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Abstract

In this thesis, we discuss the design and calibration (geometric and radiometric) of a

novel shape and reflectance acquisition device called the “Multispectral Light Stage”.

This device can capture highly detailed facial geometry (down to the level of skin pores

detail) and Multispectral reflectance map which can be used to estimate biophysical skin

parameters such as the distribution of pigmentation and blood beneath the surface of the

skin.

We extend the analysis of the original spherical gradient photometric stereo method

to study the effects of deformed diffuse lobes on the quality of recovered surface normals.

Based on our modified radiance equations, we develop a minimal image set method to

recover high quality photometric normals using only four, instead of six, spherical gra-

dient images. Using the same radiance equations, we explore a Quadratic Programming

(QP) based algorithm for correction of surface normals obtained using spherical gradient

photometric stereo.

Based on the proposed minimal image sets method, we present a performance cap-

ture sequence that significantly reduces the data capture requirement and post-processing

computational cost of existing photometric stereo based performance geometry capture

methods.

Furthermore, we explore the use of images captured in our Light Stage to generate

stimuli images for a psychology experiment exploring the neural representation of 3D

shape and texture of a human face.
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Chapter 1

Introduction

The 3 dimensional shape and skin texture (i.e. 2 dimensional skin reflectance) of a human

face determines its visual appearance. Face shape and reflectance acquisition devices

aim to capture these two information from real human faces, either separately or in a

combined form. Extensive research has been pursued in the past three decades to develop

devices that are capable of acquiring shape and reflectance information accurately and

conveniently. Photorealistic renderings of human faces can be created using the highly

detailed shape and texture information acquired from these capture devices. As a result,

digital actors, who have natural looking faces, can be extensively used in movies and

animation. Additionally, access to accurate shape and reflectance information is the key

to developing a new generation of face recognition algorithms that can maintain accuracy

even under arbitrary pose and illumination variation.

In this thesis, we discuss the design and calibration (geometric and radiometric) of a

novel shape and reflectance acquisition device that is able to capture highly detailed facial

geometry (down to the level of skin pores detail) and a Multispectral reflectance map.

The Multispectral reflectance map can be used to estimate biophysical skin parameters

such as the distribution of pigmentation and blood beneath the surface of the skin. This

device, called the Multispectral Light Stage, is an extension of the Light Stages developed

at UC Berkeley and University of South California (USC ICT) [1]. We use a beam splitter

based capture device to simultaneously acquire parallel and cross polarised images. This

ensures that both the acquired images are in perfect registration and hence results in very

accurate diffuse and specular reflectance separation. Previous Light Stages [1] relied on a

servo motor to flip the plane of polarisation of a polarising filter. As a result, the capture

time increases. This increase in capture time does not affect the shape and reflectance
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recovery of a static object. However, for a non-static objects like a human face, it is

extremely difficult to remain in the same position and maintain a facial expression for the

capture duration. Hence, increased capture time compromises the quality of recovered

surface geometry and reflectance information because the captured images are no longer

perfectly aligned.

Capturing the facial geometry of human actors during a dynamic performance is the

first step towards creating digital actors that can produce realistic and natural facial

expressions. Such digital actors are in high demand for movies and animation. The

human face is capable of producing a large number of facial expressions with small non-

rigid motion of facial muscles. Hence, to reproduce such expressions in a digital actor, it

is essential that, in addition to capturing overall facial expression, the motion of fine scale

skin features (like wrinkles, pores, scars, etc) are also captured. Such fine details are the

key ingredient to reproducing natural facial expressions.

Photometric stereo based methods can capture all the fine scale details of a dynamic

performance. However, they require expensive high speed photography equipment and are

data intensive. In this thesis, we have proposed a novel real time performance capture

sequence by exploiting the fact that high quality photometric normals can be recovered

using just 4 images. This new capture sequence not only reduces the data capture require-

ments for realtime performance geometry capture, but reduces the need for expensive high

speed photography equipment for capture of highly detailed performance geometry.

Understanding the way the human brain represents and processes visual information

is the key to creating machine vision algorithms that can match the capabilities of the

human visual cortex. Unfortunately, non-invasive reverse engineering methods are the

only practical tools available for such study. One of the popular choices for such reverse

engineering approach is to study the brain activity of a human observer, usually in a

controlled environment, when they are exposed to various types of visual stimuli. Brain

activity during such experiments is mostly monitored using functional Magnetic Reso-

nance Imaging (fMRI) and Electroencephalography (EEG). In addition to the capability

of monitoring devices, the effectiveness of these experiments also depend on the ability

to control various aspects of the visual stimulus. For example: the neural representation

of 3D shape and 2D skin reflectance function (i.e. texture) can be effectively studied if

we can create stimuli image that only contain the 3D shape or the 2D skin reflectance

information. The photographs that we capture using a standard camera contain a mix of
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these two information sources. Availability of such stimulus data is the key to unravelling

the psychology and neuropsychology of face perception.

In this thesis, we have also explored the use of our Light Stage for generating such a

stimulus dataset. This dataset was used by Jones et al. [22] in their study of the neural

representation of 3D shape and 2D skin reflectance of human faces. To our knowledge,

this is the first research to use Light Stage data (the high quality photometric normals

and image of a face under spherical illumination) for generating a psychological stimulus

dataset. We envisage that this will lead to further exploration of the use of a Light Stage

in psychology experiments.

1.1 Contributions

The major contributions of this thesis are:

Design and Calibration of Multispectral Light Stage We have described the de-

sign and calibration (geometric and radiometric) of an extended version of the orig-

inal Light Stage. Our Light Stage design consists of a “beam splitter” based setup

that allows simultaneous capture of parallel and cross polarised images. Further-

more, our capture device uses a filter wheel containing narrowband optical filters, to

separately record reflectance in different bands of the visible spectrum.

Minimal Image Sets for Robust Spherical Gradient Photometric Stereo We ex-

tend the analysis of original spherical gradient photometric stereo developed by Ma

et al. [26] to consider the effect of deformed diffuse lobes on the quality of recovered

surface normals. Based on our modified radiance equations, we explore a Quadratic

Programming (QP) approach to correction of surface normals recovered using exist-

ing spherical gradient photometric stereo methods. Using the same set of equations,

we propose that a minimal set of 4 images can recover surface normals of the quality

provided by the existing 6 image method. This minimal image set method has also

been described in the following publication:

• Abhishek Dutta and William A. P. Smith. Minimal image sets for robust spher-

ical gradient photometric stereo. In ACM SIGGRAPH ASIA 2010 Sketches,

SA 10, pages 22:122:2, New York, NY, USA, 2010. ACM.

It is important to realise that our analysis is based on the following simplifying
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assumption described in section 4.4.1 and 4.4.4: overall deformation in the diffuse

reflectance lobe for gradient and complement gradient illumination environment can

be quantified using a single scalar parameter δ{x,y,z} and δ{x,y,z}+δ{x̄,ȳ,z̄} respectively.

Novel Capture Sequence for Real Time Performance Capture Based on our “Min-

imal Image Sets” analysis and building on the work of Wilson et al. [37], we propose

a new image capture sequence for facial performance geometry capture during dy-

namic performance. In addition to reducing the data capture requirement of Wilson

et al. performance capture framework, the proposed capture sequence also reduces

its computational cost by requiring alignment of only one, instead of three, pair of

gradient and complement gradient images.

Stimulus Image Dataset for Psychology Experiment We explore, for the first time,

the use of images captured in a Light Stage to generate stimulus images for a psy-

chology experiment. For a given face, we generate three stimulus images: the first

contains only the 3D shape information, the second contains only 2D skin reflectance

(texture) information and the third contains both shape and texture information.

This image dataset has been used for studying the neural representation of 3D shape

and texture of a human face.
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Chapter 2

Related Work

In this chapter, we will discuss the previous work done in shape and reflectance acquisition

and the method used to align captured data affected by subject motion during the capture

process. In the later part of this thesis, we discuss how the data captured in our Light Stage

can be used to produce better stimulus images for psychology experiments. Moreover, we

also discuss a new performance capture strategy to reduce the data capture requirement of

existing methods used to capture facial geometry during dynamic performance. Therefore,

in this section, we also review the previous work done in these two areas.

2.1 Shape Acquisition

Two of the most popular methods for 3D shape acquisition are: Depth from triangulation

and Photometric Stereo. As a result, two types of representation exist for conveying the 3D

shape information: 3D meshes (vertices and their connectivity) and normal map (surface

normal at each image point).

In the depth from triangulation method, a surface point is viewed from two (or more)

viewpoints using a calibrated camera and the corresponding image points are recorded.

In the ideal case (i.e. with no imaging noise), the rays through these two (or more) corre-

sponding images points will intersect at a point in 3D space. This 3D location represents

the original surface point represented by the corresponding image points observed using

calibrated camera. There exist several methods to determine the corresponding image

points in multiple views of a 3D object recorded using a calibrated camera. Nehab [30]

developed the “spacetime stereo” framework to classify all the existing depth from trian-

gulation methods. This classification was based on the domain (spatial or temporal) in
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which the corresponding image points are located. The class of methods which determine

corresponding image points by the analysis of similar pixels in the image plane are clas-

sified as “spatial domain” methods. On the other hand, methods which determine image

point correspondance by analysis of pixel intensity variation over time are classified as

“temporal domain” methods. This classfication not only provides a unified view of all the

existing depth from triangulation methods, but also provided valuable insight for devel-

opment of two new methods in [30] that exploited both “spatial” and “temporal” domain

constraints of corresponding image points.

Woodham [40] proposed the photometric stereo method to determine the surface geom-

etry of each image point using diffuse images captured by varying the direction of incident

illumination while keeping the view direction constant. The basis for this technique is the

observation that each pixel intensity of a Lambertian surface image illuminated by a point

source results in a linear photometric equation. If the direction of point source is known,

then this system of linear equations can be inverted to recover unknown diffuse albedo

and surface orientation using at least 3 images. The unit surface normal constraint allows

separation of these two quantities from a system of 3 linear photometric equations. This

early version of photometric stereo method developed in [40] did not consider the effect of

specular highlight, shadow and inter-reflection in the captured images.

It is convenient to invert a linear system resulting from photometric equations of a

Lambertian reflection. However, no such linear system exists for non-Lambertian surface

reflection. Hence, several previous research in photometric stereo has focused on develop-

ing methods to detect image points affected by specular highlight and shadow. Colenman

and Jain [7] proposed the use of 4 point light sources, instead of just 3, to detect and

exclude pixels affected by specular highlights and shadow. Three surface normals cor-

responding to a single surface patch were available from these 4 images captured using

point light sources. They predicted that a large amount of deviation in both direction

and magnitude of these three surface normals would occur for a pixel affected by specu-

lar highlight. This allowed them to tag and remove the specular source. Their method

was based on the assumption that only one of the four light sources can cause specular

highlight at any given image point.

Following the 4 source strategy, Barsky and Petrou [2] used four spectrally distinct

light sources to exploit the linearly independent photometric equations resulting from

different color channels of a color image. They used spectral or directional cues to detect
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shadows and highlights in the input images. However, the choice of threshold parameter

proved pivotal to the detection accuracy. [2] observed that with increase in imaging noise,

a single threshold value cannot detect all the specular highlights and shadows present in

the captured images.

A completely different approach to photometric stereo was pursued by Basri et al. [3].

They felt the need for photometric stereo technique to work under general illumination

condition. They argued that it was not always possible to control illumination for large

outdoor structures or have knowledge of light source direction and strength for photographs

taken under everyday lighting condition. The fact that any image of a convex Lambertian

object under complex illumination can be approximated as a linear combination of 4 (first

order) or 9 (second order) harmonic images1 forms the basis of their proposed photometric

stereo algorithm for general illumination. Harmonic images can be expressed in terms of

surface albedo and normal components and hence such decomposition allowed them to

estimate these two quantities. They propose 9D (which requires at least 9 images) method

and 4D (which requires at least 4 images) method of photometric stereo under general

lighting condition. The 9D method produces slightly better results at the expense of higher

computational cost of decomposing images captured under general lighting condition into 9

harmonic images. The authors illustrate the quality of surface geometry reconstruction by

using more images (64, 32, 11, 10) than the required minimum. For example: the fine scale

surface details of a volleyball was recovered by using 64 images of the ball lit by point light

sources (strength and direction unknown). Hence, at the expense of large computational

cost and comparitively larger number of images, they were able to estimate good quality

surface geometry under general illumination conditions. It is important to realise that this

method is not applicable to images containing specular highlight or shadows.

All the previous photometric stereo methods ([40], [7], [2], [3]) treated specular high-

light in an image as a undersirable effect which restricted the application domain of pho-

tometric stereo. Extensive research has been done to develop methods for tagging and

removal of specular highlights. However, Ma et al. [26] used specularity to their advan-

tage and acquired specular normal maps containing fine surface details of a human face

never recovered by previous methods. They have shown how high resolution shape and

reflectance information can be measured using an extended version of photometric stereo

called the spherical gradient photometric stereo. An object is placed at the centre of
1harmonic images represent the image of an object in low frequency lighting condition
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a “light stage” which uses polarised spherical gradient illumination arranged such that

the plane of polarisation after reflection, from the object towards the camera, are all the

same. This allows the setup to separate diffuse and specular reflectance components by

acquiring parallel and cross polarised images. The key observation underpinning this ap-

proach is that the centroid of the diffuse or specular reflectance lobe coincides with the

surface normal or reflection vector respectively. The insight of Ma et al. was to show

how to estimate the reflectance centroids using spherical gradient illumination conditions.

When integrated with an illumination gradient in X, Y, or Z direction, the corresponding

components of the reflectance centroid, and hence surface normal, can be recovered. This

extended version of photometric stereo was capable of recovering fine scale surface details

that was unmatched by the existing photometric stereo methods in terms of quality and

level of detail.

The quality of surface geometry recovered using Ma et al. [26] method is affected by

the extent to which the following assumptions are satisfied: a) no shadowing of light

sources , i.e. object is convex; b) no inter-reflections; c) Fresnel term2; and d) light sources

closely approximate a continuous illumination environment. The last assumption can be

addressed by maximising the number of light sources in the light stage: Ma et al. used

156 LEDs attached to vertices and edges of a twice subdivided icosahedron. This method

also ignores light source attenuation effects, which is equivalent to assuming all the points

on the object lie exactly at the centre of the light stage.

Wilson et al. [37] proposed using gradient and complement gradient images to reduce

the effect of shadowing. Instead of using the “ratio” method of Ma et al. to compute

the surface normal components, they used the difference of gradient and complement

gradient images to estimate more accurate surface geometry. They argued, “since the

pixels that are dark under one gradient illumination condition are most likely well exposed

under the complement gradient illumination condition” [37]. Recently, Dutta and Smith

[12] have proved the validity of this claim by showing that the difference image method

of Wilson et al. result in cancellation of symmetric deformation in diffuse lobes. This

deformation cancellation property is not present in the method of Ma et al. because it

involves estimation of surface normal components from the ratio images which preserves

the term quantifying deformation in diffuse reflectance lobe. Dutta and Smith [12] have
2The proportion of light transmitted into the surface and subsequently diffusely reflected varies with

incidence angle according to Fresnel’s equations. The same effect will occur when the diffused light exits
the surface again.
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also shown that a minimal four image set can achieve the “improved robustness” quality

of [37] while preserving the “reduced data capture” benifit of [25]. They used a “light

stage” with only 41 LEDs (attached only to vertices of a twice subdivided icosahedron) to

study the degradation in the quality of recovered surface geometry with increase in “light

discretization” i.e. coarse approximation of continuous spherical gradient illumination.

Their minimal image set method was able to recover high quality normal map using a

spherical illumination created with only 41 LEDs.

2.2 Reflectance Acquisition

Reflectance models are an attempt to mathematically capture the interaction of light with

a given material or class of materials. In Computer Graphics and Computer Vision, the

reflectance properties of human skin have been investigated extensively in the past two

decades. Reflectance models allow the creation of photo-realistic renderings of human faces

in arbitrary pose and under complex illumination. It helps with development of natural

looking cosmetics because reflectance models provide insight into the way light interacts

with human skin [33]. Photo therapy (or Laser based treatment) of skin disease requires

good understanding of the interaction between light and human skin. Skin reflectance

models help improve the precision of such treatment methods by allowing designers to

simulate the effect of light based skin treatment methods [19].

Reflectance models mostly rely on measured reflectance data for estimation of their

model parameters. The practicability of reflectance models depend on the ease with which

reflectance properties of real world objects can be acquired. Most reflectance models

discuss the related capture device that can acquire reflectance measurements required for

estimation of the model parameters. Often, new capture devices trigger the development

of reflectance models that can make full use of the available reflectance data. Hence,

in addition to reviewing existing skin reflectance models, we will also discuss about the

corresponding reflectance measurement device. In this section, we will discuss previous

work done in the reflectance models related to human skin. These models can easily be

modified to simulate light interaction in other types of materials like milk, marble, etc.

Marschner et al. [27] developed a reflectance capture device that, for the first time,

measured the in vivo surface refletance of human skin. A set of three machine readable

targets were used for geometric calibration. This allowed automatic estimation of the
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relative position of the light source, sample material and the camera. For radiometric

calibration, they used a calibrated reference source to determine the spectral characteristic

of the camera. The radiometric calibration allowed them to relate the recorded pixel values

with radiance reflected from the sample under study. A section of forehead was imaged

under several incident illumination directions (capture time ∼ 30min ). This region of

the face was selected because it was relatively smooth, convex and involved least amount

of deformation during long capture session. Using the machine readable targets, the

geometric arrangement of sample, camera, light source and reference white target was

automatically determined for each captured image. All these information was supplied

to a “derenderer” which computed the BRDF value at each pixel positon by dividing the

measured pixel radiance with the source irradiance. The scene geometry required by the

“derenderer” was captured using a 3D range scanner. The authors produced renderings

of human head using the measured BRDF of the skin sample. This rendering had a hard

look and lacked the features of actual human skin because the proposed skin reflectance

model only considered the surface reflectance component of the overall skin reflectance.

