,

principal component learning, differential hebbian learning, min-max learning, and

13

LEARNING ALGORITHMS -----------------SUPERVISED UNSUP RVISED

STRUCTURAL
LEARNING

REINFORCEMENT STOCHASTlC
LEARNING LEARNING

TEMPORAL
LEARNING

~~D~
SYSTEMS ERROR-CORRECTION

LEARNING

~
HESSIAN
LEARNING

PRINCIPAL
COMPONENT
LEARNING

Figure 2.7: Categorization of learning algorithms.

competitive learning.

DIFFERENTIAL
HEBBIAN

LEARNING

MlN-MAX
LEARNING

A good summary of information regarding neural network learning has been

published by Simpson [19]. Figure 2.7 illustrates a categorization of learning algo­

rithms for neural networks.

2.4.1 LEARNING ALGORITHMS FOR PERCEPTRON

NETWORKS

Usually, the creation of new learning rules, or the variation of the existing ones,

must rely upon the principle of minimal disturbance. That is, make adjustments to

decrease the output error for the presented training pattern, with minimal distur­

bance to responses alrready learned. Learning algorithms for perceptron networks

satisfy this principle and may be divided into two groups:

• Error-correction algorithms, which adapt the weights of a network to correct

error in the output response to the presented input pattern.

• Gradient descent algorithms, which adjust the weights of a network during

each pattern presentation by steepest descent with the objective ~f reducing

the mean-square error, averaged over all training patterns.

By virtue of the differences in objectives, these two types of algorithms have differ­

ent learning characteristics. An excellent categorization of learning algorithms for

perceptron networks can be found in a paper by Widrow and Lehr [20]. Figure 2.8

14

STEEPEST ERROR
DESCENT CORRECTION

RULES RULES

~ ~
LAYERED SINGLE LAYERED SINGLE
NElWORK ELEMENT NElWORK ELEMENT

/ /\ / A
NONUNEAR NONUNEAR UNEAR NONUNEAR NONUNEAR UNEAR
(SIGMOID) (SIGMOID)

\
(SlUwr. (SIGNUM)

I 1 J \
MRIII MRIII -LMS MRI PERCEPTRON -LMS

(BACKPROPAGATION)- (BACKPROPAGA nON) MRII (MAYS)

Figure 2_8: Learning rules for perceptron networks_

illustrates this categorization. Next, the a-least mean square (a-LMS) algorithm,

which is an error-correction based algorithm; and the JL-Ieast mean square (JL-LMS)

algorithm, which is a gradient descent based algorithm, are presented. These for­

mulations enable us to see the different learning characteristics of both algorithms.

2.4.1.1 a-LEAST MEAN SQUARE ALGORITHM

The a-LMS algorithm, also known as the Widrow-Hoff delta rule, is used to adapt

the weights of a single linear neuron such as the one shown in figure 2.9. The linear

error e(k) represents the difference between the desired response Yd and the linear

output Yo(k). This is

where Yo(k) is defined by

A change in the weights yields a corresponding change in the error

e(k + 1) - e(k) = -(W(k + 1) - W(k)? X(k),

and if the change in the weights is selected as

a e(k) X(k)
W(k + 1) - W(k) = IIX(k)112 '

15

(2.15)

(2.16)

(2.17)

(2.18)

INPUT VECTOR

x

BIAS INPUT

1

UNEAR OUTPUT

Yo
NONUNEAR OUTPUT

Zo

~ ______ ~ LEARNING
RULE + DESIRED OUTPUT

Figure 2.9: Adaptive linear element.

then equation 2.17 yields

o e(k) XT(k) X(k)
e(k + 1) - e(k) = - IIX(k)112 = -0 e(k). (2.19)

Therefore, if the input pattern X is kept fixed, the linear error e is reduced by a factor

o as the weights are adapted. For input patterns independent over time, the value

of 0 to guarantee stability must belong to the interval 0 < a < 2. Observe that

this choice of 0 does not depend on the magnitude of the input signals. The weight

update is collinear with the input pattern and of a magnitude inversely proportional

to IIX(k)1I2. This algorithm also operates for binary inputs.

2.4.1.2 J-L-LEAST SQUARE ALGORITHM

A very common approach to reduce a mean square error function is based upon

the method of steepest descent. In terms of a neural network, the gradient of the

mean-square error function is measured and the neural network weights are adjusted

in the direction corresponding to the negative of the measured gradient. This is
~.

W(k + 1) = W(k) + J-L(-V(k)), (2.20)

where J-L is a parameter that control stability and rate of convergence, and V(k) is

the value of the gradient at a point on the mean-square error surface corresponding

to W(k). The mean-square error surface is a convex hyperparaboloidal surface which

16

r

may be obtained in the following way. At the k-th iteration, squaring and expanding

error equation 2.15 yields

e2(k) (Yd - XT(k) W(k))2

- Y~ - 2Yd XT(k) W(k) + WT(k) X(k) XT(k) W(k). (2.21)

Now, averaging equation 2.21 over the ensemble, yieds

(2.22)

Let P be the correlation vector between the desired response Yd and the input vector

X, and let R be the input correlation matrix. This is

R

E[YdXT(k)],

E[X(k) XT(k)).

(2.23)

(2.24)

Substituting equations 2.23 and 2.24 into equation 2.22 yields the quadratic form

(2.25)

which represents the mean-square error surface.

The JL-LMS algorithm works by performing approximate steepest descent on

the mean-square error surface represented by equation 2.25. Since this equation is

a quadratic function of the weights and is convex, it has a unique minimum. An

instantaneous value of the gradient 'V (k) is obtained as

V(k) =
8e2(k)
8W(k)

[~ 1
aWl (k)

ae2 (k)
awn+dk)

(2.26)

Performing the differentiation in equation 2.26 and replacing it into equation 2.20,

yields

W(k + 1) W(k) - 2 (k) 8e(k)
/1 e 8W(k)

W(k) - 2/1e(k)X(k). ..•.
(2.27)

For input patterns independent over time, convergence in the mean-square sense of

the weight vector is guaranteed if

o < /1 <
1

Trace(R) ,
(2.28)

17

where Trace(R) = L:(diagonal elements of E[X XT]). Observe that both the a­

LMS and the J.L-LMS algorithms are based on instantaneous gradient values. The

a-LMS algorithm however, is self normalizing, with the parameter a determining the

fraction of the instantaneous error to be corrected with each adaptation; whereas in

the J.L - LM S algorithm, J.L is a constant coefficient.

For error-correction based algorithms, the same fundamental idea of instan­

taneous error correction was used by Rosenblatt [21] in his a-perceptron algorithm

considering a binary nonlinear error function. For multi-element networks, the mada­

line rule I and the madaline rule 11 are also error correction based algorithms [20].

Other gradient descent based rules are the backpropagation algorithm [10, 11,

12, 13], and the madaline rule III by Andes et al [22].

2.5 NEURAL NETWORK STRUCTURES

Three of the most popular neural networks today are multilayer perceptron networks,

Hopfield networks, and the self organizing feature maps of Kohonen. There are

several other neural network structures suitable for a variety of engineering problems

ranging from pattern operations (classification, matching, and completion), to noise

removal, optimization, and control. This section presents an outline of important

characteristics of some commonly used neural networks. Only those networks most

frequently used in identification and control of dynamic systems will be summarized.

the summary includes three aspects:

• type of inputs,

• learning rules and training environment,

• network topology.

2.5.1 MULTILAYER PERCEPTRON NETWORKS

Multilayer perceptrons are feedforward networks which accept both continuous­

valued inputs or binary inputs. These networks are trained -in a supervised en­

vironment that may support adaptive learning. Structural learning is achievable
~.

when gradient descent algorithms are used. On the other hand, temporal learning

can be easily obtained by implementing error-correct ion-based algorithms. Top 0-

logically, a multilayer perceptron network is a layer like configuration of cascaded,

interconnected processing units or nodes. Figure 2.10 shows a three layer perceptron

network with two hidden layers of nodes. Provided an adequate selection of the in-

18

INPUT
SIGNALS

X1

WI W1

OUTPUT
SIGNALS

DESIRED OUTPUTS

Figure 2.10: A three layer perceptron neural network.

put signals are made, the approximation capability of a multilayer network depends

on its number of hidden layers, its number of processing units, and also, it depends

on whether its processing units are linear or nonlinear elements. Kolmogorov's the­

orem states that any continuous function of "n" variables can be computed using

only linear summations and nonlinear but continuously increasing functions of one

variable [23]. This theorem can be used to explain the potential approximation ca­

pabilities of multilayer neural networks. It has been shown by Hornik et al [24],

that a two layer network with an arbitrarily large number of nodes in the hidden

layer can approximate any continuous real valued function f E C(~'\ ~m) over a

compact subset of ~n.

The backpropagation algorithm, which is a generalization of the least mean­

square algorithm, is often used to train multilayer perceptron networks. This algo­

rithm operates by minimizing a cost function equal to the mean-square difference

between the desired and the actual network outputs. The algorithm uses a gradi­

ent descent search technique. Details about this algorithm can be found in [13].

The next chapter presents an error-correction type algorithm, used as learning rule

to train multilayer networks. This learning rule is based on the theory <;If variable

structure control system design.

19

X
I--_n-i(k+ 1)

Figure 2.11: The Hopfield network.

2.5.2 HOPFIELD OR RECURRENT NETWORKS

According to Hopfield [9], the human nervous system attempts to find stable states

which are attractors, in its state space. This implies that neighbouring states tend

to approach a stable state, enabling errors to be corrected and providing the ability

to fill in information that is missing. A Hopfield or recurrent network is an im­

plementation of these properties and therefore, it represents a content-addressable

memory.

Hopfield networks are usually operated with binary inputs. they are less ap­

propriate when input values are continuous, because a fundamental representation

problem must be addressed to convert the analog quantities to binary values. In

recurrent networks, the learning process takes place in a supervised environment us­

ing Hebb's rule [25], which consists of increasing the weight of a connection between

two neurons every time that the two neurons are simultaneously active. Adaptive

on-line learning is not supported, and therefore the process of "memorising" stable

states (prototypes) must be done off-line. ,

A Hopfield network is topologically arranged as a single layer network, included

in a feedback configuration, as shown in figure 2.11. The discrete-time"version of

the Hopfield network may be modeled by

X(k + 1) = r(X(k)); X(O) = Xo, (2.29)

where r(.) represents the nonlinear activation function, and Xo is an initial condition.

The network state evolves to an equilibrium state if r(.) is suitably chosen. The set of

20

initial conditions in the neighbourhood of Xo which converge to the same equilibrium

state is then identified with that state.

In the continuous-time case, every feedback path includes a transfer function

of the type (.s!a)' The network may be modeled by the equation

X(t) = -aX(t) + r(X(t)) + I, (2.30)

where X E ~n is the network state, and I E ~n is a constant input vector. The

determination of the weights by the Hebb rule in Hopfield networks, may introduce

undesirable "rubbish states" that may form strong attractors. Hopfield proposes a

model where the network is randomly initialised and when it converges, the state

into which it stabilises is slightly "unlearned" by applying the Hebb rule in the

reverse direction. This process of "unlearning" [26] allows the attractiveness of

rubbish states to be decreased, whilst increasing that of the desired states. Another

method to improve the avoidance of undesirable states in a Hopfield network is

to use the simulated annealing algorithm introduced by Kirkpatrick et al [27]. In

this algorithm, which uses an analogy with thermodynamics, the state of a system

consisting of a large number of particles is characterised as the data, given the state

of all these particles; for example, the position of the magnetic moment of each

atom. The probability of finding this system in a given state "e" is proportional

to the Boltzmann factor exp(- J~»), where J(e) represents the energy of this state,

and "T" is a given temperature. The probability of two states el and e2 occurring

is related by the equation

(2.31)

In the simulated annealing algorithm, J(.) represents a cost function to be mini­

mized, and T is an input parameter which is initially set to a high value so that

the system explores a large number of states. When the system has stabilised, T

is gradually lowered, until T = O. In a Hopfield network operating according to

the simulated annealing principle, each neuron changes states in the sense of in­

creasing the energy function, as a function of some parameter ,T. The Boltzmann

machine [28] is a recurrent neural network whose learning algorithm is based upon

the simulated annealing principle.
",

2.5.3 SELF ORGANIZING NEURAL NETWORKS

Self organizing neural networks or Kohonen feature maps [29], are designed based on

the organizing principle of sensory pathways in the brain. According to this principle,

21

Figure 2.12: Kohonen feature map.

OUTPUT
NODES

the placement of neurons is orderly and often reflects some physical characteristic

of the external stimulus being sensed.

The inputs to a Kohonen network are continuous-valued signals presented se­

quentially in time, in a unsupervised environment which supports structural learn­

ing. The learning mechanism is based on the fact that the Hebb rule, when neuron

activation can take only positive values, cannot reduce the value of the weight of

connections when one or the two neurons are inactive. This implies that the learning

mechanism cannot contribute to the phenomenon of forgetting as a result of either

activity or inactivity of neurons. Kohonen's algorithm creates a vector quantizer by

adjusting weights from common input nodes to output nodes.

The architecture shown in figure 2.12, illustrates a possible topology of the net­

work. This architecture takes account of external data arriving at the network in­

put, and of internal connections of the network. In figure 2.12, Y = (Yb Y2, . .. , Yn?

is the output vector of the "n" neurons in the network, X = (Xl, X2,'" xm? is

the input vector from the "m" external inputs to the network, M is the matrix of

weights on the connections from external inputs to the neurons I and N is the ma­

trix of weights of the connections between neurons in the network. Mathematically
"

speaking, the Kohonen model may be characterised by the following dynamic state

equations

Y

M

Fl(X, Y, M, N),

F2(X, Y, M),

22

(2.32)

(2.33)

(2.34)

Equations 2.32, 2.33, and 2.34 describe the operation of the network, and its learning

rules for external and internal connection weights, respectively. Considering the

effects of the lateral interaction, the neuron rule of operation can be described by

the equation

Yi(t) = f(Xi(t) + 2: h Yi+k(t», (2.35)
k=-"".+""

where f is a sigmoid activation function, Xi(t) is the total external input to neuron

"i" at time "t", and Ik represents the weights of the internal connections that have

lateral interaction with neuron "i". Note that the lateral interactions are considered

in a neighbourhood around each neuron. In order to guarantee that the activation

level of each neuron is directly proportional to the "resemblance" between the current

input and the input for which that neuron was trained, the network must find, from

the "n" neurons, the neuron "c" such that

(2.36)

On the other hand, to increase the activation of the selected neuron, and the sur­

rounding group of neurons, the following general form of the learning rule must be

applied.

N
· .. _ { K(t)(Xj - Nij) for neurons i C Vc

lJ - o for neurons i ::> Vc
(2.37)

where Vc is a neighbourhood around neuron "c", and K(t) is a function which linearly

decreases with learning time, ensuring that the learning terminates in finite time.

There are several other self organizing neural networks with potential appli­

cations in· the identification and control of dynamic systems. Among these, it is

worth mentioning the cognitron and neocognitron of Fukushima [30, 31, 32], and

the adaptive resonance theory network of Carpenter and Grossberg [33, 34]. Also,

other neural networks with applicability to identification and control, that operate

in a supervised environment, are the radial basis function networks [35], and the

cerebellar articulation controller network [36].

2.6 SUMMARY

This chapter has presented a summary review of neural networks. This review has

covered some historical aspects of the evolution of neural networks, as well as two

23

classifications that allow a systematic study of a variety of network structures. In

the taxonomy proposed by Lippmann [17], neural networks have been grouped tak­

ing into consideration whether their inputs were continuous-valued or binary-valued

signals. Also, in this taxonomy neural networks have been further divided according

to their training environment into supervised and unsupervised training networks.

Examples of network topologies have also been presented to support the classifica­

tion. In the unifying model for neural networks that has been suggested by Hunt

et al [16], the processing elements were formed by three components: a weighted

summer, a linear siso system, and a non-dynamic nonlinear function. In this unify­

ing model, neural networks have been classified depending upon the selection of the

linear siso system, into static and dynamic networks.

Also, this chapter has included a categorization of learning algorithms for

training neural networks. Two groups of learning algorithms have been described:

supervised and unsupervised learning. Examples of each of these groups have been

reported. A more exhaustive analysis of learning algorithms for perceptron networks,

has been presented, and details on the deduction of the a-LMS algorithm and the

JL-LMS algorithm have been contemplated to remark the differences between error­

correction based algorithms and gradient descent-based algorithms.

Finally, this chapter has summarized salient characteristics of three important

neural network structures: multilayer perceptron networks, Hopfield or recurrent

networks, and self organizing maps or Kohonen networks, that are commonly used

to propose novel control and identification system applications.

24

Chapter 3

VARIABLE STRUCTURE

CONTROL-BASED-LEARNING
ALGORITHMS FOR
FEEDFORWARD NEURAL
NETWORKS

3.1 INTRODUCTION

It is based upon the parallel processing capability of the human brain that artificial

neural networks are designed. This parallel processing capability is performed by the

dynamics of interconnected neurons with learning ability. In the context of artificial

neural networks, learning means the ability to adapt a network so that the output

responses to some input patterns are as close as possible to their corresponding re­

sponses. In supervised learning, artificial neurons adjust their connection weights

depending on the input signals which they receive and on the error signals obtained

from the difference between associated teaching signals and the actual network out­

puts. In an unsupervised environment on the other hand, nC?urons modify their

connection weights depending upon their input signals and internal states.

As a general rule, supervised learning algorithms are designed relying on the

principle of minimal disturbance. That is, the output error for the current training

pattern is reduced by adapting the connection weights so that the responses already

learned are minimally disturbed [20]. Two types of supervised learning rules are:

• error-correction rules,

25

• gradient descent rules.

In error-correction rules the weights of the network are adapted by controlling the

convergence to zero of an error equation. If the error correction is proportional to

the error itself, the learning rule is a linear one, as in the Widrow-Hoff delta rule

[20]. Otherwise, it is a nonlinear error-correction rule, as in the perceptron learning

rule of Rosenblatt [3]. Error correction algorithms are suitable for learning temporal

sequences such as in prediction and control problems. In gradient descent rules,

on the other hand, the connection weights of the network are adjusted during ea.ch

pattern presentation, based on the method of steepest descent or other gradient

method, with the objective of minimizing a mean-square error, averaged over all

training patterns [20, 37, 38]. A widely used gradient descent algorithm, which has

both temporal and structural learning capabilities, is the generalized delta rule or

backpropagation algorithm [13].

The learning process in an artificial neural network can be viewed as a process

of estimating a mapping that transforms input signals into corresponding output

signals. In supervised learning, a set of examples of input-output pairs of the map­

ping to be learned is provided to the neural network. In this context, learning is

interpreted as an approximation problem [35, 39, 40]. That is, the problem of find­

ing a function "j(W, X)" to approximate a continuous or discrete mapping" I(X)"
by suitable selection of the parameters "W", which belong to some set "P". When

the function "j" is given, the approximation problem reduces to finding the set of

parameters "w" that provide the best possible approximation of "/(X)" on the set

of examples. Mathematically speaking, the problem can be formulated as follows:

Given a function "/(X)" defined on a set "X", and an approximating function

"j(W, X)" that depends on W E P and the real valued vector" X" , find the param­

eters "W·" such that

IIj(W*, X) - I(X)II $ € (3.1)

v W· E P, and € > O.

Observe that the existence of a best approximation depends firstly upon the

class of approximating function "j" used [35], and secondly, ,on the learning al­

gorithm used to find the appropriate values of the parameters "w" for the given

choice of "j". Typical approximating functions j : m" -+ m, which repr~sent neural

networks are the following:

• Single layer neural networks: the corresponding approximating function, which

is linear, is des cri bed by

f(W, X) = WT X. (3.2)

26

• Two layer neural networks: the approximating function is linear with respect

to a basis of functions {ri };:1 of the original inputs "X".

feW, X) = WT f(X). (3.3)

Note that these approximating functions may be regarded as spline interpola­

tion, or as extensions in series of orthogonal polynomials.

• M ultilayer neural networks (more than two layers): the approximating function

is a nested nonlinear function of the type

J(W,X) = f(WJf(W~p f(.. . f(W~l X) .. .))) (3.4)

where "WT" "WT " and "WT " represent the input weight matrix the "p-th" I, Hp' H1 '

hidden weight matrix, and the output weight matrix, respectively. A common

choice of the nonlinear function "f(.)" is the sigmoid function. Other choices

include saturation functions, threshold functions, etc. It has been proved that

this type of network, with a layer of hidden units, can approximate arbitrarily

well any continuous multivariable function [24].

Other functions that may be readily realised in three layer networks are radial

basis functions described by

n

feW, X) = Co + L Ci <p(IIX (3.5)
i=l

where the input nodes contain the vector variable "X". The hidden layer

has "n" nodes; one for each centre "W(i)". The components of "W(i)", say

"Wi/' , are the values that link the i-th input node to the j-th hidden node. For

example, the j-th hidden node "z;" is obtained as

p

Zj = IIX - W(i)1I 2 = L(Xi - Wij)2. (3.6)
i=l

The radial basis function "<P" is a continuous function from ~+ to ~, which

is applied to "(Zj)1/2" in order to contribute in producing an output of the

network at the third layer, according to equation 3.5. The parameters "q"
represent the connection weights between the hidden layer and. the output

"
layer. Some of the commonly used radial basis functions are the following

<p(Z) = z2 log(z), (3.7)

<p(z)
z2

exp(-"2)' (3.8)

<p(z) (Z2 + k2)1/2. (3.9)

27

The functions 3.7. 3.8, and 3.9 represent thin plate splines, gaussian basis

functions, and multiquadratic basis functions, respectively. Important con­

tributions on the applications of radial basis functions neural networks have

been reported by Broomhead and Lowe [41], and Chen et al [42], among many

others.

In this work, the general class of approximating functions to be used are the linear

functions described by equation 3.2, that represents single layer networks; and the

nested nonlinear functions of the type described by equation 3.4, that represents

multilayer neural networks. On the other hand, the learning algorithms to be used

are derived from a continuous-time and a discrete-time variable structure control

(VSC) framework [43, 44]. These algorithms operate by adjusting the connection

weights of the networks so that a sliding regime, or a quasi-sliding regime, respec­

tively, is induced on the learning error equations of the networks. Before presenting

the derivation of the variable structure control-based-Iearning algorithms in section

3.3, the next section contains an outline of VSC design topics.

3.2 VSC DESIGN

The design of VSC systems and their associated sliding regimes have become a

powerful methodology for dealing with the robust control of nonlinear dynamical

systems which present both parametric and unmodeled dynamics uncertainties. De­

tailed expositions on the state of the art and the potential applicabilities of this

design methodology can be found in survey articles by Utkin [44, 45], Sira-Ramirez

[43, 46, 47], and several books [48, 49].

In variable structure systems design, it is possible to induce the system dynam­

ics to evolve in a given surface, or manifold, that results in a dynamical behaviour of

lower order than the original system. Once on the surface, the system dynamics are

largely determined by the design parameters and equations defining the manifold,

and gives the opportunity of exploiting new properties originally absent from the

system. The design of a variable structure controller involves two steps:

• Selection of a feedback control law to accomplish manifold reach ability, and -.
• once on the manifold, the selected control law must be able to maintain the

evolution of the system constrained to this manifold.

28

3.2.1 CONTINUOUS-TIME VSC DESIGN

Mathematically, the variable structure control design for continuous-time nonlinear

systems may be summarized as follows.

Consider the single-input dynamic system described by

X(n) = J(X) + g(X)Uj X(to) = Xo (3.10)

where X E ~n is the state vector, "J(X)" and "g(X)" are nonlinear functions of

"X". Let the tracking error in the variable "x" be defined by x = x - Xd, where

Xd represents a desired state variable, possibly time-varying. Furthermore, let the

scalar equation s(X, t) = 0 define a time-varying manifold in the state-space !Rn
described by

s(X, t) = (D + "t-1 x (3.11)

where D = ft is the operator differentiation, and A is a strictly positive constant.

Observe that the problem of tracking Xd is equivalent to the problem of reaching

and remaining on the surface seX, t) for all t > to. Reaching the surface seX, t) can

be achieved by choosing the control law U of 3.10 such that the following condition

is satisfied

(3.12)

where 1] is a strictly positive constant.

Condition 3.12 is called the sliding condition, and can be geometrically in­

terpreted as a movement of trajectories off the surface pointing towards the sur­

face. Figure 3.1 illustrates the sliding condition. It is important to note that if

Xd(tO) =j:. X(to), satisfying condition 3.12 guarantees that the surface "s(X, t)" is

reached in a finite time smaller than (ls(X(to), to)1 + 1] to)/1] [50].
The behaviour of the system on the sliding surface is known as sliding regime,

and is defined by the equation

Ds(X,t) = 0 (3.13)

The equivalent control law is the control action needed to maintain the sliding

regime, and therefore is obtained by solving equation 3.13 for the control input

"u" . ",

A VSC law is obtained by letting the control function "u" take one of two

feedback values according to the sign of "s(X, t)". This is

u={ U+(X) for seX, t) > 0

u-(X) for seX, t) < 0

29

(3.14)

S(x)

~~

Figure 3.1: The sliding condition

with u+(X) =f. u-(X).
In summary, variable structure system design involves selecting a suitable

switching function "s(X, t)" of the tracking error, according to equation 3.11, and

then choosing a feedback control law "u" such that the induced system dynamics

remain stable despite the presence of model imprecision and of disturbances. This

objective can be achieved by designing a control law that is discontinuous across

"s(X, t)", and allows the sliding condition 3.12 to be verified. Due to imperfections

in implementing the associated switching controls, the sliding dynamics present chat­

tering motions close to the sliding manifold.

3.2.2 DISCRETE-TIME VSC DESIGN

The main developments in the theory of dicrete-time variable structure systems

design have been put forward by the contributions of Miloslavjevic [51], in the context

of sample data systems; Opitz [52], Magaiia and Zak [53], and Sarpturk et al [54] for

discrete-time linear systems, and more recently by the contribu~ions of Drakunov

and Utkin [55], Furuta [56], and Sira-Ramirez [43].

