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Summary 

Government financial models, a particular type of deterministic computer model, 

are created in order to estimate the cost of expensive projects with large time 

frames. The model is a function of many inputs, most of which are taken to be 

known. However the value of a small number of inputs X is unknown. Whilst the 

precise value of X is unknown, subjective knowledge about X can be represented 

by a joint probability distribution G(x). As a result of the uncertainty in X, the 

scalar output of the financial model is the random variable, Y. The main focus of 

this thesis is in learning about the uncertainty in Y that results from uncertainty 

in X (uncertainty analysis), and in determining which elements of X are most 

(and least) important in driving the uncertainty in Y (sensitivity analysis). 

In principle both uncertainty and sensitivity analyses can be conducted using 

Monte Carlo. This method requires a large number of model evaluations. We are 

interested in the case where the computer model is too computationally expensive 

to make Monte Carlo practical. We consider a Bayesian approach, which uses the 

Gaussian Process prior for unknown functions in order to make inference about the 

computer model itself, using a small number of model evaluations. We then use 

this information about the structure of the computer model in order to perform 

uncertainty and sensitivity analyses using relatively few runs of the model. 

In this thesis, we adapt the standard Gaussian Process prior in order to utilize 

the additional information we have about the structure of government financial 

models. 'We develop methodology for calculating measures of uncertainty and 

sensitivity based upon a Gaussian Process model. The methodology also utilizes 

the additional structural information within government financial models. Finally, 

we develop elicitation methodology for use in determining the joint probability 

distribution G(x). We provide an example from the Private Finance Initiative. 
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Chapter 1 

Introduction to Government 

Financial Models 

In this introductory chapter we discuss the creation of Government financial mod­

els, and the associated statistical issues. To understand the statistical issues we 

need to motivate the need for financial models. \Ve begin this chapter by dis­

cussing the evolution of private investment in public services, and the impact of 

the Private Finance Initiative (PFI). We then introduce the concept of Value For 

Money (VFM), and finally the need for the Public Sector Comparator (PSC) - a 

detailed Government financial model. \Ve will then introduce the statistical issues 

in Government financial models that we will tackle in this thesis. 

1.1 Private Finance, Public Services 

British governments have for many years sought to move activities away from 

the public to the private sector. This began back in 1979 after the election of a 

Conservative Government under the leadership of Margaret Thatcher. The Gov-

1 



2 Chapter 1: Government Financial Models 

ernment of the time harbored strong beliefs that private financing and ownership 

could increase efficiency, as highlighted in a recent speech given by former chan­

cellor Lord Lawson(38). However, this has been the subject of debate, with the 

Public Services International Research Unit(55) stating that the use of private fi­

nance allowed the Government to implement their 'neo-liberal' economic policies 

of reducing the role of the state, and reducing public sector borrowing. 

The most high profile of Thatcher's reforms of the public sector was without 

doubt the privatization of the utilities, the first programme of its kind in the world. 

The programme began with privatization of the gas industry in 1986, followed by 

water in 1989, and electricity, which began in 1991. However, a wider reform of 

the public services was also evolving, with the private sector beginning to play 

a role in the provision of health, education, transport infrastructure, prisons and 

the administration of the functions of the state. 

Early privately financed projects were designed mainly to evade Government 

imposed expenditure controls. They made use of off-budget finance (locally raised 

extra budgetary and self raised funds) which meant that if a service was contracted 

out it did not count against the body's capital budget. The loophole allowing such 

abuses was quickly closed after a report by Sir William Ryrie, second permanent 

secretary to the treasury, which lead to the "Ryrie Rules". These stated that a 

project funded by the private sector 

1. should go ahead only if it could be demonstrated as more cost effective than 

a comparable publicly funded project; 

2. should result in a corresponding reduction of public spending (although this 

rule was subject to individual exceptions by Ministers). 

The Ryrie Rules are generally held to have provided little incentive to seek private 
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funding (see for example Heald(24)). However, small scale local services such as 

cleaning, catering and refuse collection were a notable exception - these projects 

were successful. 

In an attempt to attract more private investment the second of the Ryrie 

Rules was abolished in 1989. The belief in Government was that public bodies 

needed the additional incentive of off-budget financing in order to consider private 

finance. However, this still did not not stimulate any new flow of privately financed 

projects. The Private Finance Initiative was launched in 1992, and relaxed the 

first of the Ryrie Rules. In the words of the then chancellor Norman Lamont 

as quoted from the House of Commons Treasury Committee report(30), "any 

privately financed project which can be operated profitably will be allowed to 

proceed". The initiative aimed to encourage projects funded directly by the public 

through charges, such as the recently finished M6 Toll motorway, which bypasses 

a busy section of the M6 motorway near Birmingham. However, public sector 

comparisons were still expected for most other types of project. 

The principle of PFI is that a public sector body obtains a service rather than 

an asset. A private sector contractor funds any asset required and is then paid 

for the service provided. This translates as (see House of Commons Treasury 

Committee report(30)) "Government no longer builds roads, it purchases miles of 

maintained highway... it no longer builds prisons, it buys custodial services ... it 

no longer always buys computers and software, but pays for managed IT services". 

Normally, the commissioning body will avoid the need for capital expenditure at 

the beginning of the project in exchange for making payments for the service as 

it is delivered, often over a period of up to thirty years. The private finance is 

temporary: the public sector still pays in the end. 

However, the initiative did not have the effect the Government anticipated, 
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with few large projects (over £5 million in value) commissioned in 1993-1994. 

This lead to a final major effort to force project managers to consider alternative 

methods of funding. The 1994 "universal testing rule" required public sector 

project managers to consider private finance for every project. This final push 

had the desired effect, with a glut of projects commissioned in subsequent years. 

In Table{1.1) we show figures (reproduced from the House of Commons Treasury 

Committee report(30)) detailing estimated expenditure (£m) and the major PFI 

projects signed off during each year for the period 1986 - 1999. 

Year 
1986 
1990 
1992 
1993 
1994 
1995 
1996 
1997 
1998 
1999 

Total ( £m) 
150 
330 
324 
42 
11 

862 
6,064 
1,500 
2,679 
804 

Notable projects (included in total for year) 
Dartford Bridge 

Second Severn Crossing 
Birmingham Northern Relief Road. Skye Bridge 

Royal Armouries Museum 
Lothian Forth Health Board. Northern NHS Trust 

London Underground Northern Line Trains 
Channel Tunnel Rail Link (4,300m) 

Manchester Metrolink. Ministry of Defence projects 
Several hospitals 

National Savings IT. Almond Valley and Seafield Sewage 

Table 1.1: PFI projects: 1986-1999 

By early 2002 about 500 PF[ contracts had been signed, of which about half 

are operational, and at present approximately 15 percent of all publicly sponsored 

gross capital spending is provided by the private sector. The size of projects signed 

off has been varied, but the trend has been toward larger projects with massive 

budgets. Our interest lies in the larger projects, with large timescales. 

1.2 Government Financial Models 

The PFI bidding process is complex and can take a period of years. In the first 

instance the project manager has to investigate if the project is suitable for PFI, 
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before bids from the private sector are analysed, and a preferred bidder selected. 

See HM Treasury publication How to construct a public sector comparator(28) for 

a detailed analysis of the bidding process. The project manager has to decide 

whether to accept the PFI bid outright, to try to negotiate additional services or 

a discount, or to reject the PFI bid in favor of conventional funding. This decision 

is based upon Value For Money (VFM). 

1.2.1 Value For Money 

The Private Finance Initiative was introduced because the thinking in Govern­

ment was that the private sector was more efficient than Government agencies. 

Therefore, the private sector could provide services at a lower cost than conven­

tional means, thus providing the public with Value For Money (VFM). However 

Ball et al.(3) and Froud(17) have found PFI may not offer the advantages that its 

proponents suggest, whilst Monbiot( 42) suggests the entire PFI process is riddled 

with corruption. Heald(25) provides an excellent overview of PFI and the VFM 

case. 

Value for money is the single most important factor in the decision on whether 

or not to accept a PFI deal. Since the use of private finance is no longer constrained 

by the Ryrie Rules, VFM is no longer exclusively based on cost - the additional 

benefits that PFI funding mayor may not provide can strongly influence the 

public body's decision. However, the additional benefits that PFI may provide 

will usually only influence the funding decision if the PFI bid is very close to the 

cost at which the public body estimates they could provide the service themselves. 

Achieving value for money is especially important in very large projects that go 

before Parliament in the form of the Public Accounts Committee (PAC). 

In order to assess if the proposed PFI deal offers value for money, the public 
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sector body needs to assess how much the project would cost if they were to do 

it themselves. They do so by producing a detailed financial model, known as the 

Public Sector Comparator (PSC). 

1.2.2 Public Sector Comparators 

The PSC is the public sector's risk adjusted estimate of the total cost of the 

project, or informally how much it will cost to provide the service using traditional 

funding. It is a hypothetical costing, and not to be confused with a genuine 

Government bid. The PSC is complex, consisting of a detailed timetable of works 

and a series of costs. Due to the time frame of projects it is typically produced 

in spreadsheet format, which minimizes the risk of error and allows the PSC to 

be more easily audited. In the projects that interest us the PSC returns a single 

output, the Net Present Value (NPV) of the project - the total cost of the project 

in terms of current prices. Hence, VFM can be assessed by comparing the NPV 

of the PFI bid with the NPV from the PSC. 

1.2.3 Risk 

The statistical issues concerned with Public Sector Comparators arise from the 

word risk in the definition of the PSC. In a project with a lifespan of decades we 

will have many inherent uncertainties, and the PSC attempts to quantify these in 

terms of additional costs. 

Risks can be sub-divided into two main categories 

1. Overoptimism 

\Vhen making cost assessments the assessors involved tend to consider the 

best case scenario. They make assessments of costs based on the project 
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running smoothly and on time, with no unanticipated problems. Experience 

from past Government projects shows this is rarely the case. 

2. Financial Indices 

Because projects will have a lifespan of years, often decades, quantities such 

as the rate of inflation in future years need to be taken into account in 

producing an estimate of the NPV of the procurement. Figures such as the 

rate of inflation cannot be known for certain and so have to be estimated 

in the modeL \Ve discuss the motivation behind the modelling of financial 

indices, and the associated problems, in section 1.4. 

In some Public Sector Comparators risk is treated in a very basic manner, and 

estimated as a percentage of the total cost of the project. The choice of this 

multiplier is subjective and of great importance; it will almost certainly have a 

bearing on whether or not to use private finance. M onbiot ( 42) suggests that in 

some projects this multiplier is chosen in order to ensure private finance is used. 

However, in some of the larger projects that are audited by the National Au­

dit Office (NAO), one of which is the Ministry of Defence (MOD) Main Building 

Redevelopment (studied in depth later on in this thesis), a more ambitious ap­

proach to estimating risks is used. Adjustments for overoptimism can by made 

by examining the over-run from approval cost on previous relevant projects. The 

magnitude of the adjustment is unknown, but previous projects will provide infor­

mation about the bounds of this multiplier. This task that is becoming increasing 

difficult since a report by the House of Commons Treasury Committee(30) notes 

that the increase in PFI has led to a narrowing scope of reference; that is, there are 

fewer Government funded projects with which to compare potential PFI projects, 

and care has to be taken if a comparison is with a project from the distant past 

since lessons are usually learnt from budget overruns - large overruns from budget 



8 Chapter 1: Government Financial Models 

will usually be investigated by the PAC. 

Uncertainty in financial indices can be taken into account by using past data 

and the subjective knowledge of financial experts. 

A Public Sector Comparator may contain many risks, with very complicated 

models such as the London Underground PSC containing thousands. It is the 

uncertainty in these risks that causes problems in decision making 

1.3 Uncertainty in Computer Models 

It is the uncertainty in the risks that interests us, and the statistical issues associ­

ated with this uncertainty are the focus of this thesis. The statistical issues arise 

from the simple fact that if we are uncertain about some of the inputs into the 

PSC, then we have uncertainty about the model output, the NPV. \Ve also have 

the property that if we input the same series of risks into the PSC we get the same 

answer; if we input different series of risks into the model, we will in general get 

different answers. That is, given known risks, the NPV is deterministic. However, 

given the uncertainty in the risks the NPV is stochastic. 

Government financial models are an example of a computer model. The field 

of computer models has been well studied, with an ever growing literature. A 

deterministic computer model is used to represent a complex system, physical or 

otherwise. Frequently the system is too costly, difficult or impossible to observe 

directly. A financial system, which represents a future cost, is impossible to ob­

serve. The system is represented by a computer model, and studied by a computer 

experiment, a process which involves running the computer code at various differ­

ent input configurations, with the purpose of learning something about the real 

system. The model is an imperfect representation of the system, and resultantly 
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in error, however if we repeatedly run the model at the same set of inputs we 

obtain identical output(s). 

Computer experiments are often expensive to run, even with modern compu­

tational power and supercomputers. As a result we only have a small number of 

model runs available - the precise number frequently dictated by resources rather 

than requirements. Inference about the system, therefore, needs to make efficient 

use of the available runs of the model. 

One inference that is often of interest is to use the small amount of data in order 

to make inference about the whole function, i.e use the data to make inference 

about the output at the infinite (for continuous inputs) number of untried inputs. 

\Ve shall develop methodology in this thesis that allows us to do this efficiently, 

although this is only a secondary aim of this thesis. 

Our main interest lies in investigating the uncertainty in the model output 

that arises due to the uncertainty in the model inputs. This area is known as 

uncertainty analysis. Since the inputs are random variables, then resultantly the 

output(s) are also random variables. If we are able to provide upper and lower 

bounds on each model input, then these provide bounds on the model output(s). 

For a complex model, this would need to be explored numerically. A more thor­

ough analysis requires the (usually) subjective information about the model inputs 

to be represented via a joint probability distribution. Not only can we provide 

more accurate bounds on the output, but we can assess how probable a specific 

value of the output, or a range of values for the output are. This will also require 

numerical methods. For our financial models we have to compare the distribution 

of the NPV with a bid price from PFI. \Ve discuss the area of uncertainty analysis 

in detail in chapter 2. \Ve discuss both summaries of the output that we wish to 

calculate and we describe common methods of evaluating these summaries. 
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Our second primary aim is to quantify which of the model inputs are most and 

least influential in driving the variation in the model output(s). This is important 

since it may allow us to address failings of the model with better or more detailed 

modelling, or allow us to simplify the model if the magnitude of some of the inputs 

has little effect on the output(s). This area is known as global sensitivity analysis 

and we introduce this, and methods for assessing sensitivity in chapter 2. 

For complex models, uncertainty and sensitivity analysis require numerical 

methods. Monte Carlo is one such method, and this typically requires many 

evaluations of the model. This approach is not practical for a computationally 

expensive model. A method that we review in chapter 3 of this thesis, non­

parametric regression using Gaussian Processes, has sought to use features of the 

model in order to improve efficiency. For some problems, this method is able to 

reduce the required number of evaluations by an order of magnitude. \Ve will use 

the special features of financial models in order to further improve the efficiency 

of this method. 

In this thesis we shall develop methodology for: 

1. function approximation; 

2. uncertainty analysis; 

3. sensitivity analysis. 

\Ve will develop methodology that can achieve accurate results for high dimen­

sional functions, using relatively few model evaluations. 
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1.4 Uncertainty in Financial Indices 

One of the major factors that induces uncertainty in financial models is the long 

timescale of the project. Even if all other inputs within the model were known, 

financial indices would induce substantial uncertainty. This is since although 

prices may be known when the model is developed, the cost of component x in 

year y of the project is unknown. The prices of commodities change over time, 

with prices usually increasing - a property known as inflation. The price in year 

y will be cx for some unknown multiplier c. 

If all prices increased at the same rate over time, inflation would not be a 

problem since the relative increase in price, the rate at which component x in­

creases in price relative to prices in general, would be zero. However this is not 

the case (consider for example current oil prices which have increased in price at 

far above the rate of inflation). This illustrates the need to model how the prices 

of a PFI project will change relative to a general measure of inflation. \Ve do so 

by considering two financial time-series, the general measure, which in this thesis 

we will measure using the GDP deflator, and Tender Price Inflation (TPI), which 

measures the price changes of the project. \Ve will need to model these in the 

long term - over the full period of a project (which is frequently decades). The 

series can be taken to be independent of each other, but serially correlated with 

themselves. \Ve will only have a small amount of data on these series, however 

the subjective information of an expert is available. 

The final aim of this thesis is to 

4 develop methodology for modelling inflation in the long term, when we have 

only a small amount of data on these series. 

The methodology that we develop in order to achieve this final aim is independent 
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of the methodology developed to achieve aims 1-3. Resultantly, this work will be in 

a self contained chapter within the thesis. We bring together all the methodology 

in an example chapter at the end of the thesis. 

1.5 Application: MOD Main Building 

This work is supported by the National Audit Office (NAO). The NAO are re­

sponsible for auditing the Public Sector Comparators arising from projects com­

missioned by central Government, and reporting to Parliaments Public Accounts 

Committee. \Vork on the ~IOD Main Building PSC began in 1998, and the project 

was signed off in 200l. 

\Ve also consider the PSC that was developed in order to estimate the cost of 

redeveloping the London Underground. This represents another 30 year project, 

but with a far larger scope and huge budget. The PSC developed for this project 

contains thousands of unknown inputs. Although we will not study this PSC in 

detail as an example, we will discuss how the methodology we have developed in 

the thesis could be used for a project of this magnitude. 



Chapter 2 

Introduction to Uncertainty and 

Sensitivity Analysis 

In chapter 1 we gave a general introduction to Government financial models, 

and why they are created. In this chapter we consider the mathematical issues 

concerning inference that we encounter with computer models, and the associated 

literature that has addressed these issues. 

\Ve first describe the problem of uncertainty analysis in the context of computer 

models, before considering the more complex issue of sensitivity analysis. 

2.1 Uncertainty Analysis 

Computer models are a mathematical representation of a complex system (physi­

cal system or otherwise). For a deterministic computer model, we have two sources 

of uncertainty that we may wish to quantify . 

• Analysis of model inadequacy 

The model usually represents a simplification of the system, and this typi-

13 
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cally induces systematic errors between the model output and reality. We 

may wish to quantify these differences. 

• Parameter value uncertainty 

Often the inputs to the computer model are not fixed, and can take many 

different values. \Ve may have uncertainty about what the true values of the 

inputs should be. A parameter value uncertainty analysis is concerned with 

how uncertainty on the model inputs propagates through the model to the 

model outputs. 

Government financial models are concerned with estimating a hypothetical future 

cost, and as a result we will never have useful data to compare with the output of 

our computer model. Therefore, we cannot hope to thoroughly assess model inad­

equacy. We may, however, be able to identify some obvious flaws or inadequacies 

in the model. 

In Government financial models, the model inputs all represent future values, 

which are usually individual costs or inflations. Since we are dealing with the 

future, we have considerable uncertainty about many of our model inputs. As a 

result of this, we may have considerable uncertainty about the model output(s). 

Our interest therefore lies in parameter value uncertainty analysis. 

\Ye now introduce some notation, and provide a formal definition of what is 

known in the computer models literature, as the uncertainty distribution. 

2.1.1 Notation 

\Ye define the inputs, which are the parameters in our financial model to be the 

p dimensional vector x, and the deterministic scalar output of the model to be y. 

We represent the computer code by 7](.) and the relationship between the inputs 
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and the output is given by 

Y = 1](x). 

15 

(2.1) 

The true input configuration is the random variable X, and as noted in (2.1), the 

uncertainty in the model inputs induces uncertainty in the model output, so the 

corresponding output is the random variable Y, where 

Y = 1](X). (2.2) 

We now need to quantify the uncertainty about the true value of each of the 

inputs in the model. \Ve assume that our knowledge about X is represented by the 

joint probability distribution G(x). In the absence of any data, G(x) represents 

our subjective beliefs about X and is formed using probability statements from 

an expert. For now we presume G(x) is known from objective or subjective 

information, but we consider the (partial) elicitation of G(x) in chapter 6. Finally 

we denote the sample space of X by X. 

For some computer model represented by 1](.) and some unknown true input 

X with distribution G(x), the distribution of Y is the uncertainty distribution. 

In uncertainty analysis we want to make inferences about Y. 

2.2 Classical uncertainty analysis 

For a very simple computer model, 1](.), it may be possible to obtain summaries 

of Y analytically by integrating over the joint distribution G(x). Some useful 

measures for expressing our uncertainty about Yare the expectation, variance, 

and distribution function. 
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These summaries require us to calculate the integrals 

E(Y) - 1 TJ(X) dG(x), 

E(y2) - 1 TJ(X? dG(x), 

Fy(s) - 1 I{TJ(x) ~ s} dG(x), 

where I { .} denotes the indicator function. 

(2.3) 

(2.4) 

(2.5) 

However, for all but the most trivial of problems, an analytical approach to 

summaries of Y is not feasible. The function, TJ(.)' is sufficiently complex in 

many models from engineering, chemistry, physical science and geography for 

us to regard TJ(.) as a black box. We supply the model inputs, x, and after 

computationally intensive calculations, performed by a computer, Y is returned as 

the output. 

Government financial models are more transparent than models of physical 

systems. The output is a complex function of costs and financial indices, and we 

may well have information about groups of inputs which cannot possibly interact. 

However, these models are still far too complex for us to be about to calculate 

summaries of Y analytically. We can think about the computations within a 

financial model as comprising of a series of black boxes. 

The classical approach to uncertainty analysis uses brute force in order to 

calculate summaries of Y, using Monte Carlo techniques. We draw a random 

sample of inputs Xl,X2,." Xn from G(x) and evaluate the function at each of these 

points in order to obtain corresponding outputs Yl = TJ(xd, Y2 = TJ(X2) , ... Yn = 

7](xn). We estimate summaries of the distribution of Y from this sample of model 

evaluations. For example our integrals, {2.3)-{2.5}, are estimated by their sample 
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equivalents 

E(Y) 
1 n 

- -L 7J(Xi) , 
n i=l 

(2.6) 

E(y2) 
1 n 

- - L 7J(Xi)2, 
n i=l 

(2.7) 

Fy(s) 
1 n 

- - LI{7J(Xi):::; s}. 
n i=l 

(2.8) 

However, for a deterministic model, classical Monte Carlo techniques can be inef­

ficient. Often we find that the variability in Y is dominated by only a few of the 

components of X. If we only have a few active inputs, and m of our inputs are 

dormant, the design points are projected onto a p- m dimensional hyperplane. In 

a random design, if this projection induces some clustering of design points, then 

some parts of the design space may be sparsely covered. Resultantly, more design 

points may be required for precise inferences than with more efficient designs. 

An alternative to random sampling was proposed by McKay et al.(40) for use 

in deterministic computer models. Latin Hypercube Sampling (LHS) is a stratified 

sampling technique that ensures the margins are well covered. In its simplest form, 

where the inputs are all independent or we have independent vectors of inputs, 

we partition the range of each of the marginal distributions xi into n intervals of 

equal probability. We then randomly sample one value from each interval. The Xl 

values are paired at random and without replacement with the X2 values in order 

to gives us n pairs. These pairs are combined randomly and without replacement 

with X3, and we continue in this manner until we have our set of n design points. 

In the more complex case when the inputs or input vectors are correlated, the 

restrictive pairing technique of Iman and Conover (31) can be used to induce the 

correct rank correlation structure. 

\Ve illustrate the advantages of a LHS by way of a simple two dimensional 
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example: 

Y = T}(X, z), (2.9) 

where the trues values of x and z are unknown. We assign N(O, 1) distributions 

to the inputs and generate 20 design points using LHS and random samples. 

\Ve show the design points generated using these two methods in Figure (2.1). 
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Figure 2.1: Design points under LHS (crosses) and random (circles) designs 

Now if we suppose that the model output is insensitive to z, then (2.9) reduces 

to a function of one uncertain input, 

Y = T}(x). (2.10) 

Our design points are now projected down onto the x-plane, which we show in 

Figure (2.2). \Vhen the points from the LHS are projected from the 2 dimensional 

sample space onto the x space, the n = 20 intervals of equal probability are 

retained. The random sample covers the design space well 1 standard deviation 
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either side of the mean, but only covers the tails sparsely. Some of the design 

points from the random sample provide us with very little information. 

Suppose that for a problem of p uncertain inputs we chose a p dimensional 

Latin hypercube design. If the output is insensitive to m of these inputs, then the 

design points are projected onto an p - m dimensional hyperplane. Resultantly 

each equal probability interval now has many points, rather than a single point. 

vVhen we have input sparsity, we find that in general a Latin hypercube sam­

ple contains more information than a random sample of the same size. In their 

empirical work McKay et al.(40) found that Var{E(Y)} and Var{Var(Y)} were 

smaller when using LHS compared with a random sample. It is this reduction in 

variance that makes LHS preferable to a random sample. Saliby and Pacheco(60) 

and Helton and Davis(27) have also undertaken numerical work in this area. 

2.3 Sensitivity Analysis 

Sensitivity analysis, in the context of computer models, is concerned with under­

standing how changes in the inputs, x, influence the output, y. There are two 

types of sensitivity analysis: local and global analyses. 

• Local sensitivity analysis is concerned with small changes about some central 

case of interest, Xo. Local sensitivity about one location may be completely 

different from that about another location. A local sensitivity analysis is 
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based upon partial derivatives of 1](.), with respect to the inputs, evaluated 

at xo. 

• Global sensitivity analysis considers more substantial changes in the inputs, 

and is useful when our knowledge about the 'true' input configuration is more 

vague. \Ve regard the input vector as a random variable, with distribution 

G(x). A global analysis attempts to answer the question; 'how important 

are the individual elements in X with respect to the uncertainty in 1](X)'? 

'We only consider measures of global sensitivity analysis. 

Measures of global sensitivity analysis vary in both computational burden, and 

in the quality of information they provide. Unsurprisingly, the more sophisticated 

measures of global sensitivity analysis require many more evaluations of 1](.) than 

the more basic techniques. 

The most basic measures of global sensitivity analysis are screening techniques, 

discussed in detail in Campo longo, Kleijnen and Andres{7}. These measures are 

able to attach a qualitative measure of importance to each of the inputs. Mor­

ris( 43) devised methodology that was able to rank the inputs by importance with 

just r{p + 1) evaluations of 1]{.), where 5 < r < 15. However, the method is 

based on just the main effects, where the main effect of input Xi is the variability 

in 1](.) due to input Xi after averaging over all other variables. As a result the 

method may rank the inputs, in terms of their total importance, incorrectly. The 

method was extended by Campolongo and Braddock(6) in order to take into ac­

count main effects and first order interactions, but at an increased computational 

burden (n = O(p2)). 

The relatively small computational burden of screening techniques is an attrac­

tive feature. However, knowing just that input Xi has more importance than Xi, 

with respect to the variability of Y, is of limited value. For this reason, screening 
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methods are often used as the first stage of a two staged analysis (see for ex­

ample Campo longo, Tarantola and Saltelli (8)), when the dimension of X is too 

large for more sophisticated methods. The second stage of the sensitivity analysis 

comprises of a more advanced technique on the reduced set of model inputs. 

Quantitative measures of sensitivity analysis are more useful for a meaningful 

sensitivity analysis. These methods are able to inform us of how much more 

importance Xi has than Xi with respect to the variability of Y. However, these 

require many more function evaluations than screening methods. \Ve consider two 

of these measures further. 

2.3.1 Main Effects and Interactions 

One of the widely used measures of sensitivity (Sobol'(62)(63); Jansen, Rossing 

and Daamen(32); Saltelli, Tarantola and Chan(9)(61); Chan et al.(lO)) is based 

on a decomposition of 1](.) into main effects and interactions (2.11). Sobol' termed 

this a decomposition into summands of different dimensions. \Ve write 

p 

Y = 1](x) = E (Y) + I: Zi(Xi) + I: Zii(Xi, xi) + ... + Zl, ... ,p (x), (2.11) 
i=l l$i$i 

where 

Zi(Xj) - E(Y I Xi) - E(Y), (2.12) 

Zji(Xj, xi) - E(Y I Xi, Xi) - Zi(Xi) - zi(Xj) - E(Y), (2.13) 

zii k(Xi, xi, Xk) - E(Y I Xi, Xi, Xk) - Zii(Xi, Xj) - Zik(Xj, Xk) 

zi k(Xj, Xk) - Zi(Xi) - Zj(Xi) - Zk(Xk) - E(Y), (2.14) 

p 

Zl,,,.,p (x) - E(Y Ix) - L Zi(Xi) - L zii(Xi, xi} - ... - E(Y}.(2.15) 
i=l l$i$i 
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The term Zi(Xi) is referred to as the main effect of variable Xi, Zij(Xi, Xj) as the 

interaction between variables Xi and Xj and so on. 

Oakley and O'Hagan(51) show that we find the terms in (2.11) by integration. 

Defining X_I and x_ij as the vector containing all inputs but the ith and all except 

the ith and ;th respectively, then 

E(Y) - 1 TJ(X) dG(x), (2.16) 

Zi(Xi) - 1-. TJ{x)dGx_1IXj{x-dxi)-E(Y), (2.17) 

Zij{Xi, Xj) - l-ii 1](x) dGx _ 1J IXij (X_ijIXij) - Zi(Xi) - Zj{Xj) - E(Y), (2.18) 

where following Oakley and 0 'Hagan, we use X -i to denote the space of possible 

values for X_I! and Gx _tI Xi (X-dXi) denotes the conditional distribution of X_I 

given Xi' The higher order terms of (2.11) follow similarly. Chan et al.(9) note 

that typically as the order of the integral increases, then ZI •... ,r(Xl, ••• x r ) -- a. 
That is, the high order interactions are often negligible compared with the main 

effects and low order interactions. 

If we first scale our inputs so that they have the same range (we re-scale our 

inputs to [a, 1]), plots of main effects and first order interactions over the range 

of their marginal distributions provide a powerful graphical tool for assessing the 

influence of our inputs with respect to the magnitude of y. For unbounded inputs 

we might need to consider an a% (e.g a = 99%) interval and scale these to [0, 1]. 

2.3.2 Variance Based Methods 

\Vhilst the decomposition into main effect and interactions, (2.11), is able to 

identify the role of Xi in the function TJ{.), it is unable to assess the importance of 

the uncertain quantity Xi with respect to the uncertainty in Y. The importance 
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of Xi depends on both the distribution of Xi, and the role of Xi in the function 

TJ{· ). 

\Ve illustrate with the function 

(2.19) 

where we have independent inputs, and Xl f'V U{ -1,1) and X2 '" N{O, 1). We 

re-scale the inputs and plot the main effects in Figure (2.3). 
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Figure 2.3: 11ain effects of Xl (bold) and X2 (dash) 

From Figure (2.3) we can see that input X2 has most influence on the magni­

tude of the output. However, Z2{X2) shows the most rapid rate of change in the 

tails, where X 2 has little probability. In order to assess the importance of Xl and 

X 2 it is clear that we need to take into account their respective marginal distribu-

tions. Our second quantitative measure does so, using variance in order to assess 

the importance of the uncertain quantity Xi with respect to the uncertainty in Y. 

Variance based methods of sensitivity analysis as recently reviewed by Chan 
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et al. (1O) quantify the sensitivity of the output Y to the model inputs in terms 

of the reduction in the variance of Y. Oakley and O'Hagan (51) have formally 

justified this approach in a Bayesian setting in terms of quadratic loss. 

For independent inputs, we can decompose the variance (Sobol'(63)) as 

q 

V = Var[Y) = J 1](X)2 dG(x) - [E(YW = LVi + L Vij + ... + Vi ..... q , (2.20) 
i=l l~i~j 

where 

(2.21) 

(2.22) 

are known as the partial variances of the main effect Zi{Xi), the interaction Zij(Xij) 

and so on. With some dependence between the inputs we can achieve a similar 

decomposition to (2.20) for independent sub-vectors. 

For a variance based approach we have two principal measures of sensitivity: 

Vi = Var [E[Y I Xi]], (2.23) 

is the expected amount by which the uncertainty about Y would be reduced if we 

learnt the true value of Xi' It is referred to in the literature as the main effect 

variance. Since Vi = Var{ Zi(Xi)}, this measure of sensitivity is especially useful 

when the main effects explain most of the variance. 

