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"A number of approaches are available which may be adopted to extend the power of 

ceramic petrology, but some of them require a considerable investment of analyst time 

for improvements which are far from guaranteed and which may be marginal. Careful 

consideration is advocated before they are applied." 

Freestone (1991, 407). 
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Abstract 

Within the scientific analysis of archaeological ceramics, four principal aims can be 

specified: description, classification, the reconstruction of ceramic technology and the 

determination of provenance. In order to achieve these, sophisticated methods of thin 

section analysis have been developed which permit the retrieval of detailed 

information about the nature of the rock and mineral inclusions as well as the textural 

features of the ceramic micromass. One important group of inclusions which occur in 

many archaeological ceramics are the organic or mineralised remains of various 

microscopic animals and plants, collectively referred to as microfossils. Microfossils 

are studied in detail only rarely by ceramic petrographers, however they contain 

information pertaining to the geological age and palaeoenvironment in which their 

host sediment was deposited, and as such can be used to characterise and provenance 

the raw materials of ceramic manufacture. Whilst holding great potential for the 

analysis of archaeological pottery, there are also a variety of problems associated with 

these types of inclusions, such as their alteration and removal by various processes 

during the production and post-depositional history of ceramics. 

Specialist analyses of microfossils in archaeological ceramics are small in number and 

biased towards the investigation of diatoms from the Neolithic to Iron Age pottery of 

north-west Europe. This thesis represents the first comprehensive study of the 

occurrence and utility of all microfossils in archaeological ceramics and is divided 

into two main sections. The first comprises a detailed account of the occurrence, 

preservation, methods of analysis, behaviour upon firing, and utility of all groups of 

microfossils in archaeological ceramics. This reappraisal is followed by several 

individual case studies from the Bronze Age of Crete and elsewhere in the 

Mediterranean which utilise calcareous microfossils to address a variety of 

archaeological questions of varying geographical scale and detail concerning ceramic 

provenance and technology. 
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1 Iptroduction 

The main aims of the compositional analysis of archaeological ceramics are the 

characterisation and classification of pottery samples, which in tum can be used to 

illustrate issues of provenance and of ceramic technology (Riley 1982). There are 

several approaches possible within this subject, each focussing on different 

characteristics of archaeological ceramics, for example the determination of chemical 

composition, the observation of microstructure in the scanning electron microscope 

(SEM) or mineralogical analysis by X-ray diffraction (XRD). One popular and 

relatively low-tech form of compositional analysis, ceramic petrography, uses the 

inclusions and the appearance of the clay micromass within thin sections of pottery 

samples to interpret the nature of the raw materials and technology used to transform 

them into ceramics. Various types of inclusion occur in ceramics, including single 

mineral grains and fragments of sedimentary, igneous and metamorphic rocks made 

up of agglomerations of one or more minerals. In order to identify potential sources of 

raw materials for ceramic manufacture and thus the provenance of the pottery in 

question, petrographers relate the nature of these inclusions to the established local 

and regional geology of an area, as well to as comparative sediment and ceramic 

samples. 

One distinctive group of inclusions which occur in archaeological ceramics from 

various parts of the world are the microscopic, organic or mineralised remains of 

various single and multi-celled organisms (Figure 1.2). These conspicuous structures, 

which are referred to as 'microfossils' because of their small size and biological 

origin, occur in many types of marine and non-marine sediments deposited during the 



2 

ERA PERIOD 

Quaternary 

Cenozoic 
Neogene 

Palaeogene 

65MA 

Cretaceous 

Mesozoic 
Jurassic 

Triassic 

245MA 

Permian 

Carboniferous 

Palae-

ozoic Devonian 

Silurian 

Ordovician 

Cambrian 

570MA 

Proterozoic 

Figure 1.1. The geological column. MA = Million years. 



3 

Group of microfossils Biological affinities, ecology geological range 
and size. 

Foraminiferal tests 

4\ 
Internal, chambered, often coiled, usually calcareous 

.j .•. ~ skeletons of single-celled animals (Foraminifera), which 
Chapter 6 ~,~I 

:. '~/i~ inhabit marine environments and can have a planktonic .... (,~ ='~ 

or benthic life habit. Range = Cambrian to Recent. Size 
~ = usually < 2 mm 

Ostracod valves External, hinged, bivalved calcareous shells of minute 

~;) 
crustaceans (Ostracods), which inhabit most aqueous 

Chapter 7 
oc, ..... -., ~ 

~ ,., ... /J' 

environments including lakes, rivers and the deep sea, ~. '~:i:~ .. "~· .. · ./ ... and can have a planktonic or benthic life habit. Range = 
Cambrian to Recent. Size = 0.7-5 mm. 

Radiolarian tests 

• 
Internal siliceous skeleton of single-celled planktonic 
animals (Radiolaria), which inhabit marine 

Chapter 8 
environments. Range = Cambrian to Recent. Size = 
usually < 500 /lm 

Diatom frustules tI!J.'t" External, box-like, two-part siliceous skeleton of single-
V~ " . #';~ .. J'. .. celled plants (Diatoms) which inhabit all marine and 

Chapter 8 ··t:'{·~ \~~ 1~",4Vo:3.~ ... ~ non-marine aqueous environments, including soil, and r:~" .... ••• .P~:s. I 

• • • ~:-.. ~~~ • .t~ can be benthic or planktonic. Range = Early Jurassic to 
: :~l" 

Recent. Size = 10-100 /lm. 

Calcareous nannofossils External, calcareous plates (coccoliths) of single-celled, 

Chapter 5 fBJ planktonic marine plants (Coccolithophores), as well as 
various minute calcareous structures of unknown origin 
(nannoliths). Range = Late Triassic to Recent. Size = 
usually <10 /lm. 

Dinonagellate cysts 

1f 
External, pylomate, organic resting cysts of single-celled 

Chapter 9 
celled marine plants. Range = Late Triassic to Recent. 

~ Size = usually < 100 /lm . 

Pollen and spores 

@ 
Organic, often spherical, reproductive structures of 

Chapter 9 
multicellular land plants which occur in marine and non-
marine aqueous sediments. Range = Silurian to Recent. 
Size = usually < 200 /lm . 

Figure 1.2. The biological affinities, ecology, geological range and size of the main group of 

microfos ils. 



4 

last c. 500 million years (Figure 1.1). Microfossils have been studied intensively for 

many years in an offshoot of geology called micropalaeontology, where specific 

forms are used to date and correlate rocks as well as to determine the 

palaeoenvironment in which their host sediment was deposited. This property of 

microfossils, which has been utilised heavily during the latter half of this centrury in 

the search for oil and gas, is well-suited to the characterisation of the raw materials of 

ancient ceramic manufacture. 

However, detailed analyses of microfossils in archaeological ceramics have so far 

been undertaken on an ad hoc basis, perhaps due to the highly specialised nature of 

micropalaeontology which does not lend itself to routine application within the 

petrographic description of archaeological ceramics, and the lack of collaboration 

between micropalaeontologists and archaeological scientists. The studies which do 

exist have been sporadic and are heavily biased towards the analysis of siliceous 

microfossils from Neolithic, Bronze Age, Iron Age and Medieval pottery from north

west Europe. 

The following thesis represents the first detailed account of all groups of microfossils 

in archaeological pottery and attempts to construct the foundations of a new approach 

to the subject of 'ceramic micropalaeontology'. In Chapter 2 a thematic review of 

previous detailed analysis of microfossils in archaeological ceramics is presented. 

This serves to illustrates the way in which microfossils have been used with varying 

success to ascertain different levels of information about ancient ceramic production, 

as well as highlighting some of the inherent problems associated with the analysis of 

microfossils in archaeological pottery. These problems are expanded in Chapter 3, 
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which looks in detail at the production sequence and history of ceramic artefacts and 

identifies several potential sources of contamination and alteration of microfossil 

assemblages, some of which are investigated experimentally in Chapters 5 to 9. 

Chapter 4 presents an overview of the geological history of the Aegean and identifies 

those sediments which are of concern to the analysis of micro fossiliferous 

archaeological ceramics from this region and have been studied in further detail in 

Chapter 10. 

The bulk of this thesis is represented by Chapters 5 to 9, which deal with each of the 

main types of microfossils in turn; outlining their occurrence, preservation and the 

methods by which they can be studied in archaeological ceramics, their transformation 

during the process of firing (based upon experimental work and previous literature) 

and the potential they offer to the scientific analysis of ancient pottery. In addition, 

Chapters 5 to 7 contain a review of the numerous biostratigraphic schemes which 

have been presented for late Neogene calcareous nannofossils, foraminifera and 

ostracods in the Mediterranean which are utilised in the analysis of these calcareous 

microfossils in Chapter 11. Because of the difficulties which are involved with the 

biostratigraphy of calcareous nannofossils for this time period in the Mediterranean, it 

has been necessary to undertake a thorough review of the occurrence and utility of 

several less conventional members of this microfossil group. This review is presented 

in Appendix II. 

Chapter 11 applies the methodology outlined in the main body of this thesis to the 

analysis of calcareous microfossils from pottery of the Bronze Age and later 

archaeological periods in the Mediterranean. Each of the five case studies which are 
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presented involve the application of micropalaeontology to coherent archaeological 

questions. These confirm and refine interpretations of ceramic production and 

exchange previously formulated through other techniques of ceramic compositional 

analysis. The information produced through the analysis of microfossils in these 

examples has direct relevance to the understanding of ancient societies. It offers a new 

level of detail regarding questions of ceramic production, notably the location of 

production centres and the choice and manipulation of raw materials by potters in the 

past. As it is these very questions which increasingly are being posed by 

archaeologists, micropalaeontological analysis of ceramics is seen to be a potentially 

powerful tool within archaeological scientific analysis. 

The various strands which are presented in this thesis have been brought together in 

the final chapter, in order to define the 'subject' of ceramic micropalaeontology and 

provide a coherent starting point for future work. 
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2 Previous studies on microfossils from arcbaeoJodcaJ ceramics 

2.1 Introduction 

As mentioned in the preVIOUS chapter, microfossils are a relatively common 

component of archaeological ceramics from many parts of the world. It is now 

necessary for us to review the way in which both archaeologists and 

micropalaeontologists have dealt with the occurrence of these distinctive non-plastic 

inclusions by summarising the approach to the description of microfossils within the 

subject of ceramic petrography, and by reviewing the previous detailed analyses of 

microfossils in archaeological ceramics. 

2.2 Microfossils in ceramic petrograpby 

Before we review the previous micropalaeontological investigations of archaeological 

ceramics, it is necessary for us to consider the way in which archaeologists have dealt 

with the occurrence of microfossils in pottery. As an illustration, this section will 

focus on two examples where microfossils have been encountered in the petrographic 

analysis of ancient ceramics; the work of Riley (1981) and Whitbread (1995). 

During his petrographic examination of Late Bronze Age coarse-ware stirrup-jars 

from Mycenae, Riley (1981) encountered chert inclusions containing radiolaria in 

several of the 37 samples which he analysed. Riley did not describe these microfossils 

in detail, or utilise their occurrence in his petrographic classification of the stirrup

jars; as all three samples were placed in separate fabric groups. More significant, 
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however was the concurrence of foraminifera and metamorphic rock fragments in ten 

of the 37 stirrup-jar thin sections. Riley classified these as his Fabric B on the basis of 

the two distinctive types of inclusions. In outlining this fabric, Riley (1981, 336) 

attempted a rudimentary description of the foraminifera which he had seen in thin 

section, by noting their abundance, "5 per square millimetre" and their size, "0.4 mm 

across". This information which is of very little value was not utilised by Riley in his 

interpretation of the fabric. He also mentioned that "the foraminifera are well

preserved" and used this to suggest that his Fabric B was constructed from 'recent 

sediments', mixed with a clay containing low-grade metamorphic fragments (1981, 

336). Although Riley's identification of clay mixing was correct, his interpretation of 

the geological age of the microfossiliferous component of Fabric B, was not. Well

preserved foraminifera can occur in very ancient sediments, as well as in fired pottery 

manufactured from such deposits, and despite the occurrence of an overall correlation 

between geological age and preservation, one is never used as a guide to the other. 

Twelve of Riley's stirrup-jar samples were also analysed with optical emission 

spectrometry (OES) by Catling et al. (1980). These authors suggested that seven of 

the samples may have a Cretan origin. Although Riley (1981, 338) commented that 

"this is neither fully confirmed nor can this be rejected on petrographic grounds", he 

cited the occurrence of foraminifera in fine pottery and their association with phyllite 

in coarse ware pottery from the LM IB period at Knossos. By comparing the results of 

Catling et al. (1980) with Riley's petrographic groups, it can be seen that the two 

Fabric B samples which were analysed by OES have a different chemical 

composition. 
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The petrographic correlation between the coarse-ware pottery from Crete and 

Mycenae, which Riley indicated, was significant, however, as the author noted 

himself, "further examination of pottery and clays" (1981, 339) was needed before 

any conclusions could be made on a petrographic basis. He nevertheless considered 

the geology of Crete to be compatible with such an interpretation due to the 

occurrence of "outcrops of phyllite in both western and eastern Crete as well as parts 

of central Crete" (1981, 339), but did not include the foraminifera in this 

consideration. Neogene sedimentary deposits containing foraminifera occur 

extensively on Crete (Chapter 4, Figure 4.1), however the geological age of these 

marine sediments has been well established by various authors, e.g. Zachriasse (1975) 

and Spaak. (1983), and nowhere on the island have Recent sediments containing 

foraminifera been found. The term 'Recent', in a geological sense means the present. 

In which case, Riley's (1981) interpretation of the raw materials used in the 

construction of his Fabric B ceramics was incorrect. A better interpretation of the 

geological age of the raw materials of ceramic manufacture through the generic and 

specific identification of the foraminifera, was achieved in the later work of Riley 

(1983) and Riley et al. (n.d.). 

Riley's (1981) analysis of the Late Bronze Age coarse-ware stirrup-jars from 

Mycenae is a good example of how ceramic petrographers, both successfully and 

unsuccessfully, have utilised the microfossils occurring in thin sections of 

archaeological pottery. In classifying the stirrup-jars, Riley (1981) treated the 

microfossils as he would any other inclusion, and considered their occurrence together 

with the rest of the fabric. In this respect, his decision to unite the samples of his 

Fabric B by the occurrence of foraminifera and metamorphic rock fragments, yet 
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separate samples 10968, 5357 and 10970 which contained radiolarian chert, was 

correct. Riley's description of the microfossils occurring in the pottery samples 

however, was far too simple and of little use, except perhaps to convey to the reader 

the approximate size of the foraminifera. His comment on the state of preservation of 

these microfossils was significant but the subsequent interpretation of the nature of the 

raw materials of the Fabric B ceramics, which Riley (1981) based upon this, was 

incorrect. 

In his monograph on ancient Greek transport amphorae, Whitbread (1995) 

encountered microfossils in ceramic thin sections from Rhodes, Kos, Chios, Lesbos, 

the Kassandra peninsula, the Sithonia peninsula, Paros and Corinth. In his detailed 

fabric descriptions of this pottery, Whitbread included the microfossils in his coarse 

fraction, as a separate type of inclusion, or as part of another inclusion (e.g. 

radiolarian chert). He also indicated the semi-quantitative frequency of the microfossil 

specimens within this fraction of the fabric, and identified, wherever possible, the 

broad microfossil group to which they belong (i.e. foraminifera; radiolaria). 

Thus, Whitbread utilised the occurrence of microfossils in a similar manner to Riley 

(1981), as a means of characterising his fabric groups (where they occurred 

consistently alongside other distinctive inclusions, for example in the case of the 

Chian amphora Fabrics), to subdivide fabric groups (e.g. Classes 1 and 2 of his 

Corinthian type A' Fabric), or to interpret their sporadic occurrence as variation 

within fabric groups characterised by other types of inclusions (e.g. Koan Fabric Class 

3). 
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In describing the microfossils which occur in this pottery, Whitbread (1995, 152) did 

little more than Riley (1981) in that he usually included a rough indication of their 

size, e.g. "frequently about 0.2 mm in size". He also described those specimens which 

he was unable to attribute to a broad microfossil group, in terms of their overall shape, 

e.g. "spherulitic structures (possible radiolaria)", and other dimensions, e.g. "ovoid 

tests, about 0.02 mm thick, with a single chamber, about 0.6 mm in diameter" 

(Whitbread 1995,287 and 162). This latter description was of two microfossils which 

he encountered in a single thin section of the Lesbian amphorae Fabric; the specimens 

in question, which are illustrated in Whitbread's monograph (1995, Fig. 4.4, 159), are 

considered here to be ostracod valves. 

However, in the interpretation of the occurrence of microfossils in Greek amphorae, 

Whitbread (1995) made some significant conclusions pertaining to the provenance 

and technology of these ceramics through the analysis of comparative sediment 

samples. This can be demonstrated by his analysis of amphorae from Corinth. 

Whitbread's type A and type A' Class 1 fabrics contained radiolarian mudstone 

inclusions, chert fragments with radiolaria and isolated radiolarian tests in thin 

section, and his type B Fabric (Classes 1 and 3) contained chert with rare to very rare 

"traces of radiolaria" (1995, 290). The occurrence of radiolarian mudstone in 

Corinthian amphorae has been noted by others, including Farnsworth (1964) who 

attributed these and other rock fragments to the local geology of Corinth. Whitbread 

identified the source of this temper as the shale-sandstone-radiolarite formation which 

occurs on the flanks of the Acrocorinth and Penteskouphi mountains near to Corinth, 

and studied comparative samples, which revealed that these deposits were very similar 

to the inclusions which "are typical of Corinthian ceramic Fabrics" (1995, 330). 
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The two examples presented above, are illustrative of the way in which archaeological 

scientists have dealt with the occurrence of microfossils in thin sections of ceramics 

from the Aegean, the way they have utilised them to characterise and classify pottery, 

as well as to indicate the provenance of raw materials used in their manufacture. As 

outlined in the previous chapter, microfossil assemblages contain useful information 

pertaining to the geological age and depositional environment of their host sediment. 

In order to extract this information it is necessary to analyse them in detail and 

identify the taxa which they contain. So far, this has been beyond the capability of 

most archaeological scientists. However, there have been several studies in which 

micropalaeontologists have applied their expertise to the study of ceramics, often in 

collaboration with archaeological scientists and archaeologists, in order to attain more 

detailed interpretations of the microfossil assemblages in ancient pottery. These are 

presented in Figure 2.1 and reviewed in the following section. 

2.3 Detailed analyses of microfossils in archaeological ceramics 

There have been numerous detailed analyses of microfossils In archaeological 

ceramics since the 1950's. However, the publication of these has been sporadic and 

heavily biased towards the analysis of diatoms from the pottery of north-west Europe 

(Figure 2.1). Nevertheless, there have been several, published and unpublished 

investigations of other microfossil groups occurring in archaeological pottery from 

other parts of the world, e.g. foraminifera in ceramics from the Mediterranean (Riley 

1983; Troja et al. 1996; Alaimo et al. 1997; MacGillivray et al. 1988; Riley et a1. 

n.d.), calcareous nannofossils and pollen in ceramics from England (Burnett and 



AUTHOR(S) DATE REGION PERIOD MICROFOSSIL GROUPS 

Davis 1951 England Iron Age Foraminifera 

Edgren 1966 Finland Sub-Neolithic Diatoms 

Foged 1968 Norway Neolithic Diatoms 

Edgren 1970 Finland Sub-Neolithic Diatoms 

Jansma 1977 Netherlands Neolithic, Iron Age, Diatoms 
Medieval 

Alhonen and Matiskainen 1980 Finland Sub-Neolithic Diatoms 

Alhonen et al. 1980 Finland Sub-Neolithic Diatoms 

Alhonen and Vakeviiinen 1981 Finland Sub-Neolithic Diatoms 

Jansma 1981 Netherlands, England Neolithic, Iron Age, Diatoms 
Medieval, Saxon 

Gibson 1983a England Neolithic, Bronze Age Diatoms 

Gibson 1983b England Neolithic, Bronze Age Diatoms 

Riley 1983 Crete Bronze Age Foraminifera 

Matiskainen and Alhonen 1984 Finland Sub-Neolithic Diatoms 
~-- - - - --

Figure 2.1 Part 1. Catalogue of pub lis bed and unpublisbed detailed analyses of microfossils in arcbaeological ceramics. 

-1M 



AUmOR(S) DATE REGION PERIOD MICROFOSSIL GROUPS 

Jansma 1984 Netherlands Neolithic, Iron Age Diatoms 

Hakansson and Hulthen 1986 Germany, Sweeden Neolithic Diatoms 

Hakansson and Hulthen 1988 Sweeden Neolithic Diatoms 

MacGillivray et al. 1988 Crete Bronze Age Foraminifera 

Jansma 1990 Netherlands Neolithic Diatoms 

Trojaetal. 1996 Sicily Neolithic, Bronze Age Foraminifera, Nannofossils 

Stilborg 1997 Denmark Iron Age Diatoms, Foraminifera 

Alaimo et al. 1997 Sicily Punic Foraminifera, Ostracods 

Riley et. al. unpublished Crete, Greece, Sicily Bronze Age Foraminifera 

Burnett and Young unpublished England Bronze Age Nannofossils 

Hunt unpublished England Iron Age Organic microfossils 

DeLaFuente unpublished Argentina Inka Diatoms 

De La Fuente and Macchiavello unpublished Argentina Inka Diatoms 
---- -- -- - -- -- -

Figure 2.1 Part 2. Catalogue of published and unpublished detailed analyses of microfossils in archaeological ceramics. 

-~ 
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Young, n.d.; Hunt, 1996), as well as a few analyses of diatoms in ceramics from 

elsewhere (Gibson 1983a and b; De La Fuente and Martinez Macchiavello 1997). 

These studies have utilised the information contained in microfossil assemblages, with 

varying success, to classify ceramics and interpret their provenance and technology, as 

well as aspects of clay choice. The following review is presented in terms of these 

archaeological questions. 

2.3.1 Classification 

On the simplest level, the presence, absence and the nature of microfossil assemblages 

in archaeological ceramics have been used as a means of characterising and 

classifying pottery sherds, as well as interpreting pottery typology (Battarbee 1988). 

Microfossils are usually very distinctive where they occur in ceramics and are 

therefore an obvious type of aplastic inclusion with which to classify samples. The 

different ways in which microfossils have been used to characterise and group pottery 

are outlined below. 

2.3 .1.1 Presence/absence 

In Section 2.2 we reviewed the method by which two petrographers (Riley 1981; 

Whitbread 1995) utilised the presence of specific microfossils in ceramics, to classify 

their samples. In these examples, the consistent occurrence of foraminifera (Riley 

1981) and radiolaria (Whitbread 1995), in addition to distinctive rock and mineral 

inclusions, were used to correlate thin sections of archaeological pottery and establish 
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petrographic groups. More sporadic occurrences of microfossils were also noted in 

other thin sections, however, these were not used as a means of classification, due to 

the lack of correlation between the microfossil specimens and the other petrographic 

characteristics of the samples. Instead, these micro fossiliferous samples were 

interpreted as variation within other fabric groups. This 'weighting' of the 

presence/absence of microfossils, by its contextualisation rather than an exclusive 

concentration upon it is essential in classifying archaeological ceramics. However, 

such an approach has not been taken in some more specialist micropalaeontological 

analyses of ceramics (e.g. Jansma 1977). 

Jansma (1977; 1981; 1984; 1990) has isolated diatoms from Dutch Neolithic, Iron 

Age and Medieval pottery (Section 8.4.1). At the Neolithic site of Zandwerven, 

Jansma (1977) analysed small numbers of sherds belonging to the stratigraphically 

differentiated Vlaardingen (VL) and Protruding Foot Beaker (PFB) 'cultures'. His 

results indicated that the VL sherds contained diatoms and the PFB sherds were 

barren. This correlation between the presence/absence of diatoms in the 

archaeological pottery samples, and the 'cultural' phase of the Dutch Neolithic to 

which they belonged, would appear to be significant, and on this basis Jansma (1977) 

ascribed a different provenance to the two groups of ceramics (Section 2.3.2.1). 

However, at two neighbouring archaeological sites from which Jansma (1977) 

analysed 'culturally' contemporaneous Neolithic pottery samples, the VL sherds were 

barren (Leidschendam) and the PFB sherds contained diatoms (Voorschoten). 

The problem with Jansma's (1977) interpretation of the VL and PFB ceramics at 

Zandwerven is that, as indicated by the evidence from Leidschendam and 
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Voorschoten, the presence/absence of diatoms may not necessarily reflect a difference 

in the nature of the raw materials used in the manufacture of this pottery. By analysing 

more of these pottery sherds and comparing the presence/absence of diatoms with 

their petrography, it may have been possible to separate the two typological groups of 

pottery on a compositional basis. The presence/absence of diatoms in the 

archaeological ceramics from successive 'cultures' could in fact be an artefact of 

firing. This is clear as, in his six restrictions pertaining to the diatom analysis of 

pottery, Jansma (1977, 77) stated that "the silica of which the thecae are formed 

cannot endure temperatures above 1000°C" (Section 8.3) and he considered this 

possibility in accounting for the absence of diatoms in Neolithic sherds from the 

Dutch sites of Drente, Utrecht and Noord-Brabant. 

2.3.1.2 Composition of the microfossil assemblage 

There are several ways in which the composition of microfossil assemblages in 

archaeological ceramics have been used as a means of classifying samples. These are: 

a classification based entirely upon the presence/absence and abundance of specific 

taxa in the assemblage (Alhonen et al. 1980; Alhonen and Matiskainen 1980; 

Matiskainen and Alhonen 1984; De La Fuente and Martinez Macchiavello 1997), and 

a classification based upon an interpretation of the microfossil assemblage in terms of 

the palaeoenvironment (Jansma 1984), or the geological period (Troja et al. 1996) in 

which the raw materials of pottery manufacture were deposited. 

De La Fuente and Martinez Macchiavello (1997) isolated diatoms from 16 Inka 

pottery sherds which were collected during a surface survey in the Chascuil region, 
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Catamarca, Argentina. Their quantitative analysis indicated that all but one of the 

samples contained siliceous microfossils which, however, were not very abundant and 

were comprised of many fragments. On the basis of the relative abundance of the 

diatom taxa which were liberated from the samples, De La Fuente and Martinez 

Macchiavello (1997) classified them into five groups, characterised by the dominance 

of particular taxa. For example Group 1, which was composed of eight sherds, was 

dominated by the species Fragilaria brevistriata (12.5 - 59 % of the assemblages). 

As presented, this classification appears relatively legitimate. However, by referring to 

the actual quantitative data upon which they are based, it is possible to see that some 

of these authors' diatom groups contained but a single sherd (Groups IV and V), with 

only 20 or so diatoms, many of which were unidentifiable fragments. For example, the 

sherd in Group IV, which was supposedly characterised by the dominance of 

Aulacoseira granulata and Melosira sp., contained one specimen of the former, two 

of the latter and only one other identifiable diatom valve (Nitzschia sp.). 

In addition to being rather tentative, the five groups which De La Fuente and Martinez 

Macchiavello (1997) proposed on the basis of their diatom analysis have little 

meaning, as the authors did not interpret the various floras with which they 

characterised their groups. Although it is clear that certain diatoms dominated the 

assemblages of some of the groups, e.g. Fragilaria brevistriata in Group 1, there are 

numerous taxa which were present in several groups, and thus clearly some kind of 

interpretation is needed. 

Another restriction of this study might be its reliance upon diatoms for the 

classification of the sherds. De La Fuente and Martinez Macchiavello (1997) did not 
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present any information on either the typology, petrography or chemistry of the Inka 

ceramics from the Chaschuil region. In the absence of any sound interpretation of the 

diatom classification, additional data is required in order to confirm or contest these 

groups. 

A similar problem is clear in work by Alhonen et al. (1980), Alhonen and 

Matiskainen (1980) and Matiskainen and Alhonen (1984), in which they proposed a 

diatomological classification of Sub-Neolithic pottery from the Finnish site of 

Nikasuo. At this 'Comb Ceramic period' dwelling site (c. 5500-4500 BP), some 

17,000 sherds were excavated. These belong to three different stylistic groups: the 

Typical Comb ceramics (subdivided into three subgroups on the basis of their 

predominant motif), the Late Comb ceramics, and the Pit and Comb ceramics, of 

which only a single sherd was encountered. 

Alhonen et al. (1980) analysed chemically a total of ten sherds from these three 

stylistic groups and subgroups, as well as studying the nature of their diatom floras. 

Only very small numbers of diatom specimens were liberated from the ten sherds (2-

11). Nevertheless, Matiskainen and Alhonen (1984, 153) claimed that there was a 

"distinct correspondence between the species and the stylistic classification". 

However, in Group B of the Typical Comb ceramics, the species Cocconeis scutelum, 

which also characterised Group C, was only represented by one specimen out of a 

total assemblage of four or five diatoms. In addition, the two samples which belong to 

this group have but one other feature in common, which is that they both contained a 

single specimen of the genus Pinnularia. The Pit and Comb sherd also contained two 

diatoms specimens, of the species Cocconeis scutelum, however, the authors did not 
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acknowledge the obvious correlation between this sample and those of their Typical 

Comb ceramic Groups B and C. 

In his review of the application of diatoms to archaeology, Battarbee (1988, 637) 

presented the work of Alhonen et al. (1980) as a rare example in which "the 

considerable potential of diatom analysis as an aid in typological studies of pottery" 

has been exploited. Alhonen et al. 's (1980) classification of the sub-Neolithic pottery 

from the Finnish site of Nikasuo, is certainly one of only a few studies in which 

diatom analysis has been compared to stylistic groupings of archaeological pottery. 

However, there are several problems with this work and the interpretations which are 

drawn from it. The main criticisms concern the small number of samples which were 

analysed and the basic non-interpretative method of classification which Alhonen et 

al. (1980) based upon low abundance diatom floras (as in De La Fuente and Martinez 

Macchiavello 1997 above). 

It appears as if Alhonen et al. were convinced that the diatom floras and stylistic 

classification of the Nikasuo pottery samples should match, and then set out to prove 

this by utilising a few somewhat tentative links, e.g. the concurrence of two related 

specimens in Group B. Perhaps a better approach, would have been to compare the 

diatom floras of each of the pottery samples in an objective manner and re-evaluate 

the stylistic classification in the light of this. 

To their credit, they carried out chemical analysis of the pottery samples from 

Nikasuo by atomic atomic absorption spectrophotometry (AAS). However, the results 

of this analysis revealed that "the raw materials of the vessels classified according to 

features of ornament and form differ from each other except in Group C" (Alhonen et 
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al. 1980, 201), which they interpreted in terms of variation in coarse sand temper 

added to the pottery. It might be suggested that what was needed in this study was thin 

section petrography, which may have been used to confirm the presence and 

composition of any temper, as well as to characterise the base clay to which this was 

added. In this way, it may have been possible to compare the AAS results of, for 

example, Group C, and assess the validity of the crude correlations between the 

stylistic classification and the diatom floras. 

2.3.1.3 Interpretation of microfossil assemblages in terms of geological age or 

palaeoenvironment 

A more sophisticated approach to the micropalaeontological classification of 

archaeological pottery samples might be the interpretation of their microfossil 

assemblages in terms of either geological age or palaeoenvironment. In this way, the 

raw materials of ceramic manufacture can be compared more reliably to the locally

available sources of clay or temper, in order to infer provenance (Section 2.3.2). Two 

previous analyses which exemplify this approach are Jansma (1984) and Troja et al. 

(1996). 

Jansma (1984) studied 10 Late Neolithic sherds with different types of decoration, 

from the site of Aartswould in the Netherlands. On the basis of his qualitative diatom 

analysis (Section 8.4.2), he sub-divided the ceramics into two groups. The larger 

group contained numerous sherds with assemblages dominated by marine diatoms, 

such as Cymatosira belgica, Melosira sulcata and Raphoneis surirella with 

comparable numbers of broken and unbroken specimens per species. The smaller 



22 

group on the other hand, contained only one sherd, which had a diatom flora 

dominated by freshwater species of the genera Eunotia and Tabellaria. This sherd 

also possessed a 'zigzag' style of decoration, which was distinctively different from 

that of the other nine samples. 

This study represents a good, straightforward example of how the 

palaeoenvironmental interpretation of microfossil assemblages can be used to group 

archaeological ceramics by the nature of their raw materials. On the basis of the 

contrasting environmental tolerances of the dominant diatom taxa in the 'zigzag' 

sherd and the other nine Late Neolithic pottery samples from Aartswould, Jansma 

(1984) was able to infer a different provenance for the two groups (Section 2.3.2.1). 

A biostratigraphic approach to classifying ceramics in order to determine provenance 

was attempted by Troja et al. (1996) in their integrated analysis of Neolithic to Bronze 

Age pottery samples from Milena, Sicily. They analysed foraminifera and calcareous 

nannofossils in thin section, and defined two micro fossiliferous groups on the basis of 

their preservation, abundance and composition. Group 1 contained 13 samples with 

relatively rich associations of planktonic and benthic foraminifera (identified to family 

and genus level) and calcareous nannofossils (identified to genus and species level). 

However, Group 2, which was composed of an equal number of sherds, was 

characterised by a low diversity of poorly-preserved planktonic foraminifera and very 

rare calcareous nannofossils (both identified to genus level), as well as the 

unidentifiable remains of diatoms. 

Troja et al. did not present assemblage descriptions of the individual samples in their 

analysis. Instead, they summarised the nature of the microfossil assemblages in each 
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group and therefore, it is not possible to assess the reliability of their classification. 

Nevertheless, on the basis of their combined assemblage descriptions, the samples of 

Group 1 appear to be contemporaneous. Those of Group 2, however "are characterised 

by different associations of microfauna" (Troja et al. 1996, 126), and the only feature 

which the microfossil assemblages of these samples have in common is their low 

abundance, low diversity and poor preservation. 

The authors compared their two microfossil groups with other compositional data, but 

did not interpret this in any way. As a result, they failed to recognise a problem with 

their proposed two-fold micropalaeontological classification. The x-ray diffraction 

(XRF), instrumental neutron activation analysis (INAA) and inductively coupled 

plasma spectrometry (Iep) analysis of the pottery sherds from Milena indicated that 

the samples of Group 1 could not be distinguished in terms of their chemical 

composition from those belonging to Group 2. This would seem to suggest that the 

samples belonging to the two groups may have been constructed from similar raw 

materials; a possibility which was also reflected in the petrographic analysis of this 

study. Nevertheless, Troja et al. (1996) did not integrate their micropalaeontological 

results with this chemical and petrographic data, but retained the two groups, which 

were assigned to different geological periods and then correlated to field samples of 

local clay sources (Section 2.3.2.5). 

An alternative interpretation of Troja et al. 's (1996) material, from the sparse data 

which they presented, is that the pottery samples in Group 2 are poorly-preserved 

examples of the micro fossiliferous fabric which characterises the sherds of Group 1. 

This interpretation is supported by several points, which are outlined below. 
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1. All foraminifera and calcareous nannofossil taxa identified in the assemblages of 

Group 2 are also present in Group 1. 

2. There is no reason why the microfossil assemblages of Group 2 cannot be attributed 

to the same geological stage as those in Group 1 (Section 2.3.2.5). 

3. The microfossil assemblages in Group 1 are well-preserved, whereas those in 

Group 2 are poorly-preserved. 

4. These two groups were not confirmed by the chemical and petrographic analyses. 

5. Troja et al. inferred that some of the pottery had been affected by groundwater 

(1996, 120). 

Despite the numerous techniques which were employed in the study of Troja et al. 

(1996) and the multidisciplinary nature of the team which analysed the archaeological 

pottery samples from Milena, the numerous lines of evidence were not considered an 

integrated whole, which may have brought about a different conclusion. 

2.3.2 Provenance 

The determination of provenance has long been the pnmary focus of ceramic 

compositional analysis (Bishop et al. 1982), including the study of microfossils in 

archaeological pottery (Battarbee 1988). The nature of microfossil assemblages in 

archaeological pottery samples have been utilised in a variety of ways in order to 

indicate ceramic provenance on various geographical scales, as outlined in Sections 

2.3.2.1 to 2.3.2.5 below. 
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2.3.2.1 Local versus non-local 

Perhaps the simplest interpretation of ceramic provenance is that of local versus non

local; this is the distinction between archaeological pottery which was manufactured 

close to its site of excavation, using local raw materials, and that which was produced 

elsewhere and imported. This type of provenance interpretation has been achieved by 

several analyses of diatoms from archaeological ceramics, where the dissimilarities 

between the floras of pottery sherds and local raw materials have led to confident 

conclusions (Battarbee 1988). As with the micropalaeontological classification of 

archaeological ceramics (Section 2.3.1), local and non-local provenance 

interpretations have been established via the presence or absence of microfossils, the 

composition of their assemblages, or through the palaeoenvironmental or 

biostratigraphic interpretation of the micro flora and fauna. 

Presence/absence 

In Section 2.3.1.1 Jansma's (1977) diatom analysis of PFB and VL sherds from the 

Dutch Neolithic site of Zanderwerven was reviewed. In this work he utilised the 

presence/absence of diatoms to indicate dissimilarities between the raw materials of 

these stratigraphically and stylistically separate ceramics. As a result of this 

distinction between the diatomaceous VL sherds and the barren PFB samples, Jansma 

(1977) postulated a different provenance for the two groups of pottery. The site of 

Zanderwerven is "situated on Holocene deposits far from Pleistocene deposits" 

(Jansma 1977, 82), a fact which was used to infer that the local clays contained 

diatoms. Based upon this assumption, Jansma (1977) concluded that the PFB pottery 
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sherds from Zanderwerven, or the raw material from which they were produced, was 

imported into the site, and the VL pottery was produced locally. 

This local versus non-local provenance interpretation of the VL and PFB was rather 

ambitious, as it lacked the analysis of representative field samples, or a consideration 

of the firing technology of these ceramics. Local non-diatomaceous clays sources may 

have been present in the region surrounding the archaeological site of Zanderwerven, 

or alternatively the barren PFB pottery samples may have originally contained diatom 

specimens, which were subsequently removed during the process of firing. In fact, the 

latter scenario was considered by Jansma as a possible explanation for the absence of 

diatoms in the contemporaneous Neolithic pottery which he analysed from the 

archaeological sites of Drente, Utrecht and Norrd-Brabant. 

Furthermore, Jansma's contention that the diatomaceous VL sherds were local to 

Zanderwerven was equally unsubstantiated, as Holocene sediments containing 

diatoms cover much of the Netherlands and therefore, the pottery could have been 

produced at any other Neolithic site which is situated close to clays of this type. One 

possible means of confirming his interpretation, would have been to analyse the 

composition of the diatom floras in terms of palaeoenvironment, a method which 

Jansma later utilised in his subsequent study of the PFB sherds from the site of 

Aaartswould (1984), which is outlined below. 

Palaeoenvironmental interpretation 

A more sophisticated approach to the determination of local and non-local ceramics 

has been attempted by Jansma (1984) in his quantitative analysis of ten PFB sherds 
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from the Neolithic site of Aartswould, Netherlands, which is introduced in Section 

2.3.1.3. Aartswould is situated near to the coast, a fact which was used to infer that 

"the clay in the neighbourhood would have been deposited in a predominantly marine 

environment" (Jansma 1984, 533), without the analysis of any representative samples 

of locally available raw materials, which he previously viewed as being essential 

(Jansma 1977). 

By analysing the composition of the diatom floras within the ten PFB sherds, Jansma 

(1984) was able to separate the 'zigzag' decorated sherd, with its dominantly non

marine diatoms, from the other nine samples which contained marine diatom 

assemblages. On the basis of this valid distinction between the zigzag sample and the 

other pottery in his analysis, Jansma postulated that the vessel from which this sherd 

originated, was imported and the remaining sherds "probably came from pots made 

with locally available clays" (1984, 533). 

Although the agreement between the stylistic and environmental differences of the 

zigzag sample and the other PFB sherds was significant, there are several problems 

with the provenance interpretation which Jansma (1984) then made. Firstly, as 

diatomaceous marine clays accumulate in great quantities in macrotidal coastal areas 

such as the Netherlands, the nine PFB pottery sherds which contained marine diatoms 

could have been manufactured at any other Neolithic coastal site which contains 

contemporaneous pottery. Secondly, his opinion that non-marine sediments were not 

available at Aarstwould, which is implied by his contention that the zigzag sherd was 

non-local, was not substantiated by clay sampling or reference to pre-existing 

geological knowledge. It is possible that non-marine diatomaceous clays existed in the 
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area surrounding the site of Aartswould in the form of fluvial or lacustrine deposits, or 

older sediments. Lastly, Jansma (1984, 533) stated that the zigzag sherd is part of "a 

separate group within the PFB culture", however, he did not indicate whether this 

distinction was stratigraphic or geographic. If the latter is the case, then a 

consideration of the other occurrences of this type of pottery could have been used to 

support its suspected non-local origin. 

2.3.2.2 Coastal areas versus inland 

Jansma's (1984) conclusion that the zigzag sherd which he analysed from the coastal 

site of Aarstwould was non-local because it contained a diatom assemblage which was 

dominated by freshwater taxa (Section 2.3.2.1), led him to postulate that it had been 

imported from somewhere inland. This broad interpretation of coastal versus inland 

provenance, which is based upon the salinity tolerances of the dominant diatom taxa 

in pottery samples and the proximity of their site of excavation relative to the sea, is 

an extension of the local/non-local approach, and has been used in other diatom 

analyses of archaeological pottery from northern Europe (e.g. Stilborg 1997). 

Jansma (1984) applied the same method in his study of some Iron Age pottery from 

the inland site of Hooidonske Akkers, near Son en Breugel, the Netherlands. In this 

example, nine sherds were analysed qualitatively and could be divided into two 

groups on the basis of the salinity tolerances of their diatom taxa. In Group A, to 

which five of the nine sherds belonged, more than 50% of the total number of diatom 

species present (13-36) were indicative of a freshwater environment (e.g. Fragilaria 

construens and Gomphonema angustatum). The flora of the four sherds belonging to 
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Group B, on the other hand, were dominated by a comparable percentage of marine 

diatom taxa such as Melosira sulcata, Melosira westii, Podosira stelliger and 

Rhaphoneis amphiceros. On the basis of this division, Jansma concluded that there 

was a strong possibility that the pottery of Group A was produced locally, and that the 

sherds belonging to Group B "were imported from the coastal area, a distance of 150 

km" (1984, 536). 

As with Jansma's non-local, inland provenance interpretation of the zigzag sherd from 

Aartswould, this conclusion is too simplified, as the absence of marine sediments at 

Hooidonske Akkers was not established by the analysis of representative clay 

samples. Jansma's contention that marine clays "are not available in the surroundings" 

(1984, 536), appears to be an assumption. Considering the low-lying nature of the 

Netherlands, as well as the periodic flooding of the land by the sea (Jansma 1977), the 

occurrence of Pleistocene or Holocene marine clays cannot be discounted without 

detailed fieldwork or the consideration of published geological reports. 

Other criticisms of Jansma's (1984) analysis of the Iron Age pottery from Hooidonske 

Akkers, include its reliance upon the qualitative diatom technique, which fails to 

distinguish between allochthonous and autochthonous specimens, and its disregard for 

other aspects of the pottery sherds, such as typology, petrography and chemistry, 

which may have been used to confirm or disprove the micropalaeontological 

classification. 

By considering local and regional geology in the analysis of microfosssil assemblages 

from ceramics, rather than the proximity of the archaeological site relative to the coast 

(e.g. Jansma 1984; Stilborg 1997) and analysing representative samples of locally 
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available sources of raw material for direct comparison, much more specific 

provenance interpretations can be made, as outlined by in Sections 2.3.2.3 to 2.3.2.5 

below. 

2.3.2.3 Biostratigraphic macroprovenance 

By comparing the microfossil assemblages of archaeological pottery in terms of the 

geological age or palaeoenvironment of the raw materials of ceramic manufacture, 

with the local and regional geology in the area of excavation, more reliable 

provenance interpretations can be sought. These can be classified in terms of their 

geographical precision, into macro, meso, and micro-scale provenance interpretations. 

Macro-scale provenance interpretations are those in which it is possible to assign a 

particular sample or group of pottery to a large area (e.g. east versus west 

Mediterranean). A mesoprovenance interpretation would indicate the region within 

this broad area from it is likely to have originated, e.g. north versus south, or one 

valley versus another, and if a specific geological formation or sedimentary deposit 

with an isolated geographical occurrence, can be identified as the likely source of the 

raw material from which the ceramics were manufactured, then this is a 

microprovenance interpretation. A good example in which the biostratigraphic 

interpretation of microfossils in archaeological ceramics has been used to determine 

macroprovenance, is the work of Riley et al. (n.d.), which is outlined below. 

Riley et al. (n.d.) restudied the foraminifera in the ten Late Helladic coarse-ware 

stirrup-jar thin sections from the House of the Wine Merchant described by Riley 

(1981), and were able to disprove the previous, tentative provenance interpretations 
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(Section 2.2). Riley's (1981) conclusion was that the stirrup-jars originated from an 

area with low-grade metamorphic rocks and microfossiliferous sediments, such as 

Crete. This proposition is in agreement with the chemical composition of some of the 

samples, as analysed by optical emmision spectrometry (OES), and the evidence of 

subsequent studies on coarse ware pottery (Catling et al. 1980; Day 1995a). 

