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Computer Modelling of Solidification of Pure Metals and Alloys 

Summary 

Two numerical models have been developed to describe the volumetric changes 
during solidification in pure metals and alloys and to predict shrinkage defects in the 
castings of general three-dimensional configuration. The first model is based on the 
full system of the Continuity, Navier-Stokes and Enthalpy Equations. Volumetric 
changes are described by introducing a source term in the Continuity Equation 
which is a function of the rate of local phase transformation. The model is capable 

of simulating both volumetric shrinkage and expansion. 

The second simplified shrinkage model involves the solution of only the Enthalpy 
Equation. Simplifying assumptions that the feeding flow is governed only by 
gravity and solidification rate and that phase transformation proceeds only from 
liquid to solid allowed the fluid flow equations to be excluded from consideration. 

The numerical implementation of both models is based on an existing proprietary 
general purpose CFD code, FLOW-3D, which already contains a numerical 
algorithm for incompressible fluid flow with heat transfer and phase transformation. 
An important part of the code is. the Volume Of Fluid (VOF) algorithm for tracking 
multiple free surfaces. The VOF function is employed in both shrinkage models to 
describe shrinkage cavity formation. 

Several modifications to FLOW-3D have been made to improve the accuracy and 
efficiency of the metal/mould heat transfer and solidification algorithms. 

As part of the development of the upwind differencing advection algorithm used in 
the simulations, the Leith's method is incorporated into the public domain two­
dimensional SOLA code. It is shown that the resulting scheme is unconditionally 
stable despite being explicit. 

M. R. Barkhudarov 
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Chapter 1 

Introduction 

1.1 Casting Technology 

Casting technologies differ greatly in casting and die materials used, filling methods, 
cooling rates and final product properties. Ingots and billets are castings of simple 
shape, usually suitable for mechanical working, e.g. forging, rolling, extrusion and 
drawing. In investment casting (or lost wax, or precision casting) a pattern of wax 
or other fusible material is die cast and a plaster of Paris mould is then made round 
it. When the plaster of Paris hardens the wax is burnt away, leaving a clean cavity 
for the metal casting with precise dimensions and good surfaces. These and many 
others processes share the same physical phenomena, that is: fluid flow of the liquid 
metal, heat flow from the hot metal to the cold mould and finally liquid to solid 
phase transformation of the metal in the mould [7]. 

Each of these processes and their interactions depend not only on the thermophysical 
properties of the materials, but also on the starting and boundary conditions, i.e. 
the initial metal and mould temperatures, pouring method and mould geometry. 
All these factors together are called casting design. 

A castings design is aimed at producing the part with the desired properties, at the 
lowest cost, using available materials. One of the objectives is to produce uniform, 
equi-axed, fairly fine crystals in large castings, for this structure gives metal with 
the best strength and other mechanical properties [6,7,8]. 

Apart from grain structure, several other factors determine the quality of a cast 
metal. In all casting processes care must be taken to avoid splashing the metal on the 
sides of the mould, otherwise splashed solid films form and then become coated with 
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oxide which prevents them from bonding with the rest of the casting (cold shuts). 
Oxide films on the liquid surface may also become folded into the metal unless the 
pouring is done with care. The oxide film on aluminium is particularly troublesome, 
partly for this reason and partly because, being a continuous and mechanically 
strong film, it prevents the metal from filling sharp corners and narrow channels in 
the mould [2]. These effects can be predicted given an appropriate numerical model 
for fluid flow and free surface. 

Other main factors are segregation and porosity [2,6,7,8]. Porosity in a casting is 
largely defined by gas evolution and shrinkage in the solidifying metal. Predict­
ing macro-porosity due to shrinkage is the aim of the mathematical and numerical 
modelling presented in this work. 

The shrinkage which occurs on solidification is a source of many practical difficulties 
in the casting of metals. The change of the volume for most metals varies between 2 
to 6 per cent (a few, such as bismuth and gallium, expand on freezing). Shrinkage is 
equally important on both macroscopic and microscopic scales, the latter appearing 
between dendrites and grains, and may lead to an unsound casting, full of fine-scale 
porosity, unless the interdendritic liquid channels can all be continuously fed with 
liquid from a central supply to make up for the volume difference when they freeze. 
For a sound casting the metal should freeze progressively from the casting to the 
feeder with no trapping of liquid in pockets totally enclosed by solid; and the zone 
in which freezing takes place, between the fully solid and fully liquid regions, should 
be narrow so that the feeding liquid is not required to flow along long and narrow 
interdendritic channels. The casting must of course be provided with a feeder head 
to maintain a pool of liquid to feed the solidifying metal below as it flexes and 

shrinks. 

1.2 Casting Modelling in Modern Industry 

Until recently casting industry relied mostly on experience, intuition and a kind of 
esoteric knowledge passed on from generation to generation. But over the last 10 to 
15 years there has been an increase in interaction between foundries and computer 
software developing research groups. Due to commercial pressure from other metal 
forming techniques and the necessity of having high quality products, the foundry 
designer is looking for up-to-date analytical tools to improve the casting techniques. 
The need for a more sophisticated approach to the design of the manufacturing pro­
cess is also dictated by the increased range of new alloys and products manufactured 
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using casting technology for which no previous experience is available. 

It is widely accepted that the use of a computer model which simulates the physi­
cal phenomena of a casting process could save time and resources during the design 
stage. It helps to reduce the risk of misruns, defect formation etc. Due to the breath­
taking achievements of the computer industry and equally wonderful developments 
in the computational fluid dynamics there are a number of commercially available 
software packages capable of reliable, robust and sufficiently fast simulations of a 
remarkable range of fluid flows: viscous and inviscid, compressible and incompress­

ible fluid flows with transient free surfaces and shock waves; non-Newtonian fluids, 
stress analysis, heat transfer are also included into some numerical models. More 
and more computer codes are produced specifically to describe solidification and 
they are successfully used on a regular basis. 

However, by no means the task of modelling the casting process fully, e.g. mI­

crostructure and defect formation, can be considered completed. Accurate simula­
tion of filling stage is still considered a difficult task and in many cases skipped, 
assuming an instantaneous filling. Accuracy of cooling and solidification solution 
requires an adequate description of the mould geometry, metal/mould interface and 
a knowledge of the material properties. Finally, the phase transformation and defect 

formation often involves microscale phenomena and pose a problem of coupling the 
corresponding micromodels to the standard macromodels used in computer simula­

tions. 

The existing computer tools differ in capabilities, accuracy, applicability, and none 
of them models the process in full. There is still an increasing demand for a uni­
versal and reliable analytical tool which would both increase the productivity of the 
industry and help to create an insight into physical phenomena occurring during 

the solidification process. Here is an incomplete list of what a foundryman would 
expect from a computer model to do according to Piwonka [1]: 

• predict how the casting will fill with liquid metal; 

• establish the temperature distribution in the mould and the liquid metal at 
the start of solidification; 

• describe how this temperature distribution in the liquid changes as a result of 
thermal and solutal convection; 

• describe the solidification of the casting; 

• show the local chemical composition as a result of segregation; 
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• predict the grain size and shape; 

• predict the distribution of gas content within the casting; 

• predict the secondary dendrite spacing; 

• describe the distortion of the casting as it freezes; 

• predict the distribution of residual stresses within the casting; 

• map minimum values of mechanical properties which the casting is expected 
to have; 

• estimate the prod uction cost of the casting. 

The objective of the present work is to model physical phenomena in 

- mould filling with viscous fluid including free surface and solidification effects; 

- solidification with volumetric shrinkage due to the phase transformation. 

Attention is being specifically paid to volumetric shrinkage since it is one of the main 
causes of macro-defects in castings and there is still no adequate computer model 
which would reliably predict these defects. Fluid flow is inlcuded into consideration 
to investigate its influence on the defect formation. 

The proposed mathematical model will be able to predict the formation of casting 
defects due to shrinkage of the solidifying material involving the formation of macro­

cavities. The work is based on a proprietary general purpose software FLO W-3Dl. 
The code is capable of modelling the first four items listed immediately above though 
some improvements in the heat transfer and solidification models have been made 
as a result of the present work. 

Numerical modelling of mould filling and solidification can be divided into four 
major parts: 

• fluid flow, involving discretisation and simultaneous solution of the continuity 
and N avier-Stokes equations; 

• free surface tracking which concerns mainly the filling stage when there are 
multiple and essentially transient free surfaces; 

lThe code is a property of FLOW SCIENCE Inc., Los Alamos, U.S.A. 
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• heat conduction and heat transfer during and after filling; here the major 
computational effort goes into resolving the metal/mould interface, given that 
almost all the heat from the metal is lost to the mould. Besides, if the metal 
and mould thermal properties differ greatly, then steep temperature gradients 
are expected near the interface which also need to be accurately accounted for; 

• solidification during and after filling; here attention is paid to the way the 
latent heat is accounted for. 

Fluid flow modelling is far more difficult than heat transfer calculation since fluid 
motion requires a solution of three momentum equations (in three dimensions) and 
a continuity equations which are all coupled, even though in terms of the real time 
filling takes only a small fraction of the whole casting process. Nevetherless it is 
widely accepted that filling affects the subsequent solidification and possible defect 

formation because [2] 

• heat transfer during mould filling affects the temperature distribution in the 
casting after the filling. This is especially true for thin wall castings where a 
great deal of the superheat may be removed during filling [2]. Without going 
through the mould filling process, it is impossible to ascertain correct initial 
conditions for subsequent solidification analysis; 

• fluid flow modelling of the liquid melt plays a critical role in optimising the 
design of a casting system which consists of a mould, sprue, runner and ingates, 
in order to eliminate mould erosion and porosity problems. It is important 
to know how the filling proceeds, i. e. whether the metal splashes or any 
premature freezing occurs. Cold shuts and misruns can only be avoided by 
knowing the detailed flow field and heat transfer characteristics of the liquid 
melt during the mould filling process. Large castings, though, in which filling 
takes only a small fraction of the whole time, may be less sensitive to the 
initial fluid flow. 

• fluid flow and heat transfer have a profound effects on grain size, macro- and 
micro-porosity and segregation of alloying elements of a casting. Fluid flow 
occurs during solidification after the mould is full due to residual circulation, 
thermal convection and feeding. 

• foreign inclusions, oxide films, introduced during filling stage, may also be a 
cause of a poor quality casting. 
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The shrinkage formation model developed in this work is based on full Navier-Stokes 
and continuity equations coupled with a solidification model. Pressure and velocities 
are dependent on the volumetric changes occurring during the phase transformation. 
The model would allow one to simulate the effects of residual circulation and/or ther­
mal convection on the solidification and to predict velocities in the feeding flow. The 
use of the full fluid flow equations makes the model most general, e.g. volumetric 
expansion due to remelting can also be easily handled. The numerical implementa­
tion of the model is based on the VOF method which uses the fluid fraction function 
to represent free surfaces and voids. 

1.3 Thesis Overview 

A brief overview of the numerical methods for solving Navier-Stokes equations with 
free moving boundaries, heat transfer and phase transformation is given in Chapter 

2. 

The outline of the general numerical method, including equation discretisation, free 
surface representation and the solution procedure, is given in Chapter 3. Those are 
the basis of FLOW-3D and form the framework in which the numerical modelling 

is carried out. The latter includes modifications of the metal/mould heat transfer 
algorithm which improved the accuracy of the calculations and enhancements to the 
solidification model, presented in Chapter 4. 

Chapter 5 contains mathematical and numerical equations for two shrinkage models: 
a full model (Ml) which is based on N avier-Stokes equations, and a simplified model 

(M2) which employs the energy conservation equation and does not describe fluid 

flow during solidification. 

Simulations results are presented in Chapter 6 and are compared with the results of 
experimental castings available from literature. A detailed discussion of the results 

and numerical problems encountered during calculations is given in Chapter 7. 

Finally, Chapter 8 contains conclusions and recommendations for further work on 
mathematical and numerical modelling. 
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Chapter 2 

Overview of the Mathematical 
and Numerical Modelling 

2.1 Governing Equations 

We shall be dealing with the flow, heat transfer and phase change of gases and liquids 
(melts) commonly termed as fluids. The Eulerian description of the evolution of 

fluid at each point in time and space of the physical space will be used rather than 
the Lagrangian method where the evolution of individual physical fluid volumes 
is described. The main difference between the two methods is that an Eulerian 
coordinate system is fixed in the physical space while a Lagrangian coordinate system 
is attached to the fluid particles and moves and deforms with the fluid [3]. 

2.1.1 Conservation Equations 

The Eulerian hydrodynamical equations describing a combined fluid and heat flow 

can be written in the following general differential forrnt, e.g. [3,4]: 

Continuity Equation 

ap - = - V'. (pv) at (2.1) 

IThat is assuming that all functions in these equations are continuous and have continuous 
first derivatives. In a more general case of a flow with discontinuities the integral form of the 
conservation equations will have to be used [3]. 
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Momentum Equation - Newton's Second Law 

av 
at 

conservation of energy 

where 

aE 
at 

p is the fluid density, 

v - the fluid velocity, 

P - the stress tensor, 

1 A 1 
- (v . V)v + - v . P + - F 

p p 

1 A d qe 
- (v . V)E + - (P . V) . v + -

P dt 

E - the fluid internal energy per unit mass and 

dqe / dt - the external heat flux. 

Cartesian coordinate system will be used throughout the thesis. 

(2.2) 

(2.3) 

The Continuity Equation, Eq. (2.1), states that a change of the density in a fluid 
element is equal to the total flux of the fluid advected (or convected) into the element 
and it is also a statement of the conservation of mass. 

Momentum Equation, Eq. (2.2), states that the fluid momentum in a fluid element 
changes due to the advection of the momentum into the element, action of external 
sur face forces P, and of external body forces F. 

A fluid is called viscous if the stress tensor P can be written as 

p.. - -p8·· + ~ .. 
'3 - '3 '3' i,j = 1,2,3 (2.4) 

where 8ij is the Kronecker delta and 

p = p(p,T) 
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where 
eij = ! (av j + aVi) 

2 aXi aXj 

is the shear rate tensor; p the normal stress, or pressure, and f the shear stress tensor. 
In general, p and f may depend on some other physical parameters, e.g. temperature 
and phase concentrations, but we are not considering these complications here. 

The dependence of f on e defines the viscous model of the fluid. If the values of 
eij are small then Tij can be expanded by Taylor series about eij = 0 and retaining 
only linear terms. In this case the shear stress is a linear function of the shear rate 

and coefficients Bijkl are dependent on temperature and other physical parameters. 

All gases and simple liquids, molten metals and slags obey the linear viscosity model 
which are termed Newtonian fluids. 

Assuming further that the fluid is isotropic (that is, its properties at a point are 
independent of the geometrical direction), components of tensor 13 are reduced to 
only two independent parameters and the final form of the stress tensor P is 

(2.5) 

where>. and J.L are constant and positive coefficients, J.L is the fluid dynamic viscosity 
coefficient and TJ = >. + ~J.L is the second viscosity coefficient. Momentum Eq. (2.2) 
for constant >. and J.L can be written as 

Bv = _ v. \1v - ~ \1p + (>. + J.L) \1(\1. v) + vD.v + ~ F (2.6) 
at P P P 

with v = J.L/ P being the fluid kinematic viscosity. Eq. (2.6) is called the Navier­
Stokes equation. 

Eqs. (2.1) and (2.2) may be simplified further by assuming the incompressibility of 
the fluid, i. e. 

p = Po = const (2.7) 

Then \1 . v = 0 in Eqs. (2.5) and (2.6). 

The density of the fluid does change due to thermal contraction/expansion (linear 
contraction) which results in thermal, or natural, convection in the fluid in the 
presence of body forces. The thermally induced flow can be an important factor, 
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for example, in redistributing heat, and can be taken into account by the use of the 
Boussinesq approximation: 

p = Po + 8p, 8p ~ 1 
po 

Then P = Po in all the terms of Eq. (2.6) except for the pressure gradient term, 
where variable density is retained. A simple linear dependence of 8p on temperature 
can be used to complete the model: 

8 P = - {3 Po (T - To) 

where To is the reference temperature and 

(3 = J:. (av) 
V aT p 

is a constant positive expansion coefficient. 

The Energy Conservation Eq. (2.3) states that a change of the internal energy E 
in a fluid element is the result of the advection of E into and out of the element, 
work due to the internal surface forces, -!CP. \7) ·V, and a flux of the external heat 
dqe /dt. Using the Continuity Equation and Eq. (2.4) we can write 

1 A dl/ p 1 
p(P . \7) . v = -Pdt + pT;je;j (2.8) 

The second term on the righthand side of Eq. (2.8) constitutes the heating of the 
fluid due to the viscous friction. 

We will assume that viscous heating is negligibly small compared with the advection 
and the external heat flux terms in Eq. (2.3). This is true for all fluids for the range 
of flows considered in this work. Viscous friction may become important in high 
pressure die-casting flows [5]. 

External heat flux can be written in terms of a vector quantity using simple geo-
metrical considerations: 

dqe _ Id· 
-- wq dt - p (2.9) 

According to Fourier's law, which is derived similarly to the linear viscous fluid 
model [3], the heat flux is expressed as a linear function of the the temperature 
gradient in the fluid: 

q = -k\7T (2.10) 

where k is the fluid thermal conductivity; it is positive and it may be a function of 
temperature and other physical parameters. 
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Eq. (2.3) can be rewritten now as 

aE 
at - (v. 'V)E - p (d1/p) + ~'V. (k'VT) 

dt p 
(2.11) 

The main assumption concerning thermodynamical processes during solidification 
is that the system is always in the state of thermodynamical equilibrium. This 
assumption allows us to use the laws of the equilibrium thermodynamics and operate 
with thermodynamical functions of state, which in turn are functions of equilibrium 
parameters such as temperature, pressure and density. 

Strictly speaking a system can reach the equilibrium state only if in does not interact 
with other systems and is given sufficient time to allow the system to be in the 
equilibrium at each intermediate point of the process. In reality the interaction 
processes, such as metal-mould heat flow, occur at finite speeds. In that case we can 
define a local equilibrium so that each infinitesimally small volume of the system 
is at equilibrium with its own temperature and pressure, though the system as a 
whole is not. This assumption is valid if heat fluxes across these volumes are not 
too large. According to Fourier's law, Eq. (2.10), the fluxes are small if temperature 
gradients are sma1l2• 

Large velocities during filling stages can lead to the development of turbulence in 
the metal flow. Reynolds number in such casting processes as gravity and pressure 
die castings can reach values of 105 implying that turbulence levels may be very 
high. Turbulence in the metal affects velocity distribution in the flow, filling time, 
free surface motion and heat transfer [7]. 

One of the frequently used approaches to the mathematical modelling of turbulence 

is a semi-empirical analysis of turbulent mean quantities, in which only the gross 
properties of a turbulent flow, such as mean velocity and temperature profiles, are 
described [134]. Interest in turbulent fluctuations is mainly confined to relating 
certain turblent-shear correlations, such as u'v', to the properties of the mean flow. 
It is not in the scope of this work to cover the derivation of the turbulence models. 
Comprehensive descriptions of those can be found in references [134,10]. We will only 
mention here two of the most widely used 'mean' turbulence models: k - f and RNG 
k - f models. These models reduce turbulence variables to two independent mean 
quantities: average kinetic energy of turbulent fluctuations, k, and its dissipation, f 

1 --=-----.:----=-. 
k = -(u12 + V'2 + w/2) 

2 

2It should be noted here that in many industrial situations solidifica.tion proceeds so fast that 
even a local equilibrium cannot be assumed. 
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( au~ au") au'· f.=v -' +_J -) ax· ax' ax· J , I 

where' denotes turbulent fluctuation quantities. A transport equation is derived for 
each of k and f. and turbulence is taken into accout in Navier-Stokes equations by 

using an effective viscosity coefficient vel 1 

where Vo is the molecular value of the kinematic viscosity and VT the turbulent 

viscosity 
k2 

VT = Cv -
f. 

In the k - f. model typically Cv = 0.09, as derived from experimental studies, while 
in the RNG k - f. model Cv is a function of local shear rates. In the latter case the 
model is more accurate and suitable for metal flow conditions in complicated runner 

and mould systems of typical industrial castings. 

2.1.2 Solidification Modelling 

When modelling solidification it is useful to introduce, in addition to the internal 
energy E, two other functions of state, the specific enthalpy H 

and the Gibbs free energy G 

G = H - TS, 

dH = TdS + dp 
p 

dp 
dG = -SdT + -

p 

where S is the specific entropy and dqe = TdS [3,6]. 

(2.12) 

(2.13) 

Liquid to solid phase transformation, or solidification, is a sharp change of state 
from the disordered atomic arrangement of the liquid to the ordered arrangement 

of the crystal, at a single temperature (or melting point). The effect of pressure on 
solidification can usually be neglected (except at high pressures). Solids and liquids 
are only slightly compressed by pressures of order 1 atm. and their enthalpy is then 
hardly affected. It is readily seen then from Eq. (2.13) that the Gibbs free energy is 
not affected by equilibrium solidification. If dm is an amount of the solidified liquid 

in an element of fluid, then for this element 
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or 
(2.14) 

where dHdm is the heat given to or taken from the surroundings of the element, called 
latent heat. Eq. (2.14) shows that though phase transformation occurs isothermally, 
it is accompanied by heat flow leading to a change in the enthalpy. The latent heat 
of solidification L per unit mass is 

L = dHdm 
dm 

(2.15) 

The latent heat of melting can be thought of as the energy required to pull the 
atoms apart to the more openly packed structure of the liquid. 

It follows from Eqs. (2.11) and (2.12) that the fluid specific heat at a constant 
pressure, Cp , is needed to evaluate the enthalpy: 

H = {T CpdT 
iTo (2.16) 

while for the internal energy the specific heat at a constant volume, Cv , is required: 

E = {T CvdT 
}yo 

Obviously, for liquids and solids, it is much easier to measure Cp than Cv , and the 
advantage of using the enthalpy instead of the internal energy is apparent. Taking 
into account the latent heat we have: 

(2.17) 

where is is the mass fraction of solid per unit mass of fluid. 

The fraction of solid function fs has to be defined so that Eq. (2.17) can be solved for 
temperature. If solidification is assumed to be in equilibrium, then for pure metals it 
will proceed at a constant temperature T m and fraction of solid is uniquely defined 
by the enthalpy. For alloys the equilibrium occurs over a range of temperatures. 
The lever rule for binary alloys then relates the initial alloy composition, Co, and the 
current values of compositions of the liquid, CII and solid, Ca, to is [6,7]: 

Co - Cl 
fa =-­

Cs - c, (2.18) 

If the phase diagram of the alloy is known then compositions Cl and c, can be found 
from the diagram given a value of the current temperature. 
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There are several factors, however, that may complicate this procedure. 

For the phase transformation to proceed in the direction of freezing, dG has to be 
positive to create a potential for the process [6,8]: 

dG = dGv 81 + dW > 0 , (2.19) 

According to Eq. (2.13), to achieve a positive change of the Gibbs free energy, 
dG > 0, at a constant pressure, dp = 0, the liquid has to be cooled below its melting 
point, dT < 0 (since the entropy is positive, S > 0). dGv,sl is the volumetric free 
energy which is the difference in the free energies of the solid and liquid phases of 
volume V. dGv,sl < 0 for T < Tm , due to the difference in the entropies of the 
two phases. dW > 0 is the free energy of the atoms at the liquid/solid interface or 
transitional region and can be associated with the work that has to be done to make 
a nucleus. The actual value of dW depends on the properties of the metal atoms as 
well as the interface curvature. 

When a new phase is being formed in the system, this phase often appears first as 
small nuclei in the old phase, which then grow by the addition of more material 
from the old phase. The surface energy dominates the nucleation process because 
of the small size of the nuclei and its high surface curvature. Experimental studies 
show that in a pure metal free from inclusions and away from the walls a substantial 
undercooling is required to promote solidification - approximately 0.2T m, e.g. 295°K 

for pure iron [6]. 

Once an undercooled droplet is nucleated, freezing is then very rapid. This differs 
from the casting of metals under practical conditions in a foundry where nucleation 
occurs at temperatures within lOOK of the ideal freezing point due to the presence 

of foreign inclusions and mould walls, which serve as nucleation centres. The rate 
of growth of the solid on the nucleus in this case is much smaller, as it is controlled 
by the rate of removal of the latent heat released at the solid-liquid interface. 

Recently a number of 'macro-micro' models have been proposed to predict the mi­
crostructural evolution of a casting [11]-[16]. Comparisons of the predicted grain 
structures, using a rather sophisticated probabilistic model, with the experimental 
results for dendritic and eutectic alloys, given by Gandin et al [17] are very impres­
sive. However, the main difficulty in applying this model in a general case is the 
requirement of a very fine spatial resolution: the maximum computational cell size 
for 2-D and 3-D simulations was 10 J.Lm which is unacceptable for a 3-D industrial 
scale fluid flow and solidification modeling. Besides, modelling of the solidification 
kinetics requires additional input parameters, e.g. the relationship between the un­
dercooling!:!:..T and the number of grains nAT in different parts of the casting. These 
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are either defined from some assumptions and/or obtained empirically. The latter 
makes kinetics models case-dependent and complicates its validation. Besides, it is 
difficult to take into account the influence of the metal flow on the grain evolution, 
the importance of which has been shown by Ortega [18]. 

In alloy systems solidification speed may be comparable to the rate of solute diffusion 
and advection. In this case the distribution of the solute in both solid and liquid 
phase will be non-uniform and this will affect the local temperature of solidification. 
To model these phenomena the solute transport equation will need to be solved for 
each phase [19] 

ac - + ('\7 . v) c = '\7. (D'\7 c) at (2.20) 

where c is the solute concentration and D the diffusion coefficient. Given the values 
of the composition and temperature the value of the solid fraction can be found 
from the alloy phase diagram [7]. 

2.1.3 Boundary Conditions 

The set of hydrodynamical equations for an incompressible Newtonian fluid, using 
Eqs. (2.1), (2.6), (2.7), (2.11) and (2.12), is 

divv = 0 

Bv 1 1 
- v· '\7v - - '\7p + v~v + - F at po po 

aH 1 at = - (v . '\7)H + po'\7· (k'\7T) 

(2.21 ) 

(2.22) 

(2.23) 

Elliptic Eq. (2.21), parabolic Eqs. (2.22), (2.23) and Eq. (2.17) are a system of 
non-linear, coupled second order partial differential equations written in terms of 
the fluid velocity, pressure and temperature as the unknown variables. Only one 
boundary condition for the velocity and for the temperature at each fixed boundary 
will be sufficient to define the solution of the these equations; the conditions can 
be either of Dirichlet type (a specified velocity/temperature value) or of Neumann 
type (a specified value of the velocity gradient/heat flux normal to the boundary) 
or a linear combination of both [20,21]. Velocity, pressure and temperature are then 
defined uniquely away from the boundaries given the appropriate initial conditions. 

Boundary conditions specific to the viscous fluid model are kinematic no-slip (Dirich­
let) conditions at the walls 

v=O (2.24) 
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In the presence of a free surface, which is defined as a boundary between two fluids 
with very different densities (for example, for water and air Pw/ pa ~ 1000), the 
lighter fluid (gas) can be substituted by a constant pressure boundary condition 
at the free surface. The exclusion of the gas phase from consideration poses an 
additional problem of setting the boundary condition at the generally transient free 
surface. 

The kinematic boundary condition at the free surface is 

at at + (v· 'V) 1 = 0 

which states that an element of the free surface I moves with the fluid. 

Dynamic boundary conditions at the free surface are: 

(2.25) 

- pressure in the fluid PIs results from the sum of the gas pressure, surface tension 
force and viscous stresses and can be written as 

(2.26) 

where 

(j is the surface tension coefficient, 

( is the surface curvature (( > 0 when the fluid surface is convex), 

n is the surface unit normal pointing in the fluid-gas direction and 

Vn = V· nj 

Zero flux of the tangential momentum is assumed through the free surface. For 
tangential viscous stress this gives 

TT = 0 (2.27) 

where the subscript 'T indicates the projection onto the plane tangent to the free 
surface. This assumption is well justified for casting problems due to generally large 
Reynolds numbers in the liquid metal flow. An example of a case when tangent 
stresses are important is the interaction between ocean surface waters and atmo­
spheric winds. 

Heat flow boundary conditions at the walls and at the free surface can be specified 
in terms of the heat flux qbc per unit area. The same expression can be used in both 
cases, that is: 

(2.28) 
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where 

Tf is the fluid temperature at the interface, 

n is the boundary temperature which is either the interfacial mould temperature 
or the ambient temperature of the air, 

h is the heat transfer coefficient which characterises the thermal resistance of the 
interface and 

n is the interface uni t normal. 

The value of h varies with temperature and geometrical properties of the interface, 
such as the wall surface finish and the size of an air gap between the metal and the 
mould. At the free surface h is defined by the convection conditions in the gas, such 
as turbulence intensity, whether it is natural or forced and the free surface orienta­
tion. Radiation heat transfer coefficient is strongly temperature dependent [22] and 
is influenced by the presence of other radiating surfaces. Ludley and Szekely showed 
that for a molten steel held in a ladle the heat loss from the unprotected surface 
was of the order of 20 to 30% of that lost to the ladle walls by conduction [23]. 

There are few cases for which analytical expressions for h are available [22] and 
normally experimentally defined values are used [24]. 

Values of thermo-physical properties of metals and mould materials, e.g. specific 
heat and thermal conductivity, are required to solve Eqs. (2.21)-{2.23). These are 
usually temperature dependent and must be obtained by experiments. Besides, for 
metals all properties change sharply during the phase transformation [6]. Often it 
is sufficient to take this change into account by assuming the properties of each 
individual phase to be constant. 

2.2 Overview of the Numerical Methods 

Numerical methods have to be used to solve Eqs. (2.21)-{2.23) since these are non­
linear, transient, coupled second-order equations. There are four widely adopted 
basic approaches to obtain a numerical solution of these equations: the finite dif­
ference, finite element, the finite volume and the boundary element method [25]. 

A. Finite Difference Method. 
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The finite difference method (FDM) is based on the properties of Taylor expansions 
and on the straight-forward application of the definition of derivatives. It is the 
oldest of the methods applied to obtain numerical solutions of differential equations, 
and the first application is considered to have been developed by Euler in 1768. 
The idea of finite difference methods is quite simple, since it corresponds to an 
estimation of a derivative by the ratio of two differences according to the definition 
of the derivative. 

For a function u(x) the derivative at a point x can be approximated, for example, 
by forward differencing: 

au = u(x+box)-u(x) + O(box) 
ax box 

indicating that the truncation error O(x) goes to zero as the first power of box. 

There is a variety of finite difference approximations for the derivatives of func­
tions [26,27]. The idea behind obtaining higher-order approximations as well as ap­
proximating higher-order derivatives lies in Taylor series expansion of the unknown 
function around values at grid points. 

Most finite difference models used in solidification simulation have employed regu­
lar spaced rectangular meshes, which are not particularly suitable for representing 
complex shaped castings, although curved surfaces can be approximated by using a 
fine node spacing and step approach [28J (see also FAVOR method in Section 3.3.2). 

For curvilinear meshes the discretization of the equations can be performed after a 
transformation from the physical space (x, y, z) to a Cartesian, computational space 
(e, 7], () [29,30]. This method of body fitted coordinates combines the flexibility of 
the finite element domain discretisation and the simplicity of the finite difference 
equation approximations [31,32]. 

Current development of the FDM is in multi-block gridding and general unctructured 
grid approaches which are aimed at overcoming the traditional inefficiency of the 
method in resolving arbitrarily shaped boundaries [50,121]. 

B. Finite Volume Method. 

This is the technique in which the integral formulation of the conservation laws are 
discretized directly in the physical space. The finite volume method (FVM) takes 
advantage of an arbitrary mesh, where large number of options are open for the 
definition of the control volumes around which the conservation laws are expressed. 
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The method uses the conservation equations in their general integral form. For 
a scalar quantity U, with volume sources Q, and a flux vector F, which contains 
only convective contributions, the integral equation for a discrete volume 0 with 
boundary S is given by 

(2.29) 

The essential significance of this formulation lies in the presence of the surface 
integral and the fact that the time variation of U inside the volume only depends on 
the surface values of the fluxes. The advantage, especially in the absence of source 
terms, is that the fluxes are calculated only on two-dimensional surfaces. Eq. (2.29) 
is replaced by the discrete form 

(2.30) 

index J indicates that the quantity is averaged over the volume OJ. 

The following constrains on the choice of OJ volumes for a conservative control 
volume method have to be satisfied: 

• their sum should cover the whole domain OJ 

• adjacent nJ may overlap if each internal surface r J is common to two volumes; 

• fluxes along a cell surface have to be computed by formulas independent of 
the cell in which they are considered. 

The last requirement ensures that the conservative property is satisfied. 

C. Finite Element Method. 

The finite element method (FEM) originated from the field of structural analysis 
as a result of research carried out mainly between 1940 and 1960. The concept of 
'elements' can be traced back to the techniques used in stress calculations, whereby a 
structure was subdivided into small substructures of various shapes and re-assembled 
after each 'element' had been analysed. The development of this technique and its 
formal elaboration led to the introduction of what is now called the finite element 
method by Turner et al [33] in a 1956 paper dealing with the properties of a triangular 
element in plane stress problems. 
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After its successful applications to structural mechanics it soon appeared that the 
method could also be used to solve continuous field problems [34] including solidifi­
cation [35]. 

The main advantage of the finite element method is the ease with which complex 
geometries can be handled and the wall boundary conditions can be set more ac­
curately. The flexibility regarding node size and shape means that curved surfaces 
can be accurately meshed. 

However, the process of meshing is still an art, requiring an understanding of the 
problem and of the finite element method itself. In an attempt to simplify the 
meshing process interest has recently focussed on automeshing, combining Computer 
Aided Design (CAD) packages with finite element programs [36]. Lewis et al [37] 
have demonstrated how adaptive meshing can be used advantageously during the 
actual solidification calculation. A fine node spacing is employed only in those 
regions of the casting which are in the mushy zone. 

Apart from setting the complex task of generating the best mesh, finite element 
method has other disadvantages. Generally, it requires more computer time for 
calculations than the FDM. Besides, any physical problem written in finite element 
formulation loses its clarity, the physical nature of the initial equations becomes 
obscured by the mathematical symbolism. Despite this and supported by successful 
developments in computer technology, the finite element method is widely used 
at present, both in commercial and scientific programming [38]-[40]. It has been 
successfully applied to model casting process in 2-D [35,41] and 3-D [42,43] and 
commercial 3-D FEM packages, such as ProG AST [44,45], have also been marketed. 

D. Boundary Element Method. 

An alternative to the more familiar finite element, finite difference and control vol­
ume approaches is the boundary element method (BEM). With this method, the 
differential equations describing the flow are recast into integral representations so 
that the solution away from the boundaries is written in terms of the boundary 
values. The solution of the flow problem is then based on the numerical quadrature 
of the integrals. It has been shown that this method can be successfully applied to 
phase transformation and free surface problems with moving boundaries, as well as 
to general viscous flows [25,39,46,47]. Detailed description of the boundary element 
method can be found in these references. 
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2.3 Discretisation of the Equations of Motion 

The finite volume approach in structured grids will be used in this work to solve the 
fluid motion and energy Eqs. (2.21)-(2.23). The choice is dictated by the use of a 
commercial CFD code FLOW-3D which employs this method (see Chapter 3). 

Velocity components and pressure are dependent variables (primitive variables) in 
the Continuity and Navier-Stokes equations. A specific feature of these equations 
is that they do not contain the term 8p/8t, in other words pressure is an implicit 
variable in an incompressible flow [35]. At each time step, velocity components and 
pressure in the mesh cells have to be found simultaneously (due to the incompress­
ibility of the fluid) by solving the discretised numerical equations. 

The usual way of obtaining a numerical solution is to use a predictor-corrector 
scheme [25,27]. Some other methods of solving the incompressible flow equations, 
for example the artificial compressibility method which allows a conservation-like 
equation for pressure to be written, are also given by Roache [27]. Let us assume a 
first order forward-differencing for the time derivatives with the time step D.t, as is 
commonly used irrespective of the space-discretisation method. At time t n+! new, 
first-guess, velocities are predicted using Navier-Stokes equations (in two dimensions 

for simplicity): 
U~+l = un + D.t· (-Da - D; + DF + DI'):r; 

v~+1 = v
n + D.t· (-Da - D; + DF + DI')Y 

(2.31 ) 

(2.32) 

where Da, Dp , DF and DI' are the discretised advection, pressure, body forces and 
viscous terms, respectively. Pressure in Eqs. (2.31), (2.32) is taken at the old 
time level tn. Newly obtained velocity will not, in general, satisfy the discretised 
continuity equation. Index '0' means that u~+! and v~+1 are used as first guess 
velocities in the subsequent pressure correction procedure. In the Marker-And-Cell 
(MAC) method [48] the incompressibility constraint is imposed by adjusting the 
cell pressures. For example, if the divergence of a cell is negative, corresponding 
to a net flow of mass into the cell, the cell pressure is increased to eliminate the 
inflow. Because there is one pressure variable for each cell, the divergence for each 
cell can be driven to zero in this way. The pressure and velocity adjustment must 
be done iteratively as updating velocities in one cell will upset the mass balance in 
its neighbours. Iterations proceed until the velocity divergence in each cell is below 
some predetermined parameter f (see Section 2.3.2). 
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2.3.1 Advection and Diffusion Terms Approximations 

The MAC method is distinguished by the form of the primitive-variable equations 
used, the differencing scheme, the cell structure, and the use of "marker particles". 

It is advantageous, when using the primitive variables, to employ a staggered grid, 
in which pressure (and all other scalar variables) is located at the cell centres and 
velocities are located at the cell faces [48] (Fig. 2.1a). The differencing scheme 
for the momentum equations employed in the MAC method is the forward-time, 
centred-spaced method. For a cell (i, j) in a uniformly spaced two-dimensional grid 
at time level t n+! 

and 

The evaluation of 

OU2 ovu n uk - uL (VU)T - (VU)B 
n:,x,i,i = (ox + Oy) Ii,] = L\x + ~y 

where UR and UL are given by Eq. (2.35) below and 

(UV)r 
1 
4 (vi,i + Vi,i+ d (ui,i + Ui,i+ d 

1 
(UV)B = 4 (vi,i-l + vi,i) (ui,i-l + ui,i) 

Dp,x,i,)l DlL,x,i,i and Da,x,i,i are discretised x-direction components of the pressure 
gradient, shear stress and advection, respectively, at node (i,j). 

Numerical stability analysis shows that the MAC method is unconditionally unstable 
for inviscid flows and requires a non-zero viscosity to maintain stability [27]. More­
over, central differencing for the advection and viscous terms introduces a limitation 
to the cell Reynolds number which for a one-dimensional flow is 

uL\x 
Rec = --, 

11 
(2.33) 

The control volume, upwind differencing approach to solving Eqs. (2.17), (2.21)­
(2.23) is widely used [5,49,50,51]. The upwind differencing scheme was first used by 
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Gentry et al [52] and Hirt et al developed it for incompressible flows and named the 
method SOLA (SOLution Algorithm, see Section 2.3.2) [53]. 

Fig. 2.1c shows a computational cell and its control volume (CV) for calculating 
the x-direction momentum fluxes. Assuming for simplicity a uniform mesh spacing 
~x, at position (i,j) we have: 

URU" " - ULU"-l " D "" = I,) I ,) 

a,X,I" ~x 

+ VTUi,j - VBUj,j-l 

fly 
if 

where 
(2.35) 

and 
(2.36) 

are the estimates by averaging of the velocities at the control volume boundaries. 

Viscous terms are discretised by central differencing, in the same way as in MAC 

method. 

The upwind differencing for the advection terms removes the cell Reynolds number 
restriction imposed by Eq. (2.33) for viscous flows and is conditionally stable for 
inviscid fluids [27]. The essence of one-sided differencing scheme given by Eqs. 

(2.34)-(2.36) is to "advect" the value of a variable (velocity) taken upstream from 
the considered node. Sometimes the method is also called the donor cell method. 

If for example UR in Eq. (2.34) is negative then Ui+1,j, instead of ui,i" is used as the 
quantity advected through the right boundary of the control volume. 

Advantages of the upwind method in this formulation are [27] 

• it possesses the transportive property which means that the effect of a pertur­
bation is only advected in the direction of the velocity. All methods which use 
centred-space derivatives for the advection terms do not possess this property 

and filters have to be designed to avoid spurious solutions. 

• the method is conservative, i. e. it preserves the fluid momentum. 

