
THE DESIGN OF IDGH EFFICIENCY POWER 

AMPLIFIERS FOR IN-CAR AUDIO USE 

By 

lain David Mosely 

A thesis submitted for the degree of PhD in 
the Department of Electronic and Electrical 
Engineering, The University of heffield 

September 1999 



Acknowledgements 

I would like to acknowledge the support of the members of the Machines & Drives 

research group whose knowledge and good humour have proved invaluable during the 

period of this research. Also, the help and support (both academic and practical) from 

numerous other people in the Electrical and Electronic department at Sheffield is greatly 

appreciated. 

In particular, many thanks to my supervisor, Dr. Phil Mellor, for keeping me on the 

right track and for quickly providing a critical proof reading of this thesis. Also, I would 

like to thank my tutor, Dr. Chris Bingham, for his enthusiastic encouragement and 

SUppOlt that always came when I needed it most. 

Many thanks to the EPSRC and Precision Power inc. for providing the funding for this 

research. 

Lastly, I would like to take this oppurtunity to thank my parents, family and friends for 

their patience and support during my time at University. 

2 



Abstract 

Switched mode, Class-D power amplification allows for high efficiency power 

amplification of an audio signal. This thesis investigates its application to high power 

car audio systems where there is a demand for efficient high power amplification. 

Examination of the present car audio power amplifiers, which comprise a switched 

mode power supply combined with a linear output stage, has shown that there is 

significant scope for improvement in efficiency and power density. 

A novel power stage in which the attributes of a switched-mode power supply and full 

bridge output stage is presented. It is demonstrated that elimjnation of the intermedjate 

DC supply results in an amplifier which has a significantly lower part count, size and 

cost compared to conventional designs. 

Two different modulation schemes are explored (PWM and PDM) with a vIew to 

finding the most suitable for the new power stage. The theoretical performances of the 

modulators are verified by practical measurements. The design of high order Delta

Sigma modulators is difficult as they show unstable behaviour and an alternative design 

methodology has been presented to ease this task. 

The mechanisms which introduce distortion in a practical amplifier are discussed, and 

for the case of a PWM driven output stage, a new model is presented to predict the 

effect of dead time on harmonic distortion. This form of distortion is shown to be the 

dominant cause of open loop non-linearity. The use of feedback is also investigated and 

yields a factor of 20 improvement in amplifier total harmonic distortion . 

The design throughout has been supported with practical results and these have 

illustrated the importance for careful circuit layout in high frequency switching systems. 
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Introduction 

1 Introduction 

The advent of the compact disc in 1983 has heralded a rapid progression in the 

application of digital audio techniques to consumer products. Digital audio storage and 

transmission is now commonplace (digital TV, DVD, Minidisk etc) and has brought 

benefits such as increased dynamic range and low noise floors. 

Although the use of digital technology has revolutionised consumer audio, one part of 

the audio chain which has remained largely unchanged is the conventional analogue 

technology used for final audio power amplification. Most consumer audio power 

amplifiers have power ratings of a few tens of Watts and heat generated by the use of 

linear amplifiers for such applications is easily dissipated. However, for applications 

where conversion efficiency is paramount (e.g. portable battery powered equipment), 

linear technology is not suitable or where high power output is required, the amplifiers 

tend to be large and dissipate excessive heat. 

Digital or, Class-D power amplifiers, first suggested by Baxandall [1.1], use output 

transistors in a high frequency switching manner with the audio information being 

conveyed in the timing of the switching events. This approach offers three main 

advantages over the more conventional linear technique. 

• The use of the power handling devices in an on or off state offers a significant 

increase in power conversion efficiency over linear amplifiers. 

• The entire power conversion process (up to the switching drive signals) can be 

undertaken digitally and this offers improvements in the amplifier fidelity similar to 

those seen with compact disc (very low distortion and signal to noi se ratio). 

• Digital circuitry requires no set-up steps (e.g. bias setting) which can make the 

production of digital amplifiers cheaper. 

In high-power audio amplifier systems, it is the increase in conversion efficiency that 

makes the use of Class-D amplifiers attractive. Indeed, Class-D amplifiers are now 

commonplace in commercial PA systems [1.2] where the power rating is of the order of 

kilowatts. These systems use analogue modulation techniques to control the switching 

transistors and thus offer similar fidelity performance to their linear counterparts at very 

much higher conversion efficiency. 
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This thesis is concerned with the use of Class-D techniques for in-car audio where there 

is a particular requirement for high efficiency since the power is drawn from a limited 

energy low voltage supply. A novel cIass-D structure in which the intermediate DC 

supply is eliminated is described in detail. A new model enabling accurate prediction of 

dead time distortion in PWM modulated cIass-D systems is also presented. 

1.1 In-Car Audio Power Amplifiers 

In the USA in recent years, the market need for high power car audio amplification has 

grown with ever increasing demands on power and performance. A number of 

manufacturers [1.3, 1.4, 1.5] commercially produce in-car power amplifiers with ratings 

up to 500W per channel, and an example of one of these is shown in Figure 1.1. These 

units tend to be physically large and can run very hot. A typical state of the art amplifier 

utilises a linear output stage driven by a switched-mode power supply (SMPS) as shown 

in Figure 1.2. The SMPS is used to boost the 12V DC voltage from the car battery to the 

-±50V required by the linear output stage. To maintain a reasonable efficiency, the 

switching elements forming the primary side bridge circuit are realised with paralleled 

MOSFETs to keep the conduction loss to a minimum. In the linear amplifier section, 

many paralleled bipolar devices are again used in order to dissipate the losses over a 

large silicon area to limit the maximum operating temperatures. 

Typically, the amplifier is mounted inside the car boot where the ambient temperature 

can be relatively high. The linear technology used in the conventional output stage is 

inefficient and although the amplifier contains thermal protection, it is likely to cut out 

before full continuous power output is achieved. Furthermore, since the amplifier power 

source is a battery, energy wasted as heat will cause an additional load on the car 

electrical system and will compromise the operating time of the amplifier. An 

additional alternator may be required to ensure an adequate electrical supply for the 

amplifier. 

The efficiency of the overall amplifier will be the combined efficiencies of the power 

supply and the linear output stage. The efficiency of the power supply in the amplifier 

of Figure 1.2 was measured by disconnecting the linear output stage and loading the 

positive power rail with a variable load. The input voltage was maintained at a nominal 

12V and Figure 1.3(a) shows the measured conversion efficiency as a function of the 

output power. Figure 1.3(b) shows the measured power loss in the SMPS. The input and 

output powers were measured using a high accuracy power analyser (see Appendix E). 
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Figure 1.1 - Precision Power A1200 (SOOW per channel in-car audio amplifier) 

Figure 1.2 - Present in-car power amplifier circuitry (SOOW per channel) 
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Figure 1.3 - Measured efficiency and power loss in the amplifier SMPS 

In Figure 1.3, the solid blue line represents a polynomjal fit to the measured data. The 

polynomial was calculated using a least squares fit approach in MATLAB. The results 

indicate an SMPS efficiency between SO% and 90% over most of the operating region 

of the power amplifier. Compared to the linear output stage, this efficiency is very high 

and therefore the overall amplifier conversion efficiency is likely to be dominated by 

the efficiency of the linear output stage. 

The linear output stage was reconnected and the total conversion efficiency of the 

amplifier (based on 12V DC input to AC audio output) was measured for load 

resistances of 40n, 20n, 14n , IOn and sn. The amplifier was configured in bridged 

mode and for these load resistances, the power outputs at full 90V peak are 100W, 

200W, 300W, 400W and SOOW respectively, Figure 1.4. 
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Figure 1.4 - Conversion efficiencies of full amplifier system 

As would be expected, the overall conversion efficiency is relatively independent of the 

load res istance used. The profiles confirm that the linear amplifier has a significant 

impact on overall efficiency and at best, the amplifier is 50% efficient. 
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1.2 Specification 

The target specification of the Class-D system is based on the specifications of a present 

linear design , the Precision Power PC21400 amplifier, which is capable of delivering 

350W per channel into a 4Q load. 

Power Bandwidth 4.5Hz - 100kHz 

Total Harmonic Distortion 0.02% 

Input Topology Differential 

Input Sensitivity 150mV - 12V RMS 

Input Impedance 10k 

Load Impedance (stereo) 2-8Q 

Load Impedance (bridged) 4-8Q 

Supply Voltage 11-15V 

Damping Factor >500 

Slew Rate >SOV/l!s 

The 100kHz power bandwidth presented above is excessive when the hearing area of a 

human is considered, Figure 1.5. A bandwidth of 20kHz was stipulated for the work in 

the thesis as this was considered adequate for a car audio system. 
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Figure 1.S - Hearing area for a typical adult human (Source - [1.6]) 
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The figure shows that most humans can only perceive frequencies up to 14kHz although 

the argument for hi gh power bandwidth can be supported through subjecti ve testing. 

The target and harmonic di stortion figure was also re laxed to 0.1 %. Although thi s is 

poorer than the 0.02% offered by the linear amplifier, it is deemed that thi s is acceptable 

for in car audio use. Also, the equipment avail able to measure the spectral content of the 

ampli fier has a dynamic range of 70dB which is close to the required 60dB range 

required to measure 0.1 % di stortion. 

1.3 Research Overview 

The thesis investi gates the development of a high efficiency Class-D ampli fier system 

for in-car audio use. The aim is to produce a system with much higher conversion 

effi ciency than the present linear system and simultaneously reduce the pmt count. Thi s 

will lead to a system with hi gher power density and lower cost. 

Chapter 2 

Chapter 3 

Chapter 4 

provides an overview of the operation of both linear and conventional 

switched-mode amplifier systems. In particul ar, the factors affec ting the 

operational effi c iency of both these types of ampli fiers will be di scussed. 

This will give an indication of the likely improvement avail able through 

the implementation of switched-mode technology. 

reviews pulse width modulation (PWM) and pulse density modulation 

(PDM) schemes avail able to drive a switched-mode power stage. 

Theoreti cal limitations in performance are verifi ed experimentall y and 

give an indicati on of the attainable performance for a prac tical 

modul ator. Furthermore, a new methodology is presented fo r the design 

of high order Si gma-Delta modul ators with experimental results to 

SUppOlt the theoretical perfOlmance. 

presents practical results from a prototype C lass-D output stage to 

highlight the performance available from a such systems using the 

modulati on technique di scussed in chapter 3. In particul ar , the 

conversion efficiency is measured and shown to be significantl y higher 

than a linear output stage. Much of the chapter is dedicated to an 
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Chapter 5 

Chapter 6 

Introduction 

investigation of distortion mechanisms within the power stage. 

Specifically, an analytical method of predicting the harmonic distortion 

caused by the necessary introduction of a dead time between the 

switching of the power devices in the output stage is discussed. The 

chapter concludes with a discussion of the methods available for the 

implementation of closed loop control to minimise harmonic distortion. 

proposes a new integrated power stage which combines the attributes of 

an SMPS and Class-D output stage and eliminates the need for an 

intermediate DC supply and associated filter components. The chapter 

discusses the development of the power stage and pertinent design issues 

to its successfu l operation. In particular, the importance of careful circuit 

layout to minimise parasitic effects and the use of planar magnetic 

circuits to minimise transformer leakage inductance are highlighted. 

gives the results of applying both PWM and PDM modulation strategies 

to the new power stage developed in Chapter 5. Two methods for partial 

soft switching are developed. Distortion mechanisms present in the new 

power stage are highlighted and supported with results taken for both 

open and closed operation. Finally, the operational efficiency of the 

complete converter is measured and possible improvements are 

discussed. 
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2 Amplifier Operation 

2.1 Introduction 

At the heaJt of the power conversion process in an audio amplifier is application of the 

power transistor to allow a small signal to control a much larger power signal. There are 

a number of ampli fier circuits available, which fall under one of two main categories: -

• Linear Amplifi ers, in which the power transistor operates in its linear region 

• Switching Amplifiers in which the power transistor operates in its switching states, 

i.e. saturated on or off. 

Thi s chapter reviews the general operation of both types of amplifi er. More specificall y, 

the fac tors affecting the efficiency of both types of ampli fier are di scussed and the linear 

amplifi er operation is augmented with results from a prototype power stage. The 

prac ti cal operation of a switching amplifier is covered in Chapter 4. 

2.2 Linear Operation 

Although a large number of linear output stages have been developed, they are mostl y 

based around the basic stage as shown in Figure 2. 1. (The power stage is shown with 

BJT's although MOSFETs can also be used). 
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Figure 2.1 - Generic linear power stage 
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The power stage consists of two emitter-followers, one to provide positive output 

voltage and the other to provide negative output voltage. The transistors must be biased 

into conduction to reduce crossover distortion and the level of bias used in practice 

determines the class of the ampli fier. There are four main classes of linear amplifiers 

and these are described below. 

Class-A 

Class-AB 

Class-B 

Class-C 

Under Class-A operation, both transistors always remain in conduction. 

To achieve this, the bias current must be set to be greater than the peak 

output current. The maximum efficiency of this power stage is therefore 

50% and this is achieved for maximum sinewave output voltage into a 

purely resistive load. This class of operation offers the most linear output 

stage but suffers from very poor efficiency. 

Under Class-AB operation, the output transistors are biased slightly into 

conduction (typically a few tens of rnA). This level of bias offers a 

greater operating efficiency than Class-A operation but suffers from 

poorer linearity. This class of operation is the most commonly used for 

audio output stages. 

Under Class-B operation, the output transistors are biased to be just on 

the point of conduction. This offers an increase in efficiency of up to 

approximately 75% but the output stage can exhibit relatively high levels 

of crossover distortion. 

Under Class-C operation, no bias is used. This leads to very high levels 

of crossover distortion and is most often used where very high output 

power is required (e.g. radio transmitters) 

With these linear power stages, the efficiency is further reduced by the nature of the 

load impedance. Any reactive power flow between the amp lifier and load causes 

additional power loss in the output stage. For an ideal power stage of Figure 2.1, with 

zero cross-over distortion and no bias current, the conversion efficiency, 11, for a 

sinewave output into a reactive load is given by Equation (2.1) (The working for 

Equations (2.1), (2.2) and (2.3) can be found in Appendix A). 
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Where, 

v 
r; = 25/'r-P cos(¢) 

VDC 

Vp is the sinewave amplitude 

VDC is the DC link supply voltage 

<l> is the phase shift of the load. 

Amplifier Operation 

(2.1) 

Thus, peak efficiency occurs when the peak output voltage approaches the DC supply 

rails and when the load has unity power factor (i.e. is purely resistive). Similarly, the 

power lost in the output stage, PL, can be found and is shown in Equation (2.2). 

(2.2) 

Where, 121 is the magnitude of the load impedance 

The peak power loss in the linear power stage can be found through differentiation of 

(2.2) and exists over two ranges of power factor as shown in (2.3). The working can be 

found in appendix A. 

MA X 

2 
- $ cos(¢) $ 1 
/'r 

2 
0$ cos(¢)< -

/'r 

(2.3) 

Both the conversion efficiency and power loss are functions of the complex load 

impedance as well as the peak output voltage relative to the power supply rails. In 

practice, the impedance of a loudspeaker system will vary considerably over the design 

frequency range. A single electromagnetic drive unit wi ll have electrical and mechanical 

resonance's and if a number of units are connected in parallel in combination with 

crossover networks to cover the fu ll bandwidth, a complicated impedance wi ll result. 
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The complex impedance of a 300W single low frequency (40Hz-2kHz) base drive unit, 

mounted in free air, is shown in Figure 2.2. It is evident that the magnitude of the 

impedance can vary significantly from the nominal 8,Q and the phase shift is as much as 

50°. Using Equation (2.3), Figure 2.3 shows that this load impedance could result in a 

power loss of up to 40W for a lOOW rated linear power stage. 
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The band of frequencies up to 300Hz shows the largest phase shift over the useful band 

of the loudspeaker and Figure 2.4 plots the calculated efficiency profile over this range 

using the measured impedance data of Figure 2.2 and Equation (2.1). The profile shows 

that the large phase shift of the loudspeaker around resonance can drop the power stage 

efficiency by more than 20% although it is the peak output voltage relative to the DC 

rail voltage that has the largest effect on efficiency. To verify the calculated efficiency 

profile, the actual efficiency of a Class-B linear power stage was measured with the bass 

drive loudspeaker as a load as shown in Figure 2.5. T he supply rails were set to ±6V 

with a steady state bias current of 50mA. 

A single drive unit is, however, not representative of a full range speaker system. In 

order to assess the impedance of a typical system, a three-way loudspeaker was 

constructed, Figure 2.6. 
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Figure 2.6 - 300W Multiway loudspeaker system (Fire extinguisher is for scale!) 

28 



Amplifier Operation 

With the multi way loudspeaker system, three resonant peaks are observed in the 

impedance profile, Figure 2.7, corresponding to the resonant frequencies of the three 

individual drive units. The efficiency and maximum power loss profiles for the 

loudspeaker system show a similar behaviour to that of the single drive unit except there 

are more peaks and troughs evident. Again , this load would lead to a maximum power 

di ssipation of -40W in a linear output stage at a lOOW rated output. 
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Figure 2.7 - Impedance profile for a multiway loudspeaker 

The main cause of inefficiency is the potentially large voltage drop across the power 

devices when they are in conduction, which is maximised with a reactive load. One way 

of addressing this problem without resorting to the complexity of the Class-D approach 

was first developed by Hitachi in 1977 and is di scussed by Raab [2.1]. This 'Class-G' 

approach uses two or more linear power stages operating in tandem with different 

supply voltages, Figure 2.8. 

Devices Q3 and Q4 form a high power Class-B stage and are supplied from ±Vdc rails. 

Ql and Q2 form a low power Class-B stage and are supplied from lower voltage 
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(±aVdc) rails where a<l. Low output signal levels are driven by Q1 and Q2 whilst 

signals above aVdc are driven by Q3 and Q4. 
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OI--C4_
I 
___ C3

0 
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L 1 

Q4 

·Vdc(2) 

Figure 2.8 - Class-G linear amplifier topology (Source - [2.1]) 

The actual operating efficiency of a power stage such as this is a function of 'a' and 

[2.1] quotes a peak operating efficiency of 86% for a maximum amplitude sinewave and 

a=0.707, assuming a purely resistive load. The cOITesponding maximum for a Class-B 

stage is 78.5% (see Equation (2.1)). A further increase to 89% is possible for a Class-G 

stage consisting of three Class-B sections. 

In reality, a music signal is not a pure sinewave but consists of relatively low signals 

with large transient peaks. Thus, the actual operating efficiency of a linear power stage 

is li ke ly to be a good deal lower than the theoretical maximum. 

Another method, conceived of by Soundcraft in 1977 and developed by Jensen [2.2], 

adapts the Class-G approach by actually modulating the voltage rail by the input signa l. 

This technique, known as Class-H, allows for optimum efficiency in the output stage. 

Whilst offering improved efficiency, both Class-G and Class-H necessitate additional 

power supplies which can increase the system cost and complexity. 
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2.3 Switched-Mode Operation (C/ass-D) 

The Class-D or switched-mode technique was first proposed by Baxandall in the early 

1960s and led to the appearance of Class-D amplifiers for audio applications [2.3, 2.4, 

2.5]. The poor linearity of these amplifiers restricted their use to high power, low 

fidelity applications. 

The main problem faced by the designers of these early Class-D amplifiers was in the 

devices available for practical implementation. At the time, only Bipolar Junction 

Transistors (BJTs) were available and the long switching times of this type of device 

restricted the switching frequency to less than 50kHz. With this switching frequency, 

high levels of foldback distortion (See Chapter 3) appear in the baseband and 

compromise performance. 

In the late 1970s Cuk and Erickson [2.6] explored a new Class-D topology using a 

coupled inductor approach but the majority of research has been focussed on the 

development of advanced feedback techniques and alternative modulation strategies. 

Indeed, some of the latest developments in Class-D technology are based around the 

simple H-Bridge stage [2.7]. Whilst very high fidelity digital amplifiers are now 

beginning to emerge in high-end audio systems [2.8] the main application area of djgital 

amplifiers still remains in high power audio amplification. With operating efficiencies 

of between 80% and 90%, high power digital audio amplifiers can offer a substantially 

higher power density than their linear counterparts. 

As the name suggests, switched-mode operation uti lises the output power devices in 

either their fully saturated or cut-off state. In addition to the inherently higher 

conversion efficiency due to the switching action, the regenerative energy associated 

with a reactive load is returned to the DC link rails rather than being dissipated. 

2.3.1 Topologies 

Two main topologies are used to achieve the power amplification, namely the voltage 

source half bridge converter and the full bridge converter as shown in Figure 2.9. With 

the half bridge converter, a positive pulse from the modulator switches SW 1 on and 

SW2 off placing a voltage of +Vdc across the fi lter input and vice versa for -Vdc. The 

full bridge converter operates in much the same manner with SWI and SW4 and SW2 

and SW3 operated in tandem to place a voltage of ±Vdc across the filter. 
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Figure 2.9 - Half bridge (left) and full bridge (right) topologies 

Of the half and full bridge configurations , it would seem that the half bridge converter is 

superior to the full bridge due to its relative simplicity with half the number of 

semiconductor devices. However, in [2.9], Lai and Smedley point out that the half

bridge topology is only suitable at low power since the existence of a DC component at 

the center point of the two switches will lead to a DC component in the load current, h. 

When this occurs, and SWI is on, Cl is discharged. However, when SWI is turned off 

and SW2 is turned on, the same direction of current will charge up C2. Since the DC 

links can normally only supply power in one quadrant, this charging action will tend to 

cause an imbalance in the supp ly voltages. Lai and Smedley go on to suggest that even 

if a DC component doesn't exist at the center point, a low frequency component in the 

signal wi ll lead to excessive power supply ripple. Although this problem could be 

solved by simply designing a 2-quadrant capability into the power suppli es, the full 

bridge converter is less sensitive to this problem and therefore represents a better choice 

at high power levels. Furthermore, the full bridge operation a llows for twice the peak 

output voltage from the amplifier, compared to a si.ngle ended power stage with the 

same power supply. 

2.3.2 Device Choice 

The power switches in either of the above converter topologies can be realised with any 

active semiconductor switch and the choice of device technology depends on the 

specific requirements of the amplifier. The most suitable device is the one that offers 

lowest conduction loss, the fastest switching time and the lowest drive requirements. 

Early Class-D amplifiers used BJTs [2.5], however, developments in device technology 

have made the Metal Oxide Semiconductor Fie ld Effect Transistor (MOSFET) a more 
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attractive device due an order of magnitude increase in switching speed. New types of 

device are under development and the Insulated Gate Bipolar Transistor (IGBT) is now 

commonplace in high power converters due to its inherent rugged behaviour. 

Furthermore, the IGBT is a bulk carrier device and therefore uses less Silicon than an 

equivalent MOSFET. IGBTs can now be found in power converters switching at over 

100kHz [2.10], and therefore could be used for an audio power stage. However, the 

extreme level of primary side current for the power rating precludes their use due to 

excessive conduction loss. Thus, MOSFETs are presently the most attractive devices for 

a switching audio power stage. 

2.3.3 Loss Mechanisms 

Loss in a Class-D output stage can be encountered in a number of ways: -

• Switching loss in the power devices 

• Conduction loss in the power devices 

• Loss in the power device drive circuitry 

• Loss in the passive power filter components 

• High frequency loss in the loudspeaker caused by the presence of switching 

frequency components. 

Correct design of the power filter will minimise loss in the filter and high frequency loss 

in the loudspeaker. Loss in the gate drive circuitry is likely to be small compared to the 

switching and conduction loss and only affects efficiency at low power outputs. Thus, 

the dominant loss mechanisms are switching and conduction loss. 

2.3.3.1 Switching Loss 

The finite time taken for a practical power MOSFET to switch between states results in 

an energy loss during the transition. The switching time and therefore the energy lost 

during the switching transition are dependent on both the MOSFET parasitic elements, 

the particular circuit topology being used and capability of the gate-drive circuitry. Due 

to the use of the dead time in the Class-D power stages and the inductive nature of the 

load, the switching behaviour is governed by transition of the load current either to or 

from a freewheeling diode. Consider one leg of an H-Bridge power stage as shown in 

Figure 2.10. 
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Figure 2.10 - Single leg of an H-bridge output stage 

For a positive load current, I L, as indicated on the figure, switching device Q2 on or off 

will not affect the output voltage, V2, since the current wi ll simply transfer from Q2 to 

D2 or vice-versa. Thus, the loss incurred for this switching condition is negligible. 

However, if Ql is switched on or off, the load current will transfer from D2 to Ql or 

vice-versa. This commutation causes a change in the output vo ltage, V2, and therefore a 

loss will be incurred in the switching device. A similar situation is encountered if the 

load current is negative and Q2 is switched on or off. 

The situation for the power MOSFETs turning off can be modelled relatively simply. 

Consider the case when the load CUITent is negative and device Q2 switches off. The 

load cun'ent can only be supported in Dl when it becomes forward biased and thus Q2 

will continue to support the cun'ent until V2 has risen to a diode drop, Vo, above Voc. 

Therefore, the Drain-Source voltage of Q2 and its Drain current can be approximated as 

shown in Figure 2.11. During time t" the drain-source voltage rises in an approximately 

linear fashion until diode Dl becomes forward biased. The load current then transfers in 

a relatively linear manner from Q2 to Dl. During both t, and t2, the voltage across and 

the current through Q2 are simultaneously non-zero; this leads to a large instantaneous 

power dissipation. Diode Dl only begins to conduct when the voltage across is very 

small (equal to the forward bias voltage) and therefore it suffers minimal switching loss. 
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.. 

Figure 2.11 - Voltage across and current through Q2 during it switching off 

(Negative load current) 

If the rates of change of both the current and voltage are taken as linear, then the energy 

lost during thi s transition , E(oFF) is as Equation (2.4). 