Riley et al. (n.d.) were able to identify some of the foraminifera specimens in these 

stirrup jar thin sections to genus and species level, and made a biostratigraphic 

interpretation of the micro fossiliferous sediment used in the manufacture of the 

pottery. The presence of the stratigraphically significant planktonic foraminifer 

Globorotalia inflata (Section 6.6.2.2) in one of the samples clearly indicated that the 

raw material of this sherd was deposited during the latest Pliocene. The Neogene 

sedimentary succession of Crete has been well studied in terms of its microfossil 

assemblages and stratigraphy (Section 4.2), and nowhere on the island have Late 

Pliocene sediments, containing G. inflata been found. The stratigraphic extent of 

Neogene strata is also well known in many other areas of the Aegean and the eastern 

Mediterranean, and the distribution of latest Pliocene marine sediments, prompted 

Riley et al. (n.d.) to suggest that the stirrup jars could have originated from the 

Peleponessus, the Ionian Islands or Rhodes. This broad macroprovenance 

interpretation was of course based upon the assumption that all of the stirrup-jars 

samples were manufactured from the same raw materials, as the species G. inflata was 

only identified in one of the sherds. 

The presence of the same stratigraphic marker species, was also used in a similar 

manner by Riley et al. (n.d.) to indicate a local source for examples of a 
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microfossiliferous Late Bronze Age wheel-made decorated ware from Trebisacce, 

southern Italy. This pottery was originally suspected to be Cretan in origin, on the 

grounds of its high technological quality, fine decoration and clear Aegean motifs. 

However, the discovery of G. injlata in the dominantly planktonic assemblage of 

foraminifera, disproved this hypothesis. The occurrence of latest Pliocene sediments 

with a high planktonlbenthos ratio near to Tresbiacce on the other hand, indicated to 

Riley et al. (n.d.) that the pottery was local to the region. This contention is in 

agreement with the subsequent compositional analysis performed by Jones and 

Vagnetti (1989), who suggested that itinerant craftsmen were operating in southern 

Italy during the Late Bronze Age. 

Another study in which the foraminifera of Bronze Age Mediterranean ceramics have 

been used to indicate large scale provenance, is that of MacGillivray et al. (1988). 

Here, micropalaeontology was applied alongside petrography, AAS and INAA 

analysis to the problematic Dark Faced Incised Ware pyxides (DFIW), which were 

excavated at Knossos, Crete. The typological homogeneity of this pottery group was 

confirmed by all of the techniques listed above, and a Miocene or Pliocene age for the 

raw material was provided by the generic identification of foraminifera specimens in 

thin section. 

On the basis of this broad biostratigraphic interpretation, MacGillivray et al. (1988) 

suggested that the DFIW may have originated from Aegina, Melos, Thera or Crete. 

However, by the mineralogical comparison of the sherds with contemporary pottery as 

well as the depositional environment of the Neogene sediments in these areas, they 

concluded that the pyxides had a source in "central or eastern Crete where 
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MiocenelPliocene deposits occur" (MacGillivray et al. 1988, 93). This study is a good 

example of how micropalaeontology can be used in association with other techniques 

of characterisation in order to macroprovenance ceramics, and is re-investigated and 

compared to the micropalaeontological analysis of other Bronze Age ceramics from 

Knossos, in the present report (Section 11.3). 

2.3.2.4 Environmental and biostratigraphic mesoprovenance 

During the deglaciation of the Weichselian ice-sheet which covered much of north

west Europe during the last ice age, extensive marine and non-marine sediments were 

deposited in the 'Baltic Ice Lake' and the various stages of the Baltic Sea, which 

followed. These deposits occur extensively in Finland and can be divided into four 

units (Yoldia; Ancylus; Mastogloia; Littorina), on the basis of their diatom floras, 

which reflect the different environmental conditions in the successive stages. The 

diatom associations of these sediments have been documented by Alhonen (1971; 

1979), and a palaeoenvironmental diatom stratigraphic scheme has been established 

for this time period, based upon the occurrence of specific taxa. 

The Holocene clays of the Yoldia, Ancylus, Mastogloia and Littorina stages are one 

of the best available natural sources of raw material for the manufacture of ceramics in 

Finland, as evidenced by their use in the modem ceramics industry, and Neolithic 

pottery production (Alhonen and Vakevainen 1981; Alhonen and Matiskainen 1980; 

Matiskainen and Alhonen 1984). These authors analysed the diatom floras of ten 

'Early Comb Ceramic' type sherds from six archaeological sites in the Aland Islands, 
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an archipelago off the coast of Finland, and related these to the four-fold Holocene 

diatom stratigraphy in order to infer the macroprovenance of this pottery. Of the ten 

samples, eight contained diatoms. These were not abundant enough to be analysed in 

detail using a quantitative approach, but nevertheless indicated that "a freshwater clay 

was used as their raw material" (Matiskainen and Alhonen 1984, 150). 

By comparing the floras in the 10 Early Comb Ceramics, to the diatom assemblages 

which characterise the four stages of the Baltic Sea in Finland, Alhonen et al. (1980) 

noted that the samples could be correlated with the sediments of the Ancylus Lake 

period. Despite geological observations in the field (by Cleve-Euler 1935 and 

GIUckert 1978), no Ancylus stage sediments were found to occur on the Aland 

Islands. Matiskainen and Alhonen considered this to indicate that "ready-made pots or 

their raw materials were transported to the area from the Finnish mainland", where 

deposits of these clays occur (1984, 151). At the time of Early Comb ceramic 

occupation (6400-5800 BP), Aland consisted of but a few small islands and was 

inhabited by seal hunting populations, who, according to Alhonen and Matiskainen 

(1980, 47), "carried raw clay with them, so that part of the vessels may have been 

manufactured on the islands". 

Despite the qualitative nature of Alhonen and Vakevainen's (1980) diatom analysis, 

their contention that the Early Comb ceramics from Aland had a non-local source in 

an area where non-marine Ancylus clays occur, is "strengthened by the presence of 

similar ceramics with a similar diatom flora at Kokemaki" (Battarbee 1988, 639), a 

contemporary site on the mainland. This evidence, however conflicts with Alhonen 

and Matisakinen's (1980) opinion, that the seal hunters may have transported clay 
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with them. If the Neolithic inhabitants of Aland did indeed transport unfired Ancylus 

clay from the Finnish mainland, then this would conflict with the opinion of Alhonen 

et 01. (1980, 203), that "raw material for clay vessels most readily available in the 

environment of the Stone Age dwelling sites was taken from the clay in the surface 

sediments of the terrain". 

2.3.2.5 Environmental and biostratigraphic microprovenance 

The utilisation of locally available clay sources by ancient potters is suggested by 

Jansma's (1977) analysis of pottery sherds from the stratigraphically/chronologically 

differentiated Bell Beaker (BB) and Vlardingen (VL) 'cultures' at the Neolithic site of 

Vlardingen in the Netherlands. Here, he compared the diatoms in both groups of 

pottery to the stratigraphic succession of clay which was deposited at this site. The 

diatom assemblages of the VL sherds compared well to the brackish and freshwater 

diatom flora of a clay which filled a creek bed at Vlardingen, whereas the BB pottery 

which was dominated by allochthonous marine and brackish diatom taxa, could be 

related to a clay which was deposited just prior to the BB habitation of the site, during 

the flooding of the land by the sea. The "striking and completely convincing" 

(Battarbee 1988, 638) correlation between the sherds and the Holocene sedimentary 

succession at Vlardingen, agrees with the assumption of Alhonen et 01. (1980) which 

is outlined above, and represents "a classic example of what may be achieved by 

diatom analysis under favourable circumstances" (Jansma 1977,82). 
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A less convincing example in which micropalaeontological analysis has been used to 

microprovenance the raw materials utilised in pottery manufacture to a specific local 

clay source, is the work of Troja et af. (1996). These authors compared the calcareous 

microfossils in thin sections of their two groups of Neolithic to Bronze Age pottery 

from Milena, Sicily (Section 2.3.1.3) to the assemblages contained within "some 

samples of clay outcropping in the Milena area" (Troja et al. 1996, 124). The 

sediments in question were deposited in the post-orogenic basin of Caltanisseta and 

include the Lower-Middle Miocene Terravecchia formation and the Lower Pliocene 

Trubi formation, which are separated by Messinian gypsum, clays and limestones. 

Troja et al. did not indicate the geographic or stratigraphic location of these clay 

samples which they analysed, however, it appears that samples CL 1 and CL2 came 

from the Terravecchia formation and CL3 from the Messinian clays, as these were 

dated to the Serravalian, Tortonian and Messinian respectively, on the basis of their 

planktonic foraminiferal associations. 

The planktonic foraminifera and scanty calcareous nannofossil assemblages of Group 

1 were dated to the Serravalian stage of the Middle Miocene and it was suggested that 

they were "analogous to those found in the clays CL 1 and CL2" (Troja et al. 1996, 

126). The pottery of Group 2 on the other hand, contained much poorer microfossil 

assemblages which were considered to be Messinian in age, and were therefore 

assumed to be "manufactured from the Messinian clays (CL3) of the Milena area" 

(1996, 126). On the basis of these correlations, and the similarity between the major 

element analysis of the pottery and that of Middle and Upper Miocene clays, the 

authors then proposed that the Neolithic and Bronze Age pottery of Milena was 

manufactured from local raw materials. 



37 

There are several points of debate concerning this analysis. Firstly, the microfossils 

within the pottery of Group 1 are not analogous with those of clay samples CL 1 and 

CL2. They contain specimens of similar genera, but as the foramininfera were 

identified to a different taxonomic level in the two types of material, and no 

calcareous nannofossils were analysed from the clay samples, a comparison cannot be 

made. Furthermore, the Middle Miocene, Serravalian date which the authors assigned 

to this pottery based upon its calcareous nannofossil assemblage, is incorrect. The few 

long-ranging taxa which were identified in the floras of Group 1 are more consistent 

with the Late Miocene, early Tortonian Stage. Troja et al. 's (1996) biostratigraphic 

assignment of the pottery samples in their second Group 2 however, is even less 

substantiated, as the assemblages of this group contain only scanty foraminifera, 

identified to genus level, and one calcareous nannofossil taxon. No other evidence 

was presented in this work, except for their spurious geological assignment, with 

which to correlate the pottery of Group 2 with clay sample CL3. 

Secondly, as outlined in Section 2.3.1.3, the two micropalaeontological pottery groups 

were based upon different criteria, and the samples in Group 2 are likely to be poorly 

preserved examples of Group 1. This view is supported by the "homogeneous 

petrographic characteristics" of the pottery samples from Milena (Troja et aJ. 1996, 

118), the failure of their chemical analysis to distinguish between the two groups of 

pottery, and the observation that some of the samples were affected by post-burial 

alteration. 

Calcareous nannofossils have also been utilised by Burnett and Young (n.d.) in order 

to correlate pottery samples with specific geological units. These authors analysed the 
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calcareous nannofossils in a single sherd of pottery, from a Bronze Age boat which 

was excavated at Dover, England. Their biostratigraphic interpretation of the diverse 

calcareous nannofossil assemblage which was contained within this crudely-fired 

sample indicated that the vessel from which the sherd originated was constructed from 

Early Cretaceous, Albian Stage clays. 

By considering the Cretaceous geology of this part of the south coast of England, the 

authors identified the Gault Clay Formation as the most likely candidate for the source 

of this material. The Gault Clay Formation outcrops on the coast at Folkestone, near 

Dover, as well as further west at Eastbourne. Burnett and Young (n.d.) therefore 

decided that it was reasonable to infer that the pot was produced locally. However, the 

Gault Clay also occurs on the other side of the English channel, near Wissant, France. 

Thus, considering the context in which the sherd was found (i.e. a boat), it is not 

possible to determine on which side of the channel the raw material of the original 

vessel was constructed, without further evidence. 

Another group of microfossils which are very useful for biostratigraphy and have been 

used to relate pottery to specific geological units in England, are organic microfossils, 

or palynomorphs. Hunt (1996) treated ten oxidised and ten reduction-fired Iron Age 

sherds from North Furzton, near Milton Keynes, England, with hydrofluoric acid 

(Section 9.3) in order to liberate organic-walled microfossils. Seven of the reduced 

sherds contained recognisable palynomorphs, however, all of the oxidised samples 

were barren. The assemblages from the productive sherds were composed of pollen, 

spores, dinocysts, woody tissue, stem and leaf fragments, and amorphous organic 

matter. These were not consistent between the various samples, and on the basis of 
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some stratigraphically important taxa, Hunt (1996) suggested several possible sources 

for the raw materials which were utilised in the construction of this pottery. 

One of the reduction-fired pottery samples from North Furzton contained many long

ranging Mesozoic dinoflagellate taxa including Gleicheniidites senonicus which first 

appeared in the Middle Jurassic. The presence of this taxon, as well as the high 

abundance of organic matter in this sample indicated to Hunt (1996) that the raw 

material used in the manufacture of the original vessel was procured from the 

Callovian, Oxford Clay Formation which outcrops not far from the site of excavation. 

Stratigraphically significant dinoflagellate cysts, such as Parvocysta sp., 

Nannoceratopsis senex and Pareodinia ceratophora, which occurred in another 

sample are indicative of a Bajocian age source such as the Fuller's Earth beds, which 

occur in the Cotswold Hills, some distance from North Furzton. However, this sample 

also contained abundant Quaternary tree pollen of the genera Pinus and Tillia, as well 

as grass pollen and Spirogyra, a green algae which inhabits shallow stagnant pools 

and ditches. This Quaternary component of the sample suggested to Hunt (1996) that 

Recent alluvium may also have been used in the manufacture of the vessel from which 

the sherd originated. On the basis of these two conflicting lines of evidence, Hunt 

(1996) suggested that the clay in this sherd could be a mixture of an alluvial clay and 

the Jurassic Fullers Earth. This suggestion, which could have been investigated further 

by using thin section petrography, pertains to the technology of the ceramic 

manufacturing process, and represents another way in which the scientific 

investigation 
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of pottery, including the analysis of microfossils, can be used to retrieve 

archaeological information (Section 2.3.3). 

2.3.3 TechnoloiY 

As illustrated in the example above (Hunt 1996, Section 2.3.2.5) it is possible to 

interpret technological aspects of the manufacturing process used in the production of 

ancient pottery samples, through the analysis of their microfossil assemblages, as well 

as the relationship between the microfossils and the other components of the fabric in 

thin section (Riley 1981, Section 2.2). There have been several detailed 

micropalaeontological analyses which have attempted to infer aspects of ceramic 

technology, including clay mixing, tempering and firing. These are reviewed in 

Sections 2.3.3.1 to 2.3.3.3 below. 

2.3.3.1 Clay mixing 

In addition the work of Hunt (1996), the micropalaeontological analysis of ceramics 

has been used to interpret the mixing of one or more clays for the production of a 

single vessel or group of pottery, by Jansma (1977), Gibson (1983) and Matiskainen 

and Alhonen (1984). In these examples, the concurrence of diatoms with conflicting 

ecological tolerances (e.g. marine and freshwater) has been interpreted in terms of the 

admixture of two clays, from different depositional environments. 

Matiskainen and Alhonen (1984), in their analysis of Early Comb ceramics from 

Aland (Section 2.3.2.4), discovered that one of the sherds which they analysed 
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contained a broad range of diatom species, some of which were not indicative of the 

Ancylus Lake clays which were suspected to be the source of the raw material used in 

the other samples. The authors believed this to indicate that "lake mud was mixed 

with the raw clay either inadvertently or as tempering" (Matiskainen and Alhonen 

1984, 151). 

A mixed diatom flora, containing taxa which are indicative of different environmental 

conditions, can also occur in a single source of raw material and the pottery 

manufactured from it, as a result of the transportation and the reworking of specimens 

from one deposit into another. Diatom valves that have been re-sedimented in this 

way can be damaged, and it is therefore possible to distinguish between these 

allochthonous components of the diatom assemblage and the in situ species which are 

indicative of the original depositional environment, by counting the proportion of 

broken and complete valves from each taxon (Section 8.4.2). 

In Jansma's (1977) quantitative analysis of the diatom flora in a single PFB sherd 

from the Dutch Neolithic site of Hekelingen, a mixture of marine, brackish and 

freshwater taxa was recorded. By counting the numbers of broken and unbroken 

individuals of each ecological group, Jansma discovered comparable percentages of 

unbroken marine-brackish and brackish-fresh species, which he then interpreted as "a 

mixture of slightly more marine with slightly more brackish-fresh clays" (1977,83). 

The occurrence of conflicting microfossil assemblages need not be a consequence of 

re-sedimentation or clay mixing, but can be produced by the addition of temper, as 

speculated by Gibson (1983a). Evidence for the contamination of diatom assemblages 
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by the process of tempering was discovered by Jansma (1984; 1990), and is outlined 

below. 

2.3.3.2 Tempering of non-plastic inclusions 

In Jansma's (1984) analysis of nine Iron Age sherds from the site of Hooidonske 

Akkers, near Son en Breugel in the Netherlands, the samples belonging to his Group 

A, which were dominated by freshwater diatoms, contained small numbers of marine 

species. These species, which were clearly not deposited in situ in the original clay, 

were interpreted as evidence for the "addition of small amounts of grit, derived from 

sherds tempered with ground sea shells" (Jansma 1984, 536). In making a two-fold 

technological inference, Jansma implied that the Iron Age sherds which he analysed 

from Son en Bruegel were tempered with ground pottery (i.e. grog), and that in the 

pottery which formed the grog, ground sea shells which contained diatoms, were used 

as temper. 

Although this situation is theoretically possible, Jansma's (1984) reasons for inferring 

such a scenario were unclear, as with his interpretation of shell temper in one sherd of 

Bell Beaker pottery from the former island of Schokland, in the Netherlands (Jansma 

1990). There did not appear to be any other evidence for the occurrence of the grog or 

shell temper in either study, and no attention was paid to the proportions of broken 

and unbroken valves of each ecological group of diatoms in either study. In his latter 

example, Jansma (1982) inferred the provenance of the shell temper in the BBC (Bell 

Beaker Culture) pottery which he analysed, without confirming its presence by hand 

specimen or petrographic analysis. However, the latter two techniques are essential in 
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the determination of ceramic technology, and must be utilised in combination with 

micropalaeontological analysis in order to establish the existence and nature of clay 

mixing or tempering. 

2.3.3.3 Firing 

One of the most important technological aspects of ceramic manufacture is firing. 

Firing temperature and atmosphere are the two most widely investigated properties of 

this process, and can be estimated by the analysis of numerous physical and chemical 

characteristics of archaeological ceramics. Unfortunately, microfossils in ceramics do 

not appear to be well-suited to the determination of ancient firing technology as they 

are commonly degraded and even destroyed upon heating. However, some authors 

have attempted to utilise various groups of microfossils in this way, the most 

important of which is the work of Hunt (1996) on Iron Age pottery from Milton 

Keynes, England (Section 2.3.2.5). 

Hunt made the significant discovery that, out of ten oxidised and ten reduction-fired 

ceramics, only the latter contained any organic matter. He did interpret this outcome, 

however, its true importance in terms of the differential effect of the two firing 

atmospheres on organic microfossils in ceramics has been elucidated in the present 

report (Section 9.4.8). As well as utilising the palynological associations which were 

isolated from the reduction-fired sherds as a means of provenancing this pottery 

(Section 2.3.2.5), in this study Hunt also attempted to determine the maximum 

temperature at which they were originally fired. 
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Organic microfossils undergo a well-documented colour change upon heating in 

geological contexts (Section 9.4.2). This process, which usually takes place in 

sedimentary rocks which are deeply buried, has been used by geologists to 

approximate the maximum temperature to which a organic-rich rocks have been 

subjected. In order to do this, it is necessary to compare the colour of the thermally 

altered palynomorphs with experimental standards, e.g. Staplin's (1969) 'Thermal 

Maturity Index'. Hunt (1996), compared the colour of the reduction-fired 

palynomorphs which he isolated from his Iron Age sherds with this scheme and 

concluded that the ceramics had been fired at a consistent temperature of around 

400°C (equivalent to 2+ and 3 on Staplin's scale). 

Although Hunt's estimations of firing temperatures from the thermal alteration of 

organic matter were pioneering, the figure of 400°C which he suggested, is likely to 

be an underestimation. This is evidenced by the much slower rate of thermal alteration 

of palynomorphs in the absence of oxygen, which has been revealed in the present 

report (Section 9.4.9.2). At 400 °C very little vitrification of the clay minerals in the 

ceramic will have taken place, and the pottery will therefore have been very poorly 

fired. 

Several authors have estimated or investigated the firing temperature at which diatom 

frustules are destroyed in ceramics (Jansma 1977; 1981; Hakansson and Hulthen 

1986; Gibson 1983b, Section 8.3). The range of fIring temperatures which have been 

ascertained indicate that the process which leads to the destruction of diatoms in 

ceramics is very complex, and may be related to several factors other than 

temperature. Despite the attention which this process has received, the nature of 
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diatom assemblages in archaeological ceramics have been used only rarely to infer the 

temperature or degree of firing. 

Upon discovering that several samples of Neolithic pottery from the Dutch sites of 

Drente, Utrecht and Noord-Brabant did not contain diatoms, Jansma (1977) suggested 

that the vessels from which these sherds had originated, were manufactured from the 

non-diatomaceous local boulder clay, or freshwater clays containing very few diatoms 

which were then destroyed upon firing. This latter interpretation appears to have been 

purely hypothetical, as Jansma (1977) did not analyse any representative local 

sediment samples, and presented no evidence for the use of diatomaceous clays at 

these sites. In the same study, Jansma (1977, 77) established that "the silica of which 

diatom thecae are formed cannot endure temperatures above about 1000 °C". 

Therefore, his suggestion that the Neolithic sherds from Drente, Utrecht and Noord

Brabant may have once contained diatoms, which were removed through firing, 

implies that this pottery was fired to very high temperatures. This, if correct, conflicts 

with Jansma's own contention that "in most cases, the prehistoric pottery of our 

regions was baked at rather lower temperatures" (1977, 77). 

Another group of siliceous microfossils which have been used to infer the temperature 

of firing in ceramics, are sponge spicules. These thin, rod-shaped structures are a 

common component of archaeological ceramics from some parts of the world (Linne 

1957, Bolivia; Keech McIntosh and Macdonald 1989, Mali) and may be destroyed 

due to the physical strain caused by firing over 800°C (Brissaud and Houdayer 1986). 

The latter authors have used this to suggest that the sponge-tempered pottery which 

they analysed from the river Niger, was fired to a maximum temperature not 
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exceeding 800°C, and Linne proposed that his archaeological ceramics were "not 

exposed to a strong heat" (1957, 156) and may therefore have been fired in an open 

hearth. 

In what was the earliest detailed analysis of microfossils in archaeological ceramics, 

Davis (1951) isolated and identified several shell fragments and a one foraminifer 

(Nubeculinella sp.) from a single Iron Age sherd excavated at the site of Chinnor in 

the Chiltems Hills, England. He speculated that the vessel from which this sherd 

originated was "only partly fired, for there are no signs of calcination or decay in the 

fossil-shell fragments" (1951, 148). This simple interpretation of the degree of firing 

based upon the preservation of calcareous micro and macrofossil shell fragments 

which are present in the pottery, was significant in that it is one of the rare attempts in 

which calcareous microfossils have been used to infer firing technology. 

2.3.4 Clay choice 

The nature of microfossil assemblages in archaeological ceramics, have been utilised, 

infrequently, to infer the actual clay choices which potters made in the past. This 

subject has been approached from three perspectives, which are, the preference of one 

clay over another, the utilisation of several clay sources by sedentary potters, and 

changes in clay choice which take place over time (Sections 2.3.4.1 to 2.3.4.3). These 

types of interpretations represent a progression from the identification of potential 

clay sources and the technology utilised in the manufacture of archaeological pottery, 

towards an understanding of the ecology of ceramic production (Matson 1965) and the 

adaptation of populations to changing resources (Arnold 1985). 
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2.3.4.1 Preference for one clay source over another 

In all of their analyses of Finnish Sub-Neolithic pottery, Alhonen et al. (1980), 

Alhonen and Matiskainen (1980) and Matiskainen and Alhonen (1984) discovered, 

through the analysis of diatom floras, that clays of the Ancylus, and to a lesser extent, 

the Y olida Stage of the Baltic Sea, were used as a raw material. In comparison, the 

marine diatom floras of the Littorina Sea stage were not present in any of the sherds 

which were analysed. Alhonen et al. speculated that these clays were not utilised by 

Finnish Neolithic potters because of either the "salinity or humic consistency of the 

clay" (1980, 204), which apparently made it unsuitable for the manufacture of 

ceramics. 

In the later versions of their Finnish pottery analysis Alhonen and Matiskainen (1980) 

and Matiskainen and Alhonen (1984) presented the data of Okko (1957) and Romu 

(1977; 1978) on various parameters of the Littorina, Ancylus and Yoldia Stage clays. 

This confirmed the high salt and humus content of the Littorina clays, and led 

Alhonen and Matiskainen (1980) to conclude that the sediments from this marine 

stage of the Baltic Sea were avoided in antiquity because of these characteristics. 

In support of this interpretation, Alhonen and Matiskainen (1980) and Matiskainen 

and Alhonen (1984) noted that the Littorina stage clays from Finland were not used in 

the modern clay and brick industry of this region. They then however, made the 

ambitious proposition that "the motives of selecting the source of material were the 

same in prehistoric times as they are in modern ceramic industry" (Alhonen and 

Matiskainen 1980, 49). 
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Although, the correlation between the selective use of the sediments from the various 

stages of the Baltic Sea by Sub-Neolithic potters, and the different concentrations of 

salt and organic matter in these clays is significant, and ethnographic evidence has 

indicated that highly saline clay sources are avoided by modern potters (Matson 1965, 

210), Alhonen and Matiskainen's (1980) interpretation that the motives involved in 

this preference for one clay over another were purely compositional, was unwise. 

Other evaluations of the clay choices made by ancient potters (e.g. Whitbread 1995), 

as well as ethnographic studies of ceramic manufacture (e.g. Day 1989), have 

indicated that the most suitable types of raw materials are not always used for the 

production of pottery. 

The clay choices made by ancient potters may also have been strongly influenced by 

tradition, the ownership of specific deposits of raw materials and even taboo (Stilborg 

1997). With this in mind, it is unlikely that the motives for selecting clays for the 

manufacture of Sub-Neolithic pottery were the same as those for modern ceramic 

production in Finland, as suggested by Alhonen and Matikainen (1980). The fact that 

Littorina stage clays were not utilised in either processes is not likely to be a 

coincidence, but a less ambitious interpretation is preferable, such as Matiskainen and 

Alhonen's view that "the raw clays used in prehistoric pottery seem to match the 

quality requirements of modern clay and brick technology quite well" (1984, 156). 

Jansma (1981) also interpreted aspects of clay choice, in his diatom analysis of pottery 

sherds from a kiln dated to the 12th century AD in the town of Haarlem, near 

Amsterdam, the Netherlands. He was able to correlate the raw material of the samples 

with one of "two sites with easily extractable clay open for exploitation" (Jansma 
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1981, 159), on the basis of the ecological tolerances of their dominant diatom taxa. 

Jansma's interpretation indicated that the potters working at this kiln site procured 

their clays from the site of Velserbroek Polder (5 miles from Haarlem), rather than 

from the closer source at Bakenes. By way of an explanation, he noted that the clay 

from Bakenes was rich in organic matter and was therefore "more suitable for the 

products of the kiln" (1981, 159). 

Although the diatom composition of the sherds which were analysed by Jansma 

(1981) was more consistent with that of the clay samples which he collected from 

Velserbroek Polder, than the assemblage which was recorded in the sediments of 

Bakenes, it may not be necessarily correct to infer that the raw material utilised in the 

manufacture of these ceramics was procured from this site, as other sources of clay 

may have been available in this area in the past. 

Diachronic variation is a very important factor which must be considered in the 

compositional analysis of ceramics (Bishop et al. 1982). This is particularly true when 

considering the clay sources which were available for the manufacture of pottery, as 

the existence and nature of suitable raw materials can change considerably over time 

(Jones 1986). The utilisation of different clay sources over time has been addressed in 

several analyses of microfossils from archaeological pottery, and is discussed in 

Section 2.3.4.3 below. 

2.3.4.2 The utilisation of several clay sources by sedentary potters 

The utilisation of different, microfossilifeous clay sources by sedentary potters, has 

been suggested by Stilborg (1997) in his interdiscipliniary study of Iron Age pottery 
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from Denmark. Using the micropalaeontological analysis of Hannelore H8.kansson, 

Stilborg (1997) defined two micro fossiliferous groups of pottery from the Gudme

Lundeborg region. These were the 'D-ware', which contained diatom frustules, and 

the 'F-ware' which was characterised by the presence of foraminifera. Both types of 

microfossilifeous fabric groups occurred at various Iron Age sites in this region, 

however Stilborg (1997) considered the 'F-ware' pottery to have been produced at the 

coastal site of Lundeborg, due to the occurrence here of clays with foraminifera. He 

also linked the 'D-ware' to the site of Brudager cemetery, where the oldest examples 

of this fabric group were found. 

The discovery at the nearby Brudager settlement of a single sherd which was 

composed of a mixture of "silty fossil bearing clay and a silty clay containing 

substantial amounts of diatoms" (Stilborg 1997,224), led this author to infer that the 

same potters had produced both the D-ware and the F-ware. These potters were 

suspected to be from the inland site of Brudager, and appeared to have produced both 

D-ware and F-ware vessels "both at home and at Lundeborg trading site" (Stilborg 

1997, 248). The utilisation of different clay sources by sedentary potters for the 

production of the same type of ceramics has also been documented by other workers 

(e.g. Matson 1965). 

2.3.4.3 Change in the choice of raw materials over time 

In Jansma's (1977; 1981) diatom analysis of Neolithic BB and VL sherds from the 

site of Vlardingen, the Netherlands, the floras within these pottery samples could be 

related to two contemporaneous clays, deposited near to the site during each phase of 
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habitation or 'culture' (Section 2.3.2.5). This differential utilisation of local clay 

sources by succeeding 'cultures', illustrates very well the importance of time in 

assessing the raw materials which were available to the potter. Although different clay 

sources were procured at different times for the production of ceramics at Vlardingen, 

it appears that that "raw material for clay vessels most readily available in the 

environment" (Alhonen et al. 1980, 203), of this site were used. A different situation, 

in which the potters of succeeding populations or 'cultures' utilised the same clay 

sources, was highlighted by Jansma's (1990) diatom analysis of pottery from the 

former island of Schokland. Nevertheless, as at Vlardingen, the occupants' motives 

for selecting raw material may have been similar at different periods during its 

archaeological history. 

The utilisation of different sources of clay through time at the same archaeological 

site, has also been interpreted by Matiskainen and Alhonen (1984). These authors 

claimed to have used diatom analysis to confirm the stylistic groupings of some 

stratigraphically differentiated pottery sherds from Kymi, Finland (Section 2.3.1.2). 

From this they inferred that "different sources of clay were used at different times 

throughout the period of occupation of the site, and that in accordance with stylistic 

tradition, a certain sediment was chosen as the source of the raw clay" (Matiskainen 

and Alhonen 1984, 153). 

Alhonen et al.'s (1980) original comparison between the diatom assemblages of the 

ten sherds which were analysed, was problematic (see Section 2.3.1.2 for a review), 

and the subsequent inference regarding the clay choice at Kymi through time, which 

they then based upon it is even less substantiated. Matiskainen and Alhonen (1984) 
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did not analyse any local clay samples at Kymi, or relate the different assemblages 

which they used to confirm the stylistic groupings to the diatom stratigraphy of the 

Baltic Sea (Section 2.3.2.4), which they discussed at length. In this case, none of the 

'different sources of clay' were actually identified, and the pottery may not have been 

local. In addition, the AAS analysis of the same ten pottery sherds, failed to confirm 

the stylistic/diatom classification and was not interpreted independently. Considering 

the lack of evidence for the utilisation or different raw materials during different 

periods at Kymi in the two versions of this study, as well as the absence of potential 

local sources, Matiskainen and Alhonen's (1984) statement on the relationship 

between clay choice and stylistic tradition is ambitious. 

A more substantiated example in which microfossils have been used to indicate 

changes in clay choice over time, is the work of Riley (1983) and Riley et al. (n.d.) 

from Knossos, Crete. By analysing thin sections of Knossian fine-ware sherds from 

different stages of the Late Minoan period, these authors were able to identify a 

change in the composition of the pottery and supposedly the raw material from which 

they were constructed, occurring between LM IlIA and LM I1IB. Riley noted that the 

"key change is the presence of sponge spicules, which occur regularly and only in this 

period", which he interpreted as either a change in the source of the raw material used 

for the manufacture of Knossian fine-wares "within the general region or a new 

horizon within the same clay bed" (1983, 285). 

This evidence appeared to indicate that the pottery of LM I1IB was produced with 

different raw materials than that in LM IliA, though Riley's (1983) conclusion as to 

the context of this change was vague. However, by re-assessing the micro and 
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macrofossils in these thin sections, Riley et al. (n.d.) were able to qualify the change 

between LM IlIA and LM I1IB, in terms of the geological date of the raw materials. 

Using the presence of the stratigraphically significant foraminifer Globorotalia 

margaritae in some of the LM IliA fine-ware thin sections from Knossos, they 

assigned the raw material of these samples to the Early Pliocene Globorotalia 

margaritae Zone (Section 6.6.2.2), the sediments of which occur extensively in the 

Knossos region. In addition, Riley et al. (n.d.) were able to relate the raw materials of 

some samples to specific, well-studied outcrops of Early Pliocene sediments on the 

basis of certain associations of benthic foraminifera, such as Nodosaria spp., Bolivina 

spathulata and Uvigerina cylindrica. 

The LM I1IB thin sections, however, appeared to contain different associations of 

foraminifera, with, for example, a greater number of benthic foraminifera and 

radiolaria, in addition to the high abundance of sponge spicules which was noted by 

Riley (1983). Riley et al. (n.d.) considered this to indicate that the source of the raw 

materials in these samples came from middle Pliocene sediments. Several occurrences 

of laminated, sediments of this age occur in the Knossos region, which clearly 

indicated to Riley et al. (n.d.), that a stratigraphic shift in the site procurement of the 

raw materials used for the production of fine wares at Knossos took place between 

LM IliA and LM I1IB. The authors did not specify whether they considered this shift 

to represent a change in the geographical site of procurement, or in terms of the level 

from which raw materials were obtained within the same outcrop. Both situations may 

have been possible, as the authors indicated that Lower to middle Pliocene sediments 

occur in the Knossos region at various localities, as well as within a single outcrop 

(e.g. at Finikia). 
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2.4 Discussion 

As illustrated in Section 2.3 above, there have been several detailed, published and 

unpublished, studies on various groups of microfossils in Neolithic to Medieval 

pottery from different areas of the world since the 1960' s, by micropalaeontologists, 

often in collaboration with archaeological scientists or archaeologists. These analyses 

have used, with varying success, the presence/absence of microfossils, the overall 

composition of the microfossil assemblages, as determined by the generic or specific 

identification of specimens in thin sections or digested residues of archaeological 

pottery sherds, and the geological age or palaeoenvironmental interpretation of these 

assemblages, to describe, classify and provenance ceramics and investigate aspects of 

ceramic technology and clay choice. Many of these topics have been addressed by 

other, more conventional techniques of ceramic analysis, however several of the 

examples which have been outlined in the above discussion demonstrate the way in 

which microfossils can be used to further such interpretations. 

The main criticisms of these previous micropalaeontological analyses of 

archaeological ceramics concern their lack of consideration of the other characteristics 

of the pottery being analysed, such as archaeological context, typology, petrography 

and chemistry, a poor understanding of the nature of ceramics and how they differ 

from sediment samples, a lack of raw material prospection or the consideration of 

published geological reports in provenance interpretations, and a highly generalised 

view of the behaviour of ancient potters. 
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3 Processes affecting microfossil assemblal:es in arcbaeolQ.:jcal ceramics 

3.1 Introduction 

In some of the analyses outlined in the previous chapter, it was suggested that the 

original microfossil assemblages of the raw materials which were utilised for the 

manufacture of ceramics, may have been altered during the processes of clay 

preparation (Jansma 1977; 1982; 1990; Gibson 1983b; Matiskainen and Alhonen 

1984; Battarbee 1988; Stilborg 1997) and firing (Jansma 1977; Gibson 1983b; Hunt 

1996; Brissaud and Houdayer 1986). In addition, the microfossil assemblages present 

in archaeological ceramics may have been further affected after use, in the post

depositional environment (Troja et al. 1996), or as a result of sample preparation for 

scientific analysis (Gibson 1983b; Hakansson and Hulthen 1986; Battarbee 1988). 

These examples represent rare attempts at understanding the nature of microfossil 

assemblages in archaeological ceramics, in terms of a few of the potential processes 

and sources of bias which can have a detrimental affect on their abundance, state of 

preservation, and the level of information which can be sought through their analysis. 

There is a great deal of uncertainty surrounding the exact nature of the original raw 

materials utilised in the manufacture of ceramics (Riley 1984), the various stages 

involved in its transformation into a finished artefact, the conditions to which 

archaeological ceramics were subjected during use, as well as those acting upon it in 

the burial environment. Nevertheless, through the petrographic study of ceramic thin 

sections and other techniques of analysis, comparison with ethnographic examples, 

and experimental reconstruction, an insight can be gained into technological aspects 
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of the pottery production process (Whitbread 1995), as well as the nature of post

firing transformations. It is within this framework that the following chapter 

anticipates the possible effects of a variety of processes, from clay procurement to 

artefact curation and sample preparation, on the nature of the microfossil assemblages 

in archaeological ceramics and the interpretations which can be based upon them 

(Figure 3.1). 

3.2 The original microfossil assemblage 

Potters utilise many types of raw materials, some of which may contain microfossils. 

The microfossil assemblages in such raw materials are likely to vary considerably in 

terms of abundance, diversity and preservation. Therefore, the nature of the 

microfossil assemblages even in the untreated raw materials is varied and of course, 

has a direct affect on the state of those which can be observed in samples of 

archaeological pottery. 

Two secondary sources of raw material which may be utilised in the manufacture of 

ceramics are river clays (Maggetti 1982; Day 1991) and weathered slope deposits. In 

an area such as Crete, where fluvial systems erode thick deposits of marine strata, the 

sediments which are deposited within their bed and banks, can contain reworked 

microfossils from many sources (Ayyad et. al. 1991; Hunt, 1996; Quinn et al. 1998, 

Section 11.6 of this report). Loose secondary deposits which accumulate at the base of 

outcrops from the weathering of micro fossiliferous sediments also contain mixed 

microfossil assemblages, which vary according to the nature and extent of the 

sediments above. When interpreting the microfossil assemblages of archaeological 
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Figure 3.1. Possible sources of contamination and alteration of microfossil assemblages in 

archaeological ceramic: I. Procurement, 2. Contamination during preparation, 3. Intentional 

clay mixing, 4. Alteration of assemblage during firing, S. Alteration as a result of usage, 6. 

Alteration and contamination during burial, 7. Alteration and contamination as a result of poor 

ample curation and thin ection or smear slide preparation. 
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ceramics constructed from these secondary sources of raw material, it may be difficult 

to apply the precise biostratigraphic and palaeoenvironmental methods of determining 

provenance which are outlined in Sections 5.9.2, 6.7.4, 7.7.4, 8.5.3 and 9.5.2. 

However, if potential deposits of secondary sediments can be sampled and analysed 

for direct comparison, then it may be possible to identify those clay sources which 

were likely to have been used in antiquity, as demonstrated in Section 11.6. 

In situ marine sediments contain variations in the abundance, diversity, preservation 

and reworking of microfossils, both vertically and laterally. Therefore, it is possible 

that two vessels, constructed from raw materials, obtained from the same outcrop but 

at different levels, may contain markedly different microfossil assemblages (Riley 

1983; Riley et al. n.d; Stilborg 1997). 

3.3 Contamination during raw material procurement 

The nature of the original microfossil assemblages in the raw materials which were 

used for the manufacture of ceramics, depends not only upon their origin, but also 

how they were obtained. It is in this initial stage of the pottery production sequence 

that contamination of the microfossil assemblage can first take place. The tools with 

which the raw materials are obtained can be a potential source of contamination, as 

they may contain material from other deposits with different microfossil assemblages, 

which can then be transferred during the process of digging or transporting the raw 

materials. Of course, as large quantities of raw materials are procured for the 

production of pottery, the effect of this form of contamination is likely to be small. 
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Another form of contamination which may occur during the process of procuring 

sediments for the production of pottery, is the unintentional incorporation of 

neighbouring material. The action of extracting clays from an outcrop is likely to 

loosen the sediment/rock above, which they were supporting, and some of this may 

become incorporated within the excavated material. If the source of the raw material 

is an outcrop of micro fossiliferous marine sediments, then this form of accidental 

contamination is likely to result in a mixed microfossil assemblage, containing taxa 

which are indicative of different ages or environments. 

3.4 Contamination and damage during clay storage and preparation 

During the storage and preparation of raw materials for the production of pottery, 

there are various scenarios in which the alteration and contamination of their 

microfossil assemblages may take place. The potters workshop can contain raw 

materials from more than one source (Blitzer 1984, 146), which may have different 

microfossil assemblages, and it is therefore likely to be an area of high risk for 

contamination. 

During the preparation of micro fossiliferous raw materials for the manufacture of 

ceramics, the actions of sun-drying, crushing, sieving, levigation, foot trampling and 

working clay can potentially affect the nature of their microfossil assemblages. 

Foreign material may be introduced from the tools which are used, the surface upon 

which the operation is performed (often the ground), and even the air within or 

outside the potters workshop (in the case of very small or light groups of microfossils 

such as pollen, spores and calcareous nannofossils). In their interpretation of 
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agricultural information from the identification of organic microfossils in sun-dried 

Egyptian mudbricks, Ayyad et al. (1991) indicated that the Nile silt used in their 

manufacture, may have received pollen and spores during various stages of its 

preparation. 

Whilst the quantity of foreign material which may be introduced during clay 

preparation is likely to be small, it may however be significant, especially if the 

original raw material did not contain microfossils to begin with (Battarbee 1988). 

Crushing and working micro fossiliferous raw material for the manufacture of 

ceramlCS may also damage the microfossil specimens within (Gibson 1983b; 

Battarbee 1988; Hakansson 1997). This is demonstrated experimentally in Section 

5.4.6.1 of the present report, and may affect the accuracy with which the assemblage 

composition of the finished artefact can be determined (Gibson 1983a). 

In the ethnographic literature there are some accounts of the systematic 'ageing' or 

'souring' of clays. This involves their storage for some time, during which the natural 

process of bacterial action helps to improve the workability of the material (Glick 

1936; Leach 1976). Rice (1987, 119) states that the process of ageing may be assisted 

by "adding small amounts of acidic substances", a practice which would surely result 

in the degradation of any calcareous microfossils within the clay. 

3.5 Intentional clay mixing and tempering 

Ethnographic study has indicated that it is common for modem potters to mix two or 

more types of raw material in order to produce a paste which has the specific 

properties that they require (Arnold 1971; Voyatzoglou 1974; Blitzer 1984), and 
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numerous detailed analyses of ceramics have revealed that such practices were 

widespread in antiquity (Riley 1981; Jones 1984, 872; Day 1989). Intentional clay 

mixing and tempering poses major complications in analytical studies of ceramics in 

terms of "clay source determination, technology and, to a lesser degree, fabric 

characterisation" (Whitbread 1995, 375). Similarly, the mixing of two or more 

microfossiliferous clays (Jansma 1977; Matiskainen and Alhonen 1984; Stilborg 

1997; Hunt 1996) as well as the contamination of microfossil assemblages by the 

addition of temper (Jansma 1982; 1990; Gibson 1983b; Battarbee 1988) can produce a 

confusing assemblage. This may be difficult to discriminate from other sources of 

contamination or even reworking in the original sample. Thin section petrography is 

very important for the determination of intentional micro fossiliferous clay mixing 

(Stilborg 1997) or the addition of microfossiliferous temper (Whitbread 1995, 349), as 

is a consideration of any plant macrofossils occurring in palynological residues from 

ceramics (Hunt 1996; Ayyad et al. 1991). 

More than one type of raw material can be used in the manufacture of a single vessel 

for the construction of its various parts, e.g. one clay may be used for the body of the 

vessel and another for the handle (Riley 1982; Wilson and Day 1994). Where 

complete vessels are available for analysis, it is necessary to be aware of this scenario, 

and design an appropriate sampling strategy (Section 5.3.2.2). 