Overall skin reflectance from human skin can be decomposed into two components:

surface reflectance (modelled using BRDF) and subsurface reflection (modelled using BSS-

RDF). In facial skin, the subsurface reflection component dominates the overall reflection

[11][19]. Hence, a skin reflectance model involving only the surface reflectance component

cannot achieve photorealistic rendering of human skin. Debevec et al. [9] developed a

novel capture device called the “light stage” which can illuminate a face from a dense

set of spherical positions while recording the appearance from multiple viewpoints. Using

the images captured in this device, they propose a method to recreate facial appearance

under novel illumination and viewpoint. Their method exploits the fact that a given fa-

cial appearance under general lighting condition can be represented as linear combination

of facial appearance under illumination by point light sources densly distributed over a

sphere surface. In other words, if all the possible appearance of a human face lie in a

N dimensional space, then the face images captured under illumination by a dense sam-

pling of incident illuminaton direction forms the basis of this vector space. To recreate

facial appearance from novel viewpoint, they create a geometric model of the face using

structured lighting. The facial appearance from original viewpoint is projected onto this

geometric model and appearance from novel viewpoint is computed based on this projected

appearance.
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The facial appearance projected from the original viewpoint cannot reproduce the

shifting and scaling in the measured reflectance function caused by change in viewpoint.

Hence, the viewpoint specific changes to diffuse and specular reflectance components from

a region in forehead — a region also selected by Marschner et al. [27] — is used to ex-

trapolate the corresponding deviation in other regions of the face. Specular and diffuse

reflectance components are separated using the difference of parallel and cross polarized

images. Colorspace analysis is used to separate the diffuse and specular reflectance com-

ponents in other parts of the face. These separated components undergo shifting and

scaling according to novel viewpoint specific scaling and shift observed for a 2 × 5 pixel

in forehead region. The specular reflectance component is fitted to the microfacet based

rough surface model of Torrance and Sparrow [32].

The authors aimed to produce realistic rendering of subsurface reflectance phenomena.

Hence, the subsurface scattering data was not fitted to any skin reflectance model and

instead was only used to determine viewpoint specific changes to subsurface reflectance

component for a given illumination environment. Hence, the renderings produced using

this method cannot reproduce correct subsurface scattering effect due to heterogeneous

illumination environment. Also, it is a data driven technique and hence requires capture of

a large number of images (64×32 = 2048 photographs) resulting in long capture procedure

(1 min). Moreover, the data driven nature of this method prevents its use for editing or

transfer of facial appearance characteristics among the captured subjects i.e. we are locked

in the facial appearance space spanned by the captured data.

Hanrahan and Krueger [17] developed a reflectance model which, for the first time,

related the physical properties (like refractive index, thickness, absorption and scattering

coefficients) of a layered material to the subsurface reflectance properties of that material.

They presented a model — suitable for Computer Graphics — for reflection of light due

to subsurface scattering in a layered material. This model treated a physical material as

a layered homogeneous scattering medium. The authors suggested modeling heterogenity

in a material using random noise or a texture map. Reflection from outer surface of the

material was modeled using the Torrance and Sparrow [32] microfacet model and sub-

surface scattering was modeled using the proposed reflectance model based on 1D linear

transport theory. Rendering of a human face, whose 3D geometry was acquired using a

medical MRI scanner, was generated using a two layered model which correspond to the

epidemis and demis layers of a human skin. The model parameters for each layer were
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chosen manually to generate renderings that were close in appearance to real human skin.

The authors did not present a method to capture reflectance data required for estima-

tion of the model parameters. Hence, although the model was anatomically motivated

and produced acceptable face renderings, the layer parameters used for generating these

renderings were not based on measurements from actual human skin.

Jensen et al. [21] took a different approach to modeling subsurface reflectance by

introducing the dipole model based on “diffusion theory” to the graphics community. The

diffusion theory existed in the optics community prior to this but had never been used

for subsurface skin reflectance modeling. They modeled subsurface scattering of light

using diffusion approximation which is based on the observation that light distribution

in a highly scattering media is isotropic. The authors acknowledge insipiration for this

model from the use of diffusion theory used in describing the scattering of laser light in

human tissue in medical physics research. Unlike [17], they described a capture device

setup to capture reflectance data of real world objects which can be used to estimate all

the model parameters. This device focused a beam of white light on the sample material

and recorded a High Dynamic Range (HDR) image corresponding to radiance fall off from

the point of incident beam i.e. the radially symmetric diffusion profile. Using this setup,

they measured the diffusion profile Rd(r) of a wide variety of real world objects like milk,

human skin, marble, etc. The model parameters, absorption σa and reduced scattering

coefficients σ′s, were estimated from these measured diffusion profiles. Hence, for the first

time the measured subsurface scattering characteristics of real world material was plugged

into a reflectance model.

The capture device proposed by Jensen et al. is not suitable for facial skin as focused

beam of white light may harm the skin during the capture process. Hence, they measured

the diffusion profile of skin in the arm region for their experiment and extrapolated the

subsurface reflectance properties to skin in other body parts. This reflectance model

assumed the scattering medium to be semi-infinite i.e. only one side of the medium had

well defined boundary. In other words, this model assumed that every component of the

incident light will eventually be reflected back. Hence, the model failed to account for

incident light that gets transmitted into the material. Also, this model can only be used

with highly scattering media because the diffusion approximation, used by this model, is

only applicable to highly scattering medium i.e. σ′s >> σa.

Weyrich et al. [36] overcame this practical limitation of the diffusion profile capture
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device by building a contact probe consisting of a linear array of optical fibres: one of

them being the source fibre and the remaining are detectors. Using this contact probe, all

the parameters of the dipole model can be robustly estimated. They modeled skin as a

single layered homogeneous scattering medium. They added a spatially varying absorptive

film of zero thickness — called the modulation texture layer — to simulate inhomogeneous

scattering in human skin. Use of texture map (or random noise) was also suggested by

[17] to simulate the effects due to hetereogenity in a scattering medium. The parameters

of this layer were estimated from albedo map and the dipole model parameters σ′s, σa were

obtained from the diffusion profile captured using their contact probe. They measured 3D

face geometry, skin reflectance and subsurface scattering using custom built devices for

149 subjects of varying age, gender and race. This allowed them to study the variation of

subsurface scattering parameters for a large population of skin types. Moreover, flexibility

in their reflectance model allowed intutive editing of facial appearance. For example: they

presented the results of face renderings obtained by transfer of skin features like freckle

and skin type (BRDF and albedo).

Weyrich et al. added a suction pump to the contact probe in order to maintain the con-

tact and position during the capture of diffusion profile. The total capture time of 88 sec.

necessitated addition of the suction feature to the contact probe. It is known that physical

pressure alters the normal blood flow mechanism in a human skin. Hence, the scattering

and absorption coefficients obtained from the diffusion profile captured using such contact

probe may be biased to some extent. Moreover, the design of contact probe limits its use

to flat areas of a human face. Hence, they extrapolate the reflectance measurements from

forehead, cheek and below the chin to other parts of a human face. Although, the addition

of a modulation texture closely reproduces effects due to heterogenity in skin, its makes

the reflectance model anatomically implausible.

Ghosh et al. [15] have described a skin reflectance model which treats overall skin

reflectance as the linear sum of four reflectance components: specular, single scattering,

shallow scattering and deep scattering. These components are classified according to the

depth of skin from which they get reflected. They are able to estimate all the model

parameters from just 20 photographs of human face captured under spherical illumina-

tion (developed by [25]) and projected lighting condition. The spectral difference between

these two sources is compensated by computing a colour transformation matrix which

transforms both photographs to a common colorspace. A 24 ColorChecker square and 10
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skin patches are imaged under these two illumination condition to compute this colour

transformation matrix. First, the specular and single scattering components are separated

from overall reflection by exploiting the fact that these components preserve the polar-

ization of incident light. This is also true for single scattering reflectance because the

probability of depolarization of light increases exponentially with each additional scatter-

ing event. Furthermore, these two components are separated from each other by exploiting

another interesting difference between these two components: any non-specular reflectance

component that preserves polarization of incident light is treated as single scattering term.

The specular reflectance component is modeled using Torrance and Sparrow [32] micro-

facet model and Hanrahan and Krueger [17] first order single scattering BRDF is used to

model the single scattering term.

Multiple scattering is composed of shallow and deep scattering reflectance. The diffuse

only image obtained from polarization difference image of parallel and cross polarized

images contain the multiple scattering reflectance component. Using the method of Nayar

et al. [29], they separate the multiple scattering reflectance component into direct and

indirect reflectance components. They key observation underpinning this separation is that

when the frequency of illumination pattern is in the order of thickness of epidermis, then

the direct component relates to shallow scattering and indirect component corresponds to

the deep scattering reflectance component.

Ghosh et al. modelled subsurface scattering (or multiple scattering) using reflectance in

a two layered medium. Although, they do not explicitly model the epidermis and dermis

layers in a human skin, they use the notion of deep and shallow scattering to roughly

model the light interactions occurring in these two layers. Deep scattering, caused by

the bottom layer, was modelled using the dipole model of Jensen et al. [21] which treats

the scattering layer to be semi-infinite. The semi-infinite assumption is practical for the

bottom layer but not for the top layer. Were the top layer semi-infinite, it would not have

a tranmission profile and hence the bottom layer would not receive any portion of the

incident light. Hence, the shallow scattering, caused by the top layer, is modeled using

the multipole diffuse model of Donner and Jensen [10]. The transmission profile of the

top layer obtained using the multipole model becomes the incident profile for the bottom

layer which is modeled using a dipole model.

Ghosh et al. model the overall skin reflectance as the linear sum of four reflectance com-

ponents: specular, single scattering, shallow scattering and deep scattering. The purely
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additive nature of these reflectance components prohibits the modelling of phenomenon

involving interaction between skin layers; for instance, the epidermal effects on dermal

scattering.

Donner et al. [11] proposed the “physiologically most advanced skin reflectance model

that is still practical for rendering”[35]. They described a two layered skin reflectance

model which used, for the first time, spatially varying model parameters for each layer to

account for heterogeneous light transport in human skin. Using diffuse images captured

in 9 different bands of the visible region, they were able to model spectral dependence

of subsurface scattering characteristics. The proposed two layered skin reflectance model

has 6 spatially varying model parameters which relate to physiological skin parameters

and are represented as 2D chromophore 3 map. The two layers in this model correspond

to epidermis (top layer) and dermis (bottom) layers of a human skin. A thin absorbing

layer was added between these two scattering layers which corresponds to pigmentation

concenterated in a narrow region between epidermis and dermis of actual human skin.

They demonstrated the strength of anatomically motivated reflectance model by gener-

ating photo-realistic renderings of human hand from just the user painted 2D chromophore

maps corresponding to the 6 model parameters. In addition to the user painted chro-

mophore map method, they also devised a inverse rendering based approach to estimate

the 6 model parameters from multispectral images of a flat skin sample. They developed

a filterwheel based multispectral capture device to capture the multispectral reflectance

map of a flat skin sample in the arm region. Scattering in each layer was modeled using

the multipole diffusion model of [10].

The proposed inverse rendering approach is not scalable to the Multispectral images

of the full face. Inverse rendering resembles a “brute force” approach in which estimation

of model parameters from Multispectral images involves searching a 6D space for model

parameter values that minimised the difference between rendered Multispectral images and

the captured Multispectral photographs. This strategy is not applicable to estimation of

model parameters from Multispectral images of full face because the complex geometry of

human face makes the process of inverse rendering computationally intractable. Also, the

capture process required the skin surface to be coated with Ultrasound gel. Ultrasound

gel has same refractive index as a human skin and hence created a smooth surface over

the skin sample under observation. This allowed the use of Fresnel transmission term for
3skin constituent that selectively absorb some spectral bands of the incident light
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estimation of radiance transmitted into the skin. It is impractical to apply the Ultrasound

gel to full face for acquisition of Multispectral images.

Ghosh et al. [15] and Donner et al. [11] have proposed the current state-of-the-art

skin reflectance models. While the data driven model of Ghosh et al. can estimate model

parameters of complete face in natural expressions using just 20 photographs captured in 5

sec, the anatomically plausible skin reflectance model of Donner et al. can produce realistic

renderings of human hand with just a user painted 2D chromophore map representing the

model parameters. On the other hand, the data acquisition procedure of Donner et al. is

not scalable to complete human face whereas the reflectance model proposed by Ghosh et

al. lacked biophysically meaningful parameters.

2.3 Alignment

Almost all shape and reflectance acquisition system has to deal with motion of non-static

objects, like a human face, during the capture process. Marschner et al. [27] used a set of

three machine readable targets for automatic estimation of the relative position of the light

source, sample material and the camera during the 30 minute capture process. Debevec et

al. [9] proposed using a head rest to reduce motion during the capture process which lasted

for 1 minute. In reality, it would be extremly difficult to maintain facial expression and

position for 1 minute in spite of a head rest. Weyrich et al. [36] used a contact probe with

suction to maintain the position of the subsurface reflectance capture device during the

90 seconds of capture time. Ghosh et al. [15] have not mentioned how they corrected for

subject motion during the capture of 20 photographs in 5 seconds. Donner et al. [11] use

a filterwheel based multispectral capture device to capture 9 multispectral photographs

of a skin sample in the arm region. As compared to human face, it is relatively easy to

maintain position of arm during the capture process. They marked a rectangular region

in the skin sample which allowed them apply rigid alignment methods.

Recently, Wilson et al. [37] have developed the Joint Photometric Alignment technique

for the registration of gradient images captured in a Light Stage. Traditional optical flow

based alignment techniques were not applicable to the alignment of gradient images as

the “brightness constancy” assumption is violated in each of these images. Wilson et al.

exploited the complement image constraint to devise an iterative algorithm for alignment

of gradient images. Photometric normals computed from aligned gradient images can
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recover the fine surface details like wrinkles, scar, etc present in a human face.

2.4 Real Time Performance Capture of Human Face

Marker based facial motion capture is widely used for the capture of geometric deforma-

tions in human face during a dynamic performance. The 3D position and velocity of these

reflective markers are used as cues to the 3D motion of body structure to which these

markers are attached. A limitation of this method is that it requires placement of a very

large number of markers on the target face in order to accurately model the 3D motion

of each facial muscle. In addition to inconvenience caused by these markers during facial

performance, there exists a limit to which these markers can be attached to a face. This

limitation prevents from acquiring fine scale geometric details of face muscles during a

dynamic performance. Human observers have a mastery in detecting unnatural facial mo-

tion caused by sparse distribution of these markers. Hence, marker based motion capture

techniques are not used for close up shots of the human faces.

Furukawa and Ponce [14] have developed a markerless 3D motion capture method

for human faces. They track the nonrigid motion of vertices in the 3D mesh of the

face obtained from multiview stereo technique. Their method is capable of dealing with

unreliable texture information due to fast motion, self occlusion, etc. However, this method

involves a data intensive capture process and is affected by specular highlights on a face.

Wilson et al. [37] have developed facial performance geometry capture method which

is not data intensive and can capture highly detailed facial geometry without requiring

expensive and complex setup of high speed photography. They capture a set of gradient

and complement gradient spherical illumination images which flank the constant illlumi-

nation image, also called the tracking frame. Using their Joint Photometric Alignment

method, the gradient images are aligned to the tracking frame which allowed computation

of photometric normal at each tracking frame. These photometric normals are warped to

the intermediate gradient frames according to the flow fields computed by the alignment

stage. This process is called “Temporal Upsampling” because it increases the effective

performance capture frame rate by adding warped photometric normals at the temporal

position of intermediate gradient frames. They use the spherical gradient photometric

stereo technique to recovery very high resolution photometric normal at each tracking

frame. Hence, their dynamic performance capture algorithm is able to capture the mo-
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tion of very fine facial features like wrinkles, pores visible during skin deformation, etc.

Moreover, the absence of makers on face allows capture of natural facial expressions.

The proposed Joint Photometric Alignment method is an iterative process requiring

two optical flow computation in each iteration. Because this alignment procedure has to

be applied to each of the gradient and complement gradient image pairs separately, the

computational cost of performance capture using this method is very high. This does not

affect the practicability of this performance capture method because the alignment is a

post-processing operation which can be carried out offline.

2.5 Stimuli for Psychology Experiments

Research in Psychology and Neuropsychology of face perception has always relied on Com-

puter Vision and Computer Graphics community for stimuli image dataset required for

their experiments. Ability to control different aspects of facial appearance is the key to

success of these experimental procedures designed to unravel the face representation and

processing mechanisms of the visual cortex in human brain.

Caharel et al. [6] used a 3D Morphable Model to generate stimuli images for studying

the time course (i.e. temporal sequence) for processing of 3D shape and 2D skin reflectance

information of a human face. Their stimuli image contained face images in which texture

and shape information of the test subjects were controlled. Although, the 3D Morphable

Model produces facial rendering close to natural human faces, it does not include the high

frequency skin texture detail. Lack of detailed skin texture, which is known to contribute

to face perception, can bias the results of such psychology experiments.

Recently, we explored the application of Light Stage in generating stimuli image dataset

for the psychology experiment conducted by Jones et al. [22]. This experiment investigated

the neural representation of 3D shape and 2D skin reflectance information of a human face.

Using the image data captured in our Light Stage, we were able to separate 3D shape and

2D skin reflectance information for a given face. Spherical illumination of a Light Stage

ensured that the texture images were not affected by shadows. Also, these “texture only”

face images included all the high frequency facial skin details like wrinkles, mole, frackles,

etc.
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Chapter 3

Design and Calibration of the

Multispectral Light Stage

The Photometric stereo technique was developed by Woodham [40] to determine the sur-

face geometry of each image point using images captured by varying the direction of inci-

dent illumination while keeping the view direction constant. Ma et al. [26] have proposed

spherical gradient photometric stereo — an extended version of original photomeric stereo

— for acquisition of high resolution shape and reflectance information. A spherical illu-

mination environment is pivotal to this state-of-the-art shape and reflectance acquisition

technique because it requires images of an object captured under spherical gradient and

constant illumination environment. In this chapter, we discuss the design and calibration

of a device that can be used to create a spherical gradient illumination environment. We

also propose an extended version of the required acquisition device setup to allow capture

of multispectral images in a spherical illumination environment.

n

centroid

(a) Ideal diffuse reflectance lobe

n
centroid

r

(b) Ideal specular reflectance lobe

Fig. 3.1: Centroid of ideal specular and diffuse reflectance lobe

The mass centroid of an ideal diffuse reflectance lobe coincides with the surface normal
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~n. For the specular reflectance lobe, the centroid coincides with the reflection vector ~r as

shown in Fig. 3.1. The centroid (x0, y0, z0) of a diffuse or specular reflectance function

f(x, y, z) can be computed by integrating it with a linear gradient. Mathematically,

(x0, y0, z0) =
1∫ 1

−1 f(x, y, z)dx

(∫ 1

−1
xf(x, y, z)dx,

∫ 1

−1
yf(x, y, z)dy,

∫ 1

0
zf(x, y, z)dz.