• compared with the central differencing method, the upwind method is not 
stability limited by cell Reynolds number. Vanka [54] used the advantages 
of both schemes by applying the upwind method only in the cells which had 

Rec ~ 2 and the central differencing for all other cells, thus obtaining a 
"hybrid" method. 
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Roache [27] mentions a surprising agreement of the upwind "donor cell" method 
with some second-order calculations of the driven cavity problem. In fact the term 
"accuracy" of a numerical method is rather arbitrarily defined. In most cases it is 
understood in the formal Taylor series expansion sense. It is possible to represent 
spatial derivatives "more accurately" in this sense but not to retain for example the 
conservative property. 

A disadvantage of the upwind method is that it introduces an artificial viscosity due 
to second order truncation errors introduced by the first order differencing for the 
advection terms. 

and 
1 

Vy = 2v~y(1 - c y ) 

where ex = ~t u/ ~x, Cy = ~t v/ ~y are the cell Courant numbers. The artificial 
viscosity effects would be minimised if Cx and cy are close to unity which is hardly 
achievable in practical two- or three-dimensional flows. 

This disadvantage of the first order upwind differencing makes it inapplicable for 
the advection of variables with sharp discontinuities in the flow region, such as 
free surfaces. Section 2.5 describes two numerical methods specially developed to 
preserve the discontinuities. 

It has been shown that the "donor cell" upwind method demonstrate good com­
parisons with physical experiments at high Reynolds numbers [27]. In calculation 
of driven cavity flow, Torrance et al [55] have shown that the upwind differencing 
method applied to the conservative equations is considerably more accurate than 
second-order differencing applied to the non-conservative equations. 

If advection and/or viscous terms on the left-hand side of Eqs. (2.31) and (2.32) 
are estimated at time tn+b i.e. implicitly, then these equations become coupled and 
have to be solved at all nodes simultaneously to obtain the first-guess velocities u(j+l 
and V(j+l. This is achieved by inner iterations on the velocities. The inner iterations 
usually take much less iterations to converge then the outer, i.e. pressure iterations. 

Roache [27] suggests that ideally the advection terms should be approximated ex­
plicitly and the viscous terms implicitly. This would reflect the physical nature of 
these processes, that is the finite velocity of advection and the infinite velocity of 

diffusion3
• 

3The infinite diffusion velocity means that if there is a local perturbation in a uniform distri­
bution of a variable, then it will instantaneously affect all areas due to the diffusion. 
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In the present work all terms on the right-hand sides of Eqs. (2.31), (2.32), except 
for the pressure gradients, are approximated explicitly, that is at time tn. In this 
case the solution matrix for uo+I and vo+ 1 is diagonal and the first-guess velocities 
are easily calculated at each node. The explicitness introduces some limitations on 
the time-step size ilt which are discussed in Section 2.10. 

As has already been mentioned, the upwind differencing method has first order 
formal accuracy. It is well known that higher order methods, both in space and time, 
pose a problem of resolving the boundary conditions without losing accuracy [27]. 
Often only first order equations can be used at the boundaries. The first order 
truncation errors propagate from the boundaries into the computational domain, 
depriving the solution of its higher-order accuracy. One of the specific features of 
casting is that the ratio of the internal mould walls area, at which the boundary 
conditions are set for both the heat and fluid flows, to the volume of the open-to­
flow domain is large. This fact reduces the advantages of employing higher-order 
accurate discretisation methods for the heat and fluid flow equations and justifies 
the use of the first order numerical method. 

Among all other numerical methods, the Leith's approximation scheme for the ad­
vection terms is worth of mention since it is fully explicit but is unconditionally 
stable [27]. It is also called the semi - Lagrangian method [56,57]. The details and 
an application of the method are given in Appendix B. 

2.3.2 Iterative Solution Methods 

Due to the incompressibility of the fluid pressure in the N avier-Stokes equations and 
velocity components in the Continuity Equation have to be approximated implicitily. 
This leads to the following set of algebraic equations (in two dimensions) 

1 n+l n+I 
An Pi+I,j - Pi,i u· . - - ---'--"'----'''--

1,1 PO ilx (2.37) 

(2.38) 

where uf,j and v~i include terms approximated at time level n. Pressure gradient 
terms in Eqs. (2.37) and (2.38) are approximated using the cell-centred pressures 
as they lie exactly on the control volume boundaries (see Fig. 2.1c). If we choose 

a computational cell (i,j) of a staggered grid (see Fig. 2.1b) as the control volume 
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for the Continuity Equation, then its discretised form at time t n +! is 

L . . - _1_(un+1 _ n+l) + _1_( n+l _ n+l) - 0 
I,) - ~x i,j U i - 1,j ~y Vi,j Vi,j_l- (2.39) 

Eqs. (2.37)-(2.39) constitute a system of coupled linear equations of size N x M and 
an iteration method is usually emloyed to solve it since a direct matrix inversion is 
generally numerically inefficient. 

The iteration procedure to bring the velocity divergence to zero in every cell and 
update pressures is a major part of the computational effort in obtaining numerical 
solution. Pressure iterations may take as much as 90% of the total CPU-time [5J 
and much attention is paid to its optimisation. 

If LI is the value of the divergence after I iterations, then [33] 

LI 
~PI+l = - 2 ~t (_1_ + _1_) 

Po ~x2 ~y2 

PI+! = PI + ilPl+l 

ilt 
u l 

. + ~ ilpI+! 
1,1 POux 

1+1 I 
Ui_l,j = Ui_l,j 

~t 
~flpI+l 
POUX 

I+! I ilt 
v·· = v· . + -- ~PI+l 

I,) I,) Poily 

ilt 
~flPI+l 
Pouy 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

For each cell encountered, the divergence Li,j is computed using the most current 
velocity values available. The iterations continue until I L 1< f. This technique is 
called Gauss-Seidel (GS) iteration method. The technique which uses only previous 
iteration values to compute the new values through the whole iteration cycle is called 

Jacobi method. 

Lipinski et al [5] argue that one should use Jacobi type pressure iterations to assure 
symmetric results. When LL; is calculated in a control volume using GS method 
and the mesh is swept in x-direction from i = 1 to i = imax, then Ui-l,j has already 
been iterated in i - 1,j cell while ui,i has not. This introduces an asymmetry in 
symmetric flows. GS method is symmetric at the level of convergence, but when the 
results on the way to convergence are allowed to be non-symmetric problems can 
occur due to truncation errors eventually leading to a non-symmetric final solution. 
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The effect of this asymmetry could be reduced by alternating the direction of the 
mesh sweeping at different time steps. 

However, no such problems have been encountered using GS method in the present 
work. This method has also the advantage of smaller computer memory required 
for storage, though Jacobi method would be easier to vectorise and/or parallelise. 

The two iteration methods described above represent the point-by-point (PP) iter­
ation procedure4

• The main drawback of these iteration schemes is that the lowest 
wavelength error components damp most slowly. Thus, regardless of the initial er­
ror distribution these components will dominate for large iteration number 1 [27]. 
Frankel [58] showed that, for the most resistant error components, asymptotically 1 
GS iterations are worth 21 Jacobi iterations. In other words the latter converges at 
half the speed of GS method [59]. 

The are a few variations of the above procedures aiming at achieving faster conver­

gence. 

In the line - by - line (LL) method a line of cells is chosen. It is assumed that 
pressures along the neighbouring lines are known from their "latest" values. The 
correction values for p's along the chosen line are calculated by directly solving the 
tridiagonal simultaneous linear equations using available efficient solvers. 

In the block - by - block (BB) iteration method, developed by Wang [49], four cells, 
2 x 2, are chosen as a group. Assuming again that p's in the surrounding cells are 
known from their "latest" values, the equations for the four pressures in the chosen 
cells are solved simultaneously by Cramer's rule or direct matrix inversion. In cells 
which cannot be organized into groups a point-by-point method may be used. 

Convergence of the iteration may be accelerated by multiplying /:lp in Eq. (2.41) 
by an over-relaxation factor w [51,59]. Combined with the GS method it produces 
the successive over - relaxation (SOR) method. To preserve the convergence the 
over-relaxation factor has to satisfy the condition 

o < w < 2 

The optimum value of w which gives the fastest convergence lies in the interval 
between 1.0 and 2.0 and depends on the coefficient matrix of the linear system. For 
the incompressible fluid problems a value of w between 1.7 and 1.8 is often optimum. 

4The Jacobi method is also known as Richardson's method or method of simultaneous dis­
placements, and the Gauss-Seidel algorithm is also known as Liebman's method or successive 
replacements method. 
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It can be shown that the convergence acceleration due to over-relaxation is similar 
to choosing a maximum time step size in explicit methods for solving transient 
equations [27]. 

The PP, LL and BB methods were used to solve a simple two-dimensional problem in 
a square domain covered by N x N square mesh cells [60]. On one of the boundaries 
of the domain pressure was fixed at a constant value while the pressure inside the 
domain was given an arbitrary initial value. Then one of the three iteration methods 
were used to obtain the solution, which is obviously a uniform pressure equal to the 
boundary value. 

The following facts were found in the test calculation. 

• The BB method takes the shortest computing time to obtain the solution; and 
the LL method needs the longest computing time among the three methods. 

• The number of iterations required are almost the same for LL and BB methods. 
The iteration number needed for the PP method was always larger, and more 
so for smaller values of w. The reason for this is that the information diffuses 
slowly relative to the other techniques because the pressure value of a node is 
influenced only by its neighbours. 

• Different values of w were tested. For each iteration method there is an op­
timum value of w with which minimum number of iterations is needed. This 
value is about 1.6 to 1.7. 

• The optimum value of w increases as the number of cells N increases. However, 
it cannot exceed 2.0. 

In a flow problem which involves transient free surfaces and moving obstacles, use of 
the BB and LL methods becomes difficult because the coefficient arrays at different 
locations are not the same. Additional computing time is required to determine 
these coefficients. Therefore, the PP method appears to be the most efficient for 

these problems. 

A widely-used variation of the line-by-line method for solving the linear algebraic 
equations is alternating-direction-implicit (ADI) scheme [61]. This method con­
verts the line-by-line routine into a direct solver of two-dimensional linear problems 
through splitting the time step in halves (for 2-D, or in three equal parts for 3-D) 
and judicious alternation of the direction in which the triagonal matrix algorithm 
is employed. If the ADI method is used in the y-direction, the iteration consists 

33 



of a sweep through all i cells solving for the pressures and velocities in the j-index 
direction. 

High rates of convergence can be obtained with preconditioning techniques, particu­
larly when coupled to conjugate gradient methods [62]. However, conjugate gradients 
methods require substantial computer memory storage [25,27]. 

In SOR methods, the number of iterations required for convergence, lmate' increases 
with N, the total cell number. For ADI methods applied to square regions, lmate is 
almost independent of N, so that for large enough N, ADI methods are preferable. 
In the numerical experiments of Birkoff et al [63] ADI methods were nearly four times 
faster than the optimum SOR method in a 40 x 40 grid. But for non-rectangular 
regions the ADI methods are not certainly known to be faster, and the SOR methods 
are easier to program. 

Another comparison of the PP, LL and ADI methods was carried out by Chuan et 

al [64]. They considered the Stephan problem. 

The finite volume, fully implicit method was used to obtain the system of algebraic 
equations that represent transient 3-D heat conduction with phase change, modelled 
by the enthalpy method. The material used was water, freezing at Tm = DOC, though 
an artificial "mushy zone" was used for the reasons discussed in Section 2.8. 

The computational domain was a cube with three adjacent cold walls and the other 
three being adiabatic. The resulting equations were solved by fully implicit al­
gorithms in one, two and three dimensions. The iteration involves the unknown 
temperatures and the position of the solidification front at the new time step. 

The conclusions of the tests can be summarised as follows: 

• For this type of non-linear problem the LL and PP solvers perform equally 
well in terms of CPU efficiency and accuracy. Only for the three-dimensional 

case does the ADI method substantially outperform the other two procedures. 

• The relation between CPU time and time step size is non-linear. The use of 
too large a time step affects accuracy while providing little CPU savings. 

• Solution accuracy is strongly dependent on the value of (, the temperature 
range given to the mushy zone. 

Chuan et al also concluded that the enthalpy method in combination with the finite 
volume method produces an effective model to simulate freezing. 
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The simplicity and flexibility of the point-by-point SOR method in combination 
with the finite volume upwind differencing scheme produced an efficient solver for 
incompressible transient fluid flows called SOLA [53]. Its extension to include free 
surfaces, SOLA-VOF [51] (see Sections 2.4 and 2.5), is now widely used in mould 
filling simulations [49], [65]-[67]. 

Vanka [54] applied the block - implicit multigrid solution algorithm for incompress­
ible flows. The multigrid technique is based on the idea that each frequency range 
of error must be iterated on an optimised grid. For a given grid the error compo­
nent wavelengths comparable with the mesh size are smoothed out most efficiently. 
The multigrid technique cycles between coarse and finer grids until all the frequency 
components are appropriately smoothed. For a predefined set of grids, the solution 
is initiated on the coarsest grid M. GS iterations are performed on grid M until 
it is fully converged. The converged solution is then interpolated to the next, finer 
grid and is iterated on until the required convergence level. When the finest level 
is solved to the desired accuracy, then the whole solution cycle is terminated. In 
this formulation, when iterations start on a given grid the long wavelength error 
components have been already smoothed on the coarser grids. 

The multigrid technique has been shown to be one of the most efficient solvers 
for linear and nonlinear equations [25,68] though the procedure of choosing the 
grid hierarchy and the interpolation of the variables between them requires some 
delicate programming [69]. It is unclear, though, whether this method will speed 
up the smoothing of the error components with wavelengths larger than the scale of 
the computational domain, e.g. uniform fluid pressure adjustments. 

2.4 :Free Surface Representation 

Tracking transient free surfaces is an important part of a mould filling simulation, 
both in the physical and numerical aspects. A brief survey of the previous work on 
free surfaces is outlined below. 

1. Height Function Method [53]. A simple means of representing a free surface is 
to define its height (in the z-direction) from a reference plane (x - y plane) as 
a function of position in the reference plane and time, i.e. h = f(x,y,t). This 
method is efficient, but limited to simple geometries and single-value surfaces. 

2. Line Segment Method [70]. A generalisation of the one- or two-dimensional 
height function method uses chains of short line segments, or points connected 
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by line segments. This method removes the limitation of single-value surfaces, 
but the extension to three dimensions is extremely difficult. 

3. Marker Particles Method [48]. This is also called Marker And Cell method 
(MAC). In this method marker particles are spread over all fluid-occupied 
regions, with each particle specified to move with the fluid velocity at its 
location. The MAC offers the advantage of eliminating all logic problems 
associated with intersecting surfaces and can readily be extended to three 
dimensions. However, it requires a significant increase in computer storage 
and running time. 

A number of variations of the MAC method exists, e.g. Simplified MAC 
method (SMAC) and Leading Marker Method (LMM). These variations aim 
at saving the computer storage and cutting the computer running time. Lin 
and Hwang [71], for example, store and compute only particles in the surface 
cells and those interior cells that are next to the surface. In this formulation the 
method cannot describe the opening of new voids in the fluid. An algorithm 
has to be designed for introducing new particles if the number of surface cells 
and their neighbours increases sharply during filling. Both are more likely to 
occur in a three-dimensional flow. 

4. Volume of Fluid Method [51]. The Volume Of Fluid (VOF) method uses a 
continuous function to describe fluid configuration. It evolved from the original 
MAC method. The F(x, y, z, t) function has the unity value at any point 
occupied by fluid and zero otherwise; it preserves its discontinuous nature to 
track a free surface boundary. When averaged over the cells of a computing 
mesh, the average values of F is equal to the fractional volume of the cell 
occupied by fluid. Cells with F value between zero and unity contain a free 
surface. The VOF method requires much less computer storage space and 
running time, and has none of the logic problems of handling intersecting 
surfaces in three dimensions. 

The flexibility of the VOF method has enabled its use in combination with a 
variety of numerical algorithms [5,49,65,67,72,74,75,76]' including those based 
on the finite element approach [35,43]. 

5. Variable Density or Two Phase Method This method models free surface by 
introducing a density discontinuity: regions free of fluid are assumed to be 
filled with air [50]. In this case the fluid equations are solved for both fluid 
and air. The advantage of this method over the VOF method is that the 
boundary conditions at the free surface do not have to be set explicitly. It 
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allows problems with two or more fluids of different densities in contact with 
each other to be modelled. 

However, for most of the casting problems air can be modelled as a region 
with constant pressure without the need to resolve the velocity field in it. 
This assumption can be made because of the large density differences between 
metal and air, and velocities of air are small compared with the speed of sound 
in the air. 

Therefore solving the full density equations for metal and air may be a waste 
of computer resources. Besides, a higher order numerical scheme is required 
for the solution of this equation to preserve sharp interfaces between the fluids 
(see Section 2.5). 

One way to accelerate the computation is to consider a fictitious air, called 
"numerical air" whose properties are such that the linear system issued from 
the discretised problem is solved rapidly. Careful attention has to be paid to 

interfacial conditions between the fictitious air and the fluid. The basic idea 
of the method is to solve a flow model in the air which gives very shallow 
pressure gradients. Consequently, the constant pressure condition at the free 
surface will be almost satisfied. This procedure is used in a commercial CFD 
package SIMULOR developed to model mould filling [77,78]. A shortcoming 
of the method is a relative imprecision of the exact location of the free surface 
if the mesh is coarse. 

6. Lagrangian Method. This method appeared only recently and is still being 
developed (not to be confused with the Lagrangian method of tracking dis­
continuities developed by Hirt et al [79]). It is based on the representation 
of the flowing or deforming medium as a collection of mutually interacting 
parcels of material [80]. Individual parcels move as solid bodies subjected 
to the boundary conditions. The main problem in this method is to define 
the forces acting between the parcels as well as energy exchange and inter­
action with walls. These definitions depend on the number (or size) of the 
parcels used and at present are chosen posteriori making the resulting motion 
look more realistic. However, if the problem of arbitrariness is overcome, the 
method offers flexibility and control in introducing properties of the materials. 

The VOF method is employed in FLOW-3D and is used in the present work for 
tracking free surfaces. The transport equation solved for F is 

of at + ('\1. v) F = 0 (2.46) 
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Velocities are obtained from the momentum and continuity equations prior to ad­
vecting the fraction of fluid function. 

Once the fluid configuration is defined, pressure boundary conditions, Pi,i' have to be 
set at the centres of the cells containing the free surface. In the original SOLA-VOF 
code this pressure is obtained by linear interpolation (or extrapolation, depending 
on whether the surface cell centre is covered with fluid on not) between the surface 
pressure ps and the pressure Pi,i-l in the full fluid cell neighbour in the direction 
normal to the free surface as shown in Fig. 2.2a: 

Pi,i = (1 -1]) Pi,i-l + 1] Ps (2.4 7) 

where TJ = D..y / d and d is the distance from the centre of cell (i, j - 1) to the free 
surface. As pressure Pi,i-l takes part in the iteration procedure, Pi,i also changes 
from iteration to iteration according to Eq. (2.47). The following relation must be 
satisfied to ensure convergence [81] 

1] < 2 (2.48) 

which is always true in uniform meshes [60]. But it may not be the case in a non­

uniformly spaced mesh. For 1] > 2, if Pi,i-l changes by D..Pi,i-l during an iteration, 
then Pi,i will change by a greater quantity (1 - TJ )D..Pi,i-l' During the next iteration 
Pi,i-l will try to compensate for the change in the boundary pressure causing a swing 
of Pi,i in the other direction but with an even larger amplitude, and no convergence 
will be reached. 

To avoid such problems (and to speed up the calculation) Anzai and Niyama [82] 
used Ps as the cell-centred value of the pressure in the surface cell, i.e. put Pi,i = Ps' 

The results of their calculations for a die mould filling show little difference from 
the original method. This is not surprising given that the velocity scale was 10 
m/ s and the shape of the free surface is defined by the bulk liquid flow rather than 
the surface gravity waves. The Froude number NFr = u2 /gd for the mesh size 
d = 5 mm is around 50. This method, however, is not acceptable for low Froude 

numbers characteristic for shrinkage feeding flow, for example, (NFr ~ 0.005 for 
velocities of the order of 1 mmj s) because the shape of the free surface in this case 
is mainly defined by the differences in pressures in the surface cells. 

Another method of calculating surface cell pressures is to assume hydrostatic pres­
sure distribution in the surface cell between the free surface and the cell centre [83]. 
If Gn is the component of the body forces (e.g. gravity) normal to the free surface 

then, using Fig. 2.2b 
Pi,i = Ps + Po Gn h (2.49) 
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where h is the distance between the free surface and the cell centre. It is impor­
tant that h is negative when the cell centre is outside the fluid. This procedure 
ensures continuous and smooth change of pressure in a cell as the free surface passes 
through it. Eq. (2.49) is a good approximation in a low Froude number flow and 
works equally well in fast flows with the velocity magnitude of the order of 1m/ s [84J. 
In this formulation pressures in the surface cells are fixed during the iteration pro­
cedure. 

A shortcoming of using the body forces to define the surface cell pressures is clear 
in a situation when body forces are absent but a non-zero pressure gradient exists 
in the fluid due to a difference in pressures applied at the fluid boundaries [85J. In 
that case, according to Eq. (2.49), the surface pressure is assigned to the cell centre 
without any adjustment, ignoring the net pressure gradient in the fluid. 

By setting surface cell pressures using Eq. (2.49) surface gravity waves are generated, 
and care must be taken to avoid possible numerical instability arising from their 
propagation (see Section 2.10). 

2.5 :Free Surface Advection 

In Section 2.3.1 the upwind (donor-cell) differencing methods was described to calcu­
late the advection the fluid momentum. Unfortunately, it is only first order accurate 
and is highly diffusive and thus unsuitable for the free surface advection. A direct 
application of this method would result in smearing of the interface, leading to an 
non-physical result. 

Usmani et al [35J used a continuous, rather than a step-like, fluid fraction function 
to avoid the numerical difficulties in advecting the step function. In their approach 
the free surface is associated with the value of F( t, x, y) = 0.0, instead of the range 
of values between 0.0 and 1.0 as used in the VOF method. F(t, x, y) < 0.0 indicates 
the fluid region and F(t, x, y) > 0.0 indicates the voids. Furthermore, at every time 
step function F is smoothed in a layer on both sides of the free surface to obtain 
a linear profile of F in the direction normal to the free surface. This serves two 
purposes: first, a linear distribution of F reduces the numerical diffusion as it is 
proportional to the second spatial derivative of F; second, the smoothing helps to 
avoid developing undesirable steep gradients of the F-function. 

However, this approach is only suitable for tracking an already existing free surface. 
Opening new void is beyond its capabilities, in other words the full cells are always 
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assumed to stay full unless the free surface passes though them. The original VO F 
method allows one not only to track existing free surfaces, but also to model the 
opening of new voids and free surfaces. The latter is crucial in solidification shrinkage 
modelling. 

In the YOF method the donor - acceptor flux approximation is used to advect free 
surface. The essential idea is to use information about F downstream as well as 
upstream of a flux boundary to establish an approximate interface shape and then 
to use this shape in computing the flux. In each computational cell containing free 
surface, the free surface is represented by a plane parallel to one of the coordinate 
planes which depends on the distribution of F in the neighbouring cells. 

When solving scalar advection Eq. (2.46) in a staggered grid, control volumes are 
chosen to coincide with the cells so that the convective fluxes can be easily calculated 
at the cell faces. 

Consider the amount of F to be fluxed in the x-direction through a cell face during 
a time step ~t. The flux of volume crossing this face per unit cross-sectional area is 
£ = u~t, where u is the normal velocity at the cell face. The sign of u determines 
the donor and acceptor cells, i. e. cells loosing and gaining volume, respectively. The 
amount of F fluxed across the cell face is defined as 8F times the cell face area 

8F = min{FAD · I £ I + Fe, FD ~XD} (2.50) 

and 
Fe = max{(FDM - FAD)' I £ I - (FDM - FD~XD, O.O} 

Here single subscripts denote the acceptor (A) and donor (D) cells. The double 

subscript, (AD) refers to either A or D, depending on the orientation of the interface 
relative to the direction of flow as explained below. FDM is the maximum of FD and 
the F value in the cell upstream of the donor cell. 

The min feature in Eq. (2.50) prevents the fluxing of more F from the donor cell 
than it has to give, while the max feature accounts for an additional F flux, Fe, if 
the amount of void (1.0 - F) to be fluxed exceeds the void amount available. Fig. 

2.3 provides an explanation of Eq. (2.50). The donor and acceptor cells are defined 
in Fig. 2.3a for fluxing across a vertical cell face. When AD = D, the flux is a 

donor cell value, 
8F = FD ·£ 

in which the value in the donor cell is used to define that portion of the cell face 
area exposed to fluid (Fig. 2.3b). Satisfying Courant stability criterion (Section 
2.10) guarantees that it is not possible to empty the donor cell in this case. 
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When AD = A, the value of F in the acceptor cell is used to define that portion 
of the cell face area which F is flowing through. In Fig. 2.3c, all the fluid in the 
donor cell is fluxed because everything lying between the dashed line and the cell 
boundary moves into the acceptor cell. This is an example of the min test in Eq. 
(2.50). In Fig. 2.3d more fluid than the amount FA' £, must be fluxed, so this is an 
example of the max test. 

Whether the acceptor or donor cell is used depends on the mean surface orienta­
tion. The acceptor cell is used when the surface is advected in a direction normal 
to itself, otherwise, the donor cell value is used. The reason for testing on surface 
orientation is that an incorrect steepening of surface waves will occur if the acceptor 
cell is always used to compute the fluxes. In effect, the acceptor method is nu­
merically unstable because it introduces a negative diffusion of F. Instabilities do 
not grow to unbounded values, however, because of the min and max tests used 
in the flux definition. On the other hand, when the surface is advected normal to 
itself, a steepening that maintains the step-function character of F is exactly what 

is required. 

Once the flux has been computed by the above method, it is multiplied by the 
flux boundary area to get the amount of the fluid to be subtracted from the donor 
cell and added to the acceptor cell. In this way the fluid volume defined by F is 
conserved. When the advection process is repeated for all cell boundaries in the 
mesh, the resulting F values correspond to the time-advanced values satisfying Eq. 
(2.46) and still define sharp interfaces. 

Youngs [86] developed a 2-D VOF advection model in which the reconstructed free 
surface is allowed to have a non-zero slope in a cell, rather than forcing it to be 
parallel to a coordinate plane. The Youngs' method is presumably more accurate, 
but excessive calculations may be required to define the orientation of the free surface 
in every cell when the method is applied in three dimensions. 

An example of a second-order in space and time differencing scheme specially de­

veloped to overcome numerical diffusion is the van Leer method [87]. This method 
preserves the monotonicity of the advected variable thus preventing the spurious 
oscillations that often accompany higher-order methods. 

Referring to Fig. 2.3e, the flux through the right-hand face of the cell can be 
computed as [50] 

for positive u e • The van Leer approach determines the face values in terms of local 
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gradients of F: 

(
aF) C1t - (l-Ue-) 
ax C1x 

p 

for 

C1x (aF) C1t 
Fe = Fp - 2 ax E ( 1 + U e C1X) for U e < 0 

The gradient (aF / ax)p is computed as 

2 sgn( be) . {I ~ I I be I + I bw I I ~ I} 
C1x mzn Ve , 2 ' Vw 

where 

and 
if be > 0 
if be < 0 

To ensure monotonicity, if be X 8w < 0 then (aF / ax}p = 0 and it reverts to upwind 
conditions. 

The van Leer method has been proven particularly successful in preserving sharp 
discontinuities and was applied to advecting free surface in mould filling simula­
tions [50,88]. 

The use of the VOF method with either the donor-acceptor or the van Leer advection 
schemes limits the time step size so that the free surface cannot be moved by more 
than one cell in one cycle. This restriction can be inconvenient, especially if it 
is significantly more severe than other time step limitations, e.g. viscous or heat 
transfer time step stability limits. 

Swaminathan and Voller [72,73] suggested an "enthalpy type" model for advecting 
free surfaces. The analogy is used with the enthalpy method of describing phase 
transformations, according to which a computational cell undergoing the phase 
change will remain fixed at the melting/freezing temperature until the associated la­
tent heat has been extracted/supplied (Section 2.8). In this situation a cell changing 
phase is unable to transport heat to cells which have not yet changed phase. 

In the 'enthalpy type' free surface advection model a new variable, G is introduced 

such that 
o ~ F < 1 when G = 0 

42 



o < G ~ 1 when F = 1 

where F is the ordinary VOF function. The transport equation is then used in the 
form of - + (V· v)G = 0 at (2.51 ) 

In the context of the analogy with the phase change problem, F takes the role of 
the enthalpy and G of the temperature. Eq. (2.51) is equivalent to an isothermal 
phase change problem in which the specific heat is zero, i.e. the 'enthalpy' consists 
only of the latent heat. 

The chosen relationship between F and G ensures that in a numerical solution, a 
control volume that is filling can only receive fluid from its neighbours; it cannot 
pass on any fluid to a neighbouring cell until it is completely full. 

Eq. (2.51) is discretised in a fully implicit, first order form and solved in each 
control volume simultaneously. The simultaneous solution procedure is significantly 
simplified due to the relationship between F and G. 

The advantages of the Enthalpy-VOF (EVOF) method are: 

1. no numerical diffusion and smearing of the free surface is present due to the 
introduction of variable G; 

2. due to the implicitness of the numerical method there is no restriction on the 
size of the time step. 

The disadvantages are: 

1. due to the chosen F -G relationship, once a computational cell is full, it cannot 
be emptied again. Consequently, problems in which regions of the mould cavity 
fill and then empty (e.g. fillings with sloshing or shrinkage feeding flow) are 
outside the scope of the EVOF method; 

2. to take full advantage of the large time step size advection terms in the mo­
mentum equations must also be approximated in an implicit way. This usually 
would require an interation method to solve the discretised equations thus in­
troducing additional calculations in the solution procedure. 

3. if the time step is so large that the free surface is advanced by several cells, 
a problem arises of setting velocities and pressures in the newly filled cells 
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which are required as the initial values for the pressure correction iteration 
procedure. As the solution for the Laplace equation for pressure, derived from 
the continuity equation (2.21), is defined by the boundary conditions [27], 
the first-guess pressure values are unimportant for the converged solution, 
if correct boundary conditions are given (though the number of iterations 
necessary to achieve the convergence is affected by the initial value). However, 
it is unclear how to calculate the velocities. 

4. the condition for a computational cell to be full before passing the fluid to an 
empty neighbour is a good approximation if the free surface is advected in the 
direction normal to the free surface. In a case when the fluid flow is parallel 
to the free surface this approximation will lead to an incorrect position of the 
free surface. 

At present the VOF approach, in conjunction with the donor-acceptor or van Leer 
advection method, is the most powerful and general tool to describe transient free 
surfaces. 

2.6 Discretisation of the Energy Equation 

Eq. (2.23) is to be solved numerically for the fluid enthalpy. A numerical analogue 
of it for a control volume V, chosen to coincide with a cell, is 

(2.52) 

Here a first order forward differencing is used for the temporal derivative. f::.H:d is 
the advective flux of the fluid enthalpy across the cell faces, estimated at time level n, 

i. e. explicitly. It is closely related to the advection of the fraction of fluid function, 
F (Section 2.5). Once the amount 8F of the VOF function that is advected through 
a cell face per unit area has been calculated, the enthalpy advection is estimated by 

8H = Hv8F (2.53) 

where HD is the enthalpy of the upstream (donor) cell per unit fluid volume. The 
total flux of the enthalpy into the cell is then equal to the sum of the fluxes through 
each cell face times the corresponding face areas: 

f::.H:d = L Akt5H;: 
face. 

In that way the fluid enthalpy is conserved as the fluid moves through the mesh. 
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The discretised Fourier conduction terms in Eq. (2.52) are represented by QT which 
is the sum of fluxes at control volume faces. In two-dimensions, a uniform grid and 
constant heat conduction coefficient k, the central differencing for the Laplacian 
term in Eq. (2.23) at cell (i,j) gives 

QT = k (Ti+l,j - 2Ti,j + Ti-1,j + Ti,j+l - 2Ti,j + Ti,j-l) 
~X2 ~y2 

(2.54) 

Eq. (2.54) gives a second order accurate approximation for thermal diffusion. The 
advantage of this approximation is that it only involves the immediate cell neigh­
bours, in other words, it uses the same expression for all internal fluid or mould cells. 
For the boundary cells, either the temperature or the heat flux must be specified as 
the boundary condition. 

A fully explicit formulation for the conductive heat fluxes, i.c. with all temperatures 
in Eq. (2.54) evaluated at time level tn, is employed and a time step stability limit 
is introduced. For a one-dimensional flow it is (see also Section 2.10) 

~X2 
~t< -

20: 

where 0: = kj pC is the diffusion coefficient. 

A fully implicit approximation of the conduction term would imply all temperature 
on right-hand side of Eq. (2.54) to be taken at the new time level tn+!' This will 
remove the time step restriction but the system of the discretised equations becomes 
coupled and iterations are required at each time step to obtain the solution [52]. Note 
that at each iteration Eq. (2.17) will have to be solved for the temperature. The 
latter can be complicated by a non-linear dependence of the fraction of solid function 
fs on the temperature (Section 2.8) and the whole solution procedure may prove to 
be ineffective. To avoid this complication, the energy equation can be written solely 
in terms of temperature and the phase transformation taken into account using the 
"effective specific heat" [5] (see also Section 2.8). 

A semi-implicit method was suggested by DuFort and Frankel [89]. The essence 
of the approach is to use only the central node temperature in expression (2.54), 
Tj,j, at the new time level t n+!; all the other temperatures are taken at time tn. 

In this case there is no stability limit for the time step and the solution matrix for 
the temperatures is purely diagonal. The cost of employing this method can be 
demonstrated on a one-dimensional heat conduction problem without phase change 
and fluid flow. Eq. (2.52) then can be written for a node i as 

T'!'+! = T'!' ~ Ti'tl - 2Tr+! + Tt'-l . . + t a ~X2 (2.55) 
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or 

where 

!:::.t' 
!:::.t 

and 

1· At' !:::.x
2 

1m u =--
~t-+cx> 2a 

Thus Eq. (2.55) is equivalent to a fully explicit expression, with an erroneously 
small time step. It is erroneous because the user may think that the result of n 
time steps applies to the time n!:::.t, when it actually should apply to the time n6it'. 
The errors result from the absence of energy conservation property in this method 
since temperatures at different time levels are used to evaluate the heat flux in the 
right-hand side of Eq. (2.55). 

A fully explicit first order numerical approximation to the thermal diffusion term 
(2.54) will be used in the present work due to its simplicity with regard to the 
solution matrix inversion and to the development of the shrinkage model. 

2.7 Modelling the Metal/Mould Interfacial Heat 
Transfer 

It is not always important to use a higher-order approximation for the thermal 
diffusion term because temperature gradients in the casting are small. More ef­
fort is required to obtain an accurate approximation of the heat flux across the 

metal/mould interface given by 

dq = h· dA· (Tmetal - Tmould) (2.56) 

where dA is an element of the interface, temperatures T refer to the metal and 

mould interfacial temperatures and the reciprocal of h is proportional to the thermal 
resistance of the interface. The problem of calculating dq is closely related to the 
description of the casting geometry. 

The importance of the interfacial heat transfer strongly influences the choice of the 
numerical technique to solve Eqs. (2.21 )-(2.23). Often the solution accuracy for 
fluid flow is sacrificed in favour of the heat transfer. 

The use of unstructured meshes in the finite element approach allows one to solve 
successfully both problems of the geometry and heat transfer modelling. The latter 
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is achieved by placing the mesh nodes on the interface (boundary fitted mesh) and 
using temperatures, the metal and the mould, at each of those nodes so that the 
temperature difference in Eq. (2.56) can be accurately estimated [90]. Besides, a 
formation of an air gap can be described if the nodes are fixed to the solid material 
as it moves off the mould wall [50]. The effect of the gap size is then taken into 
account by adjusting the heat transfer coefficient h. An experimental procedure 
for measuring the gap size and the heat transfer coefficient has been given by Hou 
and Pehlke [24]. Evans et al presented an experimental techniques of measuring the 
interfacial heat flux [91]. 

The use of structured mesh in the finite volume approach introduces the following 
problem. Generally the metal/mould interface is represented by a stepwise surface 
because each computational cell can be either completely open to flow or completely 
blocked by the mould, and the approximate interface passes along the cell faces. A 
finer mesh is not a solution because (a) there is always a limit to how fine a mesh 
one can use and (b) refining the mesh does not make a better approximation for 
the interface area. Figs. 2.4a, b show a finite difference approximation to a straight 
line by two meshes, a coarse and a fine. Although the finer mesh representation 
seems to be closer to the straight line the length of the discretised line in each 
case is the same and depends only on the line inclination. As a consequence, finite 
difference cell nodes do not lie on the interface, and the cell-centred temperatures 
cannot represent the interfacial temperatures. 

Another way of describing solid walls is called Fractional Area and VOlume Ratio 
(FAVOR) technique [88,123]. In this method a cell volume and faces are allowed to 
be partially blocked (Fig. 2.4c) Four additional arrays are required then for each cell 
(three in two dimensions): the fractional open cell volume and fractional open areas 

for the right, back and top cell faces as shown in Figure 2.4d for a two-dimensional 
cell. In this case an interface containing cell has two temperatures: metal and mould. 

FAVOR method allows much smaller numbers of cells to be used to represent curved 
surfaces and gives better wall boundary condition approximations not only for the 
heat transfer, but for the viscous stresses as well. The price paid for the improved 

accuracy are the additional storage requirement and possibly a more severe time 
step stability limit (Section 2.10 and Chapter 3) 

It is shown in Section 4.1 how, using the FAVOR technique, temperature nodes 
can be efficiently introduced at the interface on both sides without any significant 
increase in the computation. The actual interfacial area in each cell can be estimated 
at the preprocessing stage and used as dA in Eq. (2.56) [92]. 
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Structured finite difference and finite volume meshes are fixed in space and cannot be 
used to model efficiently the movement of the solid material and the gap formation 
due to thermal stresses. An attempt to model the gap formation was made by 
Huang et al [94]. Their model is based on the assumption that the magnitude of an 
interfacial gap size primarily depends on the thermal contraction of the casting as 
it solidifies. For a point P at the metal/mould interface, its movement relative to 
the geometrical centre of the casting and the movement of the casting as a whole 
due to gravity is estimated. As a result the point can move away from the interface 
creating a gap of size .6./. The heat transfer coefficient is adjusted according to the 
formula 

h = kg(T) 
B+Cf).[ 

where kg(T) is the gas thermal conductivity at temperature T, and Band Care 
fitted from experimental data. This model is simple and efficient and has been 

implemented in two-dimensions. 

There have been numerous attempts to simplify and speed up the solution algorithm 
for the energy equation. Dantzig and collaborators [95,96] developed a boundary cur­

vature method based on the fact that, generally, information on mould temperature 
is not required. Hence, the mould can be excluded completely from the calculation 
given that the correct heat fluxes at the metal/mould interface are known. The 
latter is calculated by correlating the actual interface shape with simple geometries 
for which an analytical solution exists and applying this solution to calculate the 
heat fluxes and temperatures in the mould without discretising the mould domain 
and solving the energy equation in it. 

The boundary curvature method is especially attractive for modelling sand castings, 
because large differences in metal and sand thermal diffusivities require substantial 
computational effort to accurately calculate heat flux in the sand. A much finer 
mesh would have to be used in the sand than in the casting itself. 

However, the boundary curvature method is limited by its lack of generality in de­

scri bing complex geometries and by lack of physical transparency in the formulation 
of the method. The method has been implemented in SPIDER, a finite element 

code [97]. 

An analytical solution can be used to describe the penetration of heat into the 
mould for a short time after the contact between the metal and mould wall, when 
the thermal gradients in the sand are very steep and cannot be resolved by the 
finite volume mesh [93]. Stoehr and Wang [66] used an analytical expression for the 
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interfacial heat flux per unit area when modelling thin wall sand casting: 

/kPC q = -;t (T metal - Tsand ) 

in which k, P and C refer to the relevant properties of the sand and time is measured 
from the arrival of metal to that point. This is an attractive alternative to mesh 
refinement at the interface. However, care must be taken in using the analytical 
functions since physical conditions at the interface do not generally correspond to 
those assumed by the analytical solutuion. Besides, a special algorithm has to be 
derived to make a smooth transition from the analytical solution to the numerical 
one at later times of simulation. 

Two-domain methods have been also developed in which the casting and mould are 
meshed independently and the two solutions of Eq. (2.52) are found in each of the 
domains separately. The interface boundary conditions are then used to match the 
metal and mould temperatures. This technique allows one to take advantage of the 
fact that the energy equation for the mould does not contain advection and phase 
transformation terms: 

aT = _1 V( kVT) at pC 
(2.57) 

Different time step sizes can be used in the two domains and linear temporal inter­
polation is then employed to bring the solutions together [98J. 