For discrete-time systems, the extension of the continuous-time condition for

the existence of a sliding regime do not necessarily guarantee sliding dynamics with

chattering motions close to the manifold. The term quasi-sliding regime was intro­

duced by Miloslavjevic [51] to characterize sliding dynamics in discrete-time systems.

It has been found that a quasi-sliding regime exists on the zero level set of an out-

30

put switching function, if and only if the nonlinear discrete-time system has relative

degree equal to one [43]. The relative degree determines the time delay experienced

by the input signals of a system before they influence its outputs.

The design of quasi-sliding regimes for discrete-time nonlinear systems may be

summarized as follows:

Consider a smooth single-input single-output nonlinear system described by

x(k + 1)

y(k)

F(x(k),u(k)); k=O,1,2, ...

h(x(k)),

(3.15)

(3.16)

where x E .1' C !Rn, U E !R, y E !R, and the mappings "F" and "h" are assumed

to be analytic. The sliding manifold is defined as a smooth curve described by the

level set

h-1(O) = {x E .1: : h(x) = O} (3.17)

A variable structure feedback control law for the system described by equations 3.15

and 3.16 is obtained by letting

u = {u+(x) for h(x) > 0 (3.18)
u - (x) for h(x) < 0

with u+(x) > u-(x). A necessary condition for the existence of convergent quasi­

sliding dynamics about "h-1(O)" is that a quasi-sliding regime exists about such a

manifold. A convergent quasi-sliding regime exists on "h-1 (O)" if and only if

Iy(k + l)y(k)1 < y2(k) (3.19)

Furthermore, if the system described by 3.15 and 3.16 has relative degree equal to

1, then there exists a variable structure feedback control law of the form 3.18 which

creates a quasi-sliding regime on "h-1(O)" [43]. On the other hand, the equivalent

control "ueq (x)" is the control function that maintains the system trajectories on

the manifold y = h(x) = O.

It is important to point out that under condition 3.19 the chattering behaviour

of the dynamic system about the suggested quasi-sliding manifold mayor may not

exist at all. Moreover, the quasi-sliding regime may be achieved without discon­

tinuous controller of the form 3.18. Illustrative examples of these situations are

presented in [43].

3.3 VSC LEARNING ALGORITHMS

In section 3.1, it has been emphasized that the supervised learning process in artifi­

cial neural networks may be interpreted as the approximation problem of finding the

31

INPUT VECTOR

x

BIAS INPUT

1

""-------""""-1 LEARNING
RULE

UNEAR OUTPUT

Yo
NONUNEAR OUTPUT

Zo

+ DESIRED OUTPUT

Figure 3.2: Linear adaptive neuron

appropriate approximating function, or when this is given, finding the parameters of

that function to track another function in the best possible way. On the other hand,

in section 3.2 the idea of inducing the trajectories of a dynamic system to evolve on

a defined manifold has been introduced. This manifold may be selected as a function

of an error signal that depends on the difference between the output of the system

and a desired response. The design of variable structure systems can be incorporated

in the learning process of a neural network to achieve function approximations.

3.3.1 CONTINUOUS-TIME VSC LEARNING RULES

3.3.1.1 THE ADALINE CASE

Consider the adaptive linear neuron depicted in figure 3.2. It is easy to verify that

the following equations hold true

Yo(t)

e(t)

XT(t)W(t) + bWn+l(t)

Yd(t) - Yo(t),

(3.20)

(3.21)

where Yo(t) E ~ is the neuron output, X(t) E ~n is the neuron input vect~r, W(t) E

!Rn and Wn+l(t) E ~ represent variable weight values, Yd(t) E !R is the desired output,

"b" represents a constant bias or threshold input signal, and e(t) E !R is the error

between the desired and the actual neuron outputs.

It is possible to think of the weights of the neuron as a dynamic system modeled

32

by an equation of the form

Wa(t) = F(U(t», (3.22)

where W;(t) = (W(t) wn +1(t)f is the state vector, and "U(t)" is a control input

that must be interpreted as an updating function. The output of this dynamic

system is assumed to be a function of the type

e(t) = h(Wa(t» (3.23)

In particular, the dynamic system to model the behaviour of the weights and the

proposed output are described by the equations

Wa(t) U(t)

e(t) - Yd(t) - Yo(t)

(3.24)

(3.25)

It can be seen that from equation 3.11, the sliding manifold for the dynamic system

represented by equations 3.24 and 3.25 may be described by

s(Wa, t) = e(t)

Observe that the sliding condition 3.12 is equivalent to satisfying

s(Wa, t) :::; -1] sign(s(Wa, t»,

where "sign(05(.»" is a function defined by

{

+1
sign(s(.» = 0

-1

if 05(.) > 0

if 05(.)=0
if s(.) < 0

(3.26)

(3.27)

(3.28)

Let the augmented vector "Xa(t)" be defined by Xa(t) = (X(t) b)T. It is assumed

that both the augmented input vector "Xa" and the desired output "Ytl(t)" are

bounded signals, and present bounded time derivatives. This is,

11 Xa(t) 11 :::; B:t;; 11 Xa(t) 11 :::; Bi;; Vt

11 Yd(t) 11 :::; By; 11 Yd(t) 11 :::; By; Vt

Similarly, the weight vector "Wa(t)" is assumed to be bounded by means of

The boundedness of "Wa (t)" will be proved later.

THEOREM 1.

33

(3.29)

(3.30)

(3.31)

If the control input "U(t)" for the adaptation law described by equation 3.24

is selected according to the equation

Xa(t) (. (())
U(t) = (Xa(t))T (Xa(t)) k S'Lgn e t (3.32)

with k > TJ + By + Ba: Bw, then given any initial condition "e(O)", the learning

error "e(t)" converges to zero in finite time "t/' estimated by

I e(O) I
tr S; ,

TJ

and a sliding regime is sustained on e(t) = 0 for all t < tr •

PROOF.
Consider a Lyapunov function candidate given by

1 2
v(e(t)) = 2 e (t)

The time derivative of "v(e(t))" is given by

v(e(t)) - e(t) (Yd(t) - X;(t) Wa(t) - X;(t) Wa(t))

- e(t) (Yd(t) - X;(t) Wa(t) - X;(t) U(t))

e(t)(Yd(t) - X;(t) Wa(t) - ksign(e(t)))

- e(t) (Yd(t) - X;(t) Wa(t)) - k le(t)1

(3.33)

(3.34)

(3.35)

< (By - Bi: Bw) le(t)1 - k le(t)1 = (By - Bi: Bw - k)le(t)1 S; 0

Thus, the controlled trajectories of the learning error converge to zero. In order to

show that such a convergence takes place in a finite time "tr", and that a sliding

regime exists on e(t) = 0, note that the sliding condition 3.27 can be written as

and on the other hand,

e(t)

e(t) S; - TJ sign(e(t)),

Yd(t) - X;(t) Wa(t) - X;(t) Wa(t)

Yd(t) - X;(t) Wa(t) - ksign(e(t))

Note that le(t)1 = e(t)sign(e(t)) and that

".

e(t)e(t) ::; (By - BxBtu)le(t)l- kle(t)1 = (By - Bi:Btu - k)le(t)I,

and if k > TJ + By + Ba: Btu then inequality 3.36 is verified.

34

(3.36)

(3.37)

Observe that
faT e(t)dt ::; _",faT sign(e(t))dt (3.38)

and for T < tr
(3.39)

At time t = tr , the value of "e(t)" is zero and therefore

e(O) ::; 7] tr sign(e(O)) (3.40)

Multiplying both sides of inequality 3.40 by "sign(e(O))" yields

(3.41)

and therefore tr ::; le~)I.
It is important to point out that ifthe vector ".x,,(t)" is measurable, the control

input "U(t)" shown in equation 3.32 may be rewritten in the following terms

(3.42)

Equation 3.42 represents a more relaxed variable structure feedback control action,

with "k" being a positive design constant satisfying k > '" + By.

3.3.1.2 BOUNDEDNESS OF SOLUTIONS FOR THE WEIGHTS

This section contains an analysis of the average behaviour of the controlled weight

variables, and includes the consideration of the invariance conditions satisfied after

the sliding regime starts on the sliding manifold.

The invariance conditions may be expressed as the verification of the equations

Equation 3.44 implies

e(t)

e(t)

o
o

(3.43)

(3.44)

(3.45)

The equivalent weight vector "W".q(t)" is a virtual vector variable used to describe

the regulated evolution of any error learning trajectory satisfying the. condition

e(t) = 0, with t > t r . This is

(3.46)

(3.47)

35

Note that the average weight vector trajectory satisfies a linear time-varying vec­

tor differential equation with forcing function represented by the bounded function

"Yd(t)". The boundedness of the vector of variable weights, after the sliding regime

occurs is exclusively dependent upon the variation of the augmented input vec­

tor "XC!(t)" and that of the desired signal "Yd(t)". In particular, observe that if

XC!(t) = XC! and Yd(t) = Yd are constant, the equivalent adaptation law 3.47 would

satisfy WC!e.,(t) = 0 and therefore, WC! • .,(t) = WC! = constant. If on the other hand,

only XC!(t) = XC! is constant, then the equivalent adaptation law would satisfy

(3.48)

In this case WC!e.,(t) = (x.rt)~~(t» Yd(t) which means that the minimum norm so­

lution "WC!e.,(t)" of e(t) = 0 = Yd(t) - X:(t) WC!e.,(t) is also a solution of the

differential equation defining "WC!.q(t)". In order to prove boundedness in the gen­

eral case, when both "XC!(t)" and "Yd(t)" are time-varying functions the following

definition is necessary [57].

DEFINITION.

Denote by "F(t)" the time-varying matrix

(3.49)

The differential equation WC!e.,(t) = F(t) WC!e.,(t) is said to be uniformly stable if

there exists a positive constant "," such that, for all "to" and all t > to, the state

transition matrix "«p(t, to)", corresponding to the matrix" F(t)" , satisfies

11 «p(t, to)1I < '"((3.50)

This definition allows to formulate the following proposition.

PROPOSITION.

Suppose the system WC! • .,(t) = F(t) WC!eq(t) is uniformly stable and let "Yd(t)"
be absolutely integrable. Then, the solutions to equation 3.47 are bounded.

PROOF.

Consider the inequalities

1

tOO IYd(t)1 dt = f3 ito

",

(3.51)

(3.52)

and assume that the initial states "WC!./ to)" are bounded by a constant "W".

36

From the variation of constants formulae, the solutions of the linear time­

varying differential equation 3.47 are written as

by virtue of equation 3.50, the norm of "W~.q(t)" satisfies

3.3.1.3 ROBUSTNESS FEATURES WITH RESPECT TO EXTERNAL
PERTURBATIONS

A key feature of sliding mode control is the insensitivity of the regulated variables

with respect to external bounded perturbations affecting the underlying system.

In this analysis, it is assumed that the external perturbation input vector Set) =

(6(t), ... , en(t)l has a bounded norm not larger than the norm of the input vector

"X(t)". It is also considered that the norm of the time derivative of the external

perturbation vector is bounded. In other words

113(t)1I Vei(t) + ... + e~(t) :::; Be < B:c 'It

113(t)1I = veHt) + ... + e~ s; Be 'It

The augmented external perturbation vector "3~(t)" is defined as

(3.55)

(3.56)

(3.57)

Equation 3.57 means that the constant input "b" to the bias weight "Wn+1 (t)" is not

influenced by the perturbation signal "3(t)".
If the external perturbation affects the values of the input signal "X(t)" to

the adaptive neuron, say in an additive way, then the perturbed learning error

e(t) = Yd(t) - Yo(t) is given by

". (3.58)

Since the time derivative of perturbed input signal is not available for measurements,

the adaptation law for the weights is selected as the type proposed in equation 3.32.

This is:

(3.59)

37

X (t) -..; (t) r ~(t)

~(t)

+

Figure 3.3: Two layer feedforward neural network.

THEOREM 2.

If the adaptation law for the augmented weight vector "W,,(t)" in an adaptive

neuron influenced by an additive perturbation at its input signal is chosen according

to equation 3.59, with "k" being a positive constant satisfying

k > 1] + By + Btu (Bi; + Be), (3.60)

then, given an arbitrary initial condition "e(O)", the perturbed learning error "e(t)"
converges to zero in finite time "ir" estimated by

• le(O)1
t <--r _

1]
(3.61)

in spite of all bounded values of the perturbation inputs and its time derivatives.

Moreover, a sliding motion is sustained on e(t) = 0 for all t > ir •

PROOF.

Using equation 3.58 with condition 3.60, the proof is identical as the proof of

theorem 1.

3.3.1.4 THE TWO LAYER NEURAL NETWORK CASE

Consider the two layer neural network illustrated in figure 3.3. Notice that the

following equations hold valid

Y,,(t) (W1(t)l Zl(t); W1(t) E ~nlxp (3.62)

38

r(Yi(t)); Zl(t) E !R
nl

(W I(t)f Xa(t)j W I(t) E !R(n+l)xnl

(3.63)

(3.64)

The input vector Xa(t) = (Xl(t), X2(t), ... , Xn(t), bl is an "(n + 1)" dimensional

array whose (n+1)-th component is a fixed bias value connected through a variable

weight to every neuron in the input layer. This bias value is also connected through

variable weights to every neuron in the network. The nonlinear activation function

"r(.)" is assumed to be a differentiable function. Note that the output error is

defined by the vector equation

E(t) = }'d(t) - Yo(t), (3.65)

where E(t) E !RP. Here, it is assumed that both the input vector "Xa(t)" and the

desired output vector "Yd(t)" are bounded vectors with bounded time derivatives.

This is

II X a(t)11 < B:c

IIYd(t)11 < By

IIXa(t)1I < Ba:

IIYd(t)1I < By

The time derivative of "E(t)" may be expressed as

E(t) - Yd(t) - CW1(t)f Zl(t) - (Wl(t)l Zl(t)

_ Yd(t) - (W1(t))T Zl(t) - (Wl(t)l (a~~(~;))) Yi(t)

(3.66)

(3.67)

_ y"(t) - (Wl(tWZ,(t) - (Wl(tW [a~~(;;)) (WI(tWX.(t)

+ (W I(t)f Xa(t))]

- Yd(t) - (Wl(t)f (a~~(~;))) (W I(t)f Xa(t) - (Wl(t))T Zl(t)

- (Wl(t)f (a~~(~;))) (W I(t)f Xa(t) (3.68)

The weight matrices dynamics are modelled by the following matrix differential

equations

WI(t) - UI(t),

Wl(t) Ul(t),

-.
(3.69)

(3.70)

where UI(t) E !R(n+l)xnl, and Ul(t) E lRn1xp' The columns of "W I(t)" and "W1(t)"

are considered bounded by means of IIWli(t)1I < BWI• and IIW1 i (t)1I < BWli'

respecti vely.

39

THEOREM 3.
If the control input matrices "UJ(t)" and "Ul(t)" of the dynamic equations

3.69 and 3.70 are respectively chosen as

UJ(t) Xct(t) [T (8r(Yi(t)))-1]
- (Xct(t))T(Xct(t)) (Zl(t)) 8Yi(t) , (3.71)

Ul(t)
r(Yi(t))

- Wl(t) + (r(Yi(t)))T(r(Yi(t))) [K SIGN(E(t))] , (3.72)

where "K" is a diagonal matrix whose diagonal elements satisfy the condition

(3.73)

then, given an arbitrary initial condition "E(O)", the learning error "E(t)" converges

to zero in finite time "tr ," estimated by

(3.74)

and a sliding regime is sustained on the manifolds "E(t) = 0" for all t > t r ,.

PROOF.
Let the Lyapunov function candidate "v(ei(t))" for the i-th learning error

"ei(t)" be defined by

(3.75)

where "ei(t)" represents the i-th component of the error vector. This is

(3.76)

Observe that the time derivative of "v(ei(t))" may be expressed as

v(ei(t)) - ei(t) fi(t)

- ei(t) (Yd,(t) - (Wli(t))T (8~~gt) (W Ii(t)f Xct(t) (3.77)

- (W1;(t)jTr(y,(t)) - (Wl,(tW (''i~~gl») (WI,(t)fX.(t»)

Substituting equations 3.69, 3.70, 3.71, and 3.72 into equation 3.78 yields
"

v(ei(t)) ei(t)(Ydi(t) - (Wli(t)f (8~~gl)) (W Ii(t))T Xct(t)

- kisign(ei(t)))

< lei(t)I(By - BW1,BwI,Bx) - kilei(t)1

< (By - BW1 ,BwI,Bx - ~)lei(t)1 :5 o.

40

(3.78)

Therefore, the trajectories of the learning error converge to zero. The proof of the

second part of the theorem follows the same guidelines as theorem 1.

Observe that the matrix "(8~t:l:?))" in equation 3.69 is a diagonal matrix.

Also, notice that if the derivative of the input signal vector "Xcs(t)" is available for

measurements, then a sliding regime can be induced on the learning error manifolds

E(t) = 0, for any initial condition "E(O)" in a finite time, if the weight matrices

"WI{t)" and "W1{t)" are selected according to

WI(t) (3.79)

Wl(t) (3.80)

with "K" a diagonal matrix whose diagonal elements satisfy

(3.81)

It is important to remark that the boundedness of the weight elements of the matrices

"W I{t)" and "Wl(t)", as well as the robustness characteristics with respect to

external input perturbations of this algorithm for two layer neural networks, are

similar as in the adaline case.

3.3.1.5 THE THREE LAYER NEURAL NETWORK CASE

Consider the three layer neural network illustrated in figure 3.4. Here, it is as­

sumed that the boundedness conditions represented by equations 3.66 and 3.67 of

the previous neural network case are valid. The following equations can be easily

verified

Yo(t) (W1{ t))T Z2{t); W1{t) E ~n2xp (3.82)

Z2(t) r(Y;(t)); Z2(t) E ~n2 (3.83)

Y;(t) (W2(t)?Zl(t)j W2(t) E ~nlxn2 (3.84)

Zl(t) r(Yi(t)); Zl(t) E ~nl (3.85)

Yi(t) (W J(t)? Xcs(t)j W J(t) E ~(n+1)xnl (3.86)

Notice that Xcs(t) E ~(n+l) represents the augmented input vector. From'the output

error equation E(t) = Yd(t) - Ya(t) it follows that

E(t) Yd(t) - (W1(t))TZ2(t)

(Wl(t))T (ar(Y2(t))) (W2(t)? (ar(Yi(t))) (W J(t)? X (t)
BY;(t) BYi(t) cs

41

X (t) ~(t r ~(t) '(, (t)

~(t)

+
LEARNING

L-____________ ~ ____________ ~~ RULE

Figure 3.4: Three layer feedforward neural network.

- (Wl(t)f (8r(Y2(t))) (W2(t)f Zl(t) (3.87)
. 8Y2(t)

- (Wl(t)f (8r(Y2(t))) (W2(t)f (8r(Y1(t))) (W /(t))T X (t)
8Y2(t) 8Y1(t) a

The weight matrices dynamics are modelled by the following matrix differential

equations

Wl(t) = Ul(t), (3.88)

W2(t) = U2(t), (3.89)

Wl(t) = Ul(t), (3.90)

with "U l(t)", "U2(t)", and "U1(t)" control matrices of appropriate dimensions.

The boundedness conditions on the columns of "Wl(t)", "W2(t)", and "Wl(t)" are

given by IIWli(t)1I < Bw[" IIW2i(t)11 < BW2" and IIWli (t)1I < BW1., respectively.

THEOREM 4.

If the control input matrices "Ul(t)", "U2(t)", and "Ul(t)" for adapting the

weights in the dynamic equations described by 3.88, 3.89, and 3.90 are respectively

chosen as 't,

Xa(t) [T (8r(Y1(t))) -1]
U/(t) - (Xa(t))T(Xa(t)) (Zl(t)) 8Y1(t) (3.91)

Zl(t) [T (8r(Y;(t))) -1]
U2(t) - -W2(t) + (Zl(t))T(Zl(t)) (Z2(t)) 8Y2(t) (3.92)

42

U1(t) = (3.93)

where "K" is a diagonal matrix whose diagonal elements satisfy the condition

(3.94)

then given any initial condition "E(O)", the learning error "E(t)" converges to zero

in finite time "tr." estimated by

(3.95)

with "ei(t)" the i-th component of the vector "E(t)" j and a sliding regime is sustained

on the vector E(t) = 0 for all t > tr ,.

PROOF.
The proof is similar to the one given for the previous theorem.

It should be noticed that the matrices " (8~~V)" and " (8~i:2 /)" are di­

agonal matrices. Also, similar to the previous cases, the control laws defined by

equations 3.91, 3.92, and 3.93 can be relaxed by assuming that the derivative of the

input vector "Xa,(t)" is available for measurements. In this case the control laws

become

UI(t) - [(X.(t»(X.(tJ)T 1 WI(t)
(Xa,(t»T(Xa,(Jr» (3.96)

U2(t) - Z,(t) [T (ar(y,(t))fj
(Zl(t»T(Zl(t» (Z2(t» 8}'2(t) (3.97)

U1(t) =
Z2(t)

-W1(t) + (Z2(t»T(Z2(t» (K SIGN(E(t») (3.98)

and if the elements of the diagonal matrix "K" are selected according to

(3.99)

then, regardless of the initial condition "E(O)" the learning error trajectories con­

verge to zero in finite time, and a sliding regime is induced on the manifolds E(t) = O.

Again, the boundedness of the elements of the weight matrices, and the ro­

bustness of the algorithm with respect to external bounded perturbations can be
~,

proved using analogous arguments to the ones given for the adaline case.

3.3.2 DISCRETE-TIME VSC LEARNING RULES

A different situation from the continuous-time case occurs in the discrete-time vari­

able structure control-based learning algorithm where a quasi-sliding regime may be

43

induced in the dynamic behaviour of the weights, by selecting a control law that

forces the output error between the desired and the actual outputs to satisfy an

asymptotically stable difference equation. In this case the differentiability condition

imposed upon the nonlinear activation function is not required any more.

3.3.2.1 THE ADALINE CASE

Consider again the adaptive linear neuron depicted in figure 3.2. In this case, it is

assumed that the function "r(.)" is any nonlinear function that satisfies the property

r(- Vet»~ = -r(V(t))

Examples of the function "r(.)" are the following

ifvi(t) > 0

if Vi(t) < 0

ifvi(t) > 1

if Vie t) E [-1, 1]
if Vi(t) < 1

(3.100)

(3.101)

(3.102)

(3.103)

It is also assumed that the vector "X", the desired output "Yd", and the actual

output "Yo" take values at discrete time intervals "kT"j k = 0,1,2, ... , with "T" a

fixed time quantity. For the sake of simplicity, the parameter "T" will be omitted in

the notation. The augmented vector Xa(k) = (X(k), b)T represents the input vector

to the adaline, with "b" being a constant bias connected to the adaline through the

variable weight "Wn+1 (k)" .
The following equations may be easily verified

XT{k)VV{k) + bWn+l{k)

X:{k)VVa(k)

r(Yo(k»

(3.104)

(3.105)

(3.106)

The augmented weight vector "VVa (k)" includes the weight of the bias Input. This

is VVa(k) = (VV(k), Wn+1{k»T. The weights of the adaptive neuron may be modeled

by a dynamic system of the form

VVa(k) F(VVa(k - 1), U(k - 1»

e(k) - h(VVa(k»

44

(3.107)

(3.108)

where "Wa(k)" represents the state vector, "U(k)" is a control input that represents

the updates for the values of the weight vector, and "e(k)" may be viewed as the

output of the dynamic system. In particular, the system may be modeled by the

equations

Wa(k)

e(k)

Wa(k - 1) + U(k - 1)

Yd(k) - Yo(k)

Consider now the following level curve of the output map

s(Wa(k), k) = {Wa(k) E !Rn+! : e(k) = h(Wa(k)) = O}

THEOREM 5.

(3.109)

(3.110)

(3.111)

If the weight updates "U(k - 1)" of the dynamic system represented by equa­

tions 3.109 and 3.110 are selected as

U(k - 1)

with 0 < a < 2, then for an arbitrary initial condition "e(O)", the learning error

equation "e(k)" tends to zero asymptotically, and a quasi-sliding mode is induced

on the manifold e(k) = O.

PROOF.

Note that e(k -1) = Yd(k -1) - Yo(k -1) and by substituting equation 3.109

into the difference equation e(k) - e(k - 1), yields

e(k) - e(k -1) = Yd(k) -Yd(k -1) - (Xa(k) -Xa(k -1)fWa(k-1) -X;(k)U(k -1)

(3.113)
Substituting equation 3.112 into equation 3.113 yields e(k) - e(k -1) = a e(k -1)

and therefore

e(k) = (1 - a) e(k - 1). (3.114)

Clearly, for 0 < a < 2, limk-+oo e(k - 1) = 0, which means th~t the learning error

equation "e(k)" tends to zero asymptotically, regardless of any intial condition.

On the other hand, notice that the quasi-sliding condition 3.19, '(ie. lee k +
1)e(k)1 < e2(k)) is satisfied. This is

(3.115)

and therefore, a quasi-sliding regime exists on e(k) = O.

45

3.3.2.2 BOUNDEDNESS OF SOLUTIONS FOR THE WEIGHTS

Similar to the continuous-time case, here it is assumed that the input vector "Xa(k)"

and the desired output "Yd(k)" are bounded signals by means of

IIXa(k)11 < B:r; (3.116)

Substituting equations 3.110 and 3.112 into equation 3.109 yields

In general, equation 3.117 represents a linear time-varying discrete-time vector equa­

tion with forcing function given by the bounded signal Yd(k) + (a - 1)Yd(k - 1).

Observe tha.t if the input vector "Xa(k)" a.nd the desired output "Yd(k)" are kept

constant during the adaptation cycle "k", (ie. Xa(k) = Xa(k - 1) = Xa and

Yd(k) = Yd(k - 1) = Yd) then equations 3.112 and 3.117 can be rewritten as

U(k - 1) (3.118)

(3.119)

Note that if the function "f(.)" is the identity operator, then equation 3.119 becomes

the Widrow-Hoff delta rule [20].

