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"And the boy herding the cows, and the surveyor driving in his chaise over the dam, 

and the gentleman out for a walk, all gaze at the sunset, and every one of them thinks 

it terribly beautiful, but no one knows or can say in what its beauty lies." 

-Anton Chekhov, "The Beauties" 

"Everything you know-your entire civilization: 

It all begins right here in this little pond of goo." 

-Q, Star Trek: The Next Generation, "All good things ... " 



Abstract 

'Biokleptic' architectures, whereby biological material is literally stolen into an artificial fabrication, 

offer real-world solutions to nanotechnological engineering problems. The light harvesting 2 complex 

(LH2) from Rhodobacter sphaeroides, which increases the photosynthetic efficiency of the bacterium, 

has been successfully patterned on both micrometre and nanometre length scales using photolithographic 

techniques coupled with directive immobilisation chemistries. LH2 is present in some bacteria that use 

photosynthesis as a major energy source. Its function is to widen the spectral response of the organism 

and increase the photo responsive chromophore cross-section. Retention of biological functionality

light harvesting and fluorescence-is demonstrated in patterned LH2 complexes on SAMs. 

Patterning was achieved by the use of 'self-assembled' monolayers (SAMs) of alkylthiolates on gold. 

The 'tunable' nature of the surface chemistries of SAMs has been lauded as a means to impart a wide 

spectrum of properties, including wetting and tribological behaviours, and biocompatibility. Additionally, 

SAMs have attracted much interest in recent years as photoresists capable of facilitating nanometer-scale 

resolutions. Their proficiency as photoresists is due, in part, to the defined geometry of the molecular 

assembly and their molecular nature. An investigation into the mechanism of SAM photo oxidation 

is presented for the case of alkylthiolates on gold and related systems of alkylthiolates on silver and 

palladium. The influence of structure on photooxidation kinetics is considered. 

A simple, 'one-step' reversal of resistance to biological adhesion by exposure to UV light is presented 

for a protein resistant SAM. This has important implications for 'lab-on-a-chip' technologies. It is 

shown that biomolecules can be specifically immobilised with retention of biological functionality. 

A simple coupling chemistry that suggests the possibility of transplanting thiol SAM systems onto 

silicon, including biologically resistant films with reversibility of response, is also ·presented. 
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Chapter 1 

Introduction 

"One of the reasons why this broad area of research is interesting is that if you think 

about the world, there are certain major classes of things: in particular, there are gasses, 

liquids, and solids. There should be a fourth item on that list: surfaces. Surfaces are 

everything we see; they are where many properties of materials are determined, and they 

are what gives shape to everything. Surfaces are a particularly important arrangement of 

matter that should be ranked up there with those other three. " 

- Professor George Whitesides, in an interview with Science Watch, July/August 2002 

Introduction Contents 
1.1 Phases and Interfaces 

1.1.1 Matter, Phases and Interfaces. 

1.1.2 

1.1.3 

Compartmentalization of Phases in Biology . . 

Nanobiotechnology: The Challenges ........ . 

1.1.4 Supramolecular Assemblies: Learning New Manufacturing Methods from 

Nature ........ . 

1.1.5 Organic Thin Films . . 

1.2 Self-Assembled Monolayers . . 

1.2.1 Organosulfur SAMs on Gold . . . . . 

1.2.2 SAMs on Other Substrates . . . . . . 

1.2.3 Development of SAMs with a consideration of Biocompatibility and 

2 

2 

4 

7 

8 

10 

13 

14 

25 

Biological Adhesion . . . . .. .... . . . . . . 28 

1.3 Probing Surface Chemistries. . . . . . . 

1.3.1 Contact Angle Goniometry . . . 

34 

34 



Chapter 1. Introduction 1.1 Phases and Interfaces 

1.3.2 Contact Potential Difference . . .. ............. ..... . 

1.3.3 X-ray Photoelectron Spectroscopy. 

1.3.4 Scanning Probe Microscopies (SPM) 

1.3.5 Surface Plasmon Resonance . . 

1.4 Patterning SAMs . . . . . . . . 

1.4.1 Microcontact Printing 

1.4.2 Dip-Pen Nanolithography . 

1.4.3 Photolithography............ ...... .......... . 

1.4.4 Patterning of Biological Molecules .. 

37 

41 

45 

49 

51 

51 

52 

53 

S9 

1.5 Light Harvesting Complexes. . . 61 

1.5.1 Harvesting Light . . 61 

1.5.2 Photosynthesis... ......... 62 

1.5.3 The LH2 Complex of Rhodobacter sphaeroides . . . 70 

1.5.4 Integration of Photosynthetic Apparatus into Photovoltaic Devices . 72 

1.6 Synopsis... . . . . . . . . . . .. 74 

1.7 Aims ..... 

List of Figures in Chapter 1 

1.1 Phases and Interfaces 
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Matter in the universe is organised by the actions of fields and of flow into phases, bodies of energetically 

complimentary particulate species held together by interacting clouds of electrons. The manifest struc

tural discontinuity of phase-separated matter is punctuated by the formation of interfaces; arrangements 

of component particulate species that assemble at the edges of phases, that serve to minimize the free 

energy of the system-maximising exothermic interactions at minimal structural costl-3 . 

In exposing particles from one phase to those of another, interfaces present a frontier of dynamic 

exchange and interaction; of chemical reactions, and physical forces.4•5 Interfaces mark a boundary 

of compositional and structural difference-and so lend a given phase the property of being a discrete 

entity in the universe, with a finite size and certain shape. 

While the size of a phase is derived largely from the quantity and thermal motion of the particles it 

contains, shape is influenced by external electrostatic and gravitational forces, and is constrained by 

contact with (and position relative to) other phases. Shape is governed also by the energetic transactions 

2 
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Figure 1.1.1 Lennard-Jones '6-12' Potential for Helium. 

rlpm 

that take place at the interface: the degree of affinity of one phase for a neighbouring phase affects 

the size of their interfacial area, and consequently the shape of one or both phases must change to 

accommodate this. The beading of a droplet of water on a lotus leaf compares contrastingly with the flat 

puddle that spreads out on a clean silica glass surface6; paraffin oil will spread out on a pond until the 

advance of the film is limited by the number of molecules in the drop7; the amphiphilic molecules in 

soap form bubbles in the air to minimize their exposed surface area, while maximising lateral packing8. 

In the mundane realm of everyday human experience*, atoms and molecules have a finite size and will 

resist compression beyond a certain density, as precluded by the Pauli exclusion principle, which states 

that no two fermions with the same wavefunction descriptors may occupy the same physical space. The 

transient attractive forces that act as being proportional to 1/ r6 are outweighed by a repulsive term that 

rises exponentially; as the wavefunctions approach a distance where they begin to overlap, the repulsive 

force rises to infinity. The interaction potential so described is shown in figure 1.1.1. With similar 

constraint at the opposite length scale, time puts a maximum limit on the size of a phase, such a bubble 

of gas expanding in space, because rates of diffusion are al~o finite ( oc ...f'ft)t .. 
·as apposed to exotic environments. such as as supercooled matter and the singularities that comprise black holes and the 

. possible initial state of the universe 
tTemperature; Mass 

3 
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1.1.2 Compartmentalization of Phases in Biology 

1.1.2.1 Limited phases and compartments 

Within these broad limits, nature has selected for the compartmentalization of phases in organisms at 

a certain magnitude: large enough to contain all the infrastructure and materials needed to sustain life, 

while at the same time being small enough for metabolites and cellular machinery to be able to collide, 

interact and perform all the requisite functions of a living organism, within a time-frame dictated by the 

rates of chemical reactions. The physical act of compartmentalization also puts a limit on the selection 

of components that are contained within a cell. It ensures that chemistry that is useful for survival greatly 

outweighs that which is useless or detrimental to the organism2. 

(b) 

11111111111111111 

III Ill! I !!!l ll!l! 
Figure 1.1.2 Self-assembly of amphiphiles in solution: 

Cross-sections through (a) a micelle, and (b) a bilayer 

The molecular structures that nature has selected for in providing such barriers to cells are assemblies of 

amphiphil~s*, organic molecules that contain both a polar, hydrophilic head group, and a hydrophobic 

hydrocarbon tail9 • Amphiphiles self-assemble in suitable solvents to produce a variety of forms that aim 

to maximise intermolecular interactions (both within the assembly, and also between the assembly and 

its host media), again, at minimal structural cost: the minimal increase in entropy associated with least

surface-area forms. Above a critical concentration, when the amphiphile molecules have formed a single 

layer at the fluid-airt interface, they begin to spontaneou81y form micelles, approximately spherical 

aggregates with the more readily-solubilisable component (in water, the polar head group) forming a 

solvent-facing surface, shielding the inwardly-pointing insoluble tails. This is shown in part (a) of 

figure 1.1.2, above. At yet higher concentrations, the entropic cost to the solution of forming more 

·augmented, of course, in some species by additional proteins and carbohydrate scaffolds 
t and fluid-container interface, if the containing vessel is of a composition differing to that of the fluid but similar to the 

insoluble component of the amphiphile 
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spherical micelles (because each micelle must be solvated by a surrounding 'cage' of solvent molecules) 

becomes an impetus for the formation of long tubes of the amphiphilic aggregates. From the close

packed 'honeycomb' arrangement that these tubular micelles must adopt as the concentration increases, 

it becomes thermodynamically favourable to form lamellar sheets: a bilayer8,9 (shown in part (b) of 

figure 1.1.2 on the preceding page). The phospholipid membrane of a living cell is just such a lamellar 

bilayer sheet that is wrapped around on itself to form a vesicle, allowing the organism to maintain a 

chemical independence of the cell from the extracellular environment. 

1.1.2.2 Regulation 

In order for the organism to have have regulatory control over the biochemical composition of the 

cytoplasm, a number of pumps and channels are formed by the expression of proteins during the growth 

cycle of the cell. They traverse the membrane and selectively (by size, or electrostatic interactions, 

for example) allow the expUlsion of waste materials to, and consumption of fresh metabolites from, 

the peri plasmic outer-side9 • In addition, they provide a means of assessing the nature of the external 

environment, and communicating with other cells. As well as numerous transmembrane transporter 

proteins (which comprise those that carry out the channel regulation described above), enzymes such 

as methane-metabolising methane mono oxygenase, found in the bacterium Methylococcus capsulatus; 

and the light harvesting complexes found in the purple non-sulfur bacterium Rhodobacter sphaeroides, 

which increases its photosynthetic efficiency, are also expressed at the lipid bilayer. Therefore, the 

biological membrane provides not only a barrier against the external environment, but a foundational 

structure within and upon which functional cellular machinery may be built. 

1.1.2.3 Integrated circuits 

It is of note that the ubiquitous electronic technologies of the past 50+ years are themselves built 

around and directly upon surfaces. The printed circuit boards and transistor chips that make up the 

electronic devices used by contemporary society are vastly more reliable, inexpensive, compact and 

powerful than their valve-based predecessors. A layout plan of an integrated circuit (IC)-a computer 

microprocessor-is shown, in figure 1.1.3 on the next page. The key to such remarkable improvement 

has been the development of fast, non-contact fabrication methods that rely on photochemical processes, 

developed principally at Bell Labs in the 1950s 10,11, and subsequently implemented at Fairchild semi

conductor in the early 1960s 12 . * The exposure of a photoresist to appropriate wavelength light through a 

·Photochemical modification of surfaces will be discussed further in Subsection 1.4.3.2, and Chapter 3. 
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Figure 1.1.3 Core layout of a MOS Technology 6502 microprocessor: 
An early, inexpensive chip that helped pave the way for the home computer revolution 

negative mask, followed by an etchant wash, leaves exposed areas upon the substrate, which may then b~ 

coated by sputtering, evaporation, or ion beam deposition to create paths of electrically-conductive ma-

terial. Once the previously unirradiated photoresist has been removed by a second washing procedure, 

the remaining conductive tracks traverse the surface of the substrate and connect the components of the 

device together. These are in many ways analogous to the transmembrane and intervacuole channels 

employed in biological cells, although they are solid and can only convey electrical charge (electrons 

in metals, or electrons plus 'holes' in semiconductor metalloids) as opposed to the ions, proteins and 

myriad chemical signallers that life employs in its processes. 

1.1.2.4 Signalling in biological processes 

It is particularly remarkable that it is this very complex, multiple signal approach to producing responses 

in systems on very small scales (nm-~) that affords living matter such an advantage over human at

tempts to produce technology at a similar size. Despite the extremely fast switching speeds of transistors 

in present, desktop computers (> 109 s -1), biological changes are brought about with a comparatively 

astounding rapidity, precisely because of this plurality. The binary nature of the state of a transistor 

requires that a much greater number of discrete instructions be issued to produce a significant change in 

an electronic system (e.g. multiplying two integers held in memory), as compared with a transcriptase 

enzyme that can process and duplicate complex polymeric, biomolecular structures with a single pass. 
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1.1.3 Nanobiotechnology: The Challenges 

It has been suggested that, because of the new problems (such as Brownian motion, and quantum tun

nelling) that present themselves as human technology enters the nanoscale regime (1-100 nm), engineers 

would benefit from adopting an approach that borrows from the successes of biology13,14. At this scale, 

the water molecules that constitute the bulk medium of living processes perturb and interact chemically 

with biological structures, e.g. by deprotonating acid moieties. Natural, biological processes have 

adapted to make use of this fact, just as some enzymes apparently employ quantum tunnelling in their 

functionality, rather than working to circumvent it. There are fundamental physical differences between 

properties defined at the nanoscale, as compared with the same properties at the macro scale. Nanoscale 

structures have 'low dimensionality'; they are nearly all surface. Thermodynamics and mechanical 

properties of surfaces are different from those of the bulk, because atoms at surfaces have fewer neig

bouring atoms to interact with. Atoms at surfaces have characteristics that lie somewhere between SOlid 

and liquid states, as 'can be seen from e.g. the depression of melting points in nanostructures made from 

metals15. 

It is clear that the fantastical view, ala K. Eric Drexler's Engines of Creation16, where it is proposed 

that nanotechnological engineering solutions might take the form of shrunken, macro scale technology 

(i.e. the machinery will be familiar to us, but smaller), is not really a viable approach. The problem 

of creating functional devices on such small scales has been addressed-with some success-by the 

integration of biomimetic and biokleptic* structures into nanoscale devices, but totally successful inte

gration, i.e. with a view to producing functional nanostructures, has often been problematic. This may 

stem from the presumption that biological structures, which may superficially resemble macroscale 

mechanical devices (e.g. the similarity of a Na+ IK+ ATPase rotor to a peri static pump14), will be 

easy to immobilise and connect together like a LEGO® TECHNICS set; in actuality, immobilisation, 

integration and addressability of a biomolecule, especially with retention of proper functionality, cannot 

always be guaranteed. Nevertheless, some biological architectures display remarkable resilience to 

being manipulated into artificial systems, and provide excellent solutions to nanoscale engineering 

problems, as will be demonstrated. 

·copying, and stolen from biology, respectively 
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1.1.4 Supramolecular Assemblies: 

Learning New Manufacturing Methods from Nature 

1.1.4.1 "Technology requires tools" 

Throughout history, the development of tools with which human beings have endeavoured to gain 

control over their environment has been steered as much by the availability of suitable materials, as 

by human ingenuityl7. Access to materials, when placed in the context of an adequately developed 

understanding of the physical properties of those materials, has driven technological progress; the tools 

and instruments made possible by newly available materials in tum provide a means to manipulate 

and probe the nature of those materials, and so improve our understanding of them. Over the past 

several hundred years, the gradual adoption of the scientific method has provided humanity with a 

firm foundation upon which to efficiently gauge the viability of potential technologies, and the rate of 

technological progress has accelerated accordingly. 

Many of the most commonplace materials in human technologies have, however, remained little changed 

since being adopted by pre-scientific societies millenia ago. Raw materials (stone, flint, wood) are 

used in manufacturing because of their innate properties, while the processing of raw materials, e.g. 

metal ores-to yield metals and alloys; and natural zeolites and aluminosilcate clays, to make bricks 

and other architectural building materials; aims to improve upon natural properties, or change them 

in some desired way (e.g. silica sands yielding transparent glass). This may be compared with the 

(relatively-ca. IDDy) nascent field of the polymer industry, which from the outset has made a wide 

variety of new materials with a broad spectrum of properties, ensuring their rapid adoption in countless 

applications. Crucially, the ability to control-at the monomericallevel-the composition of a polymer, 

has aided the development of polymer science, in such diverse areas of research as interfacial friction 18, 

biocompatibility l9, and molecular electronics. At the same time, absolute control of the chemical 

species at the surface of a polymer is difficult to achieve, as the orientation of monomers within a 

polymer is governed by self-organization processes that take place as the polymer superstructure i~ 

formed. If "surfaces ... are where many properties of materials are determined", then-precise control over 

the surface species is desirable in a new material, especially one designed for ~anoscale applications. 

This particular property, among several others that are sought, has been offered by oriented organic 

thin fi!ms, which will form the larger part of the basis for this thesis, and will be introduced in section 

section 1.1.5 on page 10. Before these are fully introduced, some consideration might be given to the 

way nature employs self-assembly in living processes. 
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1.1.4.2 Organic molecules: weak interactions 

In contrast with the materials used in human technology, which might consist of the heavier ele

ments (metals, metalloids), are often crystalline, or have otherwise non-stoichiometric compositions 

(aluminosilicates), the chemical elements that form the infrastructures of living systems are largely 

made up of the covalently bonding elements that form the upper-right portion of the periodic table. 

Molecularity in organic molecules is favoured by the similar magnitude of the average bond enthalpies 

of C-C (",335 kJ mol-I) and C-H (",410 kJ mor l ), and the slightly larger latter quantity is reflected, 

to some extent, in the higher abundance of smaller hydrocarbons in abiotic environments. In the 

reductive conditions of prebiotic Earth2, simple hydrocarbons such as these were subject, it is thought, 

to electrical storms and extreme conditions that catalysed the formation of branched, cyclized, aromatic 

and heteroatom-containing organic molecules that may have been adopted into the self-catalyzing, self

propogating processes of an early proto-life prior to the beginnings of biosynthesis in organisms at a 

considerably later time2, 20. The huge variety of reactions that may take place under such conditions 

between various organic molecules and hetero-species, including molecules containing 0, N, and S, 

halogens, and metallic elements, has been investigated to a great depth and breadth by the field of organic 

chemistry. Relatively recently, it has been shown that not only biologically relevant amphiphiles, but 

porphyrins, peptides and nucleobases, may all form in abiotic environments. Of those examples, am

phiphiles have been highlighted as of particular interest as a means to compartmentalize self-propogating 

cyclic reactions in the 'prebiotic soup' (as it has been called), to increase the thermodynamic efficiency 

of systems that could have been the precursors to life. Although the speculative nature of such an 

assertion cannot be denied, it is clear that biological cellular membranes fulfil this function today: 

Amphilphilic bilayers demarcate cellular processes. As described previously in subsection 1.1.2.1 

on page 4, amphiphiles are self-organizing molecules, a property which is ideally suited to forming 

assemblies on the nm- J.llTI scale. 

The discrete molecularity of organic molecules, with hydrogen as a passivating agent, has made them 

ideally suitable as the building materials for the fluid processes of life; cellular structures are not required 

to be rigid. Organic molecules may exist as many different isomers, and nature has· evolved machinery 

to facilitate kinetic short-cuts-enzymes-to enable these structural changes to be made at ambient 

temperatures. Hydrocarbon chains are essentially apolar, and biological membranes rely on van der 

Waals or dispersion forces to hold these assemblies together.· These so-called 'weak interactions' render 

the assemblies themselves more flexible, enabling structural changes to be made during the lifetime of 

the organism*. 

*The exceptions here are the scaffolds of arthropods (shells) and vertebrates (bones), which are complex structures of calcium 
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1.1.4.3 Materials in human technologies 

In comparison, human technology has traditionally required a vast input of energy during manufacture: 

for example, the use of melts or the elevated temperatures required for many industrial processes. 

Such extreme conditions become impractical at very small scales, with the ever-increasing intricacy 

of fabrication that is required. Self-organizing processes such as the self-assembly of bilayers often take 

place in mild conditions, and complexity can, to some extent, be built-in by careful choice of component 

molecules. Because of the thermodynamic impetus of a physical system to minimize its free energy

'nature abhors a gradient'3-defects are repaired by rearrangement and replacement. This is as desirable 

a healing process in nanoscale technology as it is in living organisms. 

Our understanding of self-assembly is, at present, not developed enough for us to hope to match 

the precise ergonomics of biological 'machines' with our own functioning nanostructures. In order 

to begin to understand the complexities of interactions at small scales, it is necessary to start with 

simple, predictable systems21 . While many of the advances towards nanoscale fabrication have been 

brought about by 'top-down' methodologies employed by the semiconductor industry, a vast library 

of molecular structures with every desirable property has been made available by organic synthesis. 

Assemblies of oriented organic molecules can provide a means to exact control of surface properties, 

and are patternable by a number of methods, to produce two dimensional nanostructures. 

1.1.5 Organic Thin Films 

1.1.5.1 History 

The capacity of thin films of organic molecules to drastically alter surface properties has long been of 

importance in a number of realms of enquiry, and has been exploited in humankind's technological and 

artistic endeavours. For example, numerous historical writings record observations of the calming effect 

of oil on water22-24. Investigations by Benjamin Franklin7 regarding the spreading of small quantities of 

triolein over large areas of Clapham common pond would la~er be given a theoretical basis by Rontgen, 

Rayleigh and Pockels, among others25 . The amenability of organic films to producing directed patterns 

also has an early precedent: The technique of Suminagashi was used by the Japanese 1200 years ago 

to colour paper26. It relies upon the formation upon a water surface of a film of a protein dye, which 

is facilitated by the carbon suspension that the water contains. This so-called 'Chinese ink' was then 

carbonates and phosphates, with traces of magnesium and other elements. However, these only serve to support life above a certain 
size and are ultimately not essential for life to exist; some molluscs have no such support structures, for example. 
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transferred to paper using a horizontal lift. This method would be echoed in Irving Langmuir's creation 

of monolayer films on solid substrates in the early 20th century. * 

Testament to her skills as a scientist, the work of Agnes Pockels was fundamental to the confirmation 

of the molecularity of matter; a fact made all the more impressive when it is considered that she had 

no formal scientific training and worked with household items. Pockels' apparatus, among other things, 

included a vessel for the containment of a fluid (usually water) and a tin strip dividing the fluid at its 

surface, allowing the area of the surface under study to be changed. A small button sat in the trough 

and was attached to a balance, allowing an accurate determination to be made of the surface tension 

in the region of fluid defined by the tin strip. This apparatus is a basic version of a Langmuir trough, 

named after industrial chemist Irving Langmuir, who would go on to give a molecular basis for Pockels' 

findings. 

Pockels' careful studies of the pressure-area isotherms of surfactants would lead to direct evidence 

of the molecular structure of materials, and the monolayer nature of amphiphiles at interfaces. Her 

findings indicated structural phase transitions of surfactants as the surface area of the liquid substrate 

was reduced. From this it could be inferred that the fluid under study was compressible up to a limit, 

the maximum packing density; also, the sharp increase in film pressure per area was indicative of a 
" 

molecular composition-it must consist of discrete entities with finite volumes. At the time, some 

scientists were still not convinced of the atomic nature of matter, and considered such notions merely to 

be useful mathematical models. 

Pockels was astute enough to communicate her findings to Lord Rayleigh, who recommended their 

publication in Nature27 • Inspired to conduct his own experiments, Rayleigh was led to conclude that 

such films were only one molecule thick, and was able to deduced a numerical value25 for Avogadro's 

number: 6.68 x 1023 mol-I. 

The formation of thin films at the air/water interface is directed by the amphiphilic structure of the 

surfactant molecule. Free energy is greater at an interface due to reduced interactions as compared with 

the bulk. For this reason, impurities in materials eventually make their way to the surface (for example, 

'slag' forms on a melt of iron during refining). 

It has been shown that it is possible to form structured films on liquid surfaces, and at the interface 

between 2 immiscible liquids28 . However, such films (either between airlliquid.or liquid/liquid) are 

·Crucially, Langmuir's method was an improvement because the substrate is drawn through the film, from liquid to air, 
perpendicular to its plane. The transfer ratio is close to 1 in this case-the packing density of molecules on the substrate will 
reflect that in the liquid phase. This may not be the case for a horizontal lift. 
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limited in their technological application because they are not rigid enough; they are difficult to work 

with because they are so delicate. The first step towards the engineering of surfaces therefore came with 

the transfer to a rigid, solid substrate. 

1.1.5.2 Development 

In a body of work spanning 1916-19174,29, Irving Langmuir explored the properties of organic thin 

films, and in 1918 demonstrated the possibility of transferring monolayer films to solid substrates30. By 

drawing a sheet of glass upwards through a thin film perpendicular to its plane, it is possible to achieve 

monolayer coverage. Such a surface-bound film will retain the structure of the 'liquid' monolayer, unless 

there is a specific interaction between the molecules in the film and the substrate that fosters an ordered 

morphology. The isotherm for adsorption of a species onto a solid substrate giving monolayer coverage 

now bears his name, as do the monolayer films themselves. The work carried out by his assistant, 

Katherine Blodgett, would lead to the fabrication of new materials based on successive deposition of 

multilayer. These are now called Langmuir-Blodgett (LB) films in their honour. 

Interest in LB films as systems with potential technological applications was revived by Hans Kuhn 

in the late 1960s31 . Kuhn and co-workers at the Max Planck institute in Gottingen demonstrated the 

application of LB films as information processing devices. It was realised that thin films could store 

information they could be patterned at a molecular scale and and that the short .range co-operativity 

offered by high packing densities could be exploited to make rudimentary logic gates. 

A programme of study that would be among the most important in the field of organic thin films had 

its beginnings in research carried out by Richard, Deutch and Whitesides in 19793~, which explored 

the reactivity of an co-alkene on oriented thin films of CIS fatty acids. Reactions where one reactant 

is held at a fixed position are of particular interest to the field of heterogeneous catalysis, and fixed 

orientation improves our understanding of the role of geometry in molecular dynamics. In order that the 

organic molecule be oriented correctly, it is desirable that the tethering functionality have a specificity 

of binding (preferably, chemisorption) for the substrate that far exceeds that experienced by other 

functionalities, especially if both groups are polar. This quality of differrenti'ation has been called 

'amphifunctionality,.33 The particular class of materials that are formed by such interactions are termed 

Self-Assembled Monolayers (SAMs). 
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<.o-functional 'tail' group 

/1~ 

Figure 1.2.1 The General Structure of a SAM 

1.2 Self-Assembled Monolayers 

Self-Assembled Monolayers (SAMs) are oriented, organic, single-layer films of amphiphiles that are 

directed by specific interactions to adsorb on metallic or semiconductor substrates. They have the 

general structure depicted in figure 1.2.1. A polar 'head group' with high specificity for the substrate 

facilitates adsorption, while lateral dispersion interactions within the film provide a thermodynamic 

impetus for the molecule to stand up from the surface. Control (by synthesis of appropriate SAM 

molecules) of the co-substituent 'tail group' allows for 'tunable' surface chemsitries. 

SAMs based on many such interactions have been demonstrated, on substrates such as Si, Au, Ag, Cu, 

Pt, Pd, Ti, and AI, and various metal oxides, via alkoxysilane, carboxylic acid, phosphate and sulfur in-

teractions, among others. The realisation that ordered organic films with a directed ('amphifunctional') 

attachment to a solid substrate could be used to modulate surface properties was principally explored by 

Sagiv34, observing the formation of silane SAMs on silicon that demonstrated 'oleophobic' properties. 

Silicon SAMs are of immense importance, having a wide variety of potential applications in many 

nascent technologies-especially outside of the laboratory-and are discussed further in Subsection 

1.2.2.3 on page 27. 
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1.2.1 Organosulfur SAMs on Gold 

1.2.1.1 The 'archetypal' SAM 

Of the many SAM systems that have been demonstrated, organosulfur compounds on gold are easily 

the most widely studied35-39 . Akanethiols on gold have been called the 'archetypal SAMs,37. These 

readily form large, ordered, crystalline mono layers with well-defined structures. The gold-thiolate bond 

is a highly specific interaction, worth in the order of 120 kJ mol-I; sulfur groups that yield thiolates upon 

adsorption (thiols and disulfides) will readily displace other functionalities present on the substrate40,4I. 

Sulfur and gold have very similar electronegativities (2.5 and 2.4 on the Pauling scale, respectively42). 

Indeed, gold is the most electronegative metal and is rightly classed as a 'soft' electrophile; gold does 

not readily form compounds with hard nucleophiles such as oxygen. Because it is chemically inert 

to atmospheric species, only weakly-bound physisorbed materials are present on well-prepared gold 

substrates. ~hese are readily displaced by desired sulfur-containing adsorbates, and so gold is an ideal 

substrate for alkylthiolate SAM formation. 

Mono- and poly functional sulfur-containing compounds were proposed as promoters for the drop

wise condensation of steam by Blackman and Dewer in 195743-45, as a means to increase efficiency 
., 

in electricity generating plants. In a yet earlier work, Emmons proposed a similar industrial application, 

with the suggestion that the "metallophilic" sulfur causes the hydrocarbon chain to form a 'brush' on 

the surface46 , proposing that the hydrocarbon chains are oriented to the surface normal. 

Interest in organic films based on the aurophilicity of sulfur was initially rekindled by Nuzzo and 

Allara47 . Their 1983 paper outlined a technique that "employs solution adsorption of disulfides on 

zerovalent gold substrates" and realized the potential of SAMs with an investigation of different tail 

group functionalities. Nuzzo, Zegarski and Dubois carried out some of the first characterizations of 

these systems by multiple methods in 198748 . The stability of SAMs was probed using a thermally

programmed desorption (TPD) technique and determined via quadrupole mass analysis. The bond 

energy of chemisorbed thiolate (from organothiols and organodisulfides) was thu~ reported to be in· 

the order of 30-35 kcal mol-I. The nature of the film-substrate binding was qlso probed by X-ray 

photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and electron energy-loss spec

troscopy (EELS). Many features of alkanethiolate SAMs on gold (which will from now be referred 

to as Au-SR SAMs) were thus made evident, of particular relevance being the XPS results proving 

chemisorption at the substrate through distinctive S2p binding curves. These studies were augmented 

in the same year with further work by Nuzzo, Allara and Fusc04I , and Porter et al.49 , with studies of 
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'tethered'· ether-containing disulfides and alkyldisulfides, and n-alkanethiols adsorbed on gold films; 

by ellipsometry, Infrared (lR) spectroscopy, XPS and electrochemical measurements. XPS41 of samples 

at raised temperatures suggested sulfur-gold bond energies corroborant with previous TPD studies48 , 

while electrochemical studies by Porter et al. indicated that the longer-chain thiols were resistant to ion 

penetration; their ellipsometric data suggested a "closest packed" molecular arrangement with a chain 

tilt of the aliphatic hydrocarbons of 20-30°. Such a structure was also proposed by Nuzzo et aI.41 for 

hexadecanedisulfide films, supported by transition dipole moments inferred from frequency shifts in IR 

spectra. Ulman, Eilers and Tilman50 subsequently presented a model of Au-SR SAM structure based 

on a previous work by Rabe et aI.51 and their own Molecular Modelling (MM) calculations. Rabe 

et al. 's work on LB films on Si suggested that, because of the 'zig-zag' profile of a hydrocarbon chain 

(a consequence of carbon's tetrahedral geometry), only certain cant angles can be adopted that both 

maximise dispersive interactions between chains, while also avoiding steric clashes. These are given 

by: 

nR 
tan't'= -

D 
(1.2.1) 

where R is the distance between next-nearest neighbour carbon atoms (2.52 A), D is the minimum sepa

ration between chains (determined by Ulman, Eilers and Tilman50 to be 4.24 A from MM calculations). 

From this analysis, it could be reasoned that only certain, discrete angles~ould be observable: 0°, 30.7°, 

49.9° ... for n=l, 2, 3 ... resepectively; however, this neglects chain twists (a) that cause deviations 

from these angles. The precise geometry of molecular species within the adsorbate adlayer is therefore 

dependent not only on factors imposed by the available overlap of headgroup-substrate orbitals, which 

manifests itself through lattice spacing, but also the molecular orbitals within the hydrocarbon chain 

and, as will be shown, the nature of the OJ surface substituent. 

1.2.1.2 Model surfaces 

Of the many self-assembling films investigated, organothiolates on gold have revealed themselves as 

ideal systems for probing diverse interfacial phenomena, with potential industrial applications that were. 

first investigated some 50 years ago43-46. Wetting of mixed, monolayers of dialkyl sulfides has since 

been investigated by Bain and Whitesides52, in work which linked wettability t (a macroscopic phe

nomenon) to ellipsometric data and attenuation of photoelectrons ejected by X-rays (both microscopic 

phenonema). Scrupulous choice of different-length dialkyl sulfides in the binary mixtures indicated a 

thermodynamic preference to form mono layers containing a greater number of lateral interactions (i.e. 

·i.e. with additional bonding C-C in the carbon component 
tThe wetting phenomenon and its physical basis will be discussed in 1.3.1 
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1.2SAMs 

Figure 1.2.5 Eclipsing of shorter SAM components by longer ones, reproduced from Rej.54 

the longer molecule is preferrentially adsorbed over the shorter), reflected in a bias in the requisite 

composition ratio to produce a phase transition away from 1: 1 to f'j 10: 1 (shorter: longer). This result 

is perhaps unsurprising, since SAM formation is in essence kinetically driven, with an estimate of 

~fusionH=O.4 kcal mol-1 per methylene group, drawn from studies of melting points of n-alkanes53•54 • 

Also inferred from ellipsometric measurements was the fact that the longer chains in mixed monolayers 

must 'overhang' the shorter ones, effectively eclipsing their projected physical characteristics, while 

also exposing the methylene groups of the longer SAM. This is depicted in figure 1.2.5. The important 

consequence of this particular observation is that composite SAMs of two or more molecular compo

nents should be designed with a consideration of their respective lengths; unwarranted eclipsing of a 

shorter SAM molecule by a longer one negates any surface property sought by the inclusion of the 

former. 

Further studies investigating the adsorption of dialkyl sulfides onto gold were carried out by Troughton 

et ai.55 , and a number of interesting results were obtained: 

• Wettability is a short-range phenomenon, operating at <5 A, which is at odds with earlier work 

carried out by Shafrin and Zisman56 that suggested that ostensibly 'buried' dipolar groups within 

a film might impose long range effects on surface properties (since dipoles' fall off as r-3). 

However, this particular study was carried out on oriented organic films with less long-range order 

than organothiolate SAMs, or non-oriented films, and so the exact surface morphology may not 

have been that expected, i.e. the 'buried' groups could, in fact, have been partially exposed. 

Troughton et ale found that Langmuir's PRINCIPLE OF INDEPENDENT SURFACE ACTION4,. 

whereby macroscopic properties are determined as a ,sum of the free en~rgy contributions, is 

obeyed. 

• As dialkyl sulfides cannot dissociatively adsorb at a surface (because one of the products would 

have to be a primary carbocation), the bonding mode is necessarily different from organodisul

fides (which may dissociatively adsorb by S-S scission) or thiolates. However, the bonding is 

specific and should not be thought of as a merely physisorbed state; the interaction is worth 
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,,-,60 kJ mol- I57 , which is more than most dispersion forces; moreover, it should be remembered 

that sulfur can adopt valencies of 4 and 6 as well as 2 (due to the availability of 3d orbitals) so it 

is possible that the sulfur in the case of dialkyl sulfide SAMs interacts with two gold atoms. 

1.2.1.3 Kinetics of formation 

Further studies by Bain et aI.58 on Au-SR SAMs formed from thiols in solution were reported in well

cited publication of 1989, in which a number of previous studies were drawn together, and elaborated 

upon. Work published in the same year by Bain, Biebuyck and Whitesides40 demonstrated that SAMs 

formed from thiols and disulfides are indistinguishable from their S2p photoelectron spectra, indicating 

that the surface-bound species must be the same in each case; proposing, as suggested previously by 

Porter et aI.49 , a thiolate. Bain, Biebuyck and Whitesides' work showed that thiolate adsorption is 

favoured over that of disulfides40 from mixed solutions, seemingly contradicting earlier work by Nuzzo 

et aI.4I, which placed disulfides over thiolates as better candidates for SAM formation. 

Ellipsometric and contact angle data were used to follow the kinetics of SAM formation58 , revealing (at 

least) two distinct modes in the process. SAM formation is at first rapid, with ellipsometric data showing 

that 80-90 % of final thickness is achieved in only a few minutes. Thereafter follows a slower annealing 

process, lasting several hours, which was rationalised as a consolidation of the 2D crystal following an 

initial, disordered state. This is in agreement with several studies made since37 • 

Eberhardt et aI.59 followed SAM formation with Glancing Incidence X-Ray diffraction (GIXD), and 

showed that initial monolayer growth could be described by first order Langmuir kinetics, followed by 

the appearance of a new Bragg peak at a critical coverage indicating the formation of a denser phase, 

which also follows normal Langmuir adsorption kinetics: 

(1.2.2) 

(where e is the monolayer fraction, ka is the rate of adsorption and kd is the rate of desorption)-but . 

with a time offset, so: 

(1.2.3) 

for t > te, where ka denotes rate of molecular adsortion, kd of desorption; T1 denotes the degree of 

consolidation into the denser phase after monolayer coverage is achieved (when e = 1). 

SAM growth is often described35•39 as consisting of four stages: 
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1. A 2D 'lattice-gas' structure, in which very little order is observed, with adsorbates seen to have a 

high degree of mobility by atomic f?rce mircoscopy (AFM)60. 

2. Nucleation and growth of a low density, 'lying down' or 'striped' phase. in which the adsorbates 

are described as having a 'pinstripe' structure. 

3. At critical coverage nucleation of the denser phase occurs. For this to happen, a reorientation 

to a 'standing up' mode must be made. This happens 3-4 times more slowly than 2. Specific 

orientation is dictated by packing, Van der Waals interactions, and the directionality imposed by 

the S-Au bond, as will be discussed further. There is evidence to show that this process is second 

order, which may indicate some cooperative processes. 

4. 'Healing' of the SAM. This is rather ambiguous, but generally involves the rectification of point 

defects, and the consolidation into long-range order specific to crystallisation processes. However, 

evidence indicates that shorter chain alkanethiolate SAMs retain a high degree of mobility at room 

temperature that is characteristic of a liquid phase. No long-range order is seen in short-chain 

SAMs, which has been supported by evidence from friction force microscopy (FFM) experiments 

and oxidation studies. 

The processes leading to SAM formation are fairly well-established, and are supported by a number 

of experimental studies, e.g. by time-resolved ellipsometric measurements, and SAMs in intermediate 

stages of development have been isolated. Poirier et al.61 investigated liquid-like states of short chain 

SAMs, which do not posess the long hydrocarbon chains thought to be crucial to the later consolidation 

stages. Further evidence at low coverages, formed from solutions with a net deficit per adsorption site of 

thiol molecules, depicts island coverages consistent with a diffusion-limited process that was identified 

by Camillone62. Barrena et al.63 and Munuera et al.64 have identified routes to, and clear images of, 

SAMs at subsaturated coverages. Longer SAMs are comparitively more crystalline, due to the increased 

van der Waals interactions afforded by a greater number of methylene groups. It has been shown that 

thermal degradation may be employed to achieve a controllable sub saturation of adsorbates65 . 