One less obvious way in which microfossils may be introduced into the raw materials 

used for the manufacture of ceramics, is by the intentional addition of sea water 

during clay preparation. It is common for potters to mix dry powdered clay with a 

suitable quantity of water in order to produce a paste of the desired consistency (Rye 
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1981, 36), and where pottery was produced close to the coast, sea water may have 

been used for this purpose. Several extant groups of planktonic microfossils occur in 

coastal and estuarine waters, as well as lakes, and small numbers of these may well be 

incorporated into pottery in this way. It may be possible, in some cases, to identify 

this potential source of contamination by the biostratigraphic interpretation of 

microfossil assemblages. However, the use of marine and lake water in the 

manufacture of pottery may pose serious problems for palaeoenvironmental analysis 

of extant quaternary diatoms. This scenario may explain the occurrence of small 

numbers of marine diatom species in the dominantly fresh water assemblages, which 

were noted by Jansma (1982; 1990, discussion in Section 2.3.3.2). 

3.6 Alteration of the microfossil assemblage during firing 

The behaviour of calcite during the firing of ceramics has been studied in some detail, 

and a range of estimates have been proposed for the temperature at which it undergoes 

the chemical transformation outlined below. 

600-900°C i 
CaC03 ) CaO + CO2 

The different critical temperatures which have been recorded by various authors 

(ranging from 650°C to as high as 900 °C), indicate that the threshold at which calcite 

undergoes this reaction depends upon other factors in addition to temperature (Rice 

1987, 98). The temperature gradient, the duration and atmosphere of firing, as well as 
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the nature of the clay and calcite itself, are also likely to influence the behaviour of 

calcareous matter in ceramics during firing. 

Several groups of microfossils are composed of calcite, and it is therefore important to 

consider how these are affected by the process of firing. In this report, experiments 

have been conducted on the behaviour during the firing of ceramics of calcareous 

nannofossils (Section 5.4) and palynomorphs (Section 9.4) and a comparison has been 

made between SEM estimates of firing temperatures and the nature of foraminifera 

and ostracods in archaeological ceramics (Section 6.4). In addition, the current state of 

knowledge regarding the behaviour of diatoms during firing has also been reviewed 

(Section 8.3). 

The details of these investigations and their implications are discussed in full in the 

sections referred to, however it is worth noting here that, in general, the process of 

firing degrades the quality of micropalaeontological information contained within 

archaeological ceramics. It is therefore, one of the more crucial factors in the chain of 

events which transform the original microfossil assemblage of the raw material into 

what is seen under the microscope. 

3.7 Alteration of the microfossil assemblage as a result of usage 

After firing, the microfossil assemblages in archaeological ceramics may have been 

further degraded during usage. Ceramic vessels and other objects had a very large 

range of applications in ancient societies (Georgiou 1986), some of which may have 

altered the composition of their raw materials. Two common types of utilitarian 
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ceramic vessels which may have be altered as a result of their intended use, are 

cooking and storage vessels. 

3.7.1 CookiD~ wares 

In antiquity, certain vessels which were used for the preparation of foodstuffs, such as 

cooking pots and frying pans may have been subjected to heat over a fire (Riley 

1984). If these types of vessels were manufactured from microfossiliferous raw 

materials, then such treatment may have led to the alteration or even the destruction of 

their microfossil assemblages, depending upon the temperature and duration of 

heating. When a pot is heated from below, the outside becomes much hotter than the 

inside (Arnold 1985, 23), and consequently, the microfossil assemblages in various 

parts of the vessel may be affected by varying degrees. This phenomenon has clear 

implications for the sampling of microfossiliferous ceramics. The effect of heating 

nannofossiliferous ceramics, as well as the possible differential alteration of 

calcareous nannofossil assemblages in cooking vessels during usage, are discussed in 

Section 5.5. 

3 .7.2 Stora~e wares 

The degree to which the microfossil assemblages in ceramics mayor may not be 

altered in storage wares during usage, is likely to depend upon the commodities which 

they contained. Weakly acidic substances such as vinegar and wine (Callender 1965; 

Riley 1981) are important in this respect, and oil-based products (Jones 1984, 842; 
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Tournavitou 1995, 79) may also have an effect. Investigations into the effect of these 

types of commodities on calcareous nannofossil assemblages in ceramics are 

presented in Section 5.5. 

3.8 Alteration and contamination in the burial environment 

After use, in the burial environment, there are numerous soil processes that may alter 

the composition ceramics (Jones 1984; Schiffer 1987), including the nature of any 

microfossils contained within (Troja et aZ. 1996). The post-depositional alteration of 

ceramics can affect their colour (Rice 1987, 345), trace element content (Franklin and 

Vitali 1985), thermoluminescence (Freestone et aZ. 1985), as well as leeching and 

depositing major elements within artefacts. Sodium, barium and calcium are 

particularly susceptible to dissolution and re-deposition by soil water, "especially 

when the latter two are present as carbonates" (Bieber et aZ. 1976, 73). Freeth (1967) 

points out that the calcite in fired pottery is converted to calcium hydroxide, which is 

highly soluble, and can be selectively leeched from ceramics after burial (e.g. Peacock 

1968), and re-deposited elsewhere (e.g. Prag et aZ. 1974; Middleton and Woods 1990). 

A process which may inhibit the post-depositional alteration of ceramics is the 

development of 'diffusion barriers' (Franklin and Vitali 1985). In order to establish 

the extent to which the trace element composition of ancient ceramics may be altered 

during burial, Franklin and Vitali conducted experiments into the effect of a broad 

spectrum of simulated soil solutions on fired briquettes, and discovered that "after an 

initial dissolution ... from the briquette surfaces, reaction and/or alteration products 

provide diffusion barriers that protect the briquette from further chemical attack" 
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(1985, 10). However the analysis of Freestone et. al. (1985, 161) on the behaviour of 

phosphates in buried ceramics did not agree with the existence of Franklin and 

Vitali's (1985) 'diffusion barriers', and these authors commented that the subject of 

the post-depositional alteration of ceramics during burial is "confused and 

controversial". Whether diffusion barriers develop in buried ceramics or not, is a 

subject of speculation, however it is likely that soil water does alter the nature of 

ceramics in many ways depending upon its temperature, chemistry and pH as well as 

the mineralogical composition of the ceramics in question and their degree of 

vitrification (Freestone et al. 1985). 

These post-depositional processes are likely to have affected the nature of any 

calcareous microfossils in some archaeological ceramics, and under certain 

circumstances may completely destroy assemblages. The partial dissolution or 

overgrowth of calcareous microfossil specimens makes their identification more 

difficult and will therefore hinder the interpretation of the geological age or 

palaeoenvironment of the raw materials used in ceramic manufacture, as well as any 

provenance interpretations based upon this (see interpretation of Troja et al. 1996, 

Section 2.3.1.3). Siliceous microfossils however, are resistant to chemical weathering 

(Stilborg 1997), and organic microfossils are virtually indestructible except by 

oxidation. 

Another way in which the nature of microfossil assemblages in ceramics can be biased 

during burial, is by contamination from the surrounding sediment. When excavated, 

archaeological pottery can contain burial deposits of their surrounding material (Rye 

1981), and the incomplete removal of this material from the surfaces of a vessel or 
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sherd may leave a contaminant residue on the artefact, if the sediment in which it was 

buried contains reworked microfossils or is a relatively recent microfossiliferous 

deposit (a possible scenario at coastal sites). This subject has been addressed by 

Jansma (1981; 1984), in terms of the contamination of diatom assemblages by 

'foreign clay particles', which can be removed by brushing sherds prior to preparation 

(Section 8.4.1). Caution is also required during the sampling of archaeological 

ceramics for the study of calcareous nannofossils in order to avoid contamination 

from secondary deposits, as outlined in Section 5.3.2 and Figure 5.4. 

3.9 Alteration of the microfossil assemblage as a result of poor sample curation 

As mentioned above, most archaeological ceramics, when newly excavated are 

encrusted with sediment. During excavations in the Aegean and elsewhere it is often 

standard practice to disperse or dissolve this material by immersing the artefacts in 

water or weak acid (Jones 1986, 37). Such a practice could have a serious effect on 

calcareous microfossils in ceramics, and although many vessels which have been 

treated in this way do contain microfossils, it is possible that some alteration of the 

assemblage could have taken place. It may be possible to detect the presence of larger 

calcareous microfossils in ceramics which have been altered in this way by the 

occurrence of distinctive shaped voids in thin section (Section 6.3, Figure 6.4; Section 

7.3). However, calcareous nannofossils can be dissolved from ceramics without 

leaving a trace (Sections 5.4.8 and 5.5.2), and it may be that some sherds which 

appear barren under the microscope may have contained a calcareous nannofossil 

assemblage prior to acid treatment. 
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In order to isolate siliceous microfossils, such as diatoms, from archaeological 

ceramics using the 'flotation method' which is outlined in Section 8.4.1, it is often 

necessary to fragment the samples by hand (Jansma 1981), with pliers (Jansma 1984) 

or in a pestle and mortar (De La Fuente and Martinez Macchiavello 1997), depending 

upon their degree of vitrification. The latter two techniques, which are applied to 

medium and highly fired ceramics appear, to damage the diatom specimens contained 

within (Hakansson and Hulthen 1986). The fragmentation of specimens in this way 

can severely hinder species identification and will therefore affect the diatom 'profile' 

which is recorded, as well as the accuracy of interpretations based upon this (Gibson 

1983a; Hakansson and Hulthen 1986). 

Diatom assemblages in archaeological ceramics can also be damaged by several other 

processes taking place during the history of the clay and the finished artifact (Stilborg 

1997), including the transportation and reworking of specimens in the original 

sedimentary environment (Jansma 1977), maceration and clay working in the pottery 

production process (Gibson 1983a), and the affects of high firing (Gibson 1983b). It 

may therefore be very difficult to distinguish between these types of alteration, and 

fragmentation produced by the deliberate crushing of diatomaceous sherds during 

sample preparation (Battarbee 1988). A possible solution to this problem, which has 

been suggested by Gibson (1983b) is to fragment well-lithified pottery sherds using 

ultrasonic vibration, however this method has not been proven to be successful. 

Specimens may also be further damaged during the subsequent chemical treatment 

(Hakansson and Hulthen 1986) and centrifuging (Battarbee 1988) of crushed sherds in 

the flotation method of diatom preparation (Section 8.4.1). In their account of this 
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procedure. which involves heating the broken pieces of pottery at 50°C in a c.lO % 

solution of hydrogen peroxide for up to ten days, HAkansson and Hulthen (1986) state 

that diatom colonies (Section 8.1.1) disintegrated and some larger species became 

broken. 

One last form of contamination which may take place after the excavation of 

ceramics. is the transferral of microfossiliferous material from one sample to another 

during thin section preparation. This final source of error is particularly applicable to 

calcareous nannofossils. because of their small size, and can be avoided by making 

'smear slides' from small scrapings of the original sherds using the method described 

in Section 5.3.2. 



70 

4 The Geolol)' of Crete and the southern Aeuan 

4.1 Introduction 

In the preceding chapter we anticipated the way in which several natural and human

induced processes potentially can alter the nature of the raw materials which ancient 

potters utilise for the manufacture of ceramics. In this context we also discussed 

various types of clay sources, as well as the occurrence of natural variability in 

sedimentary rocks. Both of these are fundamental to the subject of ceramic 

petrography in that they help to separate pottery into different fabric groups, which 

can then be related to the nature of specific geological deposits. With this in mind, it 

is imperative in any scientific analysis of archaeological ceramics, to consider the 

nature of the local and regional geology (Bishop et 01. 1982). A comprehensive 

geological field study is beyond the scope of any such project, especially when 

dealing with a large and complex area such as the Aegean. However, in the following 

chapter we aim to review the current state of knowledge of geology of Crete, so that 

specific rock types and sedimentary formations can be identified and sampled for 

further analysis (Chapter 10). The present report is concerned primarily with the 

extensive Neogene sediments of Crete and other islands in the southern Aegean 

(Figure 4.1). 
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4.2 The late Cenozoic geological evolution of Crete and the southern Aegean 

Structurally, the Aegean region represents a "young, small... but geodynamically 

extremely active part of the Alpine-Himalayan orogenic system" (Berckhemer 1978, 

21). This orogenic system, which contains the Alpine-Hellenide-Tauride mountain 

chain, was initiated during the closing of the Tethyan ocean which existed between 

Eurasia and Africa, Arabia, India and Australia. In the eastern Mediterranean the 

African continental plate is being subducted beneath the fragmented Eurasian plate as 

they converge in a roughly N-S direction at the Hellenic trench, south of Crete (Figure 

4.1). This subduction process has resulted in continued tectonic and volcanic activity 

within the Aegean region throughout the Cenozoic until the present day, and is 

responsible for the complex geology of the region. 

Crete, Karpathos. Rhodes. Kassos and Kythira, which form the southern Aegean 

island arc (a chain of islands running in a curve across the eastern Mediterranean 

north of the boundary between the African and Eurasian plates; Figure 4.1) were all 

originally part of the 'southern Aegean landmass', during the Oligocene. This 

consisted of a complex nappe pile of allochthonous Tethyan rocks, emplaced upon 

autochthonous Permian-Oligocene rocks by the converging plates. Today these rocks 

form the basement of the islands in the southern Aegean as well as some of the 

Cycladic islands, which may also have been a part of the southern Aegean landmass. 

The basement consists of a complex arrangement of volcanic, metamorphic and 

metasedimentary rocks which are highly deformed, and can be divided into discrete 

units by the tectonic contacts which were involved in their emplacement. The biggest 

remnant of the southern Aegean landmass exists on Crete and is referred to as the 
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Cretan 'pre-Neogene' (to distinguish it from the contemporaneous Neogene 

sedimentary rocks which cover the other third of the island; Figure 4.1). The pre

Neogene forms a block faulted backbone running E-W across the length of the island 

and contains several mountain ranges which reach a height of 2000 metres above sea

level. The distinction on Crete and many other Aegean islands between the pre

Neogene basement (of the southern Aegean landmass) and the Neogene sediments 

which were deposited on and around them (Figure 4.1), is crucial to the present report. 

This is because the pre-Neogene is generally non-microfossiliferous, whereas the 

Neogene sediments contain abundant microfossils of marine and non-marine origin. 

Whilst it is not uncommon for ancient and modem potters to have used pre-Neogene 

sediments as a raw material for the manufacture of ceramics (Day 1991), their lack of 

microfossils, means that the pre-Neogene rocks of Crete and the southern Aegean are 

not discussed further in the present report. However, it is worth noting that the erosion 

of the pre-Neogene basement may have provided a great deal of the clastic material 

which is contained within the thick Neogene deposits that unconformably overlie 

them. 

Detailed field mapping and the study of numerous sections within a framework of 

biostratigraphic data by Greek geologists such as M. Dermitzakis and stratigraphers of 

the University of Utrecht, since the 1960's, has revealed a great deal of information 

regarding the nature of the Neogene deposits of Crete, as well as aiding the 

reconstruction of the late Cenozoic techno-sedimentary history of the Aegean as a 

whole. Micropalaeontology has played a very important role in this work, both as a 

means of dating important events and in the interpretation of palaeoenvironment. A 

result of the partnership between stratigraphy and micropalaeontology, led primarily 
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by workers from Utrecht, has been the proposal of many biostratigraphic schemes for 

Crete and the Aegean based on various microfossil groups. These are discussed in 

detail elsewhere (Sections 5.6, 6.6 and 7.6). 

Good accounts of the late Cenozoic geological evolution of Crete and the Aegean can 

be found in the publications of Meulenkamp (1971; 1985) and Meulenkamp et al. 

(1979), upon which the following summary is based. In addition, detailed 

considerations of the structural configuration of the southern Aegean and the 

geotectonic processes involved in the emplacement of the Cretan nappe can be found 

in Berckhemer (1978) and Hall et al. (1984). 

In the Oligocene to Middle Miocene, whilst Crete, Rhodes, Karpathos, Kassos and 

Kythira were part of the southern Aegean landmass (or 'southern Aegean block' 

Meulenkamp 1985), the Cyclades area was "at least partly covered by the sea" 

Meulenkamp (1971, 11). This resulted in the deposition of small sequences of marine 

sediments on some of the islands. On the southern Aegean block sedimentation was in 

the form of post-orogenic, coarse, non-marine clastics. These Middle Miocene coarse 

sandstones and conglomeratic fluvial sediments are common on Crete, for example in 

the Ierapetra region, where they form the conglomeratic fans of the Mithi Formation, 

which lies in front and on top of the allochthonous pre-Neogene relief (Fortuin 1978). 

Some time near the end of the Middle Miocene (approximately 13 million years BP), 

a reorganisation of the various Aegean microplates, related to the onset of the Hellenic 

subduction process, resulted in a structural fragmentation of the southern Aegean 

landmass and a general subsidence in this area, linked with an uplift in the Cyclades to 

the north. This was a reversal of the situation which had existed since the Late 
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Oligocene (Meulenkamp 1971). The sea first invaded Crete in the Ierapetra basin, a 

NE-SW graben-like depression (Fortuin 1978) which is perhaps the largest transverse 

fault in the southern Aegean island arc and seems to have been initiated in the late 

Serravalian. This resulted in the deposition of Crete's first marine sediments, the 

marly clays of Fortuin's upper Males Formation. 

The fragmentation of the southern Aegean landmass took place mainly via north

south and east-west trending faults which defined the Neogene palaeogeographic 

configuration, as well as the present contours of the island (Meulenkamp 1985). The 

result was a transformation of the land area into a complex of islands (horsts) and 

basins (graben), which were flooded by the sea. Erosion of the uplifting land supplied 

large amounts of material to the rapidly subsiding basins, in which clastic marine 

sequences of Late Miocene, Tortonian age accumulated, whilst biogenic 

sedimentation took place on the shoals and around the islands. 

Differential tectonic movements took place during this time. These produced 

variations in the thickness of marine sediments between basins and resulted in the 

uplift and erosion of earlier Neogene sediments in some places. In the Ierapetra basin, 

tectonics played an important role in determining the nature of the Tortonian 

sedimentation, resulting in a complicated sedimentary pattern (Fortuin 1978), in 

which breccias (Prinia complex) and turbidites (Makrylia Formation) were deposited. 

An overall shift towards carbonate sedimentation seems to have taken place in Crete 

and the surrounding area during the transition from the Tortonian to Messinian. This 

may have resulted from the combination of a reduction in the supply of clastic 

material (perhaps linked with a reduction in the uplift of horst blocks) and a decrease 
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in the overall subsidence of the landmass, producing a general shallowing in the 

grabens. The area became a "mosaic of many partly land-locked basins" 

(Meulenkamp et al. 1979, 147), with widespread deposition of bioclastic limestones 

and calcareous marls in shallow warm waters. 

Within the Messinian, gypsum evaporite deposits were laid down throughout the 

Mediterranean as a result of the 'Messinian salinity crisis'. This period of regression 

and increase in the salinity of marine waters, was the consequence of restricted 

'basinal' connections within the Mediterranean, and a general cooling of the climate 

(Thomas and VanDer Zwaan 1981). In many parts of Crete, gypsum occurs as 

discrete beds, intercalated within marls, or as thick marl breccias. Everywhere it is 

laterally discontinuous and the thickness varies in relation to the subsidence and 

supply of clastic material at the time. For example, in Khania (west Crete) the 

Messinian gypsum beds can be up to two metres thick, whereas in the area south of 

Iraklion (north-central Crete), the gypsum of equivalent age may reach a thickness of 

four metres. 

Whilst the early Messinian sedimentary and structural history of Crete was similar 

over most of the island, the late Messinian period was characterised by different 

palaeogeographic and sedimentary conditions in the various basins (Meulenkamp et 

al. 1979). For example, following an intra-Messinian period of uplift which affected 

many parts of Crete, renewed subsidence took place in the Khania region, whereas in 

north lraklion, Rethymnon and Sitia, marl breccias unconformably overlie lower 

Messinian evaporites and calcareous marls. This latter situation suggests that the 

"post-early Messinian period of uplift and erosion was apparently not followed by 



78 

renewed subsidence of any significance" (Meulenkamp et al. 1979, 147). The upper 

Messinian of Crete is a complex mixture of fluvial, brackish and shallow marine 

sediments with varying degrees of synsedimentary deformation, and reflects a period 

of tectonic instability expressed by the differential relative movement of small crustal 

blocks. 

During the Early Pliocene, a widespread marine transgression took place throughout 

the Mediterranean, due to an overall rise in sea-level (Meulenkamp et al. 1979). It was 

the widest transgression that had affected the area during the whole of the late 

Neogene and resulted in an invasion of the Messinian archipelago of islands, tropical 

seas and land-locked lagoons. Open marine conditions were extensive on Crete in the 

Early Pliocene, and only the large pre-Neogene masses of the Lefka Ori and Idi 

mountains remained above sea-level (Meulenkamp 1971). Sedimentation was 

dominantly calcareous, with reefs developing on the islands (horsts). In central and 

eastern Crete, Early Pliocene marl breccias are a testament to continuing differential, 

vertical movements which spread to other areas and caused the removal of much 

Lower Pliocene material from the rising blocks (Meulenkamp 1985). These earth 

movements heralded the onset of a major tectonic phase which culminated in the 

gradual emergence of Crete throughout the mid-Late Pliocene (Fortuin 1978), and 

gave rise to the island's present configuration. 

The youngest marine deposits on Crete, are the middle Pliocene sediments of the 

north-central Crete (Meulenkamp 1985), which record a regressive sequence caused 

by the uplift of the island. At the time of Crete's emergence from the sea, marine 

deposition was continuing in some areas of the southern Aegean, such as Karpathos, 
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as well as in the southern Cyclades (Melos), and to the east (Ionian Islands). However, 

in the central Cyclades continental conditions still existed, and the sea did not reach 

this area again until the Pleistocene (Meulenkamp 1971). 

4.3 Discussion 

Of the two main groups of rocks which constitute the geology of Crete, only the 

autochthonous, microfossiliferous, late Neogene marine sediments are of concern to 

the present report. The allochthonous pre-Neogene basement rocks upon which these 

marine sediments lie, were heavily metamorphosed during their emplacement, and as 

a result are non-micro fossiliferous. 

Due to continuing variations in the tectonic movement of the various pre-Neogene 

crustal blocks of Crete during the late Neogene period, as well the overall rise and fall 

of sea level in the Mediterranean sea, several types of calcareous marine sediments 

were deposited on the island, including marls, clays, shallow water limestones, marl

breccias and gypsum. These late-Neogene sediments occur in many parts of the Crete, 

but tend to be restricted to coastal areas as well as the low-lying land between the 

various chains of high mountains (Figure 4.1). As a result of many years of intensive 

study by various stratigraphers and micropalaeontologists, the nature of the Cretan 

Neogene sedimentary record, and consequently, the late Cenozoic geological history 

of the island is well understood (Section 4.2). The lithology, micropalaeontology, 

geological age and geographic distribution of these sediments are outlined in several 

reports (e.g. Freudenthal 1969; Meulenkamp 1969; Gradstein 1973; Fortuin 1977) as 

well as numerous maps, published by the Institute of Geology and Mineral 
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Exploration (lGME), Athens. These have been utilsed in the selection offield samples 

in the present report and the detailed description of the various late Neogene 

sedimentary formations of the north-central Crete, the Ithmus of Ierapetra and the 

south coast of the Island which are presented in Chapter 10. 

Micropalaeontology has been instrumental in understanding the late Neogene 

sediments of Crete, through the interpretation of palaeoenvironment, as well as the 

geological age in which the various marine formations were deposited. Consequently, 

several late Neogene biostratigraphic schemes have been proposed for the eastern 

Mediterranean (e.g. Zachraisse 1975; Spaak 1983; Theodoridis 1984; Driever 1988), 

based upon the numerous groups of microfossils which occur in the late Serravalian to 

middle Pliocene sediments of Crete. These studies have been utilised in the present 

report, and are reviewed in detail in the following chapters. 
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5 Calcareous nannofossils 

5.1 Introduction 

The late Neogene microfossiliferous marine sediments of Crete appear to have been 

used by Minoan potters as a source of raw materials (Riley 1981; 1983; MacGillivray 

et al. 1988; Riley et al. n.d), and consequently, much of the archaeological pottery 

excavated on the island contain calcareous or siliceous microfossils. Before 

attempting to utilise these distinctive inclusions to analyse the archaeological 

ceramics of Crete and elsewhere in the Mediterranean (Chapter 11), it is necessary to 

discuss each group of microfossils, in terms of their morphology, biological affinities 

and geological applications, their occurrence within the study material, the way in 

which they are affected by the firing process, their utility for the biostratigraphic and 

palaeoenvironmental interpretation of the raw materials of ceramic manufacture, as 

well as the methodology which is proposed for their use in ceramics. This chapter 

focuses on the most commonly used group of microfossils in the present report; 

calcareous nannofossils. 

Calcareous nannofossils are a heterogeneous group of microfossils containing various 

organically precipitated calcium carbonate structures which are usually < 10 f..lm in 

size. These minute calcite bodies are common in fine-grained pelagic sediments of the 

Late Triassic to Recent from many areas of the world. The calcareous nannofossils 

can be divided into two main groups; coccoliths and nannoliths. Coccoliths, the most 

common type of calcareous nannofossil. are ornate calcite plates which form an 

external test or 'coccosphere' in the coccolithophorid algae (Figure 5.1). The 
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'coccolithophores' are unicellular, biflagellate, autotrophic, marine phytoplankton 

belonging to the Haptophyte (golden-brown) algae, which are common in the world 

oceans today, and have been one of the most important producers of carbonate 

sediment since the Cretaceous period. 

Coccoliths are morphologically very diverse, but can be divided into holococcoliths 

and heterococcoliths on the basis of their calcite ultrastructure. Holococcoliths, which 

are produced on the outside of the cell, are constructed of many equidimensional 

rhombohedra of calcite (Figure 5.1). As such they are delicate and are less likely to be 

preserved in the fossil record than heterococcoliths. The other type of coccoliths, 

heterococcoliths, are produced within the cells of coccolithophorid algae and are 

constructed of larger, complex shaped, often interlocking, calcite crystals to form a 

more robust structure (Figure 5.1). Heterococcoliths, are most common type of 

calcareous nannofossils in the geological record and exhibit great morphological 

variation, however, some of the more common shapes include: tiered discs 

(placoliths), un-tiered discs (muroliths), tiered discs with asymmetrical flanges 

(helicoliths) and basket or vase shaped structures (lopadoliths), see Figure 5.1. 

The other major group of calcareous nannofossils, the nannoliths, are those structures 

possibly produced by coccolithophorids which lack the typical features of 

heterococoliths and holococcoliths. These include the star-shaped Discoaster, 

horseshoe-shaped Ceratolithus and the five-sided plate-like Braarudosphaera (Figure 

5.2) as well as a great plexus of variously-shaped calcite structures which have an 

unknown origin, but are likely to have been the remains of coccolithophores or some 

other group of marine plankton, due to their cosmopolitan distribution and association 
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with coccoliths. Nannoliths can be rod-shaped: Microrhabdulus, bladed: 

Triquetorhabdulus, triangular: Lithostromation, sub-spherical: Schizosphaerella, as 

well as some bizarre and seemingly amorphous shapes: Marthasterites (Figure 5.2). 

Calcareous nannofossils are classified on the basis of morphology, ultrastructure and 

crystallography using binomial nomenclature, similar to that applied to living 

organisms, in order to define genera and species which characterise particular periods 

of their c. 200 MA geological history. In this way, calcareous nannofossils are an 

extremely useful tool for biostratigraphy, and it is this potential, first discovered in the 

1950's and utilised extensively in the exploration for natural resources as well as the 

Deep Sea Drilling (DSDP) and Ocean Drilling (ODP) Projects, which has fuelled the 

extensive study of calcareous nannofossils in the latter half of this century. Research 

into the biology of living calcareous nannoplankton has greatly aided the 

understanding of calcareous nannofossils, especially in the Cenozoic and Quaternary. 

Although there are a few conflicts between the study of living and fossil forms, for 

example, in terms of classification, the two are complimentary. 

Detailed accounts of the morphology, terminology, classification, evolution and 

biostratigraphy of calcareous nannofossils can be found in Perch-Nielsen (1985a, b), 

Haq (1983a, b), Siesser (1993), Lord (1982), Aubry (1984-1990), Farinacci (1969-

1979), Bown (1987), Theodoridis (1984), Young and Bown (1997a, b and c), Young 

et al. (1997) and Bown (1998), upon which the above account is based. Numerous 

reports which deal with the current state of knowledge on the biology of living 

coccolithophores can be found in Winter and Siesser (1994). 



84 

-
coccolith 

single calcite crystal 

c 

A 

-
D E F G 

Figure 5.1. A cocco phere (A), the calcite ultrastructure of heterococcoliths (B) and 

hoJococcolith ( ), and the range of morphology in heterococcoliths: pIa co lith (D), murolith (E), 

helicolith (F) and lopadolith (G). cale bar: A, Band D-G = 1 !-lm, C = 5 !-lm. After Aubry 

(1990) Theodoridi (I 84), Winter and ies er (1994) and Young et 01. (1997). 
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Figure 5.2. The range of morphology in nannoliths. Discoaster (A), Ceratolitllus (B), 

Braarudosplraera ( ), Micror"abllllills (D), Lithraphidites (E), Schizosphaerella (F), Marthasterities 

(G) and Litllostromatioll (H). All cale bars = t /lm. After Aubry (1988), Perch-Nielsen (1985a and 

b) and Youngetal. (1997). 
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5.2 The occurrence of Calcareous Nannofossils in Bronze Age archaeological 

ceramics from Crete 

Calcareous nannofossils are a significant component of ceramics from the Bronze Age 

of Crete, as well as pottery from other archaeological periods and different parts of the 

world (Troja et al. 1996; Quinn et al. 1998; Burnett and Young n.d.). 

Calcareous nannofossils can occur in several components of a ceramic; In the 

groundmass, within other inclusions, as a part of calcareous slips and paints applied to 

the exterior of the vessel, or in secondary residues attached to artefacts during burial 

in the archaeological record (Figure 5.3). This report focuses on the study of 

calcareous nannofossils in the groundmass and calcareous inclusions, and measures 

are taken during sampling in order to avoid calcareous nannofossils from the other 

two contexts (Section 5.3.2). 

Calcareous nannofossils mainly occur in the groundmass of calcareous ceramics 

(those which contain abundant fine calcium carbonate), either as isolated coccoliths 

and nannoliths, or more rarely as whole cocco spheres (Figure 5.3). The preservation 

and abundance of calcareous nannofossils can vary greatly between different pottery 

samples as a result of the nature of the original raw materials of ceramic production as 

well as the various processes which may have altered the assemblage during the 

history of an artefact (Chapter 3). In general, the calcareous nannofossil assemblages 

of archaeological ceramics are rather poorly-preserved compared to those in 

geological samples. Ceramic calcareous nannofossil assemblages are often dominated 

by robust and solution-resistant taxa, as well as those which may have been abundant 

in the assemblage of the original raw material. 
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Figure 5.3. alcareou nannofo il in thin sections of Bronze Age archaeological ceramics from 

Crete. A di coa ter in the ground mass of sample Kn 84/30 (A), a horseshoe-shaped nannolith 

(Amallrolillms) in a econdary deposit at the edge of sample Kn 95/400 (B), a complete 

cocco phere ( ) and an i olated coccolith (D) in a calcareous slip or paint on sample Kn 95/400 

(C). A and B = plane polari ed light (PPL), C and D = crossed polars (XP). Field of view = 50 Ilm . 
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In the archaeological ceranllCS which have been analysed in the present report, 

calcareous nannofossils commonly occur 10 association with other calcareous 

microfossils such as planktonic foraminifera, benthic foraminifera, ostracods, and 

much less commonly with siliceous microfossils. Those containing calcareous 

nannofossils often have significant amounts of oxidised amorphous organic matter, as 

seen in smear slides with PPL (Section 5.3.2). However, very few identifiable 

palynomorphs have been found associated with calcareous nannofossils in the present 

report. 

5.3 Methods of studying calcareous nannofossils in archaeological ceramics 

5.3.1 Introduction 

Calcareous nannofossils can be observed in thin sections of archaeological ceramics 

with a high power (1000 x) transmitted light microscope. Studying thin sections at 

these high magnifications necessitates the use of an oil-immersion objective which 

rides on a thin film of oil between the lens and the slide, therefore any ceramic thin 

sections observed in this way should be covers lipped in order to avoid damaging 

them. In ceramic thin sections, calcareous nannofossil specimens are often obscured 

by the clay matrix or other inclusions (Figure 5.3), as they are usually < 15 I!m in size, 

whilst most ceramic thin sections are ground to a thickness of 30 I!m. For this reason 

it is necessary, when searching for calcareous nannofossils in ceramic thin sections, to 

traverse around the edge of the section where it is usually less thick (Figure 5.5). 

Negotiating the irregular periphery of a ceramic thin section in this way is difficult 
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under high magnifications of 1000 x or more, therefore a mechanical microscope 

stage is required. 

Whilst it is possible to observe calcareous nannofossils in ceramic thin sections, only 

small numbers of specimens are visible and their identification is difficult. Troja et 

al. (1996) studied calcareous nannofossils in thin sections of Neolithic to Bronze Age 

pottery from Milena, Sicily (Sections 2.3.1.3 and 2.3.2.5), and their poor assemblage 

descriptions exemplify the difficulties of such work. 

A distinct disadvantage in studying calcareous nannofossils In thin sections of 

archaeological pottery, as opposed to larger calcareous microfossils, is the risk of 

contamination. The extremely small size of calcareous nannofossil specimens makes 

them very easy to transfer unnoticed from one place to another. Too small to be seen 

by the naked eye, thousands of these minute calcite structures can be contained within 

a sample of sediment the size of a crumb. The standard procedure for the preparation 

of geological samples for the analysis of calcareous nannofossils, which is outlined 

below, requires extreme cleanliness, however contamination can still occur from 

nannofossil specimens suspended in the air. During the preparation of ceramic thin 

sections very few precautions are taken in order to avoid the transferral of fine 

material, produced by grinding, from one section to another. Thin sections are cut and 

ground using the same apparatus. In the final stage of the process it is common for 

several sections to be polished in a slurry of carborundum grit and water, a procedure 

which is likely to result in contamination. Most slides are washed after polishing 

before a coverslip is added to them, however it is common to find often large amounts 
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of carborundum (a grey translucent mineral), in voids or around the edges of thin 

sections, indicating that the cleaning process failed to remove all contaminants. 

As there is no record of the exact procedures used in the production of the extensive 

ceramic thin section collections which exist, and it is likely that most were prepared in 

a fashion similar to, or with less care, than that described above, the analysis of 

calcareous nannofossils in thin sections of archaeological pottery is not to be relied 

upon. 

An alternative method of studying calcareous nannofossils from archaeological 

pottery, which was utilised by Burnett and Young (n.d.) in their analysis of a Bronze 

Age pottery sherd from Dover, England (Section 2.3.2.5) and is adopted in the present 

study, is by the preparation of 'smear slides'. This technique is virtually identical to 

the standard procedure used to prepare geological samples for the analysis of 

calcareous nannofossils. It involves scraping a small quantity of powder from the 

original sherd or vessel onto a microscope coverslip, spreading it out with water and 

adhering this onto a glass slide (Section 5.3.2). Smear slides often contain hundreds of 

calcareous nannofossils, which are separated from the clay matrix and associated 

minerals, and can be more easily identified and measured (Figure 5.5). In this way, a 

detailed analysis of the composition of calcareous nannofossil assemblages from even 

very small samples of archaeological pottery can be made (Quinn et al. 1998; Burnett 

and Young n.d.; Appendix II). 
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5.3.2 Procedures for preparin~ calcareous nannofossil smear slides ofarChaeolQ~ical 

ceramics 

The preparation of calcareous nannofossil smear slides from geological samples and 

archaeological material must take place in a clean, dust free environment, preferably 

away from other laboratory work and raw sediment samples. During the preparation 

of smear slides, it is advisable to treat calcareous nannofossils as if they were a highly 

contagious virus; cleaning and replacing the equipment between different 

sediment/pottery samples and repeating the operation if any contamination is 

suspected. In order to determine whether airborne contamination may have taken 

place during the slide making process, it is necessary to leave a coverslip somewhere 

in the vicinity of the operations, and mount this face-down on a glass slide at the end 

of the preparation. If this 'control slide' contains a significant contaminant nannoflora 

then the corresponding batch of smear slides should be discarded and repeated, taking 

greater care. 

5.3.2.1 Equipment 

Geological or archaeological samples in sealed bags: Standard microscope slides: 

Large square or rectangular glass coverslips: Optical adhesive (e.g. 'Norland', 

'Entellan'): Small beaker: Small disposable phials: Disposable pipettes: Distilled 

water: Flat toothpicks: Tissues: Self adhesive slide labels: Permanent marker pen: 

Knife: Labcoat: Hotplate: Fume cupboard: Sink with soap and a scrubbing brush. 
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5.3.2.2 Procedure 

1. Wipe down the area in which the operation is to take place, as well as the surface of 

the hot plate, wash hands, scrub and dry the knife. 

2. Set the hot plate on a medium heat (150-200 °C), so that a wetted coverslip placed 

on its surface dries in about ten seconds. Layout tissue or paper in the fume cupboard 

on which to place the covers lipped slides for the adhesive to set. On the work surface, 

layout tissue and on this place one labelled microscope slide, one coverslip, one 

toothpick and the clean knife. Fill the clean beaker with distilled water, leave a pipette 

in it and place this nearby. Leave the adhesive and a pipette near the hotplate or in the 

fume cupboard. 

3. Lick one side of the coverslip and place it on the tissue with the moist side up. 

Open the sample bag and manipulate the sample so that the desired surface is 

protruding from it. With geological samples it may be useful to snap a rock fragment 

(whilst in the bag) in order to produce a fresh surface from which to scrape. If this is 

not possible, or when scraping a sample of pottery, it may be necessary to scrape away 

the surface layer in one area, onto the tissue in order to reveal a fresh surface below. 

With the knife, scrape the desired surface above the moist coverslip until a small 

quantity of powder is deposited upon it. Put the knife back on the tissue, seal the 

sample bag and place this to one side. 

When scraping a sample of pottery, it is necessary to first inspect the sherd in order to 

decide from which surface the scraping should be made (Figure 5.4). Ideally, the 

scraping should be taken from the centre of a fresh broken surface in order to avoid 

any slips or paints, as well as secondary deposits which may not been completely 
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removed after excavation (Section 3.8). If a thin section has been taken from the sherd 

then it will contain a freshly cut surface and a sample should be taken from this, after 

scraping away the surface layer in order to remove any contamination which may 

have been left by the cutting process (Section 5.3.1). 

If a complete vessel is available for sampling, then there are two points to consider 

when deciding where to scrape. Firstly, if the vessel is likely to have been used for 

cooking (this can be determined by its typology or characteristic deposits inside or on 

the base exterior) then it is inadvisable to take a sample from the base, because the 

calcareous nannofossils are likely to be poorly-preserved in this region due to the 

effect of heat during usage (Section 5.5). Secondly, if different types of clay have 

been used for the construction of various parts of the vessel, e.g. one for the body of 

the artefact and another for the handle (Section 3.5), then smear slides should be 

prepared from the main body or all of its various components. 

4. Add a drop of distilled water to the powder, being careful not to touch it with the 

pipette. Pick up the coverslip between finger and thumb, and using the tip of the 

toothpick mix the water and sediment together. Spread this out over the coverslip by 

using the edge of the toothpick, then transfer the coverslip to the hot plate with the 

smear-side up. 

S. Whilst the smear is drying, put two or three drops of adhesive onto the labelled 

slide using a pipette. Lift the dry coverslip from the hotplate and gently lower it with 

its smear-side down, onto the slide. This part of the operation requires practice in 

order to avoid trapping air bubbles between the slide and the coverslip. If air bubbles 
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B) and in a calcareou nannofossil mear slide of sample Kn 95/376 (C and D). A, Band D = XP, 
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are present, it is possible to coax them to the edge of the slide using another toothpick 

to apply pressure on the glass. 

6. Place the covers lipped slide on the tissue paper in the fume cupboard to dry. Some 

brands of adhesive, e.g. 'Norland', require ultraviolet light to set, and this should be 

done in a dark place, using eye protection. 

7. Between each sample, discard the tissue and toothpick, wash the knife, wash hands 

and repeat the procedure. It is worth changing the distilled water and discarding the 

pipette approximately every ten samples, as these can become contaminated. When 

using caustic adhesives such as 'Entellan' it may be necessary to use a new pipette 

every 30 minutes or so, as this can begin to melt. If a coverslip breaks on the hot plate 

or jumps and lands with the smear-side down, then turn down the heat and wipe the 

hot surface with a cloth. Be aware of, and take measures to avoid other sources of 

contamination, such as dirt on sample bags and labcoats, and always think about the 

order in which the operations should be carried out. 

8. Samples which are slightly sandy can be difficult to smear and the adhesive may 

not spread efficiently leaving large areas of air bubbles. In this case it is useful to 

separate the coarse fraction in water. This is done by scraping the sample into a 

labelled phial, adding distilled water, shaking the mixture and leaving it to settle for a 

few seconds. The calcareous nannofossils should remain in suspension near the 

surface while the larger mineral grains will sink rapidly to the bottom. Using a pipette, 

draw off the upper surface of the water and transfer this onto a moistened coverslip on 

the hot plate. A lower heat is required for this process as spitting may take place if the 

liquid is dried to quickly. A thin calcareous residue will be left on the dry coverslip, 
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which will hopefully contain calcareous nannofossils, and should be mounted as 

before. 

5.4 Investigations into the behaviour of calcareous nannofossils in the firing of 

ceramics 

5.4.1 Introduction 

One of the most important processes which may affect microfossil assemblages in 

ceramics is firing (Section 3.6). In order to understand the way in which calcareous 

nannofossils behave during firing, several experiments are presented in which 

nannofossiliferous clays were experimentally fired to various temperatures, in 

oxidising and reducing atmospheres, for different durations. It was suggested in 

Section 3.6 that variations in these three factors may affect the way in which 

microfossil assemblages are degraded during the process of firing, and the following 

experiments reveal useful information with regard to the importance of each of these, 

as well as the threshold at which calcareous nannofossils are destroyed. 

5.4.2 Material 

Several kilograms of nannofossiliferous clay were procured during a British 

Micropalaeontological Society, Nannofossil Working Group, field excursion to the 

Boulonnais, northern France on 9.3.1997. The material which was collected came 

from the middle Cretaceous (Albian) Gault Clay Formation, which occurs at the coast 

near to Strouanne. These sediments contain a very rich, well-preserved calcareous 
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nannoflora, with reasonably high species diversity, which was ideal for the purpose of 

these investigations. In addition, the Gault Clay Fonnation is well-suited to the 

production of ceramics and appears to have been utilised as a raw material by ancient 

potters (Burnett and Young n.d., Section 2.3.2.5). 

5.4.3 Processin~ 

The Gault Clay was broken up into small (c. 5 cm3
) pieces and allowed to dry in 

buckets for a period of one week. The dry pieces of clay were then ground to a fine 

powder using a large pestle and mortar and a 1 mm sieve. The implications of this 

process are discussed in Section 3.4. The ground sediment was then mixed with a 

suitable volume of tap water, in a large beaker, to produce a malleable clay paste, 

which was transferred to ice cube trays and left to dry in a warm place for three days. 

After this period, the dry cubes of clay had contracted and could easily be removed 

from the containers, to serve as equidimensional briquettes for the experiments. In 

order to drive out any remaining water in preparation for firing, the briquettes were 

then heated in an oven at 30°C for one day. 

5.4.4 Details of the firin~ process 

The firings took place at the Department of Archaeology and Prehistory, University of 

Sheffield and the Laboratory of Archaeometry at the Demokritos National Centre for 

Scientific Research, Athens. Three factors were altered between the various firings. 
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These were, the maximum temperature of firing, the length of firing and the 

atmosphere in the kiln. 

5.4.4.1 Maximum temperature of firing 

Gault Clay briquettes were fired at a maximum temperature of 600, 700, 800, 900, 

1000 and 1100 °C, for one hour, with constant rates of temperature rise and fall (Fig 

5.6). These temperatures were chosen in accordance with the range which was 

attained by potters in the Bronze Age of Crete, as well as the range at which the 

thermal alteration and decomposition of calcium carbonate takes place during the 

firing of ceramics (Rice 1987, 98). 

5.4.4.2 Length of firing 

At a constant maximum temperature of 600°C, briquettes were fired for six different 

durations of 60, 120, 180 and 240 minutes respectively, as illustrated in Figure 5.6. A 

temperature of 600°C was chosen in accordance with the lowest estimates for the 

temperature at which calcium carbonate begins to decompose during the firing of 

ceramics. 

5.4.4.3 Atmosphere of firing 

The experimental firings which are described above, were performed in air (an 

oxidising atmosphere), and a mixture of 4 % H2 : 94 % Ar per volume (a reducing 



100 

1lMP 
IMtIl 

TIME 

Figure 5.6. Details of the firing programme for experiments into the effect of the maximum 

temperature and the length of firing on calcareous nannofossil assemblages in ceramics. The 

temperature and duration of 'level 2t were varied between firings and all other details of the 

programme were kept constant. 
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atmosphere). This produced twelve oxidised and twelve reduced Gault Clay samples 

for analysis. 