Let the matrix "A" and the vector "b" be defined as follows

(3.120)

(3.121)

By virtue of the boundedness of vector "Xa", and the fact that "f(xS' is also

bounded by means of If(Xi)1 :S 1, the elements of the matrix "A" and those of the

vector "b" are also bounded. For example, a typical element in the main diagonal

of the matrix" A" can be written as

(3.122)

46

Observe that for 0 < Cl: < 2, IAiil ::; 1. A similar argument can be used to prove the

boundedness of elements off the main diagonal of "A", and for the elements of the

vector "b".

It is known that the solution of the linear time-invariant vector difference

equation Wa,(k) = A Wa,(k-1)+b Yd can be expressed in terms of the initial condition

"Wa,(O)" as

Ie-l

Wa,(k - 1) AIe-lWa,(O) + :L AIe- l -; bYd (3.123)
;=1

hence
Ie-l

IIWa,(k - 1)11 < 11 All le-I 11 Wa,(O) 11 + By:L IIAIlIe-1-;lIbll (3.124)
;=1

Since all quantities in the right hand side of equation 3.124 are bounded then "Wa,(k-
1)" is also bounded.

3.3.2.3 ROBUSTNESS FEATURES WITH RESPECT TO EXTERNAL
PERTURBATIONS

It has been established that the output error "e(k)" is obtained by substracting

the desired output "Yd(k)" from the actual neuron output "Yo(k)". In general, the

measurements of the output error may be corrupted by noise. This noise influences

the accuracy of the function approximation performed by the neuron, and in some

cases, it may have an adverse effect on the boundedness of the weight vector. In this

analysis, it is considered that a measurement noise signal "{(k)", which is bounded

by 1{(k)1 < Be, affects the output error additively. This is

e(k) = e(k) + {(k) (3.125)

with "e(k)" the error signal defined in equation 3.110. Notice that under this cir­

cumstance, equation 3.117 becomes

+

It can be readily proved that, under the boundedness restrictions on the input

"Xa,(k)" and the noise signal "{(k - 1)" the weight vector "Wa,(k)" is also kept

bounded. However, the function approximation performed by the neuron deviates

from the desired output "Ya(k)", at least by the amount "I{(k -1)1". Indeed, notice

47

that substituting "e(k)" by "e(k)" in equation 3.112, and replacing this result into

the following equation

e(k) - e(k - 1) Yd(k) - Yd(k - 1) + {(k) - {(k - 1) (3.127)

(XC1(k) - X C1 (k - l)fWC1(k - 1) - X:(k)U(k - 1)

yields
e(k) = (1 - a) e(k - 1) - a{(k - 1)

The solution of equation 3.128 can be written as

le-I

e(k -1) = (1 - a/-1e(O) - 2:)1- a)Ie-I-j a{(k -1)
j=l

and for 0 < a < 2, limle-ooo le(k - 1)1 :::; I{(k - 1)1.

(3.128)

(3.129)

It is worth mentioning the result obtained by Hui and Zak [58], regarding the

selection of the reduction factor "a" in single perceptrons subjected to additive mea­

surement noise in the output error. In their work, in order to guarantee convergence

of the weight vector in the Widrow-Hoff delta rule, the reduction factor "a" must

be selected as any sequence {a(k)}:'o' 0 :::; a < 1, satisfying TIk:o(1 - a(k» = e,

for e E [0,1).

3.3.3 THE TWO LAYER NEURAL NETWORK CASE

Consider the two layer neural network depicted in figure 3.3, and assume that both

the input vector and the desired output vector take values at discrete time intervals

"kT". Similar to the previous case, the augmented input vector "XC1(k)" includes

a constant bias component connected to every neuron of the input layer through

variable weights. The following equations can be readily verified.

Yc,(k)

Zl(k)

Yi(k)

(Wl(k)f Zl(k)j

r(Yi (k)j

(WI(k)f XC1(k)j

W1(k) E ~nlxp

Zl(k) E ~nl

WI(k) E ~(n+l)xnl

The output error is a vector equation defined by

E(k) = Yd(k) - Yc,(k)
't,

(3.130)

(3.131)

(3.132)

(3.133)

Let the weight matrices "W I(k)" and "W1(k)" be defined in terms of the following

dynamic systems

WI(k) WI(k - 1) - UI(k -1)

W1(k) - W1(k -1) - U1(k - 1)

48

(3.134)

(3.135)

with "U J(k - 1)" and "U1(k - 1)" control inputs that represent the updates for the

values of "WI(k -1)" and "W1(k -1)", respectively.

The difference between "E(k)" and "E(k - 1)" may be expressed as

E(k) - E(k - 1)

THEOREM 6.

Yd(k) - Yo(k) - Yd(k - 1) + Yo(k - 1)

Yd(k) - Yd(k - 1) + (W1(k - l»T(r(Yi(k - 1»

(W1(k - 1) + U1(k - l)l(r[(W I(k - 1) + U I(k - l)l XCl(k)]

Yd(k) - Yd(k - 1) + (W1(k - l)l {r(Yi(k - 1»

r[(WJ(k - 1) + UJ(k - 1»T XCl(k)]}

(U1(k)lr[(w J(k -1) + UJ(k - l)l XCl(k)] (3.136)

If the update matrices "UI(k -1)" and "U1(k -1)" of the dynamical systems

3.134 and 3.135 are chosen as

UI(k-1)
Xa(k) T

(Xa(k»T(X,,(k» [(W J(k - 1» XCl(k)

+ Yi(k - l)]T (3.137)

U1(k - 1)
r(Yi(k - 1»

-2 W1(k - 1) - (r(Yi(k _ 1»)T(r(Yi(k _ 1») [A E(k - 1)

+ Yd(k) - Yd(k - l)f (3.138)

then, for any initial condition "E(O)", the learning error equation satisfies the fol­

lowing asymptotically stable difference equation

E(k) = (I - A)E(k -1) (3.139)

where "A" is an tip X p" matrix with eigenvalues inside the unit circle in the z-plane.

Furthermore, a quasi-sliding regime is sustained on the manifolds "E(k) = 0" .

PROOF.

Substituting the transpose of the matrices "U J(k - 1)" and "U1(k - 1)" into

equation 3.136 and knowing that equation 3.100 holds true, yields the error equation

3.139. If the eigenvalues of the matrix "A" lay inside the unit circle of the z-plane,

then equation 3.139 is asymptotically stable. (ie. Choose the matrix "A" as a

diagonal matrix with elements "ai" such that \1 - ad < 1, i = 1,2, .. p. On the

other hand, observe that the i-th component of the vector" E(k)" is "ei(k)" and, for

simplicity, assuming that the matrix "A" is diagonal,

(3.140)

and therefore, the quasi-sliding regime condition is satisfied.

49

3.3.4 THE THREE LAYER NEURAL NETWORK CASE

Consider the three layer neural network shown in figure 3.4, and assume that both

the input vector "XCI" and the desired output "}Id" take values at discrete time

intervals "kT", with k=0,1,2, ... , and "T" a fixed quantity. As before, notice that

XCI(k) = (X(k),b)T contains a constant bias element connected to every neuron in

the input layer. The following equations hold valid,

Yc,(k) - (Wl(k)l Z2(k); Wl(k) E ~n2XJl (3.141)

Z2(k) - r(Y2(k)); Z2(k) E ~n2 (3.142)

Y2(k) - (W2(k)l Zl(k); W2(k) E ~n1Xn2 (3.143)

Zl(k) - r(Yi(k)); Zl(k) E ~nl (3.144)

Yi(k) - (WI(k)lXCI(k); WI(k) E ~(n+1)xnl (3.145)

The output error is the vector equation defined in 3.133. Let the weight matrices

"WI(K)", "W2(k)", and "Wl(k)" be defined in terms of the following dynamic

equations,

WI(k) - WI(k -1) + UI(k - 1),

W2(k) - W2(k - 1) + U2(k - 1),

Wl(k) - W1(k - 1) + Ul(k - 1),

(3.146)

(3.147)

(3.148)

with "UI(k-1)", "U2(k-1)", and "U1(k-1)" representing update matrices for the

values of "W I(k - 1)", "W2(k - 1)", and "Wl(k -1)", respectively. The difference

between "E(k)" and "E(k - 1)" may be written as,

E(k) - E(k - 1) - Yd(k) - }Id(k - 1) + (W1(k - 1))T {r(Y2(k - 1))

- r {[W2(k - 1) + U2(k _1)]T

* r{[WI(k-1)+UI(k-1)]TXCl(k)}}}

- (U1(k - 1)lr {[W2(k - 1) + U2(k - 1)]T

* r{[WI(k-l)+UI(k-1)]TXCI(kl}} (3.149)

THEOREM 7. '·t.

If the weight update matrices "U I(k-1)", "U2(k-l)", and "Ul(k-l)" ofthe

dynamic systems represented by equations 3.146, 3.147, and 3.148 are respectively

chosen as

UI(k-1) -

50

U2(k - 1)

Ul(k - 1)

(3.150)

(3.151)

(3.152)

then, for any initial condition "E(O)", the learning error equation satisfies the fol­

lowing asymptotically stable difference equation

E(k) = (I - A)E(k - 1), (3.153)

where "A" is an "p x pI! matrix with eigenvalues inside the unit circle in the z-plane.

Furthermore, a quasi-sliding regime is sustained on the manifold E(k) = O.

PROOF.

Substituting the transposes of the matrices "UI(k - 1)", "U2(k - 1)", and

"U1(k-l)" into equation 3.149, and knowing that equation 3.100 holds valid, yields

equation 3.153, which is asymptotically stable if the matrix "A" is chosen with

eigenvalues inside the unit circle of the z-plane. The proof of the existence of a

quasi-sliding regime on E(k) = 0 is identical to the proof given in the second part

of the previous theorem.

It is important to notice that if the nonlinear function "r(.)" is chosen as the

"Sign(.)" function (see equation 3.101), then the terms

"(Zl(k - l))T(Zl(k - 1))", and "(Z2(k - I))T(Z2(k - I))" in equations 3.151 and

3.152, represent the number of neurons in the hidden layer, and in the output layer,

respectively. This is, (Zl(k - l))T(Zl(k - 1)) = n1 and (Z2(k _1))T(Z2(Kl)) = n2.
Also, observe that if the input vector "Xa (k)" and the desired output vector "Yci(k)"
are kept constant during the adaptation cycle "k", the algorithm represented by

equations 3.150, 3.151, and 3.152 is similar to the algorithm presented by Sira­

Ramirez and Zak [59].

Finally, it is pertinent to clarify that the task of the bias term "b", included as

an element into the augmented input vector "Xa(k)" is to avoid division by zero in

the equations of the proposed algorithms. In fact, these bias terms may be eliminated

in the formulation of the algorithms by a suitable selection of the component of the
"

input vector "X(k)". For example, in the discrete-time case, where the structure of

the dynamic equations for the weights is given by W(k) = W(k - 1) + U(k - 1) the

bias terms can be avoided by selecting [60]

U(k _ 1) = { G(X(k), Yd(Ok) , E(k -1)) if XT(k)X(k)"# 0
if XT(k)X(k) = 0

51

(3.154)

where "G(X(k), Yd (k), E(k -1))" represents an update formulae (ie. equation 3.138,

or 3.150, etc).

3.4 IMPLEMENTATION OF THE LEARNING

ALGORITHMS

Appendices A, B, and C contain computer programs for the implementation of the

continuous-time and discrete-time versions of the proposed algorithms for an adap­

tive linear element, a two layer neural network, and a three layer neural network,

respectively. These programs were written in the "Simnon" computer simulation

language and will be used in successive chapters to implement neural network iden­

tification and control-based schemes.

3.5 SUMMARY

This chapter has presented a sliding mode control approach for adaptive learning

algorithms in continuous-time and discrete-time feedforward neural networks.

In the continuous-time case, the learning algorithms that have been proposed

represent a robust mechanism for achieving finite time reachability of a zero level

learning error manifold, and therefore provide a way of implementing on-line ap­

proximations of unknown functions. It has been proved that these algorithms are

insensitive to bounded external perturbations, and that the evolution of the weight

elements of the neural network is guaranteed to be bounded.

In the discrete-time case on the other hand, it has been presented learning

algorithms for adapting the neural networks' weights in such a way that a zero

level set of a learning error variable is reached asymptotically. This asymptotic

reachability is analogous to inducing the dynamics of the weights to behave in a

quasi-sliding regime. Also, it has been shown that the continous-time adaptation

capability of the weights produces bounded values.

Starting with an adaptive linear neuron, the continuous-ti~e and the discrete­

time versions of the sliding mode control-based learning algorithms have been ex­

tended to cover two layer and three layer feedforward neural networks. ~'Computer

programs for the digital simulation of the proposed algorithms have also been con­

structed and are included in appendices A and B.

52

Chapter 4

DYNAMIC SYSTEM
IDENTIFICATION USING
FEEDFORWARD NEURAL

NETWORKS

4.1 INTRODUCTION

The exploitation of the potential capabilities of feedforward neural networks to ap­

proximate linear and nonlinear mappings by using a learning algorithm, has given

rise to a number of schemes for dynamic system identification [7, 15, 42, 59, 61, 62].

In general terms, the problem of estimating a dynamic system involves the following

steps:

• Determination of the system characterization.

Here, the emphasis is placed on the selection of the appropriate measurable

variables of the system, and of a suitable structure to model the desired system

dynamics adequately. In the context of neural networks, this means choosing

the types of nodes and structure of the network that produce outputs which

are able to code the desired system's variable from a selected set of signal

inputs to the network. ",

• Assessment of the ability of the proposed model to reproduce the behaviour of

the system under scrutiny.

In applications involving feedforward neural networks, it is common to measure

performance by taking the average of the squared error between the outputs

53

of the network and the teaching signals .

• Implementation of the identification method.

When all the data are available at one time, the identification method is per­

formed off-line. In contrast to this, for on-line identification methods the data

is processed as it becomes available from the unknown system.

Although a number of published results have shown that a multilayer feedfor­

ward neural network can approximate arbitrarily well a continuous function [24, 63],

the problem of choosing the number of nodes and layers to achieve a specific de­

gree of accuracy for the function being approximated remains an open problem. In

terms of the dimension of the network inputs, the paper by Chen et al [42], showed

the importance of selecting the appropriate number of input nodes in a feedforward

neural network used to represent a dynamical system. In their work, it was shown

that, by taking a series expansion of a sigmoidal type of activation function of the

hidden nodes, the network does not generate components of higher order lagged sys­

tem inputs and outputs which were not specified in the network input nodes. This

work also provides an interpretation from the estimation theory framework of the

modeling capabilities of multilayer neural networks, and gives a procedure to aid in

verifying the validity of a neural network model by detecting its inadequacy to fit the

true system. Despite all these efforts, there are still no concrete theoretical results

relating to an adequate representation of a dynamic system within the structure of

a neural network. Therefore, most attempts in identifying dynamic systems using

neural networks assume that the chosen neural network is able to model the system

under study.
Mathematically, the problem of identifying a dynamic system may be formu-

lated in the following terms:
Let the causal dynamic system be described by the equation

yet) = F(u) (4.1)

where u E U, and yet) E Y represent the input and output of the system, respec­

tively. "F" represents an operator that maps elements of the input space "U" into

the output space "Y". Let the identification model be described by the ·equation

yet) = F(u) (4.2)

The objective is to determine "F" in such a way that

lIy(t) - y(t)1I = IIF(u) - F(u)1I ::; t: for u E U (4.3)

54

u (t)

y (t)
F

+

I
I
I

L--------I Ym 1--_____ ---1 I
ym(t) I

/ ___________ ---1

Figure 4.1: Identification of dynamic systems

where e > 0 and 11.11 denotes a suitably defined norm. Figure 4.1 illustrates the

identification problem. Note that the error signal e(t) = y(t) - y(t), in figure 4.1,

provides information regarding the accuracy of the model in copying the behaviour

of the dynamic system. The work by N arendra et al [15] suggests four identification

structures or models that contain multilayer neural networks as subsystems, for the

estimation of unknown nonlinear dynamical systems. In this work, the plants to

be identified belong to the class of bounded-input bounded-output stable systems,

and the adjustment of the parameters of the identification structure, including the

weights of the neural network subsystems, can be achieved using static and dynamic

back-propagation methods. In order to guarantee convergence of the parameters of

the model, or that the output error tends to zero, Narendra and co-worker propose a

series-parallel model where the output of the unknown plant, rather than the output

of the identification model, is fed back into the identification model.

The path followed in this work differs from other forward modelling design

approaches in terms of the formulation of the neural network models used to emulate

the dynamic behaviour of the unknown plant. That is, our main objective is not

to estimate a particular set of parameters or nonlinear functions of the unknown

plant, but rather, to identify the forward transfer operator (FTO), [64], that enables

a transformation of the values of the input signal u E U into the output signal

y E y. Moreover, this task is performed on-line, using the input-output data of

the plant as it becomes available, and the accuracy of the neural network model in

approximating the unknown FTO is assessed by forcing the output error between

55

the unknown plant output and the neural network output to tend to zero in the

limit.
The inverse transfer operator (ITO) identification problem is also studied as

the problem of finding the corresponding ITO that enables a transformation of the

values of the output signal y E Y into the input signal u E U.

These two problems are addressed in the following sections using single layer,

two layer, and three layer neural networks with continuous-time and discrete-time

variable structure control-based learning algorithms.

4.2 FTO MODELLING

It has been emphasized that an artificial feedforward neural network can be thought

of as an adaptive nonlinear system able to perform nonlinear mapping approxima­

tions by means of a learning algorithm. When the input to the unknown plant is also

the input to the neural network, and the learning objective is satisfied by making the

output of the neural network emulate the behaviour of the output of the unknown

plant, the internal weights adjustment experienced by the neural network contains

information regarding the FTO model approximation of the real plant. This can

be illustrated by considering a neural network with input signal x(t) = u(t), out­

put signal "Yo(t)", and a weight element "w(t)", designed to perform the following

function approximation:

lim Yo(t) = y(t),
t oo

(4.4)

or equivalently

lim F(x(t),w(t)) = F(u(t))
t oo

(4.5)

where yet) = F(u(t)) represents the unknown dynamic system, and Yo(t) = F(x(t), wet))
represents the neural network structure used to model the FTO of the unknown

plant. The following sections contain the mathematical formulation and computer

simulations results to illustrate the FTO modelling problem for continuous-time and

discrete-time, causal, linear and nonlinear dynamic systems.

4.2.1 CONTINUOUS-TIME LINEAR FTO MODELLING

Consider a causal, minimum phase, undisturbed, unknown, linear system described

by the following differential equation:

y(n)(t)+aly(n-l)(t)+ ... +an-lY(t)+any = bou(m)(t)+b1 u(m-l)(t)+ ... +bm-l'u(t)+bmu(t)
(4.6)

56

where m S n, and the initial conditions are given by y(i)(tO) = y~i), i = 0,1, ... n. It

can be easily shown that if D = 1t is the differential operator, then equation 4.6 can

be rewritten as:

For the sake of representing equation 4.7 in terms of equation 4.1, the following

symbolic operation is performed

(4.8)

Equation 4.8 is simply a representation of the differential equation 4.6. Observe that

the ratio ";ffi" constitutes a dynamic sensitivity or gain that represents the FTO

of the class of system under study. The estimation problem at hand is to propose

a neural network structure to make an on-line approximation of equation 4.8 using

a continuous-time variable structure control-based learning algorithm. This task is

accomplished by considering that the input signal, "u(t)", to the linear system is

used to construct the input signal to the neural network, and the output signal "y(t)"

of the linear system is the desired signal "Yd(t)" for the neural network. By virtue

of the linear characteristic of the system under scrutiny, it suffices to select a single

layer neural network with dynamic weight adjustments to perform this function

approximation. Figure 4.2 depicts the FTO identification scheme.

PROPOSITION.
The FTO of the causal, linear system described by equation 4.6 can be es­

timated on-line, in finite time, using an adaptive linear neuron trained with the

variable structure control-based learning algorithm represented by equation 3.32.

PROOF.
Let the linear system input-output pair be (u(t), y(t)) and let the adaptive

neuron input and desired output be x(t) = u(t), and Yd(t) = y(t), respectively. Let

the adaptive neuron output be defined by the equation

(4.9)

with Xa(t) = (x(t), b)T and "b" a constant bias value. Finally, let the 01Jtput error

"e(t)" be defined as
e(t) = Yd(t) - Yo(t). (4.10)

Observe that if "Wa(t)" in equation 4.9 is selected according to equation 3.32, in

theorem 1 of the previous chapter, then, in a finite time tr S; (IYd(O);y(o)l), with ".,.,"

57

u (t) Y (t)
F

+

e (t)

~(t)

ALGORITHM

Figure 4.2: Forward transfer operator identification scheme

a positive value as defined in theorem 1, the error equation 4.10 converges to zero.

That is

o - Yd(t 2: tr) - Yo(t 2: tr)

Yd(t 2: tr) - U(t 2: tr)Wl (t 2: tr) - bw2(t ~ tr) (4.11)

and

(4.12)

In order to illustrate this result, consider the problem of estimating the FTO in an

unknown linear system described by the equation:

rny(t) = -ey(t) - e y(t) + u(t) (4.13)

Equation 4.13 represents a mathematical model for the spring-mass-damper system

sketched in figure 4.3; where "rn" is the mass, "e" represents the spring stiffness, "e"

is the damping coefficient, "u(t)" represents the input force, and "y(t)" is the vertical

position of the mass. The corresponding dimensions of the parameters and variables

involved in this model are assumed to be expressed in the metre-kilogram-second

system of measurements. It is also assumed that both the input force "u(t)", and

the vertical position of the mass "y(t)" are measurable variables. In this computer

simulation, the values of the unknown parameters "rn", "e" and "e' are considered

to be 1.459, 5.837, and 58.37, respectively [85]; and the input force "u(t)" is assumed

58

be:

F

MASS

Figure 4.3: Spring-mass-damper system

u(t) = {I if t < 5
2 if t > 5

(4.14)

The adaptation gain "k" of the learning algorithm, (equation 3.32), is set to 10. It

is important to mention that, from equations 3.32, 3.33, and 3.36, the larger the

value of the adaptation gain "k" is selected, the shorter is the convergence time

of the neural network output to the desired output, and the better is the tracking

characteristic of the network. Figure 4.4 shows the performance of the adaptive

neuron in tracking the desired output Yd(t) = yet). Observe that the corresponding

tracking error goes to zero after a short time. Figure 4.5 illustrates the convergence

of the adaptive neuron output "Yo(t)" to the desired output "Yd(t)". Note that

the convergence time "tr" is equal to 0.051 seconds. Finally, figure 4.6 sketches

the behaviour of the neuron weights "Wl(t)" and "W2(t)". Notice that the learning

algorithm represented by equation 3.42, which constitutes a more relaxed variable

structure control to update the weights of the neuron, can be easily implemented by

considering that the input to the neuron is the output of a stable n-th order filter

whose input is the input to the unknown linear system. A possible choi~e of filter

design is the following:

ef(t) = -CIZl(t) - C2 Z2(t) - ... - c,.zn(t) + u(t)

Zl(t)

59

(4.15)

en

x" (t)

Figure 4.3a: Block diagram of the filter design.

where "z/' represents the i-th filter output, "c.;", i = 1,2, .. n are design parameters

selected to make equation 4.16 a stable equation, and "eJ(t)" is the filter error as

illustrated in figure 4.3a. Under these circtUTlStances, the neuron input may be

selected as

(4.16)

whose time derivative is given by

(4.17)

As an example, consider again the problem of estimating the FTO of the linear

system represented by equation 4.13. In particular, it is assumed that the filter

parameters are Cl = 5, and C2 = 2, and the plant parameters are the same as

before. Figure 4.7 shows the performance of the neuron in tracking the desired output

Yd(t) = y(t). Compared to figure 4.4, there is an improvement in the tracking error.

Figure 4.8 illustrates the convergence of the neuron output "Yo(t)" to the desired

output Yd(t) = y(t). Finally, figure 4.9 shows the behaviour of the neuron's weights.

One way of obtaining an approximate FTO estimation of an unknown linear

system is by selecting the neuron input as a set of signals in a neighborhood of the

input signal to the unknown plant. That is, the components of the neuron input

60

vector "X(t)" are selected from the set

{u(t) : lu(t)1 ::; ~}, ~ > 0 (4.18)

The small value "~", which represents a boundary layer thickness around "u(t)",
is selected to prevent the components of the input vector "X(t)" becoming zero

simultaneously, thus avoiding, the need for the bias term "b". That is, the product

XT(t)X(t) =f 0 for all "t".
In this case, it is possible to state that the sum of the weight elements of the

neuron represents an approximation of the FTO of the unknown system. In other

words: n

0= Yd(t ~ tr) - Lw;(t ~ tr)u;(t ~ tr) (4.19)
;=1

For a small value of "~", the following approximation holds true

(4.20)

and therefore
n

0 '" Yd(t ~ tr) - (Lw;(t ~ tr))u(t ~ tr) '"
;-1

n

Yd(t ~ tr) = y(t ~ tr) ~ (L w;(t ~ tr))u(t ~ tr)
;=1

y(t ~ tr) n

'" L w;(t ~ tr) (4.21)
u(t ~ tr) '"

i=1

Figures 4.10 and 4.11 show the computer simulation results obtained from estimating

the FTO of equation 4.13. Figure 4.10 illustrates the performance of the adaptive

neuron in tracking the desired output Yd(t) = y(t), and figure 4.11 sketches the sum

of the weight elements of the neuron. In this simulation it was assumed that the

input vector to the neuron was the vector X(t) = (u(t),u(t) + O.Ol,u(t) - o.01f,
with "u(t)" being the input to the unknown plant. The value of the gain of the

learning algorithm was set equal to 10.
Consider now the case when an unknown bounded perturbation "~(t)" influ­

ences the input signal of our dynamic linear system example. Here, it is still possible

to estimate the corresponding FTO using an adaptive linear neuron or a·more com­

plex neural network structure, like the two layer, or the three layer neural network.