A similar approach is used by Chen and Tsai [99]. At a given time step Eq. (2.52) is 
solved together with the interfacial condition, Eq. (2.56), to obtain only the casting 
temperature distribution. The mould temperature is taken from the previous time 
step. Then in the next time step Eq. (2.57) is solved with the known temperature 

from the previous time step solution for metal. At each time step fully implicit 
formulation is used for the corresponding temperatures, and the solution is found 
iteratively. The method allowed optimum time steps and iteration parameters to be 
used for each material. 

The general shortcoming of the two-domain method with separate time stepping is 

the absence of the conservation property: the net energy change in the mould may 
not be equal to the loss of the energy in the metal. It can be shown that for the 
Chen and Tsai method this results in a similar effect to that of the DuFort-Frankel 
method described earlier in this Section. Neglecting advection, phase transformation 
and assuming for simplicity a lump temperature model for both metal and mould, 
the Chen-Tsai model becomes 

T n+l Tn-l 
1 - 1 = -Ql (Tr+I - T;) 

2~t 
(2.58) 
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r.n+2 r.n 
2 - 2 = 0:' (Tn+1 _ r.n+2) 

2 I:lt 2 1 2 (2.59) 

The same time step size was chosen for domains 1 (metal) and 2 (mould) with 
0:'1 = hi PI C1 and 0:'2 = hi P2C2 . The metal and mould temperatures are calculated 
at times tn+l and tn+2 respectively. The loss of the conservation property arises 
from two factors. Firstly, the heat fluxes out of the metal and into the mould are 
evaluated at different times. Secondly, the two temperatures used to evaluate these 
fluxes in both equations are taken from different times. If Tt+1 on the right-hand 
side of Eq. (2.58) is substituted by an estimate for the metal temperature at time 

(2.60) 

then the heat flux and time tn will be estimated in a more conserving manner. Eqs. 
(2.58), (2.59) can be rewritten after some algebra as: 

where 

and 

~(T.n+2 + T.n) 2 2 2 

~t 
I:lt' = ----

1 + O:'l~t' 

(2.61 ) 

(2.62) 

Similarly to the DuFort-Frankel method, the actual time steps, ~t' and I:lt", at which 
the solutions for the metal and mould advance are smaller than ~t. Furthermore, 
the times, to which those solutions actually correspond, are not the same for metal 
and mould and the difference grows as the calculation proceeds because ~t' =j:. ~t" 
due to the differences in thermal diffusivities. The error in the Chen-Tsai method 
(as well as the DuFort-Frankel) is a truncation error, i.e. it is proportional to a 
power of the time step size. 

A two-domain method is also used in the present work, but energy equations for 
the metal and mould are coupled at the same time level and solved simultaneously. 
The latter is simplified by the use of a fully explicit formulation of the numerical 
analogue equations. 
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2.8 Modelling the Latent Heat Release 

There are several widely used numerical methods to take into account the latent 
heat in the energy equation. 

Enthalpy Method. The enthalpy method of accounting for the latent heat release 
uses the Energy Equation in the form of Eq. (2.23). Once a numerical solution for 
H at a certain time level is found, using one of the methods described in Sections 
2.6 and 2.7, the current released latent heat and metal temperature are found from 
Eq. (2.17). 

The advantage of the enthalpy method (Eq. (2.23)) is that it is not possible for a 
node to drop through the freezing range without the latent heat being accounted 
for, since it is incorporated at every stage of the computation. In other words the 

enthalpy method is energy conserving. 

However, this model has a disadvantage when solidification occurs at a constant 
temperature Tm (pure metals or eutectic alloys), or within a narrow temperature 
range. If the solidification front is passing through a cell, then the temperature at the 
node is kept equal to Tm. In other words, the temperature of the solidification front 
is assigned to the whole cell while it contains the front. This generates numerical 
'heat waves' which distort the temperature field (Fig. 2.5b). Amplitudes of the waves 
are higher for larger temperature gradients in the casting while a wider mushy zone 
and smaller latent heat would decrease this effect. 

An artificial freezing range is usually introduced to prevent the cooling curves from 
exhibiting false plateaus, However, this will cause a diffusion of the solid/liquid 
interface. In general, the smaller the artificial mushy zone, the better the solution 

accuracy [99]. 

Another enthalpy-based method, called enthalpy diffusion model, has been suggested 
by Mundin and Fortes [104]. Here the energy equation is written in the form 

8H 
8i=V.(aVH) (2.63) 

where a varies from k/ pC to zero (in the moving front). Eq. (2.67) gives an energy 
conserving numerical solution. The temperature oscillations, typical in the enthalpy 
method, are absent but a stretching of the phase changing region is introduced since 
enthalpy is continuous across the liquid/solid interface. 

Numerical results become increasingly sensitive to the choice of a solidification model 
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for alloys with large freezing range T/ - Ts [105]. As was mentioned in Section 2.1.2 
it is not among the objectives of this work to include solidification kinetics. We will 
only note that the enthalpy method assumes the enthalpy of a cell to be a unique 

function of the cell temperature. This would introduce a difficulty in modelling un­
dercooling, characteristic to the kinetics models, as it implies at least three enthalpy 
values for one temperature when the cell is, first, undercooled, then the temperature 
recovers due to solidification and, finally, decreases as the solidification progresses. 

Several authors used experimentally measured evolution of the metal enthalpy versus 
temperature to incorporate the latent heat release [100,106]. If a metal sample, V, 
is cooled at a sufficiently slow rate to assume it to be at a uniform temperature T, 
then the change of the total metal enthropy is 

dH =V (edT _L dis ) =~(T. -T) & p & & A 00 

where h, A, and Too are the metal/mould heat transfer coefficient, the interface area 
and the ambient temperature respectively. Since 

dis = dis dT 
dt dT dt 

the total latent heat released to a certain time can be expressed as a function of the 
temperature and cooling rate 

dis ( T - Too) 
L dt = e 1 + e dT / dt ' 

hA e=­
pVc 

and all that has to be done is to accurately measure T( t). 

The experimental method is perhaps the most accurate and flexible way to describe 
the latent heat release, especially for multi-component alloys. Most solidification 
modelling packages have an input option to include a table of enthalpy-versus­
temperature values. 

Modified Specific Heat Method. This method involves artificially raising the specific 
heat within the freezing range to account for the release of latent heat. The simplest 
method employs a constant higher value of specific heat within the solidification 

range [66,93]: 
L 

eef f = e + T/ - Ts ' (2.64) 

where T/ and Ts are liquidus and solidus temperatures, respectively. This is only 
suitable for narrow freezing range alloys. A more accurate expression is given by [100] 

e = e - L. di. 
eff dT 
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where dfs/dT can be defined by using an appropriate solidification model. 

If the liquidus and solidus lines are assumed to be straight, together with a complete 
mixing of the solute in both liquid and solid phases, then the lever rule applies [7] 
(see also Eq. (2.18) in Section 2.1.2): 

(2.65) 

where J( is the partition coefficient and Tm is the melting point ofthe solvent metal. 

If the conditions of the solidification are such that there is no diffusion of the solute 
in solid and complete diffusion in the liquid phase, then the fraction of solid is 
determined by Scheil equation: 

fs = 1, (2.66) 

where Te is the eutectic temperature. This is an acceptable approximation if the 
time scale of the diffusion in the solid is much larger than that of any other involved 
macroscopIC process. 

A problem with the modified specific heat method is that it is possible for a node to 
'jump' over the freezing range in a single time step, thereby missing out the latent 
heat evolution. This is illustrated in Fig. 2.5a, where the effective heat capacity is 
calculated using Eq. (2.63). A post-iterative check is necessary to ensure that the 
latent heat has been accounted for. If this not the case then the nodal temperature 
must be readjusted accordingly [101]. 

It may be difficult to justify the application of these models in the form of Eqs. 
(2.64) and (2.65) in numerical modelling. For example, ScheH equation, Eq. (2.65), 
assumes an infinite diffusivity of the solute in the liquid, no diffusion in the solid 
phase of the material and that the total amount of the solute in the casting, Me, is 
constant 

Me = const (2.67) 

It implies that the liquid phase in the casting always has a uniform concentration, 
and the fraction of solid function in Eq. (2.65) is the net mass solid to liquid ratio 
in the casting. 

In the control volume approach Eq. (2.65) is applied to every control volume, with 
fs being the fraction of solid in the control volume. This effectively means that Eq. 
(2.66), instead of being reasonably applied to the whole casting volume, is used in 
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each control volume, thus, becoming much stronger and, generally, inaccurate and 
making the numerical solution mesh-dependent. In reality the amount of solute in 
each control volume may change due to fluid advection and diffusion. 

Similar problems can be seen in the application of the lever rule. Despite that, Eqs. 
(2.64) and (2.65) and their variations have produced useful predictions. 

Temperature Recovery Method. In the case of pure metals the latent heat is divided 
by the specific heat to give a virtual temperature, ~Tv [102]. This may be regarded 
as the temperature change over which an amount of specific heat equal to the latent 
heat would be evolved. Using one of the above solidification models the variation of 
enthalpy within the solidification range can be obtained. The modified specific heat 
capacity at a particular temperature can then be determined from the slope of the 
enthalpy versus temperature curve. 

The liberation of latent heat is accounted for by holding the temperature of a node at 
the freezing point until a number of excess degrees equal to the virtual temperature 
have been accumulated after which the temperature is allowed to fall. 

In alloy solidification the latent heat can be accounted for in a stepped manner 
according to the percentage of solid formed at different temperatures in the freezing 
range [103]. The disadvantage of the temperature recovery method is that it requires 
that additional post-iterative calculations be made. 

In the present work the enthalpy method will be employed to model solidification, 
using Eqs. (2.17) and (2.23). 

2.9 Solidification Shrinkage Modelling 

Porosity in castings can be either shrinkage induced or gas induced. 

Shrinkage induced porosity results when there is an inadequate supply of liquid metal 
to counter the volumetric shrinkage on solidification exhibited by most metals. 

Gas induced porosity may result from the evolution of gas during solidification by 
either one of the two mechanisms: 

• by a decrease in the solubility of dissolved elemental gas upon solidification 
(e.g. H2 in aluminium); 
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• by the formation of a compound gas during solidification (e.g. CO in steel). 

A further possibility is that air bubbles may be introduced into the liquid metal 
at the filling stage. If these bubbles are unable to escape then gas porosity will 
result [2J. 

Usually in castings the gas content is kept as low as possible by using either inert 
gas degassing techniques, vacuum treatment or by the addition of an element which 
form a solid compound with the dissolved gas. Exceptions to this are steels in which 
CO is allowed to form to compensate for solidification shrinkage. A similar technique 
is sometimes used in die casting when dispersed porosity is considered less harmful 
than a concentrated shrinkage cavity. 

Macroporosity, or concentrated cavities, appear in castings in two forms: primary 
and secondary porosity. Primary cavities are located at the top of a casting, usually 
in the feeders, and result from lowering ofthe liquid metal surface due to the gravity 
dri ven feeding flow. 

If during the solidification of a pure metal part of the casting freezes over, leaving a 
substantial pocket of liquid metal isolated from the feeding top, then gross internal, 
or secondary porosity results. In the case of alloys solidifying with a dendritic front, 
it is not necessary for the metal to freeze over to 100% solid to stop the feeding flow. 
This is because when the fraction of solid in the mushy zone is high, the remaining 
interdentritic liquid regions do not make a continuous passage connecting the feeder 
and the rest of the liquid casting. 

Microporosity generally occurs randomly between the dendrite arms of alloys so­
lidifying in a pasty manner. Uram et al [107] et alobserved that the amount of 
microporosity between dendrites in a columnar region is considerably less than in 
the equiaxed region. The reason for this is that the interdendritic liquid regions in 
the columnar region are orientated along the crystal axis and they are more likely 
to connect the shrinking material in the mushy zone with the bulk liquid metal. 

Campbell [2] presented a schematic representation of the feeding mechanisms active 
at different stages during an alloy solidification as shown in Fig. 2.6. Liquid feeding 
can occur at low pressure gradients and will be dominant during the early stages of 
solidification. Mass feeding will continue until solid particles impinge on each other. 
This mode of feeding is most effective when the size of the equiaxed crystals is small. 
When mass feeding ceases, liquid flow through the interdendritic channels continues 
until the pressure drop increases to such an extent that feeding is no longer possible, 
after which microporosity formation will result. 

55 



In the formation of the internal porosity the contributions of dissolved gas and the 
pressure drop across the mushy zone due to incompressibility of metal are additive. 
Assuming no barrier to pore nucleation the condition for the formation of a pore of 
radius r is [7] 

20-
P :S Pg - -

r 

where p is the local metal pressure and Pg is the equilibrium gas pressure. 

At high gas contents pores can form early during solidification and remain spherical 
in shape. Gas bubbles forming at later stages will become trapped in the mushy 
region, their shape distorted to the shape of the interdendritic space. The total void 
volume is the sum of shrinkage and the evolved gas volume. 

The present research is primarily concerned with shrinkage porosity, though a uni­
formly distributed gas porosity could be taken into account by decreasing accord­
ingly the solid phase density (Chapter 7). The exclusion of detailed gas micro­
porosity modelling is mainly due to the complexity of the physical phenomena. 
Experimental results indicate that pore sizes in alloys varies markedly with cooling 
rate, gas content and, to a lesser extent, with grain refining [108]. 

The first attempts at predicting the occurrence of shrinkage cavities in castings 
using numerical techniques were based on the fact that unsoundness will result in a 
region of a casting in which a pocket of liquid metal is isolated from the feeder by 
solid metal, or by a semi-solid region which has a fraction of solid greater than some 
critical value [109]. Whilst this method gives an indication of where porosity will 
form by using a numerical model of solidification to locate thermal centres within 
a casting, the actual size and shape of shrinkage cavities are not predicted. This 
method can in fact give misleading results since the last liquid to solidify will not 
normally correspond to the centre of the shrinkage cavity. 

Imafuku and Chijiiwa [110,111] developed a method based on mass conservation 
which predicted the shape of gross shrinkage cavities and extent of the microporosity 
which might surround them. The total volume contraction is calculated for each time 
step by a summation of the volume contraction within each individual element due 

to solidification shrinkage. This results from a change in fraction solid between tn+l 

and the previous time, tn. The distributions of temperature and solid fraction are 
determined using a 2-D finite element analysis. Interdendritic flow is assumed to 
cease at fSl er = 0.67 fraction solid. If any liquid is trapped by the mushy zone at 
f, > filler, then a new cavity forms at the top of the trapped region. When all of 
the casting is at a fraction solid greater than 0.67, the remaining semi-solid region 
is considered to be a likely area of microporosity. The actual distribution of the 
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porosity is calculated using the Solid Fraction Gradient Method, which assumes 
that pores are generated by the solidification shrinkage of a large quantity of molten 
metal remaining at the time of the fs.cr isosurface disappearance. 

The main assumptions of this model are: 

- molten metal flows downwards due to the gravity, z. e. effects of pressure and 
viscosity are neglected; 

- the flow speed is much greater than that of the solidification front; hence feeding 
can be assumed to occur instantaneously; 

- the volume of shrinkage cavity is equal to the volumetric contraction by solidifica­
tion; 

- the melt has full fluidity for fs < fs.cr. 

Whilst this method is not able to predict the formation of dispersed porosity in 
regions of low temperature gradients it can predict the actual shape and position 
of gross shrinkage cavities. This is not the case with methods which ignore any 
consideration of fluid flow and simply attempt to locate thermal centres within the 

casting. 

The shortcomings of the shrinkage prediction method proposed by Imafuku and 

Chijiiwa are 

- no heat flux due to the metal flow is calculated; this can be a combination of the 
residual circulation from the filling stage, the feeding flow and thermal convection. 
The latter may be increasingly important for low conductivity metals, such as steels. 

- the use of the Solid Fraction Gradient Method requires a high accuracy numerical 
heat conduction/transfer model, and may be sensitive to the method of calculating 
latent heat. 

- it is not clear from the description of the method [111] whether the computational 
elements are allowed to be partially filled during the calculation and how is it taken 
into account in terms of the heat flow. 

A similar method was used by N agasaka et al [112]. Here the authors use the 
solid fraction gradient, 'V fa, as the key parameter that controls the driving force for 
feeding. The movement of liquid was considered only in the direction of the gradient, 
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i.e. normal to the solidification front. In addition a critical value of V' f, is applied 
as a criterion for the feeding. At each time step all possible feeding paths (consisting 
of cells with fs < fs,er) to a solidifying cell are determined and the solid fraction 
gradient is calculated along each of them. The cell then can only be fed if at least 
in one feeding path V' fs does not fall below the critical value. The total shrinkage 
volume generates a macro-cavity in the elements with the minimum pressure head 
thus taking into account gravity. 

This method also requires a high degree of numerical accuracy in evaluating the 
fraction of solid gradients. Furthermore, the determination of all possible feeding 
paths for each solidifying cell may be inefficient in 3-D problems. 

The agreement with the experiments obtained by Imafuku and Chijiiwa and Na­
gasaka et ai, is good, although the accuracy is limited by the size of the individual 
elements. The choice of the critical solid fraction value is rather arbitrary. A value 

of /6,cr = 0.9 has been suggested by Davies [113] and Spittle and Brown [114]. 

The method of Niyama et al [115] is based on the experimental observation that cen­
treline porosity results if the temperature gradient, G, along the centreline is below 
a certain value. It was confirmed experimentally that this technique can success­
fully predict centreline shrinkage in 100 mm diameter steel casting. A temperature 
gradient of 0.2 DC jmm was determined as the critical temperature gradient required 
to avoid centreline shrinkage, but its value was shown to vary with the section 

thickness. 

The same authors have found that if the criterion G j v'Ii is used, where R is the 
cooling rate, then the same critical value of 0.8 DCl/2s1/2mm-l can be applied to all 
castings of similar compositions regardless of the section size. Although this criterion 
is essentially empirical, the authors showed that it has a theoretical basis [116]. 
However, it is unclear how to apply this criterion to general casting configurations 
since Gjv'R is a dimensional parameter. 

The G / v'R parameter is frequently used in commercial programs simulating solid­
ification and some successful results are given by Hansen et al [28] and Huang et 
al [117]. 

Jesko and Zajac proposed the Velocity of the Solidus Line (VTS) as the parameter 
indicating the likelyhood of microporosity formation in a casting [118]. Microporos­
ity appears when two or more crystallisation fronts impinge on each other. The local 
VTS then increases dramatically and a critical value, VTScr , can be introduced such 
that, if VTS> VTScr at a point, then this point is a likely location of microporosity. 
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This method was applied to predict the centreline porosity in a cylindrical steel 
casting, for which VTScr =3 mm/ s was chosen. 

The authors claimed that their method is more general than the G /.JR method 
because the value of VTScr does not depend on the general cooling rate conditions 
and casting geometry. However, VTScr depends on the freezing range on a particular 
alloy and ideally it should be determined experimentally. Furthermore, the VTS 
method cannot be used to predict macroshrinkage. 

An advantage of criterion methods is their simplicity and ease of use. They can be 
easily added to an appropriate computer code. 

The main disadvantage of the criterion methods is that they require experimental 
verification of one or more of the critical parameters, making these models geom­
etry and materials dependent. Criterion methods also do not model the dynamic 
interaction between developing macro- and micro-porosity regions with the rest of 

the casting. An internal cavity would affect the fluid and heat flow in the casting. 

A more fundamental approach to predicting microporosity formation in castings so­
lidifying in predominantly equiaxed manner was described by Kubo and Pehlke [119]. 
The technique involved a 2-D computation of heat flow coupled with a calculation 
of flow velocities and pressure drop. For each volume element the following mass 

balance is applied: 

( Ps) all alv 1 - - - = - - \1 . (II . v) 
PI at at (2.68) 

where ps and PI are the solid and liquid phase densities, respectively, II is the 
volumetric liquid fraction and Iv is the fraction of the porosity volume. Eq. (2.68) 
states that shrinkage during solidification is compensated by interdentritic fluid flow 
and the growth of porosity. 

The liquid fraction II is found from a finite volume solution of the macroscopic 
energy equation. The velocity is found from Darcy's law 

where 

v= 

1 
]{ 

1 
--(\1p - pg) 

]{ pil 
(2.69) 

is the permiability coefficient and d is the dendrite cell size. Gas pressure in the 
porosity region is calculated using equation 

20-
(2.70) p = Pg -

r 
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The diameter of the porosity forming first is assumed to be the same as the root 
diameter of the dendrite cells. 

The conservation equation for gas content, Q, in this case hydrogen in an aluminium 
alloy, is 

(2.71 ) 

where Qo is the initial gas content and Qs, QI are the gas contents in the solid and 
liquid phases, respectively. The last term in Eq. (2.71) describes the amount of the 

gas in pores. 

When the volume element is in the mushy zone, the amount of porosity is calculated 
from metal pressure p using Eqs. (2.68) and (2.69). The gas pressure is then 
calculated from Eq. (2.70) and the new amount of porosity from Eq. (2.71). 

In this model feeding flow velocities are estimated at each time step, though the 
advection terms in the momentum and energy equations are neglected. The flow is 
assumed to be dominated by the friction and gravity forces. However, this model 
is more suitable for predictions of micro-porosity due to gas evolution than for 
macroshrinkage modelling. 

Stoehr and Wang [66] included a volumetric source term in the continuity equation 

in their coupled 2-D heat transfer and fluid flow model. If the solid/liquid mixture 
density in each control volume is estimated as the volume average5 

(2.73) 

then the Continuity Equation, Eq. (2.21), can be rewritten, for 0 < Is < 1, as 

d · PI - ps (als + 't'7f) 
wv = P at V· v s (2.74) 

For Is = 0 and Is = 1 the source term is zero. 

The source term in Eq. (2.74), evaluated from the solution of the heat transfer 
equation, would generate the flow necessary to accommodate the volumetric change 

and can describe both shrinkage and expansion (e.g. due to remelting) of the metal. 

5 f. in Eq. (2.73) is the volume fraction of solid. If the mass fraction of solid was used, as 
everywhere else in the text, then Eq. (2.73) would transform to 

p = P.P' 
f,Pl+(l-f.)p, 

(2.72) 
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However, the authors do not present any numerical technique to find the solution 
of the coupled continuity and momentum equations, nor do they claim to have used 
the model to simulate the formation of shrinkage cavities. 

Evans et al [120] developed a shrinkage model based on heat flow only for a 2D 
axisymmetric cylindrical geometry. They employed a value of the critical solid 
fraction Is.er = 0.8 which was higher than that used by Imafuku and Chijiiwa. 
Micro-porosity is estimated after the minimum solid fraction in the casting reaches 
the critical value. This value of Is,er is used to estimate feeding in the vertical 
direction. In the horizontal direction it is assumed that feeding occurs until the 
metal is fully solid, i.e. effectively ISler = 1.0 for the horizontal flow. Cells are not 
allowed to be partially filled. Instead, the liquid level is reduced by a full cell layer 
every time when sufficient volumetric shrinkage has been accumulated. This requires 
a fine mesh to reduce the resulting truncation error. 

Another attempt to include solidification shrinkage effect was made by Fryer et 
al [121]. Their approach consists of solving the coupled enthalpy and stress equa­
tions. Stresses are assumed to be linear functions of the strain, so that in two-

dimensions 

(
BEX BEY) 

f7xy = /'i, By + Bx 

where Ex, Ey are the displacements, /'i, = E/(1 - J.L;), 11(1 is the Poissons ratio, E the 
Youngs modulus and /1 the coefficient of linear thermal expansion. 

The enthalpy equation is solved in the whole domain while the stress equations are 
only solved in the solid phase. The boundary conditions for the latter are such that 
the solid metal surface, including the liquid/solid interface, moves along the direction 
of the interface normal and towards the solid phase due to thermal contraction of 

the latter. 

The authors use control volume approach with unstructured mesh in which the 
shape of the individual control volumes is initially rectangular, but then it changes 
to follow deformation of the material. The solution proceeds as follows: 

1. solve enthalpy equation; 

2. estimate 6.T in each control volume and solve the stress equations; 
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3. using the newly obtained displacements estimate the size of the air gap and 
the movement and deformation of each control volume; 

4. calculate porosity within the liquid material by estimating the stretching of 
the liquid control volumes due to the movement of the solid phase. The stress 
boundary conditions at the liquid/solid interface ensure that the solid phase 
pulls the liquid phase apart, forcing it to create voids. The void regions are 
evenly distributed in the liquid phase at each time step, therefore, gravity is 
not taken into account. 

For the metal/mould heat transfer calculation coincident nodes are used as described 
in Section 2.7. 

The assumption inherent in step 4 above may be unrealistic. Cavities inside a casting 
appear because of the volumetric changes during the phase transformation occurring 
at the liquid/solid interface, and not because of the linear contraction of the solid 
phase upon cooling. Fig. 2.7 shows the predicted cavity in a 2-D square casting. In 
fact, given only thermal solid contraction, there should not be an internal cavity. 
The cavity in Fig. 2.7 results from the way the boundary conditions are set at the 
liquid/solid interface. The actual movement of the interface due to the thermal 
contraction of the solid phase depends on its position relative to the geometrical 
centre of the casting and the mould walls but it may not always move towards the 
solid phase along the normal to the boundary. 

A development of another model for predicting macroshrinkage, which is based on 
full hydrodynamical equations, is described in Chapter 5 of this work. 

2.10 Numerical Stability Considerations 

There are several restrictions on time-step size must be observed to avoid numerical 
instabili ties . 

• for the explicit upwind differencing scheme, described in Section 2.3.1, the 
time step size has to satisfy the Courant-Friedrichs-Lewy (CFL) condition 

, (~Xi ~Yj ~Zk) 
~t < mm' 'k -- -- --'.J, " u" v'· W·· ',J,k ',J,k ',J,k 

(2.75) 

where u, v and w are velocity components. Physically this condition means 
that fluid must not flow across more than one computational cell per time 
step. 

62 



• if diffusion terms are approximated explicitly, then the time step is limited 
further: 

1 
f:lt < 

2.max o Ok[a O Ok. (..,.l.,..+..,.l.,..+ 1 )] ',], ',], ~xt ~y; ~z~ 

(2.76) 

where a = J-l/ P for the viscous terms in the momentum equation (Section 2.3.1) 
and a = k/ pC for the heat diffusion terms in the energy equation (Section 
2.6)6. 

The restriction physically means that no quantity should diffuse more than 
one cell in one time step . 

• free surfaces introduce another type of stability condition associated with the 
propagation of surface waves and the way the free surface cell pressure is 
determined in the calculation (Section 2.4). If a body force G is applied to 
the fluid in a direction normal to the free surface, there may be surface waves 
with speeds of order of y'G h, where h is the depth of fluid or length of the 
wave. The value of h is defined by the pressure interpolation procedure in the 
surface cell, given by Eq. (2.49), and is equal to the cell size in the direction 
normal to the free surface. 

The actual condition is that surface waves should not propagate more than 
one cell in one time step. For example, if z is the normal direction to the free 

surface, then 

(2.77) 

Similar limits must be imposed in the x and y directions for each cell containing 

a free surface. 

The range of the stable time step sizes is given by the condition, Eqs. (2.75}-(2.77), 
with the smallest right-hand side. 

These time step size stability limits result from using the von Neumann stability 

analysis of the linearised numerical analogue equations [27]. In this method the 
influence of boundaries is excluded and the solution behaviour is investigated by 
analysing the evolution of a single Fourier component of the numerical solution. 

6In fact, 

a',i,1: = 

is a more correct expression. As dH/dT = C + Ldf./dT, the time step restriction becomes less 
restrictive for partially solid cells and, therefore, the latent heat has a stabilising role in an explicit 
numerical algorithm. 
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The mathematical foundations for the analysis of convergence and stability of nu­
merical schemes are well-developed only for linear systems. The results from the 
linear theory are used as guidelines to nonlinear problems, the justification depend­
ing on numerical experiments. In practice, the stability limits given by right-hand 
sides of Eqs. (2.75)-(2.77) are decreased further by multiplying them by so called 

safety factors which usually do not exceed 0.5. 

2.11 Continuation Section 

The main interest of the present work is the development of a hydrodynamic model 
to simulate coupled fluid flow and shrinkage during solidification. Shrinkage defects 
are among the main causes of poor quality castings and a computer model capable 

of accurate predictions of theses defects. 

Most of the existing numerical shrinkage models ignore fluid flow, including residual 
circulation, thermal convection and shrinkage induced flow. Those models which do 
include fluid flow have not been used to produce a comprehensive analysis of the 
influence of the fluid flow on the shrinkage defect formation. 

The shrinkage model based on full fluid flow equations and which is described in 

Chapter 5 includes numerical models for: 

- fluid flow; 

- free surface; 

- heat conduction and metal/mould heat transfer; 

- latent heat release. 

The work is based on a commercially available numerical model of fluid and heat 

flow with free surface motion described in Chapter 3. The metal/mould interfacial 
heat transfer and solidification models are enhanced to improve the accuracy and 

include physical models as described in Chapter 4. 

An additional shrinkage model will be developed which is based only on heat flow 
equations thus ingnoring the fluid flow aspects of the solidification and shrinkage 
process. This model is used for comparisons of its simulation results with the results 
of the full shrinkage model. It will be shown that in some situations the results of 

the two models are close inducating that fluid flow may be not important in these 
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cases. 
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Figure 2.1. (a) the staggered mesh arrangement for the primitive 
variables; (b) the control volume for the continuity 
equation discretisation7 (c) the control volume for 
the x-component of the momentum equation discretisa­
tion in the upwind differencing method. 
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Figure 2.2. setting the pressure in surface cell (i, j): (a) using 
linear interpolation between Pi,j and Psi (b) assuming 

hydrostatic distribution between the free surface and 
the cell centre due to the body forces Gni h is negative 

if the cell centre is outside the fluid. 
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Figure 2.3. Examples of free surface shapes used in the advection of F. 

The donor-acceptor arrangement is shown in (a) where the 
dotted line indicates the left boundary of the total volume 
being advected. The dark shaded regions shown in (b-d) are 
the actual fluxed amounts of F. Cell notation for the van 
Leer method is given in (e). 
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Figure 2.4. Line and surface disctretisation techniques: (a) and (b) show 
the conventional finite difference technique transforming a 
line (dotted line) into a stepwise line (heavy solid line); 
in both cases the discretised line length is the same. (c) The 
discretisation of a circle using the conventional technique 
(light shaded area) and the FAVOR method (dashed line). (d) 
Variables introduced by the FAVOR method; in this case 
VFi.j=O.35, ARi-l,j=l.O, ARi,j=O.O, ATi,j-l=O.2 and ATi.j=O.5. 
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Chapter 3 

Fluid Flow Model 

This chapter contains a description of the parts of the fluid flow model employed in 
the proprietary CFD code FLOW-3D that are relevant to the present work [83]. 

3.1 Introduction 

The model is a three-dimensional extension of the SOLA and SOLA-VOF programs. 
Various input routines are contained in the code to aid users in setting up a mesh and 
in generating geometrically complicated boundary and initial conditions. Similarly, 
extensive graphics capabilities are provided to assist the user in understanding the 
results of calculations. All input variables, mesh, obstacles and graphical requests 
are specified by the user in the input file PREPIN.lNP, an example of which is shown 

in Fig. 3.1. 

Extensive tests have been performed on the isothermal fluid flow model. The tests 
were supported by experimental simulations using water. It was found that FLOW-
3D was capable of modelling successfully fast moving flows typical for many casting 

configurations [84,122]. 

3.2 Governing Equations 

The set of the hydrodynamical equations constituting the mathematical model for 
casting simulation consists of continuity Eq. (2.21) for an incompressible fluid, 
Navier-Stokes Eq. (2.22) for linear viscous fluid and the energy equation written in 
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terms of enthalpy to model heat flow and phase transformation, Eqs. (2.17) and 
(2.23). 

These equations will be solved with the following assumtions: 

• thermal convection is excluded from consideration to simplify tne analysis of 
the predicted shrinkage induced flow (Chapters 6 and 7), though there is a 
capability of modelling thermal convection in the code; 

• undercooling and nucleation effects are also neglected assuming that solidifi­
cation is solely controlled by the removal of the latent heat. In other words, 
dG = 0 (Eq. (2.19)) during phase transformation and liquid at the solidifi­
cation front is always at the ideal melting point. This assumption simplifies 
greatly the mathematical modelling of solidification and is acceptable for sim­
ulations of macro-shrinkage effects in both pure metals and alloys. 

• Eq. (2.20) for the solute evolution in a melt is not used in the present work. 
Instead, simple models like lever rule or Scheil equation (Eqs. (2.64), (2.65)) 
will be used to determine fraction of solid function. This assumption is par­
tially justified since the choice of latent heat release model has little effect on 
the metal temperature and freezing time for alloys with narrow freezing range, 
e.g. low carbon steels [105]. 

3.2.1 Boundary Conditions 

Eqs. (2.17), (2.21)-(2.23) are solved with boundary conditions given by Eqs. (2.24) 
and (2.25). In many cases of fluid flow during casting surface tension and viscous 
forces in Eq. (2.26) can be neglected. This is due to high Weber numbers during 
the filling stage (the ratio of the dynamic pressure to the surface tension force) 

pRv2 

We = --~1 
(J 

where R is the characteristic free surface curvature radius, and practically zero free 
surface curvature at later stages of solidification, i. e. high Bond numbers 

Bo = gpR ~ 1 
(J 

which is the ratio of the gravitational force to the surface tension force l . 

1 In aluninium based alloys (T may be large because of the formation of an oxide film on the 
metal surface [2]. 
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Viscous stresses at the free surface are small compared to the fluid inertia, z. e. 
Reynolds number is large 

Lvp 
Re = --» 1, 

J1 
and to the gravitational force, i.e. Galileo number is large 

gp2L 
Ga = --» 1 

J12 

where L is the characteristic length scale of the free surface. 

After neglecting the viscous and surface tension forces Eq. (2.26) for the fluid 
pressure at the free surface reduces to 

p = pg 

A more rigorous statement than Eq. (2.27) is used to express the tangential viscous 

stresses at the free surface: 
aVn = 0 
az 

aVr = 0 
an 

where a / az is a gradient along an arbitrary direction 1 in the plane tangent to the free 

surface. This assumption substantially simplifies the setting of the viscous boundary 
conditions in the numerical model. 

Further simplification of the mathematical model is made by assuming that the free 
surface is an adiabatic boundary, i.e. neglecting radiation and convective heat losses 

to the air, 

qJs = 0 

This may be a valid assumption for the following reasons: 

a) the wall heat transfer coefficient is usually much larger than that of the free 

surface2
; 

b) the total area of the free surface is usually much smaller than that of the metal 

mould interface; 

c) often free surfaces only exist during the filling stage; if there is a free surface after 
filling but the air is confined by the mould walls then the air is heated up quickly, 
reducing the subsequent heat transfer by radiation and convection. 

2Radiation may be important for high temperature metals and alloys, such as steels. Mould 
erosion has even been observed due to the radiation. 

68 



Eq. (2.28) is used for the heat flux per unit area at the metal/mould interface 

q = h (Tmetal - Tmould) 

In many practical cases a constant value for h is a good approximation. 

3.3 Numerical Model 

The following computational methods are used to solve numerically Eqs. (3.1)-(3.3) 
in three dimensions: 

1. Finite volume approach with structured staggered meshes consisting of rectan­
gular non-uniform cells; the conservation equations are easily discretised using 
this method and the physical conservation laws are maintained in their nu­
merical analogues. The physical transparency of the method and the resulting 
discretised equations simplifies the task of understanding and developing the 
model. FAVOR technique is used to represent cells partially blocked by the 
mould material [123]. 

2. all temporal derivatives are approximated by the first order accurate backward 
differencing; all spatial derivatives, except for the pressure gradients, are esti­
mated at the 'old' time level, i.e. explicitly, introducing time step size limits 
to maintain stability of the numerical solution. 

3. momentum advection terms are approximated using the upwind (donor cell) 
differencing method which, being of first order formal accuracy3, possesses 
transportive and conservative properties though introduces numerical diffu-
sIon; 

4. viscous and thermal diffusion terms are approximated by a central differencing, 
which first-order accurate in non-uniform grids; 

5. as pressure gradients are estimated implicitly, discretised momentum and con­
tinuity Eqs. are solved simultaneously using Gauss-Seidel successive-over­
relaxation (SOR) method. Though perhaps not the fastest, SOR iteration 
method offers great flexibility and sufficient efficiency in cases of complicated 
geometry and fluid configuration. The method also proves to be adequate for 
the numerical implementation of the shrinkage model, described in Chapter 5; 

3Higher-order numerical discretisation methods for the advection terms in the momentum equa­
tions, e.g. based on central differencing or on the van Leer method [87], are also available in the 
code [83] 
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6. free surface is represented by the VOF method, which proved to be one of the 
most accurate technique to describe transient fluid interfaces; donor-acceptor 
advection scheme was chosen to solve the conservation equation for the fluid 
fraction function, Eq. (2.46), so that the sharpness of the free surface is 
preserved; all other scalar quantities, such as enthalpy, that are ~iscontinuous 
across free surface are advected in the same way. 

7. the enthalpy solidification model is completed either by lever rule, Eq. (2.64), 
or Scheil equation, Eq. (2.65). For pure materials a solidifying cell is kept at 
the melting point until it is fully solid; 

8. metal/mould interfacial heat flux is estimated using a constant value of the 
heat transfer coefficient and using collapsed (zero volume) control volumes on 
both sides of the interface to represent the interfacial temperatures (Section 
4.1). 

3.3.1 General Outline of the Solution Method 

Eqs. (2.21)-{2.23) are solved numerically using finite-volume approximations. The 
flow region is subdivided into a mesh of fixed rectangular cells of width D.xi, depth 

D.Yj and height D.zk. 

Fluid velocities and pressures are located at staggered mesh locations as shown in 

Fig. 3.2: 

• u-velocities and fractional areas Ax at the centres of cell faces normal to the 
x direction; 

• v-velocities and fractional area Ay at the centres of cell faces normal to the Y 

direction; 

• w- velocities and fractional areas Az at the centres of cell faces normal to the 
Z direction; 

• Scalar quantities, such as pressure, fluid fraction, fractional volume, density, 
enthalpy and temperature, are at cell centres. 

To construct discrete numerical approximations to the governing equations, control 
volumes are defined surrounding each dependent variable location. For each control 
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volume, surface fluxes, surface stresses and body forces can be computed in terms 
of surrounding variable values. 

Most terms in the equations are evaluated using the current time-level values of the 
local variables. This produces a simple and efficient explicit computational scheme, 
though it requires a restrictive time step size to maintain computatTonally stable 
and accurate solution. 

Pressures and velocities are coupled implicitly by using time-advanced pressures in 
the momentum equations and time-advanced velocities in the continuity equation 
and solved iteratively. 

The procedure for advancing a solution through one time increment, l:l.t, consists of 
three steps: 

1. Explicit approximations of the momentum equations by upwind differencing, 
described in Section 2.3.1, are used to compute the first guess for new time­
level velocities using the initial conditions or previous time-level values for all 
velocities, pressure and other forces. 

2. To satisfy the continuity equation the pressures are iteratively adjusted by 
Gauss-Seidel SOR or an optional ADI method, described in Section 2.3.2, in 
each cell; the velocity changes induced by each pressure change are added to 
the velocities computed in step (1). 

3. Finally, when there is a free surface, it must be updated using Eq. (3.5) and 
the donor-acceptor advection method, described in Section 2.5, to give new 
fluid configuration. Energy values must be updated to reflect advective and 

diffusive processes. 

Repetition of these steps will advance a solution through any desired time interval. 
At each step, of course, appropriate boundary conditions must be imposed at all 
mesh, obstacle and free-boundary surfaces. 

3.3.2 Equation Discretisation 

Curved obstacles, wall boundaries, or other geometric features are embedded in the 
mesh by defining the fractional face areas and fractional volumes of the cells that are 
open to flow. The fractional areas and volumes are incorporated into flow equations 
as shown below in Eqs. (3.1)-(3.4). 
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Flow equations can now be written in the following form using Cartesian coordinates: 

the continuity rquation 

(3.1) 

momentum equations (with constant viscosity for simplicity) 

ou 1 [OU ou ou 1 1 op 
ot + V

F 
u Ax Ox + v Ay oy + w Az oz = Po ox + Gx - Dx 

{ 0 [ ou 1 0 [ ( ov Ou) 1 0 [ ( ou ow ) 1 } + /I 2 ox Ax ox + oy All ox + oy + OZ Az oz + ox (3.2) 

(3.3) 

(3.4) 

where (Gx, Gy , Gz) denotes body forces and D = (Dx, Dy, Dz) is the drag force 
employed to model flow in the porous media and is written in a general form 

D=K·v, K~O (3.5) 

Addition of a drag force proportional to the first power of velocity has many useful 
applications. It allows the drag force to be approximated in the numerical equations 
implicitly so that no additional restriction on the time step size is imposed. 