1.2.1.4 The nature of the adsorbate species 

A number of important pieces of evidence indicate that the substrate-bound species is a thiolate, re

gardless of whether the adsorbate is formed from thiols or disulfides, or from solution or gaseous 

phase. Bryant and Pemberton demonstrated loss of S-H stretching in surface-Raman scattering ex

periments66,67 on silver and gold, although there is evidence that methanethiol does not lose H upon 
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adsorption68 • There is a kinetic barrier to loss of thiol hydrogen that may initially cause an initial 

preference for disulfide adsorption, as described by Nuzzo et al.41 , whereas Bain et al.4o found a 

preference for thiol adsorption: thiols, once thiolates, are free to adopt the most thermodynamically 

stable packing arrangement. Such complexity in adsorption characteristics arise from thermodynamic 

and kinetic competition, which is discussed more thouroughly in the next subsection. 

1.2.1.5 The influence of structure on growth mechanism: Thermodynamic vs. kinetic control 

The relative roles of thermodynamic and kinetic control in SAM formation were considered in-depth by 

Folkers et al.69,70 and Laibinis et al.54 • It was shown that, despite the indication that SAM formation 

is thermodynamically controlled, which was inferred from the observation that adsorption of molecules 

capable of increased lateral interactions'" is preferred from multicomponent solutions, the conditions 

used for the formation of SAMs t are such that many films at least partly betray the initial imprint of 

the kinetic product. Laibinis suggests that it is "only for the simplest adsorbates. .. or for very long 

exposures that the true thermodynamic end points of the assembly are likely to be approached ... the 

significant steric repulsion expected for a chain trying to penetrate a high coverage [SAM] suggests 

that the approach to equilibrium kinetics could be very slow." Furthermore, the initial, kinetic product 

yielded by SAM formation from a solution of mixed adsorbates, which is "different from but parallel to 

the composition ... [of the solution]", over time yields a composition ever further from that of the initial, 

'kinetic' SAM; the longer SAMs are thermodynamically preferred over the short~r and SAMs given 

longer to form will more closely reflect this latter driving force54• 

Folkers considered the enthalpic drive for mixed monolayers to phase-separate69 (phase-separated films 

are characterised by a decrease in entropy, and must therefore be enthalpically favourable to occur), 

and concluded that mixed SAMs demonstrate intermediate structures between being fully mixed and 

fully phase-separated. Wetting experiments using two dissimilar media (water and hexadecane) on 

hydroxy-terminated SAMs of different lengths indicated an increase in the water contact angle (i.e. a 

hydrophobic effect) on the films when the solution composition reached a critical yalue, which was 

not observed when the wetting medium was hexadecane. It was reasoned that th!s must indicate that 

the binary SAMs are well mixed, because macroscopic islands would be both be hydrophilic and yield 

similar contact angles, but well mixed SAMs (it was reasoned) would exhibit eclipsing of the shorter 

hydroxy-terminated SAM component by the longer one, which would in tum expose the methylene 

*(i.e. for n-alkanethiols, longer chains) 
tinfluenced by results from ellipsometric studies reported by Nuzzo et a1,41, indicating that maxmium film thickness, 

corresponding to an endpoint in SAM formation following film healing, is reached after 18-20 h formation time; this makes 
up the standard SAM formation protocol in the majority of laboratories 
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groups of the longer, increasing the contact angle with water of the film of critical composition. The 

reason this dramatic change in wettability ~as not observed when hexadecane was the wetting medium, 

it was suggested, is that hexadecane molecules are of the same size as the gaps formed between longer 

adsorbates and can thus interleave them, reducing the enthalpic gain yielded by the eclipsing of the 

shorter adsorbates by the longer in the previous case of water, the molecules of which are much smaller, 

and also polar. Conversely, the close dependence of the film composition on the solution composition 

was interpreted as being a cooperative effect indicating a degree of phase separation. The concession 

was made that the 'islands' of separate phases may be smaller than can be probed by an effectively 

macroscopic technique such as contact angle measurements, with significant disorder and mixing at their 

fringes, but may nevertheless be present on the surface: a hypothesis which has since been supported 

by results yielded by Chemical Force Microscopy (CFM) measurements 71. It was also suggested in 

this69, and a later report by Folkers et al.70 , that characterisation of binary SAMs of mixed length and/or 

composition is best approached via analysis by XPS, which is of particular relevance to work presented 

in both Chapters 3 and 4 of this thesis. 

1.2.1.6 Position of sulfur in Au-SR SAMs 

" 

Gold adopts a face-centred cubic (fcc) lattice arrangement that is characteristic of larger metals42• 

SPM studies indicate that evaporated and epitaxially-grown gold surfaces tend to present the lowest

energy (111) crystal plane at the surface, giving rise to a familiar hexagonal packing "arrangement. Early 

SPM* work by Widrig et al.72 indicated a substrate-commensurate adlayer morphology for the thiolate 

adsorbates, denoted (J3. J3)R30°. This is shown in figure 1.2.6 on the next page. 

J3 denotes the interatomic distance of sulfur headgroups, as related to the intemucle~ distance of the 

underlying gold atoms' threefold hollow sites (J3a, where a is the lattice constant). It has generally 

been thought that the sulfur position lies in these threefold hollows, although this has historically been 

a matter of some contention. Central to the discussion has been the observance of symmetry breakage 

in the SAM structure, initially indicated by early IR studies by Nuzzo et al.73 and Nuzzo et al.74, . 

and subsequently observed in STMt images (e.g. Poirier et al.6o ). This is most ~ften referred to as a 

c(4 x 2) superlattice, which has been noted (for instance, by Schreiber37) as being of an unconventional 

terminology; p(3 x 2J3) is the more standard notation. However, early papers described the structure 

with the former terminology, and so subsequent studies have acquiesced to this decision. The struc

tural consequence of this symmetry-breaking is that there are two non-equivalent structures of thiolate 

·Scanning Probe Microscopy 
tScanning tunneling microscopy 
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Figure 1.2.6 Position of sulfur headgroups in a Au-SR SAM 

molecules per SAM unit cell. It has been suggested that this may arise either from thiolate molecules 

being set at a different height above the substrate (which would account for the variations in STM 

brightness observed by Poirier et al.60 ) or alternate rotations of thiolate molecules (which is supported 

by a doublet in methylene scissor bend in IR data73,74). 

With regard to sulfur location, a number of alternate, contradictory structures have been proposed by 

different groups, including atop 75,76, bridge, and transitional sites. In this context, too, the origin of the 

c(4x2) symmetry breakage is debated. Fenter et al.77 carried out near-incidence X-ray standing wave 

(XSW) measurements and interpreted the symmetry breakage as resulting from disulfide-like interaction 

at the interface, inferring from the absence of characteristic Bragg peaks that the position of sulfur is not 

the same for the two distinct molecules in the unit cell77 . GIXD (Glancing Incidence X-ray Diffraction) 

results suggest that S-S distance between none qui valent SAM molecules is 2.2 A, close to a the bond 

length in the corresponding disulfide of rv2 A, as shown in figure 1.2.6 (black circles map Fenter et al.'s 

proposed sulfur sites). This is very much at odds with the distance between hcp sites (4.98 A), and in 

disagreement with STM studies that indicate an arrangement that would fit a packing model based on 

the availability of hcp sites. A bimolecular process is expected in thiol adsorption in order to evolve 

H2 and yield thiolates, which would suggest the possibility of residual disulfide, as a by-product of this 

interaction, at the interface. However, Nuzzo et al.41 report loss of S-S stretching in Raman spectra of 

adsorbed disulfides, indicating a dissociative adsorption mechanism; any transient bond formed by S-S 

interactions ultimately must undergo scission. 

Furthermore, Biebuyck and Whitesides 78 reported replacement of one-half of an adsorbed disulfide 
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by solution-phase thiol, which indicates that both halves are separate entities on the surface, although 

it could be argued that the intrinsic asymmetry lends a thermodynamic impetus for displacement by 

a better-suited thiol. Roper and Jones79 have observed a dynamic interchange between chemisorbed 

thiolate and a physisorbed disulfide adlayer, and have suggested that trapped disulfide species in mono

layers could contribute to spurious X-ray structure results. Work carried out by Noh et al.80 suggests 

that structural changes occur during a SAM's useful lifetime, with a long-term rearrangement of the 

c(4 x 2) superlattice to a 6 x J3 structure, and it is possible that disulfides become trapped during this 

rearrangement. 

It has also been suggested that the aberrant results yielded by NIXSW (Near-Incidence X-ray Standing 

Wave) and GIXD are, in fact, due to damage done to the samples by high-energy X-rays during analysis. 

The ejection of photoelectrons by exposing SAMs to X-ray radiation could (if this is indeed occurring) 

cause reordering of thiolate species to form disulfides. Early diffraction studies by Strong81 and White

sides, and Chidsey et al. 82, did not demonstrate sulfur pairing, and so it could be that the choice of 

probe-in this case-interferes with the analyte structure. Indeed, recent work by O'Dwyer et aI.83 

attributes the c(4x 2) splitting to alternate molecular twists alone (±500), a consequence of packing; 

there is, perhaps, no need for the dimerisation model suggested by Fenter for some of the idiosyncratic 

features of SAMs (which are after all only indicated by certain types of measurement) to be explained. 

1.2.1.7 Stability and Exchange in SAMs 

Individual thiolate groups in organosulfur SAMs may, over time, be subject to oxidation,' which ren

ders them incompatible with the surrounding SAM structure. Misfittings are sometimes observed as 

vibrational modes in IR spectra that are indicative of gauche defects in individual molecules. There 

is a dynamic '~xchange of such 'corrupted' units of the molecular assembly with thiols78 (or, possibly, 

disulfide adlayers 79) in the solution phase. Schlenoff et al.84 followed interchange of thiols by radiola

belling, and was able to elucidate many features of SAMs, including the result that dissolved molecular 

H2 does not playa part in the exchange process. That desorption (characterized well~ by a pseudo-first 

order analysis) follows similar kinetics to self-exchange led them to postulate des~rption of weak links 

in the SAM as disulfides. The observation that there always remains a fraction which is not subject to 

this form of dynamic interchange led to the suggestion that this results from stronger binding at defect 

sites, and a proposal was made that rough substrates would bind SAMs better. While it is true that SAMs 

at step edges on flat gold are more tightly bound (possibly due to stabilisation afford by a bridge-type 

ligation at the sulfur), long range order is not possible on very rough surfaces. Indeed, Baralia et al.85 
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suggested that interchange first occurs at gold grain boundaries with EA equal to 66 ± 4 kJ mol-1 (from 

an Arrhenius temperature analysis). 

Schoenfisch" and Pemberton followed oxidation of Au-SR SAMs in air86, and performed an ingenious 

experiment in which aerial oxidation was studied in a number of different environments in dark condi

tions (thus ruling out a photooxidative process). They observed that aerial oxidation proceeded rapidly 

in laboratory conditions at the university where they were based (Tucson, Arizona, USA), but that the 

rate was much slower at a private residence. By noting that the air in the university laboratory was being 

replaced with fresh air from outside by air conditioning, a feature which was not present in the room 

at the private residence, they were able to form the hypothesis that ozone could be the oxidative agent. 

Intense sunlight experienced by the southern United States facilitates the formation of atmospheric 

ozone at elevated quantities. Deliberate use of ozone has since been demonstrated as a means to oxidise 

SAMs87,88. 

1.2.1.8 The Au-S bond 

The enigmatic nature of the S-Au interaction has attracted much theoretical interest68, 89, although a 

number of important studies by other methods have attempted to probe its precise structure, for example 

by XPS9o, near-edge X-ray adsorption fine structure (NEXAFS) and ultraviolet spectroscopy (UVS)91. 

Sellers et al. 33 performed ab initio calculations for gold and silver SAMs and concluded that the bonding 

mode was seen to flit between sp3 and sp-type hybridization, postulating the involvement of this in SAM 

annealing. 

Tachibana et al.92 carried out a number of ab initio calculations that consider possible "sulfur locations, 

and the likely molecular orbital ('MO') interactions associated with each. They concluded that S-Au 

bonding strength was greatest in threefold hollows, intermediate on bridge sites, and smallest on atop 

sites. Very little difference was predicted between hcp and fcc threefold hollow sites, suggesting that the 

layer of gold atoms beneath that directly at the surface has little influence. The greatest interaction, as . 

a sum of crystal orbital overlap population (COOP) and crystal orbital Hamilton population (COHP) 

analyses, was seen to be from S3s-Au6pz x 3 in the fcc threefold hollow (COHP=-2.19); the next 

greatest was the same interaction on the hcp site (COHP=-2.18). 

Whether the sulfur-metal bond of alkylthiolates to Au and other metals is sufficient to enable adsorbate

induced substrate reconstruction has been the subject of some debate. In 1991, Haussling et al.93 

reported pit-like vacancies in SAM-covered surfaces that were not observed on bare gold, and proposed 
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that these were defects in the SAM explicable by the presence of 'lying-down' or liquid-like phases. 

Poirier et al.61 later observed that the depression depth corresponded to a single Au atom step height 

(2.4 A), covering ::::::6 % of the surface. Def~ct, or "vacancy island" growth was seen to occur by 

an 'Ostwald ripening' process, whereby the growth of larger defects at the expense of smaller ones 

proceeds by "diffusion of single atoms vacancies", rather than "coalescence ... [of] whole pits". This was 

elaborated on by Poirier in a subsequent pub lic ation94 , in which it was suggested that the underlying 

'herringbone' gold morphology, which harbours excess gold atoms in the ratio of 1 per 22 or 23 lattice 

constants, undergoes relaxation upon SAM desposition. STM and GIXD indicated that a 4.4 % lattice 

expansion occurs, which corresponds to the surfeit of gold atoms in the (111) surface, and single adatoms 

were observed on the gold surface. This and work by Zhang et al.95 suggests that pits grow by the 

migration of gold atoms at the edges of defect sites into single vacancies. 

The Au-S bond is, however, typically the weakest in a Au-SR SAM; 40kcalmol-1 cf. 145, 81 and 

171 kcal mol-1 for C-C, C-H and C-S, respectively. Selective removal or replacement of SAM molecules 

is therefore due to action targetted at the Au-S interface. This has been central to the exploration of 

SAMs as patternable assemblies, as will be discussed in Section 1.4. 

1.2.1.9 'Odd-Even' effects 

The inherant tetrahedral geometry introduced in a SAM film by the hydrocarbon component imparts 

alternating surface physical properties as the length of the chain is increased and the n of Cn alternates 

between being odd and even. Many physical systems exhibit properties which alternate qualitatively 

and quantitatively depending on whether an odd or even number of a repeated subunit is present, such 

as ~vapH of n-alkanes. In SAMs, the fixed orientation of molecules in the film causes films where the 

terminal ro group features a directional dipole to exhibit alternating surface properties (e.g. wettability, 

tribology) depending on whether the film contains an odd or even number of carbon atoms96 • This has 

important ramifications for organic films either of SAMs of molecules that contain structural changes 

somewhere along their length (e.g. amide links, or a transition from a hydrocarbo~ to an oligoether . 

chain), or films formed by the attachment of new molecular or ,biomolecular specie~ to reactive terminal 

ro functionalities: both cases should consider whether the transition or terminal group is odd or even, 

and whether the geometry imparted is optimal for the desired property. 
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1.2.1.10 Reactivity and Modification of SAMs 

The organic structure of SAMs allows surfaces to be modified by a variety of means, although fixed 

orientation and constrained geometries that are not present in solution-phase chemistries restrict or 

alter reactivity accordingly. Nevertheless, a number of modification methods have been demonstrated. 

Yan et aZ.97 showed that interchain carboxylic anhydride moieties may be formed on carboxylic acid

terminated SAMs by reacting them with acid anhydrides in anhydrous aprotic solvents. These may be 

further functionalised by adding amines, which may contain additional functional groups as desired, 

in aprotic, non-basic solvents. Hutt and Leggett98 investigated acid anhydride functionalisation of 

hydroxy-terminated SAMs, and carbodiimide-driven esterification of carboxylic acid terminated SAMs, 

and observed that a yield of 60 % ester product was observed on a SAM compared to "" 1 00 % in bulk 

solution. This result was rationalised by considering constrained geometry at the SAM surface, which 

may have inhibited the access of the bulky di-tert-butlycarbodiimide. Chechik, Crooks and Stirling99 

investigated reactivity from a general viewpoint, including SAMs as templates for polymer growth, 

intrafilms reactions, and photo- and electrochemical reactions. Some of the most useful reactions are 

those that facilitate the inclusion of biological molecules, and these are often used in the context of 

protein patterning. This will be discussed in subsection 1.4.4 on page 59. 

1.2.2 SAMs on Other Substrates 

SAMs on other metallic systems, such as those on Ag and Pd presented here, can often be interpreted 

"by analogy"lOO with those on Au, and many of the structural and reactive attributes are very similar. 

Silane SAMs on Si have slightly different structures, largely due to the covalent nature of the bond at 

the adsorbate/substrate interface, but as many properties of SAMs are determined by the surface «(f)) 

functionality, reactions and properties observed for M-SR systems are often also applicable to these 

systems. 

1.2.2.1 SAMs on Silver 

Ag-SR SAMs are more strongly-bound than are Au-SR, and despite similar lattice constants (4.08 A on 

Au cf. 4.09 A on Ag at 300 K), Ag-SR SAMs tend to adopt a much denser packing, being characterized 

as (v7 x v7)RlO.9°. Sulfur positioning for molecular S2 was first characterized by low-energy electron 

diffaction (LEED) and Auger electron spectroscopy experiments, carried out by Schwaha, Spencer and 
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LambertlOI , and Rovida and Pratesi l02, who worked with S02. From their results, a nearest-neighbour 

S-S distance of 4.41 A was calculated. Studies of SAMs have suggested a similar spacing, indicative of a 

dissociative adsorption mechanism. The closer packing causes Ag-SR SAMs to adopt a more moderate 

cant angle than Au-SR (I'V 11-14°)103. The maximum area per thiolate molecule on Ag is 19.1 A2, 

whereas on gold 21.7 A 2 is available. As on gold, the majority of evidence points to the sulfur occupying 

the threefold hollow site, although recent work has suggested that some degree of adsorbate-induced 

surface reconstruction may occur. Yu et al.104 reported such an observation from NIXSW analysis, 

which is supportive of the postulation made by Brewer et al. IOS that bulky co-terminated adsorbates may 

adopt a looser packing on silver than do n-alkylthiolates. This is suggested to be a likely explanation for 

the inferred looser packing of carboxylic acid-terminated SAMs on Ag than methyl-terminated SAMs. 

Friction force* measurements made during the latter study indicated that Ag-SCnCH3 SAMs exhibited 

lower friction than their Au counterparts, as measured by interactions with an AFM cantilever in LFM 

mode; friction between an AFM tip and SAM is thought to be contributed to by gauche defects imposed 

by the force of the tip acting at the co-position of the SAM, and such a rearrangement is impeded in Ag

SR SAMs by the greater packing density (more freedom of movement is available in Au-SR SAMs). 

However, in the case of Ag-SCnCOOH SAMs, increased friction is observed as compared with the 

same SAM on Au, which was interpreted as the SAM adopting a looser packing. Similarly, packing of 

SAMs formed from HSCll(OCH2CH2)nOH on Ag, as measured by the attenuation ofphotoelectronst , 

was observed to be less than expected. A full discussion of this case is presented in subsection 1.2.3.4 

on page 29. 

1.2.2.2 SAMs on Palladium 

Pd-SR SAMs are extolled for their simultaneous compatibility with CMOS technologies (gold is not, 

though silver is) and applicability to biological work (gold is biocompatible; silver is toxic). Indeed, Pd 

has been shown to exhibit increased biocompatibility cf. Au* when SAMs resistant to the adsorption of 

biological materials are considered. Pd-SR SAMs have been demonstrated as etch resists that better the 

resolution of analagous Au-SR SAMs. Love et al. IOO characterized methyl-terminated Pd-SR SAMs 

and deduced a structure that is somewhat more complex than analogous Au-SR films. It was suggested 

that, upon adsorption, a Pd-S interlayer forms, which implies at least some degree of S-C bond scission. 

Wetting experiments demonstrated a marked increase in contact angle hysteresis, which was attributed to 
" 

either the increased film roughness over Au (evaporated Pd forms smaller crystals) or defects within the 

.osee subsection 1.3.4.3 on page 48 
tSee subsection 1.3.3.3 on page 44 
*see Subsection 1.2.3.7 
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SAM (although the concession was made that the experiments do not suggest widespread defects). From 

RAIRS spectra of a CIS film, characteristic vibrational modes were observed that indicate a chain cant 

intermediate between those of Au-SR and Ag-SR, with a consideration of the chain twist f3 suggesting a 

cant closer to that observed on Ag: within the range 14-18°. Many of the investigative probes of Pd-SR 

SAMs indicate that they have characteristics approximately halway between Ag and Au. Their promise 

of better integration between bionomics and CMOS technologies is discussed in subsection 1.2.3.7 on 

page 33. 

1.2.2.3 SAMs on Silicon 

While M-SR SAMs have been widely adopted in the laboratory, lauded as they are as an efficient 

route to oriented films that present tailorable surfaces, degradation and instability beyond the short-term 

preclude their adoption in mass-produced 'real world' devices. Attempts to rigourously investigate the 

nature of M-SR SAMs are often frustrated by structural changes that begin to take place over experimen

tally relevant timeframes, and under experimental conditions. Short chain Au-SR are known to desorb 

under UHV106, which is a required condition for many surface analysis techniques, e.g. XPS, and 

SIMS, for instance; adventitious adsorbates from the laboratory atmosphere can quickly compromise 

a CnCOOH SAMI05 . In contrast, silane SAMs exhibit increased stability, due to the more orthodox 

covalency of the bonding mode, and increased bond strength (Si-0=452 kJ motl, Si-C=318 kJ mol-142; 

cf. 120kJmol-148 for Au. 

Silane SAMs have a long precedent, with some of the earliest SAM work being done on silicon34. 

Structurally, the component molecules in silane SAMs are thought to adopt a low-cant orientation very 

close to the surface normaI34,35,51. 

Many nascent patterning techniques aim to exploit the enhanced stability of silane SAMs, and the possi

bility of introducing photoactive groups for spatially-selective reactions, for patterning and biomolecule 

integration. These will be discussed in subsection 1.4.4.3 on page 60. 
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1.2.3 Development of SAMs with a consideration of Biocompatibility 

and Biological Adhesion 

1.2.3.1 The requirements for SAMs with biological applications 

1.2SAMs 

Surface properties have dramatic consequences for the compatibility of artificial structures with living 

matter107. The tailorable co-functionalities of SAMs has allowed the development and investigation of 

SAMs that might facilitate biocompatibility in implants, or act as immobilisation templates for arrays 

in biochemical analysis. In the former case, it is desirable to resist adsorption to proteins present 

in an organism which, if denatured upon adsorption to a surface, may trigger an immune response. 

An additional requirement of biocompatibility is to promote intermeshing with local structures, such 

as bone or cartilage, and so SAMs that promote growth of cells related to bone deposition are of 

interest. When considering SAMs for spatial arrangement of biological samples (such as in a protein or 

genomic microarray, for instance), SAMs with structures or particular functionalites that are amenable to 

patterning are required. It is essential that immobilisation chemistries are sensitive to the delicate nature 

of biological structures, and biokleptic architectures require that the biomolecules are not damaged by 

the process. The patterning process itself will be covered in more detail in Section 1.4. 

Additionally, SAMs are required to be stable in biological media. While SAMs have actually been 

demonstrated to exhibit enhanced stability in water as compared with ethanol, buff~r salts may perturb 

the observed inhibition of desorption caused by the polar nature of water108 . 

1.2.3.2 Surface free energy: Correlation with biological adhesion? 

Cooper et ai. 109 followed attachment of fibroblasts on patterned SAMs and observed greater cell density 

on acid-terminated regions (C2COOH) than on methyl-terminated (C7CH3), correlating this effect with 

the comparitively higher surface free energy of a carboxylic acid group. Subsequent workllO,111 indi

cated increased human osteoblast cell growth on short chain acid- and hydroxy-terrp.inated alkylthiol 

SAMs, slightly less on a long chain acid-terminated SAM (ClOCOOH), and d~minshed growth on 

methyl-terminated SAMs, with the least cell propogation observed on longer chains. A long chain 

hydroxy-terminated SAM (ClOCH20H) exhibited intermediate attachment. Fibroblast growth inves

tigated as part of the same programme of studyll1 indicated a greatly reduced affinity to hydroxy

terminated SAMs as compared with osteoblasts, with the least on the ClOCOOH SAM. In this sense, 

it was conluded that the trends are somewhat "phenomenological" and depend on the nature of the 
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outer tissue of the biological cell; however, increased order resulting from long chain length of methyl

terminated SAMs had the most pronounced resistance to biological cells, and it is clear that the inte

gration of biological cells with SAMs is very sensitive to precise ordering at the surf~ce. The adhesion 

of cells to SAMs following controlled adsorption of proteins was also investigated in an attempt to 

correlate the apparently phenomenological results with a proposed mechanism of attachmentl12. 

1.2.3.3 Poly(ethylene oxide): The gold-standard for protein resistance 

Although attempts to correlate bioadhesion with wetting have been made, most plasma proteins in a 

complex organism will denature at a surface in order to lower the interaction energy, a process which 

is eventually rendered irreversible. Poly(ethylene oxide) (,PEO')* films and their derivatives have been 

shown to be almost singuarly effective at resisting biological adhesion, and are therefore of extreme 

importance in considering biocompatability, although the mechanism of resistance to biomolecules is 

not fully understood. While spin-coating of PEO onto surfaces or thiolating low Mw PEO 113 to facilitate 

adsorption onto noble metals is possible, surfaces prepared in this way do not exhibit the order or definite 

orientation observed in SAMs, that would allow fundamental studies of the structure and mechanism of 

resistance to be made. 

1.2.3.4 Oligo(ethylene oxide) SAMs: a morphological basis for biomolecular resistance? 

Pale-Grosdemange et al. 1l4 reported synthesis of oligo(ethylene oxide)t -terminated organothiolate 

SAMs by nucleophilic substitution of the Br of co-bromoundecene, followed by radical addition of a 

thioacetic acid at the unsaturated position, to produce a readily hydrolysable thioester (which subse

quently yields a thiol). Cll SAMs were chosen because a range of SAMs C4-C1O have been demon

strated to contain gauche bonds at the co-position, and it was suggested that this may affect the struc

ture of attached OEO moieties at this position. Longer chains were not chosen because they are 

difficult to purify. An additional method by Chapman et al.1 15 adapted chemistry reported by Yan 

et al.97 to bind OEO-amine to acid anhydride SAMs. Both HSCll(OCH2CH2)nOH and HSCllCO

NCH2CH2(OCH2CH2)mOH SAMs have been demonstrated to resist biomolecular adsorption, as will 

be described later in this section. 

Prime and Whitsesides 116 explored biomolecular resistance as a function of EO-terminated thiolate 

density in a binary SAM. Fractional compositions in multicomponent SAMs are often discussed in 

"sometimes also called poly(ethylene glycol); 'PEG' 
t'OEO'-again, in the same manner as its polymeric counterpart, often called oligo(ethylene glycol); OEG. For consistency, 

any further abbreviation in this thesis will be of the form 'OEO', or 'EO' (for ethylene oxide), as per the Glossary. 
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terms of mole fractions, given the symbol X. XSAM(EO), the fraction of the SAM made up by molecules 

terminated in the EO moiety, was deduced by XPS and wetting (as discussed previously, the absolute 

composition of multicomponent SAMs is only influenced by the composition of the solution), and it 

was determined that an intermediate density of EO-terminated molecules produced the most protein

resistant films. Fitting the data to a power law model put forth by de Gennes1l7 , the initial onset of 

protein resistance was seen to occur when XSAM(EO)= kln-O.4 where n is the number of ethylene oxide 

units, and the constant kl depends on the protein. Above a maximum threshhold, increased EO density 

was actually seen to decrease protein resistance, although longer chains were better at resisting protein. 

It is suggested that protein resistance is dependent on the oligo(ethylene oxide) moieties' freedom to 

adopt a conformation maximising volume and interactions within the OEO chain-demonstrably, a 

helix fulfils this criterion. 

Harder et alp8 presented a study of protein resistance on methoxy- and hydroxy-terminated, OEO

containing thiols on gold and silver, which indicated that methoxy-terminated OEO-thiols on silver 

were not effective at resisting protein. Hydroxy-terminated OEO-thiols on silver were protein-resistant, 

however, although less so than on gold. IR data indicated that methoxy-terminated OEO-thiolate SAMs 

on Ag were in an all-trans configuration (as indicated by the largest C-O stretch peak), whereas on 

Au, amorphous and crystalline helical domains were observed, not dissimilar to those exhibited by 

hydroxy-terminated OEO-thiolate SAMs on Au and Ag. In the bulk poymer, PEO chains adopt a 

helical geometry, confirmed by XPS and computational methods l19 , with a periodicity of 7/2. This 

corresponds to a helix diameter of 21.3 A, just small enough to fit into the 21.4 A2/molecule available 

on Au. On Ag, the 19.1 A2/molecule constraint imposes a trans configuration for methoxy-OEO SAMs, 

corresponding to a chain diameter of 17.1 A. It was proposed that the observation of helical domains in 

hydroxy-terminated OEO SAMs on Ag could arise from substrate defects (observed on Ag), or looser 

packing densities being adopted. These ideas are lent credence by reports of substrate reconstruction and 

mobile phases on Ag-SR SAMs by Yu et al.104, and were supported by the observation that susbtrate 

photoelectron attenuation (see 1.3.3.3 on page 44) was similar in hydroxy and methoxy-terminated films, 

despite the difference in EO repeat unit length. The methoxy-terminated OEO films were 3 units long 

(so-called 'EG-3'; E03 in the nomenclature used in this thesis), whereas the hydroxy-OEO was 6 units 

long (E06).* Increased OEO length in E06 forming energetically-favourable helices may therefore 

provide a thermodynamic impetus for film rearrangement in the alkyl or sulfur-substrate domains of the 

SAM. A, particularly insightful hypothesis was the suggestion that penetration of water into the OEO

moieties promoted the helical geometry and (therefore) the protein resistance such films. This was 

·Photoelectron attenuation increases for increased film thickness per area, so similar attenuation factors on longer films 
implies looser packing. 
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investigated by methods by Wang, Kreuzer and Griinze120, and water molecules were seen to play an 

important role: H-bonding of water to helical domains was stronger, and the presence of an interfacial 

water layer was postulated to provide a physical barrier to protein adsorption. 

Vanderah, Valincius and Meuse121 reported deviations from the 712 helical domains on MeO-E06 

SAMs, depending on the assembly solvent, from RAIRS results. Li et al.122 carried out a systematic 

study of protein adsorption on hydroxy-OEO SAMs, varying the water content of the assembly solvent. 

Again, the suggestion that inter-helix water penetration is important in protein resistance was supported 

for E06 films, but not E04 films. E04 films were thought to pack closer from 95:5 ethanol:water 

mixtures than from pure ethanol, and may have adopted trans-OEO morphologies because of the lack 

of thermodynamic impetus to accomodate water by forming helices with such comparitively shorter 

chains. It is possible, however, that the water-barrier model of protein resistance is somewhat simplistic, 

as will be described. 

A consideration of the remarkable resistance to bioadhesion of methoxy-terminated EO-3 SAMs on 

gold, despite the dimished density of EO units in the interfacial region, has led to the postulation that 

the density of H-bonding at the surface is a more important factor than water penetration. Such EO

containing films exhibit increased disorder, and so lack the extensive helical domains thought to promote 

protein resistance 123124. Finally, by combining consideration of surface free energy, disorder, and lateral 

packing· density, a more complex model of protein resistance has been put forth by Herrworth et al., 

where internal hydrophilicity and disorder are suggested to be key factors in providing resistance to 

bioadhesion 125. This has been supported by subsequent theoretical studies 126 . 

1.2.3.5 Other SAM-supported systems that resist biomolecules 

Ostuni et al.127 surveyed structure-property relationships for bioadhesion. A wide range of organic 

molecules were attached via amide links to activated carboxylic acid-terminated SAMs: perfluoro, 

aromatic and aliphatic moieties; ethers, crown ethers, amines, amides and ammonium salts; sugars, . 

amino acids and nitriles. It was observed that the function ali ties exhibiting greater protein resistance 

share the following features: 

1. They are hydrophilic 

2. They include H -bond acceptors 

3. They do not include H-bond donors 
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4. They have an overall neutral charge 

Many of the functionalities demonstrated to be resistant to protein adsorption have molecular features 

selected for in the infrastructures of living things. For example, Hederos, Konradsson and Liedberg128 

have demonstrated galactose-terminated SAMs that resist proteins, while Chen et al.129 have demon

strated the effectiveness of oligo(phosphorylcholine) SAMs as nonbiofouling surfaces. Integration of 

artificial implants might therefore adopt biomimetic molecular structures at their surfaces, as wen as 

biocompatible synthetic polymers. 

1.2.3.6 Conditions for immobilisation 

In order to ensure retention of biological functionality during integration into a SAM, it is essential that 

the thermodynamic and kinetically-driven processes leading to biomolecule adsorption are tempered 

by careful control of the chemistry of the fluid environment. Covalent interactions that take place too 

vigourously may compromise the structure of the biomolecule. Outside of the organism, conditions even 

in 'pure' water are often too harsh; biomolecules exist in organisms under pH control, with maintained 

ionic concentrations, and small perturbations can cause large structural changes in, for instance, a 

folded protein. Denatured or even partially stressed biomolecules will have lost their precise shape, 

and this impinges on functionality. Therefore, manipulation of biomolecules is carried out in biological 

buffers that aim to mimic the environment in vivo, by controlling salt concentrations in the medium 

and so promoting solubilisation of the biomolecule. Biological buffers may contain separate buffer and 

detergent molecules, although surfactants have been developed that also have a salt-buffer polar group, 

e.g. LDAO, HEPES etc.; particularly delicate proteins or membrane complexes may be protected by 

synthetic amphiphilic surfactants (often based on saccharides, e.g. DDM, f3-0G), which create a 'lipid

like' environment around the biomolecule. 

It has been suggested that salt concentrations affect binding efficiency. Casetlino, Balaji and Majum

dar130 reported increased grafting density of DNA on short-chain hydroxy-terminated thiolate SAMs 

on Au with increasing NaCI concentration, but observed that the dependence of this effect drops off at 

higher concentrations, concluding that osmotic forces are replaced by hydration effects. 
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1.2.3.7 Palladium as an ideal substrate for SAMs that resist protein adsorption? 

Jiang et al.l31 have reported enhanced protein resistance on EG-3, EG-6 and EG-7-terminated Cll 

and C2 thiolate SAMs on palladium. Long-term resistance is seen to be twice that on gold, and it 

is postulated that increased bond strength of S-Pd (more similar in magnitude to that on Ag) delays 

desorption of the SAM in biological media. Due to the limited theoretical basis for the mechanism of 

protein resistance, a reason for the better performance of EG films on palladium was not put forth. Both 

increased bond strength and tighter packing could supress reductive desorption, and the tighter packing 

constraint imposed could increase the ratio of amorphous EO regions as compared with helical sites. 

It has been proposed that resistance to biomolecule adhesion could, in part, arise due to disorder123124. 

Compared to silver, which is toxic, and has been shown to produce SAMs with poor protein resis

tance118, palladium has an obvious enhanced capacity as a substrate for SAMs for biological integration. 

Compatibility with CMOS technologies makes OEO-SAMs on Pd ideal for integration of biomolecules 

in electronic devices e.g. bioMEMS. 

1.2.3.8 Semiconductor-based biological arrays 

The ultimate confiuence of integrated circuit fabrication and bionomics technologies will most likely 

be on a semiconductor substrate. Despite the apparent advantages of Pd-SR SAMs over Au-SR SAMs 

in terms of long-term stability and biocompatibility, and indeed CMOS adapability, Pd-SR SAMs have 

been shown to require a more meticulous preparation, and exhibit an increased complexity of morphol

ogy over Au-SR SAMs. Silane-based systems can be prepared on atomically-fiat CVD fabricated Si 

wafers, and are therefore not subject to the energetic peculiarities of SAM formation oJ). polycrystalline 

or imperfect ~pitaxial metal films. 

Of particular note are the recently-developed photoactive silane systems that allow photochemical mod

ification of unmasked regions on silane-based SAMs. Some of these will be presented in subsec

tion 1.4.4.3 on page 60. In principal, these offer simple steps to producing patterns that might facilitate 

biological compatibility. 

Silane-based systems have not been as well-studied as systems for potential biological integration due 

to the difficulties in introducing some functional groups. When considering LlSurfaceG as a means to 

direct biomolecule immobilisation, it is somewhat more d!fficult to introduce carboxylic acid-terminated 

silanes than methyl-terminated silanes, although careful tuning of the reaction conditions has provided a 

route to acid-terminated silane SAMs. 132 Of some interest has been the introduction of protein-resistant 
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EO-based silanes 133, 134. A novel route to the introduction of functional SAMs onto silicon will be 

presented in Chapter 3. 

1.3 Probing Surface Chemistries 

Many of the 'surface-sensitive' analysis techniques presented here are ideally suited to investigations of 

SAMs, because of the wide range of surface chemistries that can be introduced at the co-position. The 

value of information yielded by contact methods such as wetting, scanning probe microscopies (SPM) 

and contact potential difference measurements· is bolstered by the degree of control and orientation 

of surface functionalities that SAMs afford, and the quantitation of photoeletron spectroscopies and 

surface-sensitive mass analyses (SSIMS, TPD-MS) is made sensible by both the definite orientation and 

single-layer morphology of SAMs. As will be demonstrated, a plural approach to analyses by multiple 

methods gives the most reliable information about surfaces, and in particular SAMs, because of the 

complimentary information each technique produces, as well as the varying degrees of damage each 

might potentially cause in the SAM structure. 

1.3.1 Contact Angle Goniometry 

1.3.1.1 The wetting experiment 

Wetting of surfaces is a macroscale phenomenon with a molecular basis4. Because of this, wetting has 

been one of the most-used methods to investigate the character of a surface. In the context of SAMs, 

control over the surface functionality has allowed the specific characterization of a range of functional 

moieties, and has the potential to elucidate structual information pertaining to the energetic nature of 

the surface. Because of its simplicity and immediacy, contact angle goniometry has become a universal 

technique for initial assessment of SAM quality, with consistency over the duration of an experiment 

being indicative of a good SAM. 

The most common method to measure the contact angle of a liquid on a material is the sessile drop 

method. A goniometer is an optical apparatus designed to facilitate accurate measurement of a drop 

profile, by means of an adjustable-angle crosshair. Older apparatus relies on the human eye only; modem 

apparatus is often fitted with a CCD camera replete with angle-measuring software on a desktop PC. 

·which allows determination of the surface potentials imposed by SAMs-see on page 37 
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Hydrophobic Partially Hydrophobic Hydrophilic 

Figure 1.3.1 Wetting of a surface 

Shown in figure 1.3.1 are three characteristic types of behaviour observed when a drop of water rests on 

a surface. In the first instance, water beads up as it would on an aliphatic polymer, or the waxy coating 

of a leaf; this is characteristic of SAMs with hydrophobic tail groups, such as methyl, fluorinated, or 

aromatic species. The second instance shows a partially-hydrophobic surface, characteristic of a SAM 

presenting hydroxy or oligo(alkylether) moieties. The final case depicts full wetting by a hydrophilic 

functionality at the surface. This is typical behaviour for carboxylic acid groups in a monolayer, silicate 

glass, and metal oxides. 