Our second measure 

VTi = Var[Y]- Var[E[YIX_d], (2.24) 

is the expectation of the variance that remains if we knew everything but the value 



Chapter 2: Uncertainty and Sensitivity 25 

of input Xi. This measure, first proposed by Homma and Saltelli(29), is referred 

to as the total effect variance of input Xi. The measure can be thought of as a 

cheap surrogate for the interaction variances, which some methods for assessing 

these measures (such as FAST, discussed later) are unable to calculate. Total 

effect variances are useful when the interactions are non negligible. Main effects 

approximately equal to total effects suggests little interaction between inputs. 

It is usual to scale (2.23) and (2.24) by Var(Y] in order to obtain main effect 

and total effect indices 

We have the relation 

Sj - Vi/Var(Y], 

STi - VTi/Var[Y]. 

(2.25) 

(2.26) 

(2.27) 

since any interaction between inputs i and j contributes to the total effect of both 

of these inputs, an interaction between i,j and k contributes to the total effect of 

all three inputs and so on. 

For independent inputs (see Chan, Saltelli and Tarantola(9», Vi is given by 

the integral 

(2.28) 

with interaction variances requiring similar integrals. 

A variance based sensitivity analysis, in conjunction with plots of main effects 

and interactions allows us a good insight into the 'workings' of a complex computer 

model, even though we treat the model as a 'black box'. However, an analysis 

of this form is very computationally expensive, since all our integrals must be 
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evaluated numerically and require many evaluations of 7](.). In the next section 

we discuss some of the classical computational methods for this analysis. 

2.4 Classical Sensitivity Analysis 

In practice the computation of main effects and interactions is a time consuming 

process. We see that the main effect (2.17) and first order interaction (2.18) 

both require the evaluation of a multidimensional integral (with p - 1 and p -

2) respective dimensions. Sensitivity indices require additional integrals to be 

calculated, although these are computationally cheap given the main effects and 

interactions. 

As with calculations for uncertainty analysis, we can apply a brute force ap­

proach to evaluate these integrals. We find Zi(Xi) by fixing Xi at various values 

over its range and evaluate E(Y/Xi) by sampling from X-I for each value of Xi. 

The precision with which we estimate E(Y/Xi) for each Xi is determined by the 

size of our sample. Given Zi(Xi) evaluated uniformly along Xi, we can evaluate Vi 

fairly cheaply using Simpson's rule. 

However, if our vector of inputs is large, this is a computationally expensive 

process even if 7]{.) is a cheap function to evaluate. Various authors have addressed 

this, by implementing more efficient procedures, however the methods which we 

now discuss are only able to calculate variance based measures. 

2.4.1 Sobol' Indices 

Sobol'(62) (63) provided a computationally cheaper solution for calculating sen­

sitivity indices. We consider a subset of m of the inputs which we denote Xl and 

let the complementary set of p - m inputs be denoted by X2, where X = (Xl> X2)' 
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The main effect variance corresponding to subset Xl and total effect variance of 

Xl are then denoted as Vxl and VTX1 = V - VX2 respectively, and are the subset 

analogues of (2.23) and (2.24). 

Sobol'(63) proves that for independent U(O, 1) inputs 

VX1 = J T}(x)T}(Xl> x~) dx dx~ - [E(y)]2 

VX2 = J T}(x)T}(x~,x2)dxdx'1 - [E(YW 

(2.29) 

(2.30) 

where in this notation x~ denotes a different point in the sample space of our 

subset of m values from Xl> similarly for x~ and X2. 

Now we consider 2 random points e and e' from the sample space of X and let 

e = (Xl, X2) and e' = (Xl" X2'). Each run of our sampling algorithm then requires 

3 computations, T}(XbX2), T}(XI',X2) and T}(XbX2')' Sobol' shows that 

1 N. 

N L17(ei) p E(Y) 
S j=1 

-+ 

1 N. 

VX1 + [E(YW N L T}(e}T}(XI, X2') p 
-+ 

8 i=1 
1 N. 

V + [E(y)]2 - L 17
2 (ej) p 

Ns j=1 -+ 

1 N. 

Vx2 + [E(y)]2 N L T}(~)T}(XI" X2) P 
-+ 

8 j=1 

where p denotes convergence in probability as Ns -+ 00 
-+ 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

If we let T}(Xb X2') = T}(Xi' X_I) and T}(Xl" X2) = T}(X-I, Xi) we can compute 

the main and total effects of input Xi' \Ve can see from the form of (2.31)-(2.34) 

the method easily generalizes to any set of independent inputs, regardless of their 

marginal distributions. We use Ns in this notation to denote the very large sample 
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required using this procedure. 

Jansen, Rossing and Daamen (32) also considered partitioning the parameters 

into two subsets and found their own 'Top Marginal Variances'. We give the ex­

pressions for the main and total effect variances below. We again have to evaluate 

the expectations via Monte-Carlo, requiring a total of NJ model evaluations. 

VX1 - V -1/2E{1](xl!x2) -1](Xl>X~)}2, 

VTX1 - 1/2 E{ 1](Xl' X2) -1](x~, X2)}2. 

(2.35) 

(2.36) 

The two methods are closely related and from a computational point of view Chan, 

Saltelli and Tarantola(9) state that they are equivalent. However Chan et al. (10) 

show that the method of Jansen at al. is more efficient for calculating total effect 

indices whilst the method of Sobol'(62)(63) is more efficient when calculating main 

effects. 

The winding stairs sampling scheme considered in Chan, Saltelli and Tarantola 

is an efficient method of calculating both these sets of sensitivity indices. It can 

find main effect, total effect and indeed all interaction variances with a total of 

pNws model evaluations, where p is the number of model inputs. The method 

can also be easily extended to handle some dependence between inputs. 

2.4.2 Fast indices 

An alternative method of estimating variance based sensitivity indices is the 

Fourier Amplitude Sensitivity Test (FAST), which dates back to the early 70's. 

FAST was devised by Cukier et ai. (13), who wanted to learn about the sensitiv­

ity of systems of coupled reactions described by a series of differential equations. 

However, a classical sensitivity analysis was impractical due to a restriction on 
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the number of runs of their code. 

The method as devised by Cukier et al.(13) and further developed by Cukier 

and Schuler(14) Cukier, Levine and Schuler (14) and Koda et al. (37), involves 

a mono-dimensional Fourier decomposition along a curve exploring the sample 

space, X. The curve is described by the series of parametric equations 

(2.37) 

where s is a scalar varying over -00 ::5 s ::5 00 and for an appropriate set of 

transformation functions Gi , and integer frequencies Wi' 

As s varies the model parameters all change simultaneously along a curve that 

systematically explores X. Each Xi oscillates periodically at the corresponding 

frequency Wi and the output y shows different periodicities combined with the 

different frequencies Wi. If parameter i has a strong influence on the output the 

oscillations of y at Wi are of high amplitude, and this forms the basis of the 

sensitivity measure. The details of the method are complex and not given here, 

see Saltelli, Tarantola and Chan(61) and the references therein for a detailed 

description. 

The literature on FAST is sparse until recent years, probably owing to its 

complexity and inability to compute interaction variances in its original form. 

This restriction meant that it was of limited use unless (2.11) simplified to 

p 

y = 7J(x) ::::;: E (Y) + 2: Zi(Xi), (2.38) 
i=l 

and for this form, simpler methods of sensitivity analysis are available. 

However, in the recent past two developments have occurred that have greatly 

increased the literature on FAST: Saltelli, Tarantola and Chan(61) extended the 
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methodology so that it can now compute total sensitivity indices; online software 

for sensitivity analysis using FAST has become available. 

The original version of FAST required N FAST runs of the model, where N FAST < 

Ns , NJ , Nws , which are roughly equivalent. However, the computation of total 

sensitivity indices increases the required sample size by a factor of p to pN FAST, 

although this is still more efficient than the other methods discussed. The main 

disadvantages of FAST are its inability to calculate interaction variances, and an 

inability to handle some dependence between the inputs. 

2.4.3 Two Stage Approaches 

FAST and the methods of Sobol' and Jansen et al. require too many evaluations 

to make a full variance based sensitivity analysis practical when the number of 

parameters, p, is large. For problems with many inputs, a quantitative sensitivity 

analysis has to be conducted in two stages. 

Firstly, a screening method, as described earlier in this chapter, ranks the 

inputs in order of importance and the less important variables are set at some 

nominal level. The number of inputs to eliminate in the first phase of the analysis 

seems to be somewhat arbitrary, and influenced more by computational resources 

than genuine subjective information about the number of active inputs. The 

second stage uses a variance based method to assess the sensitivity of the model 

output to the reduced set of parameters. 

The results from the quantitative sensitivity analysis of the simplified model 

are only an approximation to the full model. Obviously some care needs to be used 

if we wish to use these results to infer properties of the full model. Campo longo, 

Tamntola and Saltelli (8) found that in their two stage analysis, the ranking 

method placed the inputs in a different order of importance to the variance based 
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method (based on the reduced set of inputs). 

2.4.4 Other methods 

Alternative methods for global sensitivity analysis are available that require many 

fewer model evaluations than Sobol' and FAST, but they require strong assump­

tions about the form of 7](.). These can be classified as regression based measures, 

and are described in detail in Helton and Davis(26). 

Regression based methods such as Standardized Regression Coefficients (SRC), 

Spearman Correlation Coefficients (SCC) and Partial Correlation Coefficients 

(PCC) have all been used to assess sensitivity. All these measures are based 

on the strong assumption that the computer code is well approximated by a lin­

ear model. They produce reliable results provided that the assumed linear model 

approximates the computer model well, with a model coefficient determination, 

R2, close to 1. This is a more restrictive form of (2.38), where not only are in­

teractions assumed to be small, but 7](.) is assumed to be well approximated by 

a linear function of the model inputs. The proportion, 1 - R2, of the variance is 

not explained by the regression, so the sensitivity analysis is only approximate. 

In practice we will often find our complex model is not well approximated by 

a linear model. However, a parallel case exists for non-linear models, which can 

be assessed using similar methods based on the rank transform. These methods 

require a high R2 on the rank scale. In using the rank transformation the restric­

tive assumptions under the linear model are relaxed somewhat however in order 

for R2 to be large, these methods require the relationship between model inputs 

and output to be monotonic. 

The final measure we review is the Correlation Ratio (CR), which has been 

used extensively to assess global sensitivity (see for example McKay(39) and 
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McKay, Morrison and Upton(41)). 

The CR between Y and Xl is defined as 

GR(y' X ) = Var[E{YIXdl 
, 1 Var[Y] ' (2.39) 

where Xl denotes a subset of inputs. 

The CR is closely related to Sobol' indices, for example Si given in (2.25) is 

equal to GR(Y,Xi ) and Sij given in (2.26) is equal to GR(Y, {Xi,Xj }). McKay(39) 

also shows that the CR is closely related to regression based methods, with regres­

sion based methods corresponding to a special form for the expectation E{YIXd. 

However, the CR requires many observations in order to evaluate each expecta­

tion, E{YIX t }, and resultantly requires more observations of 7](.) than Sobol' 

indices or FAST. 

2.5 Computationally Expensive Models 

Complex computer models, which take minutes or even hours to compute a single 

model evaluation require a novel approach. Sacks et al.(57)(58)(59) and then 

Currin et at.(15) and O'Hagan(53) in a Bayesian context, noted that although 

the relationship between model inputs and the output(s) is complex, and 7](.) 

is regarded as a 'black box', the function may well be smooth. As such the 

output 7](x) and some adjacent output 7](x'), will be correlated. Therefore the 

evaluations, {7](xd, ... 7] (xn)} , convey some information about 7](.) as a whole, 

which a conventional analysis does not exploit. 

The approach in these (and other) papers is to build a statistical model which 

emulates the computer model. The approach is similar in spirit to the parametric 

regression based methods discussed earlier, since it also uses a parametric ap-
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proximation. However, the approach differs since it allows the local correlation 

structure to modify the parametric approximation, such that the statistical model 

smoothly interpolates the evaluations, {7J(Xl),'" 7J(xn )}. 'With enough data ob­

served the statistical model 'becomes' the computer model. Furthermore, the sta­

tistical model is of a simple enough form for us to be able to calculate measures 

of uncertainty and sensitivity. We are able make inferences about the computer 

model based upon these measures. 

2.5.1 Overview of Remaining Chapters 

In chapter 3 we develop a Bayesian model of the form described above, based 

upon the work of 0 'Hagan(53). vVe also examine the extensions developed by 

o 'Hagan (54) , Haylock and O'Hagan(23), Oakley(47) and Oakley and o 'Hagan (49) 

(51) that allow us to calculate uncertainty and sensitivity measures. 

In chapter 4 we consider the special kind of structural prior information that we 

have in Government financial models. vVe consider extensions to the methodology 

of chapter 3 for when we have non interacting groups of inputs, for the cases of 

both known and unknown groups of inputs. 

In chapter 5 we develop the extensions that are required in order to calculate 

uncertainty and sensitivity measures for our models of chapter 4. 

In chapter 6 we consider the elicitation of an autoregressive model, in order to 

model inflation rates in the future. This work is motivated by our application. 

Finally in chapter 7 we examine the Ministry of Defence main building re­

development project. We exploit the special structure of the model in order to 

calculate measures of uncertainty using the methodology of chapter 5. 
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Chapter 3 

Uncertainty and Sensitivity 

Analysis for Expensive Functions 

3.1 Introduction 

In this chapter we discuss a hierarchical Bayesian stochastic process model that 

can be used to perform uncertainty and sensitivity analysis for computationally 

expensive computer models. The model formulation dates back to the late 70's 

when Blight and Ott(5) and 0 'Hagan (52) first applied Gaussian Process modelling 

to regression problems. The technique was modified and applied to computation­

ally expensive, deterministic computer algorithms by Sacks et al.(59) and in a 

Bayesian setting by Currin et al.(15). Further developments by O'Hagan(54), 

Haylock and O'Hagan(23) and Oakley and O'Hagan(49) extended the Gaussian 

Process model to perform uncertainty analysis and Oakley and O'Hagan(51) de­

veloped methodology to allow probabilistic sensitivity analysis. 

The contribution that these and other papers made to the methodology in this 

area is significant and relates heavily to the content of subsequent chapters of this 

35 
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thesis. We will take time in the remainder of this chapter to develop the Gaussian 

process model and the extensions that allow uncertainty and sensitivity analysis. 

\Ve develop the Bayesian model for approximating expensive functions in sec­

tion 3.2. We go through the full prior to posterior analysis using the methodology 

developed by O'Hagan(52) in sections 3.2.1-3.2.2. We discuss alternative deriva­

tions in section 3.2.3. vVe develop a small section of original work that examines a 

flexible correlation function in 3.2.4, and we discuss the choice of design points in 

3.2.5. We go on to examine how this approach can be used to calculate measures 

of uncertainty in section 3.3 and measures of sensitivity in section 3.4. 

3.2 The Bayesian Model 

Following on from the previous chapter we use TJ(.) to represent our deterministic 

complex computer code, and TJ(x) to denote the output at input configuration x, 

where x is a p dimensional vector of inputs. 

3.2.1 Specification of the Prior Distribution 

We first consider the specification of the prior distribution, that represents our 

knowledge about the function, TJ(.), before we make any observations of the func­

tion. Our beliefs about TJ(.) will be expressed using a hierarchical stochastic pro­

cess model. This requires us to formulate our beliefs about expectations, variances 

and covariances, along with some distributional assumptions. In all our prior spec­

ification contains four key elements and we address these in turn. 

Our function, r/(.), is complex and whilst it is not transparent how the inputs, 

x, affect the output, TJ(x), it may be reasonable to suppose a priori that we can 

crudely approximate TJ(.) at any point within the input space X by some simple 
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parametric form. We specify a regression model for this parametric form. We 

further we suppose that we can quantify the variability about our parametric fit. 

Formally we express these statements as 

E[ry(x)J,B, (1"2] - h(X)T,B, 

Var[1](x)J,B, (1"2] _ (1"2, 

(3.1) 

(3.2) 

where h(xf is a vector of q regressor variables, ,B is a vector of parameters, and 

(1"2 quantifies the uncertainty surrounding the parametric approximation. 

The second part of our model sets us apart from standard methods, and it 

is herein that the power of our approach is evident. Rather than treating our 

outputs as independent, we utilize the dependence between adjacent outputs and 

assume a structured form of covariance. 

vVe define the covariance between 1](x) and 1](x') as 

(3.3) 

where c(.,.) is a correlation function. 

The correlation function describes the extent to which learning about 1](x) aids 

learning about 1](x'). We can choose from many different correlation functions, 

(see for example Currin et al.(15)). Our correlation function has the properties: 

1. c(x, x) = 1; 

2. c(x, x') is stationary; it is a monotonically decreasing function of J x - x' J 

for some distance measure 1.1, and hence c(x, x') = c(x + d, x' + d) V d. 

3. the correlation matrix of any finite set of m points, {ry( Xl), ... 1]( xm)}, is 

positive semi definite. This requires c(lx - x'I) to be the characteristic func-
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tion of a random variable whose distribution function is symmetric about 

the origin (see Feller(16) for a fuller discussion). 

Specifying a correlation function is not a simple task; we may have very little 

knowledge about how the function, 1)(.), interacts with each of the model inputs, 

much less how smooth the output is relative to each of the model inputs. We 

solve this problem in part by defining the covariance in terms of additional hy­

perparameters. 

The precise choice of correlation function, c(., .), is ultimately down to experi­

ence and application driven, although the inferences we wish to derive about 1)(.) 

may also influence this choice. In our application we expect the output, 1)(.), to 

be smooth with respect to the inputs, and with no discontinuities. A correlation 

function with derivatives models these beliefs. 

We adopt the exponential form 

c(x, x') = exp{ -(x - x/)Tn(x - x')}, (3.4) 

for some positive semi-definite matrix, fl, of (unknown) parameters. For now we 

take fl to be a diagonal matrix, although we consider the more general matrix 

form later in the chapter. 

The third element of our model is the distributional assumptions. vVe take the 

joint distribution of any m outputs, {7](xd, ... 1)(Xm )} , conditional on /3, (]'2 and 

0, to be m-dimensional multivariate normal. This holds for any m and defines 

the joint distribution for the entire function 1)(.). This is known in the literature 

as a Gaussian Process, and denoted 

(3.5) 
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where h(.)T,8 is the prior mean function, and 0-2 C(.,.) the prior covariance func­

tion. 

The final element of our prior distribution requires us to consider our beliefs 

about the hyperparameters, ,8, 0-2 and n. Assuming independence of pen) and 

p(,8, 0-2 ), our prior takes the form 

(3.6) 

We adopt improper uniform priors on the (diagonal) elements of n and the con­

jugate prior distribution 

to represent our beliefs about ,8 and 0-
2

• 

Beliefs about ,8 and 0-
2 are elicited from expert knowledge. This is a difficult 

task requiring detailed questioning, and has recently been addressed by Oak­

ley( 48). Given the difficulties in effectively undertaking an elicitation, it is not 

unusual in practice to resort to the non informative prior f(/3, (J2) ex: (J-2. 

3.2.2 Prior to Posterior Analysis 

Suppose that we are able to make n runs of the expensive computer code and we 

obtain the data vector, y = {1](XI), 1](X2),' .. , 1](Xn)} , at inputs {Xl, X2 ... ,Xn}. 

We are able to choose these design points in order to maximize the information 

on 1](.). \Ve consider the choice of design in more detail later. 

Given these data we wish to update our beliefs about the model parameters 

/3, 0-2 and n and the function 1](.) itself. We begin with the distribution of y, 
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which conditional on (3, a2 and fl has a multivariate normal distribution: 

where 

A= 

C(XI, xd C(Xb X2) ... C(Xb Xi) ... C(XI' xn) 

C(X2' Xl) C(X2' X2) 

C{Xj, Xi) 

C(Xi' Xi) 

(3.8) 

We now calculate the joint posterior of {3, a2 and fl, which from (3.6) and (3.8) 

gives us 

(3.9) 

where 

L - ({3 - fj)T(y"-I)({3 - fj) + a", (3.11) 

a" - a + mTy-lm + yT A -ly - fjT y,,-l fj, (3.12) 

fj - (y-l + HT A -lH)-1(V-1m + HT A-1y), (3.13) 

Y" - (y-l + HT A -lHt1, (3.14) 

d" - d+n. (3.15) 
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We find it convenient to use the relation 

UNIVERSITY 
OF SHEFFIELD 

LIBRARY 

41 

f({3,0'2 ,01 y) = f({31 0'2, 0, y) X f(0'21 0, y) x f(O 1 y), (3.16) 

where (see for example Raiffa and Schlaifer(56» 

and f (0 I y) has the non standard form 

with 

A = ( a* )1/2 
a d* - 2 . 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

We now move onto the task of updating our beliefs about the function 1](.). \Ve 

do so by exploiting properties of multivariate normal distributions. \Ve note that 

any finite set of m outputs, {1](X1)'" .7](xm)}, and our vector of n observations, 

y, have, conditional on {3, 0'2 and 0, a multivariate normal distribution. 

It is simple to show that the distribution of {7](xd, ... 7](xm)}, conditional on 

(3, 0'2, 0 and y, is also multivariate normal. If, rather than considering a finite 

collection of random variables, we consider the joint distribution of the entire 

function, 7](.), then we have the result 

7](.) I y, (3, 0'2,0'" GP (m*(.), 0'2C*(., .», (3.21) 
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m*(x) - h(xf (3 + t(X)T A-1(y - H(3), 

t(x) - [C(X, Xl) ... C(X, Xn)]T, 

C*(X, X') - C(X, X') - t(X)T A -It(X'). 

(3.22) 

(3.23) 

(3.24) 

We remove the conditioning on hyperparameters {3 and (J2 in two stages. First we 

note that the product of (3.17) and (3.21) gives us the joint posterior of (3 and 

'Y){.) conditional on hyperparameters (J2 and n and the data y. We then integrate 

over j3 to obtain 

'Y)(.) I y, (J2, n rv GP (m**(.), (J2C**(.,.)), (3.25) 

where 

m**(x) = h(x)T ~ + t(X)T A -l(y - H~), (3.26) 

and 

CU{x, x') = c*(x, x') + (h(x)T_t(x)TA-1H) 

x (HT A-1H)-1(h(x')T - t(X')T A -lH)T. (3.27) 

We now remove the conditioning on (J2. We take the product of (3.25) and (3.18), 

which gives us the joint posterior of 'Y)(.) and (J2 conditional on nand y. Integrat­

ing over (J2 leaves us with the posterior, 'Y)(.) I y, n. The posterior distribution is 

a student process, with a description analogous to the Gaussian Process. 

In particular for a given input configuration, X, (see Gosling(21)) 

'Y){x) - mU(x) I y, n rv tdo. 

aJ d:-:2 cn(x, x) 
(3.28) 
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However, we still have to remove the conditioning on O. Unfortunately, we are 

unable to remove the conditioning analytically, and MCMC is required, as used 

in Neal(45) and Bayarri et al.(4). 

The solution proposed in Kennedy and o 'Hagan(36) , is to derive plausible esti­

mates for the components of 0, and act as if these were fixed. For inference about 

TJ(.), we use the conditional posterior given the data, y, and the estimated value 

of O. This is no longer a fully Bayesian analysis, however Kennedy and O'Hagan 

claim that it is only a 'second order' effect that is neglected, and such an analysis 

captures the major part of the uncertainty. By adopting this simplification, it is 

possible to calculate uncertainty and sensitivity measures analytically. 

\Ve adopt Kennedy and O'Hagan's methodology, and derive plausible estimates 

for 0, proceeding as if these were known. We estimate the elements of 0 from 

their joint posterior mode. \Ve have to numerically maximize (3.19), although it 

is numerically better to work with the logarithm 

log f(O I y) ex: -d* log 0-- 1/2 log IAI- 1/2 log IV*I. (3.29) 

Inference for TJ(.) is based upon (3.28), where 0 is replaced by the posterior 

mode. 

3.2.3 Alternative Derivations 

In deriving the posterior (3.28), we followed the approach first proposed by O'Hagan(52) 

in the context of regression (although not for deterministic models). 0 'Hagan's 

approach is unique in that it takes into account the uncertainty in f3 and a2, 

although the 'second order' uncertainty in n is ignored. However, other authors 

have proposed a similar method in both frequentist and Bayesian settings. 
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Sacks et al.(59) were the first to tackle computationally expensive computer 

codes in this context. They modelled the deterministic computer code output by 

(3.30), which they interpret as Response = Linear Model + Departures: 

k 

Y(x) = ~f3jlj(x) + Z(x). (3.30) 
j=l 

They treated Z(x) as a systematic departure, and it is modelled as a realization of 

a stochastic process. The covariance structure of Z(x) relates to the smoothness 

of the response. 

In order to construct an estimator for future values of the complex computer 

code, Sacks et al.(59) use the criterion of best linear predictor of Y(x). Letting 

yT = [Y(Xl), Y(X2), ... , Y(xn)J denote the vector of responses from design points 

Xl, X2, ... ,Xn, if cTy is a linear predictor of Vex), then its mean squared error is 

given by 

(3.31) 

where the expectation is with respect to the random process Y. 

The best linear predictor of Y(x} is found by minimizing (3.31). However, 

Sacks et al. add an additional unbiased ness constraint to ensure the predictor 

interpolates the computer code output at the design points. 

The best linear unbia.';;ed predictor, as derived explicitly in Sacks et al.(59), 

is identical to our posterior mean (3.26). However, the coefficients, /3, are the 

generalized least squares estimates, which will not generally be the same as our 

Bayesian estimates, (3.13) (unless we adopt the non informative prior 1({3, (12) ex: 

(1-2). In addition, Sacks et al. only consider a predictor of Y(x), and don't 

consider the uncertainty about their predictor. However, if they did consider 

the uncertainty about their predictor, Vex), their inference would be based on a 
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Gaussian Process. 

Currin et al.(15), were the first to use a Bayesian approach. They treat {3 and 

CJ2 as known constants, which they later estimate using empirical Bayes meth­

ods, rather than explicitly modelling the uncertainty in these parameters. As a 

result Currin et al. have a posterior Gaussian Process (identical to Sacks et al. 's 

predictor, albeit with a different interpretation). 

3.2.4 A Flexible Correlation Function 

\Ve now consider a more general form of correlation function. The correlation 

between outputs ",(x) and ",(x') is given by 

I I T I 

c(x,x)=exp{-(x-x) O{x-x)}, (3.32) 

for some positive semi-definite matrix, n, of (unknown) parameters. This is in 

fact an identical structure to (3.4) however we no longer constrain the parameter 

matrix 0 to be diagonal. This non-diagonal form has been suggested before by 

Kennedy and O'Hagan(36), although to our knowledge it has never been applied. 

We begin with our prior specification. We once more assume a priori inde­

pendence of ({3, CJ2) and 0; 

(3.33) 

However, we now represent our beliefs about 0 with the Inverse Wishart prior 

p(O) ex IOI-(c+P+l)/2 exp{ -{trO-1B)/2}, (3.34) 

for c > p and symmetric positive definite matrix B. However, eliciting beliefs 
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about 0 will be impractical, so the limiting case (with c = 0 and B = 0), of 

p(O) ex 101-(p+l)/2 is appropriate. 

Inference for TJ(.) when using this correlation function follows the same prior to 

posterior analysis we developed in sections 3.2.1-3.2.2. Our posterior distribution, 

(3.28), is conditional on the data y and O. We estimate 0 by maximizing 

(3.35) 

or alternatively maximizing the logarithm 

log 1(0 I y) ex -(p + 1)/2 log 101- d* log 0- - 1/2 log IAI - 1/2 log IV*I. (3.36) 

Computation 

In both the diagonal and non-diagonal forms for 0, we have to maximize the log 

posteriors, (3.29) and (3.36) respectively, using numerical methods. \Ve opt for the 

downhill simplex algorithm of NeIder and Mead( 46). However, in the non-diagonal 

form we have introduced an additional p(p-1)/2 dimensions to maximize over, at 

significant computational expense. We only want to use this more complex form 

if the increased flexibility it offers is worth the additional computational expense. 

Our numerical work has shown that the non diagonal form can lead to signif­

icant improvements in prediction in some problems. The potential improvements 

depend on the form of the function, TJ(.), and the various interactions between 

the model inputs. When TJ{.) is an additive function of the inputs, or the main 

effects (which we defined in chapter 2) are large compared with any interactions, 

our numerical work has found that the correlation can be modelled well by a di­

agonal form. In this scenario, when using the non-diagonal form we usually find 

that the off-diagonal elements of 0 are very small compared with the diagonal 
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elements. \Vhen 7](.) contains interactions between the inputs that are not small 

compared with the main effects, our numerical work has shown that there may be 

considerable improvement when we use the non-diagonal form. 

We demonstrate with the 6 dimensional function (3.37), where the true values 

of the inputs all have N(O, 1) distributions. The example contains non-negligible 

first and second order interactions, and the output ranges from around -10 to 

+ 10. The example is structured such that we have no interactions between the 2 

groups Xl, X2, X3 and X4, Xs, Xs. 

y - l.5xl + 0.95x2 - 0.25x3 + 1.3X4 + 1.3xs - 0.3xs 

+ coS(0.8Xl + 0.75x2 + 0.65x3) + coS(0.7Xl + 0.2X2 - 0.9X3) 

+ coS(0.7X4 + 0.8xs + 0.55xs) + coS(0.6X4 + 0.5xs - 0.85x6) 

+ sin(0.8xl + 0.75x2 + 0.65x3) + sin(O.7xl + 0.2X2 - 0.9X3) 

+ sin(0.7x4 + 0.8xs + 0.55x6) + sin(0.6x4 + 0.5xs - 0.85x6)' (3.37) 

We observe the function at 50 design points. We take h(x) = (1, x) and we use the 

correlation function (3.32). We maximize (3.36) in order to estimate the matrix 

n. For this example, we find that the log posterior is maximized at 

0.091 0.061 -0.002 0.000 0.000 0.000 

0.061 0.051 0.028 0.000 0.000 0.000 

n= -0.002 0.028 0.096 0.000 0.000 0.000 

0.000 0.000 0.000 0.065 0.056 -0.01 

0.000 0.000 0.000 0.056 0.056 0.014 

0.000 0.000 0.000 -0.01 0.014 0.078 

The first thing we note is the block diagonal structure of n, which mirrors the 
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structure of the example. The 2 groups Xl, X2, X3 and X4, X5, X6 are non interacting 

and the corresponding elements of n are zero. In general we would not expect 

to find such an extreme result, but we would expect these elements to be close 

to zero, since the corresponding inputs are non-interacting. If we look within the 

two blocks, we note the off diagonal elements are not small compared with the 

diagonal elements. Again this mirrors the structure of the example since we have 

interactions within Xl! X2, X3 and X4, X5, X6. 

A formal comparison of the diagonal and non-diagonal matrix forms is pos­

sible using the criterion of Expected Root Mean Squared Error (ERMSE). We 

fit Gaussian Process models using both correlation functions ((3.4) and (3.32) 

respectively), and predict the output at a further 200 randomly selected points. 

The diagonal form yields an ERMSE of 0.667166, whilst the non-diagonal form 

ha.s ERMSE of 0.242424; less than half the error. 

The non-diagonal form for n contains an additional 15 parameters (21 param­

eters in (3.32) and 6 parameters in (3.4)). Since numerical maximization routines 

are an O(m2) operation (for an m dimensional maximization), the improvements 

in prediction need to be balanced against the computational burden in maximizing 

(3.36). For a cheap function such as (3.37), the most efficient option would be to 

improve the accuracy of predictions (and reduce the variance of the predictions) 

by making more observations of T}(.) and use the diagonal form (3.4). However, 

for a computationally expensive function, using (3.32) with a smaller number of 

observations may be a more efficient use of resources. 

Transformations 

It may be possible to model the correlation using the function (3.32) with no 

greater computational burden than when using the diagonal form (3.4). We can 
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write the parameter matrix 0 as 

(3.38) 

where 0* is an r x r diagonal matrix, and Car x p transformation matrix, with 

r ~ p. The diagonal elements of 0* are the r non zero eigenvalues of 0 and the 

rows of C are the corresponding eigenvectors. 

Thus, we can write the correlation between 17(x) and 17(X') as 

c(x, x') - exp{(x - x')TO(x - x')} 

- exp{(Cx - CX')TO*(CX - Cx')}. (3.39) 

From (3.39) we can see that a non diagonal matrix of parameters corresponds 

to a diagonal matrix on a linearly transformed scale, z = Cx. Moreover the 

transformed scale is of dimension r ~ p. 

An efficient method for estimating the p(p + 1) /2 components of 0 would be 

to specify C such that 0* is approx diagonal. We would only need to maximize 

(3.29) over r dimensions in order to estimate the p(p + 1)/2 components of O. 