Theorem 2, in the previous chapter can be invoked to explain this assertion. The

performance of the linear adaptive neuron in estimating the FTO is illustrated by

showing the computer simulation results of figures 4.12 and 4.13. In this simulation,

the additive input noise was a gaussian distributed sequence, with zero mean, and

61

standard deviation equal to one. The value of the gain for the learning algorithm

however, was selected equal to 100.

4.2.2 CONTINUOUS-TIME NONLINEAR FTO MODELLING

Consider the causal, nonlinear dynamic system described by the equation

X(t) = F(X(t), U(t)) (4.22)

where in general, "F(.)" is an n X 1 nonlinear vector function, "X (t)" is the n x 1

state vector, and "U(t)" is a p x 1 vector control law. A solution "X(t)" of equation

4.22 represents a set of curves in the state space, corresponding to a particular

control input "U(t)", as "t" varies from zero to infinity. Similar to the linear case,

it is possible to think of the FTO as a dynamic sensitivity or gain that allows

one to obtain a state variable "Xi(t)", i = 1,2, .. , n, from an input signal "Uj(t)",
j = 1,2, .. , p. Clearly, if the output of this dynamic system, say the q x 1 vector

"Y(t)", is expressed as

Y(t) = G(X(t), U(t)), (4.23)

then, the FTO is the dynamic sensitivity or gain that allows one to obtain an output

variable "Yk(t)", k = 1,2, .. , q, from an input variable "Uj(t)", j = 1,2, .. ,p. In order

to compare the accuracy of the estimation of the FTO for a nonlinear system like

equation 4.22 a single layer, two layer, and three layer neural networks are used. An

inverted pendulum mounted on a mobile cart is selected as an illustrative example.

This dynamic system may be modelled as follows [65J

where the components ofthe state vector X(t) = (Xl(t), X2(t), X3(t), x4(t)f represent

the position and velocity of the cart, and the angular position and angular velocity

of the pole, respectively. The control input "'1.£(t)" is an external force applied to

the cart. Figure 4.14 illustrates the inverted pendulum system. The parameters

62

u (t)

~.----------~. Xl ~.--------~

Figure 4.14: Inverted pendulum mounted on a mobile cart system.

"M", "mp", "I", and "g" represent the mass of the cart, the mass of the pole, the

length of the pole, and the acceleration due to gravity, respectively. All dimensions

are assumed to be expressed in the metre-kilo-second unit of measurements. In

. I 't' 'd d th t th 1 f "M"" ""i" d" " 1 0 parttcu ar, 1 IS consl ere a e va ues or , mp, ,an 9 are .,

0.1, 0.5, and 9.81, respectively. The following computer simulations are carried

out assuming that the inputs to the neural networks involved are taken from a

neighborhood of the inverted pendulum applied input force "u(t)". That is X(t) =
(u(t), u(t) + 0.05, u(t) - 0.05l·

Figure 4.15 plots the results obtained from estimating an approximate FTO

between "Xl(t)" and "u(t)" when a single adaptive neuron is used. In this case,

the value of the adaptation gain "k" of the learning algorithm was set equal to 200.

Observe that despite this high adaptation gain, the approximating capability of the

single adaptive neuron to track the desired output is not satisfactory. This poor

performance is due to the difficulty of the adaptive linear neuron in tracking the

nonlinear behaviour of the FTO of the system under study.

Figures 4.16 and 4.17 sketch the results obtained when a two layer neural net­

work is used. This neural network consists of three input nodes with sigm.oidal type

activation functions, and one linear output node. In this case, the learning algorithm

used to train the network corresponds to equations 3-70 and 3-71 of theorem 3, in

the previous chapter. As before, the value of the adaptation gains "k' s" were set

equal to 200. Figure 4.18 shows the behaviour of some of the weight elements of the

neural network. The weight elements of the network contain information regarding

63

an approximate FTO between the applied input force "u(t)" and the position of the

cart "Xl(t)".
Consider now figures 4.19 and 4.20 which show the performance of a three

layer neural network for tracking the state variables position of the cart, and posi­

tion of the pole, respectively. Figure 4.21 illustrates the behaviour of some of the

weight elements that contain information regarding an approximate FTO between

the applied input force "u(t)" and the position of the cart "Xl(t)". Here, the neural

network structure consists of three input nodes, two hidden nodes, and one output

node. The input and the hidden nodes have sigmoidal type activation functions,

whereas the output node is a linear node. The learning algorithm used to train the

network corresponds to equations 3.90, 3.91, and 3.92 of theorem 4, in the previous

chapter. The computer simulation was performed considering that the values of the

adaptation gains of the algorithm were equal to 200. Observe that, compared to the

adaptive linear neuron case, in the two layer and three layer neural network cases,

it is possible to obtain good approximations of the nonlinear behaviour of the FTO

of the nonlinear system under scrutiny.

Finally, the case when an additive, bounded, stochastic input perturbation

affects the behaviour of the dynamic system can also be dealt with using two layer

and three layer neural networks. Figures 4.22 and 4.23 show the performance of a

two layer neural network with three input nodes. As before, the additive noise signal

is assumed to be normally distributed, with zero mean and standard deviation equal

to one.
Figures 4.24 and 4.25 show the computer simulation results obtained when a

three layer neural network, identical to the one previously used, was implemented

to estimate an approximate FTO of the perturbed unknown dynamic system under

consideration. It can be verified that under the presence of additive bounded noise,

and for the same value of the adaptation gains "k" of the learning algorithms, the

three layer neural network outperforms the results obtained from the two layer neural

network.

4.3 DISCRETE-TIME DYNAMIC SYSTEMS FTO

MODELLING

A large class of discrete-time dynamic systems may be adequately represented by a

mathematical model of the form:

y(k+1) = f(y(k), y(k-1), ... , y(k-n+1), u(k), u(k-1), ... , u(k-m+1»+e(k) (4.25)

64

where "y(k)", "u(k)", and "~(k)" are the system output, system input, and noise

variable, respectively; and f(.) : ~n+m -t !R is assumed to be an unknown function.

As in the continuous-time case, the problem of estimating the FTO between

the input signal "u(k)" and the output signal "y(k)" is related to the problem of

learning a mapping between known input and output spaces.

A particular case of equation 4.25 is the linear system model structure:

n m

y(k + 1) = L aiy(k - i) + L biu(k - i) + ~(k) (4.26)
i=O i=O

Other model structures that are also particular cases of equation 4.25 can be found

in [15].
Usually, the design of a static feedforward neural network to model equation

4.25 takes into consideration the selection of a network structure able to approximate

the behaviour of the dynamic system under consideration, and the assignment of the

input nodes of the network so that lagged input and output variables are adequately

represented in the network. A general series-parallel neural network structure that

may be used to model equation 4.25 is the following:

Yo(k+ 1) = j(y(k),y(k-I), ... ,y(k-n+ 1),u(k),u(k-I), ... ,u(k-m+ 1)) (4.27)

where "yo(k)" represents the neural network output, and j(.) : ~n+m -t !R represents

the neural network approximation of the function "1" in equation 4.25. In our

case however, due to the dynamic behaviour characteristic of the neural network's

weights, it is possible to simplify the input node selection by choosing, for example,

the input signals to the network in a neighborhood of the input signal to the unknown

plant, as suggested by equation 4.18. Figure 4.26 depicts a block diagram of the

discrete-time FTO estimation. In order to illustrate our formulation of the FTO

problem, the following linear system is presented as a first example:

y(k+I) (2- ~)Y(k)+ [~(C-Te)-l]Y(k-I)
T2

+ -u(k - 1)
m

(4.28)

Equation 4.28 is a discrete-time version of the spring-mass-damper srstem rep­

resented by equation 4.13. The sampling time "T" is assumed to be equal to

0.01 seconds, and the values for the parameters "m", "c", and "e" are consid­

ered to be the same as those used before. Due to the linear characteristic of

the proposed dynamic system, a single adaptive neuron with input signal X(k) =

(u(k - 1), u(k - 1) + 0.05, u(k - 1) - 0.05? is used to estimate an approximation

65

u (k) y (k+ 1)

+

e (k)

~--.! {u(k):lu(k)I<~}

L-------I ALGORITHM k------J

Figure 4.26: Discrete-time FTO estimation.

of the FTO between the variables "u(k - 1)" and "y(k)". In this case, the learning

algorithm used to train the weights of the adaptive neuron corresponds to equation

3.111 of theorem 5, in the previous chapter. The value of the adaptation gain "a"

of the algorithm is selected equal to 0.1. Figure 4.27 shows the performance of the

single adaptive neuron in tracking the desired output Yd(k) = y(k). Figure 4.28

illustrates the convergence of the neuron output to the desired output, and figure

4.29 sketches the behaviour of the neuron weights.

The performance of the adaptive neuron when the input signal to the unknown

plant is corrupted by white noise is shown in figure 4.30. Figure 4.31 shows the

behaviour of the corresponding weight elements.

A discrete-time version of the inverted pendulum mounted on a cart is pre­

sented as a second example of the FTO estimation problem. The mathematical

model of this dynamic system may be expressed as:

xl(k + 1)

x2(k + 1)

66

It is assumed that the position of the cart "Xl (k)", the angular position of the pole

"X3(k)", and the applied input force "u(k)" are measurable variables. For the sake

of comparing their performance, a two layer, and a three layer neural network with

sign type activation functions are designed to obtain FTO approximations of the

proposed plant.

The two layer neural network consists of three input nodes, and one output

node; whereas the three layer neural network has three input nodes, three hidden

nodes, and one output node. In the two layer neural network case, the estimation of

the FTO between the applied input force "u(k)" and the position of the cart "Xl (k)"
can be performed using the vector X(k) = (u(k), u(k) + 0.05, u(k) - 0.05)T as input

vector to the network. Here the learning algorithm corresponds to equations 3.136

and 3.137 of theorem 6, in the previous chapter. Figure 4.32 shows the performance

of the two layer neural network, and figure 4.33 illustrates the behaviour of some

weight elements of the network. Figures 4.34 and 4.35 sketch the computer simu­

lation results obtained from the two layer neural network when the applied input

force to the inverted pendulum is corrupted by white noise. Observe that despite

the performance of the two layer neural network is satisfactory when the applied

input force to the system is not corrupted by noise, (ie. figure 4.32), its performance

is not as good when an aleatory noise influences the applied input force, (ie. figure

4.34).
In the three layer neural network case, the input vector to the network was the

same used for the two layer neural network case. The learning algorithm used to train

the network is represented by the equations 3.149, 3.150, and 3.151 of theorem 7, in

the previous chapter. Figure 4.36 shows the performance of the network, whereas

figure 4.37 illustrates the behaviour of some weight elements. The performance of the

three layer neural network, when the applied input force to the inverted pendulum

system is corrupted by white noise is shown in figures 4.38 and 4.39. Both in the

two layer and three layer neural network cases, the adaptation gain elements of the

diagonal matrix "A", in their corresponding learning algorithms; were selected equal

to 0.8. Finally, observe that as expected, the three layer neural network O1,1tperforms

the results obtained with the two layer neural network.

67

4.4 INVERSE TRANSFER OPERATOR MOD­

ELLING

The previous section showed the approximating capability of neural networks to

estimate unknown mappings by using a learning algorithm that requires a set of

input signals and a desired output signal to train the network. While in the FTO

estimation problem the input and desired output signals are selected from the input

and output signals of the unknown plant under study, respectively; in the inverse

transfer operator (ITO) problem the goal is to determine the corresponding dynamic

sensitivity or gain that enables the time history of the input of the unknown system

to be reproduced from its present output. Two important conceptual considerations

that must be taken into account when one estimates the ITO are stability and

uniqueness of the ITO. That is, if the ITO of the system under scrutiny is unstable,

then under our suggested framework, the weight elements of the network would

grow without bound, and therefore it would not be possible to estimate the ITO.

(ie. non-minimum phase systems). The uniqueness issue is related to the fact that

the dynamic system mapping between output and input signals is not a one-to-one

mapping, and therefore the estimation of the ITO could give an incorrect result.

This problem can be overcome by using the so called specialised inverse learning

approach [66].
A common way of training neural networks for reproducing the inverse model of

a dynamic system is by using a synthetic training signal to force the system response.

Then, the output of the system is connected to the input of the network, and the

output of the network is compared to the synthetic training signal to generate an

error signal to train the network. This approach is known as generalized inverse

learning or direct inverse modelling [61].

Figure 4.40 depicts the ITO estimation scheme used in this work. The main

difference between this scheme and the direct inverse modelling scheme is in the

on-line training capability of our proposed embedded learning algorithms.

The following two subsections presents continuous-time and discrete-time ex­

amples of the ITO estimation problem.

4.4.1 CONTINUOUS-TIME DYNAMIC SYSTEMS ITO

MODELLING

Consider a stable, invertible, unknown dynamic system described by the equation

Y(t) = H(X(t), U(t)) (4.30)

68

u
PLANT

y

+

ALGORITHM

Figure 4.40: ITO estimation scheme.

where Y(t) E ~q is an output vector, X(t) E ~n is a state vector, and U(t) E ~p is

a control input vector. It is assumed that both "Y(t)" and "U(t)" are measurable

vector quantities. The ITO is a dynamic sensitivity or gain that enables an input

signal variable "Uj(t)", j = 1,2, .. ,p, to be reconstructed from an output variable

"Yi(t)", i = 1,2, .. , q. This reconstruction task is performed by a neural network

whose structure depends on the complexity of the inverse dynamic behaviour of the

unknown system.
In the case described by the linear model 4.8, the ITO of the system is repre-

sented by the equation

u(t) D(m) + aID(m-I) + ... + am-ID + am

y(t) - boD(m) + bID(m-I) + ... + bm-ID + bm
(4.31)

The spring-mass-damper system described by equation 4.13 is considered again to

illustrate the ITO estimation problem. As a first attempt, a single adaptive neuron

is used to accomplish the task at hand. Here, the input signal vector "X(t)" for the

neuron is taken from a neighborhood of the system output "y(tY'. In particular the

vector "X(t)" is selected as X(t) = (y(t), y(t) + 0.05, y(t) - 0.05l. The p~rformance

of the adaptive neuron to reconstruct the time history of the system input "u(t)",

and the behaviour of the neuron weights are sketched in figures 4.41 and 4.42, re­

spectively. It is important to point out that the algorithm adaptation gain "k" used

to obtain these results was equal to 2000. Despite this high gain value, the single

adaptive neuron performance is not satisfactory.

69

Figures 4.43 and 4.44 illustrate the computer simulation results when the de­

sired output for the neuron, (ie. the system input "u(t)"), is corrupted by white

nOlse.
Next, a two layer neural network with the same input vector used for the single

adaptive neuron, is implemented in the computer to obtain the ITO of the spring­

mass-damper system. The algorithm adaptation gains were also selected equal to

2000. Figures 4.45 and 4.46 show the performance of the two layer neural network,

and the behaviour of some weight elements, respectively. Similarly, figures 4.47

and 4.48 illustrate the results obtained when the desired neural network output is

corrupted by white noise. Observe that, compared to the single adaptive neuron

results, the two layer neural network performance is better.

In the nonlinear case, the inverted pendulum mounted on a mobile cart system

is used to show the performance of a three layer neural network in reconstructing

an approximation of the ITO between the variable position of the cart "Xl(t)", and

the applied input force "u(t)". Figures 4.49 and 4.50 show the performance of the

three layer neural network, and the behaviour of some weight elements, respectively.

The performance of the three layer neural network when the applied input force to

the system, (ie. the network desired output), is influenced by additive white noise is

shown in figure 4.51. Figure 4.52 shows some of the corresponding weight elements.

4.4.2 DISCRETE-TIME DYNAMIC SYSTEMS ITO MOD­

ELLING

The same general procedure of designing a neural network, and selecting its ap­

propriate input signals and desired output to estimate an approximate FTO of a

dynamic system followed in section 4.2.3 will be used in this section. In this case

however, the input signals to the neural network are selected from a neighborhood

of the output of the unknown dynamic system, and the network desired output is

selected as the unknown dynamic system input. Both the discrete-time version of

the spring-mass-damper system, and the inverted pendulum mounted on a mobile

cart system are presented as illustrative examples.

The approximate ITO for the spring-mass-damper system is estimated using

a two layer neural network with input signal X(k) = (y(k),y(k) + O':05,y(k)-
0.05f, and desired output Yd(k) = u(k - 1). The adaptation gain elements of the

diagonal matrix "A", in the learning algorithm, (ie. equations 3.136 and 3.137, in

the previous chapter), were selected equal to 0.9. Figure 4.53 shows the performance

of the two layer neural network in reconstructing the time history of the unknown

70

system input. Figure 4.54 illustrates the behaviour of some weight elements of the

network. Likewise, figures 4.55 and 4.56 illustrate the performance of the two layer

neural network, and the behaviour of some of the corresponding weight elements,

respectively, when the input to the unknown system, (ie. the neural network desired

output), is corrupted by white noise.

The estimation of the approximate ITO between the output variable position

of the cart and the applied input force, in the inverted pendulum mounted on a

mobile cart system is performed using a three layer neural network with input signal

selected as the vector X(k) = (xl(k),Xl(k) + 0.05,Xl(k) - 0.05)T, where "xl(k)"
represents the variable position of the cart. The structure of the three layer neural

network is the same as the one used for estimating the FTO of the inverted pendulum

system, with adaptation gain elements, of the diagonal matrix" AI! in the learning

algorithm equal to 0.9. Figures 4.57 and 4.58 illustrate the performance of the

three layer neural network in tracking the desired network output, (ie. the unknown

dynamic system input), and the behaviour of some weight elements of the network,

respectively. Similarly, figures 4.59 and 4.60 show the results obtained from the

three layer neural network when its desired output is corrupted by white noise.

4.5 SUMMARY

In this chapter, the approximation capabilities of dynamically weighted feedfor­

ward neural networks have been exploited by constructing the FTO and the ITO of

continuous-time and discrete-time unknown dynamic systems.

The FTO of a dynamic system has been defined as a dynamic sensitivity or

gain that enables an output variable "y/, to be obtained from an input variable

"'U/,. Two examples, both in continuous-time and discrete-time versions, have been

proposed to illustrate the FTO estimation problem.

The first example which represented a mathematical model of the spring-mass­

damper system has been used to illustrate the FTO estimation for time invariant

linear systems. In this case, due to the linear characteristic of the considered system,

a linear adaptive neuron was sufficient to perform the FTO estimation.

It has been shown that, in the estimation of an approximate F'I:O of an n­

th order continuous-time system, the input signals to the neural network may be

selected from a set of signals in a neighborhood of the unknown dynamic system

input. Furthermore, it has been proved that, if the neural network is a single layer

network, (ie. a single adaptive neuron), the approximate FTO of the unknown

dynamic system under study may be obtained as the sum of the weight elements of

71

the network.
Additionally,in this chapter, illustrative examples have been used to test the

performance of the designed neural networks and their embedded learning algorithms

when estimating an approximate FTO of dynamic systems under the presence of

additive bounded noise at the system input.

The second example, that represented a mathematical model of the inverted

pendulum mounted on a mobile cart system has been used to illustrate the FTO es­

timation for nonlinear dynamic systems. The computer simulation results obtained

for this example have shown that the two layer neural network approximating capa­

bilities are better than those of a single layer network, and that a three layer neural

network outperforms the results achieved using a two layer neural network.

The ITO on the other hand, has been defined as a dynamic sensitivity or

gain that enables a reconstruction of the input time history of a stable, invertible,

unknown dynamic system from the knowledge of its corresponding output. Again,

the same examples as mentioned before have been used to illustrate the approximate

ITO estimation. The best approximation performance has been obtained using a

three layer neural network.

Finally, it has also been shown by the computer simulations performed on the

illustrative examples, that the variable structure control-based learning algorithms

proposed in chapter 3 operate on an on-line basis, without the requirement of long

trial sessions to train the neural networks.

72

0.6

0.4

0.2

-0.2
o

0.6

0.4

0.2

o

-0.2
o

Figure 4.4: Per~orMance o~ the adaptive neuron.

2 4 6 8

Figure 4.5: Convergence o~ the neuron output
to the desired output.

0.05 eLl. 0.1.5

73

error

floG

0.4

0.2

-0.2
o

0.6

0.4

0.2

Figure 4.6: Behaviour ot the neuron's weights.

w,

2 4 6 8

Figure 4.7: PertorMance ot 'the adap'tive neuron.

'tiMe [s]

1.0

0JLl-1~~~~========~------------~~---error
"

-0.2
2 4 6 8

74

0.6

0.4

0.2

-0.2
o

0.6

0.4

0.2

-0.2

Figure 4.8: Convergence o~ the neuron output
to the desired output.

0.05 8.1. 0.1.5

Figure 4.9: Behaviour o~ the neuron's weights.

tiMe [s]

0.2

w

~~--------------~~-----------------------W2

2 4

75

8

'tiMe [s]

1.8

8.6

Figure 4.18: Per~orMance o~ the adaptive neuron.

8.4

8.2

84~~~--~~~------------------~------------------------______ _ error

-8.2
8

8.6

8.4

8.2

-8.2
8

2 4 6 8

'till,. [s]

1.8

Figure 4.11.: SUM o~ the weigh't eleMen'ts o~ 'the neuron.

2 4

76

6 8

tiMe [s]

1.8

4

3

2

1.

B
B

B.6

B.4

B.2

B

-B.2
B

B.2

8.1.

B

-B.1.

-B.2
B

B.6

B.4

B.2

-B.2
8

Figure 4.1.2 : Perf'orMance of' the adaptiye neuron.

A: Input signal corrupted by noise.

tiMe [s]

2 4 6 8 1.B

B: Neuron output and desired output.

tiMe [s]

2 4 6 8 1.B

c: Tracking error.

tiMe [s]

2 4 6 8 1.B

Figure 4.1.3: Forward transf'er operator approxiMation.

2 4 6

77

".

8

tiMe [s]

1.B

8.5

Figure 4.15: PerrorMance or the adaptive linear neuron
ror estiMating a nonlinear dy aMic behaviour

8+-___ -'

8.8

8.6

8.4

8.2

1 2 3

error

tiMe [s]

5

Figure 4.16: PerrorMance or the two layer neural network.
State variable position or the cart.

error

tiMe [s]

1 2 3 4

78

Figur@ 4.17: P@r~orManc@ o~ the two layer neural network.
State variable angular position ot the pole.

6

4

2

8~ ________ ,--________________ ~ ______________ ----____ ~e~r~ro~r __ _

8

8.4

2 3 4

Figure 4.18: Behayiour o~ so.e weight ele.ents.

79

tiMe [s]

5

8.6

6

4

2

Figure 4 19: PertorMance ot the three layer neural network.
State variable position ot the cart.

2 3 4

error

tiMe [s]

5

Figure 4.28: PertorMance ot the three layer neural network.
State variable angular position ot the pole.

8L-__ --------------------____ ----------------------~----

2 3

80

4

tiMe [s]

5

8.6

8.4

3

2

1

-1

8.8

-B.2
B

Figure 4.21: Behaviour o~ SOMe weight eleMents.
Three layer neural network.

1 2 3 4 5

Figur-e 4.22: Per~o.rMance o~ the two layer neural network.

A: Input signal corrupted Ly noise.

1 2 3 4

tiMe [s]

5

B: UariaLle position or the cart and its estiMate.

1 2

81

3 4

tiMe [s]

5

Figure 4.23: Behaviour or SOMe weight eleMents.
Two layer neural network.

8.4

3
Fi~ure 4.24: PerrorMance or the three layer neural network.

2
A: Input corrupted by noise.

1.

8.8

8.6
B: Uariable position or the cart and its estiMate.

8.4

8.2

error 8~ ______ ~~~ ________ ~ ________ ----______________ 4W~ __________ _

-8.2
8 1. 2

82

3 4

tiMe [5)

:s

6.8

6.6

6.4

6.2

-6.2
6

4

2

-2
6

Figu~e 4.25: Behaviou~ of SOMe weight eleMents.
Three layer neural network.

1. 2 3 4

Figu~e 4.27: Pe~fo~Mance of the adaptive neuron.
T~acki ng e~~o~.

error

2 4 6 8

83

Wl11

W221
~---

tiMe [s]

5

tiMe [s]

.16

4

3

2

1.

B

-1.
B

4

3

2

1.

-1.
B

Figure 4.28: Convergence o~ ~he neuron ou~pu~
~o ~he de~ired ou~pu~.

B.1. B.2 B.3

Figure 4.29: Behaviour o~ ~he neuron's weigh~s.

w·

2 4 6 8

84

~iMe [s]

B.4

~iMe [s]

1.B

4

3

2

1. "--
8

8

6

4

-2
8

4

3

2

-1.
8

Figure 4.38: Per~orMance o~ ~he adap~ive neuron.

A: Inpu~ signal corrup~ed by noise.

- ,a . .- ~,.
"L

''I'' 'I' .,

2 4 6 8

B: Neuron ou~pu~ and desired ou~pu~.
Tracking error.

error

2 4 6 8

Figure 4.31.: behaviour o~ ~he neuron's weigh~s.

w·

2 4 6 8

85

_. ' ·or

~iMe [s]

1.8

~iMe [s]

1.8

~iMe [s]

1.8

5

0

0.4

0.3

0.2

0.1

0

-0.1
0

0.2

0.1

-0.1

0.2

0.1

-0.1

Figure 4.32: PertorMance ot the "two layer neural network.

A: Neural network outpu-t and desired ou"tpu"t.
Tracking error.

error

4 6

B: Convergence of' "the neural ne"twork ou"tpu"t
"to the desired ou"tpu"t .

0.1 0.2 0.3

Figure 4.33: Behaviour of' SOMe weigh"t eleMen-ts.

A: Ueight eleMents w111 and wi41.

0.1. 0.2 0.3 0.4

B: Ueigh-t eleMen-t w1.1.1..

0.1. 8.2 0.3 0.4

86

"tiMe [s]

-tiMe [s]

0.4

-tiMe [s]

0.5

4
Figur@ 4.34: P@r~orManc@ o~ the two layer neural network.

2 A: Appli@d input ~orc@ corrupt@d by noise.

-2+-______________ .-______________ .-______________ ,-________ ~~~~
8

4

-4

4

-4
8

8.4

-8.2
8

8.4

8.2

-8.2
8

2 4 6

B: Neural network output and desired output.