The physical basis for the wetting phenomenon is rationalised by considering the work of adhesion of a 

drop in contact with a surface: 

WSLV = Ysv + YLv - YLs (1.3.1) 

where Y is the energy of the interface between surface/vapour, vapour/liquid and solid/liquid phases 

(J m-2 == N m-1). An expression for the total surface energy of the system may be formulated: 

(1.3.2) 

where ALS and ALv are areas of interface between the liquid and solid and the liquid and vapour 

(atmosphere), respectively. The situation is represented in figure 1.3.2 on the next page. If the droplet 

is subjected to an infinitesimal displacement, then it may be shown that: 

(l.3.3) 
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v 

Ysv 

s 

Figure 1.3.2 Interfacial energies that determine wetting behaviour 

which, at constant volume of liquid L defines the relationship ~~;..s = cos (), allowing 1.3.3 to be written 

as: 

YLv(1 +cos ()) = WSLV (1.3.4) 

If V is an inert atmosphere, 1.3.4 and 1.3.1 may be combined to gives Young's equation: 

rSV - YLs () ""----=cos 
YLv 

(1.3.5) 

which demonstrates that contact angles correlate to interfacial energies. 

1.3.1.2 Physical basis and models 

Generally, interfacial forces are dominant when such small volumes· are used. Deviation of a droplet 

profile from that of a part circle is in many cases minimal, because surface energies in such a small mass 

of fluid are dominant over gravity. Indeed, algorithms empoyed in software-controlled ()a measurement 

often treat the maximum interfacial cross-section length as a chord through a circle. ()a is then given by: 

4s·h 
()a = arcsin 2 h2 s +4 

(1.3.6) 

In many cases, however, it is difficult to better the human eye, especially in situations where deviation 

from a part circle occurs, such as when hysteresis is observed (see 1.3.1.2 on the following page). 

Binary component SAM surfaces, in accordance with Langmuir's PRINCIPLE4, have interfacial energies 

dependent upon fractional compositions; as formulated by Cassie: 

(1.3.7) 

"'Typical drop is ",20-100 jJl. 
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where A and B represent the component SAMs, and fB = 1- fA. Cassie's law may be extended to 

multicomponent surfaces: 

cos e = Efn cos On (1.3.8) 
n 

where Lnfn = 1. 

In the sessile drop method, the angle formed between the drop and surface is termed the advancing 

contact angle, Oa. When a negative hydraulic pressure is applied to the drop, by retracting some quantity 

of fluid from the drop with the Hamiltonian syringe, the angle is referred to as receding: Or. Contact 
\ 

angle hysteresis describes the condition when Oa =I Or. This may result from inhomogeneity of the 

surface, for example in a binary SAM that may be exhibiting phase separation. A more hydrophilic 

region can 'pin' the interface between the droplet, surface and air. This would manifest itslef in the 

apparent increase of Oa, and also the decrease of Or as the drop is being retracted into the syringe. 

It has also been suggested that reordering of monolayers may occur during the wetting experimentl35, 

whereby SAM molecules may adust their bond geometries to minimize the interfacial free energy. 

Surface roughness is also an important consideration, as rough surfaces tend to increase the hydropho

bicity of 0>90° surfaces, but make 0<90° more hydrophilic. Wenzel136: 137 described surface roughness 

thus: 

h 
actual surface 

roug ness = ---.--
geometnc surface 

which alludes to the fractal-like nature of many surfaces at microscopic scales. Of particular relavance to 

this thesis is the size of 'grains' in evaporated polycrystalline films. It is generally considered desirable, 

when producing metal films for the preparation of SAMs, to maximise grain size by reducing the 

evaporation rate. 

1.3.2 Contact Potential Difference 

The work function, <1>, of a metal is defined as the energy required to move an electron at the Fermi level 

E f to the vacuum level, just outside the material. Often, that energy is electromagnetic in nature, and the 

concept of work functions is instinctively related to the the action of radiation on conductors producing 

flow of electrical charge-the photoelectric effect. 
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1.3.2.1 The photoelectric effect 

In 1839, Alexandre Edmond Becqerel recorded the flow of current in electrolythic cells exposed to 

sunlight138, and noted that the current increased when the Sun's rays were more intense. That the 

voltage required to produce a spark between electrodes is reduced when ultraviolet light is incident on 

a metal was observed by Hertz139 in spark gap experiments in 1887, although again he refrained from 

attemping to provide a theoretical basis for this result. It was not until Einstein applied the quantization

of-energies concept, introduced by Planck140 to account for the energy profile emitted by a black body, 

that the following relationship was described141 : 

(1.3.9) 

-so that, unless the photon energy hv is greater than the work function, electrons will not be transported 

from the bulk, and no flow of charge will be observed. For this criterion to be met, it must be the case 

that the radiation is of a frequency v equal to or above above a certain threshold. Only then does any 

increase in intensity have any effect in increasing the rate of flow of photoelectrons (from classical 

electrodynamics, one might expect the relationship to be directly proportional, with no dependence on 

Vminimum being met). Greater photon energy, from higher frequencies, are passed on as increased kinetic 

energy. 

1.3.2.2 The CPD method 

The Contact Potential Difference (CPO) method of measuring the work function of a metal was first 

demonstrated by Lord Kelvin in a presentation to the Royal Society in 1898142; the instrument designed 

for this purpose is called a Kelvin probe. The principle is to form a capacitor out of two conductors, 

allow conduction, and detect the charge transfer. The CPO, ¢, between two materials A & B investigated 

in this way relates their respective work functions, <l>i' by: 

(1.3.10) 

where e is the fundamental unit of charge, = 1.6 x 10-19 C. The origins of the above relationship are 

more obvious when the quantities of ¢ (V) and e are simplified to SI units: 1 V =1 J A -1 S -1; 1 C 

= 1 A . s. To calculate an absolute value for ¢, the work function of at least one of the conductors must 

be known, relating in the schematic to the tip, although relative measurements may be made that allow 

comparisons between different analytes, e.g. different SAMs. In order to form capacitance, the two 
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Evac 

eV CPD ----r---, 

II • • 

Figure 1.3.3 The CPD method 

conductors' surfaces (tip and SAM, for instance) must be held in a parallel configuration. Gauss' law 

relates the electric field of a closed surface to the net charge, Q, within it: 

(1.3.11) 

=A·E 

where E is the electrical field vector. By definition, E· d = V, where d dscribes the plate separations, 

so: 

Q A·V 
E{) =d 

Q A'E{) 

V=d 

The left hand side is the definition of capacitance: 

A'E{) c=
d 

(1.3.12) 

which demonstrates that C oc ~. In the circuit depicted in the schematic, the modified AC Kelvin 

probe developed by Zisman 143 in 1932, the spatial separation the reference electrode and the sample 

is modulated by an oscillation, provided by a piezo. This causes AC current to flow. around the circuit.· 

A backing voltage Vb may be applied across the circuit, to, null the flow of cUl:rent so produced and 

indicate the CPD. This is summarised below: 

d(t) = do +a sin rot (1.3.13) 
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SAM 

R 

(Zisman design143) 

Figure 1.3.4 NC Kelvin Probe 

where do is the plate separation when the reference electrode is at the midpoint of its oscillation, a is the 

amplitude of oscillation, and OJ is the angular frequency in rad S-1 (= 2nf / s-I). In the circuit described, 

this induces an AC current: 

de (jJ = dQ =i 
dt dt 

(1.3.14) 

in order to deduce (jJ from i, A, d and a, would each have known to a very, high degree of accuracy, which 

could potentially introduce a lrage margin of uncertainty. In order to circumvent this, the introduction 

of the backing potential Vb allows (jJ to be found by nulling i, when 

(1.3.15) 

then 

(1.3.16) 

Vb can be accurately measured with a digital voltmeter. 

1.3.2.3 Surface Potentials 

When a conductor is covered by a thin layer of material that has a net dipole moment, such as a SAM, 

the adsorbate imparts a surface potential, .1V. The dipole moment, orientation and distance from the 

substra~~ all affect the measured CPDl44, 145. The surface potential is related to the measured contact 

potential differences of the bare metal (jJ, and metal with SAM adlayer (jJ* thus: 

(1.3.17) 
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where cP is the work function of the bare substrate, i.e. LlV is the change imposed on the work function 

by the adsorbate. Generally, a M-SR SAM ~onsists of a more electronegative (cf. the metalic substrate) 

polar i.e. 8-ve adsorbate (such as a thiolate), to which is attached a 8+ve hydrocarbon chain. By virtue 

of the rules of nature, most ill substituents of organic SAMs, if heterogeneous functionalities are indeed 

present, are again 8-ve. SAMs on adsorbates can then, therefore, be thought of as a series of stacked 

dipole sheets. 

1.3.3 X-ray Photoelectron Spectroscopy 

As has been described, eletromagnetic radiation with sufficient energy that is incident on a material will 

cause the emission of a photoelectron*. Practically speaking, this means that a threshhold frequency 

must be first be met before photoejection of an electron takes place; the magnitude of electron emission 

is proportional to the intensity of the EM radiation above this frequency, and the energy of EM radiation 

above this frequency is passed on to the photoelectron. The process of photoemission, from initial 

interaction, to excitation and emission, takes place in 10-15 s. This process may be summarised: 

(l.3.l8) 

where EB is the binding energy of the electron, which is a function of the atom and its environment; hv 

is the energy of the X-ray source, and EK is the photoelectron kinetic energy, !me v2 . 

• CII photoejecteq electron 
(Ek =1200.9 eV) 

Figure 1.3.5 Principle of photoelectron emission as observed in ESCA 

As we have seen previously in section l.3.2 on page 37, for electromagnetic radiation to remove an 

"Information in this section is largely taken from Refs.l, 146 
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electron from an atom or material, it must have enough photon energy to overcome the work function, 

<t>spec. (1.3.18) should be modified to: 

(1.3.19) 

although the work function is parameterized and accounted for in the normal running of modem instru

ments, so that (1.3.18) is given. 

1.3.3.1 Koopman's theorem 

Following photoemission, the electronic configuration relaxes to a new energy, and the difference in 

energy is equal to the binding energy. This may be written: 

where Ef{n -1)is the final state energy and E;{n) is the initial state energy. Assuming the process does 

not cause electronic rearrangement in the atom or material, 

(1.3.20) 

where Ek is the orbital energy, calculable via the Hartree-Fock method. Discrepancies do arise because 

rearrangement does occur, as depicted infigure 1.3.6 on the following page. A more complete descrip

tion of EB is therefore: 

(1.3.21) 

-
where Er{k)is the relaxation energy and 8Ecorr and 8Erel describe changes in the electron correlation 

and relativistic energies, respectively. 

The initial energy E; of an atom is altered by the chemical environment if the atom is bound in .a 

molecule, such that there will be a change in binding energy, !!illB, referred to as the 'chemical shift', 

so-called because such modifications to EB are analagous to chemical shifts in NMR spectroscopy. As 

photoelectron ejection occurs, the formal oxidation state of an element will increase, and subsequent EBj 

will increase. Final state parameters such as Er(k) are assumed to have similar magnitudes for different 

oxidation states, so that!!illB is dependent only on initial state effects: 

(1.3.22) 
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Rearrangement... 

X-Ray emission 

Figure 1.3.6 Secondary Processes in ESCA 

where Jlck is the corresponding change in orbital energy associated with accomodating an atomic orbital 

within a molecular environment. From this reasoning, we may arrive at Koopman's theorem: the 

binding energy is equal to the orbital energy; although, as has been shown, relaxation and other 

energetic considerations cause experimentally-determined values to deviate from this relationship .. 

1.3.3.2 The chemical shift effect 

XPS spectra indicate shifts in elemental curves depending on the nature of an atom's chemical envi

ronment. These are, in many ways, analagous to chemical shifts in NMR spectroscopy, and may be 

interpreted as such, although the degree of the shift is dependent on both the initial and final electronic 

configuration of the atom. Software such as CASAXPS allows complex atom-orbital fingerprints to be 

modelled as a summation of component atom-orbital curves (usually Gauss-Lorentzian in profile, with 

. some degree of tail-off towards higher energy), using iterative methods. Within a characteristic peak for 

an atom-orbital type within a molecule, therefore, are contributions from different environments, energy 

shifted, depending on the the respective energies of initial and final states. Typically, greater electron 

density shifts the curve to a higher energy, alhough the caution must be made that this is not always the 
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case. Chemical shifts are successfully explained by the charge potential model: 

EB = E~+kqi+ 'f)qi!rij) 
Hi 

(1.3.23) 

whereby EB is referenced to a known E~ (that for the neutral atomic species), and the investigated 

species i is charged and surrounded by charges q j on atoms j at a distance rij. This means that shifts are 

exagerrated by having more of a particular chemical functional group in local enviomment of i, and that 

this falls off linearly with distance. 

1.3.3.3 Attenuation of photoelectrons by films 

Photoelectrons ejected from species in a material are attenuated to some extent by the layers of other 

species above them, and observed intensities in the spectra are seen to decrease147 with increasing 

adlayer thickness. This may be described by a modified Beer-Lambert law: 

(1.3.24) 

where d is the adlayer thickness, e is the angle between the surface p~rallel and the detector ('the take

off angle'), 10 is the unattenuated signal (i.e. bare substrate) and A is the attenuation path length, given 

in most cases by: 

(1.3.25) 

as determined by Laibinis et al. 148 , where Ek is the photelectron kinetic energy, for a range 'of Eki between 

1000 and 1500eV. 

Using the attenuation factor, it is possible to follow the interchange of thiol molecules if, for instance, a 

shorter thiol is being replaced by a longer one, then lAu would be seen to decrease. However, variations 

in the X-ray beam intensity mean that this information needs to collected at the same time, or considered 

alongside supporting information (empirical inference from inspection of relative peak sizes in the 

spectra, for instance)·. It is possible to solve 

lA = 10 {I . e-d(m)/~sinO + (1 - l)e-d(n)/)..-jSinO} 

to find an estimatet for I, the fraction of SAM replaced, if the thicknesses d(m) and d(n) are of 

·during a single run, it has been estimated that the X-ray intensity could vary by ",5 %69, although this figure will vary 
depending on the age of the machine and its components 

tin monolayers of mixed film thickness, longer adsorbates may overhang shorter ones, as previously depicted in figure 1.2.5 
on page 16, so the results may not be 100 % accurate 
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mono layers m and n are known. 

The case in (1.3.24) applies either to the bulk or to a species at a fixed and single position within the SAM 

structure, e.g. the sulfur, or a single ether functionality. For peaks contributed to by photoelectrons from 

a particular environment at a number of positions along a SAM molecule, e.g. aliphatic C, the following 

model is applicable: 
n 

Ic = E ICLe-U- 1)dcl/..csin8 (1.3.26) 
j=1 

where j is the position down the hydrocarbon chain (i.e. co=l, which would be unattenuated in this 

case). 

1.3.4 Scanning Probe Microscopies (SPM) 

1.3.4.1 The STM: The dawn of a new class of microscopy 

The advent of scanning probe microscopies was heralded by the invention and development of the Scan

ning Tunneling Microscope (STM), by Rohrer and Binnig at IBM Ztiri~h between 1981-1982149,150. All 

variants of SPM share the feature that there is a probe, rastered-or 'scanned' -across the surface, that 

detects structural and/or compositional information, recording it on a desktop PC. In STM, a current is 

produced by electrons tunneling through a vacuum gap between a tip or probe (us~ally PtlIr but also Rh 

and W) and another conductive material. Whereas electron tunneling is classically forbidden, electron 

wavefunctions decay exponentially outside the electrodes (the tip and sample), and are permitted by 

quantum mechanics. This may be justified as follows: 

The Schrodinger equation states that: 

(1.3.27) 

when x < 0, in the conductor, and: 

(1.3.28) 

where x> 0, in the vacuum gap. The solutions of (1.3.27) and (1.3.28) are: 

lJI=Aeikx+Be-ikx , k= V2m.E/1i2 (1.3.29) 
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(1.3.30) 

The real component of (1.3.30) which results from the case when k' is imaginery (i.e. V> E) predicts 

a non-zero value for lJf in the vacuum gap. A one dimensional description of the tunneling current is 

given by: 

(1.3.31) 

where d is the separation between the probe and sample, and 1( is related to the workfunction by: 

(1.3.32) 

STM operation is carried out in either constant current or constant height mode. In the former, a 

feedback loop from the tunneling current modulates the 'z' (up/down) piezotransducer to keep the 

current constant, and the 'z' piezotransducer electric voltage is recorded (and from which, by calibration, 

topographical information may be gathered). In the latter mode of operation, the distance between the 

rastered probe and surface is kept constant and the tunnelling current is recorded. 

STM has been extremely successful in elucidating nanoscopic surface structures on metals and semi

conductors, having atomic-scale resolution. In an early experiment15~, Binnig et al. observed the 7x7 

reconstruction of Si, a phenomenon which had not been well understood until then. STM has also 

been used to probe the structure of SAMs60, in which case the tunnelling current is modulated by the 

surface potential imposed by the organic adlayer. However, STM is not able to image insulators, such as 

polymers or biological samples, and has the additional consequence of potentially disrupting the surface 

structure. This has been adressed by the subsequent development of surface force microscopies, which 

exploit the physical interactions that are, to some extent, an unwarranted feature of STM. 

1.3.4.2 The atomic force microscope: History and principles 

In 1985, Binnig developed the atomic force microscope152 (AFM) with Gerber and Quate at Stanford. 

A schematic summarising the mode of operation is shown ~n figure 1.3.7 on the following page. In this 

set-up, a Si3N4 tip attached to the underside of a cantilever is rastered across a sample, and the tip is 

differentially deflected according to surface topography; a consequence of a combination of different 

intermolecular interactions. In other forms of SFM, magnetic or electrostatic forces are registered 

instead. 

In order to maximise the sensitivity of the AFM technique to the intermolecular forces acting at the 
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." 
./ 

Figure 1.3.7 Schematic depicting AFM operation 

atomic scale, which are minute, the deflection of the cantilever must be made maximized by choosing a 

material that is amenable to bending. At the same time, it is desirable to minimize the effect of external 

vibrational noise in the surrounding environment (at about 100 Hz), so a stiff cantilever with a high 

resonant frequency is most sensible. From: 

which can be rearranged to: 

fo=~ fk 
2n y;;;; (1.3.33) 

where fo is the resonant frequency of the material (Hz), k is the spring constant (N m-1) and rno is 

the mass of the material, it can be seen that low k values, indicative of an easily-deflected cantilever, 

are achievable by choosing small mass if fo is large, and subsequently commericial probes are made 

extremely small. Vertical deflection ~ can be described by Hooke's law: 

Fsum =k~ (1.3.34) 

Deflection of the cantilever is detected in a modem instrument by means of a laser aligned to reflect off 

the top of the cantilever and onto a split photodiode, which may be achieved by a means of adjustable 

mirrors. 

There are two principle modes of operation of an AFM system: 
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• Contact mode, whereupon the deflection of the cantilever is caused by the short-range repulsive 

forces dominant at ~ roo A dc bias is applied to a piezo to maintain contact of the probe with the 

surface (remaining sensible to the fragility of the sample). 

• Non-contact mode; the tip is oscillated with large a above the sample, and detects longer range 

interactions. This does not damage soft samples as much as contact mode, but its resolving power 

is lower. 

A variant of the latter mode of operation is intermittent contact mode, whereby the range of oscillation 

is brought closer to the sample, so that the probe is in contact with the sample for some part of the oscil

lation cycle. The hardness of tapping may be adjusted to account for the softness of the sample, which 

enables the high-resolution, non-destructive imaging of biological samples (see subsection 1.3.4.4). 

1.3.4.3 Probing tip-sample interactions 

While in contact mode, it is possible to measure lateral deflections experienced by the cantilever if the 

probe is scanned at right angles to the probe orientation (see figure). This has important consequences 

for SAMs that have been patterned by methods outlined in section 1.4, on page 51.153 The magnitude of 

lateral deflection is increased when the analyte is polar in nature (due to attractive interactions with 

the polar tip), such as is the case with carboxylic acid-terminated SAMs, and decreased when the 

sample is apolar, e.g. with methyl-terminated SAMs. By exploiting this principle, is also possible 

to investigate a range of interactions and affinities by chemical modification of the tip. In this instance 

of the SFM experiment, termed chemical force microscopy (CFM), a SAM may be formed on the 

tip e.g. by the evaporation of gold onto a probe, followed by its immersion in an ethanolic solution 

of thiol. Thus, for example, apolar-apolar interactions may be investigated. It is also possible to 

investigate biomechanical interactions, e.g DNA strand affinities, or the affinity of streptavidin for biotin, 

by appropriate modification and immobilisation chemistries. 

1.3.4.4 AFM of biological structures 

While X-ray diffraction studies of biological structures have been invaluable to understanding life 

, from a molecular viewpoint, AFM allows sub-cellular architectures to be observed in their native 
-" 

environment154-156. As well as providing structural information of static samples, AFM has been able to 

provide information pertaining to real-time cellular dynamics 157, biomechanics 158.159, and biomolecule

substrate interactions 160. AFM has been lauded for its ability to probe biomolecular structures in 
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Figure 1.3.8 The Kretschmann configuration for surface plasmon resonance spectroscopy 

situ. Despite all the ostensible advantages of using AFM, it is important to recognise that the size 

of biomolecules (or, indeed, any analyte that has nanoscale features) may be exagerrated by the com

paritively large size of an AFM tip (",50 nm) compared to the minute structures being studied. Con

sequently, the sample biomolecule may begin to 'image' the tip, increasing the apparent size of the 

molecule (a so-called 'tip radius' effect). For example, the diameter of plasmid DNA has been reported 

to vary from 3.5-24 nm, which is 2-12 times wider than expectedl61 ,162. 

It has been suggested that small and soft biological samples may bel effectively imaged by means of 

force-mapping I63 , whereby force information is collected for each pixel. 

AFM has been used in many novel applications, including the study of fundamental self-assembly 

processes. The difference between chemisorption strength of polypodal and single head groups in SAMs 

has been investigated 164 , as well as the surface stresses induced during self-assembly on a cantilever by 

vapour phase SAM formation 165,166. 

1.3.5 Surface Plasmon Resonance 

Surface plasmon resonance (SPR) is a semi-quantitative means to assess physiso.rption of molecules, 

including biomolecules, on gold or SAM-modified gold. A surface plasmon is an EMR charge density 

wave packet propagated at an interface between a dielectric material and a conductive material, e.g. a 

metal. An excitation requires that incident EMR has the same wave vector Ksp as the surface plasmon. 

When excitation, or 'resonance' occurs, a sharp drop in the reflected light occurs. 

A SPR system is shown in figure 1.3.8. This is the most common arrangement, called the Kretschmann 

configuration. The analyte cell has a gold-coated glass chip as one of its walls (the top of the cell in 
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this arrangement), the gold side proximal to the flow of the liquid. Typically, a laser is arranged so that 

it passes through a prism onto the glass side of the chip, where it is able to penetrate through to the 

'underside' of the gold. It may then resonate with surface plasmons on the surface of the gold. The 

conditions for this are as follows: 

In air, the wave vector of light is given by: 

ill 
Ko=-~ 

c 
(1.3.35) 

where ill is the angular frequency (rad s-l), c is the speed of EMR, and Eo is the dielectric constant in air. 

As the laser penetrates the dielectric medium, the component that must attain the criterion for excitation 

of a surface plasmon is given by: 

K ill r;:-: . () 2rc 
sp = -yEd· sm c =-

c A (1.3.36) 

where Ksp is the wave vector of the surface plasmon, ill is the angular frequency of the EMR, 8c is 

the critical SPR angle, A is the wavelength of the EMR, Em is the dielectric constant of the metal, and 

Ed is the dielectric constant of the analyte. For resonance to occur, it must be the case that Em < -Ed, 

which is fulfilled for several metals including silver and gold, in the lR-visible region of the spectrum 

(HeNe lasers emmitting at 633 nm are therefore commonly used). Gold is the most obvious choice: It is 

not susceptible to oxidation, unlike silver, and the cytotoxicity of the latter precludes it from biological 

work. 

The precise dependence of 8c on the refractive index 1Jd of the analyte cell is exploited to assess the 

physisorption of e.g. biomolecules that are in the region immediately proximal to the gold or Au

SR surface. Changes in the refractive index due to interfacial interactions caues the surface plasmon 

resonance curve is seen to shift to higher angles, and so the observed quantity in the Kretschmann 

configuration is t1.8c• In many commercial machines, this is parameterized within a function that gives 

an effective adsorbate coverage in ng cm-2, but this is absolutely dependent on the fabrication of the 

chips. Therefore, SPR is considered here a 'semi-quantitative' method; relative adhesion of biological 

molecules on a range of SAMs may be investigated, but in-d~pth analyses, or comparison across multiple 

samples, should be approached with some caution. SPR does allow an assessment of specific versus non

specific binding at a surface for individual samples, however. Introduction of small quantities of saline 

solution at an elevated concentration (rv400mM), or 0.1-1 % ionic surfactant, e.g. SDS-are usually 

sufficient to remove physisorbed adsorbates, while allowing the degree of material that is chemisorbed 

or otherwise more specifically immobilised to be determined. 

50 



Chapter 1. Introduction 1.4 Patterning SAMs 

1.4 Patterning SAMs 

The molecular nature of SAMs makes them ideal systems for introducing patterns on a range of scales, 

from nm- /lm. Pattern and structure are the cornerstones of any functional system, so a range of tools for 

pattern fabrication are required, that are appropriate to the materials being used. Because the problems 

raised by nanoscale engineering are quite different from those encountered in previous technological 

developments, it has transpired that patterning molecular assemblies has necessitated the introduction 

of new tools and methodologies. As has happened during the introduction of previous technologies, 

tools for manipulating new materials have presented themselves in the very instruments originally used 

to probe their nature. A number of comprehensive reviews of SAM patterning have been published, and 

new methods are still being developed. 

1.4.1 Microcontact Printing 

Microcontact printing (J.lCP) is recognized as an quick route to patterned SAMs, and consequently has 

been one of the most investigated techniques, being used to fabricate large structures with minimum 

feature sizes ranging from 50 nm-l 000 /lm)38. Kumar and Whitesides first demonstrated J.lCP using a 

PDMS stamp to deposit alkanethiol 'inks' on gold167 , using these as a resist against cyanide etching168 

to produce 3D microstructures. 

J.lCP relies on the transferral of dilute solutions (0.1-10 mM) of amphifunctional SAM molecules (e.g. 

thiols) in appropriate solvent (e.g. ethanol), or biological molecules in a suitable buffer solution, from 

an 'ink pad' (cotton or lint-free paper) to a substrate to which the 'ink' has a specific affinity. 

Compared with films formed from solution, J.lCP SAMs exhibit lower molecular density, suffering from 

the problems of a 'horizontal lift' (see * on page 11). Although some c(4x2) domains are formed, 

p x J3 regions and 'lying down' phases are also observed38 • The polymeric stamps most often used 

are siloxanes, and siloxanes are well known to degrade and leach out constitueI)t molecules, which 

could lead to contamination of artefacts fabricated by stamping. The reproducjblity and adressability 

(for example, for alignment for 'multicolour' printing, see) of J.lCP patterns has also been questioned. 

Because J.lCP is typically carried out on bare substrates (i.e .. those devoid of adsorbates), mass transport 

of SAM molecules may occur away from the stamp position, either by diffusion across the surface, or in 

the vapour phase from the stamp to other regions on the substratum. The quality of features formed by 
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f.LCP may therefore be dimished by edges that exhibit poor contrast (producing features that are 'fuzzy' 

rather than sharp). * 

One of the arguments for f.LCP has been the increasing difficulty (and cost) of using photolithographic 

processes at ever-shorter wavelengths in order to produce ever-smaller features. However, approaches 

that attempt to circumvent the diffraction limit have been presented both by the semiconductor industry, 

using such techniques as stretching the photoresist during exposure, and the nascent field of scanning 

near-field photolithography, which is still at this stage the preserve of the laboratory worker. This latter 

technique will be discussed in more detail in subsection 1.4.3.4 on page 56. 

1.4.2 Dip-Pen Nanolithography 

U sing a pen-based system to transfer SAM molecules to a substrate was first demonstrated by Kumar 

et al., although the (X,Y) plotter system they used was not able to write structures less than 1 J.Ull fine. 

In order to compete with photolithographic methods, a considerable increase in resolution was required. 

The introduction of SPM techniques necessitated the devlopment of spatially-precise, piezo-driven 

systems that experience minimal drift as the probe scans the sample. The deposition of SAMs by f.LCP 

had shown that contact methods were a route to patterned surfaces, and AFM suggested a convenient 

route to writing features smaller than 100 nm. Dip-pen nanolithography (DPN) relies on wetting an 

AFM probe with a liquid SAM molecule, and 'writing' a linear SAM directly onto a surface. The 

ultimate resolution of DPN is dictated by the radius of the AFM tip, although Piner et al.170 reported 

that the smallest features are seemed to be of the same size as gold grains on a polycrystalline film 

(-30 nm), perhaps indicating molecular transport from the tip apex to the logical edge of a domain (the 

grain boundary). 

Nanoscale features have been succesfully fabricated using DPN. Gold 'wires' formed by etching a 

gold substratum partially protected by writing lines ofthioll71; protein 'nanolines>l72, 173; deposition o.f 

metal lines using a sol-gel inspired approach from fluid metal precursorsl74; direct writing of conducting 

polymers 175. Silicon surfaces have also been successfully p~tterned using amine's as inks 176 . 

Xu et al. l77 demonstrated 'nanografting' of alkylthiol SAMs via selective removal of a SAM by the 

use of excessive force applied to an AFM tip; the initial SAM molecules are replaced by contrasting 

thiols in the solution phase. Liu, Xu and Qian 178 presented a number of SPL techniques capable of 

·Subsequently, this quirk of fabrication has been exploited by allowing spreading between two regions of photoresist to 
reduce the size of the gap between them169• 
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producing patterns in SAMs, including 'nanoshaving', nanografting and STM-driven evaporation and 

electron-induced diffusion. Clearly, SPL-based fabrication methods enable manipulation of molecular 

assemblies to produced patterns with dimensions in the nanoscale regime. 

Presently, however, the uptake of DPN and variant SPL techniques in industrial applications has been 

hindered by their status as 'serial' (as opposed to parallel) fabrication processes; structures are written as 

lines, and so the fabrication time depends on the length of lines and structures being formed. Compared 

to mask-based photolithography, which is used extensively by the semiconductor inductry, SPL has 

previously been a slow process. It has therefore been desirable to write structures at an increased rate by 

the coupling of several pen units that can operate independantly. Inspired by ffiM's 'Millipede'179 data 

storage device, DPN systems with "massively parallel" multiple plotters have been demonstratedl80, 181. 

Such tools might augment, and even rival more traditional 'top-down' fabrication techniques in the near 

future. 

1.4.3 Photolithography 

1.4.3.1 History of photoresists 

The advent in the 1950s of the IC is inextricably tied to the realisation that photolithography could be 

used to direct diffusion of dopants (donors and acceptors) within a silicon crystal: Frosch and DericklO 

determined that this could be achieved by the use of a metal oxide mask, and Bond and Andrus 11 

demonstrated that the oxide could be patterned using a photoresist. Industrial photoresists used for IC 

fabrication are usually polymeric materials spin-coated f'V 1 Jlm thick onto a crystalline semiconductor 

substrate, which undergo a photochemical change upon irradiation. The very oldest photoresists used 

in electronics microfabrication, such as the photocatalysed bisazide crosslinking of cyclized rubber*, 

leaves cross-linked those regions that are exposed to light in the near UV, 500-300 nm. Following 

washing with a solvent, these are the regions which remain as masks during the deposition of conductive 

metal. Because the resulting conductive tracks are the inverse of the template p~ttem in the original 

mask, this is termed a negative tone photoresist. 

The mainstay of the electronics revolution has been the Novolaks system, in which a 'Novolak' resin 

made by the condensation of a methylphenol with formaldehyde is doped with a small concentration of 

diazonaphthaquinone, which renders the resin less soluble in aqueous base. Upon irradiation with UV, 

the diazonaphthaquinone dopant undergoes the photochemical Wolf rearrangement to yield a carboxylic 

"acid treating poly(cis-isoprene) partially cyclizes it, a process which lowers its Tg 
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acid, which is readily soluble in aqueous base. The exact mechanism by which the rate of dissolution 

is increased is a matter of contention, as the dissolution is increased by orders of magnitude above that 

which might be expected. 

1.4.3.2 SAMs as photo resists 

The fact that organothiolate SAMs may be photo-oxidized to corresponding sulfonates was reported 

by Huang and Hemminger182 and spatial photopatterning was first demonstrated by Tarlov, Burgess 

and Gillen183 . Because the irradiated regions are those rendered more soluble (in organic solvent, and 

especially when in contact with other thiol molecules). Both groups observed a shift in the S2p binding 

energy away from 162 to 167 eV, interpreted as being characteristic of a S03 group. Rieley et al.91 

studied the photo-oxidation of n-octanethiolate Au-SR SAMs by NEXAFS and were able to observe 

similarities between a photooxidised SAM spectrum and an adsorbed film of sodium -octane sulfonate, 

which indicated that the oxidised species was structurally similar to the reference adsorbate. Conversely, 

an adsorbed zinc sulfide film was dissimilar. The stoichiometry of the proposed oxidation product was 

confirmed by Hutt and Leggett184 by emprirical analysis of photoelectron intensities, and the kinetics 

and mechanism of photo-oxidation have been investigated for a range?f SAMs184-186. 

The S03 does not experience a strong interaction with the metallic substrate and photooxidized SAM 

molecules are readily displaced by contrasting solution-phase thiols. This is depicted in the cartoon, 

figure 1.4.1 on the following page. 

SAMs afford a potential molecular-scale resolution in photopatterning, where other systems are limited 

by macromolecular scales. This has important implications when the tools of photolithography allow 

circumvention of the optical diffraction limit, which will be discussed in subsection 1.4.3.4 on page 56. 

1.4.3.3 Details of SAM photo-oxidation 

Zhang et al.88 suggested that the key agent involved in UV photooxidation of SA~s is ozone. However, 

Brewer et al.187 demonstrated photooxidation at a longer wavelength (254 nm): insufficient to generate 

ozone in the local environment. 

One problem presented by the fabrication of micropatterned SAMs with multiple desired functionalities 

(termed 'multicolor [sic] patterning') is accurate addressability and alignment between the serial pho

tooxidation steps. Photooxidation of mixed binary SAMs with differential response to two wavelengths 
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(a) A SAM is irradiated through a Cu mask-blue thiolate 
species indicate those that are converted to sulfonates due to the 
laser 

(b) In the regions of the SAM irradiated by UV, thiolates are 
converted to sulfonates, which are less strongly bound than 
thiolates 

(c) 'Contrasting' SAMs (red cubes indicate a different (0 

functionality than that of the initial SAM) adsorb from solution 
onto the irradiated regions 

1.4 Patterning SAMs 

Figure 1.4.1 Schematic showing patterning of a SAM through a eu mask 
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(220 nm and 365 nm) has been carried out188 by using a mask with with spatially separated 220 nm 

and 365 nm transparent regions, in order to negate the requirement to remove the mask before chemical 

modification or washing prior to a further photooxidation step. This methodology requires that the 

final chemical wash differentiates between the two monolayer types, and in this case the photocleavable 

linker responsive to 365nm was not affected by introduction of a contrasting thiol after photoxidation to 

the 220 nm-exposed regions yielded weakly-bound sulfonates. 

1.4.3.4 Scanning near-field photolithography: Circumventing the diffraction limit 

By coupling a 244 nm laser to a near-field scanning optical microscope (NSOM)* system, it has been 

shown that features smaller than the diffraction limit can be written. This technique has been termed 

'Scanning Near-field Photolithography' (SNP). 

In conventional photolithography, the smallest feature sizes that may be written are constrained by the 

Rayleigh-Abbe diffraction limit, otherwise called the Rayleigh criterion, given by: 

d = 0.61A 
nsina 

(1.4.1) 

where d is the resolving power, A is the wavelength of the light, and nsin a is the numerical aperture. 

The origin of the term 0.61 == ! 1.22 -the latter value is the relative distance of the !Jrst node surrounding 

an Airy disc, which Abbe arrived at by inspection. For all practical purposes, the refractive index of most 

lenses is f'J 1.4, so achievable resolution is given by: 

A 
dt;:::j-

2 
(1.4.2) 

which has historically imposed a restraint on optical microscopy, due to the fact that the human eye 

cannot see wavelengths shorter than 400 nm (with an upper limit of 700 nm). The very best conven

tional optical microscopes cannot therefore resolve features <200 nm in size. This limit also has dire 

ramifications for the photolithographic processes used in semiconductor device fabrication, which rely 

on focussing down through a mask template: Although the' wavelengths used for photochemistry now 

reach far into the invisible ultraviolet region of the electromagnetic spectrum, materials that are photoac

tive at increasingly shorter wavelengths are increasingly difficult to synthesize, and are subsequently 

increasingly expensive. 

-alternately also called a 'SNOM'-a scanning near-field optical microscope 
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Near·field Far·field: 
Diffraction 

d ". --- .Ii---I 

Figure 1.4.2 Cartoon showing the origin of the difference between near-field (left) and far field (right) 
methods from Rej191 

The idea of circumventing the diffraction limit in optical microscopy arrived with the work of Irishman 

"E. H. Synge 189 in 1932, who realised that by using a probe held in the near-field «50 nm) of the object 

under study, features smaller than the wavelength of the light could be resolved. The physical basis 

for the technique is given a full treatment and mathematical derivation elsewhere. For the purpose of 

this thesis, it may be stated that an angular spectrum representation of an electromagnetic field allows 

a separation of the terms describing the homogeneous plane waves, and inhomogenous evanescent 

waves 190. The near-field is that region, very close to an object, where the evanescent waves that are 

coupled to it, and which decay exponentially into space, are significant and therefore cannot be ignored. 

Typically, evanescent waves are created whenever there is a case of total internal reflection, such as 

occurs in an optical fibre. Electrical and magnetic fields cannot be discontinuous at a boundary, and 

so an exponentially-decaying evanescent wave propogates into free space. The field has its greatest 

intensity up to one-third of the wavelength of the reflected light away from the dielctric boundary (i.e . 

the edge of the transducer from which it originates), and then falls off sharply. A cartoon showing the 

origin of the difference between near and far field microscopy is shown in figure 1.4.2. 

Synge's original idea was a modification of dark-field microscopy: fix a particle to a quartz plate, 

irradiate it, and then collect the reflected rays by the use of a collecting apparatus such as a photographie 

plate. The experimental leap was to envisage the rastering of a biological section at close distance (the 

near-field) over the irradiated particle, and record the modulation of the collected light intensity, in order 

to build up a picture ofthe section at potentially higher resolution than allowed by the diffraction limit of 

the light used. This was the first description of a sub-wavelength scanning microscopy, and interestingly 

"involves an 'antenna' (the particle) rather than an aperture as the source of the evanescent waves. Synge 

communicated his idea to Einstein, who suggested using a very small aperture in an opaque plate; in a 
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further communication, Synge would prophetically suggest the use of a cone or pyramid of quartz glass 

brought to a point of 10-6 cm192• 

Due to the crudity of the then-current technology and the difficulty in achieving such precise motion 

control, a practical demonstration of the technique could not be made for the submicroscopic samples 

that the technique would purport to illuminate. That the NSOM concept were to remain a largely esoteric 

theoretical invention for many years is attested to by an independent reinvention of the concept by the 

mathematician J. A. 0' Keefe in 1956193 , and subsequent workers often proceeded largely ignorant of 

Synge's pioneering work. 