)
(3.1)

The insight of Ma et al. [26] was to show how to estimate the diffuse and specular

reflectance centroids using spherical gradient illumination. They proposed the spherical

gradient photometric stereo technique which suggests that when integrated with a linear

illumination gradient in the X, Y or Z direction, the corresponding component of the

reflectance centroid, and hence surface normal, can be recovered. The key observation

underpinning this approach is evident when we look at the radiance equation for diffuse

and specular reflection:

r =
∫

Ω
P (ω)R(ω, n)dω, (3.2)

where P (ω) is the intensity of light incident from direction ω and R(ω, n) is the Lambertian

or specular Bidirectional Reflectance Distribution Function (BRDF). According to (3.2),

if we replace the illumination environment P (ω) with a spherical gradient illumination

in X,Y or Z, the radiance value recorded by an imaging device is related linearly to the

centroid of Lambertian or specular BRDF R(ω, n). In the next section, we will discuss

design and calibration of a “light stage” : a device proposed by Ma et al. [26] to create a

spherical illumination environment.

3.1 Creating the Spherical Illumination Environment

Spherical illumination refers to an illumination environment in which every surface patch

of an object receives illumination incident from every direction of its visible hemisphere.

Fig. 3.2 shows the images of an apple illuminated by spherical gradient and constant

illumination. An object placed at the centre of a sphere can be illuminated by spherical

illumination by using light sources distributed evenly and finely over the surface of that

sphere. Ma et al. [26] argued that as the position of edges and vertices of a twice subdivided

icosahedron closely approximates the surface of a sphere, LEDs attached to these positions

can create spherical illumination. They proposed a device called “light stage” (or led
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Fig. 3.2: Images of an apple captured under spherical gradient and constant illumination

sphere) that consists of 156 LEDs attached to the edges and vertices of a twice sub-

divided icosahedron. Fig. 3.3 shows an image of our light stage of diameter 1.58 meter

consisting of 41 LEDs attached only to the vertices of twice sub-divided icosahedron. In

3.1.1, we discuss the reason behind using only 41 LED in our Light Stage.

Fig. 3.3: Our Light Stage

Constant illumination is created by switching all the LEDs to their maximum bright-

ness level as shown in Fig. 3.4(a). For the X, Y or Z gradient illumination environment,

the intensity of each LED is proportional to the X, Y or Z coordinate of their 3D position

respectively. If the 3D position coordinate of each LED is normalized i.e.: ||(x, y, z)|| = 1

then Fig. 3.4(b) depicts the plot of LED intensity for gradient illumination environment.

We can setup a gradient illumination environment by assigning each LED an intensity

level that is proportional to their 3D position with respect to the center of the light stage.

Hence, the knowledge of light source 3D position is essential to setup a gradient illumina-

tion environment.

3.1.1 Selection of the Light Source

We have extended the basic light stage design of Ma et al. [26] to achieve the following

additional functionalities
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Fig. 3.4: Light source intensity for constant and gradient illumination environment

• simultaneous capture of cross polarized images using a polarizing beam splitter

• Multispectral capture capability using a set of narrow band optical filters

We have selected the VIO (Vio/3.6W/741) HighPower White LED (manufactured by

General Electric Illumination) as the light source for our light stage because :

• the light reaching the camera sensor is attenuated by the light source polariser(< 50%

transmission), optical filter(< 90% transmission) and the polarizing beam splitter(<

50% transmission). Hence the camera sensor receives only 22% of the total emitted

light even if we image a perfect reflector. The VIO LED has the brightness of 196

lumens [24]. This level of brightness is adequate to image human skin when the

attenuation factor of the capture device is 0.78.

• The 180◦ beam angle of these LED provide complete coverage of large objects like

human face in a small light stage of diameter 1.58 meter.
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Fig. 3.5: Emission spectrum of VIO (Vio/3.6W/741) LED measured using our CCD
spectrometer
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The data obtained from our Multispectral light stage can be used to obtain parameters

of skin reflectance models like Donner et al. [11]. It is known that there occurs peak

absorption by human skin chromophores in the 400− 450nm visible range band [11, Fig.

7]. This fact can be exploited to obtain accurate model parameters for parameteric skin

reflectance models. Fig. 3.5 shows that apart from peak emission in 550−600nm, the VIO

LED also has peak emission in the 380nm to 420nm range: a common feature of most

LEDs. This behaviour is ideal for capturing the multispectral reflectance map of human

skin.

Because of the high cost of VIO LED, we decided to attach these light sources only

to the vertices (and not to the edges) of a twice subdivided icosahedron. Although, this

design decision causes extreme “light discretization”, we have developed an algorithm in

section 4.5 to expliot the complement gradient constraint in order to reduce the effects of

inter-reflection, ambient occlusion and “light dicretization”.

3.1.2 Estimation of Light Source’s 3D Position

From the discussion in 3.1, it is evident that the knowledge of 3D position of each light

source is essential for the setup of spherical gradient illumination environment. These 3D

positions should be represented with reference to the center of the light stage as the object

placed at the center of the light stage needs to be illuminated by gradient illumination.

The 3D positions of each light source can be estimated by manual measurement or by

using Computer Aided Design (CAD) drawing of the light stage. However, this method

does not provide accurate measurement of 3D position. Moreover, due to limitations re-

lated to manufacture of geodesic domes, there is always some asymmetry and deformation

introduced during assembly of the light stage.

We estimate the 3D position of each light source in a viewer centred coordinate sys-

tem by exploiting the relationship between light source position and the position of its

specularity on a mirror ball placed at the centre of the light stage.

Determining the Location of Specular Highlight

We place a 76.2mm hardened chrome steel ball bearing (mirror ball whose boundary1 is

shown in white in Fig. 3.6) at the center of the light stage and capture its photograph when
1The edge of cylindrical rod supporting the mirror ball tapers to a smaller radius to provide threading

for screws and this forms the contact point for mirror ball. Therefore, the white boundary fit on the far
left of Fig. 3.6 is correct.
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each of the light sources are switched on individually. These images contains the specular

highlight corresponding to each light source. The captured images are preprocessed with

morphological erosion and dialation operations to remove any stray bright spots and make

the specular highlight more symmetric. The centroid h(x, y) (as shown in Fig. 3.6 by red

cross hair) of bright spot in each image forms the location of specular highlight caused by

a given light source.

Fig. 3.6: Centroid h(x, y) of specular highlight depicted in a full illumination mirror ball
image (numbers correspond to light source unique identifier)

In Fig. 3.6, notice that there is no specular highlight for LED 34. The reason being

that the specular highlight caused by this LED falls in the blind spot region of the sphere

surface visible in the captured images. This blind spot is caused by the stand that supports

the metallic sphere. These specular highlight locations can be determined by interpolation

of symmetric position of neighbouring light sources in the light stage.

Mirror Ball Sphere Centre

The 3D coordinate of centre of the mirror ball is essential for the computation of each

light source’s direction. We apply the method proposed by Wong et al. [39] to recover

the sphere center. First, we manually select at least 6 points on the conic C formed by

the boundary of the mirror ball in its image. Using the direct least square fitting method

of Fitzgibbon et al. [13], we obtain the parameters (a, b, c, d, e, f) that define the conic C
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Table 3.1: Manual and automatic measurement of d and Sc

Manual (mm) Using Wong et al. [39] (mm)
d 890 898.35
Sc (0, 0, 890) (21.33,−16.56, 897.94)

such that any point x lying on C satisfies the equation

x̃TCx̃ = 0 where, C =


a b/2 d/2

b/2 c e/2

d/2 e/2 f

 ,

and, x̃ is the homogeneous coordinate representation of x. The result of this fitting process

is depicted by the white conic shown in Fig. 3.6.

The calibration matrix K was computed using the Matlab camera calibration toolbox

[4]. To remove the effect of camera calibration matrix K, we normalize the image with

K−1. This normalization transforms conic C to a normalized conic Ĉ = KTCK. Using

singular value decomposition, we diagonalize conic Ĉ into

Ĉ = MDMT = M


a 0 0

0 a 0

0 0 b

MT . (3.3)

Finally, the sphere centre can be computed using

Sc = M
[
0 0 d

]T

where d = R

√
a+ b

b
. (3.4)

Here, R is the radius of mirror ball and d is the distance between camera center and

sphere center. Wong et al. [39] have also proved that the light direction estimated from

an observed specular highlight in an image of a sphere will be independent of the radius

used in recovering the location of the sphere center. It is important to recognise that this

observation is valid only when the light sources are placed at infinity. In this experiment,

the light sources are present close to the mirror ball and therefore requires accurate mea-

surment of mirror ball radius to recover correct values of d and Sc using [39]. Very small

deviation between manually measured values for d and Sc and that measured using [39]

(as shown in Table 3.1) support the fact that manual measurement of mirror ball radius

was quite accurate.
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Light Source Position Estimation

O

Y
X

Z

N
L

V

h

image plane

Sc
H

Fig. 3.7: Estimation of light source 3D position using position of its specularity in a
mirror ball

In Fig. 3.7, H(X,Y, Z) and h(x, y) represent the location of specular highlight on the

surface of sphere and the image plane respectively. The ray from the camera center O to

the location of specular highlight H on the sphere surface forms the view vector V . L

represents the light source direction and N is the surface normal at point H.

From the discussions in previous two sections (3.1.2 and 3.1.2), we have the values

for sphere center Sc and image plane location of specular highlight h(x, y). However, to

estimate the light source direction L, we need the value of one more quantity H : the

location of specular highlight on the surface of mirror ball.

To determine the values of H, we first construct a ray ~l originating at the camera

center O through the pixel coordinate of the specularity in the image plane h(x, y). If

K is the camera calibration matrix and h̃ = [x y 1] represents h(x, y) in homogeneous

coordinates, then

~l = K−1h̃+O.

The location H(X,Y, Z) of specular highlight on the mirror ball is the point of intersection

of ray ~l and a sphere centered at Sc with radius R. [31, p116] discusses the method to

compute the point of intersection of a ray and a sphere.

With all these measurements to hand, we can now compute the light source direction

vector L using

L = (2N.V )N − V (3.5)

where, V = H−O
|H−O| and N = H−Sc

|H−Sc| . The positions of light sources recovered using this

method are depicted in Fig. 3.8
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Fig. 3.8: Position of light sources depicted as black spots on a unit sphere

3.1.3 Light Source Intensity and Camera Shutter Controller

The LED controller used in this project was designed and built by Cooper et al. [8].

This controller is based on an MBED2 board and PCA96853 I2C LED controller. The

MBED (LPC1768) board acts as the control hardware for PCA9685 and camera shutter.

PCA9685 is 16 channel I2C LED controller that uses 12 bit (4096 brightness levels) Pulse

Width Modulation (PWM) to control LED brightness. The LED controller [8] uses four

PCA9685 to provide control interface for 41 LEDs in our Light Stage. As PCA9685 is

controlled using I2C bus, this design can be easily extended to provide control interface

for even larger number of LEDs.

We have used the “Geodesic Light Dome” designed by Cooper et al. [8] to control

all the light sources and the camera shutter in our Light Stage. An MBED (LPC1768)

board acts as the control hardware for the camera shutter and PCA9685 LED controller.

PCA9685 is 16 channel I2C LED controller that uses 12 bit (4096 brightness levels) Pulse

Width Modulation (PWM) to control LED brightness. We have used four PCA9685 to

provide the control interface for 41 LEDs in our Light Stage. As PCA9685 is controlled

using I2C bus, this design can be easily extended to provide control interface for even

larger number of LEDs. The MBED board provides a “C” like programming environment

for the control of LED intensity and camera shutter.

We use two JAICM200GE machine vision camera along with a polarizing beam splitter

to capture cross polarized images (refer to 3.2.2 for details). The connection diagram of

MBED, PCA9685, two cameras and a computer is shown in Fig. 3.9.
2http://www.mbed.org
3www.nxp.com/documents/data_sheet/PCA9685.pdf
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Fig. 3.9: Led intensity and camera trigger control diagram

LED Intensity Control

The LED controller [8] uses MBED board and PCA9685 to provide a “C” like program-

ming environment for LED intensity control. We program the MBED board such that it

writes the LED channel identifier (explained in the next paragraph) and corresponding

brightness level (0 to 4095) to its I2C bus pins which in turn is connected to the PCA9685.

The PCA9685 chip provides a very simple interface (in the form of I2C commands) for

LED brightness control and therefore allows us to avoid the intricacies of Pulse Width

Modulation (PWM) based LED intensity control.

The LED identifier assigned to specular highlight shown in Fig. 3.6 represents the

channel identifier of the corresponding LED. The 3D position of each LED (obtained

using the method discussed in 3.1.2) is used to create an Intensity Lookup Table (ILT).

This lookup table contains the intensity level (0 to 4095) of all the LED for X, Y and Z

gradient illumination environment and we store the ILT in the flash memory of MBED.

This allows us to setup X, Y or Z gradient illumination in just 23161µs.

Camera Trigger Control

The two JAICM200GE camera are connected to a computer (henceforth referred to as

“image sink” because it receives all the captured images) via a Gigabit ethernet switch.

All the camera functions, including the camera shutter, can be controlled via the GigE

vision interface. However, to synchronise the illumination environment setup with the

image capture, we use the MBED board (present in the LED controller [8]) to control the

shutter of both camera. We built a cable to use the digital I/O lines available in the MBED
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board of the LED controller [8] for control of the two cameras via their General Purpose

Input Output (GPIO) interface. The camera is configured to use Pulse Width Modulation

(PWM) based shutter control in which the rising edge and falling edge represent shutter

open and close events respectively. After configuring the camera shutter control mode to

“Pulse Width Trigger Mode” (PWC), the “image sink” then waits for ethernet packets

containing the image data. Now all the capture sequence is handled by the MBED board

which is programmed to control the camera shutter using PWM.

MBED board performs the following two operations in a sequence to allow capture of

spherical gradient images in X, Y, Z and constant illumination environment:

• Setup the brightness of each LED according to the data in Intensity Lookup Table

(ILT) corresponding to required illumination environment

• Send a pulse to GPIO pins of both camera such that the rising and falling edge

indicate the shutter open and close events respectively.

This process is repeated to setup X, Y, Z or constant illumination environment.

The two cameras are triggered simultaneously and hence they start sending ether-

net packets, containing the captured image, at the same time. The network switch has

sufficient memory to avoid congestion when a single set of gradient images is captured.

However, for real time performance capture, a huge amount of data is generated every

second: two camera capturing 1200×1000 image at 10 bit/pixel (∼ 2 byte/pixel) generate

2× 93 grayscale images per second for 30 fps tracking frame rate. This causes congestion

in the network switch resulting in loss of ethernet packets due to limited buffer memory

of the camera and network switch.

The camera manufacturer recommends using the inter-packet delay feature available

in the camera to avoid congestion in the network switch[20, p22, p26]. They provide a

tool to compute optimal inter-packet delay in order to make best use of the available video

bandwidth. The inter-packet delay parameter of a camera determines the time interval

delay between two adjacent packets transmitted by the camera to the receiving computer.

If this delay time is larger than the packet size of other camera, the “image sink” will

receive ethernet stream in which the packets from both camera are interleaved as shown

in Fig. 3.10. This allows for optimal use of available video bandwidth. For details on

computing the inter-packet delay, refer to [20, p26].

29



CAM0 packets

CAM1 packets
interpacket

delay
Fig. 3.10: Inter-packet delay parameter introduces controlled amount of delay between
ethernet packets generated by a camera

Verification of Camera and Illumination Synchronisation

The MBED code is executed sequentially. Hence, if we trigger the camera only after

setting up intensity of all the LEDs in the Light Stage, the illumination and capture

process would always be synchronised. However, to verify correct synchronisation of our

setup, we created four test illumination environment. The test illumination environment

have the same setup time as the original gradient illumination environment. Moreover,

as these test illumination have simple patterns of light, it allows us to verify if there is

any “illumination leak” from neighbouring illumination environments. Fig. 3.11 shows the

mirror ball captured under the four test illumination environment. These images support

our assumption of correct syncronization.

Fig. 3.11: Images captured from four test illumination environments

3.2 Diffuse and Specular Reflectance Separation

Reflection from a surface consists of diffuse and specular reflectance components. The

specular component is caused by light reflected directly from the surface and hence is also

called a surface phenomena. The diffuse component results from light rays penetrating

the surface, undergoing multiple reflections and refractions, and re-emerging at the surface

[28]. For linearly polarized incident light, specular reflection has polarization oriented per-

pendicular to the plane of incidence4 and the diffuse component is essentially unpolarized

4plane of incidence at a given surface point is defined as the plane containing view vector ~V and the
surface normal ~n at that point
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[38, p84]. The fact that the specular component has the same polarization as the incident

light is the basis of the “cross polarization” technique for separation of the diffuse and

specular reflection components. The axis of polarization of the linear polariser is such

plane of incidence

polarization planeof incident light

n
V

L polarizer

axis of
polarization

analyzer

Fig. 3.12: Cross polarization

that the plane of polarization of the incident light is orthogonal to the plane of incidence

as shown in Fig. 3.12. When the axis of polarization of the analyzer5 is aligned with the

plane of incidence(as shown in Fig. 3.12), only the diffuse component of the reflected light

can be observed (I1 - diffuse only image). This is beacause the specular component of the

reflected light has polarization perpendicular to the plane of incidence. To record both the

unpolarized diffuse and the polarized specular reflection (I0 - specular and diffuse image),

the axis of polarization of the analyzer is oriented orthogonal to the plane of incidence.

Hence, we can write the following expression for the two cross polarized images [25, p40 ]

I0 =
1
2
ID + IS , I1 =

1
2
ID.

Finally, the images containing only the diffuse and specular reflectance components can

be recovered using : IS = I0 − I1 and ID = 2I1.