The enthalpy equation is written as 

(3.6) 

and, finally, the equation for the volume of fluid fraction function F 

of 0 0 0 
VF""at" + ox(uAxF) + 8y(vAy F) + oz(wAzF) = 0 (3.7) 
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For a one-fluid flow F represents the open volume fraction occupied by the fluid. 
For a cell with dimensions dx, dy, dz and total volume 

Vo = dxdydz 

the open volume is 

and the cell fluid volume is 

Vfluid = F· Vapen = F· VF · dx dy dz 

Thus, fluid of constant density exists where F = 1, and void regions correspond to 
locations where F = O. "Voids" are regions without fluid mass that have a uniform 
pressure assigned to them. Physically, they represent regions filled with a vapor of 
gas whose density is insignificant with respect to the fluid density. 

When Eqs. (3.1 )-(3. 7) are applied to a partially blocked rectangular control volume 
cell, then VF , Ax, Ay and Az represent the fractional open-to-flow volume and face 
areas of the cell, respectively. New terms have to be introduced on the right-hand 
side of momentum Eqs. (3.2)-(3.4), W8 x , W8 y , W8 z , associated with the wall shear 
stress. If these terms are omitted then there is no wall shear stress because the 
remaining terms contain the fractional flow areas (Ax, Ay , Az) which vanish at walls. 

The energy equation for the solid obstacle (mould) contain the complements of VF 

and area fractions: 

(3.8) 

where subscript m indicates the mould parameters. 

The use of the FAVOR method in numerical modelling influences the time step size 
stability limit described in Section 2.10. For example, the CFL criterion (Eq. (2.75)) 
transfers into 

(3.9) 

It can be seen from Eq. (3.14) that cells with small fractional volume and large 
face areas open to the flow can introduce very small time step size limits. Normally, 
however, the small VF/A ratio is balanced by small velocities at such faces. 
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Fractional volume and areas in each cell are estimated at the preprocessing stage 
and then used during the calculation. Within each cell containing metal/mould in­
terface the mould surface is assumed to be flat. FAVOR method allows the program 
to calculate viscous shear stresses and metal/mould heat transfer more accurately 
than if a stepwise approach to geometry description was used, since the fluid flow 
direction at the walls, the wall location and area in each cell are e;timated with 
better accuracy. 

A generic form for the finite-difference approximation of momentum Eq. (3.2), for 

example, is 

n+l n+l 
n. + ~t . ( _ Pi+l,j,k - Pi,j,k 

U j 1 k n+l A 
" pL..l.X· 1 1+ 2 

+ Gx - FUX - FUY - FUZ + VISX - W8 x ) (3.10) 

The advective, viscous and body force terms have an obvious meaning, e.g. FU X 
means the advective flux of U in the x direction; V I SX is the x-component viscous 
force; Gx includes gravitational and other body forces and W8 x is the viscous wall 
force in the x direction. 

The advective and viscous terms are all evaluated using old-time level (n) values 
for velocities (wall shear stresses are implicitly evaluated as described below in this 
Section). Old-time pressure values pn are used to get a first guess for the new 

velocities. 

Specific approximations chosen for the various acceleration terms in Eq. (3.2) are 
relatively unimportant and have been described in Section 2.3. In FLOW-3D a 
modified donor-cell approximation has been developed that retains its accuracy in a 
variable mesh and reduces to a conservative difference expression when the mesh is 
uniform [51,123]. This method approximates advective fluxes in the nonconservative 
form U· Vu. Then the general form of this approximation is 

where 

FUX 

+ 

UR = 0.5· (Ui+1,j,k A FR,i+1,j,k + Ui,j,kAFR,i,j,k) 

UL = 0.5· (Ui,j,kAFR,i,j,k + Ui-l,j,kAFR,i-l,j,k) 
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and 

All other acceleration" terms in the momentum equations are approximated by stan­
dard central differences. The difference techniques for viscous diffusion..processes are 

fairly straightforward. First order differences are applied to velocity components to 
obtain local shear rates, which are then multiplied by averaged cell-faced area frac­
tions. The results are then differenced to approximate the net viscous stress. All 
quantities are evaluated explicitly in these calculations. 

The approach for the wall stress in the w-velocity equation, for example, is as follows. 
Wall shears influencing w can arise from wall areas located on x and y cell faces 
surrounding w. For anyone of these faces, if the fractional area A is less than unity, 
the remaining area fraction (1 - A) is considered to be a wall on which a stress is 

generated. On an x face to the right of w, for instance, the force due to wall shear, 

_ ~ ( aw) ~ _ 211(1- Ax)(w - wo) 
wSz - ax 11 ax Az~x2 

where Az and ~x are evaluated in the cell in which w is located. Ax is an average 
for the cells between which w is located. The velocity Wo is zero at any interior 

obstacle boundary, but at a mesh boundary it is equal to the z-direction tangential 
velocity of the boundary. 

Similar stresses are evaluated at each of the four surrounding cell walls and their 
sum is taken as the total stress. Wall stresses are included in an implicit way to 
avoid possible numerical instabilities arising in cells with large wall areas and small 

flow volumes. Although this makes the momentum equation for w implicit, it is 
trivial to solve since it is linear in wand is not coupled to equations for other cells. 

3.3.3 Pressure Solution Algorithm: Incompressible SOR 
Method 

Momentum equations can be rewritten in the following form 

U
n+1 _ -n + At . _ Pi+1,j,k - Pi,j,k Kn n+l 

( 

n+l n+l ) 

" "k - u" "k .u. n+ 1 - "1" k U" "k ',3, ',3, p~x" 1 '+2')' ',), 

vn+1 
i,j,k 

'+2 

-n + At (_ p~nl,k - pi,t.l _ T/n vn+1) 
Vi,)",k .u. n+l . .n" J 1 k "" k P~yj+t "+2' ',3, 
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(3.14) 

where, e.g. 
2 J(!J- 'k . J(!J- 1 'k 

[{:" l' = I,], 1+ ,], 

I+ 2 ,],k J(!J-, + J(!J- , 
I,],k I+l,],k 

and u, v and w include all explicitly evaluated terms and the wall shear stresses. 

For incompressible flows the continuity Eq. (3.1) can be interpreted as an elliptic 
condition on the cell pressures and velocities. Velocities computed from Eqs. (3.12)­
(3.14) must satisfy the following discretised approximation of continuity Eq. (3.1) 

n+l A ,. - n+! A " vn+ l A vn+ l A Ui,j,k FR,I,],k Ui-l,j,k FR,I-l,],k + i,j,k FB,i,j,k - i,j-l,k FB,i,j-l,k 

~Xi ~Yj 
w~tl A ,. - W!ltl A ,. + I,],k FT,I,],k I,],k-l FT,I,],k-l = 0 

~Zk 
(3.15) 

Eqs. (3.12)-(3.15) must be solved simultaneously for all (n + 1 )-level parameters, 
i.e. velocities and pressures. This is done using a successive over-relaxation method. 
The computational mesh is swept cell by cell starting with the first non-boundary 
cell. Calculations are only performed in cells that contain fluid and have no empty 
neighbours. The pressure change needed to make the velocities in cell (i,j, k) satisfy 

Eq. (3.15) is 
L, 'k 

~Pi,j,k = - 8L '/8 (3.16) 
i,j,k Pi,j,k 

where L is the left-hand side of Eq. (3.15) and 

8L"k 1,1, 

8Pi,j,k 

+ 

+ 

(see also Eqs. (2.39)-(2.45)). Eq. (3.16) is simply a Newton type of relaxation 
process that will produce the value of p needed to make L = O. Then for u-velocities, 

for example, 

~p. 'k ~tn+1 
un+! ----+ u~tl + I,J, 

i,j,k I,],k Po ~X '+1 'k 1 + ~tn+! K':'+l 'k 
I 2,J, I 2,J, 

(3.18) 
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Ui-l,j,k ~ Ui-l,j,k -
Po .6.X'_l 'k 1 + .6.tn +1 I<~ 1 ' 

I 2 ,), .- 2 ,),k 

.6.p' 'k I,), 
(3.19) 

In each cell the velocity values used in evaluating L and in Eqs. (3.18), (3.19) are 
most current values available during the iteration process. To start the iteration 
process, the new estimated velocities from Eqs. (3.2)-{3.14) are used with the pres­
sures remaining from the previous time step. Velocities located at zero area faces 
are not adjusted. 

In cells containing a free surface, that is, a cell containing fluid, but with one or 
more empty neighbours, a different procedure is used (Section 2.4). The boundary 
condition wanted in these cells is that the pressure is a specified value, p" at the 
surface. The surface pressure is set equal to the neighbouring void region pressure, 
Pg , 

(3.20) 

where n is the index of the adjacent void region. This pressure is then imposed on 
the solution by extrapolating it to the pressure, Pi,j,k, at the centre of the surface cell 
assuming a hydrostatic distribution within the cell (Eq. (2.49)). The hydrostatic 
variation depends on the net body force in the direction normal to the surface. This 
surface pressure is not changed during the pressure iteration, but treated as a fixed 
boundary value4

. 

A complete iteration consists of adjusting pressures and velocities in all full cells 
according to Eqs. (3.16), (3.18) and (3.19). Convergence of the iteration is achieved 
when all cells have Li,i,k values whose magnitudes are below some small number, 
t . VF,i,i,k' Typically, t is of order 10-3 

8-
1

, although it can vary with the specific 
problem being solved. 

Convergence of the iteration is accelerated by multiplying /:l.p in Eq. (3.16) by an 
over-relaxation factor, w. A value of w equal to 1.7 or 1.8 is often optimum. 

3.3.4 Fluid Configuration 

The donor-acceptor advection method (Section 2.5) with the newly obtained veloc­
ities is employed to find the new time level fluid configuration by solving Eq. (3.7). 
Other scalar quantities are advected using the same method as described in Section 
2.6, i.e. if 8F is the quantity of fluid advected in x-direction from cell (i, j, k) to 

4The fact that surface cell pressures do not take part in the iteration process effectively means 
that surface pressure is evaluated explicitly. This may lead to a numerical instability if a void 
pressure varies with the void volume as p V'Y = const, where 'Y is a constant parameter [85] 
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cell (i + 1,j, k) over the time tlt per unit cross-sectional area, then the amount of 
enthalpy advected through the same cell face is 

8(pH) = (pH)i,j,k· 8F . AFR,i,j,k i':J.Yj i':J.zk (3.21 ) 

The new F values occasionally have values slightly less than zero or slightly greater 
than unity. Therefore, after the scalar advection calculations have been completed, 
a pass is made through the mesh to reset values of F less than zero back to zero 
and values of F greater than one back to one. Accumulated changes in fluid volume 
introduced by these adjustments during a calculation are recorded and printed out. 
The total fluid volume is also printed. Volume errors after hundreds of cycles are 
usually a fraction of a percent of the total fluid volume. 

For application of free surface boundary conditions and advection of the F function, 
it is necessary to assign an approximate normal direction to the surface. The free 
surface in each surface cell is approximated by a plane normal to one of the coordi­
nate directions so that the normal points in the direction of an empty neighbour cell. 
If the surface cell has more than one empty neighbour, then the direction selected 
is the one having the largest F value in the opposite neighbour cell. 

Once the inward normal direction has been determined, the surface location is de­
fined by a flat surface normal to this coordinate direction that extends to the proper 

height. 

3.3.5 Heat Conduction and Heat Transfer 

A two-domain method is also used in the present work, but energy Eqs. for the 

metal and mould are coupled at the same time level and solved simultaneously. The 
latter is simplified by the use of a fully explicit formulation of the numerical analogue 
equations. For a control volume P (which in this case conincides with a mesh cell) 
the heat flux bq per unit area at each face is calculated as 

C _ k Tp - Tad] 
oq - a 

~x 

where Tadj is the temperature of the adjacent control volume across the face, ka is 
the harmonic average of thermal conductivities of the two cells 

(3.22) 
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and L\x is the distance between the two cell centres. The use of the harmonic 
average, rather than the arithmetic one, is generally a more accurate procedure, 
more obvious so in a case when the values of kp and kadj differ substantially. In the 
present work thermal conductivity varies between: solid and liquid phases in metal, 
and different materials in the mould. 

If a cell face includes a metal/mould interface than the heat flux is estimated by 
using Eq. (2.56). The same flux hq (times the face area) is used for both cells 
sharing the face, thus, ensuring the conservation property. The total heat flux into 
the cell is equal to the sum of all the conductive and interfacial fluxes multiplied by 
corresponding areas. 

Thermal conduction and heat transfer terms appear in both the fluid and obstacle 
energy Eqs. (3.6) and (3.8). These terms are treated in analogus ways. The nu­
merical analogue of Eq. (3.6), with forward time differencing and first order spatial 

approximations, is 

Fn+1 H n+1 Fn+1 Hn Vi i,j,k i,j,k - i,j,k i,j,k _ xn 
F,i,j,k po L\tn+1 - i,j,k 

+ L A ~ k (Ti~j,k - T:djacent) + hi,j,k (W A)i,j,k (Ti~j,k - TWi7j,k) (3.23) 
faces 

where X represents advection terms, T and TW are cell-centred fluid and obstacle 
temperatures respectively, h heat transfer coefficient, W A an interfacial area, A a cell 
face area, k an averaged heat transfer coefficient (Eq. (3.23)) and L\ an appropriate 
spatial increment. 

The same procedure is employed when solving the solid energy Eq. (3.8) wall tem­

peratures. 
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2-D cylinder: Shrinkage Modelling. 
$xput 
remark='computational 

icolor=l, autot=2, 
delt=l, itb=l, 
ifenrg=2, ihtc=2, 
cyl=l.O, ishr=l, 

parameters' , 
epsi=O.OOOl, 
pltdt=lOO, 
ipdis=l, 

remark='physical properties', 
gz=-980.0, pcav=-lOOOOO.O, 
rhof=2.54, rhofs=2.71, 

remark='thermal properties', 

twfin=llOO.O, 
prtdt=lOOOO.O, 

tll=933, tsl=933, clhtl=3.97+09, 
cvl=0.896+07, cvsl=1.17e+07, 
thcl=1.Oe+07, thcsl=2.2Se+07, 

remark='boundary conditions', 

-

wl=l, wr=2, wf=l, wbk=l, wb=2, wt=2, 
tbcd=293.0, tbct(1,2)=293.0, tbct(l,S)=293.0, 

Send 
tbct(l,6)=293 .0, 

$mesh 
nxcelt=12, 

px(l)=O.O, nxcell(1)=7, 
px(2)=4.9, sizex(2)=O.7, 
px(3)=12.0, 

nycelt=l, 
py(l)=O.O, 
py(2)=l.O, 

nzcelt=2S, 
pz(l)=6.0, 

Send 
Sobs 

pz(2)=13.6, sizez(2)=O.7, nzcell(2)=20, 
pz(3)=30.0, 

nobs=2, 
iofo(l,l)=l, 

Send 
$f! 

cc(l)=-l.O, rah(1)=4.9, zh(1)=13.6, 
iofo(1,2)=2, 

cc(2)=-1.O, ral(2)=4.9, 
kobs(1)=60000, kobs(2)=60000, 
rcobs(1)=1.7e+07, rcobs(2)=1.7e+07, 
hobsl(l)=l.Se+06, hobs1(2)=l.Se+06, 

flht=28.6, 
Send 
$bf 
Send 
$ temp 

tempi=1023, 
Send 
$motn 
Send 
$grafic 

ncplts=3, 
yc1(1)=O.S, yc2(1)=O.5, kontyp(1)=6, 
ycl(2)=O.5, yc2(2)=O.5, kontyp(2)=5, 
ycl(3)=O.S, yc2(3)=O.S, kontyp(3)=S, ictyp(3)=1, 
nvplts=l, 
yvl(1)=0.5, yv2(1)=O.S, 

xloc(l)=O.OOl, yloc(l)=O.OOl, zloc(1)=21.8, 
Send 
$parts 
Send 

Probl em header 

Num erical and 

physi cal parameters 

properties, 

fication of the 

rical model 

and 

speci 

nume 

requir ed for the 

simul ation. 

Mesh specifications 

Obsta cle (mould) 

etryand geom 

physi cal properties. 

Initial fluid 

guration oonfi 

Baffle specifications 

Initial temperature 

bution distri 

Non-i nertial forces 

Graph ical requests 

Marke r particales 

ifications C!n"l' 

Figure 3.1. An example of FLOW-3D input file PREPIN. INP 
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Figure 3.2. Location of variables in a FLOW-3D mesh cell 



Chapter 4 

Heat Transfer and Solidification 

This chapter contains modifications of FLOW-3D introduced to improve the accu­
racy of its metal/mould heat transfer and solidification models. 

4.1 Heat Transfer Algorithm 

Care must be taken to resolve areas where the flow variables have steep gradients. 
Discontinuity surfaces and internal boundaries represent such areas. VOF method, 
for example, allows to resolve free surface boundary inside a computational mesh 
cell and set the boundary conditions in the cell according to the amount of fluid in 
it and the surface orientation. Another example is the use of the FAVOR method to 
describe the obstacle surfaces inside the mesh cells. The FAVOR method requires 
much less cells to represent a sphere, for example, than if a stepwise approach was 

employed. 

Further use of the FAVOR method has been made to improve the accuracy of the 
metal/mould heat transfer calculations, taking into account that cell-centred nodes 
do not, in general, lie on the interface, Assume that temperature profile between 
the metal/mould interface and the nearby cell node is linear on both sides of the 
interface. In this case if dXl is the distance from a fluid interfacial cell node to the 
interface and dX2 is the distance from a corresponding mould interfacial cell node 
to the interface, then the effective heat transfer coefficient for those nodes is [92] 

h _ 1 
eJ J - !kl. + ! + ~ 

kl h k2 

where kl and k2 are the metal and mould thermal conductivities respectively and 
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1/ h is the interfacial thermal resistance. Then the heat flux across the interface can 
be calculated using the metal and mould cell temperatures Tl and T2 , located at the 
nodes, as 

q = heJdTl - T2 ) 

This procedure gives a higher-order accurate approximation to the interfacial bound­
ary conditions than if h was used to estimated the flux. As will be shown below in 
this Section, this approach is equivalent to introducing two additional, zero-volume 
cells on each side of the interface. The idea has been first introduced and successfully 
applied in conjunction with finite element method [90,5]. 

Consider two neighbouring cells, one of which is completely open to the flow (VF = 1) 
and the other completely blocked (VF = 0), so that their common face represent the 
metal/mould interface. According to the control volume approach, Tl is the average 
fluid temperature in cell 1 and T2 is the average mould temperature in cell 2 (Fig. 
4.1a). Both temperatures are located at the cell centres. The x-axis is chosen to be 
normal to the interface positioned at x = o. 

In the basic method the flux per unit area between the two cells is calculated as 

( 4.1) 

The actual interfacial boundary condition, given by Eq. (2.56), involves metal and 
mould surface temperatures, T61 and Ta2 respectively 

(4.2) 

with 1/ h representing the interface thermal resistance. For the case shown in Fig. 
4.1a, Tal is located at the right face centre of cellI and Ta2 is located at the left face 
centre of cell 2. To simplify the analysis, suppose that 

(4.3) 

To estimate the accuracy of Eq. (4.1), we will expand T2 in Taylor series about 

x = 0: 
1 aT 1 a2T 2 3 

T2 = Ta2 + 2 a Dox + -4-a 2 Dox + O(Dox ) 
x Ix=O x Ix=O 

where Dox is the size of cell 2. Substituting T2 from Eq. (4.4) into Eq. 
taking into account Eqs. (4.2) and (4.3) yields 

( T 1 aT 2 ) h· Tsl - 82 - -- Dox + O(Dox ) 
2 ax Ix=O 

1 aT 2 
Qo - h -- Dox + O(Dox ) 

2 ax Ix=O 

( 
1 ~x) Qo 1 + "2h T + O(Dox2) 
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where k is the mould conductivity and 

aT 
Qo = -k-ax Ix=o 

(4.6) 

It is clear from Eq. (4.5) that boundary condition approximation given by Eq. (4.1) 

is of the first order formal accuracy with respect to the cell size ~x. Fo.! low thermal 
conductivity mould materials, such as sands, the first order term on the right-hand 
side of Eq. (4.5) may appear to be larger than the zeroth order term1. The heat 
flux Q1 is overestimated compared to Qo because the zeroth and first order terms 
have the same sign. 

The basic, first order heat transfer method represents metal/mould interface by a 
row of cells with a non-zero thickness. Therefore, the interface has a thermal capacity 
proportional to the layer thickness and the mould specific heat. Since interfacial cell 
sizes and mould geometry vary across the computational domain, the value of Ql 

becomes strongly mesh dependent. 

The idea of the modified algorithm is to represent the interface by a zero-thickness 
surface with zero thermal capacity. To realise this idea, a new control volume of 
thickness 8x (cell 2') is introduced inside cell 2, along the interface, as shown in Fig. 
4.1b, and temperature T21 is assigned to the new cell. The heat balance between the 
interface, cell 2' and cell 2 is 

c C dT2, oxp --
dt 

T2 - T21 
k 1 ~ - h(T21 - Tal) 

2" x 
_ k T2 - T21 

l~X 
2 

(4.7) 

( 4.8) 

where thermal conduction heat transfer occurs between cells 2 and 2'. If the thick­
ness of cell 2' is put to zero, 8x -+ 0, then T2' will be located exactly at the interface 
and Eqs. (4.7), (4.8) can be rewritten as 

o 

A C dT2 
uxp -

dt 

T2 - T2' 
k 1 ~ - h(T21 - Tad 

'2 X 

_ k T2 - T21 
l~x 
2 

(4.9) 

(4.10) 

The interfacial temperature T2' can be expressed as a function of Tal and T2 using 

Eq. (4.9) 

(4.11) 

IFor silica sand the typical values are h = 1.5 X 103 Watt m-2 K-l, k = 0.6 Watt m- 1 1(-1 
and ~x = 5 mm, and the first order term on the right-hand side of Eq. (4.5) is over six times 
larger than the zeroth order term. 

82 



and Eq. (4.10) transforms into 

where 

A C dT2 
uxp -

dt 
( 4.12) 

h 1 ~ 
h 2 uX ( ) 

eff = k 4.13 
h + 1A 

2 ux 

IS the effective heat transfer coefficient for the cell-centred temperature T2 • The 
expression for he!! takes into account the resistance of the interface and of the 
mould material lying between the interface and the location of T2 . 

It follows from Eqs. (4.4), (4.6), (4.12) and (4.13) that 

he!! . (Tal - T2 ) 

( 
1 aT 1 a2T 2 3 ) 

he!!' Tsl - Ts2 - -- ~x - --2 ~x - O(~x ) 
2 ax Ix=o 4 ax Ix=o 

1 a2
T A 2 O( A 3) 2 Qo - - hef!· ~ ux + ux = Qo + O(~x ) 

4 ux Ix=o 
(4.14 ) 

Eq. (4.14) shows that Q2 is a second order accurate approximation to Qo. Besides, 
the second order term is proportional to ~:r which is normally much smaller than 

the first order derivative ~ in Eq. (4.5). 

Furthermore, for the error function solution for a one-dimensional heat flow into a 

semi-infinite media, ~:r Ix=O = 0 and the accuracy of Q2 increases to a third order. 
In the example above this analytical solution exists if Tal = const and h --+ 00 or 

The modified method is more accurate because it resolves the temperature profile 
in the interfacial cell by a linear function, instead of the uniform temperature used 

in the basic method. The main assumptions in the modified method are: 

• the interface has no heat capacity, i.e. the heat fluxes on both sides of the 

interface are equal; 

• the temperature profile between the interface and the centre of the cell is linear 
as a consequence of the first order approximation of the heat conduction terms. 
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The analysis of this Section suggests that the gain in accuracy of the modified heat 
transfer method over the basic one is larger for larger values of t!:1xhj k. 

As a simple test for the modification, a problem of transient one-dimensional heat 
flux into a semi-infinite sand mould has been chosen. The boundary of the sand is 
at x = 0 and the boundary condition is 

aT 
h· [To - T(O,t)] = -k-a x Ix=O 

( 4.15) 

where hand k are constant parameters and To is a constant ambient temperature. 
Initially the sand is at a uniform temperature T j • The analytical solution, T(x, t) is 
given by [22] 

T~~~;; T; = 1- er!(X) - [exp C: + h;~t) l· [1 - er! (X + h~) 1 (4.16) 

with X = 2./at and ex = p~. 

For the numerical simulation the length of the sand is 200 mm, which is a good 
approximation of a semi-infinity during the first hour of simulation for the mould 
properties listed in Table 1. 

First, a coarse uniform mesh is used consisting of N = 10 cells with !:1x = 20 mm, 
as shown in Fig. 4.2a. The mesh is chosen in such a way that the left face of 
the first cell in sand coincides with the metal/mould interface. The temperature at 
the centre of this cell, that is at x = 10 mm, is recorded during the first hour of 
simulation and the results of the first order and modified methods are compared to 
the analytical solution in Fig. 4.3a. Fig. 4.3b shows the predicted interfacial heat 
fluxes, Ql and Q2, normalised by the analytical solution and Fig. 4.3c shows the 
total predicted energy fluxed through the interface, that is fci Ql dt and fci Q2 dt, also 
normalised by the analytical solution. 

It is clear from Fig. 4.3 that the modified heat transfer algorithm describes more 
accurately both temperature and energy evolution in the mould. The total energy 
flux, predicted by the modified method, is within 20% of the analytical solution 
soon after 500 s, while the basic procedure gives an error of more than 30% even at 

t=3600 s. 

The second computer simulation is carried out with a non-uniform mesh with N=lO 
cells and the interfacial cell size !:1x = 2 mm, the rest of the cell sizes gradually 
increasing towards the right domain boundary as shown in Fig. 4.2h. Temperatures 
at two positions are recorded: at x = 10 mm, as before, and at x = 1 mm which is 
at the centre of the interfacial cell. 
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The same time step size, !::1t = 5 s, is used throughout the simulations, which is 
sufficiently small to ensure numerical stability for the two meshes. 

Fig. 4.4a shows the comparisons of the temperatures histories given by the two 
algorithms and the analytical solution and Figs. 4.4b, c show the comparisons of the 
interfacial heat flux and total fluxed energy respectively. 

The use of the non-uniform mesh improves the accuracy dramatically. As expected, 
the modified method shows less mesh dependence. In a general case, this would 
make the heat extraction along the metal/mould interface more uniform. 

In both Figs. 4.3c and 4.4c lines representing the total fluxed energy predicted by 
each of the two methods lie on opposite sides of the exact solution: the first order 
algorithm overestimates the flux and the modified one underestimates it. 

If the assumption of Eq. (4.3) is dropped then the same treatment is applied to cell 
1 in Fig. 4.1b to introduce the metal surface temperature Tt'. The result is (see also 

Eqs. (2.61), (2.62)) 
( 4.17) 

where 
! h.Ja....!L 

h 4 ~Xl ~X2 ( ) 
eff = Ih...h- + l...h...a.. + Ih..a.. 4.18 

2 ~Xl 4 ~Xl ~X2 2 ~X2 

and indexes 1 and 2 refer to cells 1 and 2 respectively and 1/ hef f is the effective 
thermal resistance between locations of temperatures Tl and T2 , consisting of the 
interface resistance 1/ h and resistances of materials on both sides of the interface, 

!::1xd2kl and !::1x2/2k2. 

Consider now a situation where the metal mould interface is inside a cell, i.e. the 

interfacial cell is partially blocked. Let VF,l be the fractional open volume in it 
and To and Tl the cell-centred metal and mould temperatures respectively. Suppose 
that the interface is normal to the x-axis and cell 2 is the next fully blocked cell 

neighbour along the axis, with temperature T2 (Fig. 4.1c). 

Assuming first that To represents the metal surface temperature, the energy balance 

between the two cells is 

( 4.19) 

( 4.20) 
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In the basic heat transfer algorithm 

is the distance between centres of cells 1 and 2 irrespective of the value of VF,I' 
Therefore, only the thermal resistance between these two points, r = Sx/ k, is taken 
into account in Eqs. (4.19), (4.20). The resistance between the interface and the 
centre of cell 2, estimated by assuming linear temperature distribution between the 
nodes, is 

(4.21 ) 

Compared to r a , the basic method overestimates the resistance if VF,1 > 0.5, and 
underestimates if VF,l < 0.5. 

In the modified method a surface mould temperature, TIl, is introduced at the 
interface in a similar way as in the case of VF = O. Then Eqs. (4.19), (4.20) are 
transformed into 

o - ( 4.22) 

( 4.23) 

( 4.24) 

Eq. (4.22) constitutes the heat flux balance at the interface and 

A _ (1 - VF,d ~Xl 
uXI' - 2 

~X21 = (1 - VF,d ~XI + ~X2 
2 

in other words, TI in Eqs. (4.22)-(4.24) is effectively located not at the cellI centre 
but at the centre XI' of the blocked volume, (1 - VF,I)VI ,where Vi is the total 

volume of cell 1. 

It can be seen from Eqs. (4.22)-(4.24) that the total thermal resistance between the 
interface and cell 2 centre is equal to ra' 

Substituting Tl' from Eq. (4.22) into Eq. (4.23), gives 

d~ k 
(1 - VF,I)pC-

d 
= hef! . (To - Td + -;:--. (T2 - TI ) 

t uxv 
( 4.25) 
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with 

Applying a similar procedure on the metal side of the interface, the heat flux between 
Xl' and Xl", the centre of the open volume VF,l' Vi of cell 1 with te~perature To, 
is expressed as 

( 4.26) 

where 

( 4.27) 

kme , kmo being the metal and mould thermal conductivities respectively, and 

A simple one-dimensional metal/mould heat transfer problem is used to demonstrate 
the differences between the basic and the modified methods results. The metal is 
kept at a constant uniform temperature and the interfacial heat flux is compared 
with the analytical solution given by Eq. (4.16). The uniform mesh with 6.x = 10 
mm is fixed, while the position of the interface is varied within one cell, covering 
the range of VF values between zero and unity. The mould properties are given in 

Table 1. 

Numerical solutions for the interfacial heat flux and total energy, fluxed through 
the interface, at t = 30 s from the beginning of the simulation are shown in Figs. 
4.5a and 4.5b, respectively. Each numerical result is normalised by the corresponding 
analytical solution. Compared to the first order method, the modified method results 
are more accurate and less dependent on the value of VF in the interfacial cell, though 
it is obvious that the used mesh resolution is not sufficient to give a satisfactory 
accuracy for all values of VF • It is interesting that their appear to be an optimum 
value of VF for each method, which may be dependent on the material and interface 

properties. 

In a general case, when the interface in a cell is arbitrarily orientated, Xl' and Xl" 

are associated with the geometrical centres of the blocked and open volumes of the 
interfacial cell. 6.Xl' and 6.XI" are approximated by 

~Xl' - (1 - VF,t} ~xe 

6.Xl" - VF,l 6.x e 
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where 
( 4.30) 

~Xn is the size of the cell along the coordinate axis in the direction nearest to the 
direction of the interface normal and Al is the area of the interface in the cell. 

4.2 Solidification Model 

4.2.1 Alloy Solidification 

The integral on the right-hand side of the expression for the enthalpy given by Eq. 

(3.4) can be written as 

lT 1~ j~ jT CdT = CdT + CdT + CdT 
o 0 T. T/ 

(4.31) 

If constant values of Cs and C/ are assumed then the first and third integrals on 
the right-hand side of Eq. (4.31) are easily evaluated. The second integral contains 
specific heat of the solid/liquid mixture and is variable across the freezing range if 

Cs =I- C/ 
( 4.32) 

and rT/ rl dT 
iT. CdT = - Jo [JsCs + (1 - Is)Cd dIs dIs ( 4.33) 

A simplification is made in the calculation of the integral by assuming that 

dT - = Ts - T/ = const 
dIs 

Thus rl dT 
Jo [JsCs + (1 - Is)Cd dIs dIs ~ ( 4.34) 

And for Ts < T < T/ 

dT 1 
+ (1 - Is)Cd dIs dIs ~ 2 [(1 + Is)Cs 

+ (1 - Is)Cd (T - T,) (4.35) 

where Ia corresponds to temperature T. 

The effect of the contribution to the enthalpy given by Eq. (4.34) or (4.35) is 
that during solidification both latent heat and specific heat have to be removed 
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as the temperature decreases between T/ and Ts , unlike solidification at a constant 
temperature. This generally leads to larger solidification times for alloys than for 
pure materials, given the same latent heat. The effect is more apparent for larger 
specific heat and freezing range. 

The simplest way to model alloy solidification is to assuming linear variation of solid 
fraction with temperature in the freezing range 

( 4.36) 

This model can be enhanced by adding optional lever rule and Scheil Eqs. (2.64), 
(2.65) (Section 2.8). It can be seen from Eq. (4.35) that, within the freezing range, 
enthalpy becomes a nonlinear function of the temperature, even for the linear latent 
heat release, 

H(T) 
1 r 

GsTs + 2 [(1 + fs(T))Gs + (1 - fs(T))Gd(T - Ts) 

+ (1 - fs(T)) L ( 4.37) 

where fs(T) is defined by one of the solidification models. For the Scheil's model 
Eq. (4.37) transforms into 

H(T) 
1 

GaTe + 2 [(fB,e + f,l(T))CB + (2 - fSle - fs(T))Gd(T - Te) 

+ (l-fB(T))L (4.38) 

where fSle = fs(Te). 

At the end of every time cycle Eq. (4.37) or (4.38) must be solved in each cell 
to find the solid fraction and temperature from a known value of the enthalpy. In 
the original model (Eq. (3.9)), H(T) is a linear function and its resolution for 
temperature is trivial. 

Fig. 4.6 shows the variation of the fraction of solid and enthalpy for an AI-4.5%Cu 
alloy (Table 3) for each of the solidification models, given by Eqs. (2.64), (2.65), 

(4.36), (4.37) and (4.38). 

In the modified solidification algorithm Eq. (4.37) is solved by the Newton iteration 
method in which at iteration n + 1 
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where I(Tn) is the difference between the left- and right-hand sides of Eq. (4.37). 
The starting temperature is taken from the previous time step. Iterations stop when 

T/-Ts 
1 Tn+! - Tn 1< f, f = 10000 

It usually takes one to five iterations to satisfy the convergence criter.ia since H(T) 
is a smooth function and dH/dT > 0 for all temperatures. Generally, the number 
of iterations depends on the cooling rate and the time step size. 

When T = Te (for the Scheil model), Eq. (4.38) becomes a linear function of Is 

and no iteration is necessary to obtain the solution. 

4.2.2 Fraction of Solid 

The solid fraction function, Is, is not explicitly calculated in the original code nor is 
III used as an output variable for graphical and numerical analysis at the end of the 
simulation. However, spatial and temporal evolution of the fraction of solid function 
could provide important information about the progress of solidification. 

A modification of the code has been made to include solid fraction as an additional 
variable. It is either a function of temperature for solidification models defined by 
Eqs. (2.64), (2.65) or (4.36) or is an independent variable for pure metal and eutectic 
solidification processes. Solid fraction, stored in an additional array, serves as an 
input for other parts of the program, such as drag function calculation (Section 4.3) 
and shrinkage simulation (Chapter 5). 

A modification has also been made to include solid fraction as an output quantity. 
The modification is based on the existing routine for storing and displaying numerical 
data, so that all display options for other variables are applicable to the solid fraction. 

Those include: 

• history plots for the evolution of the solid fraction with time at specified loca­
tions in the casting. 

• 2-D spatial colour and contour line plots. This can be combined with velocity 
vectors and marker particle plots. 

• 3-D contour surface plots highlighting the spatial distribution of a particular 

value of Is. 
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• both 2-D and 3-D spatial plots can be stored with predefined time increments 
for subsequent animation. 

Additional dashed single contour line plot of fs = 0.5 is provided to visualise the 
approximate position of the solidification front, especially useful for nC;lJ'row freezing 
range alloys. This is done similarly to the existing FLOW-3D method of visualising 
the position of the free surface. 

Fig. 4.7 shows an example of a 2-D colour temperature plot with flow velocities and 
solidification front. More examples of the use of the solid fraction can be seen in 
other sections. 

4.3 Solidification Drag Model 

When metal solidifies, its position in space no longer changes, i.e. the velocity of the 
solid phase is zero (or equal to a constant non-zero value in the case of continuous 
casting process, for example). One of the ways to account numerically for the 
corresponding change of fluid momentum is to increase the solid/liquid mixture 
viscosity coefficient /lej I in a solidifying cell so that for a completely solid cell /leI I ~ 

00 [124] 

( 
fs ) -2.5 l.,p 

/-leI f = /-l 1 - - (4.39) 
fa ,1' 

where fa,1' is the solid fraction at close packing of the solid (equals to 0.62 for solid 
spherical particles), similar to the critical solid fraction fs,er at which any flow seizes 
according to the shrinkage models described in Section 2.9. 

As a result of the "effective viscosity" model, given by Eq. (4.39), the solid ma­
terial will adhere to the mould, including moving walls. The latter occurs during 
continuous, twin-roll and melt-spinning casting processes. 

Viscous terms in the discretised momentum equations will have to be included im­
plicitly since the explicit formulation will cause severe time step size limitations as 

J.LeJ J increases. The implicitness will make momentum Eqs. (3.7)-(3.9) coupled with 
each other, requiring an efficient solution for the first guess velocities. 

In the present model the cell momentum change due to solidification is accounted 
for by using the drag force concept. The solid phase material is assumed to be at 
rest or moving at a uniform speed. 
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Here we will only consider the drag due to solidification. The main role of the drag 
force is to reduce the fluid velocity to zero when it solidifies. Assuming that solid 
material is at rest with respect to the computational mesh, the solidification/melting 
process is approximated by using a drag coefficient, J«(T), that is a function of tem­
perature or fraction of solid. The drag should be effectively infinite when material is 
in the solid phase. At intermediate states, consisting of a mush, the drig should also 
assume an intermediate value. The behaviour of the drag coefficient for 0 < fs < 1 
is very much the choice of the user since it is difficult to validate any particular drag 
model. The only restriction is that J( must be non-negative. 

For a Darcy-type solidification drag, the flow in the mushy zone is thought of as a 
flow of the liquid fraction through a fixed matrix structure created by the dendrites. 
Coefficient J( is then dependent on the volumetric solid fraction [125] (Eq. (2.70)) 

J( ftv 
rv (1 _ fsv)3 (4.40) 

Variations of Eq. (4.40) include introducing a critical solid fraction, so that the 
drag is equal to zero for fs < fs,cr, before the solid phase forms a rigid structure. 
Such regions are often called "slurry zones" , where solid material floats freely in the 

metal [2]. 

Huang et al suggested two expressions for the drag coefficient: one for a columnar 
dendritic region, I<C, and the other, I<e, for an equiaxed [117]. The drag is dependent 
on the specific surface area available for flow in the dendritic mushy region 

I<c = 87r1l 
plus (3dpsin(} 

(4.41 ) 

(4.42) 

where Us is the solidus velocity, (3 = 1 - pd ps volumetric shrinkage coefficient, dp 

and do the primary dendritic spacing and the equiaxed grain diameter, respectively, 
() the equivalent vertex angle of the primary dendrites and L denotes the length of 

the mushy zone. 

Another equation for the drag force coefficient is presented in this Section. The 
derivation is based on the simplifying assumption that there is no frictional inter­
action between solid and liquid phases. This assumption is more appropriate in the 
situations when the liquid/solid interface can be represented with a surface rather 

than a mushy zone. 
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Consider a cell full of fluid (Fig. 4.8a). At time t, ms and m/ are masses of the solid 
and liquid phases in the cell respectively 

( 4.43) 

and 

f - m6 
s -

m 

Since the solidified fluid velocity is zero, the total momentum of the cell is equal to 
the liquid phase momentum 

( 4.44) 

Suppose that there are no body and pressure forces acting on the cell and that the 
liquid phase can flow freely, i.e. neglect viscous friction between the two phases. In 
that case during solidification, assuming also that volumetric shrinkage effects are 

negligible, 
u/ = const, m = const ( 4.45) 

The cell momentum change over the time dt due to the loss of mass by the liquid 
phase to the solid phase, using Eqs. (4.44), (4.45), is 

dM = u/dm/ = -mu/df6 ( 4.46) 

Far the solid/liquid mixture velocity in the cell, which appears in the discretised 

equations, 

(4.47) 

and it follows from Eq. (4.45) that 

dM = mdum (4.48) 

Now zqualising the right-hand sides of Eqs. (4.46) and (4.48), divided by dt, and 
taking into account Eq. (4.47) yields 

the solution of which is 

um df, 

1 - f, dt 

u m = Uo (1 - f,) 

(4.49) 

( 4.50) 

where Uo is the liquid velocity for fa = O. It is easily seen that U m = 0 when fs = 1. 
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Comparing the right-hand side of Eq. (4.49) with the definition of the drag force, 
Eq. (3.10), gives an expression for the drag force coefficient 

J( = 1 dfs 
1 - fs dt 

(4.51 ) 

In a more general case, when m and u/ are not constant because of £he net inflow 
or outflow of fluid in the cell and the action of other forces, the drag coefficient 

becomes 
J( = _1 dms 

ml dt 

The right-hand side of Eq. (4.52) needs to be defined for fs 
numerator and denominator vanish at that point. By putting 

f{ = 00 for fs = 1 

the condition of an infinite drag in the solid phase is satisfied. 