2 4

c: Tracking error.

2 4 6

Figure 4.35: Behaviour o~ SOMe weight eleMents.

A: Ueight eleMents wi11 and wi41.

8.1 8.2 8.3 8.4

B: weight eleMent w111.

8.1 8.2 8.3 8.4

87

8

tiMe [s]

8

tiMe [s]

8

tiMe [s]

8.5

tiMe [s]

8.5

6

4

2

-2

2

1.

Figur@ 4.36: P@r~orManc@ o~ the three layer neural network.
Tra.cking error.

2 4

Figure 4.37: B@haviour o~ weight eleMents.
Ueight eleMents wi~~ and w~~~.

error

",

tiMe [sl

8

8~ __ _

tiMe [sl

2 4 6 8

88

4
Figu~e 4.38: Pe~~o~Mance o~ ~he ~h~ee layer neural ne~work.

2 A: Applied inpu~ ro~ce co~~upted by noise.

-2~ ______________ ~ ______________ ,-______________ -. ________ ~~~~·

2 4 6

4 B: "eu~al ne~wo~k outpu~ and desired output.

B~------------------
-4

2 4 6

4 c: Tracking error.

-4

2 4 6

4

Figure 4.39: Behaviour o~ SOMe weight eleMents.
Ueight eleMents wi~~ and w~~~.

2

8

8

tiMe [s]

8

B~~==~~--

-2
e 2

89

",

4 6

4
Figure 4.4~: Per~orMance o~ ~he adap~ive neuron.

3
A: Neuron ou~pu~ and desired ou~pu~.

2

If
~+---~-r------------------------~

~
8

8

3

2

1.

2 3

B: Tracking error.

4

8.I-----J11...---.._----J!\L----__
8

48

28

-28
8

38

28

.1 2 3

Figure 4.42: Behaviour o~ ~he neuron's weigh~s.

2 3

B: Inverse ~rans~er opera~or .pproKiM.~ion.

.1 3

90

~i .. e [s]

4

~iMe [s]

4

4

3

3

2

1

B

4B

2B

B

-2B
B

3B

2B

B
B

Figure 4.43: Per~orMance o~ the adaptive neuron.

A: Neuron output and desired output.

3

B: Tracking error.

1 2 3

Figure 4.44: Behaviour o~ the neuron's weights.

A: Ueight eleMents w1, w2, and w3.

2 3

B: Inverse trans~er operator approxiMation.

1 2 3

91

tiMe [s)

4

tiMe [s)

4

tiMe [s)

4

".

tiMe [s)

4
Figure 4.45: Per~orMance o~ the two layer neural network.

3
A: Neural network output and desired output.

2

~~ ____________________________ --J

8
8

3

2

B: Tracking error.

tiMe [s]

2 3 4

8~ __________________________ ~~ __________________________ __

28

~8

2

~.5

8
8

2 3

Figure 4.46: Behaviour o~ SOMe weight eleMents.

A: Ueight eleMents wi~~. wi2~. and wi3~.

2 3

B: Ueight eleMents w~~~. w~2~. and w~3~.

2 3

92

tiMe [s]

4

tiMe [s]

4

tiMe [s]

4

4

3

2

o
o

3

2

20

-10

3

2

o
o

Figure 4.47: Per~orMance o~ the two layer neural network.

A: Neural network output and desired output.

1 2 3

B: Tracking error.

2 3

Figure 4.48: Behaviour or SOMe weight eleMents.

A: Ueight eleMents will. wi21. and wi31.

2 3

B: Ueight eleMents wIll. w121. and w13I.

2 3

93

TiMe [s]

4

tiMe [s]

4

tiMe [s]

4

tiMe [s]

4

3

2

l.

0.5

-0.5

-l.

0.4

0.2

0
0

0.4

l.

-l.

Figure 4.49: Per~orMance o~ the three layer neural network.

A: Neural network output and desired output.

l. 2 3

B: Tracking error.

l. 2 3

Figure 4 50: Behaviour o~ SOMe weight eleMents.

A: Ueight eleMents wi l.l. • wi2l.. and wi3l..

l. 2 3

B: Ueight eleMents w2l.l.. w22l.. and w23l..

l. 2 3

c: Ueight eleMents wl.l.l.. and wl.2l..

l. 2 3

94

tiMe [s]

4

tiMe [s]

4

tiMe [s]

4

tiMe [s]

4

tiMe [s]

4

3

2

-1

0.5

-0.5

-1

0.4

0.2

0
0

0.4

2

Figure 4.51: Per~orMance o~ the three layer neural network.

A: Neural network output and desired output.

3

B: Tracking error.

2 3

Figure 4.52: Behaviour o~ SOMe weight eleMents.

A: Ueight eleMents wi11. wi21. and wi31.

1 2 3

B: Ueight eleMents w211. w221. and w231.

2 3

C: Ueight eleMents w111. and w121.

2 3

95

tiMe [s]

4

tiMe [s]

4

tiMe [s]

4

tiMe [5]

4

4
Figure 4.53: PertorMance ot the two layer neural network.

3
A: Neural network output and desired output.

2

1+-____________________________ -1

o
o

0.5

0.1

0.05

-0.05
o

2 4 6 8

B: Tracking error.

2 4 6 8

Figure 4.54: Behaviour or SOMe weight eleMents.

A: Ueight eleMents wi11. and wi31.

0.5 1.5

B: Ueight eleMents w111. and w121.

0.5 1.5

96

tiMe [sl

10

tiMe [sl

2

tiMe [sl

4

3

6
6

2

-1.

-2
6

6.65

-6.65
6

Figure 4.55: Per~orMance o~ the two layer neural network.

A: Neural network output and desired output.

2 4 6 8

B: Tracking error.

2 4 6 8

Figure 4.56: Behaviour o~ SOMe weight eleMents.

A: Ueight eleMents wi1.1.. and wi31..

6.5 1..5

B: Ueight eleMent w1.1.1..

tiMe [5]

U!I

tiMe [5]

1.6

tiMe [5]

2

~-------------r-------------'--------------'---------~~-;-]
6.5

c: Ueight eleMent w1.21..

6.5

-6.5

6.5 1.

97

1..5

tiMe [5]

2

4

2

-2
B

B.4

B.2

Figure 4.57: PertorMance ot ~he ~hree layer neural ne~works.

A: Neural ne~work ou~pu~ and desired ou~pu~.

2 4 6

B: Tracking error.

~iMe [sl

8

B~ __ ~ ______________ ~ ____________________ ~ __ ~ ____________ ___

-8.2

-8.4

8

1

8.5

v
-B.5

8

2 4 6

~iMe [sl

8

Figure 4.58: Behaviour ot SOMe weigh~ eleMen~s.

f\

v \} v

2

Ueigh~ eleMen~s wi11. w211. and w111.

f\ 1\ f\ f\

v v v

4

98

"
v v

6

1\

I

v

~iMe [sl

8

4
Figure 4.59: Per~orMance o~ ~he ~hree layer neural ne~work.

2
A: Neural ne~work ou~pu~ and desired ou~pu~.

-2
~iMe [s]

2 4 6 8

0.4
B: Tracking error.

0.2

0~ ____________________________________ ~ ______________ _

-0.2

-0.4

1.

-1.

2 4 6

Figure 4.68: Behaviour o~ SOMe weigh~ eleMen~s.

~iMe [s]

8

Ueigh~ eleMen~s wi1.1.. w21.1.. and w1.1.1..

2 4

99

6

~iMe [s]

8

Chapter 5

INVERSE MODEL NEURAL
NETWORK-BASED CONTROL
OF DYNAMIC SYSTEMS

5.1 INTRODUCTION

Commonly, the first stage for the neural network-based control of an unknown dy­

namic system is the development of an accurate neural network representation of

the plant under consideration. Obtaining such a network representation or model

involves a training phase where the neural network is presented with a set of pre­

viously collected input-output data of the system operation. In some special cases

however, the training phase can be accomplished on-line by connecting the neural

network model in an open-loop configuration with the unknown plant which is ex­

cited with a set of selected inputs in order to measure the corresponding outputs [66,

67]. Once the quality of the network representation of the unknown dynamic system

is guaranteed, a neural network controller may be trained using data provided by the

neural network representation. In some cases, the controller is not a neural network,

but its design incorporates information provided by a neural network representation

of the system. It is after the neural network representation and the controller are

placed together with the unknown plant, when on-line control actions obtained from

the controller can be applied to drive the plant. A major difficulty of this indirect

off-line neural network-based control method for dynamic systems is to guarantee

convergence of the network outputs to values of the response of the dynamic system

for which the network was not previously trained. This drawback, known in the neu­

ral network literature as the generalization problem [68] may have adverse effects on

100

the quality of the control system. It is possible however, to continue slowly training

the neural network representation and the controller after the off-line training phase

has been completed. In this case, the neural network-based control system is capable

of providing excellent results [15].Here however, the difficulty arises in determining

when to stop the off-line training phase, and how slowly adaptation must proceed

in order to guarantee stability [69].
In contrast to the indirect off-line neural network-based control methods just

described, there are direct on-line neural network-based control methods for dy­

namic systems where identification and control are simultaneously carried out [60,

70, 71]. In these on-line methods, since learning takes place based upon the current

input-ouput values of the process operation, the generalization issue mentioned be­

fore is no longer a problem. Here, the learning algorithms used to adapt the weights

of the network must be able to cope with time-varying behaviour of the dynamic

system being controlled, and the control system must possess an interaction mecha­

nism between the estimated value of the unknown parameters or dynamics and the

generated control action used to stabilize the system. Obviously, this simultaneous

interaction between estimation and control produces a high dimensional closed-loop

system for which the stability analysis is far more complex than that used for the

learning algorithms and the process by themselves.

In this chapter, some of the variable structure control-based learning algo­

rithms proposed in chapter 3, and the scheme for estimating the ITO for dynamic

systems shown in figure 5.1 are incorporated into a control scheme for dealing with

tracking problems for some linear and a class of nonlinear dynamic systems. The

incorporation of approximated estimation of the FTO's or of the ITO's into a con­

trol scheme design raises important considerations regarding the effects that these

approximated estimations may have on the quality of the behaviour of the control

system. If the estimation error produced by the neural network on-line determination

of the FTO's or of the ITO's of the dynamic system is small, it should be expected

that the control scheme is able to keep controlled the behaviour of the plant under

scrutiny. A similar situation, in the context of indirect off-line neural network-based

control methods has been studied by Levin and N arendra in a recently published pa­

per [72]. In their paper, they used the concepts of stability und~r perturbation and

strong stability under perturbation of dynamic systems, [73], to clarify the effects of

such errors of estimation.
Other important considerations to be taken into account in the design of our

neural network-based control scheme are related to the time it takes for the network

output to converge to the desired network output, and to provide suitable values of

101

u
PLANT

y

+

ALGORITHM

Figure 5.1: Scheme for ITO identification.

the approximated ITO of the dynamic system being controlled. This convergence

time, although small, as shown by the examples in the previous chapter, may in­

troduce and undesirable transient behaviour in the controlled system output. The

following section presents a neural network-based control scheme that takes into

account the before mentioned consideration. This scheme represents an implemen­

tation of the direct inverse dynamics control method found in [7, 16].

5.2 DIRECT ITO CONTROL SYSTEM

It is commonly acknowledged that the lack of robustness of the neural network-based

direct inverse dynamics control schemes is due to the absence of feedback signals from

the output or state variables of the process [61]. In such a case, the control system

cannot cope with variation of the neural network estimation of the ITO when the

signals used to drive the network on-line are different from those used to train the

network off-line, (ie. the generalization problem). This lack of robustness can be

overcome by using a neural network with on-line learning capabilities of the ITO of

the unknown system, and a feedback path of the output of the system. ~,

Figure 5.2 shows a neural network-based direct inverse dynamic control scheme

that incorporates an on-line neural network estimator "NN" of the ITO of the un­

known system, and a feedback path of the system output. In this control scheme,

the estimator is a single layer neural network as the one shown in figure 5.3, and the

102

e
G

y

~ + + u

Figure 5.2: Direct inverse dynamics control scheme.

overall controller is composed of the two following elements:

• A feedforward controller designed with a "slave neural network", "SNN", with

input signal equal to the desired plant output or setpoint, and output equal to

the product of the approximated on-line estimation of the ITO and the desired

plant output or setpoint. Notice from figure 5.2 that the weights of the slave

neural network "SNN" are adapted by the same algorithm used to adapt the

weights of the on-line neural network estimator "NN" .

• A feedback path that includes a filter "G" whose design will be explained later.

The task of the overall controller is to produce an identity map between the desired

plant output or set point and the actual plant output, and to generate an appropriate

control action that enables the system output to be driven according to a reference

signal or setpoint. Notice that in the proposed control scheme both the values

of the generated system input and system output are used as the desired on-line

neural network output and neural network input, respectively. The following section

presents a mathematical formulation that explains the operation of the proposed

control scheme for some continuous-time unknown linear dynamic syste~s.

103

z,

Yn

+

L-----------1 ALGORITHM

Figure 5.3: Single layer neural network.

5.3 CONTINUOUS-TIME LINEAR SYSTEMS

CASE

Consider a controllable unknown linear system represented by the following mathe­

matical model,

where n 2:: rn, D = 1t is the operator differentiation, u(t) E ~ and y(t) E ~ are the

input and output of the unknown system, respectivelYj and "ai" and "bj ", i=1,2, ... ,nj

j=O,l, ... ,m, are real valued unknown parameters.

The ITO between the signals "U(t)" and "y(t)" may be symbolically expressed

by the equation,

u(t)
y(t)

D'TI. + a1Dn-l + ... + an-ID + an

boDm + blDm-l + ... + bm-ID + bm
(5.2)

Notice that in order for the weights of "NN" to represent an approximation of the

ITO of the unknown linear system, the behaviour of equation 5.2 must be bounded.

Failing to satisfy this condition would imply that when the approximation of the

ITO estimation is being performed, the weights of "NN" would grow without bound

and therefore, it would not be possible to achieve any suitable approximation of the

ITO of the unknown system. In general terms, this condition may be interpreted

as the existence of an inverse plant model from the output of the unknown system

104

to its input [75, 76]. For time-invariant linear systems, the existence of an inverse

plant model is related to the concept of output controllability of the system [77].

That is, if the unknown linear system is output controllable, then there exists an

inverse system model that enables the control input "u(t)" to be obtained from the

desired and actual plant output. This assertion can be easily verified by obtaining

a state-space representation of equation 5.1 and by using the definition of output

controllability for time-invariant linear systems. In other words, the model

X(t)

y(t)

AX(t) + bu(t),

cX(t),

(5.3)

(5.4)

with initial condition X(to) = X o, constitutes a state space representation of equa­

tion 5.1; where X(t) E ~n is a state vector, u(t) E ~ is the control input, y(t) E ~

is the system output, and the factors "A", "b", and "c" are matrices of appropriate

dimension. The system output can be expressed in terms of the transition matrix

"q,(., .)" as

y(t) = c[<I>(t,to)Xo + rt
q,(t,r)bu(r)dr] Jta

Let the variable "b.y(t)" be defined as

b.y(t) = y(t) - c<I>(t, to)Xo

(5.5)

(5.6)

The problem of carrying over the system output "y(t)" from a given initial value

to a desired value or set point "yr(t)" is similar to the problem of carrying over the

variable "6y(t)" from a zero initial value into a final value "b.y(t,)", where

(5.7)

this is possible however, if and only if the scalar product of "b.y(t,),' with some

nonzero constant value ".,," can be made arbitrarily large by a suitable choice of

"u(t)". That is, assuming k > 0, let the control input be selected as

(5.8)

in which case, the scalar product "." b.y(t,)" is given by

(5.9)

Notice that selecting the control input "u(t)" as expressed in equation 5.8 implies

that the integral equation 5.9 is positive definite which in turns is equivalent to

satisfying the condition for output controllability of a linear system. In this case,

105

equation 5.8 would contain information regarding the inverse dynamics of the linear

system.
Having clarified the connection between plant invertibility and controllabil­

ity in linear systems, let us resume the operation of the suggested control scheme.

Observe that from figure 5.2, the following equation holds true

(5.10)

where "P" represents the unknown forward transfer operator of the linear system.

The signals "Ul (t)" and "U2(t)" represent the feedback and feedforward components

of the control action, respectively.

The signal "Ul(t)" may be written as

(5.11)

where "G" constitutes a filter, and "Yr(t)" represents the desired plant output or

setpoint. It must be clarified that the tasks of the filter "G" are to compensate the

effects that an unstable pole has on the system response, and to prevent from having

a not proper ITO as a result of trying to control a strictly proper unknown dynamic

system.
The signal "U2(t)" is the output of the slave neural network "SNN" that pro­

vides information regarding the approximated estimation of the ITO of the unknown

system. Its task is to produce an identity map between the actual plant output and

the desired plant output or setpoint.

If the on-line neural network estimator "NN" involved in the control scheme is

a single layer neural network with input vector "Z(t)" selected from a neighbourhood

ofthe unknown plant output "y(t)", (ie. Z(t) E {y(t) :1 y(t) I~ e}, with "e" a small

constant value), then by using the continuous-time version of the learning algorithm

represented by equation 3.32, in theorem 1 of chapter 3, the error signal "en(t)" in

the control scheme tends to zero in a finite time, and the ITO of the unknown linear

plant may be approximated by the sum of the weight elements of the network. That

is, suppose the neural network input vector "Z(t)" is selected as

(5.12)

with ()i ~ 8, i=1,2, ... ,n-1. Observe that the error signal "en(t)" in the con.~.rol scheme

is equal to
(5.13)

where "Yn(t)", the output of "NN", is given by
n

Yn(t) = LWi(t)Zi(t) (5.14)
i=l

106

If the learning algorithm represented by equation 3.32 of chapter 3 is used to adapt

the weights of the network then, after a short convergence time "tr", the error

equation 5.13 equals zero. That is,

11-

0= u(t ~ tr) - LWi(t ~ tr)Zi(t ~ tr) (5.15)
i=1

Now, since "8i ", i=1,2, ... ,n-l in equation 5.12 is a small value for each "i", the

following approximation is valid

(5.16)

and therefore

(5.17)

Clearly, if
11-

ft-I = L Wi(t ~ tr) (5.18)
;'=1

then

(5.19)

where "P-l" represents an approximation ofthe ITO of the unknown system. Under

these circumstances, observe that the output of "SNN" in the control scheme is equal

~ n

" A I U2(t) = ~ Wi(t) Yr(t) ~ P- Yr(t) (5.20)
i=1

Substituting equations 5.11 and 5.20 into equation 5.10 yields,

P ft-I + GP
yet) ~ 1 + GP Yr(t) (5.21)

Equation 5.21 is a dynamic equation that represents the closed-loop response of

the unknown linear plant in the proposed control scheme. Notice that, since it

takes a short convergence time for the term "ft-I" in equation 5.21 to represent an

a.pproximation of the ITO of the unknown plant, the product "P ft-I" is not exactly

equal to the identity function for all time "t" and therefore, a transient behaviour

component of the closed-loop response of the system will be present. "The design

of the filter "G" in the proposed scheme, influences the duration of the transient

behaviour component, and in the case of unstable unknown plants, it may be used

to compensate the effects of unstable poles of the system.

107

Based on empirical evidence, if the dynamic order of the unknown system

under study is known to be at least equal to 2, the filter "C" may be designed as

follows
U1(t)
e(t)

KG (a1 + D)(a2 + D)
({31 + D)({32 + D)

with KG, a17 a2, {3b (32 suitably chosen.

(5.22)

In order to show the performance of the proposed control scheme, the problem

of controlling the position of the spring-mass-damper system is presented as an

illustrative example. The mathematical model of this system which is assumed to

be unknown is represented by the state equations

(5.23)

with output variable given by the equation

y(t) = X1(t) (5.24)

where "X1(t)" and "X2(t)" represent the vertical position and velocity of the mass,

respectively; and the dimensions of the unknown parameters "R", "C", and "m"

are expresed in the metre-kilogram-second system of units, and for the sake of the

computer simulation are assumed to be equal to 58.37, 5.84, and 1.46, respectively

[85]. The acting input force "u(t)" and the vertical position of the mass "Xl (t)" are

considered to be available for measurements at all time. The control objective is

satisfied by making the system output "y(t)" follow a reference signal "Yr(t)". In

particular, it is assumed that the reference signal is the function

() _ { cos(3t)
Yr t -

2

where "to" is a positive value.

if t :::; to
otherwise

(5.25)

The filter" C" for this second order dynamic system is designed as follows

U1(t)
e(t)

KG (a1 + D)
({31 + D)

(5.26)

Figures 5.4 and 5.5 illustrate the performance of the proposed control scheme

and the approximated ITO estimation provided by the on-line neural network esti­

mator, respectively. Observe that, after a relatively small transient behaviour the

steady-state component of the system output is off-set free, and that despite the

abrupt change in the reference signal, the system output signal tracks it with great

108

accuracy. In this computer simulation, the initial values of the weight elements of

the on-line neural network estimator were selected randomly between -1 and 1. Also,

the value of the adaptation gain "k" of "NN", and the parameters "KG", "at" and

"(3t" of the filter "G" were selected equal to 8, ISO, 1.33, and, 1 respectively.

It is important to clarify the effects that the approximated ITO estimation has

on the response of the unknown system. Figure 5.6 illustrates these effects. Here, the

signal "u2Ct)" that contains information about the approximated ITO estimation has

been suppressed from the control action "uCt)", and as a result, the system output

does not follows the changes of the reference signal. In this computer simulation

the value of the parameters of the filter "G" and the adaptation gain "k" of "NN"

remained the same as before.

Figure 5.7 illustrates the performance of the control scheme when the measure­

ment of the unknown plant delayed output and delayed input signals were corrupted

by white noise, (ie.the input and desired output for "NN"). In this case, despite the

fact of the presence of noise in the neural network input and desired output signals,

the generated control action is able to control the unknown plant output by forcing

it to track the prescribed reference input. The corresponding approximated ITO

estimation, a typical input signal of "NN" corrupted by measurement noise, and the

desired output signal of "NN" corrupted by noise are sketched in figure 5.8.

The following section discusses the applicability of the proposed control scheme

to control a certain class of continuous-time unknown nonlinear dynamic systems.

5.4 CONTINUOUS-TIME NONLINEAR SYS­

TEMS CASE

Consider an unknown nonlinear dynamic system represented by the following math­

ematical model

X(t)

yet)

f(X(t)) + g(X)u(t)

h(X(t))

C5.27)

(5.28)

where "fC.)", "g(.)", and "h(.)" are unknown bounded, smooth functions; X(t) E ~n

is the state vector, uCt) E ~ is the control input, and yet) E ~ is the syst~'m output.

The control problem is solved by generating a control input "u(t)" such that

the system output "y(t)" tracks a prescribed reference signal or setpoint.

The existence of an ITO for the nonlinear system represented by equations

5.27 and 5.28 can be loosely interpreted as the satisfaction of a local reachability

109

condition. That is to say, finding a function

u(t) = l(y(t), Yr(t» (5.29)

that represents the ITO of the unknown system and enables the plant output "y(t)"

to be brought to the reference signal "Yr(t)".
In terms of our proposed control scheme, if the ITO of the unknown system

exists, then the function described by equation 5.29 can be written as

u(t) = ft-l Yr(t) + G e(t) (5.30)

where "j>-I" represents an approximation of the ITO estimation of the unknown

system, "G" is a filter whose design is similar to the one of equation 5.22, and the

variables"Yr(t)" and "e(t)" represent the desired system output and feedback error,

respectively.
In order to illustrate the performance of the proposed control scheme, the

problem of controlling the angular position of an inverted pendulum connected to a

dc motor via a gear train, [78], is presented as an example. A mathematical model

for this inverted pendulum system, which is schematically depicted in figure 5.9 is

the following

(5.31)

(5.32)

where for the sake of the computer simulation, the unknown parameters "g", "1",
"m", "N", "Km", "Kb", "Ra", and "La" are assumed to be 9.8 m/ S2, 1 m, 1 kg, 10,

0.1 N.m/ A, 0.1 v.s/rad, 1 n, and 0.1 H, respectively. The state variables "Xl(t)",
"X2(t)", and "X3(t)" represent the angular position of the pole, the angular velocity

of the pole, and the armature current in the motor, respectively.

Again, a single layer neural network will be used as the on~line ITO estimator,

and the desired system response will be the signal

() {
0.1 if t :::; 15

Yr t =
-0.1 otherwise

(5.33)

Figures 5.10 and 5.11 illustrate the inverted pendulum controlled state variables

and the performance of the control scheme in generating the control action when

110

la --~C~UR~R~E~NT ____ ~ ____ ~

+ L
INDUeTANCE RESISTANCE +

U
VOLTAGE

ARMATIJRE CIRCUIT

WTOR
TOROUE

Tm

WTOR
SHAFT

CONSTANT
CURRENT

Figure 5.9: Schematic representation of the inverted pendulum.

the filter "G" was selected as

G(D) = Kc (a1 + D)
(/31 + D)

with Kc = 80300, a1 = 3.86, and /31 = 1000.

(5.34)

Notice that after a short transient behaviour, the controlled system output

follows the desired output accurately. In this computer simulation, the value of the

adaptation gain "k" of "NN" was chosen equals to 10, and the initial conditions of

its weight elements were selected randomly between -1 and 1.

The computer simulation results, when the input signals and desired signal to

"NN" were corrupted by measurement noise are sketched in figures 5.12, 5.13, and

5.14. Figure 5.12 illustrate the inverted pendulum controlled state variables and the

desired output response. Figure 5.13 sketches the generated control action and the

approximated ITO estimation of the system; and figure 5.14 depicts a typical "NN"

input signal corrupted by noise and the desired "NN" output signal also influenced

by noise.
The following section presents the examples of the spring-mass-damper system

and the dc motor driven inverted pendulum system when the on-line neur'a.l network

estimator "NN" is trained using the discrete-time version of the learning algorithms

to generate discrete-time control actions.