5.4.5 Calcareous nannofossil analysis 

Standard calcareous nannofossil smear slides were produced from each of the 24 fired 

briquettes, using the method described in Section 5.3.2. Smear slides of the unfired 

(processed and unprocessed) clay were also prepared in this way and studied in detail, 

in order to serve as a control with which to compare the fired calcareous nannofossil 

assemblages. 

In all slides, 200 calcareous nannofossil specimens were identified in random fields of 

view and their overall preservation was noted. In addition, a record was made of the 

total number of calcareous nannofossil specimens in 25 random fields of view along a 

single traverse of each slide, in order to document changes in the overall abundance of 

calcareous nannofossils between successive firings. The results of this analysis are 

presented in Figures 5.7 to 5.12, and discussed below. 

5,4.6 Results 

5.4.6.1 The unfired calcareous nannofossil assemblage 

The middle Cretaceous (Albian) Gault Clay contains a very diverse, well-preserved 

calcareous nannoflora. A high rate of species turnover in calcareous nannofossil 

populations at the time of deposition (BOWD et al. 1992), combined with the 
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favourable facies of the Gault Clay, are the reasons for its exceptional assemblage, 

which is ideal for the purpose of these experiments. 

Many different broad structural groups of calcareous nannofossils are represented in 

the diverse nannoflora of the Gault Clay. These include imbricating placoliths of the 

family Ellipsagelosphaeraceae, such as Watznaueria, Cyclage/osphaera and 

Manivite/la; non-imbricating placolith species of the genera Biscutum, 

Po/ypodorhabdus, Prediscosphaera, Cretarhabdus and Discorhabdus; loxolith 

murolith coccolith taxa such as Zeugrhabdotus, Chiastozygus, Staurolithities, 

Rhagodiscus and Eiffellithus; proto lith type muroliths of Stradnerlithus, Scapholithus 

and Rote/api//us; and nannoliths, such as species of the genera Eprolithus, 

Lithraphidities and Nannoconus. The two most abundant calcareous nannofossil 

species in the assemblage are Watznaueria barnesae and Zeugrhabdotus erectus, 

which together constitute over half of the total nannoflora. 

In order to evaluate the effect of clay maceration on the calcareous nannofossil 

assemblage of the Gault Clay, smear slides were prepared from a sample of the raw 

sediment, and an unfired processed briquette. In both samples, 200 specimens were 

identified in random fields of view as in the fired samples (Section 5.4.5), but in 

addition, a count was made of the number of broken and unbroken Watznaueria 

specimens in 50 fields of view. By comparing the number of complete and incomplete 

specimens of this genus in the raw and processed clays it was possible to gauge the 

degree to which this process damaged the calcareous nannofossils. The species of 

Watznaueria are rather robust (Perch-Nielsen 1985a), however, as they are the most 

abundant group of calcareous nannofossils in the Gault Clay and can easily be 
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Figure 5.7 Th proportion of complete versus broken specimens of WalZllaueria barnesae in 

proce cd and unproc cd Gault Clay. 
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Figure 5.8 The relative abundance of the various calcareous nannofossil structural groups in 

proce cd and unproce sed Gault Clay. 
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recognised from small fragments, the members of this genus were chosen in 

preference to other, more delicate, less abundant taxa which are not as readily 

identifiable when broken. 

From the results of this analysis, presented in Figure 5.7, it can be seen that the 

process of clay maceration (Section 5.4.3) significantly alters the ratio of broken to 

unbroken calcareous nannofossil specimens. An increase in the proportion of broken 

Watznaueria specimens from approximately 25 % to approximately 50 % was 

recorded as a result of the clay processing technique. The relative abundance of the 

various calcareous nannofossil structural groups (Figure 5.8) indicates that an increase 

in the proportion of imbricating placoliths, a decrease in the proportion of the other 

coccolith groups and no change in the relative abundance of the nannoliths, took place 

during clay processing. The increase in the relative abundance of the imbricating 

placoliths is interpreted as being a consequence of the resilience of the genus 

Watznaueria to the physical process of maceration, compared to the more delicate 

murolith and radiating placolith taxa such as Zeugrhabdotus. Rhagodiscus. 

Staurolithities. Biscutum and members of the family Retecapsaceae. These exhibit a 

reduction in relative abundance after processing. It is worth noting that, in addition to 

physical resilience, the identifiability of the various nannofossil taxa from fragments 

clearly affects their relative abundances between macerated and un-macerated 

samples. The results of this experiment indicate that the maceration of raw 

nannofossiliferous clay alters the ratio of broken to unbroken specimens and the 

relative abundance of the various taxa. 
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5.4.6.2 The firing atmosphere 

From the results of the experiments presented in Figures 5.9 to 5.12, it can be 

concluded that firing in a reducing atmosphere has a more severe affect on the 

calcareous nannofossil assemblage of the Gault Clay, than firing at equivalent 

temperatures in an oxidising atmosphere. This is indicated by the survival of 

calcareous nannofossils in briquettes fired to a higher temperature in an oxidising 

atmosphere, than those fired under reducing conditions, as well as the different 

relative abundances of the various nannofossil groups in briquettes fired to identical 

temperatures in the two different atmospheres (compare Figures 5.11 and 5.12). If an 

increase in the relative abundance of imbricating placoliths is assumed to indicate an 

increase in the severity of firing, then a comparison of the proportion of this group in 

oxidised and reduced Gault Clay briquettes, which were fired to a maximum 

temperature of 700°C supports this interpretation. 

5.4.6.3 Maximum temperature of firing 

Calcareous nannofossils were present in the smear slides of Gault Clay briquettes 

fired up to temperatures of 700 and 800°C under reducing and oxidising atmospheres 

respectively. After this, the samples were barren and low in calcite (Figures 5.9 and 

5.10). 

Distinct changes took place in the composition of the calcareous nannofossil 

assemblage with increasing temperature, as represented in Figures 5.9 to 5.12. The 

general trend is that of a decrease in the overall abundance of calcareous nannofossils 

(Figures 5.9 and 5.10), as well as a reduction in the diversity of the assemblage 
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Figure 5.11 The relative abundance of the various calcareous nannofossil structural groups in 

Gault la fired at different temperatures in an oxidising atmosphere. 
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Figure 5.12 The relative abundance of the various calcareous nannofossil structural groups in 

Gault la fired at different temperatures in a reducing atmosphere. 
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through a decrease in the relative abundance of the more delicate taxa, or those which 

were poorly represented in the original nannoflora, and a relative increase in the 

abundance of the more robust taxa, e.g. Watznaueria, which eventually dominate the 

assemblage. 

The changes in the relative abundance of the various structural groups of calcareous 

nannofossils which took place with increasing maximum firing temperature are 

roughly comparable to those seen in the processing experiment (Section 5.4.6.2), i.e. a 

decrease in the abundance of all groups except the imbricating placoliths. 

5.4.6.4 Length of firing 

The changes which took place in the overall abundance of calcareous nannofossils and 

the relative proportion of the various calcareous nannofossil structural groups in Gault 

Clay briquettes with increasing firing duration (Figures 5.13 and 5.14), follow the 

trends seen in the previous experiments. There is a constant decrease in the overall 

abundance of calcareous nannofossils with increasing firing duration, and an increase 

in the proportion of imbricating placoliths, relative to radiating placoliths and 

muroliths. 

It can be concluded from the results of this experiment, that longevity, in addition to 

the maximum temperature of firing, has an effect on the nature of the calcareous 

nannofossil assemblages in ceramics. The alteration resulting from a 100°C increase 

in maximum temperature is more severe than those produced by sustaining this 

temperature for one hour. However, the nature of these changes with regard to the 
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Figure 5.14 The relative abundance of the various calcareous nannofossil structural groups in 

Gault la fired for different duration at 600 DC in an oxidising atmosphere. 
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overall abundance of calcareous nannofossils and the relative abundance of the 

various structural groups of calcareous nannofossils, are the same in both cases. 

5.4.7 Comparison with existini archaeoloiical data 

Calcium carbonate (CaCO), which can be present in many forms within the raw 

materials used for ceramic manufacture, may be altered upon firing, to CaO. After 

firing, the CaO, which has an affinity for water, re-hydrates by absorbing moisture 

from the air and becomes Ca(OH)2' This process, which is accompanied by a release 

of heat and a volume increase, presents a serious problem where large calcium 

carbonate inclusions are present in ceramics, as their expansion can damage the fired 

pottery to varying degrees, ranging from the 'lime popping' of the vessel surface to its 

complete destruction. 

Various estimates, ranging from as low as 600°C to as high as 900 °C, have been 

proposed by different authors as the critical temperature at which the decomposition 

of calcium carbonate begins during the firing of ceramics (Rice 1987, 98). This range 

reflects the complexity of the firing process, in which other factors such as the 

duration of firing and the firing atmosphere, as well as the clay and calcite 

composition may also influence the threshold at which this process takes place (Fisher 

1927; Tite and Maniatis 1975; Maniatis et al. 1983). 

The level at which calcareous nannofossils were destroyed during the experimental 

firing of Gault Clay in this study (between 700 and 900°C, Figures 5.9 and 5.10) is in 

agreement with the temperature range which has been proposed for the decomposition 

of calcite. The differences in the overall and relative abundance of calcareous 
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nannofossils in Gault Clay fired for different lengths of time at a temperature of 600 

°C (Figures 5.13 and 5.14), confirm the above suggestion, that time is also an 

important factor in the alteration of calcium carbonate during firing. With this in 

mind, the degree to which calcareous nannofossil assemblages are degraded during 

the firing of ceramics, is likely to be the consequence of a combination of the 

maximum temperature of firing, as well as the duration of the firing process, i.e. the 

'degree of firing', 'equivalent firing temperature' or 'work heat' (Roberts 1963; 

Nelson 1984). 

Firing Gault Clay briquettes in a reducing atmosphere was found to have a more 

severe affect on their calcareous nannofossil assemblage than firing them to the 

equivalent temperatures in an oxidising atmosphere (Figures 5.9 and 5.10). 

Calcareous nannofossils were destroyed at lower temperatures in the absence of 

oxygen, which indicates that their alteration takes place at a higher temperature or 

proceeds less rapidly, in an oxidising atmosphere. This discovery contradicts with the 

findings of Laird and Worcester (1956, 555), who stated that, the undesirable effects 

of lime spalling or 'lime blowing' may be avoided by "firing limestone-containing 

bricks in a reducing atmosphere". If, as these authors appear to suggest, the absence of 

oxygen during firing inhibits the decomposition of calcite, then another mechanism 

may be responsible for the degradation and eventual disappearance of calcareous 

nannofossils in a reducing atmosphere, at around 700-800 °C in these experiments. 

No lime spalling was observed in any of the Gault Clay briquettes, even several 

months after firing. This may be explained by the fact that the calcium carbonate in 

the Gault Clay briquettes (largely calcareous nannofossil specimens), was extremely 
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fine (usually < 1 0 ~m), so that the disruptive force produced by its re-hydration after 

firing, which is proportional to the square of the radius of the particle (Moller 1908), 

was not very significant. 

In the Gault Clay briquettes fired above 800 and 900°C in a reducing and an 

oxidising atmosphere respectively, very little calcium carbonate was present (as seen 

in the calcareous nannofossil smear slides of these samples). This indicates that the 

fine calcium carbonate in these briquettes may have reacted with the clay minerals to 

form calcium silicates. Butterworth (1956) claimed that the calcium carbonate 'melts' 

and is converted into other substances at temperatures over 1000 °C, a higher figure 

than indicated by the present study. However, Tite and Maniatis (1975) suggested that 

the process is accelerated in a reducing atmosphere or when the calcite is very fine. 

These latter authors experimentally fired Gault Clay (as well as several other British 

clays), and discovered that the first indications of vitrification can occur at a 

temperature of 840°C in an oxidising atmosphere, and lower still in a reducing 

atmosphere. 

Therefore, it appears that the calcareous nannofossil specimens in the Gault Clay 

briquettes were degraded by the conversion of their CaC03 to CaO and its re

hydration after firing, at temperatures as low as 600°C. Because of their small size, 

the re-hydration of the altered calcareous nannofossil specimens after firing, did not 

exert sufficient a force on the ceramic briquettes to cause any noticeable structural 

damage. At higher temperatures (c. 700-800 °C in a reducing atmosphere and c. 800-

900°C in an oxidising atmosphere), the calcareous nannofossils appear to have 

reacted with the surrounding clay minerals. As a result, the briquettes which were 
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fired above these temperatures, were barren and did not contain any calcium 

carbonate. This process seems to have taken place at lower temperatures than those 

quoted by other authors (e.g. Butterworth 1956), and may be explained by the very 

fine nature of the calcium carbonate in the Gault Clay (usually < 10 Ilm). In addition, 

the lower temperature which was recorded for the reaction of calcium carbonate with 

the clay matrix of the Gault Clay in the reduction firing experiments, is in agreement 

that the suggestion of Tite and Maniatis (1975) that this process is accelerated in the 

absence of oxygen. In which case, the discovery by Laird and Worcester (1956), that 

lime spalling can be combated by firing ceramics in a reducing atmosphere, may be 

due to the premature reaction of calcium carbonate with the clay minerals, rather than 

a slower alteration of CaC03, in the absence of oxygen. 

There exist several other approaches which may be adopted in order to avoid the re

hydration of CaO in fired ceramics (and therefore the undesirable affects of spalling), 

in addition to those suggested by Laird and Worcester (1956). The most commonly 

cited method is the addition of salt to the ceramic paste during its preparation. Salts 

may already be present in significant amounts in some natural clays which are utilised 

by potters (Arnold 1971). However, more commonly salts or salt water must be added 

to the clay to prevent spalling in this way (Rye 1976). Upon firing, the salts react with 

the CaC03 preventing its transformation into CaO (see equation below). The resulting 

compounds are relatively stable after firing and have no affect on the ceramic body. 

CaC03 + 2NaCI 
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In order to determine what affect the addition of salt has on the behaviour of 

calcareous nannofossils during firing, two additional firings were made, with saline 

Gault Clay briquettes. In the preparation of these briquettes, macerated Gault Clay 

was mixed with tap water saturated with household table salt. The briquettes were 

fired at maximum temperatures of 800 and 900°C in an oxidising atmosphere for one 

hour. These temperatures were chosen in order to determine whether the destruction 

of calcareous nannofossils at these temperatures in the previous experiments, was a 

result of the reaction of their CaC03 with the clay minerals of the Gault Clay (as 

suggested above), or due to their conversion to CaO and its subsequent re-hydration 

after firing. 

The analysis of smear slides, prepared from the resulting briquettes indicated that the 

addition of salt had no affect on the behaviour of calcareous nannofossil in Gault Clay 

which was fired to these temperatures. A very poorly preserved calcareous 

nannofossil assemblage, dominated by the genus Watznaueria was observed in the 

briquettes fired to 800°C, and the higher-fired samples were barren. These results 

seem to support the suggestion that the it is the reaction of CaC03 with the clay 

minerals of fired Gault Clay, rather than the post-firing re-hydration of CaO, which is 

responsible for the disappearance of calcareous nannofossils which was observed 

between 800 and 900°C in the above experiments. 
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5.4.8 Discussion and conseQuences for the analysis of calcareous nannofossils In 

ceramICs 

The results of these experiments have several consequences for the analysis of 

calcareous nannofossils from archaeological ceramics. Firstly, it is clear that 

calcareous nannofossils can be removed from ceramics during firing, at temperatures 

as low as 800 °C (Figure 5.10). This discovery casts doubt over the use of the 

presence/absence of calcareous nannofossils as a means of classifying ceramics. 

Although the temperatures at which calcareous nannofossils were destroyed during 

the firing of Gault Clay briquettes « 900 °C), may not be representative for all 

nannofossiliferous ceramics, these figures may indicate that a significant proportion of 

mediwn-fired archaeological ceramics may have once contained calcareous 

nannofossils, but were rendered barren as a result of high firing (Section 11.2). 

The differential alteration of the various groups of calcareous nannofossils in the fired 

Gault Clay samples, is suspected to be related to several factors, including their 

resilience to the physical stresses induced during and after firing, and the ease with 

which they can be identified in poorly-preserved assemblages. This discovery, has 

serious implications for the direct comparison of calcareous nannofossil assemblages 

from archaeological ceramics fired at different temperatures, as well as the 

applicability of quantitative biostratigraphic dating techniques (e.g. the Pliocene 

subzonal scheme of Driever 1988, Section 5.6.2.2) in the absence of conventional 

marker species. 

The degradation of calcareous nannofossil assemblages by progressive firing, which 

has been demonstrated in these experiments, results in a continual decrease in the 
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quality of information, which can be attained by their study. The main potential of 

calcareous nannofossils for the study of ceramics is their biostratigraphic utility 

(Sections 5.9), which can be used to determine the precise geological date of the raw 

materials of ceramic manufacture (Troja et al. 1996; Burnett and Young n.d.). The 

latter authors identified the raw material of a crudely fired Bronze Age sherd as the 

Early Cretaceous (Albian) Gault Clay by analysing its diverse, well-preserved 

calcareous nannofossil assemblage. However, in comparison, the heavily degraded 

assemblage of the Gault Clay briquettes, fired to 700°C in an oxidising atmosphere, 

in the experiments presented above (Figure 5.9), cannot be interpreted 

biostratigraphically with anywhere near the same level of precision. 

If calcareous nannofossils in ceramics are affected by the transformation of their 

CaC03 into CaO and its post-firing re-hydration to Ca (OHh as suggested above, then 

they are also likely to experience an associated size increase. This could affect the 

applicability of biometric biostratigraphic events, such as the important 'small 

Reticulofenestra interval' of Young el al. (1994), which is a period of the Late 

Miocene (Tortonian), during which the maximum diameter of coccoliths belonging to 

the nominate genus did not exceed 7 Jlm (Section AI.8.2.1), or Driever's (1988) size 

increase in large 'reticulofenestrid' coccoliths which takes place in the Early Pliocene 

(Section AI.8.3.1). 

In order to determine the extent to which the size of calcareous nannofossil specimens 

are affected by this volume expansion, 100 complete specimens of the species 

Watznaueria barnesae were measured in random fields of view from the smear slides 

of unfired Gault Clay and briquettes fired to a maximum temperature of 700°C in an 
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oxidising atmosphere. A mean of the various measurements in both samples, indicated 

that if a size increase had occurred, as a result of the volume expansion of these 

calcareous nannofossils after firing, it was very small and not of concern. 

An estimate of the maximum temperature in the firing of ancient ceramics can be 

attained by studying various physical, mineralogical or chemical properties (see Rice 

1987, 427-434 for a review). These 'archaeothermometric' techniques have distinct 

advantages and disadvantages, and are usually only applicable to the determination of 

specific temperature ranges, nevertheless they offer a means of attaining a rough 

figure of firing temperature. 

Despite the progressive alteration of calcareous nannofossil assemblages during the 

firing of ceramics, which has been demonstrated in the above experiments, their 

analysis has very little potential as a method for archaeothermometry, due to the 

nature of the changes which take place as well as the lack of knowledge about the 

state of the original calcareous nannofossil assemblages of archaeological ceramics. 

Nevertheless, the presence/absence of this group of microfossils may well be used to 

make simple inferences about the 'degree of firing' in certain circumstances. By 

considering the thresholds which were determined for the disappearance of calcareous 

nannofossils in oxidation and reduction fired Gault Clay (Section 5.4.6.3), it may be 

possible to infer that certain samples of archaeological ceramics were fired below a 

specific maximum temperature, depending upon the atmosphere of firing. 

Likewise, in coherent fabric groups which contain fossiliferous and non-fossiliferous 

(barren) samples it may be possible to use the presence/absence of calcareous 

nannofossils to indicate those samples which were lower, and those which were 



122 

Figure 5.15 The degradation of calcareous nannofossil during the experimental firing of Gault 

la ,a een in th EM. WatZllauer/a bamesae (a. and c.) and Zeugrlwbdotus erectus (b. and d.) 

from ault lay fired fit 600 ° (a. and b.) and 800 °C (c. and d.). cale bars = 1 ~m. 
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Figure 5.16 The broken surface of a Gault Clay briquette fired to 600°C in an oxidising 

atmosphere. om pare the clay vitrification and abundance and preservation of calcareous 

nannofo il p cimen to that in Figure 5.17 below. 
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Figure 5.17 The broken surface of a Gault Clay briquette fired to 800°C in an oxidising 

atmosphere. omparc the clay vitrification, and abundance and preservation of calcareous 

nannofo iI pecimens to that in Figure 5.16 above. 
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higher fired (Section 11.2). In this case, it may again be possible, by referring to the 

firing atmosphere (as determined macroscopically) to indicate a broad temperature 

range for nannofossiliferous and barren samples (e.g. < 800°C or > 800°C). 

However, as indicated by the above experiments, other factors in addition the 

maximum temperature of firing (e.g. the duration of the firing process and the firing 

atmosphere) are also important in determining the level at which calcareous 

nannofossils are destroyed, and therefore such broad inferences are likely to be less 

than accurate. 

5.5 Investigations into the behaviour of calcareous nannofossils during the use of 

ceramics 

5.5.1 Introduction 

In order to determine how calcareous nannofossil assemblages in archaeological 

ceramics may have been altered during usage, a set of simple experiments were 

carried out using fired Gault Clay briquettes. In Section 3.7, it was suggested that the 

direct heating of cooking wares and the corrosive properties of such commodities as 

oil, wine and vinegar, contained within storage wares, may affect the nature of 

calcareous microfossil assemblages in these types of ceramics. 

Three Gault Clay briquettes, fired to 600°C in an oxidising atmosphere, were placed 

in malt vinegar (pH 3), white wine and olive oil respectively, for one day, then dried 

in an oven at 30°C. In addition, one briquette was held directly above a naked flame 

for a period of 30 minutes and then allowed to cool. Calcareous nannofossil smear 

slides were prepared from the four treated briquettes, these were analysed in the 
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manner which is described in the firing experiments (Section 5.4.5), and the results 

were compared with those of the untreated, fired Gault Clay. 

5.5.2 Results 

The treatment of fired Gault Clay briquettes with vinegar resulted in the removal of all 

calcareous nannofossil specimens. This is to be expected, given the acidic nature of 

vinegar which readily dissolves calcareous matter. Immersing samples in olive oil and 

wine was found to have little affect on the calcareous nannofossil assemblage of the 

Gault Clay. 

It was surprising to find that the surface layer of the Gault Clay briquette which was 

held above a naked flame, contained a reasonably well-preserved calcareous 

nannofossil assemblage. By comparing the quantitative analysis of this sample with 

that of the untreated Gault Clay briquette (Figures 5.15 and 5.16,) it can be seen that 

the direct heating reduced the overall abundance and altered the relative proportions 

of the various groups of calcareous nannofossils contained within the briquette. Whilst 

a reasonably well-preserved assemblage was contained within the surface layer of the 

briquette, which became red-hot during the experiment, frequent episodes of continual 

heating such as that which may have taken place in antiquity are likely to have had a 

more severe effect on calcareous nannofossil assemblages in cooking vessels. 
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Figure 5.18 The overall abundance of calcareous nannofossils in Gault Clay fired at a 

temperature of 600°C for t hour, before and after direct heating above a naked flame for 30 

minute , a repre ented by the total number of specimens in 25 random fields of view. 
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Figure 5.19 The relative abundance of the various calcareous nannofossil structural groups in 

Gault Clay fired at a temperature of 600°C for 1 hour, before and after direct heating above a 

naked flame. 
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5.6 Calcareous Nannofossil biostratigraphy of the Mediterranean Neogene 

5.6.1 Introduction 

In order to interpret the geological age of the raw materials utilised in the manufacture 

of archaeological ceramics through the analysis of their calcareous nannofossil 

assemblages, it is necessary to review the various biostratigraphic zonations which 

have been proposed for this group of microfossils, and identify those schemes which 

are most suitable for our purposes. As outlined in Chapter 4, we are concerned, in the 

present report, with the late Neogene sediments, which occur extensively on Crete. 

There are numerous difficulties involved in the application of the 'standard' 

calcareous nannofossil zonations for this time period in the Mediterranean, as outlined 

below. 

5.6. 1 Applicability of the 'standard' zonations 

The world-wide 'standard' zonation for the entire Cenozoic Era is the compilation of 

Martini (1971), which includes 21 nannoplankton zones for the Neogene (NN I-NN 

21) and is based upon the data of Bramlette and Wilcoxon (1967) and Gartner (1969). 

An alternative standard zonation for this time period is that of Okada and Bukry 

(1980), which is a refined and coded version of the zonal and subzonal schemes of 

Bukry (1971; 1973; 1975), established for the routine examination of DSDP material 

(Schmidt 1973). 



Amaurolithus Primus (Bukry and Percival 1971) Gartner and Bukry (1975) 

Catinasler calyculus Martini and Bramlette (1963) 

Catinaster coa/itus Martini and Bramlette (1963) 

Ceratolithus acUIus Gartner and Bukry (1974) 

Ceratolithus ruwus Bukry and Bramlette (1968) 

Discoaster calcaris Gartner (1967) 

Discoaster druWi Bramlette and Wilcoxon (1967) 

Discoaster hamatus Martini and Bramlette (1963) 

Discoaster kuderi Martini and Bramlette (1963) 

Discoaster neoerectus Bukry (1971) 

Discoaster QuinQueramus Gartner (1969) 

Sphenolithus be1emnos Bramlette and Wilcoxon (1967) 

TriQuetorhabdulus carinatus Martini (1965) 
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Figure 5.10 Neogene calcareous nannofossil species which are rare, absent or atypically 

developed in the Mediterranean (Theodoridis 1984). 
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The zonations of Martini (1971) and Okada and Bukry (1980) are both based upon 

oceanic sediments and utilise extensively, the Last Occurrences (LOs) of calcareous 

nannofossil species (Raffi and Rio 1979). As such, they are not universally applicable, 

but provide a framework for finer, local subdivisions (Perch-Nielsen 1985b). Nowhere 

has this been more true than in the Mediterranean. Here, the use of the standard 

nannofossil zonations is "more or less restricted to several intervals" (Bizon and 

Muller 1977, 382). For example, Theodoridis (1984, 47) noted that "of the 14 index 

species Bukry (1975) used for the subdivision of the Miocene, eight are absent, 

atypical or extremely rare in the Mediterranean region" (Figure 5.20), and Raffi 

andRio (1979) were only capable of applying Bukry's scheme on a broad zonal level 

in their Pliocene DSDP material from Site 132 (Tyrrhenian sea). The Neogene 

interval of the standard zonations can also be difficult to apply elsewhere (Bizon and 

Muller 1977; Young 1990), for example, in the north-east North Atlantic (Martini 

1979) and the Norwegian-Greenland Sea (Muller 1976). 

The main reason for the limited applicability of the standard zonations in the Neogene 

of marginal seas and high latitude sediments is their reliance upon the open-marine, 

low-latitude species of Discoaster and the deep-water genera Ceratolithus and 

Amaurolithus. In general, representatives of Discoaster and 

CeratolithuslAmaurolilhus are rare « 1 %), in Mediterranean Neogene calcareous 

nannofossil assemblages (Driever 1988), and many important species, such as 

Discoasler neoereclus, Discoaster quinqueramus and Discoasler hamalus appear to 

be absent. Another difficulty is the atypical development of certain taxa, particularly 

discoasters, in the Mediterranean, as compared to the open-ocean (Theodoridis 1984). 

This causes "the uncertain classification of forms to one or another species" (Bizon 
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and Milller 1977, 382), and is likely to be a result of different ecological conditions 

and a "more regional development of nannofossil assemblages" (Milller 1978, 743). 

Further difficulties arise when attempting to apply the standard zonations to the 

Mediterranean on-land record, where discoasters and ceratoliths are even more scarce 

(Rio 1982), and the "problem of reworking is overwhelming" (Raffi and Rio 1979, 

143), making the last occurrences of nannofossil taxa very difficult to use (Schmidt 

1973). 

5.6.2 Mediterranean Neoiene calcareous nannofossil zonations 

It appears from the evidence provided by calcareous nannofossils, that the 

Mediterranean behaved as a "distinct planktonic biogeographic province" in the late 

Neogene (Rio et al. 1990,513). As such, it has been necessary for biostratigraphers 

working in the Mediterranean to make adjustments to the standard zonations or 

propose Mediterranean-specific schemes for this time period, based upon species 

"which are normally neglected in extra-Mediterranean biostratigraphy" (Rio 1982, 

326). 

Early calcareous nannofossil zonations of the Mediterranean Neogene were "rough 

and partial" (Theodoridis 1984, 50). Cati and Borsetti (1970) constructed a broad 

scheme for the Miocene based upon discoasters from on-land sections in central Italy. 

However, many of these have since been found to be preservational morphotypes of 

long ranging species, and as such, are unsuitable as markers. A similar mistake was 

made by Schmidt (1973), who proposed a broad subdivision of the Late Miocene and 

Pliocene of the southern Aegean area, into six interval zones and one assemblage 
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zone. Schmidt's scheme was based solely upon land-based sections from Crete, 

Rhodes, Kassos, Karpathos and Gavdos, and as such it should be directly relevant to 

the present study. However, many of his zones are also defined by so-called 

"preservational species" (Theodoridis 1984, 51), or other forms which are extremely 

rare in the Mediterranean. As one of the earliest detailed studies on calcareous 

nannofossil biostratigraphy from Crete and the southern Aegean, Schmidt (1973) is 

still of some use to this report as well as for the Mediterranean as a whole (Muller 

1978), and has experienced limited use by other biostratigraphers (e.g. Dermitzakis 

and Theodoridis 1978, eastern Crete). 

In order to date and correlate the extensive Neogene sediments penetrated by the first 

phase of deep sea drilling (DSDP) in the Mediterranean, the standard calcareous 

nannofossil zonations, based on open-ocean sediments, were modified by Bukry 

(1973), Stradner (1973) and Muller (1978). Bukry (1973) applied his own open-ocean 

zonation, developed for the analysis of oceanic DSDP material, to the Miocene and 

Pliocene sediments of Site 132, Leg 13, with varying success. Some samples could be 

dated to one or another of Bukry' s zones, but most of the material was given broader 

age assignments (e.g. "probably Late Miocene; Late Miocene to Early Pliocene; late 

Neogene", 823-827) due to "a provincial nannofossil suite with key species lacking" 

(Bukry 1973,823). The standard zonation of Martini (1971) was preferred by Stradner 

(1973) on Leg 13, and Muller (1978) on Leg 42A. However, both workers 

encountered difficulties in applying this low-latitude, open-ocean zonation to the 

sediments of the Mediterranean. Muller (1978) found ten of Martini's marker species 

to be rare, missing or sporadic in the Early Miocene and Late Miocene to Early 

Pliocene of the Mediterranean, and proposed alternative taxa that could be used to 
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recognise the boundaries of his various NN zones. Muller (1978) also reported the 

atypical shape of some species as well as heavy overgrowth on discoasters, both of 

which complicated the recognition of Martini's zones in the Mediterranean. However, 

she commented that "with regard to the whole assemblages, the zones are 

recognisable" (Muller 1978, 727). 

Ellis (1979) claimed to have successfully applied the zonation of Bukry (1973) to 

Miocene, Pliocene and Pleistocene sediments from the eastern Mediterranean sites of 

DSDP Leg 42A, as well as on-land Mediterranean stratotype sections. Contrary to the 

observations of many other biostratigraphers of the Mediterranean Neogene, Ellis 

stated that "open marine, warm water species of Discoaster are present in significant 

numbers, throughout the Miocene and Pliocene" and "numerous specimens of 

Ceratolithus and Amaurolithus occur in earliest Pliocene assemblages", indicating 

that "cool-water influences in the eastern Mediterranean ... have not appreciably 

diminished the value of low-Iatitiude nannoplankton zonation schemes" (1979, 401). 

By making several adjustments to the zonations of Bukry (1973; 1975), Ellis 

recognised all 13 zones and 19 of the 21 subzones for the Neogene period. 

Raffi and Rio (1979) reconfirmed the difficulties involved in using the genus 

Ceratolithus for Mediterranean biostratigraphy in their reassessment of the Pliocene 

and Pleistocene nannofossil biostratigraphy of DSDP Site 132, Leg 13 (Tyrrhenian 

Sea), which was studied initially by Bukry (1973). By assessing the validity of the 

various markers used in Martini (1971) and Bukry (1973; 1975), Raffi and Rio (1979) 

proposed a scheme which was rather similar to the standard zonations for the 

Pliocene, but achieved a finer subdivision of the Pleistocene period by utilising 
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several new datum events. They quantified the changes in abundance of various 

species through the Plio-Pleistocene by counting as many as 3000 specimens per 

sample and used the following as markers: the last common occurrence of 

Amaurolithus spp., the first common occurrence of Discoaster asymmetricus and the 

end of the dominance of small specimens in the population of Gephyrocapsa. This 

scheme represented the beginning of a more scientific approach to the study of 

Mediterranean Neogene biostratigraphy, which was continued by Driever (1984; 

1988), Theodoridis (1984) and Raffi et al. (1990), and has resulted in a surprisingly 

fine subdivision of the Pliocene and Pleistocene. 

Driever (1981) carried out a quantitative study of discoasters from Pliocene on-land 

sections on Crete and Sicily, and established changes in the relative abundance of the 

various species, in order to identify alternative events with which to subdivide the 

Pliocene period, due to the difficulties which were involved in determining the LO of 

Reticulofenestra pseudoumbilica and the absence of CeratolithuslAmaurolithus in 

these areas. By counting 100 discoasters per sample and using a simple but effective 

key which is discussed in Section 5.6.2.2, Driever (1981) divided his sections into six 

non-mutually exclusive units based upon the acmes of Discoaster asymmetricus and 

Discoaster tamalis, and the 'paracme' of Discoaster pentaradiatus (syn. Discoaster 

quintatus Driever 1988; Eu-discoaster misconceptus Theodoridis 1984). On their 

own, the six subdivisions are of limited correlative value, however "within a 

framework of additional biostratigraphic data ... these intervals may greatly refine 

biostratigraphy" (Driever 1981, 447). This is demonstrated in Driever's monograph of 

1988 (Section 5.6.2.2), in which he utilised several horizons based upon Discoaster 



Standards Mediterranean Specific Calcareous Nannofossil Zonations 

M&W 0&8 C&B Schmidt Muller Ellis Raffi and Rio Rio et at. 

Holocene NN21 CN IS £. inode}1 £. huxleyi MNN21.+b 
Emiliallia huxleyi 

Pleisto Late NN20 CNI4 G. ocecmica C. crista/us Gepln.rocapsa oceanica MNN20 

S. pul + sm Ge"" -cene NNI9 P.iocullosa E ovala Pseudoemilimria MNN1ge+f 

Early CN13 G. carib + £. ann lacunosa H. sell+C. mac MNN 18b+c+d 

D. brouweri C. pelagicus C. dtxic + D. br MNN 18+MNN 19. 

Late NNI8 D. brouweri D. penlaradialus 

NNI7 CN 12 Interval zone D. pentaradiaJus Discoaster D. penloradialfls MNNI6b/17 

NNI6 D. surculus D. JUrcll/us D. surculus surcullls 

Pliocene Interval zone D. lama/is D. tamalis MNN 16. 

Early NN IS CN II R. pseudollmbilica R. pse'lCloumbilica D. asym + S. "eo Reliculofenestra MNNI4/15 

Interval zone pseudoumbilca 
NNI4 CNIO D. asymmetricus C rugosus 

NN 13 C. amplir. Int. e. niJ!OSUS Amauro/ilhlls C. ntflOSUS MNN13 

NNI2 D. qui"queramus C. Iricorniculatlls C. acul + T. nlg delicatus Amaurolitmls spp. MNNI2 

Interval zone 

NNII CN9 D. l!tlTiabilis D. quillqueramlls A.primus 

Late D. berggrenii 

NN 10 CN8 D. pen/aradia/us D. penl. In!. D. co/caris D. "eo + D. bell 

D.phyllodlls D. alllaJros-
NN9 CN7 D. hamalus 

divaricalus Int. 

Miocene Middle 
NN8 CN6 c. coalihlS 

D. challe"geri 
! NN7 CN5 D. lellgler; D. /a/f(leri 

medill!'"QlleIiS 

NN6 D. erilis C. miopelagiClls 

NN5 CN4 S. heteromoroJ",s S. heleromorohlls -

Figure 5.21 Comparison chart of Mediterranean Neogene calcareous nannofossil zonations and the 'standard' open-ocean Neogene calcareous nannofossil 

zonations of Martini (1971) and Okada and Bukry (1980). 

...... 
VJ 
0\ 



137 

counts, along with data from 'reticulofenestrid' coccoliths, to establish a very fine 

subdivision of the Mediterranean Pliocene. 

In the Mediterranean Legs of the Ocean Drilling Project, which superseded the Deep 

Sea Drilling Project, further data has been presented on the calcareous nannofossil 

biostratigraphy of Mediterranean Neogene sediments, in particular through the work 

of Rio et al. (1990) on Plio-Pleistocene material from Sites 650-656 in the Tyrrhenian 

Sea. Using quantitative and biometric data, Rio et al. (1990) assessed the relevance of 

some 31 calcareous nannofossil marker events used by various authors to subdivide 

the Plio-Pleistocene period, and established those most applicable to the 

biostratigraphy of the western Mediterranean by using operational and quantitative 

definitions to produce an amended version of the Raffi and Rio (1979) zonation. 

In terms of resolution, the zonation of Rio et al. (1990) is identical to Raffi and Rio 

(1979), except in the Early Pleistocene, which was represented by the Helicosphaera 

sellii subzone of Raffi and Rio (1979) but has been subdivided into two subzones 

(MNN 19c and d). However, the events which were used to divide the zones were 

better defined and easier to establish using the quantitative data. In the present report, 

the Pliocene scheme of Driever (1988) is preferred to that of Rio et af. (1990) on 

account of its superior resolution, and its emphasis on the genera and species of 

'reticulofenestrid' coccoliths which dominate the calcareous nannofossil assemblages 

in the archaeological ceramics analysed in the present report (Appendix II). 

Nevertheless, a few of the markers featured in the zonation of Rio et al. (1990) are 

utilised here, in addition to some taxonomic definitions, such as that for the various 

species of Gephyrocapsa (Section AI.5). 
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5.6.2.1 Theodoridis (1984) 

One of the most important calcareous nannofossil references for the Mediterranean 

Miocene time period is the work of Theodoridis (1984). This study is one of the few 

monographs on Miocene nannofossils (Young et al. 1994) and presents a thorough 

revision of the helicoliths and discoasters, as well as a 'Mediterranean Miocene 

Zonation' (Figure 5.22) and an 'Integrated Miocene Zonation', for extra

Mediterranean regions. 

The Mediterranean Miocene zonation of Theodoridis (1984) is based upon material 

from DSDP cores as well as sections from Spain, Sicily, Malta and Gozo, Crete, 

Koufonisi, Zakynthos, Israel and Egypt. It contains 11 zones and some 21 subzones 

based on events in "several new, emended or hitherto neglected species" (Theodoridis 

1984, 48), and as such, represents a vast improvement upon the standard zonations, 

and other Mediterranean zonations for the Miocene. 

One of the genera which is utilised extensively in the zonation of Theodoridis (1984), 

is Helicosphaera, which is usually more abundant in the Mediterranean than in open 

ocean settings; the species of which are used to define seven biohorizons in the lower 

half of the Miocene. Theodoridis (1984) presented a comprehensive review of the 

structure, taxonomy and evolution of this genus as well as that of Discoaster, which 

he subdivided into 'Eu-discoaster' and 'Helico-discoaster' (not followed here). Both 

reviews have been used extensively for the identification of species in the present 

report, and the comprehensive Mediterranean Miocene range charts which 

Theodoridis (1984) presented, have been invaluable as a means of supplementary 

information where marker species are absent. One drawback of the zonation of 
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Standard Zonations Mediterranean Miocene Zonation 

:\lartini and Okllda and Bukry 
Worsley 

Zone Subzone 

PLIO Zanel. NN 12 N 10 C. leploporus M 

C. leptoporus 
C. leplopurus MB 

Mess. b C. leptoporus MA 

11 N9 
R. rotaria 

A.primus 
a 

C. pelagicus 

Tort. 
NN 10 N8 

G. r(JIlI/a 

M convallis 
D. penlarczdi"tus 

NN9 CN7 
D. pseudovariabilis 

D. calcar is D. hamalus 
M 

NN8 CN6 D. bellus 
I 

D. boll;; 
0 

NN7 b 
D. kllgleri 

- D. exilis 
E 

H intermedia err. N5 
NN6 a H orientalis E 

H walberst01:fensis 

NN5 CN4 D. mllsicus 

H. waflrans 

S. heteromorphus H perch-nielseniae 

E. signus 
ang. NN4 N3 

H obliqua 

H ampliaperta 

igur 5.22 Th Medit rranean Miocene calcareou nannofo sit zonation ofTheodoridi (1984). 
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Theodoridis (1984) is that it does not deal with the plexus of 'reticulofenestrid' 

coccoliths which are very dominant in late Neogene assemblages, especially those 

from archaeological ceramics. For this purpose, the extra-Mediterranean data of 

Backman (1980), Flores (1985), Young (1990), Gartner (1992), Mock and Bralower 

(1993), Takayama (1993) and others, must be considered for this taxonomic group 

(Section Al.8). 

5.6.2.2 Driever (1988) 

The zonation scheme of Driever (1988) represents the state-of-the-art in 

Mediterranean Pliocene biostratigraphy (Figure 5.23). Using quantitative data 

extracted from the record of Discoaster and 'reticulofenestrid' coccoliths in samples 

of on-land sections from Crete and Sicily, Driever defined 25 biohorizons, which in 

addition to the LOs of Sphenolithus spp. and Calcidiscus macintyrei, were used to 

produce a very detailed subzonal revision of Martini (1971). 

Driever's (1988) scheme features 14 interval zones for the Pliocene Epoch, as 

opposed to the eight of Bukry (1973) and seven of Martini (1971), Raffi and Rio 

(1979) and Rio et al. (1990). In the Lower Pliocene, Zanclian stage, from which the 

raw material of many of the pottery samples in the present report are suspected to 

have come (Sections 11.2 and 11.3), the assignment of samples to one or more of the 

five subzones can be facilitated by establishing the relative abundance of the various 

'reticulofenestrid' species (Section A1.8) and the comparison of this to Driever's 

(1988) charts. Two important datum events for this time period are the change in 

dominance of large reticulofenestrids (> 5 J.1m), from Dictyococcities antarcticus to 
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Standard Zonation-.! Mediterranean Pliocene Subzonal Scheme 

\Iarlini and kRda anti Bukry Zone ubzone Event and Date 
Wonle) ."-

Pleisto P.lacunosa Crenalilhus E. ovala NN 19B 
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d13 (1.9 MA) 

D. hrollweri D. brouweri 
d12 (2.]5 MA) 

NN 18 (NN 18) NN 18A 

dl1 (2.4 MA) 

I\NN 17? / NN 16-17F 

D. brouweri NN 16-17E 
dl0 (2.6 MA) 

p 
N 12 D. slircu/liS D. surculu d7 (2.9 MA) L NN 16-17D 

I 
NN 16 (NN 16-17) 

0 NN 16-17C n7 (3.2 MA) 

d6 (3.4 MA) 

E 
NN 16-]7B 

NN 16-17A sl (3.5 MA) 

E 15 (3.6 MA) 
NN 15 N II Reliculofenestra NN 14-15B 

pseudoumb ilica 
d3 (3.7 MA) 

(NN 14-15) NN 14-15A 
NN14 

NN 12-13C d2 (3.8 MA) 

C. ruga liS 
A maurolithlls 

13 
fri oniell/allis 

A. delicatus NN 12-13B n2 (4.1 MA) 
NlO 

(NN 12-13) 

nl (4.5 MA) 
NN 12 NN12-13A 

Figur 5.23 Part t. The Mediterranean Pliocene calcareou nannofossil zonation of Driever 

(1988) with the tandard open-ocean zonations for comparison (nt-mt = nannofo sit datums). 
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n I Change in the large-size coccoliths from predominantly D. antarcticus to R. pseudoumbilica. 

n2 Size increase of R. pseudoumbilica, increase in the frequencies of R. minutu/a and P. 
lacunosa, decrease of R. minuta and appearance of rare small Gephyrocapsa sp. 

n3 Increase in frequency of small Gephyrocapsa sp. 

n4 Further increase in frequency of small Gephyrocapsa sp. 

n5 Almost complete disappearance of R. pseudoumbilica, preceded by the appearance of 
subcircular P. lacunosa. 

n6 First frequency increase of small Gephyrocapsa sp. 

n7 Second frequency decrease of small Gephyrocapsa sp., small R. minuta and large R. 
minutula. 

n8 Second frequency decrease of small Gephyrocapsa sp. 

n9 Low frequency of R. minuta, increase in R. minutula. 

n 10 Increase of R. minuta, decrease of R. minutula and third but gradual increase of small 
Gephyrocapsa sp. 

n II Further increase in frequency of small Gephyrocapsa sp. 

nl2 Appearance of larger Gephyrocapsa sp. (G. caribbeanica). 

d I Decrease in frequency of D. variabilis and increase of D. surculus. 

d2 Increase in frequency of D. asymmetricus and increase in frequency of D. brouweri. 

d3 Increase in frequency of D. tama/is. 

d4 First decrease in frequency of D. pentaradiatus. 

d5 Temporary decrease in frequency of D. surculus, further increase in frequency of D. tamalis. 

d6 Reappearance of D. pentaradiatus. 

d7 Top of the acmes of D. asymmetricus and D. tamalis. 

d8 Base of the short-term reappearance interval of D. asymmetricus and D. tamalis. 

d9 Virtual disappearance of D. asymmetricus and D. tamalis. 

d I 0 Base of the stratigraphically highest acme of D. pentaradiatus. 

dll Decrease in the total abundance of Discoaster and virtual disappearance of D. pentaradiatus 
and D. surculus. 

dl2 Base of the acme of D. triradiatus. 

d13 Top of the acme and LO of D. triradiatus. 

sILO of Sphenolithus. 

mILO of Calcidiscus macinlyrei. 