However, since 17(.) is an unknown function, in practice it is not obvious how to 

choose C. Our attempts at specifying a transformation have been unsuccessful. 

3.2.5 Design 

We now consider our choice of design points that we wish to observe the function 

at. vVe have a fixed number, n, of design points, and we wish to select these 

in order to maximize the information, in some sense, about 17(.) at the infinite 

collection of unobserved points. One approach is to define some criterion which 
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describes what a good design is, and then find the design which best fulfils this. 

Criteria for selecting good designs in order to maximize the information about 

1](.) have been proposed by various authors. The various criteria developed have 

sought to exploit the smoothness of the output, 1](.), in order to improve on the 

Latin Hypercube methodology that we discussed in chapter 2, and which takes 

no account of the smoothness of the output. 

For a fixed number of model evaluations, n, and a specified correlation function 

c(., .), Sacks et al.(59) considered 3 different criteria, although they only imple­

mented the first of these. The first criterion was Integrated Mean Square Error 

(IMSE) for their estimator 1}(x), which chooses the design, D, to minimize 

1 AISE[ry(x)]¢(x)dx 

- 1 E[ry(x) - 1](x)]2¢(x)dx, (3.40) 

where the expectation is taken with respect to 1](x), and for a given weight function 

¢J(x). A general weight function causes no difficulties, but the authors take ¢J(x) 

to be uniform over the whole of X in their applications. 

The second criterion considered by Sacks et al. is Maximum Mean Squared Er­

ror (MMSE). This is a minimax criterion, which seeks to minimize the maximum 

prediction error. 

The design is chosen to minimize 

rnaxx JVfSE[ry(x)], 

- rnaxX. E[ry(x) - 1](xW. (3.41) 

However, the criterion is not implemented in their examples due to the computa-
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tional expense. The method has been compared with IMSE for discrete regions 

by Sacks and Schiller(57), but for continuous regions the implementation is far 

more difficult and as a result computationally expensive. 

The final criterion they consider is choosing a design, D, to minimize the pos­

terior entropy, which is a measure, in some sense, of the 'amount of uncertainty'. 

This criterion is studied in more detail, and applied to examples in Currin et 

al.(15). We define the entropy of a continuous random variable Z as: 

H(Z) = E[-logpz(Z)], (3.42) 

where pz(Z) is the density of Z. 

In our case, Z represents the infinite collection of untried outputs, 'f/(.), given 

the output at the n evaluated outputs y. In the case considered by Currin et 

al., the regression parameters, /3, are regarded as fixed (and estimated in the 

analysis by empirical bayes), and the posterior entropy is minimized when IAI is 

maximized. 

Choice of design in a computer models context has also been considered by 

Haylock (22). He considered a loss function of the form 

L{D,y,X,'f/(X)} = l{m**(X) -1](X)}2dG(x), (3.43) 

where y, X and 'f/(X) are unknown. Haylock takes the expectation over the 

unknown parameters of his loss function, and finds the loss as a function of the 

design alone can be written as 

L{D} ex: 1 c**(x,x)dG(x). (3.44) 
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A problem common to all four of the above criteria is that the parameters of 

the correlation function, c(., .), are unknown. Currin et al.(15) state that in their 

experience, the correlation function itself is often unknown prior to analysis. 

Unless the parameters of c(.,.) are known or at least estimated using expert 

knowledge (see Oakley(48)), then an optimality is difficult to achieve. The lit­

erature has instead focussed on design robustness. Sacks et al.(59) consider the 

robustness of designs to mis-specification of the parameters of c(., .), and provide 

a good review of empirical work in the area. However, the various authors they 

cite have differing conclusions, with robust solutions dependent on both the form 

of c(., .), and the magnitude of the (unknown) parameters. 

One resolution that has been proposed in the literature is a two phased ap­

proach to the selection of design points (Currin et al.(15), Sacks et al.(58), (59)). 

An initial design is chosen subject to some criterion, before the correlation func­

tion, c(., .), is chosen and the parameters estimated. The remaining design points 

are then selected, again using some design criterion. A sequential design of this 

form cannot be optimal under any of the above criteria however it seems to provide 

a reasonable solution. In addition, this approach results in a lower computational 

burden (a one at a time search, rather than a global search) in the numerical 

searches that are required in order to select the design points. 

In the next chapter we go on to consider decompositions of ",(.) into lower 

dimensional functions. We could in principle extend any of the above criteria for 

this situation, provided that the decomposition of ",(.) is known. For an unknown 

de~omposition we could consider a 2 stage approach; initially a small Latin Hyper­

cube design to identify the decomposition of ",C.), followed by a design exploiting 

the known structure of ",(.). However, these criteria are not considered further. 

\Ve use Latin Hypercube Designs in the remainder of the thesis. 
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3.3 Uncertainty Analysis 

In chapter 2 we stated that three measures of interest for expressing our uncer-

tainty about Yare the expectation, variance, and distribution function. These 

summaries require us to calculate the integrals 

E(Ylry(·» - lry(X) dG(x), (3.45) 

E(y2 Iry(·» - lry(X)2 dG(x), (3.46) 

Fy(s)Jry(.) - 1 I {ry(x) ~ s} dG(x), (3.47) 

where we now condition explicitly on the functional relationship between x and 

TJ(x). 

In chapter 2 we stated that for a complex function these summaries will not 

be available analytically. In principle we can find (3.45)-(3.47) by integrating 

numerically. However, the function ry(.) is computationally expensive, so numerical 

methods are impractical. 

Using our Bayesian method we are able to make more effective use of the 

data in order to estimate these summaries. In the previous section we found the 

posterior distribution of 1J(.) given data y and the estimated values of n. If we 

knew ry(x) for every x we could calculate our summaries exactly. However, we only 

have the posterior distribution of ry(x) for any x. The uncertainty about ry(.) means 

we also have uncertainty about our summaries. Therefore, the summaries we wish 

to calculate are random variables (see for example Haylock and O'Hagan(23), 

Oakley and O'Hagan(51». In this section we calculate the posterior distribution 

of E(Y), and posterior summaries of Var(Y) and Fy(y), since their posterior 

distributions have no closed form. In the remainder of this chapter we estimate 

n by 0, and treat it as fixed and known. 
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Expectation 

We begin with inference about Kl = E(YI7](.)) = Ix 7](x)dG(x) , which was first 

tackled by Haylock and O'Hagan(23). They showed that 

2 A 2 Klier, 0, y f"V N(k, er W), (3.48) 

where 

and 

Var*[K1 Ier2,O,yJ - er2w= er2 11 c**(X,X')dG(x)dG(X'), 

_ er2{U - TA -lTT + (R - TA -lH)(HT A -lH)-l 

x (R - TA -lH)T}. (3.50) 

vVe use the notation E* and Var· to denote the expectation and variance with 

respect to the posterior distribution of 7](.). 

The quantities R, T and U are themselves expressed in terms of integrals 

R - 1 h(xf dG(x), (3.51) 

T - 1 t(xf dG(x), (3.52) 

U - 11 c(x, x') dG(x) dG(x'). (3.53) 

The conditioning on er2 is removed by taking the product of (3.48) and (3.18) and 

integrating over er2• 
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The expectation, K 1, has at-distribution: 

(3.54) 

We now have a point estimate for E(YI1](.» in the form of k, but we also have a 

measure of our uncertainty about this estimate, as measured by (3.54). 

Variance 

Haylock and o 'Hagan (23) also considered the variance of 1](.) however their calcu­

lation was corrected by Oakley and O'Hagan(51). For this we require the posterior 

distribution of K2 = E(y211](·» = Jx 1](x)2dG(x), which is intractable. Haylock 

and O'Hagan calculated posterior moments of K2. vVe just show the expectation 

calculation here (see Haylock and O'Hagan for the variance calculation) 

E* [K2 10-2, n, y,] = E [11]2(x)dG(X),0-2, n, y] , 

- E [f. 1]2(x)10-2,n,YdG(x)] , (3.55) 

and 

E* [1 772 (X) 10-2 , n, y] = 1 m**(x)2 + 0-2C**(X, x) dG(x). (3.56) 

Substituting the expressions for m**(x) and c**(x, x) as given in (3.26) and (3.27) 

respectively into (3.56) we can expand this expression as 

E* [K2 10-2 , n, y] - tr(,BT Q,B) + tr((y - H,B)T A -lpA -ley - H,B» 

+ 2tr(,BTTRA -ley - H,B) + 0-2 [1 - tr(A -lp) 

+ tr((HT A -IHtIQ) - 2tr((HT A -IH)-ISA-IH) 

(3.57) 
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where once again the expressions for P, Q and S are integrals that we need to 

evaluate: 

P = 1 t(x)t(X)T d G(x); 

Q = 1 h(x)h(x)T d G(x); 

S = 1 t(x)h(x)T d G(x). 

(3.58) 

(3.59) 

(3.60) 

By taking the product of E* [K21(72, 0, yJ and (3.18) and integrating over (72 we 

can find E*[K210, y]. This expression is identical to (3.57), but with (72 replaced 

by 0-2 • Finally, we calculate the expectation of Var(Y) using 

E*[Var{Y}IY] - E*[(K2 - K;)IO, y] 

- E*[K210,yJ-(Var*[K1IO,y]+E*[K1IO,yf). (3.61) 

Haylock and O'Hagan stated that the posterior distribution of E(Y) and the 

expectation and variance of (Var(Y)] could be found analytically for common 

choices of h(.), c(.,.) and G(x). Haylock(22) gave explicit calculations for the 

case where h(.) takes the form of polynomials of the elements of x, c(.,.) has 

the diagonal form (3.4) and G(x) is product normal. Given the same h(.) and 

c(.,.) as Haylock assumed we can consider much more general forms of G(x). In 

our example in chapter 7 we adopt the same forms for h(.) and c(., .), but G(x) 

contains uniform (discrete and continuous), triangular, and multivariate normal 

distributions. \Ve are able to to perform these calculations analytically. 

Oakley and O'Hagan(49) developed a simulation based method that could be 

used to calculate the expectation and variance (amongst other summaries) of Y, 

for when the integrals R, T, S, P and Q were not tractable. 
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Distribution Function 

The final summary we require is the distribution function of Y, Fyll1(.) (s). The 

posterior distribution requires us to calculate the the integral 

FY I1l(.)(s) = 1 / {7](x) :5 s} dG(x). (3.62) 

However, as we can see, the calculation for the distribution function involves the 

indicator function, / {.}, and as a result the posterior distribution of Fy 17](.) (s) is 

intractable. 

Oakley and O'Hagan(49) derived the first two posterior moments of Fyl1l(.) (s). 

E*{Fyl1l(.)(s)ln,y} - 1 E*[/{7](x):5 s}ln,yjdG(x) 

- 1 P[{7](x):5 s}ln,yjdG(x) 

- 1 P[{ 7](X) - m**(x):5 s - m**(x) } I n, yJ dG(x) 
x a-Jd:~2C**(X,x) a-Jd:~2C**(X,x) 

a-m·· X) - l1u ~c··(X.X) ITd* dt dG(x), (3.63) 
x -00 

where /rd. is the density of a t-distribution with d* degrees of freedom. 

The posterior covariance requires 

Oakley and 0 'Hagan show that 

P{7](Z) ~ S2}P{7](X) ~ sll7](z) ~ S2} = I: P{7](X) ~ Sll7](z) = k}/1I(z)(k)dk, 

(3.64) 

where f1l(z)(k) is the density function of 7](z). 
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Now TJ(x)ITJ(z) = k also has a t-distribution, but with the additional point 

TJ(z) = k. Hence, it follows that 

E* {FYI11(.)(Sl)FYI11(.)(S2)lfl, y} = 111s2107J~ckO(X'X) hdo+
1 
i l1(z) (k)dt dk dG(x) dG(z). 

x x -00 -00 

(3.65) 

Both (3.63) and (3.65) have to be evaluated numerically however these integrals 

are cheap calculations. Inference for the distribution function can also be made 

using the simulation method described in Oakley and O'Hagan(49). 

3.4 Sensitivity Analysis 

We now move onto the extensions for sensitivity analysis, recently developed by 

Oakley and O'Hagan(51). In chapter 2 we considered the decomposition of TJ(x) 

into main effects and interactions 

p 

y = TJ(x) = E (Y) + I: Zi(Xi) + I: Zij(Xi, Xj) + ... + Zl, ... ,p(x), (3.66) 
i=l l:::;i:::;j 

where we explicitly defined Zi(Xi), Zij(Xi, Xj) etc in chapter 2 (see equations 2.13-

2.15). 

These expressions require us to calculate expectations, E(YIXr = X r, 7](.», 

where Xr is a sub vector of X. The expectation, K1,r = E(YIXr = X r , 7](.», 

where subscript r identifies the expectation is conditional on Xr = X r , can be 

written as 

(3.67) 

where in this notation (consistent with chapter 2), X-r denotes the space of pos­

sible values for X-r, and Gx_rl xr denotes the conditional distribution, X_rIXr. 
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Oakley and O'Hagan(51) extended the work of Haylock and O'Hagan(23) in 

order to calculate the posterior distribution of conditional expectation KI,r' The 

expectation is given by 

Rr(xr) - r h(xl dG_ r Ir(x-r I xr), 
Jx-r 

Tr(xr) - l-r t(x)T dG-r/r(x-r I xr). 

Oakley and O'Hagan also provide the following result for covariances 

COV*{Kl,r' Kl,sla2,n,y} 

- (J'2jj c**(x,x') dG-rlr(X-rlxr)dG-818(X~slx:) 
x-r X-8 

(3.68) 

(3.69) 

(3.70) 

- (J'2~Vr,s = (J'2{Ur;s(Xr,x:) - Tr(xr)A -IT.(xs)T + (Rr(xr) - Tr(xr}A -lH) 

where 

(3.72) 

From the general result on covariances, (3.71), we can calculate the posterior dis­

tribution of any expectation, KI,r, conditional on y, (J'2 and n. After removing the 

conditioning on (J'2, the posteriors are t-distributions with d* degrees of freedom: 

(3.73) 
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Main Effects and Interactions 

We now consider the decomposition, (3.66), of 7}{x) into main effects and inter­

actions. The main effect, Zi(Xi), and first order interaction Zi,j(Xi' Xj) are defined 

as 

Zi(Xi) - E(Ylxi) - E(Y), (3.74) 

Zi,j(Xi, Xj) - E(Ylxi, Xj) - Zi(Xi) - Zj{Xj) - E{Y), (3.75) 

with higher order terms following similarly. These expressions are conditional on 

17(.), but for ease of notation we don't show this explicitly. 

Since Kl,rIO'2 , fl, Y is normally distributed for any r (including r = 0, the null 

set), it is simple to note that conditional on y, 0'2 and fl, main effects and in­

teractions are functions of correlated normal distributions and therefore normally 

distributed. The expectations all follow from (3.68) and the variances can be 

calculated from (3.71). After removing the conditioning on 0-
2 , main effects and 

interactions have t-distributions with d* degrees of freedom. 

In particular the expectations of main effects and first order interaction are 

E*{Zi{Xi)ly} - {R(Xi) - R},8 + {Ti{Xi) - T}A -l(y - H,8), 

E*{Zij(Xi' xj)ly} - {Rj(Xi,Xj) - R(x,j) - Rj(xj) + R},8 

+ {Tij(Xi' Xj) - Ti(Xi) - Tj(Xj) + T}A -l(y - H,8), 

with higher order terms following similarly. 

In chapter 2 we quoted the result from Chan et al.(9), that typically, as the 

order of the interaction increases, then Zl, ... ,r(Xl, ... x r ) -+ O. \Ve would expect the 

same result to hold for the expectations (with respect to the posterior distribution 
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of 1](.». However, the posterior variances of these terms may be large. 

Variances 

Finally we consider the decomposition of the variance. The variance of the output 

conditional on sub vector X r , is given by 

Var{ E(Y IXr, 1](.»)} - E {E(Y IXr, 1](.)?} - E {E(Y IXr, 1](.»)}2 

- E{E(Y IXr, 1](.»2} - E(YI1](.»2. (3.76) 

Oakley and 0 'Hagan found these to be intractable, and just calculated expecta­

tions. \Ve found the posterior distribution of E(Y) earlier, and hence E* {E(y)2jSl, y} 

is known. We now have to calculate E*[E{E(Y IXr)2}ISl, y]. 

E* [E{E(Y IXr)2}ISl, y] 

1 .. 1-.. 1-.. E*{1](x)1](X*)} dG-r1r(X_r Ixr) dG_r1r(x'-r Ixr) dGr(xr) 

11 1 &2 c**(x, x*)dG_r1r(x_r Ixr) dG_r1r(x'-r Ixr) dGr(xr) 
Xr x-.. x-.. 

+ 1 .. 1-.. 1-.. m**(x)m**(x*)dG_r1r(X_r Ixr) dG_r1r(x'-r Ixr) dGr (xr ).(3.77) 

We use x* to denote the vector x* = (Xr, x~r)' whilst x = (xr' x-r), and Gr (.) 

denotes the marginal distribution of X r . We can see that the form of (3.77) is 

similar to the equations Sobol'(63) derived (see equations (2.31)-(2.34) of chapter 

2). 

The first term of (3.77) can be expanded as 

a-2 [Ur - tr(A - 1Pr) + tr((HT A -1Ht1 x 

(Qr - SrA -1H - HT A -1S; + HT A - 1PrA -1H»], 
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and the second term is expanded as 

where 

Ur - Ixr Ix-r Ix-r c(x, x*) dG-r1r(x-r IXr) dG_r1r(x'-r Ixr) dGr(xr) , 

Pr - lr l-r l-r t(x)t(x*)T dG_r1r(x-r Ixr) dG-rlr(x~r Ixr) dGr(xr), 

Qr - ir i-r Ix-r h(x)h(x")T dG-rlr(x-r Ixr) dG-rlr(x'-r Ixr) dGr(xr), 
Sr - Ixr l-r l-r h(x)t(X*)T dG-rlr(x-r Ixr) dG_r1r(x'-r Ixr) dGr(xr). 

The above integrals can be calculated analytically for common choices of h(.), 

c(.,.) and G(x). However, the integrals are all computationally cheap functions, 

so numerical methods do not take an excessive amount of time. 

Thus, from (3.76) the expectation (with respect to the posterior distribution 

of 17(.» of the main effect and total effect variances, as defined in equations 2.23 

and 2.24 of chapter 2, can be calculated. Oakley and o 'Hagan (51) estimated main 

and total effect indices by dividing the variances by E" {VaT (Y) In, y}. Oakley 

and O'Hagan noted that these estimates are not the same as the posterior expec­

tations of the main and total effects, which would be intractable. However, the 

approximation appears to be a good one, and results in a lower computational 

burden. 
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3.5 Conclusions 

In this chapter we have reviewed a Bayesian method for making inference about 

computationally expensive functions using Gaussian Processes. We examined a 

previously proposed but untried correlation function and noted we can make sig­

nificant improvements over standard product correlation forms when large interac­

tions are present. We also noted a connection between the geometry of the inputs 

and the correlation function, which could be utilized in order to improve compu­

tational efficiency. Finally, we reviewed how Gaussian Processes could be used 

in order to calculate measures of uncertainty and sensitivity. These calculations 

represented small corrections to those in the cited papers. 
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Chapter 4 

Decomposable Models 

4.1 Introduction 

We now consider some modifications to the methodology of chapter 3, that are 

appropriate when we have additional information about the function, 'Tl(.). 

In some computer models (one of which we discuss in chapter 7), although 

it is not known how the output, 'Tl(X) , varies as we vary the inputs, x, there is 

additional information about the structure of'Tl(')' For example in a computer 

model representing a physical system we might know that it is impossible for two 

groups of inputs to interact. As a result of this information we can simplify 'Tl(.) 

to 

(4.1) 

where 'Tll(') and 'Tl2(') are functions of lower dimensional input vectors X(l) and 

X(2) and x partitions as x = {X(l), X(2)}' Note that the vector X(i) and the design 

point Xi are quite distinct. 

The decomposition, (4.1), is a special case of a more general form of decompo-

65 
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sition which we now define. In general we have a p dimensional vector of inputs, 

x = {X1,X2, ... ,xp}. We let S = {1,2, ... p} denote the set of integers, and we 

let S1,' .. , Sr denote subsets of S. 

We can write T}(x) as the sum 

(4.2) 

where x(i) = {x (i), ••• ,x (I)}, and {rii), ... ,r~:} = Si. The special case of (4.1) is 
r 1 rnj 

found when we have U~=l Si = Sand Sl n S2 = 0. 

The use of structural information in order to write T}(x) as in (4.2) can be 

thought of as "opening the black box". The strength of structural prior informa­

tion will no doubt vary from model to model. For some models an expert may be 

able to determine all the subsets Sl, ... ,Sr, whilst in other models we genuinely 

have no idea about the form of T}(.), although some simplification may be possible. 

In this chapter we develop a series of models that account for different levels of 

prior information. We begin the chapter by examining the role that smoothness, 

and in particular the correlation function plays in functions of many inputs, since 

this relates to our work later in the chapter. In sections 4.3 and 4.4 we develop 

models for the case where we have a known decomposition of T}(.). In section 

4.5 we develop additional theory for when our prior information is weaker. \Ve 

consider decompositions for weak structural information in sections 4.6 and 4.7. 

4.2 Parametric Approximations 

In the problems that interest us, the dimension, p, of the vector of inputs, x, is 

large. Computer models often contain many uncertain inputs (in the example we 

consider in chapter 7 we have p = 88). We require robust methodology that can 
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handle problems of this magnitude without an excessive number of design points. 

The key feature of the Gaussian Process model that we described in chapter 

3, is the assumed correlation structure - the extent to which learning the out­

put, 'T/(x) , aids our learning about output, 'T/(x
/
). In this chapter we restrict our 

attention to the correlation function defined in (3.4), which can be written as 

p 

c(x, x') = II Ci(Xi, x:), (4.3) 
i=l 

The predictive performance of our Gaussian Process model, relative to a stan­

dard regression model, depends on 2 related elements: 

1. the number of design points; 

2. the smoothness of the function. 

The rougher the output is (as a function of the inputs), the more design points 

we will require in order to produce significant improvements upon a standard 

regression model. 

Oakley and O'Hagan(5l) managed to tackle a 40 dimensional problem with 

just 101 design points, whilst Welch et al.(64) found that with a well chosen 

design they could tackle a 30 - 40 dimensional problem with as few as 50 runs of 

the computer model. In both papers, the authors found that most of the output 

variability was caused by a just a few active inputs. As a result, a well chosen 

LHD is able to reduce the dimension of the problem to well below p. 

Welch et al.(64) fit a model of the form 

'T/(x) = J.L + Z(x), (4.4) 
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where Z(.) is a Gaussian Process with zero mean and covariance a2c(., .). 

The interpretation of (4.4) is that we have some global point estimate, J,l, for 

any value of the inputs x. The Gaussian Process, Z(.), corrects this estimate, 

taking into account the local correlation structure between outputs. If we know 

the output TJ(x) at x, and this is larger than J,l, then for a smooth function the 

output TJ(x') at some adjacent input x', is also likely to be larger than J,l. 

Welch et al. used the components of (4.3) in order to assess the sensitivity 

of the model output to the inputs. If the inputs are scaled to have the same 

range, the parameters of the ith term in the product, (4.3), are a measure of the 

importance of input i. If the output is active with respect to the ith input, then 

the correlation, C;(Xi' x~), will depend strongly upon IXi - x~1, whereas if input i 

is relatively inactive then C;(Xi' x~) will be close to 1 regardless of IXi - x:l. A 

model of the form (4.4) requires most of the model inputs to be inactive, or at 

least relatively inactive, for a high value of p, unless we have many design points. 

Welch et al. used the correlation function 

p 

c(x, x') = II exp{-bilx - x'lai
} (4.5) 

i=l 

estimating the parameters by maximum likelihood. 

The active dimensions are identified by large values of bi (the most active 

having the largest bi ), whilst relatively inactive and completely dormant inputs 

have very small and zero values of bi respectively. Welch et al. found that setting 

all the ai = 2, (which is desirable for a differentiable function), results in little 

loss in terms of predictive performance. 

In chapter 3 we considered a more general mean function, where we replaced 
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J-L by a regression fit 

TJ(x) = h(X)T,8 + Z(x). (4.6) 

By changing our mean function, the interpretation of Z(.) changes. This is now a 

Gaussian Process on the residuals from our parametric approximation to TJ(.). If 

we know the residual at x, which we denote e(x), to be large and positive, then 

for a smooth function, the residual e(x/) at some adjacent set of inputs, x', is also 

likely to be large and positive. 

Our interpretation of the terms in the product (4.3) also changes. The pa­

rameters of the ith term in this product are no longer a measure of how sensitive 

the output is to input i; they are a measure of how smooth the departures are 

from the mean function in dimension i. A special case is when the regression fit 

explains all the variability in dimension i, and Ci(Xi, x~) = 1 regardless of IXi - x~l. 

We illustrate with the example 

(4.7) 

Taking h(x) = (1, Xl, X~, X2, X3), we can see that the mean function fits exactly 

in Xl, and therefore CI(XI'X~) = IVlxl - x~l. \Ve also find that C3(X3,X;) = 

1 VI X3 - x~ I since a completely dormant input is a special case of the perfectly 

fitting parametric approximation. Therefore, in (4.7) our correlation function 

reduces to a function of X2 only. 

In general we could consider any vector of regressor variables, h(x), includ­

ing interaction terms. We should incorporate any available expert information 

when selecting h(x). Our work in sections 4.6 and 4.7 of this chapter examines a 

previously untried non parametric form for the mean function. 

With a well chosen mean function, and a Latin hypercube design, we are able, 
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in effect, to reduce the dimension of the input vector, x, to well below p. Welch 

et al. considered examples where p ~ 40 with only 50 design points, and 5 active 

dimensions. However, 50 points is vastly inadequate for a 5 dimensional problem if 

we have large high order interactions, since high dimensional space is only sparsely 

covered with this small number of points. Therefore, in addition to factor sparsity 

we also require relative simplicity of TJ(.) in the active dimensions. 

The Gaussian Process model is most efficient when high order interactions are 

negligible compared with main effects and low order interactions. This is because 

the Latin Hypercube design (or any good design in general) covers marginal dis­

tributions and low order space well, but only covers high order space sparsely. In 

some models, such as the financial models that motivate this research, we expect 

some interaction terms to be zero. In this case we can identify more efficient corre­

lation structures. In the remainder of this chapter we examine different correlation 

structures for when TJ(.) can be simplified to a sum of lower order terms. 

4.3 Known Additive Decomposition 

Suppose that we have a known mutually exclusive and exhaustive partition of 

x = {X(i)"'" X(r)} and a corresponding decomposition of TJ(.) into functions of 

lower dimensional input vectors, that is Si n Sj = 0 Vi =J. j. Then we can write 

output TJ(x) as 

(4.8) 

where the TJj(.) are independent functions of sub-vectors xU)· 

In this section we examine two models that depend on very strong structural 

prior information of this type. We go on to derive posterior distributions for TJ(.) 

using methodology similar to that of chapter 3. 



Chapter 4 : Decomposable Models 71 

4.3.1 Observable Functions 

In the simplest model we consider, 'T}(.) is a fairly transparent function. We are able 

to make direct observations, Y(l), Y(2) , ... , Y(r), of 'T}l(.), 'T}2(.), ... , 'T}r(.) respectively, 

and E;=l YU) = yare our observations of 'T}(.). Our interest is in finding a cheap 

approximation to 'T}(.) using this additional structural information. This is the 

strongest possible structural prior information that we might expect. 

Since we can make observations of each of these sub functions, we are able to 

model each of them using the methodology of chapter 3. For function j, our prior 

estimate of XU) is h j (xU)? {3 j and our prior variance is 0';' In general our mean 

function will differ for each function. 

For function j we have hyperparameters {3j' a; and Wj. We adopt a change in 

notation from chapter 3 here (from n j to W j since W j is a vector rather than a 

matrix of parameters). Information about the hyperparameters of 'T}j (.) is likely 

to be weak. We adopt the non informative prior, 

(4.9) 

We make nj observations of 'T}j(.), and follow the prior to posterior analysis of 

chapter 3. Our posterior distributions are student processes. For a given input 

X = {X(l),'" X(r)}, we have 

where qj denotes the dimension of (3j. Terms aj, mj*(xU)) and cj* (xU) , xU)) are 
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calculated from (3.20), (3.26) and (3.27) respectively from the previous chapter. 

We wish to make inference about 'T}(.). The posterior distribution for some 

new value, x, is the sum of r t-distributions, which has no closed form. Since 

'T}1 (.), ••• , 'T}r (.) are taken to be independent a priori, and since the data are indepen­

dent, our posteriors 'T}l(')IY(l),Wl, ... ,'T}r(')IY(r),wr are also independent. There­

fore, we can easily calculate posterior moments of 'T}(.) such as the expectation and 

variance. However, we frequently wish to provide probability bounds for a new 

observation, such as a 95% interval, and in the absence of a closed probability 

distribution this can only be done numerically. Inference in this manner for many 

values of x will prove to be time consuming, especially if r is large. 

We instead turn our attention to approximate results. For large r (and nl,'" nr 

not too small), by the central limit theorem we can approximate the output at 

x by a normal distribution. The expectation and variance of this approximation 

would be correct, however the tails would be too light, and for small r this would 

be a poor approximation. A better approximation can be found using a mem-

ber of the Pearson family, and we require only the mean, variance, skewness and 

kurtosis (see Johnson et al. (33)) in order to fit a distribution. 

Since the skewness is zero and the kurtosis will always be > 3, a Pearson type 

V I I distribution is a suitable approximation, 

f(d) c2d- 1 

p(x) = J(7r)r(d _ 1/2) (c2 + (x - e)2)d' 
(4.10) 

for c > 0 and d > O. 

The t-distribution is a member of this family, and Johnson et al. (33) find that 

(4.10) can be found as a simple multiplicative transformation of at-distribution. 

OUf approximation to 'T}(x) therefore takes the form of a t-distribution. We show 

. how to calculate the parameters of this distribution below. 
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For ease of notation we let Vj = nj - qj for j = 1, ... rand 

(4.11) 

is a standard t-distribution with Vj degrees of freedom. 

The posterior expectation and variance of TJ(x) are given by 

We now consider the kurtosis of Zj, which is given by 

(4.14) 

where following Johnson et al.(33), we use {32(tv ) to represent the kurtosis. and J.Li 

denotes the ith cental moment of Zj. We have the simplification shown in (4.14) 

since the odd moments of the t-distribution are zero. 

For a t-distribution the kurtosis is given by 

(4.15) 

The kurtosis of Zj invariant to shifting and scaling, therefore a + bZj and Zj have 

the same kurtosis. Applying this result we find that the kurtosis of TJj(x(j)) and Zj 

are the same. However, we require the kurtosis of the sum TJI (X(l)) + ... +TJr(X(r)), 

and therefore have to take the scaling into account. 
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The kurtosis of this sum is given by 

(4.16) 

The denominator of (4.16) is easily found from (4.13) therefore we just need to 

evaluate the numerator. In principle we can expand this expression by repeated 

use of the binomial expansion. Each term is of the form 

m2 + m3 + m4 = 4. However, by noting that E[Zj] = 0 for m odd, it is obvious 

that almost all these terms will cancel. The numerator simplifies to 

where 

r r 

E{['""' ~ Vi - 2 **( )Z ]4} "[ A Vi - 2 **( )]4E{Z4} ~ (Jj -;.-Cj xU), XU) j = L.....J (Ji -v-. -ci X(i), X(i) i 
j_1 J i=I' 

E{ZJ} 

E{Zl}E{Z]} 

Thus, by equating (4.15) and (4.16) and rearranging, we find V as 

(4.19) 
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We have the variance from (4.13), but in order to ensure that variance of our 

approximation is correct we have to scale (4.13) by V ar( tv) the variance of our 

t-distribution (with v degrees of freedom). Hence 

(4.20) 

and 

(4.21) 

We demonstrate our approximation by considering the sum of X = Yi + 12, where 

the Yi are t-distributed with 7 degrees of freedom. From (4.12) the expectation of 

this sum is zero, and from (4.13) the variance is given by 7/5 + 7/5 = 14/5. The 

kurtosis of X is 4, and we find the t-distribution with this kurtosis from (4.19), 

solving for v = 10 degrees of freedom. Our approximation is therefore 

X 
v'2.8/1.25 tv tlO. 