111

5.5 DISCRETE-TIME ALGORITHMS

This section presents the design of discrete-time controllers for continuous-time un­

known dynamic systens using our proposed control scheme. The basic difference with

respect to the control design of the previous section is in the use of the discrete-time

version of the learning algorithms for training the on-line neural network estima­

tor. Under these circumstances, it must be emphasized that different from the

continuous-time learning algorithm case, in the discrete-time case the convergence

of the neural network estimator output to its desired output is asymptotic. That is,

say a single layer neural network estimator is used in the control scheme, then

u(k) - Yn(k)

WT(k) Z(k)

(5.35)

(5.36)

where "Z(k)" is the neural network input which is selected from the set {y(k) :1 y(k) I:::; 9}

with e a small value. If the learning algorithm presented in theorem 5 of chapter 3

is used to adapt the weight elements then, by appropriate selection of the adaptation

gain of the network the following equation holds valid

lim en(k) = 0
k-+oo

(5.37)

and therefore
lim Yn(k) = u(k)

k-+oo
(5.38)

On the other hand, since "8" is a small value then, the components of the vector

"Z(k)" may be assumed to be approximately equal to "y(k)" and therefore,

n

Yn(k) = LWi(k)y(k) (5.39)
i=l

Thus Ei=l Wi(k) ---+ ~f~~ asymptotically.
Now, the generated control action may be written as

(5.40)

where "G" is selected analogously as in equation 5.22. .'.

The performance of the control scheme with a discrete-time generated control

action will be tested using the spring-mass-damper system, and the dc motor driven

inverted pendulum system presented in the previous sections. In both examples, an

ideal zero order hold is inserted between the generated feedforward control action

and the plant.

112

Figures 5.15 and 5.16 show the performance of the control scheme in controlling

the state variables of the spring-mass-damper system, and the generated control

action and approximated ITO estimation of the plant, respectively. It should be

pointed out that the parameters of "G" used in this computer simulation were the

same as the ones used in section 5.3. Also, both the sampling time for the on-line

neural network estimator and the controller, and the adaptation gain of "NN" were

selected equal to 0.03 seconds and 0.01, respectively.

Figure 5.17 illustrates the performance of the control scheme when the input

signal and desired output signal of "NN" were corrupted by measurement white

nOIse.
On the other hand, figure 5.18 shows the controlled state variables of the

dc motor driven inverted pendulum system. Again, the parameters of "G" were

selected the same as the ones used in section 5.4. In this computer simulation,

the sampling time for the neural network estimator "NN" and the controller, as

well as the adaptation gain of "NN" were selected equal to 0.01 seconds and 0.01,

respectively. It is worth noticing the off-set free response of the unknown plant. The

generated control action and the approximated ITO estimation are shown in figure

5.19.
Finally, figure 5.20 shows the state variables position of the pole and angular

velocity of the pole, and a typical "NN" input signal and desired output corrupted

by measurement white noise. Despite the presence of measurement white noise in

the "NN" input and desired output signal, the control scheme is robust enough to

keep the output of the unknown plant tracking the desired plant output.

A point of importance is to realize that in the proposed control scheme a zero

set point or reference signal is not admissible since it would yield a zero output from

the feedforward portion of the generated control action.

5.6 SUMMARY

In this chapter, a direct inverse dynamics control scheme for controlling unknown

linear or nonlinear dynamic systems has been presented, and ~ts performance has

been tested by computer simulations on a spring-mass-damper system and a dc

motor driven inverted pendulum system.

In the proposed control scheme, the control action has been generated as the

sum of the output of a feedforward controller plus the output of a feedback filter.

The feedforward control action has included an approximation of the ITO of the

unknown system; whereas the feedback control action, although its structure was

113

known, its parameters have been selected by trial an error.

Section 5.3 has shown the connection between system invertibility and control­

lability for continuous-time linear systems. In this section, a continuous-time control

action for controlling unknown linear plants based upon a continuous-time variable

structure-type of learning algorithm for training an on-line neural network estima­

tor has been obtained. The spring-mass-damper system has been presented as an

illustrative example of the performance of the control system. The robustness of the

control scheme with respect to measurement noise in the neural network signals has

also been tested by computer simulation results. These results have shown that one

of the effects of the feedforward component of the control action was to eliminate

the off-set from the system response with respect to the reference signal.

The performance of the control scheme in controlling a certain class of non­

linear systems via a continuous-time generated control action has been presented

in section 5.4. The dc motor driven inverted pendulum system has been presented

as illustrative example. The robustness of the control scheme with respect to mea­

surement noise in the neural network signals has also been tested in the studied

example.
Section 5.5 has shown the feasibility of obtaining a discrete-time control ac­

tion for controlling continuous-time unknown dynamic systems within the proposed

control scheme. Here, the discrete-time version of the learning algorithm has been

used to adapt the weights of the on-line neural network ITO estimator. Both, the

linear example of the spring-mass-damper system, and the nonlinear example of the

dc motor driven inverted pendulum system have been presented to illustrate the

performance of the control scheme.

It is important to mention the relevance of an adequate selection of the adap­

tation gain of the learning algorithm, both in the continuous-time as in the discrete­

time version of the algorithms. Indeed, the selection of the adaptation gain influences

the ability of the neural network to track its desired output accurately, and therefore

it may have an adverse effect on the quality of the response of the control system.

In this work, the selection of the adaptation gain has been done by trial and error.

114

4 Figure 5.4: Per~orMance o~ ~he con~rol scheMe.
Posi~ion or ~he Mass and re~erence signal.

2

~iMe [s]

8 1.8 28 38

1.8
Ueloci~y o~ ~he Mass.

5

8

-5~ ________________________ ~ ________________________ r-______________ ~~~i~M==e~[~s~]

8 1.8 28 38

288
Cenera~ed con~rol ac~ion.

8 28 38

Figure 5.5: ApproKiMa~ed ITO es~iMa~ion.

68

~iMe [s]

28 38

115

4

2

8

8

1.8

5

8

-5
8

288

1.88

8

8

4

2

8

1.8

5

-5
8

288

1.88

8

Figure 5.6 : Perf'orMance of' 1: he con1:rol scheMe when 1: he ITO
is suppressed f'roM 1: he overall control action.

Posi1:ion of' the Mass and ref'erence signal.

1;iMe [s]

1.8 28 38

Uelocity of' 1: he Mass.

1;iMe [s]

1.8 28 38

Generated con1;rol action.

1;iMe [s]
1.8 28 38

Figure 5.7: Perf'orMance of' 1:he con1:rol scheMe when 1;he neural
ne1;work signals are corrup1;ed by white noise.

Position of' the MaSS and ref'erence signal.

'tiMe [s]

28 38

Ueloci1;y of' 1:he MaSS.

1;iMe [s]

1.8 28 38

Genera1:ed control ac1:ion.

1;iMe [s]

28 38

116

Figure 5.8: Neural network signals corrupted by noise.
60 ApproxiMated ITO estiMation.

------~----~~--------
40

20

0r-______________________ ,-______________________ -r ______________ ~t~i~M~e~[~S~]

o HI 20 30

4
Typical neural network input signal.

200
Neural network desired output signal.

tiMe [s]
20 30

Figure 5.10: Inverted penduluM controlled s~ate variables.

Angular posi~ion and re~erence signal.
0.2 \

~------------------------,
o

\
_0.2+-______________________ -r ______________________ -. ________________ ~~i=M~e~[~s=;]

o 10 20 30

0.5 Angular veloci~y.

-0.5

-1

~iMe [s]
-1.5~------------------,_------------------~------------~~~~

o 10 20 30

20
ArMature current.

10

0~~~------------------~1~~-------------------
-10

~iMe [s]
-20~----------------~----------------~r_----------~~~~

o 10 20 30

117

Figure 5.11: Per~orMance o~ the control scheMe.

58 Generated control action.

-58

8 18 28 38

5
ApproxiMated ITO estiMation.

-5

"tiMe [s)
-~5~ ____________ ------~------------------~~--------__ ~~~~

2

Figure 5.12: Inuerted penduluM controlled s"ta"te uariahles.

Angular position and re~erence signal.
8.2

1

\

~------------------------,
8 1\

_8.2+-____________________ -r ____________________ -r ______________ "t~i~M~e~[~s~)
8 18 28 38

8.5 Angular uelocity.

-8.5

8 r
-~

"tiMe [s) -1.5+-__________________ r-________________ ~~----------~~~~
8 18 28 38

28
ArMature current.

18

8~~~ __ ----------------~IV~-------------------
-18

tiMe (5)
-28~----------------~----------------_=C_----------~~~~

8 18 28 38

118

Figur@ 5.13: P@r~orManc@ o~ the control $Ch@M@.

58 G@n@rat@d control action.

II
I'

-58
tiMe [sl

18 28 38

5
ApproxiMated ITO estiMation.

-5

-1.8

-1.5+-______________________ -c ______________ ~~ ____ _,----------------t~i~M~e~~[~$~l

8.3

58

8 IJ,
I"

-58

Figure 5.14: Neural network signals corrupted by noi$e.

Typical neural network input signal.

Neural network desired output.

II~,.

tiMe [sl

18 28 38

119

4

4

2

2BB

B

-lBB
B

8B

6B

4B

2B

B

B

Figure 5.15: Controlled state variables or
the Mass-spring-daMPer sys'teM.

Angular position and rererence signal.

J.B 2B

Angular velocity.

2B

'tiMe [s]

3B

'tiMe [s]

3B

Figure 5.J.6: Con'trol scheMe generated variables.

Generated control action.

'tiMe [s]

lB 2B 3B

ApproxiMated ITO estiMa'tion.

'tiMe [s]

2B 3B

120

4

8

Figure 5.17: Per~orMance o~ ~he con~rol scheMe.
4

Angular posi~ion and
re~erence signal.

~iMe [s]

Angular veloci~y.

-2

8 18 28 38 8 1.8 28 38

288 Con~rol ac~ion. Corrup~ed HH inpu~.

_1.88+-______ ~------_,~--i-M-e--[-s_,]
8 1.8 28 38

Figure 5.1.8: Inyer~ed penduluM con~rolled s~a~e variaLles.

8.2 \.

~--------------------~

Position o~ the pole and reference signal.

~iMe [s]
-8.2~ ________________ -r ________________ ~~ __________ ~~~~

8 1.8 28 38

1. Angular yeloci~y of the pole.

8

-1.

18 28 38

28 ArMa~ure curren~.

tiMe [s]

1. 2 3

121

Figure 5.19: Control scheMe generated signals.

Generated control action.
50

tiMe [s]

2 3

150
ApproxiMated ITO estiMation.

50

_50+-________________________ r-________________________ r-______________ ~t~i~M=e=_~[~s~]

o 10 20 30

8.3
Figure 5.28: PertorMance ot the control scheMe.

1

8.2

Position ot the pole
and reterence signal.

8 .1.~'\.. ___ .,

8

-8.1. \

tiMe [50]
-8.2~-----r----~~~~

28 38 18

Control action.
58

-58

tiMe [50]

8 18 28 30

122

Angular velocity ot
the pole.

8~~ ______ .. ~ ______ __

-1.

tiMe [s]
8 1.8 28 38

8.4
Corrupted NN signal.

Chapter 6

OTHER NEURAL NETWORK
CONTROL APPLICATIONS

6.1 INTRODUCTION

The main objective of this chapter is to present an exploration of other potential

applications of on-line trained neural networks. In particular, the chapter contains

computer simulation results obtained from implementing an internal model neural

network-based control scheme, and a model reference neural network-based adaptive

control scheme. It must be clarified that these are preliminary results and more re­

seach work is necessary in order to assess global stability conditions for the operation

of the suggested control schemes.

6.2 INTERNAL MODEL CONTROL SCHEME

Two important elements for the design of an internal model control scheme (IMCS)

as the one depicted in figure 6.1 are the availability of the FTO and ITO of the

dynamic system. In this control scheme, if the FTO represents a perfect copy of

the forward dynamics of the system then the feedback path would only carry the

influence of the disturbance affecting the system output, and the control system

would operate in an open-loop configuration the stability of which would depend

on the stability of the interconnection between the ITO controller and .~he actual

dynamic system. In most practical situations, however, the FTO is not' a perfect

model of the dynamic system and therefore, the feedback signal in the control scheme

contains the effects of this model mismatch as well as the influence of disturbances

affecting the system output. As a result of this FTO mismatch, the stability and

123

Reference
signal +

Figure 6.1: Internal model control scheme

Output

+

robustness characteristics of the resulting closed-loop configuration may only be

attained by detuning the ITO controller and augmenting it by a low-pass filter that

may be adjusted on-line [74]. For a stable open-loop system, the selection of the low­

pass filter depends on the system type. This filter selection enables the asymptotic

tracking properties present in the open-loop system to be retained by the closed-loop

system.
A comprehensive study of the internal model control scheme that covers un-

stable linear systems may be found in [74]. The extension to nonlinear plants is

analysed in [79].
From the neural networks applications point of view, the implementation of

an IMCS may be carried out by designing neural networks to approximate the FTO

and ITO of the dynamic system under consideration. The work by Hunt et al [75]

presents examples of the use of neural networks for nonlinear plants in an IMSC.

In their work, they explore conditions for the invertibility of discrete-time nonlinear

systems, and present neural network-based architectures for off-line identification of

the FTO's and ITO's of nonlinear plants. In the mentioned work" the IMCS may be

implemented once the off-line training phase of the neural network representations

of the FTO and ITO have been completed.

In the next section, computer simulation results obtained from the implemen­

tation of an IMCS with on-line training of the neural network representations of the

FTO and ITO of stable unknown linear systems are presented.

124

y

+

Figure 6.2: Neural network-based IMCS

6.2.1 NEURAL NETWORK-BASED IMCS

Figure 6.2 illustrates a neural network-based internal model control scheme. Observe

that the task of the on-line neural network estimator in the parallel path to the

unknown plant is to emulate its behaviour and therefore, to produce a feedback

signal that contains the influence of the perturbation affecting the output of the

system. On the other hand, the task of the on-line neural network ITO estimator

is to generate an on-line approximation of the ITO of the unknown system that

includes the effects of the output disturbances upon the system output. This ITO

approximation is then multiplied by the difference between the reference signal and

the FTO estimator error, and the resulting signal is processed by a filter to generate

the actual control action.
From a mere qualitative viewpoint, the overall system stability depends on

both the stability of the process and the stability of the FTO and ITO estimation

processes.
Mathematically speaking, the following formulation may be used to clarify the

system operation for invertible, stable unknown dynamic linear systems.

Observe that from figure 6.2

y(t)

u(t)

P(D)u(t) + d(t)

P-l(D) F(D) e(t)

(6.1)

(6.2)

where the factor "P-l(D)" comes from the on-line estimation of the ITO performed

125

by the neural network NNl (see chapter 4 for mathematical details on the ITO

estimation process). On the other hand, the feedback error signal "e(t)" may be

written as

e(t) = Yr(t) - en2(t) (6.3)

where the signal "en2(t)" that represents the FTO estimation error is given by

en2(t) = P(D)u(t) + d(t) - Yn2(t) (6.4)

The on-line neural network FTO estimator output signal "Yn2(t)" may be represented

by the equation

Yn2(t) = P(D)u(t - r) (6.5)

where "P(D)" symbolizes an approximation of the FTO of the unknown system, and

"u(t - r)" is the delayed control input. Here it will be assumed that u(t - r) ~ u(t)

for "7"''' a small positive value and therefore, equation 6.5 may be rewritten as

Yn2(t) = P(D)u(t) (6.6)

Substituting equation 6.6 into 6.4, and the resulting equation into equation 6.3 yields,

e(t) = Yr(t) - P(D)u(t) - d(t) + P(D)u(t)

Replacing equation 6.7 into 6.2 and the result into equation 6.1 yields

P(D)P-I(D)F(D)
y(t) = 1 + P-I(D)F(D)(P(D) _ P(D)) Yr(t)

1 - p(D)P-l(D)F(D)
+. - d(t)

1 + P-I(D)F(D)(P(D) - P(D))

(6.7)

(6.8)

In order to show the performance of the IMCS with on-line ITO and FTO neural

network estimators, the spring-mass-damper system studied in the previous chapter

will be used as an illustrative example. In this case, both the ITO and the FTO

neural network estimators will be single layer neural networks with on-line train­

ing using a continuous-time learning algorithm. Appendix D contains the simnon

programs used to perform the computer simulations.

For the sake of the computer simulations, the same mathematical model and

parameters of the spring-mass-damper system used in chapter 5 are used.,here. That

is to say:

Xl (t)

X2(t)

yet)

X2(t)

- -40XI(t) - 4X2(t) + O.68u(t)

Xl(t)

126

(6.9)

The design of the low-pass filter "F" illustrated in the forward path of figure 6.2 is

as follows

(6.10)

with the index "n" equal to the dynamic order of the unknown system. In particular,

the low-pass filter for the example at hand is designed as

(6.11)

with 7'1 = 0.2, 7'2 = 0.2, and KF = 1.

Figure 6.3 sketches the bahaviour of the controlled variables and the gener­

ated control action when the output of the system is disturbed by a white noise

perturbation. In this computer simulation the reference signal was selected equals

to

() {
I if t ::; 15

Yr t =
2 otherwise

(6.12)

and the adaptation gains for the single layer neural networks NNl and NN2 were

selected by trial and error equal to 5 and 40, respectively.

Similarly, figure 6.4 shows the estimated ITO and FTO approximations, as well

as the FTO estimation error. Note that these estimation processes were influenced

by the white noise perturbation that affected the system output.

6.3 MODEL REFERENCE CONTROL

In general terms, a model reference adaptive control system as the one depicted

in figure 6.5 operates by adjusting the controller parameters based on the error

between the output of the system and the output of a known reference model. The

performance of the system is specified by the reference model. Mathematically

speaking, the model reference adaptive control problem may be formulated as follows

[15]:
Given the input-output measurements "u(k)", "y(k)" obtained from a dynamic

system "f', and given a desired plant output "Ym(k)" obtained from a known refer­

ence model "/m" with input signal equal to "um(k)", we want to determiJ:~e a control

input "u(k)", for all k ~ ko, such that '

lim Iy(k) - Ym(k)1 ::; 1/J
k-+oo

(6.13)

for some specified constant value 1/J 2:: o.

127

I
fm

I Ym

I J -
controller parameters J. \

AI r,()RITHM fe- +

u m I J l Y
Controller J -l f I u

Figure 6.5: Model reference adaptive control system.

An issue of great importance in solving the above adaptive control problem is

related to the determination of the adaptive law for the adjustment of the control

parameters that would enable the overall system configuration to be stable.

There are basically three approaches for designing the adaptive law [80]:

• The gradient approach. Here, it is assumed that the controller parameters

change more slowly than the other variables in the system. The resulting

closed-loop system is not necessarily stable.

• The Lyapunov approach. In this case, the Lyapunov stability theory is used to

design an adaptation law that results in a stable closed-loop system. The main

difficulty here is to find an accurate model for the plant, and an appropriate

lyapunov function for the given dynamic system.

• The passivity theory approach, that enables the adaptation law to be designed

in such a way that the overall system is BIBO stable [81]. As before, this

approach relies on a good knowledge of the system.

If the dynamic system under consideration is a linear system, then it is possible

to design a stable adaptive law that results in a stable closed-loop system' provided

that some prior information about the plant forward transfer operator is available

[82]. In the nonlinear system case however, a definitive conclusion about the global

adaptive control problem is not yet known.

128

6.3.1 NEURAL NETWORK-BASED ADAPTIVE CON­

TROLSCHEME

The class of dynamic systems to be considered here may be described by the following

mathematical model

y(k + 1) = I(y(k),y(k -1), ... ,y(k - n + 1)) + L/3ju(k - j), m < n (6.14)
j=O

where "f(.,.)" is a smooth unknown linear or nonlinear function of its arguments,

and "/3;", j = 0, ... , m is a set of .known parameters with "/30" different from zero.

The prescribed performance for the given plant is determined by the output

of a stable reference model described by the equation

(6.15)

where "Im(., .)" is a known function, and "um(k)" is a known bounded external

reference input. If the function "f(.,.)" were known, it would be possible to control

the system 6.14 by selecting a control law represented by the equation

u(k) =
1

/30 (- I (y (k), y (k - 1), ... , y (k - n + 1))

t,f3iU(k - j) + Ym(k + 1)) (6.16)

with "Ym(k + 1)" given by

Ym(k + 1) = Im(y(k), y(k - 1), ... , y(k - n + 1)) + um(k) (6.17)

Observe that under these circumstances the output error "eo (k)" defined as the

difference between the plant output and the reference model output may be written

as
(6.18)

that represents a stable equation.
In our problem formulation however, in order to be able to i,mplement equation

6.16, the unknown function "f(.,.)" must be previously estimated. In the neural

network-based adaptive control scheme illustrated in figure 6.6, the task ot'the neural

network is to perform an on-line estimation "ik" of the unknown function "f(.,.)",

and to pass these estimated values to the controller in order to generate the actual

control action. In other words, equation 6.16 may be rewritten in terms of "ik" as

follows

129

Reference model

Dynamic I
system I

+

yl
I
I
I

_.J

e

Figure 6.6: Neural network-based adaptive control scheme.

u(k) = ~ (- ik - E/3ju(k - j) + ilTn(k + 1))
/30 j=1

(6.19)

where" f,e" is the output of the neural network estimator. As a result, the closed-loop

system dynamics may be represented by the equation

y(k + 1) = f(y(k),y(k -1), ... ,y(k - n + 1)) - ik + YTn(k + 1) (6.20)

Note that from figure 6.6, the error "eo(k + 1)" may be written as

y(k+ 1) -Yn(k+ 1)

f(y(k),y(k -1), ... ,y(k - n + 1)) - fk (6.21)

and therefore, the dynamics of this error may be represented by

f(y(k), ... ,y(k - n + 1)) - f(y(k -1), ... ,y(k - n))

(6.22)

where" j,/, and "ik-1" are the present and the previous estimat~s of "f(.,.)".

Then, if a discrete-time learning algorithm, say the one described in section

3.3.2.1 of chapter 3, is used to update the weights of a single layer neur~l network

estimator, equation 6.22 becomes

(1- a)eo(k) + f(y(k), y(k - 1), ... , y(k - n + 1))

f(y(k - 1), y(k - 2), ... , y(k - n)) (6.23)

130

It is obvious that the stability of equation 6.23 depends upon the behaviour of the

difference "f(y(k), y(k -1), ... , y(k - n + 1)) - f(y(k -1), y(k - 2), ... , y(k - n))" and

on the selection of the parameter "a". The following computer simulation results

obtained from a linear and a nonlinear system, illustrate the performance of the

proposed control scheme when the unknown functions "f(.,.)" are smooth functions,

and the corresponding parameter "a" is selected in the interval (0, 2). Appendix E
contains the simnon computer programs used for implementing the adaptive control

scheme.

Firstly, consider the linear system described by the equation

parI xI(k) + par2 x2(k) + par3 u(k)

xI(k)

(6.24)

where "parI" and "par2" are unknown, and "par3" is assumed to be equals to 1.

Obviously, the unknown function "f(.,.)" is the function

(6.25)

For the sake of the computer simulation the unknown parameters "parI" and "par2"

are selected equal to -0.4 and 0.1, respectively.

The known reference model will be the following

Xm1 (k + 1)

xm2 (k + 1)

Ym(k)

xm2(k)

0.6 X m1 (k) + 0.2 xm2(k) + um(k)

x m1 (k)

where the input signal "um(k)" is defined by

{
2 if kT < 15

um(k) = Co.s(3kT) otherwise

(6.26)

(6.27)

A single layer neural network will be used for the on-line estimation of the unknown

function "f(.,.)". Figure 6.7 shows the performance of the neural network-based

adaptive control scheme. In this computer simulation, the output of ·the system

was perturbed by a white noise disturbance and yet, the control system was able to

maintain the system variables regulated according to the reference model output.

The adaptation gain for the neural network was selected by trial and error equals to

0.02. Figure 6.8 illustrates the on-line estimated unknown function, and the output

error used to train the neural network estimator.

131

Finally, we shall consider a nonlinear system described by the equation

y(k + 1) = f(y(k), y(k - 1)) + u(k) (6.28)

where the unknown function "f(y(k),y(k-1))" is given by

f((k) (k _ 1)) = y(k) y(k - l)(y(k) + 2.5)
y ,y l+y2(k)+y2(k-l) (6.29)

This nonlinear plant has been reported by N arendra et al [15] in the context of off­

line trained neural network-based adaptive control and by Colina-Morles et al [70]

in the context of on-line trained neural network-based adaptive control scheme.

In this case, the reference model is the same described by equation 6.26, with

reference input given by the following equation

urn (k) = {2 if kT < 15
1 otherwise

(6.30)

Similar to the previous example, a single layer neural network with adaptation gain

selected by trial and error equals to 0.01 is used for the on-line estimation of the

unknown function. Figure 6.9 illustrates the performance of the adaptive control

scheme when a white noise perturbation affects the system output. Note that de­

spite the perturbation, the control system keeps the plant output variable regulated.

Figure 6.10 sketches the on-line estimation of the unknown function, and the output

error between the plant and the reference model.

6.4 SUMMARY

This chapter has included various aspects on the potential applications of on-line

trained neural networks to deal with control problems. In particular, a neural

network-based internal model control scheme, and a neural network-based adap­

tive control scheme have been considered and computer simulation results obtained

from using these proposed control scheme on unknown dynamic systems have been

presented.
The main aspect in the internal model control scheme that has b.~en formu-

lated here is the possibility of obtaining simultaneous on-line estimations of the

forward transfer operator and the inverse transfer operator of an unknown dynamic

plant that enables the output variable of the plant to be regulated according to the

specifications provided by a reference input signal. Both the selection of the neural

network adaptation gain, and the parameters of the low-pass filter involved in the

132

scheme have been selected by trial and error. Only stable open-loop systems have

been studied. It has been verified that the stability of the configuration depends on

the stability of the plant and the stability of the estimation process used to obtain

the FTO and the ITO of the system. Further research work is necessary in order to

assess global stability conditions for the operation of the scheme.