(2.4) 

The diode drop, VD, is likely to be small compared to the DC supply voltage and is 

often neglected. The shorter the transition times, tl and t2, the lower the loss inculTed 

during switching. The mechani sms affecting tl and t2 are functions of the MOSFET 

parasitic capac itances, the transient capability of the gate-drive and the 

transconductance of the MOSFET, [2. 11]. The model proposed by Mohan, Undeland 

and Robbins [2.11] for the MOSFET switching off is shown in Figure 2.1 2. Cgs and Cgd 

represent the MOSFET parasitic capacitances whi ch have to be charged and di scharged 

via R1 and the gate-drive circuitry during switching events. 

Figure 2.13 shows the MOSFET gate-source voltage, igs(t) , gate CUtTent, ig(t), drain 

cUITent, iD(t) and the drain-source voltage, VDS(t) during the switch off event. 
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Vdc 
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Rg Vds 

VGGI V~r Cgs 

-. 

Figure 2.12 . MOSFET equivalent circuit with parasitic capacitance (Source -

[2.11]) 

UGs(t)...,..---

VGG VOS(th) 

i------+----,---UDS(t) 

f -o 

o~--~----_+------+_----~--------~----~--------

t z:: 0 
I i"-j·------fc-------I 

Figure 2.13 - MOSFET waveforms during a turn off event (Source - [2.11]) 
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The tum-off process, described in [2.11], is as follows: -

1. At t=O, the drive voltage source, VGG, falls from its initially high value (typically 12-

15V) with a time constant of '!2 as shown in Figure 2.13. VGS begins to fall but the 

MOSFET remains in the fully on state until VGS reaches the point on the device 

transfer characteristic where V GS corresponds to a drain current equal to the load 

current. Thus, there is a time delay, td(off), after the drive signal goes low before the 

device begins to switch. 

2. As the MOSFET begins to switch off, the voltage across it begins to rise and 

therefore the gate-drain parasitic capacitance must be charged via RG. During this 

time, the gate-source voltage remains at the constant level needed to support the full 

load current. Thus, the rate of change of drain-source voltage is equal to the rate of 

change of drain-gate voltage and this is as shown in Equation (2.5). During this 

period, the rate of change of drain-source voltage takes two distinct values governed 

by two different values of Cgd. At first , the MOSFET is still in the ohmic region and 

the equivalent circuit is as shown in Figure 2.14(a). Here, the gate drain capacitance 

is relatively large and equal to Cgdl . When the MOSFET moves out of the ohmic 

region into the active region , Cgdl changes to Cgd2 which is a lower capacitance and 

the rate of change of drain-source voltage is increased. These two regions 

cotTespond to trvl and trv2 in Figure 2.13 respectively. 

(2.5) 

3. Once the drain-source voltage has reached such a level as to forward bias D 1, the 

load current begins to transfer from the MOSFET drain to D 1• As the load cun'ent 

decreases in the MOSFET drain, the gate source voltage begins to fall according to 

the transfer characteristic until the gate-source voltage equals the threshold voltage 

when the drain-current is zero. During this time, the equivalent circuit is that of 

Figure 2.14(c) and the time taken for the cun'ent to fall is governed by the time 

taken to discharge Cgs and Cgdl via RG (The time constant is '!I in Figure 2.13) 
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4. When the MOSFET is fully switched off, the diode supports the full load current 

and the parasitic capacitances continue to charge as in Figure 2.14(d). 

The crossover time tc is therefore equa l to that of t,+t2 in Figure 2.11 and is governed by 

three main factors: -

1. The magnitude of the parasitic capacitances, C gs and Cdg. 

2. The value of the gate drive resistance, RG. 

3. The transient performance of the gate drive circuit. 

The parasitic capacitances are functions of the device construction . High power devices 

tend to use a greater silicon area and therefore tend to have high parasitic capacitances. 

Thus, to minimise the device switching time, the gate drive resistance should be as low 

as possible. The minimum value is governed by the maximum cun"ent drive capability 

of the drive circuitry. In addjtion, if a very low gate resistance is used, care must be 

taken to minimise parasitic inductance in the gate drive circuitry to avoid oscillations 

causing multiple switching events. In practice, typical transition times are of the order 

of tens of nanoseconds. 
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Vd Vd 

(a) (b) 

Vd Vd 

+ o--C:::J.--I-~ + O---C:::J.--I-~ 

(e) (d) 

Figure 2.14 - Equivalent circuits during MOSFET switch off (Source - [2.11]) 

The behaviour of the circuit when the MOSFET is switched on is quite different from 

the turn-off behaviour. When the MOSFET turns on, the load current is transferred from 

the freewheel diode to the MOSFET. As the diode switches off, it undergoes reverse 

recovery and causes an additional current to flow in the MOSFET. Figure 2.15 shows 

the behaviour over the MOSFET turn on peliod with the diode sufferi ng reverse 

recovery. 
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~------- t t' - ------- -+i 

Figure 2.15 - Effect of diode reverse recovery at MOSFET switch on (Source -

[2.11]) 

Outs ide the region trr, the MOSFET switching behaviour is the same as at switch off 

except the events are reversed. The difference with the case of the reverse recovery is 

that the CUITent supported by the MOSFET increases beyond the load current to a value 

Irr hi gher. When the diode has recovered, it turns off very quickl y (depending on the 

'snappiness' of the diode) and the MOSFET drain current fall s bac k to the normal load 

current leve l. Thus, the diode reverse recovery causes an additional time, trr, when the 

MOSFET experiences loss. 

The reverse recovery time, trr and the peak reverse recovery current, Irr are linked by the 

reverse-recovery charge which must be removed during the recovery period. If the rate 

of change of reverse current (governed by the ex ternal circuit) is low then Irr can be 

relati ve ly small at the expense of a long recovery time. A large rate of change o f 

recovery current will yi eld a very short recovery peliod but thi s also will increase the 

peak current in the MOSFET. 

Since the level of reverse recovery and reverse recovery time are a function of the rate 

of change of the load current during switching, it is more di fficult to model the turn on 
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loss level. A reasonable approximation can be had if the tum on losses are calculated in 

the same way as the tum off losses except that it takes an additional time, trr, to tum the 

device on . Thus, the tum on losses can be approximated by: -

Where, t) is equal to the drain voltage fall time 

t2 is equal to the current ri se time 

trr is the reverse recovery time of the diode 

(2.6) 

The actual power lost through the energy di ssipation in the switching events is a 

function of the load current and the number of switching events per second, which in 

tum depends on the modul ation strategy. For a PWM strategy, the situation is relati vely 

simple since each leg of the H-Bridge will switch from +Vdc to ground and ground to 

+Vdc once per switching cycle. This cOITesponds to each of the four MOSFETs 

suffe ring a tum on and a tum off loss once per cycle. If the switching frequency CUITents 

are assumed to be small compared to the fundamental current then the overall switching 

loss can be calculated based on the fundamental current alone. 

For a fi xed DC link supply and switching behaviour, the switching loss is dependent on 

the switched CUITent alone and an estimation of thi s can be obtained by averaging the 

load current and using thi s value in Equati on (2.6). Thus, if each of the four devices 

turns on and off in a cycle, the total power stage switching loss is approximately: -

Where, 

1 
P WSS(TOT) = 4 X F.f x '2 1 L(ave) V DC (t rr + 21 c) 

Fs is the switching frequency 

tc is the switching time without reverse recovery (tl+t2) 

VDC is the DC link supply voltage 

h (AVE) is the average magnitude of the load current 

(2.7) 
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IL(AVE) is simply: -

2! 
I L(al'" ) =-

7r 

Where, j is the peak load current 

2.3.3.2 Conduction Loss 

Amplifier Operation 

(2.8) 

The conduction loss suffered by the power devices in the Class-D stage is relatively 

straight-forward to quantify. Since the dead-time in practice is likely to be less than 5% 

of the switching period, the conduction loss can be estimated to a good degree of 

accuracy by assuming the load current always flows in the power MOSFETs. Indeed, 

the use of power MOSFETs in preference to BJTs allows synchronous rectification 

whereby the MOSFET channel SUppOltS the load current in preference to the anti

parallel diode. Since the MOSFET has a lower voltage drop during conduction, this 

allows for an increase in the operational efficiency. If this assumption is made then at 

anyone time, in an H-bridge power stage the load current flows through two power 

MOSFETs and the conduction loss is then simply: -

LOSSCorlf/ll rti()/I = 2 x 1;,M,s, R DS(oll ) 

(2.9) 

For most of the range of modulation depths, where the fundamental current is 

significantly greater than the switching frequency current, IR,M,s, can be approx imated to 

the fundamental. 

2.3.3.3 Soft Switching 

The heating of the power MOSFET caused by switching loss can be reduced by using 

snubber networks. These circuits operate during the switching transitions to support the 

load CUITent whilst the device switches, effecti vely reducing the switching stress on the 

device. The actual overall loss is not reduced but is transferred from the MOSFET to the 

snubber. This is beneficial since the MOSFET functions better when it is cold (RDS(on) 
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increases with temperature). Snubbers are available for both tum-on and tum-off 

transitions. 

2.3.3.4 Resonant Switching 

Resonant switching techniques are a development of snubber technology which use 

extra passive and active components to force either the current through or the voltage 

across the device to zero whilst it switches. The difference between snubbers and 

resonant systems is that snubbers tend to redirect the switching loss to another part of 

the circuit whilst resonant systems reduce overall switching loss. 

Various methods are available for resonant switching, one of which is to use a resonant 

link. With this approach, the DC link supplying the H-Bridge output stage is 

periodically forced to zero during which time, the power stage can switch without loss. 

Other techniques [2.12,2.13,2.14] use tuned circuits to force zero voltage commutation. 

All of these techniques , however, complicate the circuit design and require additional 

passive components. Furthermore, although resonant switching can result in lower EMI 

and increased efficiency, the voltage and/or current stresses of the switching device can 

be higher than the hard-switched equivalents. 

2.4 Hybrid Systems 

With an approach similar to that of the Class-G amplifier, hybrid systems consisting of 

a Class-D and linear output stage in parallel have been demonstrated 

[2.15,2.16,2.17,2.18]. These systems use the Class-D amplifier to provide the majority 

of the power and a linear amplifier to improve the fidelity. A typical implementation is 

shown in Figure 2.16 [2.15] 
SWITCHED·MODE CURRENT DUMPING SYSTEM 

UNEAR AMPUFlER 

.v 
.v 

INPUTo-+-----4 

LOAD 

·v 

·v 

Figure 2.16 - Hybrid Linear/Class-D Amplifier (Source - [2.15]) 
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In this system, the linear amplifier acts as a controlling master with the Class-D stage 

acting as a high power slave system. In effect, the linear power stage supplies the ripple 

current and any transient currents, which cannot be provided by the Class-D stage. The 

only filter component required is the coupling inductance, L. For a high power 

bandwidth, this coupling inductance must be small but this compromises the losses in 

the linear power stage, which has to provide a higher cancellation tipple current. 

Literature reports that these hybrid systems can reach peak efficiencies in excess of 90% 

[2.16] and typically operate above 80% over the full dynamic range of the amplifier 

whilst maintaining the hi-fidelity associated with linear amplifiers. 

2.5 Conclusions 

The use of a linear output stage in high power car audio applications results in a system 

that is at best 50% efficient. In practice, the reactive nature of the load impedance can 

reduce this efficiency by a further 20%. Although supporting literature has 

demonstrated various techniques through which a linear power stage can be made more 

efficient, the use of a Class-D output stage will allow for an increase in operational 

efficiency to greater than 80% over most of the operating range of the amplifier. 

A Class-D power output stage suitable for high power applications has been discussed 

and its dominant loss mechanisms analysed. At the high switching frequencies required 

in practice, it is expected that the switching loss will dominate the efficiency profile and 

as such a detailed discussion of its cause has been presented. In Chapter 4, it is 

demonstrated that the switching loss in a hard switching converter can be minimised 

through careful design of the gate drive circuitry and although soft switching techniques 

are available which will reduce the switching loss, the additional complexity is 

considered to be excessive for the likely performance increase. The high fidelity of a 

linear stage and the high efficiency of a Class-D stage are found in the hybrid systems 

discussed earlier although the increase in system complexity is unattractive. 
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3 Modulation Strategies 

3.1 Introduction 

The chapter discusses what is essenti ally the heart of the Class-D amplifier system -

that is the modulator circuitry. The purpose of the modulator is to take an audio 

freq uency signal and convert it to a high frequency switching waveform which contains 

the audio information wi thin its baseband. This high frequency signal is then increased 

in voltage by the power output stage and filtered to attenuate the high frequency 

switching components and recover the baseband audio signal. The baseband audio 

signal will then be at a higher power level than the original input signal to the 

modulator. 

The type of modulation strategy is governed by the restrictions imposed by the power 

stage. More specifically, the output voltage from the H-Bridge power stage can be in 

one of three states; zero voltage, positive voltage or negative voltage. This limitation in 

resolution of output pulse amplitude forces the choice of a modulation strategy which 

conveys the audio information in the timing of the switched edges. Thus, the dynamic 

range of the amplifier is achieved with resolution in time rather than resolution in pulse 

amplitude. A perfect amplifier would simply amplify the level of the app lied audio 

signal within the baseband in order that it can dlive power into a loudspeaker. In 

practice the high frequency modulation colours the Oliginal audio baseband signal with 

additional high frequency components, baseband noi se and harmonic terms. The level 

of these additional terms relative to the original signal gives a measure of the 

performance of the modulator and the modulators will be designed to offer a 20kHz 

bandwidth and a 60dB dynamic range. All frequency components inside the 20kHz 

baseband, other than the oliginal signal, wi ll be designed to be 60dB below the oliginal 

signal level. 

Two generic modul ation techniques are compared; namely pulse width modulation 

(PWM) and pulse density modulation (PDM). The theoretical performance of both these 

types of modulator will be discussed and the limitations encountered with practical 

implementation highlighted. The chapter includes the description of a new design 

methodology for high order ~L modulators. 
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3.2 Pulse Width Modulation 

The bas ic method employed with PWM is to use the baseband audio signal to modulate 

the duty cyc le of a high frequency square wave. A number of methods can be employed 

to achieve thi s modulation with the main di fference being the targeted implementation 

technology, i.e . analogue or digital. 

3.2.1 Ana/ogue PWM 

Natural sampl ing is a simple analogue PWM technique in which the instantaneous value 

of the audio signal is compared to a high frequency reference waveform . By using a 

sawtooth reference, only one of the pulse edges is modulated and with a tri angle 

reference, double edge modulation is achieved. A typical generic implementation is 

shown in Figure 3.1. 

AUDIO SIGNAL 

+V 

COMPARATOR ·v 

Figure 3.1 - Natural sampling PWM 

If an idea l natura l sampling process is assumed, analytical methods [3. 1] can be 

employed to predict the frequency content of the modul ated signal. For single-s ided 

modulation with a sawtooth reference and the output pul ses at iV, the PWM output 

spectrum for a single tone input, roy, is as Equati on (3 .1). 

M cos(wv t) Base - Band Signal 

x(t ) = V x - t 2 (sin(mwrt ) - J 0 (mnM) sin(mwrl - mn») 
", _,mn 

Switching Frequency Components 

- L L - J ,, (mnM)si n t(mwc +nwv) - mn---v ~ ±~ 2 ( II nw ) 

",_,"_±,/nn 2 
Combinatorial Components 

(3.1) 
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Where, . M is the modulation depth 

In is an nth order Bessel function of the first kind 

Wy is the fundamental frequency 

We is the triangle wave frequency 

Modulation Strategies 

The PWM output spectrum contains the original baseband signal, components at integer 

multiples of the switching frequency and combinatorial terms around each switching 

frequency component. The spectra produced by double-sided modulation with a 

triangular reference is similar to that produced by single-sided in that it contains 

switching frequency and combinatOlial terms as well as the fundamental signal. The 

symmetry of the process results in combinatorial terms that occur only at sidebands 

placed at even multiples of the signal frequency. 

Equation (3 .2) gives the spectra content for double-sided modulation where the 

variables are as defined for Equation (3.1). 

Base Band Signal 

x(t) = V x ~ 4 (111M!!) . (m!!) + L..J - J o -- sm - cos(ml1Jct) 
1n=1 m!! 2 2 
- ±- 4 (M!! ) !! -L L- Jn ~ sin(- (n+m))cos(ml1Jrt+nwvt) 

11/=1 n=±11On 2 2 

Switching Frequency Components 

Combinatorial Components 

(3.2) 

The spectral content of the naturally sampled PWM output is best visualised 

graphically. Figure 3.2 shows the spectral content up to the first switching frequency 

component of single and double sided modulators with a 100kHz switching frequency, a 

5kHz baseband signal at modulation depths of 25% and 75% with the output pulse 

height at ±5V. 
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Figure 3.2 - Calculated spectral content of naturally sampled sine wave 

The additional frequencies introduced by the natural sampling process are evident 

although it should be noted that there are no forward harmonic distortion terms in the 

baseband. In this ideal modulator, the only cause of baseband distortion will be through 

image spectra from the first switching frequency component folding back into the 

baseband. This type of di stortion is known as combinatorial di stortion and is the factor 

determining the minimum possible switching frequency for a given audio bandwidth. 

The switching frequency must be high enough such that the levels of the combinatori al 

terms within the baseband are below the required threshold. The double-sided 

modul ation scheme offers improved performance over the single sided since both edges 

of the switching waveform are used to convey information. 

If it assumed that the highest frequency in the baseband is fixed, for example 20kHz, the 

dynamic range of the modul ator can be predicted as a function of switching frequency 

by comparing the max imum baseband signal level to the hi ghest in-band combinatorial 

term. Figure 3.3 shows the dynamic range as a function of normali sed switching 

frequency for both single and double-sided modulators. 
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Figure 3.3 - Dynamic range as a function of normalised switching frequency 

In Figure 3.3, a worst case scenario of full modulation depth is used and the dynamic 

range calculated by comparing the fundamental magnitude to the level of the fIrst 

combinatorial term to fall within the baseband_ The benefit of using the triangular 

reference to achieve double-sided modulation is evident from Figure 3.3 with the 

superior achievable dynamic range. The stepped nature of the profIles is a result of the 

manner in which the dynamic range is calculated. The step edges coincide with a 

combinatorial term lying at the same frequency as the fundamental signal. For the 

double sided modulation strategy, the required switching frequency for a dynamic range 

of 60dB is fIve to seven times the baseband bandwidth. Thus, for 20kHz bandwidth, the 

required switching frequency is around 140kHz. Therefore, for the rest of this section 

on natural sampling, a double-sided strategy will be assumed. 

In order to verify the operation of naturally sampled PWM, a modulator was 

constructed. Details of the construction are given in Appendix C. The modulator design 

allows the user to modify the anti-aliasing filter by changing a single PCB. The 

modulator/filter was housed in a screened aluminium box to minimise interference as 

shown in Figure 3.4. 
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Figure 3.4 - PWM modulator with anti-aliasing filter modules 

The general output spectrum of the modulator is shown in Figure 3.S below. Figure 

3.S(a) shows the spectra with a 10kHz fundamental whilst Figure 3.S(b) shows the 

spectra with a 20kHz fundamental. 
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The main di fference between the calcul ated and measured spectra is the presence of 

combinatori al terms at all integer multiples back from the first switching harmonic, 

whereas Equation (3.2) predicts that onl y even integer multiples should be present. A 

likely cause of the extra terms is asymmetry in the tli angle reference waveform. Any 

asymmetry will cause the tri angle reference to look more li ke a sawtooth waveform, 

which will lead to the presence of the extra terms. 

The increase in fundamental frequency in Figure 3.5(b) over that of Figure 3.5(a) 

demonstrates the need for an anti -ali asing filter. With no anti -ali asing filter, input 

signals beyond 20kHz will lead to large combinatori al terms folding back into the 

baseband. Indeed, with a 20kHz input, Figure 3.5(b) shows that the second signal 

hal1l1onic back from the first switching component is just beginning to enter the base 

band and is signi ficantl y higher than the noi se floor. Although most input signals to the 

modul ator are already band-limited, noi se and interference may exist at hi gher 

frequencies and lead to combinatori al distortion. 

Since the out of band attenuation of any anti -ali as ing filter is finite, there is a trade off 

between required filter order and switching frequency for a given fundamental 

bandwidth . Figure 3.6 shows the method employed to measure the level of 

combinatori al di stortion for a given switching frequency, fundamental bandwidth and 

filter order. 

The input frequency to the modulator is scanned from the edge of the baseband up to the 

switching frequency. Over thi s range of input frequencies, the baseband content is 

analysed using the peak hold average function of the spectrum analyser. This gives the 

peak level o f in -band combinatorial di storti on. The input frequency is started at the edge 

of the baseband such that only the combinatori al terms will appear within the baseband 

during the peak ho ld average. In the case of Figure 3.6, the peak level of combinatorial 

di stortion was caused by an input signal frequency between 40kHz and 50kHz. Since 

thi s spanned 20kHz of baseband frequency, it must have been caused by the second 

harmonic back from the 100kHz switching frequency used. The combinatori al di stortion 

level is then quoted as thi s level re lati ve to the peak fundamental level, which in the 

case of Figure 3.6 is 50dB. In addition , Figure 3.6 shows the measurement noise fl oor 

level of the spectrum anaJyser with thi s particul ar bandwidth . With thi s experimenta l 

set-up, it is possible to measure combinatori al di stortion levels down to - 70dB, which is 

in -line with the amplifier requirements. 
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Figure 3.6 - Measurement of combinatorial distortion 

The combinatorial di stortion levels were measured for a second, third and fou rth order 

anti -ali as ing filter all with comer frequencies of 20kHz, The switching frequency was 

vari ed from 100kHz to 200kHz and the combinatorial di stortion level calcul ated as 

described above, For all tests, the voltage pulse height was 5,5V and the modulation 

depth was 75%, The measured transfer functions of the three fi lters are shown in Figure 

3.7. 
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Figure 3.7 - Measured anti-aliasing filter characteristics 

With these anti-aliasing filters, the trade-off between filter order and switching 

frequency for a 20kHz bandwidth modulator is shown in Figure 3.8. 
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Figure 3.8 - Measured combinatorial distortion levels 
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The results presented above indicate that a 4th order filter would allow for a reduction in 

switching frequency to 100kHz for the target inband distortion of - 60dB. This is 

sli ghtly mi sleading since Figure 3.8 is based on measurements made with fundamental 

frequency above the baseband. The specification of a switching frequency of 140kHz 

from Figure 3.3 is based on the combinatori al levels produced by in-band fundamental 

frequencies. Thus, 140kHz is the minimum switching frequency and a 3rd order anti

aliasing filter will then ensure that any out of band fundamental component is also 

sufficiently attenuated. 

Thus, for a 20kHz bandwidth, naturally sampled PWM modulator, the specifications 

required such that any unwanted additional spectra are 60dB below the fundamental are 

as follows : -

• 140kHz switching frequency 

• Tri angle reference signal (Double sided modulation) 

• Third order Butterworth anti -ali as ing filter with a comer at 20kHz. 

3.2.2 Digital PWM 

Whilst the natural sampling PWM process can meet the performance requirement for 

the amplifier, it is essentially an analogue process and therefore susceptible to noi se and 

component tolerances. With the increasing use of digital technology, it is attrac ti ve that 

the entire modulation process be undertaken in the digital domain . In this case, the audio 

input to the modul ator would be a seri es of di gital words, typically at a sample rate of 

44. 1kHz. A simple way to implement a PWM strategy in the di gital domain is to use 

uni form sampling. Thi s process is very simil ar to natural PWM except that where the 

input waveform for natural sampling is continuous, that for uniform sampling is a 

sampled and held. Figure 3.9 shows a generi c implementation for uni form sampling, 

which for clarity is expressed as an equi valent ideal analogue circuit although in 

prac ti ce the actual waveform compari son would be performed on a digital signal 

processor. 
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+V 

-v 

Again, the double Fourier approach [3.2] can be used to calculate the spectrum of the 

uniform sampled audio signal. This technique gives the frequency component 

magnitudes as in Equation (3.3) below. A similar expression exists for double-sided 

uniform sampling, Equation (3.4), and the predicted spectral content for both single and 

double-sided uniform PWM is shown in Figure 3.10. The modulator parameters are 

100kHz switching frequency, 5kHz baseband signal, modulation depths of 25% and 

75% and an output of ±5V. 

Fundamental 

Forward Harmonics 

X(l) = V x 
~ 2(1 - J 0 (mnM» . ) + LJ sm(mwrl 
",-1 nlrc 

Switching Frequency Components 

~ ~ 2J,,[(m+nq)rcM] . [ {rc J nrc] - LJ LJ sm (mw + nw t - - --
",- 1 ,, _±I (111. + nq )rc r v (j) r 2 

Combinatorial Components 

(3.3) 

Comparison of Figure 3.2 and Figure 3.10 shows that the uniform sampling PWM 

process introduces significant forward harmonic distortion terms in addition to the 

combinatorial foldback terms. The combinatorial terms, however, are lower than those 

introduced by natural sampling. 
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Fundamental 

x(t) = V x Forward Harmonics 
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Figure 3.10 - Calculated spectra for uniform sampling 

Since the dominant cause of distortion in a uniform sampling scheme is the presence of 

forward harmonic terms, these can be used to derive the THD of the modulator. The 

56 



Modulation Strategies 

combinatorial terms are significantly lower than the forward harmonics and will only 

effect the THO figure for low oversampling ratios . Figure 3.11 gives the THD based on 

these terms as a function of switching frequency. The signal frequency was specified as 

6kHz as this is the highest frequency term which has a third harmonic in the 20kHz 

baseband. The modulation depth was set to a worst case of 100%. 
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Figure 3.11 - THD vs. switching frequency for uniform sampling 

The fi gure illustrates that for 0.1 % THO, the uniform sampling system will require a 

switching frequency of 180kHz in comparison to the 140kHz required by the natural 

sampling process. 