3.2.1 Light Source Polariser Orientation

Spherical gradient illumination requires all the light sources to be distributed uniformly

on the surface of a sphere. Hence, we require a spherical field of linear polarization for all
5the linear polarizer placed in front of the camera
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the light sources in which all of them have the same plane of polarization. The optimal

orientation of each light source polariser is achieved when the “diffuse only” image I1 of

the two cross polarized images contain no specular highlights. In addition to the numerical

optimization method, Ma et al. [25] also describe a simpler method to obtain such optimal

orientation by manually tuning the orientation of each light source polarizer until all the

specularity from a mirror ball gets cancelled in one of the cross polarized images. The “live

view” feature6 of our acquisition device allowed us to quicky find the optimal orientation

of each polarizer.

Fig. 3.13: Cross polarized images of a hardened chrome steel ball bearing (mirror ball).
(left) Specular and diffuse I0 and (right) diffuse only I1

We came across a peculiar behaviour while looking for optimal polariser orientation

using a hardened chrome steel ball bearing (mirror ball) placed at the centre of the light

stage. It was not possible to completely cancel specular highlight in the “diffuse only”

image. This effect was more pronounced for the specular highlights corresponding to

the light sources for which the angle of incidence was close to the 90◦ as shown in Fig.

3.13. Suspecting the way metallic surface interact with polarized light, we tried using

a snooker ball (made of PVC - a dielectric). We were able to quickly find the optimal

polarizer orientation using a snooker ball as shown in Fig. 3.14. Ghosh et al. [15] have

also emphasised the use of a dielectric spherical reflector (i.e plastic ball) for the polariser

orientation calibration. As we intend to only capture gradient images of dielectric materials

(like human face, ceramic and plastic objects, etc), we did not further investigate the

peculiar behaviour of metallic surfaces.
6real time view of both the cross polarized images
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Fig. 3.14: Cross polarized images of a snooker ball. (left) Specular and diffuse I0 and
(right) diffuse only I1

3.2.2 Simultaneous Capture of Cross Polarized Images Using a Beam

Splitter

CAM1 CAM0

A
B

A A
B B

Polarizing Cube
Beamsplitter

Fig. 3.15: Polarizing cube beam splitter and two camera setup for simultaneous capture
of cross polarized images (I0 and I1)

A square linear polariser mounted on a servo motor in front of the camera lens was

used by [25, p46] as the analyzer. The servo motor rotated the filter rapidly to allow

capture of cross polarized images. The polariser rotation time required by this mechanical

setup caused some delay in the capture of the two cross polarized images. In the case of

static objects, this does not cause any problem. However, when cross polarized images

of a human face are captured by such servo motor based setup, slight motion between

the two images cannot be avoided. So the two cross polarized images are not in perfect

registration and thus requires some alignment before the diffuse and specular only images

can be computed from them. Moreover, the mechanical rotation setup achieved by a servo

motor cannot ensure equal amount of rotation in every instance.

To avoid the problems introduced by a mechanical servo motor based system, we
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used the Techspec R©Polarizing Cube Beam splitter7 (25mm, Visible Range) to split the

incoming light into S polarized8 and P polarized9 components. These two reflection

components are recorded by two cameras attached to the two faces of a cube beam splitter

as shown in Fig. 3.15. This setup ensures that both the cameras simultaneously capture

the cross polarized images. It is interesting to note that one of the cameras needs to

be rotated by 180◦ and the captured image be compensated for mirror reflection (using

MATLAB fliplr()) to undo the inversion of image caused by splitting of incoming light

along two orthogonal axes. In the leftmost image of Fig. 3.15, the rotation of one of the

camera in our setup is evident from the flipped sequence of the ethernet and power cables.

3.2.3 Registration of Cross Polarized Images

The images captured by both the cameras are automatically registered if their principal

axes intersect. However, such a setup is not possible to achieve as the connection adapter

used to screw in the camera lens to the beam splitter mount introduces offset between the

principal axes of both cameras. Hence, to align the two cross polarized images, we need

to compute a 2D homography matrix H that transforms one of the cross polarized image

in order to align it with the other image. Note that this alignment step is quite different

from the registration in Ma et al. [25] setup required to compensate for the motion of the

subject during the capture process. This alignment is performed to cancel the offset in

the principal axis of the two camera so that the images captured by the two camera are

in perfect registration.

Fig. 3.16: Manually selected correspondence points in CAM0 (left) and CAM1 (right)
image for normalized DLT algorithm

We obtain an initial estimate of the 2D homography matrix H using normalized Direct

Linear Transform (DLT) [18, p109]. The automatic corner detection tool in [4] is used
7http://www.edmundoptics.com/onlinecatalog/displayproduct.cfm?productID=2986
8In s polarization, the electric field vector is perpendicular to the plane of incidence.
9In p polarization the electric field vector is parallel to the plane of incidence
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to detect 65 corner points in a checkerboard image captured using the two camera and

beam splitter setup. These points are corrected manually, as shown in Fig. 3.16, for

subpixel accuracy and then supplied to the DLT algorithm as (n = 65) initial 2D to

2D point correspondances. Using the initial estimate of H from DLT, we determine the

Maximum Likelihood Estimate (MLE) of Ĥ that minimizes the Samson’s error [18, p114].

This homography matrix is applied to all the images captured by CAM0 so that the

transformed CAM0 images are in alignment with the CAM1 image.

Lens distortion is another effect that can lead to misalignment of images by the two

cameras as described in [41]. However, the effect is likely to be very small and therefore

we ignore the contribution of lens distortion.

3.2.4 Results of Diffuse and Specular Separation

The CAM0 gradient images (I0) can be transformed using 2D homography Ĥ to obtain

images Î0 that are aligned with the CAM1 gradient images (I1). Diffuse and specular only

images can now easily be obtained using

IS = Î0 − I1 and ID = 2I1.

The result of specular and diffuse separation for constant spherical illumination of faces

and a static object is shown in Fig. 3.17.

3.3 Extending the Basic Light Stage Design for Multispec-

tral Capture

Most real world objects (human skin, fruits, etc..) are made up of multiple layers having

different absorption and reflectance properties. These properties are very useful in Com-

puter Graphics and Computer Vision research because they reveal the reflectance and

absorption characteristics of underlying layers. The visible white light consists of radia-

tion in the visible range (380nm to 720nm) and they have differential penetration depth

in human skin with the red band (620 − 750 nm) going deepest. Hence, a mutlispectral

image set — reflectance recorded at sparse set of bands in the visible range — contains the

reflectance information from different layers of an object. For example: the Multispectral

images of a fruit can reveal the properties of its inner layers. This information can be
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Fig. 3.17: Result of diffuse and specular reflectance separation

36



used to study the quality of a fruit [23] [34]. Similarly, parametric skin reflectance models

like [11] rely on skin images captured at a set of narrow bands in the visible range. This

information helps in creating a model of light interaction in different layers of the skin.

CAM1 CAM0

narrow band
optical filter filter wheel

Fig. 3.18: (left and centre) Optical filter wheel attached to existing beam splitter setup
for Multispectral acquisition. (right) Optical filters centred at different wavelength of the
visible range in a filter wheel

We have made a modification in the light stage capture device proposed by Ma et al.

[26] to allow capture of multispectral images. These images are captured in spherical illu-

mination environment and are very useful for analysis of multiple layered objects because

they do not contain shading information. We placed BrightLine single bandpass optical

filters in front of our existing beam splitter setup (discussed in 3.2.2) to allow simultaneous

capture of cross polarized multispectral images. Six filters are mounted to a filter wheel

(as shown in Fig. 3.18) which snaps into preset position when the filter wheel is rotated.

Manual rotation of the filter wheel increases the total capture time to ∼ 12 seconds. Step-

per motor driven filter wheel10 (access time of ∼ 650ms) can be used to reduce the capture

time to ∼ 2sec. However, these electronic filter wheels are very expensive and hence we

choose to use the manual filter wheel.

The specification and transmission spectrum of 6 single bandpass filters used in our

Multispectral light stage is given in Table 3.2 and Fig. 3.19 respectively. These opti-

cal filters are polarization preserving: a property critical for simultaneous acquisition of

cross polarized multispectral images using our existing beam splitter setup. The Semrock

Brightline R© single bandpass filters11 have the polarization preserving property with more

than 90% transmission in the pass band. Such high transmission property is crucial for

our setup because we lose more than 80% of the light source emission due to linear polar-

izer and the beam splitter. The center wavelength of these filters were chosen to sample
10http://www.thorlabs.de/NewGroupPage9.cfm?ObjectGroup_ID=988
11http://www.semrock.com/Catalog/Category.aspx?CategoryID=27
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the most significant points in the chromophore absorption curve cobtained by [11, Fig.7].

Hence, this filter set targets the subsurface reflectance characteristics of human skin. The

result of multispectral capture is shown in Fig. 3.20.

The diffuse Multispectral images clearly show the effect of absorption by in multiple

skin layers. For example, the 655 nm diffuse image in Fig. 3.20 do not show freckle and

moles which are visible in other bands of the multispectral diffuse image set. It is the

subject of future work to use these multispectral images to recover parameters of a skin

reflectance model like [11].

Table 3.2: Single bandpass filters used for the Multispectral light stage
Filter Center Wavelength (nm) Bandwidth (nm) Average Transmission (%)
FF01-407/17-25 407 17 > 90
FF01-434/17-25 434 17 > 90
FF01-445/20-25 445 20 > 93
FF01-497/16-25 497 16 > 90
FF01-576/10-25 576 10 > 90
FF01-655/15-25 655 15 > 90

Fig. 3.19: Transmission spectrum of single-bandpass optical filters used for the Multi-
spectral light stage
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Fig. 3.20: Multispectral diffuse and specular image set for a face region
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Chapter 4

Multispectral Light Stage Data

Processing

Ma’s original Light Stage [26] allows capture of spherical gradient and constant illumina-

tion images in full visible spectrum. These images can be used to recover high resolution

surface geometry using the spherical gradient photometric stereo technique. Addition of

single bandpass optical filters to the existing capture device setup of the Light Stage al-

lows capture of multispectral spherical gradient and constant illumination images at six

narrow bands in the visible spectrum. These multispectral images capture the reflectance

properties of multi-layered materials like human skin. Such multispectral reflectance maps

can be used with parametric skin reflectance models like [11].

In this chapter, we first discuss the theoretical background of the spherical gradient

photometric stereo method of Ma et al. [26]. This method assumes perfect registration (or

alignment) of all the gradient images being used for computation of photometric normal.

For a non-static object like a human face, it is not possible to remain still during capture

of all the four ([26]) or six ([37]) gradient images. To correct for motion during the capture

process, we discuss the “Joint Photometric Alignment” method proposed by Wilson et al.

[37]. Using our modified radiance equations, we explore a Quadratic Programming (QP)

based normal correction algorithm for surface geometry recovered using spherical gradient

photometric stereo. Finally, based on our analysis of modified radiance equations, we

propose a method to compute photometric normals using minimal four image set consist-

ing of (X,Y, Z, {X̄, Ȳ , Z̄}). We also show that the proposed method has the improved

robustness property of [37] and reduced data capture requirement benifit of [26].
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4.1 Spherical Gradient Photometric Stereo using Diffuse

Images

For every image point (i.e. pixel) in a diffuse image, we define a local coordinate frame

[~u,~v, ~n] such that the ~n axis aligns with the surface normal of the surface patch corre-

sponding to that image point as shown in Fig. 4.1. We use primed symbols, i.e. ω′, to

represent vectors in a local coordinate frame. The axes of local coordinate frame [~u,~v, ~n]

O

XY

Z

n u
v

image plane

image point
(pixel)

surface patch

Fig. 4.1: Global (X,Y, Z) and local coordinate (u, v, n) frame for diffuse images

can be defined in terms of the global coordinate frame [O,X, Y, Z] as

~u = (uxi+ uyj + uzk),

~v = (vxi+ vyj + vzk),

~n = (nxi+ nyj + nzk).

Let us also define ω′ = (ω′u, ω
′
v, ω

′
n) as the spherical direction in local coordinates such

that the corresponding global coordinates are given by

ω = (ω′uux + ω′vvx + ω′nnx)i+ (ω′uuy + ω′vvy + ω′nny)j + (ω′uuz + ω′vvz + ω′nnz)k.

For any Lambertian surface, the value of radiance under spherical illumination is given by

r =
∫

Ω
P (ω)R(ω, n)dω =

∫
Ω
P (ω′)R(ω′, [0, 0, 1])dω′, (4.1)

where P (ω) and P (ω′) represent the intensity of light incoming from direction ω (global

coordinate) and ω′ (local coordinate) respectively and R(ω, n) is the Lambertian Bidirec-
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tional Reflectance Distribution Function (BRDF). Recall that both ω and ω′ represent the

same physical direction but in different coordinate frames. In (4.1) we have substituted

[0, 0, 1] vector for the normal because the n axis of local coordinate frame aligns with the

surface normal.

In the case of X-gradient spherical illumination, the intensity of light incident from

direction ω′ ∈ Ω is proportional to the X-component of ω ∈ Ω (the corresponding incident

direction represented in global coordinate).

P (ω′) = Px(ω) = (ω′uux + ω′vvx + ω′nnx) ∈ [−1, 1] (4.2)

As it is not possible to emit light with negative value of intensity, we cannot realize an

X-gradient illumination with P (ω′) ∈ [−1, 1]. Hence, we rescale as follows:

P (ω′) =
Px(ω) + 1

2
=

(ω′uux + ω′vvx + ω′nnx) + 1
2

∈ [0, 1]. (4.3)

4.1.1 Radiance Equation for Gradient Illumination

Substituting (4.3) in (4.1), we can write the radiance equation for X-gradient illumination

as:

rx =
∫

Ω

(
ω′uux + ω′vvx + ω′nnx + 1

2

)
R(ω′, [0, 0, 1])dω′. (4.4)

Both Ma et al. [26] and Wilson et al. [37] assumed that the surface is convex and that the

diffuse reflectance is symmetric about the surface normal. Hence, the integral over the

hemisphere along ux and vx axes becomes 0 and the gradient radiance simplifies to

rx =
1
2

{
nx

∫
Ω
ω′nR(ω′, [0, 0, 1])dω′ +

∫
Ω
R(ω′, [0, 0, 1])dω′

}
,

=
πρD

2

{
nx

∫ 1

0
ω′nω

′
ndω′ +

∫ 1

0
ω′ndω′

}
,

rx =
πρD

2

{
1
3
nx +

1
2

}
, (4.5)

where ρD is the diffuse albedo. In a similar way, we can arrive at the following equations

for diffuse radiance in Y and Z gradient illumination:

ry =
πρD

2

{
1
3
ny +

1
2

}
, (4.6)
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rz =
πρD

2

{
1
3
nz +

1
2

}
. (4.7)

4.1.2 Radiance Equation for Constant Illumination

For ideal constant spherical illumination, the intensity of light incident from all the possible

spherical directions is a constant, i.e.

P (ω′) = 1 for all ω′ ∈ Ω.

Thus, the expression for radiance under constant illumination becomes:

rc =
∫

Ω
R(ω′, [0, 0, 1])dω′

=
∫ 1

−1
(πρD)max(0, ω′.[0, 0, 1])dω′

= πρD

∫ 1

0
ω′ndω′,

rc =
πρD

2
. (4.8)

It is evident from (4.8) that the constant illumination image is used to recover the diffuse

albedo ρD.

4.1.3 Surface Normal Estimation

Ma et al. [26] used the ratio of gradient images to the constant illumination image to

recover high resolution surface geometry of the surface visible in the gradient images.

Hence, the ratio of (4.5),(4.6), (4.7) to (4.8) results in:

nx =
1
Nd

(
rx
rc
− 1

2

)
,

ny =
1
Nd

(
ry
rc
− 1

2

)
,

nz =
1
Nd

(
rz
rc
− 1

2

)
,

where, Nd is a normalizing constant given by

Nd =

√(
rx
rc
− 1

2

)2

+
(
ry
rc
− 1

2

)2

+
(
rz
rc
− 1

2

)2

. (4.9)
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4.2 Spherical Gradient Photometric Stereo using Specular

Only Images

For the analysis of specular radiance, let us define global [X,Y, Z] and local coordinate

[~s,~t, ~u] frames as shown in Fig. 4.2. vi represents the view vector and vr is the reflected

direction of view vector which is obtained by 180◦ rotation of vi around the surface normal

n. The local coordinate frame [~s,~t, ~u] for every image point (i.e. pixel) in a specular image

is defined such that u axis aligns with the reflected direction of view vector vr and the

orthogonal axes ~s,~t are orthogonal to u axis. The axes of local coordinate frame [~s,~t, ~u]

v i v r
n

X
Y

Z

t
s

u
image plane

image point
(pixel)

surface patch

θθ

O

Fig. 4.2: Global (X,Y, Z) and local coordinate (u, v, n) frame for specular images

can be defined in terms of the global coordinate frame [O,X, Y, Z] as:

~s = (sxi+ syj + szk),

~t = (txi+ tyj + tzk),

~u = (uxi+ uyj + uzk).

Let us also define ω′ = (ω′s, ω
′
t, ω
′
u) as the spherical direction in local coordinate frame such

that the corresponding global coordinate frame direction is given by

ω = (ω′ssx + ω′ttx + ω′uux)i+ (ω′ssy + ω′tty + ω′uuy)j + (ω′ssz + ω′ttz + ω′uuz)k.

The value of specular radiance under spherical illumination is given by

r =
∫

Ω
P (ω)R(ω, vi, n)dω =

∫
Ω
P (ω′)R(ω′, v′i, n

′)dω′, (4.10)
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where, P (ω) and P (ω′) represent the intensity of light incoming from direction ω (global

coordinate) and ω′ (local coordinate) respectively and R(ω, vi, n) is the specular Bidirec-

tional Reflectance Distribution Function (BRDF). Recall that both ω and ω′ represent the

same physical direction but in different coordinate frames. The specular BRDF can be

expressed as

R(ω, vi, n) = S(r, vi, n)Ψ(ω, n), (4.11)

where, r = 2(n.ω)n − ω is the perfect specular reflected direction, S is the specular

reflectance lobe which is non-zero around a small solid angle around r and Ψ is the fore-

shortening factor.

4.2.1 Radiance Equation for Gradient Illumination

In the case of X-gradient spherical illumination, the intensity of light incident from di-

rection ω′ ∈ Ω is proportional to the X-component of ω ∈ Ω (the corresponding incident

direction represented in global coordinate), i.e.