(4.52) 

1 as both the 

The drag is zero in a partially solidified cell if the solidification front in it does not 
move. If part of the cell melts, i.e. dms < 0 then f{ = 0 as the cell momentum 
does not change because the newly created liquid has zero velocity immediately after 
melting. Thus, condition f{ ~ 0 is also satisfied. 

A I-D simulation of pure aluminium solidification has been carried out to test the 
drag model. The geometrical setup is shown in Fig. 4.8b. The metal is flowing 
at a constant velocity Uo over a horizontal mould plate in the absence of pressure, 
body and viscous forces. The results are shown in Fig. 4.9. As the metal in a cell 
starts to solidify, the drag force is applied and the cell horizontal velocity changes 
in accordance with Eq. (4.50), as shown in Figs. 4.9b - d for three consecutively 

solidifying cells. 

The drag force given by Eq. (4.52) does not represent any physical force acting on 
the fluid. It is just a consequence of using a solid/liquid mixture velocity, defined 
by Eq. (4.47), rather than modelling the flow of each phase separately. 

Eq. (4.52) is applied here to both mushy and plane front solidification. However, 
frictional drag in the mushy zone may dominate the flow and the developed drag 
model will not be sufficiently accurate. 
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transfer algorithm. White dots show where the t emperatures 
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Chapter 5 

Development of the Shrinkage 
Model 

A solidification shrinkage/expansion model based on full fluid and heat flow equa­
tions is presented in this chapter. 

5.1 Main Equations 

Consider a computational cell (or control volume) of open volume Vo and boundary 
E containing a mixture of liquid and solid of volumes VI and Va, respectively. The 
mixture volume, V, and mass, m, are 

V=Va+\!l FVo 

m = pV 

respectively, where F is the cell fluid fraction. The mixture density, p, is 

PIV/ + P .. Va 
P = V 

V=v,+V/ 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

Over a time increment dt, the mixture volume in the cell changes due to solidifica­
tion, dV·, and a flux of the liquid phase through cell faces, dV('. The total change 
in the mixture volume, dV, is 

dV = dVa + dV/ = dV· + dV(' (5.5) 
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Volumetric changes due to phase transformation occur at constant cell fluid mass, 
m, so that (using Eqs. (5.1)-{5.3)) 

dV* = (1 - ;;) dY, = S Va dt (5.6) 

where 
S = (1 _ ps) dY, ~ 

PI dt Va (5.7) 

constitutes the change of volume per unit time per unit cell volume due to phase 
transformation. 

The corresponding change of the mixture density, from Eqs. (5.1) and (5.3), is 

d - ( - p ) V/dY, - V,dV/ = dp* + dp' P - ps I V2 (5.8) 

where 

(5.9) 

is the change of density due to phase transformation only. Similarly, the fraction of 

fluid function is 

and 

dF = dV = dF* + dF' 
Va 

dF* = (1 _ Ps) dY, 
PI Va 

Sdt 

(5.10) 

(5.11 ) 

The integral form of the continuity equation, Eq. (2.1), for the cell open volume Va 
IS 

PI' f Vn du = - ~ f P dr lr. at lv (5.12) 

The liquid phase density is used in the surface integral because it is assumed that 
only pure liquid phase can flow. At those parts ofthe cell boundary that are blocked 
by the solidified material, velocity is zero and no contribution is made to the integral. 
The volumetric integral on the right-hand side of Eq. (5.11) is calculated over fluid 
volume V, since Vo - V is void. 

Replacing the density on the right-hand side of Eq. (5.11) by the average cell-centred 
value, given by Eq. (5.3), yields 

PI' k Vn du = - Va· %t (F· p) (5.13) 
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Eq. (3.6) for the fluid fraction function must be rewritten to take into consideration 
Eqs. (5.9) and (5.10) 

aF + ~. f vnFda = S at Va Jr. (5.14) 

We will neglect the variation of the mixture density in the momentum~quation, Eq. 
(2.22), so that only the drag force in it accounts for solidification. 

The integral form of enthalpy Eq. (2.23) is 

! fv pH dT = - PI . ~ HI Vn dO' + qr. (5.15) 

where qr. denotes heat conduction and transfer fluxes through the cell boundary. HI 
is the enthalpy of the liquid phase even if two phases are present along the boundary 
since only the liquid phase flows. After replacing P and H by the cell-centred average 

quantities, Eq. (5.14) can be rewritten as 

Va . ! (p F H) = - PI . ~ HI Vn dO' + qr. (5.16) 

Eqs. (5.6), (5.7), (5.12), (5.13), and (5.15), together with the momentum equa­
tions, represent the mathematical model of the solidification process with volumetric 

changes. 

5.2 Numerical Technique 

5.2.1 Source Term Calculation 

dVa is defined by solving the fluid and heat flow equations. Therefore the calculation 
of its source term and the solution of these equations are coupled. An implicit 
representation of the source S, defined by Eq. (5.6), would require a simultaneous 
solution of the fluid flow and enthalpy equations, making the numerical algorithm 

complicated and inefficient. 

The procedure is greatly simplified if S is represented explicitly. 

At the beginning of n + 1 time cycle the value of dVa is estimated in each cell using 
values of fluid fraction and solid fraction functions known at times t n - 1 and tn 

(5.17) 
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where 
PI' fs fs'V = --....:.....;.--=--=-----

pds + Ps(1 - fs) 

is the cell volumetric fraction of solid. 

The source term then is 

(5.1S) 

The use of ~tn+l, rather than ~tn, ensures that the subtracted volume at cycle n + 1 
exactly corresponds to the volumetric changes given by Eq. (5.16). 

The corresponding change of the cell fluid fraction is given by Eq. (5.10). After 
all the advection contributions to the cell fluid content are calculated (as described 
in Section 2.5), giving an intermediate value Pi~/:l, the final adjustment is made to 
include the volumetric change 

The left-hand side of Eq. (5.15) can be represented in the following form 

~( F H) = aF H F H ap 
at P Pat + at 

Combining Eqs. (5.15) and (5.19) yields 

aF H PI (f ) 
PI . --at" = P Vo - PI J

E 
HI Vn du + qE 

1 ap 
--PIFH 
P at 

(5.19) 

(5.20) 

(5.21) 

The enthalpy equation is used in this form in the numerical calculations. It effec­
tively implies that P1F H, instead of pF H, is used as the cell total heat content. 
This simplifies the process of specifying initial and boundary conditions though an 
additional source term appears on the right-hand side. 

A discretised form of Eq. (5.20) is 

(5.22) 

where u = PIFH, FXn denotes advection and heat fluxes terms, and Rn = ! ~ 
estimated at t = tn+!. Term R u is similar to the drag force term, given by Eq. 
(3.10), except that R can be of any sign. 

A simpler version of Eq. (5.22) can be considered to find I, 

(5.23) 
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If Rn < 0 then stability analysis shows that I = n + 1 to ensure unconditional 
numerical stability. Eq. (5.22) is easily resolved for un+! since the source term is 
linear. The explicit formulation, i.e. I = n, is stable only if ~tn+l < l/Rn. 

If Rn > 0 then both explicit and implicit methods give exponentially growing solu­
tions since the analytical solution is an exponent. The explicit methoa, however, is 
preferable because it always gives zero overshoot, while the implicit method gives 
zero overshoot only if Atn+l < -1/ Rn . 

The drag coefficient at n + 1 time level is calculated from Eq. (4.55) in which 

ml = P1Fn (1 - f~)Vo 

Combining expressions for ml and m5 with Eq. (5.17), the drag coefficient is given 

by 

(5.24) 

5.2.2 Modification of the Solution Algorithm 

In an internal cell the liquid/solid mixture volume is constant due to continuity. 
Since liquid phase is incompressible, the change of mixture volume volume dV"', Eq. 
(5.5), must be equal to the net amount of fluid fluxed through the cell boundary in 

time dt 
(5.25) 

The numerical implementation of Eq. (5.24) requires the modification of Eq. (3.21) 

as follows 

un+! A .. un+! A 
L.. - i,;,k FRIII" k - i-l,;,k FRli-lli,k 

I",k - 1\ 
U.Xi 

vn+1 A .. vn+! A . + i,j,k FBIII],k - i,j-l,k FB I,lj-l ,k 

~Yj 

w~tl AFT· . k - w~tl AFT·· k 1 I",k ,,,], ""k-l ,,,,, - sn = 0 + AZk - i,j,k (5.26) 

while 8Liljlk/8pilj,k, in Eq. (3.17) remains unchanged since the source term sn is 
formulated explicitly and does not depend on pn+1. 

For a solidifying cell S < 0 if p. > PI, leading to a negative value of the cell velocity 
divergence, div v. The latter means that there is a net flux of liquid metal into the 
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cell. Similarly, if S > 0, the velocity divergence is positive and the remaining liquid 
is pushed out of the cell. 

Special care must be taken if a cell (or a cluster of adjacent cells) containing both 
phases are surrounded by solidified cells. In this case velocities at cell faces are equal 
to zero and if S t= 0, then there is no solution for the cell pressure ifconditions of 
incompressibility and continuity are not dropped. 

If S > 0 then the remaining liquid must flow out of the cell. In practice pressure 
in such confined region will increase causing solid phase deformations and, perhaps, 
even partial remelting. Since these effects are not described by the present model, 
such situations are resolved by setting to zero the net volume increase in the confined 
region, i.e. S = 0, so that numerical solution does exist. This is equivalent to 
assummg that the liquid becomes compressible to accommodate the increase in 

volume. 

5.2.3 Opening Internal Voids: S < 0 

The solution is more complicated ifthe source term, S, in a confined cell is negative. 

In this case 
LOOk = -S-°k > 0 1,3, '", 

and, according to Eq. (3.22), pressure will decrease indefinitely. 

In practice this will cause dissolved gasses to evolve into bubbles and to open internal 
voids which, after complete solidification, remain as shrinkage defects. A critical 
pressure, Per, at which bubbles start to appear is employed in cavitation models [3]. 

The same approach is employed in the present numerical model. The value of the 
critical pressure is unimportant so long as it is much smaller than the pressures in 
the casting to avoid ambiguity on where a cavity should be created. This is because 
cell pressure serves as the only flag to open a cavity. Since the actual value of Per 

is arbitrary and internal cavity volumes at every time step are defined only by the 
amount of the volumetric shrinkage, the gas evolution process is not described by 

the model. 

When 
Pi,i,k ::; Per (5.27) 

then the cell changes from an 'incompressible and continuous' cell, for which con-
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vergence criterion is 

I L""kl<t·ViF.""k 1,1, ,t,J, 

and pressure is defined by iterations, to an 'internal cavity' cell, for which 

Pi,i,k = Per 

and the value of Li,i,k is defined by iterations. The condition of fluid continuity in 
the cell is dropped and the cell then serves as a feeding basin for other solidifying 
cells. 

This algorithm as based on the cavitation model in the original version of FLOW-3D. 
In the latter, input parameter PCAV defines the critical pressure. 

However, there are differences. 

In the FLOw-3D cavitation model, cells in which P < PC AV are defined at each 
time step before the iteration begins, so that during iteration their pressure is driven 
to PC AV and a net outflow of fluid from these cells is allowed to open a cavitation 
void. The 'cavitation' status of the cells is not changed during iteration. The rate 
of the cavity growth is a free parameter and is defined by the user. 

In the present shrinkage model the status of a cell can be changed by the algorithm 
during iterations. Suppose after I iterations pressure in a cell is greater than Per: 

1 
Pi,i,k > Per 

and 
L~ "k > 0 I,J, 

Then it follows from Eqs. (3.24) and (3.25) that 

If 
1+1 _ 1 + ~ 1+1 

Pi,J,k - Pi,i,k Pi,J,k < Per 

then the following adjustment is made 

~/+1 _P 1 Pi,i,k - er - Pi,j,k (5.28) 

so that 
1+1 

Pi,i,k = Per 
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Velocity adjustments for the cell (i,j, k) (Eqs. (3.24) and (3.25) and corresponding 
expressions for the other components) are made using 6.p given in Eq. (5.27). For 
the next iteration cell (i,j,k) is marked as an 'internal cavity' cell. 

In the subsequent iterations, [' > 1+ 1, the magnitude of LL,k is not required to be 
below the value of the convergence criterion f if pL,k does not increast!. As soon as 
the value of pL,k exceeds Per, the 'incompressible and continuous' status is returned 
to the cell, even if a cavity has already been created in it. 

This procedure serves two purposes: 

• Situations are avoided where iterations are carried out on equations which do 
not have a solution. The latter would happen if pressures and velocities are 
iterated in a confined region and the continuity condition is imposed on every 
cell in the region 1 . 

Allowing cells with P ::; Per to have a non-zero velocity divergence ensures the 
existence of a solution . 

• More than one cell can appear to have pressure below Per. This allows the 
openning of internal voids in several cells simultaneously, i.e. in one time step. 

In the shrinkage model the critical pressure is substantially lower than casting (at­
mospheric) pressure. If the confined liquid region consists of several cells then a 
uniform pressure decrease is required until the lowest cell pressure in the region 
reaches the value of Per' This uniform pressure adjustment represents an error com­
ponent of an infinite wavelength which, as mentioned in Section 2.3.2, is the slowest 

to converge. 

To avoid convergence difficulties in such situations, an additional subroutine was 
incorporated into the code. At the beginning of every time step it finds all confined 
liquid regions. A liquid region is considered confined if its boundary consists of 
mould cells and/or fluid cells that cannot feed and no internal cavity has yet been 
opened in it. A cell cannot feed if the drag force coefficient in it is infinitely large 
(which may be the case even if the cell still contains liquid as described in Section 
5.2.4). Then a uniform pressure adjustment is made in each of the identified regions 
before the iterations start, so that the minimum pressure in it is exactly equal to 
Per. A uniform change of pressure in a confined liquid region does not influence the 

1 A predefined maximum number of iterations per time cycle, by default equal to 1000, is used 
in FLOW-3D to stop excessive iteration. 
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solution for velocities in the region since only pressure gradient is present in the 
incompressible fluid equations. 

If the net source term S in a confined region is positive than the situation is resolved 
as described in Section 5.2.2. If S is negative than it will take only one iteration for 
the minimum pressure in the region to fall below the value of Per and the correspond­
ing cell (and possibly some of its neighbours) will be the location of the opening of 
a new internal void. 

As the solidification proceeds internal cavities grow. Eventually some cells may turn 
into surface cells or become completely empty. Pressure in the empty cells is set to 
be equal to PeT and treated similarly as all other void regions, and pressures in the 
surface cells are set in the usual way, that is using .Eq. (3.26). 

5.2.4 Feeding Criterion 

In many situations feeding criterion, such as critical solid fraction fs,er, remains a 
useful albeit arbitrary simplification of shrinkage modelling. 

Ideally, the model should adjust fluid pressures and velocities according to the drag 
force by solving the flow equations. For example, if liquid has to flow through a high 
drag area to feed a solidifying region then the pressure in the region should decrease 
as the drag force increases. Eventually the pressure reaches the critical value and a 
cavity starts to open in the solidifying region, though some feeding may still occur 
despite the high drag. 

In practice, iteration convergence slows in the presence of significant drag force, 

especially if the high drag region is located at the entrance into a large volume of 
liquid which needs to be fed, as shown in Fig. 5.1. Pressure in such a volume must 
be lowered to pull the fluid from outside through the high drag region. Convergence 
rate will decrease since this pressure adjustment introduces a long wavelength error 

component. 

To avoid solving flow equations in the presence of a high drag force, a critical value 
of solid fraction is used as a cut-off parameter for flow. 

For the drag force coefficient, given by Eq. (5.23), the value of the term K' = l+kAt 

in Eqs. (3.25)-(3.27) lies usually above 0.9 and only for /s -+ 1 does this term plays 
a substantial role (depending, of course, on the size of the time step as well). 

Therefore, for pure materials, for which Eq. (5.23) has been derived, the drag force 
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poses little difficulty in achieving convergence. In accordance with this, it is assumed 
that for pure metal a cell can feed and be fed if fs < 1. Flow through a cell seizes, 
i.e. K' = 0, when the cell becomes fully solid. In other words, for pure metals 

fll,er = 1. 

For alloy systems flow in a mushy zone experiences much larger resistance. Instead 
of using a high value of the drag coefficient in such locations, a critical solid fraction 
fll,er < 1 is used so that flow into a cell ceases when fll ~ f.,er' Eq. (5.23) is still 
used for solid fraction below fs,er' This treatment of alloys is an idealisation of the 
flow in mushy zones, when for low fs values the melt represents a mixture of liquid 
and freely floating solid crystals. As solidification progresses crystals starts forming 
a rigid structure and the flow resistance increases steeply over a small range of fs 

values. 

The main limitations of the feeding criterion approach are: 

• in alloys flow resistance can be anisotropic. Feeding is easier along the colum­
nar crystals than across, and a single value of fs,er is not sufficient to resolve 
such situation. In that sense the critical solid fraction gradient [112], yo fs, 
(Section 2.9) or anisotropic drag coefficient [117] (Eqs. (4.41), (4.42)) offer 

some flexibility; 

• the value of fs,er varies for different materials, casting geometries and solidifi­
cation conditions. The right choice of fs,er is almost an art. 

The present shrinkage model has been developed to predict macro-defects in castings, 
since micro-porosity simulation requires modelling of gas evolution, interdendritic 
flow, nucleation and dendrite growth. The value of fll,er divides the total shrinkage 
volume between micro- and macro-porosity. Here the critical fraction of solid method 
is employed to predict macro-cavities, unlike most other shrinkage models. Micro­
porosity will inevitably be present as a consequence of using fll,er < 1 for alloy 
systems, but its spatial distribution is not claimed to be accurate and will not be 

compared with experimental data2
• 

The value of the critical solid fraction is included in the list of input parameters 
specified in PREPIN.INP file as FRSLCR. However, for pure materials it is always 

equal to one. 

21f the average micro-porosity in the solidified casting is known a priori, e.g. from the liquid 
metal gas content, then the solid phase density P. can be reduced correspondingly to account for 
that. Modelling of micro-porosity can then be avoided by setting f.,er = 1.0. 
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5.3 Simplified Shrinkage Model 

The shrinkage model described above is capable of modelling liquid metal volumetric 
shrinkage/expansion due to phase transformation, including the induced flows and 
cavity formation, occurring in both phase change directions. The model-is applicable 
to most general 3-D mould and casting configurations. 

The cost of that is the necessity to solve fluid flow equations not only during the 
filling stage, but also during solidification making calculations CPU intensive. Fur­
thermore, the time step size is smaller than in a no-flow situation. Usually the most 
severe restriction comes from the free surface gravity waves stability criterion, Eq. 
(2.77) of Section 2.10 3. Since the solidification stage is normally much longer than 
the filling stage, a significant increase in the CPU time is obvious. 

A simplification of the full shrinkage model (hereafter referred to as model M 1) can 

be found by considering the following [110,126]: 

• In most castings the phase transformation proceeds in one direction: from 
liquid to solid. This means that the volumetric shrinkage also proceeds in one 

direction. 

• Often solidification occurs in such conditions that the liquid metal free surface 
is horizontal and flat all the time. 

• In most situations gravity feeding can certainly be assumed to occur instan­
taneously, i.e shrinkage induced forces are much smaller than gravity forces. 

With these assumptions, another shrinkage model (M2), which does not solve the 
fluid flow equations, has been developed. In brief, at each time step 

1. Isolated liquid regions are identified in the casting. This time an isolated 
region is defined as one bounded by solidified cells or mould, and free surface. 

2. The total volumetric change due to phase change over D.t is estimated in each 
of the regions and removed from the top of it. The 'top' of a region is defined 
by the direction of the gravity. 

3The CFL criterion (Eq. (2.75)) is not a problem since normally flow velocities are small during 
solidification. 
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5.3.1 Numerical Implementation of the Simplified Model 

It is essential that gravity is normal to one of the coordinate planes and the free 
surface is aligned to that plane. 

At time step n + 1 the volumetric change in each cell dViJ,k, occurred during the 
previous time step £ltn, is estimated using Eq. (5.16). 

Eq. (5.13) is not solved in every cell directly. For an isolated liquid region R/ of 
vol ume Vln the total change of volume is 

dvt = 

and 

The volume subtraction is executed in the following manner (assuming gravity is 
pointing in the negative z direction). 

1. the 'top' layer of cells k = k* is defined so that k* + 1 represents either void 
or mould or solid metal; 

2. the total available liquid volume, VIZ' is estimated for k* cells in R/ 

'"' (1 - fn . . k) . F!'· k ~ ",v,'", I,), 

(i,j,k·)eR, 

where f:'v,i,j,k is the volumetric solid fraction in cell (i, j, k) at time tn. 

3. if VI". < dVin then for (i,j, k*) E R/ 

and 

pnf'kI. = fn .. k. 
I"~, .tI,'.J, 

dVin = dVin - Vi". 
k* = k* - 1 

and the procedure is repeated from step 2; 

4. For VI". ~ dVin. Since gravity is normal to k* coordinate plane the liquid cells 
in this plane should have the same value of the fluid fraction, Fn+l. However, 
the fluid mixture level in the cells can only be reduced at the most by their 
liquid phase content. Therefore, 
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(a) an estimate to Fn+! is made assuming that the mixture level is reduced 
in every cell by the same amount 

F,n+ 1 = VFkO - dVin 
Vko 

where initially VFko is the total fluid volume of k* cells of tlie region and 
Vko is the total open volume of the k* cells. 

(b) if in cell (i,j,k*) F'n+! < fsv,i,j,ko' F:'J,ko 

then 

VFko = VFkO - Fi~j,kO 

dV.l
n = dV.l

n - (F'!l-. kO - F'!l-7k
1o) ',J, ',J, 

Vko = Vko - Vi,j,kO 

where Vi,j,kO is the open volume of cell (i,j, k*). The procedure is then 
repeated from step (a) with cell (i,j, k*) excluded from the consideration. 

A schematic representation of the algorithm is shown in Fig. 5.2. 

Enthalpy Eq. (5.20) is solved in a reduced form 

aFH PI 
PI'-- = -'qE at P Va (5.29) 

because the source term in Eq. (5.20) is balanced by the surplus of enthalpy delivered 
by the net fluid flow into the cell. As the flow term is excluded from consideration 
in the M2 model, so must be the source term. 

The drag force coefficient calculation is also simplified because it is only necessary 
to know when the drag becomes infinite to identify isolated liquid regions 

K={~ 

The advantage of the M2 model is: 

if fs < fs,er 
if fs ~ fs,er 

(5.30) 

• CPU time is saved as momentum and continuity equations are not solved and 
no iteration is needed to obtain velocities and pressures. Enthalpy equation is 
also simplified. The time step size, controlled by heat conduction/transfer, is 
usually considerably larger that when the full system of equations is solved. 

107 



The limitations of the M2 model are: 

• Free surface must be plane and normal to the gravity; its orientation must not 
change during solidification. 

• The mesh must be chosen in such a way that the free surface IS parallel to 
one of the coordinate planes. In other words, body forces direction have to be 
constant and parallel to one of the mesh directions. 

• Volumetric expansion, e.g. due to remelting, cannot be modelled. 

• No flow phenomena is possible. Feeding is only taken into account by lowering 
the liquid metal free surface. Fluid velocities are not explicitly estimated. 
Thus, effects of thermal convection are neglected. Processes where advection 
is important, such as continuous and centrifugal casting, are out of the scope 

of the simplified model. 

The simplified shrinkage model is similar to the one developed by J . Evans [120] 
(Section 2.9) with two major differences: first, the M2 model is applicable to general 
3-D casting configurations (with the limitations stated in the preceding paragraph), 
while Evans' model was designed to model only centre line porosity in cylindrical 

ingots. Secondly, cells here are allowed to be partially filled, while in Evans' model 
they can only be either full or empty: a cell is not emptied until enough shrinkage 
volume has accumulated to empty it completely. Furthermore the same value of the 
critical fraction of solid is used in all directions in the M2 model. 

The choice between M1 and M2 models is made by the user through the input 
parameter ISHR: ISHR=l initiates model M1 and a value of ISHR above 1 initiates 

model M2. 
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Figure 5.1. Feeding of the shrinkage in a large liquid volume 
occurring through a high drag zone can slow down 
convergence in the region. 
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Chapter 6 

Experimental and Numerical 
Modelling Results 

6.1 Experimental Castings 

This Section describes briefly experimental casting simulations which are used for 
validation of numerical predictions given in the later sections. The experiments were 
carried out independently of the present authour. 

Each experiment was repeated to ensure reproducibility of the results. 

Sand moulds. Castings were moulded in 100 AFS silica sand bonded with 4% sodium 
silicate [127]. The sand was hand rammed over the wooden patterns and CO2 

hardened at 80°C. The mould surface was dried prior to casting by exposing it to 

high intensity lamp light overnight. 

Aluminium castings. The aluminium used for castings was commercially pure. The 
copper was weighed and put into the crucible after the aluminium had been melted 
to make the AI-4.5%Cu alloy. The metals were heated in a 3 MKHz induction 

furnace. 

A porous plug degassing method using argon was employed for both pure aluminium 
and the alloy. In order to improve degassing, a flux was used on the melt surface to 
avoid air entrapment during degassing. 

1. Aluminium-sand cylindrical casting (El). In this experiment pure aluminium 
was cast into a 100 mm diameter and 150 mm length sand mould [128]. Fig. 
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6.1a shows the overall geometry and dimensions of the casting. The metal 
was poured directly into the mould at 90°f( superheat. The filling stage took 
a fraction of a second so that initial conditions in the metal and mould are 
close to an instantaneous filling situation. Initially the mould was at room 
temperature of 2930 f(. Immediately after the filling had been <:,ompleted the 
open top of the metal was covered with an insulating board preheated to 770 0 f( 
to minimise heat losses from the metal free surface. 

Thermocouples were placed both in the mould and metal, as shown in Fig. 
6.1b, and temperature readings were recorded for half an hour after the pour­
ing. According to the thermocouple located at the centre of the casting (th/ c 
No. 1 in Fig. 6.31), the total solidification time, t s , is 754.0 s. Figure 6.3 
shows the sectioned casting with a shrinkage cavity at the top. 

2. Chill mould cylindrical castings. These castings were produced by J.Evans [126]. 
The mould geometry and dimensions are shown in Fig. 6.4 The top cylindri­
cal mould was made of grey cast iron. This was fixed on top of a pure iron 
cylindrical mould of the larger diameter, positioned on a sand base, using a 
18 mm thick steel plate. 

One casting was made in pure iron (E2) and a second in 0.6%C, 1.1 %Mn, 
0.2%Si steel (E3). Since any gas evolution would have affected the shape of 
the shrinkage cavities, the castings were fully killed. This required the addition 
of 0.15%Si and 0.05%AI to the pure iron and 0.05%AI to the alloy steel. 

Both castings were top poured, the pure iron at 18430 f( and the alloy at 
1873 0 f( corresponding to 340 f( and 640 f( degrees of superheat, respectively. 
The top of the casting was then insulated using Kaowool board. Solidification 
times are not known exactly since no thermocouple data is available. 

Figs. 6.5a, b show the sectioned castings. The pure metal casting pas two 
major centre-line shrinkage cavities: one at the top and the other, internal 
cavity, at the location where the mould diameter changes. The alloy casting 
shows a similar pattern but the two cavities are connected by a narrow passage 
and the lower cavity extends farther down the casting axis than in the case of 

the pure iron casting. 

3. Aluminium-sand boot-shaped casting (E4). This essentially three-dimensional 
casting was produced by J.Ortega [18]. Fig. 6.6 shows the shape and dimen­
sions of the mould. The metal was poured into the mould through the feeder 
top with a small superheat of 10° J( and filled the mould in 4.7 seconds. Ac­
cording to the thermocouple readings ts = 490.0 s. The top of the casting was 
not insulated so that heat was lost to atmosphere during solidification. 
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Fig. 6.7 shows the centre plane section of the solidified casting with a well 
defined cavity in the feeder. 

4. T-shaped sand casting. These simple shaped casting experiments allowed the 
influence of changes in gating and feeding on the size and location of shrinkage 
cavities to be assessed [129]. In particular, the position and size-of cavities at 
the T-junction were observed. Casting dimensions and overview are shown in 
Figs. 6.S and 6.9, respectively. The top of the feeder is open to atmosphere. 

The runner system had been designed to ensure control of the filling conditions 
of the casting. A reservoir at the top of the sprue was first filled with the melt, 
keeping the sprue entrance closed with a stopper (Fig. 6.Sb). The stopper was 
removed as soon as the melt temperature, measured by a single thermocouple, 
reached a specified value. 

The filling time was varied by changing the diameter of the choke, dch , at 
the bottom of the sprue. Three values were used: dch = 8 mm, 15 mm, and 

22 mm. 

Feeding conditions at the T-junction were varied by changing the vertical to 
horizontal section thickness ratio, Ra/ b = alb (Fig. 6.Sa), viz. Ra / b = 0.6, 1.0, 
and 1.67. 

Two values of pouring temperature, T = 9630 K and T = 1013° K, were used 
corresponding to 300 K and SOD K of superheat, respectively. 

(a) Pure aluminium (E5-E16). Figs. 6.lD and 6.11 show the centre plane 
section of the casting for pure aluminium with typical shrinkage cavities. 
The table in Fig. 6.12 summarises the results of this set of experiments. 

When Ra/ b = 1.0 (E7-EI2) a small cavity appears in the horizontal sec­
tion of the T-junction. The cavity is either oval in shape and positioned 
at the junction (Fig. 6.llb) or flat and wide and positioned in the hor­
izontal section (Fig. 6.lla). Figs. 6.13a, b show the X-ray photographs 
of these cavities. The bottom and top surfaces of the horizontal section 
underneath and above the cavity are slightly concave. This could reduce 
the size and position of the cavity. 

The cavity at the T-junction for Ra/ b = 1.67 (E13, E14) consists of two 
separate parts (Fig. 6.lDe). A likely reason for that is the aspiration of 
air at one of sharp corners of the junction due to a low pressure in the 
metal. The same could have happened in the casting shown in Fig. 6.11b 
(castings E10-E12 in Fig. 12), where the cavity has a round bubble-like 
shape with smooth surface. 
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Two variations of the mould design were made in an attempt to eliminate 
the defect. First, a 10 mm wide chill was inset into the mould (EI5) and 
a 10 mm thick insulating pad was used in the second case (EI6, Fig. 
6.14), both leading to the disappearance of the shrinkage cavity as shown 
in Fig. 6.15. 

(b) AI-4.5%Cu alloy {E17-E21}. When an AI-4.5% was used instead of pure 
metal no shrinkage occurred in the T-junction for Ra / b = 1.0 (EI8-EI9) 
but castings were subjected to some microshrinkage. The amount of 
the latter depends on the hydrogen content of the melt. A small cavity 
though is present at the junction in the case of Ra/ b = 1.67 (E20-E21). 

Fig. 6.16 shows centre plane section of the alloy castings and other ex­
perimental results for the alloy are summarised in the table in Fig. 6.12. 

Typical primary cavity shapes in the feeder for pure aluminium and alloy 
castings are shown in Fig. 6.17. 

6.2 Full Shrinkage Model (Ml) 

This Section presents validation results of the full shrinkage model against two simple 
test of the model first and then the experiments listed in Section 6.1. All computer 
simulations are summarised in Appendix A while Fig. 6.19 gives the computational 
efficiency data for some of the calculations, together with predicted solidification 

times. 

Constant values of material thermophysical properties are used for both for metal 
and mould, though solid and liquid phase properties can differ: 

- silica sand, Table 1 [7J 

- pure aluminium, Table 2 [7J 

- AI-4.5%Cu alloy, Table 3 [130] 

- pure iron, Table 4 [126] 

_ 0.6%C, 1.1 %Mn, 0.2% alloy steel, Table 5 [126J 
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6.2.1 2-D Test Casting Simulations 

The two simple simulations presented in this Section assumed instantaneous filling 
with uniform initial temperature distribution at the melting point of the metal. 

A. Casting with a narrow feeding passage (SI.I, Appednix A). In this two-dimensional 
pure aluminium-chill casting simulation the mould has a narrow passage through 
which the left-hand part of the casting (section A) is fed at the early stage of solidi­
fication by pressure head in section B, as shown in Fig. 6.20a. This feeding pattern 
prevails until the passage is blocked by fully solid metal (J.,cr = 1.0 for pure materi­
als). The direction of the feeding in section A then changes to the opposite leading 
to a cavity appearing at its top (Fig. 6.20b). The critical pressure, Perl at which 
internal cavities would appear in the metal, was set at -104 N/m2 • The ambient 
gauge pressure IS zero. As was said in Section 5.2.3, Per can have any value below 
the gauge pressure. 

History plots for the pressure and vertical velocity in a cell located at the centre 
of section A are shown in Fig. 6.21a. First, pressure decreases continuously due 
to the decrease of the pressure head in section B. Then its value drops to Per = 
-104 NJm 2 with a simultaneous change of the vertical velocity direction when the 
narrow passage solidifies. 

As expected, predicted feeding flow velocities are higher at the beginning of solidi­
fication, when the cooling rate is larger, and the average is 0.8 - 1.0 mm/ s. At the 
end of the process they decrease to around 0.2 - 0.4 mmJ s. 

Fig. 6.22 shows the resulting porosity distribution in the solidified casting and 
Figs. 6.21b - d show the iteration count for f = 0.001 s-l, the fluid volume, VI, 

and the mean fluid kinetic energy, Em, evolutions. The iteration number increases 
temporarily when the passages narrows at t ~ 12.0 s and feeding becomes more 

difficult. 

The volumetric shrinkage is 6.3%, defined by the values of the liquid and solid phase 
densities: 2540 kgJm3 and 2710 kgJm3

, respectively. The theoretical shrinkage 

volume, 6. vth, is defined by equation 

6. vth = V, (1 - £!..) 
P. 

(6.1) 

The initial liquid metal volume, v" is 8,700 mm3
, so that ~ vth is 545.76 mm3 • 

The predicted value is !:l Vp = 548.80 mm3 giving an error of 0.56% most of which, 
!:l Vc = 3.0 mm3 or 0.55%, is a consequence of the non-zero convergence criterion 
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and can be reduced by decreasing fl. Therefore, it can be concluded that the full 
shrinkage model predicted the shrinkage volume practically exactly. 

The mesh is uniform in both directions and the time step size is fl.t = 1.6 x 10-2 s 

throughout the calculation as dictated by the free surface stability criterion (Eq. 
(2.77)). The total simulation time is 50.0 s while solidification finishes in 44.0 s. 
The total CPU time2 for this problem is tcpu = 128 s with the average iteration 
count per time cycle of Nit = 15. 

B. Square Casting (Sl.2). A simulation of a square, symmetrical casting has become 
almost a classical test for shrinkage modelling [121]. The model must be able to 
predict the vertical shift in the position of the shrinkage cavity due to the gravity. 

A pure aluminium casting, 50 x 50 mm2
, is surrounded by the sand mould, 90 x 

90 mm2, meshed by a uniform grid of 9 x 9 cells. Initially heat transfer and con­
duction fluxes are symmetrical in all four directions (Fig. 6.23b). 

Fig. 6.23 shows the final cavity shape and the developed bottom-top asymmetry of 
the metal and mould temperatures due to the shrinkage induced gap formation at 
the top of the casting. As expected, the cavity is not located at the position of the 
last-liquid-to-solidify, i.e. at the casting centre. This result is an improvement from 
that of Fryer et al [121] who showed the cavity to be at the centre of the casting. 

Predicted feeding flow velocities average around 0.1- 0.2 mm/ s. Due to the stricter 
convergence criterion of f = 10-6 s, fl. Vc constitutes only about 10-5% of the to­
tal metal volume and fl. Vp corresponds to the theoretical value with the 0.002% 
accuracy. 

6.2.2 Aluminium-Sand Cylindrical Casting 

A series of simulations of casting El described in Section 6.1 has been carried out to 
test the mesh sensitivity of the shrinkage model. The filling stage is excluded from 

the simulation since the casting was filled very quickly. Instead, uniform initial 
temperature distribution is assumed at 90° I( superheat. 

The properties of the insulating material, obtained from the supplier, are given in 

1 Since l > 0 then each cell of volume A V has a net inflow or outflow of the order of l . .6. V after 
the convergence criterion is satisfied. The total volumetric error is recordered at each time step as 
an output variable AVe (see also Section 7.2.4). 

2 All simulations were made using a Silicon Graphics Indigo 4000 computer. 
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Table 6. Initially the insulator was at 770° 1<. 

Fig. 6.24 shows the computational domain for simulation S2.1 (see Appendix A). 
Only half of the casting was enmeshed due to axisymmetry. The meshes were chosen 
to be uniform in both x- and z-directions with ~x = ~z = ~ to ensure equal 
resolution at both horizontal and vertical metal/mould interfaces. '["he following 

meshes were used: 

(S2.1) 6 x 15, ~ = 16.7 mmi 

(S2.2) 12 x 30, ~ = 8.3 mmi 

(S2.3) 20 x 50, ~ = 5 mmi 

(S2.4) 36 x 90, ~ = 2.8 mmi 

all with the same convergence criterion f = 10-4 
S-l. 

The time step size in each case was defined either by the free surface or by the 
conduction stability limit, depending on whether the are liquid surface cells or 
not, and in average equals to 6tS2.1 = 1.0 s, 6tS2.2 = 0.15 s, 6tS2.3 = 0.04 sand 

6ts2.4 = 0.17 s. 

The total CPU time, the average CPU time per time cycle and per iteration, together 
with the time step size, are given in Fig. 6.25a as functions of the total number of 
cells N. The iteration number does not vary substantially between the four cases, 
averaging to 3-5 iterations per time step increasing to around 10 iterations only 
for the finest mesh (S2.4). Simulations were continued until the last liquid metal 
solidified. Since ts is different in all four cases, tcpu in each case corresponds to a 
somewhat different physical time (see Fig. 6.25b). 

Predicted cavity shapes and temperature distributions at the end of solidification for 
all four cases are given in Fig. 6.26 (compared with Fig. 6.3). Fig. 6.25b shows the 
predicted depth of the shrinkage cavity, hili" and t, in per cent of the experimental 
results as a function of N. For the finest mesh (simulation 82.4) the cavity depth is 
underestimated by 14% and the solidification time is 27% above the experimental 

value of 754 s. 

Fig. 6.25c shows ~ Vc and the error of ~ Vp in relation to the theoretical value of the 
shrinkage volume ~ vth given by Eq. (6.1). The errors are small, less than 0.3%, and 
the accuracy of the shrinkage volume prediction is mainly defined by the convergence 
errors ~ Vc. Both ~ Vc and ~ v" show little dependence on mesh resolution as does 
the average feeding flow velocity in the bulk of the liquid metal also plotted in Fig. 
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6.25c. (~0.02 mm/s). 

The progress of solidification for simulation S2.2 is given in Fig. 6.27. Figs. 6.28a, b 
shows the evolution of the horizontal and vertical velocity components in a cell at 
the casting geometrical centre. The absolute values of both components grow as the 
solidification front approaches the cell, reaching a maximum of about 0.05 mm/ s. 

The share of the horizontal feeding in the total flow in the cell also increases, although 
the vertical velocity is by far the dominant one. Figs. 6.29a - d show the evolution 
of the time step size, iteration count, the total fluid volume and the mean kinetic 
energy. 

Another simulation (S2.5) was carried out with a non-uniform mesh, N = 19 x 
33 cells, with finer resolution, Ax = Az = 2 mm, at metal/mould interfaces as 
shown in Fig. 6.30a. The resulting cavity shape is shown in Fig. 6.30b and other 
output results are presented in Fig. 6.25a - c. It can be seen that the non-uniform 
mesh makes the calculation more accurate though reducing the maximum time step 
size. Fig. 6.31 shows the comparison of predicted temperature histories with the 
experimental measurements at locations shown in Fig. 6.1b. 

6.2.3 Chill Mould Cylindrical Casting 

This Section includes modelling of casting E2 and E3 described in Section 6.1. The 
pouring stage is omitted since the experimental filling times are short, besides, fast 
cooling rates largely define the temperature distribution in the casting. 