The forward harmonic terms In uniform PWM are caused by the duty cyc le error 

between the ideal (naturally sampled) modulation and the sampled & held (uniform 

sampling) modulation. The enhanced sampling process first proposed by Leigh, Mellor, 

and Cheetham [3.2] and developed in [3.3 , 3.4, 3.5] can be used in the digital domain to 

reduce the duty cycle error and achieve performance close to that of natural sampling by 

approximating to natural sampling in the digital domain. The enhanced sampling 

process uses a linear interpolation technique as shown in Figure 3.12. 
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Figure 3.12 - Enhanced sampling process (Source - [3.3]) 

This technique approximates to natural sampling in a digital implementation by 

reaching a compromise between hi gh level of harmonic distortion in uniform sampling 

and the high level of foldback distortion in natural sampling. The technique interpolates 

the sampled data between samples to give an approximation to natural sampling. The 

value of c (0 to 1) determines the level to which sampling varies from uniform 

sampling. Analysis has shown that this technique can significantly improve the 

performance of digital PWM. The graph in Figure 3.13 shows the calcul ated THD 

performance of the enhanced sampling for a 20kHz bandwidth amplifier. 
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Figure 3.13 - Relative THD performance of sampling strategies (Source - [3.3]) 
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Figure 3.13 shows that for low switching frequencies uniform sampling is optimal due 

to the lower level of foldback di stortion . At high frequencies, natural sampling is the 

best due to the absence of inherent inband harmonics. 

The enhanced sampling process described above goes some way to making a fully 

digital PWM amplifi er a practical proposition. In [3.6], Leigh presents the results of 

implementing the enhanced sampling process on a di gita l modulator. Thi s system was 

capable of a THD figure of -90dB at a carrier frequency of 132kHz with £=0.35. An 

increase of the carrier frequency to 176kHz reduced this even further to - llOdB. This 

implementation required the use of specialised fast TIL di gital circuitry. 

One further problem with di gital PWM generation is the timing resolution required in 

the generation process . For a modulator running at 100kHz with a required dynamic 

range of 16 bits, the edges of the PWM waveform must be defined to an acc uracy of 

± 140ps. Not only is this difficult to realise on the DSP, the output power devices in the 

power stage have switching times several orders of magnitude longer than this. Thus, 

there is a requirement to reduce the timing resolution requirement of the PWM edges . 

Hiorns and Sandler [3.7] have presented a technique based on noi se shaping to achieve 

a lower timing requirement. The approach used is to increase the sampling rate of the 

input data through interpolation and re-quanti se the data at a lower resolution. In-band 

resolution is maintained by shaping the quanti sation noi se floor to reduce it in the 

baseband at the expense of an increase at higher frequencies. The increase in sampling 

frequency allows space in the bandwidth for thi s noi se-shaping procedure. Although the 

increase in sampling frequency directly increases the necessary timing resolution, the 

reduction in number of output bits more than compensates for thi s and an overall 

relaxation in timing reso lution is possible. Figure 3. 14 shows the structure of the system 

proposed in [3.7]. 

(b) (c) (d) 
.-------~ r----------, r----------, r -----------, 

Interpolator 
Pre

compensation 
Multibit Noise 

Shaper 

Loudspeaker 

Pulse Width 
Modulator 

(e) 

MOSFET Switch 
and Filter 

(f) L...-___ ----' 

Figure 3.14 - Oversampled noise shaping PWM system (Source - [3.7]) 
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The data from the CD is 16-bit and arnves at a rate of 44. 1kHz. Eight times 

interpolation is used to create a 16-bit data stream at a rate of 352.8kHz at point 'b'. The 

sampling type converter implements a pre-compensation scheme to linearise the 

uniform PWM process (similar to that proposed in [3.3]). Thus, the multibit noise 

shaper receives 16-bit data at a rate of 3S2.8kHz. The noise shaper used in [3.7] was a 

fourth order type and allowed for a reduction to 8-bits with a loss of only 2dB in 

baseband resolution over the 16-bit data. The result of this signal processing is a PWM 

stage being driven by an 8-bit word at a rate of 352.8kHz. This equates to a timing 

resolution of llns in the pulse edges, which is far more practical than the 140ps 

required with the 16-bit implementation. The general noise-shaping/bit reduction 

structure is based on re-quantisation of the input data at a lower resolution. The dynamic 

range associated with the input word length is maintained by using feedback around the 

quantiser to filter the in-band quantisation noise, Figure 3.15. 

dither 

~ 
Inpu t In 

.--___ -, ou tput an 

N bot 

quanhser 

error 
Signal Rn 

Figure 3.15 • Noise-shaping transfer function (Source. [3.7]) 

The transfer function of H(zol) is chosen to minimise the noise transfer function (NTF) 

in the base-band. In this case, H(zol) is a time delay e lement. 

If the noise-shaping technique is taken to the extreme, it is possible to reduce the 16-bit 

word input to a single bit output. If a single bit output word is used, the pulse output 

from the modulator is a constant width (equal to the clock period) and PWM generation 

of this signal is then straightforward since the pulse is either fully positive or fu lly 

negative. This approach leads to another classification of modulators, namely that of 

Sigma-Delta or pulse density modulators. 
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3.3 Pulse Density Modulation 

Pulse Density Modul ation (PDM) is based on a single bit quantiser within a feedback 

loop. The quanti ser is clocked at a rate very much greater than the Nyquist frequency 

and the output signal used to shape the quanti sation noise. Earl y PDM was achieved 

with the Delta Modulator [3.8] as shown in Figure 3.16. 

Analogue 
Signal 

Integrator 

Modulated 
I------,r----+ Signa] 

Figure 3.16 . Delta modulator 

The comparator acts as a single bit quanti ser, which conveys information about the 

derivative of the input signal. The action of the integrator in the feedback loop is to 

force the average of the difference between the analogue signal and the output to zero. 

T hi s earl y form of PDM is simple but suffers from excessive in band quanti sation noi se. 

In addition , the oversampling requirement of thi s simple modul ator was required to be 

in excess of 5000 for good reproduction of speech [3.9]. Thi s leve l of oversampling 

leads to impracti cal switching rates in the power output stage. 

In 1963, with reference to Delta modulator, Inose and Yasuda [3.10] stated that a Delta 

modulator is incapable of transmitting a DC component. FUlthermore, its dynamic range 

and SNR are inversely proportional to the signal frequency and the fin al integration 

causes accumulative elTors. By adding an integrator to the input of the Delta modulator, 

Inose and Yasuda solved these problems and coined the term for the new modul ator as 

the Delta-Sigma Modulator. More recently, thi s has been adapted to form the Si gma

Delta Modul ator (L~). Fi gure 3.17 shows the modi fied Delta modulator. 
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Figure 3.17 - Modified delta modulator (Source - [3.10]) 
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The addition of the integrator at the modulator input must be followed by the addition of 

a differentiator at the output to restore the original signal. The modulator of Figure 3.17 

can be simplified by combining the two integrators at the front end (through linear 

subtraction) and effectively cancelling out the differentiator and integrator in the 

demodulation section. Figure 3.18 shows the resulting modulator - namely the L~ 

modulator. 

Clock 

Input 
}-~ Low-Pass -=r I--.--l~ Filter Output 

Figure 3.18 - Simplification of modified delta modulator (L~ Modulator) 

As well as resulting in a modulator that has a dynamic range and SNR that are both 

independent of the signal frequency, the modification has resulted in a system which 

only requires a low-pass filter for demodulation. This is beneficial since power 

amplification will be possible by simply increasing the voltage of the quanti sed levels 

and passing the output through the conventional low-pass audio filter. Inose and Yasuda 

go on to suggest that the integrator in the L~ structure can be replaced by a higher order 

function which will introduce a greater noise-shaping effect and increase the in-band 

SNR. 
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3.3.1 First & Second Order Modulators 

A simple way to analyse the L.0. modulator is to consider its di screte time equivalent as 

shown in Figure 3.19. In this di screte time model, the sample and hold circuit and the 

integrator have been combined into the single z-domain transfer function. The low-pass 

filter has been removed for thi s analysis since it is outside the feedback loop. 

x 
Z -I 

1-Z- 1 I---+lf 
Figure 3.19 - Discrete time equivalent 

y 

The quanti ser can be modelled as a unity gain element that introduces an error signal, e, 

as shown in Figure 3.20. 

x 
Z -I 

1- Z - 1 + 

e 
+ 

Figure 3.20 - Quantiser modelling 

y 

With the above di screte time circuit, the output can be represented as shown in Equation 

(3.5). Thus, the output of the modulator consists of the input signal delayed by a sample 

period and the first order diffe rence of the etTOr signal. 

(3.5) 

Other than causing a phase shift between modulator input and output, the input signal is 

unaffected by the modulation process. The first order difference of the error signal has 

the effect of shaping the quanti sation noise. In continuous time, the first order di fference 

term can be represented by multipl ication of the etTOr term by 2 Sin( w;) , where T is 

the sampling period. Noise-shapers with thi s type of error-transfer function are known 
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as sinusoidal and the noi se power is reduced at low frequency (baseband) at the expense 

of an increase at higher frequency. 

The output spectral content of the L~ modulator will consist of the original input signal 

with additional quantisation noi se. Simulation of this first order modulator with a 6kHz 

tone sampled at 200kHz demonstrates the shaped nature of the quantisation noise, 

Fi gure 3.21. 
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Figure 3.21 - Simulated spectrum from a first order L~ modulator 

Figure 3.21 shows the noise-shaping effect of L~ modulation on the quantisation noise 

with the modulator noise floor falling away at low frequencies. It is evident that there is 

signi ficant content in the spectrum other than the noi se fl oor and the fundamental 6kHz 

tone. The additiona l content, termed pattern noise [3.11] , is due to limit cycling in the 

modulator due to the non-linear quantisation. Equation (3.5) does predict the overall 

spectrum trend although the actual quanti sation noise is highl y coloured. Figure 3.22 

shows the spectral content of the quantisation noise for the same simulation conditions 

as for Figure 3.21 and it is evident that the quantisation noi se is far from random. 

64 



Modulation Strategies 

Or---~----~----'---~----~----~----~--~----~--~ 

-10 - -- ----- ----- ---:--- -------:--------- --------- --------- --------- --------- i-- ----- - --------
, , ' 

, 
-20 - --- - - - - - - ------- --- - - - - - - -- - -- - - - - - - ----- - - - - -- -- -1- ----- - - -- - ---

, 
, 

-30 - - - - - - - - - - --- ------ - - - - - - - - - - - - - - - - - - - - - - -1- - - - - --- - -
Vi 
E 
> 
~ -40 - - - - - - - - - - -------- --- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

c 
Q) 

§ -50 
() 

ro 
c 

~ -60 

g 
w 

-70 

- - - - - - - - - - - -- ------- - - - - - - - - - - - - - - - - - - - - - - - - . - - - - - -

11-11-11-''''''''·11-11- - - - - - -

J[~L i -- --- - --. --- . -- -: ,::: 
! , , ' ! : , : 

-80 - - - - ~ - - - - :- - - - - -:- - - - - - - ~ - - - - 1 - - - - ~ - - - - ; - - - - ; - - - - : - - -
: : : : : : : : 
: : : : : : : 

-90 - ------- ----------- -- ---,---- - --- ~------ - I ~ · - ------; - - ----'-- --- - ---- - - ; ------ -: : : : [: : : 
; ; ; i Ii iii i -1 00 ~--_:_':----__=l:_----:l:_--___:l:__--~----_::i=_--___:::l:_--_:l:__--__:_':_-----1J o 10 20 30 40 50 60 70 80 90 100 

Frequency (kHz) 

Clock Frequency=200kHz, Input Frequency=6kHz, Modulation Depth=100% 
Quantisation to ±5V, Window Used=Hanning, No. Of FFT Points=16384 

Figure 3.22 - Spectral content of quantisation error 

One technique used to reduce pattem noi se in non-linear feedback systems is to add a 

dither signal to the modulator which has the effect of randomising the limit cycle 

behaviour. This approach does whiten the noi se but also reduces the maxi mum input 

signal level in order to prevent overloading of the quanti ser; i.e. the SNR is reduced. 

It can be seen that for a realistic modulator clock frequency of 200kHz, the in-band 

noise floor is too high for the required amplifier performance. To be able to achieve the 

required specification , the quanti sation noi se needs to be both whitened and shaped 

more to lower the in-band noi se floor. 

In theory, the SNR of the first order LD. modulator can be approximated by Equation 

(3.6) [3. 11]. 

SNR = rc (OSRr3/2 

6 

(3.6) 

For a 60dB SNR, the oversampling ratio (OSR) must be of the order of 64 and therefore 

for an audio bandwidth of 20kHz, a modulator clock frequency of greater than 2.5MHz 
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would be required. This would sti ll lead to an impractical switching frequency in the 

power stage. 

Equation (3.5) showed that a first order modulator noise is the first difference of the 

quantisation noise. The modulator noi se can be shaped even more by introducing more 

feedback loops to make the modulator noise a higher order difference of the 

quantisation noise. The discrete time equivalent of a second order modulator is shown in 

Figure 3.23. [3.11]. 

f fer 1 I-v--. Z - I 

1- Z -I 1-Z-1 y 

Figure 3.23 - Second order Lt1 modulator 

If the error signal is assumed to be white then the output of the modulator, y, can be 

expressed as in Equation (3.7). 

(3.7) 

Again, the output of the modulator consists of the input signa l (delayed by one sample 

period) and the shaped error signa l. In this case, the noise shaping function is second 

order. It can be shown [3.11] that the SNR of this second order structure is as shown in 

Equation (3.8). 

2 

SNR = ~(OSRr5/2 
$a 

(3.8) 

For a SNR of 60dB, the second order modulator wou ld only require an oversampling 

ratio of 18. This would lead to a clock frequency of 720kHz, which is beginning to 

approach a more realistic level for a power output stage. For a practical clock frequency 

of 200kHz, Equation (3.8) suggests a SNR of 30dB for a 20kHz bandwidth modulator. 

The simulation of this second order modulator with an input of a 6kHz input with 

200kHz switching frequency gives a frequency spectrum as shown in Figure 3.24. The 
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predicted SNR is close to that simulated level over the 20kHz bandwidth. In this 

simulation , the input modulation depth has been limited to 0.8 to prevent overloading of 

the quantiser. 
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Figure 3.24 - Simulated spectrum for second order L~ modulator 

Comparison of Figure 3.21 with Figure 3.24 reveals that the second order modulator not 

onl y shapes the quantisation noise more markedl y at low frequencies but also the 

pattern noise so prevalent in the first order modul ator has been reduced. The modulator 

noise is less coloured since the limit cycle behaviour is more random in the second 

order system. 

The benefits introduced with the increasing filter order do not come without problems. 

Although the second order modulator is unconditionally stable, full modul ation depth is 

not possible due to overloading of the quantiser. Indeed, if a full modulation depth is 

used then the modulator output spectrum is as shown in Figure 3.25. 

Figure 3.25 shows that the effec t of overloading the quantiser is two-fold. 

1. Odd order harmonic distortion terms appear 

2. Noi se floor increases at low frequency 

67 



Modulation Strategies 

Although the increase in modulator order has yielded better performance, the required 

performance level is still beyond the capability of the second order modulator. 
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Figure 3.25 - Simulated second order spectrum with 100% modulation depth 

Assuming the modulator is stable, the SNR can be predicted for a general nih order 

modul ator [3. 11] as shown in Equation (3.9). 

SNR = nil (OSR) {Il+~) 
2~3(2n + 1) 

(3.9) 

As will be demonstrated later, the practical c1ass-D power stage used in the research has 

a maximum operating frequency of around 300kHz and for thi s clock frequency, the 

SNR as a function of required audio bandwidth and modulator order can be calculated 

using Equation (3.9). Figure 3.26 shows the SNR as a function of required bandwidth 

for 1 SI to 8th order modulators all clocked at 300kHz. Evidently, for a 20kHz bandwidth 

and 60dB SNR, a fourth order modulator is required. Since quantiser overloading limits 

the maximum achievable modulation depth and Equation (3.9) assumes full modulation 

depth, in practice an order greater than four may be required. 
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Figure 3.26 - SNR Vs. required bandwidth for 1st to 8th order modulators clocked 

at 300kHz 

3.3.2 Higher Order Design 

A number of topologies exist for high order modulator implementation. A si mple 

technique is to use a single feedback loop and a high order filter as shown in Figure 

3.27. 

x y 

Figure 3.27 - High order implementation 

With this structure, a single feedback loop is used and the integrator replaced by a high 

order transfer function H(z). The output of the modulator can now be expressed as in 

Equation (3 .10). 
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y = x[n] + e[n] lI( z) (1 J 
1+ II( z ) 1+II(z ) 

(3.10) 

The design proceeds by specifying the required filter characteristic for the en'or transfer 

function (ETF) and to then choose H(z) to satisfy Equation (3.11). 

H(z) = 1- ETF(z) 
ETF(z) 

(3.11) 

The most straightforward way is to specify the ETF in the s-domain and to then 

transform to the z-domain by whichever method seems appropriate (bilinear transform, 

impulse invariant transform etc.). The problem with this approach is that it assumes the 

resulting modulator will be stable, which may not be the case. 

An approach used by Kershaw and Sandler [3 .12] is to specify the filter order and use 

an automatic adaptive algorithm to modify the position of the poles and zeroes of H(z) 

in order to find the combination which produces a stable modulator with the lowest 

inband SNR. The filter structure used in [3.12] is shown in Figure 3.28 and is based on 

a series of integrators with feedforward and feedback terms. 

}+----...................................................................................... ..... .. . 

~---............................................................................................. . 

Figure 3.28 - Generalised structure for H(z) 
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The transfer function of the structure shown above can be expressed as in Equation 

(3 .1 2). 

H(z) = b, (z - l r - ' + b2 (z - 1) ,,-2 + .. . +bn _ , ( z - 1) + b" 

(z - 1)" + a l (z - lr - ' + .. .+an_1 (z - 1) + a" 

(3.12) 

Using the automatic Adaptive Method, the coefficients for first to fOUJ1h order 

topologies found by Kershaw and Sandler are as shown in Table 3.1. 

Fil ter Order 

Coefficients 1 2 3 4 

bl l.0 l.0 1.0 1.0 

b2 - 0.395625 0.5 0.5459 

b3 - - 0.1301 0.133846 

b4 - - - 0.022432 

al 0.0059375 0.0028125 0.00001 0.008564844 

a2 - 0.00075 0.00116 0.001 51 

a3 - - 0.0 0.000001 

a4 - - - 0.0 

Table 3.1 - Optimised coefficients 

A simu lation of a fourth order modu lator using the coeffi cients above gives the 

spectrum as shown in Figure 3.29. In practice, the dynamic range of the coefficients 

above will cause problems with a prac tica l implementati on and a more optimal structure 

for H(z) wou ld lead to an easier implementation. 
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Figure 3.29 - Simulated spectrum from fourth order L~ modulator 

Figure 3.29 indicates that the noi se spectrum of the fourth order modulator is indeed 

more random than that of the first and second order types. The max imum modulation 

depth achievable with thi s modul ator is 50% and the result of exceeding this level is to 

cause the modulator to lock up into either the positive or the negative state. 

Although the modulator noi se is now relatively white, the in-band noise floor level is 

still in excess of the required minimum. If thi s foul1h order modulator were used in 

practice, it would need to be clocked in the region of 700kHz to achi eve an in-band 

dynamic range of 60dB. 

The level of in-band noi se is determined by not only the order of the noise shapi ng 

function but also the corner frequency at which it begins to attenuate the noi e floor. 

The ideal scenario would be such that the noise-shaping function forces the noi se floor 

to a low enough level that when it enters the baseband, it is at the required 60dB below 

the fundamental signal. 

3.3.3 Alternative DeSign Methodology 

The approach adapted here similarly uses the same single feedback loop and high order 

filter approach as in Figure 3.27. The method is based on that proposed in [3.13] which 
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specifies the desired error transfer function and then uses a root-locus approach to veri fy 

stability. Since the L~ modulator is to be implemented in analogue circuitry, the new 

methodology uses the same approach as [3.13] except the analysis is performed in the s

domain and the quanti ser is modelled as a linear e lement, which introduces a random 

noise signal. 

From [3.14] consider a simple one degree of freedom feedback system with an additi ve 

noi se source, d, as shown in Figure 3.30. Conventionall y, 'd ' would represent sensor 

noi se but the new design method uses it to model the quanti sation noi se. 

I---Ie ~ F 
y 

Figure 3.30 - Single degree of freedom feedback system 

The output of the single degree of freedom system is that shown in Equation (3.1 3). 

FP 1 
y = x+ d 

l +FP 1+FP 

(3.13) 

If FP is large in the baseband, the input signal passes through the system relati vely 

unaffec ted whil st the di sturbance signal is attenuated. Furthermore, if FP is large, then 

changes in the plant frequency response, P , will have littl e impact on the overall closed 

loop frequency response. It is not enough to simply specify the noi se-shaping fun cti on 

since thi s may lead to an unstable system. In [3.1 4], Belanger provides the following 

methodology for designing a stable system by definin g the Sensiti vity and 

Complimentary Sensitivity functions, S(s) and T(s) as in Equation (3. 14). 

Sensitivity S(s) = _ 1_ . and Complementary Sensiti vity T(s) = ~ 
1+FP l +FP 

(3.14) 

S(s) represents the noi se-shaping function whil st T(s) represents the signal transfer 

function . It should be noted that T(s)=1-S(s) and therefore specification of S(s) will 

73 



Modulation Strategies 

automatically specify T(s) (and vice-versa). The controller transfer function can now be 

expressed as in Equation (3.15). 

F s _ T(s) 
( ) - S(s)P(s) 

(3.15) 

In order that the contro ller is realisable, it must have a proper or strictly proper transfer 

function. For this to be the case, Belanger states that F(S) is proper (strictly proper) if 

the excess of poles over zeroes of T(s) is equal to (greater than) that of pes). Since 

S(s)=I-T(s), the above requirement is equivalent to saying that the controller transfer 

function will be proper if the leading NT coefficients of the numerator and denominator 

of S(s) are identical (Where NT is pole excess of T(s». I.e. , if S(s) has the form shown 

in Equation (3 .16) then F(s) will be proper and realisable. 

",,- 1 111+1 ( b) II (+ b ) S(s) = s +a,,_ls + ... +am+ls + am - m S + ... + ao 0 

s" + a S,,- I + a 
II - I 0 

(3.16) 

With S(s) chosen such that the resulting controller is realisable for the given plant 

frequency response, the closed loop system stability is dependent on the following three 

functions showing stability: -

• T(s) 

• p-I 
(s) 

• P(s)S(s) 

To apply this system to LD. modulator design, the disturbance ignal is the quanti sation 

noise, the plant pes) is a zero-order hold element and the controller F(s) is the noise

shaping element. A first order approximation of a zero-order hold is that given by 

Equation (3.17) where T is the sample period of the zero order hold. 

74 



1 
pes) = T 

- s+l 
2 

Modulation Strategies 

(3.17) 

The noise-shaping transfer function, S(s), is required to be a high pass characteristic in 

order that the in-band noise floor is low. Equation (3.17) has a pole excess of one and 

therefore to realise a strictly proper controller, the leading two terms of the numerator 

and denominator of S(s) must be identical. 

3.3.3.1 Practical Implementation 

Consider the case of S(s) being a second order Butterworth high pass filter with a corner 

frequency of 20kHz. Equation (3.18) gives the transfer function of this filter. 

(3.18) 

The controller will be realisable if the leading two coefficients of the numerator and 

denominator of S(s) are identical. Therefore, S(s) must be modified as shown in 

Equation (3.19). 

(3.19) 

By changing the high pass characteristic S(s) into one that results in a proper controller, 

the noise-shaping function has been altered. Figure 3.31 shows the magnitude responses 

of the simple second order high pass filter and the modified second order filter. 
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(a) - Second Order Transfer Function 
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(b) - Adjusted Second Order Transfer Function 
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Figure 3.31 - Normal and adjusted second order transfer functions 

The necessity to have a proper controller has resulted in the movement of one of the 

en'or transfer function zeroes away from DC to approximately 28kHz. This re ults in a 

loweri ng of the roll-off at low frequencies to 20dB/decade, i.e. approx imately 

equivalent to a first order modulator, 

For the second order response as described in Equation (3 .19), the controller transfer 

function can be determined using Equations (3,15) and (3.17). For a sample and hold 

clock frequency of 200kHz, the required contro ller transfer response is as shown in 

Equation (3.20). 

F(s) = 39500 s + 400000 
s(s + 178000) 

(3.20) 

The controller was implemented using an integrator followed by a pole-zero network as 

shown in Figure 3.32. 
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Vin o---C==.t-+---i 
>--4>---0 Vout 

TL07t 

1k 

Figure 3.32 - Op-amp controller implementation 

The designed and measured controller frequency responses are shown in Figure 3.33. 
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Figure 3.33 - Design and measured controller frequency responses 

Comparison of the designed and measured gain shows a very close cOITelation. 

Although the phase responses show a significa nt difference at low freq uency, this is 

most li kely due to measurement error in the first few points from the spectrum analyser. 