P (ω′) = Px(ω) = (ω′ssx + ω′ttx + ω′uux) ∈ [−1, 1]. (4.12)

As it is not possible to emit light with negative value of intensity, we cannot realize an

X-gradient illumination with P (ω′) ∈ [−1, 1]. Hence, we rescale as follows:

P (ω′) =
Px(ω) + 1

2
=

(ω′ssx + ω′ttx + ω′uux) + 1
2

∈ [0, 1]. (4.13)

Substituting (4.13) and (4.11) in (4.10), we can write the radiance equation for X-

gradient illumination as:

rx =
∫

Ω

(
ω′ssx + ω′ttx + ω′uux + 1

2

)
S(r′, v′i, n

′)Ψ(ω′, n′)dω′ (4.14)

where the superscript ′ is added to represent coordinates in local coordinate frame. Ma et

al. [25, p27] assumed the foreshortening factor Ψ to be constant (say cf ). This assumption

is not valid for glossy reflections (i.e. the specular lobe S is non-zero around a large solid

angle around r) and surface patches that lie at grazing angle with respect to the viewer

(i.e. vi ∼ 90◦).

The ideal specular lobe S is symmetric along the u axis and hence the first two terms
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involving sx and tx in (4.14) become zero resulting in

rx =
1
2

{
ux

∫
Ω
ω′uS(r′, v′i, n

′)Ψ(ω′, n′)dω′ +
∫

Ω
S(r′, v′i, n

′)Ψ(ω′, n′)dω′
}
. (4.15)

In a similar way, we can arrive at the following equations for specular radiance in Y

and Z gradient illumination:

ry =
1
2

{
uy

∫
Ω
ω′uS(r′, v′i, n

′)Ψ(ω′, n′)dω′ +
∫

Ω
S(r′, v′i, n

′)Ψ(ω′, n′)dω′
}
, (4.16)

rz =
1
2

{
uz

∫
Ω
ω′uS(r′, v′i, n

′)Ψ(ω′, n′)dω′ +
∫

Ω
S(r′, v′i, n

′)Ψ(ω′, n′)dω′
}
. (4.17)

4.2.2 Radiance Equation for Constant Illumination

For ideal constant spherical illumination, the intensity of light incident from all the possible

spherical directions is a constant, i.e.

P (ω′) = 1 for all ω′ ∈ Ω.

Thus, the expression for specular radiance under constant illumination becomes

rc =
∫

Ω
S(r′, v′i, n

′)Ψ(ω′, n′)dω′. (4.18)

4.2.3 Surface Normal Estimation

It is evident from (4.15), (4.16), (4.17) and (4.18) that we can recover the reflected direction

of the view vector vr = u(ux, uy, uz) by subtracting the constant illumination specular

image from the X, Y and Z gradient illumination specular image followed by normalization.

Mathematically,

ux =
1
Ns

(rx −
1
2
rc),

uy =
1
Ns

(ry −
1
2
rc),

uz =
1
Ns

(rz −
1
2
rc), (4.19)

where, Ns =
√

(rx − 1
2rc)

2 + (ry − 1
2rc)

2 + (rz − 1
2rc)

2 is a normalizing constant. The half

way vector between view vector vi = [0 0 − 1]T and the reflected direction of view
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vector corresponds to the surface normal and is given by

~n =
1
N̄

(vr + vi), (4.20)

where, N̄ is a normalizing constant and vr = u.

The specular normal map is able to capture fine surface details because unlike diffuse

radiance — which is a subsurface phenomena — specular reflection is a surface phenomena.

A fine structure due to white paint on the nose tip of a white cement statue is revealed

in the specular normal map of Fig. 4.4 (top right) while the diffuse normal map (top left)

does not capture this fine detail. The constant foreshortening factor F assumption of [25,

p27] breaks down at grazing angle as revealed by large amount of noise in the boundary of

face and both sides of the nose bridge in the specular normal map of Fig. 4.4 (top right).

4.3 Analysis of the Normalizing Constant Value - Nd and Ns

n
v

u

u

t

s

Fig. 4.3: Centroid (depicted by small white circle) of diffuse and specular reflectance lobe

The vector along the direction of diffuse and specular lobe centroids (as shown by

white circle in Fig. 4.3) can be converted to a unit vector by normalization: operation in

which a vector is divided by its magnitude (also called normalization constant or `2-norm

) to obtain a unit vector in its direction. The expression for normalization of diffuse and

specular centroid is given by:

Nd =
1
rd
c

√(
rd
x −

1
2
rd
c

)2

+
(
rd
y −

1
2
rd
c

)2

+
(
rd
z −

1
2
rd
c

)2

,

Ns =

√(
rs
x −

1
2
rs
c

)2

+
(
rs
y −

1
2
rs
c

)2

+
(
rs
z −

1
2
rs
c

)2

.

Note that these expressions for Nd and Ns are same as (4.9) and (4.19) with only the

superscript d and s added to depict the diffuse and specular radiance values. The unit
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vector along diffuse and specular centroid direction correspond to the surface normal and

reflected direction of the view vector respectively.

The normalizing constant values Nd and Ns are proportional to the size of diffuse

and specular reflectance lobes respectively. Hence, for a typical diffuse surface, we would

expect Ns < Nd to hold true. The distribution of Nd and Ns for a white cement plaster

statue (diffuse object) shown in Fig. 4.4 supports this hypothesis. The distribution of

Fig. 4.4: Distribution of diffuse Nd (bottom left) and specular Ns (bottom right) normal-
izing constant value for a region (depicted with white rectangle) in the diffuse (top left)
and specular(top right) normal map of a white cement plaster statue.

diffuse normalizing constant Nd value reveals another interesting fact. Most of the Nd

values are clustered in (0.37, 0.41) region. We need to investigate deeper into the nature

of ideal diffuse reflectance centroid to be able to explain this behaviour. Let us consider an

ideal diffuse reflectance lobe symmetric along n axis and stretching k units along this axis

of the local coordinate frame [u, v, n] as shown in Fig. 4.3. Such diffuse reflectance lobe

can be defined by the solution for f(u, v, n) = 0, where the function f(u, v, n) is defined

as:

f(u, v, n) = u2 + v2 + n2 − k2 n ∈ [0, k].
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As the diffuse reflectance function is symmetric about n axis, its centroid is given by

(u0, v0, n0) =
(

0, 0,
∫
nf(u, v, n)dn∫
f(u, v, n)dn

)
=
(

0, 0,
3(k2 − 2k)
4(k2 − 3)

)
.

So, for a unit diffuse reflectance lobe (i.e. k = 1), the centroid lies at (0, 0, 0.375) and the

values of diffuse normalizing constant is Nd = 0.375. Hence, the distribution of Nd in Fig.

4.4 confirms that the white cement plaster surface has reflecting properties that are close

to an ideal diffuse surface.

For a wide variety of real world surfaces, the diffuse and specular reflectance lobes get

distorted due to inter-reflection, ambient occlusion and coarse approximation of spherical

illumination due to light discretization. This causes the diffuse and specular lobe centroids

to shift away from its ideal position on the surface normal and reflected direction of the

view vector respectively. For these reasons, the normalizing constant values cannot be used

to infer the nature of diffuse and specular reflectance lobes. For example, it is possible

for a completely distorted diffuse lobe to acquire centroid value of a unit diffuse lobes (i.e.

(0, 0, 0.375)). Hence, although the value of normalizing constant is a good measure of the

reflecting properties of a surface, it cannot be used to quantify the nature of distortion in

the reflectance lobes. Analysis of the normalizing constant values provides a good insight

into the basis of spherical gradient photometric stereo technique and its limitations.

4.4 Quadratic Programming based Normal Correction

Quality of surface geometry recovered using spherical gradient photometric stereo [26] is

affected by the extent to which the following assumptions are satisfied:

1. no shadowing of light sources i.e. object is convex

2. no inter-reflection i.e. light incident on a surface patch is solely due to light source

and not because of reflections from nearby surface patches

3. light sources closely approximate a continuous illumination environment i.e. effect

of “light discretization”1 is minimal

In this section, we will introduce new parameters to the original Ma et al. [26] radiance

equations in order to quantify the extent of violation of these three assumptions. These
1a term used by Ma et al. [26] to refer to coarse approximation of spherical illumination caused by

LEDs attached to discrete positions on a twice subdivided icosahedron. It is important to realise that the
term “light discretisation” does not imply that intensity of light sources is discrete.
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Fig. 4.5: Deformed diffuse (left) and specular (right) lobes due to inter-reflection, ambient
occlusion and coarse approximation of spherical illumination

modified radiance equations not only helps uncover the limitations of Ma et al. method,

but also provide insight into possible modifications of this technique in order to improve

the quality of recovered surface geometry. Using these modified equation, we show why

the quality of normal estimated by Ma et al. method degrades with deformed diffuse lobe.

We also propose a Quadratic Programming (QP) based normal correction technique to

compensate for the effects of deformed diffuse lobes and hence improve the quality of

recovered surface normals. Finally, based on analysis of our modified radiance equations,

we propose a minimal image sets method for spherical gradient photometric stereo which

has the improved robustness property of Wilson et al. [37] and reduced data capture

requirement benifit of Ma et al. [26].

Here, we present an analysis of diffuse lobes deformation only because similar approach

can be used to analyse the effects of deformed specular lobes.

4.4.1 Modified Radiance Equations for Gradient Illumination

unoccluded regon of
visible hemisphere

n

Fig. 4.6: Ambient occlusion in concave surfaces

Ambient occlusion limits the portion of hemisphere visible to a surface patch as shown

in Fig. 4.6. Hence, to quantify the effect of ambient occlusion at an arbitrary surface patch
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p in spherical illumination images, we introduce the following binary visibility function:

Vp,ω′ =

 1 if direction ω′ is unoccluded,

0 otherwise.
(4.21)

We can now rewrite the X gradient radiance equation of (4.4) as:

rx =
∫

Ω
Vp,ω′

(
ω′uux + ω′vvx + ω′nnx + 1

2

)
R(ω′, [0, 0, 1])dω′. (4.22)

Inter-reflections and coarse approximation of spherical illumination deforms the diffuse

reflectance lobe along the ux and vx axes. Hence, contribution of the integrals along ux

and vs axes cannot be ignored in the case of deformed diffuse lobe. In other words, the

diffuse reflectance lobe is no more symmetric along the nx axes. Ma et al. [26] and Wilson

et al. [37] assumed a diffuse reflectance lobe symmetric along the nx axis and therefore

they were able to ignore the contribution of these integrals in their analysis.

We do not ignore the effect of asymmetry in diffuse reflectance lobe. However, as it is

not possible to evaluate the integrals along ux and vx, we quantify the extent of distortion

in diffuse reflectance lobe using a single scalar δ′x (distortion coefficient). This parameter

scales the diffuse albedo πρD to quantify the contribution of integrals along ux and vx axes

in (4.22). In other words, we make the simplifying assumption that overall deformation

in the diffuse reflectance lobe for a gradient illumination environment can be quantified

using a single parameter δ′x (distortion coefficient).

Adding this parameter to (4.22) gives:

rx =
πρD

2

{
δ′x + nx

∫ 1

0
ω′nVp,ω′ω

′
ndω′ +

∫ 1

0
Vp,ω′ω

′
ndω′

}
(4.23)

where,

δ′x(πρD) = ux

∫
Ω
ω′uVp,ω′R(ω′, [0, 0, 1])dω′ + vx

∫
Ω
ω′vVp,ω′R(ω′, [0, 0, 1])dω′

To simplify the evaluation of (4.23), we first consider the ideal case value for the visibility

function i.e. when complete hemisphere is visible. In this ideal case, Vp,ω′ = 1 for all
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ω′ ∈ Ω, (4.23) simplifies to:

rx =
πρD

2

{
δ′x + nx

∫ 1

0
ω′nω

′
ndω′ +

∫ 1

0
ω′ndω′

}
=

πρD

2

{
δ′x +

1
3
nx +

1
2

}
. (4.24)

For real world objects, the ideal case value of visibility function is not valid i.e. ∃ω′ ∈ Ω :

Vp,ω′ 6= 1. This implies that the actual value of two integrals in (4.23) will be less than

their ideal case values i.e.

∫ 1

0
ω′nVp,ω′ω

′
ndω′ <

1
3

and
∫ 1

0
Vp,ω′ω

′
ndω′ <

1
2
.

To quantify the overall effect of shadowing, we define the ambient occlusion term Vp ∈ [0, 1]

such that: Vp = 1 when complete hemisphere is visible and Vp = 0 for completely occluded

hemisphere. The intermediate values 0 < Vp < 1 apply to partial occlusion. Substituting

this visibility parameter in (4.24), we obtain the following expression for radiance from

real world surfaces under X gradient illumination:

rx =
πρDVp

2

{
δx +

1
3
nx +

1
2

}
, (4.25)

where, δ′x = Vpδx. In a similar way, we can obtain the expression for radiance in Y and Z

gradients illumination

ry =
πρDVp

2

{
δy +

1
3
ny +

1
2

}
, (4.26)

rz =
πρDVp

2

{
δz +

1
3
nz +

1
2

}
. (4.27)

4.4.2 Modified Radiance Equation for Constant Illumination

For constant spherical illumination, Ma et al. [26] assumed the intensity of light incident

from all possible spherical directions to be unity, i.e.

P (ω′) = 1 for ω′ ∈ Ω.

This is true for ideal case spherical illumination. However, this assumption ignores: a)

light source attenuation effects, which is equivalent to assuming all points on the object lie
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exactly at the centre of the light stage; b) contribution of inter-reflection and shadowing

which can increase or decrease the intensity of light incident from a particular spherical

direction. In (4.4.1), we introduced the binary visibility function Vp,ω′ which models

whether a spherical direction ω′ is visible at any surface patch p. For a surface patch, the

intensity light incident from a direction ω′ is dependent on the binary visibility function

defined for that surface patch. Therefore, we can now define P (ω′) as:

P (ω′) =

 cp,ω′ if Vp,ω′ = 1

0 otherwise,
(4.28)

where, cp,ω′ models the angular deviation of intensity under constant illumination for a

surface patch p. As it is not possible to evaluate radiance integral using this defination

of P (ω′), we make the simplifying assumption that the intensity of incident light is unity

when a spherical incident direction is visible from a surface patch. In other words, we

also use the unit incident intensity assumption of Ma et al. but only for visible spherical

directions. Mathematically,

P (ω′) =

 1 if Vp,ω′ = 1

0 otherwise.
(4.29)

This simplifying assumption ignores the light source attenuation effects and contribution

of inter-reflection and only includes the contribution of shadowing effects under constant

spherical illumination. Using this simplifying assumption, the expression for radiance

under constant spherical illumination becomes:

rc =
∫

Ω
P (ω′)Vp,ω′R(ω′, [0, 0, 1])dω′

=
∫ 1

−1
Vp,ω′(πρD)max(0, ω′.[0, 0, 1])dω′

= πρD

∫ 1

0
Vp,ω′ω

′
ndω′ =

πρDVp

2
. (4.30)
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C X Y Z

nx nznyn

Fig. 4.7: Shadows clearly visible in the constant C and gradient (X,Y, Z) images (top row)
of a white cement plaster statue. The normal map (bottom leftmost - normal components
mapped to R,G,B) and the X,Y,Z normal components depicted as grayscale image (bottom
right three) do not show the effect of shadows.

4.4.3 Quality of Surface Normal Estimated Using Original Spherical

Gradient Photometric Stereo Method

The expression for computing photometric normal using Ma et al. [26] method is:

~n =
( rx

rc
− 1

2 ,
ry

rc
− 1

2 ,
rz
rc
− 1

2)

||( rx
rc
− 1

2 ,
ry

rc
− 1

2 ,
rz
rc
− 1

2)||
(4.31)

Now, we use our modified radiance equations to represent the surface normal computed

using the above method:

N{x,y,z} =
r{x,y,z}

rc
− 1

2
= δ{x, y, z}+

1
3
n{x,y,z}, (4.32)

where, N{x,y,z} is the unnormalized surface normal vector. It is evident from above expres-

sion that although the occlusion term (Vp) cancel in this “ratio method”, the diffuse lobe

distortion term δ{x,y,z} does not cancel out. Therefore, we conclude that the quality of

surface normals computed using Ma et al. method will degrade with deformation in diffuse

lobe. It is important to understand that the cancellation of occlusion term (Vp) results

from the following simplifying assumption used while evaluating the radiance equation for
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constant illumination: the intensity of incident light is unity when a spherical incident

direction is visible from a surface patch i.e. P (ω′) = 1 if direction ω′ is unoccluded.

The modified radiance equations of (4.25, 4.26, 4.27 and 4.30) form an underdeter-

mined system with 3 equations and 6 unknowns. In the next section, we explore the

concept of complement image constraint in order to obtain additional constraints for this

underdetermined system. This analysis will form the basis for our Quadratic Programming

(QP) based normal correction.

4.4.4 Modified Radiance Equations for Complement Gradient Illumina-

tion

Light Stage uses a reference coordinate frame [O,X, Y, Z] to setup gradient illumination.

In addition to this gradient condition, complementary coordinate frame [O, X̄, Ȳ , Z̄] can

also be used to setup complement gradient illumination environment. Here, O is the

center of light stage and [X̄, Ȳ , Z̄] are the coordinate axes obtained by flipping [X,Y, Z] as

shown in Fig. 4.8. Although the true surface normal n remains same in both coordinate

X
Z

Y

X

Z

Y

O

Fig. 4.8: Complement coordinate frames in a Light Stage

frames, the distortion of diffuse reflectance lobe may not be identical. In other words, the

distortion of diffuse lobe in complement gradient illumination contains some asymmetry

with respect to the distortion observed in the gradient illumination. In the case of ideal

spherical illumination and absence of ambient occlusion and inter-reflection, diffuse lobe

distortion is symmetric in gradient and complement gradient illumination. To model the

asymmetry present in complement gradient illumination, we represent the diffuse lobe
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distortion as the sum of symmetric distortion observed under gradient illumination (δx)

and an asymmetric component (δx̄). Therefore, we rewrite (4.25) in order to include

asymmetry is diffuse lobe under the complement gradient illumination:

rx̄ =
πρDVp

2

{
δx + δx̄ +

1
3
nx̄ +

1
2

}
, (4.33)

where, δx̄ is a scalar quantifying the amount of asymmetry (with respect to distortion in

gradient illumination) in the distortion of diffuse lobe. Flipping the reference coordinate

frame does not alter the true surface normal and therefore (4.33) can be rewritten as:

rx̄ =
πρDVp

2

{
δx + δx̄ −

1
3
nx +

1
2

}
, (4.34)

In a similar way, we can obtain the following expression for radiance under Y and Z

complement gradient illumination:

rȳ =
πρDVp

2

{
δy + δȳ −

1
3
ny +

1
2

}
, (4.35)

rz̄ =
πρDVp

2

{
δz + δz̄ −

1
3
nz +

1
2

}
. (4.36)

The complement gradient images have also been used by Wilson et al. [37] to formulate

an iterative algorithm (Joint Photometric Alignment) for estimation of optical flow of

subject’s motion during performance capture in a Light Stage.