The near-field probing technique was demonstrated in principle by Baez in 1956, who investigated 

the effect using an acoustic experiment. This was followed in in 1972 by microwave experiments, 

performed by Eric Ash and O. Nicholls at University College, London. The advent of STM in the early 

1980s suggested that the precise control necessitated by the NSOM technique might be provided by 

the use of piezoelectric transducers, and the technique in its common form was encapsulated in a paper 

by Betzig and Trautman in 1992194, who realised its potential as a non-invasive technique for probing 

biological structures. 

A NSOM probe typically consists a a optical fibre down which optid.l signals may be transmitted by 

total internal reflection, which is brought to an apex at the 'probe' end by either mechanic,al pulling 

or etching in HE This is then commonly coated in a reflective metal, e.g. aluminium, and an aperture 

is formed by gently colliding the probe with a surface. The most common methods of maintaining a 

NSOM probe in the near-field is by the use of a shear-force feedback system, whereby the probe is 

attached to a piezoelectric tuning fork. A cartoon depicting this arrangement is shown in figure 1.4.3 on 

the next page. The circuit in this arrangement is able to detect perturbations to the resonant frequency 
., 

of the tuning fork as it is brought into the region of the near-field, and then adjust accordingly the 

distance of the probe from the sample by means of a piezoactuator. An alternative method is to use 

the signal from a split photodiode in a modified AFM setup, in which the probe is either fixed to an 

AFM cantilever, or the light is passed through the AFM tip, as a means to maint~n the probe in the 

near-field of the sample, very much like it stops the AFM tip impacting on the s~mple in normal AFM 

operation. 191 

It was quickly realised that the technique could also be used for lithography195, and an elegant magneto

optical digital storage device was demonstrated. However, some of the earliest lithographic applications 

used conventional photoresists. Since then, SAMs have been demonstrated as excellent photoresists 

capable of potentially better resolution38, and many of the best results from SNP have been on SAMs. 
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1.4 Patterning SAMs 

Figure 1.4.3 The method of shear-force feedback operation in NSOM, from Ref 191 

Sun, Chong and Leggett demonstrated SNP on acid (CIOCOOH) and hydroxy- (CllOH) terminated 

SAMs on gold 196 , achieving feature sizes of 39nm (fwhm). Sun and Leggett197 then showed that 

cyanide etching chemistry168 could be used at the nanoscale to produce three-dimensional features. 

Since then, a body of work198-200 on gold and silicon substrates has ,demonstrated that structures far 

smaller than the wavelength of the photolithographic radiation can be fabricated, reaching resolutions 

of A/22.191 

1.4.4 Patterning of Biological Molecules 

1.4.4.1 Overview 

Patterning biological structures on SAMs requires all the considerations that are made in terms of 

immobilising biomolecules on surfaces, plus the additional consideration that the patterning process 

will not risk compromising the biomolecular structure, which in many cases WOl;lld cause of loss of 

biological functionality. Many ofthe processes already discussed have been used,to successfully pattern 

biomolecules. Of particular relevance to this thesis in terms of producing patterns is the development of 

surfaces that require a minimal number of activation steps to bind proteins. 

59 



Chapter 1. Introduction 1.4 Patterning SAMs 

1.4.4.2 Biomolecule attachment protocols 

Patel et al.201 proposed a method of amine attachment more sensitive to the mild conditions necessitated 

by biolomolecular attachment, using chemistries developed for selective capturing of proteins on solid 

(polymer-bound) phase columns for biochemical separations. Again, carbodiimide activation was used, 

in order to introduce an N-succinimide-attached activated ester, which is readily displaced by primary 

sp3 amine groups in biomolecules in aqueous biological buffer solution. This methodology has been 

used to bind both proteins201 and DNA 202. Some of these systems are photoreactive, undergoing pho

tolysis or modification to the surface m functionality that has wider implications than those restricted to 

biomolecule immobilisation e.g. in molecular electronics. 

Another method which has been used previously is the activation of an amine-terminated SAM by the 

use of glutaraldehyde. This yields an aldehyde surface, which can bind free primary amines, as is 

described in the next subsection. 

1.4.4.3 Photoactive groups in SAMs 

A particularly useful class of SAMs for the patterning of biomolecules are those that have switchable 
., 

responses to biological adhesion. One particular approach has been the development of photocleavable 

molecules that have halogenated leaving groups. Prior to irradiation, the low surface free energies of the 

halogenated groups are at the interface are able to resist the adhesion of some biological molecules for 

limited periods. Once irradiated, the photocleavable group might present a group that can be to further 

activated to direct the immobilisation of biomolecules. 

Chloromethylphenylsiloxane SAMs on silicon initially present just such a low-energy surface. Upon 

irradiation with 244 nm light, the chlrorine is cleaved from the methylene group by a radical process, 

and the methylene in tum is converted into carbonyl species (at first aldehydes, then carboxylates) which 

can readily immobilise proteins with available lysine groups. Aldehydes require no further activation 

to attach primary amines (such as are offered by lysine residues in proteins), and the surface can als? 

be activated by the use of carbodiimide chemistry, as mentioned above, in order to render amenable to 

protein attachment those groups which have become carboxylic acids. 

1.4.4.4 SAM Molecular Gradients 

It is possible to introduce surface functionality gradients along the suface of a SAM.203 The most 

common method is to allow diffusion of similar-length but differently m-substituted SAM through a 
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polysaccharide matrix. Gradiated SAMs have far-reaching applications in 'lab-on-a-chip' -type devices, 

and could be used to generate artificial routes similar to the very simplist metabolic pathways. 

1.5 Functional Membrane Structures: 

Biological Light Harvesting Complexes 

loS. 1 Harvesting Light 

Photosynthesis-literally, 'making with light' -is ubiquitous and pervasive in nature, and is observed in 

plants and algae, as well as several phyla* of bacteria 20. Photosynthetic organisms-those which harness 

light from the Sun as a primary or significant energy source-are extremely successful, and this is 

reflected in their abundance. It is by no means an exaggeration to make the assertion that photosynthesis 

is the basis of life on Earth: The vast majority of known organisms' metabolisms are dependent on 

chemical energy that can be traced back to the actions of incident photons on biological chromophores t. 

At this significant time in human history, the awesome transmogrifying, power of photosynthesis, evident 

in the dwindling, yet once vast reserves of crude oil (-and, to a lesser extent, natural gas and coal), 

could not be more starkly obvious. Ancient photosynthesis, and the ecosystems that it supported, has 

driven modem human society. Petroleum as a fuel is unsupassed in the return in energy density that 

it yields; it can be burned relatively safely and cleanly, and produces only small amounts of toxic by

products during the release of large quantities of usable work. Hydrocarbons derived from crude oil also 

form the basic building blocks of the organic chemist's repertoire. By proxy, they are also the basis of 

the pharmaceutical and polymer industries, and now form the units from which new materials are being 

made. Indeed, the power of photosynthesis has inspired a (arguably misguided) lobby for a switch to 

biofuels by governments worried that their steady supplies come from increasingly politically turbulant 

areas of the globe. The ability of plants to produce chemical energy on a large scale is therefore widel~ 

recognized,:j: . 

The realisation that a significant proportion of the energy requirements of human society could be 

garnered from sunlight itself was made in the 19th Century, although early attempts focussed on the 

extraction of the thermal component of the Sun's rays. It was not until the 1950s that recognisable 

*a taxonomic grouping above class and below kingdom in hierarchy 
t chromophores are chemical groups that are able to absorb electromagnetic radiation 
*-however. the sense of devoting significant portions of arable land to biofuel production has been questioned 
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photovoltaic cells were developed at Bell labs for use in space. While the efficiency of photovoltaics 

has increased dramatically, many devices still have very narrow spectral responses, one of the reasons 

why photosynthesis, with its use of light-harvesting antennae (see next section), has the advantage. The 

spatially-directed integration of antennae complexes into artifical systems like SAMs is the first step 

towards a fully 'biokleptic' architecture. 

1.5.2 Photosynthesis 

1.5.2.1 Historical perspective 

Despite important work by van Helmont (c. 1640), who determined that, contrary to Aristotle, a willow 

tree did not get its mass from the soil, but (as we now know, in part) from the water supplied to it; and 

Priestley (c. 1770), who realised the power of plants to reinstate "vital" air· following contamination by 

burning, the the role of (sun) light in photosynthesis was not recognised until the work of Ingenhousz 

in the late 18th Century. Concurrently, Senebier and de Saussure later established the requirement for 

carbon dioxide and water, formulating a basic scheme for plant-based photosynthesis2o: 

CARBON DIOXIDE + WATER SUNLIGHT I ORGANIC MATTER + OXYGEN 

While the oxygenic apparatus of plartts, algae and cyanobacteria is often seen as the pinnacle of the 

evolution of photosynthesis from a human perspective-changing Earth's atmosphere from being mildly 

reducing to strongly oxidising2, and allowing the evolution of higher forms of life (i.e. animals)-it is 

of note that many photosynthetic species do not house an oxygen-evolving complex. "Indeed, some pho

tosynthetic organisms are actually anaerobes, as is the case for many of the more ancient photosynthetic 

organisms, which often grow better under anearobic conditions. Photosynthesis is therefore a more 

general process. 

A chemical rationalisation for photosynthesis was advanced by Van Niel204 in 1941, with the unde~

standing that it is essentially a redox process. Van Niel stated: 

(1.5.1) 

·which Lavoisier, thanks to information from Priestley and Carl Willhelm Scheele, realised was oxygen: an element. Priestley 
interpreted his "vital" air to be air that had been purified of phlogiston, the fire-giving substance that was released from a flammable 
material was burned 
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-this may be expressed as two separate events: 

(1.5.2) 

(1.5.3) 

Equation (1.5.1) on the preceding page is a summation of equation (1.5.2) and equation (1.5.3), which 

had been determined by researchers working in the years immediately preceeding van Niels's paper, but 

the separation of the two events were also supportive of a spatiotemporal separation of the photosynthetic 

process into a series of subtasks within the organism. 

In an ingenious experiment by Hill205 reported in 1939, the reduction of Fe(III) to Fe(II) was observed 

in aqueous solutions of chloroplasts when they were irradiated with visible light. This suggested that 

the molecular mechanism of photosynthesis was electrochemical in nature, and would require some 

species capable of carrying a charge. This is achieved in nature by using simple hydrocarbons that 

contain heteroatoms capable of holding interchangeable oxidation states, as will be explained in the 

next section. Previously discussed in the introductory section of this chapter, was the use of myriad 

organic signallers by nature to 'communicate' between the cellular machinery of the cell (and between 

cells), as compared with the ubiquitous electron in the human technology of this era. In this instance, 

an organic molecule 'communicates' an electrochemical potential in a form that is specific (unlike an 

electron), allowing spatial separation of components in the photosynthetic unit. . 

Photosynthesis is a physical process and is therefore characterised by a series of steps with a de

fined chronology. The temporal separation of events was elegantly demonstrated by Emerson and 

Arnold206,207 in 1932, by investigations using a pulsed light source. The rate of photosynthesis carried 

out by the oxygenic alga Chiorella pyrrenoidosa was determined by measuring the rate at which the 

organism evolved 02. The flash-pulse spacing and system temperature was varied and the rate of 02 

evolution was monitored. It was found that, when the time between pulses was long, evolution of 02 

was not dependent on temperature. However, shortening the pulse intermission caused the 02 evolutio~ 

rate to vary with temperature, following an Arrhenius-like relationship that was suggestive of at least 
, 

one 'other secondary process that must occur in photosynthesis, quite apart from the initial absorbance 

of incident photons by chromophores. In fact, it is now known that the metabolism of all photosynthetic 

organisms is supported by a large number of reactions which do not need light to drive them, and many 

photosynthetic organisms are able to support themselves independent of the requirement for light. 
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1.5.2.2 Chromophores relevant to photosynthesis 

Organisms that use sunlight as significant or primary energy source can be roughly divided into those 

that use light-catalysed rhodopsin isomerisation to pump either H+ or CI- though a cell membrane, 

and thus produce an electrochemical gradient which can be used to drive metabolism; and a much larger 

group that use chlorophyll to perform charge separation. It is the ability of the latter group to bring about 

chemical change (by the movement of electrons between molecular species) that has shaped the world 

around us. Rhodopsin photosynthesis will not be considered any further in this thesis. The central of the 

variants of chlorophyll found in bacteria and plants is the chlorin subunit; a tetrapyrrole derivative. 

Tetrapyrroles such as the porphyrin molecule will self-assemble from acetaldehyde and pyrrole in 

strongly oxidising conditions, both of which will have almost certainly have been present in the prebiotic 

soup. The chlorophyll molecules in photosynthetic organisms alive today, however, are manufactured 

by a series of enzyme-catalysed reactions, using glutamic acid as a starting point208 . Chlorophyll has a 

reduced symmetry as compared with porphyrins, and again, this has important implications, especially 

for its spectroscopic characteristics. The planarity of the chlorin subunit, which allows the electronic 

transitions necessary for photosynthesis, is promoted by its chelation of Mg2+, which is a very soluble 

ion that is present in the world's oceans in great abundance. In some extremophilic bacteria, Zn2+ 

replaces magnesium to produce a more thermodynamically stable chlorophyll; however, the ion is 

only sparingly soluble in water compared to Mg2+, which precludes its inclusion in the majority of 

photosynthetic organisms. 

Shown in figure 1.5.1 on the next page are the structures of (a) chlorophyll a (found in all plants); (b) 

bacteriochlorophyll a; and (c) porphyrin. Also shown in part (a) is the IUPAC labelling system for 

chlorins. The additional structures introduced by biosynthesis, as compared with the simple porphyrin 

in (a), are evident. As well as the extracyclic ring 'E' which extends the conjugation along one axis, 

thus reducing the molecular symmetry for the purpose of electronic transitions, chlorophylls feature a 

phytol or isoprenoid tail, connected to position 17 of ring D, whose purpose is to anchor the molecule 

within the larger, protein based structures where it is found in nature. (c) has partic~lar relevance to this 

thesis: it is the primary chromophore in the light harvesting ~omplexes of its titl~. 

The inherant spectroscopic characteristics of chlorophyll are instrumental in its power as a system 

capable of processing electromagnetic radiation; its ability to retune light and produce chemical change. 

Shown in figure 1.5.2 on page 66, part (a), are the absorption and emission spectra of bacteriochloro

phyl a in diethyl ether. Also shown, in figure 1.5.2 on page 66 part (b) and (c) respectively, are a 

simplified molecular orbital (MO) transition diagram, and schematic representing the electron density 
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o 

(a) Chlorophyll a with IUPAC labelling system for chlorins 

(b) Bacteriochlorophyll a (c) Porphyrin 

Figure 1.5.1 Chlorin structures 

change associated with the n ~ n* transitions that give rise to the spectra. Because the shapes of 

the ground and excited states of bacteriochlorophyll are very similar, the molecular·vibrations excited 

during absorption are also excited during emission, giving rise to a signal with a degree of reflective 

symmetry along the y-axis of its spectrum. However, the emission resuls from a transition between 

the ground vibrational state of the electronically excited state as it relaxes to an excited vibrational 

state of the ground elctronic state, which gives rise to what is termed a Stokes shift: the fluorescence 

maximum occurs at a longer wavelength than the absorbance maximum2o• The strongest intensity and 

longest wavelength transition, which influences the spectral profile of the fluorescnce, is polarised along 

the Qy axis, and is dependent upon incident EMR having its electric vector parallel to the y-axis of 

the chlorin to occur. It can be seen in figure 1.5.1 (c), that the biosynthesis of bacteriochlorophyll 

a extends the conjugation of the chromophore along this axis by the addition of the extracylic ring 

to chlorin subunit E, and by the carbonyl at the 3 position of ring A; the conjugation is reduced 

along the x-axis by the saturation of the bond between positions 7 and 8 of ring B. The exagerration 
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Figure 1.5.2 The spectral properties of bacteriochlorophyll a; images reproduced from Ref20 
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of the conjugation along the y axis of the chlorin increases the strength of the HOMO-+LUMO* 

transition of Qy in bacteriochlorophyll a, at the expense (by dimishing the conjugation along the x 

axis) of the weakening of the HOMO-l-+LUMO transition of Qx (seefigure 1.5.2 on the previous page 

(b)) and therefore the biosynthesis pathway is ideally suited in its promotion of chromophores which 

fluoresce strongly at longer wavelengths. As will be shown, this is entirely fit-for-purpose in terms of 

photosynthetic efficiency. Apart from chlorins, there are two ther major classes of chromophores that 

used by photosynthetic organisms: carotenoids, which are conjugated or partially conjugated derivatives 

of isoprene; and bilins, which are found in some types of antennae (see next subsection), and also 

in phytochromes, which regulate gene expression (such as those involved in antennae biosyntheis) 

dependent upon the ambient light intensity. 

The primary rOles of carotenoids in photosynthesis are: 

1. Absorbance of light in the visible region of the spectrum (400-500 nm), followed by fluorescence 

at longer (lower energy) wavelengths 

2. Photoprotection by the quenching of chlorophyll triplet states, and excited singlet states of oxygen 

if there are any proximal to the photosynthetic apparatus 

They are also involved in the regulation of energy transfer in antennae via the xanthophyll cyle20 , the 

full details of which are beyond the scope of this thesis 

1.5.2.3 Photosynthetic Antennae 

All photosynthetic organisms contain light harvesting antennae210 • The structure of the light harvesting 

2 complex of the purple bacterium Rhodobacter spaheroides is introduced in detail in subsection 1.5.3 

on page 70. Antennae have two primary functions: 

1. To increase the total cross section of chromophores able to absorb incoming photons and inititate 

photosynthesis 

2. To increase the spectral range of photons that may be used for photosynthesis 

It can be shown2o that, in full sunlight, only f'V 10 photons s -1 are incident on a chlorophyll molecule. 

0.1 s is a near-eternity on a biological time-scale, and thus the incoming flux of photons would be a 

*Highest Occupied Molecular Orbital; Lowest Unoccupied Molecular Orbital 
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limiting factor, were the number of chlorophylls only of the same magnitude as the number of photo

synthetic reaction centres (RC); the centres where charge separation is carried out. Nature circumvents 

this limiting factor by the expression and growth of light harvesting antennae to capture photons for 

the RC. Antennae are three dimensional arrays of chlorophylls and carotenoids, and there are in fact 

typically thousands of photosynthetically useful chromophores serving a single RC. 

In order to channel photon energy to the RC, chromophores (chlorophylls, but also carotenoids) within 

antennae; and between one antenna and neighbouring antennae, have to transfer energy between each 

other. There are two models of energy transfer that are applicable it:l the case of light harvesting: Forster 

energy transfer, and exciton coupling. The former is a long range effect that is slightly weaker than the 

latter, and arises due to transient dipole-dipole interactions, which allow an excited state chromophore to 

induce an excited state in a neighbour. Exciton coupling typically occurs at distances of less than loA, 

when the molecular orbitals of chromophores in the array begin to overlap, and the induction is more 

direct than in Forster energy transfer. It has been remarked that these two models essentially describe 

the same process, but that the effect is enhanced over short distances. 

As has been discussed previously, fluorescence in individual chlorophylls and also in carotenoids occurs 

at a longer wavelength than absorbance, due to a Stokes shift. The effe~ts of Forster energy transfer and 

exciton coupling that take place when the chromophores are held in light harvesting complexes are such 

that each increases the shift to longer wavelength; exciton coupling produces a greater shift than Forster 

energy transfer. Antennae therefore absorb EMR over a large spectral range and, though a complex 

system of excitation and fluorescence, re-tune it to produce narrow wavelength band low energy photons 

suitable for use by the RC to produce charge separation. Antennae have been considered analagous to 

satellite dishes, in their collection and focussing of incoming pulses of EMR toward a single point, but 

another useful analogy is that of the funnel concept, shown in figure 1.5.3 on the next page. 

1.5.2.4 Charge separation and carbon metabolism 

While the charge separation at the heart of chlorophyll-ba,sed organisms is su?sequent to the action 

of harvesting light, it is the ultimate purpose of photosynthesis and therefore merits brief discussion. 

As an example, the RC and subsequent elctron transfer pathways of purple non sulfur bacteria will be 

discussed; they have the best characterised of the RCs that are known, and are relevant to this thesis 

because the organism from which the light harvesting complexes of its title are extracted from a purple 

non sulfur bacterium, Rhodobacter sphaeroides. 
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Figure 1.5.3 The transnusslOn of photon energy from chromophores that absorb at shorter 
wavelengths, and fluoresce at longer wavelengths, is illustrated well by the funnel concept 

The RC consists of three or four protein subunits, which are either transmembrane, or are partially an-

chored within the membrane. The proteins give the RC a defined geometry, necessary for the excitation 

and electron transfer reactions to take place. The 'noncovalently associated cofactors' which carry out 

the process of charge transfer are typically four molecules of bacteriochlorophyll, two molecules of 

bacteriopheophytin (bacteriochlorophylls that do not have a chelated metal ion in the chlorin subunit), 

one Fe2+ ion, and one molecule of carotenoid. Two of the bacteriochlorophyll molecules are termed 

the 'special pair' due to their strong interaction. The wavelength of their maximum (Qy) absorbance 

band is 870 nm; as will be described, the arrangement of chromophores in the antennae complexes is 

such that exciton coupling re-tunes all of the incident EMR to this wavelength before it reaches the RC. 

The 'special pair' is the central engine of photosynthesis, losing an electron to form a primary ion-pair 

state, which approximately shares the resulting unpaired electron. The electron donated by the excited 

state special pair is transferred to a bacteriopheophytin, and then on to first one quinone, and then 

another. Quinones are two-electron gates; molecular charge carriers that, in being reduced to quinols, 

can move electrochemical potential across the membrane, from the cytoplasmic side to the periplasm. 

Once a quinone has been fully reduced to a quinol, which requires two charge separation cycles, it is 

released to the periplasmic side, creating a net flow of protons (in the hydroxy groups of the quinol). 

A coupling factor enzyme then uses the free energy derived from this proton electrochemical gradient 

to form phosphate bonds in ATP (Adenosine TriPhosphate), the universal currency of biology, which 

can drive some (but not all) cellular metabolic processes. One of the main features of chlorophyll-based 

photosynthesis is the reduction of C02 to form sugars (the 'Calvin cycle'), which is also dependent on 

NADH, a cellular coenzyme. This is beyond the scope of this thesis, but is well documented elsewhere. 
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In order to reduce the oxidised ion-state pair, which must take place after every cycle of electron transfer, 

an electron is donated from the charge carrier. cytochrome C2. Cytochromes contain a heme group, which 

is a porphyrin group chelating Fe. The multiple redox states that iron is able to adopt make cytochromes 

ideal cellular charge carriers, and in contrast to chlorophyll, there is no change to the redox state of the 

tetrapyrrole unit. The cytochrome that rereduces the special pair may be freely mobile or tethered to the 

periplasmic side of the membrane in the form of a tetraheme cytochrome complex. The reoxidation of 

the expelled quinol is also carried out by the cytochrome bCl complex, which forms a quinone that can 

replace quinol expelled from the RC. 

In total, the processes in the RC take two electrons from the periplasm, via the cytochrome, special pair 

and bacteriopheophytin to the first, then second quinone, and in expelling the resullting quinol, move 

two protons from the cytoplasm to the peri plasm. This may be summarised: 

(1.5.4 ) 

As stated above, the cycle of electron and proton transfer is completed by the cytochrome bet complex, 

in a reaction which may be summarised as: 

(1.5.5) 

In the above equations, cyt C2 is cytochrome C2, which rereduces the special pair ready for excitation by 

another photon, while UQ is ubiquinone, the electron transporting molecule in purple bacteria RC. Of 

the processes described in the initial stages of charge transfer, the only step which is thermally activated 

is the transfer of the electron from the first quinone, QA, to the second, QB. The rates 9f the other charge 

transfer steps are actually increased at cryogenic temperatures. The reduction of the special pair by the 

cytochrome is temperature independent, and again proceeds at extreme cryogenic temperatures. This 

was the first evidence for quantum tunneling in a biological process. 

1.5.3 The LH2 Complex of Rhodobacter spha~roides 

1.5.3.1 Rhodobacter sphaeroides 

Rhodobacter sphaeroides is a purple non sulfur bacterium of the phylum proteobacteria. It is widely 

distributed, and abundant in anaerobic environments such as sewage treatments ponds. Under these 

conditions, when no oxygen is present, the photosynthetic architectures are expressed, and the cell 
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membrane invaginates to form intracytoplasmic tubules that house the photosynthetic complexes. Purple 

bacteria are among the most widely studied..of organisms that use photosyntheis, and have perhaps the 

most comprehensively understood photosystem. Rhodobacter sphaeroides has been extensively studied 

by the Hunter group at the University of Sheffield, and is the source of the light harvesting complexes 

whose directed immobilisation form the basis for a large part of this thesis. 

1.5.3.2 Light Harvesting Complex 2 

Rhodobacter sphaeroides LH2 is a nonameric, ring-shaped complex where each repeated unit is com

posed of two polypeptides, denoted a and /3, two carotenoids, and three bacteriochlorophylls. It is 

thought that the second bacteriochlorophyll has a purely photoprotective role, which it fulfils via cis

trans isomerisation. One of the bacteriochlorophylls is positioned approximately a third of the way 

from the cytoplasmic face of the complex in an approximately horizontal orientation, and is referred 

to as B 800 after the position of its maximum absorbance band (800 nm). The other two bacteri

ochlorophylls are vertically arranged so that the two chromophores are proximal to each other, and also 

the bacteriochlorophylls in n~ighbouring subunits, having their maximum absorbance band at 850 nm; 

they are thus denoted B 850. The difference in the maximum absorbance band of the two distinctly 

arranged bacteriochlorophylls is due to the manner in which they are coupled. The B 800 units can 

be characterised as being coupled by Forster energy transfer, while the B 850 units exhibit exciton 

coupling, which as previously described shifts the position of the maximum absorbance band to a longer 

wavelength, and subsequently the maximum fluorescence band is also shifted to longer wavelength. 

Shown in figure 1.5.4 on the following page are cartoons depicting the LH2 complex of the purple 

bacterium Rhodopseudomonas acidophila. The top of the figure in (a) is the periplasmic side. The 

bacteriochlorophylls are highlighted in purple and the carotenoids in orange; the polypeptide domains 

have been rendered as translucent. 

Light of wavelength 400-500 nm is absorbed by the carotenoid molecules, which fluoresce at a longer 

wavelength, exciting the B 800 bacteriochlorophylls. These in tum fluoresce at a-longer wavelength, 

exciting the B 850 bacteriochlorophylls. Once these fluoresce, the resultant EMRis passed onto the LHI 

antenna complex, which surrounds the RC. LH 1 has a maximum absorbance band of 870 nm, and is a 

ring composed of repeated polypeptide heterodimers (in Rhodobacter sphaeroides, of 16 units) which 

each contain two bacteriochlorophylls, all arranged in much the same way as the B 850 of LH2. Once 

the excited LHI chromophores fluoresce, they pass on the EMR to the RC, where charge separation 

takes place. 
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(a) LH2 from the side (b) LH2 from the top 

Figure 1.5.4 Light harvesting 2 complex from Rhodopseudomonas acidophila 

1.5.4 Integration of Photosynthetic Apparatus into Photovoltaic Devices 

The possibility of integrating biological structures related to photosynthesis into photovoltaic cells has 

only in very recent years begun to be properly explored. Previously, the technology for manipulating 

biomolecules, and for creating artificial structures suited to the integration of biomolecules, was not 

sufficiently developed. Additionally, biomolecular probes have only in recent years fully elucidated the 

structures of the biomolecules under study; once the structures have been solved, it has been possible to 

design surfaces to specifically tether the appropriate biomolecular building blocks to artificial structures 

and devices. 

The stucture of purple bacterial LH2 was originally solved by X-ray diffraction211 . Some important 

early work (see Refs. 154, 158, 212) towards elucidating the structure of LH2 by AFM used image averaging 

techniques to obtain high resolution images from a large number of AFM micrographs. While the 

images yielded by these studies were very impressive, one of the advantages of AFM over the long

standing probe of choice for biological structures, XRD, is that AFM can probe the structure of a single 

molecule. XRD relies on the formation of a crystal of the structure (often facilitated by the inclusion 

of other structures which help the crystal to form), and when the XRD pattern is solved an 'average' 

structure is deduced. Work by Scheuring et al. 154,212 approached AFM in much the same way, averaging 

over many scans, and while much information about 2D crystals of LH2 was yielded, it did not give 

information about how LH2 sits in the context of a native photosynthetic bacterial membrane. This 

important information was later provided by Bahatyrova et al.213 , who used a combined AFM-confocal 
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system. It was shown that there could be significant deviation from completely circular in the case LH2, 

but more especially in LHI. 

Recent spectroscopic experiments have elucidated some of the energy transer processes that take place in 

light harvesting antennae. Lin et ai., for instance, used femtosecond transient absorbance spectroscopy 

to follow the transfer of energy from carotenoids to bacteriochlorophyll in the RC of Rhodobacter 

sphaeroides214• Information such as this has later informed the design of artificial light harvesting 

systems215, 216. 

The integration of bacteriochlorophyll into SAMs217, and chlorophyll derivatives into mesostructured 

silica films on indium tin oxide electrodes218 have both been investigated, and the integration of LH2 

into folded-sheet silica mesoporous material has also been explored219 . A considerable body of previous 

work has centred on the integration of photo system I into SAMs220, 221 , but the integration of Rhodobac

ter sphaeroides RC222 and LHI-RC complexes from Rhodospirillum rubrum223 into SAMs have also 

yielded promising results. In addition to integration into SAMs, the study of biological photosynthesis 

and the specialisation of its components as light harvesting or charge separation devices has informed 

artifical designs that aim to improve on conventional photovoltaics, e.g.224, 225. It is noteworthy that 

some of the most impressive recent developments in photovoltaics th~t improve their efficiency adopt 

similar concepts from photosynthesis-for instance, multiple chromophores were used for the cell that 

hold the photovoltaics efficiency 'world record' (42.7 %), developed by a team at the University of 

Delaware226 . 

The integration and patterning of biological light harvesting complexes into artificial systems such 

as SAMs is of great interest, with wide-ranging implications. Advances in patterning (such as SNP) 

allow the precision modification of surfaces, while a growing array of SAM co-group chemistries 

allow the specific immobilisation of biological (and, indeed, artificial) macromolecules. There are 

several aspects regarding the integration of LH2 into SAMs that are novel. Much previous work 

has centred on the patterning of plasma proteins or biological macromolecules that have relevance to 

bionomics arrays in medical research. The patterning of membrane proteins, inclu.ding those involved 

in p~otosynthesis, has some precedent, but the confluence of (nano )photolithography, biological light 

harvesting, and integration into SAMs is relatively new, and is of relevance to light hravseting and 

photovoltaics research. Because there is an obvious optical aspect to the biological functionality of LH2, 

spectrographic investigations offer an immediate method of probing and assessing that integration. 
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1.6 Synopsis 

In this chapter, a large number of concepts and analytical techniques were presented in order to provide 

the reader with a firm and comprehensive understanding of all of the pertinent aspects relating to the 

integration of functional biological light harvesting structures into self-assembling molecular systems. 

The extensive review of research related to SAMs presented in this chapter is intended to be broad

ranging, yet provide enough detail for the reader to understand all the facets pertaining to the integration 

of biological structures into SAMs. First of all, a comparison between SAMs and biological membranes 

was drawn. SAMs are a good model for the self-assembly interactions that nature employs in its 

cellular structures, but more importantly for this work, they present a means to introduce structure by 

chromophore-specific photochemical interactions, and tailorable surfaces that are largely independent of 

the hydrocarbon components that aid stability in the SAM. The consequence of molecular morphology, 

particular to SAM component molecules, on micro- and macroscopic surface properties was introduced 

to explain how small changes can affect overall structural attributes. A review of oligo(ethylene oxide)

terminated SAM chemistry, and the physicochemical basis from which it might derive its remarkable 

protein resistance, explored this concept in greater depth. 

The probes used to elucidate structural information about surfaces, and self-assembling systems such as 

SAMs vary in the information that they can yield, and also the damage they do to the sample. Ever since 

Robert Hooke introduced systematic structural investigations using a microscopic as a means by which 

the workings of nature might be explored, some 300 years ago, samples have required modification and 

dissection. SPM techniques can be nearly non-destructive, but other analytical methods could interfere 

with structures, especially at a dynamic interface, and the contention and contradictory results yielded 

by GIXD, NIXSW and XPS regarding the nature of the M-S interface may stem from damage done 

to the sample by X-rays. The method of probing and preparing samples therefore requires careful 

consideration. 

Patterning is central to the fabrication of structure on surfaces, and photolithography has been the main

stay of Ie fabrication since its development over fifty years ago. Scanning near-field photolithography 

offers a way to circumvent the diffraction limit and therefore avoids the necessitation of extreme UV 

chromophores. SAMs are demonstrably good positive-tone photoresists, but they also offer the ability 

to introduce chromophores that undergo photochemical change, at wavelengths independent of that used 

to photooxidise the sulfur at the M-S interface. Additionally, they offer a means to introduce patterns 

with a specific interaction (either attractive, or repulsive) with biological structures. 
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The control of surface chemistries, and precision of patterning of SAMs seem ideally suited to the 

patterning of LH2, and this will form a central part of this thesis. 

1.7 Aims 

1. To investigate and provide a physical rationalisation for the photolithographic process as it occurs 

on a variety of SAMs on Au, and similar SAMs on Ag. 

2. To explore the structure and properties of Pd-SR SAMs, and compare the photooxidation process, 

central to the photolithography of Pd-SR SAMs, with findings for Au-SR and Ag-SR SAMs. 

3. To investigate photochemical change in ()) functionalities. 

4. To investigate the nature of interaction of LH2 with a variety of SAMs. 

5. To demonstrate a patterning protocol for LH2, with retention of biological functionality (spectral 

characteristics) . 
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Chapter 2 

Experimental Procedures 

"These I mention, that I may excite the World to enquire a little farther into the improvement of Sciences, 

and not think that either they or their predecessors have attained the utmost perfection on anyone part 

of knowledge, and to throw off that lazy and pernicious principle, of being contented to know as much 

as their Fathers, Grandfathers, or great Grandfathers ever did, and to think they know enough, because 

they know somewhat more than the generality of the World besides ... Let us see what the improvement 

of instruments can produce. " 

- Robert Hooke, Animadversions on the First Part of the Machina Colestis of Johannes Hevelius, 1674 
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2.1 General Notes 

The need for absolute cleanliness at all times during the preparation, storage and handling of SAMs 

is paramount. Contaminants~specially organic contaminants and biological molecules-have an 

extremely strong preference for interfaces, and so adventitious adsorbates on glass substrates that are 

not handled with sufficient care may compromise the integrity of the SAMs being formed. Silicones and 

phthalates (as plasticizers) are ubiquitous in many laboratory containers, and chemicals of the former 

group are particularly liable to leach out and coat surfaces. Therefore, plastic wash bottles for solvents 

were avoided in favour of 'piranha' -cleaned (see below) glass containers. 

All samples were handled with tweezers cleaned with isopropyl alcohol (IPA) and wiped with clean 

paper tissue, and surfaces used for cutting samples were similarly cleaned with IPA. Nitrile or latex 

disposable gloves were worn to remove the risk of contamination from oils or salts from skin. Following 

washing of samples (HPLC grade ethanol was used, unless indicated otherwise), samples were dried 

under streams of CP grade nitrogen from gas bottles or dry compressed piped nitrogen. Exposure to the 
) 

laboratory atmosphere and associated dust etc. was minimised as much as possible. 

2.2 Cleaning·of Glassware 

All glassware used in the preparation, storage, and modification of SAMs, and as vessels for the directed 

assembly of protein patterns, was cleaned using 'piranha' solution. This is a 30: 70 mix of 100 wt. (vol.) 

hydrogen peroxide: concentrated sulfuric acid. The combination is highly exothermic (rapidly reaching 
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~ 80°C) and is potentially explosive when in contact with organic materials. Great care should be taken 

when handling piranha solution. 

After", 1 h, when the reaction had subsided and cooled, the remaining fluid was poured into a large water 

dilution tank in order to raise the pH to a reasonable level for disposal into normal drainage ("'pH 4-5). 

The glassware was then rinsed several (~6) times in order to remove any traces of residue, and then 

dried in an 80°C oven overnight. 

2.2.1 Preparation of Silicon for Silane Monolayers 

Additional cleaning and preparation by use of the RCA-I procedure was required for silicon substrates. 

This is as follows: to 5 parts deionised (18.2 Mil) water were added 1 part 30 % hydrogen peroxide and 

1 part ammonium hydroxide. Sample tubes containing the substrate and RCA solution were heated until 

boiling for 1 h. After cooling, these were the rinsed with copious amounts of water (~5 times) and dried 

in a clean oven (120°C). 

2.3 Materials and Chemicals 

2.3.1 Formation of SAMs 

Borosilicate glass microscope covers lips ('#2' thickness, 64mm x22mm) were obtained from Chance 

Propper Ltd., Netherlands. Gold wire (0.5 mm diameter, >99.99 % purity) and silver wire (0.5 mm di

ameter, >99.96 % purity were purchased from Goodfellows Ltd., UK. Palladium wire (0.5 mm diameter, 

99.99 % purity) and titanium wire (0.05 mm diameter, 99.9 % purity) were obtained from Sigma-Aldrich 

Ltd., UK. Chromium chips (99 %) were purchased from Agar scientific. 

I-butanethiol (99 %) and 3-mercapto-I-propanoic acid (99 %) were purchased from Acros Organics: 3-

mercapto-I-propanol (95 %), 3-mercaptopropanoic acid (96 %, I-dodecaneth\ol (96 %), II-mercapto

undecanol (97 %), II-mecaptoundecanoic acid and 1 H, 1 H,2H,2H -perfluorooctanethiol were purchased 

from Sigma Chemical company, UK. 
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2.3.2 Epitaxial Gold Films. 

Epitaxial gold films supported on mica were purchased from Georg Albert at the Physical Chemistry 

Institute of the University of Heidelberg, Germany. Although supplied as atomically flat, it was found 

that the films contained large defects, including fissures on scales used for micron-scale patterning, 

but invisible to the eye. Therefore, flame annealing was used to consolidate the film and promote the 

formation of atomic terraces. This will be described in subsection 2.4.2 on page 91. 

2.3.3 Biological Molecules 

2.3.3.1 LH2 

LH2 'wildtype' complex from wildtype Rhodobacter sphaeroides 2.4.1. was a gift from Drs. John Olsen 

and John Timney of the Hunter research group, Department of Molecular Biology and Biotechnology, 

this university. LH2 cysteine mutant complex was also used (cysteine replacing threonine at the N 

terminus of the f3 polypeptide, this is shown in figure 2.3.23 on the following page), and was extracted 

from a Rba. sphaeroides mutant (mutagenesis carried out by Drs. John Timney and John Olsen). The 

bacterium was grown photosynthetically at low light (5 W m-2) before disruption through a French press 

at a pressure of 18,000 psi. The resulting fluid was centrifuged for 30 min. at 100,000 g to remove , 

unbroken cells and other debris. This was further centrifuged at 200,000 g for 2 h to form a pellet of 

material consisting primarily of the intracytoplasmic mebrane. This was resuspended in a working buffer 

of 20 mM tris(hydroxymethyl)-aminomethane ('Tris')at pH 8. The membrane material was solubilised 

with 4 % LDAO for 45 min. Insoluble material was removed by further centriguation at 200,000g for 1 h. 