\Ve plot this approximation and the true (numerically evaluated) distribution in 

Figure (4.1). As we can see from the plot, our approximation works well, the two 

densities showing little separation well into the tails of X. 

4.3.2 Unobservable Functions 

We once again consider a model of the form (4.8), with a known additive decom­

position. However, we now suppose we are only able to directly observe 7](x). This 

decomposition requires very precise structural prior information. Once more, we 

use this additional structural information and find the posterior distribution of 
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Figure 4.1: Sum of t-distributions: our approx (dash), simulated true density 
(solid) 

T}(.). For ease of notation, we consider inference for r = 2 , but the extension to 

r > 2 is straightforward. 

Since we know ",(.) is additive our model can be written as 

7]1 (.) - 7](., X(2) = a2) + C2, 

7]2(') - 7](X(1) = al,') + C1, 

(4.22) 

(4.23) 

(4.24) 

vVe adopt Gaussian Process priors on 7](., X(2) = a2) and T}(x(1) = aI, .), 

and make observations Yell = {T}(X(l)l, X(2) = a2), ... , T}(X(I)nl' X(2) = a2)} of 

",(., X(2) = a2) and Y(2) = {T}(x(l) = aI, X(2)l) , .•• ",(X(l) = aI, X(2)n2)} of T}(X(I) = 

aI, .) .. 

Following the same methodology as in 4.2.1, we arrive at posterior distributions 
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(4.25) 

(4.26) 

It is possible to approximate the sum of 7]1(X(I),X(2) = a2IY(I),WI) and 7]2(X(1) = 

al,x2IY(2),W2) by a t-distribution similar to (4.21). However, we want a fast 

approximation to 7](XIY(I), Y(2) , WI, W2), and this is given by 

where the constant C = CI + C2 is well defined. 

We will in general require one further design point in order to estimate c. 

Suppose we observe response y. at design point x· = (x(I)' x(2»). We can es­

timate 7] (X(I), X(2) = a2IY(1), wd by E{7](X(l) , x(2) = a2IY(l), WI)} and 7](x(1) -

aI, X(2) IY(2) , W2) by E {7]( x(l) = aI, X(2) IY(2), W2)}. Our point estimate of c is 

However if we take x· = (aI, a2), from (4.22) we have c = 7]1(ad + 7]2(a2) = 

7](al' a2), so it is possible to determine c exactly. In addition, it is possible to 

utilise this additional point x· as data in both of the emulators, thus increasing 

the efficiency of the design. 

Our knowledge about some new output, 7](X) , is approximated by at-distribution, 

with expectation m**(x) = mi*(X(l») + m2*(X(2») + c, and ;'2, and v are found 

from (4.20) and (4.19). 
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We demonstrate the method with the simple function 

TJ(X) = Xl + sin(xd + COS(X2), ( 4.28) 

where Xl and X2 are independent U( -3,3). Taking al = a2 = 0, we observe each 

function at 7 design points. We show design points and outputs in Table (4.1). 

XCI) X(2) = a2 Y(I) XCI) = al X(2) Y(2) 

-3 0 -2.14112 0 - 3 -0.98999 
-2 0 -1.90930 0 -2 -0.41615 
-1 0 -0.84147 0 -1 0.54030 
0 0 1 0 0 1 
1 0 2.84147 0 1 0.54030 
2 0 3.90930 0 2 -0.41615 
3 0 4.14112 0 3 -0.98999 

Table 4.1: Design points and outputs 

\Ve show the design points x(l) plotted against our 7 outputs Y(l)i = TJ(X(1)i' X(2) = 

a2) in Figure (4.2). For comparison we also show the function TJI(X(l). 
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Figure 4.2: Design points and outputs: Y(l)i (circles), TJl (X(l) (pluses) 
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We adopt the mean function hI (X(I») - (1, xd and calculate the posterior 

distribution. In Figure (4.3) we show our posterior, T](.,X(2) = a2)IY(I),Wl, plotted 

against x(1)' We plot our posterior mean and 99% bounds. 
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Figure 4.3: Posterior distribution of T](.,X(2) = a2) 

As we see from Figure (4.3), our 99% bounds are almost indistinguishable from 

the posterior mean. We only begin to see separation of these bounds from the 

posterior mean as Ixl > 3, which is outside the range of X. 

We find the posterior distribution of T/(X(l) = al, .)IY(2), W2 similarly. vVe de­

termine c from c = T/(O, 0) - T/l(O) - T/2(0) = 1 - 1-:- 1 = -1. 

For comparison we also calculate the posterior distribution of T](.) using the 

methodology we described in chapter 3. We use a 14 point Latin hypercube de­

sign. For 100 randomly generated points, generated from U( -3,3) distributions, 

we calculate the posterior mean under each model, and compare the results using 

Root Mean Squared Error, RAISE = {100-1 L:i~~{T](Xi)-~(Xi)FP/2. Our addi­

tive model gave RAISE of 0.0866, whilst the Gaussian Process model of chapter 

3 gave RMSE of 0.2276. 
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However, the true value of the additive model is that we can reduce the number 

of our design points. In this example, the additive model performs better (in terms 

of RAISE) with as few as 9 design points (using design {( -3,0), (-1.5,0), (0,0), 

(1.5,0), (3, 0), (0, -3), (0, -1.5), (0, 1.5), (0, 3)}). 

4.4 Known Partially Additive Decomposition 

We consider a known decomposition of TJ(x) of the form 

(4.29) 

where the TJj(.) are independent functions of sub-vectors x(j). A partially addi­

tive decomposition is more general than the additive decomposition (and includes 

the additive decomposition as a special case). We still have the condition that 

U~=l Si = S (providing that all the inputs are active), however we no longer 

require Si n Sj = 0Vi =1= j - that is input Xk may be present in at least two 

sub-vectors xU), xCi). The single requirement we have is that Si % 8 j Vi =1= j. 

If we consider the two functions 

TJ(X) - sin(xl + X2 + X3) + COS(Xl + X2), (4.30) 

TJ(x) - sin(xl + X2 + X3) + COS(Xl + X2 + X4), (4.31) 

we see that under this definition (4.31) is partially additive with Sl = {I, 2, 3} 

and 8 2 = {1,2,4}, whilst (4.30) is not partially additive. 

Under our definition the dimension of each Si is less than the dimension of S. 

The decomposition of TJ(.) may be complex; for example r functions with input 

vectors of dimension r - 1 and a decomposition with r > > p terms are both 
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consistent with our definition. Our interest lies in decompositions which simplify 

7](.). Therefore, decompositions with r ~ p and where the dimension of each 

sub-vector is < < p are of interest. 

4.4.1 Observable Functions 

In this scenario, the computer model provides us with output in such a manner 

that we are able to make direct observations of the functions, 7]1 (.), ... 7]r (.) re­

spectively. As with the additive case (examined in 4.2.1), we observe Y(l), •• ' Y(r), 

with the property that Ej=l Yj = y. We want to use this additional structural 

information in order to improve our cheap approximation to 7](.}. 

Since we are able to observe each of these sub functions, we can proceed exactly 

as we did in 4.2.1. vVe model each function with a Gaussian process prior, observe 

data Yel)," ., Y(r) respectively, and after application of Bayes theorem arrive at 

posterior distributions, 7]1 ('IY(l), WI)' ... ,7]r('IY(r), w r ) respectively. 

We want to make inference about '77(.), and our knowledge about 7](.) is once 

more represented by a sum of r t-distributions. We can easily calculate posterior 

moments of each 7]j (.) and by independence of the 7]j (.), we can also calculate 

posterior moments of 7](.). Given the expectation, variance and kurtosis, we use 

a t approximation as in 4.2.1. 

4.4.2 Unobservable Functions 

For a partially additive decomposition, there is no equivalent model to the one 

considered in 4.2.2, that is able to exploit a specific design. However, knowledge 

of the decomposition is useful, and we discuss how to fit a similar model in section 

4.6, when we are only able to make observations of 7](.). 
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4.5 Structural Uncertainty 

In the previous two sections we have exploited known model structure in order to 

fit additive correlation structures. This correlation structure is more efficient when 

ry(.) can be decomposed, as highlighted by our example in 4.2.2. However, if we 

falsely assume that ry(.) is decomposable, and our design points do not cover the 

full input space, we have very little information about interactions between some 

groups of inputs. We need to ensure that if we have doubts about the structure 

of ry(.), our design points should cover the full design space, X, especially when 

a single evaluation of the function is computationally expensive. For this reason, 

we will most likely find that experts are not able to or not willing to decompose 

'fJ(.) with complete certainty. 

In this section, we consider the case where we have uncertainty about whether 

a decomposition of ryC.) is possible. Our design points are chosen to cover the entire 

input space, X. With this structure, we may still fit the Gaussian Process model 

of chapter 3, but we can also attempt to fit more efficient additive correlation 

structures. We develop a Gaussian Process model for a decomposition of ry(.) 

when we have structural uncertainty. We go on to look at more specific additive 

and partially additive correlation structures in sections 4.5 and 4.6. 

4.5.1 Specification of a Prior Distribution 

'rVe suspect that we can decompose ry(.) into functions of lower dimensional input 

vectors. However, we have uncertainty about this decomposition. Supposing that 

we have correctly identified the decomposition, we can write 'fJ(.) as 

'fJ(.) = 'fJl(') + ... 'fJr(.)' (4.32) 
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We are able to make observations of TJ(.), but due to the configuration of the 

design points, we cannot model TJl (.), ... TJr (.) using the hierarchical structure we 

described in 4.2.2. However, it is possible to model the terms TJl(.), ... TJr(.) indi­

vidually even with a space filling design, although this is more problematic. 

\Ve begin by specifying our prior beliefs about TJ(.). The expectation and 

variance of TJ(x), conditional on regression hyperparameters, {3, variance hyper-

parameters, a?, ... 0';, and smoothness parameters, WI,.' . W r , where Wj denotes 

the parameters of the jth correlation function, corresponding to term TJj (.) in our 

decomposition, are given by 

Var[TJ(x)I,l3, o'~, •.• , 0';, WI, •.• wrl 

We assume independence of the terms TJI(.),'" TJr(.). 

We define the covariance between TJ(x) and TJ(x') as 

(4.33) 

(4.34) 

where xU) denotes a sub-vector of x, and Cj(.,.) for j = 1, ... , r are correlation 

functions, with function, Cj(., .), corresponding to term TJj(.) in (4.32) 

The covariance between TJ(x) and TJ(x') is d(x, x'). This is a weighted sum 

(weighted by the O'J) of correlation functions. \Ve have no cross products in (4.35) 

due to the assumed independence of TJl(')'" ~ TJr(.). 

We combine our prior beliefs about expectation, variance and covariance, as 

expressed in (4.33)-(4.35), with distributional assumptions similar to those of 

chapter 3. 
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We specify the Gaussian Process prior, 

1](.) I {3, a~, ... , a;, WI,'" Wr I'V GP( h{.)T (3, d(.,.». (4.36) 

The final element of our prior specification requires us to consider our beliefs 

about the hyperparameters. Previously we considered a conjugate Normal Inverse 

Gamma prior on {3 and a2 however there is no natural multivariate extension for 

more than one variance parameter. Our beliefs about {3 and the variances, a;, 
are likely to be weak in any case. We adopt the non informative prior 

(4.37) 

on (3 and a~, ... ,a; and adopt independent improper uniform priors on the e1e-

ments of parameter vectors WI," . W r • 

4.5.2 Prior to Posterior Analysis 

Suppose that we are able to make n runs of the expensive computer code. We 

obtain the data vector, y = {1](XI),1](X2), ... ,1](xn )}, at inputs {XllX2""Xn }, 

We wish to update our beliefs about 1](.) in light of data, y. 

The likelihood is written as 

IA",-1/2 
f(y' (3, a~, ... , a;, Wb'" wr) - (2rr)n/2 exp{ -1/2(y - H(3)T A,,-l(y - H(3)}, 

(4.38) 

where 
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and 

Cj(X(j),I, x(j),d Cj(x(j),l, x(J),2) ... Cj(X(j),I, X(j),k) ... Cj(X(j),I, x(j),n) 

Cj(X(j),2, x(j),d Cj(X(j),2, X(j),2) 

denotes the n x n correlation matrix for term r/j(.) of the decomposition. 

\Ve begin by finding the joint posterior of {3, ar, ... ,a; and WI, ... Wr , which 

after application of Bayes theorem gives us 

\Ve can partition the posterior as 

where 

f(f3, af,···, a;, WI,··· Wr I y) - f(f31 a?, ... , a;, WI, .•. Wr , y) 

x f(af, ... , a;, WI,'" Wr I y), 

r.ll 2 2 f'.J N(f3A (1), (HA*-lA)-I), 
fJ aI,···,ar,WI,···Wr,Y 

and 

(4.39) 

( 4.40) 

(4.41) 

( 4.43) 
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where we adopt superscript notation to distinguish between the current calcula­

tions and those of chapter 3. 

We now update our beliefs about T/(.) in light of the data. Similar to chapter 

3, the function, T/(.) I y,,8, O'~, .. . ,0';, WI,." W r , is a Gaussian Process: 

T/(.) I y,,8, O'f,··., 0';, WI,· .. Wr '" GP( m(1)*(.), d*(., .», (4.44) 

where 

m(l)*(x) _ h(x)T,8 + t(1)(x)T A*-l(y - H,8), (4.45) 

d*(x,x') - d(x,x') - tCl)(X)T A*-lt(l)(X'), (4.46) 

t(1)(x) - {d(x,x1), ... ,d(x,xn )}. (4.47) 

Taking the product of (4.41) and (4.44) and integrating over ,8 leaves us with the 

Gaussian Process 

where 

m(l)**(X) _ h(x)TJ3(l)+t(l)(x)TA*-l(y_HJ3(l», (4.49) 

d**(x, x') - d"(x, x') + (h(x)T - tC1\x)T A*-lH) 

x (HT A*-lH)-l(h(x')T - tCI)(x')T A*-lH? (4.50) 

Since we cannot separate the unknown variance parameters from the correlation 

matrices, it is not possible to remove the conditioning on the variances analytically. 

We will require numerical methods in order to find 1}(.)ly. 

The simplification we adopted in chapter 3 was to estimate the unknown pa-
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rameters by the posterior mode of their joint distribution. \Ve could apply the 

same methodology here, estimating O'~, ••• ,0';, Wl, ... Wr by the posterior mode 

of (4.42), and treating these as known. Test problems have shown this approxi­

mation is adequate if we just require a point estimate for TJ(x), even though we 

have substantial uncertainty in both tel) (x)T and A *-1. However, we inevitably 

underestimate the uncertainty surrounding our point estimate. In chapter 3 we 

claimed that we only ignored 'second order uncertainty' with our approximation, 

but our expression (4.42) contains variances, a measure of 'first order uncertainty', 

so we cannot make the same claim. 

For this more difficult problem, we should take all the uncertainties into ac­

count. We could sample from the distribution of T](')ly using MCMC, similar to 

Neal(45) and Bayarri et al.(4). 

4.5.3 Equal Variances 

A special case, and the simplest case we could encounter, is where the variances 

O'~ = ... = 0'; = 0'2, that is a we have the same variance for each term in the 

decomposition (4.32). 

Then (4.33)-(4.34) are replaced by 

and the covariance is defined as 

2 
- rO', 

(4.51) 

(4.52) 
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where the superscript notation is used again to help us distinguish between 

models. 

\Ve combine our prior beliefs about expectation, variance and covariance, as 

given by (4.51)-(4.53), with distributional assumptions in a Gaussian Process prior 

as before: 

The final stage of our prior specification is the prior distributions for the model hy­

perparameters. The simplification of equal variances allows us to place a conjugate 

prior on {3 and (72, although we choose the non-informative prior, p({3, (72) ex: (7-2. 

We still adopt independent, improper uniform priors on the elements of the Wj' 

After observing data, and proceeding as in chapter 3, we arrive at a posterior 

student process on 1](.)ly, WI,'" W r , which for a given x is written as 

(4.55) 

where, 

m(2)**(x) _ h(x)T,a(2) + t(2)(x)T AU-l(y - H,a(2», (4.56) 

C(2)**(X, x') _ C(2)(X, x') - t(2)(X)T AU- l t(2)(X') + (h(X)T - t(2)(X)T A**-lH) 

X (HT Au-1H)-1(h(x')T - t(2)(X')T A**-lHf, (4.57) 

t(2) (x) - {C(2)(X, Xl)"", C(2) (X, xn )}, (4.58) 

A** - Al + ... +Ar , (4.59) 

~(2) (HT AU-lHT)-lHA**-ly, (4.60) {3 -

0'(2)2 
yT(AU-l _ AU-lH(HTAU-lH)-lHT A**-l)y 

(4.61) -
n-q-2 

\Ve adopt the simplification proposed in chapter 3, and ignore the 'second order 
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uncertainty', by estimating WI, •.. Wr from their joint posterior mode, 

(4.62) 

and treating them as known. 

4.5.4 Model Comparison 

\Ve have an obvious advantage in the equal variances formulation of 4.4.3, since we 

are able to avoid numerical methods. We can also consider a simple generalization 

to variances aw2 , ••• ar a 2 for known weights aj, with minimal modification to the 

theory of 4.4.3. 

However, we need to know what loss of information we suffer if we apply the 

methodology of 4.4.3 to any problem. At first sight, it seems rather naive to 

assume we have equal variances, especially when the dimensions of the x(j) may 

differ significantly. However, by examining variances and correlation functions, 

we can show this assumption is not so unreasonable after all. 

The variances of our two models are Ej=I aJ and ra2
• These describe how 

far TJ(.) departs from our parametric approximation, h(.)TJ3. In this sense there 

is clearly no advantage in unequal variances. 

The correlation functions can be written as 

(4.63) 

(4.64) 

respectively. 

In (4.63) the variances act as weights for the respective correlations functions, 
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giving the illusion of much more flexibility. Of course, as in most statistical models, 

the addition of parameters improves the performance, but since the correlation 

functions also contain parameters there is a substantial overlap in what Cj(.,.) 

and 0-; are estimating. The variances and smoothing parameters in (4.63) are 

in some sense competing to model the same source of uncertainty. As a result, 

the additional variance parameters within (4.63) offer only marginal improvement 

over (4.64). As the size of our sub vectors increases, and hence the number of 

parameters in our correlations functions increases, the effect of additional variance 

parameters is further diminished. One notable exception when the flexibility of 

(4.63) is desirable is when the contribution from one of our Cj(.,.) is zero. In this 

special case, when using (4.64) we have no way of setting Cj{.,.) equal to zero 

V xU), X~j)' \Ve discuss this further later on in this chapter. 

We compare the two correlation functions, (4.63) and (4.64), using two exam­

ples, which are chosen to demonstrate very different behaviors. \Ve take 'f](.) to 

be a function of Xl and X2 in both cases but discuss higher order functions later. 

In the first of these, the output is a smooth function of both inputs. We use 

( 4.65) 

which we observe at 14 design points, selected using a Latin hypercube design. 

We estimate the unknown parameters from the respective posterior modes (4.42) 

and (4.62). We now consider the correlation as a function of distances dl = Xl-X~ 

and d2 = X2 - x~. We show plots of the correlation functions (4.63) and (4.64) 

in Figure (4.4) and Figure (4.5) respectively. We plot the difference between the 

two correlation functions in Figure (4.6). 



Chapter 4 : Decomposable Models 

10 

T- O "'C 

·10 

10 

..... 0 "'C 

·10 

-10 

·10 

o 
d2 

10 

Figure 4.4: Contour plot: unequal variances 

o 
d2 

10 
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As we see from Figure (4.4) and Figure (4.5), the correlation functions have a 

similar shape as a function of distance. For similar correlation functions we should 

find the difference is ~ 0 V d1 , d2 • We see from Figure (4.6) that the difference 

between the two functions is only significantly different from zero in the tails. This 

is of little concern since the power of our approach is in the large correlations. 
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Figure 4.6: Contour plot: difference 
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In our second example we consider the case when the output is far more sen-

sitive to changes in X2 than changes in Xl. This represents a case where we might 

expect multiple variances to offer greater flexibility. We use the example 

(4.66) 

which we observe at the same 14 design points. We show plots of the correlation 

functions (4.63) and (4.64) in Figure (4.7) and Figure (4.8) respectively, and plot 

the difference between the two correlation functions in Figure (4.9). We take d1 

over the range -10 to 10 and d2 over the range -1 to 1. 
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\Ve note from Figure (4.7) and Figure (4.8) the difference between the two 

functions, which is far more apparent than in our previous example. Figure (4.9) 

shows this difference more clearly, and we note the two functions diverge as we 

move away from d1, d2 = O. 
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Figure 4.9: Contour plot: difference 
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In both examples, relatively small changes in the parameters of (4.63) resulted 

in non trivial changes in the shape of the correlation function. Despite this, we 

still ran into difficulties in maximizing the posterior, (4.42), which was flat over a 

large area surrounding the mode. Further investigation revealed that the posterior 

was very flat over regions where the product a;wi remains constant, even though 

changes in Wi and corresponding changes in at resulted in substantial changes to 

the correlation function in the tails. 

The significance of this is apparent when we consider the power series rep­

resentation of the exponential function. In our examples the correlation, using 
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(4.63), may be written as 

(4.67) 

where we note that the terms in the expansion (4.67) are functions of at 

Ignoring the constant term, the first function of distance di in exp{ -Wiat}, is 

Witif and it is this term that dominates the correlation function for di close to zero. 

We cannot be more precise than 'close to', since this depends on the magnitude of 

Wi - that is how quickly the exponential decays toward zero. The large correlations, 

where the power of the Gaussian Process model lies are dominated by this term. It 

is only as we move away from di = a to smaller correlations that the higher order 

terms in the power series expansion of exp{ -Witif} begin to have a larger influence 

on the correlation. However, provided that we have enough design points in order 

to model the large correlations well, the smaller correlations have a relatively 

small effect on the performance of the Gaussian Process model. Resultantly, the 

data are unable to easily distinguish between correlation functions that model the 

smaller correlations differently, hence the difficulty in maximizing (4.42). vVhen 

using (4.64), it is possible to select the parameters such that (4.63) and (4.64) are 

identical up to the first order term. The higher order terms may of course differ 

substantially. 

For higher order problems it is difficult to visualize the correlation as a func­

tion of distance, so we cannot easily verify if (4.63) and (4.64) produce similar 

correlations for a larger sum of 1 dimensional correlation functions. However, 

our numerical work has identified fiat posterior distributions - an indicator of 

over-parametrization, when using (4.63). When each correlation function is of di­

mension k > 1 and can be written as the product TI7=1 exp{ -Witif}, by expanding 

each term as in (4.67), we note the higher order terms in the expansion have even 
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less importance than in the k = 1 case. 

In the following two sections we develop methodology for searching for additive 

and partially additive decompositions. For this work we assume equal variances. 

4.6 Unknown Additive Decomposition 

In this section we consider a similar situation to that of section 4.2.2. We suspect 

that we have mutually exclusive and exhaustive partition of x = {x(1), ... ,X(T)}' 

and a corresponding decomposition of the output 1](x); 

(4.68) 

We may suspect that we know all of, some of, or none of the subsets Si. In light 

of our uncertainty, we have chosen design points in order to cover X, as described 

in 4.5. 

Suppose we want to test if TJ(x) can be decomposed as in (4.68). Presuming 

that the function is additive, and we have correctly identified the decomposition, 

we define the prior expectation, variance and covariance as in section 4.5.3, and 

specify the Gaussian Process prior (4.54). We update our beliefs in light of the 

data, y, arriving at a posterior student process as described in the previous sec-

. tion. However, if the partition is erroneous, it is possible to model 1](.) using the 

Gaussian Process prior (3.5) from the previous chapter, updating our beliefs as 

described in section 3.2.2. 

Our problem is to determine which of the two correlation structures (and as a 

result which model) we should use. If we have found the correct decomposition of 

1](.), then the additive structure will predict better, whilst the standard correlation 

structure will perform far better if our decomposition of 1](.) is erroneous. 
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Choosing the most appropriate correlation structure, given data, y, requires 

a novel approach. Standard methods of model comparison are of little use since 

both of our models will interpolate the data exactly. We could conclusively verify 

a proposed decomposition by making more observations however this may be 

impractical, especially for a computationally expensive function. We consider two 

approaches here, that use just the observations, y. 

4.6.1 Cross Validation 

Cross validation, where we leave each design point, Xi, out in turn, and predict 

1](Xi) using the remaining designs point, is a useful tool for detecting if the additive 

model is inadequate. 'When the additive model is inadequate the cross validation 

prediction errors, 1](Xi) -~(Xi)' where ~(Xi) denotes our prediction at Xi using the 

remaining n - 1 design points, will in general exhibit some structure. However, 

this test may not be able to distinguish between the cases where we have a very 

small interaction between inputs, and additivity. 

In the cases when cross validation can identify the decomposition (4.68) is 

incorrect, it does not indicate how the choice of subsets Si for i = 1, ... , r is 

incorrect. We will not know which terms in the decomposition are incorrect, and 

which inputs we should have included/omitted from these terms. 

4.6.2 Regression Based Model Comparison 

The approach to model comparison that we propose is based upon the perfectly 

fitting prior mean function that we described in 4.2. To briefly recap, we consid-

ered the model 

1](X) = h(x)T (3 + Z(x), {4.69} 
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where Z(.) is a Gaussian Process with zero mean and covariance (]'2C(., .). Using 

the product form (4.3) to express the correlation, we noted that the parame­

ters of the ith term in the product were a measure of how smooth departures 

from the mean function (which takes a parametric form) were in dimension i. 

In particular, if the mean function fits the data perfectly in dimension i, then 

Using the correlation function 

p 

c(x, x') = IT exp{ -Wi (Xi - x:)2}, (4.70) 
i=l 

this special case is identified by Wi = O. 

Suppose that we believe TJ{x) can be written as 

(4.71) 

that is a function of the inputs contained in subset SA, and a function of all the 

remaining inputs (denoted by S - SA). 

Our approach to model comparison involves replacing h(x)T,B in (4.69) by a 

term specifically introduced to model1]sA (xsA ). 

We write TJ(x) as 

TJ(X) = J-L{x) + Z(x), (4.72) 

where J-L(') is our prior mean function, and Z(.) is a Gaussian Process with zero 

mean and covariance, (]'2cs(., .). The correlation function, cs(., .), is a function of 

all inputs. 

Previously we have only considered parametric forms for our prior mean func­

tion however we now adopt a non-parametric form. We model J.l(.) with a Gaussian 
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Process prior. The prior expectation of J-l(.) is h(.)T,B, and the prior covariance is 

(J2CSA (., .), where cSA (.,.) is a function of just the dimensions in the set SA' 

Using properties of normal distributions, and assuming independence of the 

correlations, the sum (4.72) is a Gaussian Process with expectation h(.)T,B and 

covariance 

(4.73) 

which we can see is a special case of (4.53). 

Our first correlation function depends on sub-vector xSA ' with parameter vec­

tor ws
A

• Our second correlation function depends on the full vector of inputs, x, 

with p dimensional parameter vector Ws. Taking SA to contain 1,2, ... d, where 

d < p, and using our exponential correlation function, we write the covariance as 

d P 

(J2C(2) (x, x') = (J2{I1 exp[wsAi(Xi - X:)2] + II exp(wSi(Xi - X:)2]). (4.74) 
i=l i=l 

We observe data, y, and follow the prior to posterior analysis of 4.5.3, arriving at 

a posterior student process. Our posterior is conditional on data y and parameter 

vectors wS
A 

and Ws. We find the joint posterior of wSA and Ws as 

(4.75) 

and estimate wS
A 

and Ws from the posterior mode. 

Any mixture of correlation functions of the form (4.73) will always interpolate 

the data exactly however the posterior (4.75) will reflect that some structures fit 

the data, y, better than others. 

If the parametric component of the model, h{X)T,8, fits input Xi exactly we 

have a very similar interpretation to the case we discussed in detail in section 4.2. 
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We find the corresponding elements of wSA (which only exists if i ~ d) and Ws are 

zero. The special structure of (4.74) means we can use a similar result in order to 

identify additive groups. If the first d elements of Ws are zero and wSA =I 0, then 

(4.74) reduces to 

d p 

a2c(2) (x, x') = a2{IT exp[wsAi(Xi - X:)2] + IT exp[wSi(Xi - X;)2]}, (4.76) 
i=1 i=d+1 

and the covariance mirrors the additive form of (4.71). In (4.76) we have SA = 

{I, ... , d} and SB = S - SA = {d + 1, ... ,p} and clearly S1 n S2 = 0. Thus, the 

elements of wSA and Ws can be used to identify the decomposition. 

Suppose the first ri < d elements of x form an additive group. Once more the 

correct additive structure is nested within (4.74). If we have the first ri elements 

of Ws = 0 and the latter d - ri elements of wSA = 0, then (4.74) reduces to 

, p 

a2c(2) (x, x') = a2{IT exp[wsAi(Xi - X:)2] + IT exp[wsi(Xi - X~)2]}, (4.77) 
i=l i=d'+l 

and the covariance mirrors the additive structure of 7](.). We now have SA = 

{I, ... , ri} and SE = S - SA = {ri + 1, ... ,p}. This latter result forms the 

basis of an efficient search algorithm, which we describe presently, for finding any 

additive decomposition of TJ(.). 

Finally, we consider the case when neither SA or a subset of SA contains 

an additive group. Since the Gaussian Process TJsA (.) cannot adequately model 

the dimensions SA, the optimal covariance structure will clearly be independent 

of cSA (., .). The more general covariance structure we discussed in section 4.5, 

d(.,.) = a~A cSA (.,.) + a~cs(., .), would clearly be advantageous here since by 

estimating at = 0 the covariance is independent of CSA (., .). Using our equal 

variances formulation, we find the covariance is independent of cSA (.,.) if it can 
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be written as 

(4.78) 

which occurs when WSA = O. 

By examining (4.78), we note the variance is 2172 and the correlation is bounded 

by 0.5 and 1. Clearly this constraint limits our flexibility in modelling the corre­

lation. However, we have already argued that the power of the Gaussian Process 

approach is in modelling the large correlations well, which (4.78) is able to do. 

Since the correlation is bounded below by 0.5, this will have some effect on pre­

dictive capability, and as a result this correlation function will be inferior to the 

more flexible separate variances formulation. 

However, our interest is in model selection and for the purpose of model se­

lection we have found this formulation to be sufficient. Using (4.74) we detect we 

have not found an additive group when wSA = O. 

4.6.3 Searching for Additive Groups 

In principle we could search for all possible additive groups by repeatedly applying 

the methodology 4.5.2. We would just need to consider all possible subsets of S. 

However, this would be a very time consuming and inefficient procedure, which 

would not be possible for large p. 

We can implement a far more efficient procedure by using one of our results 

from 4.6.2. We found that if a elements of subset SA form an additive group, then 

if the d - a elements of WSA , corresponding to the remaining d - a inputs, are 

zero, then CS
A 

(.,.) depends only on the additive group. 'We increase our chances 

of finding an additive group by making SA as large as possible. This forms the 

basis of an efficient procedure for finding all additive groups. For p model inputs, 
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we can determine the decomposition of ry(.) into functions of lower dimensional 

input vectors, by examining a maximum of p additive correlation structures. 

We implement the following algorithm: 

1. Let 'l1 = S 

2. Repeat steps 3-5 until 'l1 is the empty set. 

3. Let SA contain all elements of 'l1 except the first. 

4. We fit the Gaussian Process model (4.72), and estimate the smoothing pa­

rameters wSA and Ws from the posterior mode (4.75). 

(a) The non zero elements of wSA (and corresponding zero elements in ws) 

indicate one additive group. 

(b) The non zero elements of Ws (and corresponding zero elements in wsA ) 

indicate a second additive group. At iteration i these identify subset 

Si' 

5. Remove the elements of Si from the set 'l1. Return to step 3 to find the 

remaining additive groups. 

The algorithm works very efficiently for a small number of groups, r. The moti­

vation for the algorithm is that the non zero elements of W S should indicate the 

inputs that interact with the input corresponding to the first element of 'l1. The 

non zero elements of wSA should indicate the inputs that do not interact with 

the input corresponding to the first element of 'l1. However, when r > 2, and at 

iteration i of the algorithm we have more than one possible decomposition, the 

algorithm identifies the decomposition that models y the best, which may not 

necessarily correspond to our above interpretation. Our numerical work (which 
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we discuss in section 4.6.5) has shown that when we have r > 2 groups and conse­

quently more than one decomposition of the form (4.71), the data tend to select 

a model such that the dimensions of 8 A and 8 a = 8 - 8 A are similar. 