Figure 5.23 Part 2. Key to calcareous nannofossil datums of Driever's (1988) Pliocene zonation. 
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Reticulofenestra pseudoumbilica (or the last common occurrence of D. antarcticus), at 

the NN 12-13 AlB boundary, and the size increase of R. pseudoumbilica at the NN 

12-13 B/C boundary. These can be established by counting 30 large specimens of 

Reticulofenestral Dictyococcities and measuring 30 specimens of R. pseudoumbilica, 

respectively. This sort of approach represents a vast improvement to biostratigraphy in 

those assemblages where important marker species are rare and the nannoflora is 

dominated by 'background taxa' such as the reticulofenestrids, for example, the 

assemblages which are recorded in the smear-slides of archaeological ceramics in the 

present report (Appendix II). 

Although specimens of the genus Discoaster are extremely rare in much of the 

archaeological and geological material which is analysed in this report, thorough 

searching has revealed small numbers of individuals in some samples. By making 

simple counts of the numbers of specimens belonging to the various species of the 

genus Discoaster in Pliocene assemblages (Section 5.1 0), it has been possible to apply 

some of the patterns of Discoaster relative abundance which were established by 

Driever (1988). The utilisation of these, and other patterns of relative abundance, to 

interpret calcareous nannofossil assemblages from archaeological ceramics, must 

always be undertaken in conjunction with other more conventional stratigraphic 

markers, as it is suspected, that several processes have the potential to alter the 

composition of calcareous nannofossil assemblages in ceramics (Chapter 3, Section 

5.4. and 5.5). 
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5.7 Intra-Mediterranean variation of Neogene calcareous nannofossils 

Despite the cosmopolitan distribution of calcareous nannofossils, some mmor 

differences do exist between the late Neogene assemblages of the east and west 

Mediterranean. For example, in the Miocene, Miiller (1978) has reported that 

Sphenolithus belemnos is missing from some parts of the western Mediterranean, yet 

it is common in the eastern Mediterranean. In addition, Rio et al. (1990) found 

CeratolithuslAmaurolithus to be poorly represented in ODP cores from the western 

Mediterranean, whereas Ellis (1979) working on DSDP material from the eastern 

Mediterranean, claimed that numerous specimens of this group are present. 

Muller (1978) suggested that different depositional conditions in various parts of the 

Mediterranean during the latest Miocene (Messinian) stage may have been responsible 

for variations in calcareous nannofossil assemblages, due to the isolation of some 

areas. However, these differences are not well established and are likely to be in the 

form of variations in the abundance and diversity of assemblages as well as the degree 

of reworking. 

In the Upper Pliocene to Recent, differences exist between the calcareous nannofossil 

assemblages of the east and west Mediterranean, for example, in the terminal record 

of the genus Discoaster. Discoasters tend to be extremely rare or missing in the 

uppermost Pliocene (NN 16-18) of the western Mediterranean (Muller 1978; Bizon 

and Muller 1977), which has reduced the utility of their sequential extinction in this 

area (Rio et al. 1990). This appears to be the result of a greater influence of cooler 

North Atlantic water in the western Mediterranean since the onset of the glaciation in 

the northern hemisphere, at around 3 MA, which has also been responsible for the 
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larger and better evolved marine fossils in the eastern Mediterranean in general (Bizon 

and Muller 1977). 

These slight biogeographical differences which exist between the equivalent-aged 

calcareous nannofossil assemblages of the east and west Mediterranean, although not 

insignificant, are too few in number and ill-defined, to be of any use for the 

provenancing of archaeological ceramics (Section 5.9.2). On the other hand, it is 

possible that the far greater dissimilarities which occur between the late Neogene 

Mediterranean and open-ocean calcareous nannofossil assemblages (Section 5.6.1; 

Figure 5.20), may be useful for identifying extra-Mediterranean material, although 

this is beyond the scope of the present report. 

5.8 Analysis of other calcareous nannofossil taxa 

Biostratigraphically-significant late Neogene calcareous nannofossil taxa, such as the 

species of Discoaster, AmaurolithuslCeratolithus and Triquetorhabdulus, are 

generally very rare in the assemblages of Bronze Age archaeological ceramics which 

have been analysed in the present report. In fact, members of the latter two genera are 

almost entirely absent in the study material, having only been encountered on one or 

two occasions. Therefore, it has been necessary to utilise events in the late Cenozoic 

record of several other taxa, including the reticulofenestrids, sphenoliths, helicoliths, 

lopadoliths and members of the calcareous nannofossil family Coccolithaceae, in 

addition to the scanty information provided by the more conventional markers, to 

interpret some samples. 
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In order to establish the way in which these less important, but numerically more 

frequent, calcareous nannofossils can be used for biostratigraphy, a thorough review 

has been made of the range, biometry and variations in abundance of the various taxa, 

by utilising all available literature on Neogene Mediterranean calcareous nannofossils, 

in addition to important studies from extra-Mediterranean areas. This discussion is 

presented in Appendix I. 

5.9 Approach to studying archaeological ceramics using calcareous nannofossils 

5.2.1 Description 

By analysing the calcareous nannofossil assemblages in smear slides of archaeological 

pottery, it is possible to describe ceramics according to the preservation and total 

abundance of nannofossils, the occurrence and relative abundance of particular taxa, 

and the geological age or nannofossil 'zone' of which the assemblage is indicative. 

The procedures adopted in this study for the routine analysis of calcareous nannofossil 

smear slides from archaeological pottery are outlined in Section 5.10, and descriptions 

of the calcareous nannofossil assemblages in all of the analysed pottery samples are 

presented in Appendix II. 

5.2.3 Classification 

Considering the range of processes which have the potential to remove calcareous 

nannofossil assemblages from archaeological ceramics, from the time of clay 

procurement until their analysis under the microscope (Chapter 3, Section 5.4 and 
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5.5), it is unWIse to classify samples using the presence/absence of calcareous 

nannofossils. Likewise, it is inadvisable to group archaeological ceramics by the 

abundance, preservation or overall composition of their calcareous nannofossil 

assemblages; a problem encountered with the work of Troja et al. 1996 (Section 

2.3.1.3). A more reliable approach, which may be used to infer similarity or 

dissimilarity between samples of nannofossiliferous pottery, is the interpretation and 

comparison of their assemblages in terms of the calcareous nannofossil zone/subzone, 

geological period or date of which they are indicative (Sections 11.2 and 11.3). As 

with all methods of grouping and classifying archaeological ceramics it is imperative 

to consider other compositional data, as well as any information pertaining to the 

technology of pottery production. 

5.9.2 Proyenaoce 

The biostratigraphic interpretation of calcareous nannofossil assemblages from 

archaeological ceramics, outlined above, can be used to relate the geological age of 

the raw materials used in ceramic production, to deposits of equivalent aged 

sediments (Burnett and Young n.d., Section 2.3.2.5). Calcareous nannofossils are not 

well-suited to the interpretation of palaeoenvironment, and as discussed in Section 

5.1, their distribution is very uniform over large areas, such as the Mediterranean 

(Section 5.7), which rules out a biogeographical approach to provenancing ceramics. 

The success with which calcareous nannofossils can be used to provenance ceramics 

in this way is highly dependent on the precision of the biostratigraphic interpretations 
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based upon them, which in turn, is related to the state of preservation, abundance and 

diversity of the assemblage. 

5.9.3 Iechnolo~y 

Calcareous nannofossils are not particularly applicable to the routine analysis of 

ceramic technology. However, they can be used to determine the geological date of 

calcareous material added as temper in pottery (Sections 11.2 and 11.3), and their 

occurrence has been utilised to confirm the admixture of marine and non-marine raw 

materials in Section 11.4. In the light of the experiments which are presented in 

Section 5.4, the presence/absence of calcareous nannofossils may only be used to 

make very crude interpretations of the degree offiring in ceramics (Section 5.4.8). 

5.10 Procedures for logging and dating calcareous nannofossil smear slides of 

archaeological pottery 

5.10.1 Introduction 

The following section outlines the procedures which have been followed, during the 

logging of calcareous nannofossil smear slides of archaeological pottery in the present 

report and discusses the applicability of standard biostratigraphic techniques to 

ceramic assemblages. 
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5.10.2 The' 100-counts' 

In order to determine the relative abundance of the various calcareous nannofossil 

taxa in the assemblages from archaeological ceramics, a count of 100 specimens was 

made for each slide. It was decided to count 100 specimens, rather than the usual 

number of 200, because of the extremely low abundance of calcareous nannofossils in 

many of the samples. The binomial error in a count of 100 specimens is much greater 

than that for 200 (Dermitzakis and Theodoridis 1978), however, the results produced a 

reasonably accurate indication of the relative abundance of the various taxa in the 

assemblages when presented as semi-quantitative categories. 

Due to the dominance of 'reticulofenestrid' coccoliths and the low proportion of other 

groups of calcareous nannofossils in the smear slides of archaeological ceramics, 

modifications were made to the semi-quantitative scheme of the above authors, in 

order to introduce more categories for taxa scoring < 20 % in the 100 counts (see 

below). Although these labels have a somewhat different meaning in terms of relative 

abundance to some other authors, comparisons can still be made between the relative 

abundance of two or more species in the same assemblage, such as Reticulofenestra 

minuta and Reticulofenestra minutula in the Pliocene, in order to utilise the results of 

Driever (1988) and others. 

All of the specimens which were encountered during the 100 calcareous nannofossil 

counts were measured to the nearest 0.5 f.lm, using an eyepiece graticule. These 

measurements were necessary in order to classify specimens of Reticulofenestra, 

Dictyococcities, Calcidiscus and Coccolithus into their various species, as well as to 
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date samples in relation to size increases or decreases of certain taxa (e.g. the SRI, 

Section AI.8.2.1). 

Extremely abundant (EX): > 40 % oftotal nannofossil assemblage 

Very abundant (VA): 21-40 % 

Abundant (A): 11-20 % 

Common (C): 6-10 % 

Few (F): 2-5 % 

Rare (R): < 2 % 

Present (P): species which did not score in relative abundance counts 

but which were observed during extemded searching 

5.10.3 Apres-counts 

Due to the scarcity of stratigraphically important taxa, such as Discoaster, 

Ceratolithus and Amaurolithus, in the archaeological samples which are analysed in 

the present report, a thorough search was carried out, after the completion of the 100-

counts, for these and any other very rare calcareous nannofossils. All new taxa, as 

well as any significant specimens of those taxa which had already been encountered in 

the counts, were recorded and measured during closely-spaced traverses of the rest of 

the slide. In some low abundance samples, this procedure was not carried out, as the 

whole slide had to be covered in order to count 100 specimens. This searching 

revealed many important forms which were a minor component of the assemblage and 

would otherwise have been missed. These taxa are labelled as 'Present' (P) in the 

assemblage descriptions (Appendix II). 

During the apres-counts, additional specimens of large reticulofenestrid coccoliths 

were counted and measured, in order to orient Early Pliocene samples with respect to 
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the change in relative abundance between Reticulofenestra pseudoumbilica and 

Dictyococcities, as well as the size increase of the former, which are documented by 

Driever (1988) and used as markers in his zonation scheme. 

In a few Pliocene samples, in which well-preserved discoasters occurred in significant 

numbers, a simple count was made of the various species using the method of Driever 

(1981). This helped to orient these samples in relation to his six non-mutually 

exclusive units, based upon the relative abundance of discoasters in the Pliocene 

(Section 5.6.2). 

5.10.4 Preservation and abundance estimates 

Rough qualitative estimates of the overall abundance and preservation of the 

calcareous nannofossil assemblages in the various samples were made in order to 

highlight those samples which were particularly rich or poor in calcareous 

nannofossils, as well as those in which the calcareous nannofossil assemblages were 

very well preserved or badly preserved. 

5.10.5 The reliability of FOs. LOs. and the relative abundance of calcareous 

nannofossils for biostrati~raphically inte[pretin~ floras from archaeolo~ical ceramics 

In attempting to interpret the calcareous nannofossil assemblages of archaeological 

ceramics using conventional biostratigraphic techniques, it is necessary to be aware of 

the many processes which may alter the assemblage at various stages in its history 

(Chapter 3). Of particular importance is the potential of processes such as firing 
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(Section 5.4) and post-depositional alteration to remove delicate and rare taxa from 

the assemblage, as well as that of contamination during clay preparation and clay 

mixing, which may add anomalous specimens to the assemblage. 

Considering these potential sources of bias, it is necessary to weigh up the reliability 

of the numerous lines of evidence provided by the calcareous nannofossil assemblage, 

when attempting to interpret a sample biostratigraphically. For example, it would be 

unwise to use the absence of a species to indicate a date prior to its FO or after its LO, 

when the presence of another more reliable species indicates an earlier or later date. It 

is also important to be aware of any signs of reworking and consider the overall 

preservation and abundance (Section 5.10.4), in order to determine whether a 

particular species may be absent due to etching, or may have an extended range as a 

result of reworking or contamination. When utilising the relative abundance of various 

taxa, such as in the scheme of Driever (1988) which is applied in this study, equal 

caution should be taken and consideration of any visible bias must be made. 

Quantitative calcareous nannofossil data preferably should be used to supplement the 

presence of other biostratigraphic markers, wherever possible, because of the potential 

alteration of the assemblage composition which may have taken place. 
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6 Foraminifera 

6.1 Introduction 

Foraminifera are minute, dominantly manne, protozoa with a mineralised, 

agglutinated or less commonly organic shell or 'test', enclosing an amoeboid body of 

continuously streaming, minutely granular, reticulose cytoplasm which has many 

delicate anastamosing pseudopodia (Figure 6.1). These single-celled marine animals 

can be subdivided into two broad groups based upon their life habit. These are, the 

planktonic (free floating) and benthic (bottom dwelling) foraminifera. 

Planktonic foraminifera have a widespread latitudinal distribution within the world's 

oceans, which is strongly affected by water temperature, nutrients and ocean currents. 

Benthic foraminifera, on the other hand, have a less cosmopolitan distribution which 

is related to substrate parameters, depth and position on the ocean floor, as well as the 

availability of oxygen and the supply of nutrients. Benthic foraminifera can be 

subdivided into two groups, depending upon the structure of their test wall. 

Calcareous benthic foraminifera (sometimes just referred to simply as 'benthic 

foraminifera') have a simple, perforate, single or multi-layered calcite (or more rarely 

aragonitic) test, whereas 'agglutinated foraminifera' have a test constructed of mineral 

grains (collected by the organism), which are bound in a calcareous or proteinaceous 

cement (Figure 6.1). 

Within the geological record, only the mineralised tests of foraminifera and their 

chitnous inner linings are preserved, as the soft cytoplasm quickly decays after death. 
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Foraminiferal tests are common in many types of argillaceous marine sediments, as 

well as biogenic limestones and chalks, from the Cambrian to Recent. The first 

foraminifera had a benthic life habit and it was not until the Middle Jurassic that 

planktonic foraminifera evolved. 

Fossil foraminifera are subdivided into 14 orders on the basis of their test composition 

(calcite, aragonite, silica, proteinaceous and agglutinated) and ultrastructure 

(microcrystalline, hyaline or agglutinated), as well as the number and arrangement of 

layers, and the presence of pores (Loeblich and Tappan 1992). Of these, six represent 

the calcareous benthic foraminifera, four represent the agglutinated foraminifera, one 

contains all planktonic foraminifera (order Globigerinida), and the other three are 

minor orders which contain aragonitic and proteinaceous forms. Within these orders 

the foraminifera are classified by the morphology of their tests (e.g. overall shape of 

test, number and arrangement of chambers, type and degree of coiling), as well as the 

nature of specific features (e.g. the number and position of apertures, the nature of any 

surface ornament, the presence of keels, spines) Figure 6.1. 

Foraminifera were one of the earliest groups of microfossils to be studied, and as a 

result some 4000 or so genera have been established since the description of Ammonia 

by Van Luenhock in 1772 (Loeblich and Tappan 1992). Fossil foraminifera are an 

extremely useful tool for biostratigraphy (especially planktonic forms), the 

interpretation of palaeoenvironment (particularly benthic foraminifera) and the 

reconstruction of oceanographic phenomena. The importance of foraminifera as a 

means of dating and correlating sediments has, like in other microfossil groups, 

fuelled intensive research since the 1950's, due to their widespread use in the oil 
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Figure 6.1 The biology and morphology of foraminifera. Living planktonic foraminifer (A), 

planktonic foraminiferal test (B), agglutinated foraminiferal test (C), elongate biserial test (D), 

globular trocho piral te t (E), elongate tubular agglutinated test (F), tubular planispiral test (G), 

biconvex trocho piral planktonic foraminiferal test with aperturallip and keel (umbilical view H, 

peripheral view I). Scale bars = 1 mm (A and D-G), 0.5 mm (B, C and H). After Brasier (1980) 

and Hayne (1982). 
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industry, as well as a means of studying the deep ocean cores of the DSDP and ODP 

expeditions. 

The study of living foraminifera is almost as old, and has developed in tandem with 

the study of foraminifera within micropalaeontology. Good accounts on the biology of 

Recent foraminifera can be found in Douglas (1979), Lee and Anderson (1991), 

Murray (1991) and Lipps (1993) as well as the 'Treatise on Invertebrate 

Palaeontology' by Loeblich and Tappan (1964) which deals with this group. Fossil 

foraminifera are also dealt with in Loeblich and Tappan (1964), but more up to date 

accounts of their morphology, classification and biostratigraphy can be found in Blow 

(1979), Haynes (1982), Bolli et al. (1985) and Hemblen et al. (1990). 

6.2 The occurrence of foraminifera in archaeological ceramics 

Foraminifera are one of the most common groups of microfossils which occur in 

archaeological ceramics (Davis 1951; Riley 1981; 1983; MacGillivray et al. 1988; 

Day 1991; Whitbread 1995; Vaughan et al. 1995; Troja et al. 1996; Stilborg 1997; 

Burnett and Young n.d.; Riley et al. n.d.), and are present in many of the thin sections 

which have been analysed in the present report. They occur mainly in those ceramics 

which contain a fair amount of fine calcium carbonate in the groundmass, i.e. 

'calcareous fabrics', but can also be present in 'non-calcareous' ceramics (Section 

11.2). 

Foraminifera may appear in several components of a ceramic thin section. Most 

commonly, they occur as isolated inclusions within the clay matrix, however it is 

often possible to observe foraminiferal tests and their remains within clay mixing 
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(Stilborg 1997; Riley 1981), or other larger aplastic inclusions (Figure 6.2). In the 

present report foraminifera have been observed in calcite inclusions and, more rarely, 

within fragments of chert. In addition, isolated occurrences of foraminifera within clay 

pellets and grog (inclusions of crushed pottery), have been noted (Figure 6.2). It is 

possible for foraminifera to appear in more than one component within a single thin 

section, for example, where ceramics are tempered with a microfossiliferous material, 

and some tests have broken free to form separate inclusions in the matrix. One thin 

section which was analysed in the present report (Kn 92/53), contained foraminifera in 

three different components; within the clay groundmass, as part of several calcite 

inclusions, and within a piece of grog. It is very important to consider the context in 

which foraminifera appear within ceramics, as this has a direct influence on the type 

of information which can be attained through their study. 

In thin sections of archaeological ceramics, foraminifera appear as complex, 

chambered, calcite structures (Figures 6.2 and 6.3). They are usually unmistakable, 

except when poorly-preserved, and have a great range of morphologies. A single 

foraminifer may appear very different, depending upon its orientation relative to the 

section, because of the effect of taking a two-dimensional slice of a complex three

dimensional structure (Figure 6.3). This effect, which also presents problems for other 

techniques of ceramic analysis (Riley 1984), makes the identification of foraminifera 

in thin section rather difficult. 

Within the study of micropalaeontology, foraminifera and other larger calcareous 

microfossils are usually isolated from rock and sediment samples, in order to identify 

them as three-dimensional specimens. Whilst it is also possible to isolate well-
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preserved foraminifera from vitrified archaeological ceramics in this way (Section 

6.5), the quantity of material which must be destroyed in the process is far too great 

(Burnett and Young n.d.). 

Nevertheless, it is sometimes possible to identify foraminifera to genus (MacGillivray 

et al. 1988; Troja et al. 1996; Alaimo et al. 1997) and even species level (Riley et al. 

n.d.) in thin sections of archaeological ceramics, if a specimen has been favourably 

sectioned so that particular, unmistakable features of its test are represented (Figure 

6.3), or several different sections of one form occur in the same sample, so that an 

impression of its three-dimensional morphology can be attained. Thin section analysis 

is the only available method of studying foraminifera in certain other situations. For 

example, Sliter (1989) has established a detailed 31-part, Cretaceous planktonic 

foraminiferal zonation scheme from thin sections of indurated carbonate rocks of the 

circum-Pacific margin, which achieves a mean stratigraphic resolution of 

approximately two million years by using a series of instantly recognisable primary 

species as well as the size, diversity and morphology of the entire assemblage. 

The late Neogene planktonic foraminifera which appear in ceramic thin sections of 

Bronze Age archaeological ceramics in the present report, are much less distinctive 

than the ornate Cretaceous forms which characterise Sliter's zonation. However, many 

of their morphological features can be identified (e.g. wall structure, pro loculus, 

aperture) and a genus level identification can usually be made. Benthic foraminifera 

are equally common in many of the thin sections which are analysed in the present 

report, and can be more distinctive than planktonic foraminifera (Figure 6.3). Because 

of the greater range of morphologies in late Neogene benthic foraminifera, compared 
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A B 

c D 

Figure 6.2 The occurrence of foraminifera in Bronze Age archaeological pottery from Crete. 

Within the clay matrix of Kn 95/187 (A and B), within a calcareous inclusion in sample Kn 

95/382 (C) and within the clay matrix of a piece of 'grog' in Kn 92/53 (D). A = PPL, B, C and D = 

XP. Field of view = 0.5 mm (A and B), 1.5 mm (C and D). 



160 

A B 

c D 

Figure 6.3 The identification of foraminifera in thin sections of Bronze Age archaeological 

pottery from Crete. Differential representation of a single species of foraminifera in thin sections 

Kn 95/187 and Kn 92/13 (A and B), and well-preserved benthic foraminifera in Kn 95/238 and 

Kn 95/187 (c. Stilostomella adolphina and D. Bolivina spalhulata). All pictures XP. Field of view = 

O.5mm. 
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to planktonics, it is much easier to identify specimens in thin section to genus level 

and beyond. 

Despite the difficulties which are involved in identifying foraminifera in thin section, 

this is by far the most suitable method of analysing these microfossils from 

archaeological ceramics, as large quantities of original artefacts are not normally 

available for destruction, whereas ceramic thin sections often exist. The analysis of 

foraminifera in thin section has been applied extensively in the present report, in order 

to characterise, provenance and infer the technology of archaeological ceramics 

(Section 6.7). 

6.3 The preservation of foraminifera in thin sections of Bronze Age 

archaeological ceramics from Crete 

Foraminifera can be preserved in many ways within thin sections of archaeological 

ceramics. Simple observations of their preservation have been made by Riley (1981) 

and Troja et al. (1997). However, a more detailed study of the types and variation in 

the preservation of foraminifera within archaeological ceramics can reveal useful 

information pertaining to their origin, as well as the history of the artefact (e.g. Davis 

1951). 

Foraminiferal tests are commonly composed of calcite and, in the majority of cases, 

this original calcareous structure is retained in thin sections of archaeological 

ceramics. Thus, for example, it is possible to identify the cancellate, macroporous wall 

structure of planktonic foraminifera belonging to the genus Globigerina, the smooth, 

microperforate wall of the genus Globorotalia, as well as features such as the 
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gametogenic calcification of foraminiferal tests. However, in certain circumstances 

the original calcite wall of a foraminifer may be altered, replaced, or totally removed, 

so that its initial microstructure is destroyed. 

Within the thin sections of Bronze Age archaeological ceramics which are analysed in 

the present study, foraminiferal tests can be replaced by micritic calcite, a single 

crystal of calcite, microcrystalline quartz, or may be represented by a 

characteristically shaped void where the mineralised test has been removed (Figure 

6.4). The internal chambers of a foraminiferal test may also be infilled in various 

ways; by micrite or by sparry 'dog tooth' calcite, growing from the internal surface of 

the test (Figure 6.4), by interlocking equant crystals of calcite or quartz, by a single 

continuous crystal of calcite or quartz, or a combination of the above. 

Dark red, brown and opaque black organic matter may infill the chambers of 

foraminifera, and can be found associated with their tests in many ways. This material 

represents the oxidised remains of organic structures which were attached to the test 

during the life of the foraminifera. The amorphous organic matter, which can surround 

the external surface of the test in a discrete layer, or may appear as a less distinct 

'staining' within the clay matrix, is thought to represent the oxidised protoplasm of 

the dead foraminifer. Organic matter may also stain the calcareous walls of 

foraminiferal tests or calcite which infills the chambers, but is more commonly found 

as discrete bodies or membranes. As with the preservation of ostracods in thin 

sections of archaeological ceramics (Section 7.3), oxidised organic matter ofthls kind 

is often in the form of variable sized, black opaque spheres. These can occur 

singularly, but usually appear in number and may completely fill the chambers. This 
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A B 

c D 

Figure 6.4 The pre ervation of foraminifera in thin ections of Bronze Age archaeological 

ceramics from Crete. Total calcite preservation in Kn 92/53 (A), total void in Kn 92/13 (B), 'dog 

tooth' parry calcite growth in Kn 86/5 (C) and a biserial microforaminifera cf. Bolivilla sp. in 

Kn 86/13 (0). A and B = XP, C and D = PPL. Field of view = 0.15 mm (A and C), 0.5 mm (B and 

D). 
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is likely to have come from the chitinous organic membranes which coat the internal 

surface of many foraminiferal tests. These tough, continuous linings can be observed 

intact, within the chambers of some thin sections of foraminifera, or may have 

contracted and appear detached from the calcite wall. 

In some specimens in which the mineralised test wall has been removed, all that is left 

of the foraminifer is its internal organic lining (Figure 6.4). These membranes, which 

reflect the overall morphology of the test, are often found in acid digested residues, 

prepared for the study of organic microfossils (Section 9.1), and have been termed 

'microforaminifera' by Wilson and Hoffmeister (1952). Microforaminifera are not 

particularly common in the ceramic thin sections which have been analysed in the 

present report. However, where they do occur, it is often possible to identify the 

foraminiferal genus to which they belong (Figure 6.4). Microforaminifera have also 

been liberated from samples of archaeological ceramics in the present report, and they 

are discussed in Section 9.2. 

There are several factors which may affect the state of preservation of foraminifera 

and other calcareous microfossils in archaeological ceramics (Chapter 3). One of the 

most important processes in this respect is firing, as outlined by the following section. 

6.4 The behaviour of larger calcareous microfossils during the firing ceramics 

6.4.1 Introduction 

In Section 3.6, we speculated that the process of firing may significantly affect 

microfossil assemblages in archaeological ceramics. This hypothesis was confirmed 
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by the experimental firing of Gault Clay briquettes, in which calcareous nannofossils 

were degraded and eventually removed by progressive heating (Section 5.4). 

Foraminifera were not sufficiently abundant in the Gault Clay which was utilised in 

these experiments. Therefore, in order to determine the way in which these larger 

calcareous microfossils behave during firing, their state of preservation was recorded 

in several thin sections of Bronze Age archaeological ceramics from Crete, for which 

the approximate firing temperature was known. All of these samples come from 

research on Early Minoan pottery which was carried out at the Department of 

Archaeology and Prehistory, University of Sheffield and the Demokritos National 

Centre for Scientific Research, Athens. As part of this project, various samples of 

Cretan pottery were analysed with the SEM in order to observe their clay vitrification 

microstructures and determine approximate firing temperatures, using the method 

which was developed by Tite et al. (1982). As many of these samples contained 

foraminifera and ostracods, a direct comparison could be made between firing 

temperature and the preservation of these microfossils. 

Forty microfossiliferous Early Minoan thin sections were chosen, covering the entire 

range of ancient firing temperatures which have been determined for this pottery « 

750 to > 1080 °C). Each thin section was scrutinised under the microscope and a 

qualitative estimation of the state of preservation of any foraminifera and ostracods 

was made, according to the scheme which is outlined below. 



lood pres. 

med. pres. 

poor pres. 

166 

well-preserved original calcite wall structure and microfossil morphology. 

some of the original wall structure may be preserved; wall may be replaced 

by micritic calcite, but remains intact, as do the internal septa of 

foraminifera. 

original wall structure is rarely preserved; wall and septa may be 

fragmented or missing entirely so that the fossil is represented by a void; 

microforaminifera may be present (organic lining without mineralised 

wall). 

jntennedjate catel:ories (med-poor pres.: med-wwd pres,) 

6.4,2 Results 

attributed when the preservation is intermediate between the above 

categories or situations in which there is a range of preservation, in which 

case, these intermediate labels refer to the mean state of preservation. 

The firing temperatures, atmosphere, petrographic/ware groups and archaeological 

period of each of the 40 samples, as well as the preservation of their calcareous 

microfossils is presented in Figure 6.6 (Parts 1 and 2). In these tables, the samples are 

arranged with increasing firing temperature, so that any trends in the preservation of 

foraminifera and ostracods can be seen. 
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Sample Firing temp. Atmosphere Foraminifera. Ostracods 

Kn 92/37 < 750 DC 0 good pres. -
PET 94/63 < 750 DC 0 good pres. -
PET 94/51 < 750 DC R good pres. -
Kn 921252 < 750 DC O-R med-good pres. -
MFK 93/3 < 750 DC O-R good pres. -
MFK 93/103 < 750 DC O-R-O good pres. -
Kn 92/14 -750 DC 0 medpres. medpres. 

Kn 92/36 -750 DC O-R-O medpres. -
Kn 92/64 750-800 DC 0 medpres. -
Kn 92/91 750-800 DC 0 med-poor pres. -
PET 94/35 750-800 DC 0 med-good pres. -
PET 94/64 750-800 DC 0 med-good pres. -
MFK 93/6 750-800 DC 0 medpres. -
MFK 93/40 750-800 DC 0 good pres. -
MFK 93/45 750-800 DC 0 med-good pres. medpres. 

MFK 93/65 750-800 DC 0 med-poor pres. med-poor pres. 

MFK 93/130 750-800 DC R med pres. med pres. 

Kn 92/4 750-800 DC O-R medpres. med pres. 

MFK 93/141 750-800 DC O-R med-poor pres. med-poor pres. 

MFK 93/87 750-800 DC O-R-O med-poor pres. -
PET 94/26 750-850 DC 0 medpres. med-good pres. 

Figure 6.6 Part 1. The preservation of foraminifera and ostracods in Early Minoan Cretan 

ceramics fired from < 750°C to 850 DC. Continued below. 0 = oxidising and R = reducing 

atmospheres. 
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Sample Firing temp. Atmosphere Foraminifera Ostracods 

Kn 92/38 750-850°C O-R-O medpres. -
MFK 93/46 750-850°C O-R-O - medpres. 

Kn 92/61 800-850°C 0 med-poor pres. -
PET 94/67 800-850°C 0 med-poor pres. -
MFK 93/42 800-850°C 0 med-poor pres. med-poor pres. 

MFK 93/97 800-850°C 0 good pres. -
MFK 93/132 800-850°C O-R - good pres. 

PET 94/37 800-850°C O-R-O med-poor pres. -
Kn 92/20 850-950°C 0 poor pres. -
Kn 92/221 850-950°C O-R-O med pres. medpres. 

MFK 93/51 850-950°C O-R-O poor pres. -
MFK 93/115 850-950°C O-R-O poor pres. poor pres. 

PET 94/22 850-1050°C 0 med-good pres. -
PET 94/57 850-1050°C 0 med-good pres. -
MFK 93/107 850-1050°C O-R-O - poor pres. 

PET 94/65 850-1050°C 0 poor pres. poor pres. 

Kn 921230 1000-1080 °c O-R-O med-poor pres. -
MFK 93/87 1050-1080 °c O-R-O med-poor pres. -
Kn 92/212 > 1080 °c O-R-O v. poor pres. -

Figure 6.6 Part 2. The preservation of foraminifera and ostracods in Early Minoan Cretan 

ceramics fired from 750°C to> 1080 °C. 0 = oxidising and R = reducing atmospheres. 
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6.4.3 Discussion and implications for the study of archaeolo"ical ceramics 

Both foraminifera and ostracods are present in highly fired ceramics (up to 1000°C). 

By studying the overall state of preservation in Figure 6.6 (Parts 1 and 2), a general 

trend of decreasing preservation can be seen with increasing firing temperature. All 

samples which were fired to < 750°C have well-preserved calcareous microfossils, 

and most samples which may have been fired> 850°C have a rather poorly-preserved 

microfossil assemblage. 

As speculated in Chapter 3, the preservation of microfossil assemblages in 

archaeological ceramics is likely to be the result of many processes, of which firing is 

but one. Other factors, which include the state of preservation of the original 

microfossil assemblage in the unfired clay body, the vessel function, post-depositional 

alteration and poor sample curation, may be responsible for the variations in 

preservation which are observed in samples that were fired to an equivalent 

temperature. 

Nothing positive can be concluded about the response of calcareous microfossils to 

different firing atmospheres. Too few microfossiliferous, reduction-fired Early 

Minoan samples were available, and the sherds which were both reduced and oxidised 

(O-R and O-R-O) do not exhibit differences in preservation, compared to the oxidised 

samples that were fired to same temperature. 

By comparing the preservation of foraminifera and ostracods in the various samples, it 

can be concluded that these two groups of calcareous microfossils appear to react in a 

similar way to progressive firing. Despite the absence of ostracods in the highest and 

lowest fired samples, it can be seen that both groups exhibit a general decrease in 
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preservation with firing. The more sporadic occurrence of ostracods as compared to 

foraminifera, is a feature of Cretan Bronze Age pottery in general, and not a result of 

firing. 

The degradation of foraminifera and ostracods in fired ceramics is likely to be a result 

of the transformation of their CaC03 tests/valves into CaO and its subsequent re

hydration to Ca(OH)2 after firing, as well as the breakdown of calcite and its reaction 

with the surrounding clay minerals at very high temperatures. It has not been possible, 

in the present report, to document the occurrence of these processes in detail, due to 

the poor precision of the SEM firing temperature estimates for the archaeological 

ceramics which have been analysed, as well as the possible occurrence of variations in 

other factors, such as the firing temperature and the length of firing. However, the 

general trend of a decrease in the state of preservation of larger calcareous 

microfossils in progressively fired archaeological ceramics, which has been 

highlighted, is very significant (see below) and requires further investigation. 

The alteration and eventual destruction of foraminifera and ostracods during firing has 

several implications for their use in the study of archaeological ceramics (Sections 6.7 

and 7.7). Firstly, the identifiability of these larger calcareous microfossils in thin 

section will be severely reduced as their calcite tests/valves are progressively 

degraded. This point is not as relevant to ostracods, which are extremely difficult to 

identify to even the broadest taxonomic level in thin sections regardless of their state 

of preservation. However, foraminifera, which can be identified to genus, or even 

species level in thin sections of archaeological pottery (MacGillivray et al. 1988; 

Troja et al. 1996; Riley et al. n.d.; Sections 11.2 and 11.3) by the number and 
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arrangement of their chambers, are likely to become less recognisable as their original 

wall structure and septa break down (Figure 6.6). This has major implications for the 

study of archaeological ceramics using foraminifera, as without accurate identification 

of the taxa which are present in thin section, it may not be possible to 

biostratigraphically or palaeoenvironmentally interpret the raw materials of ceramic 

manufacture (Section 6.7.4). 

Whilst the destruction of foraminifera and ostracods in fired ceramics clearly affects 

the accuracy with which archaeological ceramics can be characterised and compared 

by the composition of their assemblages (Sections 6.7.2 and 6.7.3), the presence of 

these larger calcareous microfossils can still be noted. Unlike calcareous nannofossils, 

which are so small that they can be removed without a trace, by firing (Section 5.4) or 

etching (Section 5.5), foraminifera and ostracods leave characteristically-shaped voids 

in the groundmass. Although it is not possible to identify taxonomically the 

specimens of ostracods or foraminfera which once filled such voids; with a little 

experience, their former presence can be detected. This phenomenon is important for 

the utilisation of the presence/absence of larger calcareous microfossils as a means of 

classifying archaeological ceramics (Sections 6.7.3 and 7.7.3). 

The preservation of larger calcareous microfossils in ceramics has been noted by 

various authors, including Riley (1981) and Troja et af. (1996), however, only Davis 

(1951) has used this to infer the degree of firing in ceramics. Davis, who identified a 

single specimen of the foraminiferal genus Nubeculinella in a sherd of Iron Age 

pottery from England, noted that ''there are no signs of calcination or decay in the 

fossil-shell fragments" and considered this to indicate that "probably the pots were 
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only partly fired" (1951, 148). Whilst the interpretation of this author was probably 

correct, the application of the state of preservation of foraminifera, and ostracods, to 

the study of archaeothermometry in this way, is likely to be very limited. 

6.4.4 Scope for further research 

The investigations which are described above are very limited, and have only 

considered a limited number of medium to high fired archaeological ceramics. 

Nevertheless, a significant trend in the state of preservation of larger calcareous 

microfossils in progressively fired ceramics has been elucidated. In order to 

investigate this trend in detail, as well as to determine the effect of the length of firing 

and the firing atmosphere on the state of preservation of foraminifera and ostracods, 

controlled experiments are clearly required. The author has attempted to 

experimentally fire briquettes containing these two groups of larger calcareous 

microfossils, however the results in this case were very limited and further 

experiments are planned. 

6.S The isolation of foraminifera from archaeological ceramics 

In order to determine whether or not three-dimensional specimens of foraminifera can 

be isolated from reasonably well-fired archaeological pottery, as well as to compare 

the identification of foraminifera in ceramic thin sections with that from isolated 

specimens, two samples of Cretan Bronze Age pottery were processed using the 

method which is standard to micropalaeontology (Section 6.5.3). 
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6.5.1 Samples 

The two samples which were analysed (MFK 9311 05 and Kn 95/187) came from the 

Cretan archaeological sites of Myrtos Fournou Korifi and Knossos respectively. These 

were chosen because they contained rich, well-preserved assemblages of foraminifera 

in thin section, and belong to significant micropalaeontological groups of pottery from 

the two sites. Due to the constraints posed by artefact conservation, only a small 

quantity of each sample (c. 2-3 cm3
) was available for these experiments. Although, 

by archaeological standards the destruction of such quantities of original artefacts may 

seem rather wasteful, much more material is usually required for a standard 

micropalaeontological preparation. 

6.5.2 Equipment 

Pestle and mortar; Enamel bowl or saucepan; Hot plate or bunsen burner and tripod; 

Soda crystals; Stirring rod: 63 J.lm sieve; Large flat-ended artists paint brush and a 

very fine version; Evaporating dish; Oven; 63 to 500 J.lm sieve tower; Envelopes; A4 

paper and tissue; Binocular microscope; Small metal picking tray with grid-lines 

etched on it: Compartmentalised microscope slides; Paper glue stick; Access to a sink 

and fume cupboard. 
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6.5.3 Procedure 

1. The sample of archaeological pottery was wrapped in tissue paper and gently 

crushed in the pestle and mortar. The resulting fragments were then transferred to the 

saucepan and covered with plenty of tap water. 

2. The saucepan was placed on the hot plate, a couple of spoonfuls of soda crystals 

were added, the mixture was brought to the boil and then left to simmer. 

3. Every few hours the saucepan was removed from the hot plate and its contents were 

sieved over the sink. If the residue which was left in the sieve contained disaggregated 

lumps of pottery then it was washed back into the saucepan, topped up with water and 

soda crystals, and placed back on the hot plate. This process was repeated until the 

pottery had broken down into a relatively fine sediment. 

4. The sedimentary residue was then transferred to the evaporating dish, left to stand, 

decanted and transferred to the oven (preheated to approximately 30°C), and left for 

24 hours. 

5. The dry sample was split into various fractions using the sieve tower, the A4 paper, 

large paint brush and the envelopes. 

6. Each fraction of the sieved sediment was then analysed individually under the 

binocular microscope on the picking tray. The foraminifera, and anything else of 

interest, was picked out using the fine paint brush, wetted with tap water, then 

transferred to the compartmentalised slides where they were fixed in place using a 

small amount of paper glue. 
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6.5.4 Results 

6.5.4.1 Introduction 

The two small samples of pottery were scrutinised under the binocular microscope at 

magnifications of 15-35 x before processing, in order to determine whether the 

foraminifera which were visible in thin section could be seen on the surface of the 

sherds. A thorough search over all surfaces revealed many planktonic and benthic 

foraminifera embedded in the clay matrix of the sherds, as well as a mould of an 

ostracod shell, exposed on the surface of one sample. 

In general, the two pottery samples were difficult to break down using the standard 

processing techniques which are described above. Both had to be boiled, washed and 

sieved many times until a suitable amount of residue was attained. Even after this, 

lengthy, process some relatively large pieces of disaggregated pottery remained. 

These particles, which appeared in the > 250 Jlm fractions, often contained 

foraminifera embedded in their surface. Nevertheless, a reasonable quantity of fine 

residue (63-250 Jlm), containing foraminifera, was recovered from each sample. This 

also contained small pieces of pottery which had failed to break down. 

6.5.4.2 Sample MFK 93/105 

This sample contained approximately 100 specimens of foraminifera, with roughly 

equal proportions of benthic and planktonic forms. Despite the occurrence of a few 

broken specimens, most of the foraminifera were well-preserved. These mainly 

occurred in the 250-125 Jlm and 125-63 Jlm fraction, however, rare lumps of pottery 
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with foraminifera were found in the larger fractions. The assemblage of foraminifera 

which was isolated from this sample of pottery contained adult and juvenile tests of 

many species, and was dominated by the benthic genera Bolivina, Bulimina and 

Cibicides, as well as the planktonic foraminifer Sphaeroidinellopsis. 

Assemblage: Asterigerina mamilla, Bolivina dilatata, Bolivina spathulata, Bolivina 

subexcavata, Bolivina sp., Bulimina costata, Bulimina cj exilis, Bulimina subulata, 

Cibicides ungerianus, Cibicides sp., ?Dentalina sp., Elphidium cj fichtellianum, 

Globigerina acostaensis (dwarfed), Globigerina sp., Globorotalia cj subscitula, 

Sphaeroidinellopsis sp. 

6.5.4.3 Sample Kn 95/187 

This sample contained less foraminifera than MFK 93/105. These were, on the whole, 

less well-preserved than the previous slide, and the coarse fractions of Kn 95/187 

yielded a greater number of disaggregated lumps of pottery with foraminifera. The 

assemblage of foraminifera which was isolated from this sample contains both benthic 

and planktonic forms, juveniles and adults, and is dominated by species of the genera 

Bolivina and Cibicides. 

Assemblage: Bolivina spathulata, Bolivina subexcavata, Cibicides cj dutemplei, 

Cibicides ungerianus, Elphidium fichtellianum, Globigerina acostaensis (dwarfed), 

Globigerina sp., non-keeled Globorotalia cj scitula, Sphaeroidinellopsis sp., 

Stilostomella advena, Stilostomella adolphina, Uvigerina bononiensis cj compressa. 
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6.5.5 Discussion 

The results of this pilot study indicate that it is possible to liberate foraminifera from 

samples of reasonably well-fired archaeological pottery. It was feared that the 

alteration of their CaC03 tests to CaO during firing, and its re-hydration after firing, 

would cause them to disintegrate during the mechanical crushing of the pottery 

sherds. However, the foraminifera on the whole remained structurally intact. The 

number of specimens which were isolated from the samples of archaeological pottery 

were too few for a detailed micropalaeontological analysis, but could be interpreted in 

terms of the broad geological date and palaeoenvironment in which the raw materials 

of ceramic manufacture were deposited (Section 6.6.4). 