The rest of the modulator was reali sed wi th a comparator, d-type flip-flop and pulse 

shaping circuit (see appendix C). The modul ator stability was verified first by 

simulation and then in practice with a 200kHz clocked modul ator and 12kHz input 

77 



Modul ati on Strategies 

frequency at 90% modulation depth . The graph in F igure 3.34 shows a typical input 

audio signal and output modul ation waveform. 
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Figure 3.34 - Input and output signals for second order modulator 

The actual spectral content of the modulator output was examined using the dynamic 

signal analyser and is shown in Figure 3.35 . Whil st the noi se- floor roll s off at the 

ex pected first-order rate of 20dB/decade (c.f. Figure 3.31(b» , the corner frequency of 

the no ise-shaping fil ter appears to be between 40kHz and 50kHz rather than the 

designed 20kHz. 
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Figure 3.35 . Measured modulator spectral content 

The noi se-shaping function shows an under-damped response, which suggests that the 

loop gain of the practical modulator is higher than expected, Experimentation with the 

clock frequency for the same controller implementation shows that the clock frequency 

has a small effect on the noise shape_ Figure 3,36 and Figure 3,37 show the measured 

spectral content for clock frequencies of 300kHz and 400kHz respecti vely, The increase 

in clock frequency has the effect of increasing the corner frequency of the error transfer 

function, Thi s is due to the increase in bandwidth of the plant frequency response (see 

Equation (3, 17» , The effect of changing the designed corner frequency of the error 

transfer function can be seen in Figure 3,38, Figure 3,39 and Figure 3.40, These spectra 

are taken from a second order modulator with a des igned corner frequency of 5kHz and 

clock frequencies of 200kHz, 300kHz and 400kHz respectively, The lower corner 

frequency is apparent with this modulator and the under-damped nature of the error 

transfer function (ETF) is more evident. 
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Figure 3.36 - Modulator spectral content (20kHz design corner) 
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Figure 3.37 - Modulator spectral content (20kHz design corner) 
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Figure 3.38 - Modulator spectral content (5kHz design corner) 
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Figure 3.39- Modulator spectral content (5kHz design corner) 
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Figure 3.40- Modulator spectral content (5kHz design corner) 

S imulation of the modulator using Simulink with a simple first order approximation for 

the zero order hold and additive random noi se source for the quanti ser yie lded a noise

shape with the correct 20kHz comer frequency. Therefore, one of the approx imations 

must be en·oneous. Modelling the sample and hold e lement by a simple first order filter 

is a well -establi shed technique and therefore, the assumption that the quanti ser is a unity 

gain e lement with additi ve white noi se is the more li kely cause of error. The quanti ser 

could in fac t be modelled by a desclibing function where its gain is dependent on the 

input signal level [3. 15]. 

Figure 3.41 shows a generi c non-linear element and its effect on a sinusoidal input. 

Asin(wt ) ---~.I N(A, w) . II---·~ M sin (wt + (0) 

Figure 3.41 - Describing function representation of a non-linear element 
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The actual describing function, N(A ,w) , is defined in [3.15] as the complex ratio of the 

fundamental component of the non-linear element by the input sinusoid as in Equation 

(3 .21). 

(3.21) 

The describing function for a relay non-linearity with sinewave input (i.e. single bit 

quanti ser) can be calculated [3.15] and is as shown in Equation (3.22). 

Where, 

N (A) = 4M 
77A 

M is the quantisation magnitude 

A is the peak level of the sinewave. 

(3.22) 

Note that this parti cular describing function is independent of frequency due to the 

single-valued nature of the non-linearity. Thus, the gain of the single-bit quanti ser can 

vary from zero for infinitely large inputs, to infinity for infinitesimall y small inputs. 

Thi s vari ation in gain is the most likely cause of the under-damped error transfer 

function seen in Figure 3.35. If the quanti ser is model1ed a a vari able gain element, the 

single-degree of freedom system of Figure 3.30 becomes as shown in Figur 3.42. 

y 

Figure 3.42 - Single degree of freedom system with variable gain element 

The noise-shaping function defined in Equation (3. 13) now becomes: -

1 
ETF(s)=--

l +kFP 

(3.23) 
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The impact of the variable gain, k, can be seen if the noise shaping function is plotted 

for the second order modulator designed for 20kHz comer frequency. Figure 3.43 shows 

the resulting ETF with k varied from 1 to 10. 
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Figure 3.43 - Error transfer function with k varied from 1 to 10 

With k=l, the ETF shows the same behaviour as Figure 3.31(b) which is to be expected. 

As the gain increases, the ETF becomes increasingly under-damped and the effective 

comer frequency increases. Whilst this is beneficial in lowering the inband noise floor, 

the out-of band noise increases and this is likely to compromise the stability of hi gher 

order modulators. 

For a third order modulator, the desi gn methodology described above results in a 

controller transfer function as shown in Equation (3.24). Again, the clock frequency is 

chosen as 200kHz. 

F(s) = 50 (s + 400000)(1579s + 0.99X 10
8

) 

S 2 (S + 251000) 

(3.24) 

When constructed, this modulator showed an unstable behaviour in that it locked up into 

low frequency oscillations with the input signal having no influence on the output 

signal. The modulator was simulated using Simulink™ to establish whether the 
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oscillation was a problem with the practical implementation or a problem with the 

design methodology. Figure 3.44 shows the model used in Simulink™ to verify the 

stability of the third order modulator. 

Controller 

1.03e·1 8s4 +8.43e·14s3 +3.46e·9s2 +8.32e·5s+1 

(4th Ord er 5kHz Low Pass Filter) 

Modulator Output 

Fout 
Filtered Output 

Figure 3.44 - Simulink™ model of the 3rd order modulator 

With a O.5V peak, 2kHz sinewave input, the simulation of the third order modulator 

above demonstrated stability. The modulator output, and the output after being filtered 

is shown in Figure 3.45. The waveform is very pure since the input signal is only at 

2kHz and therefore the oversampling ratio is effectively 50. 
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Figure 3.45 - Filtered third order modulator output 
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The simulation demonstrates that the new design methodology can result in table hi gh 

order modulators although with practical implementation, problems do arise. The most 

like ly cause of the fai lure of the practical modulators beyond second order is through 

problems such as slew rate and DC offset within the op-amps used for realisation. 

For simulated modulators of order greater than three, this design methodology results in 

instability. Again this is likely to be as a result of the non-linear gain of the single-bit 

quantiser and the first order approximation of the zero-order hold element. Higher order 

modulator desi gn with this methodology may be possible if the zero order hold is 

modelled with a high order Pade approximation rather than the first order e lement. At 

present however, the spectrum of Figure 3.36 demonstrates that practical 

implementation of the second order modulator gives a 35dB dynamic range for a clock 

frequency of 300kHz for a 20kHz bandwidth amplifier. To achieve the required 60dB 

resolution with this modulator, the available bandwidth would have to be reduced to 

1kHz and the power filter designed to reject anything above this frequency. 

3.4 Effective Switching Frequency 

Whereas a PWM waveform wi ll have one low to hi gh and one high to low transition per 

switching cycle, Figure 3.34 shows that a PDM output can remain in a positive or 

negative state for longer than one clock peliod. This leads to a PDM waveform having 

an effective switching frequency (ESF) which can be signifi cantly lower than that of a 

PWM waveform. The ESF will be a function of modulation depth since a larger input 

signal will result in an increased likelihood of the modulator state remaining the same 

for a few c lock cycles. As the modulator order increases, the ESF is likely to become 

less dependent on modulation depth since the output waveform is more random. For 

zero input, the modulator output 'bounces' between the two quanti ed levels at 

approx imately half the clock frequency. 

A first and second order modulator were constructed in order to measure the ESF under 

different conditions. For the first order modulator, the ESF as a function of modulation 

depth for both a DC input and a 6kHz sinewave input showed simi lar behaviour, as 

shown in Figure 3.46 and Figure 3.47 respectively. At low modulation depths, both 

these graphs indicate an ESF close to 100kHz which is half the clock frequency. With a 

fixed modulation depth and varying baseband frequency, Figure 3.48 shows that the 

ESF is relatively constant with frequency. In-fact, the ESP for the first order modulator 

is mai nly dependent on modulation depth. 
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For the second order modulator, the DC characteristic in Figure 3.49 shows very similar 

behaviour to the DC characteristic for the first order modulator. A significant difference 

becomes apparent when an increasing modulation depth sinewave input is used. 

Whereas the first order modulator showed an almost linearly decreasing ESF with 

modulation depth, Figure 3.50 shows that the ESF of the second order modulator does 

not significantly vary with modulation depth. This is most likely due the increased 

randomness of the third order modulator over the first order. Interestingly, the ESF of 

the third order modulator shows a stronger variation with baseband frequency, Figure 

3.51. 
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Figure 3.46 - ESF for first order modulator and DC input 

The ESF profile of Figure 3.46 demonstrates that a PDM modulator can be clocked at 

2.5 times the clock frequency of a corresponding PWM modulator for an equivalent 

switching rate. 
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Figure 3.49 - ESF for second order modulator and DC input 
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Figure 3.51 - ESF for second order modulation with variable sinewave frequency 

3.5 Conclusions 

Most Class-D amplifiers to date have used a PWM strategy to achieve reasonable 

performance and with a 60dB SNR, it has been shown that with an analogue 

implementation, a switching rate of approximately 150kHz can be used. However, th 

analogue system still suffers from inherent noise and with a theoretical timing resolution 

requirement of ±140ps for the equi va lent of 16-bit accuracy, a practical power stage will 

severely compromise performance. 

With the increasing vi ability of digital signal proces ing (DSP) in consumer good , 

more recent modulation techniques have concentrated on DSP based PWM. The main 

problems with DSP systems have previously been solved through: -

• Reduction of harmonic di stortion introduced by uniform sampling on a DSP using 

pre-compensation schemes. 
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• Reduction of the timing resolution requirement of the output stage by using over

sampled noise shaping techniques to reduce the word length to 8-bit whilst 

maintaining a 16-bit in-band dynamic range. 

Whilst this digital approach can lead to a practical PWM system which wi ll perform to 

the required level, the timing resolution requirement of the output stage is still required 

to be better than lOns. The novel power stage developed later in chapter 5 is particularly 

prone to errors with very short pulses and therefore the L~ modulation technique 

presents the most viable modulation strategy for this particular system. 

The work on L~ modulators in this chapter has demonstrated that for a switching rate of 

300kHz (the maximum achievable with the new power stage), a 20kHz bandwidth 

amplifier is not feasib le. Although [3.13] has mentioned stab le modulators of up to sixth 

order, the highest one demonstrated is fourth. With the fourth order modulator, the 

maximum bandwidth for 60dB noise floor is 6kHz. In practice, a high order fi lter would 

be required to fi lter the remaining in-band component so the useable bandwidth is likely 

to be lower than this. 

The practical modulators resulting from the new design methodology have indicated 

that the achievable dynamic range for a 300kHz switching frequency is 35dB for a 

20kHz bandwidth. If 60dB is required, the bandwidth must be dropped to the region of 

1kHz. Further work on the new design methodology should lead to stable hi gher order 

modulators and the most likely problem with the methodology now is the modelling of 

the zero-order hold. A higher order approximation to the zero-order order, for example a 

high order Pade approximation, should result in stable high order design . 
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4 Prototype Class-D Power Stage 

4.1 Introduction 

In order to understand the performance limitations of a practical Class-D power stage, a 

prototype H-Bridge was constructed, Figure 4.1. The power devices chosen will allow 

for load currents of up to 30A and a link voltage of up to 200V. In free-air, the heatsink 

has a dissipation potential of 0.7°C/W and therefore will allow for the dissipation of 

power losses of up to 100W (Assuming an ambient below 40°C). The dead time can be 

set independently on each power MOSFET from 200ns to lOl-1s. Full circuit diagrams of 

the amplifier are given in appendix C. 

Modulator 
circuitry. 

Figure 4.1 - FuU bridge power converter 

Floating gate 
drive circuit with 
dead-time 
generator. 

The layout was optimised as to minimise the effect of parasitic inductance by keeping 

all devices of each of the two power stage legs very close to one-another, placing the 

DC link decoupling capacitors adjacent to the power semiconductors and using a 

coplanar bus-bar arrangement. The modulation circuitry can be changed easily by 

replacing a single PCB on the top of the power stage. 

The power stage has been used to measure typical operating efficiencies and to examine 

the behaviour of the power devices under real switching conditions. In addition, the 

mechanisms leading to output waveform distortion are examined. The power filter is not 
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incorporated into the power stage to allow for flexibility in changing the load 

characteristics. Examination of the power stage behaviour was targeted towards two 

main objectives: -

1. An analysis of the power semiconductor switching behaviour to compare the 

predicted losses with measured efficiencies. 

2. An analysis of non-ideal operational characteristics of the power stage and their 

impact on distortion. 

The chapter concludes with a discussion of the methods which can be used in practice to 

Iinearise the power stage in order to meet the Hj-Fidelity requirements of the amplifier. 

4.2 Switching Behaviour 

The switching behaviour of the H-Bridge devices was examined by using a single-leg of 

the H-Bridge and analysing the currents and voltages during the switching event, Figure 

4.2. The load current polarity was set by connecting the non-driven end of the load to 

either ground or +45V for positive and negative load currents respectively. 

01----' 

DRIVE 1 

01----' 
DRIVE 2 

lmH 
4 Ohms 

SWl 

Figure 4.2 - Single leg used for switching behaviour analysis 

The individual device currents, II and }z, were measured in-circuit using a high 

bandwidth Rogowski coil (See appendix E for specifications) whilst VOUT was 

measured using a xlOO high bandwidth oscilloscope probe. For both the positive and 
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negati ve load current, the single leg was dri ven at 50% duty cycle to give a continuous 

load current of approximately SA. In all cases, the gate dri ve resistances were set to 2Q . 

For the negati ve load current, Figure 4 .3 and Figure 4.4 show II and 12 respecti vely 

when Q2 switches off whil st Figure 4 .5 and Figure 4 .6 show II and h when Q2 switches 

on. With a positive load current, Figure 4.7 and Figure 4.8 show II and h respecti vely 

when Ql switches off whil st Figure 4 .9 and Figure 4. 10 show II and h when Ql 

switches on . All plots are at a timebase of SOns/di v. 
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Figure 4.10 - VOUT (Upper trace) and h (Lower trace) for Ql turning on 

or all of the turn off transitions, the behaviour of the MOSFET drain curTent and drain

source voltage is very similar to that described in section 2.3.3. 1. The total switch off 

transition time, with a 2Q gate dri ve resistor is 75ns, compri sing of a 25ns voltage ri e 

time and a 50ns current fa ll time. 

The tum on transitions all show the additional current due to the rever e recovery of the 

freewheel diode. For the case of Q2 turning on, the rever e recovery current is 9A and 

lasts for approximately 50ns. Although the drain current in the MOSFET during tum on 

hows a very similar behaviour to that described in Figure 2.1 5, the drain-s urce voltage 

(VOUT) is different. The drain-source voltage was expected to r main at +Vdc until the 

diode had reached its peak recovery current and then drop. In th mea urem nts 

however, the drain-source voltage actually drops as the MOSF T begins t support the 

load current and reaches zero when the diode fini he it rec very p riod. Thi s implie 

that both the di ode and MOSFET will suffer additional loss due to the rever e recovery 

period. Therefore, a simple way to model the tum on los es is to assume that the 

waveforms are the same as for tum off except that the transition takes an additi nal 

time, trr, to take place. 
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The turn on characteristics of Ql and Q2 appear to be slightly different since the drain

source voltage changes much more quickly for Ql than it does for Q2. 

4.3 Efficiency 

The power stage DC link was set to 60V and a fourth order Butterworth, 20kHz comer 

frequency filter with a 4,Q termination used as a load. This 60V DC link will allow for a 

peak power output of 450W into the 4,Q load. The power stage was driven by PWM at 

100kHz. 

The efficiency of the power stage as a function of modulation depth can be estimated 

using Equations (2.7), (2.8) and (2.9) as developed in Chapter 2. If it is assumed that the 

dominant causes of loss are switching loss, conduction loss and 12R loss in the power 

filter, the expected efficiency profile is as shown in Figure 4.11(a). Figure 4. 11 (b) gives 

the breakdown of the different loss mechanisms. 

For this calcul ation, the conduction loss was based on the power MOSFETs with an 

RDS(on) of 70mQ each, the switching transition time, te, taken as 75ns and the reverse 

recovery time, trr, taken as SOns. The inductors in power filter had a measured DC 

resistance of 100mQ and since the polypropylene capacitors used have very low eries 

resistance, the loss in the inductors was taken as the dominant filter loss. 
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Figure 4.11 - Calculated efficiency profile and balance of loss for prototype power 

stage 

The calculations suggest that the switching 10 s component dominates the loss in the 

overall amplifier, which is to be expected from the hi gh switching fr quencies used, In 

practice, the loss is likely to be higher than that calculated u ing Equati ns (2.7), (2.8) 

and (2.9) since the load current also consists of switching fr quency components. At 

low modulation depths, the loss du to switching frequency compon nts wi ll have a 

relative ly higher impact on the efficiency since the output p wer i lower. Therefore, in 

practice, the efficiency curve will show a more gradual increa e in ffi iency with 

modulation depth. The actual efficiency of the power tage was measured u ing a high 

bandwidth power ana lyser (See appendix E for specificati n ) t measure the input 

power to the DC link and the output power after the filter, The operating effi ciency wa 

measured for three different switching frequencies, 50kHz, 100kHz and 150kHz, in 

order to examine the relative impact of switching frequency on the verall fficiency, 

Figure 4.12. One further efficiency profile was taken at 100kHz witching frequency 

with the gate drive resistors increased from 2Q to lOQ to examine the effect of the gate 

drive impedance on loss, Figure 4_13. In the two figures , the solid blue line again 

represents a polynomial fit to the data. 
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Figure 4.12 - Measured efficiency profiles at different switching frequencies 
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The calcul ated effici ency profile of Figure 4.11(a) and the measured profiles given in 

F igure 4 .1 2 and Figure 4.13 show a very similar behaviour with modulati on depth . In 

the case of 100kHz switching frequency, with 2,Q gate dri ve resistors, the calcul ated 

efficiency overestimates the measured value by 20% at low modulation depth and 5% at 

high modulation depth. This would suggest the switching loss is being underestimated 

since thi s has the largest influence on efficiency at low modul ation depths. Figure 4 .1 2 

shows that the effi ciency is a strong fun ction of the switching frequency with a 

significant drop in effici ency at 150kHz clock frequency. It is interesting to note that at 

low modulation depth , the system clocked at 50kHz is actuall y less efficient than that 

clocked at 100kHz. T hi s is as a result of the larger switching frequency components in 

the load current at the lower frequency switching. 

The effect of changing the gate dri ve resistors is evident from Figure 4.13 with the 

lower resistance offering much hi gher conversion effic iency. Over a large part of the 

modul ation depth , the increase in efficiency to be gained by moving from IO,Q to 2,Q 

resistance is greater than 20%. At higher switching frequencies, the di fference is li kely 

to be even greater since the switching loss will dominate the effic iency profile. 

The gate dri ve resistance could be reduced further in order to reduce switching loss 

although thi s would necessitate a dri ve c ircuit with a current drive capability beyond 6A 

(The present gate dri ve can deliver pulsed drive currents of up to 6A which gives a 

minimum gate dri ve resistance of 2,Q with the 12V dri ve voltage). Furthermore, it may 

be di fficult to increase the speed much further since parasitic gate drive inductance will 

limit the ri se-time of the gate dri ve current. 

4.4 Distortion Mechanisms 

An ideal Class-D power stage would have an output voltage that is an exact replica of 

the modulator input, except for an increase in the amplitude of the pul se . A prac ti ca l 

power stage will introduce non-idealities to the output v Itage waveform which, if 

cOITelated to the baseband audio signal will result in halmonic di stortion. Other ffec t , 

although resulting in di stortion not cOITelated to the baseband ignal can lead to 

noti ceable tones in the baseband of the output signal which compromi es perfo rmance. 

Previous work by Erickson and Middlebrook, [4 .1] , ha di scussed the different 

distortion mechani sms in an H-Bridge output stage. In single and three-phase motor 

dri ve applications, it has been shown [4.2,4.3,4.4,4.5] that D C link ripple and the use o f 

dead-time cause signifi cant harmonic di stortion in the load current waveform. In 
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studying a half bridge output stage, Attwood [4.6] highli ghts seven effects through 

which distortion of the baseband audio signal can occur. These are as follows: -

1. Poor tracking between upper and lower output device switching times, both at 

low analogue outputs and over the whole dynamic range, causing asymmetric 

errors in the pulse widths. 

2. Pulse amplitude errors dependent on output load power, particularl y noticeable 

during the transition between negati ve and positi ve half-cycles. 

3. Unwanted RF ripple appearing in the PWM comparator section, causing 

incorrect timing in the pulse edges. 

4. Layout and decoupling problems giving ri se to common impedance paths, and 

overshoots during switching transitions. 

5. Lost pulses near extremes of modulation. 

6. Use of dominant-pole compensation does not fully reali se the performance 

capability of PWM amplifiers. 

7. Power supply ripple. 

Of the seven effects described above, for an open-loop modulator, the dominant factors 

affecting linearity are #2 and #7. The use of identica l devices can reduce the impact of 

#1. New control techniques [4.7] have alleviated mechanisms #3 and #6 whilst careful 

circuit design and layout can minimise #5. 

In a mains supplied amplifier, typically the DC link supply would be deri ved using a 

simple mai ns transformer, rectifier and smoothing capacitor arrangement. If this were 

the case, then components at twice the mains frequency may appear directl y on the 

output voltage waveform , and result in an audible 100Hz tone at the peaker. Although 

thi s 100Hz tone is uncorrelated to the signal frequency, its pre ence at ven mode t 

levels can cause annoyance to the li stener. In hi gh power sy tem , it i more li ke ly th at a 

switched-mode power supply (SMPS) would be used due to size and cost savings. A 

typical SMPS is likely to switch at ultrasonic frequencies and as such, the DC link 

ripple will be inaudible. It is important, however, to lock the SMPS switching fr quency 

to a divi sion of the output stage switching frequency to avoid 'b at' fr quencies 

appealing in the audio output. In hi gh power car audio system , the only choice i to u e 

a SMPS to boost the voltage since the primary voltage source is at 12V. 
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The pulse amplitude errors highlighted in #2 are caused by the combination of a 

number of different effects. 

• When the freewheel diodes conduct, they have a voltage drop of 1-2V which is 

significantly different from the voltage drop across the power MOSFET. Thi s effec t 

will be minimal since the synchronous rectifi cation operation of the power 

MOSFET ensures that the load current is being support by the MOSFET for greater 

than 95% of the time. 

• The power MOSFETs have a conduction voltage drop determined by the load 

current and on resistance (ROSON)' Thus, the output voltage pulse height will be 

modulated by the load current, and since the load current consists predominantly of 

the baseband audio signal, harmonic distortion will occur. In addition, the R OSON of 

the power device increases with junction temperature and therefore, at high output 

levels, the modulation of the pulse height will be more severe. 

• Even if a SMPS is used to power the output stage, the DC link will still not be a 

perfect voltage source. The DC link will have a dynamic behaviour governed by the 

transient response of the SMPS and impedance of the connecti on wires betw en 

suppl y and output stage. The end result of the non-ideal DC lin k i that the voltage 

supplied to the output stage will be a function of the load current drawn and 

therefore the DC link voltage will be modulated by the baseband audio signa\. Thi 

will only cause a problem at the lower end of the audio spectrum where large 

transient peaks of power are often found. 

• In prac tice, the single quadrant nature of the power upply nec itate a large 

decoupling capacitor across the H-Bridge to n ur the DC link rippl i not 

excessive. 

It is common practice to delay the tum-on of all the ac ti ve witche such that no two 

devices in the same ' leg' are on simultaneously. If two devices in the arne leg wer to 

conduct simultaneously, a shoot-through current would de troy b th device. Thi s delay 

re ults in an instant, twice per switching cycle, when none of the acti ve devices are 

conducting. This period is commonly referred to a dead time and during thi time, the 

load current is supported by the freewheel diode. The dead-time p ri d mu t at a 
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minimum be equal to the switching time of the power devices (-Sans for power 

MOSFETs) but is often made larger to ensure shoot-through cannot occur. 

In addition to the pulse amplitude distorting effects described by Attwood, the use of 

dead time can result in pulse-width errors. If any of the distortion mechanisms are 

correlated to the baseband signal, harmonic distortion terms will appear in the output 

voltage. 

4.4.1 Dead Time 

The impact of the use of dead time for PWM and PDM driven power stages will differ 

quite markedly. The behaviour under PWM control is relatively predictable since during 

a switching cycle there will always be a high to low and a low to high transition of the 

output voltage. The dead time behaviour can therefore be analysed by averaging the 

effect of the error over a single switching cycle. 

When the power stage is driven by a PDM modulator, the output voltage can remain in 

the same positive or negative state for more than a single switching period. This makes 

the behaviour under PDM more difficult to predict since it cannot be averaged over a 

single switching cycle. 

4.4.1.1 PWM Driven 

With reference to Figure 2.9 (Repeated in Figure 4.14 for c1ruity), for the full blidge 

converter, when the load current, h, is positive during the dead time, diodes D2 and D3 

will conduct. 

Figure 4.14 - Full Bridge power stage 

Figure 4.15 shows the measured effect for a positive load current and a PWM driven 

power stage. Comparison of the duty cycle of the modulator output and power stage 
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output demonstrates that, due to the uncontrolled current during the dead-time, the 

power stage output duty cycle and hence the average output voltage, is lower than 

demanded. For a negative load current, the effect is similar except that diodes Dl and 

D4 conduct to give an output duty cycle that is higher than demanded. Figure 4.16 

shows the measured modul ator duty cycle and power stage output duty cycle for a 

negati ve load current. The duty cycle error for both Figure 4.15 and F igure 4.16 is equal 

to the dead time normali sed to the switching peliod length . For example, a 4~s dead 

time with 25~s period gives a duty cycle error of 16%. 

For the cases presented in Figure 4.15 and Figure 4.16, the load current is continuous. 

When the load current becomes di scontinuous, it becomes possible that a zero current 

period can exist during the dead time. Fi gure 4. 17 illu trates operation when the load 

current approaches zero. If the load current fall s to zero during the dead time peri od, the 

free-wheel diodes will tum-off and the output voltage will momentarily float since no 

power devices are in conduction; it will then oscill ate around zero volts. 