In practice this result means that the sets determined by W SA in the early 

iterations of our algorithm may themselves contain subsets. We find all additive 

groups by repeatedly applying our algorithm. In step 1 of the algorithm we let 

W = 8 i and the remaining steps are unchanged. We usually only need to do this 

for the first few large subsets that the algorithm identifies. 

One modification to the algorithm proposed above, that improves efficiency is 

to write the covariance at iteration k of our algorithm as 

k 

cr2C(2)(.,.) = cr2{I)cs.(., .)J + csA (·,·) + CSB (., .)}, (4.79) 
i=l 

where the first term models the k subsets, 8 1, ••. 8 k , of the decomposition that we 

have we have found. Subset 8a contains all inputs not in 81 , .• • 8k • The subset 

8A contains all elements of 8a except the first. The form (4.79) contains the same 

number of unknown parameters as (4.73). However, with this modification, at 

termination of the algorithm not only do we know the decomposition of TJ(.), but 

we also have estimates of all the parameters. 

4.6.4 Example 

We demonstrate the algorithm with the 12 input example 

TJ(X) - TJ1 (Xl, X3, X6, XU) + TJ2(X2, X7, Xg, Xg) + TJ3(X4, X5, XlO, X12) (4.80) 

_ (x~ + x~ + X~l + X~)1/2 + (x~ + x~ + x~ + X~)1/2 

+ (x~ + x~ + x~o + X~2)1/2, 
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which we observe at 100 design points, selected according to a Latin hypercube 

design. The inputs were independent U(0,1) distributed. The number of terms 

in the decomposition, and the inputs within these terms were unknown before 

applying our algorithm. 

We begin by specifying the covariance between 1](x) and 1](x') as 

2 (2) ( ') 2 {( , ) ( '} 0- C X, x = 0- Cs Xs, Xs + cSA xSA ' xsA ) , 

where S = SB = {I, ... I2} and SA = {2, ... I2} and we have parameter vectors 

wSB = (WSB ,I, ..• ,WSB ,12) and WSA = (-,WSA ,2, ••. ,WSA ,12)' \Ve begin labelling 

the elements of wSA from an index of 2 so we can easily identify which input each 

parameter corresponds to. The - in place of WSA,l signifies we have no parameter 

corresponding to input Xl in this correlation function. 

We estimate wSn and WSA from their posterior mode as 

where WSB,k indicates the kth element of wSB is non zero. The elements of wSA and 

wS
B 

that we have indicated as being zero, in most instances were exactly zero. 

For some parameters the maximization was not at exactly zero. In the algorithm 

we set a threshold of 0.005, and took any parameter < 0.005 to be zero. 

At iteration 1 we have identified the decomposition 

(4.81) 

Following our algorithm we attempt to further decompose 1]2(')' Our covariance 
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is written as 

where 8 1 = {I, 3, 4, 5, 6, 7,10,11, l2}, 8B = {2, 7, 8, 9} and 8A = {7, 8, 9}. We 

estimate parameter vectors WSl' wSA and wSB from their posterior mode as 

WS
A 

- (-,-,-,-,-,-,0,0,0,-,-,-). 

A comparison of wSA and wSB indicates that no further decomposition of 172(') 

is possible. We re-run our algorithm and search for a further decomposition of 

171{.)' Our covariance is again written as (4.82), but 81 = {2,7,8,9}, 8B = 

{1,3,4,5,6,7,10,11,12} and 8A = {3,4,5,6, 7,10,11,12}. 

We estimate wSll WSB and WSA from their posterior mode as 

Thus, we identify the model 

(4.82) 

We attempt to fit 2 further models in order to ensure we have the simplest pos­

sible decomposition however we cannot further simplify the function. Thus we 

have 8 1 = {2,7,8,9}, 82 = {1,3,6,11} and 83 = {4,5, 10, 12}. We found the 
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correct decomposition by examining a total of 5 different correlation structures. 

In each case we found a strong posterior mode - the data clearly indicated the 

best correlation structure for each model comparison. 

To complete the example we compared the predictive performance of the ad­

ditive correlation structure with the multiplicative structure of chapter 3. \Ve 

used h(x) = (1, x) in each model and fitted the models using the same 100 design 

points. We show prediction errors for a further 100 points in Figure (4.10). 
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Figure 4.10: Prediction errors: additive model (circles), multiplicative model 
(crosses) 

The mean error was approximately zero using both models and in general the 

prediction errors were very small under both correlation structures; an artefact of 

the small variance of Y. However, as can be seen graphically in Figure (4.10), the 

prediction error variance was reduced by a half when using the additive correlation 

structure. 
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4.6.5 Discussion 

The procedure appears to be very efficient at finding additive groups and we have 

found that given enough data the additive groups are always identified. In order 

to attempt to establish properties of the search routine and how many design 

points are required for different dimensional inputs vectors, and different numbers 

and sizes of the subsets Si, we have undertaken a significant amount of empirical 

work. 

In Table (4.2) we show a subset of the problems that we have studied, with 

the number of inputs in the problem and the minimum number of design points, 

selected using Latin Hypercube Designs, that were required to consistently find 

the decomposition. 

Inputs Function Design Points 

2 Xl + sin(xI) + COS(X2) 10 
2 Xl + sin(xd + COS(3X2) 12 
3 sin(xI) + COS(X2 + X3) 15 
4 Xl + sin(xd + COS(X2) 10 
4 Xl + sin(xI) + COS(X2) + 0.05 sin(xi + X2) 12 
4 Xl + sin(xl) + COS(3X2) 12 
4 sin(xi + X2) + COS(X3) + exp(x4) 22 
6 (x~ + x~)1/2 + (x~ + X~)1/2 + (x~ + x~)1/2 25 
6 (x~ + x~ + xDI/2 + (x~ + x~ + x~)1/2 30 
6 (x~ + x~ + x~ + X~)1/2 + (x~ + X~P/2 28 
8 (xI + x~ + x§ + x~)1/2 + (x~ + x~ + X? + x~)1/2 40 

Table 4.2: Example problems 

Our work has found that the number of points is closely related to the number 

of active dimensions; in Table (4.2) we show two examples of a function with 2 

completely dormant inputs for the p = 4 case, and we require the same number of 

design points as the corresponding p = 2 problem. \Ve have also found that for a 

given p the number of design points that we require to identify a decomposition is 

related to the numbers and sizes of the subsets Si; our limited numerical work has 
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found that when most of these subsets are small, we tend to require fewer design 

points than when these subsets are large. In conclusion our numerical work has 

not been able to quantify how many design points we require for given p; this 

clearly depends on both model complexity and the number of active dimensions, 

which may be less than p. 

We have also attempted to assess how robust our method is to a small interac­

tion. Can we detect whether a function is completely additive, or merely almost 

additive, with a very small interaction? We cannot claim to have studied this 

case exhaustively however our limited numerical work in this area has indicated 

that our method is robust to small interaction terms. We considered the example 

(4.80) with the additional term c(Ei':l Xt)1/2, taking c -+ O. Even with c = 0.01 

we detected the model was no longer additive. Our method appears to work on 

the principle of 'accepting' the additive decomposition if the data suggests this is 

significantly better fitting than the standard model. 

4.7 Unknown Partially Additive Decomposition 

We now consider a similar situation to that of section 4.4. We have a partially 

additive decomposition of output 7](x): 

(4.83) 

where the 7]j(.) are functions of lower dimensional input vectors x(j). We may 

know all of, some of, or none of the subsets S1,'" Sr. In this case we do not have 

the condition that Si n Sj = 0 'Vi =J j. 
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4.7.1 Known Decomposition 

In section 4.4.2 we noted that for a model of the form (4.83), even if the partially 

additive decomposition of TJ(.) was known, we could not select our design points 

in order to exploit this structure. As a result, we noted that for a partially 

additive model there is no equivalent to our work of section 4.3.2. However, by 

a straightforward application of the methodology of section 4.5, we can use this 

structural prior information to fit a partially additive correlation structure. 

4.7.2 Regression Based Model Comparison 

In practice we are unlikely to know the full partially additive decomposition of 

TJ(.) with certainty. Suppose that we want to test if TJ(x) can be decomposed as in 

(4.83). \Ve can compare the partially additive model with the Gaussian Process 

model of chapter 3, similar to our method of the previous section. We again adopt 

a method based upon the perfectly fitting mean function. 

Suppose we believe that output, TJ(x), contains a function of inputs XsA • For 

ease of notation we once more assume that SA = {I, ... d}. The output can be 

decomposed as 

(4.84) 

We can think of TJSA (.) as our non-parametric mean function J-l(.), which in turn 

has mean function h(.)T,B and correlation function csA (., .), which is a function 

of the first d inputs in x. The second term TJs(.) is a zero mean Gaussian Process 

with correlation function cs(., .), which is a function of all p inputs. Therefore, 

(4.84) is a Gaussian Process with mean function h(.)T,B and covariance 

(4.85) 
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Using our exponential correlation function, we write the covariance as 

d p 

0-2C(2) (X, x') = 0-2 {II exp[WSAi(Xi - X~)2] + II exp[WSi(Xi - X~)2]}, (4.86) 
i=l i=l 

and estimate the parameters Ws, wSA from the posterior mode of 

(4.87) 

A partially additive decomposition of 'f}(.) is more complex than the additive 

decomposition, since each input may be present in at least two partially additive 

functions. As a result we have more special structures nested within (4.86). We 

can use ws, wSA to detect the correct structure. 

1. wSA = O. This tells us that the subset SA does not contain a partially 

additive group. If we also find the ith element of Ws is equal to zero, this 

indicates the parametric fit, h(x)T,8, explains the variation with respect to 

input Xi. perfectly - this follows from the discussion in section 4.6. 

2. ws > 0 and at least one element of wSA is greater than zero. This tells us 

that we have found a partially additive group. However, since all elements 

of Ws are greater than zero, SA does not contain any unique elements. 

3. wSA > 0 and the first d elements of Ws are zero. This tells us that we have 

identified SA = {I, ... , d} and SB = S - SA = {d + 1, ... ,p} such that 

SAn S B = 0 - that is an additive decomposition. 

4. wSA > 0 and d' (but not all) of the first d elements of Ws are zero. vVe 

have explained all the variability in ct dimensions, but f/(.) contains other 

functions of the remaining d - ct inputs. That is SA contains some but not 

all unique elements. 
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Given enough data the posterior mode of (4.87) will be able to distinguish 

between these four structures. 

4.7.3 Searching for Partially Additive Groups 

Finding a single partially additive group is not difficult in principle. By adopting 

the same procedure as proposed in 4.6.3 and taking SA to be as large a set as 

possible, we maximize our chances of finding a partially additive group. However, 

in order to determine all the partially additive groups we need a more structured 

approach than we proposed in 4.6.3. 

Additive groups of inputs are a special case of a partially additive decomposi­

tion of 'fI(.). Our numerical work suggests that additive groups are always detected 

first. \Ve begin by finding all the additive groups of inputs using the methodology 

of section 4.6.2. We can search within each of these additive groups for a partially 

additive decomposition. 

We find all r* subsets of S, such that Si n Sj = 0 V i =1= j using the algorithm 

of section 4.5.2. The output may then be written as 

(4.88) 

We then search for subsets of each Si for j = 1; ... r"'. We search these addi­

tive groups one at a time so that we may limit the dimension of our numerical 

maximization. 

We propose the following algorithm for decomposing 'f}Sj (xsJ 

1. Let W denote the set of inputs within XSj' 

2. Set n = 1. 
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3. Set m = 1. 

4. Repeat steps 5 to 7 until termination 

5. Let xs" contain all elements of W but the mth. We fit our Gaussian Process 
J 

model with covariance 

(4.89) 

and estimate parameters w Sl , ••• , w s; and w s;, ... , w s'J 

6. We examine the parameters of the correlation functions CSj(XSj'x~) and 

(a) If ws" = 0, set m = m + 1. 
J 

(b) If WS"f #- 0, we have found a partially additive group. Set n = n+ 1. If 
J 

any elements of W Sj are zero, set m = 1 and remove the corresponding 

inputs from the set W. 

7. Terminate when m + 1 exceeds the dimension of the set W. 

Given enough data, y, the algorithm will find all partially additive groups. 

However, the amount of data we require will depend on the order of the decom­

position, and how many inputs each sub function contains. The decomposition 

may contain many more parameters than we had in our Gaussian Process model of 

chapter 3, so it may not be feasible to find the full partially additive decomposition 

of TJ(.}. 
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4.7.4 Example 

We demonstrate the algorithm with the 12 input example 

7](X) - 7]l(Xl + X4 + X7) + 7]2(X7 + XlO + Xll) + 7]3 (Xl + Xu + X12) 

+ 7]4(X5 + Xs + Xg) + 7]5(X3 + X6 + Xg) + 7]6(X2 + X6 + XS) 

_ (X~ + X~ + X~)1/2 + (X~ + X~O + X~1)1/2 + (X~ + X~l + X~2)1/2 

+ (x; + X~ + X~)1/2 + (X~ + X~ + X~)1/2 + (X~ + X~ + X~)1/2, 

113 

(4.90) 

which we observe at the same 100 design point as in the previous example. Again, 

the problem is designed to be challenging, containing 2 additive groups of 6 inputs, 

which can each be further decomposed into 3 partially additive groups. 

We begin by specifying the covariance between 7](x) and 7](x') as 

where SA = {2, ... , 12} and S = SB = {I, ... 12}. We have parameter vectors 

wSA = (-, WSA,2, ••• ,WSA,12) and wSB = (WSB,l,." ,WSB .12). Note this first stage 

is identical to the procedure we used for a purely additive decomposition. 

\Ve estimate WSA and WSB from their posterior mode as 

Thus, we find that 7](x) can be written as 

(4.91) 
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vVe find no further decomposition into additive groups is possible. vVe have 

identified the two subsets of SasSI = {I, 4, 7,10,11, 12} and S2 = {2, 3, 5, 6, 8, 9}. 

We now begin our algorithm to find all partially additive groups. 

Following our algorithm, we specify the covariance between TJ(x) and TJ(x') as 

where Sl = {I, 4, 7,10,11, 12} and S2 = {2, 3, 5, 6, 8, 9} and Sf = {4, 7,10,11, 12}. 

We estimate w 81 , W 81 W 82 from their posterior mode as 
1 

\Ve find our first partially additive group, with Sf = {7, 10, ll}. We examine wSl 

and note that WS~,lO is zero, and therefore input XlO is unique to Sf. 

Thus, TJ(x) can be written as 

We specify the covariance between TJ(x) and TJ(x') as 

where S1 = {l, 4, 7,11, 12}, S2 = {2, 3,5,6,8, 9}, Sf = {7, 10, 11} Si = {4, 7,11, l2}. 

For the above covariance structure we found W82 = 0, which indicates we have 
1 

not found a partially additive group on this iteration of the algorithm. Following 
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our algorithm we again specify a covariance of the form (4.93), but with 8f -
{I, 7,11, 12} whilst the remaining subsets are unchanged. 

We estimate wS1' WS1, WS2 and wS2 from their posterior mode as 
1 1 

We find our second partially additive group with 8 12 = {I,ll, 12}. We examine 

wS
1 

and note that WS~,l1 and WS~,12 are zero. Our two partially additive groups 

model all the variability from inputs XlO, Xu, X12· 

Thus, 7](x) can be written as 

(4.93) 

We fit 3 more models, in an attempt to simplify 7]1(X1,X4,X7), however these 

correctly indicated no further simplification was possible, hence 7]1(X1,X4,X7) is 

our final partially additive group. 

We now try to decompose the second additive group. We specify the covariance 

between 7](x) and 7](x') as 

where 8 1 = {I, 4, 7,10,11, 12}, 82 = {2, 3, 5, 6, 8, 9} and 8i = {3, 5, 6, 8, 9}. 
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vVe estimate w 81' W 82 and W 81 from their posterior mode as 
2 

We find the first partially additive group with 8~ - {3, 6, 9}. We note that 

dimension 3 is unique to 8i. Thus 

(4.94) 

We now attempt to find the remaining partially additive groups. Our covariance 

now takes the form 

where 8 1 = {I, 4,7,10,11, 12}, 8 2 - {2, 5, 6, 8, 9}, 8i = {3, 6, 9} and 8i -
{5, 6, 8, 9}. 

We estimate the parameters via their joint posterior mode and find 

This final covariance structure produces only partial success. We expected to 
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find WS~,6 = 0 and WS2 ,5 = 0, which would identify the final two partially additive 

groups. The estimates of these two parameters were close to zero, but the posterior 

was quite flat in the area around the mode. The 100 design points were insufficient 

in order to identify this final group. However, when we used a different 100 point 

LHS we were able to correctly identify all the partially additive groups. 

To complete the example we compared the predictive performance of the par­

tially additive correlation structure with the multiplicative structure of chapter 3. 

Once more we use h(x) = (1, x) in each model and fit the models using the same 

100 design points. We show prediction errors using these two models for a further 

100 points in Figure (4.11). 
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Figure 4.11: Prediction errors: partially additive model (circles), multiplicative 
model (crosses) 

We note from Figure (4.11) that the variability about a mean error of zero is 

far less when using our partially additive correlation structure. The partially addi­

tive correlation structure offers a significant improvement over the mUltiplicative 
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structure. 

4.7.5 Discussion 

The above example highlights that a partially additive decomposition is complex. 

Our method can work well, but performance obviously depends on how complex 

the decomposition of TJ(.) is. Given enough data we can find all partially additive 

groups, but the number of design points we require to identify a partially additive 

decomposition may well outnumber the number of design points required to fit 

the Gaussian Process model reviewed in chapter 3. 

This example was a difficult test with all 12 inputs active. In such a function 

100 design points is not many to determine whether an order 5 interaction can 

be decomposed. We can in principle handle many more inputs provided we have 

factor sparsity. In problems with factor sparsity, like those considered in Welch 

et al.(64) our algorithm is very effective. 

In summary: 

1. given enough data we can find all partially additive groups; 

2. the algorithm works best when we have factor sparsity; 

3. we may not be able to fully decompose TJ(.); 

4. any decomposition we find aids modelling. 

4.8 Conclusions 

In this chapter we have considered a series of models for use when we have struc· 

tural prior information about TJ(.). We defined the two distinct cases of additive 
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and partially additive decompositions of 7](.). We considered inference when we 

had known decompositions of 7](.), and showed that predictive performance was 

better when using the additive structure as opposed to the multiplicative structure 

in the model we reviewed in chapter 3. Moreover we achieve better performance 

with fewer design points. 

We then considered inference for 7](.) in light of uncertainty about a decomposi­

tion. We developed methodology for searching for additive and partially additive 

groups. We used the parameters of the correlation functions to identify model 

structure. We used a specific form of correlation function; however any correla­

tion function that can be written as a product of one dimensional, one parameter 

correlation functions can be used. We found additive groups are easily identified 

_ we require fewer design points than we would normally model 7](.) with, us­

ing the methodology of chapter 3. We found partially additive models are more 

difficult to fully decompose, and we may not be able to fully decompose 7](.). 

We showed by way of two examples that the additional computational burden of 

searching for additive and partially additive structures is justified, especially for 

a computationally expensive function since predictive performance is improved. 

A final conclusion relates to the wider applicability of the methodology devel­

oped in this chapter. The motivation for the methodology of sections 4.6-4.7 was 

to search for models with an unknown simpler structure. However, the applica­

tion that we discuss in chapter 7 showed that the method may be more widely 

applicable in the context of model validation. Often the creation of a computer 

model is an iterative procedure and the earlier versions of the model frequently 

contain omissions and programming errors; our method could be used to effi­

ciently audit such models, assessing whether the model contained an erroneous 

(and unintended) simplified structure that did not reflect important aspects of the 

process being modelled or whether the model contained interactions that were not 
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expected. Equally the method could be useful in showing that specific structure 

expected in the model is actually present. 



Chapter 5 

Uncertainty and Sensitivity 

Analysis for Decomposable 

Functions 

5.1 Introduction 

In this chapter we consider uncertainty and sensitivity analysis for the case when 

we can decompose the function T}(.) as 

T}(.) = T}l(') + ... + T}r(.)' (5.1) 

We use the methodology developed by Haylock and O'Hagan(23) and Oakley and 

O'Hagan(49),(51), which was reviewed in chapter 3. \Vhilst the methodology 

we use for uncertainty and sensitivity analysis is not new, we do need modifica­

tions to the calculations given in sections 3.3 and 3.4 as a result of the changes 

to the Gaussian Process model that we made in chapter 4. \Ve describe these 

modifications in detail in this chapter. 

121 
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We have two broad categories of decomposition to consider. 

1. Decomposition known a priori. 

The first of these classes is where we have data available, or sufficient knowl­

edge about the form of the decomposition, such that we have been able to 

use a one at a time design in order to observe each of the sub functions, 

'T]j(.), directly. We found posterior distributions for 'T](.) under these decom­

positions in sections 4.3 and 4.4. 

2. Decomposition unknown a priori. 

In our second class, the decomposition was unknown a priori. Resultantly 

we use a space filling design. Using the methodology described in the pre­

vious chapter, the decomposition can be identified, and we act as if the 

decomposition is known with certainty. We do not have observations of the 

sub functions, 'T]j(.), however we have been able to model 'T](.), with an ad­

ditive covariance structure. We found the posterior distribution for ry(.) in 

4.5 of the previous chapter, and examined additive and partially additive 

decompositions in detail in 4.6 and 4.7. 

In this chapter we consider measures of uncertainty and sensitivity for these 

two classes of decomposition, that make use of the structural information (5.1). 

An example demonstrating the methodology developed in this chapter is given in 

chapter 7. 

5.2 Inference for Known Decompositions 

We can decompose the output, 'T](x) as 

(5.2) 
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As in the previous chapter we let S represent the set of integers i - 1, ... , p 

and Sl,"" Sr are subsets of S. Function 1]j(x(j)) is a function of the sub vector 

XU), whose elements are identified by the elements of Sj. For additive models we 

have a mutually exclusive and exhaustive partition of X, and resultantly Si n Sj = 

o V i =f. j. For partially additive models each Xi may be present in more than one 

xU) and resultantly this condition need not hold. As discussed in the previous 

chapter, we take the functions 1]j(x(j)) for j = 1 ... r, to be independent. 

In this section we consider inference for the observable functions case (discussed 

in section 4.3.1), where we are able to make observations YU) of each function, with 

the property that 2:;=1 Y(j) = y. \Ve don't explicitly consider inference for the 

unobservable functions model (discussed in section 4.3.2), since inference for this 

model is trivial given the theory that we develop. However, we indicate how 

inference for this model differs from our analysis at the end of this section. 

5.2.1 Uncertainty 

We consider measures of uncertainty about Y, where Y = 7](X). We are interested 

in the same summaries as discussed in chapter 3, E[YI7](.)], Var[YI7](.)] and the 

distribution function of YI1](·)· 

Expectation 

We first consider the expectation of Y, conditional on 7](.), which can be written 

(5.3) 

In chapter 3 we found the posterior distribution of E[YI7](.)] for the case where we 

did not utilize structural prior information. We can find the posterior distributions 
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have 

(5.4) 

and the posterior distribution of Kl,{j) is given by 

(5.5) 

In arriving at (5.5) we followed the same steps as in section 3.3 so we need not re­

peat them here. The expectation and variance of Kl,(j) involve integrals R(j), T(j) 

and U(j). Again, these integrals are almost identical to equations (3.51)-(3.53) of 

chapter 3 so we do not list them again. By properties of expectation, the integral 

(5.4) and hence R(j), T(j) and U(j) can be reduced to integrals with respect to just 

the sub vector x(j). 

\Ve are interested in K1 = E[Y/1](.)] and this is given by the sum 

r 

K1 = L: K 1,(j)' (5.6) 
j=l 

It is simple to calculate the expectation and variance of (5.6). Letting Vj = nj-Qj 

and 

z. = K1,(j) - k1,(j) 
J A v'-2 I Wj, Y(j), 

a· ~Hl,(·) J Vj ) 

for j = 1, ... , r, we have 

E[K1/wJ, ... ,w", Y(l),' •• Y(T)] 

Var[Kt/wl,"" w", Y(l), ••• Y(r)] 

(5.7) 

(5.8) 

(5.9) 
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We showed how to approximate a weighted sum of t-distributions in 4.3.1. If we 

wish to calculate summaries of Kl such as P(K1 < c), for constant c, then a 

similar approximation will be useful here, especially for large r. We equate the 

first 4 moments of (5.6) to those of a t-distribution with v degrees of freedom. 

We calculate v by equating the kurtosis of (5.6), denoted f32(tv) to that of a t­

distribution with v degrees of freedom. The calculation of f32(tv) was described in 

detail in 4.3.1 and is not repeated here. 

We find v using 

(5.10) 

which follows from chapter 4. 

Our approximation to (5.6) is therefore 

(5.11) 

where 

(5.12) 

and Var[tvl is the variance of a t-distribution with v degrees of freedom. It is 

trivial to calculate summaries from (5.11). 

Variance 

We now consider the variance of Y conditional on 'Tl(.), which can be written as 

Var[YI'Tl(')] = Var[Y(1) 1'Tl1 (.)] + ... + Var[Y(r)I'Tlr(')]. (5.13) 

We can consider inference for each of the variances in (5.13) individually. Following 

the same process as in chapter 3, we find the posterior expectation (with respect 
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to the posterior distribution of TJj (.)) of the variance of Y(j) as 

E*[Var{Y(j) }Iwj, Y(j)] - E*[K2,(j) - K;,(j)!Wj, Y(j)] 

- E*[K2,(j)IWj,Y(j)] - (Var*[K1,(j)lwj,y(j)] + E*[K1,(j)lwj,Y(j)]2). 

where 

Again, we find that K2,(j) !Wj, Y(j) reduces to an integral with respect to the sub 

vector x(j), and hence E* [Var {Y(j) }! W j, Y U)] depends on just XCi). 

After making inference about each term in (5.13), we calculate the expected 

value of the variance of Y from the sum 

r 

E*(Var{Y}lwb'" Wr, Y(l)," . Y(r)] = L E*[Var{Y(j)}lwj, Y(j)]. (5.15) 
j=l 

Distribution Function 

The final summary we require is the distribution function of Y!TJ(.). The posterior 

distribution of the distribution function requires us to calculate the integral 

FY I1/(.)(S) = 1 I {TJ(x) :$ s} dG(x). (5.16) 

However, as we found in chapter 3, the posterior distribution of Fy(s) is in­

tractable, so we calculate moments of FYI1/(.)(s) instead. For the previous two 

summaries we have been able to make inference about each term of the decom-

position independently. For the distribution function, the form of the integral, 

(5.16), means this is not possible. Therefore, in order to make inference about 

(5.16) we use an approximation. In section 4.3.1 we found that the posterior dis-
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tribution of T](x) could be well approximated by at-distribution. vVe use the same 

approximation here, 

(5.17) 

where, E[T](x)J, v and o-x were given in (4.12), (4.19) and (4.20). 

The first two posterior moments of FY I77(.)(s), are almost identical to those 

from chapter 3: 

E* {FYI77(') (S)IWl, ... W r , Yell, ... Y(r)} 

-1 E*[J{T](X) ~ S}IWl, ... Wr,Y(l)," 'Y(r)]dG(x) 

1 T](X) - E[T](x)] S - E[T](x)] 
_ P[{ A ~ A }IWll ... W r , Y(l), ... Y(r)] dG(x) 

x Ux Ux 
a-E[!J(X)j _ r 1 itx fTv dt dG(x), (5.18) 

ix -00 

where lTv is the density of a t-distribution with v degrees of freedom. 

Using the result 

P{T}(Z) ~ S2}P{T}(X) ~ sllT}(z) ~ S2} = I: P{T}(X) ~ SdT}(Z) = k}/TJ(z)(k)dk, 

(5.19) 

where f 77(z)(k) is the density function of T}(z), we arrive at 

E*{Fy (Sl)Fy (S2)IW l,'" W r , Y(l),'" Y(r)} 
8!-E[!J(x)! - 111:100 itx ITv+!fT/(z)(k)dtdkdG(x)dG(z). (5.20) 

We omit some of the intermediate steps in arriving at (5.20), but the calculation 

follows the method shown in more detail in chapter 3. 
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vVe demonstrate our approximation using the test function 

- Xl + sin(xd + COS(X2)' (5.21) 

where Xl, X2 rv N(O, 1). We make 7 observations of 171(.) and 172(') and obtain the 

outputs Y(1) and Y(2) respectively, at design points Dl = {-3, -2, -1,0,1,2, 3} 

andD2 = {-3,-2,-1,0,1,2,3}. In Figure (5.1) we plot the distribution function, 

and percentiles using (5.18). \Ve note the error in using this approximation is very 

small. 

1.0 

0.5 

0.0 

-4 -3 -2 -1 o 
y 

1 2 3 4 

Figure 5.1: Distribution function (line) and percentiles (crosses) 

In section 3.3, we briefly mentioned the simulation method developed by Oak-

ley and 0 'Hagan ( 49) that could be used to evaluate the first two moments of the 

distribution function. The method can be easily generalized for a model of this 

form, and is efficient. 
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5.2.2 Sensitivity 

\Ve wish to learn the importance of some sub-vector X r , which we assess by a 

decomposition of rJ(.) into main effects and interactions, and a decomposition of 

the variance. 

We first consider conditional expectations of the form, KI,r = E(YIXr = 

Xr. rJ(.)), where Xr is a sub vector of X. The sub vector Xr is quite distinct from 

the groups X(I),'" X(r)' 

The expectation, KI,r, can be decomposed as 

(5.22) 

and the lh term of (5.22) can be expressed as the integral 

K1,r,(j) = E(YjIXr = Xr , rJj(·)) = 1 rJj(X(j)) dGX _ r Ixr(x-rlxr), 
X-r 

(5.23) 

where X-r denotes the space of possible values for X-r , and GX_rl xr denotes the 

conditional distribution of X-r given X r. 

Following from the methodology of chapter 3, quantities K1,r,(j) have t-distributions, 

KI,r,(j) - kl,r,(j) I t 
Wj, Y()') f"""IJ n'-q" 

A n·-q·-2 r.v, J J 
(J' J) I' . ) nj _qj r,r,()) 

(5.24) 

The expectation and variance of (5.24) require us to evaluate integrals Rr,(j), Tr,(j) 

and Ur,r,(j) (xr , x~) which are almost identical to (3.69)(3.70) and (3.72) from chap­

ter 3, and ~Vr,r,(j) is given by a similar calculation to (3.71). 

Conditional expectation KI,r is a sum of t-distributions, and we approximate 

this in the same manner that we approximated the expectation in 5.1.1. 
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Main Effects and Interactions 

vVe now consider the decomposition of 7](.) into main effects and interactions. 

p 

y = 'fJ(x) = E (Y) + L Zi(Xi) + L Zij(Xi, Xj) + ... + Zl, ... ,p(x), (5.25) 
i=l 19~j 

where 

Zi(Xi) - E(Ylxi) - E(Y), (5.26) 

Zi,j(Xi, Xj) - E(Ylxi, Xj) - Zi(Xi) - Zj(Xj) - E(Y), (5.27) 

with higher order interactions following similarly. Note that we don't explicitly 

show the conditioning on 'fJ(.) for ease of notation, but all the expressions in (5.25) 

are conditional on 'fJ('). 

For a decomposable model we have already shown how to calculate the pos­

terior distribution of expectations E(YIXr = xr). Main effects and interactions 

are simply functions of these expectations. Since we have shown that expecta­

tions may be written in the form E(YIXr = x r ) = 2:;=1 E(Y(j)IXr = x r ), main 

effects and interactions can be written in a similar form for example Zi(Xi) may 

be written as 
r 

Zi(Xi) = 2:{E(Y(j)!Xi) - E(Y(j))}. (5.28) 
j=1 

Each of the r terms in (5.28) has a t-distribution, and Zi(Xi) may be approximated 

by a sum of t-distributions, as seen earlier. Interaction terms can also be expressed 

using sums. 