By comparing the assemblages of foraminifera which were isolated from 

archaeological pottery samples MFK 93/105 and Kn 95/187 (Sections 6.5.4.2 and 

6.5.4.3), with those which were determined from ceramic thin sections of the same 

artefacts (Figures 11.3 and 11.8), it is possible to assess the reliability of the latter 

approach, which has been used extensively in the present report as well as by other 

authors (Riley 1983; MacGillivray et al. 1988; Troja et al. 1996; Alaimo et al. 1997; 

Riley et al. n.d.). The associations of benthic foraminifera which are present in the 

thin sections of samples MFK 93/105 and Kn 95/187, have a lower species diversity 

than the corresponding assemblages which were isolated from the original samples. 

This is to be expected, and is the consequence of the small numbers of foraminifera 

which appear in thin sections of archaeological pottery, the random sample which is 

captured by this method, and the fact that not all specimens can be identified. The 
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difficulties which are involved in identifying foraminifera from thin sections of 

archaeological pottery, comprise a major drawback of this method (Section 6.2). 

The benthic foraminifera which occur in many of the thin sections of archaeological 

pottery which have been analysed in the present report, can sometimes be speciated 

(Figures 11.3 and 11.8), whereas, most planktonic foraminifera can only be identified 

to genus level. Benthic foraminifera are much less valuable for biostratigraphy than 

planktonics, and therefore, the poor identifiability of the latter in thin section poses 

problems for the biostratigraphic interpretation of the raw materials used in ceramic 

manufacture (Section 6.7.4). 

6.6 Foraminifera and biostratigraphy in the Mediterranean late Neogene 

6.6.1 Introduction 

The value of foraminifera within the study of archaeological pottery lies in their 

biostratigraphic and palaeoenvironmental potential, which can be used to characterise 

and indicate the provenance of the raw materials which were used in ceramic 

manufacture. In order to interpret the assemblages of late Neogene foraminifera which 

have been recorded from thin sections (Figures 11.3 and 11.8) and digested residues 

(Section 6.5.4) of Cretan archaeological ceramics in this way, it is necessary to review 

the numerous biostratigraphic and palaeoenvironmental schemes which have been 

proposed for the late Neogene of the Mediterranean basin. 

Both planktonic and benthic foraminifera have been reasonably well studied in the 

Mediterranean late Neogene. This is due, in part, to the isolated nature of 
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Mediterranean foraminiferal assemblages in the Late Miocene and Pliocene, which 

has necessitated the erection of specific biostratigraphic schemes for this area. But 

also, because many late Neogene stratotype sections occur in the central and western 

Mediterranean (particularly southern Italy and Sicily). 

The late Neogene sediments of the Mediterranean sea floor have been drilled 

extensively by several Deep Sea Drilling Project and Ocean Drilling Project 

expeditions (DSDP Legs 13 and 42A and ODP Legs 107, 160 and 161). The analyses 

of foraminifera which have been published in the reports of these expeditions have 

provided a basis for several of the Mediterranean Cenozoic biozonations as well as the 

geological, oceanographic and climatic interpretation of this area during the last c.15 

MA. 

In the southern Aegean (eastern Mediterranean), the extensive efforts of 

micropalaeontologists and stratigraphers from the University of Utrecht has resulted 

in the erection of several foraminiferal zonation schemes which deal specifically with 

this area, as well as many isolated biostratigraphic and palaeoenvironmental studies 

dealing with specific geological formations at one or more localities (Sections 6.6.2 

and 6.6.3). 

6.6.2 Planktonic foraminiferal biostratiaraphy of the Mediterranean late Neoaene 

6.6.2.1 Introduction 

As mentioned above, the Mediterranean behaved as a distinct bioprovince, separate 

from the open-ocean, during the late Neogene (Iccarino 1985). This provincialism, 
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which is particularly well expressed in the record of planktonic marine organisms 

including calcareous nannofossils (Section 5.6.1) and planktonic foraminifera, has 

caused difficulties when attempting to apply the 'standard' biozonations for the late 

Neogene (Iccarino and Salvatorini 1982). It is possible to subdivide the Neogene 

record of planktonic foraminifera in the Mediterranean at a level close to the FO of the 

species Orbulina universa in the Middle Miocene (Cita 1976), in terms of its 

similarities with the equivalent assemblages of the open-ocean. 

At this point in the Middle Miocene, the Mediterranean section of the shrinking 

Tethys Ocean became separated from the Indian Ocean to the east and 

communications with the open-ocean were restricted to the narrow Gibraltar Sill 

which existed between Spain and North Africa in the west (Berggren and Philips 

1971). This had a strong effect on the Mediterranean circulation patterns and resulted 

in a climatic control of the marine flora and fauna of this area (Cita 1976). Prior to the 

'Orbulina datum', the planktonic foraminiferal assemblages of the Mediterranean 

exhibited strong similarities to those of the open-ocean and as a result, the standard 

biostratigraphic zonations which have been established in the tropics, can be 

successfully applied to the sediments of this period. The assemblages of foraminifera 

after this crucial point, however, have progressively less affinities with those of the 

open-ocean and developed strong provinciality, due to the isolation of the 

Mediterranean, the climatic deterioration which started in the Middle Miocene and 

pronounced eustatic movements (Iccarino 1985). 

In the latest Miocene, the Mediterranean was affected by the Messinian salinity crisis, 

during which the connections with the Atlantic Ocean to the west, were severely 
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restricted, sea level fell and extensive evaporite sedimentation took place (Chapter 4). 

Foraminifera can be found within the Messinian stage of the Late Miocene, in marine 

incursions which punctuate the evaporite deposition (Bizon and Muller 1977), but are 

characteristically impoverished and consist of dwarfed specimens of a few of taxa, 

including Orbulina universa and Globigerina multi/oba (Cita 1976). 

In the earliest Pliocene, a sudden re-establishment of connections across the Gibraltar 

Sill and the flooding of the desiccated Messinian basins, resulted in a rejuvenation of 

the marine faunas. An acme of the genus Sphaeroidinellopsis, is a characteristic 

feature of the sediments from this time period throughout the Mediterranean. The 

Pliocene foraminifera which were introduced from the Atlantic during the early 

Zanclian, evolved separately from those of the open-ocean. Therefore, provincialism 

developed once more in the Mediterranean. 

6.6.2.2 Zonation schemes 

Due to the distinct differences between the assemblages of late Neogene planktonic 

foraminifera in the Mediterranean and the open-ocean, and the corresponding 

difficulties which are involved in applying the 'standard' zonations, such as Blow 

(1969), various Mediterranean-specific schemes have been established (Figure 6.7). 

An early attempt at this, was the zonation scheme of Bizon (1967). This was 

established on land sections from western Greece and formed the basis for several 

schemes which succeeded it. All of Bizon's zones were based upon events in the late 

Neogene record of the genus Globorotalia, with the exception of the highly distinctive 
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Early Pliocene 'Sphaeroidinellopsis zone' which is a feature of all the Mediterranean 

planktonic foraminiferal zonations (Figure 6.7). 

Cita's (1973-1976) zonations which followed (Figure 6.7), were based upon the cores 

which were recovered by the first Mediterranean DSDP expedition (Leg 13, 

Tyrrhenian Sea), and differed from that of Bizon (1967) in its species concepts and the 

adoption of lineage and interval zones instead of assemblage zones. Cita (1976) 

estimated the ranges of the most common planktonic foraminifera in the 

Mediterranean Neogene and used the last occurrences of taxa, calibrated with 

palaeomagnetic data, to establish her zones. As well as presenting a detailed 

planktonic foraminiferal biozonation for the Late Miocene and Pliocene of the 

Mediterranean, which could be applied to ocean cores and land sections, Cita (1976) 

interpreted the faunal changes which she observed, in terms of the geological and 

oceanographic evolution of the Mediterranean during this period. 

The earliest attempt at a planktonic foraminiferal biostratigraphy of the southern 

Aegean, was the work of Gradstein (1974). Working on land sections from Crete, 

Gradstein (1974) conducted a statistical study of Pliocene Globorotalia and 

discovered that the late Neogene history of this genus was characterised by the 

succession of three assemblages. These are the Globorotalia margaritaelGloborotalia 

punctictulata, Globorotalia bononiensis and Globorotalia injlata groups. Using these 

successive populations of Globorotalia, Gradstein (1974) proposed a tentative three

fold subdivision of the Cretan Pliocene (Figure 6.7). 

The subdivision of Gradstein (1974) was subsequently incorporated into a more 

detailed Cretan zonation by Zachariasse (1975). Working on nine closely-sampled 

sections from western Crete, Zachariasse (1975) proposed a scheme of seven interval 
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and assemblage zones and one acme zone, for the Middle Miocene to Late Pliocene 

period of the southern Aegean (Figure 6.7), which he calibrated with the benthic 

foraminiferal zonations of Freudenthal (1969) and Meulenkamp (1969), Section 6.6.3. 

The zonation of Zachariasse (1975) also illustrated the importance of the species of 

Globorotalia in the Mediterranean late Neogene, with this genus accounting for six of 

the eight events which defined the zones; the other two being the FO of Globigerina 

acostaensis and the acme of Sphaeroidinellopsis. The zonation scheme of Zachariasse 

(1975) has been applied by several authors, studying the stratigraphy or 

micropalaeontology of various late Neogene sections on Crete, such as Fortuin 

(1977), Dermitzakis (1980), Dermitzakis et al. (1979). As such, this zonation scheme 

is directly relevant to the present report. 

The most recent biostratigraphic zonation for planktonic foraminifera in the Cretan 

late Neogene is that of Spaak (1983). Spaak made a quantitative study of the 

planktonic foraminifera in some 1400 Pliocene samples from Cretan, Sicilian and 

Calabrian sections, in order to evaluate the previous Mediterranean zonation schemes 

for this period. He also analysed material from the Atlantic Ocean and related the 

Mediterranean planktonic foraminiferal datum levels to climatically-induced 

migrations of the bioprovinces from this region, as well as studying water temperature 

through the analysis of Orbulina diameter, and proposing a hypothesis for the 

formation of the Pliocene laminites. 

On Crete, Spaak (1983) re-evaluated many classic sections, such as Prassas, Kalithea, 

Agios Vlassios, Finikia and Myrtos, which had been studied previously by other 

Utrecht micropalaeontologists. As such, his work represents the most detailed study of 



185 

the Pliocene planktonic foraminifera from this area. The result of Spaak's quantitative 

analysis, was the proposition of a detailed nine-part subdivision for the whole of the 

Pliocene, determined by distinct datum levels in the genera Globorotalia and 

Neogloboquadrina. Spaak. (1983) calculated the recogniseability of these nine 

intervals from single samples, and subsequently proposed six readily identifiable 

zones (Figure 6.7), of which five are present on Crete. 

In the Lower Pliocene, Spaak.'s zonation does not differ greatly from the earlier 

schemes of Biz on (1967), Cita (1975) and Zachriasse (1975). Here, he recognised four 

zones; a Sphaeroidinellopsis acme zone, followed by three zones based upon the 

appearance, disappearance and combined ranges of Globorotalia margaritae and 

Globorotalia puncticulata. In the middle part of the Pliocene, due to "less distinct 

faunal changes" (1983, 51), the zonations of Spaak. and other authors differ, and the 

recogniseability of his intervals five to eight, is poor. Spaak (1983) therefore grouped 

these intervals together in his larger Globorotalia crassaformis zone, which is 

succeeded by the uppermost Pliocene Globorotalia inflata (not present on Crete). 

Although Spaak.'s (1983) zonation is not a great improvement on the work of 

Zachriasse (1975) and others, in terms of the biostratigraphic assignment of single 

samples, a finer subdivision can be made when his nine intervals are applied to 

sedimentary sections. 

Outside of the Aegean, Iccarino and Salvatorini (1982) proposed a refined planktonic 

foraminiferal zonation based upon their knowledge of Neogene assemblages from 

land sections in countries bordering the Mediterranean and several deep sea cores 

from ODP sites. Their zonation, which covers the entire Neogene and Quaternary, 



186 

achieves a high level of biostratigraphic subdivision by the use of events which were 

particularly widespread in the Mediterranean, but previously disregarded. Within the 

late Neogene interval, which is of interest to the present report, the zonation scheme 

proposed by these authors achieves a five-fold subdivision of the Upper Pliocene, by 

the introduction of the Globigerina apertura, Globorotalia bononiensis, Globorotalia 

aemilianaiSphaeroidinellopsis seminula s.l. and the Globorotalia crassaformis 

crassaformis subzones (Figure 6.7). However, these four subzones were subsequently 

disregarded by Iccarino (1985) in her updated version of the Iccarino and Salvatorini 

(1982) zonation, because of doubt surrounding the FO of Globorotalia bononiensis, 

the range of Globorotalia crassaformis crassaformis and the LO of 

Sphaeroidinellopsis. 

6.6.3 Studies on benthic foraminifera from the Cretan Neo~ene 

There have been several palaeoenvironmental and biostratigraphic studies on late 

Neogene benthic foraminifera from the southern Aegean area, since the 1960s. The 

majority of these were conducted by micropalaeontologists from the University of 

Utrecht, and focus on numerous well-studied sections in central and western Crete. 

Freudenthal in his extensive report on the stratigraphy of the Khania province of Crete 

(1969), paid special attention to the evolution of the large benthic foraminifera 

Planorbulinella, Heterostegina and their related genera. By analysing the length of 

the early spiral and the size of the initial chambers in specimens of Planorbulinella, 

Freudenthal (1969) established three species of this genus (P. rokae, P. astriki and P. 

caneae), which appear in succession during the Tortonian stage (Figure 6.8). Using 
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Agglutinants in the Pliocene of Crete, mostly found in associations which are indicative 
of oxygenated environments: 

Bigenerina nodosaria 

Karreriells bradyi 

Martinottiella communis 

Sigmoilopsis schlumbergeri 

Karreriella afjinis 

Dorothia gibbosa 

Textularia depressula 

Vulvulina pennatula 

Benthic species found in associations which are indicative of normal marine 
environments: 

Heronallenia lingulata 

Nonion pompiloides 

Cassidulina subglobosa 

Siphonina reticulata 

Cibicides uvigeranius 

Cibicides dutemplei 

Uvigerina angulosa 

Uvigerina proboscidea 

Nonion barleeanum 

Cassidulina laevigata 

Siphonina planoconvexa 

Bolivina ret;culata 

Cibicides brady; 

Uvigerina rutila 

Uvigerina bradyi 

Uvigerina longistriata 

Species found in associations which are indicative of normal marine or slightly oxygen 
deficient environments: 

Bulimina subulata 

Gyroidina soldanii 

Dentalina communis 

Nodosaria albatrossi 

Nodosaria hispida 

Marginulina costata 

Stilostomella adolphina 

Oridorsalis stellatus 

Amphicoryna scalaris 

Dentalina fili/ormis 

Nodosaria catenulata 

Vaginulina bononiensis 

Marginulina hirsuta 

Figure 6.9 Part 1. Jonkers' (1984) environmental classification of the Pliocene benthic 

foraminifera of Crete. Continued below. 



Species found in slightly oxygen deficient environments: 

Bulimina barbata 

Uvigerina carinata 

Bolivina antiqua 

Uvigerina pygmea 

Bolivina alata 

Bolivina dilatata 

Species found in associations which are indicative of a moderate degree of oxygen 
deficiency: 

Valvulineria complanata 

Cancris auricula 

Baggina totomiensis 

Bulimina cos/ata 

Species found in associations which are indicative of a high degree of stagnation: 
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Uvigerina cylindrica 

Stilostome/Ja advena 

Bulimina elongata 

Uvigerina bononiensis 

Uvigerina c. gaudryinoides 

Fursenkoina sp. 

Bulimina exilis 

Bolivina spathulata 

Epiphytes, which are relatively abundant as allochthonous elements in oxygen depleted 
environments: 

Bolivina subexcavata 

Asterigerina planorbis 

Elphidium fichtellianum 

Elphidium crispum 

Planorbulina mediterranensis 

Reusel/a spinulosa 

Asterigerina mamilla 

Cibicides lobatulus 

Elphidium aculeatum 

Hanzawaia boueana 

Rosalina globularis 

Figure 6.9 Part 1. Jonkers' (1984) environmental classification of the Pliocene benthic 

foraminifera of Crete. 
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this simple, lineage-based zonation of the Tortonian, Freudenthal attempted to 

correlate between the various formations which he established in the west of Crete, 

however, he stated that "the possibilities for correlating Neogene formations by means 

of Planorbulinella are rather restricted" (1969, 159). 

In the same year, Meulenkamp (1969) published his report on the Neogene geology of 

the Rethymnon province of Crete, in which he also utilised benthic foraminifera as a 

means of biostratigraphy and correlation. He analysed the phylogeny of two groups of 

the benthic genus Uvigerina; the U meltensis and the U cretensis groups. The 

evolutionary trend within these two groups is that of an increase in the proportion of 

fully developed and primitive uniserial chambers, the development of a more regular 

series of uniserial chambers and the development of more slender tests. In addition, 

Meulenkamp studied the relationship between the number of primitive and fully 

developed uniserial chambers in individuals at the same growth stage from different 

stratigraphic positions within the late Neogene record of both groups, and used this to 

subdivide the lineages of Uvigerina into eight biometrically-defined species (Figure 

6.8). The combined range of the two lineages covers the interval from the base of the 

Serravalian to the Late Pliocene, which permitted Meulenkamp to make a detailed 

subdivision of the late Neogene into seven range zones (Figure 6.8). 

This scheme was a distinct improvement on Freudenthal's (1969) benthic 

foraminiferal zonation and has been used, often in conjunction with the planktonic 

foraminiferal zonation of Zachariasse (1975), by other stratigraphers working with the 

Cretan Neogene. Meulenkamp's (1969) zonation, however, does suffer from two 

drawbacks. First, the evolution between the biometric 'species' is gradual, so that the 
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boundaries separating the successive zones are not well defined. Secondly, whilst the 

Upper Miocene part of the zonation is finely subdivided, the Pliocene is represented 

by only two zones; the fairly large Uvigerina lucasi zone, which covers the late 

Messinian to early Zanclian time period, and the huge Uvigerina arquatensis zone, 

which represents the rest of the Pliocene. More recently, in attempting to apply the 

uvigerinid zonation scheme of Meulenkamp (1969) to correlate between the various 

Neogene formations of the Ierapetra region of Crete, Fortuin (1974) described the 

species Uvigerina praeselliana which "precedes the first member of Meulenkamp's 

cretensis lineage" (Zachariasse 1975, 13) and overlaps with Uvigerina gaulensis of 

the melitensis group. 

In an attempt to prove or disprove the various models which have been proposed for 

the formation of the highly distinctive repetition of laminated and non-laminated 

marls in the Pliocene of Crete, Jonkers (1984) studied the interrelation between the 

changes in environmental variables (sediment compound analysis, oxygen and carbon 

isotope analysis) and the benthic foraminiferal faunas of eight Cretan sections. He 

classified the Pliocene benthic foraminifera of Crete into those species which are 

indicative of normal marine environments, and water which is progressively oxygen 

deficient, or 'stagnated' (Figure 6.9). lonkers (1984) then interpreted the changes in 

the proportions of these taxa through the sections, in terms of the marine environment 

at the time of deposition. His quantitative results are not directly relevant to the 

present study, however the descriptions of the Pliocene benthic foraminiferal faunas 

from the Finikia Formation of the Iraklion province of Crete and the Myrtos 

Formation of south-central Crete have been indispensable to the present study 

(Sections 11.2 and 11.3). Jonkers (1984) discussed the taxonomy of many species of 
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benthic foraminifera, and identified a few events in the Early Pliocene history of 

Uvigerina and Bulimina, which may be useful for biostratigraphy. 

6.6.4 The biostrati~raphic and palaeoenvironmental interpretation of planktonic and 

benthic foraminifera isolated from samples of archaeolo~ical ceramics 

By utilising the studies outlined above, the assemblages of planktonic and benthic 

foraminifera which were isolated from two small samples of Bronze Age 

archaeological pottery in Section 6.5.4., can be interpreted in terms of the 

biostratigraphic zone, geological period, and palaeoenvironment in which the raw 

materials of ceramic production were deposited. 

On the basis of the common occurrence of the planktonic foraminiferal genus 

Sphaeroidine/lopsis, dwarfed specimens of Globorotalia acostaensis and a possible 

specimen of the species Globorotalia subscitula, the assemblage of foraminifera in 

sample MFK 93/105 (Section 6.5.4.2) is indicative of the Early Pliocene (Zanclian). 

In the earliest Pliocene, the planktonic foraminiferal assemblages of the 

Mediterranean are dominated by Sphaeroidinellopsis, and many authors have used 

this acme to propose a Sphaeroidinellopsis zone (Figure 6.7). Zachariasse, in his study 

of planktonic foraminifera from the Neogene of Crete, noted that the species 

Globorotalia subscitula first occurs in the earliest Pliocene, near to the base of this 

zone, and stated that its presence "may be used as an additional marker to recognise 

the Mediterranean limit between Upper Miocene and Pliocene" (1975, 37). The same 

author also reported that dwarfed specimens of Globigerina acostaensis are 

characteristic of the Pliocene part of the Cretan Neogene succession. 
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The assemblage of benthic foraminifera in sample MFK 9311 05 (Section 6.5.4.2) is 

similar to the rich associations which are reported by Jonkers (1984) from the 

homogeneous and laminated Pliocene marls of Crete. By comparing the abundance of 

the various benthic species which occur in this sample with the environmental 

classification of lonkers (1984; Figure 6.9), it can tentatively be suggested that the 

assemblage which was liberated from MFK 93/105 is characteristic of relatively 

normal marine environments, due to the high proportion of the species Cibicides 

ungerianus (Figure 6.10). There is also a small proportion of species, such as Bolivina 

spathulata, Bulimina exilis, Astigerina mamilla and E/phidium fichtellianum, which 

are indicative of highly stagnated marine environments or allochthonous epiphytic 

species which are usually found in oxygen depleted environments (Figure 6.10). This 

could be interpreted in terms of bioturbation and burrowing by organisms living in the 

sediment after deposition, or may suggest that the potter deliberately or 

unintentionally utilised raw material from more than one horizon for the production of 

the vessel from which sample MFK 93/105 originated. However, it is difficult to 

distinguish between these and other factors such as the reworking of foraminifera at 

the time of deposition. 

lonkers (1984) analysed several hundred specimens from each sample, in order to 

interpret the environmental trends in the Pliocene laminites of Crete. Therefore, the 

above interpretation, which is based very small numbers of specimens is likely to be 

less reliable. 

Planktonic foraminifera are not very well represented in the assemblage which was 

liberated from sample Kn 951187 (Section 6.5.4.3). However, the presence of 



194 

60 ~ ____________________ -, 

50 

40 

~ 30 

20 

10 

0 
(ij >. >. >. >. VI 

E E E 2 :c ::s 
C) 0 

0 .21 .21 ~ I c: 

j 
z '1 (j) Q) 0 

U .r::. 
(ij 0 1:: 
E ~ 0 

.Q 
0 <i: z 

Figure 6.10 Palaeoenvironmental analysis of the assemblages of Pliocene benthic foraminifera 

isolated from sample MFK 93/105, according to the classification scheme of Jonkers (1984: 

Figure 6.9). The labels 'slightly', 'moderately' and 'highly' refer to the degree of stagnation, and 

' normal' refers to normal oxygenated marine conditions. The allochthonous group is composed 

of epiphytes and commonly occurs in oxygen depleted (stagnated) environments. 
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Figure 6.11 Palaeoenvironmental analysis of the assemblages of Pliocene benthic foraminifera 

isolated from sample Kn 951187, according to the classification scheme of Jonkers (1984: Figure 

6.9). The labels 'slightly" 'moderately' and 'highly' refer to the degree of stagnation, and 

'normaP refers to normal oxygenated marine conditions. The allochthonous group is compo ed 

of epiphytes and commonly occurs in oxygen depleted (stagnated) environment. 
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Sphaeroidinellopsis (though not in abundance) and dwarfed specimens of the species 

Globigerina acostaensis, may suggest a Pliocene date for this assemblage. 

The relatively rich assemblage of benthic foraminifera which was isolated from this 

sample (Section 6.5.4.3) is also similar to the Cretan Pliocene associations which are 

presented by Jonkers (1984). This assemblage is dominated by species which are 

indicative of highly stagnated marine environments (e.g. Bolivina spathulata) and also 

contains several epipyhtic species which are often found as allochthonous components 

in oxygen depleted environments (Figure 6.11). Less frequent components of the 

assemblage are species such as Cibicides uvigeranius and C. dutemplei, which are 

usually found in associations indicative of normal marine environments (Figure 6.11). 

Notwithstanding the presence of these normal marine species, which may he a 

consequence of several factors, the association of benthic foraminifera which has been 

liberated from sample Kn 95/187 is indicative of Pliocene sediments which were 

deposited in a poorly oxygenated environment. 

The significance of the foraminiferal assemblages which have been isolated from 

samples MFK 93/1 05 and Kn 95/187 in terms of the provenance and technology of 

ceramic production is discussed in Sections 11.2 and 11.3. 

6.7 Approach to studying archaeological ceramics using foraminifera 

6.7.1 Procedures for aoalysinK assemblaKes of foraminifera in ceramic thin sections 

In the present report, thin sections of archaeological ceramics were systematically 

scrutinised under the light microscope at a magnification of 100 x in order to study all 
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specimens of foraminifera which were present. A magnification of 400 x was used for 

the detailed analysis of small specimens, as well as the observation of fine details such 

as wall structure. All of the identifiable, partly identifiable, and distinctive, but 

unidentifiable specimens of foraminifera were illustrated, so that a visual comparison 

could be made between the foraminifera in different thin sections. This also aided the 

identification of unidentifiable specimens at a later date. Whilst studying the 

foraminifera which were present within in a particular thin section, observations were 

made of any particularly significant styles of preservation, the association of 

foraminifera with any other microfossils, as well as the component(s) of the ceramic 

in which the specimens appeared. 

6.7.2 Description 

By studying the associations of foraminifera which are present in thin sections of 

archaeological pottery using the method which is described above, it is possible to 

describe ceramics in several ways. In most thin sections which contain foraminifera, 

some specimens can be identified to genus or species level. From these identifications, 

a description of the foraminiferal assemblage can be compiled for each sample of 

archaeological pottery (e.g. Figures 11.3 and 11.8). These descriptions cannot be 

considered to be representative of the whole assemblage of foraminifera in the sherd, 

due to the low level of identifiability of some specimens, but may however, be used to 

characterise individual samples of archaeological pottery. It is also important to 

accompany this information with observations on the state of preservation of 
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foraminifera in each sample, as well as the component(s) of the ceramic in which the 

specimens occur (i.e. in the groundmass, inclusions or clay mixing). 

Another means of describing samples of archaeological pottery by their assemblages 

of foraminifera is through an interpretation of the biostratigraphic zone, geological 

period or palaeoenvironment in which the raw materials of ceramic manufacture were 

deposited. If it is possible to identify numerous specimens of foraminifera in a 

particular thin section, then biostratigraphic and palaeoenvironmental schemes, such 

as those described in Section 6.6, can be applied to the assemblage. In the present 

report, very few assemblages could be positively dated with foraminifera alone, as it 

was not often possible to identify the specimens of planktonic foraminifera to species 

level in thin section. However, these assemblages were compared to the more precise 

biostratigraphic assignments that were achieved by studying calcareous nannofossils 

(Appendix II). 

6.7.3 Classification 

It is not wise to classify thin sections of archaeological ceramics by the 

presence/absence of foraminifera alone. Riley (1983, 287) believed that this group of 

microfossils "provide independent and unequivocal criteria for grouping fine wares ... 

into fossiliferous and non-fossiliferous" in his analysis of Late Minoan ceramics from 

Knossos. However, as ceramic thin sections represent a very small part of the 

complete sherd or vessel from which they are prepared, it is possible that some 

sections will not cut any specimens of foraminifera, if they were an infrequent 

component of the whole sample (Section 11.2). Therefore, it is inadvisable to consider 
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the presence/absence of foraminifera in ceramic thin sections independently of the 

other components of the fabric. By treating foraminifera as but another type of 

aplastic inclusion, and considering their occurrence along with the rest of the thin 

section, it is possible to identify those samples which may contain foraminifera but 

suffer from poor representation. In this way the resulting ceramic classifications will 

have more meaning. 

In all cases, the utility of foraminifera, and indeed all microfossil assemblages, as a 

means of grouping and classifying samples of archaeological ceramics relies heavily 

upon the success with which they have been described (Section 6.7.2). In this respect 

it is very important to note the component(s) of the ceramic in which foraminifera 

occur within thin sections of ceramics (Section 6.2), as well as their preservation 

(Section 6.3). If it has been possible to identify the specimens of foraminifera in thin 

sections of archaeological pottery, then comparisons can be made between the 

corresponding assemblage descriptions (Figures 11.3 and 11.8) in order to confirm 

similarities between samples. If identification has not been possible, then it may be 

possible to infer relationships between samples which petrographically are very 

similar, on the basis of distinctively-shaped individuals. In this case, illustrations are 

indispensable, although some experience is needed in order to determine those shapes 

which are significant and those which are not. 

Where it has been possible to compile assemblage descriptions of foraminifera from 

individual thin sections of archaeological pottery, these can interpreted in terms of 

geological age or palaeoenvironment, as outlined above. This information represents 

the final criterion which can be used to classify sherds, and is highly contextual, in 
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that it pertains to the nature of the raw materials of ceramic manufacture, which is one 

of the main purposes of classification. 

6.7.4 Provenance 

Foraminifera may be used to provenance ceramics in several ways. On a very broad 

scale, their mere presence, as seen in ceramic thin sections, may well be used, in 

combination with the rest of the fabric, to infer the possible location of the raw 

materials used in ceramic manufacture, where sediments containing foraminifera have 

a very restricted distribution (e.g. Stilborg 1997). However, where this is not the case 

(e.g. Crete and the southern Aegean), the biostratigraphic and palaeoenvironmental 

interpretation of foraminiferal assemblages can be used to ascertain the provenance of 

archaeological ceramics (Riley 1983; MacGillivray et al. 1988; Troja et al. 1996; 

Riley et al. n.d.). In this case, the precision of the biostratigraphic, or 

palaeoenvironmental information will determine the stratigraphic and geographic 

precision with which the specific sources of raw materials which were used for 

ceramic manufacture can be located (compare the provenance interpretations of 

pottery from Knossos by Riley 1983 and Riley et a1. n.d.). 

Because of the poor identifiability of planktonic foraminifera in the thin sections of 

archaeological ceramics which are analysed in the present report (Figure 11.3 and 

11.8), the accuracy of biostratigraphic interpretations based upon them is equally as 

low. Therefore, the more detailed geological assignments which were achieved by the 

analysis of calcareous nannofossils (Appendix AIl), have been used. Nevertheless, 

these assemblages of foraminifera have been very useful where calcareous 
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nannofossils were absent, as well as to supplement the infonnation provided by this 

latter group of microfossils. 

6.7.5 Technolo~y 

The nature of foraminifera in thin sections of archaeological ceramics is not well 

suited to the study of pottery technology. Crude inferences about the degree of firing 

in ceramics may be based upon observations of the preservation of foraminifera in 

thin section (Davis 1951; Section 6.4.3), however, this has no routine application. The 

presence of foraminifera in calcareous temper or clay mixing, can be used to 

detennine the nature and geological age of such materials, where they occur in 

ceramics (Sections 11.2 and 11.3). 
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7 Ostracods 

7.1 Introduction 

Ostracods are microscopic crustaceans with a bivalved calcite shell, which inhabit 

many types of aqueous environments, from the deep sea to rivers and lakes. They 

have a very long geological history which begins in the Cambrian and despite being 

complex metazoans, they are commonly classified as microfossils, due to their small 

size (c. 0.7-5 mm). The calcareous, bivalved carapaces of ostracods frequently occur 

in sieved sedimentary residues, prepared for the study of foraminifera, and these two 

groups may be informally referred to as the 'larger calcareous microfossils', to 

distinguish them from calcareous nannofossils which are an order of magnitude 

smaller. The ostracod carapace contains many body parts, including appendages, eyes 

and complex sexual organs (Figure 7.1), however, only the valves are preserved after 

death (either singularly or less commonly, as a pair), as the soft organs quickly decay. 

Consequently, fossil ostracods are classified by the internal morphology of their 

shells, which reflect some details of the soft parts which they once contained (e.g. 

muscle scars, and eye spots, stalks and sinuses), as well as the external 'morphology' 

and 'ornament' (Figure 7.1). Ostracod valves also exhibit strong sexual dimorphism, 

and given that they grow by a stepwise series ofmoultings ('ecdysis'), it is possible to 

identify juveniles ('instars'), as well as male and female adult carapaces, even in fossil 

assemblages. 

Ostracods may have a benthic or planktonic life habit. Benthic ostracods can be 

epifaunal (crawling and grazing on the sediment surface), infaunal {burrowing 
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Figure 7.1 The morphology of 0 tracod shells and soft parts. Living ostracod with one valve 

removed to reveal soft parts (A), orientation of ostracod valves (B), morphology and ornament 

on exterior and interior of 0 tracod valve (C: 1 = eye spot, 2 = pits, 3 = alar wing, 4 = inner 

lamella with marginal pore canals,S = hinge and 6 = muscle scar), and step wi e growth of 

ostracod. cale bar = 0.1 mm. After Brasier (1980) and Sis ingh (1972). 
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through the uppennost layers of sediment), or epiphytic (living on algae and other 

plants). Planktonic (free swimming) ostracods evolved in the Devonian and 

Carboniferous Periods, but have a poor geological record due to the dissolution of 

their thin calcareous shells by undersaturated sea water after death. For this reason, 

fossil ostracodology is mainly concerned with benthic fonns. Benthic organisms 

usually have a less cosmopolitan distribution than their planktonic counterparts, and 

as a result, their fossilised remains are less useful as a tool for biostratigraphy (Section 

7.4), but may be used to interpret the palaeoenvironment of their host sediment. 

Good general accounts on the biology, morphology and classification of ostracoda can 

be found in the 'Treatise on Invertebrate Palaeontology' (Benson 1961) which deals 

with this group, as well as the works of van Morkhoven (1962; 1963) and Athersuch 

et al. (1989). For the identification of individual species, there are the extensive 

'Stereo-Atlas' journals, edited by Sylvester-Bradley, Bate and Athersuch et al. (1973-

1991), as well as Bate and Robinson (1978) and Bate et. al. (1982). 

7.2 The occurrence of ostracods in archaeological ceramics 

Ostracod shells are very conspicuous in ceramic thin sections, where present, and 

have been observed by Whitbread (1995, Lesbos), Alaimo et al. (1997, Sicily), 

Whitelaw et al. (1997, Crete), Day et al. (1999, Israel) and Riley et al. (n.d., 

Peloponese). They can occur in calcareous inclusions, clay pellets, or more 

commonly, within the groundmass (Figure 7.2). In the thin sections of archaeological 

ceramics which have been analysed in the present report, there were no occurrences of 

ostracods within 'grog', however, this is a definite possibility, if crushed pottery 
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containing ostracods is used as temper. Ostracod valves mainly occur in those 

ceramics which contain a reasonably high percentage of calcite in the matrix. Within 

the thin sections of such 'calcareous fabrics', ostracods can appear in great numbers 

(Riley et al. n.d.) or may be very scarce (Whitbread 1995). There are several factors 

which determine the abundance of ostracods valves within a particular thin section, 

such as the density of shells in the original artefact, the orientation of the section 

relative to the original artefact, as well as the size of the thin section itself. In a 

particular fabric group, some variation in the numbers of ostracods per section can be 

expected, and within those fabric groups in which they represent a low-frequency 

inclusion, it is not unusual for some small thin sections to contain no ostracod valves 

(Section 11.2). 

In ceramic thin sections, ostracods appear as thin crescent-shaped calcite inclusions 

when the two valves are dislocated, or calcite ellipses when both valves are intact 

(Section 7.3). The size and curvature of ostracods in thin section is strongly related to 

the orientation of the section relative to the carapace, so that a range of shapes may 

arise from the differential sectioning of a single specimen. This is the first difficulty 

associated with the study of ostracods in thin section, the second is that very few of 

the important morphological features which are used to classify ostracod shells are 

visible (Figure 7.1). 

Thin sections of ostracod shells often feature inflated ends which is a consequence of 

the characteristic thickening of the valve margin. In some rare cases, it may be 

possible to identify other features of the valve margin, such as hinges (Figure 7.2), 

inner lamella structures and fused zones. However, little additional information for the 
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identification of ostracod specimens can be gleaned by the occurrence of these 

features in thin section. Genotypic ridges, tubercles, reticulae and alar projections or 

wings appear as two-dimensional bumps and depressions in the outline of the valve, 

and as such are not much help in classifying ostracods in thin section. 

In fact, the study of ostracods in thin section is so difficult that it is often impossible 

to distinguish between male and female, juvenile and adult valves, or orientate 

specimens (i.e. determine between anterior and posterior, dorsal and ventral). As a 

result, very little work has been carried out on ostracods in thin section. Ostracods are 

usually studied as three-dimensional specimens, mechanically and chemically isolated 

from rock or sediment samples. 

In some cases it can be difficult to distinguish between ostracod valves and other 

types of shells occurring in thin sections of archaeological pottery, especially when 

the ostracod valves are fragmented. The two main types of shell with which ostracod 

fragments can be confused are small pieces of macrofossil (bivalve, brachiopod or 

cephalopod) shell and broken foraminiferal tests. Characteristic features which may 

appear at the margin of ostracod shells usually assist their identification, these include 

the hinge and inner lamellar structures which are mentioned above. Where such 

features are absent, it is necessary instead to study the structure of the calcite wall. 

Foraminifera can be identified by the presence of pores, cancellate ridges and spines 

(Section 6.1) and macrofossil fragments should be distinguishable on the basis of their 

complex multi-layered wall structure, whereas ostracod valves usually have a 

homogeneous single-layered structure (although they may have a thin outer layer; 

Section 7.3). If it is still difficult to determine whether a particular shell fragment, 

seen in thin section, is that of an ostracod, it may be necessary to make a decision 
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Figure 7.2 The occurrence of ostracods in thin sections of Bronze Age archaeological ceramics 

from the Mediterranean: (A) within the clay matrix (MAK 96/9), (8) within a calcareous 

inclusion (MAK 96/166) and (C) within a clay pellet (MAK 96/229). (D) the preservation of an 

ostracod hinge structure in thin section (MAK 96/119). A, Band C = XP, D = PPL. Field of view 

= 0.5 mm (A and D), 2 mm (8 and C). 
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based upon the overall nature of the particular sample, (i.e. whether or not any definite 

ostracod valves are present, as well as the nature of their wall structure and 

preservation). In such cases, previous experience is very important. 

7.3 The preservation of ostracods in archaeological ceramics 

There is an interesting variation in the state of preservation of ostracods in the ceramic 

thin sections which have been analysed in the present report, in terms of the carapace 

itself as well as the clay matrix surrounding it. This can been interpreted in terms of 

the taphonomy of the original sediment as well as the history of the ceramic artefa t. 

Examples of the main types of ostracod preservation which have been encountered in 

ceramic thin sections in the present report are illustrated and interpreted below. 

A. Homo~eneous micrite wall 

A well preserved, unaltered ostracod valve. 

B. Three-layered calcite wall 

A three-layered structure consisting of a thick central layer surrounded between two 

thinner, outer layers. This can be preserved in micrite, as a single crystal of calcite, or 
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as micrite sandwiched between two layers of perpendicular fibrous calcite growth. All 

of these situations are likely to represent the preservation of the main calcite wall of 

the shell and its chitinous outer layer by replacement at some stage in the taphonomy 

of the ostracod valve. The preservation of an outer layer by fibrous (acicular) crystals 

is likely to be the result of calcite deposition in a void, left by the decomposition of 

the chitinous layer. 

c. Double micrite layered shell with a sin~le central void 

Although this could be interpreted as the preservation of the chitinous outer layer of 

the shell without the main wall, it is unlikely. More realistically, this type of 

preservation arises from the incomplete infilling of an ostracod-shaped void by 

calcite, precipitated from a solution which penetrated the artefact during usage or 

burial. 

D. Ostracod-shaped void 

In this situation, the calcareous ostracod valve has been removed at some stage in the 

history of the artefact by acidic conditions or high firing (Section 7.4). It may also be 

due to excessive abrasion, during thin section preparation. 
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E. Ostracod-shaped void with fra~mentary calcite remains 

This scenario may arise by the incomplete removal of the calcite wall by the processes 

which are described above, or alternatively, the partial infilling of an ostracod-shaped 

void by calcite precipitation. The former is more likely, as the precipitation of calcite 

into voids usually takes place in an ordered fashion from the void margin inwards, and 

not randomly. 

F. Linear void(s) alon~ the inner mar~in of valve 

This may arise by the loss of the outer part of the three-layered structure due to 

dissolution or the exploitation of weaknesses during thin section preparation. The 

outer layer can be missing entirely or represented by fragments of calcite. 

O. Rin~-shaped void associated with a sin~le valve 

The clay pellet inside the ring-shaped void has detached itself from the surrounding 

matrix and its association with the curved ostracod valve suggests that this process 

may be due to some sort of expansion or contraction of the shell. However, no definite 

explanation can be given. 
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H. Two valves joined to~ether enclosin~ a void 

Preservation of the whole carapace with a void representing the former position of the 

organisms soft-parts. Note the hinge structure which is present in this example. 

1. Two associated valves with one apparently lar~er than the other 

Notwithstanding the fact that many ostracod taxa posses a slight Size difference 

between their two valves, this type of preservation in thin section is likely to arise 

from the dislocation of the two valves and their movement relative to each other in an 

anterior-posterior direction. The two valves can be in contact with one another Of 

apart, and the area between the two can be occupied by a void or various types of clay. 

]. Calcite infillin~ of whole carapace 

The void between the two valves of a complete carapace can be infilled by micrite 

sparry calcite, a single large calcite crystal or a combination of these. This is likely to 

be the result of secondary calcite precipitation taking place in the original sedimentary 

environment during diagenesis or by groundwater passing through the ceramic 

artefact during burial in the archaeological record. 
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K. Sin~le valve with a lar~e associated void 

This situation may arise from the removal of one of the valves by dissolution after 

burial, or during thin section preparation. However, ostracods found in this way are 

often well-preserved and it is therefore unlikely that the other shell could have been 

selectively removed. It is feasible that one valve was lost prior to burial and the void 

then represents the space left by the decomposition of the soft parts which has not 

been invaded by the clay matrix. These voids may also be infilled by calcite in a 

number of ways. 

1. Different coloured/textured clay inside a sin~le valve 

This may result from the infilling of the valve by one sediment and its subsequent 

incorporation into another, different sediment. This form of preservation could 

indicate the reworking of ostracod valves in the original raw material Of intentional 

clay mixing during ceramic manufacture. 

M. Oxidised or~anic matter 

Organic matter can be associated with ostracod valves in various ways and is likely to 

have originated from the oxidation of chitinous soft matter during the process of 

firing. The organic deposits can be divided into amorphous organic ' staining' of the 
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clay micromass and discrete roWld to sub-roWld bodies of various sizes. The colour of 

this organic matter seen in plane-polarised light, ranges from translucent red-brown to 

opaque black. 

7.4 The behaviour of ostracods during the firing of ceramics 

In order to assess the way in which ostracod valves behave during the firing of 

pottery, numerous thin sections of differentially-fired Early Minoan archaeological 

ceramics were scrutinised Wlder the microscope (Section 6.4). These samples, for 

which firing temperature and atmosphere estimations were obtained by the 

observation of clay vitrification structures in the SEM, revealed that ostracods and 

foraminifera exhibit a decrease in their state of preservation with increasing 

temperature above c. 750°C (Figure 6.6). This process of degradation, which can 

result in the total destruction of ostracods in ceramics, is likely to be a consequence of 

the alteration of their calcite valves during firing and its subsequent re-hydration after 

firing. These investigations are described and interpreted in detail elsewhere (Section 

6.4) 

7.S The isolation of ostracod valves from archaeological ceramics 

7.5.1 Introduction 

Due to the severe difficulties involved in identifying ostracod specimens from thin 

sections of archaeological ceramics, attempts were made to isolate complete valves 

from small samples of original artefacts. The mechanical and chemical isolation of 
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ostracods and foraminifera from rock samples is the standard method of preparation in 

micropalaeontology and from suitable samples produces large numbers of complete 

specimens which can be studied easily using a binocular microscope. In order to 

determine whether three-dimensional ostracod specimens can be isolated from 

reasonably well-fired archaeological ceramics, five samples of Late Neolithic pottery 

were processed in this way. 

7.5.2 Samples 

Five Late Neolithic sherds from the site of Makrygialos near Thessaloniki, Greece, 

were chosen for this pilot study. All of the samples contained ostracods in thin section 

and were reasonably well-fired, although clearly not so highly fired that their calcite 

had been destroyed. Only a small piece of each sample (c. 2-3 cm3
) was available for 

this purpose. Although, by archaeological standards the destruction of such quantities 

of material may seem rather wasteful, much more is usually required for a standard 

micropalaeontological preparation. 