4.4.5 Correcting Recovered Surface Normals Using Quadratic Program-

ming

In this section, we will explore a Quadratic Programming (QP) based correction of surface

geometry recovered using spherical gradient photometric stereo method. From the analysis

so far (section 4.4.1, 4.4.2 and 4.4.4), we have the following expressions for radiance under

gradient and complement gradient spherical illumination:

r{x,y,z} = δ{x,y,z} +
1
3
n{x,y,z} +

1
2
, (4.37)

r{x̄,ȳ,z̄} = δ{x,y,z} + δ{x̄,ȳ,z̄} −
1
3
n{x,y,z} +

1
2
. (4.38)
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From (4.37) and (4.38), we have 6 linear equations resulting in an underdetermined

system in 9 unknowns x = (δx, δy, δz, δx̄, δȳ, δz̄, nx, ny, nz) which can be expressed in matrix

form as:

Ax = b where A ∈ R6×9, (4.39)

A =



1 0 0 0 0 0 1
3 0 0

0 1 0 0 0 0 0 1
3 0

0 0 1 0 0 0 0 0 1
3

0 0 0 −1 0 0 2
3 0 0

0 0 0 0 −1 0 0 2
3 0

0 0 0 0 0 −1 0 0 2
3


, and b =



rx
rc
− 1

2

ry

rc
− 1

2

rz
rc
− 1

2

rx−rx̄
rc

ry−rȳ

rc

rz−rz̄
rc


.

We apply a Quadratic Programming (QP) approach to perform correction to the sur-

face normals computed using our minimal image sets method (or that computed using

[37] or [26]). We regularize the problem such that QP computes new surface normals

and estimates for distortion coefficients such that our linear system is satisfied and the

new surface normals are closest to an initial solution. For example, if we take the dif-

fuse centroid (nWil
x , nWil

y , nWil
z ) estimated by the method of Wilson et al. [37] and define

x0 = (0, 0, 0, 0, 0, 0, nWil
x , nWil

y , nWil
z ), then we can correct for deformed diffuse lobes by

solving the following quadratic programming problem

minimise ‖x− x0‖2 subject to Ax = b. (4.40)

Results from QP based Surface Normal Correction

First, we analyse the results of QP based surface normal correction for a simple static

object (white cylinder) because the captured gradient images are perfectly aligned and its

ground truth data is known. Moreover, the simple convex surface of this object allows us

to evaluate the performance of our QP based normal correction strategy.

When the initial solution to the QP based normal correction is the surface normal

recovered using Ma et al. [26] method, the corrected normals tend to move towards the

true surface normal as shown in Fig. 4.9 (left). The correction algorithm cannot recover

true normals because we seek the corrections that are closest to the initial solution given

by the Ma et al. [26] method. When the initial solution to the QP based normal correction

is the surface normal recovered using Wilson et al. [37] method, the corrected normals tend
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x0 = [ Ma2007 ] x0 = [ Wilson2010 ]
Fig. 4.9: Result of QP based normal correction applied to surface normals of a white
cylinder when initial solution is (left) x0 = (0, 0, 0, 0, 0, 0, nMa

x , nMa
y , nMa

z ) and (right) x0 =
(0, 0, 0, 0, 0, 0, nWil

x , nWil
y , nWil

z ).

to remain close to the initial solution as shown in Fig. 4.9 (right). This indicates that

the surface normals recovered using Wilson et al. [37] are already close to the true surface

normals.

Fig. 4.10: (left) 1 pixel wide verticle region and (right) 1 pixel wide horizontal region in
gradient images of the face region of a statue selected for analysis of QP based normal
correction. (center) Side view photograph of the statue’s face region.

Now, we analyse the results of QP based surface normal correction applied to the face

region of a statue made of white cement: a material that exhibits property very close

to an ideal diffuse surface. First, let us consider the surface normals in a 1 pixel wide

vertical region (Fig. 4.10 - left) as shown in Fig. 4.11. When the normals computed

by Ma et al. method is the initial solution, the corrected normals tend to move closer

towards the surface normals computed using Wilson et al. method. On the other hand,

when the normal computed by Wilson et al. method is the initial solution, the corrections

computed by QP is insignificant. This suggests that the normals computed using Wilson et
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al. method is already very close to satisfying the constraints i.e. Ax = b. Moreover, Fig.

4.11 clearly shows that the corrected normals retain the noise characteristics of the initial

solution, irrespective of the choice of initial solution. This behaviour could be attributed

to the fact that we apply QP based correction to each image pixel independently and

therefore the noise characteristics is propagated to corrected normals. We obtain similar

results for the 1 pixel wide horizontal region (Fig. 4.10 - right) as shown in Fig. 4.12.

From Fig. 4.12 (top), it is evident that QP based correction is significant in the region

(250 to 450 pixel region) where the initial solution had large deviation from the surface

normals computed by Wilson et al. method.

We used MATLAB 7.9 (R2009b) implementation of Quadratic Programming, qprog(),

running on Slackware 13.1-2-12 on 3 GHz Intel R©Core2 Duo CPU for testing this nor-

mal correction algorithm. It takes around 1.78 hours to perform normal correction on a

photometric normal map of size 1624× 1236.

Fig. 4.11: nz component of surface normals in 1 pixel wide selected vertical region (Fig.
4.10 - left) obtained after applying QP based normal correction with initial estimate of
surface normals from (top) Ma et al. method i.e n0 = n[Ma2007] and (bottom) Wilson et
al. method i.e. n0 = n[Wilson].
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4.4.6 Discussion

QP based normal correction algorithm provides insignificant improvement in the recov-

ered surface geometry. However, it will be evident in the next section that this analysis

is pivotal to the development of minimal image sets method for robust spherical gradient

photometric stereo. The modified radiance equations, which resulted in QP based cor-

rection algorithm, not only reveal the limitations of original Ma et al. [26] method but

also provide an explanation for the improvement in quality of surface normals recovered

by the complement gradient method of Wilson et al. [37]. Furthermore, in the next sec-

tion, we use this analysis to show that our proposed minimal image sets method combines

the advantage of the original method of Ma et al. (reduced data capture requirement)

with that of Wilson et al. (improved robustness). Hence, although the QP based normal

correction algorithm did not result in significant improvement over existing methods, it

provided us with valuable insight into the limitations and strength of the spherical gradient

photometric stereo technique.

Fig. 4.12: nz component of surface normals in 1 pixel wide selected horizontal region (Fig.
4.10 - right) obtained after applying QP based normal correction with initial estimate of
surface normals from (top) Ma et al. method i.e n0 = n[Ma2007] and (bottom) Wilson et
al. method i.e. n0 = n[Wilson].
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4.5 Minimal Image Sets for Robust Spherical Gradient Pho-

tometric Stereo

In section 4.4.3, we used our modified radiance equations to show that the quality of

surface normals computed using Ma et al. [26] method will degrade with deformation in

diffuse lobe. In this section, using the same modified radiance equations, we show how the

method of Wilson et al. [37] uses a set of 6 gradient and complement gradient images to

cancel out the effects of deformed diffuse lobe. Finally, based on the analysis of spherical

gradient photometric stereo using our modified radiance equations, we propose a minimal

4 image set method that combines the advantage of the original method of Ma et al.

(reduced data capture requirement) with that of Wilson et al. (improved robustness).

Recently, Wilson et al. [37] proposed the use of complement gradient images, in addition

to gradient images, to improve the quality of recovered surface normals. This method used

the difference of gradient and complement gradient images to recover surface normals.

Mathematically, the “difference method” of [37] is given by:

~n =
[rx − rx̄, ry − rȳ, rz − rz̄]T

||[rx − rx̄, ry − rȳ, rz − rz̄]||
. (4.41)

They claimed that this method improves the quality of the normal estimates over esti-

mates from Ma et al. [26], since “the pixels that are dark under one gradient illumination

condition are most likely well exposed under the complement gradient illumination condi-

tion” [37, p17:5]. Indeed, the validity of this claim is easily demonstrated by our modified

radiance equations. Once again, we use our modified radiance equations to represent the

surface normal computed using Wilson et al. method:

N{x,y,z} = r{x,y,z} − r{x̄,ȳ,z̄}

=
πρDVp

2

{
δ{x̄,ȳ,z̄} +

2
3
n{x,y,z}

}
. (4.42)

As the reader considers equation (4.42), it is critical to understand that we arrived at

this expression using the modified radiance equations that are based on the following

simplifying assumption described in section 4.4.1 and 4.4.4: overall deformation in the

diffuse reflectance lobe for gradient and complement gradient illumination environment

can be quantified using a single scalar parameter δ{x,y,z} and δ{x,y,z}+δ{x̄,ȳ,z̄} respectively.
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The interesting observation in (4.42) is that the symmetric distortion of diffuse lobe

cancel out and the only component contributing to error in the recovery of surface normal

is the asymmetric distortion parameter δ{x̄,ȳ,z̄}. In other words, symmetric deformations

in the reflection lobe are averaged out and therefore the surface normals recovered by

Wilson et al. [37] method are less affected by deformation to the diffuse reflectance lobe

caused by shadowing, inter-reflection and coarse approximation of spherical illumination

due to light discretization. Therefore, we conclude that the method of Wilson et al.

[37] recovers surface geometry closer to the true surface geometry because its “difference

method” involves cancellation of symmetric deformation in diffuse reflectance lobes. This

“symmetric deformation” cancellation property is not present in the “ratio image” method

proposed by Ma et al. [26]. Note that the remaining constant cancel out during the vector

normalization step.

Using our modified radiance equations and building upon the “difference method”

proposed by [37], we derive a minimal four image solution in which symmetric deformations

of diffuse lobes still cancel. We exploit the following complement image contraint to arrive

at the minimal four image solution:

rx + rx̄ = ry + rȳ = rz + rz̄ = rc. (4.43)

Using this X complement image constraint, we rewrite (4.41) as:

n(x,y,z,x̄) =
[rx − rx̄, 2ry − (rx + rx̄), 2rz − (rx + rx̄)]T

‖[rx − rx̄, 2ry − (rx + rx̄), 2rz − (rx + rx̄)]T ‖
(4.44)

Similarly, Y and Z base complement pairs can also be used to obtain n(x,y,z,ȳ) and n(x,y,z,z̄)

as follows:

n(x,y,z,ȳ) =
[2rx − (ry + rȳ), ry − rȳ, 2rz − (ry + rȳ)]T

‖[2rx − (ry + rȳ), ry − rȳ, 2rz − (ry + rȳ)]T ‖
(4.45)

n(x,y,z,z̄) =
[2rx − (rz + rz̄), 2ry − (rz + rz̄), rz − rz̄]T

‖[2rx − (rz + rz̄), 2ry − (rz + rz̄), rz − rz̄]T ‖
(4.46)

In a similar way, we can also derive expressions for complement minimal image sets:

n(x̄,ȳ,z̄,x), n(x̄,ȳ,z̄,y) and n(x̄,ȳ,z̄,z). Therefore, we have total six image sets in our minimal

image sets formulation: n(x,y,z,{x̄,ȳ,z̄}) and n(x̄,ȳ,z̄,{x,y,z}).

In the next section, we show that there is very small angular deviation (∼ 3.9◦) between

the normals computed using Wilson et al. method and our method. This observation
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supports our claim that above substitution indeed preserves the “symmetric deformation

cancellation property”.

The non-symmetric deformation δ{x̄,ȳ,z̄} do not cancel and still contribute to error in

the recovered surface normals. To analyze the influence of non-symmetric deformation,

we computed surface normal of a cylinder as shown in Fig. 4.13 using Wilson et al. [37]

and our method. If there were significant contribution of non-symmetric deformation,

the normals computed using Wilson et al. method and our method would have deviated

strongly from the ground truth (not shown in the plot as it aligns with surface recovered

using Wilson et al. method). Therefore, we conclude that in practice the contribution of

non-symmetric deformation is very small. Unavailability of ground truth data prevented

us from verifying this claim for other more complex surfaces like a human face.

Fig. 4.13: z-component (nz) of estimated surface normals of a cylinder

4.5.1 Results

From our analysis in previous section, we concluded that the method of Wilson et al. [37]

recovers optimal surface geometry as it involves cancellation of symmetric deformation in

diffuse reflectance lobes. Hence, we use the normal map recovered using [37] to assess the

quality of normals recovered using our minimal image sets method and that obtained from

Ma et al. [26]. First let us analyse the results for a static object (a statue). This object is

made up of white cement plaster and hence its reflectance properties are very close to an

ideal diffuse surface. Moreover, the static nature of this object ensures that the captured

gradient images are perfectly aligned2.

In Fig. 4.14 (top row), we show the normal maps computed using the three possible
2misalignment can be caused by motion of the subject during the capture process
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minimal image sets : (X,Y, Z, X̄), (X,Y, Z, Ȳ ) and (X,Y, Z, Z̄). The normal maps com-

puted for same gradient images using Wilson et al. and Ma et al. is shown in the middle

row of Fig. 4.14. The bottom row in this figure shows the distribution of angular error

between normal map computed using our minimal image set method and that computed

using [37] and [26]. It is evident from these histogram that the normal map estimated

using our minimal image sets method (requiring just 4 images) is very close to that esti-

mated by [37] (requiring 6 images). Also, the angular difference is not very large for the

normal map estimate by [26]. Hence, analysis of normal map estimates of a static object

suggests that there is not much significant difference in the normal maps computed using

these three methods.

Now let us perform similar analysis for the normal map of a human face. Small motion

between gradient images of non-static objects, like a human face, is unavoidable. This

results in misalignment of gradient images and therefore causes surface normal deviations

that cannot be modelled using our “diffuse reflectance lobe distortion” framework. Our

Light Stage has significant “light discretization” as we use only 41 LED (74% less than the

Light Stage of [26] and [37]). This contributes significantly to the deformation of diffuse

lobes. The normal estimation technique of Ma et al. is unable to cope with distortion in

the diffuse lobes. This causes the recovered surface normal to have large deviation from

the true surface normal. From our analysis in 4.5, we know that if the deformation in

diffuse lobes is symmetric in the complement images, the normal estimation technique

of Wilson et al. results in cancellation of these deformations. Our minimal image sets

formulation preserves this “deformation cancellation” property and hence there is very

small angular difference (∼ 7.3◦) with the normal map computed using Wilson et al. as

shown in Fig. 4.15. The inability of Ma et al. method to cope with deformation in diffuse

lobe is also evident from the distribution of angular deviation shown in Fig. 4.15 (bottom).

It exhibits large angular deviation (> 42◦) with our minimal image set normal map and

that of Wilson et al. [37].

4.5.2 Discussion

The method of Ma et al. also used 4 images, rx, ry, rz, rc, but it does not use the additional

information about deformation in reflectance lobes obtained from complement gradient

images. On the other hand, Wilson et al. method requires 6 images, rx, ry, rz, rx̄, rȳ, rz̄,

to compensate for deformation of reflectance lobes. Our method requires only 4 images,
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( X , Y , Z , X ) ( X , Y , Z , Y ) ( X , Y , Z , Z )

photometric normals computed using our minimal image set method

[Ma2007] [Wilson2010]

( X , Y , Z , X ) ( X , Y , Z , Y ) ( X , Y , Z , Z )

[Wilson2010]

[Ma2007]

Fig. 4.14: Photometric normals of a statue (static) computed using our minimal image
set method (top) and that computed using Ma et al. [26] (middle left) and Wilson et
al. [37] (middle right). All the three complement base pairs — (X, X̄), (Y, Ȳ )and(Z, Z̄)
— possible in our minimal image set method was used to generate similar photometric
normals. (Bottom) Distribution of angular difference between normal maps computed
using our minimal image set method and that computed using [26] and [37].
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( X , Y , Z , X ) ( X , Y , Z , Y ) ( X , Y , Z , Z )

photometric normals computed using our minimal image set method

[Ma2007] [Wilson2010]

( X , Y , Z , X ) ( X , Y , Z , Y ) ( X , Y , Z , Z )

[Wilson2010]

[Ma2007]

Fig. 4.15: Photometric normals of a face (non-static) computed using our minimal image
set method (top) and that computed using Ma et al. [26] (middle left) and Wilson et
al. [37] (middle right). All the three complement base pairs — (X, X̄), (Y, Ȳ )and(Z, Z̄)
— possible in our minimal image set method was used to generate similar photometric
normals. (Bottom) Distribution of angular difference between normal maps computed
using our minimal image set method and that computed using [26] and [37].
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rx, ry, rz, rx̄, because it exploits the information obtained from X and complement X gra-

dient condition in the estimation of Y and Z complements. In other words, this new

method combines the advantage of the original method of Ma et al. (reduced data capture

requirement) with that of Wilson et al. (improved robustness). This new formulation is

able to reduce the data requirements which is extremely important if the spherical gradient

photometric stereo is to be used for real time performance capture as discussed in 5.1.

It is important to understand that our analysis is based on the following simplifying as-

sumption described in section 4.4.1 and 4.4.4: overall deformation in the diffuse reflectance

lobe for a gradient and complement gradient illumination environment can be quantified

using a single scalar parameter δ{x,y,z} and δ{x,y,z} + δ{x̄,ȳ,z̄} respectively.

4.6 Registration of Spherical Illumination Images

Spherical gradient photometric stereo technique requires capture of 4 spherical illumination

images (X,Y, Z,C) with the assumption that the imaged object remains at the same

position during the capture process. In other words, a pixel position in all the gradient

images should correspond to the same surface patch. However, for non-static objects like

a human face, it is difficult to remain at same position during the capture of these 4

images. Even at high capture frame rate, apparant motion between 1st and 4th image is

unavoidable which causes some inaccuracy in the photometric normals computed using

misaligned gradient images. Hence, in order to recover accurate photometric normals, we

must align these gradient images to the constant illumination image. This task is achieved

by the Joint Photometric Alignment method proposed by Wilson et al. [37].