The solubilized LH2 was then applied to a DEAE (Sigma) ion exchange column and eluted using a 0-

250 mM NaCI gradient, in working buffer plus 0.1 % LDAO. The LH2 was then applied to a Resource Q 

column (GE healthcare) with a NaCI gradient Of 0-500 mM. The fraction yielded at a salt concentration 

of ",300 mM was collected, and then this was filtered through a Superdex 200 gel filtration column 

(GE healthcare). The quality of eluted fractions was monitored by spectrographic methods and those 

fractions with a ratio of absorbance peaks 850nm : 220nm >3.4 were used. 
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<X subunit 

cytoplasmic face 

T T 
---~-p'p L 

eOOH 
periplasmic face 

Label Amino Acid II R 

Non-polar residues 
G Glycine -H 

A Alanine -CH3 

V Valine -CH(CH2h 

L Leucine -CH2CH(CH2h 

I Isoleucine -CH(CH3)(CH2CH3) 

M Methionine -(CH2hSCH3 

F Phenylalanine -CH2Ph 

W Tryptophan -~ 
P Proline -Q 

2.3 Materials and Chemicals 

Label Amino Acid II R 

Polar residues 
S Serine -CH20H 

T Threonine -CH(CH3)OH 

N Asparagine -CH2CONH2 

Q Glutamine -(CH2hCONH2 

Charged, +ve 
K Lysine -(CH2)4NH2 

R Arginine -(CH2)sNHNH2 

Charged, - ve 
D Aspartic acid -CH2COOH 

E Glutamic acid -(CH2hCOOH 

Cysteine mutagenesis 
C Cysteine -CH2SH 

Figure 2.3.23 Mutagenesis of LH2 complex. adapted from a cartoon originally drawn by Dr. John 
Olsen 

2.3.3.2 Other biological molecules 

Streptavidin, bovine serum albumin (BSA) and biotinylated anti-rabbit immunoglobulin G (IgG) were 

purchased from Sigma-Aldrich. Acyl carrier protein and Phosphopantethienyl Transferase from Bacillus 

circulans were a gift from Dr. Lu Shin Wong, University of Manchester Interdiscipliniary Science 

Centre. 
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2.3.4 Biological Buffer and Immobilisation Chemistries 

Phosphate buffered saline ('PBS') tablets, glutaraldehyde ('GA') (50 % aqueous), trifluoroacetic anhy

dride ('TFAA'), N-(3-Dimethylaminopropyl)-N-ethylcarbodiimide ('EDC') and N-hydroxysuccinimide 

('NHS') were all obtained from Sigma-Aldrich. 

2.4 Metal film preparation 

2.4.1 Evaporation of Metals 

Metal films were deposited onto piranha-cleaned coverlips by evaporation under vacuum (carried out 

using a BOC Edwards Auto 306 Evaporator, operating at 10-7-10-6 mbar). Typically, a primer layer 

(1'V2nm) was first deposited prior to the desired substrate, in order to promote adhesion: Chromium for 

gold and silver, and titanium for palladium films. Following deposition of the primer layer, the vacuum 

was allowed to settle and return to a pressure similar to that before initial evaporation. Tungsten baskets . 

were used for the Cr chips, molybdenum boats were used for the evaporation of Au and Ag wire, and 

tungsten boats were used for titanium and palladium, which require higher temperatures. Rate of film 

deposition and cumulative thickness were measured by the change in the resonant frequency of a quartz 

crystal; density of materials were parameterised, and thicknesses of films determined by topographical 

AFM were regularly used to calibrate the sensor. Evaporation rates were typically 0.01-0.05 nm s-1 

for Au and Ag, and 0.2 nm s -1 for Pd; the latter material required 'flashing' onto the surface to prevent 

the boat from being subjected to prolonged periods of excessive temperatures, Which could cause it to 

break .. After the film reached the desired thickness, the films so-formed were allowed to cool in the 

evaporator (1'V3 h for Pd, 1'V2 h for Ag, 1-2 h for Au). 

2.4.2 Flame Annealing Epitaxial Films 

Epitaxial gold as received was washed with IPA and HPLC grade ethanol before being carefully dried 

under a stream of hydrogen. A butane flame was passed over the surface of the gold with an oscillatory 

m?tion at as steady a rate as possible, with the flame approximately 2 cm from the surface. This was 

done is a darkened room so that, once the film reached the very dullest red colour, the heating of the film 

could be maintained at that temperature for at least 30 s. Once carried out, these films were considered 

'flame-annealed' and were used, primarily for the deposition of biological molecules from solution. 
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2.5 Organothiolate SAM formation 

Following venting to nitrogen, the films were removed within 1-2 min and immediately immersed in 

ethanolic solutions of the appropriate thiol. Again, extra care was taken in the case of Pd, as it was 

thought the the increased susceptibility of Pd to aerial oxidation could give rise to unstable films. In 

the case of some gold films used for SPR experiments, samples were cut using a diamond scribe to 

appropriate dimensions (12 mm x 9 mm) before immersion in ethanolic solutions of appropriate thiol. 

Au metal films were typically immersed in 1 mM solutions of thiol for a minimum of 18 h before usage, 

and were used within 1-2 weeks. Pd films were given longer to form (typically at least 24 h), were kept 

in a nitrogen atmosphere and were used within 1 week. 

2.6 Preparation of Silane SAMs 

Piranha-cleaned, n-type (boron-doped) Si(lll) wafers were cut to size using a diamond scribe and 

cleaned using the standard RCA-l protocol (desribed in subsection 2.2.1 on page 88), which passivates 

the silicon with hydroxy groups. Substrates so-prepared were placed in Schlenk tubes and attached 

to a Schlenk line, and the vessels were evacuated and then refilled with nitrogen 3 times. After a 

final evacuation, the tap to each tube was closed, and a volume of Grubbs' catalyst-dried toluene was 

introduced via injection by a syringe penetrating the rubber seal. To this was added 10% by volume 

of 50 mM stock solution of silane, to produce 5 mM silane solutions. A positive pressure of nitrogen 

was re-introduced and the solutions containing the substrates were sonicated for 5 min to promote the 

formation of ordered mono layers. SAMs were left to form for 90-120 minutes: After this, each SAM 

so-formed was rinsed with ethanol, dried under a stream of nitrogen, then rinsed with toluene, before a 

further sonication in toluene for 15 minutes. These were then dried in a stream of nitrogen, and baked 

in a vacuum of oven (> 1 020 mbar negative pressure) for 1 h at 120), and left to cool under vacuum. 

Following removal, these were kept in sealed tubes in the dark before use (f"V 1 week). 
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2.7 Patterning 

2.7.1 Photolithography 

2.7.1.1 Micron-scale photolithography 

Copper electron microscope grids, used as photolithography masks (600-2000 mesh, 3.05 mm diam

eter) were obtained from Agar scientific. These were used to produce micron-scale patterns by the 

photo oxidation of SAMs, as depicted in figure 1.4.1 on page 55. They were also used for the spatial 

photodegradation of OEO SAMs presented in Chapter 3. Photolithography was primarily carried out 

using a Coherent FreD 300C argon ion laser (Coherent UK Ltd., Ely, UK). The fundamental wavelength 

was halved (i.e. 'frequency-doubled') by the use of a Brewster-cut beta barium borate crystal; this is a 

second harmonic generation (SHG) mode, hence the laser profile is not gaussian, but features fringes 

to either side of a central spot. In order to ensure a homogeneous exposure through the mask (thus 

optimising contrast between the exposed and masked regions), the beam was expanded on the patterning 

stage so that the central spot was the same size as the mask. Nominal power used for micron-scale 

photolithography was 100 mW, but this was often reduced for photochemical kinetics experiments. 

2.7.1.2 Scanning Near-field Photolithography (SNP) 

A combination of commercially sourced probes and 'home-made' probes were used for nanoscale 

lithography. Commercially-sourced probes were purchased from Veeco Ltd. (Cambridge, UK) or 

Jasco UK Ltd. (Great Dunmow, UK), and were specified as being transparent to 244 nm UV light. 

For the home-made probes, a UV-transparent fused silica optical fibre was etched to a cone at one end 

by immersion in HF, before coating in Al by rapid rotation in the vacuum evaporator. To produce an 

aperture, the probes was gently impacted onto a surface. It was found that it was possible to create 

apertures of approximately the same diameter as commerically-sourced probes. (50-80 nm). These were 

then attached to silicon chips to which had been pre-mounted (commercially-sourced; Veeco, UK Ltd.) 

92 kHz tuning forks, which allows the distance between the stylus and surface to be maintained in the 

near-field, by the use of a shear-force feedback system. The chips were compatible with the Aurora 

II and TIl NSOM systems used to control the lithography probes, and were of the same type as the 

commercially-sourced probes. Lithography was controlled using Veeco Nanolithography v. 1.2.1 and 

SPM tools v. 6.0.3 software. 
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For the source, the Coherent FreD 300C laser, as described in 2.7.1.1 on the previous page was used. 

Nominal power for nanolithography was 1-4 m W, with a writing speed of 0.1-0.5 11m s-l. The output 

(set for setting up the arrangement to 1 m W) was coupled to the fibre by passing the beam, in an opaque 

enclosure, through a 15 cm focal-length divergent lens, onto the cleaved fibre. This was done in very dim 

lighting, so that the optimal position of the fibre Uudged when the end of the fibre was seen to pick up a 

glow) could be achieved, which was done by carefully adjusting an XYZ stage. The SPM tools software 

was used to calibrate the feedback of the tuning fork to a setpoint of - 30--32 nA. After bringing the 

probe into contact with the surface at a setpoint of -64 nA, it was moved into the 'near-field' by adding 

0.8 to the average signal. The lithography software was then used to write the desired features. 

2.7.2 Biomolecule Immobilisation 

2.7.2.1 StreptavidinIBiotin 

For streptavidin (Chapter 3), films of OEO-terminated thiol were immersed in nanopure water for 

approximately ~ h to allow penetration of water molecules into the oligoether moieties. As detailed 

in 1.2.3.4 on page 29, this is thought to improve resistance to biological molecules. Following pho

topatteming, samples were immediately immersed into solutions of streptavidin (51lg mL-1, in aqueous 

0.1 mM phosphate-buffered saline ('PBS') solution) for 20 min. These were then, if necessary, trans-, 

ferred into a 51lg mL-1 solution of biotinylated IgG in 0.1 mM PBS. Prior to imaging, these were washed 

with PBS buffer, followed by 0.25 mM aqueous ammonium acetate solution, then nanopure water, and 

were then dried under a stream of nitrogen. 

For LH2 (Chapter 4), immobilisation was carried out using carbodiimide chemistry, which allows the 

formation of an 'activated ester'. This is shown in figure 2.7.1 on the next page. The N is a to 

two carbonyl groups and thus aims to be sp2-hybridised (it has a lone pair available for conjugated 

7r-bonding), but is prevented from adopting this geometry due to steric constraints. Biomolecules 

with exposed lysine residues (or indeed any molecule that contains ail sp3 -hybridised nitrogen with 

. an available lone pair) may be attached using this method, as there is a 'thermodynamic impetus to 

remove the sterically constrained leaving group in favour of another species that allows greater p-orbital 

overlap within the peptide link. For the purpose of the work presented in this thesis, the carbodiimide 

and N-hydroxysuccinimide were dissolved in HPLC grade ethanol at a concentration of 20 mM. It is 

thought that aqueous media would hydrolyse the activated ester fairly rapidly after its formation. For 

topgraphical AFM imaging, samples activated in this way were immersed into 6.5IlgmL-1 of LH2 in 
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20 mM Tris, 0.1 % (wt.) LDAO buffer for 5 min, before removal and careful washing with TrislLDAO 

buffer, 1 % (wt.) aqueous ammonium acetate solution, and nanopure water, before being dried under a 

stream of nitrogen. 

For spectrographic measurements, samples were quickly transferred from LH2-LDAO buffer solution 

to 'clean' LDAO to remove excess complexes. Samples were then dried under a stream of helium (to 

'push' excess buffer to the side of the sample) before being glued to a copper mount in a high-vacuum 

cryostat. It was found that washing with water compromised the optical functionality of the complexes 

(presumably because it washes away the magnesium in the bacteriochlorophylls). 

'I!OC' 

o O-H) 

I s 

Au Au Au 

Au Au Au 

Figure 2.7.1 'EDC-NHS'Reaction 

95 



Chapter 2. Experimental Procedures 2.8 Instrumentation and Methods for Analysis 

2.8 Instrumentation and Methods for Analysis 

2.8.1 Surface Potential Measurements 

Surface potentials were measured using a home-built Kelvin probe, loaned to the author by Dr. Kevin 

Critchley. The circuit was constructed to the specifications of the Zisman arrangement (see Chapter 1, 

on page 40). A Keighley system electrometer was used to measure Vb, and an EG&G lock-in amplifier 

was used to produce a workable signal. The modulation of the tip vibration was carried out by the use of 

a Jena piezo controller. The platinum tip (area 2.7 mm 2) was vibrated at a frequency of 800 Hz, using a 

piezoactuator (P200-16, Linos Photonics) to create the required alternating current. 

2.8.2 Contact Angle Measurements 

Contact angle measurements were made using a Rame-Hart contact angle goniometer (Rame-Hart, 

New Jersey, USA). Droplets (20-50 J.1L) of 'nanopure' water (18.2 Mil, Elgar purification system) were 

touched onto SAMs by the careful lowering of a Hamilton syringe, allowing precise volumes to be 

deposited. The goniometry technique is explained in subsection 1.3.1 on page 34. 

2.8.3 X-Ray Photoelectron Spectroscopy 

The instrument used for the acquisition of XPS spectra was a Kratos Axis Ultra X-Ray Photoelectron 

Spectrometerwith Delay Line Detector (OLD) fitted, a photograph of which is shown in figure 2.8.1 on 

the following page. X-rays are formed by the targetting of an Al source (the anode) by the heating of 

a filament (the cathode); a current of 6.0 rnA is used. HT voltage is set to 15 kV with an X-Ray power 

of 90W. The X-Rays are monochromated Al Ka (hv=1486.6eV). The sample chamber used in the 

analysis is a UHV system obtaining a base pressure of 10-10 mbar. Survey scan ('wide') spectra were 

collected at 160eV, while high resolution spectra for curve fitting (e.g. for the kinetics data presented 

, herein) were collected at 20 e V. XPS runs were set up by Nick Reynolds arid Tracie Whittle. 

2.8.4 Atomic Force Microscopy 

Lateral force images and intermittent contact ('Tapping') mode images were acquired using a Digital 

Instruments Nanoscope Multimode IlIa AFM. Images presented in this thesis were acquired in air. For 
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Figure 2.8.1 Kratos Axis DLD Ultra 400 

lateral force images, a Si3N4 probe was used (nominal force constant 0.06 N m- I ), while for tapping 

mode images, a silicon probe (nominal force constant 30 N m- I , 10=232-264 kHz) was used. 

2.8.5 Surface Plasmon Resonance 

For SPR measurements, a commercial Biacore 3000 SPR spectrometer was used (Biacore AB, UpsaUa, 

Sweden). Typical biomolecule conentrations in appropriate buffer (as detailed in each case) were 

5 ~g mL- I and the flow rate (in a buffer-matched carrier stream) was either 10 ~ min-lor 20 ~ min-I, 

depending on the availability of the protein. It was found that the faster flow rate produced smoother 

traces, although the slower rate did not preclude an assessment of the affinity of the biomolecule for the 

surface. 

2.8.6 Spectrographic Measurements 

Optical measurements were made using an optical setup designed by Dr. Luke Wilson*. The excitation 

source consisted of a 800 nm laser photodiode, the output of which was reflected by a mirror onto 

a vertically-ratcheted stack which could be moved up and down to focus the excitation spot on the 

*Department of Physics and Astronomy, University of Sheffield 
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sample. Power to the photo diode was modulated using a Keithley model 2400 general source-meter. 

Typical nominal output was 80-100mW. For the spectral measurements, light from the sample was 

passed through a long pass (>825 nm) filter, down an optical fibre to a Pixis (Princeton, NI, USA) 

charge coupled device (CCD) unit. For measurements of photoluminescence (fluorescence) intensity, 

the CCD unit was switched for an avalanche photodiode (APD). The signal was amplified using an 

EG&G lock-in amplifier. For spatially resolved measurements, a the vertical optical stack could be 

moved in the XY plane (that of the sample) by a computer controlled piezotransducer. The software 

used to do this was created in the Lab View development system by Dr. Luke Wilson and Pu Xi an'" . 
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3.1 Introduction 

3.1.1 Photooxidation of SAMs 

It has been said that, in microelectronics, everything scales exponentiallyl. This applies as much to 

fabrication costs as it does to the well-known exponential increase in transistor density on a computer 

chip·. A significant obstacle to producing ever smaller features is the development of photoresists that 

have chromophores opaque to ever-shorter wavelength UV light. As described in subsection 1.4.3.4 on 

page 56, the devlopment of novel photolithographic tools provide a means to circumvent the diffrac

tion limit that augments methods being presently explored by the semiconductor industryt. In tum, 

these have required and driven the development of photoresists that are capable of achieving nanoscale 

resolution. 

SAMs of organosulfur compounds on a variety of substrates-in particular gold, silver and palladium

are effective photoresists. They can be used to form patterns and, therefore, structured systems. Cru

cially, their ability to provide effective photoresists for nanoscale lithography has been demonstrated. 

Kinetic studies reveal that the rate of photooxidation of SAMs depends both upon the length of the 

alkyl chain and the nature of the (f) functionality. The first area of investigation with which this chapter 

is concerned is the mechanism of photooxidation of organosulfur SAMs on gold, silver and palladium 

substrates. 

Previous work3 has indicated that the rates of photooxidation of M-SR SAMs are dependent on the alkyl 

chain length of the adsorbate, the nature of the terminal group, and the nature of the substrate. Longer 

SAMs are more crystalline, and it was proposed that this might impede the diffusion of the oxidative 

species down to the sulfur. Conversely, it was proposed that the liquid-like state of shorter SAMs allows 

relatively unimpeded diffusion of the oxidative species. However, the nature ~f the (f) functionality too 

" had an observable consequence: carboxylic acid-terminated SAMs had b~en shown to oxidise faster 

than methyl-terminated SAMs. 

The mechanism of photooxidation of M-SR SAMs has historically been the subject of some debate. 

Early XPS and SIMS work by Tarvlov, Burgess and Gillen indicated that photooxidation was marked 

*In 1965, Gordon Moore predicted the doubling of transistor density every 12 months2-later amended to every 18 months
a relationship which has more or less held true since then. 

talthough not exclusively-electron beam (e-beam) lithography has produced some of the highest resolution lithographic 
features to date 
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by a shift in S2p binding energy from 162-167 e V4, and contemporaneous results published by Huang 

and Hemminger were supportive of this hypothesis as being the chemical change that occurss. The latter 

group theorized that incident radiation on the substrate caused the transmission of "hot electrons from 

the metal to either the RS species or to coadsorbed 02". 'Hot' or sub-vacuum electrons may be produced 

instead of or alongside photoelectrons in a wide distribution of energies by incident electromagnetic 

radiation (EMR) of sufficient photon energy6,7. Rieley et al. proposed that hot electrons might cause 

the formation of 02" at or near the surface, and that this was the oxidative species 7. In this model, it is 

of note, the rate-limiting step is the formation of an activated oxygen species. That hot electrons might 

act on the R-S bond was not considered. 

A study of aerial SAM oxidation (in the dark) by Schoenfisch and Pemberton8 suggested that ozone was 

the likely oxidative agent in the absence of UV light. Later studies of SAMs exposed to ozone by Bohn 

and co-workers (Zhang et al.9, 10) led the group to make the assertion that ozone, which would require a 

source of <200 nm light to be formed from ambient oxygen, was necessary for photooxidation to occur, 

on all SAMs. Again, it is the formation of a high-energy oxygen species that is considered to be the 

rate-limiting step. Their study earlier study centred on C1SCH3 SAMs, and methyl-terminated SAMs 

had been shown to photooxidise slower than acid-terminated SAMs3. 

Zhang et al.'s assertion was refuted by work carried out by Brewer et al. ll , in which the same lamp 

used for the studies presented in this thesis, supplied as ozone-free* and emit~ing principally at 254 nm" 

was demonstrated to rapidly photoxidise a ClOCOOH SAM, showing that ozone was not necessary for 

photooxidation to occur. However, in-keeping with Zhang et al. 's findings, the extent of photooxidation 

of a C 11 CH3 SAM over a comparable period was much lower, indicating that ozone may be required for 

the rapid photooxidation of methyl-terminated SAMs. Moreover, the results suggest that more than one 
-

process may be occurring when, as in earlier studies, a wide-spectrum source is used (e.g. a mercury 

arc lamp). 

The two principal UV sources used to photo-oxidise M-SR SAMs are a 254 nm UV lamp and a 244 nm 

laser. A simple calculation: 

E= he 
A 

(3.1.1) 

~where h is Planck's constant (6.626x 10-34 J s), c is the speed of light in a vacuum (2.998 x 108 m s·l), 

and A is the wavelength of the light (m)-indicates that the former emits light with aphoton energy E 

of7.82x 10-19 J :=4.88 eV, while the latter emits light with a photon energy of 8.14x 10-19 J :=5.08 eV; 

·confirmed by N.B. by use of a Draeger tube: 03 was undectable at the lower limit of sensitivity (0.005 ppm). 
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determinations of <PAu are often given as substantially higher, e.g. 5.31 eV12, although complimentary 

techniques for <P determination are often not as accurate as the CPD method. According to the photo

electric criterion, equation (1.3.9) on page 38, no electrons within the Au lattice should be made mobile 

by incident radiation of insufficient energy. However, it has been shown that adsorbed thin films on 

metals impose a so-called 'surface potential' at the interface, which may alter the work function of the 

substrateI3•14. The origins of surface potentials, denoted ~V, are directional dipoles imposed by the 

many SAM molecules in a thin film acting en masse; like contact angles, they are the macroscopic 

consequence of cumulative microscopic properties. The cause of the directional polarity, the difference 

in electronegativity between the polar headgroup and carbon chain, is often (but not always) augmented 

by the presence of a heterogeneous OJ group with its own polarity; polar groups might also be present 

at other positions along the chain. Due to the uniformity of the SAM film, the polar components can be 

treated as stacked dipole sheets. 

In order to ascertain to what extent the OJ functionality affects the rate of photo oxidation, it was therefore 

neccessary to undertake a systematic study of the surface potentials imposed by a range of SAMs. 

Particular consideration was given to those SAMs (e.g. Au-SR) that have been previously used to 

create patterns at the micro- and nanometre length scales; these studies were put in context by an 

extension of the investigation to include Ag-SR and Pd-SR SAMs. Pd-SR SAMs have been lauded for 

their simultaneous biological and CMOS compatibilities, and viability as high resolution etch resists, 

as previously discussed. However, work reported by Love et ai.15 has indicated that Pd-SR SAMs 

have structures that are more complex than analagous films on gold. Fundamental studies of the 

photooxidation of Pd-SR SAMs are therefore crucial in developing fabrication methods, and this was 

explored. 

3.1.2 Photodegradation of OEO-SAMs 

3.1.2.1 Investigation into Surface Composition as a Function of Exposure to 244 nm Light 

Oligo(ethylene oxide)-terminated SAMs ('OEO-SAMs') have been widely adopted as protein-resistant 

films, and have been demonstrated as suitable SAMs for the fabrication of biomolecular patterns. 

However, previous work, such as that reported by Monatague et al.16 has indicated that photooxidation 

of OEO-SAMs might be accompanied by a competing process of photodegradation occurring within the 

oligoether moiety. XPS results presented in the aforementioned publication indicate that the functional 

groups formed by photodegradation are carboxylic acids and aldehydes. Such functionalities have 
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previously been shown to be useful in immobilising biological structures. It was therefore decided 

that this merited further exploration .. 

3.1.2.2 Biological Attachment to Photodegraded OEO-SAMs 

As has been previously stated, the integration of biological units-proteins, nucleic acids, protein 

complexes-into artificial structures is only really successful if their functionality is retained. For many 

such units, functionality is very much dependent on the architecture and relative geometry of certain 

domains within the biomolecule, and so immobilisation chemistries need to be sensitive enough not 

to disrupt inter-domain interactions, yet efficient enough to covalently attach and secure the biological 

unit. 

The suitability of SAMs to the study of molecular recognition has inspired much work in the growing 

field of biointerfaces. One of the most widely-studied cases of molecular recognition is the highly 

specific affinity of streptavidin for biotin 17. Because the recognition that takes place is dependent on 

the existence of domains in streptavidin that form a 'hollow' that can envelop biotin (thus stabilising 

both structures), perturbation of the geometry of the site leads to Joss of this biological functionality. 

To assess whether immobilisation of streptavidin is successful according to tthe criterion of retained 

functionality, therefore, the attachment of a biotinylated protein was explored by AFM. 

3.1.3 Glutaraldehyde Coupling of Thiols to Mercaptosiloxane SAMs 

A third area with which this chapter is concerned presented itself during investfgations into OEO-SAM 
"' 

photodegradation. A serendipitous discovery (presented in this chapter) indicated that thiols would, in 

fact, covalently bind to aldehydes. The availability of thiol-terminated silanes presented an opportunity 

to investigate this attachment chemistry as a possible means to attach thiols, by using a readily-available 

linker molecule. The broad range of readily available thiols could, it is proposed, be translate~ onto 

silicon, and would allow a greater degree of tunability t?an is presently easily afforded by silane systems. 

The potential of this has also been explored. 
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3.2 Experimental Details 

3.2.1 Photooxidation of SAMs 

3.2.1.1 Measurements of Surface Potentials of SAMs 

Au-SR SAMs were formed according the procedure detailed in section 2.4 on page 91. SAMs of Ag

SR were also made; determination of their surface potentials provided a comparison with Au-SR SAMs, 

and rates of photooxidation of Ag-SR SAMs had also been prevoiusly determined. Measurements were 

made using a Kelvin probe apparatus built and loaned to the author by Dr. Kevin Critchley·. A schematic 

is shown in figure 1.3.4 on page 40. For each sample, a total of six measurements were made at different 

locations on the SAM surface, and three samples, made on different days, were measured to determine 

the SAM surface potential (~V). For Au-SR SAMs, results were normalized to ~VCl1CH3=+527mV 

against a large number of measurements made previously; the average discrepancy (15.4 m V) was within 

1 a for all SAMs. Fluctuations and deviations occur because the parallel plate method is sensitive to the 

morphology of the polycrystalline film. In addition, external radiation in the laboratory-even cosmic 

rays-can cause substantial fluctuations. In the case of Ag-SR SAMs, additional care was taken in 

preparation, as detailed in Chapter 2. In order to measure the work function of a virgin Ag film, <I>Ag, 

it was assumed that an adventitious oxide adlayer would form under ambient conditions, and so the 6 

samples analysed in its determination were immersed in 0.25 M ferric nitrate solution for approximately 

20 s prior to washing with deionised (18.2 Mil) water and HPLC grade ethanol, before drying under a 

stream of helium immediately before measurement. 

For the surface modification to produce a perfluorinated surface, a solution of trifluoroacetic anhydride 

(TFAA) (50 mM) and triethylamine (TEA) (50 mM) in anhydrous tetrahydrofuran (THF) was prepared 

and a Cll OH SAM was immersed in it for 1 h. Samples were rinsed with anhydrous THF before 

measurement of ~ V. 

For the measurement of the work function of bare Pd. the sample was immersed in 0.5 M ferric (III) 

chloride solution, followed by quick washing with water and ethanol, and drying under a stream of 

helium. 

<I>Efr were determined by considering the manner in which the surface potential imposed by the adsorbate 

affects the work function of the underlying metal. Evans and Ulman 13 considered the SAM to be a 

*then at the University of Leeds, School of Physics and Astronomy 
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planar, dipole sheet, "with a sheet of negative charges residing close to the metal/monolayer interface 

and a sheet of positive charges closer to the monolayer/air interface". Their work showed that surface 

potential ~V increases linearly with alkyl chain length for n-alkanethiolate SAMs. The directionality 

of the dipole so-formed acts like an electrostatic gradient, so that the methyl-terminated SAMs, which 

are effectively 8+ at the OJ position, expedite transmission of photoelectrons from the Fermi level to 

the vacuum level, whereas 8-ve groups (like carboxylic acids) impede their ejection into the vacuum. 

Equation (1.3.10) on page 38 states that 

where <P is the workfunction in eV, e is the electron charge (1.602x 10-19 C) and t/J is the contact 

potential difference; B represents the reference electrode (Pt tip) and A is the sample. When the above 

equation is considered alongside equation (1.3.17) on page 40 

~V=t/J*-t/J 

it can be seen that a measured increase in contact potential difference t/J of a bare metal, once it has 

been modified by the presence of a SAM (represented here as t/J* j, implies that the SAM imposes a 

positive surface potential ~V, which means that the adsorbate must have decreased the work function 

<P; conversely, a value t/J* lower than t/J indicates a negative ~V, which effec;tively increases the work, 

function. In the experimental setup used to determine the surface potential, a 'backing potential' Vb is 

used to null t/J, as per equations 1.3.14 to 1.3.16 on page 40, and the two values are related thus: 

Due to the relationship between t/J and <P given in equation (1.3.10) on page 38 and repeated on the 

current page, the following relationship can be drawn: 

(3.2.1) 

which means in practical terms that the modulus of the backing voltage, measured by a voltmeter 

(in Volts), can be deducted from the work function modulus (in electronvolts) to give an effective 

workfunction, <PErr. 
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3.2.1.2 Determination of photooxidation kinetics of Pd-SR SAMs 

Samples of Pd-SR SAMs, cut into approximately 22 x 10 mm rectangles *, were exposed to a 254 nm 

lamp for a series of different durations. For the measurement of contact angles, a Rame-Hart contact 

angle goniometer was used. The technique of contact angle goniometry is described in subsection 1.3.1 

on page 34. For each sample, three contact angle measurements were made following exposure and 

subsequent immersion in 1 mM of a contrasting thiol for 2 h, and these were repeated in triplicate 

with SAMs made on different days. 'Contrasting' thiols were chosen to maximise the contact angle 

difference: Methyl SAMs were immersed in ethanolic solutions of carboxylic-acid terminated thiols 

of approximately equal hydrocarbon chain length, and acid- and hydroxy-terminated SAMs were im

mersed in methyl-terminated thiols of the same length t. Higher concentrations of contrasting thiols 

were not used because of the suggestion that this may invoke elevated exchange with unirradiated SAM 

molecules, as previously reported by Biebuyck and Whitesides18, and thus may add an unnecessary 

complexity to the results. SAMs were made as detailed in Chapter 2, and were used within 1-2 weeks. 

During the experiment, the integrated power of the lamp was measured to be 1 OO± 10JlW over the range 

249-259 nm using a Coherent Fieldmaster power meter. 

In order to solve f values for Cassie's equation (equation (1.3.7) on page 36) to determine the extent 

of SAM replacement, the solve function in MATHEMATICA19 was used. The method is shown in the 

notes at the end of this chapter2°. This allows the determination of f values to be carried out quickly, 

and accurately. 

For analysis of surface composition by XPS, samples were removed from 1 mM ethanolic solutions of 

thiol immeditaely prior to being placed under the lamp. Commencement of exposure was staggered, 

so thai all samples would be ready at this same time, i.e. a 5 min exposure would be placed under 

the lamp 5 min before the end of the experiment, when all SAMs were then placed in 1 mM ethanolic 

solutions of 'contrasting' thiol for 2h prior to being removed and taken for XPS analysis (a ",,10min 

journey). The purpose of this was to displace the weakly-physisorbed sulfonates, and reinstate the 

structural integrity of the film; it has been demonstrated21 that short SAMs especially may desorb under 

vacuum conditions. Further to this, the alkyl chains of Au-SR SAMs at sub-monolayer coverage have 

been shown to lie down, which could frustate XPS measurements by altering the relative attenuation of 

ejected photoelectrons as compared with molecules in their normal 'standing up' orientation. 

*22 mm is the width of a coverslip; cutting samples into elongated rectangles allows facile measurement of the contact angle 
at three positions, while minimizing sample handling, which could compromise the integrity of the SAM 

'tSAMs of approximately equal length were chosen because disparities in hydrocarbon chain length can cause a longer SAM 
to eclipse a shorter one, as detailed in Chapter 1, on page 16. 
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Spectra were collected at a pass energy of 20 e V for the 'narrow' high-resolution single element scans 

(principally Cis, plus Pd3d to provide a signal against which the carbon areas could be normalised). 

Additionally, the quality of films were monitored by the acquisition of survey scans carried out at 

160eV. 

For each SAM, XPS spectra of the same time points measured in the contact angle experiment were 

collected. In each case, a characteristic curve in the Cis spectrum that is representative of the SAM 

being studied (denoted as SAMA) was chosen, and the change in the relative proportion of area that this 

curve contributes to the total Cis area is considered. This allows a determination of the mole fraction 

XA, analagous to 1 - f from the contact angle data (where f is the fraction equivalent to XB). Thus, if 

P is the relative area of a component of the Cis core level of SAMA in the photooxidation-replacement 

reaction: 

SAM rimexhv HSRB SAM 
A ----+----+ nA+mB 

and the date is normalised so that Pr=o= 1, then for [P]r>o 

[P]r 
XA=-

[P]r=o 
(3.2.2) 

Again, values for XA given are mean values from three seperate determinations. For the methyl

terminated C3CH3and Cll CH3 SAMs, it was acknowledged that the aliphatic C-,C.-C environment is also 

represented in the SAMs that replace the initial mono layers following photooxidation and immersion' 

in a contrasting thiol, and so were not uniquely characteristic of these particular films. In both cases, 

the contrasting thiol chosen featured carboxylic acid (f) functionality, and so the relative fraction of the 

O-,C.=O curve in the the binary SAM's Cis spectrum was considered against the fraction that the O-~=O 

curve contributes to the area of the virgin carboxylic acid-containing SAM's Cis spectrum. Ratios were 

then taken of the fraction in the binary SAM to the fraction in the virgin SAM, to determine the extent 

of replacement. This may be summarised: 

(3.2.3) 

where [C-,C.=O]/CIs is the fractional contribution of the carboxylic acid group of the replacing, acid

terminated thiol to the total Cis core level spectrum and [O-,C.=O];=O/Cls is the size of that fractional 

contribution in a virgin CnCOOH SAM. 
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3.2.2 Photodegradation of OEO-SAMs 

3.2.2.1 Investigation into Surface Composition as a Function of Exposure to 244 nm Light 

HSCll (EO)30H had been previously synthesized according to a method reported by Pale-Grosdemange 

et al.22• SAMs were formed of the EO-thiolate by incubation in de-gassed ethanol for ~ 18 h. As the 

suggestion that competing processes may occur was first indicated by patterning processes made using 

the laserl6 , attempts to quantify the effect were also initially made using the laser. That the SHG mode 

for the frequency-doubled argon-ion laser produces a beam profile that deviates from the Gaussian 

TEMoo·, as previously detailed in Chapter 2, should be noted. The large central spot in the beam profile 

was expanded by removal of the objective lens in the patterning stage, producing an irradiated region of 

rv 1 cm 2 in area. Nominal power was adjusted in order to allow easy calculation of the dosage, but was 

kept constant for anyone experiment (10 m W, 50 m Wand 100 m W were used). The power used for 

each batch is indicated in the plotted results. XPS spectra of the Cis and AU4f regions were collected at 

20 eV for the unirradiated OEO-SAM and for OEO-SAMs exposed to a range of durations of exposure 

to 244 nm UV laser light. 

Additionally, the potential for functionalisation of the new surface chemistry was investigated. In

dications that aldehydes were formed during the photodegradation process were investigated by the 

introduction of a triftuoroethylamine. Previous workt has shown that primary a.mines can be attached by 

aldehydes. Photo degraded OEO-SAMs (dosage=1.2 J cm-2) were immersed in 1 mM ethanolic (HPLC 

grade) solutions of triftuoethylamine to which was added HCI* to a concentration 10-5 mol dm-3 (thus 

achieving pH 5) for 20 min, and were then removed, washed with HPLC grade ethanol and analysed 

by XPS. C Isand F Is spectra were collected at pass energies of 20 e V, alongside AU4f spectra also at 

20 eV in order to provide a signal against which they were normalised. They were then analysed using 

CASAXPS software to determine their surface compositions. 

3.2.2.2 Biological Attachment to Photodegraded OEO-SAMs 

An investigation of photodegraded OEO-SAMs as potential biomolecule immobilisation templates was 

carried out. Immobilisation of strepavidin was assessed by measured topgraphical 'height' differences 

by atomic force microscopy. SAMs of OEO-terminated thiol on gold were irradiated by a 244 nm laser 

·Transverse Electrical and Magnetic mode - '00' is the fundamental transverse mode of the laser resonator, and has the 
same form as a gaussian beam 

tSee the discussion: A mechanism for the attachment of 10 amines is shown in figure 3.4.2 on page 139 
*imine formation is optimal between pH 4-5 
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set at a nominal power output of 10m W through a copper mask for 2 min with a laser spot of area 

0.25 cm 2, corresponding to a nominal dos~ge of 4.8 J cm-2; however, later measurements of the beam 

strength, made with a Coherent Fieldmaster power meter, indicated that attenuatio~ by the air and optics 

of the patterning stage caused it fall to 83 % of the nominal value at the position of patterning. This 

corresponds to a real dosage of 3.98 J cm-2. Following photodegradation, samples were rinsed with PBS 

buffer and immersed into a 5 Jlg mL-I solution of streptavidin diluted in PBS buffer for 20 min. These 

were then removed and washed with PBS buffer, and either (a) washed again with 1 % ammonium 

acetate solution and nanopure water for imaging under a Nanoscope nla AFM in tapping mode; or 

(b) immersed in a second solution of biotinylated IgG (5 JlgmL-I) for 20 min, then washed with 1 

ammonium acetate solution and nanopure water and imaged under the AFM. This was to show the 

difference in height that would be achieved if biotinylated IgG was successfully captured by surface

bound streptavidin, (b-a), which is dependent on the retention of the absolute geometry of biotin

capturing site of streptavidin following immobolisation. 

3.2.3 Glutaraldehyde Coupling of Thiols to Mercaptosiloxane SAMs 

SAMs of 3-mercaptopropyltrimethoxysilane were formed according to procedures outlined in sec

tion 2.6 on page 92. Contact angles of the monolayers so-formed were in the region 69° (observed 

on glass) to 75° (observed on silicon). This is commensurate with studies of wetting behaviour on 

SAMs of dithiothreitol (HS(CHOHhSH) on gold. The SAMs were then immersed in 50 % (vol.) 

aqueous glutaraldehyde solution for 2 h. Samples were removed and washed with water and then 

HPLC grade ethanol, after which the contact angle fell to 47°. Subsequent attachment of IH,IH,2H,2H

perftuorooctanethiol (immersion in 2.5 mM solution of the thiol in HPLC grade ethanol for 2 h) caused 

this to rise again to 84°, which is suggestive of (at least partially) successful attachment. 

Samples of glutaraldehyde ('GA')-attached HSCll (EO)3 OH films on the silane SAM (made in the same 

way as the GA-attached perftuorooctanethiol described above, 2.5 mM in HPLC gr:ade ethanol) were 

exposed to a dosage of 4.8 J cm-2 of 244 nm laser light, before being immersed in a 10 mM ethanolic 

solution of triftuoroethylamine (pH5; with HCI added to make a concentration of 10-5 moldm-3) for 

2h. XPS spectra of the CIs, Fis and Si3d regions were collected at a pass energy of 20eV and were 

interpreted using CASAXPS software. Because the sulfur-terminated silane is a short chain, it was 

supposed that the contributions to the C Is spectra from the C-~-Si and and C-~-S components would 

both be significant. Therefore, position and area constraints were put in place for these environments. 