As the load CUITent passes through zero, the length of thi s floating period changes and 

the effecti ve duty cycle error decreases. Although the behaviour is osc ill at ry, the 

reduction in duty cycle en'or is approximately proportional to the leve l of the cUITent, 

Figure 4.18. 
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Figure 4.15 - Effect of dead time for a positive inductive load current 
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Figure 4.16 - Effect of dead time for a negative inductive load current 
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Figure 4.17 - Onset of discontinuous current during the dead time 
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Figure 4.18 - Behaviour under discontinuous load current 
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A simple way to model the effect of the duty cycle error is to measure the driven duty 

cycle from the modulator and compare it to the power stage output duty cycle over the 

dynamic range of the modulator. A purely linear relationship between the two would 

result in a linear power stage. Figure 4.19 shows the measured input/output profile for a 

power stage switching at 100kHz into a third order filter and 40 load with normalised 

dead times of 10% (a) and 20% (b). 
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Figure 4.19 - Measured input and output duty cycles 

The graphs of Figure 4.19 have a similar form in that they are comprised of three linear 

regions separated by periods of constant output duty referred to as the dead band. The 

symmetry of the power converter results in symmetry of the profile around 50% and as 

such it is expected that the dead bands will lead to odd-order harmonic distortion. 

Furthermore, an imbalance in the dead times of the four devices will result in 

asymmetrical dead bands and the appearance of even order terms and potentially a DC 

offset in the output. 

At the extremes of duty cycle, the duty cycle error is equal to the normalised dead time. 

Point ' b ' occurs at the same duty cycles for both the 10% and 20% cases and can be 

shown to be a function of the load impedance. The dead-band length is equal to the 

normalised duty cycle and point 'a' occurs at the end of this. Since the level of the 
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switching frequency ripple current is dependent on the load impedance presented to the 

power stage, different order filters will result in the dead band occurring at different 

levels. A high order filter will present a large impedance at the switching frequency in 

order that it will attenuate the high frequency components of the PWM spectra and 

reduce loss. The consequence of this is that the switching frequency ripple cun·ent is 

small and therefore point ' b' will be close to 50% duty. A lower order filter will not 

attenuate the switching components as effecti vely and will result in a dead band that 

occurs further away from 50%. Figure 4.20 gives the measured input/output duty cycles 

for a range of different loads. For duty cycles less than 50%, the results are rotationally 

symmetric. 
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Figure 4.20 . Dead band levels for different loads 

With no filter and a purely resisti ve l1 .3Q load, Figure 4.20 show that th input/output 

duty cycle relationship is relatively linear. When filters are introduced between the 

power stage and the res istive load, the dead band becomes evident and with increa ing 

fil ter order, the dead band moves closer to 50% duty cycle as expected. 

A relatively simple way to model the harmonic distortion introduced by dead time i to 

treat the dead band as being flat as illustrated in Figure 4.21(a). The harmoni level 
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produced by the dead time can then be quantified by considering the impact of the dead 

band on a sinewave driven duty cycle. Since there is a direct relationship between duty 

cycle and fundamental output voltage, the duty cycle error for the sinewave can be used 

to describe the output voltage error over one fundamental cycle. This voltage error is 

harmonically related to the fundamental and Fourier ana lysis of its voltage profile can 

then be used to predict the cOITesponding harmonic levels. 

Figure 4.21 illustrates the effect of the dead time on a typical sinewave driven 

modulator. Figure 4.21(a) shows the input/output duty cycle transfer function of the 

power stage. Figure 4.21(b) shows the input duty cycle demand from the modulator and 

Figure 4.2 l(c) gives the resulting duty cycle output from the power tage. In Figure 

4.2l(a), the value 'k' is defined as the level above (or below) the 50% level at which the 

dead-band starts. 
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Figure 4.21 - Effect of non-linearity on inewave input 

The harmonic distortion due to the non-linearity will be the harmonic content of the 

difference between the demand duty cycle and the output duty cycle. The fundamental 
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level will also be affected by the non-linearity but it is easier to quantify this once the 

harmonic levels have been defined. The method is to consider a duty cycle en'or defined 

as the output duty cycle subtracted from the demand duty cycle, Figure 4.22. 
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Figure 4.22 - Derivation of error duty cycle 

The va lues of tl and t2 are complete ly defined by the modulati n depth , m, the 

normali sed dead time, 8, and the dead band level k. quation (4.1) and (4.2) below 

give the values of tl and t2 for a fundamental ignal frequency f w . 

. -I( 2k J {J)t l = sm -
111 

(4.1) 

. -1(2(k +O)J {J)t 2 = sm 
m 

(4.2) 
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If 0=0, then t,=t2 and the power stage is pelfectly linear. These definition of t, and t2 

completely define the etTor duty cycle. The corresponding elTor output voltage is as 

shown in Equation (4.3). 

o 

- (2k + m sin(wt») 

28 

- (2k + msin(wt)) 

° 
2k - msin(wt) 

-28 

2k - msin(wl) 

o 

T T 
-- ~t< --+t 
221 

T T 
- - + tl ~ t <-- +t2 2 2 

T 
-- + t 2 ~t< -t 2 

2 

T 
12~ t< -- t 2 

2 
T T 
-- I ~ t< -- t 2 2 2 1 

T T 
-- t ~ t< -
2 1 2 

(4.3) 

With the error voltage now described over one fundamental cycle, imple Fourier 

analysis can be used to predict the harmonic distortion. The D component f th ignal 

is zero and since the function described by Equation (4.3) i odd, th IT r an be 

described as in Equation (4.4). 

Wh re, 

-
Verror (t) = Lb" sin(n.wot) 

1t : 1 

T 

2 2 

b" = - f Vuror (t) x sin(nw() t)dl 
T T -

2 

(4.4) 

(4.5) 
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Solution of Equation (4.5) with Vcrror as defined in Equation (4.3) yields the harmonic 

levels as desctibed in Equations (4.6) and (4.7). (A full worked solution can be found in 

appendix A) 

And, 

_ 4VDc(1 -cos(nn))x 
- Itn(n 2 - 1) 

n > 1 

mn (sin(nmt1 )cos(Wt l ) - sin(nmt2 )COS(Wt2)) 
2 

+ 8 cos(llwt2) 
+ k(cos(nW!2)- cos(nmt1 )) 

bll = 4;C ( '~W(tl - t2)+k(COS(WlJ -COS(W!2)) - Ocos(cvt l )) 

It = 1 

(4.6) 

(4.7) 

The term for n=l represents the loss in fundamental voltage as a result of dead time. 

Figure 4.23 shows a typical output current profile for an inductive load. The dad-band 

occurs when the current passes through zero. Thus, the component of the error voltage 

at the fundamental frequency will be phase displaced with re pect t the fundamental 

driving voltage and the resulting fundamental level will b the vect r add iti n of the 

two. 

Since the dead band occurs when the load current passes through zero, th phase shift 

between the original fundamental and the etTOr fundamental wi ll be equal to the pha e 

shift of the load impedance at the fundamental frequency. 

Tn rder to begin verification of the result above, th harmonic nt nt of the utput of 

the H-bridge was measured and the spectral content up to th I th harm nic i h wn in 

Figure 4.24 below. The predicted levels from quation (4.6) are al pi tt d n the 

figure. 
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Figure 4.23 - Measured output fundamental current 
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Figure 4.24 - Measured and predicted spectral content up to 6kHz 
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Figure 4.24 demonstrates that the model presented fo r the effect of dead time has a good 

corre lation to prac tical measurements. Although all the harmonic levels are not exactly 

pred icted, the general relati ve height of harmonics is correct. Although the odd-order 

harmonics dominate the harmonic content, the presence of even order terms suggests a 

more subtle di stortion mechani sm is present. It is li kely that these even order harmonics 

appear as a result of DC link fluctuation and thi s will be considered in section 4.4.2. 

In order to veri fy the result further, the odd-order harmonic levels were recorded for the 

same conditions as above but with a modulation depth varied from 5% to 95% in 5% 

steps. T he THD, based on these odd order levels, was then calculated and compared to 

the THD deri ved from harmonic levels predi cted by Equation (4.6). F igure 4.25 shows a 

compari son between the measured and calcul ated THD levels up to the 11th harmonic. 
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Figure 4.25 - Measured and predicted THD levels 

Again , the predi cted THD is greater than the measured THD. The gen ral imil ru;ty f 

the curve shapes for the predi cted and measured THD levels further ugge ts that the 

model presented is reasonably accurate. Note that the THD level i re latively low for 

modulation depths below -22% i.e. for modul ation depths giving peak duty cyc le 

below the dead band level of 11 %. A modulation depth of 22% resul ts in a peak duty 

cyc le of 61 %, which is the start of the dead band level. 
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The model has been used to predict THD behaviour for a range of normalised dead 

times in order to gauge the likely levels of dead time distortion in a practical system. 

Figure 4.26 shows the calculated THO profiles for a system with a dead band level of 

k= 11 % and a range of normalised dead times from 1 % to 10%. 
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Figure 4.26 - Calculated THD profiles 

In Chapter 3, it was concluded that in order to realise a dynamic range of 60dB, the 

required switching frequency for a double edged, naturally sampled PWM system is 

around 140kHz. The MOSFET power stage has a minimum dead time requirement of 

around 200ns to prevent the onset of shoot through and this would suggest a normalised 

dead time of below 3% is difficult to achjeve. The red line in Figure 4.26 indicates the 

profile for 3% normalised dead time and demonstrates the open loop dead time THO for 

a practical power stage is in the worst case as rugh as 8%. 

4.4.1.2 PDM Driven 

The effect of dead time on a PDM driven power stage is more difficult to quantify due 

to the stochastic nature of the pulse train from the modulator. Again, consider the case 

of the power stage loaded with a purely resistive load and run from a PDM modulator. 

Figure 4.27(a) shows the output of the POM modulator and Figure 4.27(b) shows the 

corresponding power stage output pulse. 
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In Figure 4.27, the missing zero points will contribute to an error offset similar to that 

with a PWM driven power stage except that their effect must be averaged over a 

number of clock cycles. To examine the impact of the dead time on the PDM dtiven 

power stage, a similar approach to that above was adopted. 
(a) • Modulator Output Vo~age 
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Figure 4.27 - Effect of dead time on voltage output for PDM 

By applying a DC level to the modulator and averaging the output from th p w r tag I 

a characteristic curve for the power stage can be develop d. igure 4.28 how th 

curves measured with two different type of load. In igure 4.28, the D input v Itage 

and average power stage output voltage are used ince the oncept f duty cycl d e 

not apply to a PDM driven system. Since the modulat r quanti e to ±3.4V, a input 

magnitude of 3.4Y con-esponds to the modulator running at full m dulation d plh and i 

equivalent to a PWM system with 100% modulation depth, 

Although the impact of the dead time on linearity i not immediately appal' nt f r lh 

plot in Figure 4.28(a), the increased inductance u ed in Figure 4.28(b) yi Id a lIrv 

with a distinct non-linearity. However, the pre-determin d dead-band n untered 

under PWM do not appear when PDM is used and it i m re difficult t model th 

effect. In addition, when higher order modulators are liS d, the switching wavefonn 

becomes more random and changes the nature of the linearity curve. 
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For input signals close to full modulation depth , the number of switching edges per 

second with PDM reduces (see Chapter 3). Thi s effectively reduces the number of dead

time errors per second so it is reasonable to suggest that the THD from a PDM driven 

power stage will decrease with increasing modul ation depth. 
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Figure 4.28 - Input/Output profiles for PDM driven power stage 

In order to assess the level of harmonic di stortion introduced by th n n-lin al; tyab ve, 

the THD was measured for the power stage driven by a fir t rder m dulat r. Again , th 

ymmetry of the profiles of Figure 4.28 about 50% would ugg t that, in imilarity 

with the PWM case, the dominant PDM di stortion will be odd- rder. 

Figure 4.29(a) shows the resulting THD as a function of modulati n depth whil t igur 

4.29(b) shows the relative split of THD between odd and even harm ni . At I w 

modulation depth, the even order terms seem to dominate the THD figur . At high r 

modulation depth, the THD fi gure is more balanced between odd and V n ont nt 

whilst at modulation depths greater than unity, clipping occur and the THD b c m 

dominated by the odd order terms. 
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Figure 4.29 - THD as a function of modulation depth for PDM 

The THO profile is very different to that with PWM (c.f. Figure 4.25). As expected, the 

THO falls with increasing modulation depth , which is the opposite of the behaviour 

profile under PWM. 

It is interesting to note that in comparing Figure 4.25 and Figure 4.29, the PDM driven 

p wer stage does seem to offer lower THO figure for the same operating condition. 

As the order of the driving modulator is increased, the p wer tage wav f rm wi ll 

contajn a hi gher number of switching events and li kelihood of the power tage being 

held in the positive or negative state for a number of cycles is Ie sened. Thi wi ll hav 

the effect of flattening the THO-Modulation depth pr fi le. 

The effect of increasing the clock freq uency or dead time ha the same effe t f r a PDM 

driven power stage as it has for PWM driven. 

4.4.2 DC Link Fluctuation 

As mentioned earlier, the DC link supplying power to the output tag i not ideal. In 

addition, the level of reactive energy flow between the load and p weI' tage i a tr ng 

function of load impedance. Since the load impedance varies signi fi antl y in b th 

magnitude and phase over the baseband, the level of DC link ripple due t reactive 
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energy flow will be a strong function of frequency. The type of modulation will not 

significantly influence the DC link ripple since both PWM and PDM will result in 

similar levels of energy flow between the load and power stage. In both cases, ripple on 

the DC link will directly modulate the amplitude of the output voltage pulses. 

Under steady state conditions, a sinewave driven reactive load wi ll experience a cyc lic 

energy flow at twice the fundamental frequency between power stage and load. When 

energy is drawn from the DC link, the link voltage will fa ll and when energy is retumed, 

the link voltage will rise. The level of the resulting DC link ripple wi ll therefore be 

dependent on the level of oscillatory energy flow and will have a frequency at twice that 

of the fundamental. 

In order to gain an understanding of the nature of the ripple vo ltage, the power stage 

output, under PWM control, was driven into an inductive load and the DC link ripple 

voltage measured as shown in Figure 4.30. At the fundamental freq uency of 50Hz, the 

load used has a power factor of 0.4, which results in a large reactive energy flow. This 

helps to emphasise the DC link behaviour under reactive energy. 

(a) - DC Link Ripple (AC Coupled) 
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(b) - Load Current 
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Fundamental Frequency=SOHz, Decoupling=2200 I!F 

Figure 4.30 - Typical DC link ripple voltage and load current 

The fundamental frequency of the ripple voltage is equal to twice the fundamental 

frequency of the load current. The non-linearity of the DC link upply can be seen with 
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the 'flattening' of the peaks of the ripple voltage. For the waveforms of Figure 4.30 the 

DC lin k decoupling capacitance comprised ten 220~F electrolytic capacitors connected 

in parallel. By increasing the level of DC link capacitance, the ripple cun'ent can be 

reduced as shown in Figure 4.31. The waveforms in Figure 4.3 1 corresponds to the 

power stage run under identical conditions as for Figure 4.30 except that an additional 

22000J..lF capacitor was connected in parallel with the 2200J..lF to give a total DC link 

capacitance of 24200~F. 

(a)· DC Link Ripple (AC Coupled) 
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Fundamental Frequency=SOHz, Decoupling=24200llF 

Figure 4.31 - DC link ripple and load current with increased link decoupling 

Compari son of Figure 4.30 and Figure 4.31 demonstrates that the ffect fin rasing 

the DC link capacitance is twofold. PrimaJily, the peak to peak DC lin k rippl i 

reduced (from - 1.5V to 0 .6V in this case) and secondl y, the DC link ripple b c me 

more sinusoidal which suggests that the power stage is seeing a more linear upply 

impedance. 

The impact of the DC link fluctuation can be ascertained by examining the pe tra l 

content of the power stage output voltage. Figure 4.32 shows the mea ur d sp ctral 

content of the output voltage for Figure 4.30 and Figure 4.31 . 
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Figure 4.32 - Spectra of power stage output voltage with differing decoupling 

capacitance 

In both cases in Figure 4.32, the dominant even order term is the 2nd harmonic as 

expected from consideration of the nature of the DC link ripple. For Figure 4.32(a), the 

non-linear nature of the DC link impedance i evident with the other ven rder terms 

relatively high. The increased decoupling capaci tance used in igur 4.32(b) 

concentrates the even order di stortion into the second harmonic. This i not neces rily 

benefi cial since the presence of the larger second harmonic wi ll be more intru iv than 

if the energy was spread in other even order terms. M reover, th level f the third 

harmonic is also affected by the lower level of decoupling. Between the tw pI ts, all 

the other odd order terms remain the same but there i a small incr a e in the 

fundamental level. The measurements taken above demon trate the b havi ur f the D 

link in an extreme case of a purely inductive load, which i the w r t a e f I' au ing 

DC link ripple since the load operates with a phase shift of almo t 90°. With a m re 

reali stic fi lter and load impedance, the DC link ripple wi ll be lower. 

For a given level of decoupling capacitance, the DC link ripple will be a function f the 

reactive energy flow and, therefore, a function of the output power of the amplifier. To 
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illustrate thi s, the THO profiles as a function of modulation depth were recorded for the 

power stage driven by a 30V, 60V and 120V DC link under PWM. These voltages 

correspond to output powers of 40W, 160W and 640W respecti vely at full modulation 

depth. In all cases, the decoupling capacitance was 6900J-LF and the load comprises a 

thi rd order filter and 1l .3Q resistor. Figure 4.33 shows the measured THO profil e, 

based on all harmonics, for the three power ratings. 
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Figure 4.33 - THD as a function of maximum output power 

Incr as ing the power rating of the amplifier has a maj r impact n the THD pr fil 

Although the THD profiles above are based on the content fa ll ignal harm ni , th Y 

show a very similar behaviour to the curves obtained fo r dead time di t rti n wh I' j u t 

odd-order terms are considered. If the THO profil e fo r the three di f~ r nt p w I' rating 

are calcul ated based just on the odd-order terms, the graph f Figure 4.34 r ult . 

Compari son of Fi gure 4 .33 and Figure 4.34 demon trates that the odd- rd r t I'm till 

dominate the THD profile, even at the increased power rating. 

124 



Prototype Class-D Power Stage 

20r----.-----.-----r----.-----~----r_--~----_r----_.--__. 

18 ···········T············!"············(··········· ........... !··············!··S4bW·"j""··········· j·············(···· ...... . 
16 ..•..•.. .....•. .. ..........•..•...... ... . j ............ ·:··············1···· ..... y ............................................... . 
14 ·········· ···!············· "j"" ··· ····· ···T········· .. j .......... ... .............. ! ............. r-....... .. .. 1 ............. T ..... ..... . 
12 .... .•....... ~ .. .. ....... ... : . .....•....... ~ ... ....... j ... ...... .... j .. ···········f· ... ......... ~ .. ............ : ........ ...... ~ ....... .. ... . 

11 : ! ! : ! ! i 160: : 
@ 10 ···· ·······T···········T···········T·· ·······T······· ···r······· ··r········ ... ,. ·········T···········"]""··········· 

8 ·············:·············t·············j· .......... j .............. j ............. j .... ········:·············t·············:············· 

:IL i jri ~~~l , 
: : : : : : : : : 

2 ·············r··············i······ ····1··············1··············1··············[··············[············+············1············· 
: : : : : : : : : 
: : : ::.:: 

%L---~10~~~-----3LO----~40----~5~0----~60~--~70----~8~O----~90~--~100 
Modulation Depth (%l 

Figure 4.34 - THD profiles based on odd ordet· terms only 

The similarity in profiles between Figure 4.34 and Figure 4.26 suggests that the increa e 

in power rating has the effect of increasing the effective dead time di tortion . The initi al 

model assumes that during the dead time, the DC link vo ltage is con tant. However, in 

practice during the dead time, energy is always returned to the D link via the 

freewheel diodes and thi s will cause the DC link vol tag t ri se. Thi leads to an 

increased error voltage and a hi gher THD profile. As the pow r rating f r the amplifier 

increases, the energy returned to the DC link is higher for a giv n modulation depth and 

therefore the effect will be greater. 

4.5 Use of Feedback 

Whether the power stage is driven by PWM or PDM, the p w r ampli fica tion pI' 

essenti ally non-linear. By using feedback from the power tage utput, th impact f the 

non-linearity can be minimised reSUlting in a system that hou ld perf I'm t the requir d 

fide lity. 

4.5.1 Under PWM 

Since PWM driven power stages have been used for a number of year, vari u 

feedback schemes have been proposed to increase their lineaJity. Smith [4.9] 
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compensated for the effect of DC link ripple by feeding back the DC link voltage and 

using it to shape the input audi o signa\. It is claimed that this achieved a 40dB ripple 

rejection improvement over con ventional PWM amplifiers. Whilst thi s approach lessens 

the impact of DC link fluctuation on the Iineali ty, it does not address the issue of 

di stortion caused by dead time. Direct feedback of the power stage output vo ltage is 

required and thi s approach has been adopted in more recent designs [4.7,4.8]. 

Vanderkooy [4.10] highlights two techniques that can be employed to linearise the 

power stage. The first approach, based on a Hysteresis controller was one of the earli est 

techniques used [2.4] and its basic operation is shown in Figure 4.35. 

R2 

R1 
AUDIO INo---c==::r-"--I 

Figure 4.35 - Basic hysteresis controlled PWM power stage 

In thi s control scheme, the switching frequency in the output tag i not fixed but is 

dependent on the hysteresis level in the power stage and the integrator time c n tant. As 

the signal amplitude increases, the effec ti ve switching frequency fa ll and thi i 

beneficial in reducing switching loss. In addition, ince the feedback ff ti v Iy n ur 

the pulse area is correct at the end of every cycle, it i v ry effecti ve at r du ing the 

impact of power stage non-linearities. The drawback of thi s p w r tag i that at larg 

modulation depths, the effective switching frequency appr ache z r and fhi cau e 

severe problems for the output filters. The 'Entrained' contro ller, sh wn in Figul' 4.3 , 

proposed by Vanderkooy, adapts the hysteresis c ntroller in order to fi x th wit hing 

freq uency whilst retaining the benefits of di stortion reducti n th r ugh f dback. 
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Figure 4.36 - 'Entrained' PWM controlled power stage 

In this approach a square wave bias signal forces the output stage to switch at a 

minimum frequency equal to that of the square wave. 

A more recent technique proposed by Lai and Smedley [2.9, 4.8] uses a similar 

principle to those described above in that it uses feedback to obtain the correct output 

voltage pulse area over each switching cycle. This technique is referred to as 'one-cyc le 

control ' and Figure 4.37 shows a simple implementation . 

Figure 4.37 - Simple one-cycle control (Source - [4.8]) 

The basic approach used in one-cyc le control is as follows: -

1. When a clock pulse arrives, the flip-flop is clocked, whi h et Q I wand Q hi gh. 

This switches T2 on and T\ off. 

2. The output of the integrator then begins to rise from it initi al valu (due t the 

inversion in the op-amp integrator). 

3. When the integrator output is above - V ref, the comparator r et the f1ip-f1 p, 

forcing Q low and Q hi gh. This switches T2 off, T\ on and trigger the nan' w pul e 

generator to reset the integrator. 
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4. The output voltage is now integrated again (integrator output fa ll s) until the system 

is restarted with a clock pulse. 

This action forces the average of the output voltage, V p, to be equa l to that of the 

reference voltage, -Vref, over a single switching cycle. The main drawback with this 

approach is the necessity for a very short reset of the integrator which in practice is 

difficult to achieve. 

The feedback techniques discussed so far all use the output voltage from the power 

switches as a feedback signal. Any non-linearity in the filter wilI therefore compromi e 

system linearity. In [2.9] Lai and Smedley use one-cycle control and additional negative 

feedback, in the form of a conventional phase lead compensation network, to linearise 

the power filter. Figure 4.38 shows the system with this double feedback approach. 

Driver 
Onc-Cycle 

Cootroller 

-+ 
vo 

Figure 4.38 - Double loop feedback system (Source - [2.9]) 

With the controll er employed above, a sixty degree phase margin wa achi ved and 

results from an experimental prototype demonstrated a THD of around 0.1 % vcr the 

full bandwidth (compared to 0.5 % with only the one-cyc le contI' I employed). 

Thus, the performance achievab le with closed loop contro l can mat h that f linear 

amp li fiers. Optimal system performance, however, will be achieved nly if th pow r 

stage is designed to be as linear as practicalIy possible before .~ edba k i add d. 

4.5.2 Under PDM 

To date, little work has been done using feedback with a PDM driv 11 p weI' tage. 

However, the standard PDM modulator uses feedback a an inh r nt part f it 

operation. By simply including the power stage within the feedback I p a hown in 

Figure 4.39, the error introduced by the power stage can be corrected f r. Th only 

additional circuitry required is a differential amplifier to convert the power tage utput 
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voltage to a signal referenced to ground and an attenuation block to reduce the voltage 

pulse level to one that the modulator can accept. This attenuation effectively controls 

the gain of the amplifier. 

Audio 

Noise-Shaper 

Nonnal Feedback 

Power 

Stage 

Attenuation 

Figure 4.39 - Implementation of a closed loop PDM driven power stage 

The use of closed loop control raises a number of practical issues. Due to the use of 

dead time, a minor delay, equal to the dead time, is introduced between the power stage 

input and output, which could potentially destabili se an originally stable modulator. The 

dead time delay should therefore be included in the original L~ modulator design to 

ensure stability. If the modulator is to be implemented in the digital domain, an AID 

converter must be included in the feedback path. Even though the di stortion effects hav 

been modelled by averaging the high frequency wavef rm, the actual mechanisms are 

very short, for example 200ns, and therefore the AID convert r mu t b run at a very 

high frequency to capture the distortion effects. Since hi gh performance AID conv 11ers 

are expensive, this could compromise the realistic implementation of a digital sy tern. 