On the other hand, an important characteristic of the neural network-based

adaptive control scheme that has been presented here is the capability of generating

an adaptive control law based on a simultaneous on-line estimation of the parameters

of the controller. In other words, we have proposed a direct adaptive method for

adjusting the controller parameters based on the error between the plant output

and a neural network-based model for the plant. The stability of such method

strongly depends on the behaviour of the unknown function. In this study, we have

only concentrated in analysing unknown systems that have a smooth behaviour

corresponding to the considered reference signals.

133

"tiMe [s]
1.1, 28 38

88 Figure 6.4: Neural ne"tworks on-l ine genera"ted signals.

ApproKiMa"ted ITO es"tiMa"tion.
68

48

28

8 "tiMe [s]

8 18 28 38

8.4 ApproKiMa"ted FTO es"tiMa"tion.

8.2

8

"tiMe [s]

8 18 28 38

FTO es"tiMa"tion error.

"tiMe [s]

2 3

134

Figure 6.7: Per~orMance o~ the NN-Lased adaptive scheMe.
SysteM output and Model re~erence output.

-Ut tiMe [s]

8 1.8 28 38

SysteM state variaLle.
1.8

8

-1.8 tiMe [s]

8 1.8 28 38

4
Adaptive control action.

2

8

-2 tiMe [110]

8 1.8 28 38

Figure 6.8: Neural network signals.

EstiMated unknown ~unction.

1.8

1.8 28 3

2 Output error.

J.8 28 38

135

1.5 Figure 6.9 : Perf'orMance of' the NN-based adaptive scheMe.

SysteM output and ref'erence Model output.

1.8

5

8 tiMe [s]

8 1.8 28 38

1.5

SysteM state variable.
1.8

5

8 tiMe [s]

8 1.8 28 38

6
Adaptive control action.

4

2

8 1;h,. [s]

8 1.8 28 38

8 Figure 6.1.8: Neural network signals.

EstiMated unknown f'unction.

6

4

2

8+-____________________ ~c_--------------------~---------------1;~i~M~.~[~S~]
8 1.8 28 38

2
Ou1;put error.

1;iMe [s)
-2~------------------r_----------------~~----------~~~~

8 1.8 28 38

136

Chapter 7

CONCLUSIONS

This thesis has presented new results regarding the applicability of artificial feedfor­

ward neural networks for the on-line identification and control of unknown dynamic

systems.
By way of an introduction, an overview of important features of artificial neural

networks has been presented. This overview has included a taxonomy of neural net­

works in terms of their topological configurations and the type of learning algorithms

supported; as well as a categorization of learning algorithms with a description of

the Widrow-Hoff delta rule, and the ft-least square algorithm that constitute the

basis for the celebrated back-propagation learning algorithm.

The problem of on-line identification of the forward transfer operator of an

unknown dynamic system has been addressed in terms of an approximation prob­

lem where the approximating function is represented by a neural network with an

embedded adaptive rule or learning algorithm that influences the accuracy of the

on-line identification process. In this sense, both discrete-time and continuous-time

variable structure control-based on-line learning algorithms have been introduced,

and the performances of single layer, two layer, and three layer feedforward neural

networks in identifying unknown linear and nonlinear dynamic systems have been

tested.
The main idea in the learning algorithms that have been presented here is to

adapt the weights of the neural network in such a way that a sliding surface along the

error function defined by the difference between the teaching signal and·.,the actual

output signal of the network is created. This idea, taken from the variable structure

control design literature enables the teaching signal to be emulated by the neural

network output, and results in a neural network structure that exhibits robustness

characteristics with respect to external disturbances affecting the network's signals.

In the continuous-time versions of the learning algorithms that have been pre-

137

sented here, the output of the neural network is able to track its teaching signal in a.

finite time. This convergence characteristic, together with the robustness features,

and the boundedness of solutions provided by the on-line trained neural networks

has been mathematically proved; and computer programs written for the Simnon

computer language have been included.

The discrete-time versions of the learning algorithms tha.t have been formu­

lated in this thesis, included a generalization of the learning algorithm proposed by

Sira-Ramirez et al [59] that took into consideration time-varying neural networks'

input and teaching signals. Similar as in the continuous-time cases, the discrete­

time version of the algorithms have been developed for single layer, two layer, and

three layer neural networks; and mathematical proofs on the asymptotic convergence

characteristics, boundedness of solutions, and robustness features with respect to ex­

ternal perturb at ions on the networks' signals have been reported.

The on-line forward transfer operator identification problems for continuous­

time and discrete-time dynamic systems that have been considered in this thesis have

been solved by proposing a neural network-based identification scheme where the in­

put signals to the neural network have been taken from a neighborhood of the input

signal to the unknown system, and the teaching signal for the neural network has

been selected equal to the output signal of the unknown system. The on-line variable

structure control-based learning algorithms have been used to adapt the weights of

the neural networks involved in the scheme. In particular, the approximation capa­

bilities of one layer, two layer, and three layer feedforward neural networks to give

on-line estimations of the forward transfer operator of unknonw dynamic systems

have been tested by means of computer simulations. In these computer simulations,

it has been contemplated the effects of external bounded perturbations (white noise)

influencing the signals of the neural networks. The best performance has been ob­

tained using three layer neural networks adapted either with the continuous-time or

the discrete-time learning algorithm.

In the thesis, the on-line inverse transfer operator identification problems for

continuous-time and discrete-time unknown dynamic systems have also been stud­

ied. In this case, the teaching and input signals to the neural Iletworks have been

selected equal to the input signal and from a neighborhood of the output signal

of the unknown plant, respectively. The best performance has been attained using

three layer neural networks.
In the direct inverse dynamic control problem that has been solved here, the

applied control action to the unknown plant has been generated from the output of

a feedforward controller plus the filtered output of a feedback controller. The task of

138

the feedforward controller has been to provide an approximation of the inverse trans­

fer operator of the system that enables an identity mapping between the unknown

dynamic system and the approximation to be created. The feedback controller task

on the other hand, has been to compensate for unstable poles of the system and

to enable the inverse transfer operator approximation to be implemented when the

unknown dynamic system forward transfer operator was strictly proper.

Different from other neural network-based direct inverse dynamic control schemes

[7, 76], in the scheme that has been proposed here the neural network estimator has

provided on-line approximations of the inverse transfer operator of the unknown

plant, and has included a feedback loop. The incorporation of these features has

resulted in a control scheme that exhibits robustness characteristics with respect to

bounded external perturbations affecting the output of the unknown system.

For continuous-time linear systems, it has been mathematically shown the con­

nection between system invertibility and controllability and, in the nonlinear system

case the condition for plant invertibility has been loosely interpreted as satisfying a

local reachability condition.
The performance of the control scheme has been tested by computer simula­

tions using a spring-mass-damper system, and a dc motor driven inverted pendulum

system. In both cases, the selection of the adaptation gain of the algorithms that

have been used to adjust the weights of the neural networks, as well as the parame­

ters of the filter involved in the feedback component of the control action have been

done on a trial and error basis.

The main aspect in the neural network-based internal model control scheme

that has been formulated in this work is the possibility of obtaining simultaneous

on-line estimations of the FTO and the ITO of unknown dynamic systems that

enables the output variable of the plant to be regulated according to the specifica­

tions provided by a reference input signal. The performance of the proposed control

scheme has been tested by computer simulations using a stable open-loop unknown

plant which output signal has been corrupted by white noise. Despite the output

disturbance, the control system has been able to keep the unknown system output

regulated. It has been verified that the stability of the configuration depends on the

stability of the unknown plant and the stability of the estimation proc~.sses of the

FTO and ITO.
An important feature of the neural network-based adaptive control scheme

that has been presented in this thesis is the capability of generating an adaptive

control law based on a simultaneous on-line estimation of the parameters of the

controller. In this control scheme, identification and control have been performed

139

simultaneously, and it has been empirically proved that the configuration is stable

when the unknown system being considered has a smooth behaviour.

There is significant scope for further development along the ideas presented in

this work. The identification schemes and the direct inverse dynamic control scheme

presented in the thesis have only been used on single-input single-output dynamic

systems. The extension of these schemes to consider multiple-input multiple-output

systems is a natural way of action for further research work. In particular, knowing

the fact that the variable structure control-based learning algorithms that have been

proposed are general enough to be used for on-line adaptation of multiple-output

neural networks.

Also an open area for further research work is the study of the applicability

and conditions for the stability of the neural network-based IMCS to consider un­

stable open-loop systems, and nonlinear dynamic systems in general. Similarly, it

is important to establish general conditions for the global stability of the proposed

neural network-based adaptive control scheme.

140

Appendix A

Single Layer Neural Networks

A.I Continuous-Time Computer Program

Computer program written for the "Simnon" computer language used to implement

the continuous-time variable structure control-based learning algorithm for a sin­

gle layer neural network with 4 input nodes. Note that the function "SIGN(E)" is

implemented in terms of (ABS(E)!DELTA)' where "DELTA" is a very small positive
value.

CONTINUOUS SYSTEM NN1

"LEARNING ALGORITHM FOR A SINGLE LAYER NEURAL NETWORK US­

ING VSC
INPUT YD U UDl UD2 UD3

OUTPUT ENl

STATE Wl W2 W3 W4

DER DWl DW2 DW3 DW4

DWl=Vl

DW2=V2

DW3=V3

DW4=V4

E=YD-YN
YN = W1 *U + W2*UD1 + W3*UD2+ W 4 *UD3

MO=l/MU
Vl=MO*U*KNl *(E/(ABS(E)+ DELTA))

V2=MO*UDl *KN1 *(Ej(ABS(E)+ DELTA))

V3=MO*UD2*KN1 *(Ej(ABS(E)+ DELTA))

141

V4=MO*UD3*KNI *(Ej(ABS(E)+ DELTA))

MU=U*U+UDI *UDI+UD2*UD2+UD3*UD3

WT1=W1+ W2+ W3+ W4
ENl=E
DELTA: 0.005

KNl:l

END

A.2 Discrete-Time Computer Program

Computer program written for the "Simnon" computer language used to implement

the discrete-time variable structure control-based learning algorithm for a single

layer neural network 3 input nodes.

DISCRETE SYSTEM SINEURON

"LEARNING ALGORITHM FOR A SINGLE LAYER NEURAL NETWORK
INPUT Y YDl UD un Ul2 UID UllD Ul2D

OUTPUT YO

STATE Wll Wl2 Wl3 WIB
NEW NWll NW12 NWl3 NW1B

TIMET

TSAMP TS
MO=UD*UD+Ull *Ull+U12*U12+B*B

MOI=l/MO
TER=(UD-UID)*Wll +(Ul1-UllD)*W12+(U12-U12D)*W13

NWll=Wll+MOI*UD*(A *E+ Y-YDI-TER)

NW12=W12+MOI*Ull *(A *E+ Y-YDI-TER)

NW13=W13+MOI*U12*(A *E+ Y-YD1-TER)

NWlB=WlB+MOI*B*(A *E+ Y-YD1-TER)

E=YDI-YO
YO=Wll *U1D+W12*UllD+ W13*U12D+ W1B*B

WT=Wll+Wl2+W13

TS=T+TT
TT:0.01

A:O.6
B:1. END

142

Appendix B

Two Layer Neural N etwor ks

B.l Continuous-time Computer Program

Computer program written for the "Simnon" computer language to implement the

continuous-time variable structure control-based learning algorithm for a two layer

neural network with 3 input nodes, and 1 output node.

CONTINUOUS SYSTEM TWOLAYER

"CONTINUOUS-TIME TWO LAYER NEURAL NETWORK

INPUT Ul U2 U3 U4 YD

OUTPUT WT E

STATE WIll WI12 WI13 WIBl

STATE WI2l WI22 WI23 WIB2

STATE WI31 WI32 WI33 WIB3

STATE WI41 WI42 WI43

STATE Wll1 W121 W131

DER DWIll DWI12 DWIl3 DWIBl

DER DWI2l DWI22 DWI23 DWIB2

DER DWI3l DWI32 DWI33 DWIB3

DER DWI4l DWI42 DWI43

DER DWl11 DW121 DW131

DWIll=UI1l

DWIl2=UIl2

DWIl3=UI13

DWIBl=UIBl

DWI21=UI21

143

DWI22=UI22

DWI23=UI23

DWIB2=UIB2

DWI31=UI31

DWI32=UI32

DWI33=UI33

DWIB3=UIB3

DWI41=UI4I

DWI42=UI42

DWI43=UI43

DWlll=Ulll

DW121=U12I

DWI31=UI3I
MO=UI *UI+U2*U2+U3*U3+U4*U4+BI *BI

MIO=I/MO
Yll=WI11 *Ul+WI21 *U2+WI31 *U3+WI41 *U4+WIBl *Bl

Y12= WI12*Ul + WI22*U2+ WI32*U3+ WI42*U 4+ WIB2*B 1

Y13=WI13*Ul+ WI23*U2+ WI33*U3+ WI43*U4+ WIB3*Bl

GAMMAI=l/(l+EXP(-Yll))

GAMMA2=1/(1+EXP(-Y12))

GAMMA3=1/(1+EXP(-Y13))
UI11=MIO*Ul/Yll *EXP(-Yll)*GAMMAl

UI12=MIO*Ul/Y12*EXP(-Y12)*GAMMA2

UI13=MIO*UI/YI3*EXP(-Y13)*GAMMA3

UI21=MIO*U2/Yll *EXP(-Yll)*GAMMAl

UI22=MIO*U2/Y12*EXP(-Y12)*GAMMA2

UI23=MIO*U2/YI3*EXP(-YI3)*GAMMA3

UI31=MIO*U3/Y11 *EXP(-Y1I)*GAMMAl

UI32=MIO*U3/Y12*EXP(-Y12)*GAMMA2

UI33=MIO*U3/Y13*EXP(-Y13)*GAMMA3

UI41=MIO*U4/Yll *EXP(-Yll)*GAMMAl

UI42=MIO*U4/YI2*EXP(-YI2)*GAMMA2

UI43=MIO*U4/Y13*EXP(-YI3)*GAMMA3

UIBl=MIO*Bl/Yll *EXP(-Yll)*GAMMAl

UIB2=MIO*Bl/Y12*EXP(-Y12)*GAMMA2

UIB3=MIO*BI/Y13*EXP(-Y13)*GAMMA3
Ml==GAMMAI *GAMMAl+GAMMA2*GAMMA2+GAMMA3*GAMMA3

144

Mll=1/M1
YO=Wll1 *GAMMA1+W121 *GAMMA2+W131 *GAMMA3

E=YD-YO

Ull1=-W111+Mll *GAMMA1 *K*E

U121=-W121+Ml1 *GAMMA2*K*E

U131=-W131+Mll *GAMMA3*K*E

K:lO. B1:l. END

B.2 Discrete-Time Computer Program

Computer program written for the "Simnon" computer language used to implement

the discrete-time variable structure control-based learning algorithm for a two layer

neural network with 3 input nodes, and 1 output node.

DISCRETE SYSTEM LAYER2

"DISCRETE-TIME TWO LAYER NEURAL NETWORK

INPUT Y1 Y2 UD UDD

OUTPUT YN

TIMET

TSAMP TS

STATE Will WIl2 WIl3

STATE WI21 WI22 WI23

STATE Wll1 W121 W131

NEW NWIl1 NWIl2 NWIl3

NEW NWI21 NWI22 NWI23
NEW NWll1 NW121 NW131

NWlll=Wlll+UI11

NWIl2=WIl2+ UIl2

NWI13=WI13+ UI13

NWI21=WIl4+UI14

NWI22= W1l5+ UIl5

NWI23=WI16+UIl6

NWl11=Wl11+U111

NW121= W121 + U 121

NW131=W131+U131

Yll=WIl1 *UD+ WI21 *UDD

145

Y12=WI12*UD+WI22*UDD

Y13= WI13*UD+ WI23*UDD

A=UD*SIGN(UD)+UDD*SIGN(UDD)

UI11=-2*(SIGN(UD)*Yll)/ A

UI12=-2*(SIGN(UD)*Y12)/ A
UI13=-2*(SIGN(UD)*Y13)/ A
UI21=-2*(SIGN(UDD)*Yll)/ A

UI22=-2*(SIGN(UDD)*Y12)/ A

UI23=-2*(SIGN(UDD)*Y13)/ A

Zll=SIGN(Yll)

Z12=SIGN(Y12)

Z13=SIGN(Y13)

U1ll=-2*W1ll-(A1 *EN +P1-P2)*Zll/N1

U121=-2*W121-(A1 *EN +PI-P2)*Z12/N1

U131=-2*W131-(A1 *EN +P1-P2)*Z13/Nl

YN=W1l1 *Zll+ W121 *Z12+ W131 *Z13

EN=PI-YNN

Pl=Y2-UD

P2=Y1-UDD

TS=T+TN

A1:1

TN:O.02

Nl:3

END

146

Appendix C

Three Layer Neural Networks

C.I Continuous-time Computer Program

Computer program written for the "Simnon" computer language used to implement

the continuous-time variable structure control-based learning algorithm for a three

layer neural network with 3 input nodes, 3 hidden nodes, and 1 output node.

CONTINUOUS SYSTEM TRILAYER

"CONTINUOUS-TIME THREE LAYER NEURAL NETWORK

INPUT Ul U2 U3 U4 YD

STATE Will WI12 WI13 WIB1

STATE WI21 WI22 WI23 WIB2

STATE WI31 WI32 WI33 WIB3

STATE WI41 WI42 WI43

STATE W211 W212 W221 W222 W231 W232

STATE Wll1 W121

DER DWlll DWI12 DWI13 DWIB1

DER DWI21 DWI22 DWI23 DWIB2

DER DWI31 DWI32 DWI33 DWIB3

DER DWI41 DWI42 DWI43

DER DW211 DW212 DW221 DW222 DW231 DW232

DER DW111 DW121

DWI11=UI11

DWI12=UI12

DWI13=UI13

DWIBl=UIBl

147

DWI21=UI21

DWI22=UI22

DWI23=UI23

DWIB2=UIB2

DWI31=UI31

DWI32=UI32

DWI33=UI33

DWIB3=UIB3

DWI41=UI41

DWI42=UI42

DWI43=UI43

DW211=U211

DW212=U212

DW221=U221

DW222=U222

DW231=U231

DW232=U232

DW111=Ull1

DW121=U121

MO=U1 *U1+U2*U2+U3*U3+U4*U4+B1 *B1

MIO=l/MO
Yll=WI11 *U1+WI21 *U2+WI31 *U3+WI41 *U4+WIB1 *B1

Y12= WI12*U1 + WI22*U2+ WI32*U3+ WI42*U4+ WIB2*B1

Y13=WI13*U1+WI23*U2+WI33*U3+WI43*U4+WIB3*B1

GAMMA1=1/(1+EXP(-Yll))

GAMMA2=1/(1+EXP(-Y12))

GAMMA3=1/(1+EXP(-Y13))

UI11=MIO*U1/Yll *EXP(-YU)*GAMMA1

UI12=MIO*U1/Y12*EXP(-Y12)*GAMMA2

UI13=MIO*Ul/Y13*EXP(-Y13)*GAMMA3

UI21=MIO*U2/Yll *EXP(-Yll)*GAMMA1

UI22=MIO*U2/Y12*EXP(-Y12)*GAMMA2

UI23=MIO*U2/Y13*EXP(-Y13)*GAMMA3

UI31=MIO*U3/YU *EXP(-YU)*GAMMAl

UI32=MIO*U3/Y12*EXP(-Y12)*GAMMA2

UI33=MIO*U3/Y13*EXP(-Y13)*GAMMA3

UI41=MIO*U4/Y11 *EXP(-Yl1)*GAMMAl

148

UI42=MIO*U4/Y12*EXP(-Y12)*GAMMA2

UI43=MIO*U4/Y13*EXP(-Y13)*GAMMA3

UIBI=MIO*Bl/Yll*EXP(-Yll)*GAMMAl

UIB2=MIO*Bl/Y12*EXP(-Y12)*GAMMA2

UIB3=MIO*Bl /YI3*EXP(-YI3)*GAMMA3

MI=GAMMAl *GAMMAI+GAMMA2*GAMMA2+GAMMA3*GAMMA3

Mll=I/MI

Y2I=W211*GAMMAI+W22I*GAMMA2+W23I*GAMMA3

Y22=W212*GAMMAI+W222*GAMMA2+W232*GAMMA3

GAMMA4=1/(I+EXP(-Y2I))

GAMMA5=1/(I+EXP(-Y22))

U211=-W211+Mll *GAMMAI/Y21 *EXP(-Y2I)*GAMMA4

U2I2=-W2I2+MII *GAMMAI/Y22*EXP(-Y22)*GAMMA5

U22I=-W22I+Mll *GAMMA2/Y21 *EXP(-Y21)*GAMMA4

U222=-W222+MII *GAMMA2/Y22*EXP(-Y22)*GAMMA5

U23I=-W23I+Mll *GAMMA3jY21 *EXP(-Y21)*GAMMA4

U232=-W232+Mll *GAMMA3/Y22*EXP(-Y22)*GAMMA5

M2=GAMMA4 *GAMMA4+GAMMA5*GAMMA5

M22=I/M2

E=YD-YO

YO=Wlll *GAMMA4+WI2I *GAMMA5

Ulll=-Wlll+M22*GAMMA4*K*E

UI2I=-WI2I+M22*GAMMA5*K*E

K:I0

BI:I

END

C.2 Discrete-Time Neural Network

Computer program written for the "Simnon" computer language used to implement

the discrete-time variable structure control-based learning algorithm for a three layer

neural network with 5 inputs nodes, 3 hidden nodes, and 1 output node ..•

DISCRETE SYSTEM LA YER3

"DISCRETE-TIME THREE LAYER NEURAL NETWORK

INPUT YI Y2 UD UDD R

OUTPUT YN

149

TIMET

TSAMP TS

STATE Will WIl2 WIl3 WIl4 WI15 WI16

STATE W211 W2l2 W2l3 W22l W222 W223

STATE W23l W232 W233 W24l W242 W243

STATE W25l W252 W253 W261 W262 W263

STATE Wll1 W121 W13l

NEW NWlll NWI12 NWI13 NWIl4 NWI15 NWIl6

NEW NW211 NW212 NW213 NW22l NW222 NW223

NEW NW23l NW232 NW233 NW241 NW242 NW243

NEW NW25l NW252 NW253 NW261 NW262 NW263

NEW NWll1 NW121 NW13l

NWI11=WI11+UI11

NWI12=WI12+UI12

NWI13= W113+ UI13

NWI14=WI14+UI14
NWI15=WI15+UI15

NWI16=WI16+UI16

NW211=W211+U2l1

NW212= W212+ U212

NW213= W213+ U213

NW221=W221+U221

NW222= W222+ U222

NW223= W223+ U223

NW231=W231+U231

NW232= W232+ U232

NW233= W233+ U233

NW241=W241+U241

NW242= W242+ U242

NW243= W243+ U243

NW251=W251+U251

NW252= W252+ U252

NW253= W253+ U253

NW261=W261+U261

NW262= W262+ U262

NW263= W263+ U263

NWll1=W111+U111

150

NW121=WI21+U121

NW131=WI31+ U131

X=R
Y21=WI11*X

Y22=WI12*X

Y23=WI13*X
Y24=WI14*X

Y25=WI15*X

Y26=WI16*BIAS

AB=BIAS*SIGN(BIAS)

AllB=SIGN(BIAS)

A=X*SIGN(X)

All=SIGN(X)

UI11=-2*(All *Y21)/ A

UI12=-2*(All *Y22)/ A

UI13=-2*(All *Y23)/ A

UI14=-2*(All *Y24)/ A

UI15=-2*(All *Y25)/ A

UI16=-2*(AllB*Y26)/ AB

Z21=SIGN(Y21)

Z22=SIGN(Y22)

Z23=SIGN(Y23)

Z24=SIGN(Y24)

Z25=SIGN(Y25)

Z26=SIGN(Y26)

U211=-2*(Z21 *Yll)/N2

U212=-2*(Z21 *Y12)/N2

U213=-2*(Z21 *Y13)/N2

U221=-2*(Z22*Yl1)/N2

U222=-2*(Z22*Y12)/N2

U223=-2*(Z22*YI3)/N2

U231=-2*(Z23*Yll)/N2

U232=-2*(Z23*Y12)/N2

U233=-2*(Z23*Y13)/N2

U241=-2*(Z24*Yll)/N2

U242=-2*(Z24 *Y12)/N2

U243=-2*(Z24 *Y13)/N2

",

151

U251=-2*(Z25*Y11)/N2

U252=-2*(Z25*Y12)/N2

U253=-2*(Z25*Y13)/N2

U261=-2*(Z26*Y11)/N2

U262=-2*(Z26*Y12)/N2

U263=-2*(Z26*Y13)/N2

Yll=W211 *Z21+W221 *Z22+W231 *Z23+W241 *Z24+W251 *Z25+W261 *Z26

Y12= W212*Z21 + W222*Z22+ W232*Z23+ W242*Z24+ W252*Z25+ W262*Z26

YI3=W213*Z21+W223*Z22+W233*Z23+W243*Z24+W253*Z25+W263*Z26

Zl1=SIGN(Yll)

Z12=SIGN(Y12)

Z13=SIGN(Y13)
YNN=W1l1 *Zll+ W121 *Z12+W131 *Z13

U111=(A1 *EN+P1-P2)*Zll/N1

U121=(AI *EN +P1-P2)*Z12/N1

UI31=(AI *EN+PI-P2)*ZI3/Nl

EN=P1-YNN

PI=Y2-UD

P2=Y1-UDD

YN = YNN +GAIN*EN

TS=T+TN

AI:1

GAIN:O.831

TN:O.02

N2:6

N1:3

BIAS:1

END

152

Appendix D

Computer Programs For

Implementing The IMCS

The following computer programs may be used to implement the neral network­

based IMCS in a digital computer.