Typical shifts for these environments were taken from Briggs23 . Previous work24,25 had indicated that 
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SAMs of silanes on silicon stand very nearly parallel to the surface normal, and so the application of 

equation (1.3.25) on page 44 and equation ~1.3.24) on page 44, plus some rudimentary trigonometry in 

estimating the increase in film thickness per additional atom in the tetrahedral arrangement, allowed the 

relative sizes of the curves expected from each environment to be arrived at. It can be estimated that the 

signal from C-~-S (at B.E.=285.12 eV) should be 1.048 x the size of the C-~-C (aliphatic) environment 

in 3-mercaptopropyltrimethoxysilane, if the assumption is made that the the mercaptiosilane is oriented 

with the silane attached to the silicon; conversely, C-~-Si (B.E.=284.3geV; Si shifts the B.E. to lower 

energy, whereas most other substituents shift the B.E. to higher energy) is more attenuated than C-~-C 

and is therefore estimated by this method to be 0.897x the size of the aliphatic environment (to which 

the spectra are universally calibrated, B.E.=285 eV). It was found that imposing these constraints gave 

a close fit to the spectral signature, as well as being chemically sensible. 

For the subsequent curve fitting, the C-~-Si environment was used to calculate the reduced attenuation 

of each adlayer environment (i.e. each would exhibit an increase in peak area as compared with C-~

Si). From the increase in [C-C-C], and [C=O], the extent of glutaraldehyde attachment was deduced. 

Subsequently, in order to probe attachment of the OEO-thiol and its· photoegradation, constraints were 

removed, but the attenuation of silicon was used to monitor and compare suggested attachment levels. 
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3.3 Results 

3.3.1 Photooxidation of SAMs 

3.3.1.1 Measurement of Surface Potentials of SAMs 
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Figure 3.3.1 Surface potentials for a range of SAMs on gold and silver. Error bars indicate standard 
errors (n=18) 
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Figure 3.3.2 Plot showing relative work functions of a range of SAMs on gold and silver 
Error bars indicate standard errors (n=18). The dashed line indicates the mean photon energy 
from the 254 lamp used. 

Shown in figure 3.3.1 are the measured surface potentials of SAMs on Au and Ag. Error bars indicate 

standard errors (n= 18). These values were used to calculate effective work functions <t>Eff on Au and 

Ag, which are shown in figure 3.3.2. The dashed line depicts the photon energy of the 254 nm lamp 

(hv=4.98 e V), previously used in the investigation of rates of photo oxidation of Au-SR and Ag-SR 
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SAMs. Values of <PEff are summarised in table 3.1. Also shown are previously determined3 rate 

constants for Au-SR and Ag-SR SAM photooxidation. 

I Adsorbate II <PEff(Au)/eV I kAuimin I II <PEff(Ag)/eV I kAgimin 

C3CH3 (4.98) 0.0371 4.58 0.0198 
C2CH20H 5.41 Untested (4.86) Untested 
C2COOH 5.64 0.1339 5.09 0.1339 

C11 CH3 4.78 0.0200 4.36 0.0015 
ClOCH20H 5.48 Untested (4.89) Untested 
ClOCOOH 5.53 0.0325 5.22 0.0405 

Table 3.1 Table showing effective work functions <PEff in electronvolts (eV) for a range of SAMs on 
gold and silver, and also the associated first order rate constants of photooxidation as determined 
from SIMS experiments carried out by Brewer3,26. Underlined values of ~ff are below the photon 
energy of the 254 nm lamp used in the photooxidation experiment; values where the photon energy 
lies 2x the standard error (whether the average value is either below or above the photon energy) are 
given in brackets. 

Underlined in table 3.1 are <PEff for which the SAM adsorbate has lowered the <P relative to the bare 

metal (by imposing a positive fj. V) to a value below the photoelectron energy of the lamp. Values in 

brackets are <PEff for which the photon energy lies with 2cr(due to variations in the experimentally

determined values) and could therefore indicate that <PEff may be greater or less than the photon energy. 

The SAMs that were studied can be characterised as being either 'short' or 'long'. 'Short' SAMs are all 

of ",C4 in length*, while 'long' SAMs are all ",C 12 in length. Of the short SAMs on gold, it can be seen 

that C3CH3 has effectively lowered the <P of the bare metal to give a <PEff of 4.98 eV (which are below 

the photon energy, accounting for experimental uncertainty), while both C2CH20H and C2COOH have 

both effectively increased the <P of the bare metal to give <PEff of 5.41 eV and 5.64eV respectively. 

When viewed alongside previously-determined rate constants, it can be seen that ~he photooxidation of 

C2COOH (which has increased <PEff far in excess of the photon energy) proceeds much more rapidly 

('" 3.6x) than in the case of C3CH3. Of the long SAMs on gold, CllCH3has lowered <P to give a <PEff 

of 4.78 eV, while the adsorption of ClOCH20H and ClOCOOH SAMs have increased <P to give <PEff 

of 5.48 eV and 5.53 eV respectively. Thus, the adsorption of Cll CH3has lowered <PEff to below that 

of the photon energy. Again, the tabulated rate constant results show that C 11 CH3 photooxidises more 

slowly than ClOCOOH, although the difference is less than for short SAMs (r,v 1.6x). A reason for this 

is suggested in the discussion. 

Ag-SR SAMs give rise to <PEff that follow a similar pattern to those on gold. However, <P(Ag) is lower 

than <p(Au), and so the value of <PEff(Ag-SR) for each SAM tends to be lower than its analogue on gold. 

-the abbreviated notation employed here, and in table 3.1 and elsewhere, indicates the hydrocarbon length and the nature of 
the co moiety only; as all the SAMs are organothiolates, the sulfur is implied though not explicitly stated 
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Of the short SAMs on silver, C3CH3 gives the lowest <1>Eff at 4.58 eV; again it is much slower (f'V 6.8x) 

to photooxidise than C2COOH, which has a <1>Eff of 5.09 eV. <1>Eff for C2CH20H is again intermediate, 

at 4.86eV. Of the long SAMs on silver, CllCH3has the lowest <1>Eff at 4.36eV, far below the lamp 

photon energy, and undergoes photooxidation at a far slower rate than ClOCOOH (27x), which has a 

<1>Eff of 5.22 eV. Again, <1>Eff for ClOCH20H is intermediate, at 4.89 eV. 

Oligo(ethylene oxide)-terminated SAMs, and SAMs containing fluorine were investigated. Oligo(ethylene 

oxide)-terminated (OEO)-SAMs had been used extensively to control protein adsorption, and had been 

explored at photoresists in forming protein patterns. SAMs of Cll (EOhOH on gold were determined 

to have <1>Eff=5.23±0.046eV, which is somewhat lower than might be expected from the cumulative 

effect of four oxygen atoms. However, it should be considered that the microscopic origin of surface 

potentials is a directional dipole, and the oligoether moieties in OEO-SAMs can adopt amorphous or 

helical geometries27 *, which give rise to a more isotropic dipole field that would reduce .!lV. Previous 

work has indicated that the photooxidation of Cll(EOhOH SAMs may be frustrated by competing 

processes. This will be explored in subsection 3.3.2 on page 122. 

The <1>Eff of a Cll OH film that was modified using TFAA to produce a perfluorinated ester was deter

mined to be 6.97±0.106eV. Previous work by Hutt and Leggett28 demonstrated a route to perftuoro

terminated films by the surface modification of hydroxy-terminated SAMs. Perfluorinated SAMs have 

also been explored as surfaces that resist biological adhesion, as will be demon started in the next chapter. 

·although, it should be noted, the hydration thought to give rise to helical conformations would not have been acheived, as 
the films' ~v were measured immediately after removal from ethanolic solution, without a water immersion step 
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3.3.1.2 Determination of photooxidation kinetics of Pd-SR SAMs 
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SAM(1) SAM(2) Oo(t=O) Oo(t = 240min) SAM(1) SAM(2) Oo(t=O) Oo(t = 240 min) 

C3CH3 C2COOH • 88.3° 39.7° CIICH3 CIOCOOH 0 108.7° 71.0° 

C30H C3CH3 • 17.7° 66,50 CIIOH CIICH3 0 30.0° 90.0° 

C2COOH C3CH3 ... 13.3° 56.2° CIOCOOH CIICH3 ~ 34,50 91.5° 

Figure 3.3.3 Plots illustrating changing cos () values, where () is the contact angle made between 
a droplet of water and a SAM of initial thiol adsorbate SAM(1), following irradiation by a 
254 nm lamp for a range of times (shown on the x axis), and then immersion into contrasting 
displacing thiols SAM(2) for 2 h to form a mixed SAM nSAM(l), mSAM(2). Displacing thiols 
have functionalities that have the opposite wetting characteristic of the SAM under study (see 
table). Lines are guides for the eye. 

Shown in figure 3.3.3 are the changes in cos 8, as determined by contact angle goniometry, for Pd-SR 

SAMs exposed to a 254 nm UV lamp for different lengths of time*. These were used to determine 

f values for Cassie's equation (equation (1.3.7) on page 36)t. 'Short' chain SAMs (rvC4 approximate 

length) are depicted by filled symbols, and relevant data are shown in the left-hand plot (a), while data for 

'long' chain SAMs (rvC12 approximate length) are depicted by open symbols in the right-hand plot (b). 

C3CH3 SAMs (filled squares, a), following exposure to the UV lamp and subsequent immersion in 1 mM 

solutions of C2COOH thiol for 2 h, initially exhibit a rapid increase in cos 8 for a duration of rv40 min, 

after which the change is slower. This change corresponds to a decrease in 8, as t~e hydrophobic C3CH3 

SAM component is replaced by the hydrophilic C2COOH component. C39H SAMs (filled circles) 

exposed to the lamp and then immersed in 1 mM solutions of C3CH3 for 2 h exhibit a similar pattern of 

replacement as for the C3CH3 SAM, in that the rate of change is initially fast (again, for 30-40 min); 

subsequently the rate then slows for the remainder of the duration of the experiment. In the latter case, 

"cos 8 is used because it relates directly to interfacial free energy, as per equation (1.3.5) on page 36-'Young's equation'
and can be used to determine proportional composition of the binary SAM due to each thiol adorbate's individual contribution to 
the surface free energy 

tdeterrnined by using Solve in MATHEMATICA19 
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however, the value of cos e decreases, corresponding to an increase in e as the hydrophilic hydroxy

terminated C30H is replaced by the hydrophobic C3CH3. A slightly different pattern of change of cos e, 
as compared with the two previous SAMs, is observed in the case of C2COOH (filled triangles) as it is 

replaced by C3CH3: cos e at first appears to increase very slightly, but then decreases, corresponding to 

an increase in e as the hydrophilic C2COOH is replaced by the hydrophobic C3CH3. The rate of change 

appears to be increasing for the limited duration of the experiment, which, alongside the aberrative 

initial change (increase in cos e, caused by an initial decrease in e) may be indicative of a multiple stage 

process. This will be considered in depth in the discussion. 

For the 'long' SAMs, the cos e values ofphotooxidised samples of which are shown in figure 3.3.3 on the 

preceding page part (b), the behaviour is markedly different. CII CH3 (depicted by open square symbols) 

initially starts with a -ve cos e value, indicative of e >900
, which is characteristic of very hydrophobic 

surfaces. As the duration of photooxidation increases and the photooxidised SAM is replaced by the 

hydrophilic ClOCOOH thiol, the contact angle e falls. This is represented graphically by an increase 

in cos e, although the total change in terms of the range of cos e during the photooxidation experiment 

is much smaller than for the C3CH3 SAM, commensurate with previous studies29 which show that 

photooxidation of longer SAMs proceeds at a slower rate. CIIOH SAMs (open circles) initially exhibit a 

decrease in cos eas the contact angle increases, resulting from replacement of the photooxidised CII OH 

component with hydrophobic ell CH3. As for the 'short' SAMs, the change of cos efor the hydroxy

and methyl-terminated SAMs is similar in magnitude and line shape, but with opposite gradient; again, 

the acid-terminated 'long' SAM shows a different pattern of photo oxidative behaviour from the methyl

and hydroxy-terminated 'long' SAMs. ClOCOOH (open triangles) appears to undergo change rapidly 

as indicated by cos e values, with little change after 120 min. However, the initial contact angle (at 

t=O min), is anomalously high for a SAM with a terminal ()) functionality that should be hydrophilic: 

34.50
• A possible explanation for this aberration will be proposed in the discussion. 

Assuming a similar pattern of photo oxidation kinetics as for Au-SR and Ag-SR SAMs, which have 

been previously modelled as a first order change, In(1 - f) values were plotted against time in order to 

fit straight lines (shown in figure 3.3.4 on the next page) , the negative of the gradients of which'are 

pseudo first order rate constants for the replacement of the SAM under study. ·These provide a means of 

comparing the rates of photooxidation of Pd-SR SAMs, with analogous SAMs on Au and Ag. 
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SAM(1) SAM(2) Symbol kpd Imin-1 SAM(1) SAM(2) Symbol kpd Imin-1 

C3CH3 C2COOH • 0.00369 ± 0.00034 CllCH3 CtoCOOH 0 0.00259 ± 0.00019 

C2CH20H C3CH3 • 0.00442 ± 0.00082 CIOCH20H Cll CH3 '0 0.00569 ± 0.00030 

C2COOH C3CH3 ... 0.00362 ± 0.00027 CIOCOOH CllCH3 6 0.0101 ± 0.00189 

Figure 3.3.4 Plots showing changes in In XSAM against time in order to determine first order rate 
constants k. The dashed line in the top figure illustrates the deviation from linearity of the 
change of lnx for the C3CH20H SAM. This may be due to complexity in the mechanism of 
photooxidation. The fitting of a line for the CIOCOOH SAM has been done discounting the value 
oflnx at 240 min, because the reaction is approaching completion, as indicated by the figure 3.3.3 
on page 114. The discounted datapoint is indicated by a filled, rather than open, triangle. ± values 
indicate the error in each gradient. 
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In part (a) of figure 3.3.4 on the preceding page, which shows rates of change of In(l- f) values for 

'short' SAMs, it can be seen that the steepest gradient, corresponding to the quickest rate of change and 

therefore fastest rate of photooxidation, is for the C30H SAM, with the general ordering of k values 

being C30H>C3CH3 >C2COOH. As will be discussed, this is at odds with findings for analagous 

systems on Au and Ag, which prompted a complimentary study by XPS analysis. Another major 

difference is the lack of distinction between the rates of photooxidation of the three short SAMs on 

Pd, as compared with the clear distinction between photooxidation rates of the same SAMs on Au and 

Ag. Of additional note is the deviation from linearity of the In(1 - f) values for the C30H SAM, 

highlighted by a dashed line-a guide for the eye; no attempt to model this as a higher order change 

has been made. This may be indicative of a complexity in the mechanism of photooxidation, which 

is likely to derive from a structural nuance of this particular SAM. 1jle implications for the change in 

order of rates for the short SAMs will also be considered alongside findings from the XPS analyses (see 

discussion, subsection 3.4.1.2 on page 133). 

In part (b) of figure 3.3.4 on the preceding page, which shows In(l- f) values for 'long' SAMs against 

time, there is a much clearer distinction between the three different CO-functionality bearing SAMs. 

In-keeping with reported findings for photooxidation kinetics on Au and Ag, rates of change follow 

the pattern ClOCOOH>CllOH>CllCH3. Indeed, the change progresses rapidly for the ClOCOOH 

SAM, which has largely reached its endpoint by 120 min. as determined by the levelling off of cos e in 

figure 3.3.3 on page 114. Hence, the point at 240 min is discounted in producing the linear fit. 
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XPS spectra were also collected for samples treated in the same way as for the contact angle mea

surements. Isometric plots show typical CIscurves for samples of each of the six SAMs exposed to 

the 254 nm lamp for the duration 5, 30 and 120 min in figure 3.3.5 on the following page. Not all 

time points are shown, but the omissions have been made in order to enhance the clarity of the spectra 

shown, and demonstrate the principles used to setermine the extent of photooxidation. Peak areas of 

interest were considered as in equation (3.2.2) on page 107; as it is the/raction of the total CIs curve 

that is used, variations in the X-ray intensity from day-to-day do not affect the investigation. For each 

of curves in the isometric plots, the fractional percentage that each curve makes up of the total CIsarea 

is given in italics, while the values in bold type, X%, indicate the percentage of the initial monolayer 

remaining after photooxidation (i.e. taking the peak at t=O to be 100 %). Note that the introduced 

perspective between the timepoints in figure 3.3.5 on the following page does not imply an increase 

in the CIs peak area and is for clarity of illustration only-The key consideration is the proportional 

contribution of the characteristic peak to the total C Is area. The fraction of the monolayer remaining 

following photooxidation, X == f65. where represents the mean fractional contribution of the carboxylic 

acid peak to the CIs area from three acid terminated films. 

In order to allow comparison of these data with those attained by contact angle measurements, the 

change was modelled as being first order, which was found to be the a good fit for the photooxidation 

kinetics of Au-SR and Ag-SR SAMs. Shown in figure 3.3.6 on page 120 are natural logarithm plots 

against time of the remaining mole fraction of the initial monolayers in each (binary) SAM. 
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Figure 3.3.5 XPS spectra of a range of SAMs exposed to a 254 nm UV lamp for 5, 30 and 120 min. 
Percentage values in italics indicate the contribution of the characteristic component to the core 
level area, whilst the values in bold show how this relates proportionally to the initial value for 
the un-photooxidised monolayer. 119 
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Figure 3.3.6 Plots of lnXA against time in order to determine first order rate constants for the 
photooxidation of Pd-SR SAMs, where X is the fraction of the initial monolayer that is being 
photooxidised. XA were calculated from the XPS Cis spectra shown in figure 3.3.5 on the previous 
page. Filled triangles for In X values for the C lOCOOH SAM, at 120 and 240 min were discounted 
in determining a value for the first order rate constant. ± values indicate the error in each gradient. 
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Adsorbate kpd( 0) Imin kpd OCPS) Imin <PEff 

C3CH3 0.00369 0.00383 0.00376 4.83 
'Short' C30H 0.00442 0.00433 0.00518 5.30 

C2COOH 0.00362 0.00326 0.00344 5.43 

Cll CH3 0.00259 0.00212 0.00236 4.74 
'Long' CllOH 0.00569 0.00316 0.00443 (4.86) 

ClOCOOH 0.0101 0.0267 0.0184 5.00 

Table 3.2 1 st order rate constants for Pd-SR photooxidation, as determined by contact angle 
goniometry (kPd(8)) and change in characteristic components in the CIs core-level XPS signal 
(kpd(XPS)), plus effective work functions <l>Eff. Underlined values of <l>Eff are below the photon 
energy of the 254 nm lamp used in the photooxidation experiment; values where the photon energy 
lies 2x the standard error (whether the average value is either below or above the photon energy) are 
given in brackets. 

In order to if and how the OJ functionalities of Pd-SR SAMs affect the rate of photooxidation, measure

ments of ~v were made. These are presented in table 3.2. Rate constants (k) as determined by contact 

angle measurements and XPS analysis are both considered, and mean values of these two methods of 

determination are also given, in the third column of rate constants, labelled kpd. Similar to the previous 

<PEff values given for Au and Ag, values below the photon energy of the lamp (4.88 eV) are underlined, 

and those values falling within 2 x the standard error of the photon energy are shown in brackets. 

It can be seen that, in keeping with findings for 'long' SAMs on Au and Ag, there is a correlation 

between <PEff and the OJ functionality of long SAMs on Pd. Compare table 3.2 with table 3.1 on 

page 112. Like its counterparts on Au and Ag, the C 11 CH3 SAM on Pd is the slowest to photooxidise, 

and is characterised by the lowest <PEff value of the SAMs investigated: a value considerably lower than 

the photon energy of the lamp. The C11 OH SAM has an intermediate rate constant for photooxidation, 

and is also characterised by an intermediate <PEff, roughly equivalent to average photon energy of the 

lamp. The value of <PEff for the C lOCOOH SAM is the highest for the 'long' SAMs, and its rate constant 

is also the greatest, at over 4 times the value for the C 11 OH SAM and almost 8 times the value for the 

CllCH3 SAM. 

The 'short' Pd-SR SAMs exhibit more complex photo oxidation behaviour that does not seem to be 

parallel to equivalent SAMs on Au or Ag. Despite <PEff following a similar pattern to 'short' SAMs 

on Au or Ag (i.e. COOH>OH>CH3), the rate constants follow the pattern OH>CH3>COOH. While 

" 
this is at odds with what might be expected, it is remarkable that both methods· of determination of the 

extent of photooxidation yield results that are in close agreement with each other. The implications for 

this result will be considered in the discussion. 
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Figure 3.3.7 XPS spectra of a ell (EOhOH SAM (a) before; and (b) after, irradiation under a 254 nm 
UV lamp for 1 h 

3.3.2 Photodegradation of OEO-SAMs 

3.3.2.1 Investigation into Surface Composition as a Function of Exposure to 244 nm Light 

OEO-SAMs were exposed to UV laser light (dosage: 1.04 J approx.); Clsspectra were recorded both for 

'virgin' (i.e. unexposed) and UV-exposed films. Figure 3.3.7 shows the change in the Clsspectrum, be

fore (part a) and after exposure (b). There are marked differences between the two spectra. In (a), there 

are two prominent peaks, one characteristic of aliphatic carbon environments (C-~-C; B.E.=285 eV) 

and another characteristic of carbon environments neighbouring oxygen substituents, consistent with the 

ether and alcohol carbons from the OEO (j) moiety (C-~-O; B.E.=287.25 eV). In spectrum (b), the C-~-

o peak is greatly reduced, and new peaks are present at higher binding energies that are characteristic 

of carbonyl environments. the peak at 279.geV has been assigned to an aldehyde environment, while 

the peak at 289.5 eV has been assigned to a carboxylic acid environment. 

In order to quantify the rate of loss of the EO moiety from the SAM, and the f?rmation of carbonyl 

groups, a wider study of the photodegradation process was made. In order ,to optimise the ratio of 

aldehydes to carboxylic acid groups for immobilisation, the surface composition was determined for 

a range of durations of exposure to the UV laser. Representative spectra are shown in figure 3.3.9 on 

page" 124. The proportional contribution of characteristic peaks of chemical environments to the CIs 

spectrum were calculated and plotted against the dosage at the surface. This is shown in figure 3.3.8 

on the next page. It can be seen that aldehydes (filled circles) are formed rapidly, reaching ,,-,50 % 
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of the maximum proportional contribution (an effective 'surface concentration') at a dosage of 1-

2 J cm-2, whereas the surface concentration of carboxylic acids grows more gradually. Following the 

disappearance of the C-~-O moiety at a dosage of 10-15 J cm-2, whereupon the loss of structures that 

impart protein resistance is completed, aldehyde surface concentration rises parallel to'that of carboxylic 

acid, but the thiolate is, at this point, also undergoing photooxidation. It was decided that the optimum 

timepoint to test for amenability to protein attachment will be 4.8 J, immediately after loss of C-~-O 

where the ratio of aldehyde: acid is high, but loss of integrity in the SAM dU,e to photooxidation at the 

sulfur has not progressed to a point where its stability in biological media might be compromised (i.e. 

by desorption of SAM molecules as weakly-bound sulfonates). 
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Figure 3.3.8 Plot showing change in composition of OEO SAMs as the dosage of 244 nm laser 
incident on the films is varied. The beam was expanded to 1 cm 2 to allow easy calculation. 
Irradiation was carried out at three power levels; the time in seconds was multiplied by the power 
level to calculate the dosage. Typical spectra used in the calculation of these points are shown in 
figure 3.3.9 on the next page. 
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Figure 3.3.9 XPS spectra showing the change in the CIs spectrum of an OEO SAM on gold following 
varying dosages of 244 nm laser_ The beam was expanded to 1 cm 2. and the time in seconds was 
multiplied by the power level to calculate the dosage. 

282 

Shown in figure 3.3.10 are two XPS spectra: one acquired from a 'virgin' OEO-SAM, and another 

following a 4.8 J dosage of UV light. Both SAMs were immersed in a 10 mM ethanolic solution of 

trifluoroethylamine at pH5 (with cone. HCl added to yield a final concentration of 10-5 moldm-3) for 

20 min; slightly acidic solutions catalyse the forward direction of the formation of imine equilibrium30• 

A fluorinated amine was used as fluorinated carbon has a large chemical~hift in the CIs binding energy, 

and F also produces its own characteristic binding energy peak at ",688 eV. Clearly, the 'virgin' OEO 

film does not bind the fluorinated amine, as indicated by the lack of a peak in the F Is region of the spec

trum, and the associated CIs chemical shift that might also be expected. Following photodegradation, 

however, a new peak is clearly visible, in both the Fis and CIs regions ofthe spectrum. This is supportive 

of the hypothesis that aldehydes are formed, which can bind amines by the formation of imine linkages. 

298 296 294 292 290 288 286 284 282 280 278 276 
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Figure 3.3.10 XPS Spectra of OEO SAMs on gold immersed in a 1 mM ethanolic solution of 
CF3CH2NH2 for 20 min (a) before and (b) after irradiation by 244 laser (dosage=1.2); note 
that there is a F signal in (b) but not (a). 
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3.3.2.2 Biological Attachment to Photodegraded OEO-SAMs 

Shown in figure 3.3.11 are AFM tapping mode images indicating attachment of streptavidin to an 

OEO-SAM that has been exposed to a dosage of 4.8 J cm-2 244 nm UV laser, through a 1500 gauze 

copper electron microscope grid. Due to the small size of the protein ('" 1-2 nm average diamater) 

in comparison to the underlying gold grain size, it is difficult to register the pattern in print, so a 

dashed line follows the edge of a square as a guide for the eye for the topographical image in part 

figure 3.3.11 (a). Also shown, in part (b), is a phase image of the same sample, which shows slightly 

increased contrast. It should made clear that phase contrast does not necessarily pertain to topographical 

features, although in this case the contrast almost certianly results from a difference in the deformability 

of the biological regions as compared with the surrounding SAM. An average height difference analysis, 

shown in figure 3.3.11 (c), demonstrates that the regions where the streptavidin is thought to be, are 

higher than the the surrounding areas by '" 1 nm. Although this is at the lower end of the diameter 

range for streptavidin, this is likely to be due to compression from the AFM tip rather than markedly 

diminished coverage, which would result in no pattern registering at all. 
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Figure 3.3.11 25 ~ square AFM images of an OEO SAM exposed to 244 nm UV laser through a 
1500 gauze copper grid. The dosage (accounting for attenuation of the beam due to air and 
mirrors on the patterning stage) was 3.98 J cm-2 . (a) is a tapping mode height image; (b) is a 
phase image collected at the same time as (a). (c) Shows the points in the image that were used 
to determine the average height difference between the patterned streptavidin-covered sections 
(squares) and the unpatterned regions; (d) is the section of the region indicated in (c). 
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Shown in figure 3.3.12 is an AFM topograph of a patterned photodegraded OEO-SAM which has been 

first immersed in a solution of streptavidin like the sample shown in figure 3.3.11 on the previous page, 

washed, and then immersed in a solution of biotinylated IgG. As can be seen from the line section, 

there is a marked increase in height difference as compared to that in figure 3.3.11 on the preceding 

page (c), which is interpreted as being indicative of capture of the biotin function by the active pocket 

of stretavidin, as expected. This demonstrates that the geometry of the binding site in the streptavidin 

secondary structure is intact, and biological functionality has been retained, and also confirms that the 

pattern in figure 3.3.11 on the previous page is due to streptavidin. 
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Figure 3.3.12 AFM intermittent contact mode image indicating attachment of biotinylated IgG to 
streptavidin immobilised on an OEO-SAM that has been photodegraded by 3.98 J cm-2 244 nm 
UV laser through a 600 gauze eu grid. Following washing with buffer and water, only 
specifically bound biological material remains. The excess height of the material as compared 
with the streptavidin-only pattern shown in figure 3.3.11 on the previous page indicates that the 
biotin functionality of the IgG has been captured by the binding pocket in streptavidin. This 
demonstrates that the binding of streptavidin by the UV-formed aldehydes has not compromised 
the geometry of the binding pocket, and the structure of streptavidin bound in this way is likely 
to be largely intact. 

3.3.3 Glutaraldehyde Coupling of Thiols to Mercaptosiloxane SAMs 

A perfiuorinated thiol, HSC2(CF2)sCF3, was mistakenly used in place of trifluoroethylamine during 

investigations of attachment to a photodegraded OEO-SAM on gold. The spectrum in figure 3.3.13 

on the following page was acquired, the positive Fis signal and eccentuated chemical shifts in the CIs 

spectrum clearly indicating that a perfiuorinated amine was present on the surface, despite the lack of an 

amine functionality. Samples had been washed according to standard procedures with ethanol, so these 

signals could not be due to aggregation of non-specifically-bound thiol on the surface. Instead, it is 

suggested that the thiol attacks the aldehyde carbonyl to form a hemithioacteal ('full' thioacetals, which 

would introduce two organic chains per aldehyde, are thought to be too sterically hindered to form). A 

scheme for this reaction is shown in figure 3.3.14 on the next page. 
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Figure 3.3.13 XPS Spectra of OEO SAMs following immersion in 1 mM HSC2(CF2)5CF3 in ethanol 
for 20 min (a) before, and (b) after exposure to 244 nm laser (dosage=1.2 J cm-2). 
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Figure 3.3.14 Mechanism of hemithioacetal coupling 

The apparent attachment of a thiol to aldehydes fonned by the photodegradation of an OEO-SAM film 

on gold mertited further study. As will be shown in the discussion (figure 3.4.2 on page 139), the 

glutaraldehyde method can be used to immobilise biomolecules containing primary amines on amine 

surfaces, but the fonnation of imine links. The potential of hemithioacetal coupling suggested that thiols 

could be linked by glutaraldehyde in the same way. Shown in figure 3.3.15 on the next page are spectra 

indicating the attachment of an OEO-tenninated thiol to a mercaptosiloxane SAM fonned on silicon by 

the use of a glutaraldehyde linker. 
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Figure 3.3.15 Attachment of HSCll (EOhOH to a mercaptosilane SAM on siiicon by using a 
glutaraldehyde linker. (a) shows the XPS Cis spectrum and tabulated film composition of a 
3-mercaptopropylsilane SAM on Si, formed according to section 2.6 on page 92. (b) shows a 
similar film to (a) following immersion in 50 % (vol.) aqueous glutaraldehyde solution for 2 h. 
(c) is a film of (b) that has been immersed in 2.5 mM HSCll(EOhOH for 2h. Relative intensity 
of certain characteristic components was constrained according to their relative depths within 
the film. 

128 



Chapter 3. Photochemical Modification of SAMs 3.3 Results 

Due to the desirability of an easily-obtainable protein resistant film on silicon substrates, it was decided 

that attachment of HSCll(OCH2CH2)OHshould be investigated. In figure 3.3.15 on the preceding 

page, characteristic peaks are evident in the progression of spectra that are indicative of attachment. 

Assessment of the degree of attachment should be made with some caution, as not all species have the 

same detection cross-section, and accurate determination requires careful calibration of the instrument. 

However, the ratio of carbonyl peak in the second spectrum (for glutaraldehyde attached to mercaptosi

lane) to the thiol carbon peak in the first spectrum (the 'virgin' mercaptosilane SAM), gives a value of 

29 %. While this value is lower than the typical 50-60 % commonly observed for a variety of surface

bound reactions, it might be suggested that, running contrary to the initial hypothesis of hemithioacetal 

formation, 'full' thioacetals may be forming instead. A surface yield of ",60 % (i.e. double 29 %) is in

keeping with that observed for other reactions. Regardless of whether or not this is the case, however, the 

density of carbonyl species able to facilitate (hemi)thioacetal attachment is given by the lower value'" . 

Subsequently, HSCll (EO)30H attachment is also reduced. The ~-O peak comprises'" 15 % of the 

CIs area, whereas in a typical AU-Cll (EOhOH SAM, 45 % is observed. Assuming the ~-O peak in 

this experiment is largely representative of the ether functionalities, rather than alcohols (formed in the 

hemithioacetal) or residual alkoxy species from the silane headgroup, ~=33 %, which is very close to 

the estimate for glutaraldehyde attachment yields. This is below the OEO density %=0.4-0.6 reported 

by Prime and Whitesides to be optimal for protein resistance, but would still be in the region of being 

protein resistant to a degree3I . 

Photodegradation of the attached films by UV light was also explored. The results are shown in 

figure 3.3.16 on the next page are four spectra. Representative XPS Spectra of the CIs ,\nd PIs regions 

(figure 3.3.16 on the following page, part (c)) indicate that the amine attachment is successful following 

photodegradation (AFIs/CPSeV=429.7). Also shown are data for a control experiment: (d) shows CIs 

and PIs spectra for a GA-attached HSCll(EO)30H film that has subsequently been immersed in a 

solution of trifluoroamine for the same period (2 h). There is a suggestion of very limited attachment 

(AFIs/CPSeV=46.9), which must be occurring either through residual carbonyls from the GA surface 

(i.e. that initially failed to form thioacetallinkages) or by interchange with thioacetals to form imines 

on the GA-Iayer. However, any such attachment is negligible in comparison with ~hat observed for the 

photodegraded OEO film, at just over ~th of the latter, and barely over the nois~ level. 

• -of course, each of these could attach two thiols, but further quantitative work needs to be carried out to ascertain whether 
this is this case. 
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Figure 3.3.16 XPS CIs spectra indicating composition of organic films yielded by OEO-thiol coupling 
experiment (via glutaraldehyde to a mercaptosiloxane SAM); (a) is a mercaptosiloxane SAM to 
which an OEO-thiol has been attached using glutaraldehyde. (b) shows a photodegraded film of 
(a). (c) is photodegraded and immersed in a solution of trifiuoroethylamine, while (d) is a film 
of (a) (i.e. unphotodegraded) also immersed in a similar trifiuoroethylamine solution as was (c). 
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3.4 Discussion 

3.4.1 Photooxidation of SAMs 

3.4.1.1 Measurement of Surface Potentials of SAMs 

Previous work by Hutt and Leggett29 has demonstrated the importance of SAM packing on observed 

rates of photooxidation. Longer SAMs, which exhibit closer packing, photooxidise more slowly. It was 

suggested that the closer packing impedes the migration of the oxidative species down to the sulfur, 

which is not the case for the liquid-like state of shorter SAMs, which photooxidise quickly. Following 

the general trend, methyl-terminated Ag-SR SAMs undergo photooxidation more slowly than the same 

SAMs on Au, which is commensurate with the former system adopting closer packing"'. However, these 

data suggest that packing cannot be the only paramater determining photooxidation rates. 

For those SAMs for which kinetics of photooxidation has been previously investigated, it has been 

shown that SAMs with lower 'PEff undergo photooxidation at a slower rate. For example, CllCH3 

and ClOCOOH are adsorbates of approximately equal length, and the former, which lowers 'PEff to 

below h VIamp on both Au and Ag, is associated with a slower photooxidation rate on both substrates. 

Conversely, those SAMs which increase 'PEff exhibit comparitively rapid photo oxidation kinetics-acid

terminated SAMs photo-oxidise faster on both substrates. 

In order to rationalise these findings, the data can be considered in the context of the surface potentials 

imposed by each SAM. When EMR of a photon energy greater than 'PSAM is incident on a SAM, 

photoelectrons are emitted to the vacuum level, whereas when EMR of photon energy close to, but 

below 'PSAM is incident, hot electrons are formed in their stead. Acid-terminated SAMs increase 'P by 

imposing a negative surface potential on the substrate, and so the electrons' kinetic energies are reduced 

by the downward-pointing dipole. This modulates the electrons' kinetic energies to a level where, 

it is proposed, they are able to tunnel into the Au-S* antibonding orbital and initiate photooxidation. 

Conversely, methyl-terminated SAMs 10wer'P and it is therefore likely that the vast majority of electrons 

are ejected up through the SAM to the vacuum level, wher~ they are not able to i~itiate photoxidation. 

This is illustrated in figure 3.4.1 on the next page. 

That .. anomalously high rate constants for photooxidation of Ag-SCnCOOH SAMs are not mirrored 

by anomalously high work functions suggests that imposed surface potentials are not the primary 

·The anomalous case is for acid-terminated Ag-SR SAMs. These have a rate constant greater than the same SAMs on gold, 
which will be rationalised in the Discussion. 
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Figure 3.4.1 Tunnelling of hot electrons into Au-S (j* orbital. 

explanation for this result. It is proposed that bulky carboxylate groups in the acid-terminated SAMs on 

Ag causes them to adopt a looser packing than the (v17 x vI7)RlO.9° observed for methyl-terminated 

SAMs. This is commensurate with FFM data indicating that Ag-SCnCOOH SAMs have coefficients 

of friction equal to or greater than the same systems on Au32 (which suggests that the OJ functionalities 

are easily deformed more by the scanning AFM probe, which would require freedom of movement 

not available in closer-packed films), and is supported by independent reports of looser packing or 

adsorbate-induced substrate reconstruction on Ag27,33. A looser packing would allow easier penetration 

of the oxidative species, and would imply fewer adsorbates per area on the substrate, which is supported 

by the elevated photooxidation rate. 

Treating the surface as a dipole sheet, it has been shown that the following relationship can be consid

ered13 : 

(3.4.1) 

where is is the separation between the 'charged' sheets (i.e. the metal/headgroup and OJ/air interfaces) 

and (1 is the 'charge' (or dipole) per unit area imposed by the adsorbate. From the' above interpretation 
. , 

of the anomaly of acid-terminated SAMs on silver, one might expect that decrease in adsorbates per 

unit area would be accompanied by a decrease in the magnitude of the surface potential of, for example, 

Ag-ClOCOOH cf. AU-ClOCOOH. This is -230.4 mV for the former, against -215.9 mV for the latter; 

an increase in the magnitude of the surface potential, which is at odds with what might be expected. 

However, it might be suggested that the difference in the nature of the AglS vs, AulS interface would 
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no doubt also have an effect (the Ag-S bond is more polar; Au-S is more covalent due to having greater 

'S' character from the Lanthanide contraction) thus making direct comparison difficult. Indeed, the 

difference ia also within the bounds of experimelltal error. 

Previously, the data for SAM photooxidation kinetics were fitted as being first order. The validity of 

this in light of the proposal that the formation of hot electrons is the rate limiting step might also be 

considered. Zhou, Zhu and White reviewed photochemistry on a range of adsorbate-on-metal systems6• 

In their treatment, hot electrons are considered to be formed at a rate Rif dictated by Fermi's golden 

rule: 

7re - 2 ( ) 
Rif = -. -h- 1< <Pt IE. JL Itf>i > I 8 Mif - hv 

Ime V 
(3.4.2) 

where E is the electric field vector, JL is the transition dipole moment vector, Mif is the energy difference 

between initial and final states, hv is the photon energy, e is the fundamental charge, and me is the mass 

of an electron. The rate of formatation of hot electrons is proportional to the intensity of incident EMR 

when Mif = hv and, following promotion to the conduction band, screening by electrons already present 

reduces the frequency of electron-hole recombination so that the mean free path remains independent 

of hot electron concentration. Thus, the rate of action of hot electrons is proportional to the incident 

EMR intensity, and photooxidation can be modelled as pseudo-first order overall due to the prevalence 

of ambient 02; the fit is therefore valid. 

While this work is suggestive of a single 'hot electron' mechanism of photooxidation when a largely 

monochromated source (e.g. the UV lamp, and of course the 244nm laser) is use~, it should be noted 

that for other sources, such as arc lamps that emit at a wavelength short enough to evolve ozone, other 

mechanisms may play an important role (e.g. ozonolysis). 