The improvement in linearity can be demonstrated by comparing the curr nt f r p n 

and closed loop PDM driven power stage. A simple analogue modulator wa used and 

Figure 4.40 shows the output current in an open loop (a) and cl ed I p (b) p wer 

stage. 
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(a) - Open Loop Load Current 
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Figure 4.40 - Effect of closed loop control on linearity 

Under closed loop control, the 'crossover' di stortion introduced by the non-linearity is 

practically eliminated and the improvement can be seen wh n the THD profil f the 

open and closed loop control cases are compared, Figure 4.41. The THD PI' fil of the 

closed loop amplifier, Figure 4.41, is much the arne for the pen 10 p ca 

all the figures are approximately 26dB lower. 

xcept that 
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(a). THD for Open Loop Modulator 
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Figure 4.41 - Open and closed loop THD profiles 

Although the closed loop modulator offers increased linearity, the THD i still abov the 

des ired level required of around 0.1 %. It is important, theref r , that th p n loop 

linearity is optimised before feedback is used. 

In conventional closed-loop control systems, the higher the p n 10 p g in in the 

baseband, the lower will be the impact of any non-linearity in the pow r tag a uming 

the system remains stable in closed loop control. Therefore, incr a ing th gain f th 

noise-shapeI' should decrease the impact of system non-linearity. In additi n, the u f 

double feedback in the PWM driven power stage further in r a ed y t m p rf rman e 

and it should be possible to apply thi s to a PDM driven system. 

4.6 Conclusions 

Tests on a prototype have demonstrated that a Cia s-D power stage can ff r I1 ver i n 

efficiencies approaching 90%. At the switching frequency r quired f I' I' a nabl 

fidelity (-150kHz), the switching loss in the power stage forms the d minant I 

mechani sm and therefore the design of the gate drive circuitry ha a clitical impact on 

the conversion efficiency. Specificall y, the gate drive re istance hould be as low as 
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practi call y possible. In the prototype, 2Q resistors were used in the gate dri ve and these 

demanded peak CUITents of 6A. The power MOSFETs used should have as low ROS(on) 

as possible to minimise conduction loss although this fac tor has less impact than the 

gate dl; ve capability on the conversion efficiency. The freewheel diodes should have as 

short a reverse recovery as possible and a very low conduction drop. Ideall y, Schottky 

barrier diodes should be used although these are only available in voltage ratings up to 

around lOOV. The use of the MOSFETs as synchronous rectifiers results in a low RMS 

CutTent in the freewheel diodes although the diode must be rated to handle the peak load 

current. With the high rates of change of current in the power stage legs, extreme care 

must be taken to minimise parasitic inductance and thi s was achieved with the use of 

coplanar busbars and local DC link decoupling. 

Whilst the output from both PWM and PDM modul ators can be relati vely fre from 

di stortion, it has been shown that the power output stage can severely compromise the 

ampli fier linearity. A number of mechani sms have been described through which the 

power stage di storts the baseband audio signal. At the switching frequencies requi red 

for hi-fidelity performance, the use of dead time is the largest single fac tor to contribute 

to di stortion and the effect manifests itself in odd-order telTns. The level of distortion i 

also dependent on the type of load presented to the ampli fier. A purely re istive load 

results in the lowest THD whilst the reacti ve energy fl ow associated with an inducti ve 

filter load causes both dead-time error and DC link ripple. 

An accurate model for the effect of dead time with a bipolar PWM trategy ha been 

developed and a worst case THD of 8% is a reali stic level f ra p weI' lage wit hing at 

140kHz with a dead time of 200ns. Under PDM, the di torti n is m I' dirfi ul t to 

describe but shows a generall y decreasing behaviour with m dulati n depth and is 

lower than that of an equi valent PWM driven amplifier. 

The high levels of open loop di stortion necessitate the u e of feedback to lineari e the 

power stage. PWM control has been explored in depth in r cent year and ha r sui ted 

in systems that can perform at least as well as their linear counterpart. The more 

successful strategies have used a feedback technique which con'ect f r en' r vel' a 

single switching cycle. A simple feedback strategy ha been explored with a PDM 

driven power stage and has been shown effecti ve at reducing the open 10 p di t rti n by 

a factor of 20. All the feedback strategies di scussed are onl y eff cti ve at reducing the 
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open loop di stortion and therefore the power stage must be made as linear as possible 

before feedback is added. 

With a fi xed minimum dead time, the normalised dead time will increase with switching 

frequency. Thus, higher switching frequencies will tend to lead to higher dead time 

distortion and this limits the performance of the stage. Conversely, a decrease in 

switching frequency will result in lower dead time distortion. However, a reduction in 

switching frequency will be accompanied by an increase in foldback di stortion 

introduced by the modulator and therefore an optimal switching frequency will exist 

where the combined foldback and harmonic di stortion is lowest. 
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5 I ntegrated Power Stage 

5.1 Introduction 

The conventional H-Bridge power output stage di scussed in Chapter 4 represents the 

preferred topology for the majority of Class-D amplifier designs. However, in order to 

reali se a complete amplifier system, the output stage requires a steady, hi gh voltage DC 

suppl y. The method used to generate this supply depends on the nature of the initial 

energy source (i.e. AC or DC) and its power rating. 

For a mains powered ampli fier, a standard transformer/recti fier arrangement offer a 

simple solution, although this type of power supply is bulky and ineffi cient and its use 

is normally restricted to low power applications. When used for high power 

applications, the power transfOlmer and smoothing capacitors are often the ingle 

highest cost in the amplifier system. In addition , the DC rail smoothing capacitors need 

to have high capacity in order to sufficiently attenuate the 100Hz ripple pre ent on the 

output and are therefore costly and bul ky. In addition, the DC rail smoothing 

capacitors, which are usually hi gh capac ity electrolytic type in order to ufficiently 

attenuate the 100Hz ripple on the output, are costl y, bulky and of poor long term 

reliability. 

Developments in switched mode power suppl y (SMPS) technology have now presented 

a prac tical alternative to the simple transformer/rectifi r an'angement and v n at 

moderate power levels offer advantages over the traditi nal arrangement. Th b n fit t 

be gained with a SMPS is the dramatic reducti n in tran fo rmer ize an D filter 

capacitors, due to ultrasonic witching frequencie , and a signi ficant in r a in 

conversion effi ciency. In addition, the switching nature f thi typ f upply fa ilitate 

the use of feedback control strategies to give very g ad regulati n and dynamic 

behaviour. However, even with a SMPS, a large smoothing apacitan i r qui r d due 

to the single quadrant nature of the pow r supply and the r quir ment t t re 

regenerative energy from the reactive load. 

For car audio applications, the primary energy source is the 12V car batt ry and in 

this energy source is DC, a SMPS must be used to give the boo t in v Itage I vel 

required. For example, a typical SOOW output stage would require a 64V D lin k wh n 

driving into a 4Q loudspeaker. 
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The conventional linear or Class-D amplifier systems used in car audio are made up of 

the elements as shown in Figure 5.1(a) and (b) respectively. The class-D amplifier 

requires an additional output filter, which is not needed with a linear power output 

stage. 
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Figure 5.1 - Conventional in-car audio power amplifier 

Both these systems require a SMPS and typically, a shown in Chapter 1, igure 1.2, th 

cunent state of the art amplifier uses a push-pull SMPS that occupie over half the 

volume of the entire amplifier. The majority of the SMPS v lume i 0 upi d by th 

twelve decoupling capacitors required for the main 12V supply and the ix apacit rs 

and large ferrite inductor of the output filter. 

The focus of this chapter is the deve lopment of a power lage whi h mbin th 

SMPS and H-Bridge output stage by eliminating the I' quirement f I' an intermediat 

DC supply, thereby eliminating the need for a large DC rail re erv ir apacit rand 

smoothing inductor. Not only will this reduce the size of the vera ll c 

also allow for a cost reduction . The approach i to direct the v Itag pul pI' vided by 

the secondary of the SMPS to the load using the H-Bridge t f I'm the r quir d audi 

signal. As will be demonstrated later, this also will all w for a partial ft wit hing 

system since the vo ltage across the H-Bridge will be zero for ash rt period within each 

cyc le. 
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Figure 5.2 gives the structure of the proposed power stage and si mpli fied vo ltage at 

different parts of the circuit. 
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Figure 5.2 - Function of proposed power stage 

The function of the primary switching circuit is to PI' vide a high v Itage pul e tr am 

to the H-Bridge output stage. The output stage can be driv n using PDM by wit hing 

the primary stage at a constant duty cyc le and then using the H-Bridge t sc pul e 

polarity. Alternatively, PWM can be reali sed by varying the duty cycle f the ptimary 

switch and the using the power stage to choose pu lse p larity. One furth r b nefit f 

thi s power stage is that there is a period every witching cyc le when the v \tag a r 

the H-Bridge is zero and therefore the H-Bridge can b 

conditions, thereby minimising switching loss. Through the action f the H-Bridg 

choosing pulse polarity, the effective maximum pulse frequency from the utput f the 

H-Bridge is half the frequency of the primary switching device. Theref r , the ptimary 

switching device must be designed to deliver pulses at a frequency f twi the 

maximum required modulation switching frequency. 
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The design of the power stage was considered as two separate sections; the design of the 

primary switchi ng circuit and transformer and the design of the H-Bridge & secondary 

side circuit. The modulation of the new power stage will be covered in Chapter 6. 

5.2 Primary Switching Circuit Design 

The function of the primary switching circuit is to transform the battery input voltage 

into a series of hi gher voltage pulses. A suitable circuit topology for this function can be 

found by considering present SMPS designs [5.1]. Figure 5.3 shows the circuit diagrams 

for the fJyback converter (a), the forward converter (b), and the push-pull converter (c). 

+Vdc 

(a) • Flyback Converter (b) - Forward Converter 

+Vdc 

(c) - Push-Pull Converter 

Figure 5.3 - SMPS circuit topologies 

These different topologies can be subdivided into two main ateg rie; ir uit that 

drive the transformer core in uni-polar flux (Flyback and Forward nvert r ) and 

circuits that drive the transformer core in bi-polar flux (Push-Pu ll nvert r ). 
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Circui t topologies operating with uni -polar flux tend to require a larger transformer cor 

than a similarly rated bi -polar flux converter. As such, the uni -polar converters are 

found in low to middle power rated equipment whilst the bipolar converters are 

generally found in middle to high power rating region . Philips [5.2] give an approx imate 

design guide as shown in Figure 5.4. 
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Figure 5.4 - Converter topology choice (Source - [5.2]) 

The fJ yback converter is suited to low power applications wher problem a ociated 

with transfo rmer leakage inductance are minimal or high voltage where the la k f 

utput inductor brings benefits. For the SOOW rating requirement of th p w I' tag, 

Figure 5.4 suggests the most appropri ate circuit topology for the primary swi t hing 

circuit should be based on the forward converter primary. 

Consideration of the topology choice is further influenced by the relatively larg UIT nt 

levels in the primary side of the circuit, with typical peak urrent ab v lOOA and I w 

input voltages. The resistance of the path through which the pri mary UIT nt fI w mu t 

be minimised in order to achieve the hi ghest pos ible efficiency. The f 1"W'lrd conv rt I' 

topology is an attractive choice since there is onl y one emiconduct r devi in the 

primary current path and thi s, combined with the use of bu bar I' heavy gaug P B, 

will minimi se conduction loss. 

The benefit of having a single switching device can further be xploit d by pl ac ing the 

device on the high side of the transformer. This is conducive to reducing the EMI from 
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the converter since the drain connected tab on the device package is at a fi xed potenti al. 

With the device located on the low side, as in Figure 5.3(b), the drain osc illates from 

zero volts during device conduction, to high voltage during device blocking. Thi s will 

lead to charging and discharging of the parasitic capacitance between tab and heatsink 

at the frequency of the switching waveform and cause hi gh frequency CUITents to flow 

in the heatsink, resulting in EMI emissions. If the device is in the high id , the tab 

remains at the DC supply level and a reduction in the EMI level is possible. However, 

the use of the device in the hi gh side requires a floating gate dli ve circuit that adds to 

cost and complexity. 

Although the forward convel1er only runs the transformer in uni -polar flu x, the high 

switching frequency being used will result in a physically small tran former. With these 

issues in mind, it was decided that the forward converter primary side topology would 

be used for the primary converter. 

5.2.1 Initial Design Issues 

In order to understand the issues important in the design of the primary switching 

circuit, a prototype converter, Figure 5.5, was constructed. The converter was d igned 

to deli ver lOOW into a purely resistive secondary side load at a witching fr quency f 

300kHz and a duty cycle of 50% from a 12V DC uppl y. F r the 1 J.3,Q I ad us d, a 

turns ratio of 1:4 is required between primary and sec ndary to b t the utput v Itag 

to 48V. Although the resistive load is not an accurate repr s ntati n of the I ad 

presented by the H-Bridge output of the proposed amplifi 1', it pI' vid d a impl mean 

of highlighting many of the operating conditions of the primary ide ir ui t. 

+12V TP3 

~-+--o TP1 

11 .3 

TP2 o---. 

01 

Figure 5.5 - Primary side test circuit 
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The primary switch was realised with a single low RDSON (lOmQ) power MOSFET 

driven by a signal generator via a totem pole buffer stage. A Philips ETD39 core with a 

centre pole area of 125mm2 was used with two primary turns, N1, and eight secondary 

turns, N2. The tertiary winding, N3 was wound with a single turn to ensure the circuit 

was able to run at the required 50% duty cycle. Figure 5.6 shows the prototype circuit 

including a large decoupling capacitor for the 12V DC link. 

High Power 
Resistive Load 

,,~-...... -.it-""';'--UE~couPllng Capacitor 

Primary MOSFET 

Transfonner 

Secondary Diode 

Figure 5.6 - Prototype primary circuit (Drive circuit not shown) 

For a forward converter, with the secondary connected as in Figure 5.5, the idealised 

circuit waveforms would be as in Figure 5.7. 

Gate Drivet 

VOltagelL-__ ---L-_...l...-I_----L-I _--I...I_-LI_~~ t 

Drain currentnL.. ___ ...L-__ ---LCl ___ ...l...-___ LCl ___ .l....-___ -1~~ t 

Drain sourcet ! I \ I \ I 
Voltage l 2*Vdc ~ _ -.:J _ 

~ t 

Secondary 
Output Voltage I----~~---,--..l---~--__,.__--L..---+_-_r--L .... 

Rectified t ! 
outp~~~~~:g~ IL... ___ ~I Ln_*v_d_c_..ll ___ ....l-__ ----JL--__ -L ___ -l~~ t 

Figure 5.7 - Idealised forward converter waveforms (not to scale) 
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The power stage was run with the operating parameters de cribed ab v and igure 5.8 

(a-f) shows the measured circuit waveforms. 
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Figure 5.8 - Prototype circuit waveform 
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Two important considerations become evident from these mea ur d waveform . 

l. Examination of the load resistor voltage, Figure 5.8(e), shows that when the primary 

MOSFET is switched on, the actual output voltage ri ses exponenti all y towards the 

designed 48V level rather than giving the desired square-wave pulses. Since the 

secondary current waveform , Figure 5.8(f), is very similar in profile to the load 

resistor voltage, it can be assumed as ideal resistor. Therefore, the relati vely slow 

ri se of output voltage must be attributed to parasitic inductances of the transformer 

and the primary side circuit. 

2. A further indication of which parasitic elements are dominant can be obtained if the 

MOSFET drain-source vo ltage, Fi gure 5.8(c), is examined at the point of the 

MOSFET switching off. With ideal operation, Figure 5.7, when the MOSFET turns 

off, the drain-source voltage should ri se to approximately three time the supply 

voltage at which point the core demagneti sation occurs. From the measured re ults, 

it is evident that the behaviour in this case is far from ideal. At the point f the 

MOSFET turning off, a large voltage spike appears across the MOSF T drain 

source. This spike is large enough to cause avalanche breakdown of th 60V rat d 

MOSFET, resulting in additional power loss and pot nti al d vic de tru tion. 

Both the effects described above can be atttibuted to para itic indu tance n th primary 

side of the circuit and any referred secondary inductance. Any indu tanc in ri with 

the main primary current wi ll limit the rate of change of primary un·ent. 

From the exponenti al shape of the output voltage acr the I ad resi t r, til pri mary 

parasitic inductance can be estimated. With a 1:4 turn rati 

into account, the total primary side parasitic inductanc wa timated at 250nH. l f th 

energy stored in this parasitic inductance were di s ipated by bl' akd wn f th primary 

MOSFET every switching cycle, it would amount to lOW of 10 at th OOkHz 

witching frequency. For the lOOW converter, this i a ignificant I urtherm I' , 

since the energy storage is a function of the square of CUlTent and if th nvert I' wa 

run at the desired 500W rating under simil ar condition , the para itic energy I w uld 

amount to 260W. This level of loss is unacceptable and theref re minimi ati n andl r 

recapture of this energy is essenti al. 
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The main sources of parasitic inductance are the self-inductances of the interconnection 

wires and the transformer leakage inductance. Figure 5.9 indicates elements that 

contribute to the total primary paras itic inductance. 
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Figure 5.9 - Primary current path with para itic inductances 

In the fi gure, La represents the inductance of the conn ction wir fro m the decoupling 

capacitor to the start of the transformer winding, Lb repr ents the tota l I akage 

inductance of the transformer referred to the primary winding, Lc repre cnt the 

inductance due to the connection wire between the transformer and the drain f the 

MOSFET, whil st L<t represents the inductance of the connection b tw en the M T 

source and decoupling capacitor. Finall y, Le is the para itic indu tan e f the 

decoupling capacitor. 

La, Lc and Ld can be minimised by using as hOlt a length f wir a po ibl and 

minimising the loop area of the primary CUITent path. The tran f rm r I akag 

inductance, Lb , is a function of the transformer geom try and repre nt th I v I f 

coupling between primary and secondary. The inductance of the dec upling apa itan 

can be reduced using a combination of electrolytic and polypropylen capacit r . 

If the layout of the primary side is optimised such that the loop area f th pri mary path 

is minimal, then the dominant cause of parasitic inductance i the Iran form r I akage. 

The transformer leakage can be minimised through careful de ign a di u d in 

section 5.2.2 and recapture of the energy stored in the leakage inductan then 
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possible by pl acing an active snubber across the MOSFET drajn- ource. The ac ti ve 

snubber clamps the peak voltage and returns the energy contained in the leakage 

inductance to the primary DC link. Figure 5.10 shows the placement of the ac ti ve 

snubber and the equivalent primary side circuit under the assumption that leakage 

inductance is the dominant parasitic effect. 

+Vdc 

ACTIVE 
SNUBBER 

~~ +Vdc 

Figure 5.10 - Active snubber placement 

When the primary MOSFET switches off, the leakage inductance force the voltage t 

ri se across the MOSFET. When this voltage equals th clamp level of the nubber di d 

Dl conducts and the energy stored within the leakag inductance i dump dint 

capac itor Cl (which must be Iowa impedance type, i. e. polypr pylene). The ac ti ve 

snubber then 'bleeds ' the energy away and returns it to the ini tial 12V D link. The 

only drawbac k of thi s arrangement is that the diode Dl mu t b rated uch that it an 

transiently handle the full peak primary current of - lOOA and th ref r may b 

expensive. 

The use of an active snubber serves a dual role in that it r mov the n d f I' a 

demagneti sation winding since the core can demagneti e by r turning n rgy t th 

snubber. FU11hermore, if the snubber clamp level were set to ar und 5 V (i .. 

the 60V rating of the device), it would be possible to run the primary id t a duty 

cycle greater than 50%. In fact, with a 50V clamp level and 12V input v Itag , th 

will demagneti se three times faster than it magneti ses and therer r it h uld b P ibl 

to run the power stage up to 75% duty cycle. Not only will this reduce th p w r rating 

of the snubber, since the peak primary current will be lower, it will al 0 increa e verall 

system efficiency due to lower R.M.S. CUlTents in the whole converter. 
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It is possible to quantify the power rating requirement of the snubber if it is a sumed 

that all the energy stored within the leakage inductance is transfen'ed into the snubber 

every switching cycle. The power rating requirement i then simply the product of thi s 

energy and the switching frequency of the converter. Equation (5 .1) gives the snubber 

power requirement as a function of leakage inductance (Ld, converter power (P ), duty 

cycle (8), DC link voltage (VDc) and switching frequency (Fs). 

(5.1) 

For a minimum of IOV supply from the battery and with a 500W converter witching at 

300kHz, Figure 5.11 shows the snubber power rating requirement a a function f 

leakage inductance for duty cycles of 50% and 75%. The impact of high witching 

frequency and high primary side current resu lts in a large snubber power r quirement 

for even modest leakage inductance levels. In order to make the con v rter a prac ti ca l 

proposition, the snubber power requirement should be as Iow a p ssibl and th initial 

des ign fi gure wi ll be such that the snubber power is les than SOW (lO~ f the 

converter power level). To achieve this, the power Iran fonner hould be d igned t 

have a leakage inductance of below 75nH. (See Figure 5.11 for 75~ duty y I ) 
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Figure 5.11 - Snubber power requirement as a function of leakage inductance 

5,2.2 Transformer Design for Minimum Leakage 

In general tenns, the closer the primary and secondary windings are to ne-an th r in a 

tran former, the better the coupling and the lower th leakage inductance. etai l d 

ana lyses have been undertaken to understand the cau f tran f rmer leakag 

inductance [5.3] and the most often used approach is to con id r th flux in th 

transformer under a short-ci rcuited secondary conditi n. In thi ituati n, th 

stored in the transformer flux can be equated to the energy st r d in th akag 

inductance. In the case of a general trans fonner, wher windings are wound n top f 

one another, Snelling [5.4] has estimated the leakage inductanc u ing thi m thod. 

Figure 5. 12 shows a cross-section through a tran former wi th th ndary winding 

wound on top of the primary_ The left-hand ide of Figur 5.12 h w th natur r th 

flux profile under the short-circuited secondary condition . Th right hand ide h w 

the resu lting Magneto-Motive Force (MMF) over the height f th winding_ 

a sumed to have a high enough penneability such that th en rgy t r d within it is 

negligible compared to the energy stored within the winding and the pa b lw n 

them. The following analysis is taken from [5.4]. 
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Transformer Core 
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Figure 5.12 - Section through transformer with shorted secondary (Source - [5.4]) 

The energy stored in the elemental layer, dx, where the magnetic field is of strength H , 

in a material of relative permeability f.J is given by Equation (5.2) where Iw is the depth 

of the winding and bw is the width of the winding. 

(5.2) 

From Ampere 's law the field strength as a function of x can b found using Equation 

(5.3). 

(5.3) 

Equation (5.3) assumes a linear change in field strength through the winding a hown 

in Figure 5.12. Assuming the field strength is con tant along the path of th flux within 

the winding, and the energy stored within the magnetic core is negligible quation (5.3) 

can be rewritten as shown in Equation (5.4). 
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(5.4) 

Solution of Equation (5.2) is now possible over the thre regions f magnetic fie ld. (hi, 

f).h, and h2) as shown in Equation (5.5). 

(5.5) 

Equating EH to the energy stored in an inductor (~LI 2) yield the leakage inductance 
2 

as seen by the primary as shown in Equation (5.6). 

(5.6) 

quation (5.6) suggests that a transformer geometry that ha broad, flat winding (i.e. Iw 

mall and bw large) will result in the lowest leakage inductance. Phy i all y I e 

winding will also result in a small ilh. 

Of the transformer geometry 's shown in Figure 5. 13(a-d), the planar t 

(a) most closely matches these requirements. The phy ical eparati n b tw n winding 

of thi s geometry can be made very small and this typ f tran f I'm I' i li k Iy 1 rr r 

the lowest leakage inductance. This is confilmed in [5.5]. 
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Plate 

(a) - Planar (b) Pot Core 

(c) - E-Core 

Figure 5.13 - Common transformer geometry's 

If the planar type core is used then it becomes possible to fabricate the tran former 

windings on a PCB. This has a number of benefits: -

• The transformer fabrication is straightforward since the only step aft r P B ct hing 

would be to cut holes in the PCB and fix the core in place. Thi simple c nstrllcti n 

will lead to reduced manufactUling costs. 

• Since the windings are precisely located on the P B, the I akage indll tanc will b 

very similar over a batch of transformer , thus ensuring minimal variati n in th 

design parameters of the circuit. 

• With the transformer being integrated into the c nv rter P B, the full lay ut f th 

primary side can be optimised to reduce loop area sin e nne ti n wir fr m th 

PCB to the transformer can be fabricated on the P B. 

In order to assess the possible reduction in leakage inductan t be had, a pr t typ 

planar transformer was constructed. The transformer wa de igned f r OkHz 

operation with a turns ratio of 1:4. The windings were fOlmed on a P . wn in 

Figure 5.14. The top plate of the planar transformer has b en rem v d t 

secondary windi ng more clearly. The primary winding is on the oth r id of the P B. 
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Figure 5.14 - Planar transformer construction 

The core chosen was of a standard ferrite grade (3C8) and designed to operate at a peak 

flux density of 100mT, which is approximately one quarter the saturation flux density of 

the ferrite material used. Thus the core is presently oversized and will be optimised 

later. The transformer was tested in the circuit used in Figure 5.5 and from an analysis 

of the secondary induced voltage, the total primary side leakage was estimated to be 

180nH which is a 30% reduction over the original E-Core design. Improved layout of 

the secondary and primary circuitry would be expected to reduce this value further. 

5.2.2.1 Optimisation of Core Material and Size 

At the high switching frequency required by the power stage, ferrite core material 

currently offer the lowest loss per unjt volume for a given transformer size. The 

measure of a ferrite material performance can be attained using a performance factor 

[5.2], which gives a measure of the power throughput that a core can handle at a certain 

core loss. Figure 5.15 shows a typical performance factor graph based on the range of 

ferrite material grades available from a particular manufacturer. The graph gives the 

maximum peak flux density and operating frequency for a specific core loss density. 
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Figure 5.15 - Performance factor of ferrite materials ( ource - [5.2]) 

Since the power transformer is to be operated at around 300kHz, Figure 5. 15 show that 

the choice of material grade is between 3e85 or 3F3. Of th two, th 3 3 material off r 

the highest performance factor and will lead to a smaller p w r tran f rm r for a giv n 

power rating and core loss. By minimising the ize f the p wer tran f rm r, th 

parasitic elements are also minimised. The B-H loop and pe ifi p w r I 

3F3 material are shown in Figure 5.16(a) and igure 5. 16(b) r p ctively. 
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If the voltage across the primary winding is assumed to be constant dUling the on time 

of the switch , then the change in core flux level, B , is given by Equation (5.7). 