CONTINUOUS SYSTEM FTF

"UNKNOWN LINEAR SYSTEM. (SPRING-MASS-DAMPER)

INPUT URN

OUTPUT Yl Y2

STATE Xl X2

DER DXl DX2

DXl=X2

DX2=-(RjM)*Xl-(CjM)*X2+(ljM)*U

Yl=Xl+SW*RN

Y2=X2

M:1.459

R:58.37

C:5.837

SW:O
xl:O.5

x2:0.2

END

CONTINUOUS SYSTEM CONFTF

"IMC CONTROLLER FOR FTF

INPUT WITO YR EE DV

153

OUTPUT U V

STATE ZI Z2

DER DZI DZ2

DZl=Z2

DZ2=-Pl *ZI-P2*Z2+P3*V +P4*DV

ER=YR-EE

V=KI *WITO*ER

PI=I/(TA02*TA02)

P2=2/TA02

P3=KF*Pl

P4=TAOl*P3

U=ZI

KI:I

TAOI:O.2

TA02:0.2

KF:l

END

DISCRETE SYSTEM RETARDO

"DELAY FOR U AND YI

INPUT U Yl

OUTPUT Ul U2 U3 U4 Yll Y12 Y13 Y14

TIMET

TSAMP TS

STATE UDl UD2 UD3 UD4 YDl YD2 YD3 YD4

NEW NUDl NUD2 NUD3 NUD4 NYDl NYD2 NYD3 NYD4

NUDl=U

NUD2=UDl

NUD3=UD2

NUD4=UD3

NYDl=Yl

NYD2=YDl

NYD3=YD2

NYD4=YD3

Ul=UDl

U2=UD2

U3=UD3

154

U4=UD4

Yll=YD1

Y12=YD2

Y13=YD3

Y14=YD4

TS=T+TR
TR:O.01

END

CONTINUOUS SYSTEM SLITO

"LEARNING ALGORITHM USING VSC

INPUT YD U UD1 UD2 UD3

OUTPUT WITO

STATE W1 W2 W3 W4 W5

DER DW1 DW2 DW3 DW4 DW5

DW1=V1

DW2=V2

DW3=V3

DW4=V4

DW5=V5

E=YD-YN

YN=W1*U+W2*UD1+W3*UD2+W4*UD3+W5*B

MO=1/(B2+MU)

Vl=MO*U*KI*(E/(ABS(E)+ DELTA))

V2=MO*UD1 *KI*(E/(ABS(E)+ DELTA))

V3=MO*UD2*KI*(E/(ABS(E)+ DELTA))

V4=MO*UD3*KI*(E/(ABS(E)+ DELTA))

V5=MO*B*KI*(E/(ABS(E)+ DELTA))

MU=U*U+UD1 *UD1+UD2*UD2+UD3*UD3

B2=B*B

WITO= W1 + W2+ W3+ W 4+ W5

B:O

DELTA:O.005

KI:5

W1:0.1

W2:0.1

W3:0.1

155

END

CONTINUOUS SYSTEM SLFTO

"LEARNING ALGORITHM USING VSC

INPUT YD U UDl UD2 UD3 Yl

OUTPUT EE

STATE Wl W2 W3 W4 W5

DER DWl DW2 DW3 DW4 DW5

DWl=Vl

DW2=V2

DW3=V3

DW4=V4

DW5=V5

E=YD-YN

YN=Wl*U+W2*UDl+W3*UD2+W4*UD3+W5*B

MO=1/(B2+MU)

Vl=MO*U*KF*(E/(ABS(E)+ DELTA))

V2=MO*UDl *KF*(E/(ABS(E)+ DELTA))

V3=MO*UD2*KF*(E/(ABS(E)+ DELTA))

V4=MO*UD3*KF*(E/(ABS(E)+ DELTA))

V5=MO*B*KF*(E/(ABS(E)+ DELTA))

MU = U*U + UDl *UDl + UD2*UD2+ UD3*UD3

B2=B*B

WFTO= Wl + W2+ W3+ W 4+ W5

EE=E "Yl-WFTO·U

B:O

DELTA:O.005

KF:40

Wl:O.l

W2:0.1

W3:0.1

END

DISCRETE SYSTEM RANDOM

"PSEUDO RANDOM NUMBER GENERATOR

OUTPUT RN

TIMET

156

TSAMP TS

RN=C*NORM(T)+MEAN

TS=T+TR
TR:O.OI

MEAN:O

C:0.05

END

DISCRETE SYSTEM DERV

"DETERMINATION OF THE DERIVATIVE OF V

INPUT V

OUPUT DV

TIMET
TSAMP TS

STATE VI

NEW NVI

NVI=V

DV=(V-VI)/TDV

TS=T+TDV

TDV:0.02

END

CONNECTING SYSTEM IMCFTF

"CONNECTION FOR FTF, CONFTF, RETARD 0 , SLITO, SLFTO, RANDOM,

DERV.

TIMET

U[FTF]=U[CONFTF]

RN[FTF]=RN[RANDOM]

YI [RETARD 0] = YI [FT F)

U[RETARDO]=U[CONFTF]

YD[SLITO]= UI[RETARDOj

U[SLITO]=YII[RETARDO]+OFFI

UDl[SLITO]=Yll[RETARDOj-OFF2

UD2[SLITO]=Yll [RETARDOj+OFF3

UD3[SLITO]=YII[RETARDO]-OFF4

YD[SLFTO]=YI[FTFj

U[SLFTO]=UI[RETARDOj+OFI

157

UDl[SLFTOj=U2[RETARDOj+OFl
UD2[SLFTOj=U3[RETARDOj-OFl

UD3[SLFTO]=U4[RETARDO]+OFl

Yl[SLFTO]= Yl[FTF]

YR[CONFTF]=REF

WITO[CONFTF]=WITO[SLITO]

EE[CONFTF] =EE[SLFTO]

REF=IF TiTl THEN Rl ELSE R2

DV[CONFTF]=DV[DERV]
V[DERV]=V[CONFTF]

Tl:15

Rl:l

R2:2
OFFl:O.lE-4

OFF2:0.lE-4

OFF3:0.1E-4
OFF4:0.lE-4

OFl:l

END

158

Appendix E

Computer Programs For

Implementing The Adaptive

Control Scheme

The following computer programs may be used to implement the neural network­

based adaptive control scheme in a digital computer.

DISCRETE SYSTEM LINEAR

"PLANTA LINEAL EN TIEMPO DISCRETO

INPUT URN

OUTPUT YI Y2

TIMET

TSAMP TS

STATE Xl X2

NEW NXI NX2

NXI=X2

NX2=F+U

F=PARI *XI+PAR2*X2

YI=XI+CTI *RN

Y2=X2

TS=T+TP

TP:O.02

PARl:0.2

PAR2:0.6

CTI:O

END

159

DISCRETE SYSTEM NONLIN

"PLANTA NOLINEAL EN TIEMPO DISCRETO

INPUT URN

OUTPUT YI Y2

TIMET

TSAMP TS

STATE Xl X2

NEW NXI NX2

NXI=X2

NX2=F+U

F=(XI *X2)*(X2+2.5)/(1+X2*X2+XI *XI)

YI=XI+CTI *RN

Y2=X2

TS=T+TP

TP:O.02

CTI:O

END

DISCRETE SYSTEM CONTRO

"ADAPTIVE CONTROL FOR UNKNOWN PLANT.

INPUT YN YI Y2 R

OUTPUT U

TIMET

TSAMP TS

U=-YN+YM

YM=O.6*Y2+0.2*YI+R

TS=T+TC

TC:O.02

END

DISCRETE SYSTEM ONELAYER

"SINGLE LAYER NEURAL NETWORK

INPUT YD U UU UUI UU2

OUTPUT YO WT

TIMET

TSAMP TS

160

STATE Wll W12 W13 XN

NEW NWll NW12 NW13 NXN

NWll=Wll+MOI*SIGN(UU)*(Al *E)

NWI2=WI2+MOI*SIGN(UUl)*(Al *E)

NWI3=WI3+MOI*SIGN(UU2)*(Al *E)

NXN = YO+ U +CT*E

MO= UU*SIGN(UU)+ UUI *SIGN(UUI)+ UU2*SIGN(UU2)

MOI=I/MO

E=YD-XN

YO=Wll *UU+ W12*UUl+ W13*UU2

wt=wIl+wI2+w13

TS=T+TT

CT:O

TT:O.OI

Al:0.6

wll:0.5

w12:0.3

w13:0.I

END

DISCRETE SYSTEM MODELO

"REFERENCE MODEL FOR ADAPTIVE CONTROL

INPUT R Yl

TIMET

TSAMP TS

STATE XIM X2M

NEW NXIM NX2M

NXIM=X2M

NX2M=O.2*XIM+O.6*X2M+R

EOUT= YI-XIM

TS=T+TM

TM:O.02

END

DISCRETE SYSTEM RANDOM

"PSEUDO RANDOM NUMBER GENERATOR

OUTPUT RN

161

TIME T

TSAMP TS

RN =C*NORM(T)+ MEAN

TS=T+TR

TR:O.OI

MEAN:O

C:0.05

END

CONNECTING SYSTEM ENLACE

"CONNECTING SYSTEM FOR NONLIN, CONTRO, MODELO, ONELAYER,

RANDOM

TIMET

U[NONLIN]= U[CONTRO]

RN[NONLIN]=RN[RANDOM]

YN[CONTRO]= YO[ONELAYER]

YI[CONTRO]= YI[NONLIN]

Y2[CONTRO]= Y2[NONLIN]

R[CONTRO]=R[MODELO]

YD[ONELAYER]= Y2[NONLIN]

U[ONELAYER]=U[CONTRO]

UU[ONELAYER]= Y2[NONLIN]+OFI

UUI[ONELAYER]=Y2[NONLIN]+OF2

UU2[ONELAYER]=Y2[NONLIN]+OF3

YI[MODELO]= YI[NONLIN]

R[MODELO]=IF Tl.TO THEN RI ELSE R2

TO:15

RI:I

R2:2

OFI:0.05

OF2:0.I

OF3:0.I3

END

162

Bibliography

[1] E. Davalo; P. Nairn, "Neural Networks".

MacMillan Education LTD, London, 1991.

[2] W. S. McCulloch; W. Pitts, "A Logical Calculus of the Ideas Imminent in

Nervous Activity".

Bulletin of Mathematical Biophysics, Number 5, pp 115-133, 1943.

[3] F. Rosenblatt, "The Perceptron, a Perceiving and Recognizing Automation".

Cornell Aeronautical Laboratory Report Number 85-460-1, Jan. 1957.

[4] G. Nagy, "Neural Networks - Then and Now".

IEEE Trans. on Neural Networks, Vol. 2, Number 2, pp 316-318, March 1991.

[5] M. L. Minsky; S. A. Papert, "Perceptrons: An Introduction to Computational

Geometry" .

The MIT Press, Cambridge, MA., 1969. An expanded edition was published by

the MIT Press in 1988.

[6] N. Wiener, "Cybernetics: Or Control and Communication in the Animal and

the Machine" .

The Mit Press, Cambridge, MA., 1948.

[7] W. T. Miller; R. S. Sutton; P. W. Werbos, "Neural Networks for Control".

Chapter 1, By A. G. Barto, pp 5-58, Mit Press, Cambridge, MA., 1990.

[8] S. Grossberg, "Adaptive Pattern Classification and Univer.sal Recording: Par­

allel Development and Coding of Neural Feature Detectors".

Biological Cybernetics, Number 23, pp 121-134, 1976.

[9] J. J. Hopfield, "Neural Networks and Physical Systems with Emergent Collec­

tive Computational Abilities".

Proceedings of the National Academy of Sciences, Vol. 79, pp 2554-2558, USA,

1982.

163

[10] P. J. Werbos, "Beyond Regression: New Tools for Prediction and Analysis in

the Behavior Sciences" .

Ph.D. Thesis, Harvard University, Committee on Applied Mathematics, USA.,

1974.

[l1J Y. LeCum, "Une Procedure D'apprentissage Pour Reseau a Sequil As­

symetrique" .

Proceedings of Cognitiva, Number 85, pp 599-604, Paris, 1985.

[12] D. B. Parker, "Learning Logic".

Technical Report TR-47, MIT, Cambridge, 1985.

[13] D. E. Rumelhart; G. E. Hinton; R. J. Williams, "Learning Internal Represen­

tations by Error Propagation".

Parallel Distributed Processing: Explorations in the Microstructure of Cogni­

tion, Vol. 1: Foundations, Mit Press, Cambridge, MA., 1986.

[14] J. A. Anderson; E. Rosenfeld, "Neurocomputing: Foundations of Research".

Mit Press, Cambridge, MA., 1988.

[15] K. S. N arendra; K. Parthasarathy, "Identification and Control for Dynamic

Systems Using Neural Networks".

IEEE Trans. on Neural Networks, number 1, pp 4-27, 1990.

[16] K. J. Huntj D. Sbarbaroj R. Zbikowskij P. J. Gawthrop, "Neural Networks for

Control Systems - A Survey".

Automatica, Vol. 28, Number 6, pp 1083-1112, 1992.

[17] R. P. Lippmann, "An Introduction to Computing with Neural Nets".

IEEE ASSP Magazine, pp 4-22, April 1987.

[18] T. Kohonen, "Self Organization and Associative Memory".

Springer-Verlag, Berlin, 1984.

[19] P. Simpson, "Foundations of Neural Networks".

In Artificial Neural Networks: Paradigms, Applications, and Hardware Imple-

mentation, Edited by E. Sanchez-Sinencio and C. Lau.

IEEE Press, N. J. 1992.

[20] B. Widrow; M. Lehr, "30 Years of Adaptive Neural Networks: Perceptron,

Madaline, and Backpropagation".

Proc. IEEE, Vol. 78, Number 9, pp 1415-1442, Sept. 1990.

164

[21] F. Rosenblatt, "On the Convergence of Reinforcement Procedures in Simple

Perceptrons" .

Cornell Aeronautical Laboratory Report, VG-1196-G-4, Buffalo, NY., Feb.

1960.

[22] D. Andesj B. Widrowj M. Lehrj E. Wan, "MRIII: A Robust Algorithm for

Training Analog Neural Networks".

Proc. IntI. Joint Conf. on Neural Networks, Vol. 1, pp 533-536, Wash. DC., Jan.

1990.

[23] G. G. Lorentz, "The 13th Problem of Hilbert".

In F. E. Browder Editor, Mathematical Developments Arising from Hilbert

Problems, American Mathematical Society, Providence, R. I., 1976.

[24] K. Hornikj M. Stinchcombej H. White, "Multilayer Feedforward Networks are

Universal Approximators".

Neural Networks, Vol. 2, pp 359-366, Pergamon Press, 1989.

[25] D. O. Hebb, "The Organisation of Behaviour".

Wiley, New York, 1949.

[26] J. J. Hopfieldj D. I. Feinsteinj R. G. Palmer, "Unlearning Has a Stabilizing

Effect in Collective Memories".

Nature, Vol. 304, pp 158-159, USA., 1983.

[27] S. Kirkpatrickj C. D. Gellattj M. P. Vecchi, "Optimisation by Simulated An­

nealing" .

Science, Vol. 220, pp 671-680, USA., 1983.

[28] D. H. Ackleyj G. E. Hintonj T. J. Sejnowski, "A Learning Algorithm for Boltz­

mann Machines" .

Cognitive Science, Vol. 9, pp 147-169, USA., 1985.

[29] T. Kohonen, "Self-Organization and Associative Memory".

Springer-Verlag, Berlin, 1984.
.,

[30] K. Fukushima, "Cognitron: A Self-Organizing Multilayered Neural Network".

Biological Cybernetics, Vol. 20, pp 121-136, 1975.

[31] K. Fukushima, "Neocognitron: A Self-Organizing Neural Network Model for a

Mechanism of Pattern Recognition Unaffected by Shift in Position".

Biological Cybernetics, Vol. 36, pp 193-202, 1980.

165

[32] K. Fukushima, "Neocognitron: A Hierarchical Neural Network Capable of Vi­

sual Pattern Recognition".

Neural Network, Vo!. 1, pp 119-130, Pergamon Press, 1988.

[33] G. A. Carpenter; S. Grossberg, "A Massively Parallel Architecture for a Self­

Organizing Neural Pattern Recognition Machine".

Computer Vision, Graphics and Processing, Vol. 37, pp 54-115, USA., 1987.

[34] G. A. Carpenter; S. Grossberg, "ART2: Self-Organization of Stable Category

Recognition Codes for Analog Input Patterns".

Applied Optics, Vo!. 26, pp 4919-4930, USA., 1987.

[35] T. Poggio; F. Girosi, "Networks for Approximation and Learning".

Proceedings of The IEEE, Number 78:(9), pp 1481-1497, September 1990.

[36] J. S. Albus, "A New Approach to Manipulator Control: The Cerebellar Model

Articulation Controller (CMAC)".

Journal of Dynamic Systems, Meas, Control, pp 220-227, 1975.

[37] E. Walach; B. Widrow, "The Least Mean Fourth (LMF) Adaptive Algorithm

and its Family".

IEEE Trans. Infor. Theory, Vol. IT-30, pp 275-283, March 1984.

[38] D. B. Parker, "Optimal Algorithms for Adaptive Neural Networks: Second

Order Back Propagation, Second Order Direct Propagation, and Second order

Hebbian Learning".

Proc. First IEEE Int!. Conf. on Neural Networks, Vol. 2, pp 593-600, San Diego,

CA, June 1987.

[39] S. Omohundro, "Efficient Algorithms with Neural Network Behaviour".

Complex Systems, Vol. 1, pp 273, 1987.

[40] T. Poggio, "On Optimal Nonlinear Associative Recall".

Biological Cybernetics, Vol. 19, pp 201-209, 1975.

[41] D. S. Broomhead; D. Lowe, "Multivariable Functional Interpolation .. ~nd Adap­

tive Networks".

Complex Systems, Vo!. 2, pp 321-355, 1988.

[42] S. Chen; S. A. Billings; C. F. N. Cowan; P. M. Grant, "Practical Identification

of Narmax Models Using Radial Basis Functions".

Int. Journal Control, Vol. 52, pp 1327-1350, 1990.

166

[43] H. Sira-Ramirez, "Non-Linear Discrete Variable Structure Systems in Quasi­

Sliding Mode" .

Int. Journal Control, Vol. 54, Number 5, pp 1171-1187, 1991.

[44] V. I. Utkin, "Variable Structure Systems With Sliding Mode: A Survey".

IEEE Trans. Automatic Control, Number 22, pp 212-222, 1977.

[45] V. I. Utkin, "Discontinuous Control Systems: State of the Art in Theory and

Applications" .

Proc. IFAC. 10th World Congress, Munich, 1987.

[46] H. Sira-Ramirez, "Variable Structure Control of Non-Linear Systems".

Int. Journal Systems SCI, Vol. 18, Number 9, pp 1673-1689, 1987.

[47] H. Sira-Ramirez, "Differential Geometric Methods in Variable-Structure Con­

trol" .

Int. Journal Control, Vol. 48, Number 4, pp 1359-1390, October 1988.

[48] W. Itkis, "Control Systems of Variable Structure".

Wiley, New York, 1976.

[49] V. I. Utkin, "Sliding Modes and their Applications in Variable Structure Sys­

tems".

MlR, Moscow, 1978.

[50] J. J. Slotine; W. Li, "Applied Nonlinear Control".

Prentice-Hall Inc., New Jersey, 1991.

[51] C. Miloslavjevic, "General Conditions for the Existence of a Quasisliding Mode

on the Switching Hyperplane in Discrete Variable Systems".

Plenun Publishing Corporation, pp 307-314, 1985. Translated from Avtomatika

I Telemekhanika, Number 3, pp 36-44, March 1985.

[52] H. P. Opitz, "Robustness Properties of Discrete-Variable Structure Controllers" .

Int. Journal Control, Vol. 43, Number 3, pp 1003-1014, 1986.

[53] M. E. Magaiia; S. H. Zak, "The Control of Discrete-Time Uncertain,Systems".

Technical Report TR-EE 87-32, School of Electrical Engineering, Purdue Uni­

versity, Indiana, 1987.

[54] S. Z. Sarpturk; Y. Istefanopulos; O. Kaynak, "On the Stability of Discrete-Time

Sliding Mode Control Syste~s".

167

IEEE Trans. on Automatic Control, Vol. AC-32, Number 10, pp 930-932, Oc­

tober 1987.

[55] S. V. Drakunov; V. I. Utkin, "On Discrete-Time Sliding Modes".

Proceedings of the IFAC Symposium on Nonlinear Control Systems, pp 484-489,

Capri, Italy, 1989.

[56] K. Furuta, "Sliding Mode Control of a Discrete System" .

System and Control Letter, Vol. 14, Number 2, pp 145-152, February 1990.

[57] R. W. Brockett, "Finite Dimensional Linear Systems".

Academic Press, 1970.

[58] S. Huij S. Zak, "Robust Stability Analysis of Adaptation Algorithms for Single

Perceptron" .

IEEE Trans. on Neural Network, Vol. 2, Number 2, pp 325-328, March 1991.

[59] H. Sira-Ramirezj S. Zak, "The Adaptation of Perceptrons with Applications to

Inverse Dynamic Identification of Unknown Dynamic Systems".

IEEE Trans. on Systems, Man, and Cybernetics, Vol. 21, Number 3, pp 634-643,

May-June 1991.

[60] J. G. Kuschewski; S. Hui; S. H. Zak, "Application of Feed-Forward Networks

to Dynamical Systems Identification and Control".

IEEE Trans. on Control Systems Technology, Vol. 1, Number 1, pp 37-49, March

1993.

[61] K. J. Huntj D. Sbarbaro, "Studies in Neural Network Based Control".

In Neural Network for Control and Systems, Edited by K. Warwick; G. W.

Irwin; and K. J. Hunt; Chapter 6, pp 94-122, lEE Control Engineering Series

46, 1992.

[62] D. T. Pham; X. Liu, "Neural Networks for Discrete Dynamic System Identifi­

cation" .

Journal of Systems Engineering, Springer-Verlag, Vol. 1, Number 1, pp 51-60,

London 1992.

[63] K. I. Funahashi, "On the Approximate Realization of Continuous Mappings by

Neural Networks".

Neural Networks, Vol.2, pp 183-192, 1989.

168

[64] J. Golten; A. Verwer, "Control Systems Design and Simulation".

McGraw-Hill Book Company, London 1991.

[65] R. Middleton; G. Goodwin, "Digital Control and Estimation A Unified Ap­

proach" .

Prentice-Hall International Editions, USA, 1990.

[66] D. Psaltis; A. Sideris; A. Yamamura, "A Multilayered Neural Network Con­

troller" .

IEEE Control Systems Magazine, Vol.8, pp 17-21, 1988.

[67] M. 1. Jordan; D. E. Rumelhart, "Forward Models: Supervised Learning with a

Distal Teacher".

Cognitive Science, Vo1.16, pp 307-354, USA, 1992.

[68] C. Hall; R. Smith, "Pitfalls in the Application of Neural Networks for Process

Control" .

In "Neural Networks for Control and Systems", Edited by K. Warwick, G. W.

Irwin, and K. J. Hunt, Chapter 12, pp 243-256, lEE Control Engineering Series

46, 1992.

[69] J. J. SIotinej R. M. Sanner, "Neural networks for Adaptive Control and Recur­

sive Identification: A Theoretical Framework".

In "Essays on Control", Edited by H. L. Trentelman, and J. C. Willems, Chap­

ter 11, pp 381-436, Birkhauser, Boston, 1993.

[70] E. Colina-Morles; N. Mort, "Neural Network-Based Adaptive Control Design".

Journal of Systems Engineering, Vol.2, Number 1, pp 9-14, Springer-Verlag,

London, 1993.

[71] R. M. Sanner; J. J. Slotine, "Gaussian Networks for Direct Adaptive Control".

IEEE Trans. on Neural Networks, Vol.3, Number 6, pp 837-863, November 1982.

[72] A. U. Levin; K. Narendra, "Control of Nonlinear Dynamical Systems Using

Neural Networks: Controllability and Stabilization".

IEEE Trans. on Neural Networks, Vol.4, Number 2, pp 192-206, Ma.rch 1993.

[73] P. Seibert, "Stability under Perturbation in Generalized Dynamical Systems".

In "Nonlinear Differential Equations and Nonlinear Mechanics", Edited by J.

P. LaSalle, and S. Lefschetz, Academic Press, pp 463-473, New York 1963.

169

[74J M. Morari; E. Zaflriou, "Robust Process Control" Prentice Hall, Englewood

Cliffs, New Jersey 1989.

[75J K. J. Hunt; D. Sbarbaro, "Neural Networks for Nonlinear Internal Model Con­

trol" .

lEE Prodeeding-D, Vol.138, Number 5, pp 431-438, Sept. 1991.

[76J W. Li; J. J. Slotine, "Neural Network Control of Unknown Nonlinear Systems".

Proceedings of the 1989 American Control Conference, pp 1136-1141, USA,

1989.

[77] F. Csaki, "State Space Methods for Control Systems".

Akademiai Kiad6, Budapest, 1977.

[78J S. H. Zak; C. A. MacCarley, "State Feeback Control of Nonlinear Systems".

Int. Journal of Control, Vo1.43, Number 5, pp 1497-1514, 1986.

[79J C. G. Economou; M. Morari; B. O. Palsson, "Internal Mode Control. Extension

to Nonlinear Systems" .

Ind. Eng. Chem. Process Des. Dev., Vol. 25, pp 403-411, 1986.

[80] K. J. Astrom; B. Wittenmark, "Adaptive Control".

Addison-Wesley Publishing Company, USA, 1989.

[81] D. J. Hill; P. J. Moylan, "Dissipativeness and Stability of Nonlinear systems".

MIT Press, Cambridge, Mass., 1988.

[82] K. S. Narendra; Y. H. Lin, "Stable Discrete Adaptive Control".

IEEE Trans. on Automatic Control, Vol. 25, pp 456-461, June 1980.

[83] W. T. Miller; F. H. Glanz; L. G. Kraft, "Application of a General Learning

Algorithm to the Control of Robotic Manipulators".

The Int. Journal of Robotic Research, Number 6, pp 84-98, 1987.

[84] H. Gomi; M. Kawato, "Neural Network Control for a Closed-Loop System Using

Feed back -Error-Learning" .

Neural Networks, Vol. 6, pp 933-946, 1993.

[85] K. Ogata, "Systems Dynamics" .

Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1978.

170