1,5.3 Equipment and procedure 

The equipment and procedure used to isolate ostracods from the Neolithic pottery 

sherds in this experiment, were identical to those described for the isolation of 

foraminifera from archaeological ceramics (Section 6.5). 
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7.5.4 Results 

The five samples from Makrygialos were scrutinised under the binocular microscope 

at magnifications of 15-35 x before processing, in order to determine whether the 

ostracods which were visible in thin section, could be seen on the surface of the 

sherds. A thorough search over all surfaces revealed several ostracod valves 

embedded in the clay matrix of the sherds, as well as a section of an ostracod shell 

exposed on a flat surface of one sample, which had been produced by thin sectioning. 

As in the experiments which are outlined in Section 6.5, the Neolithic pottery sherds 

were difficult to break down using the standard processing techniques. Each sample 

had to be boiled, washed and sieved many times until a suitable amount of residue 

was attained. Even after this lengthy process some relatively large pieces of 

disaggregated pottery remained. These particles, which appeared in the > 250 Jlm 

fractions, often contained ostracods embedded in their surface. Nevertheless, a 

reasonable quantity of fine residue (63-250 J.1m) was recovered from each sample. 

This also contained small pieces of pottery which had failed to break down, in 

addition to a variable number of adult and juvenile ostracod valves, as well as a larger 

quantity of small ostracod fragments, rare complete carapaces, internal moulds of 

ostracod shells and a few foraminifera. 

7.5.4.1 Sample MAK 96/3 

The residue which was recovered from the breakdown of this sherd contained 

unidentifiable adult and juvenile ostracod fragments and whole valves of the species 

Cyprideis torosa torosa, all of which had smooth or finely pitted external surfaces. In 
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addition, one foraminifer belonging to the genus Nonion and a possible specimen of 

the genus Rotaliatina, were found 

7.5.4.2 Sample MAK 96/9 

This sherd contained adult and juvenile fragments and whole valves of the ostracod 

species Cyprideis torosa torosa, all with smooth or finely pitted external surfaces. 

7.5.4.3 Sample MAK 96/21 

A single adult carapace and several fragments of the ostracod species Cyprideis torosa 

torosa, with smooth or finely pitted external surfaces, were recovered from MAK 

96/21, in addition to a half-broken valve and an anterior fragment of the ostracod 

species Bythocypris bosquetiana and one specimen of the foraminiferal genus Nonion. 

This sample also contained a couple of internal ostracod moulds and a single bivalve 

macrofossil shell fragment. 

7.5.4.4 Sample MAK 96/136 

The residue from this sample contained a single adult carapace and several fragments 

of Cyprideis torosa torosa, all of which had smooth or finely pitted external surfaces, 

plus a posterior fragment of the ostracod species Bythocypris bosquetiana and a single 

valve of the ostracod genus Bardia. This sherd also contained one bivalve shell 

fragment. 
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7.5.4.5 Sample MAK 96/137 

MAK 96/137 only contained two ostracod fragments, one from an adult and one from 

a juvenile carapace. The well-calcified adult fragment may have originated from a 

valve of the ostracod species Cyprideis torosa torosa, and has a finely pitted surface. 

7.5.5 Discussion 

The results of this pilot study indicate that it is possible to liberate fossil ostracods 

from samples of fired archaeological ceramics. It was feared that the alteration of their 

CaC03 tests to CaO during firing, and its re-hydration after firing (Section 6.4), would 

cause them to disintegrate during the mechanical crushing of the pottery sherds. The 

large proportion of broken valves which were encountered in the final, processed 

residues, are likely to be a result of the maceration process. 

The number of ostracod specimens which were isolated from the pottery sherds were 

too few for detailed micropalaeontological analysis, but could be interpreted in terms 

of the broad geological date and palaeoenvironment in which the raw materials of 

ceramic manufacture were deposited (Section 7.6.4), using the ostracod zonations of 

Sissingh (1972; 1973; 1976a) which are outlined in Section 7.6 below. 

7.6 Mediterranean Neogene ostracod biostratigraphy 

7.6.1 Introduction 

In order to interpret the ostracod assemblages which were isolated from individual 

samples of archaeological ceramics, in the above experiments (Sections 7.5.4.1 to 
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7.5.4.5), it is necessary to review the biostratigraphic and palaeoenvironmental 

schemes which have been proposed for this group of microfossils in the 

Mediterranean. 

7,6.2 Pre-1970's 

Prior to the work of Sissingh in the 1970's, a substantial number of articles had 

already been published on Mediterranean Neogene ostracods from as far back as the 

eighteenth century. However, most of these dealt with the faunas of small numbers of 

samples from single sections, and were taxonomically confused. Previous studies on 

late Cenozoic ostracods from the eastern Mediterranean were few (Terquem 1878; 

Bonarelli 1901; Christodoulou and Haralambos 1960; Bignot et 01. 1963; Grekoff, et 

01. 1967; Gramann 1969; Gramann and Kockel 1969; Becker-Platen 1970), and 

equally inadequate (for a review see Sissingh 1972). 

7.6.3 Sissinah (1972: 1973: 1976) 

Sissingh's (1972) monograph on southern Aegean ostracoda represented the first 

detailed study of Mediterranean ostracods from several geographically separated 

sections covering a large stratigraphic interval and several different environments. As 

such it is perhaps the definitive study on ostracods for this region. Sissingh's sections 

from Crete, Karpathos, Gavdos and Rhodes had been studied previously by 

Freudenthal (1969) and Meulenkamp (1969), who determined their relative 

stratigraphic position by means of evolutionary stages in the foraminiferal genera 
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Planorbulinella and Uvigerina respectively (Section 6.6.3, Figure 6.8). Using these 

detailed age assignments as well as those afforded by the study of planktonic 

foraminifera, Sissingh (1972) documented the approximate stratigraphic ranges of 

many of the ostracod species which occurred in his material. By combining this with a 

rough palaeoenvironmental interpretation of brackish, shallow marine and deep 

marine (as determined by the ecology of the modem relatives of his fossil taxa), he 

was able to construct a tentative ostracod zonation for the late Cenozoic of the 

southern Aegean (Figure 7.3). 

Although Sissingh's first zonation scheme was incomplete and featured very broad 

'assemblage' zones, it represented a step forward in the study of Mediterranean 

ostracods, who's "contribution to the solution of stratigraphic problems was limited" 

(Sissingh 1976a, 276), and formed the basis for more detailed zonations by the same 

author. This three-part zonation (Figure 7.3) relied upon several major changes which 

took place in the eastern Mediterranean ostracod faunas during the late Cenozoic, 

which he related to the geological development of this area. These major breaks in the 

faunal succession were studied in detail by Sissingh (1976b), and are outlined below: 

Tortonian: Increase in the diversity of ostracod faunas associated with a 

marine transgression. 

Messinian: Significant reduction of the fauna as a result of a marine 

regression and the subsequent 'salinity crisis'. 

Zanclian: New diversified fauna introduced into the region by a marine 

transgression. 
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Piacenzian: Less pronounced faunal turnover caused by tectonic movements 

between the African and Aegean plates as well as an influx of cold Atlantic 

bottom water. 

Pleistocene: Extinction of psychospheric, deep water ostracods and 

appearance of new immigrants, associated with the relaxation of the cold 

Atlantic current and a move towards interglacial conditions. 

A detailed consideration of the evolution of late Neogene Mediterranean ostracod 

faunas in relation to tectonics, climate and water conditions has been presented by 

Benson (1976) and Sissingh (1976b). 

Sissingh (1972) tested his ostracod zonation by attempting to apply it to previous 

studies from several late Cenozoic and Pleistocene stratotype sections in Sicily, Italy 

and southern Spain, as well as classic sections in northern Algeria, Cephalonia, the 

Rhone Basin, north-west Bulgaria and Greek Macedonia. He found that most of his 

assemblage zones could be recognised outside the Aegean and particularly in Italy. 

This led to the proposal of a more detailed ostracod zonation for the Middle Miocene 

to Holocene of the entire central and eastern Mediterranean (Sissingh 1976a), which 

differs from the equivalent fauna in the western Mediterranean and was restricted in 

its migration by extensive Messinian evaporite deposits occurring between the 

Balaeric Islands, Corsica and Sardinia. In this late Cenozoic Mediterranean scheme, 

Sissingh (1976a) also incorporated his tentative ostracod zonation for the 

Mediterranean Quaternary (Sissingh 1973), which was established upon samples from 

the type Sicilian and Calabrian sections in Sicily, as well as his work on the southern 

Aegean area (Figure 7.3). The result was a four-part, multiple zonation, covering the 
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interval from the Serravalian to Recent, and featuring a total of 19 assemblage zones, 

separated by several major events in the development of the Mediterranean ostracod 

fauna (Figure 7.3). 

Sissingh (1976a) divided the ostracod faunas into infralittoral, circalittoral-upper 

bathyal and lower bathyal-abyssal marine categories as well as those preferring 

brackish environments using more refined ecological assignments of the fossil taxa 

than in his 1972 zonation. The scheme was again considered to be tentative and very 

accurate correlations were not expected, however, many of the zones were considered 

to be recognisable "in relatively wide areas at corresponding stratigraphic intervals" 

(Sissingh 1976a, 282). 

Of particular interest to the present study (Section 7.6.2), is Sissingh's refined 

biostratigraphic subdivision of the late Neogene brackish facies. By the incorporation 

of the Cytheromorpha fuscata Zone from his Quaternary zonation, (characterised in 

the latter version by the occurrence of the nominate species in addition to Cyprideis 

torosa torosa and Loxoconcha elliptica), Sissingh (1976) restricted the Cyprideis 

torosa torosa Zone (defined as a rather large range-zone in his earliest scheme), to the 

Upper Pliocene interval only, where the named species occurs in mono specific 

assemblages from brackish environments. 

7.6.4 The biostrati~raphic and palaeoenvironmental interpretation of ostracod faunas 

isolated from samples of archaeolQ~ical ceramics 

The ostracod assemblages which were isolated from five late Neolithic archaeological 

pottery sherds in Section 7.5, can be interpreted in terms of the biostratigraphic zone, 
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geological date or period, and palaeoenvironment in which the raw materials, used in 

their production, were deposited, by utilising the studies which are outlined above. 

This information may then be used to ascertain the provenance of the ceramics in 

question, by considering the geographical distribution of geologically compatible 

sedimentary deposits. 

The dominant ostracod species in the sieved residues from all five Makrygialos 

pottery samples, is Cyprideis torosa torosa. Adult and juvenile carapaces, complete 

valves and fragments of valves belonging of this species occur in all samples except 

perhaps MAK 96/137, which contains but a single poorly-identified ostracod 

fragment. In all samples, the valves of Cyprideis torosa torosa have a smooth or 

finely pitted external surface, and many of the specimens feature a small spine on their 

postero-dorsal angle. 

Cyprideis torosa torosa is an extant species which appeared in the Mediterranean 

during the Upper Pliocene (Sissingh 1972, southern Aegean) and inhabits brackish to 

shallow marine environments. The occurrence of monospecific assemblages of this 

species was used by Sissingh (1972) in his multiple ostracod zonation of the southern 

Aegean (Section 7.6.2, Figure 7.4) to denote the brackish 'Cyprideis torosa torosa 

Zone' which covers the Late Pliocene to Recent time period. This zone is restricted to 

the Late Pliocene only in Sissingh's (1976a) refined Mediterranean Neogene ostracod 

zonation, with the succeeding Pleistocene to Holocene 'Cytheromorphajuscata Zone' 

defined by the concurrence of Cyprideis torosa torosa with the nominate species and 

Loxoconcha elliptica. 
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The occurrence of almost monospecific assemblages of Cyprideis lorosa lorosa, 

without Cylheromorpha fuscala or Loxoconcha elliptica, in many of the Makrygialos 

pottery samples, indicates that they may be associated with Sissingh's (1976a) refined 

brackish water Cyprideis torosa torosa Zone. However, this does not account for the 

occurrence of foraminifera and rare specimens of the true marine ostracod Bythocypris 

bosquetiana, in two samples. This latter species is also extant and has been reported 

by Sissingh (1972) from the Early and middle Pliocene of Crete, in assemblages 

belonging to his shallow marine 'Aurila convexa emathiae' and 'Urocythereis 

margaritfera margaritfera' zones. 

The carapace of Cyprideis torosa torosa can exhibit a smooth, finely-pitted external 

surface or may posses a variable number of pronounced nodules. The occurrence of 

nodules in this species is suspected to be related to salinity. In general, the Cyprideis 

torosa torosa specimens which inhabit brackish environments tend to be more nodular 

than those living in normal marine water, which are usually smooth or pitted. In 

Sissingh's discussion of the species Cyprideis torosa torosa, he mentions that "only 

larval valves may show nodes on the surface" (1972, 87), in his Mediterranean 

samples. However, in the Makrygialos pottery samples, neither the adult or juvenile 

specimens of Cyprideis torosa torosa were found to possess any nodules, instead all 

were smooth and finely pitted. This may well indicate that the ostracod faunas which 

were isolated from the pottery sherds are less brackish/more marine than those 

described by Sissingh in his zonations of 1972 and 1976a. This assumption is in 

agreement with the rare occurrence of the shallow marine ostracod species 

Bythocypris bosquetiana and benthic foraminifera. 
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The various environments indicated in Sissingh's three zonation schemes (1972; 

1973; 1976a) are based primarily on salinity (e.g. brackish and true marine) and water 

depth (e.g. infralittoral, circalittoral, bathyal, abyssal), and as such represent highly 

transitional categories. It is therefore highly feasible to record assemblages which 

exhibit characteristics of two adjacent zones. With this in mind, it may be possible to 

assign the ostracod assemblages from pottery samples MAK 96/3, 96/9, 96/21 and 

93/136 to the Late Pliocene, brackish 'Cyprideis torosa torosa Zone' of Sissingh 

(1976a). It is not possible to interpret the poor fauna of sample MAK 96/137 in terms 

of any of Sissingh's zones. 

By comparing these palaeoenvironmental and biostratigraphic interpretations of the 

ostracod faunas isolated from the Makrygialos ceramics with the Neogene geology of 

this region, it has been possible to identify specific sedimentary deposits which may 

have been the source of the raw materials used for Late Neolithic pottery production 

at this site. 

7.7 Approach to studying archaeological ceramics using ostracods 

7.7.1 procedures for analysin~ ostracod faunas in ceramic thin sections 

Due to the large sample size which it is necessary to destroy in order to liberate 

ostracods from archaeological ceramics, the analysis of these larger calcareous 

microfossils was carried out using thin sections, in the present report. 

The procedure which was employed in the study of ostracods from ceramic thin 

sections was rather simple, but did reveal some useful information. Thin sections were 
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scrutinised under the light microscope at a magnification of 100 x in order to 

determine whether or not they contained ostracods. The component(s) of the ceramic 

in which any ostracod valves occurred (within the micromass, inclusions, clay pellets 

or clay mixing) was noted, as well as their abundance, and any distinctive features of 

the overall assemblage (e.g. preservation, size, association with other microfossils). 

Distinctive individual specimens were studied in detail (at a magnification of 400 x), 

in order to observe any features which may be used for identification, as well as to 

determine the range of ostracod preservation which was present in each thin section 

(Section 7.3). 

As the majority of ostracod valves which were observed in the present report appeared 

rather featureless and could not be identified with any taxonomic precision, it was 

necessary to make visual comparisons between the overall appearance of the ostracod 

valves in particular thin sections, in order to note any striking similarities and 

differences. The process of visually comparing numerous thin sections is extremely 

arduous, therefore the individual ostracod specimens were scanned into a computer 

and hard copies were printed out for comparison (Section 11.5). The digital images 

were captured on the Aequitas 1.01 image database and image archive management 

system for Windows 95 using a Moritex JJ,-Scopeman MS-500 camera attached to the 

eyepiece of a Leitz Laborlux 12 pols light microscope. The images were saved as 

Windows bitmap files and could then be annotated in Paintbrush and imported into 

Word 6 for Windows. 
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7.7.2 Description 

By studying the ostracod faunas which are present in thin sections of archaeological 

ceramics, using the methods outlined in Section 7.7.1 above, it is possible to 

characterise individual samples in several ways. These are; the context in which 

ostracods appear, their abundance, their overall shape and size, and their state of 

preservation. If sufficient quantities of the original sherds are available for destruction, 

and three-dimensional ostracod specimens can be isolated from them, then it may be 

possible to identify the genera and species which constitute the faunas of individual 

samples (Section 7.5.4), as well as the geological period or palaeoenvironment of 

which they are indicative (Section 7.6.4). However, in the present report this method 

was impractical for the routine analysis of ostracod assemblages, and it was necessary 

to rely upon the study of ceramic thin sections. 

7.7.3 Classification 

As a result of the often low abundance of ostracod specimens in ceramics and their 

potential non-representation in thin section (observations in the present report), it is 

unwise to group and separate samples on the basis of the presence/absence of 

ostracods alone. However, it is possible to form meaningful classifications by 

considering the presence of ostracods in combination with the other characteristics of 

the fabric, as seen in thin section. Those thin sections which contain ostracods, can be 

compared in several ways, including the preservation and overall appearance of their 

faunas, as well as the component(s) of the ceramic in which they occur (Section 11.5). 

The abundance of ostracods in individual ceramic thin sections is not a valid criterion 
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for comparison (Section 7.2). If complete ostracod valves can be isolated from 

sufficient quantities of the original artefacts, as in the pilot study which is outlined in 

Section 7.5, then the individual faunas can be compared on the basis of the genera and 

species which they contain, as well as the geological date or palaeoenvironment of 

which they are indicative (Section 7.6.4). 

7.7.4 Provenance 

In thin section, ostracods may only be used to indicate the provenance of ceramics in 

combination with other methods of characterisation (Day et a1. 1999; Section 11.5), 

due to the low level of specific geological information which can be attained by their 

study. If the faunas which are contained within archaeological ceramics can be studied 

in detail and identified taxonomically (Section 7.6.4), then more precise provenance 

interpretations can be made by a consideration of local and regional geology. As it has 

been necessary to rely upon thin sections for the routine analysis of ostracod 

assemblages from most ceramics in the present report, the information provided by 

the study of calcareous nannofossils and foraminifera has been used to provenance 

archaeological ceramics wherever possible (Sections 5.9.2 and 6.7.4). 

7.7.5 Technolo~y 

The nature of ostracods in thin sections of archaeological ceramics is not well suited 

to the study of pottery technology. Crude inferences about the degree of firing in 

ceramics may be based upon observations of the preservation of ostracods in thin 
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section (Section 6.4.3), however, this has no routine application. Nevertheless, the 

presence of ostracods in calcareous temper or clay mixing, can be used to determine 

the nature of such materials, where they occur in ceramics. 
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8 Diatoms and other siliceous microfossils 

8.1 Introduction 

There exist several groups of aquatic micro-organisms, including diatoms, radiolaria 

and silicoflagellates, which are characterised by having a siliceous skeleton. Their 

remains occur in Palaeozoic, Mesozoic and Cenozoic sediments deposited in marine 

and non-marine environments, as well as archaeological ceramics from different parts 

of the world (Section 8.2). The biology and morphology of these siliceous 

microfossils as well as their occurrence, preservation and utility in archaeological 

ceramics is outlined below. 

8.1.1 Diatoms 

Diatoms are 'golden-brown' algae belonging to the division Bacillariophyta. These 

unicellular plants range from approximately 10-100 J.lm in size and have an external 

siliceous skeleton or 'frustule' (Figure 8.1). The diatom frustule is composed of two 

equal sized 'thecae' which fit together rather like a pill-box, and protect the soft cell 

inside. Diatoms are extant and appear to have evolved in the Jurassic period, although 

earlier reports have been made. In the geological record, all that remains of these algae 

are their siliceous frustules, which mayor may not occur intact. The earliest diatoms 

were marine, but they appear to have colonised fresh water environments in the 

Eocene, and today diatoms can live wherever there is moisture, (e.g. in soils). Diatoms 

can be planktonic; free floating in oceans and lakes, or benthic; attached to various 
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Figure 8.1 The biology and morphology of the diatom frustule. Oblique view of a complete 

pennate diatom frustule (A), schematic cross-section with soft parts (B), valve view of central 

diatoms (C) and valve view of pennate diatoms (D). Scale bars = 100 /lm (A) and 10 /lm (C and 

D). After Brasier (1985) and Barber and Haworth (1981). 
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organic and mineral substrates, migrating within the uppermost layers of sediment, or 

growing in thread-like colonies from the sea bed. 

Fossil diatoms are classified on the basis of their frustule morphology. There are two 

main groups of diatoms in this respect; the 'centrales' which are usually circular in 

plan view and have radial symmetry, and the 'pennates' which are elongate and have 

three symmetrical axes (Figure 8.1). Within these two groups, the diatoms are further 

subdivided on the basis of their size, outline, the number and arrangement of lines of 

pores ('striae'), spines and processes, and the nature of the 'raphe'; a furrow which 

runs down the long axis of the valve face in pennate diatoms (Figure 8.1). 

Diatoms were first reported over 200 years ago, and their detailed study began in the 

late 19th century. Early diatomologists quickly discovered that these organisms had 

specific environmental tolerances in terms of pH, nutrients and salinity, and certain 

taxa could be used to indicate specific environmental conditions. This phenomenon 

has been used extensively in the latter part of this century to reconstruct fresh water, 

estuarine and coastal environments, and detect human-induced environmental 

changes, such as the acidification and eutrophication of fresh water lakes. 

Planktonic marine diatoms are a less reliable tool for biostratigraphy than other 

microfossils such as planktonic foraminifera and calcareous nannofossils. This is a 

consequence of their 'evolutionary conservatism' (Burckle 1978), and the problems 

which are associated with the geological record of diatoms in regions of upwelling. 

However, in high latitude areas, where calcareous microfossils are less abundant, 

diatoms and other siliceous microfossils are being used more for biostratigraphy (e.g. 

Ocean Drilling Project cruises). 
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Fossil diatoms can be isolated from sedimentary rocks by using the floatation method 

(Section 8.4), in which the disaggregated sediment is mixed with water, stirred and 

allowed to settle, or centrifuged. The minerogenic matter sinks and the diatoms float 

to the surface, where they can be extracted and mounted on a strew slide (Section 8.4). 

It is often necessary to treat sediments with hydrogen peroxide, in order to oxidise any 

organic matter, and hydrochloric acid, if they are calcareous. The strew slides are 

observed with transmitted light at a magnification of 400-1 000 x. 

Good accounts of the biology, morphology and ecology of diatoms can be found in 

Chandra (1992) and Tappan (1980). The modem classification of diatoms is dealt 

with by Crawford et al. (1990), and some key floras can be found in the publications 

ofCholnoky (1968), Cleve-Euler (1951-1955), Foged (1980,1982), Germain (1981), 

Hudstedt (1927-1966), Krammer and Lange-Bertalot (1986; 1988; 1990; 1991), 

Patrick and Reimer (1966; 1975), Salden (1978), Schmidt (1874-1959), Van Heurck 

(1880-1885) and van der Werf and Huls (1957-1974). General summaries of the 

application of fossil diatoms to the reconstruction of Holocene environments and the 

biostratigraphy of marine diatoms, can be found in Battarbee (1986), Burckle (1978) 

and Lipps (1993). 

B.1.2 Radiolaria 

Radiolaria are unicellular marine zooplankton of the class Actinopoda, which possess 

an internal siliceous skeleton. There are several orders within the subclass Radiolaria, 

however, only one of these, order Polycystina, has a significant geological record, as 

the siliceous skeletons of the other two are not well-preserved. 
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Figure 8.2 The biology and morphology of polycystine radiolaria. Living polyci tine radiolarian 

(A), spumellarian keleton (B), na ellarian keleton (C) and albaillellarian skelton (D). Scale 

bars = 50 11m. After Bignot (1980), Bra ier (1985), Campbell (1954) and Holdsworth (1969). 
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All polycystine radiolaria possess a two part protoplasm consisting of a perforate 

'central capsule' surrounded by an outer protoplasm. The inner protoplasm or 

'endoplasm' contains one or more nuclei which control the vital functions of the cell, 

and the outer protoplasm or 'ectoplasm' is constantly streaming and produces 

pseudopodia which extend outwards from the cell, along skeletal spines, to catch food 

(Figure 8.2). Radiolaria are heterotrophs, feeding on other microplankton including 

diatoms, however, they also contain symbiotic green algae ('zooantheUae') in the 

outer protoplasm which photo synthesise and provide the radiolaria with simple 

carbohydrates. 

There are three suborders of polycystina, the spumellaria, nassellaria and albaillellaria, 

of which the first two are alive today. Spumellaria are characterised by having a 

completely perforate central capsule and a radially symmetrical, siliceous skeleton, 

which consists of spherical lattices supported by beams and spines, and is produced in 

both the inner and outer protoplasm (Figure 8.2). Nassellaria have a central capsule 

which is perforated at only one end, and a bell-shaped skeleton consisting of several 

segments, with an aperture (Figure 8.2). The segments of the nassellarian skeleton can 

be divided into a cephalis, a thorax and one or more abdominal segments (Figure 8.2). 

In all Mesozoic and Cenozoic nassellarians, the cephalis contains a siliceous 'spicule' 

which presses against the central capsule, in order to alter its surface area for 

important physiological reactions. Albaillelleria are an extinct suborder of polycystine 

radiolaria which have a bilaterally symmetrical skeleton, constructed of three rods 

(Figure 8.2). The interesting Silurian to Permian evolution of albaillelleria can be 

followed through the progressive modification of this basic structure. 
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All modem radiolaria have an open-ocean distribution, although they were near-shore 

dwellers in the Palaeozoic. The distribution of individual taxa can be related to water 

depth and temperature, and often corresponds to the distribution of partiCUlar water 

masses. Spumellaria are more common in the photic zone « 200 m) and migrate up 

and down by way of contractile vacuoles, in order to satisfy the light requirements of 

their zooanthellae. Nassellaria on the other hand do not possess these symbiotic algae 

and can follow deep water masses (> 2000 m). 

In the geological record, the skeletons of radiolaria occur from the Late Cambrian to 

Recent and are commonly preserved in cherts and limestones. They can be isolated 

from these types of rocks by using acids, and are studied in strew slides, or picked by 

hand like foraminifera (Section 6.2). 

Radiolaria are a useful tool for precise biostratigraphy, due to their rapid evolution. 

They can also be used to model Quaternary palaeoceanography and 

palaeoclimatology, as a result of their relationship with specific water masses. 

The biology, morphology and ecology of fossil and living radiolaria is discussed in 

detail by Campbell (1954), Kling (1978) and Casey (1993), and good accounts of the 

geological evolution of this group can be found in Nazarov and Ormiston (1985), 

Pessagno (1977) and Riedel and Sanfilippo (1977). 

B.l.3 Silicoflaaellates 

Silicoflagellates are unicellular, flagellate marine algae which posses an internal, 

tubular siliceous skeleton, ranging in size from 30-100 J.l.m (Figure 8.3). Because of 
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their small sIze and free sWlmmmg life habit, they are often classified as 

nannoplankton, along with calcareous nannofossils. The skeletons of silicoflagellates 

first appear in the geological record in the Late Cretaceous, Campanian stage, and are 

present in significant numbers, along with other siliceous microfossils, in areas of 

ancient or modem upwelling, as well as marine sediments which have been deposited 

as a result of volcanic activity. Fossil silicoflagellates are classified by the gross 

morphology of their delicate siliceous skeletons as well as the details of any surface 

ornamentation, although the latter may be related to water temperature (Martini and 

Muller 1976). 

The study of silicoflagellates is more recent than that of other branches of 

micropalaeontology. A great deal of infonnation has been gleaned by the study of 

high latitude oceanic cores from the Deep Sea Drilling Project (1968-1986) and Ocean 

Drilling Project (1986-present). Here, silicoflagellates have been used to date marine 

sediments, which contain very few foraminifera and calcareous nannofossils. 

Silicoflagellates have also been used to interpret palaeotemperatures, by referring to 

the known preferences of extant species. Important genera in this respect are 

Dictyocha and Distephanus (Figure 8.3); the relative proportion of which, Mandra 

(1969) and Ciesielski and Weaver (1974) have used to indicate surface water 

temperatures in the Southern Ocean. 

Silicoflagellates can be liberated from sedimentary rocks in the manner which is 

described for diatoms and radiolaria (Sections 8.1.1 and 8.1.2). However, they are 

more commonly studied by the preparation of smear slides. Silicoflagellate smear 

slides are prepared in a similar fashion to those for the study of calcareous 
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Figure 8.3 The biology and morphology of i1icoflagellate and ponges. A. Living silicoflagellat ; 

B. Dictyocha: C. Disfephalllls; D. Living sponge showing water currents; E; Monaxon and D. 

Tetraxon ponge picule. cale bars = 50 Jl-m (B and C) and 1 mm (E and F). After Bignot 1982, 

Perch-Niel en 1985c and Moore (1955). 
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nannofossils (Section 5.3), and must be viewed with plane polarised transmitted light 

at magnifications of 250-400 x. 

Good accounts of the morphology, classification and biostratigraphy of 

silicoflagellates can be found in Loeblich et al. (1968), Bukry (1981) and Perch

Nielsen (1985c). 

8.1.4 Other siliceous microfossils 

There are several other microscopic siliceous structures of biological origin which 

occur in the geological record, along with those described above. These include the 

spicular skeletons and plates of unicellular marine organisms such as ebridians and 

chrysophyte algae, as well as siliceous structures originating from within the cells of 

higher plants (phytoliths), and sponge spicules. 

Sponges (Phylum Porifera), are primitive multicellular organisms which occur in 

marine and fresh water environments, and have a benthic, sessile life habit. Although 

they vary greatly in form, most sponges have an upright, perforated, bag-shaped body 

with an open central cavity (Figure 8.3). In life, small flagella draw water through the 

outer pores, this is filtered, and then exhaled via the central cavity. Many sponges 

have an internal skeleton of some sort, which supports the mass of cells. In some, for 

example, the demosponges (Class Demospongea) this is in the form of numerous 

siliceous spicules, which are < 1 mm in length and consist of simple rods (monaxon 

spicules) or four diverging rays (tetraxon spicules, Figure 8.3). In the geological 

record, these spicules are often all that is preserved of siliceous sponges, which range 

from the Cambrian to the present day. 



240 

Despite occurring in large numbers in some sediments, sponge spicules are of very 

little stratigraphic value. The biology and morphology of sponges and their spicules is 

outlined in the Treatise on Invertebrate Paleontology (Part E Archaeocyatha and 

Porifera), edited by Moore (1955), although the taxonomy in this book is somewhat 

out of date. Other references include Bergquist (1978) for modem sponges, and Reid 

(1964) on classification, as well as Clarkson (1986), upon which the above account is 

based. 

8.2 The occurrence and preservation of diatoms and other siliceous microfossils 

in archaeological ceramics 

Several groups of siliceous microfossils have been encountered in archaeological 

ceramics from various parts of the world. Diatoms are perhaps the most commonly 

reported group of siliceous microfossils in this respect. They are a relatively 

consistent component in Neolithic to Medieval ceramics from northern Europe (Foged 

1968, Norway; Edgren 1970, Finland; Jansma 1977; 1981; 1984; 1990, Netherlands 

and England; Alhonen and Matiskainen 1980; Alhonen et al. 1980; Alhonen and 

V!kevainen 1981; Matiskainen and Alhonen 1984, Finland; Gibson 1983a and b, 

England; Hakansson and Hulthen 1986; 1988, Germany and Sweden; Stilborg 1997, 

Denmark), as well as further afield (Troja et al. 1996, Neolithic to Bronze Age Sicily; 

De La Fuente and Martinez Macchiavello 1997, Inka pottery of Argentina). 

As with other groups of microfossils which occur in archaeological ceramics 

(Sections 5.2, 6.2, and 7.2), diatoms can occur within the clay micromass (Hakansson 

and Hulthen 1986), associated with shell or grog temper (Jansma 1984; 1990), within 
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Figure 8.4 The occurrence of siliceou microfossils in thin sections of Bronze Age archaeological 

ceramic from Crete. A. a pennate diatom within the calcareous slip of Kn 95/400, B. a fragment 

of radiolarian skeleton within a calcareous inclusion in Kn 95/407, C. chalcedony radiolaria 

within a chert inclu ion in MFK 9317, D. a rod-shaped sponge spicule within the clay matrix of 

Kn 95/187. A and B = PPL, C and D = PPL. Field of view = 0.15 mm (A), 50 J.Lm (B), 1.5 mm (C) 

and 0.5 mm (D). 
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clay mixing (Stilborg 1997), or as part of a slip or paint applied to the exterior of the 

vessel (Figure 8.4). The abundance of diatoms in archaeological ceramics varies 

greatly, but they usually occur in small numbers (Alhonen and Matiskainen 1980; 

Battarbee 1988; Stilborg 1997). 

In ceramic thin sections (c. 30 J.1m thick), diatom frustules are usually obscured by the 

fine clay matrix, which makes them difficult to recognise and identify taxonomically 

(Hakansson and Hulthen 1986; Hakansson 1997). For this reason it necessary to 

analyse diatoms by isolating them from the rest of the ceramic (Section 8.4). The 

diatom assemblages which are isolated from archaeological ceramics often contain a 

large proportion of broken specimens. This is a result of "the different processes 

which both clay and pottery have gone through in the past and the present" (Stilborg 

1997, 109), including the transportation and reworking of specimens in the original 

sedimentary environment (Jansma 1977), the maceration and working of raw 

materials during ceramic manufacture (Gibson 1983a), firing (Gibson 1983b), and the 

process of isolation itself (Hakansson and Hulthen 1986; Battarbee 1988). The 

fragmentation of diatom specimens in archaeological ceramics hinders their 

identification (Stilborg 1997) and the production of quantitative assemblage 

descriptions, or 'diatom profiles' (Gibson 1983a). Those diatoms which inhabited 

brackish water usually have sturdier thecae than those from fresh or purely marine 

environments (Jansma 1977; Gibson 1983a), and the degree of damage in ceramics 

appears to be related to the shape of individual species (Jansma 1981), with the longer 

pennate forms being particularly fragile. This may have a serious affect on the 

determination of allochthonous and autochthonous species in archaeological ceramics, 

by the proportion of broken and unbroken individuals of diatoms from different 
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environments (Section 8.4). The effect of firing on diatom thecae has been studied by 

several authors, and is discussed separately in Section 8.3. 

Other groups of siliceous microfossils which have been observed in archaeological 

ceramics, include radiolaria (Farnsworth 1964; Whitbread 1995, Section 2.2), sponge 

spicules (Linne 1957; Brissaud and Houdayer 1986; Hakansson and Hulthen 1988; 

Keech McIntosh and Macdonald 1989; Riley et al. n.d.), silicoflagellates and 

chrysophyte algae (Hakansson 1997). 

Sponge spicules have been found to occur in very high abundance (17 %) in some 

Iron Age pottery from Mali, by Keech McIntosh and Macdonald (1989). These 

conspicuous inclusions which can be added as temper during ceramic manufacture 

(Krausse 1911; Linne 1957), appear as glassy, isotropic 'rods' (longitudinal profile) or 

'bulls eyes' (transverse profile) in thin sections (Keech McIntosh and Macdonald 

1989), and can be identified in terms of the types of sponges from which they 

originated, by scanning electron microscopy (Brissaud and Houdayer 1986). Linne 

(1957) has commented upon the distribution and orientation of sponge spicules in thin 

sections of archaeological ceramics from Brazil and Bolivia and, from this, interpreted 

technological aspects of ceramic manufacture. 

Very few siliceous microfossils were encountered in the present report, despite the 

detailed analysis of many thin sections and smear slides of archaeological ceramics. 

Rare diatoms and fragments of the perforate siliceous skeletons of radiolaria were 

observed within the clay matrix and calcareous slips or paints, of some thin sections 

(Figure 8.4). In addition, rare sponge spicules, as well as chalcedony radiolaria within 

chert inclusions, were encountered (Figure 8.4). 
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8.3 The behaviour of diatoms and other siliceous microfossils during the firing of 

ceramics 

As with other groups of microfossils (Sections 5.4, 6.5, 7.4, 9.4), firing is one of the 

most important factors which may alter the natme of diatom assemblages in 

archaeological ceramics. Various authors have commented on the effect of this aspect 

of pottery manufacture (Jansma 1977; 1981; 1984; Gibson 1983a and b; HAkansson 

and Hulthen 1986; Battarbee 1988), however further research is clearly needed 

(Gibson 1983a). 

It appears that the silica of diatom thecae, when heated, breaks down at a critical 

temperature. This temperature has been variously quoted as 800 °C (Gibson 1983b), 

1000 °C (Jansma 1977), or 1400 °C (Matiskainen and Alhonen 1984), although none 

of these authors appear to have determined this for themselves, or indicated the source 

of their information. A similar process also takes place at a critical point during the 

firing of ceramics, and this too is poorly defined. 

The minimum temperature which has been quoted most often for the destruction of 

diatom valves in archaeological ceramics during firing is 800 °C (Jansma 1981; 1984; 

Battarbee 1988). This seems to be based upon firing tests carried out by Jansma 

(1981), in which "at temperatures not exceeding 800 °C, the frustules ... remained 

intact", and "at temperatures of 800 °C or more, most of the frustules disappeared" 

(Jansma 1984, 529). However, the same author, according to Gibson (1983b, 21) 

found diatoms "in some Medieval Dutch ceramics which have been fired at 1000 °C". 

Gibson (1983b) did not state the method by which the firing temperature of these 

archaeological ceramics was determined, nor did Jansma report the findings himself. 
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Nevertheless, the results of a set of experiments carried out by Hakansson and 

Hulthen (1986), may support such findings. 

In order to determine how heating affects diatom frustules, Hakansson and Hulthen 

fired three samples of recent diatomaceous clay at 125°C for approximately twelve 

hours, 550°C for three to four hours, and 925 °C for approximately two hours, 

respectively. It was not stated why these particular temperatures or firing durations 

were chosen, neither were any other details of their experimental firings outlined. 

However, by analysing the fired samples, it was discovered that the diatom frustules 

were still well-preserved, even after firing at 925°C. This contradicts the 

experimental work of Jansma (1981; 1984), and may explain the presence of diatoms 

in archaeological ceramics fired to a temperature of 1000 °C (Jansma in Gibson 1983a 

and b). 

On the other hand, Jansma (1990) has also indicated that diatom specimens can be 

destroyed during firing, at much lower temperatures. In his analysis of variously fired 

Neolithic pottery from the former island of Schokland in the Netherlands, he noted 

that whilst the very low fired pottery (400°C or less) of the Funnel Beaker Culture 

contained relatively rich diatom floras (average 120 specimens), those of the 

Vlaardingen Culture which were fired at slightly higher temperatures (over 400°C) 

contained a less abundant diatom flora (average 70 specimens). In support of this, 

Jansma reported that one sample of pottery from the Vlaardingen Culture contained 

more than 400 specimens, which he believed to be due to its lower firing temperature 

and consequently, "a better conservation of the thecae" (1990, 305). 
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The various estimates which have been quoted for the temperature at which diatoms 

are destroyed during the firing of ceramics, highlights the complexity of this process. 

It is highly probable that several other factors, in addition to temperature, determine 

the threshold at which the silica of diatom thecae 'melts' (Gibson 1983b), or reacts 

with other components of the clay, such as the exact chemical composition of the clay 

matrix and the silica itself. It is suspected that different diatom taxa will be destroyed 

at different levels during the firing of ceramics, as Jansma (1977, 77) stated that 

"diatoms from brackish water have sturdier thecae than those from marine or 

freshwater as they have to tolerate a greater fluctuation in environment". 

One way in which the degree of firing in ceramics indirectly affects the diatom 

assemblages in strew slides of archaeological ceramics, is by the vitrification of the 

clay micromass. In order to liberate diatoms from archaeological pottery sherds using 

the floatation method (Section 8.4 and Figure 8.5), it is first necessary to break. the 

samples into small pieces. This can be done by hand where the sherds are low-fired, 

however those samples which have undergone substantial vitrification (> 700 OCt 

Hakansson and Hulthen 1986) must be crushed with greater force (e.g. in a pestle and 

mortar). This latter process has been demonstrated to cause very extensive 

fragmentation of the diatom frustules in the final residue (Hakansson and Hulthen 

1986). The physical strain which is caused by the process vitrification of clay 

micromass during the firing of ceramics itself may also be responsible for the 

fragmentary nature of the diatom assemblages which are isolated from highly fired 

ceramics. In addition, Brissaud and Houdayer (1986) have postulated that this process, 

rather than melting, is responsible for the destruction of sponge spicules at 800°C 

during the firing of ceramics from Mali. 
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8.4.1 Preparation 

8.4.1.1 Introduction 

247 

The presence of diatoms in archaeological ceramics can be determined by viewing 

thin sections with the light microscope. However, individual specimens are often be 

obscured by the clay minerals, and characteristic features of a valve may be cut off, 

hindering their identification (HAkansson and Hulthen 1986; HAkansson 1997). It is 

therefore necessary to liberate three-dimensional diatom specimens from 

archaeological ceramics in order to analyse the floras in detail. Several authors have 

successfully isolated diatoms from pottery sherds using an adaptation of the 

'floatation method', which is the standard procedure for the liberation of diatoms from 

sedimentary rocks (e.g. Gibson 1983a; HAkansson and Hulthen 1986). This procedure 

is summarised below, and illustrated in Figure 8.5. 

8.4.1.2 Procedure 

1. In order to liberate diatom specimens from archaeological ceramics using the 

floatation method, it necessary to destroy pieces of original artefacts. The amount of 

material which is destroyed by this method, relies heavily upon the quantity which is 

available. This can range from as much as ten grams (Alhonen and Matiskainen 

1980), to as little as one gram, and it may even be possible to isolate diatoms from a 

scraping of the base or interior of a vessel (Gibson 1983a). Theoretically, a larger 

sample will give a better representation of the diatom flora of the whole artefact and 
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will suffer less from the effect of contamination during preparation (Battarbee 1988), 

however, in reality only very small quantities are available. 

Pottery which is plastic impregnated (a method sometimes used to preserve delicate 

artefacts). cannot be treated in the manner which is described below as it fails to break 

down (Hakansson and Hulthen 1986). 

2. Before a chip or sherd of pottery can be processed. it must be cleaned thoroughly 

(Jansma 1981; 1984). This involves brushing the sample in order to remove any 

secondary deposits which have adhered to it during burial (Section 3.8), and may 

contain diatoms. 

3. The clean pottery sample must now be disaggregated in order to increase the 

surface area available for the chemical treatment in step four. Very low fired, or 

heavily weathered ceramics may be easily separated by the solution itself (Gibson 

1983b), though it is usually necessary to crush or crumble sherds by hand (Jansma 

1990). Heavily fired, well-vitrified ceramics are often too hard to break down in this 

way and may require more force. This can be achieved by splintering the sample with 

pliers (Jansma 1984; Gibson 1983b), or crushing it to fme-medium gravel sized pieces 

with a pestle and mortar (Matiskainen and Alhonen 1984; Stilborg 1997). Hakansson 

and Hulthen (1986) claim that the mechanical destruction of highly fired ceramics 

damages the diatom specimens within, and in his description of this process, 

Hakansson (1997. 109) states that the samples must be "carefully crushed - not 

d" groun . 

An alternative method of breaking down well-vitrified pottery for the isolation of 

diatoms suggested by Gibson (1983b), is by the use of an ultrasonic bath. 
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4. The disaggregated sample must now be placed in a beaker and treated with 

hydrogen peroxide (H20 2) in order to oxidise any organic matter. This can be done 

with a concentration of 20 % (Alhonen and Matiskainen 1980; Matiskainen and 

Alhonen 1984) to 30 % H20 2 (Alhonen et al. 1980; Gibson 1983a; Jansma 1984; 

Jansma 1990), and the reaction can be facilitated by warming the solution at a 

constant temperature of 50-60°C for 12 hours (Alhonen and Matiskainen 1980) or 

adding some crystals of potassium permanganate (Gibson 1983a; Jansma 1984). If the 

pottery sample contains significant amounts of calcareous matter, then one or two 

drops of concentrated hydrochloric acid (c. 30 %) may be added (Jansma 1990). 

In what was perhaps the earliest attempt at isolating diatoms from archaeological 

ceramics, Foged (1968) 'cooked' his samples in concentrated HCI only, without the 

use of H20 2 (Alhonen and Matiskainen 1984). Furthermore, it may be possible to 

dissolve pottery samples by warming them in 10 % phosphoric acid (H3P04) at a 

temperature of 50°C, for a period of a few days to several weeks, as outlined by 

Hakansson and Hulthen (1986) and others. During the chemical treatment of pottery 

samples, it is necessary to stir the solution at regular intervals. 