The enmeshed computation domain is shown in Fig. 6.32a with a 10 x 53 mesh 
covering only half of the casting due to the symmetry. The chill mould is assumed to 
be at constant uniform temperature of 2980

]( throughout the simulation. The top of 
the casting is fully insulated. Despite the availability of experimentally defined time­
dependent metal/mould heat transfer coefficients and interfacial heat fluxes [126], 
computer simulations were simplified by assuming in each case a constant heat 
transfer coefficient obtained from the measurements. This assumption was made 
because only constant heat transfer coefficeints could be used in the standard input 

to FLOW-3D. 

The volumetric shrinkage is 3.85% for both the pure metal and alloy castings, defined 
by the densities of the liquid and solid metal (see Tables 4 and 5). 
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6.2.3.1 Pure Iron 

This simulation is referred to as simulation 53.1 (see Appendix A). The value of 
the heat transfer coefficient, h = 2370.0 Wjm 2 K corresponds to the maximum heat 
transfer coefficient for a bare chill [126J. Fig. 6.32b - e shows predicted shrinkage 
cavities, temperature distribution (degrees Celsius) and solidification front position 
at t = 50 s, t = 100 s, t = 150 s and at t = 200 s. Solidification took ta = 177 s. 
Comparison with the shrinkage defects given in Fig. 6.5a shows that the predicted 
shape and position of shrinkage cavities are very close to the experimental result. 

Fig. 6.33 shows the plot of the maximum horizontal and vertical velocities in the 
feeding flow. The flow velocity increases as the vertical liquid channel in the upper 
part of the casting narrows, before it is completely solid. At its maximum it reaches 
25 mm/ s which is two orders of magnitude larger than velocity in the bulk of the 
liquid metal in the lower part. 

To investigate the influence of the metal/mould interface properties on the cavity 
formation simulations with the following modifications were carried out: 

• 53.2: the heat transfer coefficient reduced by a factor of ten uniformly along 
the metal/chill interface, that is h = 237.0 W/m2 K corresponding to the 
minimum value for a coated chill [126J. The result is given in Fig. 6.34a; 

• 53.3: the heat transfer coefficient reduced by a factor of ten only for the lower, 
wider part of the chill mould (Fig. 6.34b). 

• 53.4: the heat transfer coefficient reduced by a factor of ten only for the upper, 
narrow part of the chill mould (Fig. 6.34c); 

Solidification times in these cases are 457 s, 208 sand 448 s, respectively. Cavity 
shapes predicted in simulations 53.1 and 53.2 are similar although in the latter the 
metal does not freeze over in the narrow part of the mould. This suggests that 
solidification in the lower part of the mould in 83.2 becomes somewhat faster than 
in the upper part at later stages of the process, so that liquid metal in the vertical 
channel is drained downwards before it has time to solidify. 

There is a small centre line porosity region in casting 83.4 and the primary shrinkage 
cavity is much shallower than that in casting 83.1 while casting 83.3 has a mush 
larger secondary cavity. The variability of the heat transfer coefficient along the 
interface appears to playa larger role in the final cavity shape than the actual value 

of h. 
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6.2.3.2 Alloy Steel 

The alloy solidification and shrinkage model was used here to simulate the steel 
casting E3 shown in Fig. 6.5b. The lever rule was employed to describe the latent 
heat release and two values of the critical fraction of solid, I.,er = 0.~7 (83.5) and 
Is,er = 1.0 (83.6), were tested. 

Fig. 6.35 shows the distribution of the fraction of solid function at intermediate 
stages of solidification for Is,er = 1.0 and the final predicted shape of shrinkage 
cavities is shown in Fig. 6.36. Note that for Is,er = 0.67 part of the shrinkage volume 
goes into the uniform 1% microporosity in the final casting (the total volumetric 
shrinkage is the same for both simulations). Comparison of the result with the 
experimental casting E3 given in Fig. 6.5b shows clearly that IIJ,cr = 1.0 gives a 
better approximation. This may be explained by the relatively narrow mushy zone 
in the casting during solidification (Fig. 6.35) hence the alloy flow behaviour is close 
to that of a pure metal. For the same reason the shape of the shrinkage cavity in 
this case appears to depend little on the latent heat release model. Fig. 6.36c shows 
predicted cavities for the linear mode for is,er = 1.0 (simulation 83.7). 

The solidification times are (83.5) ts = 190.1 s, (83.6) t. = 192.5 s, and (83.7) 
ts = 193.6 s. The average ts is 8.5% larger than that for the pure metal simulation 
83.1 since the alloy solidus temperature is lower than the melting point of the pure 

metal. 

There is a slight increase in CPU time in the calculations for alloy modelling because 
temperature in every cell is found iteratively from the value of the enthalpy (see 
8ection 4.2.1). The number of iterations required is normally 2 or 3 leading to 
insignificant increase in computational effort: in average 10% per time step. 

6.2.4 Aluminium-Sand Boot-Shaped Casting 

Casting E4 of 8ection 6.1 has been simulated in three dimensions (simulation 84.1, 
Appendix A). As before, the pouring stage was substituted here by the instantaneous 
filling assumption at the uniform 10° /{ superheat. The top of the casting is open to 
atmosphere and insulated3

• Figure 6.37 shows the enmeshed part of the mould. As 
before, geometrical symmetry was used to simulate the solidification in only half of 
the casting. The total number of cells is 9361, of which 4,645 are open to the flow, 

i.e. VF < 1. 

3Free surface is an adiabatic boundary in all simulations in the present work. 
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The predicted solidification time is 556.1 s which is 13.5% larger than the experi­
mental value. Fig. 6.38 shows a sequence of 2-D centre plane sections of the casting 
and four 3-D views are given in Fig. 6.39. The predicted shape of the primary cavity 
in the feeder is in good agreement with the experimental result (Fig. 6.7). There is 
a small secondary cavity in the casting itself, indicating that the feeder is too small. 
The experimental casting, however, is sound. 

Feeding velocities in the liquid bulk do not exceed 0.4 mm/ s. The evolution of the 
metal volume, mean kinetic energy, iteration count and time step size are given in 
Fig. 6.40 and other calculation results for this simulation are presented in the table 

in Fig. 6.19. 

6.2.5 T-Shaped Sand Casting: Pure Aluminium 

In this Section simulation results of filling, solidification and shrinkage of castings 
E5-16 (Fig. 6.12) are presented. The alloy modelling is described in Section 6.3.4. 
Fig. 6.41 shows the mould and the casting, included into the enmeshed domain. 
Partially blocked cells are clearly visible in the feeder and sprue. A total of 46,816 
cells is used here, of which 14,551 are in the casting and the runner system. As 
is mentioned in Section 6.2.2, it is important to have the same mesh size along 
the metal/mould interface. This is easily implemented at plane interfaces, but it is 
impossible to have the same mesh resolution along the cylindrical feeder interface 
(and the conical sprue) in Cartesian coordinates. The open volume VF varies in 
cells at curved interfaces; hence the accuracy of the heat transfer flux calculations 
in these cells also varies according to Fig. 4.5. 

Only the bottom part of the pouring basin was included. A pressure boundary 
condition, linearly decreasing with time to approximate the change of pressure head 
in the basin, and a constant pouring temperature, obtained from the experiment, 
was set. The filling was assumed complete when metal in the feeder was at the 
level of the sprue entrance, as was done during the experiments. At that time the 
boundary pressure was balanced by the pressure head in the feeder and practically 
no liquid entered the casting. 

The filling time is controlled by the size of the choke, dch , at the bottom of the sprue 
in the same way as was done in the experimental procedure. The following are the 
results for vertical to horizontal section ratio, Ra/ b = 1.0; 

1. dch = 22 mm: tJili = 6.0 S; 
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2. dch = 15 mm: tfill = 7.02 Sj 

3. dCh = 8 mm: tfill = 22.5 s. 

Predicted and measured filling times for pure aluminium and dch = 8.0 mm and 
dch = 15.0 mm are compared in Fig. 6.42. Errors vary between -7.6% to 9.8% of 
the experimental times. 

Figure 6.43 shows a 3-D view of the filling process for dch = 15.0 mm. Sloshing 
and free surface break up are clearly visible in the horizontal section of the casting. 
Figure 6.44 gives a 2-D view of the filling with metal and mould temperature contours 
for the 80° I< superheat case (simulation S5.1). The evolution of the mean kinetic 
energy and total metal volume in the casting during filling are given in Fig. 6.45. 
The former serves as an indicator of the quality of filling. In the present case the 
kinetic energy has two peaks: one at the time when the metal hits the bottom of 
the sprue and the other, smaller, when the metal falls down the lower section of the 

T-junction. 

The effect of the filling time on the temperature distribution in the casting at the 
end of the filling is given in Fig. 6.46 where results for d ch = 15.0 mm and d ch = 
8.0 mm with 80° I< of the initial superheat are compared. At the end of the latter, 
slower filling, the T-junction has already started to solidify since the minimum 
temperature is 6° I< below the melting point. For dch = 15.0 mm there is still 
at least 25° I< superheat left in the metal after the pouring stopped. Thermocouple 
readings are also indicated for comparison for dch = 15.0 mm. The average deviation 
of the predicted temperatures from the experimental results is 9.2% of the maximum 
temperature difference in the casting (60° I<). The total solidification time appears 
to be virtually constant for all filling rates, including the instantaneous filling and 

equal to 475 s (Fig. 6.19). 

Solidification progress, feeding and shrinkage formation of simulation S5.2 are shown 
in Fig. 6.47. The initial metal superheat was 30° I<. A small liquid region became 
isolated at the T-junction leading to a shrinkage cavity there . 

. Figure 6.48 shows that the size of the cavity in the T-junction is practically inde­

pendent of the superheat. 

Figure 6.49. shows a 3-D view on the predicted shrinkage cavities for the three filling 
times and for an instantaneous filling, all with 80° I< superheat (simulations S5.3, 
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S5.1, S5.4 and S5.9, respectively). The shape of cavities in the junction is thin in 
the vertical direction and wide in the horizontal plane, similar to the experimental 
results (Figs. 6.lOb and 6.lla and castings E7-E9 in Fig. 6.12). The cavities lie 
mostly in the horizontal section slightly protruding into the vertical section. That 
the cavity size increases as the filling time decreases. There is no cavity when the 
filling time is 22.5 s (dch = S.O mm, Fig. 6.49a), and the cavity size-is maximum 
when the filling is excluded form the simulations (Fig. 6.49d). 

The general trend is that the faster the filling the larger is the cavity in the T­
junction. This may be explained by the fact that a slower filling results in a larger 
temperature gradient in the direction of feeder-junction at the end of the filling, 
thus promoting a directional solidification from the junction towards the feeder. 

Comparisons of the thermocouple readings at three locations in the metal with 
the predicted cooling curves for 500 s are shown in Fig. 6.50 for casting ES and 
simulation S5.1. The temperatures are shown in degrees Celcius. Thermocouples 
were placed at the T-junction, at the bottom of the feeder and at the bottom of the 
sprue. The simulation (broken lines) correctly predicted that 

• At the end of the filling stage, at t = 7 s, metal at T-junction has the lowest 
temperature and metal in the sprue is the hottest. 

• Metal at the bottom of the sprue freezes in around 100 8 after the beginning 
of the pouring. 

• Metal in the T-junction and at the bottom of the feeder freeze practically 
simultaneously arnoud 250 seconds after the beginning of the filling. 

A t the end of the filling stage, the measured temperatures are 726° C, 736° C and 
744°C, and the predicted ones are 726°C, 735°C and 745°C, respectively. At t = 
500 s, the largest error in the predicted temperatures, 80°, is at the bottom of the 
sprure, where the overall temperature variation was 350°. This may be explained by 
the lack of resolution in the sprue. The smallest error, 10°C, is at the bottom of the 
feeder where the temperature varied by 150°Cin 500 s. The error and the variation 
in temperature at the third location are 30°C and 2500

, respectively. 

The filling stage was simulated with f = 0.005 8-
1

. At the end of the filling cal­
culations were stopped and restarted from the same time with f = 0.00025 8-

1
. 

A smaller f was required during solidification because velocities are significantly 
smaller at this stage than during filling. The distribution of the variables at the end 
of the filling are used as the initial conditions for the restart calculations. The table 
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in Fig. 6.19 contains information on the mesh sizes, run times, time step sizes and 
dreezing times for this calculation. 

The influence of the geometry on the shrinkage in the junction is simulated for the 
fixed choke size dch = 15.0 mm with the two values of the pouring temperatures 
used in Section 6.S.5A. As in S5.1 to S5.3, each simulation here included filling, 
heat transfer, solidification and the use of the full shrinkage model M1. 

For Ra / b = 0.6 the castings appears to be sound irrespective of the pouring temper­
ature, in agreement with the experiment (Figs. 6.lOa and 6.51a, b). The pouring 
temperature also does not significantly affect the predicted defects in the T-junction 
for Ra / b = 1.67, where a large cavity is predicted in the vertical section of the T­
junction, as shown in Fig. 6.51c - J. This is in agreement with experimental result 
shown in Fig. 6.lOc. The lower part of the predicted cavity did not show the exper­
imental separate shrinkage defect in the T-junction. The difference may be due to 
air aspiration during solidification in the experiment, which was not accounted for 
in the simulation. 

6.3 Simplified Shrinkage Model (M2) 

In this Section the simplified shrinkage model M2 is tested against the experimental 
and M1 model results. Further modelling is carried out of the AI-4.5%Cu alloy 
T -shaped casting. In each case the geometry, mesh and initial conditions are kept 
the same as those in the corresponding full model calculations of Section 6.2. The 
only parameter needed to be changed in the input files was ISHR, which specifies 
the choice of a model (Section 5.3.1). 

6.3.1 Aluminium-Sand Cylindrical Casting 

The four meshes described in Section 6.2.2 are employed here to investigate accu­
racy of predictions and calculation speed of the simplified model. Simulations S2.11, 
S2.12, S2.13 and S2.14, correspond to simulations S2.1, S2.2, S2.3 and S2.4, respec­
tively. Figure 6.53 shows the final predicted cavities for the four cases and these are 

compared with those shown in Fig. 6.26. 
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The accuracy of the predicted final values of hsh are presented in Fig. 6.25b in per 
cent of the experimental result. The % errors of depth predictions are almost twice 
as large as those given by the full shrinkage model. This is despite the fact that 
~ Vp is practically exactly equal to the theoretical value. The volumetric error ~ Vc 
is zero in the M2 model since there are no volume errors associated with fluid flow 
an free surface advection. 

The overall cooling rate and metal volume evolutions for simulations 82.12 with the 
M2 model and 82.2 with the Ml model are compared in Fig. 6.54. In both cases 
the differences between the two model predictions are negligible compared with the 
total variation of the parameters. 

The total CPU time and the CPU time per time cycle for simulations 82.1-82.4, using 
the Ml model, and for simulations 82.11-82.14, using the M2 model, are plotted in 
Fig. 6.55. Due to the fast convergence of the Ml model solution for this casting, the 
CPU time per time step for the M2 model constitutes only 30 (simluation 82.11) 
to 80% (simulation 82.14) of that of the Ml model. Additional gain in speed for 
the M2 model is due to larger time step size, so that, for example, for the S2.14 
simulation the total CPU time is more than 10 times smaller than that for the S2.4 

simulation. 

6.3.2 Chill Mould Cylindrical Casting 

8imulations of castings, described in 8ection 6.2.3, were repeated usmg the M2 

shrinkage model. 

A. Pure Iron. Simulation S3.1 was repeated with the simplified shrinkage model 
(S3.11). Figure 6.56 shows the progress of solidification with temperature contours 
and solidification front position for pure iron solidification. The final shapes of the 
cavities predicted by M1 (Fig. 6.32e) and M2 models are similar. The solidification 
times predicted by the two models differ by 2.5 s which constitutes 1.4% of the 

average time. 

The time step size was tl.t = 1.36 s, which is 186 times larger than that for the M2 
model simulation. The total CPU time is only 13.4 s, that is 730 times smaller than 
that for the Ml model. The predicted change of volume ~ v" constitutes 99.997% 
of tl. vth, achieving a better accuracy than that of the M1 model. 

B. Alloy Steel. 8imulations S3.5 (is,er = 0.67) and S3.6 (isler 1. 0) were also 
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repeated using the M2 model (S3.15 and S3.16, respectively). Figure 6.57a, b shows 
results of the shrinkage cavity predictions which are close to those shown in Fig. 
6.36a, b of the M1 model. The total solidification times for cases S3.5 and S3.15 are 
190.1 sand 189.0 s, respectively, differing by less than 0.6%. 

The metal volume evolution for the pure iron and the alloy (Is,er = 1.8), calculated 
by the M2 model, are given in Fig. 6.58. It takes 11 s (6.2 %) longer for the alloy 
to solidify because pure metal freezes at a higher temperature. 

The M2 model alloy simulations took 270 times less CPU time than those by the 

M1 model (Fig. 6.19). 

Unlike simulations S2.11-14 for the aluminium-sand cylindrical casting, The M2 
model shrinkage predictions for the chill mould iron and steel castings are similar to 
the results of the M1 model. This indicates that fluid flow and energy advection were 
less important in the chill mould casting solidification than it were in the aluninium­
sand mould one. The reason for that could the fast solidification of metal in the 
chill mould, more than 6 times faster than the solidification in the sand mould. 

6.3.3 Aluminium-Sand Boot-Shaped Casting 

The simplified shrinkage model was employed to repeat simulation 84.1 of Section 
6.2.4 (simulation 84.11). Figure 6.59 shows the progress of the solidification and 
shrinkage formation in the centre plane. Following a tendency of the simplified 
model to give shallower cavities for solidification in sand moulds than the full model, 
the shrinkage cavity in Fig. 6.59f does not penetrate as far into the casting as does 
the one in Fig. 6.38f. The difference between the predictions of the two model in 
this case is in favour of the M2 model since its result is closer to the experiment 

(Fig. 6.7). 

The cooling rate and volume evolution are given in Fig. 6.60 in comparison to the 
Ml model results. The simplified shrinkage model gives the exact shrinkage volume 

while the full model underestimates it by 6.7% of the total shrinkage volume due to 

convergence errors. 

The M2 model took 7 times less CPU time to complete the calculations and the 
average time step was two times larger than those in the M1 model simulation. 
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6.3.4 T-Shaped Casting: dch = 15.0 mm 

Shrinkage simulations of the T-shaped casting using the M2 model were initiated 
by restarting the program from the moment the filling stage ended, i.e. the filling 
stage and the starting conditions are exactly the same for both shrinkage models. 
However, all velocities were set to zero when the simplified model was-switched on. 

Simulations were made only for the pouring temperature of T = 10130 J( (80 0 J( 

superheat) since the full model (Section 6.2.5) and the experimental results showed 
little variation of the shrinkage in the T-junction with the initial superheat. The 
choke size was also fixed at dch = 15.0 mm. 

6.3.4.1 Pure Aluminium: Ra/b = 1.0 

Simulation S5.1 was repeated using the M2 model (S5.11). Figs. 6.61 and 6.62 show 
a 2-D and a 3-D view, respectively, on the progress of solidification. The 3-D plots 
clearly show the shape of the liquid region and the feeding path to the T-junction. 
At t = 300 s the path thinned, and froze over at a later time, resulting in a shrinkage 
cavity in the junction. The final shape and position of shrinkage cavities shown, in 
Fig. 6.61d, are close to those given in Fig. 6.48a. Solidification time predicted by 
the M2 model is 510.0 s which is 7.4% larger than that predicted by the Ml model 
(475 s). The results of the two models are similar, although the Ml model gives a 
slightly smaller cavity in the T-junction and a deeper cavity in the feeder, the latter 
being closer to the experimental result. 

If an instantaneous filling is assumed then the cavity in the junction is larger, posi­
tioned higher and further away from the feeder suggesting that the horizontal section 
of the junction freezes earlier (Fig. 6.63). This result is predicted by both models 

(simulations S5.1O and S5.12). 

When the filling stage, which is the same for both models, is included, the gain in 
speed for the simplified model is by the factor of 4.3. If only the solidification stage 
is considered, then the increase in speed is by a factor of 6.1. 

Given that the results of the two models differ little, the M2 model can be used 
to carry out efficiently a number simulations with varied physical and/or numerical 
parameters. In this particular case the following four variation fo the mould design 
were made in an attempt to eliminate the cavity in the T-junction: 

1. S5.13: a chill block placed along the vertical section of the T-junction (Fig. 
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6.64a). 

2. S5.14: an insulating pad, 10 X 50 X 100 mm3
, placed underneath the horizontal 

section close to the junction (Fig. 6.64b). 

3. 85.15: an insulating pad, 10 X 100 x 100 mm3
, placed underneath the horizontal 

section (Fig. 6.64c)). 

4. 85.16: an insulating pad, 10 x 50 x 100 mm3
, placed underneath the horizontal 

section away from the junction (Fig. 6.64d). 

The cavity in the junction disappeared in cases 1 and 4, in agreement with the 
experimental result (Figs. 6.65 and 6.15). No experimental data is available for 
comparison for the other two cases. In case 2 the cavity became even larger since so­
lidification in the junction progressed slower and a larger liquid volume was trapped 
there when the horizontal junction froze to the right of the insulator. In case 3 the 
cavity, though very small in size, moved away from the junction but remained in 

the horizontal section. 

6.3.4.2 AI-4.5%Cu Alloy 

In this 8ection simulation results of solidification and shrinkage of castings E17-
21 are presented. In particular, the influence of the critical fraction of solid value 
is,er on the predicted defects is investigated. The filling stage was included in the 
calculations in the same manner as that for pure aluminium simulations. Predicted 
filling times for the pure metal and the alloy are similar as shown in Fig. 6.19. The 
difference between the two suggests that metals partially solidify and remelt during 
filling. Figure 6.66a shows the distribution of temperature at the end of the alloy 
filling for Ra/ b = 1.0. The lever rule was used for all simulations below. 

A. Ra/b = 1.0. For Ra/b = 1.0 there was no macroshrinkage in the T-junction for 
is,er = 0.67 (85.16) and for is,er = 1.0 (85.17), as shown in the experment (Figs. 
6.66b, c and 6.16a). Figures 6.66b, c show distributed microporosity of less than 2% 
exists for the lower value of ill,er and zero microporosity is predicted for f.,er = 1.0. 

The predicted total solidification time for alloy is 920 s which is substantially longer 
than for the pure aluminium, 473 s. The experimental time is 870 s. Figure 6.67 
shows calculated and measured cooling curves in the metal at the T-junction and 
in the middle of the horizontal section for Ra/ b = 1.0 (simulation 85.16). Predicted 
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cooling curves are similar to the experimental ones. The maximum deviations be­
tween the computed and measured temperatures are at the end of the simulation, 
t = 1000 s, and are 35°C in the T-junction and 15°C in the horizontal section. 

B. Ra/b = 1.67. Four values of is ,er=0.67, 0.8, 0.9 and 1.0, were tested in the 
simulation of the casting with Ra/ b = 1.67. Figure 6.68 shows predicted porosity 
distributions. A macro-cavity in the T-junction can be distinguished only for the 
first two cases. It is interesting to note that the position of the cavity is the same 
in both cases, though the volume is larger for iSler = 0.67 that for is,er = 0.8. 
Experimental results show a cavity in the junction located lower than predicted in 
these two case (Fig. 6.16b). 

The degree of the distributed microporosity varies in the four cases, increasing for 
smaller values of iSler, never exceeding experimentally measured porosities of 1 to 
2.5%, if Is,er ~ 0.67. For iSler = 1.0 the casting is completely sound which is never 
the case in the experimental castings due to the presence of dissolved gasses in the 

melt. Predicted solidification times vary with the value of is,C'r: from ts = 840 s for 
iSler = 0.67 to ts = 800.0 s for iSler = 1.0. The experimental solidification time is 

770 s. 
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Figure 6.1. (al The overall geometry of casting E1 with an insulator 

flux fitted after the pouring; (b) the dimensions of the 
mould ai and distances di from the thermocouple positions 

to the nearest interface. 



Figure 6.3. Primary shrinkage cavity in aluminium­

sand casting Ea. 
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Figure 6.4. overal geometry (a) and dimensions (b) of the chill mould 
cylindrical casting in mm (castings E2 and E3). 



(a) (b) 

Figure 6.S. Shrinkage cavities in (a) iron-chill 
casting E2 and (b) O.6%C, 1.1%Mn, O.2%Si 
steel casting E3. 
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Figure 6.6. The overall ge ome try (a) and dime nsions in mm (b) of the 

boot-shaped casting (E4). 



Figure 6.7. Shrinkage cavity in aluminium-sand 

casting E4. 
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Figure 6.8. (a) Geometry and dimensions and (b) pouring method 

for the T-shaped casting. 



Figure 6.9. General view of the aluminium-sand 
T-shaped casting ES. 



(a) (b) 

Figure 6.10. centre-plane sections of aluminium castings 

(a) ES (R=O.6), (b) E8 (R=l.O) and (c) E14 
(R=l. 67) • 

(c) 



(a) (b) 

Figure 6.11. Variation of the cavity shape and position 

in the T- junction for castings with R=l.O: 
(a) E8 and (b) E12. 



Experiment Choke size Initial 
Geometry Filling Macro-shrinkage in 

No. dch' (mm) 
superheat 

R time, s the T-junction 
oK 

pure aluminium 

ES 15 963 0.6 5.8 
sound 

E6 15 1013 0.6 6.0 

E7 8 1013 1.0 2O.S 

E8 15 1013 1.0 6.8 -
E9 8 963 1.0 21.0 

EIO 15 963 1.0 6.8 

Ell 22 1013 1.0 5.0 ~ 
EI2 15 1013 1.0 6.8 

El3 15 963 1.67 72 , 
E14 15 1013 1.67 7.0 , 

AI-4.5%Cu aUoy 

E17 

E18 

E19 

E20 

E21 

15 963 0.6 5.8 sound 

15 963 1.0 6.9 
sound 

15 1013 1.0 6.8 

15 963 1.67 7.1 

15 1013 1.67 7.0 

Figure 6.12. Sununary of the T-shaped casting experiments in all-sand 
mould. 



(0) 

(1)) 

Flgul'c 6.13. X-ray photographs of the vertical and 
horizontal sections of castings (a) E8 and 
(b) E12 (see figure 6.11). 



(a) 

lOmm 

(b) 

Figure 6.14. The chill block (a) and the insulating pad (b) experimental 
setup for the T-shaped casting. 



(a) (b) 

Figure 6.15. centre- plane sections of T-shaped castings 

(a) with the chill and (b) with the insula­
ting pad (R=l . O). 



(a) (b) 

F~ure &1& Centre- plane sections of Al- 4 . S%Cu castings 

(a) El9 (R=I.O) and (b) E21 (R=I.67). 



(a) (b) 

Figure 6.17. Typical primary cavities in the feeders of 

T-shaped castings: (a) aluminium and (b) 
Al-4.S%Cu. 



Sim. number of problem ( average number of total CPU CPU per 
No. mesh cells time, 8 8-1 iter. no time steps time, 8 time step, 8 

S1.1 150 50 0.001 20 1820 135 
S1.2 81 22 10-0 10 1063 36.25 
S2.1 90 1200 0.0001 3 1402 42.5 
S2.2 360 1200 0.0001 4 8966 808.8 
S2.3 1000 1200 0.0001 4 28545 7557 
S2.4 3240 1200 0.0001 15 82503 103710 
S2.5 627 1200 0.0001 3 89905 15800 

S2.12 360 1200 - - 6930 313 
S2.24 360 1200 0.01 4 63714 6856 
S2.34 360 1200 0.01 5 71901 6725 

S3.1 530 200 0.001 45 19454 9813 
S3.5 530 200 0.001 50 10755 4900 
S3.6 530 200 0.001 40 14810 7785 
S3.7 530 200 0.001 40 9386 5013 
53.11 530 200 - - 200 18.23 
S3.21 530 200 0.001 35 21850 7972 

S4.1 " 6300 600 0.0001 75 36315 104000 

S4.11 " 6300 600 - - 25800 14800 

S5.1" 36244 7.5 0.005 40 7877 139200 
55.1/1 36244 500 0.0002·5 120 43820 193000 

55.110 36244 500 - - 20835 78270 
S5.17° 36244 1000 - - 35801 137200 

Gonly filling 
~only solidification and shrinkage 

Figure 6.19. Sununary of calculation efficiency information 
for a selection of simulations. 
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0.0 
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fraction of solid - _: 
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150.0 nun 
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150.0 nun 

Figure 6.20. 2- D simulation Sl.l. (a) Feeding occurs from section B to A 
(mesh is also shown); (b) sections A and B a fed independently 
when the narrow passage C solidifies. Colours denote solid 
fraction d i stribution. 
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Figure 6.21. (a ) Pressu re and verti cal velo c i t y (red line ) h istories 

i n the middle of s e ct ion A in f i gure 6.2 0 ; (b) iterat ion 
count , (c ) metal volume a n d (d ) mean k inetic energy evo­
l u tions f o r simulation 81. 1 . 
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Figure 6.22. Predicted porosity in em3 in simulation Sl.l. 
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Figure 6.23. Simulation S1. 2 . (a) Predicted porosity ; (b) Temperature 

contours at the beginning and at the end of solidification ; 
(c ) Mould temperatures at the end of solidification. 
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Figure 6.24. The initial conditions and mesh for simulation 52 . 2 . 
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Figure 6.25. Influence of mesh resolution on shrinkage simulation results: 
(a) time step size, total CPU time and CPU time per time step 
for simulations 52.1-52.4; (b) cavity depths predicted by the 
full shrinkage model (52.1-52.4) and the simplified model 
(s2.1-52.4) and predicted freezing times (s2.1-S2.4)1 (c) 
volumetric error due to convergence and total volumetric error 
in per cent of the shrinkage volume and average feeding flow 
velocity (Simulations 52.1-52.4). Framed markers shows results 
of simulation 52.5. 
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Figure 6.26. Predicted primary cavity shapes with metal temperature 

distributions for s imulations S2 . 1- 4: (a) N= 90 ; (b) N=360 ; 
(e) N=1000 and (d) N=3240 (N - the total number of cells) . 
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(a) t=400 s (b) t=600 s 

vmax=O.19 mm/s Vrnax=O.O mm/s 

(c) t=800 s (d) t=l000 s 

Figure 6.27. Simulation 52 . 2 : the progress of solidification and 
shrinkage . Colours denote temperature distribution 
in metal and mould . 
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Figure 6.28. Simulation 52.2: horizontal (a) and vertical (b) velocities 
in the centre of the casting. 
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Figure 6,29. Simulation S2. 2: (a) time step size, (b) iteration 
count, (c) metal volume and (c) metal mean kinetic 
energy. 
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temperature, 
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Figure 6.30. Simulation S2 . 5: (a) the non- uniform mesh setup 
and (b) temperature distribution and cavity shape 
at t =1,200.0 s. 
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Figure 6.31. Temperatures histories predicted in 
simulation 55.1 (crosses) and measured 
(solid line) in (a) casting centre, (b) 
three location in the mould wall and (c) 
three loc ations at the mould bottom as 
shown in f igure 6.1,(b). 
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Figure 6.32. Pure iron solidification simulation S3.1: (a) The enmeshed 

domain. Temperature distributions and cavity development at 
(b) t =50 Sf (c) t =lOO Sf (d) t =150 S and (e) t =200 s. 
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Figure 6.34. Fluid function distribution for pure 

(a) uniformly smaller heat transfer 
h . t.c only in the lower half of the 
h.t.c only in the upper half of the 
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iron simulations 
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casting and (c) 
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Figure 6.35. Simulation 83 . 6 : fraction of solid function disctibution 

for alloy steel solidification at (a) t =50 s, (b) t = lOO s 
and (cl t=lSO s. 
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Figure 6.36. Predicted cavity shapes and porosity for alloy steel 

simulations S3. 5- 7 : (a) fscr=O. 67, (b) fs cr=1. 0 (lever 

rule) and (c) fscr=l.O (linear latent heat release ) . 

There is a 1% microporosity in case (a). 
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Figure 6.37. The enmeshed domain for boot-shaped casting simulation 
54.1: (a) x-y plane, (b) y-z plane and (c) x-z plane. 
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Figure 6.38. Boot- shaped casting simulation 84.1. Vecolities and 

temperature contours: (a) t=100.0 s , (b) t=300.0 s, 
(c) t=500 . 0 s and (d) t =600.0 Si (e) the distribution 
of the f l uid fraction function in the solidified 
casting. 
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Figure 6.40. Boot-shaped casting imulation S4.1: (a) time step size, 
(b) iteration count, (c) metal volume and (d) metal mean 
kinetic energy. 
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Figure 6.41. The enmeshed domai n for the T-shaped casting simulat i on : 

(a ), (b ). x - y plane views ; (c ) x - z plane , (d) a 3- D view 
of t he mo uld cavity and the intial position of the metal 
highlighted with red colour . 
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0.6 15.0 5.92 6.5 

1.0 15.0 6.82 7.02 

1.0 8.0 20.75 22.5 

1.7 15.0 7.1 6.56 

Figure 6.42. comparison of predicted and measured filling 
times for T-shaped casting. 
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Figure 6.43. Simulation S5. 1: filling sequence (the mould surface is 

outlined in red) : (a) t;O.Ol s, (b) t;O.7 s, (c) t;1.0 s, 
(d) t;2.4 s, (e) t - 3.9 s and (f) t;7.0s. 
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Figure 6.44. Simulation 85.1 : Temperature distributions a nd velocities 
during filling at (a ) t =2. 0 s , (b) t=4. 0 s a nd (e) t = 6. 0 s . 
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Figure 6.45. Simulation S5.1: (a) mean metal kinetic energy and 

(b) metal volume evolution during filling. 
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Figure 6.46. Temperature d i s t ribution and velocit i es at the end of 

the filling for (a) 15 mm choke , t =7 . S s (simulation 
SS . I ) and (b) B rom choke at t =22.0 s (simulation SS.3 ). 

The initial s uperheat in each case is BOOK . Maximum 
velocities are shown in cm/s . Arrows show the thermo­
couple posi t ions with the measured (red) and predicted 
(black) t empe r ature s . 
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Figure 6.47. Simulation 85.2: Temperature distribution, velocities and 

solidification front position at (a) t =120.0 s and (b) 
t=180.0 s; (c) Porosity distribution in the solidified 
casting. 
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(c) (d) 

Figure 6.48. Predicte d porosity in the T- junction for (a ) superheat 80 0K, 

filling time 7 . 0 s ; (b) superheat aOOK , instantaneous filling ; 

(c) superheat 30 0K, filling time 7 . 0 s ; (d) superheat 30 0K, 
instantaneous filling . 
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Figure 6.49. Predi cted cav ities f o r (a) 8 mm c hoke , (b) 15 mm choke , (c) 22 mm choke 
and (d) 155 mm choke with an instantaneous filling. 
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(e) 
(f) 

Figure 6.5L Simulat i ons S5. 4- 7. Porosity di s tribution : (a) R=O. 6, 

superheat 300K~ (b) R=O.6 , s uperheat SOa K, (c ), (e) R=1.67 , 

superheat 300K and (d) , (f) R=1 . 67, superheat SO OK. 
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Figure 6.53. Predicted primary cavity shapes with metal temperature 

distributions using the M2 shrinkage model for simula­
tions S2 . 11-14 : (a) N=90; (b) N=360; (c ) N=1000 and (d) 
N=324Q (N - the total number of cells). See figure 6.26 . 
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F~re 6~. (a) Metal volume and (b) total enthalpy evolutions 
for cylindrical casting simulations 82.2 (full model, 
black) and 82.12 (simplified model, red). 
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Figure 6.55. Total CPU time and CPU time per time step as 
functions of the uniform mesh cell number for 
the full shrinkage model HI (simulations 52.1-
52.4) and for the simplified shrinkage model 
H2 (simulations 52.11-52.14). 
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Figure 6.56. Pure i ron solidification simulation S3 . 11 u sing the M2 

model. Temperature distributions and cavity development 
at (a) t=50 s , (b) t=lOO s, (c ) t=150 s and (d) t =2 00 s . 
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F~re 657. Predi cted cavity shapes and porosity for alloy steel 

simulations S3.15 and S3 . 16 using the M2 model : (a ) 
fs cr=O. 67 , (b) fs cr=1.0 . The r e is a 1% microporosity 

in case (a). 
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Figure 6.58. Metal volume evolut ion: pure iron (black) and alloy 

steel (red) simulated by the simplified model. 
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Figure 6.59. Boot- shaped casting simulation 54 . 11 using t he M2 model . 

Temperature contou r s : (a) t=O. 0 s , (b) t =1 00 . 0 s , (c ) 
t=300 . 0 s , (d ) t=500.0 s a nd (e ) t=6 00 . 0 S j ( f ) t he 
distribution of the flui d fraction f unction in the 
solidified casting . 
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Figure 6.60. (a) Metal volume and (b) total enthalpy evolutions 

for boot - shaped casting simulations S4.1 (full model, 
black) and S4.11 (simplified model, red). 
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Figure 6.61. Simulation 85.11: temperature contours and 

solidification front position at (a) t =2 00 s, 
(b) t =300 s and (c) t =400 s. (d) fluid fraction 
contour s in the solidified casting. 
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(c) (d) 

(e) 

Figure 6.62. Simulation S5. 11: 3-D plots of the overall fluid 

(black) and liquid (red) regions. (a) t=lOO s, (b) 
t=200 s, (c) t=300 s, (d) t=400 s and (e) t=500 s. 
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FIgUre 6.63. Fluid fraction distribution for an instantaneous 

filling with 30 0 K superheat: (a) Ml model (85.10) 
and (b) M2 model (55.12) . 
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Figure 6.64. (a) The chill block in simulation S5.12, (b) insulator il 

in simulation S5.13, (c) insulator i2 in simulation S5.14 
and (d) insulator i3 in simulation S5.15 for the T-shaped 
c asting . 
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Figure 6.65. Predicted fluid fraction distribution in metal and 
temperature contours in mould for (a) simulation 
55.12 with a chill, (b) - (d) simulations 55.13-55.15, 
respectively, with insulators (see figure 6.64). 
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Figure 6.66. Al-4 . 5%Cu alloy , R=1.0. (a) Temperature dist r i but i on a t 

the e nd of filling , t=7 . S s; flu id fractio n d ist ribution 
i n the solidified casting at t=lO OO s : (bl f s , c r = O. 67 

and (cl fs , cr=l . O. 



Cooling curves of AJ-4.5Cu Alloy 
simulation S5.16. R=1.0 
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Figure 6.67. cooling curves at two locations in the Al-4. S%Cu 
T-shaped casting (simulation 55'.16 I R=l.O) z 
predicted (thin lines) and measured (heavy solid 
lines). 
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YJgure 6.68. F l u i d f raction d istribution at the end of solidification 
f or Al-4. 5%Cu alloy , R=l. 67 , at t=lOOO s : (a) f s , cr=O. 67, 

(b ) f s , cr=0.8, (c) f s ,cr=0.9 and (d ) fs,cr=l.O. 
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Chapter 7 

Discussion 

7.1 Physical Models 

Simulations of filling and feeding flows in a variety of castings demonstrated the ad­
equacy of the use of the Navier-Stokes model of an incompressible fluid. Predicted 
filling times for the T-shaped castings matched the experimental results with an 
average error of only 7%. In the full model volumetric changes due to phase trans­
formation were described by introducing a volumetric source term in the continuity 
equation at the liquid/solid interface. Simulations have predicted shrinkage volume 
to 1 % of the theoretical value defined by the values of the solid and liquid phase 

densities, Eq. (6.1). 

The model did not include gas evolution in the liquid metal. Experiments showed 
that this assumption is valid for thoroughly degassed melts. A significant gas content 
led to a substantial micro-porosity in the solidified casting which was not predicted 

by the shrinkage model. 

The Reynolds number in the predicted feeding flows varied in the range between 
0.0 and 100, indicating the importance of viscous stresses in the balance of forces 
acting on the luquid metal. Predicted feeding flow velocities are of the order of 
0.01- 0.1 mm/ s for sand castings and 0.1-1.0 mm/ s for chill mould castings. This 
is in agreement with experimental results and other computer simulations. Tsai [133] 
showed that feeding flow velocities can be of the same order of magnitude as those 
occurring during metal thermal and solutal convection and predicted velocities of 
around 0.1 - 0.7 mm/s for a 1% Cr steel. Maples and Poirirer simulated solutal 
convection in a AI-4.5%Cu alloy with velocities of up to 0.03 mm/ s [132]. 
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Natural convection effects were not included in simulations to simplify the analysis. 
Thermal and solutal convection in feeders would increase heat exchange in the ver­
tical direction resulting, in general, in a deeper primary cavity. The depth of the 
latter was largely underestimated in simulations of the aluminum-sand cylindrical 
casting and the T-shaped casting where a large feeder was present. generally, the 
primary cavity depth in a feeder is defined by the ratio of the heat flux qh through 
the sides and the top of the feeder to the heat flux qll at the feeder's bottom. The 
smaller the ratio qh/911 is the smaller is the depth of the cavity. In the extreme case 
of % = 0 (a fully insulated feeder) the surface of the solidified metal in the feeder is 
flat and aligned with the horiztontal plane. 