Where, Voc is the primary DC voltage 

TON is the on time of the switch 

Np is the number of primary turns 

(5.7) 

Ac is the effective area of the magneti c path in the core 

For efficient operation , the core must be kept out of saturation and fr m Figure 5. 16(a), 

a peak working flux density of 200mT is well away from the knee f the B-H curve. r 

worst case conditions of Vdc=15V and TON=2.5 j..ls equi valent to 75% duty at 300kHz, 

then the minimum turns-area product is 188mm2
. 

The maximum number of primary turns will be dictated by the availab l winding 

breadth, the maximum RMS primary cUlTent and the allowable temperatur ri f th 

PCB copper. Figure 5.17 illustrates the winding br adth availab le f r th planar 

transformer. 

VVindin Breadth 

Figure 5.17 - Transformer arrangement 

The max imum RMS current, which the primary winding ha 

Equation (5.8). 

P B 

Ferrite rc 

upp It, i giv n by 
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Where, Pc is the required power rating 

Voc is the main primary DC supply voltage 

8 is the operating duty cycle of the converter 

Integrated Power Stage 

(5.8) 

For a 500W converter with a worst case input voltage of 10V and a duty cycle of 50%, 

Equation (5.8) indicates a peak R.M.S. current of70A. The maximum current which the 

PCB transformer winding can carry is a function of the cross-sectional area of the PCB 

track, the allowable temperature rise of the track above ambient and the ability of the 

track to dissipate power to the ambient conditions. Since a PCB track is very flat and 

thin it will have a high surface area to cross-sectional area ratio; ~ence it will have a 

good heat dissipation capability and it is possible to run the PCB tracks at very much 

higher current densities than the 3-5A/mm2 typically used for circular cross-section 

conductors. 

In order to assess the current capability of the PCB, an experiment was undertaken to 

measure the temperature rise of a PCB track for a range of different currents. The 

experiment was carried out for both loz and 20z PCB, which corresponds to a copper 

thickness of 0.035mm and 0.070mm respectively. Measurements were taken for both 

tinned and untinned loz and 20z board but the increase in current carrying capability of 

the tinned boards was found negligible. Thus, the following results are based on the 

untinned boards. The measurements were based on a 'standard test' PCB track as shown 

in Figure 5.18 below. 

Voltage Measuring Test-Point 

~ 2mm to 20mm Thennocouple 

o • o 
t 

IOOmm 

Figure 5.18 - Test PCB track geometry 
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The trac k width was varied from 2mm to 20mm in 2mm step and the temperature 

measured by a thermocouple in the centre of the track. Each track was ubjected to 

currents leading to temperatures of up to 120°C and the whole process carried out for 

10z and 20z board. In addition to the temperature measurement, the voltage drop acr ss 

the lOcm length of track was recorded to give the track resistance. A DC current was 

used to ease measurement and although it is recogni sed that skin effect will increa e the 

effective track resistance at high frequencies, the result from the measurement will give 

a good indication of temperature rise. 

The measured temperature rises above ambient (25°C) for both 10z and 20z board are 

shown in Figure 5.19(a) and (b) respectively. Figure 5.20 gives the measured copper 

loss per cm of track for the different track widths and board thicknesses. These power 

loss curves do not follow the expected squared relation hip with current due to the 

effect of track temperature ri ses increasing the copper re istivity. The results confirm 

that the PCB tracks can support a hi gh current density. For example, with a t mperature 

rise of lOOoC, the 20mm wide track on the 20z board is supporting a curr nt den ity f 

51Nmm2
. In comparison, the 20mm wide track on the loz board is upporting a 

li ghtly hi gher 65Nmm2
. This is an order of magnitude incr a e of the normal d sign 

cun'ent density for a cylindrical conductor. 

or a worst case primary side RMS current of 70A, Figure 5.1 9 di ctate that 2 z P B 

board must be used with at least a 20mm wide track. This will lead t a maximum track 

temperature of lOO°C above ambient and a power 10 s of 1 W/cm . 
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The planar cores are available in 3F3 materi al and offer core areas up to 511mm2
. The 

closest standard size core has an area of 194mm2 but has a relati vely nan'ow winding 

width. However, by cutting one of the larger cores in half, the large winding breadth 

required for the 20mm wide track can be maintained whilst the area can be reduced to 

the required 188mm2
. Although the larger cores would operate at a lower peak flu x, and 

therefore experience lower loss, the smaller the core the better in terms of minimisation 

of leakage inductance and reduction of primary side copper loss. Figure 5.2 1 sh ws the 

approximate dimensions of the resulting core (All dimensions in mm). 

58 

20~ 
r---------------------------~ 

Figure S.21 - Optimised planar core size 

Since a 20mm wide track is required to handle the hi gh I vel f primary id UIT nt, 

only a single primary tum can be accommodated on a ingl lay I' . The enlr p Ie ar a 

was measured at 160mm2 and therefore the single tum r ult in a tum -ar a pr duct 

very close to the required 188mm2
. The modified core ha an n cti ve v lum f 

13000mm3 and at the peak flux density of 200mT at 300kHz switching fr qll n y, th 

worst-case core loss, based on Figure 5.16 is 7.8W. With nominal 12V input, th p ak 

flu x reduces to 160mT and the core loss will drop to ar lind 5W. r a 50 W c nv rt 1', 

thi s amounts to a 1 % loss in effi ciency drop which wa deemed t b a ptab l 

Using an estimate of 120mm for the length of the primary tllrn , the w primary 

side copper loss is 12W. With an equival nt secondary i e 

power loss in the transformer is equi valent to approximately 

output. 

5.2.2.2 Required Turns Ratio 

f th t ta l p w I' 

The transformer turns ratio was found by consideling an ideali sed utput plll e fr m the 

secondary of the power transformer, Figure 5.22. 
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Secondary 
Voltage 

~VdC*N2/NI 

- ,--

t Oil + t off 

Time 

Figure 5.22 - Useful transformer output voltage 

The peak fundamental voltage output of the new switching amplifier wi ll be equal to the 

average of the voltage waveform of Figure S.22 as a consequence of the action of the 

output filter. This average level must be equal to the maximum required peak output 

voltage to ensure full power can be achieved at the reduced avai lab le duty cyc le. Thi s 

analysis results in a required transformer turns ratio as shown in Equation (S.9). 

Where, o is the duty cycle 

Yo =Primary Side DC link 

Po=Output Power 

RL=Nomjnal Load Impedance 

(5.9) 

At the desired amplifier output of SOOW into a 4Q f 7S OA and a 

worst case DC link of lOY, the required turns rati i 1:8.4. Thi r du if th 

maximum duty cycle is allowed to reach 80% and thi will be the ch en rati . 

5.2.3 Active Snubber Design 

The active snubber can be reali sed usi ng a simple bu k c nvert r ir uit a 

Figure 5.23. 

wn in 
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Main DC Link 

/

DecouPling 
Capacitors 
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: PRIMARY LlNI 

---1-

Figure 5.23 - Active snubber implementation 

During the off time of the main primary switch, S1, D1 conducts and direct transformer 

magneti sation energy into capacitor C1, causing the voltage acro s it to ri e. This clamp 

voltage is compared against a reference level , to control th duty cycle of S2, whi h i 

increased to transfer energy from Cl, thereby reducing the clamp vo ltage. The energy is 

r turned directly back to the primary DC link decoupling apacitors. Di d D2 is 

included to prevent a large impulsive current from charging 1 via th primary link at 

an initial power tum on . 

or a continuous current in L1, the transfer function f the buck nvert r i n h wn in 

Equation (5.10). 

VDC = 8 
V LAMP 

(5.10) 

hu , the operating duty cycle for a fixed clamp level i d P nd nl n th initi al 

link voltage. For a SOV clamp level and 12V n minal link v Itag , th r quir d 

p rating duty cycle will be 24%. It is not pos ibl t imply run lh 

duty cycle due to the variation in the DC supply v Itag and th p w r tran r r 
dependent effects of loss in the snubb r component . , her r r , th nubb r wa run 

under closed loop control to maintain a constant clamp v Itag and thi wa a hi v d 

using the simple control circuit shown in Figure 5.24. 
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Figure 5.24 - Snubber control circuit 

In order to test the snubber a prototype was constructed. The prototype snubb r circuit 

was designed to operate from a separate clock from the main power stage in order that 

its action would be fully independent. The clock fr quency of the snubber wa set to 

50kHz to ensure efficient operation. Since the exact level of regenerative p weI' i 

unknown, the semiconductors in the snubber were rated to accommodate a maximum 

power transfer of 200W. Although thi s gives a snubber that is li kely to be over-rated, 

the circuit can be optimised at a later stage. 

The snubber was initially tested using a power supply under curr nt c nlr I t driv 

power into the snubber capacitor for several different vo ltage clamp level , with the 

output of the snubber connected to a large 12V I ad-acid battery. At up t 20 W, the 

snubber maintained an efficiency of above 90% and in the exp t d op raling r gi n f 

SOW demonstrated an efficiency of above 93%. 

5.2.4 Full Primary Circuit Utilising a Planar Transformer 

igure 5.25 shows the lower and upper PCB lay uts of the final primary nv rt I' 

circuit. The ri ght hand side of the layout contains the 200W rated a tiv nubb r and it 

control and drive circuitry. The middle section of the b ar J 2V uppl y 

connections and a bank of four decoupling capacit r . . he left-hand id f (h bard 

consists of the power transformer and plimary witch, th latt I' bing r I'm d fr m thr 

parallel power MOSFETs. 
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Figure 5.25 - Primary side power tage layout 

The single primary tum can be seen on the upper PCB layer whil t the corr ponding 

lower PCB layer supports half of the interleaved secondary winding. The th r half f 
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the winding was realised with another PCB placed above the upper PCB layer. Figure 

5.26 shows the fully constructed prototype primary side circuit. 

Planar Power 
Transformer 

12V DC Input 
and DC Link 

Decoupling 
Capacitors 

Snubber 
Control Circuit 

Figure 5.26 - Prototype primary power stage 

Primary Side Switch 
(Three Paralleled 
MOSFETs) 

Snubber Capacitor 
and Inductor 

Snubber Power 
Semiconductors 

The power transformer construction is shown more clearly in Figure 5.27 with the 

interleaved secondary winding in the forefront of the picture. 

Figure 5.27 - Primary power stage detailing power transformer 
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As before, the circuit was initially tested with a low inductance resistive load connected 

with a diode across the secondary of the transformer as in Figure 5.5. The power stage 

was supplied with 12V DC and driven at 300kHz with a duty cycle of approximately 

50%. The plots in Figure 5.28 show the primary MOSFET drain-source voltage and the 

voltage measured across the secondary side resistor. The snubber clamp level was set to 

40V. 
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Figure 5.28 - Primary MOSFET Dr-olin-Source voltage and output voltage 

Comparison of Figure 5.8 with Figure 5.28 shows that the design effort placed in the 

minimisation of the primary side parasitic inductance has significantly impr ved the ri e 

time of the output voltage. Although the output voltage i not ideal, it hape indicate 

leakage inductance of less than 40nH which is 16% of the value obtained with the initial 

test circuit and E-core. Secondly, the action of the active snubber has prevented the 

large voltages appearing across the primary MOSFET switch. The MO F T drain

source voltage is a lot cleaner as a result of the 40V clamp leve l. Thu the core 

demagnetisation occurs within approximately I ~s and duty cycle abov 50% are 

possible. 
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5.2.4.1 In Circuit Snubber Behaviour 

In order to quantify the required snubber rating, the power tage wa witched at 

300kHz with a 50% duty cycle, the load on the secondary varied fro m lOW to 200W 

and the current returned by the snubber to the primary link mea ured. Ab ve 200W, the 

pri mary side devices were destroyed and therefore on the final system, lower on

resistance, hi gher power devices will be needed. Before de truction how vel', the peak 

snubber return power was measured at less than lOW over th i band of power and wi th 

the snubber efficiency above 90%, this suggests that the actual power requirement f the 

snubber is considerably lower than expected. This is beneficial ince it will allow for the 

use of cheaper devices in the snubber. 

5.2.4.2 Gate Drive Requirements 

Section 4.3 showed that the ability of the gate dlive circuit to de li ver high tran ient 

current to the MOSFET gate during switching wa essential to efficient op ration. Tn 

order to assess the relative impact of gate dri ve capability n new onverter rfi i n y, 

the three MOSFETs forming the primary side switch in the prot typ primary ide 

converter were driven with the arrangement as shown in Figure 5.29. 

SIGNAL GENERATOR 

50 Ohm 

Figure 5.29 - Gate drive circuit 

The efficiency of the power convelter wa mea ured und r r ur din r nt at dri 

arrangements: -

• RIta R3 as lOQ resistors 
• Rl to R3 as 3.3Q resistors 
• Rl to R3 replaced by wire links. 
• Rl to R3 as wire links and another totem-pole tage a cad d t giv additi nal 

current gain. 
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The graph in Figure 5.30 shows the efficiency profile as a function of output power for 

the prototype system for the four different gate dri ve arrangement . 
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Figure 5.30 - Efficiency profiles 

The results indicate the greater the current that can be deliv red t th M 

i.e. the lower the gate drive resistor and greater the current gain, th faster th d vi 

switches and the lower the switching loss. For this parti cular p wer 

efficiency gain achieved by moving from 10Q re istors to having n r i t r und 

10%. At the higher gate drive current, the gate drive circuit exp ri n d high r I but 

thi s is outweighed by the gain in overall efficiency. 

The overall shape of the efficiency profiles remains imilar betw n all f ur pi l r 
igure 5.30. Since the transformer core los independ nt f utput p w r, it 

dominates the effi ciency plot at low power output. A the output p w r I v I ri 

core loss relative to the output power fall s and the effi ien y ri . A th P w r I v I 

continues to ri se, eR loss begins to dominate and the ffi i n y b gin t fa ll , p ak 

efficiency occuring when the core loss is approximately equal t the 0PP r I 
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5.2.4.3 Effect of Duty Cycle 

As discussed in section 5.2. 1, the hi gher the operating duty cycle, the lower the peak 

switching currents in the power stage and therefore the hi gher th verall nver ion 

efficiency will be. In order to examine the relati ve benefit of increa d operating duty 

cycle, the primary circuit effi ciency was measured at con tant output p wers f lOOW 

and 200W for duty cycles ranging from 15% to 50%. Figure 5.31 shows the measured 

efficiency profile for these two conditions as a function of the driven duty cyc le. 
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Figure 5.31 - Efficiency vs. operating duty cycl 

The efficiency characteri sti cs follow the exp cted tr nd f high r dUly gi ing m r 

efficient operation. For this parti cular converter, a change fr m 25~ t 5 * duty y I 

results in an efficiency increase of around 10%. Extrap lati n f th 

5.3 1 suggests an operating effi ciency of greater than 90% at 75~ duty 

5.3 Secondary Side Structure 

The output from the power transformer secondary winding i a I; 

in igur 

r ip lar v !tag 

pulses. The voltage pulse corre ponding to the in tant wh n th pri mary id d vi 

switched on allows power transfer across the transformer. The ampli fi r utput p w r 

stage uses an H-Bridge circuit to convert thi s pulse train int a elie of p iti v r 

negative pulses to be fed to the output filter and loud peaker. in e the tran r rmer 
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output voltage is bipolar, some intermediate circuitry wi ll be required to en ure that the 

H-Bridge only receives positive voltage pulses since any negative input v Itage will 

forward bias the bridge diodes. In addition, due to the reactive natur of the I ad, bi 

directional power transfer between the amplifier and load is a requir ment f the power 

stage. In a conventional ampli fier, this requirement is satisfi ed since the large DC 

supply decoupling capacitors act as a buffer to any energy that regenerate into the DC 

link. 

With the proposed circui t, there is no intermediate DC fi lter and th I' f re, th 

intermediate circuit between the transformer econdary winding and H-Bridg mu t 

allow for bi -directional power flow . Figure 5.32 shows the general structure of the 

secondary side of the converter. 

II 

Figure 5.32 - Output power tage of amplifier 

In order to desi gn the intermediate circuit, the level f r generati v p w I' mu t b 

quantified. If this power level is only a small fraction f the total p w r utput, th n it 

can be simply dissipated with little impact on overall 

return power level be large, a path must be provided f r it t b I' tum d t th primary 

supply. 

The ratio between the level of the forward power and I' tum p w I' wi ll d p nd n th 

impedance of the load, the switching frequency and the m du lati n d plh f th ignal. 

The impedance of the load is a combination of the impedan e f th 

the passive power filter. When a multi way loud peakeri u ed, th I ad hara t ri ti 

are further complicated by the crossover elements and the ombinati n f dri v unit . 
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5.3.1 Return Power Level 

Consider a general reactive load driven by a sinusoidal voltage source. The product of 

the instantaneous voltage and current is given in Equation (5.11) and shows the nature 

of the resulting power flow. 

A2 
V 

P(t) = 21z1 (cos cP - cos(2cvt - cp) ) 

(5.11) 

A 

Where, V is the peak applied voltage 

IZI is the magnitude of the load impedance (at (J) radls) 

rp is the load phase shift in radians (at (J) radls frequency). 

If the load phase shift is non-zero then there will be points when pet) is negative, i.e. 

instantaneous power flow is from the load to the voltage source. The overall r tum 

power can be found by averaging these return power points over a fundamental cy I . 

Equation (5.12) gives the result of this integration, and the working can b found in 

Appendix A. 

A2 

PRETURN = ~I II(cpcoscp - sin cP ~ 21[ Z 

(5.12) 

As would be expected, Equation (5.12) indicates the return pow r I vel i maximum and 

equal to the forward power level when the load is purely reactiv . A pra ti 31 I ad will 

have an impedance magnitude and phase shift which ar b th fun ti n f fr qu n y 

and therefore, the return power level will be a strong function of signal fr quen y. 

To quantify the likely magnitude of return power, the impedance f th ~ urth rd r 

filter and 4,Q loudspeaker combination used in Chapter 4 was mea ur d. quati n (5.12) 

was then used to compute the return power level as a function of frequ n y ~ r a 4V 

peak driving voltage, specified to deliver 500W into a 4,Q load. Figur 5.3 

measured impedance (a), measured phase shift (b) and calculated return pow r I v I ( ). 
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Figure 5.33 . Measured load impedance and calculated return power 

The profile of the return power level demonstrates the compl x nature f th mbin d 

loudspeaker/filter impedance. The calculated return pow r sh w a number f high 

magnitude peaks and for the purpose of comparison, the return p wer pr fil wa al 

calculated for an ideal resistive 4Q termination of the filter. Thi i 

that of the actual loudspeaker in Figure 5.34. This fi gure dem n trate that wh n a 

purely resistive 4Q termjnation is used, the peaks at 5kHz and 32kHz n 

Figure 5.34 also shows that the underlying profile for the fi lt r/loud p ak r a 

approxi mately follows that of the ideal resistive termination. H w v r, with a pm ti al 

loudspeaker, spikes in the filter/ loudspeaker return power pr fil e ar 

the reactive components in the loudspeaker combining with the filter imp dan e. 
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Figure 5.34 - Comparison of return power levels 

50 60 

The actual spectral content of the voltage applied to the fi Iter i n t in fact a pure 

sinusoid but is a function of the modulation strategy, switching freq uency, modulati n 

depth and fundamental frequency, For a PWM driven ystem, the H-Bridg utput 

signal contains the baseband signal, the switching frequency, it harmonic and imag 

spectra about each switching component. Whereas for a PDM trategy, th fundamental 

baseband freq uency is accompanied by the shaped noi e flo r and wit hing fr qu n y 

components, Therefore, the return power level will depend n a numb r f fact r , 

however it will comprise of two major components: -

1. A component due to the baseband signal, i.e. below 20kHz, 

2, A component due to the switching freq uency and harm nic . 

An empirical approach was used to quantify the return power I vel n in pra ti . A 

conventional H-Bridge circuit was modified such that the power drawn by th H- ridg 

could be monitored separately from the power it returns , Thi wa achi v d 1I ing tw 

diodes as shown in Figure 5.35. The return power wa clamp d 1I ing a power tran i t r 

operated in its linear region as shown in Figure 5,36. 
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+Vdc +Vclamp 

C2 

Figure 5.35 - Return power measurement circuit 

Vr" TRANSISTOR THRESHOLD VOLTAGE 

Figure 5.36 - Linear active clamp circuit 

The test circuit was switched at 100kHz with a Ills dead time and perated at 30V D 

supply and a clamp voltage of 35V. The load used was the foul1h order filter and 4,Q 

loudspeaker. For a 50% duty cycle, the load cun'ent and voltage are as h wn in igur 

5.37. The operation of the clamp circuit is evident with the load v Itage r aching ± 5V 

during the regenerative period. When power is drawn by the load, th load voltag fa ll 

back to the 30V DC supply leve l. 
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Figure 5.37 . Load current and voltage for power mea urement ci"cuit 

Initially, the return power was measured as a function of ba eband frequen y with the 

circuit switches under PWM control , over the range of 500Hz to 2 kHz and f r 

modulation depths of 25%, 50% and 75%, With a nominal 4Q load, th m du lati n 

depths cOITespond to output power levels of 7W, 28W and 63W r p ti v Iy. h 

results of the test are shown in Figure 5.38. 
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Figure 5.38 - Return power levels as a function of baseband frequency 

At 25% modulation depth, the level of return power is relatively independent of 

frequency and suggests that the switching frequency component of the return power is 

dominant. As the modulation depth increases, the relative size of baseband return power 

increases and the dependency of return power on baseband frequency becomes more 

acute. From the graph, the return power associated with the switching frequency is 

around 12W whilst the reactive characteristic of the loudspeaker re ults in a return 

power exceeding 65W. 

The baseband components will dominate the total return power and the peak I vel are 

high relative to the output power. Thus, it is desirable to fmd a method of recovering th 

return power and two methods of accomplishing this were investigated: -

1. Allowing bi-directional power transfer across the transformer 

2. Use of an active snubber to send power back to the primary 

In method 1 it is proposed that the main power transformer is u ed as a bi-directional 

power flow path. In this case, simple rectification of the secondary voltag i no longer 

possible and synchronous rectification must be employed. The second method uses an 
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active snubber circuit to provide a path fo r regenerati ve p w r ba k t th ini tia l 

upply. 

5.3.2 Bi-directional Power Transformer 

The bas ic structure of the secondary side circui t, empl ying a 

hown in Figure 5.39. The synchronous rectifier compri e Ql and D I. 

ZD1 LOAD 

0 1 

Figure 5.39 - Bi-directional tran form .. ircuit 

h operation of this circuit is as follow : -

1. When the primary side circuit switche n, th hag a r 

winding, V2, ri ses and Ql is then switched n. 

2. The H-Bridge can now be switched to pr vide a p iti 

3. If power is being deli vered to the load, urr nt fl w ut f 

bridge circuit. If power is being return d y th I ad, a 

r i 

th nd ry 

lrag pul 

th l

int N2 Ilnd 

therefore out of the primary winding and int th in iti al pri mary . li n 

4. When the primary side device switche ff, ff and th H- rid 

witched into a freewheel state by witching eilh r b th upp th I w I'd i 

n. 

5. he zener diode i used to protect the output stag fr rn v lI ag pik whi h rna 

ccur in the transition times between the pri mary id turnin ff and th H- rid 

witching into the freewheel state. 

P wer MOSFETs are the ideal device f r th ac ti v wit h in it i 

a r quirement that the switches can conduct cun' nt in ith r di r ti n. A pI' t t p r

directional power stage was designed to deli ver 500W int a 4Q I ad , and i ' h \I n in 

igure 5.40. 
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Figure 5.40 - FuU power stage with bi-directional power transformer 

With this prototype, the primary side snubber design was optimi ed to a power rating of 

SOW and the secondary side zener diodes rated at lOW. As an initial test the H-Bridge 

output was driven with a PDM strategy, with the zero voltage switching realised 

through the use of time delays as illustrated in Figure 6.2 in Chapter 6. The H-Bridge 

output was loaded with the fourth order filter and 40 loudspeaker combination. Figure 

5.41 gives the power stage output voltage and current whilst Figure 5.42 gives the 

power stage output voltage and secondary winding current. 

Examination of the load current and voltage in Figure 5.41 demonstrate that the power 

stage can act in all four quadrants since all four combination of voltage and current 

polarity are demonstrated. The freewheel action of the load current is illu trat d during 

the zero voltage periods of the output voltage. Bi-directional power flow acro the 

transformer is demonstrated during the non-zero voltage period with the bipolar nature 

of the transformer secondary winding current of Figure 5.42(b). The ba ic peration of 

the bi-directional transformer circuit is thus verified although the exces ive 0 cillati n 

may lead to EMI emissions. The oscillations occur across the power transformer as a 

result of the interaction between the primary side leakage inductance and the para itic 

capacitance of the bridge devices and zener diode. 
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Figure 5.41 - Load voltage and current with bi-directional transformer circuit 
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Figure 5.42 - Load voltage and secondary winding current with bi-directional 

transformer circuit (red lines indicate the underlying current profile) 
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5.3.3 Active Clamp Return Circuit 

The structure of the secondary side circuit with the active clamp for en rgy return i 

shown in Figure 5.43. The active clamp circuit is of the same construction as the 

primary side clamp di scussed earlier. 