From the definition of the conditional expectation, E(Y(j) IXr = x r ), we can see 

this calculation depends on the full vector of inputs. Therefore, even if inputs Xi 

and Xj are non interacting (do not appear in the same term of our decomposition), 
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it does not follow that the corresponding interaction effect is zero. We demonstrate 

using the simple example 

(5.29) 

where Xl and X 2 are normally distributed with respective expectations of J-Ll and 

J-L2, respective variances O"~ and O"~, and p is the correlation between Xl and X 2· 

\Ve find the expectation and conditional expectations as 

E[Y] - J-LI + J-L2, 

E[YIX1] 
0"2 

- Xl + J-L2 - -p(Xl - J-Ll), 
0"1 

E[YIX2] 
0"1 

- X 2 + J-L1 - -p(X2 - J-L2), 
0"2 

and hence we have main effects 

0"2 
zl(xd = Xl - J-LI - O"/(Xl - J-Ld, 

0"1 
Z2(X2) = X 2 - J-L2 - 0"2 P(X2 - J-L2), 

and interaction effect 

The interaction term is zero when p = O. Therefore we see additivity combined 

with the additional property of independence are sufficient conditions for the 

interaction effect to be zero 'lXI, X2. For a more general model, with p > 2 inputs 

the additional assumption of independence of Xi and xi is not sufficient to ensure 

Zi,i(Xi, xi) = OVXi, xi' We also need to consider the distribution of the other 

inputs. However, under certain conditions we can guarantee that if inputs are 
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non interacting, the corresponding interaction is exactly zero. We now discuss 

some conditions under which we can show the main effect Zi(Xi) and first order 

interaction depend only upon subset Sk, and conditions under which the first order 

Suppose we have an additive partition of the inputs, and the joint distri­

bution of the inputs, G(x), can be partitioned into independent components 

Beginning with the main effect, if input Xi is in the kth group, that is i € Sk, 

then 

Zi(Xi) - E(Ylxi) - E(Y), 

- E(Y(lJlxi) + ... + E(y(r)!Xi) - {E(Y(l)) + ... + E(Y(r))}' 

- E(y(k)/Xi) + I:E(Ycn)) - {E(Ycl)) + ... + E(Ycr))}' 
n¥k 

- E(Yck)/Xi) - E(Yck))' (5.30) 

and Zi(Xi)/1J(.), depends only upon subset Sk' 

Now consider the first order interaction between inputs Xi and Xj' 

Zi,j(Xi, Xj) - E(Y/Xi, Xj) - Zi(Xi) - Zj(Xj) - E(Y), 

- E(Ylxi, Xj) - {E(Ylxi) - E(Y)} - {E(Ylxj) - E(Y)} - E(Y). 

Zi,j(Xi,Xj) = E(Yck)IXi,Xj) + I:E(Ycn)) - {E(Yck)/Xi) - E(Yck))} 
n¥k 

r 

- {E(Yck)IXj) - E(Yck))} - L E(Ycn)), 
n=l 
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Our uncertainty once again depends only upon the subset Sk' 

If i € Sk and j € SI, then we have 

r r 

Zi,j(Xi, Xj) - ~ E(Y(n) lXi, Xj) - ~ {E(Y(n)lxi) - E(Y(n))} 
n=l n=l 

r r 

- I)E(Y(n)IXj) - E(Y(n))} - L E(y(n)), 
n=l n=l 

ni'k,1 
r 

- {E(Y(l)IXj) - E(Y(l))} - L E(Y(n)) = 0 (5.32) 
n=l 

That is, our interaction is exactly zero, with no uncertainty. We can extend this 

result for higher order interaction terms. It is straightforward to show that under 

our assumptions about the form of G(x), any interaction effect is zero unless all 

inputs are contained within the same additive group. 

For a partially additive decomposition we will in general require greater in­

dependencies of the inputs in order to simplify the main effects and interactions. 

If G(x) can be partitioned into G(Xi) and G(X_I) with Xi, X-I independent, 

then Zi(Xi) will depend only upon the subsets of S containing i. If G(x) can be 

partitioned into G(Xi)' G(Xj) and G(x_ij), then Zij(Xi, Xj) = 0 if ~ k such that 

{i,j} C Sk' This latter result has an obvious extension to higher order interac-

tions. 

Variances 

Finally, we consider the decomposition of variance. By independence, the variance 

of the output conditional on sub vector X r , can be written as 

Var{E(Y IXr )} = Var{E(y(l) IXr )} + ... + Var{E(Y(r) IXr )}, (5.33) 
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where 

As we discussed in chapter 3, the posterior distribution of E {E(Y(j) IXr)2} is 

intractable however we can calculate posterior moments. By a straightforward 

adaptation of the methodology of section 3.4 we can calculate the posterior ex­

pectation, with respect to the posterior distribution of 'TJj(.), of E{E(Y(j) IXr)2}. 

The posterior expectation of V ar{ E(Y(j) IXr)} is given by 

E*{Var{E(Y(j) IXr)}lwj,Y(j)} = E*{E{E(Y(j) /Xr )2}/Wj,Y(j)} 

-(Var*[K1,Uliwj,Y(j)] + E*[K1,(j)!wj,Y(j)]2), (5.35) 

where E*{E{E(Y(j) IXr )2}!Wj,Y(j)} requires a similar calculation to (3.77). 

The variance of the output, Y, conditional on sub vector Xr is found from 

E*{Var{E(Y IXr)}lwl!' .. Wr , Y(l),'" Y(r)} 
r 

= LE*{Var{E(Y(j) IXr)}lwj,Y(j)}' 
j=1 

We are able to calculate sensitivity indices by dividing these partial variances by 

For additive models, if G(x) can be partitioned into independent components 

G(X(l)),'''' G(X(r))' then E*{Var{E(Y(j) IXr)}lwj, Y(j)} = 0 unless X(j) and Xr 

contain at least one common element. We will require greater independencies in 

order to simplify partially additive models. If we have complete independence of 

the inputs, the calculations for variance based sensitivity indices can be vastly 

simplified for both additive and partially additive models. 
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5.2.3 Inference for Unobservable Functions 

We briefly consider inference for the unobservable functions model that we exam­

ined in section 4.3.2. This differed from the simple additive model in that our pos­

terior expectation had the additional constant term, c. As a result, for this model 

E* [Kl,(J) IWl,'" W r , Y(l),'" Y(r)] and E*{Fy(s)lwll ... W r , Y(l),'" Y(r)} will be in­

flated by c. The variance, main effects and interactions and partial variances for 

this model are identical to the values given earlier on in this section. 

5.3 Inference for Unknown Decompositions 

We once more consider a decomposition of 1](x) into 

(5.36) 

In this second case, the subsets Sj were unknown a priori. In section 4.5 we used 

a space filling design and modelled 1](.) with an additive covariance structure. In 

sections 4.6 and 4.7 we used the data, y to identify the subsets Sj. 

In deriving measures of uncertainty and sensitivity for this class of decompo­

sition, we assume that the decomposition of 1](.) that we found in chapter 4 is 

correct although certainly for the partially additive case further decomposition of 

.,,(.) may be possible. 

5.3.1 Uncertainty 

\Ve begin by calculating measures of uncertainty - the expectation, variance and 

distribution function of YI1](·)· 
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Expectation 

We let K~2) denote E[YJry(.)]. Following the methodology of section 3.3, we cal­

culate the posterior distribution of K~2) as 

(5.37) 

where 

E'" [ 1.:,(2) I 2 1 
fil a ,Wl"",Wr,Y - M2) = 1 m(2)**Cx) dG(x) 

_ R;3(2) + T(2)A",,,,-1(y _ H;3(2», (5.38) 

Var'" [K(2) J 2 1 - 0'2(2) W(2) = 0'2(2) 11 C(2)**(x, x') dG(x) dG(x'), 1 a ,WI. .•. ,Wr,Y "" "" 

_ O'2(2){U(2) _ T(2) A**-lT(2)T + (R _ T(2) A",·-lH) 

Removing the dependency on (J2 results in (J2 being replaced by &(2) n::;2 in the 

variance. The quantities A**,j3(2),m(2)*"'(x) and c(2)·*(x,x') are defined in equa­

tions (4.56)-(4.60) of chapter 4. The latter 2 terms, m(2)**(x) and &2(2)c(2)**(x, x') 

are the standard posterior mean and covariance functions in the Gaussian Process 

model, but derived from the alternative prior correlation function (4.53). 

We defined the integral R in equation (3.51) of chapter 3. However, T(2) 

and U(2) differ from T and U (defined in equations (3.52)-(3.62) since they are 

functions of C(2).",(., .). These require us to evaluate the integrals 

T(2) - 1 t(2)(xf dG(x), (5.40) 

U(2) - 1 Ix C(2) (x, x') dG(x) dG(X/). (5.41) 
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Both T(2) and U(2) may be decomposed into a sum of r terms. From (4.58) we 

have 

(2) ( ) _ { (2) ( ) (2) ( )} t x - C X, Xl , ... , C X, xn , (5.42) 

and from (4.53) 

I 2 (2) ( ') 2 {( ') I Cov[7](x) , 7](x )] = (]" C X, X = (]" Cl x(!), x(!) + ... + Cr(X(r), x(r»}' (5.43) 

Therefore, we can write 
(2) _ (2) (2) 

T - T(l) + ... T(r)' (5.44) 

where the mth element of T~~? is given by 

(5.45) 

and x(j),m is the the sub-vector x(j) from the mth design point. 

The scalar U(2) is a sum of m terms, U(2) = ug? + ... + U(~i. The mth term 

of U(2) requires us to evaluate the integral 

(5.46) 

Variance 

For the variance of Y conditional on 7](.)' we require the posterior distribution 

of K~2) = J
x 

7](x)2dG(x). As we found in chapter 3, this form is intractable. 

Therefore, we just calculate the first posterior moment of Var[YI7](.)]' as done 

previously (in both sections 3.3 and 5.1) 
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We have 

E*[KJ2)lw l,'" ,Wr.Y] 

_ tr(~(2)T Q~(2») + tr«y _ H~(2»)T A**-lp(2) A**-l(y _ H~(2») 

+ 2tr(~(2)T(2)TRA"-1(y _ H~(2») + 8-2(2)[1 _ tr(A .. - 1p(2») 

+ tr(HT A .. -1H)-lQ - 2tr«HT A**-lH)-lS(2)A**-lH) 

+ tr«HT A**-lH)-lHT A**-lp(2)A**-lH)]. (5.47) 

where E* denotes the expectation with respect to the posterior distribution of 

ry(.}. Expressions p(2) and S(2) require us to evaluate the integrals 

p(2) - 1 t(2)(x)t(2)(X)T dG(x), 

S(2) - 1 t(2)(x)h(x)T d G(x). 

(5.48) 

(5.49) 

The above expressions differ from P and S (equations (3.58) and (3.60)) since they 

are functions of C(2)**(., .). Resultantly, both of these quantities can be expanded. 

The [i, j]th element of p(2) can be written as 

(5.50) 

and from (5.43), this can be expanded into a sum of r2 terms. Similarly each 

element of S(2) can be expanded into a sum of r terms. 

We find the posterior expectation of Var{Ylry(.)} as 

E*[Var{Y}lwl,"'Wr,y] - E*[K~2)lwl''''Wr.Y] 

(Var*[Ki2)lwl •... Wr, y] + E*[Ki2)lwl,'" W r, y]2). 
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Distribution Function 

The first 2 moments of FYI1)(.)(s)lwl,"" W r , Y can be calculated from equations 

(3.73) and (3.75). We simply need to substitute m(2) .... (X) and C(2) .. *(X,X) for 

m .... (X) and c .... (X, X) in equations (3.63) and (3.65). The moments have to be 

evaluated numerically, however in this case we are able to calculate these efficiently 

by utilizing the simulation method of Oakley and 0 'Hagan ( 49). 

5.3.2 Sensitivity 

We first consider inference for conditional expectations, E(YIXr = xr , 7](.», before 

considering the decomposition of 7](x) into main effects and interactions, and a 

decomposition of the variance. 

The posterior distribution of K~~} = E(YIXr = Xr ,7](.», where we use the 

subscript r to denote the expectation is conditional on Xr = Xr, is at-distribution, 

where 

K(2) _ k(2) 
l,r l,r I t 

---=~===== WI,"" W r , Y f'V n-q' 
&(2) n-q-2 Vv,(2) 

n-q r,r 

(5.51) 

A(2) *{K(2)1 2 } R ( )a(2) T(2)( )A**-I( a(2» kl,r = E l,r ()" ,WI,"" Wn Y = r Xr 1-1 + r Xr Y - HI-I , 

(5.52) 

and 

Cov* {Ki~} Ki~11()"2, WI,· •• ,Wr , y} 

- ()"2(2) 1 1 C(2)**(X, x') dG-r1r(X-r I x r) dG-818(X~81 x:) 
x-r X- 8 

_ ()"2(2)~V;,~) = ()"2(2){U;~}(Xr'X:) - T(2)r(xr)A**-IT(2).(xs)T + (Rr(xr) 

T(2\(xr)A**-lH)(HT A**-lHr1(Rs(xs) - T(2)s(xs)A**-lH?}. (5.53) 
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whilst Rr{xr) was given in (3.69). Both T~2){Xr) and U;~J(Xr,X:) can be expanded 

in the same manner that T(2){x) and U(2) could be expanded. \-Ve remove the 

dependency on cr2, resulting in cr2 being replaced by &(2) n~:;2 in the covariance. 

Main Effects and Interactions 

\\te now consider inference for the main effect and first order interaction 

Zi(Xi) - E(Ylxi) - E(Y), (5.56) 

Zi,j(Xi, Xj) - E(Ylxi, Xj) - Zi(Xi) - Zj(Xj) - E(Y), (5.57) 

as we did in 5.1.2. Higher order interactions require similar calculations to these, 

and are discussed later. 

Since Ki~;lcr2wI"" ,wr,Y is normally distributed for any r, it is simple to 

note that conditional on 0'2 the main effects and interactions are linear functions 

of correlated normal distributions. 

The posterior expectations of (5.56) and (5.57) are given by 

E*{Zi(Xi)lcr2,Wl,'" ,wr,y} = {~(Xi) - R},8(2) 

+ {T~2)(Xi) - T(2)}AU - 1(y _ H,8(2»), (5.58) 

E*{ Zij(Xi, Xj)lcr2
, WI"'" Wr.Y} = {Rij(Xi' Xj) - Ri(Xi) - Rj(Xj) + R},8(2) 

+ {TU)(Xi' Xj) - Tr2
) (Xi) - TY)(Xj) + T(2)}AU

-
I (y - H,8(2»), (5.59) 
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whilst the posterior variances of these terms are calculated using (5.53) as 

and 

Var* {Zi(Xi)!(]'2, WI," . ,Wr , Y} 

_ 0'2(2){U(2) + Ui~~) - 2UJ~) - [T~2)(Xi) - T(2)]A**-1[T~2)(Xi) - T(2)]T 

_ ([Ri(Xi) - R]- [T~2)(Xi) - T(2)]A**-1H)(HT A**-1H)-1 

(5.60) 

Var*{Zij(Xi' Xj)10'2, WI, .. , ,WnY} = 

0'2(2) {U(2)* - [T~J)(Xi. Xj) - T?)(Xi) - T)2)(Xj) + T(2)]A **-1 [T~J) (Xi, Xj) - T~2) (Xi) 

- TJ2)(Xj) + T(2)]T - ([Rj(Xi, Xj) - R(Xi) - Rj(Xj) + R]- [TW(Xi. Xj) 

_T~2)(Xi) - TJ2) (Xj) + T(2)jA **-1H)(HT A**-1H)-1([Rj(Xi. Xj) - R(Xi) 

-Rj(Xj) + Rj- [T~~)(Xi.Xj) - T~2)(Xi) - TJ2) (Xj) + T(2)]A**-1Hf}. (5.61) 

where U(2)* is expanded as 

U(2) + U.(~) + U~2) + U.(?~. :.-. 2U.(?~ - 2U.(?). 
t,t ),) '),') t),t t),) 

+ 2UP). + 2U~~) - 2U.(2) - 2U~2) 
O,t) I,) I,D ),0 • (5.62) 

All the terms (5.62) are calculated using (5.55). so for example Ui~; is found by 

letting Xl' = {Xi. Xj} and Xs = {Xj} in (5.'55). The subscript 0 in the terms in 

(5.62) denotes the null set, and we therefore have U(2) = uJ~d. 

After removing the dependency on (]'2 the main effects and interactions have 

t-distributions. The variances (5.60) and (5.61) are the same except with 0'2 

replaced by 0-(2) n:!~2 . 

From (5.54)-(5.55) it is obvious that the integrals required in order to calculate 
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main effects and interactions depend upon the full vector of inputs x. However, 

under the same independence assumptions that we had in 5.1.2 we can show 

analogous results to those of the a priori known decomposition case. That is, for 

an additive partition of the inputs, and where the joint distribution of the inputs, 

G(x), can be partitioned into independent components G(X(l),"" G(X(r), we 

can show that if {i,j}€Sk, then Zi(Xi) and Zij(Xi, Xj) are functions of just T]k(.). 

For higher order terms we can show that any interaction effect is zero unless all 

inputs are contained within the same additive group. 

A partially additive decomposition we will in general require almost total in­

dependence of the inputs in order to simplify the main effects and interactions. In 

general if we have k ~ p independent inputs then the corresponding interaction 

effect is zero, unless all k inputs appear in the same partially additive group. 

Variances 

Finally we consider partial variances 

(5.63) 

We wish to calculate the first posterior moment of Var{ E(Y IXr )}, and for this we 

require the first posterior moment of E {E(Y IXr)2}. By applying the methodology 

from section 3.4, we find the posterior expectation with respect to the posterior 

distribution of T](.) can be written as 

E*[E{E(Y IXr)2}lwl,"" W r , y] 

= tr{(y - H,8(2)f A"'-lp~2)A ... -l(y - H,8(2)) + 2tr(,8(2)S~2)A"-1{y - H,8(2)) 

+ tr(,8(2)T Q~2),8(2» + (J'(2)2[UP) _ tr(A·"'-lp~2» + tr((HT A .. -1Ht1 

x (Q~2) _ S~2)A"-lH _ lIT A"''''-lS~2)T + lIT A"-lp~2)A"-11I»], (5.64) 
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where 

U(2) 
r 

p(2) 
r 

Q~2) 

S(2) 
r 

-

-

-

-

ir i-r i-r C(2)(X, x·) dG-rlr(x-r Ixr) dG-rlr(x~r Ixr) dGr(xr), 

ir i-r i-r t(2)(X)t(2)(x·l dG-r1r(X-r Ixr) dG-rlr(x~r Ixr) dGr(xr), 

ir i-r i-r h(x)h(x*)T dG-r1r(x-r Ixr) dG-rlr(x~r Ixr) dGr(xr), 

ir i-r i-r h(X)t(2) (X*)T dG-rlr(x-r Ixr) dG-rlr(x~r Ixr) dGr(xr). 

We use x· to denote the vector x* = (xr, x~r)' whilst x = (xr' x-r), and Gr(.) 

denotes the marginal distribution of X r . The terms UP), p~2) and S~2) can all be 

expanded as sums. 

Thus, the variance of the output conditional on sub vector Xr can be found 

from 

(5.65) 

We can now calculate sensitivity indices by dividing the partial variances by 

Following on from our work on main effects and interactions, we can see that 

with independencies between inputs these calculations will simplify. In particular, 

we may be able to infer that some interaction variances are exactly zero. 

5.4 Conclusions 

In this chapter we have calculated measures of uncertainty and sensitivity for 

decomposable functions. Our measures were the same as those considered in 
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chapter 3, although we used structural information in this chapter in order to 

obtain more accurate results, and with less uncertainty about posterior expecta­

tions. We showed that in general, even when we have a known decomposition, 

measures of uncertainty and sensitivity depend on the full vector of inputs. We 

examined certain independence assumptions, that when combined with a decom­

position simplify inference. 



Chapter 6 

Elicitation of Expert Opinion in 

Autoregressive Models 

6.1 Introduction 

Elicitation is the process of formulating a person's subjective knowledge/beliefs 

about uncertain quantities into a probability distribution. In our work we take the 

person to be an expert in some field, although not necessarily an expert in prob­

ability. The elicited probability distribution should be an accurate representation 

of the expert's beliefs. 

The literature on elicitation is vast and ever growing, and covers both psycho­

logical and mathematical considerations. Garthwaite, Kadane and 0 'Hagan (20) 

recently provided an excellent review of the literature. Whilst we have a great 

many considerations when designing questions, training experts, and conducting 

an elicitation, these are beyond the scope of this thesis. 

vVe constrain our attention to the key issue of what summaries to elicit in 

order to estimate a (joint) distribution, and how to estimate the parameters of 

145 
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this distribution given these assessments. There has been recent progress in a 

non-parametric approach to distribution fitting, with Oakley and 0 'Hagan (50) , 

modelling the expert's distribution as an unknown function. Within this frame­

work, the expert's distribution is not constrained to be a member of a specified 

parametric family. In our work, we adopt a simpler approach, considering the case 

where we have an (assumed) known parametric form for the (joint) distribution, 

but with unknown parameters. 

In section 6.2 we discuss the summaries that we might elicit from an expert, 

when we have a chosen parametric family of distributions. A priori we have un­

known parameters, but we are able to use the expert's assessments to estimate 

these, such that the chosen distribution from our parametric family closely approx­

imates the expert's stated beliefs. We consider continuous symmetric families. In 

the remainder of the chapter we concentrate on the more difficult task of eliciting 

a joint distribution for the parameters of an autoregressive model. We discuss 

theory in 6.3-6.5, and provide an example in 6.6. 

6.2 Expert Judgements 

One of the most common summaries to elicit is a measure of central tendency, 

such as mean, median or mode. The literature (see Garthwaite, Kadane and 

O'Hagan(20) and the references therein) shows that in general experts are able 

to provide reasonable estimates of these quantities for a symmetric (or at least 

approximately symmetric) distribution. 

In our work we use the median as our measure of central tendency. Suppose 

we are eliciting our expert's beliefs about an observable quantity X. Then we ask 

our expert: 
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1. can you provide a value (median) such that X is equally likely to be less 

than or greater than this point. 

We choose the median because of its simple definition, which a non statistician 

might reasonably be expected to understand. Moreover, we are able to define 

quantiles very similarly, and therefore we have consistency in our questions. 

For a chosen two parameter family of distributions (with unknown parame­

ters), one more piece of information, conveying information about scale, is enough 

to estimate the parameters. For a symmetric distribution (especially a normal or 

t-distribution), the variance is an obvious summary to elicit. However, experts 

have been shown to be poor at assessing variances directly. 

The most common approach to eliciting a variance, is to ask an expert for 

quantiles or a credible interval, and we are able to infer the expert's variance from 

these. Garthwaite and Dickey(18) found that experts were most comfortable when 

asked for equal odds judgements, so the interquartile range is a natural quantity 

to elicit. 

We might ask the additional questions: 

2a suppose you were told X is below your assessed median. Can you provide 

a new value (lower quartile) such that X is equally likely to be less than or 

greater than this value? 

2b Suppose you were told X is above your assessed median. Can you provide 

a new value (upper quartile) such that X is equally likely to be less than or 

greater than this value? 

These questions are an example of the variable interval method. The expert pro­

vides the points that correspond to specified percentiles of his distribution. \Ve 
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can simplify this task by using a method of bisection, as seen above. An alter­

native method is the fixed interval method. The range of plausible value for X is 

divided into intervals. The expert then supplies the probability that X lies within 

each interval. This latter approach is considered to be more difficult since the 

expert is no longer making equal odds judgements - we also need to know the 

plausible range for X prior to questioning. 

When we are eliciting the parameters of a scaled t-distribution, we face a more 

difficult task. We have an infinite number of scaled and shifted t-distributions 

that correspond to the same median and interquartile range. We need additional 

information about the tails of the distribution, X. 

Kadane et al.(35) considered estimating the degrees of freedom parameter, n, 

by eliciting the expert's median, 75th and 93.75th percentile. This latter percentile 

is unusual but arises due to the method of repeated bisection proposed by the 

authors. They formed the tail ratio, 

Y.9375 - Y.50 

Y.75 - Y.50 
(6.1) 

which they compared with a similar ratio based on tabulated values of the t­

distribution in order to select n. 

In Figure (6.1) we plot the ratio, (6.1), for different values of the degrees of 

freedom parameter n. We see there is clear separation for small values of n, and 

we can distinguish between the different t-distributions. However, for n > 5 it 

becomes difficult to distinguish between distributions. 

In theory we can distinguish between different t-distributions better by eliciting 

the 0: > 0.9375 percentile in the extreme tails of X. As we take 0: -+ 1, we can 

distinguish between distributions, using a ratio similar to (6.1), even for large 

values of n. However, we encounter a contradiction between the theory and what 
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Figure 6.1: Tail ratios of t-distributions 

we can achieve in practice. 

The empirical work of Alpert and RaiJJa(2) showed that participants were 

poor at assessing tail probabilities. The authors undertook fairly large studies in 

the 1980's, and found that participants were overconfident with tail probability 

assessments. They asked their participants to provide their a/2 and 1 - a/2 

percentiles, using various values of a (a -+ 1), for quantities like: 

'The United States total egg consumption last year.' 

For a calibrated participant, if we ask for a credible interval of size a, we expect 

the credible interval to contain the true quantity approximately a% of the time. 

Alpert and RaiJJa found the credible interval contained the true value far less than 

a% of the time. 

vVhen referring to Alpert and RaiJJa's work we deliberately use the word 'par-

ticipants' rather than 'experts', since subjects had no relevant expertise about 

what they were being questioned upon. Alpert and RaiJJa show that the layman 

is poor at expressing his uncertainty about unlikely scenarios using probability. 
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Other empirical work in the psychological literature draws similar conclusions to 

Alpert and RaifJa, however other work does not focus on tail probabilities. 

It seems sensible to assume that an expert will perform better than a layman. 

However, the small amount of empirical work in the literature (see Garthwaite, 

Kadane and 0 'Hagan(20) for a review), shows us that despite some clever proce­

dures such as the method of bisection, even experts tend to be overconfident. As 

far as we are aware, no large empirical studies involving expert knowledge have 

focussed on assessing tail probabilities. 

We later consider two approaches that are designed to avoid the assessment of 

tail probabilities, when eliciting the parameters of a scaled t-distribution. 

6.3 A Bayesian Autoregressive Model 

Autoregressive models are a special class of the normal linear model, where the 

response at time t, denoted by Yt, is a linear function of responses at times t -

1, t-2, ... , t-p, denoted by Yt-l, Yt-l! i •• ,Yt-p' Elicitation for the parameters of a 

linear model has been well studied (see for example Kadane et al.(35), Garthwaite 

and Dickey (19)(18)). Kadane at al.(34) and Wolfson(65) have studied the more 

complex case of a unit root model for an AR( 1) process. They considered a model 

of the form 

Yt = PYt-l + x T f3 + ft, (6.2) 

for some general vector of covariates, x. However, they were unable to exploit the 

features of a purely autoregressive model. 

In this chapter, we consider a stationary autoregressive model of the form 

p 

Yt = /L + L f3i(Yt-i - /L) + ft· (6.3) 
i=l 
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The literature (see for example Chatfield(ll)) tells us that a classical analysis of 

a model of the form (6.3) requires between 50 and 100 points in order to estimate 

the order of the process and the unknown parameters. We consider the case where 

we have a small amount of data, Yd = {Yl," ., Ym}, but far less than 50 points. 

However, we do have the subjective information of an expert to supplement this 

small amount of data. In our application we have just 8 data points. 

The standard Bayesian approach requires us to formulate our beliefs about the 

model parameters using expert knowledge, before observing data, and updating 

our beliefs via Bayes theorem. However, in our application the data had already 

been observed, so this was clearly not possible. The prior distribution is theoret­

ically independent of the data, so it can be elicited before or after the data are 

observed. In practice though, it is difficult for an expert to disregard data once 

he has been exposed to it. A conventional Bayesian approach is therefore likely 

to use the data twice. Hence, we elicit the posterior (based on subjective beliefs 

and the data, Yd = {Yr, ... ,Ym}) directly. 

6.3.1 Model and Notation 

Our Bayesian autoregressive model takes the form 

Yt+ll Yt, ... , Yl , {3, ()'2, f'V N(J-L + (Yt-(p"':l):t - IJ-L? {3, ()'2), (6.4) 

{31 Yt, ... , Yi., ()'2 f'V N(b, (()'2/w)U), (6.5) 

()'2IYt, ... ,Yi. f'V wn/x~, (6.6) 

where Yt+l is our (unknown) quantity at time t + 1, and Yt-(p-l):t represents the 

p x 1 vector of past observations, Yt-(p-l):t = (Yt, Yt-l, ... , Yt-(p-l»)' That is, 

the predictive distribution of Yt+l' at some future time t + 1, conditional on past 
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observations is normally distributed as (6.4). 

vVe let {3 denote our p x 1 vector of autoregressive coefficients, (72 denote the 

variance, and 1 denote the p x 1 vector of ones. For simplicity, the order of the 

autoregressive component, p, is assumed to be known. Methods are available in 

a linear models context (see Garthwaite and Dickey (19)) for when we wish to 

explicitly model the uncertainty in p. 

Our biggest assumption is that the process mean, fJ, is known. However, (6.4) 

already implies strong beliefs that the series is stationary. If we are prepared to 

assume stationarity, it is not unreasonable to assume we might have strong beliefs 

about fJ,. In the application that motivates this research, and which is discussed 

at the end of this chapter, fJ, represents a treasury target inflation rate. The Bank 

of England has a range of powers in order to control the level of inflation, so our 

expert assured us that fJ, could be treated as known and assumed to be constant 

over time. 

The elicitation task is to quantify our expert's opinion about the unknown 

parameters of the autoregressive model, (6.4), in the form of a joint probability 

distribution for {3 and (72. In order to make the problem tractable a conjugate prior 

(with as yet unspecified hyperparameters) is chosen. Marginally, (72 is distributed 

as wn times the reciprocal of a chi squared random variable with n degrees of 

freedom. Conditional on (72, J3 has a multivariate normal distribution, with mean 

b and variance/covariance matrix ((72/ w ) U . 

We need to question the expert in order to obtain his beliefs about our model 

hyperparameters. Kadane et al.(35) state there have been previous (unpublished) 

attempts at obtaining this information directly. However, even if we simplify the 

model by taking the variance, (72, to be known, and the elements of {3 are taken 

to be independent a priori, an expert may well struggle to provide estimates of b 



Chapter 6 : Autoregressive Models 153 

and the (diagonal) elements of U. The more general case as given in (6.4)-(6.6) 

is much more difficult to tackle directly. 

The more common approach in elicitation, as used by Kadane et al.(35), Garth­

waite and Dickey (19),(18) and Oakley (48) in a linear models context, involves 

indirect questioning. We ask the expert about observable quantities, which they 

might reasonably be expected to offer opinions about. We ask the expert to pro­

vide responses such as a median, mode or quantiles for given data. \Ve translate 

these responses back into statements about the hyperparameters. 

For a hierarchial model of the form (6.4)-(6.6), it seems natural to partition 

the elicitation process. \Ve propose a two phased process to estimating the model 

hyperparameters. As in Garthwaite and Dickey (19),(18), we structure the elici­

tation process as: 

1. phase 1 - judgements about the variance hyperparameters n and w; 

2. phase 2 - judgements about the expectation hyperparameters b and U. 

The methodology we propose to estimate nand w is straightforward, and similar 

to Garthwaite and Dickey (19),(18). vVe estimate these parameters, and treat 

them as known when we elicit the expectation hyperparameters in the second 

phase of our process. \Ve develop this methodology in section 6.4. 

The problem of estimating expectation hyperparameters band U is more dif­

ficult. In particular the off diagonal elements of (l/w)U pose problems. In our 

model these represent the strength of the correlation between the autoregressive 

parameters, {3. \Ve consider methodology for estimating expectation hyperparam­

eters band U in section 6.5. 
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6.4 Variance hyperparameters 

In the first phase of our elicitation process, we develop a method for eliciting 

variance hyperparameters nand w independently of band U. Our method is 

similar in spirit to the work of Garthwaite and Dickey(18), in the context of a 

linear model. They achieved independence by questioning their expert about the 

difference between two responses observed at the same design point. We develop 

a method based upon the very strong prior information about J.t. 

\Ve consider the predictive distribution of Yt+l' We wish to question our 

expert about yt+dYt-(P-l):t, and from his assessments deduce the distribution, 

!(Yt+lIYt-(P-l):t). In general this is a function of all 4 unknown hyperparameters. 