The error in predicted depth of the primary cavity was more significant in alloy 
T-shaped casting simulations (Figs. 6.17b and 6.67). This indicates that the largest 
source of the inaccuracy in alloy modelling was the solidification model. For the 
AI-4.5%Cu alloy the solute is heavier than the solvent so that liquid with smaller 
solute content would accumulate at the top of the feeder leading to an increase in 
the local values of T/ and Ts thus accelerating the solidification process at the feeder 
top. The latter would increase the effective value of qh leading to a deeper cavity. 
The employed alloy solidification model did not include segregation and diffusion of 
the alloy components. Instead, a simplified approach was taken by using the lever 
rule. Further errors were introduced by the numerical implementation of the lever 

rule (section 2.8). 

Free surface was treated as an adiabatic boundary neglecting radiative and convec­
tive heat losses into atmosphere. To study the effect of these losses on the primary 
cavity depth a test simulation was carried out for the cylindrical casting shown in 
Fig 6.3 in which the insulator was replaced by sand. (simulation 82.45 with the 
non-uniform mesh shown in Fig. 6.30a). This modification was introduced to ap­
proximate an additional heat loss due to radiation since the latter could not be 
modelled directly. The final cavity shape is shown in Fig. 7.1 and its depth differs 
from the experimental result by only 5% compared to the 21 % error when the insula­
tor was used (Fig. 6.30b). This result indicates that an inclusion of a non-adiabatic 
boundary condition and free surface may imporove the accuracy of the shrinkage 

model. 

In all simulations material properties of metal solid and liquid phases and those 
of mould were assumed to be temperature independent. This assumption might 
be a source of additional errors in temperature predictions shown Figs. 6.31, 6.50 
and 6.67. It is well known that thermal properties of sand are especially sensitive 
to temperature variations [134]. However, small differences between predicted and 
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measured temperatures in Fig. 6.31, less than 10% in average, indicate that these 
errors are insignificant. 

Metal/mould heat transfer coefficient in sand castings was defined assuming good 
contact between the two materials. This worked well while the metal was liquid as 
can be seen in Fig. 6.50 where temperatures at three locations for pure metal T­
shaped casting are shown. After metal solidified in the T-junction and in the sprue, 
the difference between predicted and measured temperatures increase substantially. 
The measured cooling rates are smaller than the predicted suggesting that heat 
transfer coefficients at these locations decreased as metal solidified, perhaps, due to 
the formation of air gaps between the solidified metal and the mould. Predicted 
temperature at the bottom of the feeder stays close to the measured one until the 
end of the simulation. This indicates that no gap formed at this location, possibly 
due to the shear weight of the feeder. In the case of the alloy, differences in the 
measured and predicted temperatures are smaller and do not change abruptly after 
the metal solidified (Fig. 6.67). As in the case of the pure metal, it can be seen 
that predicted cooling rates at these locations are higher than the measures ones 
indicating that smaller air gaps, if any, have formed in the alloy casting, perhaps, 
due to the semisolid nature of the mushy zone during solidification. 

Observations of the experimental T-shaped castings showed that the shape and 
volume of the internal cavity in the T-junction might be changed due to deformation 
of the solid metal (Fig. 6.11b). The deformation occurs because ofthe low pressure in 
the trapped liquid metal as it solidifies and shrinks. This deformation led to tearing 
of the solid metal and penetration of air into the metal through the permiable mould 
resulting in a cavity with charateristically smooth edges (Fig. 6.13b). These effects 
could not be predicted by the developed models since neither solid phase deformation 
nor air flow through the mould walls were included in the modelling. However, in 
most of the experimental castings these effects were small or were not present at all. 

7.2 Numerical Modelling 

The main part of the numerical description of liquid metal flow is the VOF method 
of tracking free surfaces. It is also employed in the shrinkage models to describe 
shrinkage defects in solidifying castings. Comparisons with the experimental resutls 
show that the VOF method is an efficient and accurate method for modelling both 

filling and shrinkage cavity formation. 

Upwind differencing method for the approximation of the advection terms in Navier-
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Storkes and energy equations, central differencing for the approximation of viscous 
terms and the SOR iteration technique for the solution of the coupled pressure­
velocity equations provided sufficiently accuarate solutions for the liquid metal flow. 
This can be seen from the comparison of the predicted and measured filling times for 
the T-shaped castings (Fig. 6.42). The simplicity of the numerical implementation of 
the SOR iteration method allowed the source terms, associated with the volumteric 
shrinkage, to be easily incorporated into the solution algorithm. In general, the 
development of the shrinkage models on the basis of an existing general purpose 
eFn code proved to be highly efficient. 

7.2.1 Accuracy and Efficiency of Calculations 

The accuracy of the predictions of shrinkage volume were defined mainly by the value 
of the convergence criterion f. However, in the case of the sand mould the depth of 
the primary cavity was always underestimated when compared with experimental 

results. 

As was mentioned in Section 7.1, the primary cavity depth in a feeder is proportional 
to the ratio of the heat fluxes qh and qu' Several additional factors may have led to 
an underestimation of qh/ qv in the simulations: 

1. The interfacial heat flux at the vertical sides of the feeder may be underesti­
mated due to the lack of mesh resolution. It was shown in Section 4.1 that the 
flux is dependent on mesh size and the related value of the open volume VF in 
the interfacial cells (Figs. 4.3-4.5). That might apply to the T-shaped casting 
since the resolution in the casting is better than that in the feeder, as can be 
seen in Fig. 6.41. However, this dependence was removed in the cylindrical 
sand-mould casting simulations S2.1-S2.4 by employing uniform meshes. In 
this case all interfacial cells have the same size, therefore the heat transfer 
coefficient, Eq. (4.13), and truncation errors in the metal/mould heat flux 
calculation, Eq.(4.14), are the same in these cells. Here, even with the finest 
mesh (S2.4) the cavity depth was still 14% smaller than the experimental result 
(Figs. 6.25 and 6.26). 

2. Finite mesh resolution introduces error in representing the free surface of the 
solidifying cell adjacent to the wall. This error affects the shape of the feeder 
cavity. Figure 7.2 shows that in solidifying surface cell, the fluid level drops 
lower than it would if there was a finer resolution in the horizontal direction 
to resolve the curvature of the free surface in the interfacial cell (shaded area). 
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The discrepancy is greater for pure metals since the liquid flow seizes only 
when fs = 1 in the cell. If the free surface in the first cell freezes at 8h I lower 
than the correct position, then the metal volume 8h I Al is equally distributed 
between the rest of the liquid surface cells, where Al is the cell area in the 
horizontal plane. As a result the liquid level in these cells is higher than the 
correct value by 

8h = 8h l Al 
Ao 

where Ao is the total area of the remaining liquid surface cells in the horizontal 
plane. Further error is introduced when the second cell solidifies and so on. 
Since the total cavity volume is predicted accurately, the final cell to solidify, 
which actually defines the cavity depth, accumulates all the errors. The error 
becomes larger for cylindrical feeders where, as the freezing front moves to­
wards the feeder axis, Ao decreases as r decreases, therefore, 8h grows as l/r, 
where r is the distance from the axis. 

The mesh related factors can be decreased by refining the mesh and using a 
uniformly spaced mesh. 

3. An error could result from assuming conduction heat transfer between the 
centre of liquid interfacial cells and the interface (Eqs. (4.9), (4.10) and (4.22)­
(4.24)). Hoadley et al [131] showed that convective heat transfer resulting from 
liquid flow may be significant. The ratio of the heat transfer by convection to 
conduction is described by Rayleigh Number [4] 

where L is the characteristic length, f3 the coefficient of thermal volume ex­
pansion, and ~T the temperature difference across L. For a typical cell di­
mension of L = 5 mm, tlT ~ 100° I< and for pure aluminium NRa < 0.1. This 
is comparable with the error, 14%, in the shrinkage cavity depth prediction. 
An inclusion of the convective heat transfer would increase the cavity depth 
since it occurs mainly at the vertical interfaces (because feeding and thermal 
convection occur mainly in the vertical direction), thus, increasing the ratio 

qh/qv' 

The position and size of the secondary internal cavities were predicted with good 
accuracy, especially for pure metals. These are less dependent on the accuracy of 
free surface description but an accurate calculation of the interfacial heat fluxes is 

also crucial. 
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An important feature of the secondary internal cavities in the T-junction is their 
dependence on the filling time as shown in Fig. 6.49. The slowest filling time of 
22.5 s ensures a sound casting. This result supports the general idea that the final 
casting quality depends on the filling parameters. However, this dependence was 
not observed in the experiments where variation in the size of the secondary cavity 
for the same filling rate was comparable, or even larger, to the predicted variation 
for different filling rates. 

Despite improvements made by modifying the original heat transfer algorithm of 
FLOW-3D (see Section 4.1), the mesh dependence of the interfacial heat flux is a 
significant shortcoming of the present model. The use of a uniformly spaced mesh 
is not the ultimate solution since the results also depend on the value of VF in the 
interfacial cells and the variation of the latter is inevitable for curved mould surfaces. 
The use of very fine meshes is restricted by hardware limitations. At present the 
total cell number of 50,000 appears to be the limit. 

A solution to the mesh dependence problem could be the use of analytical functions 
to describe the heat flux at the interfaces [66,93,95,96]. However, this remains 
restricted by the small number of available analytical solutions. 

The deficiencies of the heat transfer algorithm are clearly shown in the comparisons 
of the temperature histories (Figs. 6.31 and 6.50). The solidification time for the 
aluminium-sand cylindrical casting is about 26% above the experimental value of 
754 s for the finest mesh (simulation S2.4). Additional errors are introduced by 
the use of constant metal and mould thermal properties and constant interface 
thermal resistances. However, these may not be crucial for accurate shrinkage defect 
predictions as has been shown for the chill mould casting (simulations S3.1-S3.4 in 
Fig. 6.34). These show that it is not the absolute value of the heat flux, but its 
variation along the interface that largely defines the position and size of the cavities 
in the solidified casting. The latter also indicates the necessity of modelling the 
formation of a gap between the mould and the metal. A gap of 0.05 mm can lead to 
an increase in the interfacial thermal resistance by up to two orders of magnitudes as 
shown by Hou and Pehlke [24]. These authors also demonstrated that temperature 
prediction may be improved if an experimentally measured time-dependent heat 
transfer coefficient is used in the calculations. 

A problem for alloy solidification modelling was posed by the use of the critical 
fraction of solid as the feeding criterion. It was shown in simulations S5.18-S5.21 in 
Fig. 6.67 that the size and even the occurrence of the internal macro-porosity in the 
T-junction was sensitive to the value of f.,cr' These simulations were expected to 
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be less accurate since the AI-4.5%Cu alloy has a wide freezing range and the whole 
casting was in a mushy state during most of the solidification time. This condition 
magnified the deficiencies of applying the model to alloy solidification. In addition, 
the use of the lever and Scheil's model in the computational cells in the form of Eqs. 
(2.64) and (2.65) was not consistent with the assumptions of the two solidification 
models. -

One of the main difficulties in porosity prediction in an alloy is the occurrence 
of micro-porosity. The shrinkage models developed by the present author were 
not designed to simulate micro-porosity. However, micro-porosity is an inevitable 
consequence if is,er < 1.0. The value of is,er defines the distribution of the shrinkage 
volume between the macro- and micro-porosity. A way around is to reduce the 
density of the solid phase by assuming uniform micro-porosity distribution and set 
is,er = 1.0 which implies that all the shrinkage volume goes now into macro-porosity. 
If the expected porosity is r%, then the effective solid phase density is 

Ps,e!! = Ps· (1 - rllDO) 

This requires a priori knowledge of micro-porosity, and it has to be uniformly dis­

tributed. 

A more accurate description of feeding in the mushy zone is the use of the critical 
value of the solid fraction gradient, \l is,er [112]. It takes into account that feeding 
is easier along the direction of the dendrite growth than across it. However, the 
value of \l is,er may vary between alloys, mould geometries and even cooling rates. 
Clearly, a more sophisticated, detailed model of alloy solidification and feeding is 
required. 

As was shown in Section 7.1, predicted velocity magnitudes in the feeding a flow 
are consistent with existing numerical and experimental data. The magnitude of 
the average feeding flow velocities are defined mainly by the solidification time and 
the total volumetric shrinkage (or the ratio PI! Ps). Since the latter is fixed for a 
particular metal, the accuracy of the velocity predictions depends on the accuracy of 
the solidification rate prediction. The mould geometry also plays a part in defining 
the velocities. For the chill mould casting S3.1, for example, velocities went up to 
10 mml s for a short period during solidification when feeding occurred through a 
narrow passage in the metal (Fig. 6.33). 
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7.2.2 Drag Force 

The drag force in the form of Eqs. (3.10) and (4.51) or (4.52) does not describe a 
real physical force but arises from the fact that numerical equations are applied to 
cells which contain a solid-liquid mixture and the solid phase does not_flow. Strictly 
speaking this approach is valid only for pure metal solidification since for alloys 
the solid phase crystals can float at low solid fraction values, and furthermore, the 
frictional drag force in the mushy zone is also important. The latter is not taken 
into account by the model to avoid convergence problems in the high drag regions. 

The use of the drag force in calculating flow losses due to solidification is not satis­
factory also for other reasons: 

• The drag coefficient, Eq. (4.51), does not ensure that the solid phase remains 
frozen in space. For example, I< = 0 when dls/dt = 0 even if Is =f:. O. 

The enthalpy advection algorithm is closely related to maintaining a zero solid 
phase velocity (see Section 7.2.2). In the M1 model only the liquid enthalpy 
content is advected. No account is taken, however, of the amount of liquid 
phase left in a cell. Thus, more liquid enthalpy can be advected out of a cell 
than it may provide!. 

• Pressure, gravity and viscous forces in the momentum Eqs. (3.7)-(3.9) are 
applied to the full cell volume while they should affect only the liquid phase 
and their influence on the cell momentum should be reduced accordingly. The 
effect of the drag force is thus diminished, especially when the Is value is close 
to unity. 

• There may be situations where the drag coefficient in nearly solid cells becomes 
very high leading to excessive iterating (see Section 7.2.3). 

• Finally, even for pure metals there may be significant flow losses due to shear 
srtesses at liquid/solid interface in the regions of high values of the solid frac­
tion. The expression for the drag force could be modified to include the viscous 
friction effects but it is not clear how to do it efficiently in a general way in 

1 A test could be introduced for the amount of enthalpy to be advected through a cell face, 
6Hadv, in surface cells: 

6Hadv = min(u . A· H, . ~t, H, . Vj) 

where u is the velocity, A the face area, H, the liquid phase enthalpy and Vj the volume of the 
liquid left in the cell. It is inappropriate though for a full, internal cell due to the fluid continuity 
and incompressibility conditions. These imply that 6Hadv = u . A . H, . at must be advected 
between neighbouring full cells. 
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three dimensions, even if the solidification front is assumed to be a plane in­
terface in each cell. 

The situation is even more complicated for alloy solidification where the solidification 
front cannot generally be represented by a surface. 

A way to remove the deficiencies of the employed drag force formulation may be 
found in extending the FAVOR method to take into account cell blockages by solid 
phase in a manner similarly to that for the mould. This can be accomplished by the 
following transformation of the fractional open volume and face areas: 

A -A 2 (1 - Fa fav,a)(l - Fb fav,b) 
ab,m - a.b 

2 - Fa. fav,a. - Fb fsv,b 
(7.1 ) 

where Aab is the open area fraction at the common face of neighbouring cells a and b, 

fsv is the volumetric solid fraction function and index m means a modified variable. 
Similarly, a 'modified' fluid fraction Fm can be introduced 

(7.2) 

to describe the remaining liquid in the cell which can flow. The modified variables 
VF,m, Aa.b,m and Fm have the same meaning as the original variables but relate to 
the liquid phase only while the solid phase is treated as a part of the solid structure 

of the mould. 

Eqs. (7.1) and (7.2) should be applied to advection terms. The original variables 
must still be used for heat conduction and transfer, and the enthalpy still refers to the 
full, liquid+solid, fluid volume in a cell. In other words, a formal implementation of 
this method to describe the effect of the solidification on the fluid flow would require 
a combined use of the original and modified fluid, volume and area fractions. 

This method has the following advantages: 

• There is no need for the atrificial drag force in the form of Eq. (4.52) because 
cell velocity in the modified method is not the mixture velocity Um but the 
actual liquid phase velocity U/ (Fig. 4.8a). Therefore, possible convergence 
problems in the high drag regions are removed. The momentum equations 
become more consistent since all the terms refer to the liquid phase only . 

• Since velocities and enthalpy advection terms are calculated with respect to 
the amount of the liquid phase left in the cells, the solid phase is ensured to 
be frozen in space. 
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• For pure material solidification, when the solid/liquid interface can be repre­
sented by a surface, stresses between the two phases can be calculated by the 
same algorithm as for the shear stresses between the liquid and the mould 
walls. Therefore, there is no need for a frictional drag force. For alloys an 
additional drag force, accounting for flow losses in the mushy zone, should be 
developed and introduced to momentum equations. 

There will be implications for the time step size limitation since the latter depends 
on the values of VF and A (Eq. (3.14)). However, the time step can only decrease 
by half, as follows from Eq. (7.1): 

VF,a,m 2 - fsv,a . Fa - fsv,b . Fb . VF,a 1 VRa 
Aab,m = 2 (1 - fsv,b) Aab > 2" A~b 

if in cells a and b: 0:::; fsv < 1 and 0 :s F :s 1. 

A disadvantage of Eqs. (7.1) and (7.2) is the assumption that the solid phase it 
attached to the mould walls and cannot move. 

7.2.3 Enthalpy Method and Enthalpy Advection 

One of the undesirable consequences of using the enthalpy method, as shown in 
Fig. 2.5b, is the temperature fluctuations on both sides of the solidification front for 
isothermal phase transformation. This in turn causes fluctuations in the solidifica­
tion rate and, since the latter defines the shrinkage rate and the feeding flow, these 
two have discontinuities, as shown in Fig. 7.4 in the metal volume and mean kinetic 
energy histories for simulation 53.1. 

The fluctuations arise from the fact that the melting temperature T m in a solidifying 
cell is assigned to the cell centre instead of the solidification front in the cell, thus 
distorting temperature gradients in the vicinity of the cell. This error may be 
minimised by employing a linear interpolation (not extrapolation) of temperatures 
between the solidification front and the centre of a neighbouring cell to obtain the 
cell-centred va.lue of the temperature in the cell that contains the front (Fig. 7.3). 
This is akin to setting pressures in the surface cells using Eq. (2.49). However, it 
may require substantial numerical effort since the orientation of the solidification 
front in the cell must be defined in three dimensions. 

The use of such interpolation will alter the unique correspondence of the cell-centred 
temperature to the cell enthalpy, thus complicating the procedure of defining the 
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cell-centred temperature from the value of the enthalpy. This difficulty could be 
overcome by treating the two phases as separate fluids so that two temperatures and 
enthalpies can be used in one cell. Substantial programming effort and computer 
memory would then be required to introduce this modification as one cell could then 
contain four materials: liquid and solid phases, mould and void. 

The advection of only the liquid phase is ensured by using the enthalpy equation in 
the form of Eq. (5.20). An alternative form of this equation is 

aF H PI (~ ) 1 ap PI . -- = - - PI Hm Vn da + q'E - - - PI F H at P Va 'E P at (7.3) 

in which the mixture cell-centred enthalpy Hm is present in the advection terms 
rather than the liquid phase enthalpy HI· Eq. (7.3) was used to simulate the pure 
iron casting (S3.21) with the result shown in Fig. 7.5. It can be seen that the solid 
phase is 'stripped' by the metal flow from the mould walls and carried into the bulk 

of the casting which is clearly is a non-physical result. 

7.2.4 Convergence 

Several convergence 'failures' have occurred cylindrical casting simulations using the 
Ml model, S3.1-S3.4, as shown on a diagnostics print-out in Fig. 7.62 • A general 
increase in iterations per cycle began at t ~ 30 s (lines> 25). Most of the iteration 
failures occurred when liquid in the upper half of the casting froze to leave a narrow 
passage through which the rest of the liquid was fed (Fig. 6.32). Factors leading to 
an increase in iteration can be summarised as follows: 

1. Velocities in the liquid cells along the passage are two orders of magnitude 
larger than those in the liquid bulk due to the incompressibility of the liquid (rv 
10 mm/s compared to rv 0.1 mm/s, the difference magnified by the cylindrical 
geometry). Therefore, the value of f may appear to be too small for these cells 
to achieve reasonable convergence rate (see also Section 7.2.4). 

2. A liquid cell may change from 'internal' cell to 'surface' cell accompanied by 
an abrupt change of pressure in it. Consider a partially solid cell A in Fig. 
7.7a. The neighbour cell B is fully liquid and cell C is completely solid. As 
solidification proceeds the fluid level in cell B goes down, so does its pressure. 

2 As mentioned in the footnote in Section 5.2.3, 'iteration failures' are diagnosed when the iter­
ation number in a cycle reaches a predefined maximum. These failures mean that the convergence 
is slow, not that the solution does not converge. 
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By the time cell B is nearly empty at time step n pressure in it is, according 
to Eq. (2.49), 

(7.4) 

where po is the void pressure, Gz gravity in the z-direction and ~z the cell 
size in the vertical direction. Pressure in cell A is found iteratively even if 
there is little fluid left in it since cell A does not have empty neighbours and is 
treated as an incompressible internal cell. Its pressure then should not exceed 
PH because cell B feeds cell A: 

Pn < pn 
A - B (7.5) 

Suppose cell B is emptied during the next time cycle n + 1 (Fig. 7.7b). Then 
cell A becomes a surface cell with vertically orientated free surface since cell 
B is the only empty neighbour (see Section 3.3.4) and 

P
n+l _ pn+l _ p 
A - B - 0 

because Gx = O. According to Eqs. (7.4) and (7.5), pressure in cell A increased 
in one time step by 

(7.6) 

creating a pressure pulse which may result in velocities of up to 1 m/ s at cell 
faces A-D, D-E and E-B. The latter leads to fluid entering cell B again at 
time step n + 2 and the situation repeats. Often it results in pressure iteration 
failures at time steps n + 1 and n + 3 which can be seen in the print-out in 
Fig. 7.6 (lines 19-20, 35-36 and 38-39). 

Such flow fluctuations sometimes affect the shape of primary shrinkage cavities 
by introducing ridges along its surface. This can be seen in Figs. 6.30 and 
6.32, as well as in Fig. 6.39 for the boot-shaped casting (simulation 54.1). The 
mean kinetic energy in Fig. 6.40d has several sharp steep peaks. Each peak 
corresponds to a velocity increase in a surface cell due to the pressure change 
given by Eq. (7.6). The maximum mean kinetic energy is equal to 6.2 x 
10-7 J/kg, which is three orders of magnitude larger than the average value. 
Substantial number of interations was therefore required for convergence, with 
the average around 100. 

The increase of pressure in cell A would not result in the increase of velocities 
only if cell A was completely solid by the time cell B was empty. A simulation 
(54.21) was carried out to compare with simulation S4.1. The only difference 
was the use of Eq. (7.3) in the former and Eq. (5.20) in the latter. The results 
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of the simulation S4.21 are shown in Fig. 7.8. The mean kinetic energy plot 
has fewer spikes and the maximum value is 8.5 X 10-8 J / kg which almost ten 
times smaller than that in the simulation S4.1. Convergence rate also improved 
with the average iteration number of around 60. A possible explanation to the 
difference in the results is that when Eq. (7.3) was used then the metal in cell 
A in Fig. 7.8 was more likely to be fully solid by the time cell13 was empty. 
In this case the drag force in cell A was effectively infinite and no velocity 
fluctuations occurred. 

3. A similar effect on the fluid flow is produced when an 'internal cavity' cell, 
which contains both luquid and void and has a fixed pressure, P = Per, becomes 
fully empty (cell A in Fig. 7.9) during time step n + 1. According to Section 
5.2.3, when cell A turns from an 'internal cavity' cell into an empty cell its 
pressure does not change 

PnA n+l = PA = Per 

At t = tn pressure in cell B is 

PB ~ Per + PI . G z . !:l.z 

At t = t n+1 cell B becomes a surface cell and its pressure is calculated as 

If FB+1 ~ 1.0, which is usually the case, then PB decreases by a value close 
to 0.5pIGz !:l.z in one time step. This generates a sudden upward flow which 
can put some fluid back into cell A. The latter will cause a reverse change 
of pressure in cell B. These fluctuations can proceed for several time steps 
requiring additional iteration effort. This can be seen in Fig. 7.6 (lines 42-52). 

Numerical problems described in items 3 and 4 are the main causes of slow conver­
gence rate during shrinkage modelling using the Ml model. 

7.2.5 Convergence Criterion E 

To test the influence of the convergence criterion value, €, on the accuracy of the 
solution and to define its optimum value, a series of simulations was carried out us­
ing the full shrinkage model for the cylindrical casting 82.2 in which the insulator is 
removed so that a free surface is present throughout the simulation (82.21-82.26)3. 

3 As was described in Section 2.3.2, at each time step pressure iterations are considered converged 
if the modulus of the velocity divergence, divv, is smaller than ( in every mesh cell. 
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The value of f was varied between 0.0001 8-1 and 1.08-1
. Fig. 7.10 shows the volu­

metric error and the average iteration number as functions of f. The optimum value 
of the convergence criterion in these simulations appears to be close to 0.001 8- 1 

when the volumetric error is less than 0.23% of the total volume and the average 
iteration number is only 7. Fig. 7.11 shows predicted distributions of the fluid 
fraction function. A lack of convergence for large values of f resulted m a 'porosity' 
region along the casting axis. A reasonable result, both in terms of the volumetric 
error « 0.7%) and the free surface shape, wass given with the value of f up to 0.01 
S-I. 

For comparison, the results of the same simulations but with no shrinkage, i.e. PI = 
PII, are shown in Fig. 7.12 (simulations 82.31-82.36). In contrast to the shrinkage 
simulations, the volumetric error here is above 65% for f = 0.1 8-1 , resulting in 
a virtually complete emptying of the mould. It can be seen from Fig. 7.10 that 
in the absence of the shrinkage induced flow a substantially smaller value of the 
convergence criterion is required to obtain a solution which accurate in terms of the 
conservation of the fluid volume. 

For an internal cell of volume ~ V the volumetric error after the convergence has 
been reached is 

~ Verr = div v . ~ V ~ f· ~ V (7.7) 

Generally, the sign of divv varies from cell to cell reducing the net volumetric error 

in the domain. 

For transient flow problems, e.g. mould filling, an approximate rule of thumb for 
choosing the value of f is [83] 

U 
f = 0.0002· -

L 
(7.8) 

where U is the magnitude of the velocity variation across the domain and L is the 
length scale on which this variation occurs. Generally, the value of f also depends 
on the time step size and geometrical features of the flow. The magnitude of the 
velocity error, DUerr, due to iteration in a cell of size ~x can be estimated as 

~x 
DUerr ~ 6.X· f = 0.0002· L U (7.9) 

or, since 6.x / L is approximately equal to the inverse of the cell number N across 

the domain, 
U 

DUerr ~ 0.0002· N (7.10) 

If for example N = 10 than the velocity error at each time step is within 0.002% of 
the overall velocity variation in the domain. 
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If Eq. (7.8) is applied to the cylindrical casting simulation S2.21, where U ~ 
0.05 mm/s and L = 150 mm (the initial depth of the melt), then f = 7.0.10- 8 s-l. 
This value is much too small for an efficient calculation as can be seen from Fig. 
7.10: for f < 0.01 S-1 the gain in accuracy in terms of the volumetric error, as 
compared to the results for f = 0.1 s-\ is negligible while the average iteration 
number increases steeply. The reason for this is that it is not the velocity variation 
with time that defines the total iteration. Feeding velocities are mainly defined by 
the solidification rate and the latter varies very slowly. Pressures in the casting, 
however, do vary substantially as the free surface moves downwards to reduce the 
effective pressure head. For example, for casting S2.45 the pressure head changed by 
h = 50 mm (h is the predicted depth of the shrinkage cavity) during solidification 
and the corresponding change in pressure, !:1p, is 

!:1p = PlhG ~ 1,250 kg/ms2 

An effective velocity Ueff can be defined as 

J¥p 
Ue!! = - = 0.7 m/s 

PI 
(7.11) 

Substituting Ue!! into Eq. (7.8) gives f ~ 0.0009 s-1 which is more in line with the 
results of the €-test in Figs. 7.10 and 7.11. 

Summarising Eqs. (7.8)-(7.11) it may be concluded that for pressure dominated 
flows, that is when 

where !:1p is the characteristic pressure change, the convergence criterion can be 

estimated as 

f = 0.0002 2- -) /lp = 0.00022- . ,/kG (7.12) 
L PI L 

where h is the change of the free surface position due to shrinkage. 

For simulation S3.1 with h = 0.25 m and L = 0.6 m, Eq. (7.12) gives f = 
0.00053 S-1. This is close to the actual value used in the simulation, € = 0.001 S-1. 

Eq. (7.12) also explains the increase in the iteration count when pressure fluctua­
tions occurred at the free surface in this simulation, as described in Section 7.2.3. For 
example, the instantaneous pressure change given by Eq. (7.6) with !:1z = 12 mm 
corresponds to Ue / / ~ 0.25 m/ s requiring the value of € = 0.0042 s-1 which is 4 

times larger than the employed value. 
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7.2.6 Time Step Size Limitations 

Whilst the heat transfer and the free surface time step size limitations dominate 
the solidification stage, the CFL criterion, Eq. (3.14) controls b.t during the filling 
stage. Figs. 7.14a, b show the variation of the time step size during the 7.0 and 22.5 
seconds of filling for the T-shaped casting (S5.1 and S5.3), respectively~ The average 
velocities during the fillings were 0.6 m/s and 0.2 m/s (the maximum velocity was 
at the choke at 2 m / s in both cases), respectively, while the minimum cell size is 

5mm. 

The time step restriction during filling is a significant factor: for the T -shaped 
casting simulation S5.1 the filling time was almost 60 times smaller than the solidi­
fication time (7.5 sand 475 s) but the CPU time for the filling stage simulation was 
only 5.2 times smaller than that for the solidification and shrinkage (Fig. 6.19). 

The shrinkage model was not used during filling since there was no significant so­
lidification at this stage. When a shrinkage model was employed the increase in the 
CPU time per time step due to the additional calculations was less than 5%. 

7.3 Ml and M2 Shrinkage Models 

The M1 model is fundamentally more correct than the simplified M2 model as the 
latter does not account for fluid flow. The full shrinkage model is also more general 
since fluid flow and free surface shape are calculated dynamically without any apriori 
assumptions. Besides, the mathematical and numerical formulation of the M1 model 
make possible its further development to include, for example, gas evolution. 

However, differences in shrinkage cavity predictions of the two models in the casting 
cases that were considered in the present work are small. The similarity of the 
resutls may be explained, in the first place, by the validity of the assumptions 
made in the M2 model listed in Section 5.3, that is that the formation of shrinkage 
cavities is mainly governed by gravity. Secondly, redistribution of heat in the melt 
was mainly due to metal/mould heat transfer and conduction while advective heat 
transfer played a minor role. Therefore neglecting the latter by the M2 model did 
not introduce significant errors in shrinkage cavity predictions, cooling rates and 
solidification times. Moreover, cavities predicted by the two models for the chill 
mould casting are almost identical which may be explained by the fast cooling rate 
in the chill mould so that the relative importance of the advection of heat was even 
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smaller than that in the sand castings. 

The effect of the absence of the advective heat transfer can be seen in a shallower pri­
mary cavity depth predicted by the simplified model in the sand castings simulations 
(e. g. Figs. 6.26 and 6.53). 

The differences are greater in the numerical efficiency of the two models. The gain 
in speed of the M2 model is first of all due to the use of a larger time step size 
which is defined by the heat transfer process (Eq. (2.76)). For the M1 model the 
time step is defined by the free surface stability limit {Eq. (2. 77)) during most of 
the simulation time. The ratio of the typical time steps sizes used in M2 and M1 
models varies from case to case depending on the mesh and properties of the metal 
and mould. The maximum ratio was 540 for the chill casting simulations. Fig. 7.13 
shows a comparison of time step sizes used by the two models for simulations 85.5 

and 85.22. 

Further speed up of M2 model calculations is achieved becasue only the energy 
equation is solved in the model, while the M1 model includes the solution of the 
full system of the continuity, momemtum and energy equations. In the M1 model 
it is often difficult to predict how much of the numerical effort will be required to 
reach convergence. It is, therefore, extremely advantageous that fluid flow solution 
is excluded from the M2 model, especially when it does not significantly affect 

accuracy. 

Finally, since no free surface advection is involved in the M2 model and the liquid 
metal free surface is always assumed to be horizontal, the predicted free surface 
shape is smoother than those given by the full model as was shown, for example, in 
the boot-shaped casting simulations S4.1 and S4.11 (Figs. 6.38 and 6.59). 
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Figure 7.1. When cell 1 (shaded with grey) solidifies the 

calculated fluid level in it (dashed line) is lower 

than the actual level (solid line) by 6hl due to 

truncation errors in representing free surface. 



Figure 7.2. Shrinkage cavity in all-sand mould 

f or aluminium (simulation S2.45 ) . 
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Figure 7.3. Temperature T2 can be found by linear interpolation 

between the solidification front and cell with tempe­
rature T3. In standard enthalpy methods T2=Tm• 
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Figure 7.4. (a) Metal volume and (b) mean kinetic energy 
evolutions for simulation 53.1. The curves 
are not smooth due to the use of the enthalpy 
method. 

210.0 



vmax=4.5 nun/s v max=2.5 mm/s 

(a) (b) 

Figure 7.5. Simulation 53 . 21 using equation (7 .3) : (a ) t=120 . 0 s 
and (b) t=150 . 0 s . It can be seen that s olid pha s e 
is washed into the bulk of the liquid metal by the 
feeding flow . 
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t cycle iter dt.tbl/code <lelt vl cpu ep.i 
-- -- ------

0.0001+00 0 0 7.2901-03/f. 7.2901-03 1.4181+02 1.2801+00 1.0001-03 
pre •• ure iteretion failure at t- 7.2901-03 cyale- 1 iter-l000 delt- 7.2101-03 
pre •• ure iteration failure .t t- 3.2081-01 cyale- 44 iter-l000 delt- 7.2101-03 
2.0051+00 275 224 7.2901-03/fa 7.2901-03 1.4731+02 2.8021+02 1.0001-'"63 
4.0101+00 550 36 7.2901-03/fa 7.2901-03 1.4681+02 4.7211+02 1.0001-03 
pre •• ure iteration failure at t- 5.9711+00 cyal_ 819 iter-l000 delt- 7.2901-03 
pre •• ure iteration failure at t- 5.n81+00 cyale- 820 iter-l000 delt- 7.2901-03 
6.0141+00 825 12 7.2I01-03/fa 7.2901-03 1.4&31+02 7.6161+02 1.0001-03 
8.0UI+00 1100 22 7.2901-03/fa 7.21101-03 1.4621+02 1.6121+02 1.0001-03 
1.0021+01 1375 28 7.2901l-03/fa 7.21101-03 1.46111+02 9.55111+02 1.0001-03 
1.2031+01 1650 30 7.2901l-03/fa 7.2901-03 1.45911+02 1.0621+03 1.0001-03 
1.4031+01 1125 t1 7.2901l-03/fa 7.2901-03 1.45711+02 1.2431+03 1.0001-03 
1.6041+01 2200 42 7.2II01l-03/fa 7.2901-03 1.45411+02 1.4601+03 1.0001-03 
pre •• ure iteration failure at t- 1."21+01 cyale- 22 .. iter-lOOO delt- 7.29011-03 
pre •• ure iteration failure at t- 1.6731+01 cyal_ 2295 iter-l000 delt- 7.2901-03 
pre •• ure iteration failure at t- 1.67411+01 cyale- 2296 iter-l000 delt- 7.:n01-03 
pre •• ure iteration failure at t- 1.7161+01 cyale- 2354 iter-lOOO delt- 7.29011-03 
1.8041+01 2475 32 7.2901-03/fa 7.2901-03 1.4521+02 2.07311+03 1.0001-03 
pre •• ure iteration failure at t- 1.9311+01 cyale- 26., iter-l000 delt- 7.2901-03 
pre •• ure iteration failure at t- 1.9331+01 cycle· 2651 iter-l000 delt- 7.2101-03 
2.0051+01 2750 18 7.2901l-03/fa 7.29011-03 1.4501+02 2.20111+03 1.0001-03 
2.2051+01 3025 18 7.2901l-03/fa 7.29011-03 1.45011+02 2.2701+03 1.00011-03 
2.4061+01 3300 28 7.2901-03/fa 7.29011-03 1.44911+02 2.35211+03 1.00011-03 
2.&061+01 3575 22 7.29011-03/ fa 7.2901-03 1.44811+02 2.4631+03 1.0001-03 
2.1071+01 3850 19 7.2901-03/fa 7.29011-03 1.44611+02 2.58911+03 1. 00011-03 
3.0071+01 4125 268 7.2901l-03/fa 7.2901-03 1.44511+02 2.80311+03 1.00011-03 
3.2081+01 4404 52 7.2901-03/ fa 7.2901-03 1.44311+02 3.0098+03 1.0001-03 
3.4081+01 4679 53 7.2901l-03/fa 7.29011-03 1.4C2II+02 3.1388+03 1.0001-03 
3.6091+01 4954 371 7.2901l-03/t. 7.29011-03 1.4Cll1+02 3.37511+03 1.00011-03 
pre •• ure iteration failure at t- 3.687B+Ol cyale- 5061 iter-l000 delt- 7.29011-03 
pre •• ure iteration failure at t- 3.6881+01 cyale- SOU iter-l000 delt- 7.29011-03 
pre •• ure iteration failure at t- 3.688B+01 cycle- 5063 iter-1000 delt- 7.2901-03 
3.8091+01 5229 34 7.290B-03/fa 7.211011-03 1.4C01I+02 3.6508+03 1.0001-03 
4.0101+01 5504 266 7.2901l-03/fa 7.29011-03 1.4C01I+02 3.77111+03 1. 00011-03 
pre •• ure iteration failure at t- 4.08911+01 cycle- 5613 iter-lOOO delt- 7.2901-03 
pre •• ure iteration failure at t- 4.0911+01 cycle- 5615 iter-l000 delt- 7.29011-03 
4.2101+01 5779 233 7.2901-03/fa 7.2901-03 1.4391+02 4.02511+03 1.00011-03 
pre •• ure iteration failure at t- 4.3821+01 cycle- 6015 iter-l000 delt- 7.2901-03 
pre •• ure iteration failure at t- 4.3841+01 cycle- 6017 iter-1000 delt- 7.2'011-03 
4.4111+01 6054 521 7.290B-03/fa 7.2901-03 1.43511+02 4.33311+03 1.0001-03 
4.&111+01 U251 48 7.2901-03/fa 7.2901-03 1.4381+02 4.60411+03 1.0001-03 
pre •• ure iteratioD failure at t- 4.65011+01 cyale- &382 iter-l000 delt- 7.2901-03 
pre •• ure iteratioD failure .t t- 4.652B+01 cycle- &385 iter-I 0 00 delt- 7.29011-03 
4.8121+01 6604 34 7.2901l-031t. 7.29011-03 1.43711+02 5.02111+03 1.0001-03 
pre •• ure iteration failure .t t- 4.9101+01 cycle- 67351 iter-l000 delt- 7.29011-03 
pre •• ure iteration failure at t- 4.91211+01 cycle- 6742 iter-lOOO delt- 7.29011-03 
5.0121+01 6879 511 7.2901l-03/fa 7.21011-03 1.4361+02 5.36811+03 1.00011-03 
pre •• ure iteration f.ilure .t t- 5.10011+01 cycle- 7000 iter-lOaD delt- 7.29011-03 
pre •• ure iteration failure .t t- 5.10211+01 cycle- 7002 iter-1000 delt- 7.29011-03 
pre •• ure iteration failure et t- 5.10311+01 cycle- 7003 iter-1000 delt- 7.29011-03 
5.2131+01 7154 54 7.HOI-03/t. 7.25101-03 1.43&11+02 5.81211+03 1.0001-03 
pre •• ure iteration failure .t t- 5.25111+01 cycle- 7207 iter-lOOO delt- 7.29011-03 

5.4541+01 7448 2 4.91611-01/c" 3 .1511-02 1.4351+02 4.95511+02 1.00011-03 

5.4&01+01 7450 3 7 .25101l-03/fa 7.25101-03 1.4351+02 4.515911+02 1.00011-03 

5.5121+01 7481 9 7.2901l-03/t. 7.2901-03 1.4341+02 6.40111+02 1.0001-03 

F1gure 7.6. Calculation diagnostics for simulation S3. 1. Convergence 
failures are highlighted with 'pressure iteration ••• ' 
messages. 
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Figure 7.7. The status of partially solid call A changes 
from 'internal cell' at t=tn (a) to 'surface 

cell' at t=tn+l (b). As a result, pressure PA 

changes abruptly (section 7.2.3). 
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Figure 7.8. Simulation S4.21 u s ing equation (7 .3): 
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solidified casting and (b) mean kinetic 
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Figure 7.9. The status of liquid call A changes from 'internal 
cavity cell' at t=tn Ca) to 'empty cell' at t=tn+l 

(b). As a result, pressure PA changes abruptly 
(section 7.2.3). 
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Figure 7.11. Fluid fraction distribution in solidified castings 

using shrinkage model M1 (s imulations 82 . 21 - 82 . 26) : 

(a) £=0.0001 s - l, (b) £=0 . 000 3 5-1 , (c) £=0.001 s-l , 

(d ) £=0.01 s-l, (e) 6=0 . 1 s - l and (f) 6=1.0 s-l. 
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Figure 7.12. Fluid fraction distribut ion in solidified castings 

with no shrinkage i n the metal (simulations S2.31-S2 .36): 

(a) £= 0 .0001 s- l , (b) £=0.00 03 s-l , (c ) £=0.001 s-l, 

(d) £=0 . 01 s -l , (e) £=0. 1 s - l a nd (f) £=1.0 s-l. 
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Figure 7.13. Comparison of the time step sizes used in full 
model simulation S5.5 (black line ) and in sim­
plified model simulation S5.22 (red line) . 
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Figure 7.14. Time step size evolutions during filling for 
(a) 15 mm choke (simulation 55.1) and (b) 8 mm 
choke (simulation 55.3). 