Traditional optical flow techniques have been successfully applied for alignment of

images consisting of small motion of the imaged object. Such techniques estimate the

apparent motion of object in a sequence of images by exploiting the brightness constancy

assumption i.e. corresponding image points maintain their brightness level despite appar-

ent motion. Mathematically, this assumption can be expressed as:

I(x, t) = I(x+ u, t+ 1)

where, I(x, t) is the image pixel value at a 2D spatial location ~x = [x y]T and time t.

Optical flow based alignment techniques estimate the 2D warp function u (flow field) to
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minimise

u← argminu ε (I(x+ u, t+ 1), I(x, t))

where, ε(.) is the error function which quantifies the extent of misalignment between the

source I(x, t) and target I(x+u, t+1) images. The 4 illumination conditions (X,Y, Z,C) in

spherical gradient photometric stereo are delibrately designed to dramatically change the

pixel brightness of each image point in order to reveal the corresponding surface geometry.

This causes violation of the brightness constancy assumption in the 4 images and hence

traditional optical flow based tecniques cannot be directly applied to align the gradient

images.

The Joint Photometric Alignment technique of Wilson et al. [37] can align these gradi-

ent images at the expense of capturing additional 3 images called the complement gradient

images3 - (X̄, Ȳ , Z̄). They exploit the complement image constraint to align the gradient

(X,Y, Z) and complement gradient images (X̄, Ȳ , Z̄) to the constant illumination image

C (also called tracking frame). Mathematically, the complement image constraint can be

expressed as:

r{x,y,z} + r{x̄,ȳ,z̄} = rc (4.47)

where, r{x,y,z}, r{x̄,ȳ,z̄} and rc represent gradient, complement gradient and constant il-

lumination image respectively. The Joint Photometric Alignment method is an iterative

algorithm that estimates optimal 2D warp functions u and v (flow fields) for the gradient

and complement gradient images such that extent of complement constraint violation is

minimized. Bootstrapping both flows (u and v) initialized to zero, the iterative algorithm

proceeds to minimise the following error in each iteration:

u(i+1) ← argminu ε
(
r{x,y,z}(u), c− r{x̄,ȳ,z̄}(v

(i))
)

v(i+1) ← argminv ε
(
r{x̄,ȳ,z̄}(v), c− r{x,y,z}(u

(i+1))
)

4.6.1 Result from alignment of gradient images

To illustrate the result of joint photometric alignment, we marked 3 feature points (cross

hair inside a bounding rectangle) in the gradient (top left), constant (top center) and

complement gradient (top right) illumination images as shown in Fig. 4.16. We used

the following image capture sequence: X,Z, Y,C, X̄, Z̄, Ȳ . As C and X̄ are consecutive
3introduced in section 4.4.4
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rx rc rx

rx(u) rc rx(v)

original image

gradient images aligned
using joint photometric

alignment

Fig. 4.16: Alignment of spherical gradient images used Joint Photometric Alignment[37].
For illustration purpose, all the intensity values were scaled by 2 except the warped rx̄(v)
which was scaled by 3 because it falls on the dark side of spherical gradient illumination.

frames in the capture sequence, the apparant motion of feature points (clearly visible due

to bounding rectangle) is negligible and hence requires no warping. However, X and C

are two frames apart in the capture sequence and hence there is significant displacement

of the feature points. After the application of joint photometric alignment technique, the

marked feature points get aligned in the warped X gradient image (bottom left) as shown

in Fig. 4.16. Large value of flow field u for X gradient image is evident from dark regions

in the boundary of the corresponding warped image.

As reported in [37], the iterative nature of this alignment technique requires consider-

able amount of time to arrive at acceptable level of alignment. For a 298× 182 grayscale

image, it took 595.30 sec (∼ 10 min.) to complete 10 iterations4. The plot of residual5

at each iteration is shown in Fig. 4.17. This plot depicts that at each iteration there is

significant reduction in residual and hence the number of iterations should be large for the

joint photometric alignment technique to converge at the optimal flow field value.

4each iteration involves two execution of Brox et al. [5] optical flow technique (C implementation
provided by the authors) running in Slackware 13.1-2-12 on 3 GHz Intel R©Core2 Duo CPU

5this residual,
P
|rc − (rx + rx̄)|, quantifies the extent of complement constraint violation
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Iteration

|r c(r
x+r

x)|

Fig. 4.17: Complement constrain residual for 100 iterations of the joint photometric
alignment technique applied to a 298× 182 spherical X gradient image
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Chapter 5

Applications of the Light Stage

A Light Stage provides a rich source of geometric and photometric information that is

useful for many research avenues in, but not limited to, Computer Vision and Computer

Graphics. In this chapter, we will discuss two such applications of the Light Stage which

we have explored.

5.1 Real Time Performance Capture

The real time facial geometry of a dynamic performance can be captured using the spher-

ical gradient photometric stereo based performance capture and photometric alignment

method proposed by Wilson et al. [37]. We modify the capture sequence proposed by

Wilson et al. based on our minimal image sets for robust spherical gradient photometric

stereo (discussed in section 4.5). This modified performance capture sequence results in:

• Reduced data capture requirement for real time performance capture without com-

promising the quality of recovered photometric normals. In other words, we show

that only 5 spherical illumination images, instead of 7, is sufficient for estimation of

tracking frame photometric normal and corresponding warped normals.

• Lower post processing overhead because the modified capture sequence requires joint

photometric alignment of only one pair, instead of three, of gradient and complement

gradient images. In other words, the post processing time required for alignment of

gradient images is significantly reduced because only one pair of gradient images,

farthest from the tracking frame, require alignment.
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5.1.1 Original Performance Geometry Capture Method

In this section, we briefly describe the real time performance geometry capture method

proposed by Wilson et al. [37]. The performance capture sequence developed by Wilson

et al. is depicted in Fig. 5.1 (top). The frame index (I1, I2, I3, ...) is used to indicate

the temporal sequence of each illumination condition in the capture sequence. Wilson

et al. developed the Joint Photometric Alignment method (discussed in section 4.6), for

the alignment of gradient {X,Y, Z} and complement gradient {X̄, Ȳ , Z̄} images to the

flanked constant illumination C image i.e. the tracking frame. For example: the Joint

Photometric Alignment applied to frames (I1, I4, I5) results in two optical flow fields, fI1→I4

and fI5→I4 , that align the gradient X and complement gradient X̄ images to the tracking

frame C respectively. In other words, warping X and X̄ according to fI1→I4 and fI5→I4

respectively, aligns both X and X̄ to the tracking frame C. We represent the warping

operation of an image I by the flow field f as W(I, f) where I ∈ RN×M . Note that

warping of a vector field N , involves warping of each normal vector component followed

by renormalisation which can be represented as W(N, f) where N ∈ RN×M×3.

Tracking Frame Photometric Normals

The photometric normal computed at each tracking frame represents the true1 normal. At

each tracking frame, we have access to 3 pairs of aligned gradient and complement gradient

images. These aligned gradient images are used for computation of photometric normal at

each tracking frame. For example, in Fig. 5.1, photometric normal at the tracking frame

I4 is given by:

n4 =

[
Xw − X̄w, Yw − Ȳw, Zw − Z̄w

]
||
[
Xw − X̄w, Yw − Ȳw, Zw − Z̄w

]
||

(5.1)

where,

Xw = W (X, fI1→I4) , X̄w = W
(
X̄, fI5→I4

)
Yw = W (Y, fI2→I4) , Ȳw = W

(
Ȳ , fI6→I4

)
Zw = W (Z, fI3→I4) , Z̄w = W

(
Z̄, fI7→I4

)
In a similar way, all the tracking frame photometric normals can also be computed.

1referring to non-warped normal and not the ground truth normal
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Note that, we represent tracking frame photometric normals by the symbol n{x} while the

warped photometric normals are depicted as n
′

{x}.

Warped Normals at Intermediate Gradient Frames

With the flow field from each gradient and complement gradient to a common tracking

frame at hand, Wilson et al. warped the tracking frame photometric normals to obtain

normals corresponding to the temporal location of gradient and complement gradient

images. Wilson et al. used the term “Temporal Up-sampling” to refer to this operation of

estimating photometric normal at non-tracking frames.

The warped normal at frames I1, I2, I3 is given by:

n
′
1 = W (n4,−fI1→I4) , n

′
2 = W (n4,−fI2→I4) , n

′
3 = W (n4,−fI3→I4)

Recall that we use the symbol n′{x} to represent the warped photometric normals.

For each subsequent frames, every gradient frame is flanked by two tracking frames.

Therefore, two flow fields exist for each gradient frame and hence, there are two versions

of warped photometric normal corresponding to each gradient frame. For example, if we

consider the gradient image X̄ at frame location I5, we have the following two warped

normals for this frame location:

n
′′
5 = W (n4,−fI5→I4) , n

′′′
5 = W (n8,−fI5→I8)

Wilson et al. used the weighted average (weighted according to the temporal distance) of

these two warped normals as the photometric normal for intermediate gradient frames.

n
′
5 =

3n
′′
5 + n

′′′
5

||3n′′5 + n
′′′
5 ||

In a similar way, we can compute warped normals at all the remaining intermediate gra-

dient frames.
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5.2 Performance Capture Sequence based on Minimal Im-

age Sets

We can modify the original performance capture sequence of Wilson et al. in order to ex-

ploit the minimal image set method of computing photometric normal. Based on the anal-

ysis presented in 4.5, we can say that a set of 3 gradient images (X,Y, Z) and any 1 of the

three complement gradient images (X̄, Ȳ , Z̄) is sufficient to compute photometric normals.

So we can mathematically represent our minimal 4 image set as [rx, ry, rz, {rx̄, rȳ, rz̄}]. For

example, if our minimal 4 image set is [rx, ry, rz, rx̄], then we have the following expression

for the corresponding photometric normal:

~n =
[rx − rx̄, 2ry − (rx + rx̄), 2rz − (rx + rx̄)]T

||[rx − rx̄, 2ry − (rx + rx̄), 2rz − (rx + rx̄)]||
. (5.2)

It is imperative to recall that minimal 4 image set and the expression for surface normal

is valid only when the gradient and complement gradient image satisfy the complement

image constraint. Mathematically, if [rx, ry, rz, rx̄] is the 4 image set, then the following

complement image constraint must hold true.

rx + rx̄ = rc

where, rc is the constant illumination image and rx and rx̄ form the base complement pair.

The dual of this proposition also exists. The dual minimal 4 image set can be repre-

sented as [rx̄, rȳ, rz̄, {rx, ry, rz}]. For example, if our minimal 4 image set is (rx̄, rȳ, rz̄, rx),

then the expression for photometric normal is given by:

~n =
[rx − rx̄,−2rȳ + (rx + rx̄),−2rz̄ + (rx + rx̄)]T

||[rx − rx̄,−2rȳ + (rx + rx̄),−2rz̄ + (rx + rx̄)]T ||
. (5.3)

We can exploit this flexibility in computation of photometric normal to develop a new

image capture sequence compatible with the realtime facial geometry capture framework

developed by Wilson et al. .

The New Image Capture Sequence

Using the flexibility provided by minimal image sets in computation of photometric nor-

mal, we develop an image capture sequence containing gradient and complement gradient
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X Z C ? ?

sx

X Z C ? X

X Z C Y X C ? ?

Y X C ? Y

Y X C YZX Z C
sy

C ? ?

YZ C ? Z

Y X C YZX Z C C X Z
sz

first subsequence

second subsequence

third subsequence

Fig. 5.2: Development of the modified capture sequence
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images interleaved in such a way that either a minimal [rx, ry, rz, {rx̄, rȳ, rz̄}] or dual min-

imal image set [rx̄, rȳ, rz̄, {rx, ry, rz}] always flanks the tracking frame. Such a sequence

can be created with the help of following rules:

1. base complement pair (i.e. rx and rx̄ in [rx, ry, rz, rx̄]) should be placed farthest from

the tracking frame (i.e. the constant illumination image)

2. exactly two gradient images should lie between any two tracking frames in a sequence

3. tracking frame should be flanked by two gradient images and these frames should

have linear subject motion with respect to the tracking frame

The third rule is based on the assumption that, at high frame rate of capture, three

consecutive frames do not have significant subject motion and hence the subject motion

can be assumed to be linear in these frames. Even for exaggerated facial motion, this

assumption is reasonable given that the gradient image capture frame rate is large (for

example 60 fps). Based on this assumption, we align the gradient images adjacent to a

tracking frame by half of the flow field from base gradient image pairs in that subsequence.

To illustrate the development of image capture sequence based on minimal image sets,

let us consider an example in which we start the sequence with any two arbitrary gradient

images and a constant illumination image(tracking frame) [X → Z → C · · · ] as shown

in Fig. 5.2. The constant illumination image C is preceeded by two gradient images in

accordance to Rule 2. According to Rule 1, the base complement pair must be placed

farthest i.e. at the two ends of a sub-sequence. As the first position is occupied by X,

the other base complement pair X̄ must appear at the other end as illustrated in the

next stage of first sub-sequence shown in Fig. 5.2 (second row from top). We have now

partial minimal 4 image set of [X, ?, Z, X̄]. It is evident that the unknown image in the

set can only be filled by Y gradient. Hence, the final minimal image set corresponding

to this sub-sequence is [X,Y, Z, X̄]. We name this sub-sequence as sx because X is the

base complement pair and gradient images (not the complement gradient images) form the

first three members of the minimal set. At this stage, we have the following subsequence:

[X → Z → C → Y → X̄ · · · ]. This subsequence is sufficient to compute photometric

normals. Moreover, the warp from X to C and X̄ to C can be computed using the Joint

Photometric Alignment.

Using the same three rule, we are now ready to further grow the first sub-sequence to

second sub-sequence. According to Rule 2, we first place the tracking frame C. The other
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end of this sub-sequence will be filled by Ȳ according to Rule 1. The partial minimal image

set is [X̄, Ȳ , ?, Y ]. From the dual of our image set, it is evident that the blank space will

be occupied by Z̄. We name this sub-sequence as sȳ because Y is the base complement

pair and complement gradient images form the first three members of the minimal set.

Now the capture sequence becomes: [X → Z → C → Y → X̄ → C → Z̄ → Ȳ · · · ].

In a similar way of growing the sequence, we obtain the minimal image set for third

sub-sequence as [?, Ȳ , Z̄, ?, Z] and we name this sub-sequence as sz̄. At this stage, the

combination of three sub-sequences has resulted in the unit sequence (sx, sȳ, sz̄) whose

expanded form is given by:

[X → Z → C → Y → X̄ → C → Z̄ → Ȳ → C → X → Z → C · · · ]

The end of this capture unit sequence can be combined with the unit sequence generated

similarly by (sx, sy, sz̄) which in turn can be combined with (sx̄, sy, sz) and so on. There

are total 6 possible combinations to form sub-sequences:
(
s{x,x̄}, s{y,ȳ}, s{z,z̄}

)
. Out of

these, two unit sequences are not possible: (sx̄, sȳ, sz̄) and (sx, sy, sz). Hence, it is only

possible to have the following 4 unique sub-sequences: (sx, sȳ, sz̄), (sx, sy, sz̄), (sx̄, sy, sz),

(sx̄, sȳ, sz). Thus, the final capture sequence for real time performance capture is:

(sx, sȳ, sz̄)→ (sx, sy, sz̄)→ (sx̄, sy, sz)→ (sx̄, sȳ, sz)→ (sx, sȳ, sz̄)→ · · ·

as depicted in Fig. 5.1 (bottom).

5.2.1 Performance Geometry Capture using the New Image Capture

Sequence

Y X C YZX Z C C X ZY X C YZX Z C C X ZY X C YZX Z C C X Z
Frame 1

photometric normal
Frame 2

photometric normal

Frame 3
photometric normal

joint photometric alignment

Fig. 5.3: Development of the modified capture sequence
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From the discussion in previous section, we now have a image capture sequence as

shown in Fig. 5.3. The images captured in this sequence is sufficient to recover true

photometric normals at each tracking frame (frame C in Fig. 5.3) using the equations

from our minimal image sets analysis discussed in section 4.5.

In Fig. 5.3, the alignment of X and X̄ to tracking frame C can be achieved using

the Joint Photometric Alignment method of Wilson et al. . However, the photometric

normal at tracking frame C cannot be computed from the images of this capture sequence

([X → Z → C → Y → X̄) because the two images (Z and Y ) flanking the tracking frame

remain misaligned.

At high frame rate of image capture, three consecutive frames do not have significant

non-linear subject motion and hence the subject motion can be assumed to be linear in

these frames. Even for exaggerated facial motion, this assumption is reasonable given that

the gradient image capture frame rate is large (for example 60 fps). Therefore, for 3 images

captured in a sequence, the flow between 2nd and 3rd frames can be approximated by half

of the flow between 1st and 3rd frames. For example: the optical flow field from Z to C

in Fig. 5.3 can be approximated as half of the flow field from X to C i.e. fZ→C = fX→C
2

and similarly, fY→C = fX̄→C
2 . Hence, the optical flow field for base gradient image pair

(X and X̄) obtained using Joint Photometric Alignment method of Wilson et al. can be

used to approximate the flow field of intermediate gradient frames (Z and Y ) that flank

the tracking frame (C).

We will illustrate the procedure of alignment and computation of tracking frame and

gradient frame photometric normals using the capture sequence given in Fig. 5.1 (bottom).

The Joint Photometric Alignment applied to (I1, I3, I5) results in two optical flow fields,

fI1→I3 and fI5→I3 , that align the gradient X and complement gradient X̄ images to the

flanked tracking frame C respectively. In other words, warping X and X̄ according to

fI1→I4 and fI5→I4 respectively, aligns both X and X̄ to the tracking frame C.

Tracking Frame Photometric Normals

At each tracking frame, we have access to 1 pair of aligned gradient and complement

gradient images. Assuming that the two gradient images flanking the tracking frame (Z

and Y in this sequence) have linear subject motion, photometric normal at the tracking

frame I3 is given by:
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n3 =

[
Xw − X̄w, 2Yw − (Xw + X̄w), 2Zw − (Xw + X̄w)

]
||
[
Xw − X̄w, 2Yw − (Xw + X̄w), 2Zw − (Xw + X̄w)

]
||
, (5.4)

where,

Xw = W (X, fI1→I3) , X̄w = W
(
X̄, fI5→I4

)
,

Yw = W
(
Y,
fI5→I4

2

)
, Zw = W

(
Z,
fI1→I3

2

)

Recall that we have used our minimal image set method to compute photometric

normal using just 4 spherical illumination images. Also, note that we have warped Y and

Z according to the average flow of the gradient and complement gradient images with

respect to the tracking frame.