However, by utilizing the strong prior information about J.t, we question the ex-

pert about Yt+ll (yt, ... yt-(p-l» = (J.t, ..• J.t) and deduce !(Yt+ll (Yt, .. . yt-(p-l» = 

(J.t, • .• J.t», which is a function of just variance hyperparameters nand w. We de-

scribe how we achieve this in more detail below 

The distribution of Yt+l, conditional on unknown parameters {3 and 0'2, and 

the series Yt-(p-l):t = (yt, ... Yt-(p-l) = Yt ... Yt-(p-l», is written as 

p 

Yi+ll (Yi, ... Yi-(p-l» = (Yt, ... Yt-(p-l», {3, 0'2 '" N(J.t + L: (Yt-(i+l) - J.t )f3i, (72). 
i=l 

(6.7) 

In particular, if we take the realizations of the previous p observations to be 

(Yt, .. . Yt-(p-l) = (J.t, ..• J.t), then (6.7) is independent of {3, and written as 

(6.8) 

At this point (6.8) is conditional on 0'2 as well as the past. We will need to remove 

the conditioning on 0'2 in order to question our expert about Yt+ll (Yt, ... Yt-(p-l» = 
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(/-L, ••• /-L). We do so by using Bayes theorem, before integrating over u2• 

We can write the joint distribution of Y t-(p-l):tl,8, u2 as 

!(Yt-(p-l):t I (3, ( 2) = J !(Yt I (Yt- p:t- ll ,8, (
2) X ••• 

x !(Yt-(p-l) I Yt-2p+1:t-p, (3, ( 2) !(Yt- 2P+1:t-pl,8, ( 2)dYt_2P+1:t_p,(6.9) 

which contains expressions involving Yt, . .. , Yt-(p-l) and the additional random 

variables Yt-p, ... , Yt-2p+l, and is dependent on (3. 

We have chosen a very specific set of observations, Yt, ... , Yt-(p-l) = /-L, ••. J..L, 

and these contain no information about,8. We have no concern about the preced-

ing observations Yt-p, ... , Yt-2p+l that could in principle generate this set of obser­

vations, therefore the latter term and integral in (6.9) are dropped and we model 

Yt, ... , Yt-(p-l) as functions of (]'2 alone. It is important that we model these obser­

vations as functions of u2, since observing the sequence Yt, ... , Yt-(p-l) = J..L, •• • /-L 

will no doubt influence beliefs about Yt+l, especially for large p. Thus, we have 

p 

f((Yt, Yt-l"" Yt-(p-l») = (/-L, /-L, ••• , /-L)! (3, a2) ex IT a-2. (6.10) 
i=l 

We find that since (6.10) is a function of (]'2 alone that it is independent of,8. We 

combine (6.10) with our prior on u 2, (6.6), and update our beliefs about u2 in 

light of data, Yt-(p-l):t, via Bayes theorem. We hav~ 

!(u21(Yt,·· . Yt-(p-l) = J..L, • • • /-L)) rv w*(n + p)jx~+p, (6.11) 

where 

w* = nwj(n + p). (6.12) 

We take the product of (6.8) and (6.11) in order to get the joint distribution of 
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It+l and (12, conditional on Yt-(P-l):t. After integrating over (12 we have 

(6.13) 

We are able to elicit summaries of It+ll It, ... It-(p-l) , as discussed in section 6.1, 

in order to estimate the variance hyperparameters. We only need question our 

expert about the observable quantity It+l' 

We begin by eliciting our experts 25th and 75th percentiles of It+l I It,· .. It-(p-l), 

and we calculate the interquartile range, which we denote k1• Since J1, is known 

(although we should check our experts median value is in fact J1,), we can elicit 

the 25th and 75th percentiles without need to take account of errors in J1,. How­

ever, in order to identify nand w uniquely we need additional information. We 

now consider two alternative approaches that provide this additional information 

without the need to assess tail probabilities. 

6.4.1 Conditioning Method 

Our first method adapts the methodology of Garthwaite and Dickey(18) for an 

autoregressive model. We suppose that Yt+l = Yt+l was observed, and further 

suppose that the series (1';"'" 1';'-(P-l») = (J1" ... J1,) is observed at some future 

time. 'We adopt the dash notation to distinguish between the two distinct time 

periods. We want to know how the observation It+l = Yt+l affects our expert's 

beliefs about the random variable 1';' +1' 

We first update our beliefs about (12 in light of the observation Yt+l = Yt+l; 

(12JYt+l = Yt+l, (1';"'" 1';'-p) - (J1" ••• J1,) "" w**(n + p + l)jx~+p+l,(6.14) 

w** - ((Yt+l - J1,)2 + nw)j(n + p + 1). (6.15) 
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Now we consider our beliefs about r;'+1 given the new observation Yi+1 = Yt+1' 

\Ve note that Yi+1 and r;, +1 are independent given (r;" .. . r;'-(p-1)) = (p" . .. ,p,) 

and parameters f3 and (]"2. Therefore, we can write 

(6.16) 

We now remove the conditioning on (]"2. We take the product of (6.14) and (6.16) 

in order to obtain the joint distribution of ~'+1 and (]"2 conditional on Yt+1 -

Yt+1, (r;, ... r;'-(p-l)) = (p, ... p,). Now, integrating over (J2 leaves 

(6.17) 

We elicit summaries of this distribution. In fact, we only need one assessment, in 

addition to the previously elicited k1' in order to uniquely identify nand w. We 

elicit our experts 25th and 75th percentiles, and calculate the interquartile range, 

which we denote as k2 • 

We can write kl and k2 as 

kl _ w·1/ 2q n+p, 

k •• 1/2 
2 - W qn+p+l, 

(6.18) 

(6.19) 

where qn+p and qn+p+I denote the respective interquartile ranges of standard t­

distributions with n + p and n + p + 1 respective degrees of freedom. The solution 

to these simultaneous equations will uniquely identify nand w. In general we 

will have to implement a bivariate search procedure in order to identify these 

hyperparameters. However, if we take Yt+1 = P, + 1/2(k1 - p,), we can solve the 

expression 

kl qn+p [ n + p + 1 ]1/2 
k2 = qn+p+1 1/8q;+p + (n + p) I 

(6.20) 
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for n. Given n, we then solve for w* from (6.18) and hence w from (6.12). 

6.4.2 Graphical Method 

Our second method uses just our expert's first interquartile range, k1. With just 

kl we do not have enough assessments to fit a unique distribution; in fact we have 

an infinite number of solutions to (6.18), and hence an infinite number of possible 

densities that match our elicited interquartile range. We confine our attention 

to integer values of n, thus greatly reducing the number of possible densities, 

although there are still infinitely many. 

Some of the solutions to (6.18) will be more plausible than others. It is pos­

sible to distinguish between these different solutions more readily in our scaled 

t-distribution than is possible within the class of standard t-distributions. In gen­

eral we will not know which subset of solutions to (6.18) are 'most plausible' in 

that they closely match the experts beliefs. However, for an arbitrary choice of n 

we can calculate w* and plot the corresponding density 

rt+l I (Yt, ... Yt-(p-l)) = (p, ... p) rv tn+p(p, w*), (6.21) 

and ask our expert if our fitted density for Yt+1 approximates his beliefs. 

If the density is consistent with the expert's beliefs, then we are within a 

subset of plausible values for nand w·. If our density is inconsistent with the 

expert's beliefs, we can choose a different density. We modify nand w based on 

the expert's comments. Once we identify a plausible subset of densities we can 

attempt to select a single density from this subset. 

Choice of a density is a simpler task if we have a point of reference; it is easier 

to reject one density in favour of another density, than to reject a density with no 
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point of reference. However, we do need to strike a balance - it is not realistic to 

plot a large number of densities, and to have our expert choose a 'best density' 

from these. It is realistic to have our expert choose which density best matches 

his beliefs amongst a competing pair. When one density has small n and the other 

density has large n, this should be an easy choice to make. 

If we make a series of comparisons, taking note of the expert's preferred density 

in each case, we can quickly converge toward a range of plausible values of n, and 

corresponding w*. Since we only consider integer values of n, it is theoretically 

possible to converge to a single density. 

We propose the following algorithm 

1. Set nl = P and n2 = 25 

2. Repeat 

3. Calculate wi and w2 from (6.18) and plot the two densities 

4. If the expert chooses the density tnl (J-l, wi), then set n2 = n2 - 1. 

If the expert chooses the density tn2 (J.-l, w2), then set nl = nl + 1. 

5. Terminate when nl = n2 

vVe demonstrate the algorithm via a simple example. We consider an autoregres­

sive model with p = 1, J-l = 2.5 and elicited inter quartile range of kl = 0.75. \Ve 

show two possible comparisons that our expert may be faced with. 

In Figure (6.2) we show densities with nl = 3 and n2 = 25. In Figure (6.3) we 

show densities with nl = 20 and n2 = 25. Our example highlights the fairly large 

differences between densities in the first few iterations of our algorithm. The two 

densities in Figure (6.2) are clearly distinguishable, so it should be a simple 
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Figure 6.3: t-distributions with nl == 20 and n2 == 25 degrees of freedom 
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task for our expert to choose his preferred density in the early iterations of our 

algorithm. 

Our second plot, Figure (6.3), highlights that differences between t-distributions 

can only been seen in the extreme tails of the densities, even with our scaled 

parametrization, as nl increases towards n2. It may not be realistic to expect an 

expert to make such fine judgements. In light of this we modify the last step of 

our algorithm to 

5 Terminate when nl = n2 or when our expert is indifferent as to nl or n2. 

At termination of the algorithm our uncertainty is reduced to a (hopefully 

relatively small) subspace of n (and resultantly w*). vVe have to choose a single 

value from this region. Kadane et al.(35) encountered a similar problem in their 

work. They asked their expert more questions than our method requires, and as 

a result they obtained multiple estimates of n. To resolve this, they opted to take 

the arithmetic mean of their estimates. However, AI-Awadhi and Garthwaite '8 (1) 

empirical work suggested the geometric mean of these estimates is more stable. 

Whilst taking the mean (arithmetic of geometric) of nl and n2 is an option 

seemingly inline with previous work, we prefer to take n to be the smallest integer 

value contained in the subset. Our estimate is intended to counteract possible 

expert overconfidence. 

Finally, we could speed our algorithm up by allowing larger jumps in the 

initial stages. At the first iteration of our algorithm, since the nl = P and n2 = 25 

cases are so radically different, the expert is likely to have a strong preference for 

one of these densities based on how 'thick' they want the tails of the density to 

be. Supposing our expert initially had a strong preference for n2, for our first 

modification to nl we might consider taking nl = nl + c for c> 1. How large we 

should make c may depend on the strength of the expert's opinions - the extent to 
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which he favours one density over another but this is difficult to quantify in terms 

of n. It may be to err on the side of caution and take c to be relatively small. 

6.5 Expectation hyperparameters 

6.5.1 Generating Series 

In order to elicit the expectation hyperparameters we will have to ask our expert 

additional questions. These questions are of a similar form to those posed pre­

viously - given a short series we want to elicit beliefs about the one step ahead 

forecast, ¥t+l' Here we discuss a procedure for selecting our time series of length 

p, that we might think of as constituting 'design points'. This is a similar, albeit a 

more structured problem, to the one encountered in the linear models literature. 

In the case of a linear model (6.5) and (6.6) remain unchanged, however (6.4) 

is replaced by 

(6.22) 

where X is the design point, and Y the response. 

We briefly review the literature relating to design points for the linear model, 

before looking at the problem of generating series for our autoregressive models. 

Design Points 

The most efficient procedure for estimating band U in the linear models literature 

is given by Garthwaite and D'ickey(18). They required just p design points, and at 

each design point they elicited the median and 25th and 75th percentiles (and hence 

were able to estimate the variance). They were able to determine the p(p + 1)/2 

elements of U with just p elicited variances. 
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Garthwaite and Dickey had their expert select the design points sequentially, 

subject to an increasing number of constraints. At stage i of their procedure, 

Garthwaite and Dickey fixed the first i inputs at values Xl = al,'" Xi = ai. 

They had their expert choose the values of the remaining p - i inputs, subject 

to the condition that the variance of the prior predictive distribution of Yi was 

minimized. They referred to this condition, as constrained minimum variance. 

The special structure of the design points means that in effect, the design 

points in themselves contain some information about U, and Garthwaite and 

Dickey were able to exploit this. However, despite the obvious advantages of such 

an approach, it has been criticized in a review of the literature by Garthwaite, 

Kadane and O'Hagan(20) since we have no information about the expert's in­

consistencies. Additionally, there is no simple and practical adaptation of the 

methodology for an autoregressive model. 

Other research in a linear models context (see for example Kadane et al.(35) 

and Oakley (48», has recommended the use of at least pep + 1)/2 design points. 

If we have> pep + 1)/2 points, we can give feedback to our expert about his 

inconsistencies. A thorough procedure for selecting a space filling design requires 

the joint distribution of the inputs in order to choose the design points. However, 

X may not have a distribution in a linear models context, and if a distribution 

does indeed exist, this in itself may need to be elicited. 

Kadane et al. elicited a range for each input dimension Xi, and generated the 

design point in dimension Xi, using a fairly crude discrete grid. Each dimension 

of X was sampled separately. This procedure obviously ignores any correlation 

that may exist between the inputs. However, the expert was able to reject each of 

the proposed design points as implausible and reselect, so the desired correlation 

structure may be generated, albeit inefficiently. 
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Time Series 

An autoregressive model requires a more thorough procedure than a linear model. 

Each 'design point' is now a time series of length p. For each of our series, we 

require the expert to make assessments about Yt+l given Yt, . .. , Yt-(p-l). We will 

require at least pep + 1)/2 series in order to determine the elements of U. 

As we stated above for the case of the linear model, a thorough procedure for se­

lecting the 'design points' requires the joint distribution of our series Yt, ..• , Yt-(p-l). 

We elicited nand w in section 6.3, so we have information about ~2, but we require 

the unknown {3 in order to state the joint distribution of Yt, ... , Yt-(p-l)' 

We propose a procedure that makes use of the small amount of observed data 

Yd. We stated in section 6.2 that a classical analysis was flawed since Yd does 

not contain enough observations. We can estimate {3 and ~2, but the estimates, 

especially of ~2, would be unreliable. However, we can use Yd in order to obtain 

crude maximum likelihood estimates of {3, which by convention, we denote~. We 

need not estimate ~2, since the hyperparameters nand ware known. 

\Ve now employ the following algorithm, repeating for each design point. 

1. Randomly select a continuous series of length p from Yd. We denote these 

points Yt-2p+l, ... , Yt-p respectively. 

2. Generate a value for the variance, ~2, from (6.6). 

3. Generate our design point using 

Yt-(p-l) - fL + (Yt-p - fL)t31 + ... + (Yt-2p+l - fL)t3p + fl, 

Yt-(p-2) - fL + (Yt-(P-l) - fL)t31 + ... + (Yt-2p+2) - fL)t3p + f2, 
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Given the potential for error in our maximum likelihood estimate of (3, we allow 

our expert to reject any design point as implausible. 

6.5.2 Estimating b 

From (6.4), the expectation of tt+l conditional on (3, (72 and the data, is Il + 
(Yt - 11l) (3. Removing the conditioning on the hyperparameters, {3 and (72, leaves 

us with 

E[rt+lIYt-(P-l):t] = Il + (Yt-(p-l):t - 11l) h. (6.23) 

We wish to estimate b based on our expert's judgements. 

We have m ? p(p + 1)/2 series, selected using the methodology of 6.5.1. At 

each of these we elicit a point estimate for ~~l' where ~~1 denotes the predictive 

distribution of our ith series at time t + 1. In line with the discussion of section 

6.2 we elicit our experts median, which we denote Y:+l,O.5' 

We treat our elicited medians as data. We assume our expert's elicitation er­

rors are independent, with zero mean and common (but unknown) variance. By 

elicitation errors we mean where our expert's judgements do not exactly corre­

spond with our model specification. Like Kadane et al.(35) and Oakley(48) , this 

justifies a least squares estimate. We find 

(6.24) 

where YtH,O.50 represents our vector of predictive medians, and Y represents our 

m X p matrix of time series. 

A measure of how well our model fits the experts elicited medians is the vector 
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of residuals e = Yt+l, 0.50 - (Y - IJ.lIT)Tb. We examine the absolute value of the 

residuals to detect any inconsistent judgements. \Ve feedback any inconsistent 

judgements, where our model and their judgement differ substantially, to our 

expert, and allow these judgements to be changed in light of this feedback. We 

re-estimate b if any medians are re-assessed. 

6.5.3 Estimating U 

\Ve now move onto the difficult task of eliciting U. From (6.4) we have that the 

variance of Yt+l, conditional on /3,0'2 and the data, is 0'2. We remove the condi­

tioning on the hyperparameters /3 and 0'2, and find the variance of Yt+lIYt-(p-l):t 

as 

Var[Yt+lIYt-(P-l):t1 = E[0'2] {1 + (Yt-(p-l):t -lTJ.lf(u/w)(Yt_(P_l):t -lTJ.l)}, 

(6.25) 

where E[0'2] = wn/(n - 2) is known. 

\Ve could obtain a simpler expression than (6.25) by questioning the expert 

about the mean response and considering the variance, Var['Y;+lIYt-(P-l):t]. By 

doing so we remove a factor of E[0'2] from (6.25), an approach which is similar in 

spirit to the work of Garthwaite and Dickey(18). However, it is difficult to consider 

one's beliefs about an expectation, especially so in a time series context, where 

an expectation is not observable. We only question our expert about observable 

quantities. Resultantly our questions relate to Yt+lIYt-(p-l):t. 

As a consequence of questioning our expert about Var[Yt+lIYt-(P-I):t] rather 

than Var[Yt+lIYt-(P-l):t], we have to enforce the logical constraint 

(6.26) 
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since the right hand side of (6.26) does not depend on (3, and thus we have less 

uncertainty. 

Now suppose we elicit the a percentile of our experts distribution Yt+1IYt-(p-l):t. 

We concentrate on the lower tail of Yi+1, since in our application recent observa­

tions have been below the mean Jl. We rely on symmetry to fit the upper tail, 

but implied values for the upper tail provide useful feedback. 

From properties of t-distributions, we should find that for a 'perfect' expert -

that is an expert with opinions entirely consistent with our chosen model, 

Yi+1,O.SIYt-(p-l):t - tn,aVVar[Yt+lIYt-(P-l):tJ - Yi+1,oIYt -(p-l):t = O. (6.27) 

However, Var[Yt+1IYt-(p-l):t] is unknown, since from (6.25) this is a function of 

the unknown U. We aim to estimate U using quantile estimates from our expert 

and the relationship between (6.27) and (6.25). 

If we have m ~ p{p + 1)/2 series, with various values of Yt-(p-l):t and the 

same 'perfect' expert, our m equations of the form (6.27), will allow us to solve 

uniquely for U. 

Of course, in reality no expert's judgements will be entirely consistent with a 

statistical model. If we take the minimum number of assessments, m = p(p + 1) /2, 

we can still solve for a unique solution, with zero error. However, we require that 

U is positive definite, and if our expert has any inconsistencies, however small, 

we will not find a positive definite solution for U that satisfies our p(p + 1)/2 

equations. 

Given that we cannot solve exactly for U subject to constraints (6.27), there 

is little computational benefit in taking m = p(p + 1)/2 points. It is preferable to 

take m > p(p + 1)/2, since we are able to assess our expert's inconsistencies, and 
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allow him to modify his beliefs in light of feedback. 

vVe now look to a method that selects an optimal, in some sense, value for 

U, subject to U being positive definite. Like Oakley (48) , we adopt a method of 

least squares in order to optimize for U, although our method differs slightly since 

E[0-2] is known from our earlier questioning. 

vVe minimize the expression 

m 

L:W;+1,O.5 - tn,oJVar[~~dY;_(p_l):tl- Y;+1,0)2, 
i=l 

(6.28) 

where Y;+I,o denotes the elicited Q: quantile. The variance term is derived from U 

using (6.25), where we numerically optimize for U. 

Oakley ( 47) used Q: = 0.75, whilst in Oakley ( 48), a more complex sum of squares 

than (6.28) was used, with Q:1 = 0.75 and Q2 = 0.95. vVe consider the following 

different sums of squares in order to estimate U: 

m 

LWt+l,0.5 - tn,0.25JVar[~~1IYL(p_l):t] - Y:+l,0.25)2, 
i=l 
m 

L:W;+1,O.5 - tn,o.05JVar[~~IIY;_(p_l):tl- Y:+l,0.05)2, 
i=l 

m 

L 1/2{(Y;+1,O.5 - tn,o.25JVar[~~IIY:_(P_l):t] - Y;+1,0.25)2 
i=l 

+(Y;+1,0.5 - tn,o.05JVar[~~1IYL(p_l):tl- Y!+1,0.05)2}. 

(6.29) 

(6.30) 

(6.31) 

We elicit the 25th percentile for each series using the method of bisection, discussed 

in section 6.2. For the 5th percentile, we ask our expert for a value that rt+l is 

highly unlikely to drop below and inform our expert we will interpret this value 

as the 5th percentile {see for example Mosteller and Yountz (44)). Obviously a 

training exercise with feedback to our expert will make this interpretation more 
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plausible. 

We denote the elicited variances for our ith predictive distribution, Y;~I' calcu­

lated using the 25th and 5th percentiles respectively, as vb.25 and vb.o5 respectively. 

Given the estimates of U from (6.29)-{6.31), which we denote U1, U2 and U3 

respectively, we can obtain fitted values for the variances from (6.25). We denote 

the fitted variances for predictive distribution, Y;~l' using our lh estimate (for j 

= 1,2,3) of U, as Vb.25,j and Vb.05,j respectively. 

For a expert whose judgements are entirely consistent with our model, we 

should find 

I ii ~i 0 d i i Ai 0 W· • 
• e 1 = VO.75 - VO•75,j ~ an e 2 = VO.95 - VO•95,j ~ v?', J 

2 Vi '" Vi . 0.75 '" 0.95 

3. the differences, Vb.75 - Vb.95' should be independent 

If our three conditions above hold, we take U3 as our estimate of U, since this is 

the most robust estimate, based on the most judgements. However, we may find 

in practice that our expert is far more comfortable, and as a consequence more 

consistent, at estimating either the 25th or 5th percentile. Consequently, if the 

second and third conditions do not hold we examine the sums of squares (6.29) 

and (6.30), and select the a with lowest sum of squares in order to estimate U. 

We examine the differences between assessed and fitted variances, and allow 

re-assessment if any of these are large, before re-estimating U. 

Related Work 

An alternative procedure for estimating U is given in Kadane et al.(35). They 

develop a mathematically appealing approach, and can estimate U without the 
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need for a numerical search. 

In addition to variances, their approach would require us to elicit correlations 

between Y;~dYL(p-l):t and Y;~lIYL(p-l):t for all i =I- j. However, correlations are 

difficult to assess. Clemen, Fischer and Winkler(12) found that from a variety 

of methods, subjects performed best when stating a correlation directly. Kadane 

et al. 's(35) methodology requires the assessment of the more difficult conditional 

correlations, and as far as we are aware little empirical work has been done on 

the elicitation of these. Because of difficulties in the assessment of conditional 

correlations, Kadane et al. 's(35) methodology, whilst mathematically appealing, 

does not guarantee sensible values for their model hyperparameters in practice. 

6.6 Example: Modelling Inflation 

In chapter 1, when we gave an introduction to Government financial models, we 

explained that large projects often run over the course of decades. As a result, 

financial models contain estimates of various financial indices far into the future. 

In the financial model that we discuss in detail in the next chapter we require 

estimates of 2 different measures of inflation for thirty years into the future. We 

now describe the process of eliciting an economic expert's beliefs about one of 

these measures, the GDP deflator. 

Inflation is a measure of how much prices are changing (almost always in­

creasing) from one year to the next. Obviously prices changes are not universal 

- different commodities (i.e a loaf of bread; a family saloon car; a wide screen 

television) will have different rates of inflation in a given year. In order to have a 

single figure for inflation, we have to average over these commodity wise inflations. 

It is impractical to average over all commodities, so a "shopping basket" of goods 
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is assessed and the average inflation from this shopping basket is taken to be the 

level of inflation. 

The British Government uses three main measures of inflation; the Retail 

Price Index (RPI), the GDP Deflator, and the Consumer Prices Index (CPI). 

These measures differ in the content of the "shopping basket", and the way in 

which we average. The RPI and GDP Deflator are similar measures, they only 

differ in that the GDP Deflator does not include imported goods in the "shopping 

basket". In both cases a weighted arithmetic mean of commodity wise inflations 

is taken. The CPI excludes various housing costs from the "shopping basket" and 

a weighted geometric mean of commodity wise inflations is taken. Due to the 

differences in measurement, these three measures will differ at any given time, 

but the RPI and GDP Deflator are broadly similar, whilst CPI is approximately 

0.75% below the other two measures. The Government target value for inflation 

in any given year is 2% as measured by CPI, which corresponds to a target value 

of2.75% as measured by the GDP Deflator. 

The Bank of England has been responsible for controlling inflation since 1997. 

The Bank of England have various powers in order to control inflation, but the 

major power is in setting baseline interest rates. Inflation and interest rates are 

negatively correlated, and the Bank of England use interest rates to control infla­

tion . 

• When inflation is high, a high interest rate will curb consumer spending and 

reduce inflation. 

• A reduction in interest rates encourages consumer spending and inflation 

will increase. 

Inevitably, there is a time lag between the Bank of England's actions, and the 
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behavior of interest rates. Our economic expert assured us that if inflation strays 

significantly from the target value, the Bank of England will aim to be back on 

target in 2 years time, using small adjustments to base line interest rates in order 

to ensure continued stability in the economy. 

The Bank of England produces short term forecasts for inflation, providing con­

tinuous time forecasts for 3 years in advance. In addition to the forecast they pro­

vide symmetric bounds of increasing uncertainty about the mean/median/mode 

in the form of a fan chart. Uncertainty, inevitably increases as a function of time. 

The Bank of England uses a detailed economic model in order to produce its 

forecasts. Inflation is correlated with itself through time, but it is also a function of 

various economic factors (output gap, commodity prices (oil/gold etc .. ), tightness 

of labour market etc .. ). By using relevant economic data in its model, and 

adjusting its policy as a consequence, the Bank of England has greater certainty 

about inflation in the future than when using past values of inflation alone. 

'Whilst the Bank of England's analysis is useful in the short term, for our ap­

plication we need to model inflation in the long term, when we will not have any 

relevant economic data. Discussions with our economic expert revealed that a 

stationary model, with known mean of 2.75% was appropriate. An autoregressive 

model captures the main features of the data. Given the parameters of the au­

toregressive model, we can find the joint distribution of inflation rates for the full 

period of our model. 

A classical analysis would involve using past data to estimate the parameters 

of the model, using some criterion to determine the order of the autoregressive 

process. However, our economic expert advised us to discount all information 

before 1997, when the Bank of England was given responsibility for controlling 

inflation. In light of the lack of data, a Bayesian model which synthesizes the 
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small amount of economic data with the subjective knowledge of an expert, is the 

only sensible procedure. 

Our first task was to determine the order of the process. Given the information 

that when inflation strays significantly from the target value, the Bank of England 

will aim to be back on target in 2 years time, it seemed natural to take p, the 

order of the process, to be 2. Our expert agreed with this assessment. 

In order to estimate the parameters of the process, we gave our expert different 

hypothetical future series consisting of 2 time points, indexed as t - 1 and t 

respectively. Inflation is usually calculated at 3 monthly intervals, however we 

model the average inflation over the year, and hence our time points are years. 

We elicited our expert's beliefs about year t+ 1. Since the series were "snapshots" 

of the future, our expert had no other relevant economic data, just inflations for 

years t -1 and t. The process our expert used in each case was to use the data we 

provided to infer the economic situation of the time. Our expert then inferred the 

Bank of England's response to the economic situation, and provided his beliefs 

about year t + 1. 

Our first question, using the process described in section 6.4, aimed to elicit 

beliefs about the variance hyperparameters nand w. We took inflation to be at 

the target rate of 2.75% for two consecutive years, and elicited our experts median 

and upper and lower quartiles. 

For the conditioning method we required more information. We instructed our 

expert that the series (2.75%,2.75%,2.85%) was previously observed. \Ve wanted 

our expert to update his beliefs about y;, +1,0.25' Y;' +1,0.5 and Y;' +1,0.75 in light of 

this information. Our expert provided his median value, but he was unsure about 

the two quartiles and how they should differ from his previous assessments. \Ve 

did not force an answer from him, and as a result did not obtain his quartiles. 
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Responses are tabulated in Table (6.1) 

rt-l rt Y;~l rt+1,O.5 rt+l,O.25 rt+l,O.75 

2.75 2.75 2.75 2.55 2.95 
2.75 2.75 2.85 2.75 

Table 6.1: Forecasts based on hypothetical data 

We had insufficient data to use the conditioning method. The expert was far 

more comfortable with the graphical approach. He had strong beliefs about the 

likely bounds of inflation in the following year. The algorithm terminated when he 

was unable to choose between t distributions with 22 and 25 degrees of freedom. 

Our parameter estimates are tabulated in Table (6.2). 

n w 
Conditioning Method 

Graphical Method 20 0.0935 

Table 6.2: Estimates of nand w 

A further ten 'design points' were chosen using the methodology described 

in 6.5.1. For each series we asked our expert for his median. We show assessed 

medians and residuals, calculated using the methodology described in 6.5.2, in 

Table (6.3). 

\Ve note from the assessed medians that our expert gave assessments on a fairly 

course scale. When given feedback in the form of residuals the expert indicated 

that all his initial answers were given to the nearest 1/4 point and he modified 

his 8.'>sessments to series 1, 7 and 10 after examining the residuals. These re-

assessments are tabulated in Table (6.4). 

We calculated b as 
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rt-l rt rt+l,O.5 Residual 

2.02 1.65 2.5 0.17498 
2.22 1.67 2.25 - 0.0823 
2.89 2.73 2.75 0.008 
2.24 2.27 2.5 - 0.064 
2.79 2.91 2.75 - 0.0619 
2.47 2.03 2.5 0.0286 
2.47 1.96 2.25 - 0.1942 
2.00 2.32 2.5 - 0.0849 
2.19 2.55 2.75 0.0763 
2.84 3.18 2.75 - 0.1665 

Table 6.3: Forecasts based on hypothetical data 

2.02 1.65 2.4 
2.47 1.96 2.35 
2.84 3.18 2.85 

Table 6.4: Expert Re-assessments 

b = ( 0.396 ) , 
0.013 

which was in line with our experts verbally stated beliefs about how the Bank 

of England control inflation. \Vith these coefficients, inflations significantly away 

from the target value of 2.75% would be quickly dragged back towards the target 

value. 

Finally, we elicited the 25% and 5% percentiles for each of the series tabulated 

in Table (6.3). vVe show these along with medians in Table (6.5). 

The two blanks in Table (6.5) represent values our expert had significant un­

certainty about - he provided a range rather than a single figure answer. Rather 

than force an answer from our expert, we used the search procedure described 

in section 6.5.3, with these values missing. After calculating U, fitted values for 
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Yt-1 Yt Yt+1,0.5 Yt+1,0.25 Yt+1,0.05 

2.02 1.65 2.4 2 1.65 
2.22 1.67 2.25 2 1.7 
2.89 2.73 2.75 2.55 2.25 
2.24 2.27 2.5 2.27 
2.79 2.91 2.75 2.5 2 
2.47 2.03 2.5 2.25 2 
2.47 1.96 2.35 1.95 
2.00 2.32 2.5 2.3 2 
2.19 2.55 2.75 2.5 2.1 
2.84 3.18 2.85 2.6 2.25 

Table 6.5: Forecasts and bounds 

these blank cells were used to provide additional feedback. 

We discussed three different sums of squares to minimize in order to estimate 

U in 6.5.3. The first used just the 25% percentile, the second used the 5th and 

the final sum of squares used both 25th and 5th percentiles. In our application, 

fitted variances showed our expert was consistent with his assessments of the 25th 

percentile, but not with the 5th • As a consequence we used just the 25th percentile 

in estimating U. We required no re-assessments. 

We calculated U as 

u = (0.03 0.024). 

0.024 0.09 

These coefficients indicate some uncertainty about our second autoregressive co-

efficient, but little uncertainty about the first. 

Our final course of feedback was to simulate hypothetical futures given our 

expert's judgements, and we show 5 such realizations in Figure (6.4). Taking 

GOP deflator to be 3.26% and 2.1% in 1998 and 1999 (the time frame used in the 

example was an artefact of the application described in chapter 7), we generated 
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inflations for the period 2000 to 2006 and showed these to our expert. Some of 

these realizations were considered to be more plausible than others, however our 

expert stated these were all possible paths that inflation might take, and consistent 

with with his beliefs. 