Chapter 8 

Conclusions and 
Recommendations 

8.1 Conclusions 

Two numerical models were developed to describe volumetric changes during solid­
ification in metals and to predict shrinkage defects in the solidified castings. The 
first model, Ml, is based on the full system of the continuity, Navier-Stokes and 
enthalpy equations. Volumetric changes are described by introducing a source term 
in the continuity equation which is a function of the local phase transformation rate. 
The source term can include both volumetric shrinkage and expansion. 

The second, simplified shrinkage (M2) model involves the solution of only the en­
thalpy equation. Simplifying assumptions that the feeding flow is governed only by 
gravity and solidification rate and that phase transformation pro cedes only from 
liquid to solid allowed the fluid flow equations to be excluded from consideration. 

The numerical implementation of both models in three-dimensions was based on the 
existing commercial, general purpose CFD code FLOW-3D which already contained 
a numerical algorithm for incompressible fluid flow with heat transfer and phase 
tranformation. An important part of the code is the Volume Of Fluid (VOF) algo­
rithm for tracking free surface interfaces. The VOF function was employed in both 
developed models to describe shrinkage cavity formation. Additions to FLOW-3D 
to incorporate the shrinkage models include: 

• Inclusion of the source term in the continuity equation and the equation for 
the VOF function, F. 
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• Modification of the SOR pressure-velocity iteration scheme to allow internal 
cavities to open and close . 

• Development of a new algorithm for the simplified shrinkage model which 
describes free surface evolution and cavity formation without solving fluid 
flow and F equations. 

In addition to these changes to the code which were required to incorporate the new 
shrinkage models, a few modifications were also made to improve the accuracy of 
the metal/mould heat trasnfer and solidification algorithms. These include: 

• Linear interpolation of metal and mould temperatures between the metal/mould 
interface and cell nodes to obtain a better approximation for the heat trasnfer 
coeffi cien t . 

• Development of a new expression for the drag coefficient for the drag force in 
momentum equations which accounts for the fact that a computational cell 
may contain a mixture of solid and liquid phases. 

• Addition of the lever rule and Scheil equation to describe solidification III 

alloys. 

The critical value of the solid fraction was used as the feeding criterion in both 

models. 

As a result of those modifications and developments, a number of new input pa­
rameters were introduced to the code. These input variables specify the shrinkage 
model, the value of the critical solid fraction and the solidification model. The solid 
fraction was also added as an output variable for both spatial and history plotting. 
All additional input and output, associated with these developments, is part of the 
standard input and output interface of the FLOW-3D copy installed at The Univer­
sity of Sheffield and could be distributed and used together with the standard code 
on a commercial basis. 

The developed shrinkage models were applied to a variety of castings of different 
configurations, involving pure metals (aluminium, iron), alloys (aluminium-copper, 
steel), sand and chill moulds. The results were compared with experimental data. 
The influence of the filling stage on shrinkage defects in the final casting was inves­

tigated. 
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As part of the development of the upwind differencing advection algorithm used 
in the simulations, the Leith's method was incorporated into the standard two­
dimensional SOLA code. It is shown that the resulting scheme is unconditionally 
stable despite being explicit. 

The following is a summary of the results and conclusions. 

1. In general, the results of the full shrinkage model are only marginally closer 
to the experimental ones than those of the simplified model. The simplified 
model underestimates the depth of the primary cavities even more than the 
full model and predicts an earlier separation of internal liquid region from the 
feeder. The latter led to larger secondary cavities in the T-shaped casting. 
These differences are explained by the fact that the simplified model does not 
describe advective heat transfer in the feeding flow. Nevertheless, in the case 
of the pure iron and steel cylinder casting the two models gave practically 
identical cavity predictions close to the experimental results. 

2. Predictions of the size and position of secondary cavities are close to the ex­
perimental results, especially for pure metals. 

3. Pure metal simulations for the T-shaped casting demonstrated the importance 
of modelling of the mould filling stage. It is shown that the size and occur­
rence of these shrinkage defects are dependent on the filling rate. For the 
T-shaped casting it was possible to eliminate the shrinkage in the T-junction 
by increasing the filling time by a factor of three. 

4. The largest discrepancies between numerical predictions and experimental re­
sults were for AI-4.5%Cu alloy castings. 

5. Despite an accuracy of 1 % for shrinkage volume predictions, the depth of pri­
mary cavities in feeders tends to be underestimated. This is due to truncation 
errors in free surface representation (Section 7.1) and inadequate physical mod­
elling heat transfer processes, such as radiative and convective heat exchange, 
which leads to smaller heat losses from the top of the feeder. 

6. Cooling rates and total solidification times simulated by the two models are 
very similar in most cases (less than 1% difference). The small difference 
arises from a more accurate conservation of the total fluid volume by the M2 
model since it does not have errors associated with finite iteration residuals 
and advection of the fluid fraction function, F. 
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7. Both shrinkage models can be applied after the filling stage simulation has 
been completed. The simplified shrinkage model requires less storage and 
computer time, therefore, it can be used efficiently in cases where the metal 
flow during solidification is not important and the cooling process is dominated 
by conduction within the metal and heat transfer at metal/mould interface. 
On average the simplified model runs 10 to 20 times faster than the full model. 

8. The SOR iteration method, together with the VOF technique for free surface 
description, are flexibile and accurate for application for shrinkage modelling. 
However, when a large volume of liquid free surface is resolved only by one 
or two cells, which is a likely situation during shrinkage modelling, iteration 
problems arise if the free surface boundary pressure changes abruptly due to 
a change in the slope. Such pressure pulses magnify long wavelength residuals 
which decrease slowly in SOR iterations. 

9. The time step size in the Ml shrinkage model is controlled by the free surface 
stability limit during most of the simulation time, which is a consequence of 
assuming hydrostatic pressure distribution in surface cells. In the simplified 
model the time step size is limited by the heat transfer stability criterion. This 
is usually several times larger than the free surface time step limit. The largest 
deficiency of the full shrinkage model remains its computational cost due to 
time step limitations and additional effort to achieve iteration convergence. 

10. The shape of the cavities in solidified castings is mesh dependent though the 
shrinkage volume is not. The mesh dependence arises from truncation errors 
in free surface representation and temperature gradient calculations. However, 
these errors decrease as the mesh is refined. 

11. A value of unity for the critical fraction of solid fSl er , used as a feeding criterion, 
gives good results for pure metals. For alloys a value above 0.8 appears to be 
most reasonable. For fast solidification and a narrow freezing range alloy, 
fSl er = 1.0 also gives best results. 

12. Approximation of the temperature profile in the interfacial cells between the 
cell centre and the interface by a linear function gives a second order accu­
racy with respect to the cell size ~x in the direction normal to the interface. 
Assuming a constant temperature profile between these points reduces the ac­
curacy to the first order, besides, the coefficient h8T/8xlz=o of the first order 
term is large for low diffusivity materials such as sand, especially at the start 
of the simulation. In the latter case the first order term can be substantially 
larger than the zeroth order term. 
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13. The second order heat transfer algorithm, in conjunction with the FAVOR 
method for representing mould walls, substantially reduces mesh dependence 
of the interfacial heat flux, compared with the first order method. 

14. The solidification drag which arises from the fact that momentum equations 
are applied to the solid/liquid mixture, proves to be an adequat'e method for 
describing momentum changes due to phase transformation. In particular, 
fully solid computational cells are marked with an infinitely large value of the 
drag that is used to define the boundaries of liquid regions in the casting. 

15. Since velocities in a feeding flow are usually small, between 0.1 to 10 mm/s, 
but pressure in the liquid metal bulk changes significantly as the free surface 
level drops, the feeding flow is pressure dominated, that is 

In that case the value of the convergence criterion f required for an efficient 
calculation is several orders of magnitude higher than that estimated from the 
velocity scale alone. An appropriate formula to estimate f was worked out to 
complement the existing one for velocity (or inertia) dominated flows. Feeding 
flow stabilises numerical solution in the sense that it allows one to use a much 
larger value of € than in the absence of shrinkage. 

16. It has been shown that the Leith's method for approximating advection terms 
in momentum equations can be used in the standard SOLA algorithm, instead 
of the upwind differencing. The advantage of the Leith's method, also called 
'semi-Lagrangian' method, is in its unconditional numerical stability, so that 
the CFL restriction for the time step size is removed. However, preliminary 
results show no gain in the efficientcy of the calculations since an increase in 
the time steps size causes an increase in iteration. This indicates that large 
time steps reduce the accuracy of the first-guess velocity approximation. An 
application of the method in a colocated grid would improve its efficiency. 

8.2 Recommendations for Future Work 

8.2.1 Physical Modelling 

1. The solidification model may be further developed to include an accurate de­
scription of macrosegregation in alloy solidification. On this basis a model 
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of flow in the mushy zone and feeding, more sophisticated than the critical 
fraction of solid criterion, should be formulated. Lack of accuracy in alloy 
solidification remains the largest problem in the physical model used in the 
present work. 

2. The model should be extended to include radiative and convectivc!'heat transfer 
at the free surface. 

3. The effect of thermal convection on shrinkage defect formation could be inves­
tigated using the full shrinkage model. 

4. The full shrinkage model can be used as the basis for developing more sophis­
ticated models to include gas evolution and the formation of microporosity. 

8.2.2 Numerical Modelling 

1. Further steps should be maid 10 improving the efficiency of the velocity­
pressure solution algorithm. 

2. Since the full shrinkage model requires substantial computational power it 
will be advantageous to establish more rigorously conditions when modelling 
of flow during solidification is required. Alternatively the simplified model can 
be used to obtain results for a variety of casting designs and then the full 
model can be employed to verify the final design. 

3. The procedure of setting pressure boundary condition at free surfaces should 
be made more accurate for flows with low Froude numbers to avoid convergence 
problems during shrinkage simulations due to large sudden changes in surface 
cell pressures. 

4. Numerical experiments could be carried out to establish the optimum values 
of numerical parameters, such as the convergence criterion f and the overre­
laxation factor w. Ultimately an automatic procedure could be worked out to 
define these parameters in each case. 

5. The truncation accuracy of the numerical equation for the metal/mould inter­
face heat transfer should be improved to minimise mesh dependence. 

6. The simplified model does not employ the upwind differencing nor the donor­
acceptor advection scheme for the free surface which constitute the core of the 
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FLOW-3D. Therefore the shrinkage model could separated be from FLOW-
3D to create a smaller software package which can be used as a solidification 
modelling tool on smaller computers. 

7. Further work should be carried out to investigate ways of applying the Leith's 
method to momentum, enthalpy and VOF equations to increase-the efficiency 
of mould filling simulations in which the CFL stability criterion poses a severe 
restriction on the time step size when the upwind and donor-acceptor advection 
schemes are used. 
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Appendix B 

Semi-Lagrangian (Leith's) 
Method for SOLA 

The application of the Leith's method to the discretisation of the advection terms 
in the momentum equation in two dimensions in the absence of free surfaces is 
described in this Appendix. This advection scheme is explicit and unconditionally 
stable. It posseses the same properties as the upwind differencing scheme, that is 
it is transportive and conservative. It can be shown that compared to the upwind 
differencing scheme the Leith's method introduces less numerical diffusion. This 
because first order truncation errors in the discretisation of the advection terms in 
the Leith's method do not contain terms proportional to (for x-component) 

The conservation equation for the x-component of the velocity u(t,x) is 

au at + (v . vr) u = S (B.1) 

where S(t, x) comprises pressure, body force and viscous terms, may be written 
using the substantive derivative rather than the partial: 

du = S 
dt 

Integration along the trajectory x(t) between t and to gives 

u(t,x(t)) = u(to,x(to)) + It S(r,x(r))dr 
1to 
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where T is the integration parameter. The trajectory x(t) is defined by ordinary 
differential equations which, in two dimensions, are 

dx - = u 
dt ' 

dy - = v 
dt 

(BA) 

Equation (B.3) is solved at each node with to = t n and t = t n+1 and x'""{tn+1
) defined 

as 

Yn+! = Yi,i 

Equation (BA) is solved numerically using the n-Ievel velocities to obtain the posi­
tion of the x( t n) point. In general, Xn and Yn will not fall on a computational node. 
A linear interpolation from four (eight in 3-D) nearest nodes is used to obtain the 
value of u( tn, Xn, Yn). If the point (Xn' Yn) lies between these nodes (in other words 
interpolation, and not extrapolation, is used) then the unconditional numerical 
stability of the method with respect to advection is ensured [135]. 

Roache [27] mistakenly concludes that the Leith's method is only conditionally stable 
with the same time step restriction as the explicit upwind differencing method. The 
mistake arises from the implicit assumption by Roache that u(tn, Xn, Yn) is always 
interpolated from the same node points. In that case, of course, the point (xn' Yn) 
has to fall between these nodes to maintain stability and that is the origin of the 
time step restriction. 

The integral of the function S can be estimated independently of the advection 
terms. Perhaps the simplest approximation is to use the value of S at the node (i,j) 
at time tn, i. e. use the explici t approach: 

(B.5) 

The representation of the source term given in Eq. (B.5) is equivalent to an explicit 
formulation and is first order accurate in time. It may introduce a stability time 
step limit, e.g. that given by Eq. (2.76) if S includes viscous stresses. 

The semi-Lagrangian method in the form of Eqs. (B.2-B.5) is an efficient algorithm 
because it combines the advantage of the unlimited time-step size for advection 
and the ease of the matrix inversion characteristic of standard explicit advection 

methods. 

If linear interpolation is used for evaluating u(tn, In, Yn), then a numerical diffusion 
and a phase error are introduced [27]. The latter means that perturbations of 
different wavelength propagate at different speeds in the numerical solution even for 
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a uniform velocity field. This is of course of no concern if a steady state solution 
is sought. The diffusion and phase error effects can be reduced or even removed 
completely in two ways. One is to obtain a more accurate solution Xn and Yn of 
the trajectory Eq. (BA) by splitting tlt into several smaller time steps. Solving 
equations at each of the intermediate step will involve also an estimation of the 
velocities at each intermediate trajectory point by interpolation. The other way 
is to use a higher order interpolation to estimate u(tn, X n, Yn). Normally it would 
involve more nodes around (xn' Yn) but a linear interpolation will still be necessary 
at the boundaries. 

Apart from unconditional stability for the advection terms, the method also pos­
sesses the conservative and transportive properties [27]. It is interesting no note 
that, unlike most other higher-order schemes, the Leith's method preserves the 
transportive property even in its higher-order accuracy formulation. 

The Leith's method has been well developed and extensively applied in the at­
mospheric circulation modelling [135,136]. The absence of solid boundaries in the 
horizontal direction removes the difficulty of resolving the trajectories near walls as 
well as allows one to use a higher-order accuracy version of the method throughout 
the computational domain. 

It appears possible to use this method successfully for an incompressible fluid flow 
in the presence of walls. Here the method is incorporated into SOLA program [53] 
and applied to a two-dimensional flow problem. In a staggered grid (Fig. 2.1a) 
the calculation of the first guess for u-velocity in cell (i,j) at t = tn+! proceeds as 

follows: 

1. coordinates Xao and Yao are chosen to be at the nodal point where velocity Ui,i 

is located (point ao in Fig. B.la) so that 

Uao = ui,i 

2. the y-direction velocity component Vao at point a is estimated by linear inter­
polation which in a uniform grid is 

1 
vao = 4 (Vi,i-l + Vi,i + Vi+l,i-l + Vi+!,i) 

3. Equation (B.4) are solved by dividing the time step into m equal parts. For 
each step 1 with t:,.tm = t:,.t/m, coordinates Xal and Yal of an intermediate point 
a, are found by 

(B.6) 
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velocities U a, and Val at each point a, are found by linear interpolation from 
the neighbouring nodes. 

4. velocity U am at the final point am is found by linear interpolation from the 
four neighbouring nodes; 

5. the new time level velocity at point ao is estimated as 

U':1'tl = U +!It· ST}· t,J am 1,J (B.7) 

6. a similar procedure is carried out for the v-component of the velocity. 

If an intermediate point al' appears to be in a cell blocked by a wall (for simplicity 
partially blocked cells will not be considered), then the time step !ltm is divided 
by half and the solution is restarted from the previous point al'-I' If the situation 
repeats, then !ltm is reduced further by a factor of four and so on. The fact that 
this procedure will not carryon infinitely can be demonstrated on the following 
one-dimensional example. 

Suppose that the space x ::; 0 is blocked by an obstacle and there is a computational 
cell covering a segment 0 < x < 1. One face of the cell (x = 0) is blocked by the wall 
and the velocity component Uo on the opposite face (x = 1) points in the direction 
away from the wall, Uo > 0 (Fig. B.lb). The velocity between the two faces is 
defined by linear interpolation 

u = x· Uo 

In this case the solution of equation dx/dt = u is 

where Xo is a constant of integration. If at t = tl Xl = 1 then at t = t2 < tl 

This equation means that whatever the integration time tl - t2 is, the analytical 
solution for X2 is always positive and outside the obstacle (though it can be infinitely 
close to it if Uo > 0). In terms of the numerical solution it means that if the time 
period between t2 and tl is divided into sufficiently small sub-time steps, then the 
numerical result should be close to the analytical one, that is, also outside the wall. 

The modified SOLA program is given in appendix C. The Leith's method was used 
here to simulate the inviscid flow in a 'water-cooled reactor' described by Hirt et 
al [53]. Figure B.2 shows the geometry and boundary conditions setup for the 
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problem. The velocity at the entrance was constant and set equal to u = -0.01 m/ s. 
A 20 x 30 mesh, uniform in each direction, was used with ~x = 5 mm and ~y = 
6.5 mm. With the upwind differencing scheme the time step size was chosen to 
be ~t = 0.05 s to maintain numerical stability. Figure B.3 shows the result for 
~t = 0.07 s where an instability occurred at t = 1. 7 s of simulation due to a violation 
of the CFL criterion. The total simulation time was 8.0 s. The conver~nce criterion 
was f = 0.005 S-1 in all simulations. Figure B.4 shows velocity plots at four different 
times produced by the unmodified SOLA. The total CPU time was tcpu = 21.0 s 

with the average iteration count equal Nit = 21. To simplify comparisons, the CPU 
times and average iteration counts were normalised to those of the unmodified SOLA 
simulation. Therefore, for the latter tcpu = 1 and Nit = 1. 

For the Leith's method four time step sizes were used: ~tl = 0.05 s, ~t2 = 0.1 s, 
~t3 = 0.2 s and ~t4 = 0.5 s. Figure B.5 displays velocity plots for Ilt = 0.05 sand 
m = 1 at the same times as in Fig. B.4 showing close agreement with the upwind 
method predictions. In this case tepu = 1.11 and Nit = 1.17. 

Figure B.6 shows velocity plots at t = 6 s for ~t = 0.05 sand m = 1, m = 2, m = 5 
and m = 10. The difference between these predictions is small. The dependence of 
Nit on parameter m is shown in Fig. B.7 for ~t = 0.05 s and ~t = 0.5 s. Though 
an increase in iteration count can be seen for intermediate values of m, convergence 
improves as m grows. The latter is because a more accurate solution of Eqs. (B.4) 
is obtained if m is large, giving a better estimate for the first-guess velocities. 

Figure B.8 shows velocity plots at t = 6.0 s for the four time step sizes with m = 1. 
It is clear that the solution was stable in all cases though its accuracy deteriorated 
as the time step size increased. This also lead to slower convergence as shown in 
Figure B.9 where the dependence of average iteration count on the time step size is 
shown. Fig. B.lO gives predicted flows for ~t = 0.5 sand m = 1, m = 2, m = 10 
and m = 20. As in Fig. B.6, little improvement can be seen with the increase of 
m. This can be explained by the crude approximation for the pressure gradient 
terms, given by Eq. (8.5). The larger the time step size the less accurate is the 
assumption that the work of the pressure forces along the fluid particle trajectory 
can be approximated by the work of the pressure forces at only one point of the 

trajectory, made in Eq. (B.5). 

Finally, Fig. 8.11 summarises CPU times of all simulations in this Appendix as 
functions of the time step size and the value of m. It can be seen that none of 
the simulations employing the Leith's method was more efficient than the original 

method. 
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The potential of the Leith's method can be realised more efficiently if the integral 
on the right-hand side of Eq. (B.3) is approximated more accurately. This will give 
a better estimate for the first-guess velocities, therefore, accelerating convergence 
an improving the overall accuracy of the solution. 

It is unclear as to the best means of applying this method to transieftt free surface 
flow. In the SOLA-VOF algorithm velocities in the void are not known, therefore 
Eq. (B.4) cannot be solved in empty cells which are being filled with fluid during 
the current time step. A possible means is to use the variable density method 
(Section 2.4) in which velocities are estimated both in the fluid and in the air. This 
will require a higher order version of the Leith's method to avoid a diffusion of the 
fluid/ air interface. 

The use of a staggered grid for the Leith's method reduces the efficiency of the 
algorithm because in every computational cell velocity components are defined at 
different locations. Therefore Eq. (B.4) has to be solved separately for each velocity 
component. The starting and finishing points of the solution of Eq. (BA) are 
different for each component and interpolation coefficients are also different. In 
a colocated grid all three velocity components are located at the cell centre. In 
that case Eq. (B.4) would have to be solved only once with the cell centre as the 
starting point. The interpolation coefficients would also be computed just once for 
the finishing point of the solution of Eq. (BA). 
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method at t=6 s: 6t=O.5 s, (a) m=i, (b) m=2, 

(c) m=lO and (d) m=20. 
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program sola 
c 
c Modified SOLA program with linear Leith's advection 
c term approximation instead of the original 
c upwind-differencing scheme. The Leith's 
c method is implemented in subroutines 
c EQTN and GINTER 
c 

c 

c 

c 

dimension u(36,36),v(36,36), 
* un(36,36),vn(36,36),p(36,36),xput(24) 
real nu, pn(36,36) 
real*8 cpul,cpu2 
real*4 tarray(2) 
integer cycle,wl,wr,wt,wb 

integer nf(36,36) 

common /dat/ nf, neqn, imax, jmax 
common /mesh/ delt, delx, rdx, xmin, xmax, dely, 

* rdy, ymin, ymax, rrxy 
common /vel/ un,vn 

call etime(tarray) 
cpul-tarray(1)+tarray(2) 

open(unit-10,file-"semiin",status-"old",form-"formatted") 
open(unit-9,file-"semiout",status-"old",form-"formatted") 

c read and print initial input data 
c 

xmin-O.O 
xmax-l.O 
ymin-O.O 
ymax-l.O 

read(lO,26) num 
read(lO,25) (xput(i),i-l,num) 
ibar-xput(l) 
jbar - xput(2) 
delx - xput(3) 
dely - xput(4) 
delt - xput(5) 
nu - xput(6) 
cyl .. xput(7) 
epsi - xput(8) 
dzro - xput(9) 
gx I: xput(lO) 
gy = xput(ll) 
ui .. xput(12) 
vi .. xput(13) 
velmx • xput(14) 
twfin - xput(15) 
cwprt - xput(16) 
cwplt - xput(17) 
omg - xput(18) 
alpha .. xput(19) 
wl .. xput(20) 
wr -= xput(21) 
wt = xput(22) 
wb - xput(23) 
neqn=xput(24) 
write(9,SO)(xput(i),i-l,num) 

25 format(4(6x,e12.5)) 



26 format(6x,i2) 
27 format(lh ,l8x,lOa8,lx,alO,2(lx,a8)) 
35 format(lhl) 
44 format(6x,7hcycle- ,is,8x,4htd- ,lpel2.S,8x, 

1 4ht2= ,el2.5,9x,6hiter- ,is) 
45 format(lOa8) 
71 format(lx,i4,e10.3,i4,/,lOO(3elO.3)) 
72 format(lx,i4,5x,3(6x,lpelO.3)) 
46 format(80x,3ht- ,1pelO.3,4x,7hcycle- ,i4) 
47 format(6x,lhi,7x,lhj,l2x,lhu,17x,lhv,18x,lhp) 
48 format(4x,i3,Sx,i3,3(6x,lpe12.S)) 
49 format(6x,6hiter- ,is,lOx,6htime- ,lpe12.S,lOx,7hcycle- ,i4) 

50 format(lx,el2.5) 
c 50 format(lh ,Sx,6hibar- ,lpel2.s/6x,6hjbar- ,el2.s/ 
c 16x,6hdelx- ,e12.5/6x,6hdely. ,el2.S/6x,6hdelt- , 
c 2e12.5/8x,4hnu- ,el2.S/7x,5hcyl- ,e12.S/6x,6hepsi- , 
c 3e12.5/6x,6hdzro- ,el2.5/8x,4hgx- ,el2.S/8x,4hgy- , 
c 4el2.S/8x,4hui- ,e12.5/8x,4hvi- , 
c Sel2.S/5x,7hvelmx- ,e12.S/5x,7htwfin- ,el2.s/sx, 
c 67hcwprt- ,e12.S/Sx,7hcwplt- ,e12.5/7x,Shomg- , 
c 7el2.5/Sx,7halpha- ,e12.S/8x,4hwl- ,e12.S/8x, 
c 84hwr- ,el2.S/8x,4hwt- ,el2.S/8x,4hwb- ,el2.S) 
cc 
c compute constant terms and initialize necessary variables 
c 

c 

imax=ibar+2 
jmax-jbar+2 
iml-imax-l 
jml=jmax-l 
rdx=l.O/delx 
rdy-l.O/dely 
rrxy-rdx*rdy 

delx2-delx**2 
dely2-dely**2 
rdx2-rdx**2 
rdy2-rdy**2 
dxdy-delx*dely 
dtdx-delt*rdx 
dtdy-delt*rdy 

jm2-jmax-2 
im2=imax-2 

c * * NF is used as a flag for blocked and open cells 
c * * NF=l - open cell, NF-O - blocked cells 
c 

c 

c 

do 10 i=2,im1 
do 10 j=2,jml 

10 nf(i,j)-l 

taO. 
iter-O 
cycle-O 
twprt-O. 
twplt .. O. 
beta- omg/(2.*delt*(rdx**2+rdy**2)) 

c special input data 
c 
c 
c set initial velocity field into u and v arrays 



c 
do 560 i=2,im1 
do 560 j-2, jm1 
u(i,j)- ui 
v(i,j)- vi 

560 continue 
assign 5000 to kret 
go to 2000 

c 
c start cycle 
c 

c 

1000 continue 
iter==O 
flg-l. 
assign 3000 to kret 

c compute temporary u and v 
c****************************************************************** 
c * * temporary u and v are computed in EQTN * * 
c******************************************************************* 

do 1111 i ... 2,im1 
xxu-xmin+delx*(i-1) 
xxv-xxu-0.5*delx 

do 1111 j ... 2,jm1 
yyv-ymin+dely*(j-1) 
yyu-yyv-0.5*dely 

if(nf(i,j).eq.0.or.nf(i+1,j).eq.0) goto 1112 
call eqtn(xxu,yyu,uint,vtest) 

visx- nu*((un(i+l,j)-2.*un(i,j)+un(i-l,j))*rdx2+ 
1 (un(i,j+l)-2.*un(i,j)+un(i,j-l))*rdy2 
2 +cyl*((un(i+1,j)-un(i-1,j))/(2.*delx2*float(i-1)) 
3 -un(i,j)/(delx2*float(i-1)**2))) 
u(i,j)- uint+delt*((p(i,j)-p(i+1,j))*rdx + gx+visx) 

1112 continue 
if(nf(i,j).eq.0.or.nf(i,j+1).eq.0) goto 1111 

call eqtn(xxv,yyv,utest,vint) 
visy= nu*((vn(i+1,j)-2.*vn(i,j)+vn(i-1,j))*rdx2+ 

1 (vn(i,j+1)-2.*vn(i,j)+vn(i,j-l))*rdy2 
2 +cyl*(vn(i+1,j)-vn(i-1,j))/(2.*delx2*(float(i)-1.5))) 
v(i,j)= vint+delt*((p(i,j)-p(i,j+1))*rdy + gy+visy) 

1111 continue 
c******************************************************************** 
c******************************************************************** 
c 
c set boundary conditions 

2000 continue 
do 2200 j-1,jmax 
go to(2020,2040,2060,2080),wl 

2020 u(l,j)-O.O 
v ( 1 , j ) -v ( 2 , j ) 

c 
nf(l,j)-O 

c 
go to 2100 

2040 u(l,j)-O.O 
v ( 1 , j ) a-V ( 2, j ) 

c 
nf(l,j)=O 

c 



c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

go to 2100 
2060 if(iter.gt.O .and. flg.gt.0.5)go to 2100 

u ( 1 , j ) "'U ( 2 , j ) 
v ( 1 , j ) -v ( 2 , j ) 

nf(1,j)-1 

go to 2100 
2080 u(1,j)cu(im2,j) 

v ( 1 , j ) -v ( i m2 , j ) 

nf(1,j)=1 

2100 go to (2120,2140,2160,2180),wr 
2120 u(im1,j)-0.0 

v(irnax,j)-v(irn1,j) 

nf(imax,j)-O 

go to 2200 
2140 u(irn1,j)-0.0 

v(irnax,j)--v(im1,j) 

nf(imax,j)-O 

go to 2200 
2160 if(iter.gt.O .and. f1g.gt.O.5) go to 2200 

u(im1,j)- u(im2,j)*(float(im2-1)/float(im2)*cyl+(1.0-cyl)) 
v(irnax,j)-v(im1,j) 

nf(imax,j)-1 

go to 2200 
2180 u(irn1,j)-u(2,j) 

v ( i rn1 , j ) -v ( 2 , j ) 
p(irn1,j)-p(2,j) 
v(imax,j)-v(3,j) 

nf(imax,j)-1 

2200 continue 
do 2500 i-1,irnax 
go to (2320,2340,2360,2380),wt 

2320 v(i,jrn1)-0.0 
u(i,jrnax)-u(i,jrn1) 

nf(i,jmax)-O 

go to 2400 
2340 v(i,jm1)-0.0 

u(i,jmax)--u(i,jm1) 

nf(i,jmax)-O 

go to 2400 
2360 if(iter.gt.O .and. flg.gt.0.5) go to 2400 

v(i,jm1)-v(i,jm2) 
u(i,jmax)-u(i,jm1) 

nf(i,jmax)-1 



c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

go to 2400 
2380 v(i,jrn1)=v(i,2) 

u(i,jrn1)-u(i,2) 
p(i,jrn1)=p(i,2) 
u(i,jrnax)=u(i,3) 

n f ( i , j rna x ) -1 

2400 go to (2420,2440,2460,2480),wb 
2420 v(i,l)-O.O 

u ( i , 1 ) -u ( i , 2 ) 

nf(i,l)=O 

go to 2500 
2440 v(i,l)=O.O 

u(i,1)--u(i,2) 

nf(i,l).O 

go to 2500 
2460 if(iter.gt.O .and. flg.gt.0.5) go to 2500 

v ( i , 1 ) -v ( i , 2 ) 
u ( i , 1 ) -u ( i , 2 ) 

nf(i,l)-l 

go to 2500 
2480 v(i,1)-v(i,jrn2) 

u(i,1)-u(i,jrn2) 

nf(i,l)=l 

2500 continue 

c special boundary conditions 
c 

c 

c 

c 

do 2801 j-12,jrnl 

nf(17,j)-0.0 

u(16,j)-0.0 
u(17,j).0.0 
v(17,j).0.0 

2801 continue 
v(17,11).0.0 
u(2l,29)--1.0 
u(2l,30)--1.0 
u(21,31)--1.0 

do 2800 i-18,irn1 
v(i,jrnl)-O.O 

2800 continue 
do 2802 j=2,28 

u(21,j)-O.O 

nf(22,j)-0.0 
c 

2802 continue 
c 



go to kret(3000,5000) 
3000 continue 

c 
c has convergence been reached 
c 

if(flg.eq.O.)go to 4000 
iter-iter+l 
if(iter.lt.5000) go to 3050 

c if(iter.lt.500) go to 3050 
c if(cycle.lt.lO) go to 4000 

if(cycle.1t.100) go to 4000 
t- 1.e+10 
go to 5000 

3050 f1g-0.0 
c 
c compute updated cell pressure and velocities 
c 

c 

c 

c 

do 3500 j-2,jml 
do 3500 i ... 2,iml 

if(nf(i,j).eq.O) goto 3500 

d-rdx*(u(i,j)-u(i-1,j))+rdy*(v(i,j)-v(i,j-1))+cyl*(u(i,j) 
1+u(i-1,j))/(2.*delx*(float(i)-1.5)) 
if(abs(d/dzro).ge.epsi)flg-1.0 
delp. -beta*d 
p(i,j)-p(i,j)+delp 
u(i,j)-u(i,j)+dtdx*delp 
u(i-1,j)-u(i-1,j)-dtdx*delp 
v(i,j)-v(i,j)+dtdy*delp 
v(i,j-1)-v(i,j-1)-dtdy*delp 

3500 continue 
go to 2000 

4000 continue 

c print and plot 
c 

c 

5000 continue 
if(t.gt.O.)go to 5030 
print 50,(xput(i),i-1,num) 

5030 continue 
if(cycle.le.O) go to 5100 
if(t+1.e-6 .It. twplt) go to 5600 
twplt=twplt+cwplt*delt 

5100 continue 
print 49, iter,t,cycle 
print 46,t,cycle 

c list velocity and pressure fields 
c 

c 

5600 continue 
if(cycle.le.O) go to 5800 
if(t+l.e-6.1t.twprt) go to 6000 
twprt-twprt+cwprt*delt 

5800 continue 
do 5900 i- 2,im1 
do 5900 j=2, jml 
write(9,48) i,j,u(i,j),v(i,j),p(i,j) 

5900 continue 



c set the advance time velocities u and v into the un and vn arrays 
c 

c 

6000 continue 
do 6100 i-1,imax 
do 6100 j-1,jmax 
un ( i , j ) -u ( i , j ) 
vn ( i , j ) -v ( i , j ) 
pn ( i , j ) -p ( i , j ) 

6100 continue 

c advance time t-t+delt 
c 

t-t+delt 
if(t.gt.twfin) go to 6500 
cycle-cycle+1 
go to 1000 

6500 continue 
call etime(tarray) 
cpu2-tarray(1)+tarray(2) 
cpu2-cpu2-cpu1 
print*, , total CPU time: ',cpu2 
call exit(l) 
end 

c ***************************************************************** 
c 

subroutine eqtn(x,y,uint,vint) 
c 
c solve trajectory equations dx/dt--u and dy/dt/--v 
c and get interpolated velocities at the 
c newly computed (x,y) location 
c 

c 

c 

c 

real u(36,36), v(36,36) 

integer nf(36,36) 

common /vel/ u,v 
common /mesh/ dt,dx,rdx,xmin,xmax,dy,rdy,ymin,ymax,dd 
common /dat/ nf, neqn, imax, jmax 

c interpolate velocities to (x,y) 
c 

call ginter(x,y,uii,vii) 
c 
c NEQN - the number of sub-time steps to solve 
c the trajectory equations 
c 

c 

ddt-dt/neqn 
n-neqn 

xO-x 
yO-y 

uO-uii 
yO-vii 

do 10 k-1,n 
xl-xO-uO*ddt 
y1-yO-vO*ddt 

i1-(xO-xmin)*rdx+2.0 
jl-(yO-ymin)*rdy+2.0 

if(i1.le.O) i1-1 
if(i1.gt.imax) i1-imax 



if(j1.le.O) j1-1 
if(j1.gt.jmax) j1-jmax 

ddt1-ddt 
m-1 
key-O 
if(nf(i1,j1).eq.1) go to 40 

c 
c subdivide the time step further if 
c the trajectory hits a blocked cell 
c 

c 

30 continue 
x2-xO 
y2-yO 
u2-uO 
v2-vO 
ddt1-ddtl*0.5 
m-2*m 
do 20 l-l,m 
x1-x2-u2*ddt1 
y1-y2-v2*ddtl 

il-(x2-xmin)*rdx+2.0 
j1-(y2-ymin)*rdy+2.0 

if(i1.le.0) i1-1 
if(il.gt.imax) il-imax 
if(jl.le.O) jl-l 
if(j1.gt.jmax) j1-jmax 

if(nf(i1,j1).eq.1) goto 50 
key-key+1 
if(key.gt.20) then 
uint-u2 
vint-v2 
goto 100 
endif 
go to 30 

50 continue 
if(l.eq.m) goto 40 
x2-x1 
y2-yl 
call ginter(x2,y2,u2,v2) 

20 continue 
40 continue 

xO-xl 
yO-y1 

c interpolate velocities to (xO,yO) 
c 

call ginter(xO,yO,uO,vO) 
10 continue 

uint-uO 
vint-vO 

100 continue 
return 
end 

c************************************************** 
c 

subroutine ginter(x,y,uint,vint) 
c 
c interpolated velocities to the point (x,y) 
c 

real u(36,36), v(36,36) 



integer nf(36,36) 
common jvelj u,v 
common jmeshj dt,dx,rdx,xmin,xmax,dy,rdy,ymin,ymax,dd 
common /dat/ nf, ne, imax, jmax 

c 
c define the indices of the cells which will be 
c used for interpolation 
c 

il-(x-xmin)*rdx 
if(il.ge.l) goto 11 

il-1 
11 continue 

if(il.1e.imax) goto 12 
il-imax 

12 continue 
x1-x-(i1-1.0)*dx 
if(i2.ge.l) goto 13 

i2-1 
13 continue 

if(i2.1e.imax) goto 14 
i2-imax 

14 continue 
x2-(i2-1.0)*dx-x 
j1-(y-ymin)*rdy 
if(jl.ge.l) goto 15 

jl-l 
15 continue 

if(jl.le.jmax) goto 16 
jl-jmax 

16 continue 
j2-jl+1 
y1-y-(j1-1.0)*dy 
if(j2.ge.l) go to 17 

j2-1 
17 continue 

if(j2.le.jmax) goto 18 
j2-jmax 

18 continue 

c 

c 

y2-(j2-1.0)*dy-y 

iO-2*x1*rdx 
jO-2*yl*rdy 
i3-il+2*iO 
j3-jl+2*jO 

c linearly interpolate velocities 
c 

c-abs(-y1+0.5*dy) 
d-abs(-yl+dy*(2*jO-0.5)) 
uint-(d*(u(il,j2)*x2+u(i2,j2)*x1)+ 

* c*(u(il,j3)*x2+u(i2,j3)*xl))*dd 
c-abs(-xl+dx*O.5) 
d-abs(-xl+dx*(2*iO-0.S)) 
vint-(d*(v(i2,jl)*y2+v(i2,j2)*yl)+ 

* c*(v(i3,jl)*y2+v(i3,j2)*yl))*dd 
return 
end 