Similarly, the normal at frame I6 is given by:

n6 =

[
−2X̄w + (Yw + Ȳw), Yw − Ȳw,−2Z̄w + (Yw + Ȳw)

]
||
[
−2X̄w + (Yw + Ȳw), Yw − Ȳw,−2Z̄w + (Yw + Ȳw)

]
||
, (5.5)

where,

Yw = W (Y, fI4→I6) , Ȳw = W
(
Ȳ , fI8→I6

)
.

X̄w = W
(
X,

fI4→I6

2

)
, Z̄w = W

(
Z,
fI8→I6

2

)
.

Note the slight change in photometric normal formula caused by dual minimal image set

(X̄, Ȳ , Z̄, Y ).

For frame I9, the tracking frame photometric normal is given by:

n9 =

[
−2X̄w + (Zw + Z̄w),−2Ȳw + (Zw + Z̄w), Zw − Z̄w

]
||
[
−2X̄w + (Zw + Z̄w),−2Ȳw + (Zw + Z̄w), Z − Z̄w

]
||
, (5.6)

where,

Zw = W (Z, fI7→I9) , Z̄w = W
(
Ȳ , fI11→I9

)
.
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X̄w = W
(
X,

fI11→I9

2

)
, Ȳw = W

(
Y,
fI7→I9

2

)
.

In a similar way, all the other tracking frame photometric normals can also be computed.

Warped Normals at Intermediate Gradient Frames

With the flow field from gradient and complement gradient frames to a common tracking

frame at hand, we can compute warped normals corresponding to temporal location of

gradient and complement gradient images. The warped normal at frames I1, I5 is given

by:

n
′
1 = W (n3,−fI1→I3) , n

′
5 = W (n3,−fI5→I3)

Assuming linear subject motion between frame I1 and I3, the warped normal at frame I2

is given by:

n
′
2 = W

(
n3,−

fI1→I3

2

)
For each subsequent frames, each gradient frame is flanked by two tracking frame. There-

fore, two flow fields exist for each gradient frame and hence, there are two version of

warped photometric normal corresponding to each gradient frame. For example, if we

consider the gradient image X̄ at frame location I5, we have the following two warped

normals for this frame location:

n
′′
5 = W (n3,−fI5→I3) , n

′′′
5 = W

(
n6,−

fI4→I6

2

)

Note that, computation of the warped normal n
′′′
5 is based on linear subject motion as-

sumption. Based on the temporal distace of I5 with respect to the two flanking tracking

frames I3 and I6, the warped normal at frame I5 is given by:

n
′
5 =

2n
′′
5 + n

′′′
5

||2n′′5 + n
′′′
5 ||

In a similar way, we can compute warped normals at all the remaining intermediate

gradient frames.
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5.2.2 Results

Before discussing the results, we describe our capture device setup and its limitations. We

used a monochrome JAICM200GE GigE camera. We could not capture gradient images

at 60 fps (capture rate of Wilson et al. ) for the following two reasons:

• The computer that received the captured image packets via ethernet only supported

a maximum ethernet packet size of 1428 bytes. Although, our camera is capable

of using jumbo ethernet packet (9000 bytes) for a very high frame rate capture, we

could not use this feature due to the limitation of our receiving network node.

• Our Light Stage uses only 41 LED. Hence, based on the sensitivity of our camera,

we observed that a minimum exposure time of 50 ms is required to capture well

exposed face images.

We observed that when quick exaggerated facial motion is performed, there occurs drastic

change in the 1st and 5th frames of a subsequence block i.e. (X,Y, Z,C, X̄). Hence, to

address the capture rate limitation of our device, we asked our subject to change facial

expression slowly while we captured gradient frames at the rate of 20 fps. At higher frame

rate, we believe that our proposed sequence can resolve the facial performance geometry

more finely.

Fig. 5.4 shows the photometric normals computed using images from the modified

image capture sequence based on minimal image sets. The tracking frame photometric

normals accurately captures the facial geometry during facial motion. Warped photometric

normal is computed as weighted average of the tracking frame normals. The weighting of

tracking frame normal is performed according to the temporal distance of warped normal

from these tracking frames. This weighting strategy is evident from the angular difference

map shown in Fig. 5.4 (bottom). These angular difference maps also depict very small

motion in the lips and eyes region.

5.2.3 Discussion

We have shown that minimal image sets can be exploited to form a capture sequence that

can not only reduce the data capture requirement of a realtime performance geometry

capture but also reduces the computational cost involved in alignment of the captured

images. Table 5.1 shows the relationship between tracking frame capture rate and required
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Table 5.1: Image capture requirements for performance capture using Wilson et al. and
our 4 image method

Total Number of Images Captured
Tracking Frame Count (n) Wilson et al. [37] our method
1 7 5
2 11 9
3 15 11
4 19 15
5 23 17
6 27 21
· · · · · · · · ·

n 4n+ 3
{

6
(
bn2 c+ 1

)
− 1 odd n

3n+ 3 even n

number of images to be captured for Wilson et al. and our 4 image method. The impact of

reduction in image capture requirement for real time performance capture is pronounced

for higher frame rate as shown in Fig. 5.5.

Fig. 5.5: Image capture requirement analysis for performance capture using Wilson et al.
[37] and our 4 image method

Using our proposed real time performance capture sequence, we can compute true

photometric normal map after every two image capture. This allows us to densely sample

the complete dynamic performance even at lower frame rate.

Limitations

The proposed capture sequence and method of photometric normal computation assumes

high capture frame rate (∼ 60fps) for gradient images. For lower frame rates (∼ 20fps),

the geometry of quick exaggerated facial motion cannot be correctly recovered because

the alignment algorithm cannot handle non-linear changes in facial geometry. Moreover,

the assumption that three consecutive frames do not have significant subject motion and

that the subject motion can be assumed to be linear in these frames become invalid for
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such quick exaggerated facial motion.

5.3 Stimuli Image Dataset for Psychology Experiment

The overall appearance of a human face is due to its 3D shape and 2D skin reflectance

(skin texture) property. Hence, these two parameters are believed to play a critical role in

face processing and recognition carried out by the human brain. Knowledge of how these

two sources of information are represented and processed in the neural level is the key to

understanding the face recognition mechanism of the human brain.

The face adaptation paradigm is commonly used to study the representation and pro-

cessing of these two information i.e. 3D shape and 2D skin reflectance information. Face

adaptation refers to the decay in neuronal response of face processing regions in human

brain when a human observer is exposed repeatedly to same stimulus (e.g. face image).

Original neuronal response can be recovered by altering some properties of the stimulus.

Face adaptation paradigm is based on the assumption that the changes in stimuli that

causes recovery of the neuronal response relate to the functional properties of cortical

neurons [16].

Application of adaptation paradigm requires the ability to control specific properties

of the stimuli. Caharel et al. [6] used 3D morphable model to control the 3D shape and 2D

reflectance information of stimuli images. They examined the time course (i.e. temporal

sequence) for the processing of 3D shape and 2D skin reflectance information using the

Event Related Brain Potential - ERP2 adaptation paradigm. They discovered that 3D

shape information caused early sensitivity (∼ 160− 250ms) to human faces. Furthermore,

they also found that both 3D shape and 2D skin reflectance information (skin texture)

contributed equally to ERP on the later time window (∼ 250− 350ms).

We collaborated with Jones et al. [22] to study the neural representation of face’s 3D

shape and 2D skin reflectance information in face selective regions of the human brain.

Using fMR adaptation paradigm [16], Jones et al. analyzed the adaptation of face selec-

tive regions in the Fusiform Face Area (FFA), Occipital Face Area (OFA) and Superior

Temporal Sulcus (STS). Participants were shown stimuli face images that contained :

1. 3D shape information (shape only)
2Electroencephalography (EEG) recording during an epoch (time slot in which stimulus is shown)

constitute ERP
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2. 2D skin reflectance information (texture only)

3. both shape and texture information

5.3.1 Stimuli Image Dataset

Fig. 5.6: (left) normal map obtained using spherical gradient photometric stereo, and
corresponding (right) shape only stimuli image

Using our Light Stage, we created the stimuli images dataset required for this study

aiming to investigate the neural representation of 3D shape and 2D skin reflectance in

the visual cortex. The experiment was conducted by Jones et al. and a detailed account

of the experimental procedure and discussion of the results is available in [22]. Here, we

discuss the method that was used to create stimuli image dataset consisting of (a) texture

only (b) shape only and (c) texture and shape images of human faces. The frontal view

spherical gradient (X,Y, Z) and constant illumination C images of participants in neutral

expression was captured and the corresponding shape-only and texture-only images were

generated as follows:

Computing the 3D shape only image

We can acquire highly detailed (down to the level of skin pore detail) photometric normal

map (left - Fig. 5.6) of a human face using the spherical gradient photometric stereo
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technique discussed in Chapter 4. This normal map recovers facial geometry in the form

of surface normal vector at each surface point covered by individual pixels of an imaging

device. Using this normal map, we can generate a front lit Lambertian rendering as follows:

Ishape-only = n.l1 + n.l2

where, l1 and l2 are the two front lighting direction vectors (chosen manually to create

realistic shape only image) and n is the facial normal map computed using the spherical

gradient photometric stereo technique. The resulting shape-only rendered image is shown

in Fig. 5.6 (right).

Computing the texture only image

Skin texture is the result of light reflected after subsurface scattering. In other words, the

portion of incident light reflected after entering the skin surface constitutes the characteris-

tic skin colour. Using cross polarization, we separate the facial reflectance into the diffuse

and specular components as described in section 3.2. The diffuse only image captured

under constant full spherical illumination records the reflectance component responsible

for skin texture as shown in Fig. 5.7 (left). We use this image as the texture-only stimuli.

Combined shape and texture image

Combining the shape-only image with the texture-only image (i.e. diffuse albedo) results

in a combined shape and texture image as shown in Fig. 5.7 (right). This stimuli image

represents the facial images as captured by a real world camera.

5.3.2 Results and Discussion

A complete explanation of experimental procedure and results are available in Jones et al.

[22]. Here, we present a brief summary of results discussed in [22]. Both FFA and OFA

regions exibited significant adaptation to all the image types in the stimuli image dataset.

Moreover, there was no significant difference in the activation of the hemisperes. Based on

the adaptation paradigm, Jones et al. concluded that the 3D shape and 2D skin reflectance

information are represented equally in the face selective regions of the brain. Furthermore,

they also found that there was no significant effect of familiarity in the activation of FFA

region. This indicated that the FFA region is largely involved in general face processing
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Fig. 5.7: (left) texture-only stimuli image, and (right) combined shape and texture stimuli
image

task rather than in dealing with facial identity.

A Light Stage with 41 LEDs was used to generate the stimuli images for this exper-

iment. It required capture of just 4 images (capture time ∼ 1 sec) and almost no post

processing to compute the shape-only and texture-only stimuli images. Electronic con-

trol of each LED brightness and data capture in a dark room ensured that the level of

illumination remained consistent across different face images.

The spherical gradient photometric stereo technique of Ma et al. [26] was used to

compute the facial normal map which in turn allowed rendering of shape-only images.

The quality of photometric normals computed using [26] is known to degrade with light

discretization i.e. coarse approximation of spherical illumination (see 4.4 for details). Our

light stage used only 41 LED: 74% less light sources as compared to 151 LED used by

[26]. At the time of the stimuli dataset creation, we had not discovered our minimal

image sets method discussed in section 4.5. We were also not aware of the normal map

computation technique proposed by Wilson et al. [37] which required capture of 6 gradient

images (X,Y, Z, X̄, Ȳ , Z̄). Hence, increasing the number of light source in our Light Stage

was the only possible but expensive route to improve the quality of normal map computed

using [26]. However, with the minimal image sets method (see section 4.5) in hand, we
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can now use the same 41 LED light stage to compute very accurate photometric normals

without incuring the cost of capturing extra images as required by [37].

Concave regions of a human face (like corner of the eyes) do not receive full hemispher-

ical illumination. In other words, non-convex regions of a face are affected by ambient

occlusion. Although, ambient occlusion helps add realism in 3D Computer Graphics, this

effect is not desirable for texture only stimulus image because it adds shading information

to the non-convex regions. Hence, the texture only stimulus images of a human face have

some shading effect in the non-convex facial regions.
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Chapter 6

Conclusion

In this thesis, we have presented a detailed analysis of design and calibration (geometric

and radiometric) of a novel shape and reflectance acquisition device called the Multispec-

tral Light Stage. Using the spherical gradient photometric stereo method, we capture

highly detailed facial geometry (down to the level of skin pores detail). We used a beam

splitter based capture device setup to simultaneously capture both the parallel and cross

polarised reflectance components. Therefore, the image alignment procedure is not re-

quired to compute specular and diffuse images from the captured parallel and cross po-

larised images. To record Multispectral skin reflectance map, we added a set of narrow

bandpass optical filters to our image capture device. These reflectance maps can be used

to estimate biophysical skin parameters such as the distribution of pigmentation and blood

beneath the surface of the skin.

We have extended the analysis of original spherical gradient photometric stereo method

to consider the effect of diffuse lobes distortion on the quality of recovered surface geom-

etry. Using our modified radiance equations, we show that the symmetric deformation

in diffuse reflectance lobe under gradient and complement gradient illumination cancel

when computing surface normal using Wilson et al. [37] 6 image method. In addition, we

also show that the method of Ma et al. [25], which requires 4 images, is highly affected

by deformed diffuse lobes. We propose a minimal image set method, requiring just 4

images, that combines the advantage of the original method of Ma et al. (reduced data

capture requirement) with that of Wilson et al. (improved robustness). We show that

our method maintains the quality of Wilson et al. while requiring fewer gradient images.

Using our modified radiance equations, we also explore a Quadratic Programming (QP)

based normal correction algorithm for surface normals recovered using spherical gradient

90



photometric stereo.

Based on our minimal image sets method, we have proposed a modification to the

original performance geometry capture sequence of Wilson et al. [37]. Minimal image

sets method provides the flexibility of computing accurate photometric normals from all

the possible combinations in minimal image set (X,Y, Z, {X̄, Ȳ , Z̄}) or the dual minimal

image set (X̄, Ȳ , Z̄, {X,Y, Z}). We exploit this flexibility to create a performance capture

sequence which contain gradient and complement gradient images interleaved in such a way

that it always becomes possible to compute aligned photometric normals at the tracking

frame (i.e. constant illumination image). This new capture sequence not only reduces the

data capture requirement but also reduces the postprocessing computation cost of existing

photometric stereo based performance geometry capture methods like [37].

We have also explored the use of Light Stage data for creating stimulus image dataset

for a psychology experiment investigating the neural representation of 3D shape and 2D

skin reflectance (texture) of a human face. For a given face, we generate three stimulus

images: the first contains only the 3D shape information, the second contains only 2D

skin reflectance (texture) information and the third contains both shape and texture in-

formation. This image dataset has been used by Jones et al. [22] for studying the neural

representation of 3D shape and texture of a human face. The high quality photometric

normal map obtained from spherical gradient images is used to create a front lit Lam-

bertian rendering of that face. This shape only rendered image contains only the 3D

shape information. The constant spherical illumination image represents the texture only

because no shading cues are present due to spherical illumination.

6.1 Future Work

The present design of Multispectral Light Stage discussed in Chapter 3 can be improved in

many ways. First, finer approximation of spherical gradient illumination can be achieved

by increasing the number of light sources to 162. Present version of our Light Stage

consists of only 41 LEDs attached to the vertices of a twice subdivided icosahedron.

The light reaching the camera sensor is attenuated by the light source polarizer(< 50%

transmission), optical filter(< 90% transmission) and the polarizing beam splitter(< 50%

transmission). Hence the camera sensor receives only ∼ 22% of the total emitted light

even if we image a perfect reflector. As a result, capture of multispectral reflectance map
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requires longer exposure which increases the overall capture time. Adding LEDs to the

edges of the twice subdivided icosahedron will not only result in finer approximation of

spherical illumination but also ensure that more light is reflected off the object present at

the center of the Light Stage.

The second improvement in the design of Multispectral Light Stage can be accom-

plished by using a stepper motor driven filter wheel. This would help reduce the capture

time of Multispectral skin reflectance map. Adding electronic control to the filter wheel

would also help automate the whole capture process. For geometric calibration, using

a sphere instead of planar checker board would result in more accurate model of image

formation.

Chapter 4 describes the minimal image sets method that not only reduces the data

capture requirement of spherical gradient photometric stereo but also improves the quality

of recovered surface geometry when diffuse lobes are distorted. Future work in this area

can explore such correction mechanism for specular reflectance lobes as well. Moreover,

we also investigated a Quadratic Programming (QP) based approach for correction of

deformed diffuse lobe. However, as the resulting system was sevearly underconstrained (6

equations and 9 unknowns), our optimization based correction strategy did not result in

significant improvement. Future research can also explore improved modeling of specular

and diffuse reflectance lobe deformation and search for more constraints.

We used the Joint Photometric Alignment method proposed by Wilson et al. [37] to

align gradient and complement gradient images to a common tracking frame. However,

this alignment technique is not applicable to multispectral reflectance maps. Hence, future

research in this area could investigate into alignment methods for multispectral reflectance

maps. One interesting observation regarding this future work is that as the specular

reflectance is a surface phenomena, the value of specular radiance should remain constant

throughout all the multispectral images. This relationship between multispectral specular

reflectance maps can be used to align the specular images and in turn, also the diffuse

images.

Chapter 5 also invites future work. The alignment method used in the realtime perfor-

mance geometry capture cannot handle changes in facial geometry. Moreover, it is based

on the assumption that the subject motion is linear. Future work in this area can inves-

tigate to overcome these limitations of the photometric alignment method. Additionally,

capture of performance geometry does not allow tracking of facial feature points. This
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prevents transfer of facial performance geometry to 3D face models (obtained from range

scannner) because no correspondance between image point and its corresponding 3D ver-

tex can be established. Furthermore, the application of Light Stage in creating stimulus

image dataset for different types of psychology experiment can also be explored.

Further application of Light Stage data can also explore multi view photometric stereo.

This involves capturing facial geometry and reflectance map using two or more camera

capturing different view of a face. This would allow reconstruction of high quality 3D

geometry based on photometric normals from multiple views.
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