0.032 

... 
~ 
I;:: 
Q) 

o 0.027 
0.. 
o 
(!) 

0.022 
Year 2000 2001 2002 2003 2004 2005 2006 

Figure 6.4: Simulated Inflations 2002-2006 

6.7 Conclusions 

In this chapter we considered elicitation of the parameters of a known order au-

toregressive model, with known mean, J-L. We developed a two stage process for 

eliciting the hyperparameters of our distribution, first estimating variance hyper­

parameters, before assessing expectation hyperparameters. 

We developed two methods for estimating the variance hyperparameters, so 

that we could avoid the assessment of tail probabilities. The conditioning method, 

whilst mathematically pleasing was of little use in our application. The graphical 
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method we developed gave interactive feedback at each assessment. This method, 

whilst mathematically simple, allowed easy comparisons to be made and led to 

precise results in our application. 

We developed methodology for estimating the expectation hyperparameters 

that required just assessed medians and at least one percentile. We estimated 

b using the expert's medians. The methodology we developed for estimating 

U allowed us to select which judgements to use - lower quartile, 5th percentile, 

or both. In our application, we found our expert to be inconsistent with tail 

probability assessments, but precise with quartile assessments. 

A final conclusion, based upon our limited practical experience, is to concur 

with various authors that experts are able to accurately assess measures of location 

such as a median or a mode for a symmetric distribution. Experts have far 

more difficulty when asked to provide percentiles, especially tail probabilities. 

\Ve found that upper and lower quartile assessments were fairly consistent, but 

in line with other authors we found that tail probability assessments were more 

erratic. \Vhenever possible, current evidence suggests that the elicitation of tail 

probabilities should be avoided. 



Chapter 7 

PFI Example 

7 .1 Introduction 

In this chapter we analyse a financial model with a high dimensional input vector, 

that arose from the Private Finance Initiative (PFI). The model has a scalar 

output, the Net Present Value (NPV) of tl}.e project. We use the methodology 

that we developed in chapter 5 to perform uncertainty and sensitivity analyses. 

\Ve use the methodology of chapter 6 in order to model inflation in the long term 

- these inflations are inputs to the financial model. 

7.2 MOD Main Building Redevelopment 

We discussed the nature of PFI projects in detail in the introduction. We stated 

that PFI projects differ from conventional funding in that they involve a service 

being procured rather than an asset purchased. The MOD main building redevel­

opment project represents a typical example of this. The invitation to tender for 

the project was for a redeveloped and maintained building with a thirty year con-

179 
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tract. Initially the project required a process of decant (staff relocating to other 

premises) before extensive destructive and reconstructive work, and the process 

of recant (repopulating the building). This initial phase was scheduled to last for 

6 years, with decant beginning in 1999, and building works completed in 2004. 

Following the initial redevelopment phase of the project, the remaining years of 

the contract, until 2031, were for a maintained building. Maintenance incorpo­

rated everything from day to day tasks such as cleaning the building, to major 

repairs as building hardware needed replacing in the future. Under the terms of 

the contract the building was to be paid for uniformly, from the end of building 

works in 2004 until the PFI contract terminated in 2031. 

Before the contract could be signed, the MOD were obliged to show that the 

terms of the PFI contract offered value for money. The Public Sector Comparator 

(PSC) had to involve the same project brief in order to allow for a like for like 

comparison with the proposed PFI deal. The PSC, therefore, had to estimate 

costs for decant, redevelopment, recant, maintenance and scheduled replacements 

for the period of the project. 

7.3 Previous Analysis 

The auditing firm Coopers and Lybrand were employed to create the PSC for this 

project. In consultation with experts they estimated hundreds of costs covering 

all aspects of the project. They also identified 33 risks (which are parameters of 

the financial model), each of which had uncertainty, represented by a probability 

distribution attached to it. Both discrete and continuous distributions probability 

distributions were used. The probability distributions of the risks were fitted using 

crude elicitation methodology and very strong assumptions. 
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As we explained in chapter 1, risks fall into two broad categories. These are 

adjustments for over-optimism and financial indices. For the MOD Main Building 

Redevelopment PSC, the first of these categories can be further sub categorized 

into decant, redevelopment, operations, renovation, property, insurance, legislative 

changes and defects. Since these all represent adjustments for overoptimism in the 

estimates of costs, in each case we are modelling beliefs about the magnitude of a 

unknown multiplier. In some instances (for example refurbishment overruns), the 

risks were estimated as a multiple of the total cost of a particular aspect of the 

project. In the absence of useful objective data from the current project, these 

multipliers were modelled using information on overruns from previous projects of 

a similar scope and scale. In other instances (e.g sale of a building, salvage costs), 

genuine objective data were available, and as as a result the risks were modelled 

directly as costs. Financial indices representing rates of inflation from one year to 

the next, were naturally modelled on a percentage scale. 

We show the risks and the assumed probability distributions in Table (7.1). 

In the MOD main building redevelopment PSC we have two specific categories 

of risk within financial indices (as seen in Table (7.1)). These both relate to 

inflation. 'When discussing inflation in the chapter 6 example, we stated that 

prices do not increase uniformly across all products and services from one year 

to the next. Therefore in calculating a measure of global inflation like the GDP 

deflator we average over these commodity wise inflations. Our second measure, 

TPI, is a measure of price increases from one year to the next for the specific 

commodities related to the project (for example building materials). If we take 

prices in 1997 to be our base year with index of 100, then over the long term our 

economic expert advised us that TPI and GDP deflator indices will increase at a 

similar rate, so for example in 2007 we would expect these indices to be similar. 

However, for a given year we would not in general expect GDP deflator and TPI 
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Area 

Decant 
Refur bishment 

Operations 

Renovation 
Property 

Defect 

Insurance 

Legislation 

Finance 

Risk 

Cost overrun from budget 
Cost overrun from budget 
Decant premises services 
Decant support services 

Long term premises services 
Long term support services 

Lease risk on building 

Services risk 
Replacement risk 

Building dilapidation risk 

Building dilapidation risk 
Building sale risk 

Salvage risk 
Latent defect risk 

Fittings insurance risk 
Other insurance risk 

Legislative decant risks 
Legislative long-term risks 
GDP deflator risk 97/98 
GDP deflator risk 98/99 
GDP deflator risk 99/00 
GDP deflator risk 00/01 
GDP deflator risk 01/02 
GDP deflator risk 02/03 
GDP deflator risk 03/04 

TPI risk 97/98 
TPI risk 98/99 
TPI risk 99/00 
TPI risk 00/01 
TPI risk 01/02 
TPI risk 02/03 
TPI risk 03/04 
TPI risk 04/05 
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Distribution 

Triangular(3, 12.1,29.9)% 
Triangular(O, 8, 31)% 
Normal (2.5,4.56)% 
Normal (2.5,4.56%) 
Normal (7.5,4.56)% 
Normal (5,3.04%) 

Discrete (Px(X = 0) = 0.95, 
Px(X = 0.332065) = 0.05)£M 

Triangular (0,1,2)% 
Triangular (3,12.1,29.9)% 

Discrete (Px(X = 0) = 0.439, 
Px(X = 0.10225) = 0.511, 

Px(X = 1.0225) = 0.05)£1\,1) 
Log-Normal (1.0225, 3)£flII 

Normal (0, 1.823)£1\,1 
Triangular (-0.016,0.217, 0.451)£A-f 

Discrete (Px(X = 0) = 0.15, 
Px(X = 5) = 0.8, 

Px(X = 20) = 0.05)£flII) 
Log-Normal (0.038892, O. 116673) £A-f 

Log-Normal (0.2325,0.6975)£A-f 
Triangular (-7, 1, 13.5)% 
Triangular (-7,1,13.5)% 

Triangular (2.8,2.81,2.82)% 
Triangular (3.25,3.26,3.27)% 
Triangular (2.27, 2.4, 2.53)% 
Triangular (2.43, 2.7, 3.2)% 

Triangular (1.85,2.5,3.15)% 
Triangular (1.82,2.5,3.75)% 
Triangular (1.79,2.5,4.35)% 
Triangular (8.99, 9, 9.01)% 
Triangular (5.99,6,6.01)% 

Triangular (1,5,8.7)% 
Triangular (0,5,8.8)% 

Triangular (-0.8,4.5,9.2)% 
Triangular (-0.5,2.5,9.5)% 

Triangular (0,2.5,9.5)% 
Triangular (1.29,2.5,4.85)% 

Table 7.1: Risks in original PSC 
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inflation to be the same figure, even though both series have the same long-term 

expectation. Since GDP deflator is an average over many inflations, it is more 

stable than TPI, with TPI exhibiting more variability. Due to the variability in 

inflations it is important that they are explicitly modelled. 

The GDP deflator, which we described in the example of chapter 6 contributes 

7 risks corresponding to the financial years 1997/98 - 2003/04, whilst TPI con­

tributes 8 risks corresponding to the financial years 1997/98-2004/05. The finan­

cial indices shown in Table (7.1) were assumed to be 100% correlated on a rank 

correlation scale in the original PSC. Moreover, the PSC required inflations for the 

whole period of the contract. Due to the difficulty in modelling long term inflation, 

the auditing firm made the simplifying assumption that inflation as measured by 

the GDP deflator, for the period 2004/05 - 2031/32, was equal to the 2003/04 

figure, and TPI inflation for 2005/06 - 2031/32 was equal to the 2004/05 figure. 

Under these strong assumptions, the 1997/98 GDP deflator figure uniquely deter­

mines all other inflations within the model, which, in effect, reduces the dimension 

of the input vector from 33 to 19 inputs. Note that the model requires financial 

indices from 1997/98 - 2031/32, even though the project was not due to commence 

until 1999. This is since the project was commissioned in 1997, and all costs are 

in 1997 prices. 

7.3.1 Uncertainty 

We observed the function at 200 design points, selected according to a Latin 

Hypercube design. We fitted a Gaussian Process model, as described in chapter 3, 

and found the posterior distribution of the model output. We calculated measures 

of uncertainty - the expectation, variance and distribution function using the 

methodology described in chapter 3. 
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The posterior expectation (with respect to 1](.)) of the expected NPV was 

£679.6Af and the variance (with respect to 1](.)) ofthe expected NPV was £0.103.1Vf. 

Even though the cost is measured in millions of pounds, the posterior distribution 

of the expected NPV is concentrated on a fairly small range of values. 

The posterior expectation of the variance of the NPV was calculated as £422.25.ft.,f, 

a large figure indicating substantial variability in the model. 

For our final summary we calculated the posterior expectation (with respect to 

1](.)) of the distribution function, FYIT/(.)(s), We plot this in Figure (7.1). We note 

the heavy upper tail, which extends toward £900.1Vl, a figure around 1/3 greater 

than the expectation, whilst the lower end of the distribution is approx £600.1Vl, 

around 10% below the expectation. 
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Figure 7.1: Posterior expectation of the distribution function 

The MOD model was computationally cheap enough to allow uncertainty anal­

ysis to be performed via Monte Carlo so we could verify our estimates. This 

analysis was based upon 10000 runs of the modeL The numerically evaluated 
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expectation (£679.55M) and distribution function were close to our Bayesian 

estimates, and within a 50% credible interval in both cases. The numerically 

evaluated variance of £435M also appeared to be consistent with our Bayesian 

estimate. 

A analysis based on a Monte Carlo sample of 200 runs was also performed for 

comparison. Even at this small sample size, the expected NPV was reasonably 

accurate, albeit with a large standard error. However, the distribution function 

was inaccurate, and the variance varied greatly from one sample to the next. The 

Bayesian model performed far better at this sample size. 

7.3.2 Sensitivity 

\Ve only briefly consider sensitivity analysis for the original PSC, in order to 

highlight the deficiencies in the modelling of inflation. It became apparent at an 

early stage that the uncertainty in the financial indices was the major driver of 

the uncertainty in 'T](.). 

In Figure (7.2) we show the main effect of GDP deflator risk 97/98. Due to 

the deterministic correlation structure, this is a reflection of the inflation effect as 

a whole rather than simply the main effect of GDP deflator risk 97/98. \Ve note 

the quadratic trend as X increases from its minimum of £32}'[ to its maximum of 

£49M. The inflation main effect was responsible for 50.3% of the total variance. 

7.4 Stochastic Inflation Model 

Modelling inflation as we described in the previous section induces far greater 

correlations between inflations than one would expect. Clearly there will be some 

serial correlation, but not to the extent of a deterministic model. 
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An exploratory analysis showed the previously assumed correlation structure 

between GDP deflator and TPI inflations was erroneous. The two series are clearly 

correlated on an index scale, however on a percentage scale they can be taken to 

be independent. We highlight this in Figure (7.3), where we show percentage 

increase, and Figure (7.4), where we show the index scale. We use GDP deflator 

and TPI construction figures for the period 1994-2001, taken from the Office for 

National Statistics (ONS) website. The indices have base year of 100 in 1996. 

The index scale Figure (7.4) shows that the two series are 100% correlated 

on a ranking scale, whilst Figure (7.3) suggests that on the percentage scale we 

have independence. Therefore since in the PSC, inflations were specified on the 

percentage scale, we regard these two series as independent. 

The serial correlation within the two series can not be ignored. Using the 

methodology described in chapter 6 we were able to model these using AR(2) 

models. We elicited an economic expert's beliefs and obtained the distributions 

-2 20 x 0.0935 
0'1 tV 

2 
X22 

-2 20 x 0.17 
0'2 tV 

2 
X22 

and 

( ( 
0.396 ) O"? (0.03 0.024) ) f3110'1 tV N , --=---
0.013 0.0935 0.024 0.09 

~ (( 0.396) O'~ ( 0.01 f3210"2 tV N ,-
0.013 0.17 0.008 

0.008 )) 

0.03 

By treating the first two years inflations as fixed and known for both GDP 
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Figure 7.2: Inflation main effect 
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Figure 7.3: Inflations (percentage scale): GDP Deflator (solid); TPI (dashed) 
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Figure 7.4: Inflations (index scale): GDP Deflator (solid); TPI (dashed) 

deflator and TPI inflation, we are able to model the entire series of inflations 

until 2031/32 using our autoregressive models. Fixing the first 2 years has only 

a small effect, since the uncertainty in these is very small. Our more complex 

modelling of inflations has the effect of increasing the number uncertain inputs in 

the financial model from 33 (although the deterministic nature of inflations in the 

original model meant this was in effect just 19 inputs) to 88 inputs. 

7 .4.1 Uncertainty 

In modifying the PSC so that we could model inflations using our autoregressive 

models, we were also able to modify the model so that we could observe additional 

outputs. Our working knowledge of the model allowed us to identify 7 additive 

groups and we were able to verify this was the case using the methodology devel­

oped in chapter 4. These groups are capital expenditure, replacements, operational 

costs, legislation, defects, insurable risks, and inflation, the sum of which came to 

the NPV of the project. We observed the fUIlction at 500 design points selected 

using a Latin Hypercube Design. The increased sample size used here is due to 
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the increased complexity of the function. "Ve fitted Gaussian Process models as 

described in section 4.3.1, and found the posterior distributions of ry(x(j)) (for j = 

1, ... 7, representing the 7 additive groups we identified). 

We calculated measures of uncertainty using the methodology we developed in 

section 5.2. The posterior expectation (with respect to ry(.)) of the expected NPV 

was calculated as £674.15A{ and the variance of the expected NPV was £0.451\J. 

The former figure is approx £5lvf below the previously calculated expected NPV, 

whilst the latter figure reflects that we have more uncertainty about the expec­

tation of the NPV than we had in the previous analysis, not unexpected given 

the large increase in the number of inputs. However, this variance is still small 

compared with the very large sums of money involved. 

The posterior expectation of the variance of the NPV was calculated as £3451\J, 

a substantial drop (approx £8011,1) from the figure we calculated in the previous 

analysis (section 7.3.1). Our more appropriate handling of inflations is the sole 

reason for this. Due to the known additive decomposition of the model, we cal­

culated the variance as a sum of 7 component variances. We show a breakdown 

of the variance into these 7 components in Figure (7.5). 

Inflation (40.9%) 

Insurance (2.6%) 

Legislation (9.2%) 
Defects ( 0.4%) 

Operations (1.0%) Replacements ( 7.2%) 

Refurbishment (38.7%) 

Figure 7.5: Variance components 
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We note from Figure (7.5) that inflation is still very important in driving 

the uncertainty, but with a much reduced influence from before. Inflation and 

refurbishment risks are the major contributors to the uncertainty, with substantial 

contributions from replacements and legislative risks. We also note the very small 

contribution from insurance, operations, and defects risks, explaining a total of 

just 4% of the variance. These groups will not be considered further. 

Our final measure of assessing uncertainty is the distribution function. We plot 

the posterior expectation of the distribution function in Figure (7.6). The range 

of the plot is very similar to the distribution function we plotted in 7.2.1 (Figure 

(7.1)), however the upper tail is even more skewed now. The probability that the 

NPV is below .£700Jvl is very large, but there remains the small possibility that 

costs could spiral towards .£900M. 
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Figure 7.6: Distribution function 
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7.4.2 Sensitivity 

Our sensitivity analysis produced markedly different results for a group comprised 

of refurbishment, replacements and legislation risks, and a second group consisting 

of just inflation risks. Consequently, we present results separately for these two 

groups. 

We begin with inference with the first group, which comprised of refurbish-

ment, replacements and legislation risks. All these inputs to the model were inde-

pendent, and independent of inflations. We were able to perform a full variance 

based sensitivity analysis in addition to calculating main effects and interactions. 

vVe begin by plotting the main effects, standardized to be between 0 and 1. These 

are shown in Figure (7.7). 
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Figure 7.7: Main effects 
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We note that one main effect dominates; this is the capital redevelopment risk. 

The other large main effects were long term legislative risk and capital replacement 



192 Chapter 7: PFr Example 

risks, with small main effects for decant and short term legislative risks. 

\Ve can also calculate first order interactions. From the methodology devel­

oped in section 5.2, we know there are no interactions between redevelopment, 

replacement or legislative risks. Our analysis showed that any interactions within 

each group were also small. We found main effect variances, and calculated sen­

sitivity indices of 0.365 for capital redevelopment risk, 0.021 for decant, 0.071 for 

redevelopment, 0.01 for short term legislation, and 0.081 for long term legislation. 

The second group, comprised of inflations alone, had a far more complex struc-

ture due to the correlations between the inputs. All the TPI inflations were cor-

related, and all the GDP deflator inflations were correlated. A full variance based 

decomposition was not possible due to this structure, so we just show results for 

main effects and first order interactions. 

The main effects of the inflations (both TPI and GDP deflator) were all rela­

tively small. We plot 2 of these below, TPI 99/00 and GDP deflator 00/01. 

1 

-1 

0.0 0.5 
X 

Figure 7.8: Main effects 

1.0 
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We note the different sign on the gradients for the two main effects plotted in 

Figure (7.8). Large values of TPI 99/00 result in increases in the NPV, whilst the 

converse is true for GDP deflator 00/01. This is because the two inflations measure 

how prices on the project are increasing relative to prices in whole economy. If TPI 

= GDP deflator inflation, then the NPV would be unaffected by the magnitude 

of inflation. The two main effects plotted are representative of the behavior of the 

main effects of all years for these two measures of inflation. However our analysis 

showed that importance of the inflations in a given year was related to the capital 

expenditure in that year. Resultantly, the most important period of the project, 

with respect to the inflation risks, was the first 6 years of the project during the 

phase of major building works. The year of largest capital outlay was 02/03, and 

the main effects of TPI and GDP deflator were most pronounced in this year. 

Main effects after the first 6 years of the project, when redevelopment and hence 

the large capital investment was finished, were negligible. 

Interactions were far more interesting. \Ve found significant first order interac­

tions between GDP deflator inflation in successive years, and as one might expect, 

large values of GDP deflator inflation in both years resulted in lower NPV of the 

project. We found that the first order interaction between GDP deflator inflations 

with a lag of d years between them, for d 2:: 1, quickly decayed to zero for larger 

values of d, reflecting the autoregressive nature of the model. First order inter­

actions between TPI inflations showed large values of TPI inflation in successive 

years had a compound effect, resulting in rises in the NPV. Lags between the TPI 

inflations resulted in similar behaviors to the GDP deflator inflations. 

The most interesting interactions were between TPI and GDP deflator in­

flations. We show two of these here. In Figure (7.9) we show the first order 

interaction between Xl = GDP deflator 00/01 and X2 = TPI 99/00, and in Fig­

ure (7.10) we show the first order interaction between Xl = GDP deflator 00/01 
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and X 2 = TPI 00/01. From these two plots we can see that the NPV is affected 

by the relative effect of inflation, when one inflation is low and the other high, the 

relative inflation effect is greatest. From Figure (7.9) and Figure (7.1O) we see 

the interaction between the two inflations is greatest within the same year. The 

largest interaction between these inflations is in 02/03, the year of largest capital 

expenditure. 

7.5 Conel us ions 

In this chapter we have analysed a financial model that arose due to the Private 

Finance Initiative. We performed uncertainty and sensitivity analyses on the 

financial model. Our concluding remarks are in two parts; the first relating to the 

benefits of the methods we used; the second relating to the benefits or otherwise 

of the Private Finance Initiative. 

7.5.1 Benefits of the analysis 

In section 7.3 we presented results for the PSC model, created by Coopers and 

Lybrand, and showed the effect of the deterministic nature of the financial indices. 

In section 7.4 we demonstrated the assumptions made by Coopers and Lybrand 

were clearly erroneous and resulted in inflations having a greater influence than 

one would expect. 

\Ve also presented results for a revised model that made use of the methodology 

we developed in chapter 6. We cannot claim our method for modelling inflation 

is perfect, and time will no doubt highlight this. However, our model was an 

accurate reflection of an economic experts beliefs, and consistent with the Bank of 

England's short term model (symmetric about the target value and approximately 
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Gaussian). The net result was a far more plausible representation, that captured 

the main features of inflation - in particular the increase in TPI inflation relative 

to GDP deflator is more important than their magnitude. Using this model, 

we found the posterior expectation of the expected NPV was reduced by approx 

£5JvI, but the most striking difference was in the (posterior expectation of the) 

variance, which was reduced by £90JvI, a reduction of 20%. 

We also demonstrated the methodology that we developed in chapter 5 -

exploiting a known additive structure in order to produce more accurate results. 

An additive structure works most efficiently when the groups of inputs are of equal 

size and the sub functions of equal smoothness, so this example was by no means 

an 'optimal' case for our methodology - the inflations contained the majority 

of the inputs. The variances of each of the summaries we calculated would be 

lower than when using the Gaussian Process model we described in chapter 3 

but we have not quantified this. The main benefit has been that the results of 

chapter 5 have allowed us to detect which interactions are exactly zero without 

need for further analysis, thus allowing us to direct resources to assessing non zero 

interactions. 

7.5.2 The nature of PFI 

Finally, we address the issue of PFI. The problem we are faced with is comparing 

a bid price from the private sector with a (usually) skewed distribution. Given the 

large variance and great uncertainty in the NPV, the bid price almost inevitably 

falls well within the bounds of the NPV distribution. Therefore any decision on 

how to fund a project is not simple. In a Bayesian setting, any decision can be 

addressed by utility, but this is not feasible in this case since the funding decision 

on a large project is made by a politician rather than an analyst, and political 
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considerations as well as cost are taken into account. 

For the MOD model the PFI bid was compared with the mean NPV, which 

is questionable given how skewed the distribution was. The PFI bid price was 

greater than the mean, and this was used to negotiate a discount before the deal 

was signed off. The PSC was used to show the public achieved value for money. 

Our model would have resulted in a greater discount. Building works have since 

been completed on this project, and the cost of these indicate that the risks were 

overestimated in the PSC. 

We end this discussion by reiterating the concerns made by House of Commons 

Treasury Committee(30). For this project, and many other projects, public sector 

funding is simply not a realistic option. The PSC is simply created as a negotiating 

tool. It seems sensible to assume this has an effect on the magnitude of PFI bid 

prices. 
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Chapter 8 

Discussion 

In this thesis we have considered the uncertainty in Government financial models, a 

special type of computer model, that arises when we have uncertainty on (some of) 

the model inputs. The methodology we have developed has been in two distinct 

parts; we first developed methodology for function approximation, uncertainty 

analysis and sensitivity analysis for a decomposable computer model; we then 

considered the uncertainty in a particular set of inputs, inflations, and developed 

methodology for quantifying this uncertainty, based upon expert opinion. vVe 

will discuss these two components of the thesis separately before making some 

remarks about how both structures can be used for very large process models, 

with particular reference to the London Underground financial model. 

In chapter 3 we examined a previously proposed but untried correlation func­

tion. The function had a positive semi-definite matrix n of parameters, and 

resultantly, at least in principle, had far more flexibility than when modelling cor­

relation as a product of 1 dimensional correlation functions (corresponding to n 
diagonal). However, we found that as a consequence of greater flexibility we had 

a significantly increased computational burden in estimating n from its posterior 
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mode, resulting from a higher dimensional numerical search and a flatter posterior 

distribution. Furthermore, we discovered that whether or not our more flexible 

correlation function was worth the additional computational burden was related 

to the form of 1](x). For a function with additive or nearly additive inputs, that is 

where interactions are small compared with the main effects, the correlation was 

modelled well by a diagonal form for n, whilst for models with large interactions 

the more complex form could be worth the additional computational burden if a 

single evaluation of 1](.) was expensive. 

We showed that matrix n corresponded to a diagonal matrix of parameters on 

a transformed scale given by z = ex, where x is p x 1, Z is r x 1, Cis r x p, with 

the dimension r of the new coordinate system :5 p. This result demonstrates that 

particularly when we have interactions, the most efficient coordinate system with 

which to model 1](.) may not have orthogonal axes. We noted that in principle we 

could estimate C such that coordinate system z had an approximately diagonal 

matrix of parameters. However, specifying this transformation would be difficult 

even with expert knowledge since by writing 1](.) as the sum of a regression fit, 

h(x)T,8, and a zero mean Gaussian Process, we explained in chapter 4 that the 

Gaussian process corrects the regression fit such that the model interpolates the 

data. Therefore C would depend upon the form of h(X)T,8. More research would 

be needed in this area in order to identify if this approach is feasible in practice. 

The developments we made in chapter 3 lead us to consider how we might 

better be able to model 1](.) when a decomposition into a sum of lower dimen­

sional terms was possible. We found that for this case more efficient methods of 

modelling the correlation are available, and we developed methodology to exploit 

this. We considered both known and unknown decompositions of 1](.}. 

For a known decomposition of ",(.) we first developed the methodology for 
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when each sub function was observable, finding posterior distributions for each 

sub function and developing a fast and accurate approximation to the posterior 

distribution of 7](x). We also developed methodology for when each sub function 

was not observable, exploiting a one at a time design structure - this latter case 

was only possible for an additive model and required very strong prior beliefs about 

7](.). In chapter.5 we extended the calculations of Oakley and O'Hagan(51) so that 

we could calculate measures of uncertainty and sensitivity for models of this form. 

In general our measures will be more precise, with less uncertainty about posterior 

expectations than is the case in Oakley and O'Hagan, using fewer design points. 

We showed that a decomposition combined with at least partial independence of 

the inputs is a powerful result when calculating measures of sensitivity. In this 

case, not only can we obtain more precise inferences, but we can establish exactly 

which interactions are exactly zero without need for calculations. This result has 

particular importance when interpreting total effect sensitivity indices. 

We also developed methodology for the case when we did not exploit a one 

at a time design. The methodology was developed for the case when we had 

uncertainty or even complete ignorance about a decomposition, and for partially 

additive models that were unable to exploit a one at a time design. In chapter 4 

we went on to discuss methodology that could be used to verify if we had identified 

a correct decomposition, and finally we showed how we could use the parameters 

of the correlation functions in order to search for decompositions of 7](.). \Ve 

were able to show that our methodology worked well for smooth functions. For 

rougher functions, as might be expected, we require more design points in order 

to search for secompositions, but our method is still practical. \Ve were able to 

extend the calculations of Oakley and O'Hagan in order to perform uncertainty 

and sensitivity analyses with greater precision. We did this in chapter 5. 

The use of structural information is a new innovation, and whilst the approach 
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appears to show much promise, in order to adequately assess the full uses and 

limitations of the methodology, further research is required. We discuss some of 

the more important aspects that we have not developed in this thesis, below. 

The first, and perhaps most important issue that we have not considered in 

the thesis is design points, and in particular how structural information might be 

utilized in order to develop more efficient designs. We discussed different criteria 

for choosing design points in chapter 3, with 4 design criteria that have been 

used in a computer models context discussed. A common problem to all criteria 

was that the parameters of the correlation function were unknown a priori. We 

explained in chapter 3 that a two phased approach to selecting design points had 

been proposed and implemented; the first phase to estimate the parameters of 

c(., .), and the second phase using some some design criterion that made use of 

these estimates. A decomposable model, where the decomposition is unknown 

could in principle use a similar two phased design. We could observe n' outputs 

selected using a Latin hypercube design in order to determine the decomposition of 

",(.), and estimate the parameters of the correlation functions. We could then use 

some design criterion in order to select the remaining n - n' design points. Further 

research is required in order to determine how large we would require n' to be in 

order to identify the decomposition however our limited amount of numerical work 

has indicated that this will be determined by the number of active dimensions, 

the complexity of the function and the number of terms in the decomposition. 

A second area for further research is to investigate how well our method can 

discriminate between an additive or partially additive function, and a function 

which is very close to additive or partially additive, with a very small interaction. 

We described one example in chapter 4, in which we could successfully discriminate 

between these two cases. However, based on our small amount of numerical work 

we cannot claim our method will always be able to successfully discriminate. More 
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research is required, especially for the more difficult partially additive case. 

A related problem of interest is a function where we don't have a global inter­

action between inputs, a simple example of which is 

y = 1h(X(I) + 1]2(X(2) 

Y = 1](XI' X2) 

Xl < C 

Xl > C. 

A problem like this might arise in a financial model when an unacceptable level 

of performance (as measured by one of the model inputs) results in financial 

penalties. Other examples will also exist in models representing physical systems 

(for example a model containing chemical interactions). An interesting area for 

future research would look into identifying how well our method could distinguish 

between an additive model and this scenario, especially if c was such that the 

additive model was correct for most values of Xl. 

A final case of interest is not related to deterministic functions. Suppose we 

had a model of the form 

Y = 1](x) + €, 

for stochastic error term €, taken to be normally distributed with zero mean and 

variance a;. In this model the relationship between the inputs and the output 

cannot be described adequately by a parametric form, so a non parametric model 

is used. This non parametric regression model smoothes rather than interpolates 

the observed data. A model of this form was first proposed in a regression context 

by O'Hagan(52). We might have an interest in whether two (or more) of the inputs 

are interacting. Given the noise from the error term, this model would represent 

a difficult challenge even for low dimensional x. Modifying our approach for this 

situation would be an interesting area for future research. 
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The second part of the thesis developed a Bayesian autoregressive model, and 

we did this in chapter 6. The motivation behind this research was to quantify the 

uncertainty in inflation in the long term, when only a small amount of data and 

the subjective knowledge of an expert was available. We developed methodology 

that required just medians and quartiles, although we did investigate the use 

of tail assessments. We found tail judgements to be unreliable. Evidence from 

the literature suggests that with sufficient training, subjects can improve their 

assessment of tail probabilities, although large scale empirical work has not been 

based on expert opinion. There is a real need for further empirical work in the 

area of training experts to assess tail probabilities. 

\Ve end this thesis by discussing how our methodology might be applicable 

for very large Government financial models, like the LU model, which contained 

thousands of inputs. The costs were so vast in this project, over the whole period 

of the 30 year contract, that the risks for a particular part of the project (Le. track 

and signal replacements on the Northern Line) were modelled on a yearly basis in 

the financial model. A crude correlation structure was used in order to take into 

account the serial correlation in these risks between years. Individual aspects of 

the project were modelled independently. Therefore, in effect, the model is a sum 

of many lower dimensional models, and we have shown in this thesis that lower 

dimensional sub-functions may be modelled independently. For a model with this 

structure, even with thousands of inputs, the two components of this thesis could 

be in principle be used in order to model the cost of the project, and to perform 

uncertainty and sensitivity analyses. However, far more work would be required 

before attempting to apply our methodology to models of this scale. 
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