3.4.1.2 Kinetics of Photooxidation of Pd-SR SAMs 

Due to the growing interest in Pd-SR SAMs, the initial investigation described above was extended 

to include these novel systems. Photooxidation kinetics had not been previously studied for Pd-SR 

films, and so this presented an opportunity to gather data pertaining to photooxidation rates alongside ~ 

systematic investigation of Pd-SR SAM surface potentials. I 

As per the reasoning employed in Brewer et al.26 , photooxidation is assumed to proceed as a pseudo

first order change, and so natural log plots of 1 - f against tIme were shown in figure 3.3.4 on page 116; 

this is almost certainly an oversimplification, as the diffusion of the oxidative species through a thicker 

SAM is impeded by the increased thickness and reduced chain mobility that arises from increased 
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packing density. It is possible that complex structures in the hydroxy- and acid-terminated SAMs, and 

the effect this imparts on the photo-oxidative mechanism, are a significant cause of deviations from 

linearity observed in the log plots. Nevertheless, ,the parameters yielded by this treatment of the contact 

angle data allow certain comparisons to be made. 

Two methods of determination of the rates of photooxidation were presented. Previous work34 on 

Au-SR SAMs has indicated that, when considering results from complimentary surface charcterisation 

techniques, XPS can yield a broader range of information (for example, chemical composition, and film 

thickness by the modulated attenuation of substrate photoelectrons) than ellipsometry (film thickness) 

or contact angles (surface free energy, defined by the functionality at the surface). As will be discussed, 

photooxidation kinetics data yielded by contact angle measurements and XPS of Pd-SR SAMs are 

generally similar, but there are differences. The advantage of XPS of Au-SR SAMs over other tech

niques arises from the well-defined orientation of component molecules, and the nature of photooxidised 

species in these SAMs is very well established. There has been the suggestion that there may be some 

small but important differences for the case of Pd-SR SAMs, notably physisorbed disulfides, ambiguous 

RAIRS spectra indicating complex unit cell organisation, and S-C bond scission 15. Therefore, both 

contact angle data and XPS results will be considered together. 

Pd-SR SAMs undergo photooxidation at a much slower rate than Au-SR SAMs. Penetration of the 

oxidative species from the atmosphere above the SAM to the S-Pd interface is necessary to form weakly

bound sulfonates, which are readily displaced. As has been described previously in subsection 1.2.2.2 

on page 26, Pd-SR SAMs exhibit closer packing than Au-SR SAMs, so it could be the case that closer 

packing retards the migration of the oxidative species through the SAM film to the sulfur. 

'Long' Pd-SR SAMs exhibit photooxidation trends in-line with Au-SR SAMs, having relative rates 

COOH> OH> CH3. For the acid-terminated SAM, <I>ClOCOOH > hv, and relatively rapid photooxida

tion is observed. This is supportive of the 'hot electron' hypothesis presented as a rationlisation of 

organosulfur SAMs on Au and Ag. The hydroxy-terminated SAM CllCH20H has a work function 

slightly under the photon energy and has a rate constant that is closer in magnitude to that of the methyl

terminated SAM. The <I> value in this case (4.86 e V) is within 20" of the photon .energy hv and so is 

within the bounds of being 'roughly equal' to it, despite being ostensibly lower .. It is assumed that, due 

to the nature of the process, 'hot' electrons will have a Boltzmann-type distribution of kinetic energies· 

and so at least some will be of compatible energy to tunnel into a state on the adsorbate sulfur where 

they can initiate photooxidation, hence the mean rate constant is double that for C 11 CH3. A very small 

"also the lamp is not a monochromatic source, like the laser, and so the photons themselves will have a range of energies, 
dependent on the absorbance spectrum of its filter 
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rate constant was deduced for the SAM formed by adsorption of C 11 CH3 and it is significant that the 

smallest work function was determined for this surface. Its lower rate constant is also commensurate 

with Pd-SR SAMs adopting closer packing .. 

Shorter Pd-SR SAMs exhibit complex photo-oxidation trends, as observed by contact angle changes, 

having relative rates OH>CH3>COOH-this may be due to anomalous structuralJeatures oJthe SAM. 

Pd-SR SAMs do not always follow the wetting trends commonly observed for their Au-SR counter

parts. Methyl-terminated Pd-SR SAMs are ostensibly more hydrophobic than are Au-SR SAMs, which 

is supportive of closer packing or increased roughness due to smaller Pd grain size15 (which, according 

to Wenzel35,36 increases Oaby impart a more tumultuous and variable morphology within the SAM). 

However, Pd-SCnCOOH SAMs and, to a lesser extent, Pd-SCnCH20H SAMs have an apparently 

semihydrophobic nature. Unlike gold, palladium is susceptible to aerial oxidation, so it could be that 

that a significant proportion of molecules are adsorbed through carboxylates (or hydroxides) to a metal 

oxide. However, despite extremely meticulous preparation (in order to reduce the likelihood of oxide 

formation prior to thiol adsorption and during storage), Oa remained high. This was more marked in the 

case of the longer acid and hydroxy SAMs. It was initially thought that the carboxylic acid (or hydroxy) 

group is a competing stable ligand on Pdo, as is the case in some industrial catalysts, for example in 

Stille coupling. For the longer thiol, which has greater lateral stabilising interactions within the film, this 

could be a kinetic trap, and indeed the contact angle actually initially falls for short exposures, possibly 

indicating the reordering of carboxylate-bound molecules in order to bind through a thermodynamically 

more favourable thiolate, which may be impeded at monolayer coverage. Assuming that a thiol surface 

is characterized by a Oa(CnSH) of 70-80°, and that Oa(CnCOOH)= 1 0°, a solution for J in the Cassie 

equation (equation (1.3.7) on page 36) yields 43 % H+j-OOC-bound, which is obviously a significant 

proportion. For the virgin Pd-C2COOH SAM, Oa=13.3°, which is commensurate with wetting data 

for SAMs on Au and Ag, so it may be the case that a duality of binding modes (if that is indeed the 

cause of the anomalously high Oa in the longer SAM) is less extensive in the shorter SAM, which from 

Au-SR studies is expected to be liquid-like and less stabilised by lateral interactions (i.e. less likely 

to be kinetically trapped). This pattern is also followed by the hydroxy-terminated SAMs, for which 

the longer thiol yields contact angle data that is more eccentric than that of the shorter hydroxy SA~ 

possibly for similar reasons. 

An alternative explanation may be that there is some form of adlayer on the hydrophilic SAMs which 

is perturbed by immersion in the contrasting thiol, and removed by the vacuum of the XPS instrument. 

Love et al.15 discussed the possibility of adlayer sulfide species, and perhaps the hydrophilic systems 

evolve these in greater number during the formation of the Pd-S interlayer. That the additional sulfide 
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species adlayer molecules might only be physisorbed would be supported by the lack of unbound sulfur 

seen in the S2p spectra. Unbound sulfur would be an expected signal in the hypothesis presented 

previously (upside-down adsorbates), and it might be considered that this hypothesis has therefore been 

ruled out. 

It might be considered that XPS spectra of S2p regions of Pd-SR SAMs, previously published by Love 

et ai. IS , indicated a number of environments that did not have a direct counterpart in Au-SR films. The 

evidence indicated that a Pd-S interlayer is formed, but the study did not extend to hydrophilic Pd-SR 

SAMs. Substantial S-C bond lengthening is predicted (e.g. in Ref.37) for a number of noble M-SR 

mono layers, due to backbonding from the metal. It could be the case that for the shorter SAMs, the 

formation of the Pd-S interlayer is promoted, and the resulting increase could frustrate the migration 

of hot electrons up from the metal film to the Pd-S (5* orbital. This may cause the degeneration of 

the ordering of rate constants seen for other M-SR films, which are lacking in short Pd-SR SAMs. 

However, further work needs to be carried out to assess whether this is the case. 

Comparison of the data yielded by contact angle measurements with that that taken from XPS curves 

indicates that a similar 'as-expected' hierarchy of rate constants for the longer SAMs are arrived at by 

both methods (with acid 'SAMs photooxidising faster than hydroxy-terminated SAMs, which in turn 

photooxidise faster than methyl-terminated SAMs) and also that the aberrative result for shorter SAMs, 

with the hydroxy-terminated SAM 'photooxidising' faster, is also reproduced. Rate constants arrived at 

by both methods are in close agreement (I'V 1-1 0 % discrepancy) for the range of SAMs studied. It is 

suggested that a likely cause of the wetting anomaly is linked to the complex nature of the Pd-SR SAMs 

as compared with related films on Au, although further investigation is needed to understand why the 

trends are so different for the hydrophilic SAMs. 

Analysis of the rate constants alongside work function data indicates that, as observed for gold and 

silver, there is a correlation between surface potentials and rates of photooxidation. Polar (J) groups 

(such as hydroxy or carboxylic acid termini) tend to increase <1>, and these SAMs photooxidise more 

quickly. As is the case for gold and silver, it is suggested that 'hot' electrons are formed near the 

surface of the metal, and these are able to tunnel into the Pd-S* antibonding or~ital and initiate the 

oxidative process. The longer methyl-terminated SAM (Cfl CH3) experiences ~he slowest rate, which 

is matched by it imposing the most positive surface potential on the substrate (thereby giving it the 

lowest work function). Shown in table 3.3 on the next page, for comparison, are the photo-oxidation 

kinetics alongside surface potential data for the three substrates that have been studied. It cn be seen 

that palladium SAMs photooxidise much slower than either gold or silver, by a considerable degree. It 
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Adsorbate II cf>Au/eV I kAu/min- 1 II cf>AgfeV I kAg/min I cf>Pd/eV I kpd/min 

C3CH3 4.98 0.0371 4.58 0.0198 4.83 0.00376 
C2CH20 H 5.41 Untested (4.86) Untested 5.30 0.00518 
C2COOH 5.64 0.1339 5.09 0.1339 5.43 0.00344 

Cll CH3 4.78 0.0200 4.36 0.0015 4.74 0.00236 
ClOCH20H 5.48 Untested (4.89) Untested 4.86 0.00443 
ClOCOOH 5.53 0.0325 5.22 0.0405 5.00 0.0184 

Table 3.3 Table showing effective work functions <t>Eff in electronvolts (eV) for a range of SAMs on 
Au, Ag and Pd and also the associated first order rate constants of photooxidation. Underlined values 
of <t>Eff are below the photon energy of the 254 nm lamp used in the photooxidation experiment; 
values where the photon energy lies 2x the standard error (whether the average value is either below 
or above the photon energy) are given in brackets. 

may be the case that the intermediate lattice spacing of the most favourable sites, as compared with the 

closer spacing on silver and further spacing on gold, causes the Pd-SR mono layers to pack extremely 

tighly, impeding the penetration of the oxidative species. It is known that the presence of bulky (j) 

functionalities in Ag-SR SAMs causes them to adopt a looser mode of packing, characterised by Vi x 

Vi, which increases k for the ClOCOOH SAM, while in general photooxidation proceeds much more 

slowly on Ag. If, however, the steric clashes are not sufficient enough on the marginally less tightly

packed Pd-SR SAM to force the thermodynamically less favourable adoption of a looser packing mode, 

v'3 x v'3 packing density might be maintained. It is suggested that, if this is the case, Pd-SR SAMs 

may require a much longer formation time, in order to heal defects in the SAM, as rate of healing is 

proportional to the chain mobility. 

3.4.2 Photodegradation of OEO-SAMs 

3.4.2.1 Investigation into Surface Composition as a Function of Exposure to 244 nm Light 

A significant development in SAM photochemistry has been a shift away from the SAM-as-photoresist 

concept towards the design and building-in of photoactive groups or photocleavable linkers into the 

SAM molecule38,39. These are particularly well-suited to 'multicolour' photolithography or patterning 

in situ e.g. in a micro fluidic cell, where it is not possible to have multiple separate 'wet' stages (which 

in any case increase the likelihood of sample contamination); it is much more desirable to be able to 

introduce structure by discreet exposure (or multiple exposures) to monochromaled light. Of particular 

interest is the suggestion that photoactive groups might be transplantable into a variety of SAMs on 

substrates other than metals; silicon especially is cheaper' and more readily compatible with present 

industrial microfabrication processes, and presents a flat, clean substrate for the formation of silane 

SAMs. These are thermodynamically more stable than M-SR SAMs. Mirroring the development of 
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polymeric photoresists used by the semiconductor industry, SAMs with photoactive or photocleavable 

groups have necessitated the inclusion of exotic chromophores, which present a synthetic challenge and 

are subsequently expensive. More readily available functional groups that exhibit useful photochemistry 

are therefore of great interest. 

Following an initial structural investigation, a more extensive, time-resolved study was carried out. It 

was thought that, if the photodegradation process does in fact yield aldehydes, these should be conducive 

to the immobilisation of proteins. Glutaraldehyde coupling to aminated surfaces had been previously 

demonstrated as an efficient means to bind proteins that have exposed lysine groups, as these each 

contain a ni~rogen with a free lone pair (nitrogens in bridging peptide functionalities, or even at the 

N-terminus of a polypeptide chain, are a to a carbonyl and so are sp2 as apposed to lysine's side group 

nitrogen, which is sp3 hybridised). The method of attachment is depicted in figure 3.4.2 on the following 

page; the reaction scheme indicates that imine linkages are formed. However, aminated thiols have been 

shown to be bound by both moieties (e.g. as seen from the multiple binding modes of cysteine40) and 

under some biologically relevant conditions can etch gold41 , and so a method or irreversibly attaching 

proteins via aldehydes that does not require an aminated surface is desirable. The need to understand 

how the surface composition changes as a function of exposure arises because photochemical changes 

may be frustrated by competing reaction pathways. For instance, chloromethylphenylsiloxane SAMs 

produce aldehydes upon exposure to 244 nm light39, which can natively bind free amines, but the 

reaction often progresses to carboxylic acids, which require an activation step. Moreover,OEO-SAMs 

have been shown to be effective films for resistance to biological adhesion, and so a. one-step method to 

reverse resistance and produce a surface that is conducive to biomolecule immobilisation is extremely 

useful. 
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Figure 3.4.2 Glutaraldehyde Coupling Scheme 

3.4 Discussion 

The composition of 'photodegraded' OEO SAMs for varying irradiative dosages was shown in fig

ure 3.3.8 on page 123, which illustrates the formation of aldehyde groups on the surface. Clearly, the 

limiting yield is substantially less than one, though this is in-line with other surface bound reactions28, 

which are often sterically constrained (so that an adduct may, by its bulk, eclipse some reactive groups 

surrounding that to which it has attached), and may disallow kinetically-optimal reaction geometries 

due to fixed orientations of reactive groups. In spite of this possible reduction in ~eactivity, biological 

attachment does not require the availability of a large number of activated groups-for instance, there 

may be only a small fraction of amino acids in an entire protein that are able to form covalent bonds 

in this manner (i.e. amines), and so covalent attachment at a few posistions on the biomolecule would 

be sufficient. As will be demonstrated in the next chapter, carboxylic acid groups are not necessarily a 

disadvantage (even if they are not activated by the use of a carbodiimide-activated ester chemistry), and 

may promote initial interactions between a biomolecule and functional surface, thus facilitating covalent 

attachment by aldehydes. 

3.4.2.2 Biological Attachment to Photodegraded OEO-SAMs 

The affinity of streptavidin for biotin has been the focus of much work in the field of materials biointer

faces, including force pulling work carried out by AFM 17. In this instance, the affinity has been used to 

specifically capture a biotinylated plasma protein, IgG. The increased height observed following a short 
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immersion in a solution of the biotinylated protein increased the overall height of the regions previously 

covered by streptavidin, which had been attached by the selective irradiation of an OEO-SAM through 

a mask. This indicates in a qualitative fashion th~t the immobilisation has not perturbed, to the point of 

retarding its function, the geometry of pocket of streptavidin that has an affinity for biotin. This suggests 

that the immobilisation of functional biomolecules by this method is therefore potentially viable. 

3.4.3 Glutaraldehyde Coupling of Thiols to Mercaptosiloxane SAMs 

The promise of a simple route to thiol chemistry on silicon merited investigation. Because of the 

greater thermodynamic stability of silane SAMs, it has become desirable to find an efficient route to 

OEO systems on silicon, and some important work has been reported that sets out to do just this42,43. 

Although the attachment of the fluorinated amine to the photodegraded OEO film on the mercaptosilane 

SAM is modest, it might be considered that attachment to the photodegraded OEO-SAM on gold 

(figure 3.3.10 on page 124) was not entirely extensive, despite a greater density of photodegradable 

ether units. Again, it is suggested that only a few available sites are required to successfully immobilise a 

protein. Additionally, it has been shown that cysteine-containing proteins, as well as those which contain 

lysines, which are residues that have long being used to attach proteins, are likely to be immobilised by 

this method. Mechanistically, the transferability of the photodegradation chemistry onto a substrate 

other than gold implies that the elecronic rearrangements needed for photodegradation could be radical 

in nature. This hypothesis is supported by the appearance* of a peak at a shift of 2.02 eV, in the CIs 

spectrum on gold, when exposed to a low dosage (e.g. 0.3 J cm-2) of 244 nm laser. Such a shift may be 

indicative of epoxide formation in the initial stages; epoxides, with their strained geometries, are often 

formed by radical processes. 

The work presented in this section is incomplete, but is generally suggestive of a novel means of 

attachment of biomolecules onto SAMs that merits further investigation, in order to optimise and fully 

characterise the processes that are taking place. 

3.5 Conclusions 

. Photooxidation kinetics of a variety of SAMs on three substrates (Au, Ag & Pd) have been rationalised 

in the context of surface potentials imposed by their ()) functionalites, and the variation of chain length 

*not shown here-this is a possible alternative fit for the C ls spectrum of an OEO SAM exposed to a dosage of 244 nm laser, 
as shown in figure 3.3.9 on page 124 (far left panel). 
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of the adsorbate molecules. The findings when a largely monochromated light source (e.g. the lamp) 

is used are consistent with the 'hot electron' model put forth by Huang and Hemminger, whereby sub

vacuum electrons made mobile by incident EMR of sufficient energy are able to tunnel into an orbital 

at the sulfur-metal interface and initiate the photooxidation process. For gold and silver, photooxidation 

chemistry of alkylthiolate SAMs is relatively simple. There is a strong correlation between the imposed 

surface potential of the SAM (j) group and t4e rate of photooxidation. On silver, there is a precedent 

for competing processes occuring, whereby the S-C bond is cleaved by the action of UV light. There 

is the suggestion that Pd-SR SAMs may undergo at least partial S-C scission even as the films adsorb, 

potentially evolving an adlayer structure, which is easily removed by immersion in a contrasting thiol 

solution or when under vacuum. This explains why the ordering of rate constants follows very similar 

patterns for the long SAMs. For the short SAMs, there may be additional complexity due to the Pd-S 

interface. However, this is speCUlative and further work needs to be carried out to address whether this 

is the case. 

Photodegradation of OEO-SAMs compares well with UV light-based activation of chloromethylphenyl

siloxane SAMs as a means to introduce biomolecules. In the case of the latter, halting the radical 

oxidation of the methylene group at the aldehyde stage requires accurate timing; it is difficult to stop 

the aldehyde becoming a carboxylic acid. In order to immobilise proteins on carboxylic acid surfaces, 

an 'EDC-NHS' activation is necessary. However, photo degradation of OEO-SAMs yields a higher 

proportion of aldehydes than carboxylic acids even at prolonged exposures, and aldehydes have been 

demonstrated as efficient means of immobilising SAMs with exposed lysine groups. Therefore, the 

'one-step' nature of immobilisation of biomolecules via the photodegradation of the OEO functionality 

is assured. No further activation is required. 

Attachment of thiols onto glutaraldehyde-activated mercaptosilane SAMs is a novel, way to introduce 

thiol chemistry onto silicon, and it may be the case that many elusive functionalities for silicon systems 

can be introduced. The application of 'simple' organic chemistry to surface-bound modifications has a 

long precedent, and mechanisms investigated include esterifications, reductions, additions and substi

tutions. Simple coupling chemistries have facilitated the immobilisation of biomolecules on surfaces. 

Coupling of thiols to aldehydes presented the possibility of a new method of attachment. However, 

the nature of this work is preliminary and much further w~rk needs to be done to assess whether the 

integrity and stability of these films is sufficient to enable biomolecular work in the laboratory. 

Some of the work presented in this chapter has been published in Refs.26,44 
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Chapter 4. Patterning of LH2 4.1 Introduction 

4.1 Introduction 

4.1.1 Integrating Light-Harvesting Complexes into SAMs 

The concept of integrating biological components into artificial molecular architectures-the 'bioklep

tic' approach-was presented in Chapter 1 as a viable means to solve some of the engineering problems 

facing nanotechnology. Like any machine (in the broadest sense of the term) that comprises all or 

part of a system, the placement of the biological component needs to be precise, and requires careful 

consideration of its fragility outside of the cellular environment from where it originates. Immobilisa

tion chemistries should be specific and thermodynamically favourable, but without compromising the 

structural integrity of the biological molecule or complex that is being integrated. 

Precise structure, as has been discussed in Chapter 1, often affords an optimal efficiency in the working 

of the biological machine: Its abiliy to to transmute one form of energy into another. Retention of 

functionality is obviously desirable, and therefore the structure of the biomolecule should be protected 

during its integration. Self-assembled monolayers, with the broad range of surface ()) groups available, 

are extraordinarily adaptable surfaces that have been demonstrated as viable biocompatible materials, 

both in terms of resistance to, and adhesiveness towards, biological structures (e.g. Refs 1-6). Crucially, 

multiple procedures for directing immobilisation of biomolecules have been demonstrated that promote 

retention of biological functionality. 

Mutagenesis of DNA from an organism to promote the expression of a protein featuring a 'mutant' 

amino acid with a functionality that better facilitates incorporation into a SAM has been explored 

by previous workers as a potential means of patterning. One particular approach is to introduce cys

teines (which feature mercaptomethyl R groups) into the protein structure to promote binding of the 

biomolecule to a gold or palladium surface in the same way as any other organothiol molecule. By 

this reasoning, it should be possible to photooxidise a region of SAM and introduce a cysteine-bearing 

biomolecule which will displace the weakly-bound sulfonates formed by photooxidation, and be immo

bilised in the patterned regions by the fomation of M-SR thiolate bonds. This is one potential method 

for incorporating biological systems into SAMs that will be explored. 

Central to the implementation of structure at the supramolecular scale-the precise placement of the 

integrated biomolecule-is the formation of patterns, characterised by contrasting surface groups that 

aim to attract or repel biostructures. Several competing theories aim to account for the varied re

sponse of biomolecules in contact with SAM-modified surfaces presenting different ()) chemistries, 
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Figure 4.1.1 Structures of three oligo-ethylene oxide disulfide/thiol SAM molecules 

including correlation with wetting behaviours (i.e. ~Gsurface), and with the geometry of surface-bound 

oligo(ethylene oxide) moieties, among others. While trends relating biocompatibility and chemical 

structures have become apparent, the lack of firm consensus on e.g. the mechanism of protein repulsion, 

necessitates a systematic exploration of a wide range of potentially viable surfaces. Indeed, much 01 the 

work already documented in the literature deals with the immobilisation of plasma proteins, whereas 

investigations into the immobilisation of membrane proteins, like the light-harvesting 2 complex (LH2) 

from Rhodobacter sphaeroides, which is the focus of this chapter, are not as widely reported. The first 

focus of this chapter will be a systematic exporation of of the affinity for LH2 of SAMs presenting 

different terminal group functionalities. 

4.1.2 Stability of Biocompatible Surfaces 

Long-term stability of SAMs in biological conditions, and also biocompatible SAM~ in conditions like 

those used in patterning (i.e. in an organic solvent with 'contrasting' thiols or other SAM molecules, or 

an activating species or reactant) is of much interest for applications such as 'lab-on-a-chip' analysis, 

bioMEMs, and photolithography in liquid. Therefore, SAMs which demonstrate stability and retention 

of integrity over extended periods are desirable. 

Liedberg and co-workers have demonstrated OEO-SAMs ,that have that amide links along their chain 

length7,8. These are depicted in figure 4.1.1, with short labels for reference to SPR spectrographs shown 

in the results. It has been suggested that the amide links afford SAMs of these molecules a greater 

stability, by the formation of lateral interchain hydrogen bonds. An investigation of this hypothesis will 

form the second focus for this chapter. 
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4.1.3 Patterning LH2 and Demonstration of Retention of 

Biological Functionality 

4.2 Experimental Details 

Photolithography has been shown to be an elegant means to introduce patterns oIl: surfaces at very 

small scales, with a demonstrably high precision. While other techniques, such as IlCP or DPN might 

produce structures with apparently comparable resolution under laboratory conditions, they perform 

rather less well than photopatterning does in an ultraclean environment. The obvious example would 

be the semiconductor industry, which is (at the time of writing) beginning to implement a 45 nm 

fabrication process. The precise, quantifiable action of light on photo active molecular structures, plus 

the development of chemical activation processes with a minimal number of individual steps, ensures 

that photolithographic fabrication yields stable structures that are not as open to the risk of contamination 

inherent in direct-contact printing methods. 

Knowledge of suitable surfaces for LH2 immobilisation can be considered alongside the photooxidation 

kinetics reviewed in Chapter 3 in order to optimise pattern fabrication. In addition to mask-based 

phot9lithography, scanning near-field photolithography (SNP) will be investigated as a potential tool, in 

order to determine whether LH2 is amenable to the formation of nanoscale patterns. 

It has been stipulated that an essential criterion in assessing whether the patterning of functional biomolec

ular structures has been successful is the retention of functionality. Previously shown, in Chapter 3 on 

page 125, are results demonstrating retention of functionality of streptavidin, through its continued 

affinity for biotin following immobilisation; an affinity which derives largely from their respective 

shapes and proximal chemical groups when they are in contact. The most readily measurable function 

of LH2 is its fluorescence following irradiation, which occurs at a 50 nm shift to longer wavelength 

(AAbsMax = 800 nm; AFluMax = 850 nm). Therefore, a system capable of measuring the fluorescence, as 

well as its· intensity with spatial resolution, is required in order to assess successful immobilisation. 

This will form the third focus of this chapter. 

4.2 Experimental Details 

4.2.1 Integrating Light-Harvesting Complexes into SAMs 

In order at assess whether the mutagenesis of Rhodobacter sphaeroides plasmid DNA to produce LH2 

complexes containing cysteine was a viable method of immobilising LH2, viable bacterial cells with 
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this modification were generously provided by Dr. John Timney*. This particular modification featured 

a replacement of the N-terminal threonine of the ,B-subunit by a cysteine, as shown in figure 2.3.23 

on page 90. The complexes were purified according the procedure outlined in subsection 2.3.3.1 on 

page 89. Additionally, LH2 'wildtype' complexes (which are those found in non-genertically modified 

strains) were obtained, already purified, and were a gift from Dr. John Olsen t. Following an unsat

isfatory attempt to pattern LH2* by the assumed photooxidation of OEO-SAMs on Au (which, as was 

shown in subsection 3.3.2 on page 122, is frustrated by competing processes), AFM topographs were 

collected of LH2 cysteine mutant and wildtype deposited from a HEPESI,B-OG buffer solution onto 

flame annealed flat gold by immersion in the solution for 5 min. This was done to assess the state of 

the protein following immobilisation: Did the adsorption process cause denaturing, rendering the height 

less than that expected, and perhaps undetectable on polycrystalline films? Images were collected using 

a Nanoscope lila multimode AFM in tapping mode in air. 

A range of SAMs were investigated to test for suitability for the directed immobilisation of LH2. Au-SR 

SAMs were made according to procedures outlined in section 2.5 on page 92, with the particular 

specifications that the Cr primer layer should be between 1.5-2 nm thick, and the gold layer 48 nm 

thick. It was found that these values match closely those of 'chips' available commercially, as measured 

by AFM height profile of a scratched slide, and films made to these specifications produced the most 

meaningful responses for SPR analysis. SAMs in anyone repetition (of three) were made at the same 

time, with special consideration made to the placement of slides relative to the evaporation boats in the 
~ 

vacuum evaporator, as the quartz thickness sensor is calibrated for sample positio~s immediately above 

the evaporation boats, whereas places to the side of the vessel may have a substantially lower coverage. 

A reduced gold thickness can dramatically affect the sensitivity of the SPR experiment. Therefore, 

samples from directly above the boats were used. 

In order to assess whether the cysteine mutants were afforded a greater affinity for the gold films, 

SPR experiments were performed using a Biacore 3000 SPR spectrometer. Ultra-low concentrations 

(0.65 /lgmL- l ) ofLH2 cysteine mutant and wildtype in 400mM HEPESI,B-OG (1 %) buffer were intro

duced into a carrier stream of the same buffer at a flow rate of 10 !lL min- l . Typically, the concentrations 

used in work preceeding the author's to create good patterns have been an order of magnitude abo~e 

this, e.g. rv5 /lg mL- l , and the reason such a low concentration was chosen was to gauge the comparitive 

affinity of the mutant and wildtype when arriving at the surface more or less individually, rather than a 

large. mass, which could obfuscate the clarity of the result if differences were small. The results, which 

*Hunter Research Group, Department of Microbiology and Biotechnology, University of Sheffield, UK 
tas above 
*not shown in this thesis 
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will be shown in figure 4.3.1 on page 154 then informed, along with the topographic AFM images, which 

will be shown in figure 4.3.2 on page 155, the rest of the experiment. LH2 wildtype was then adopted 

as the complex which would be investigated further. Therefore, subsequent SPR measurements and 

immobilisation experiments use the wildtype. An improved purification protocol was also developed by 

Dr. John Timney, which is based on a Tris buffer at pH 8 with 0.1 % LDAO surfactant, which was used 

in subsequent experiments. 

A range of Cll SAMs were chosen to represent a number of different surface types (the OEO-SAM 

is slightly longer than this; the perfluorinated SAM, slightly shorter). Additionally, an activated ester 

('CllCOO-*'-the succinimide ester capable of binding proteins shown in figure 2.7.1 on page 95) 

was tested; it had been previously demonstrated to covalently attach proteins that have exposed lysine 

groups (which LH2 does-recall figure 2.3.23 on page 90; a XRD-solved structure, highlighting the 

lysine residues, will be shown in the discussion). 

Measurements were carried out on a Biacore 3000 spectrometer. All four flow cells were used for any 

one run of a SAM, and these were averaged over three runs to produce a mean-response single trace for 

each SAM. LH2 wildtype was produced in the same way as the cysteine mutant, and was a gift from 

Dr. John Timney. 1 00 ~ of LH2 in 10 mM TrislLDAO buffer at a concentration of 6.5 ~g mL-l was 

injected into a carrier stream* of the same buffer at a flow rate of 20 ~ min-l for 10 min, before elution 

by TrislLDAO buffer for 3 min and subsequent washing by the injection of an aqueous solution of 1 % 

SDS for lOs. 

4.2.2 Stability of Biocompatible Surfaces 

SAMs of the three OEO-terminated organosulfur molecules depicted in figure 4.1. i on page 147 were 

made according to standard SAM formation procedures outlined in section 2.5 on page 92, but at the 

reduced concentrations of 0.25 mM. SAMs of molecule 2 were formed from aqueous solution using 

nanopure water rather than HPLC grade ethanol, as the substance was received as a formate salt (as 

shown in figure 4.l.1 on page 147), which is more soluble in water. In order to determine the respon~e 

of these SAMs to biological material, series of protein binding experiments were carried out using a 

commercial Biacore 3000 SPR spectrometer. Again, 48 nm of gold was evaporated onto borosilicate 

slides, primed with 2 nm of Cr. The response of the films to a variety of proteins, including LH2, 

·The carrier stream-buffer only-was allowed to run for 30 min prior to injection of LH2; penetration of water is thought 
to be of importance in imparting biological resistance in OEO films, and short durations of exposure to aqueous and biological 
media were shown to have little negative effect on SAM integrity. 
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was investigated. The proteins, each at a concentration of 5 Ilg mL-I, were injected into buffer-matched 

carrier streams running at a flow rate of 10!J.L min-I for 5 min, and the response was recorded. 

In order to determine the relative stability of the amide-containing OEO films to the standard OEO

SAM, films were immersed in 10 mM of a C 16 n-thiol for a range of durations. These samples were then 

analysed by XPS to determine the ratio [C-~-O]/[Au4f7/2] in each case: A decrease in the value of this 

ratio might be interpreted as a loss of OEO-terminated molecules. 20 e V 'narrow' scans were collected 

corresponding to CIs and AU4f for each sample. Curves were fit using the CASAXPS software, which 

uses an iterative Marquadt sampling algorithm to converge Gauss-Lorentzian curves, representative 

of electron orbital environments, to the kinetic energy density profile of electrons ejected from the 

sample. The value at t=O for each film was used to normalise the data, and this was set to 1 in each 

case, so that a value for X, the mole fraction of the remaining OEO-SAM, could be calculated. For 

the amine/ammonium-terminated OEO-SAM 2, a constraint was put on the curve fitting for the peak 

representing C-C-NHj. The environment is close in binding energy to aliphatic C-h-C (at 285.65 eV 

vs. 285.0eV), and thus may be masked. By considering equation (1.3.24) on page 44 and estimating the 

film thickness between the terminus and characteristic intrachain amide groups, it was calculated that 

the area should be ~1.11 x [N-C=O]. 

The experiment was repeated in triplicate and mean values are shown in the results. 

4.2.3 Patterning LH2 and Demonstration of Retention of 

Biological Functionality 

C2(CF2)sCF3 SAMs on gold were exposed to 244 nm UV using a frequency-doubled argon ion lase 

(model Coherent FreD 300C), using 1500 mesh or 2000 mesh Cu SEM grids as masks, for a period 

of 10 min, before being immersed in an ethanolic solution of a CIOCOOH thiol for a period of ",1 h 

to produce regions of carboxylic acid-terminated SAMS. For the lateral force images, which aim to 

demonstrate the nature of the template prior to protein immobilisation, samples were then removed 

I from the second thiol and washed with HPLC grade ethanol, before being imaged .. Samples were 

imaged using a Digital Instruments Nanoscope IlIa in contact mode, using a Si3N4 probe (nominal 

force constant 0.06 N m-I). 

For the LH2 patterns, CIOCOOH regions on the pattern (which correspond to the unmasked areas) were 

activated by carbodiimide chemistry to introduce a thermodynamically metastable succinimide ester*, 

* A scheme is shown on on page 95 
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which is readily displaced by basic groups such as primary amines, which LH2 features in some number 

on its surface. This was achieved by immersing the patterned SAM in an ethanolic solution of 20 mM N

(3-Dimethylaminopropyl)-N-ethylcarbodiimide ('EDC') and 20 mM N-hydroxysuccinimide for 20 min. 

Following washing, the patterned and activated samples was immersed in a 6.5 Ilg mL-l solution of LH2 

wildtype in 20 mM Tris, 0.1 % (wt.) LDAO, 150 mM KCI buffer for 15 min. The sample was then 

washed with a 1 % (wt.) solution of aqueous ammonium acetate (using nanopure water), followed by 

'clean' nanopure water. This washing cycle was repeated 3 times. The sample was then dried under 

a stream of nitrogen and its topography was imaged in intermittent contact mode (Digital Instruments 

Nanoscope ITla, Tapping Mode) using a silicon probe (k=30 N m-l, fo=232-262 kHz). 

Additionally, the amenability of LH2 to patterning on the nanoscale was explored. Scanning near-field 

photolithography (SNP) was carried out with the help of Rob Ducker*. For the work presented here, 

a commercially-sourced Jasco probe was used. The position of the stylus relative to the surface was 

controlled by the use of the Aurora ITI NSOM system. During SNP, the output of the laser was 2 mW, 

and the writing speed was 0.1 J.lffi sol. 

4.2.3.1 Optical Measurements of LH2 

For the optical measurements, samples were quickly transferred from solution containing the LH2 

complexes to a 'clean' TrisILDAO buffer solution, to wash away non-specifically bound complexes. The 

sample was then dried under a stream of helium to allow the underside to be glued to a copper mount 

in the cryostat, and remove excess buffer from the sample. This was done without subsequent washing 

with ammonium acetate or water following the buffer wash t. The atmosphere in the cryostat was then 

evacuated to a pressure of 10-9 mbar prior to cooling by liquid helium, to avoid the condensation of 

liquified gases on the sample. The sample was then illuminated using a 800 nm laser photodiode, and 

fluorescence as a function of wavelength was measured using a CCD. In order to remove any signal 

caused by the excitation source leaking into longer wavelengths, a long-pass filter (>825 nm) was used. 

Measurements were made 'in the dark', with the utmost care taken to remove any light sources that 

could cause interference, e.g. from computer monitors etc. 

Spatially-resolved fluorescence measurements were carried out using an avalan~he photodiode (APD) in 

place of the CCD in the same optical arrangement as that described above, again using a long pass filter. 

A XYZ stage movable in the XY plane by computer-controlled piezotransducer was used to control the 

·currently in the Zauscher laboratory, Duke University, NC. USA 
t the reason for these omissions will be given in the discussion 
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position of the objective lens in relation to the patterned sample, achieving a maximum resolution of 

",2 Jlm. The software used to do this was developed by Pu Qian* and Luke Wilson t using the Lab View 

development system. The piezo allows the st~ge supporting the lens to be moved by precise amounts 

prior to recording an integration of the photon count for a given period e.g. 400 ms, i~ order to produce 

and effective intensity map of the fluorescence. 

"now in the Department of Molecular Biology and Biotechnology, University of Sheffield; then in Department of Physics and 
Astronomy, University of Sheffield 

tDepartment of Physics and Astronomy, University of Sheffield 
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4.3 Results 

Figure 4.3.1 Surface plasmon resonance spectrograph indicating the degree of interaction between 
wildtype (solid line) and cysteine mutant (dashed line) LH2 complexes and a gold surface; greater 
affinity is indicated by a larger response. 

Figure 4.3.1 shows typical SPR traces of LH2. The response units on the y-axis, though supposedly 

parametrized so that 1000 RU=1 ngcm-2, are here largely considered to be arbitrary. What is to be 

assessed is the comparitive difference following injection and elution between both strains of LH2. The 

traces in this instance reflect the fact that solutions were injected at arbitary times during each trace for 

arbitary periods. Traces for the the opposing strains were collected at different times and have been 

overlaid for comparison. The major injection for the wildtype (solid line) occurs just after 60 sand 

and the injection continues for approximately 1 min, before elution by buffer. The height difference 

after injection is ",,57 RU. The major injection for the mutant occurs at 510 s and lasts 3 min; the height 

difference in this instance is ",,82 RU. While the injection periods were not equal, it is clear that the 

introduction of cysteines into the complex affords LH2 only a minor increase in affinity for the gold, 

which will be discussed further on on page 171. 

Shown in figure 4.3.2 on the next page are AFM topographs of cysteine mutant (a) and wildtype (b) 

LH2 deposited on flame-annealed epitaxial flat gold. Shown in (c) and (d) are phase images of (a) and 

(b), respectively, to assist in seeing the shape of the complexes. It can be seen that the complexes tend 

to be aligned along the edges of atomic terraces in both instances. However, it appears that the cysteine 
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(a) LH2 cysteine mutant topography (b) LH2 wildtype topography 

(c) Phase image of above (d) Phase Image of Above 

Figure 4.3.2 LH2 on flame-annealed flat gold 

mutant (a, C), appears as strands, perhaps indicating denaturing of the complex, whereas wildtype (b, d) 

appears as intact rings. An explanation for this result will be put forth in the discussion. 