5. After the various forms of chemical treatment which are described above, the 

sample should have separated into a coarse, sand to silt-sized residue and a cloudy 

suspension containing clay minerals and diatoms. The finer particles, which are in 

suspension can now be decanted with care from the coarser material. Whilst it is 

possible to mount and analyse diatoms from this fraction, the clay minerals tend to 

coat the diatom specimens (Gibson 1983b), and can interfere with their identification 
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Original vessel or sherd 

I-lOg subsample 

Brushing or cleaning 

Medium-fired Poorly -fired Well-fired 

Break by hand I Crush in mortar 

Treat with 20-30 % H20 2 and KMn04 
at 50°C for 12 hours. 

Non-calcareous Calcareous 

Treat with HCl 

I 
Decant and discard coarse fraction 

Centrifuge at 2000 rpm for 2-3 mins 
and discard upper two-thirds 

I 
Strew slides SEM stub 

Study with LM Study with SEM 

Figure 8.S Diagrammatic representation of tbe noatation tecbnique of diatom preparation, after 

Gibson (1983a) and others. 
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(Matiskainen and Alhonen 1984). In order to remove these fine clay particles « 2 

Ilm) it is necessary to dilute the solution with distilled water and centrifuge it at 2000 

revolutions per minute, for two to three minutes (Gibson 1983b; Jansma 1984). After 

this process, the clay minerals remain in suspension and may be decanted, leaving the 

diatoms and other siliceous microfossils at the bottom of the centrifuge tube. The clay 

particles can also be separated from the diatoms by allowing the solution to settle for 

two hours at a time, decanting the upper two-thirds and diluting the remaining fraction 

with more water (Hakansson and Hulthen 1986), however this is extremely time 

consummg. 

6. The product of steps two to six is a clear solution which will hopefully contain 

diatoms, as well as a small proportion of clay minerals> 2 Ilm. Strew slides can now 

be prepared from this, by pipetting 2-3 ml of the solution onto a microscope coverslip, 

placed on a hotplate. The dried coverslip will contain a fine residue, and must be 

adhered face-down onto a standard microscope slide immediately. For this purpose, it 

is necessary to use a mounting medium with a high refractive index, such as Naphrax 

or Caedax, which will enhance the structure of the diatom valves when viewed under 

the microscope (Jansma 1981). Alternatively, the digested diatom solution can be 

dried onto a stub and studied with the SEM (Hakansson and Hulthen 1988). 

8.4.2 Analysis 

In strew slides prepared from samples of archaeological pottery in the manner which 

is described above, diatoms can be viewed in isolation, unobscured by the clay 

minerals which are present in ceramic thin sections. These slides are usually studied 
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with the transmitted light microscope using a 1000 x oil-immersion lens and a 

mechanical stage. 

There are two methods of recording the diatoms in a strew slide; a qualitative and a 

quantitative method. In the qualitative method, all species which are present in the 

flora are recorded, and a note is made of any dominant species. The quantitative 

method however, involves counting and identifying a set number of individuals in 

each strew slide, as well as the number of broken and unbroken specimens of each 

species. A count of 400 specimens is usually made (Jansma 1981; 1984; 1990; Gibson 

1983a), however some strew slides will not contain this many specimens; in which 

case as many as possible should be counted. 

The identification of quaternary diatom specimens in strew slides of archaeological 

ceramics can be facilitated by referring to published 'floras', such as Cholmoky 

(1968), Cleve-Euler (1951-1955), Foged (1980, 1982), Germain (1981), Hudstedt 

(1927-1966), Krammer and Lange-Bertalot (1986; 1988; 1990; 1991), Patrick and 

Reimer (1966; 1975), Salden (1978), Schmidt (1874-1959), Van Heurck (1880-1885) 

and van der Werfand Huls (1957-1974). These floras can also be used to determine 

the salinity preferences of the various diatom species, in terms of the aqueous 

environment which they inhabited during life. It therefore is possible to calculate the 

'MBF ratio' (Marine-Brackish-Freshwater) of the diatom flora, by recording the 

number of species (qualitative method), or the number of individuals (quantitative 

method), belonging to each environment. 

The MBF ratio gives an indication of the type of environment in which the original 

clay source, used for the manufacture of the pottery, was deposited. However, as 
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diatom valves can be transported from their original habitat and re-sedimented, the 

assemblage in a particular layer of sediment may contain allochthonous diatom 

specimens which are indicative of different depositional environments, in addition to 

the in situ flora which was living in the water column above (Jansma 1977). The 

presence of many allochthonous diatom specimens in the strew slides of 

archaeological pottery, may therefore hinder the determination of the original 

depositional environment of the raw materials of ceramic manufacture, using the 

qualitative method. Nevertheless, as the action of re-sedimentation very often 

damages the diatom valves (especially long pennate species), a comparison between 

the number of broken and unbroken individuals of diatom species from the different 

environments (as determined by the quantitative technique), may be useful in 

identifying the allochthonous component of the flora, and therefore the true nature of 

the original sedimentary environment. 

If marine fossil diatoms occur in the strew slides which have been prepared from 

samples of archaeological ceramics, then it may be possible to interpret floras in terms 

of the geological date in which they were deposited, by the identification the fossil 

taxa and the application of suitable biostratigraphic schemes. 

8.S Approach to studying archaeological ceramics using diatoms 

8.5.1 Description and classification 

It is possible to characterise and classify archaeological ceramics in many ways on the 

basis of their diatom floras (Section 2.3.1). On the simplest level, the 

presence/absence of diatoms in ceramics can be used classify samples (Jansma 1977), 
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as can the component of the ceramic in which they occur (Stilborg 1997). A more 

sophisticated form of description and classification can be made on the basis of the 

taxonomic composition of the diatom assemblage (Alhonen et al. 1980; Alhonen and 

Matiskainen 1980; Matiskainen and Alhonen 1984; De La Fuente and Martinez 

Macchiavello 1997). However, it is preferable to characterise and classify 

diatomaceous archaeological ceramics in terms of the depositional environment of 

which their flora are indicative (Jansma 1984), as this is highly contextual and assists 

the determination of provenance (Section 8.5.2). It is very important, when grouping 

archaeological ceramics on the basis of their diatom assemblages in this way, to 

consider other forms of characterisation and classification, such as thin section 

petrography, typology and chemistry. 

8.5.3 Provenance 

The detailed description of diatom assemblages from archaeological ceramics and the 

interpretation of palaeoenvironment from the salinity tolerances of the various taxa 

(Section 8.4.2), facilitates the determination of provenance. Diatoms can be used to 

indicate the provenance of ceramics on many scales (Section 2.3.2), by comparing this 

environmental interpretation with the proximity of the site of excavation relative to 

the coast (Jansma 1984; Stilborg 1997), pre-existing geological knowledge (Alhonen 

and Matiskainen 1980; Alhonen and Vakev!inen 1981; Matiskainen and Alhonen 

1984), or the diatom analysis of representative clay samples (Jansma 1977; 1981; 

1990; De La Fuente and Martinez Macchiavello 1997). Where fossil diatom floras 

occur in the residues which have been isolated from archaeological ceramics, it may 
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be possible to use biostratigraphy to indicate provenance, by considering the 

occurrence of contemporaneous sediments of a suitable lithology. 

8.5.3 TechnQIQ~y 

Diatoms are not well suited to the direct interpretation of ceramic technology. The 

occurrence of diatoms with conflicting salinity tolerances in strew slides of 

archaeological pottery samples must not be used to infer tempering or clay mixing 

without the analysis of ceramic thin sections, as was the case in Jansma (1977; 1982; 

1990) and Matiskainen and Alhonen (1984, Section 2.3.3.2). However, the presence 

of diatoms in clay mixing or temper, as seen in thin section, may be used to infer the 

nature, or even the origin of this material (Stilborg 1997). In addition, their 

presence/absence may possibly be used, indirectly, to make crude inferences about the 

degree of firing, if other aspects of the ceramic fabric are considered (Jansma 1977; 

1990). 
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9 Qrpnjc mjcrofossils 

9.1 Introduction 

Several types of organic-walled microfossils, or 'palynomorphs' occur in sediments 

dating from the Cambrian to the present day, as well as samples of archaeological 

ceramics (Section 9.2). Most palynomorphs are constructed of an extremely durable 

organic polymer called sporopollenin and can be extracted from lithified sediments by 

the use of strong acids (Section 9.3). The most common groups of palynomorphs are 

pollen, spores, dinoflagellate cysts and acritarchs, however many other types occur, 

e.g. chitinozoans, scolecodonts, fungal bodies and colonial algae, but these are very 

rare. The study of organic microfossils forms a specialised branch of 

micropalaeonotology called 'palynology'. 

9.1.1 Pollen and spores 

Pollen and spores are the minute (usually < 200 .... m) reproductive organs of higher 

plants, which are produced in vast numbers, dispersed by wind, water or other 

organisms, and are often incorporated into marine and non-marine sediments. Pollen 

and spores have a very long geological range (Figure 9.1) and the appearance of 

different forms of these two palynomorphs reflects the evolution of land plants. 

Spores have a roughly spherical form and often occur in clusters or tetrads (Figure 

9.1). Different types of plants usually have their own morphologically distinct pollen 
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Figure 9.1 The geological range of the main groups of organic microfo ils, and th 

morphological feature of fo sil pollen and spores. 1 = Acritarch, 2 = pores, 3 = Pollen, 4 = 

Dinoflagellate cy t . (MA = million years). A = tetrahedral tetrad of trilete spore and B = 

i olated trilete porc, = tctragonal tctrad of monolete spores and D = isolated monolete pore, 

= ornate trilctc sporc with bri ties, F = ornate monolete spore with granules, G = monoporatc 

pollen grain, H = triporate pollen grain, I = monosulcatc pollen grain and H = bi accatc pollen 

grain. calc bar = 50 ~lm (F to J), 200 ~lm (E). After Traverse (1988) and Bignot (1985). 
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or spores, characterised by size, overall shape, wall structure, surface ornamentation, 

the number and position of pores, colpae (furrows), sulcae (folds), the presence of 

markings from the tetrad, as well as air-sacs (Figure 9.1). 

Fossil pollen and spores have been studied for over 150 years. Much of the early work 

was concerned with the pollen record of relatively Quaternary sediments, for example 

peat bogs and lake sediments, where pollen can be used to document climatically 

induced vegetation patterns or changes induced by man. It was not until this century 

that the long geological record of pollen and spores was intensively studied. Raistrick 

(1934), analysing coal deposits in northern England, discovered that different seams 

contained characteristic assemblages of spores, and these could be utilised as a tool 

for correlation. Since the 1950's fossil pollen and spores have been used in the oil 

industry for the biostratigraphy and correlation of nearshore sediments, this 

application has been the impetus for a rise in the study of these and other 

palynomorphs during the latter part of this century. 

For a general consideration of the morphology and biology of Recent pollen and 

spores, the reader is referred to Tschudy and Scott (1969), Erdtman (1969) and Pons 

(1970), as well as more general works such as Brasier (1980) and Bignot (1985), upon 

which the above account is based. The application of plant microfossils to geological 

problems, including biostratigraphy, is dealt with in Muir and Sarjeant (1977); 

Traverse et al. (1957) and more recently, Jansonius and McGregor (1996). 
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9.1.2 Acritarchs 

The group acritarcha was erected by Evitt in 1963 to include all hollow, organic

walled unicellular vesicles with unknown affinities. This group contains a great range 

of forms which are classified into 13 subgroups based upon their morphology (Figure 

9.2). However, certain features are common to many acritarchs; a single-layered wall 

enclosing a central cavity, conspicuous processes, an opening or 'pylome' and surface 

ornamentation or 'sculpture'. Acritarchs are approximately 20-150 f.LlIl in size and 

therefore it is necessary to sieve organic residues using a very fine mesh (7 or 5 J..lm) 

to recover these palynomorphs. 

Although the exact affinity of acritarchs is unknown, it is clear that they are the 

remains of some kind of planktonic marine organism, due to their cosmopolitan 

distribution and increase in abundance in offshore sediments. They commonly occur 

in many types of marine strata (especially argillaceous sediments), from the Pre

Cambrian to Devonian, and have a much less conspicuous geological record, 

consisting of several long-ranging forms, in the late Palaeozoic, Mesozoic and 

Cenozoic. The superabundance and rapid evolution of acritarchs in Pre-Cambrian and 

lower Palaeozoic marine sediments makes them a very useful tool for dating and 

correlating rocks of this period. In addition, the abundance, diversity and preservation 

of acritarchs can be used to distinguish near and offshore sediments, and certain forms 

can be characteristic of particular oceanic environments. 

Good accounts on the morphology, classification and stratigraphic application of 

acritarchs can be found in Muir and Sarjeant (1977), Deunff et al. (1971), Tappan 

(1980) and more recently, Stover et al. (1996). 
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Figure 9.2 The morphological feature of acritarchs. A = Micrhystridium spherical bod ,ith 

proce e and lit-like opening, B = Veryachium polygonal body haped by number and po ition 

= Ooiflillm ornamented spberical body, D = Estiastra body formed of e eral 

broad open proce e, E = Baltisphaeridilll1l spherical body with processes and circular pylome, 

= Leiofllsa elongate fu iform body with polar proce se , G = Vllicallisplraera sub-spherical bod 

with hort branching proce e, H = AcalltllOdiacrodium rectangular body with mooth equator 

and thread-like polar proce , and I = Deunffia spherical body with ingle elongate branching 

proce s. cale bar = 50 ,...m. After Bignot (1985) and Brazier (1980). 
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9.1.3 Dinofla~ellate cysts 

Dinoflagellates are small (usually < 100 J,lm), single-celled, marine phytoplankton 

which have a prominent nucleus, chloroplasts and two flagella. There are two kinds of 

dinoflagellates; those which have a soft membranous body wall and those which have 

a platy tabulated wall and produce highly resistant, organic resting cysts at some point 

in their life cycle (Figure 9.3). Very few living dinoflagellates produce resting cysts, 

however in the geological record all that is left of these organisms are their cysts. 

Dinocysts are single or multi-layered bodies which enclose a cavity and reflect some 

of the features (e.g. tabulation) of the dinoflagellate theca which they once filled. 

There is a certain amount of confusion between the classification of modem 

dinoflagellates and fossil dinocysts. Dinoflagellates are classified by the number and 

arrangement of thecal plates, with no consideration of the corresponding cysts 

morphology, and dinocysts are dealt with in reverse, so that for example, the fossil 

genus Spiniferites is the cyst of the living genus Gonyaulax (Figure 9.3). 

There are three main types of dinocysts, based upon the arrangement of the one or 

more wall layers and the way in which the cyst filled its dinoflagellate theca (Figure 

9.3). Proximate cysts develop with their outer wall in direct contact with the inner 

surface of the dinoflagellate theca. They are a similar size and shape to the theca and 

exhibit strong 'paratabulation'. Chorate cysts are much smaller than the dinoflagellate 

theca from which they originate, and have two wall layers; an endophragm surrounded 

by a periphragm moulded into conspicuous processes which were in contact with the 

inner wall of the dinoflagellate. The processes of chorate cysts can be randomly 

arranged (non-tabulate) or may reflect the tabulation of the thecae in which they were 
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Figure 9.3 The life cycle of a tabulat d cy t-producing dinoflagellate (A), the living dinofiagcIJat 

genus GOllyaulax (B) and it fossil dinoc t Sp;IIifer;tes (C), the three main type of dinocy t: 

proximatc (F), cavate ( ) and chorate (D) cyst. 1 = planktonic thecate stage, 2 = encystment 

within the th ca, 3 = 10 of theca, 4 = b nthic re ting tage, 5 = excystment and deposition of cyst, 

6 = naked planktonic gymnodinoid. cale bar = 50 Jim. After Evitt (1985) and Bignot (1985). 
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enclosed (tabulate). The other group of dinocysts (cavate cysts), have two wall layers 

which are partially separated, to produce large cavities. These cavities are usually 

situated at the poles of the cyst and may be elongated into 'horns' (Figure 9.3). 

All dinocysts possess an opening, or 'archaeopyle' produced by the loss of one or 

more 'paraplates', and through which the new dinoflagellate emerged or 'excysted'. 

Archaeopyles vary in their size and position, but are constant within a species and 

therefore very important for dinocyst classification. 

Dinocysts are common in marine sediments throughout the Mesozoic, Cenozoic and 

Quaternary. Their evolution is very similar to that of the other major group of fossil 

phytoplankton, the calcareous nannofossils, in terms of their Late Triassic appearance, 

rapid evolution through the late Mesozoic to a diversity maximum in the Late 

Cretaceous, a decline at the Kff, a Palaeogene recovery then decline, and a slight 

increase in diversity in the Miocene, followed by a general decline to the present day. 

particular types of cysts are characteristic of different periods of dinoflagellate history 

and their rapid evolution in the Mesozoic and early Cenozoic makes them a very 

useful biostratigraphic tool for this time period. The biostratigraphic utility of 

dinoflagellate cysts has been utilised extensively in the oil industry and is the main 

reason for an increase study of dinoflagellates during the latter part of this century. 

Late Cenozoic and Quaternary dinocyst assemblages are characterised by a few, long

ranging species and are therefore not very useful for detailed biostratigraphy and 

correlation. However, by studying the environmental tolerances and distribution of 

these extant forms it is possible to make palaeoecological and palaeoenvironmental 

interpretations. 
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The biology and morphology of living dinoflagellates is dealt with in Sarjeant (I 974) 

and Fensome et al. (1993; 1996). For the classification and biostratigraphy of fossil 

dinoflagellate cysts, the reader is referred to Williams (1977); Williams and Bujak 

(1985), Fensome et al. (1993) and Stover et al. (1996), as well as more general 

references such as Brasier (1980) and Bignot (1985), upon which the above account is 

based. 

9.2 The occurrence of organic microfossils in archaeological ceramics 

Organic microfossils have been observed in archaeological ceramics by Hunt (1996) 

and Tsaila (n.d), as well as mudbricks (Ayyad et al. 1991). Hunt (1996, 69), who 

isolated pollen, spores and dinocysts from reduction-fired sherds of British Iron Age 

pottery (Section 2.3.2.5), noted that "considerable organic matter and possible 

palynomorph fragments" were visible in thin sections of the same samples. The 

presence of palynomorphs in ceramic thin sections has also been noted by Tsaila 

(n.d.), who identified a fern spore (polypodiaceae) in her analysis of the Middle 

Minoan Age Dark Faced Incised Ware pyxides from Knossos (Section 11.3). Ayyad 

et al. (1991) did not analyse thin sections, but instead, isolated recent and fossil pollen 

and spores, as well as macrofossil plant fragments, from three unfired Egyptian 

mudbricks. 

Although much of the archaeological pottery which has been analysed in the present 

study contains organic matter in thin section, very few identifiable palynomorphs have 

been observed. The oxidised organic matter appears reddy brown in thin section, and 

forms amorphous structures as well as dark spherical bodies within the clay matrix. 
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Figure 9.4 The occurrence of organic matter in thin sections of Bronze Age archaeological 

ceramics from Crete. Organic matter as ociated with a foraminifer in Kn 95/2] 1 (A), and with an 

ostracod in MFK 93/57 (B). The occurrence of 'microforaminifera' in Kn 86/13 and Kn 95/237 

(C and D). All pictures PPL. Field of view = 0.5 mm (A and B), 0.15 mm (C and D). 
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Amorphous organic matter may be found associated with foraminifera and ostracods 

(Figure 9.4), or can form distinct linings which are directly related to their mineralised 

remains. 

Foraminifera often possess a chitinous organic membrane which lines their chambers 

and can be seen in thin sections of archaeological pottery. These linings often appear 

in digested palynological residues, where they have been termed 'microforaminifera' 

by Wilson and Hoffmeister (1952). Within thin sections of archaeological ceramics, 

the linings of foraminiferal tests are often highly oxidised and have contracted within 

the chambers, but can sometimes be left in situ. In rare cases, foraminifera have been 

dissolved and all that is left is a dark red-brown, opaque organic structure which 

reflects the form of the test which it once lined (Figure 9.4). Strictly speaking, these 

organic remains of foraminiferal tests are also 'microforaminifera', especially where 

they occur without a calcite shell. As such, they are the only type of palynomorph 

which has been identified in the thin sections of archaeological ceramics in the present 

report. Microforaminifera were not present in the digested residues of Cretan pottery 

which are analysed in Section 9.3. This may be due to the brittle, thermally altered 

condition of these organic structures, which is evidenced by their dark, opaque 

appearance under the microscope (Figure 9.4). 

Palynomorphs have flexible, translucent sporopollenin walls and are therefore 

difficult to observe and study in ceramic thin sections (Hunt 1996). However, by 

treating sherds with strong acids, it may be possible to isolate these organic 

microfossils and study them separate from the rest of the ceramic (Section 9.3). 
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9.3 The isolation of organic microfossils from archaeological ceramics 

9.3.1 Introduction 

Whilst Bryant and Holloway (1996, 914) reported that ''there is little chance that 

archaeologists will find pollen trapped in most ceramic pottery", Hunt (1996) has 

successfully isolated pollen, spores and other types of palynomorphs from reduction

fired archaeological ceramics by dissolving sherds with hydrofluoric (HF) and 

hydrochloric acid (HCI). In the present report, several Bronze Age archaeological 

pottery sherds from Crete have been treated in a similar manner. 

9.3.2 Samples 

Six Bronze Age cooking pot samples were chosen for the purpose of this 

investigation. The sherds, which date from the MM II and LM III periods were 

excavated on Crete and are low calcareous. 

9.3.3 Procedwe 

The various archaeological pottery samples were processed at the Industrial 

Palynology Unit of the University of Sheffield, in the manner described below. 

1. Each sherd was individually crushed and ground to a powder in a pestle and mortar. 

2. The fine powdered samples were then transferred to a disposable plastic container 

and wetted with ordinary tap water. 
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3. A small amount of dilute Hcl was then added to each container in order to dissolve 

any calcareous matter. The samples were left for 30 minutes, after which the reaction 

was completed. 

4. The reactant was decanted and 30 ml of HF, plus 10 ml of Hcl, were added to the 

samples. This mixture was stirred with a glass rod, a labelled lid was placed on each 

container, and the reaction was left to proceed. 

s. The contents in each container were stirred every day until all argillaceous particles 

were dissolved. Some of the samples took longer to digest than others, particularly 

those which were fired to a higher temperature. 

6. The digested samples were decanted and diluted with tap water until they had a 

neutral pH. 

7. Each sample was then washed and sieved at 7 Jlm .. 

8. Standard palynological strew slides were prepared from each sample by transferring 

four drops of the organic residue into another phial, diluting them with 3 ml of 

distilled water then pi petting 1 ml of this onto a coverslip, placed on a hotplate in a 

fume cupboard. The dried coverslip was then mounted face down on a labelled 

microscope slide using 'Entellan' optical adhesive, and left to set. 

All slides were viewed under plane polarised light at magnifications of 25, 40, 100 

and 400 x in order to determine the nature of any organic material present. 
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9.3.4 Results 

No identifiable pollen, spores or marine palynomorphs were present in the residues of 

the six samples in this pilot study. Some organic matter was liberated from most 

samples, although this was oxidised and amorphous. It is not possible to determine the 

exact reasons for the absence of palynomorphs in these sherds. The raw materials 

from which they were manufactured may not have contained any organic microfossils 

to begin with, or palynomorphs may have been present but were destroyed during 

firing. In order to investigate this latter alternative it is necessary to document the 

behaviour of various organic microfossils during the firing of ceramics (Section 9.4). 

9.4 Investigation into the behaviour of palynomorphs during the firing of 

(:eramics 

9.4.1 Introduction 

In the present report, experiments were devised in order to investigate the behaviour 

of organic microfossils during the firing of ceramics. It was hoped that the results of 

these experiments would reveal useful information pertaining to the thermal alteration 

of palynomorphs, as well as the temperature(s) at which they are destroyed during 

firing. 

9.4.2 The thermal alteration of O[i:anic matter in i:eo1oi:ical contexts 

Organic microfossils are known to undergo a distinct transformation, when subjected 

to increasing temperatures as a result of geological processes (burial, overthrusting, 
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Figure 9.5 The behaviour of different palynomorphs with increasing temperature from 0-500 °e, 

in term of their tran lucency and colour, as well as the abundance of inertinite in assemblages 

heated to different temperatures (after Brooks and Dorning 1997, 186-187: Figs. 1 and 2). A = 

Pollen and spores, B = Amorphous organic matter, e = Acritarchs, D = Dinoflagellate cysts, E = 

abundance of inertinite. 
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igneous intrusion) or intentional heating (heat-treatment of flints, firing of pottery). 

The specific rates of thennal alteration exhibited by different groups of organic 

microfossils vary considerably, in relation to their composition and thickness 

(Doming 1986). However, the general trend is that of a colour change (usually yellow 

to brown to black), a decrease in the degree of translucency and an increase in the 

degree of reflectance, with increasing temperature. 

This phenomenon has been noted for some years and several subjective optical indices 

have been proposed which utilise the well-documented thennal alteration 

characteristics of specific organic microfossil groups, in order to assess the thermal 

maturity of sedimentary source rocks, for hydrocarbon exploration. These include 

Staplin's (1969) 'thennal alteration index ' (TAl), based on colour changes in 

palynomorphs, as well as the sphaeromorph acritarch colour alteration index of Legall 

et al. (1981). A more accurate estimation of palaeotemperatures however, may be 

obtained by assessing the degree of thennal alteration of more than one group of 

organic microfossils occurring in a sample. There is often some variation in the degree 

of colouration, translucency or reflectance within a single sample, and a comparison 

between the different stages reached by the various organic microfossils provides a 

means of cross-checking the palaeotemperature estimates obtained. In general, non

marine organic fossils such as pollen and spores tend to exhibit greater alteration at 

lower temperatures than marine organic microfossils, such as dinoflagellate cysts and 

acritarchs. However, the latter provide a more reliable means of estimating 

palaeotemperature, due to the high variation in the composition of non-marine 

sediments and the more extreme thennal alteration and variable weathering of 

organic-walled microfossils from this realm (Doming 1986). By utilising the thennal 
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alteration characteristics of the various types of palynomorphs, it is possible to 

measure palaeotemperatures from as low as 50°C to as high as 400°C. 

9.4.3 Previous archaeotheonometric studies 

The thermal alteration of organic microfossils is a potentially useful tool for the 

determination of firing temperatures In archaeological materials 

('archaeothermometry'), as exemplified by the studies of Brooks and Doming (1997) 

and Hunt (1996). 

Brooks and Doming (1997) have used the thermal alteration of palynomorphs to 

investigate the deliberate heat treatment of siliceous raw materials for the production 

of stone tools. Heating flint and chert to a temperature of c. 250°C (Purdy and Brooks 

1971), appears to improve their 'knapping' quality and initiates fracturing in 

previously intractable materials. Chert and flint deposits often contain various 

quantities of marine and non-marine palynomorphs, which can be affected by natural 

thermal alteration, as well as intentional heating by man. Brooks and Doming (1997) 

have investigated the degree of intentional heat treatment in flint samples from the 

Late Mesolithic to Neolithic archaeological site of Lismore Fields near Buxton, and 

the Late Bronze Age to Early Iron Age site of New Buildings in Hampshire, England, 

by extracting organic microfossils with hydrofluoric acid. In both investigations, the 

organic microfossils which were liberated from the fragments of flint were compared 

to a set of geological reference samples, produced by the controlled heat treatment of 

Late Cretaceous flints. 
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At Lismore Fields, Brooks and Doming (1997) discovered that the majority of the 

samples which were analysed, had been heated to a temperature of between 200 and 

250 °C. This was in agreement with the optimum temperature for heat pre-treatment, 

established by Purdy and Brooks (1971). As none of the samples exhibited any 

characteristics in hand specimen which suggested that they had been heat treated, the 

results of these studies question the reliability of the macroscopic flint analysis. 

Brooks and Doming (1997) analysed ten samples of burnt flint from the site of New 

Buildings, Hampshire in order to determine the origin of cracking and crazing seen in 

hand specimen. The thermally altered organic matter which was liberated from these 

samples indicated that they were heated to a temperature of 300-400 °C. This in itself, 

would not have been sufficient to induce the fracturing which was seen, and the 

authors therefore inferred that the burnt flint was used as a material for heat retention. 

Here, gradual heating followed by rapid cooling, probably due to the dumping of 

water, would have produced the cracking and crazing. 

Hunt (1996) has utilised the thermal alteration of palynomorphs in Iron Age pottery 

from North Furzton, near Milton Keynes, England, to infer approximate firing 

temperatures. He treated ten oxidised and ten reduction-fired sherds with hydrofluoric 

and hydrochloric acid in the manner which is described in Section 9.3. However, only 

the latter contained any significant organic matter. By comparing the colour of the 

palynomorphs in the reduction-fired sherds with the 'Thermal Alteration Index' of 

Staplin (1969), he determined that the pottery was relatively low-fired (approximately 

400 °C or '2 +' to '3' in Staplin's 'TA!'). 
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9.4.4 Material 

Several kilograms of raw material were collected from the Eocene London Clay 

Formation at Walton-on-the-Naze in the county of Essex, England. This clay which 

contained a rich assemblage of pollen, spores and dinoflagellate cysts, was ideal as a 

means of studying the differential effect of firing on the various groups of organic 

microfossils. Standard palynological preparations were made from the raw London 

Clay, in order to compare its assemblage with that of the fired samples. 

9.4.5 Clay preparation 

The raw material was broken into small pieces and allowed to dry in a bucket for a 

period of one week. The dry pieces of clay were then crushed into a fine powder 

«lmm) with a pestle and mortar, and sieved using a 1 mm mesh. This powder was 

mixed with tap water until a reasonably stiff clay paste was achieved. The clay was 

kneaded by hand and transferred to ice cube containers, which were left to dry. The 

small cubes of clay were ideal for these experiments as they were easy to produce and 

of roughly equal dimensions. After one week, the briquettes were removed from their 

container and placed in a warm oven (30°C) for several days, in order to drive out 

any excess water in preparation for the firing process. 

9.4.6 Details of the firioi: process 

The firing of the London Clay briquettes was carried out in tandem with the 

experiments into the behaviour of calcareous nannofossils during firing (Section 5.4, 
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Figure 5.5). This produced twelve samples, fired to a maximum temperature of 700, 

800,900, 1000 and 1100 °C in an oxidising and a reducing atmosphere respectively. 

9.4.7 Processini 

The fired London Clay briquettes were processed at the Centre for Palynology of the 

University of Sheffield, in order to liberate any organic matter which had survived the 

firing process. This procedure was almost identical to that applied to the 

archaeological ceramics in Section 9.3. The reduction-fired briquettes contained a far 

greater quantity of organic matter than the oxidised briquettes, and it was therefore 

necessary to divide the residues from these samples into two fractions. One fraction 

was washed and sieved through a 7 J.1m nylon mesh, and the other fraction was treated 

with 'Schulze's solution' (an acidic oxidant), in order to reduce level of amorphous 

organic matter and then sieved. 

9.4.8 Results 

9.4.8.1 Oxidised briquettes 

None of the oxidised London Clay briquettes contained any recognisable 

palynomorphs after processing. The strew slides from these briquettes were 

dominated by undigested mineral grains, black inertinite, brown to black amorphous 

organic matter and secondary minerals, which were precipitated during or after the 

digestion process. There was a progressive decrease in the absolute abundance of 

organic matter in the oxidised briquettes with increasing firing temperature. 
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Despite the high degree of thennal alteration exhibited in all samples, a definite colour 

change can be seen in the amorphous organic matter, by comparing the lowest fired 

(600°C) and the highest fired (1100 °C) samples. The sample which was fired to a 

maximum temperature of 600°C, contained dark brown to black organic matter, 

whereas that of the sample fired to 1100 °C was dominantly black or more rarely a 

very dark brown colour. It was not possible to discern any colour change between 

those samples which were separated by a smaller temperature range (e.g. 700-800 °C), 

due to the high thennal alteration of all samples. 

9.4.8.2 Reduction-fired briquettes 

The overall quantity of organic matter which was liberated from the reduction-fired 

samples, was far greater than that obtained from the briquettes which were fired in an 

oxidising atmosphere. The abundance of organic matter in the residues of these 

samples was so high that they had to be diluted before strew slides could be made 

(Section 9.4.7) It appears that the process of reduction firing had less affect on the 

organic matter in the London Clay, as many recognisable palynomorphs could be seen 

in all samples. even those fired to a temperature of 1100 °C. The organic matter in 

most of the reduction-fired samples was grey or black in colour, which is indicative of 

the high degree of thennal alteration that can be expected at these temperatures. There 

is however, a slight difference between the overall colour of the organic matter in the 

lowest and that of the highest fired samples. At this level of thennal alteration, the 

colour of organic matter appears to be related to the origin of the material in question, 

as well as its thickness and translucency. For example, m the 
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Figure 9.6 The different types of organic particles which were counted during the quantitative 

analysis of reduction-fired London Clay briquettes. A. dinocysts, B. pollen and spores, C. woody 

matter, and D. inertinite macerals. Amorphous organic matter is not illustrated. All pictures 

PPL. Field of view = 0.15 mm. 
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Figure 9.7 The overall abundance of palynomorphs in samples of London Clay fired to different 

maximum temperatures in a reducing atmosphere, as determined by the % field of view 

represented by all organic particle. 
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highest fired samples, the thick graphitic woody fragments have an opaque black 

colour, whereas the thin transparent palynomorphs are grey. 

The strew slides which were prepared from the reduction-fired subsamples treated 

with Schulze's solution, indicated that this process reduced the amount of secondary 

precipitation as well as hindering the clumping of the organic matter. Schulze's 

solution is an oxidising agent, and it was suspected that it may have affected the 

colour of any palynomorphs in the samples, though this, however, was not the case. 

9.4.8.3 Quantitative palynological analysis of the reduction-fired briquettes 

In order to determine more precisely the effect of firing temperature on the overall 

abundance of organic matter and the relative abundance of different palynomorphs in 

the reduction-fired briquettes, it was necessary to quantitatively analyse the strew 

slides which were treated with Schulte's solution. Five main types of palynomorphs; 

dinoflagellate cysts, pollen and spores, woody matter, inertinite macerals and 

amorphous organic particles were counted during a single traverse of each strew slide, 

at a magnification of 400 x (Figure 9.6). In addition, an impression of the total 

abundance of palynomorphs was determined for each slide by calculating their 

percentage in 10 fields of view, using the Aequitas 1.01 image database and archive 

management system for Windows 95. The results of this quantitative analysis are 

presented in Figures 9.7, and discussed in Section 9.4.9 below. 
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Figure 9.8 The 0 crall abundance of the five principle groups of palynomorphs in London Clay 

fired to different maximum temperature in a reducing atmosphere, as determined by the total 

number of particle belonging to each group which were encountered during a single traver e 

aero a trew lide at a magnification of 400 x. 



281 

9.4.9 Discussion 

9.4.9.1 Oxidation firing 

The total absence of any recognisable palynomorphs in the oxidised samples was not 

surprising. Geological studies have shown that heating dinoflagellate cysts, pollen and 

spores in the presence of oxygen causes extreme carbonisation by c. 400°C. It is 

therefore possible that firing London Clay to a temperature of 600 °C or above 

resulted in the total destruction of its palynomorph assemblage, by the carbonisation 

of these organic structures to such a degree that they were extremely fragile, then 

disintegrated during the maceration of the fired ceramic, and passed through the fine 

mesh sieve during processing. Hunt (1996), in his analysis of Iron Age pottery from 

Milton Keynes (Section 9.4.3), did not recover any palynomorphs from the ten 

oxidised sherds which he analysed, whereas the equivalent reduction-fired samples 

contained reasonably abundant palynological assemblages. 

The decrease in the overall abundance of organic matter with maximum firing 

temperature, which was observed in the oxidised London Clay briquettes is also to be 

expected. This may have been due to the more pronounced degradation and 

fragmentation of the organic matter with increasing temperature until, in the highest 

fired sample (1100 °C), the proportion of black amorphous organic matter and 

inertinite was greatly reduced. 

It was possible, by comparing the highest and lowest fired samples, to observe a slight 

colour change in the organic matter with increased firing (Section 9.4.8.1). This was 

very subtle and very difficult to detect between successive samples, due to the high 

degree of thermal alteration which was achieved in even the lowest fired samples. The 
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work of Doming (1986) and others has indicated that once organic matter has been 

heated to a temperature of c. 400°C, there is very little significant change in its colour 

and opacity/translucency with increasing temperature (Figure 9.5). 

9.4.9.2 Reduction firing 

The presence of identifiable palynomorphs in the reduction-fired London Clay 

briquettes which were heated to temperatures of between 700 and 1100 °C, clearly 

illustrates the importance of oxygen in the carbonisation process. Sporopollenin is 

extremely resistant to decay, for example, by the corrosive action of hydrofluoric acid, 

which dissolves minerogenic matter. However, when heated in the presence of 

oxygen, these tough polymers begin to decay. It is therefore not surprising that, in the 

absence of oxygen, the process of carbonisation is greatly reduced. 

The organic matter in the reduction-fired samples, was however not totally unaffected. 

It appears to have undergone a distinct colour change as a result of reduction firing, 

from yellow to dark brown and grey. Although there was a slight difference in colour 

between the lowest (dark brown and grey) and highest fired samples (grey), the 

appearance of pollen, spores and dinocysts in all samples is indicative of a high 

degree of thermal alteration; equivalent to that produced by a temperature of 400-500 

°C in the presence of oxygen. This indicates that, despite the lack of oxygen, the 

process of thermal alteration still took place, but at a slower rate. 

Figure 9.8 indicates that the progressive heating of London Clay, from 700 to 1100 °C 

under reducing conditions results in a steady decrease in the overall abundance of 

organic matter from 700-1100 °C. This is likely to be the result of the progressive 
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thermal alteration of different types of organic matter throughout the course of the 

experiments, as seen in Figure 9.8 and discussed below. 

Figure 9.8 indicates that the abundance of all groups of London Clay palynomorphs 

decreased with increasing firing temperature. This is a result of the progressive 

thermal alteration of all organic matter with increasing temperature. The graph in 

Figure 9.8 however, highlights the differential response of the five groups of organic 

particles in terms of the rate and timing of their thermal alteration and progressive 

destruction. The abundance of amorphous organic matter experienced a sudden 

decrease between 800 and 900°C and fell steadily between 900°C and 1100 DC. The 

proportion of woody matter decreased from 700 to 900°C, though not nearly as 

rapidly as the amorphous organic matter, and all other groups of palynomorphs 

exhibited little or only slight change in comparison. Between 900 and 1000 °C a 

significant threshold in the thermal alteration of inertinite macerals and pollen and 

spores may have been reached, this resulted in a rapid decrease in the abundance of 

these particles. The abundance of dinoflagellates however remained unchanged until a 

level somewhere between 1000 and 1100 DC, after which it too exhibited a rapid 

decrease. The relationship between the abundance of pollen and spores and 

dinoflagellate cysts in Figure 9.8 is interesting, in that it indicates that pollen and 

spores are more susceptible to thermal alteration at lower temperatures than 

dinoflagellate cysts. This agrees with the work of Doming (1986) who suggests that 

non-marine organic microfossils exhibit greater thermal alteration than those from 

marine environments at equivalent temperatures. 
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These familiar patterns indicate that the thermal alteration of organic matter in 

reduction-fired ceramics proceeds in a similar fashion to that which has been 

documented in the presence of oxygen. However, the process appears to take place at 

significantly higher temperatures. 

9.4.10 Conclusions 

Several conclusions can be drawn from the results of the above experiments. Firstly, it 

appears that palynomorphs may be destroyed during the firing of ceramics, at 

temperatures of 600°C or more, in the presence of oxygen. This is likely to be a result 

of the extreme carbonisation of organic matter which takes place at this temperature, 

and has serious implications for the characterisation and classification of 

archaeological ceramics with palynomorphs (Section 9.5.1). 

On the other hand, reasonably well-preserved pollen, spores, dinoflagellate cysts, 

inertinite and woody fragments may be isolated from reduction-fired ceramics heated 

to a temperature of up to 1100 °C. The survival of palynomorphs at such high 

temperatures is likely to be directly related to the absence of oxygen, which is crucial 

to process of carbonisation. In the present report, the palynomorphs which were 

isolated from the reduction-fired samples, were dark-brown to grey in colour, which 

indicates that some thermal alteration had taken place, (approximately equivalent to 

that achieved at 400°C in the presence of oxygen). The thermal alteration of the 

London Clay assemblage between the temperatures of 700 to 1100 °C in a reducing 

atmosphere, resulted in a steady decrease in the total abundance of all organic matter, 

as well as predictable trends in the overall and relative abundance of the different 
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types of palynomorphs (Section 9.4.9.2 and Figure 9.8). This clearly indicates that the 

process of thennal alteration proceeds in a similar fashion in the presence and absence 

of oxygen, but takes place at significantly higher temperatures in the latter case. 

In the present report, there was a slight difference between the overall colour of the 

palynomorphs and amorphous organic matter in the London Clay fired at 600 and 

1100 °C in reducing and oxidising conditions respectively. However, this was very 

indistinct, and more research is clearly required before the thennal alteration of 

organic-walled microfossils may be successfully used to detennine the firing 

temperatures of ancient ceramics (Quinn and Doming, work in progress). In the light 

of the experiments which are outlined in the present report, Hunt's (1996) 

interpretation of ancient firing temperatures in reduction-fired Iron Age ceramics 

(Sections 2.3.3.3 and 9.4.3), is likely to be an underestimation. 

9.5 Approach to studying archaeological ceramics using organic microfossils 

9.5.1 Description and classification 

As with all other groups of microfossils which occur in ceramics (Sections 5.6, 6.7, 

7.7 and 8.5), organic microfossils can be used to characterise and classify samples of 

archaeological pottery in tenns of their presence/absence, their preservation and 

abundance, the context in which they occur and the taxonomic composition of the 

assemblage. In tenns of the nature and origin of the raw materials of ceramic 

manufacture, a classification based upon the geological period or palaeoenvironment 

of which the palynomorphs are indicative, is preferred. Presence/absence and 

preservational groupings of archaeological pottery samples can be misleading, and in 
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the case of organic microfossils, are as likely to be related as much to firing 

technology, as to the presence/absence of organic microfossils in the unfired ceramics. 

9.5.2 Provenance 

By identifying the palynomorphs which are present in digested residues of 

archaeological ceramics, it may be possible to determine the geological age or 

depositional environment of the raw materials of ceramic manufacture. Such 

information may then be used to indicate the possible origin of these raw materials, by 

consulting published geological reports, or analysing representative clay samples 

(Hunt 1996). 

9.5.3 Technolo~y 

Of all the groups of microfossils which occur in archaeological pottery, palynomorphs 

are perhaps the best suited to the interpretation of ceramic technology. The presence 

of Recent non-marine palynomorphs such as pollen and spores in samples of 

archaeological pottery, can be used to indicate the addition of organic temper during 

ceramic manufacture (Hunt 1996), especially when combined with plant macrofossil 

evidence (Ayyad et af. 1991). A potential technological application of organic 

microfossils in archaeological ceramics, is the determination of ancient firing 

temperatures (archaeothermometry), by their degree of thermal alteration (Hunt 1996). 

However, this technique requires further investigation, as experiments in the present 
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report (Section 9.4), indicate that the thermal alteration of palynomorphs during the 

firing of ceramics is highly dependent upon the atmosphere in the kiln. 

9.5.4 Seasonality ofpotteO' production and ancient a~ricultural practices 

It may be possible, by identifying the palynomorphs contained within samples of 

archaeological ceramics, to determine the approximate time of the year during which 

pottery manufacture took place. As indicated in Section 3.4, the raw materials of 

ceramic manufacture can receive large quantities of allochthonous wind borne pollen 

and spores during their procurement, transportation, storage and preparation, as well 

as the pottery forming process itself. The composition of these contaminant 

palynological assemblages will be determined by the types of plants which ocurred in 

the landscape surrounding the potters workshop, which is in turn heavily dependent 

upon the time of year. 

One potential source of contaminant pollen and spores in archaeological ceramics is 

agriculture. Pollen, spores and plant macrofossil material such as seeds can be 

incorporated in the raw materials of ceramic manufacture both intentionally, for 

example through the practice of chaff and straw tempering, and unintentionally by 

airborne contamination. By analysing the plant macro and microfossils contained with 

pottery sherds it may therefore be possible to gain an insight into the types of crops 

which were cultivated in ancient societies. This subject has been approached by 

Ayyad et al. (1991) in their analysis of unfired mubricks from the Giza pyramid area, 

Egypt. 
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Both of these potential applications of palynomorphs in archaeological ceramics are 

of course severely limited by the fact that organic microfossils can be destroyed at 

relatively low temperatures during the firing of ceramics, as well as the difficulties in 

distinguishing between the fossil, sub-fossil and Recent pollen already present in the 

raw materials of ceramic manufacture and those grains which were subsequently 

incorporated after its procurement. A further problem, which may hinder the 

determination of seasonality of manufacture, is the storage of raw materials for long 

periods (Rice 1987, 115), during which they may receive allochthonous pollen and 

spores from different times of the year. Nevertheless, both approaches may be feasible 

where reduction-fired ceramics occur with stored quantities of their original raw 

materials, so that it is possible to compare the palynological assemblages of the two. 