In order to assess suitability of a wide range of SAMs for the incorporation of LH2 complexes, a wider 

study of adsorption of the wildtype on a variety of SAMs was carried out. The results are shown in 

figure 4.3.3 on the following page. Upon injection, it can be seen that some degree of interaction occurs 

for each of the SAMs that were studied, due to the influx of such a large molecular weight species into 

the region proximal to the SAM. Following the 10 min injection period, a buffer-onlY flow for a duration 

of 3 min allows an assessment of physisorption to be made. It is clear that the OEO-SAM (trace 6) is 

indeed resistant to LH2 bioadhesion (as indicated by a rapid return to the signal baseline), as might be 

expected. However, two hydrophobic SAMs, Cll CH3 (trace 5) and C2(CF2)sCF3 (trace 7), also exhibit 

resistance to LH2, which might not have been expected. A rationalisation of this will be put forth in the 

discussion. 
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Figure 4.3.3 SPR Curves for a range of SAMs showing the level of interaction with 6.5 fJgmL-1 
wildtype LH2 from Rhodobacter sphaeroides 

4.3.2 Stability of Biocompatible Surfaces 

In order to assess whether films composed of the molecular structures '1' and '2' from figure 4.1.1 on 

page 147 were in fact protein-resistant, a series of SPR experiments were carried out. Four biomolecules 

consisting of single proteins, complexes and enzymes were used. These were: 

BSA bovine serum albumin from Bos taurus 

ACP acyl carrier protein from Bacillus circulans 

LH2 light harvesting complex 2 from Rhodobacter sphaeroides 

PPTase phosphoryl transferase from Bacillus circulans 

Four sets of traces for each protein show averaged traces from three repeat measurements for each film 

in figure 4.3.4 on the following page. In each trace, '1' is represented by a dashed line, '2' by a dotted 

line, and '3' by a solid line. For each of the four proteins tested, a similar response that is indicative of 

a degree of protein resistance is observed on '1' as it is for '3', which is already well-established as a 

protein-resistant SAM. '2' demonstrates an increased affinity for protein overall, but the degree to which 

this can be stated varies for each of the different proteins. In order to allow a comparison to be made 

between the amount of biomolecular material retained during elution by buffer on. each film following 

injection of each protein, the difference between the RU value before and after injection is tabulated in 

table 4.1 on page 158. 
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Figure 4.3.4 Surface plasmon resonance traces indicating the degree of interaction between 4 different 
polypeptides and three different OEO SAMs, the structures of which are shown in figure 4.1.1 on 
page 147. 
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Biomolecule 
SAM BSA ACP LH2 PPTase 

1 4.5 67 25 ",0 
2 55.5 214 662.5 2.2 
c 14 .. 67 43.4 0.2 

Table 4.1 Comparison of binding of the four proteins tested (in RU) on each of SAMs 1, 2 and 3 

It can be seen that the biggest increase in affinity for 2 over 1 or 3 is for the complex LH2, the structure 

of which was introduced in subsection 1.5.3 on page 70. Acyl carrier protein exhibits the second greatest 

affinity for 2 as compared with 1 or 3, and bovine serum albumin the third, although the response when 

BSA was injected was lower for 1 or 3 than when ACP was injected (BSA on 1 was lowest overall), 

suggesting that BSA had less of an affinity for all three surfaces. PPTase demonstrated remarkably low 

affinity for any of the surfaces. Possible reasons for these differences will follow, in the discussion. 

Shown in figure 4.3.5 on the next page are typical CIs spectra from three OEO-SAMs, at top as they 

were made; and at bottom after immersion in a 10mM solution of HSCISCH3 for 180h. It can be seen 

that the characteristic C-~-O peak associated with all three OEO SAMs has decreased over the duration 

of the experiment, and this is matched in 1 and 3 by a decrease in N-~=O, and in 2 by a decrease in 

C-~-NHj. Shown in figure 4.3.6 on page 160 are three plots showing the change in the ratio C-~

O/Au4f7/2 over time, fitted as 0, 1st and 2nd order changes. While previous work9 has considered the 

kinetics of replacement to be well-modelled as a first order change, it is not apparent from these results 

that this is the case here. It is possible that there is a degree of cooperativity aff~rded by the additional 

intrachain amide moieties that retards detachment even after the thiolate has oxidised and the weakly

bound species is immersed in a solution of contrasting thiol. A second order fit is most satisfying for 1 

and 2, whereas for 3, none of the fits are particularly satisfying. It is possible that in all cases, desorption 

is characterised first by a period of fairly rapid detachment at grain bound,aries etc. where the stabilising 

lateral interactions are diminished, followed by a much slower rate of detachment. 
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Figure 4.3.5 XPS C spectra of the three OEO-SAMs shown in as made (top row) and following 
immersion in 10 ethanolic solution of HSCCH for 180 (bottom row) . 
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Adsorbate Symbol pt order ~/h - I I relative 1 SI order kd II 2nd order ~/e- I h -I I relative 2nd order ~ 

1 • 0.00299 0.85 0.00435 0.76 

2 • 0.0015 1 0.43 0.001 85 0.33 

3 • 0.00353 1 0.00569 1 

Figure 4.3.6 (a) Plot showing remaining monolayer fractions 0 of OEO SAMs 1, 2 & 3 (from 4.1 .1 ) 
remaining after immersion in 10mM C1 6 thiol solution for a range of durations. (b) shows the 
natural logarithm of the remaining fraction against immersion time to test the fi t as a 1 st order 
change, while (c) shows the reciprocal of the fraction remaining to test the fi t of the data as a 2nd 

order change. In (b) and (c), the fit to a straight line indicates adherence to the model of rate order 
being tested. 
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4.3.3 Patterning LH2 arid Demonstration of Retention of 

Biological Functionality 

4.3.3.1 Lateral force images of patterned SAMs 

4.3 Results 

Shown in figure 4.3.7 is a lateral force image of a patterned C2(CF2)sCF3 SAM; the dark 'bar' regions 

are the perfluorinated SAM, while the lighter squares are the acid-terminated regions which have re

placed the photooxidised perfluorinated regions. The polar Si3N4 tip adheres more strongly to the polar 

regions, giving rise to a higher rate of energy dissipation there and hence a higher friction force. The 

scan angle was set at 90°, as this maximises the effect of lateral deflection, producing an image with an 

optimal contrast range. 

Figure 4.3.7 Lateral force image of a C2(CF2)sCF3 SAM that has been exposed to a 244 nm laser set 
at 100mW for lOmin through a 1500 gauze Cu SEM grid, before being immersed in a 1 mM 
CIOCOOH solution for 10 min and then washed with ethanol. Scan angle was 90°, scan rate was 
3 Hz. Lighter squares indicate where the polar Si3N4 tip adheres more strongly, corresponding to 
an acid-terminated surface, while darker regions correspond to the initial fluorinated surface that 
was not exposed to the laser. 

4.3.3.2 Intermittent contact-mode mode images of LH2 

Shown in figure 4.3.8 on the following page is an AFM height image of a sample made in the same way 

as that shown in 4.3.7, following activation by carbodiimide solution, 'and then immersion in a solution 

ofLH2 in aqueous biological buffer (6.5 /lgmL-1 in 10mM TrisILDAO: 0.1 %) . The sample was in the 

biological solution for 10 min. The measured height, at rv4 nm, is actually below that expected for LH2 

(ca. 7 nm), but it is not uncommon for measurements of soft samples by AFM to yield topgraphical 

heights that are anomalously low. Even in intermittent contact, the sample can be deformed by a 
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relatively hard silicon AFM probe as it comes into contact. The consistency of the image shows that 

LH2 is successfully pattemable by this method. 
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Figure 4.3.8 AFM tapping mode height image and line section of a patterned C(CF)CFICCOOH 
sample made in the same way as that shown in 4.3.7, that has been activated by immersion in 
carbodiimide solution, and then immersed in a solution of LH2 in aqueous biological buffer. LH2 
has been immobilised in the square regions, as indicated by the height difference as compared 
with the surrounding regions, which are the initial C(CF)CF SAM, to which LH2 will not stick. 
Scan rate was 1 Hz. 

4.3.3.3 Lateral force mode images of nanopatterned SAMs 

In order to explore the amenability of the perfluorinated SAM to patterning by scanning near-field 

photolithography, an array of spots was formed by configuring the NSOM system to include a number 

of equidistant dwell points along a line (in this instance, five, spaced 2.5 JlIll apart), and repeating this for 
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a a series of equidistant parallel lines (again, five) to create an array of photooxidation points. The probe 

was rastered quickly between each dwell point (velocity,.,dO JlIIl S·l) and the dwell time was set to 4 s. 

The nominal power output of the 244nm laser used was 2mW. Following the lithography procedure, 

the SAM was immersed in a 1 mM solution of ClOCOOH thiol for 20 min, before removal, washing 

with HPLC grade ethanol and drying under a stream of nitrogen. A lateral force micrograph of the 

ClOCOOH dot array 'written' on a C2(CF2)SCF3 SAM was acquired in air at a scan rate of 2 Hz, at scan 

angle of 90°. This is shown in figure 4.3.9. Although there is a good contrast in the image, the spot size 

is actually quite large, with a full-width half maximum height (fwhm) dimension of 237 nm. This result 

was somewhat unexpected given the relatively slow rate of photooxidation of the C2(CF2)SCF3 SAM; it 

was thought that longer dwell times would be required, and that it might be difficult to form nanoscale 

lines by SNP on the perfiuorintaed SAM. This informed the subsequent experiment, in which a series 

of lines were drawn by SNP using the same patterning system as for the array. 
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Figure 4.3.9 AFM contact mode image of CIOCOOH 'dots' written into a C2(CF2)sCF3 SAM by 
exposure of a SAM of the latter thiol to 244 nm laser through a NSOM probe maintained in the 
near field. The scan angle was 90° and the scan rate was 3 Hz. The polar Si3N4 tip adheres more 
strongly to the acid-terminated dots, resulting in greater contrast, than the surround perfiuorinated 
region, which the tip adheres to less strongly. The full width half maximum height (fwhm) of the 
features-a good estimation of their true dimension accounting for distorion due to finite tip 
size-is 237 nm. 

Figure 4.3.10 on the following page shows a series of 5 lines, 10 J..lm in length and spaced 2.5 JlIIl apart, 

that were drawn using the SNP method into a C2(CF2)sCF3 SAM, as for the array shown previously, 

before immersion into a contrasting thiol of ClOCOOH for 20 min. In this instance, the nominal laser 

power was 2mW, and the writing speed was 0.1 JlIIlS·1. The image shown was collected at a scan rate 

of 2 Hz at a scan angle of 90°. A section analysis indicates that the fwhm width of the line is 98 nm. 
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(a) LFM micrograph of nanolines of CIOCOOH in 
a SAM of C2(CF2)sCF3 
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Figure 4.3.10 AFM contact mode image of ClOCOOH lines written into a C2(CF2)SCF3 SAM by 
exposure of a SAM of the latter thiol to 244 nm laser through a NSOM probe maintained in the 
near field. The scan angle was 90° and the scan rate was 3 Hz. The polar Si3N4 tip adheres 
more strongly to the acid-tenninated lines, resulting in greater contrast, than the surround 
perfluorinated region, which the tip adheres to less strongly. The full width half maximum 
height (fwhm) of the lines is 98 nm. This is markedly smaller than the diameter of the 'dots' 
shown in 4.3.9. 

4.3.3.4 Intermittent-contact mode images of nanopatterned LH2 

Shown in figure 4.3.11 on the next page are tapping mode mode images of the LH2 nanolines collected 

on a Nanoscope IlIa AFM at a 0° scan angle at a scan rate of 1 Hz. Lines shown in the image were 

measured to be approximately 98 nm wide (mean average), and as low as 93 nm over shorter averaged 

cross sections (shown). Lines were subjected to a statistical analysis of their profiles at regular intervals 

along their length, as depicted in figure 4.3.12 on page 166. By a statistical analysis of 5 cross sections of 
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the lines, perpendicular to their direction in the surface plane, the mean line height was determined to be 

6.2 nm with a standard deviation of ± 1.8 nm, which is commensurate with there being a monomolecular 

layer of LH2 on the surface. 
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Figure 4.3.11 AFM tapping mode of a C2(CF2)sCF3 SAM patterned using a NSOM probe in the same 
manner as was used to create the CIO lines in figure 4.3.10 on the preceding page, which has 
then been activated by immersion in carbodiimide solution, and then immersed in a solution 
of LH2 in aqueous biological buffer. LH2 is deposited along the activated lines, as indicated 
by their greater height as compared with the surrounding perfluorinated region. The height 
difference correlates closely to the average cross sectional dimensions of LH2. The full width 
half maximum height of the features is 93 nm. The image was acquired at a scan rate of 1 Hz; 
scan angle was 0°. 
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Figure 4.3.12 Typical cross-sectional profile of the LH2 'nanolines' shown in 4.3.11. Red bars show 
the variance in line height of each of the five lines. These correlate with the dimensions of a 
single LH2 complex in the four lines to the right of the plot, indicating monolayer coverage. It is 
possible that there may be a second layer along some of the length of the line, the cross section 
of which is shown at the far left of the plot, although the mean height still closely matches that 
which would be expected from the deposition of a single layer of complexes. 

4.3.3.5 Optical Measurements of LH2 

In order to assess whether the biological function of LH2 was retained during immobilisation, a number 

of optical measurements were made of LH2 in both the solution phase and following directed patterning 

onto a SAM. The principal role of LH2 is to 'retune' incident EMR to a longer wavelength by a Stokes

shifted fluorescence, which effectively shifts the fluorescence maximum to a longer wavelength (for 

LH2, the absorbance maximum is at 850 nm, while the fluorescence maximum is at 800 nm). 

Fluorescence spectra were collected at room temperature in a liquid cell in the dark, using a CCD. A 

long-pass filter (>825 nm) was used to occlude the 800 nm photodiode excitation source. Two spectra 

are shown, in figure 4.3.13 on the next page, for LH2 immobilised via the EDC-NHS method onto an 

acid-terminated region of a patterned SAM (right hand side). For comparison, the spectral response of 

solution phase LH2 (in buffer) is also shown (left hand side). It can be seen that the signal is much 

lower when the complex is bound to the surface (roughly 6 % of that in the bulk), which reflects the 

fact that the fluorescence arised from a single layer of complexes, rather than from solution, in which a 

large number of complexes are present in a three-dimensional volume within the focal length range of 

the collection spot. 

In order to test whether it was possible to collect spatially-resolved fluorescence images of patterned 
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Figure 4.3.13 (a) CCD luminescence Spectrum of 260 Ilg mL-1 LH2 in aqueous biological buffer 
following excitation using a 800 nm laser photodiode; (b) CCD luminescence spectrum of LH2 
immobilised on a CCOOH SAM on gold following excitation using a 800 nm laser photodiode. 
Note that, though lower in intensity, the spectrum immbobilised on the surface is essentially the 
same as free in solution, indicating retention of spectral properties. A band pass filter filtering 
out wavelengths 825 nm was placed in the collection optics during acquisition of both spectra. 

LH2, micron-scale patterns were first formed in the same manner as in subsection 4.3.3.2 on page 161. 

Samples were not washed in water and ammonium acetate as was the case for the AFM experiments, 

but were immediately transferred to a buffer devoid of LH2, in order to remove complexes that are 

non-specifically bound, then removed and dried under helium to remove the fluid and glued to a support 

in a vacuum cryostat, before being put under vacuum and cooled to < 10K using liquid helium. The 

Labview software, APD and stepped-piezo-driven XY stage described in subsection 4.2.3.1 on page 152 

was used to collect an image of size 60 J.lITl x 60 J.lITl. This is shown in figure 4.3.14 on the following 

page. Light squares indicate the presence of light of wavlengths greater than 825 nm, indicating that the 

source is most likely fluorescence from LH2 rather than a tail-off to longer wavelength of light emitted 

by the photodiode. The light patches also correspond to the squares where the LH2 is expected to be 

immobilised by the carbodiimide, further supporting this concIsion. It is clear that LH2 directed to 

form patterns using this chemistry must have retained its biological function (fluorescence at ",,850 nm 

following excitation at 800 nm), despite being at tested conditions that differ greatly from those within 

the organism (i.e. in a very good vacuum, at <10 K) which is a testament to the resilience of these 

structures. 
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Figure 4.3.14 60 J.lIl1 square scan of a C2(CF2)5CF3 SAM that has been exposed to 244 nm laser at 
100 m W power for 10 min before immersion into 1 mM ethanolic C IOCOOH thiol solution, to 
make a patterned surface like that shown in figure 4.3.7 on page 161. LH2 complexes were then 
immobilised on the acid-terminated (square) regions using carbodiimide chemistry, in the same 
manner as were used to make the sample shown in figure 4.3.8 on page 162. The sample was 
then washed in buffer, dried under helium and affixed to the inside of a vacuum cryostat. Sample 
luminescence at a wavelength >825 nm, following excitation using a 800 nm laser photodiode, 
was then measured at discrete points to build up the image; wavelengths <825 nm were filtered 
with a band pass filter. 

4.4 Discussion 

4.4.1 Assessment of SAM Suitability by SPR 

While some degree of correlation between surface free energy and growth of cells has been demon

strated4,5, 10, a large body of previous work has indicated that plasma proteins will adjust their secondary 

structures when proximal to an interface no matter how low ~SurfaceG is initially. Indeed, it is widely 

thought that, with the exception of repeated units of ethylene oxide, plasma proteins will stick to almost 

anything. The enthalpic reward yielded by interactions between domains in the folded protein are 

sacrificed as the protein denatures and becomes irreversibly bound by increasing its interfacial area 

with a surface. However, the selective binding of membrane complexes such as LH2 to surfaces has 

not been the subject of extensive studies previously. In this case, each LH2 complex is surrounded by 

a surfactant 'skirt' (n-dodecyl-,B-maltoside-'DDM') that presents a wholly hydrophilic exterior to the 

biomolecule, and it is suggested that this causes it to be repelled by the hydrophobic surfaces. 

The surfaces which demonstrated the greatest affinity for LH2 were the 'activated' carboxylate-N

succinimide ester (1) , and carboxylic acid-terminated (2) SAMs. While this might, at first, seem 
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commensurate with the hypothesis that sticking in the case of LH2 can be correlated with surface free 

energy, the hydroxy-terminated SAM does not exhibit a particularly marked affinity for LH2, despite it 

having a 'hydrophilic' charcter. It might therefore be suggested that the superlative adhesion observed 

in the case of both carboxylate-functionalised SAMs is electrostatic in origin; the cytoplasmic face of 

LH2 is afforded a 5+ve charge by a lysine group, which could produce such an interaction. 

Following the cessation of the injection period, the carboxylate functionalities also exhibit a retention of 

LH2. This is not observed in the other cases, except to a much smaller degree in the case of bare gold, 

which will be discussed shortly. The end of the buffer elution period was marked by a single injection 

of 0.1 % (wt.) sodium dodecyl sulfate (SDS), which is a surfactant. While all the SAMs studied showed 

loss of some weakly-bound material, the ClQCOO-* surface, the 'activated ester', exhibited retention of 

",,40 % of the material, indicating that a significant proportion was covalently bound. The ClQCOOH 

SAM appears to exhibit rapid loss of the physisorbed material at the interface, to a level below baseline. 

Such facile detachment is supportive of the hypothesis that the initial interaction is electrostatic; the 

5+ve attraction would be readily displaced by an full ionic interaction with a sulfate group. It is possible 

that that anomalous result (returning to a level below baseline) is due to the SDS surfactant disrupting 

interactions between buffer salts (e.g. LDAO). SDS aggregation into cyclindrical forms has also been 

observed at solid/liquid interfaces 11, which may cause the refractive index of the analyte to change near 

the surface, although it might be argued that the short injection time is insufficient for such aggregates 

to coalesce. Alternatively, the SDS may disrupt an interaction that occurs between the buffer an chip 

surface, which is experienced as a baseline. 

That gold exhibits a significant retention of biological material even following SDS 'washing' is likely 

to be in part due to its unique surface properties. Most other metals are covered by thin oxide layers, 

and polar solvents (e.g. water, THF) tend to wet these materials (8a<100), while apolar, organic solvents 

show the opposite wetting behaviour (8a>900). The other major group of materials for which wetting 

behaviours have been extensively investigated are hydrocarbon polymers, which (unless they contain a 

large fraction of polar heteroatoms) tend to be wetted by apolar solvents, but not wetted by polar sol

vents, i.e. they show opposite wetting behaviour to polar surfaces. This diametric bifurcation of wetting 

behaviour over the two 'groups' (metals and polymers),is an oversimplification which is confounded 

by solvents other than water often being neglected in wetting experiments. Gold is variously described 

as 'hydrophilic', 'semihydrophobic', or 'slightly hydrophobic'; in reality gold is 'hydrophilic', but it is 

also 'oleophilic', thanks to its diffuse d electrons, which are able to stabilise adsorbates by van der Waals 

interactions (which are masked by directional dipoles on oxide-covered metal surfaces), as well as more 

polar interactions (it is '5+ve' when 5-ve species are present at the surface). Biological molecules, 
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which contain a large number of hydrocarbons, but also a wide variety of polar groups, are therefore 

able to bind to gold through a wide variety of weak interactions. This rationale is supported the result 

in figure 4.3.1 on page 154 that show's that cysteine mutants of LH2 do not fare significantly better in 

terms of binding than wildtypes: Once a large protein such as LH2 has begun' to adsorb onto a gold 

surface, it is likely to become kinetically trapped, because there are a large number of local energy 

minima on the interaction potential that prevent the proteins from reaching the thermodynamically most 

stable arrangement, i.e. cysteines down. 

In order to have a better degree of control over orientation during the immobilisation process, there

fore, it is suggested that specific SAM-biomolecule interactions are more viable than using cysteine

functionalised proteins on gold. Of those investigated, OEO- and hydrophobic SAMs show the best 

resistance to LH2 adsorption, while the activated ester, C 11 COO-*, demonstrates the best retention of 

LH2, due to covalent attachment. 

4.4.2 Amide-Stabilised OEO films 

As can be seen from the four SPR spectrographs in figure 4.3.4 on page 157, the amide stabilised 

hydroxy-terminated OEO-SAM, '1', performs consistently as well as, if not better than conventional 

CllE030H ('c') films at resisting protein. The ammonium-terminated molecule '2' was designed to 

immobilise proteins, and so demonstration of multiple proteins binding to this surface suggests that it 

is a good candidiate for directed protein immmobilisation. Moreover, the data show that the inclusion 

of amide functionalities increase the stability of 1 and 2 in the presence of solution-phase thiol, as 

compared with films of c. However, the degree by which stability is increased is greater when there 

are two intrachain ami des (e.g. in 2), and that little increased stability is afforded in the case of 1 as 

compared with c. Intermolecular interactions contain both repulsive as attractive terms, and the former 

is embodied by the concept of steric clashes: molecules have a finite size. Dipole-dipole and H-bonding 

are both dependent on direcion, and are characterised by having an optimum distance of interaction (for 

instance, the H-bonding in water ice, which causes its decreased density as compared with liquid wa~er). 

It might be the case that, as well as providing a further stabilising effect, there is a repulsive ineraction 

which reduces the stability lower than might be expected. In the case of 2, the additional intrachain 

amide group may lead to a cooperative effect that renders it considerably more stable than 1. In order to 

assess whether this is the case, future experiments might consider additional units. 
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4.4.3 Patterning LH2 

Clear patterns of LH2 sought by the (presumed) photooxidation of a CllE030H SAM and the intro

duction of a cysteine mutant strain initially proved elusive. At the time, the presence of a competing 

photochemical process, the photodegradation of the EO moiety to yield aldehydes and carboxylic 

acids demonstrated in Chapter 3, subsection 3.3.2 on page 122, was not known. Due to the fact that 

photooxidation of the CllE030H SAM has been shown to proceed much more slowly than previously 

described, it is unlikely that the film would have fully photooxidised to yield sulfonates within the 

timeframe of the experiment. Furthermore, the potential for aldehydes to drive the attachment of 

thiols by the formation of (hemi)thioacetals, as described in subsection 3.3.3 on page 126, was also 

not known. It is possible that either or both of these effects could have interfered with the patterning 

process initially. When investigating the attachment oftriftuoroethylamine (TFEA) to the photodegraded 

CllE030H SAM, as presented in subsection 3.3.2 on page 122, it was discovered that attachment is 

very much dependent upon the exact protocol employed. Samples which were treated identically to 

those shown to attach TFEA did not register a peak in the F Is spectrum, in contrast to those spectra 

shown in figure 3.3.10 on page 124, which showed a clear Fls peak that has been interpreted at showing 

successful attachment*. Therefore, if the OEO-SAM had been photo degraded, yielding aldehydes, it is 

possible that either the protocol employed or the buffer conditions could have caused the adhesive effect 

of the aldehyde to be nulled, possibly an unwarranted further oxidation to a carboxylic acid. Other 

than ClOCOO-*, most SAMs were shown to bind LH2 very weakly, and this attraction was quickly 

reversed by the introduction of a detergent or high salt content. If the aldehydes were converted to 

another functionality, e.g. a carboxylic acid or hydroxy group, then the binding of LH2 would not be 

specific. A further complication arises if a (presumed) photooxidised C 11 E03 OH SAM is immersed into 

a contrasting thiol, e.g. ClOCOOH in order to activate it by the EDC-NHS method (forming ClOCOO-*), 

because hemithioacetals may be formed. 

The SPR traces presented in 4.3.1 on page 154 suggest that, in the case of LH2 at least, thiolated 

biomolecular complexes only exhibit a marginally increased binding compared to wildtypes that have 

no native cysteines. There are good reasons why this may be generally true for other proteins. The 

topographic AFM image shown in figure 4.3.2 on page 155, part (a), may indicate that the biomolecule 

integrity can be compromise by the enhanced affinity of cysteines for defect sites of atomic steps on the 

surface. It is possible that the cysteine mutant is more easily denatured, either due to its altered structure, 

or the cysteines pulling the complex apart. Perhaps the same is true for the cysteine-mutant strain on an 

"'indeed, this was then supported by the attachment of streptavidin and biotinylated IgG 
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aldehyde-rich surface, and this merits further study. Nevertheless, the systematic SPR investigation did 

suggest a viable method of attachment that was in fact successful, and this is presented here. 

The relatively long exposure times required to achieve a good-quality pattern with the perfluorintaed 

SAM on the micron-scale is at odds with the large negative surface potential observed when a fluorinated 

ester is formed at a SAM (j) position, by the reaction of a perfluoroacid anhydride with a CnOH SAM 

(see Chapter 3). However, it is difficult to make a direct comparison, because the former film contained 

an intrachain ester bond, and the extent of the reaction is limited to 50-60 %, whereas in this instance 

the entire SAM is perfluorinated. It has been suggested that perfluorinated SAMs are less polaris able 

than n-alkanes, although evidence of a strong dipole at the hydrcarbonlfluorocarbon boundary has been 

supported by NEXAFS studies12. Penetration of the molecular oxygen to the Au-S interface is also 

crucial. Fluorine can be considered as being isosteric with oxygen when connected to a carbon, but the 

chains in a perfluorinated SAM adopt a helical conformation which increases the effective van der Waals 

radius to 5.7 A, cf. 4.2 A for an all-trans n-alkane SAM; consequently, it is thought that a looser packing 

structure is adopted (Vi x Vi) 12. It is possible that the helical geometry adopted by perfluorintaed 

SAMs retards the penetration of oxygen, leading to a slow photooxi~ation rate. 

Originally, the stability of the perfluorinated thiol against aerial oxidation, and relatively slow micron

scale patterning process were thought to translate to a requirement for a much slower scanning rate 

for the SNP process. Therefore, experiments were carried out to create 'dots', using the lithography 

software to specify an appropriate dwell time (e.g. 4 s at 2 mW). These are ~hown in figure 4.3.9 on , 

page 163. However, it was found that a lithography power and writing speed of lines at settings suitable 

for the NSOM lithography of acid-terminated SAMs was sufficient, as can be seen in 4.3.10 on page 164. 

The optimal settings for SNP of this system was determined to be a scan rate of 0.5 /lm s -1, and a laser 

power output of 2 m W. This is at odds with the required time for micron-scale patterning. In almost 

all SAMs explored for both micron- and nanoscale work, the rates of photooxidation are of the same 

order at both scales. It is possible that the helical geometry allowd facile penetration of oxygen on small 

scales, but that the structural disorder created by lifting a region of SAM that has been partially oxidised 

to a sulfonate retards further penetration en masse. Regardless of the physical basis of this result, it 

suggests that perfluorinated SAMs are good nanoscale p~otoresists, because they photooxidise quickly, 

like acid-terminated SAMs, but have very different surface properties, and are generally much more 

stable e.g. to aerial oxidation. 

- I 
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(a) From the side (b) From the top 

Figure 4.4.15 Cartoons showing the position of available lysine residues from the XRD structure of 
Rhodopseudomonas acidophila LH2-rendered using CHIMERA. 

The 'height' of the nanoscale lines of LH2 might be considered in the context of a solved XRD 

crystal structure of the complex as found in Rhodobacter sphaeroides. Shown in figure 4.4.15 is 

the XRD structure of a trimeric part (i.e. a third of the nonomer) of the complex from the similar 

bacterium, Rhodopseudomonas acidophila, as solved by Papiz et al. 13 . Bacteriochlorophylls are labelled 

purple, and carotenoids are orange. Also highlighted are the positions of lysine residues, in light blue. 

The amino acid sequence of Rhodobacter sphaeroides' LH2 is slightly different (see figure 2.3.23 on 

page 90), but it can be seen that there is a lysine group on the cytoplasmic face. Coordinate data from 

the pdb file used to render this image indicates that the extent of the polypeptide is ",6.2 nm, which is 

the value arrived at by a statistical analysis along each of the lines, depicted in figure 4.3.12 on page 166. 

Rhodobacter sphaeroides LH2 has very similar dimensions. This shows very clearly that the lines are 

made of mono layers of LH2 complexes. 

Through a series of trials it was discovered that biological functionality-namely, fluorescence in the 

spectral region expected-was compromised if the LH2 complex patterns were washed with water. 

This is part the standard cleaning protocol for AFM images of SAMs containing biomolecules, when it 

is desirable to remove salts deposited on the surface by the buffer, to improve the quality of the image. 

However, it is likely that the LH2 patterns presented above contained complexes whose functionality 

had been removed-although this was undetectable by AFM-as it is suggested that the likely cause 

of failure to produce a normal optical response was the unwarranted solvation of BChl Mg2+, which 

would alter the electronic structure of the chromophore and, therefore, its optical properties. Spectro-
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graphs acquired in appropriate buffer indicate that functionality is retained, and a parallel study* has 

shown that patterned samples imaged in biological buffer using a hybrid AFM-confocal system retain 

their functionality at room temperature ... For this particular study, conditions were optimised for low 

temperatures « 1 0 K) in a vacuum cryostat. 

The image shown in figure 4.3.11 on page 165 shows that the amount of biological material on the 

surrounding perfluorinated region is not zero. If the resistance to adhesion of light harvesting complexes 

does indeed arise due to hydrophobic/hydrophilic repulsion afforded by the surrounding surfactant skirt, 

as is supposed, then adsorption may occur by loss of surfactant molecules from the complexes. The 

height of these non-specific ally-bound molecules is the same as the lines, and so they are probably not 

made up of lipids or other residual impurities from the extraction process. Indeed, fluorescence in the 

perfluorinated regions is not zero, suggesting the non-specifically bound molecules are still optically 

active. 

It should be noted that the non-specific adsorption is more widespread along grain boundaries. The 

curvature of the substrate in these regions is likely to lower the integrity of the SAM. Indeed, as has 

been suggested, desorption of constituent molecules is likely to be increased at the grain boundaries. It 

is also possible, therefore, that these regions are less hydrophobic, and the complexes are better able to 

maximise interactions with the gold substrate. 

4.5 Conclusions 

The light harvesting 2 complex (LH2) from Rhodobacter sphaeroides has been successfully patterned 

using photolithographic methods. The successful patterning of functional membrane proteins, with re

tention of biological functionality, has far-reaching implications. In this particular instance, patterning of 

complexes involved in photosynthesis is of interest as a route to novel, 'biokleptic' photovoltaic devices, 

the first step towards which would be the selective immobilisation of biomolecules with preservation of 

structure and functionality. 

Because initial attempts to pattern mutant complexes with substituent cystein~ residues against biom~lecule

repulsive OEO-SAMs did not yield promising results, a wider survey of potential films for the inclusion 

and immobilisation of LH2 was made. It was found that, contrary to an increasingly well-understood 

rationalisation for the patterning of plasma proteins, which has largely ruled out a surface free energy 

·carried out by Nick Reynolds at The University of Twente, Enschede, Netherlands 
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basis for biomolecule repulsion, low energy surfaces (such as are provided by perfluorinated SAMs) do 

in fact retard the irreversible adsorption of LH2. An electrostatic basis was suggested for those surfaces 

that are suitable for the inclusion of LH2, but it was found that immobilisation required the use of an 

activated ester, which would covalent bind the complex at the position of its available lysine residues. 

A previous biomolecule patterning protocol which relied on the (purported) photooxidation of an OEO

SAM did not yield easily obtainable patterns in the case of LH2. It was found that LH2 could be 

patterned by using a very hydrophobic SAM as a resistant surface, and an activated hydrophilic SAM to 

specifically immobilise the polypeptide component of the complex. It may be the case that what is now 

understood to be the photodegradation of the OEO moiety, yielding carbonyl surfaces, is not a suitable 

method for patterning this type of protein, or that the method requires modification to facilitate LH2 

immobilisation. 

The stability of amide-containing OEO-SAMs was explored alongside their protein resistance. It was 

found that such films could easily match the protein resistance of OEO-SAMs that do not contain amide 

groups. It was also shown that there is a relationship between the stability of the film and the number of 

intrachain amide groups it contains, and that the increased stability was more marked for two intrachain 

amides than one, which only slightly increased stability over none. It is suggested that films of this type 

might be used to pattern biomolecules, by photodegradation. 

While seeking to demonstrate retention of biological functionality in LH2, it was found that the complex 

was sensitive to the washing protocol that was employed. Specifically, it has been postulated that 

water, or any other aqueous media not containing the requisite buffer and surfactant, might wash out 

Mg2+ . Assemblies that consist of discrete ionic, atomic and macromolecular components require 

very careful control during integration into other systems. Another perspective might suggest that 

potential biomimetic systems make modifications that would impart greater resilience during patterning 

procedures. For example, chlorin units, whether in natural or artificial light harvesting antennae, might 

adopt Zn2+ as a more stable ion that would resist such wasking procedures. 

The patterning of LH2 presented in this chapter has been modest. Nevertheless, a succesful patterning 

protocol has been developed, and will be useful in informing the direction of future work. 

Some of the work presented in this chapter has been previously published, see Ref 14, while some is in preparation 

for publication, Ref 15 
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Chapter 5 

Conclusions and Future Work 

This work set out to explore the integration of a functional biological structure-a biological light 

harvesting membrane complex-into an artificial self-assembling system, and to do so with directed 

patterning and demonstrable retention of biological functionality. From the outset, it was thought that 

the best approach to this challenge was to develop a clear, fundamental understanding of the nature of 

the artificial systems which could be applied to the integration of biological structures. SAMs had been 

used for patterning proteins, but the exact mechanisms by which they undergo photooxidation remained 

unclear. 

In Chapter 3, a number of significant results were presented from a series of investigations into the action 

of short wavelength light on SAMs. A large body of previous work had shown that SAMs were effective 

photoresists for the fabrication of micro- and nanostructures. Studies of the photooxidation kinetics of 

organothiolate SAMs on gold and silver, by wetting, XPS and SIMS, had indicated that the nature 

of the terminal (ro) functionality played an important role in determining the rate of photooxidation. 

Initial work present aimed to rationalise trends in M-SR photooxidation kinetics on Au and Ag that 

had previously been investigated, by the systematic measurement of surface potentials on the SAMs 

primarily used to make patterns. From the findings, it was suggested that ~he data are supportive 

of a 'hot electron' model of photooxidation, whereby the average kinetic .energy (from a Maxwell

Boltzmann type distribution) of electrons excited by incident light is dependent on the surface potential 

imposed by the SAM. In SAMs with ro functionalities which impose a negative surface potential (such 

as carboxylic acids), the effective work function is increased. The average kinetic energy of electrons 

is not sufficient to allow ejection to the vacuum level, and so the large number of sub-vacuum electrons 

so-formed expedite the photooxidative desorption of the SAM molecules by tunnelling into the M-S 
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(1* antibonding orbital. However, for SAMs which impose a positive surface potential, the effective 

work function is decreased, and so the average kinetic energy of electrons is sufficient for them to be 

ejected to the vacuum level (as photoelectrons). The same pattern can be seen for silver organothiolate 

SAMs that is observable in gold thiolate SAMs. The study was then extended to include palladium 

organothiolate SAMs. While some trends follow those of SAMs made on gold and silver, wetting 

characteristics were observably different for the 'long' hydrophilic co-terminated SAMs. A number of 

physicochemical rationalisations were put forth for the aberrant results, but it is clear that further work 

needs to be carried out to elucidate the fundamental structures of Pd-SR SAMs with different co groups, 

and the mechanism(s) by which they are photooxidised. 

The photodegradation of oligo(ethylene oxide)-terminated SAMs presents a novel, 'one-step' procedure 

for the directed immobilisation of at least some biomolecules. This is extremely promising and suggests 

a very simple solution for the formation of bionomics arrays, or arrays of functional biological struc

tures. There is also the suggestion that this chemistry can be transported onto other substrates. Initial 

exploratory work was presented that demonstrated the possibility of using glutaraldehyde coupling to 

attach thiols to mercaptosilane mono layers on silicon. It was shown that OEO-terminated thiols could be 

attached by this method, and photo degraded to facilitate the immobilisation of fluorinated amines (and, 

it is suggested, biomolecules). A control OEO-terminated thiol attached via this coupling chemistry did 

not show attachment of the amine. This indicates that the chemistry may work, but much further work 

needs to be done to assess its viability as a means to pattern protein on silicon substrates (which, it is 

thought, could be expanded to glass for biofluorescence work). In particular, it should be demonstrated 

that the OEO film density per unit area lies between 0.4-0.6, when protein resistance is greatest. 

While the advances made in patterning LH2 were only very modest, a patterning protocol was eventually 

developed. It was shown that reasonably well-defined patterns, one complex thick, could be formed by 

introducing areas of high or low surface free energy, and introducing capturing groups with particular 

specificity on the areas of high surface free energy. It was demonstrated that the same chemistry 

could be used to form nanoscale patterns. In demonstrating retention of biological functionality, it 

was found that the complexes were extremely sensitive to any washing conditi0!ls. From the perspective 

of future applications, using either a similar 'biokleptic' approach, or with. artificial antennae designs 

perhaps based on synthetic chlorins (i.e. 'biomimetic' structures and devices), modifications might 

be made. For example, Zn2+ might be adopted as a more stable ion than Mg2+ in chlorin units. 

Additionally, porphyrin-based artificial antennae do not have to rely on weak associations between 

polypeptide domains, and structures similar to those in nature can be synthesised to perform a similar 

task for photovoltaic systems. 
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An interesting development regarding the integration of biological light-harvesting systems would be the 

immobilisation of all the discrete components of, for instance, Rhodobacter sphaeroides' photosystem. 

Gradient SAM systems, or 'multicolour' lithography, might be used to specifically place arrays of both 

LH2 and LHl, with or without Re, in arrangements close to, or even deviating wildly from, those found 

in the native membrane architecture. This would provide useful information regarding the efficiency 

of energy migration in biological systems, which would in tum inform the design of artificial systems. 
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