ACTIVE 
CLAMP 

Figure 5.43 - Secondary side structure with active clamp 

+12Vdc 

Dl rectifies the transformer secondary voltage whilst D2 provides a current fr ewheel 

path for times between the primary side turning off and th blidge witching int a 

freewheel state. The active clamp maintains the voltage acro s 1 to a r w v It ab 

the peak voltage pulse level delivered by the r ctified voltage of lh tran f rm r 

secondary. Thus, when the H-Bridge delivers energy, Dl is forward bia ed and (h 

transformer provides power. When the H-Bridg returns energy, th vol tag acr the 

H-Bridge ri ses until D3 forward bi ases and CUITent flow int the a tive lamp' thi th n 

returns the energy to the primary DC suppl y. Figure 5.44 sh w the ampli fi r pr 1 lyp 

with active secondary clamp circuit. The primary ide circuit de ign i th ptimi d 

layout as used in Figure 5.26 and igure 5.27 with an impr ved ac ti v primary id 

snubb r, which is more closely rated to the required power. The main p wet' vi r 
the converter were sized to deliver a peak power of 500W int a 4Q I ad. 
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Figure 5.44 - Full prototype with secondary active snubber 

The secondary side rectifier is rated at 200V and this will allow a maximum voltage of 

25V across the primary winding when the core is demagnetising. Therefore the clamp 

level of the primary side snubber can be set to a maximum of (J 2+25)=37V. This 

corresponds to a maximum operating duty cycle of the primary side switch of 68%. For 

the worst case input voltage of 15V, the maximum operating duty cycle i reduced to 

63%. 

Since the transformer turns ratio is 1 :8, the output pulse height from the econdary i 

96V for a 12V DC supply. However, for initial tests, the secondary clamp lev I wa set 

to J50V, which is much greater than the peak supply pul e height. The lamp I v I will 

be reduced once the initial circuit operation has been verified. 

In order to demonstrate power flow in two quadrants, the ] 1.30 resistor wa u ed a a 

load and the converter configured to deliver an output voltage consisting fa eri of 

positive and negative voltage pulses. Figure 5.45 a-e shows the primary ide gate drive 

primary side MOSFET Vds, secondary winding voltage, rectified secondary voltage and 

load voltage respectively. The power stage was supplied with 12V, run at 50% duty 

cycle with a primary side clamp level of30V. 
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In order to verify four quadrant converter operation, the re i ti ve load wa replac d with 

an inductor with measured parameters of L=102f.!H and R=O.06Q and the r ultant 

waveforms are shown in Figure 5.46 a- f. 
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Figure 5.46 . Converter waveforms with inductive load 
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In order to verify four quadrant converter operation , the resistive load was replaced with 

an inductor with measured parameters of L=1021-lH and R=O.06Q and the resultant 

waveforms are shown in Figure 5.46 a-f. 

(a) - Primary MOSFET Gate Drive 
15,-----.-----,-----.------r-----.-----.-----,------.-----.---~ 

~10 
Q) 
0> 

~ 
o 5 
> 

40 

Time (us) 

(b) - Primary MOSFET Drain-Source Voltage 

~ 30 - - . - , - - - -- -;- - - - -- - - - -;- - - - - - - - - :- - - - - - - . - ~ - - - - - - -- - : - I : - - - - - - : - - - - - - - -

tf~' , ti\, ttl' , j t:±::::F:::H::::F:::L~J=>::::~ :" 
o 1 2 3 4 5 6 7 B 9 10 

Time (us) 

(c) - Secondary Winding Voltage 

Time (us) 

(d) - H-Bridge Suppty Voltage 
200,-----.-----.-----.-----.-----,-----,-----,-----,-----,----, 

~ 1 50 
Q) 

E100 

g 50 

Time (us) 

(e) - H·Bridge Output Voltage 
200,-----.-----,-----~-----r-----r-----.-----,------r_----._--~ 

~ 100 
Q) 

g 0 
"" g-100 

-200~----~----~----~-----L----~----~----~~--~~----~--__7. o 4 10 
Time (us) 

(f) - Load Current 
2r----.-----.----~----_r----~----.-----.-----r---_,r---_, 

I " 'I' I 

$1 
~ 0 

I " "" .................. -,. ... .......... ........ -,-'" -- ... ......... -,-............. - , - ........ ............ ,-... .. ........... , ......... -- .... - ' "" •• "'''''''''''', .. '''''''''.''''''''''' f "''''''''''''''''''''' 
, I I • I I I I , 

: I I : : : : : : 
... .................... ,. ................. ... ... -I- ... ... ... ... ... ... -.- ........................ '"1- ... ... ... ... ... ... ... ... .. ... ... ... ... ... ... ... ... .. .. .................. ~ ...... .... ........ ~ .. .. .. .. .. .. .. .. .. .. ... .. .. .... . 

t: 
::J 
() -1 

, I , , I I It' 
I , I I I I I I 

, I I I 

-2~--_7----~----~--~----~----~--~----~----~--~, o 10 

Figure 5.46 - Converter waveforms with inductive load 

179 



Integrated Power Stage 

Exalllination of the load current and load voltage, Figure 5.46 (e) and (f), verifies that 

the converter can operate in all four quadrants. When the load current and voltage are 

simultaneously of opposite polarity, energy is being returned from the load and during 

this period, the load voltage rises to the secondary clamp level of 150V. In an optimised 

design, the clamp level would be set closer to the forward pulse height as an excessive 

clamp level would be a cause of output harmonic distortion. During the zero voltage 

period of the load voltage profile, the power stage is switched into a freewheel state and 

the constant load current during this period demonstrates the freewheel action is 

occurring. 

The primary switching circuit design used on the two converters above is a replica of 

the full primary side design in section 5.2.4. The only changes were in the optimisation 

of the primary snubber and the use of lower on-resistance devices for the primary side 

switch. In order to compare the benefits of using the new primary side devices , the 

efficiency as a function of output power was measured by temporarily disconnecting the 

H bridge output stage and directly loading the transformer secondary. The graph of 

Figure 5.47 gives this efficiency data with the efficiency of the original full primary 

prototype. 
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Figure 5.47 - Comparison of primary side efficiencies 
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The figure indicates that the optimised ptimary side design can now deliv r p w r at 

greater than 80% efficiency over most of the operating range. M asurement bey nd 

300W were not possible due to the current capability of the power ana ly er used to 

measure the DC input current. However, through extrapolation of the efficiency pr file , 

it is believed that the efficiency of the forward conversion path wi ll be above 70% at the 

500W required output power. 

5.4 Conclusions 

The prototype converters presented in this chapter have proved the basic concept of the 

novel converter. The design effort has removed the necessity for an intermediate D 

supply and therefore eliminated the intermediate filter components. 

The design of the primary side circuit was found to be dominated by the need to low r 

parasitic inductance of the transformer as far as possible. Due to the high primary 

currents, the energy stored in parasitic circuit inductances must be r captured t en ure 

efficient operation. The transformer leakage inductance ha been h wn t be the 

dominant parasitic inductance and recapture of the energy st r d within it ha b n 

achieved with an active snubber. The layout of the ptimary switching ir uit i al 

ctitical and the use of the planar core transformer integrated into th main P B ha 

helped with the minimisation of parasitic inductance. In additi n, the u f planar 

magnetics has simplified the construction of the power stage and n ur d a I w pr fi l 

for the resulting PCB. The active snubber u ed to recover th n rgy t r d in th 

leakage inductance serves the further role of recapturing the magn ti ing n rgy fr m 

the transformer core. Thus, a demagnetisation winding i n t r quir d and th p w r 

stage can be operated above the usual 50% duty cycl fund with f rwurd nvert rs. 

This increase in operating duty cycle of up to 75% ha In 

operati ng efficiency. 

With the primary side circuit optimised in terms of tran f rm r d ign and 

the design of the secondary side circuitry wa 

requirement for a path for the regenerative energy from th I ad. Alth ugh th impl 

H-Bridge output catered for a bipolar voltage output, it wa fund thr ugh maul' m nt 

of the regenerative power levels that simple dis ipati n, for example in a z n r di de 

clamp, was unacceptable due to the level of in-efficiency thi w uld intr du f th 

two methods used to return this power to the initial DC link, the acti 

approach offered the simplest solution. The use of the bi -dire ti nul tran f I'm I' 
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topology is potentially cheaper since it only requires the addition of a synchr nou 

rectifier although parasitic oscillation will compromise its performance. 

With the improved gate drive circuitry and higher operating duty cycles, th f rward 

power conversion path was found to have a peak efficiency of greater than 80%. The 

main cause of power loss is in the plimary side switching MOSFETs. The CUlT nt being 

switched (peak of 100A) for the power rating of the converter (SOOW) is large and 

conduction loss in the primary side devices of this converter is the dominant factor in 

reducing efficiency. At present, three devices are used in parallel and more c uld be 

used although the extra cost involved and problems encountered with driving multiple 

devices would be unwelcome. 

The removal of the intermediate DC stage has not been without drawback. The 

removal of the DC link smoothing capacitors has resulted in the need to provide a path 

for the regenerative energy back to the initial DC link. The power rating required for 

this regenerative path has been shown to be a strong function of the impedance 

presented by the load and is therefore difficult to quantify. The next chapter deals with 

modulation of the novel power stage and following its implementation, allow for 

measurement of the return power levels. 

It is expected that the novel power stage will suffer from similar di tortion call ing 

effects as the conventional power stage discussed in Chapter 4. The feedb ck t hniqu 

di scussed in Chapter 4 will be directly applicable to the novel power tag and will 

allow the power stage to achieve distortion levels comparable to its linear unt rpart . 
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6 Integrated Power Stage Modulation and Switching Scheme 

6.1 Introduction 

The switching amplifier presented in the previous chapter has demonstrated that it i 

possible to dispense with the requirement for an intermediate DC supply and reservoir 

filter to produce a direct conversion path from the 12V battery. The proposed power 

stage design can deliver power in all four quadrants with output duty cycles from zero 

to approximately 70% and has been optimised to operate at a 300kHz witching 

frequency. 

To obtain audio output, the power stage needs to be driven by an appropriate 

modulation strategy and the application of both PWM and PDM i di scussed in this 

chapter. In addition, the distortion mechanisms introduced by the new power tage are 

analysed and compared to those described in Chapter 4. Finall y, the feedba k 

techniques used to linearise conventional Class-D power stages are applied t the new 

power stage to give an indication of the likely level of performance obtainable from the 

proposed Class-D system. Although both of the secondary side p wer r tum cir uits 

will offer the four quadrant requirement, the circuit with the secondary id a tive 

clamp is used for the results in this chapter since it offer the greatest fl ex ibility in 

operating parameters. 

6.2 Switching Strategy 

In the proposed power stage, the output H-Bridge is supplied with L pul d lin k and 

can therefore be switched without loss. The switching trategy wi ll b 

the vo ltage pulse supplied to the H-Bridge falls to zero, th bridg wi ll wit hint a 

freewheel state as discussed earlier. Two different method have b n 

control the switching of the power stage. The first centr s n u ing appr print tim 

delays to ensure the correct switching sequence. The sec nd appr a h u dir t 

measurement of the link voltage to ensure zero voltage wit hing. Th r lativ 

advantages and disadvantages of both of these method will be c mpar d. 

The exact interface logic required differs between PDM and PWM dliven y t m , 

however, for each case, two signals are derived to drive the power stage, n t d fin 

the pulse polarity and the other to define pulse duration. 
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To aid the description of the two switching strategies, consider the output p wer tage 

shown in Figure 6.1. The primary side switch and the four output switche are d noted 

as A to E as shown in the fi gure. 

t- SPEAKER 
5 
t) 
a: 
li 

II 
w 
~ 
a FILTER 
w 
::; 
a: 
w 
~ 

Figure 6.1 - Full generic power stage 

6.3 Time-Delay Operation 

The operation of thi s strategy is based on introducing a delay in to the witching f the 

power semiconductors, A-E. The turn off transitions of device Band ar d lay d 

whilst the turn on transitions of devices A, D and E are delayed. The length f th delay 

will be similar in duration to the dead-time employed in a c nventi nal la - p w r 

tage, typically less than 500ns. 

Consider the switching sequence required for the system changing from th fr ewh I 

state (devices D and E on) to a positi ve output vol tag pulse (devi e A, Band n) 

and back to a freewheel state. The sequence is as fo llow 

• The signal to provide a positive voltage pulse arrive. Th tum n fdA i 

delayed and during thi s time, device B switches on and device 

The load current is transferred from device D to device B. 

wit h d fr. 

• After the short delay, device A switches on and dri ve the ec ndury ut put v lI ag 

hi gh. With devices B and E on during this period, a p iti ve v Itag pul upp ar 

across the load. 

• The signal to reset into the freewheel state arri ves and devi 

sending the secondary voltage back to zero. For the hort delay tim , d vi 

ff, 

Band 

184 



Integrated Power Stage Modulati n 

E remain switched on and then device D switches on whilst device B swi tche off, 

transferring the load current to device D. 

The switching sequence is similar for the negative pulse configuration except that it i 

devices C, D and E which control the output voltage. The use of switching delay 

ensures that the output bridge only changes state under zero voltage condition. 

A programmable array logic (PAL) device was designed to provide the five switching 

logic signals from the modulator output and system clock. The systematic diagram of 

the interface/modulator system is as shown in Figure 6.2. 

Enable Tum-on Delay Drive A 

+ Drive B Tum-off Delay 

Modulator PAL Tum-off Delay Drive 

Tum-on Delay Drive D 

t System Clock Tum-on Delay Drive E 

Figure 6.2 - System diagram of time-delay modulator/power stage int rfa e 

The de lays were set up in practice by compari ng the dl;v signal t the f ur bridg 

devices to the secondary voltage generated by the witching of devi A. T h)' i an 

inherent delay between the logic drive signal for device A changing tate and th 

corresponding change in the vo ltage pulse appearing acro the se ndary. igur 

shows that the delay is approximately 200ns during the tum- n transiti nand 25 n 

during the tum-off transition . 
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(a) - Logic Drive Signal to Primary Side Device 
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(b) - Rectifi ed Secondary Vo~age (Supply to Bridge Circuit) 
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Figure 6.3 - Measurement of the delay between primary side drive and rectified 

secondary voltage 

6,3.1 Application to PDM 

Under PDM, the output wi ll consist of a series of pulse of con tant width and hunging 

polarity. Two signals are available from the modulator, namely the cl k ignal and th 

modulator output. In this case, the modulator output ignal define th p larity f th 

pulse and the clock signal determines the operating duty cycl. igur .4 gi th 

timing di agram that wi ll result in zero vo ltage swi tching for the PDM dri n y t m, 

The logic required in the PAL of Figure 6.2 to generate the swit hing ignal fr m th 

clock and modulator output is shown in Table 6.1. Since the sampl and h Id I ment 

on the L~ modulator is triggered by the rising edge of the cl ck ignal th duty r 
the clock can be used to set the duty of the secondary pul e to a rna imum f 7 
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~~t~ ______ ~ __ ~~ ______ ~ __ ~ ______ ~ __ ~ ______ ~ __ . 
Clock t 

~------+----+------~~--~-------+----~------+-~ 

A tr--I ----1 

B rL---------i-'----+------+-----+----+~~ 
C t'-------i-+----+-'---+----_+______+__~ 
D t~~~-+---~__+___._ 
E 

Power Stage 
O/P Voltage P--------..+----+,----------ir----+'--------+----+-r------+-+ 

Figure 6.4 - Timing diagram for PDM operation 

Enable Modulator Output Clock Output State A B C D E 
0 0 0 Off 0 0 0 0 0 
0 0 1 Off 0 0 0 0 0 
0 1 0 Off 0 0 0 0 0 
0 1 1 Off 0 0 0 0 0 
1 0 0 Freewheel 0 0 0 t t 
1 0 I Negative Pulse 1 0 I 1 0 
t I 0 Freewheel 0 0 0 t t 
I I 1 Positive Pulse I I 0 0 I 

Table 6.1 - Logic required for PDM interface 

In the modulator interface circuit, design care was taken to isolate analogue and digital 

power supplies. Furthermore, the interface and modulator circuitry were m unt d in ide 

a metal box to provide shielding. BNC connectors and a differential audi input wer 

used to keep signals as clean as possible. The full design can be found in appendi 

Figure 6.5 shows the arrangement used to connect the modulator/interface circuitry to 

the power stage. 
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Figure 6.S - Modulator/time delay circuitry connected to power stage 

Figure 6.6 shows a typical measured logic sequence for device A to E from the clock 

and modulator output signals. 

Figure 6.6 - Typical logic sequence from interface output (2~s/div) 

The output from the power stage was injtially tested by loading it with the re i tiv 

11.3Q load. This load makes it possible to verify that all the de lay have be n et 

correctly, and that the resulting positive and negative pulses are of the arne duration. 

Any mismatch in the length of the positive and negative pulses will cau e a D ff1 et in 

the output signal, which may damage the loudspeaker load. Figure 6.7 how the 
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modulator output and power stage output with pulse waveforms. Note that the input 

supply was reduced from the nonnal 12V to 4V to limit the power output. The fi gure 

illustrates that the positive and negative pulses are of equal duration. 
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(b) - Power Stage Output Profile 
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Figure 6.7 - Modulator output and power stage output voltage into a re i tiv load 

6.3.1.1 Open Loop Performance 

he distortion mechanisms present in the new proposed wit hing amplifi r w r 

ana lysed by using a highly inductive load (590JlH, O.05Q) and f 11 wing th 

methodology presented in Chapter 4. The use of an inductive I ad n ur th 

power flow component is large and therefore tests b th the main f rward 

path and the secondary side snubber reactive energy recovery path. Any n n-id aliti 

in the circuit operation will appear as a distortion of the fundamental current hap. 

The main distortion mechanism present in the new power tag is du t th a ti n r 
the secondary side snubber. When the power flow is regenerative, the v hag pul 

height rises above the normal level until it reaches the clamp v Itage I v 1. Thu during 

the regenerative period, the voltage-time product of the output voltage pul e i gr at r 

than required and therefore more energy is removed from the I ad. Thi ff t wi II 
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introduce additional distortion , the level of which will be a function of the lamp 

voltage level and the power factor of the load. 

To examine the effect of secondary side clamp level on the fundamental cu rrent shap ,a 

fundamental frequency of 100Hz and a DC supply of 5V were used. The clamp level 

was varied from 35V, slightly greater than the secondary pulse height, to 80V. The 

resulting measured output current waveforms, Figure 6.8, demonstrate that th impact of 

the secondary side clamp voltage on harmonic distortion is severe. Even wi th the clamp 

voltage set to a modest 5V above the normal pulse height, a high level of distortion i 

observed, Figure 6.8(b). As the clamp level rises, a hi gher proportion of the energy i 

returned to the primary supply and this is reflected in the lower output current for the 

same modulation depth. The effect is most pronounced when the fundamental CUIT nt 

approaches zero since all of the energy put into the load during a switching cycle i 

removed, resulting in the flat regions of the current profile. 

The THD was measured as a function of modulation depth for this open loop m dulator, 

Figure 6.9. The clamp level was set to 100V and with a 12V DC supply, thi giv an 

overhead of 4V in the snubber operation. Comparison of the THD pr fil f the new 

power stage, Figure 6.9, with that of the conventional Cia s-D power tage, igur 4.2 

demonstrates that the profiles are in fact relatively si milar in both magnitud and hap. 

The THD measurements below 20% modulation depth are sli ghtly mi I l ding in th 

signal harmonics are approaching the noi se floor of the amplifier. Thu ,th op nip 

distortion for this power convelter is of the order of 5%. 
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(a) - 35V Clamp Level 
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(f) - 80V Clamp Level 
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Figure 6.8 - Open loop output current profile with varying condary ide clamp 

level 
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Figure 6.9 - Open loop THD profile 

6.3.1.2 Closed Loop Performance 

Closed loop control was achieved by using a differential amplifier to obtain th p w r 

stage output voltage before the fi lter and to feed it back to the m dulat r input, a 

described in section 4.5. Figure 6.10 shows the mea ured output CUlT nt f r th am 

conditions as for Figure 6.8, except with the system running in cI dIp P rati n. 

Under the closed loop operation, the dead-bands observed in pen-Io p p rati n hav 

disappeared. Indeed, the variation of the voltage clamp level ha 

influence on the fundamental CUlTent shape. It was al 0 noted that th e ndary id 

snubber ran considerably cooler for the same fundamental urr nt level, implying a 

much lower level of energy removal. 
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(a) - 40V Clamp Level 
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Power Stage Supply=5VDc, Clock Frequency=300kHz, Load = 5901lH, 0.050, 

Figure 6.10 - Closed loop output current profile with varying econdary side 
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The closed loop control has evidently Iinearised the power conver ion pr ce and thi 

is borne out in the measured THD profile of Figure 6.11 
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Figure 6.11 - Closed loop THD profile 

Again, the THD figures below 20% modulation depth have to be treat d with uuti n 

due to the signal harmonics fa lling into the noi e floor. Th pT ar und 

0.5% for the majority of the amplifier range of modulation d pth . 

A typical spectrum from the closed loop modulator dem n trat that th ampli fi r 

noi se floor is around 60dB below the signal at low frequency, a indi at d in igur 

6.12. At higher baseband frequencies, the expected shaped modulati n n i 

shown in Figure 6.13. In Figure 6.13, the effect of the output fi lter an b n with th 

noise floor rising to a peak towards 20kHz and then falling away y nd thi a th 

filter begins to attenuate the noise. It is interesting to note the ndary p uk at ar und 

80kHz, which is due to the loudspeaker impedance underl ading th filt r at hi gh 

frequency. By replacing the speaker with the purely resi tive I ad, thi I1dary p ak 

di sappears, Figure 6.14. In practice, it may be necessary to use a c mp n ati n n tw rk 

avoid damage to the high frequency drive units in a loudspeaker y tern . 
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Figure 6.14 - Full band spectral content (Resistive load) 

After comparison of the output voltage and current into a re i tive load, it be urn 

apparent that the differential probe used for feedback was a major limitation in th 

linearity of the system. With a resistive load, the output voltage and CUff nt p tra 

should be identical and Figure 6.15 shows that this is in fact far from the a . B th th 

current probe and the differenti al probe were battery driven a t eliminat main b rn 

noise. The current probe has a 5MHz bandwidth and is therefore suit d t a ural 

measurement of the 100Hz fundamental signal. The figure sh w that in uddi ti n t th 

fundamental signal, the differenti al probe also picks up, or generates, ub tantial th r 

signals that do not appear in the spectrum measured by the cun'ent pr b . Th 

additional components then cause problems with linearity inc th y ar fed ba k int 

the modul ator as an error signal. 

1 6 



Integrated Power Stage Modulation 

(a) - Output Current Profile 
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Figure 6.15 - Measured current and voltage in resi tive load 

6.4 Bridge Voltage Monitoring Operation 

With bridge voltage monitoring, a transparent latch system is u d t n ur that th 

bridge only switches under zero voltage conditions. Tim delays are n t u d impli itly 

with this scheme but appear as a result of the circuit operation, 

The system operates as shown in Figure 6_16_ 

A ) ) A' 

B ffi 
B' 

c ~i3 C' 
0.1-

D 00:5 0' 

E ~ E' I-

Bridge Voltage 

Figure 6.16 - Voltage monitoring / transparent latch y tern 
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The switching sequence for the transition from freewheel state to positi ve pul and 

back to freewheel state is now as follow s: -

• In the freewheel state, the H-Bridge suppl y voltage is zero and the comparator h Id 

the transparent latch in the transparent mode. At thi s point, signals D and E are hi gh 

whil st all the others are low. Thus, signals D ' and E' are hi gh. 

• When the demand arrives to switch into a positive state, D changes from high to low 

and B changes from Jow to high. Since the latch is still transparent, thi s change i 

refl ected in device switching si gnals D' and B ' . Although the demand ignal fo r a 

positive pulse also sends A high, there is an inherent delay of a few hundr d 

nanoseconds after A goes hi gh before the secondary voltage becomes high. T hi s 

allows enough time for the bridge to switch under zero loss condition . 

• The secondary voltage ri ses, providing a positive voltage pulse to the load. 

• When the demand signal to switch back to the freewheel state anives, the secondary 

voltage is still high, thus , B ', C ' , D ' and E ' are not allowed to change tate. The 

primary side switch, A, however, can turn off and when the secondar y voltag ha 

fallen to zero, the comparator signals the transparent latch to let the I gi ignal 

change and therefore, device B turns off and device D turn n. Thu , all th 

secondary side switching transitions are undertaken at zero volt g . 

process occurs for a negative voltage pulse. 

6.4.1 Application to PWM 

imil nr 

Over one switching cyc le, the integrated power stage can pI' vide a po iti v I' n gativ 

pulse of duty cycle up to about 70%. Thus, it is more uited t a unip lal' PWM tmt gy 

since a bipolar scheme requires the output voltage to have a p iti v and n gati 

voltage during a single switching cycle. Whereas a bipo lar scheme f 

the H-Bridge in opposite phase, a unipolar scheme switche each leg indep nd ntl y. Th 

two legs are controlled by two PWM comparators, the first c mparing th triangl 

reference to the audio signal and the second compari ng the triangl t an 

inverted version of the audio signal, Figure 6.17. eX and Y dri ve devic Band whil I 

the dri ve for devices D and E is simply the inverse of those fo r Band ely). 
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~------o x 

R 
COMPARATOR 

>--------0 y 

Figure 6.17 - Unipolar PWM generation 

For zero audio demand signal, the legs of the H-Bridge switch in pha e giving zero 

output voltage. As the demand signal magnitude increases, the duty cyc le of one leg 

increase whilst that of the other decreases, giving a net positive or negative output. 

A simple bipolar PWM modulator was described in section 3.2.1 and Figur 6.18 b low 

shows the difference in operation between a unipolar and a bipolar switchi ng sch me. 

(a) - Unipolar Swi tching Scheme 
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Figure 6.18 - Unipolar and bipolar switching sch me 

The unipolar switching scheme effectively doubles the frequency f th wi t hing 

harmonics and reduces the peak switching frequency tipple current [6.1]. 
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Logic is required to derive the five switching signals, A, B, C, D and E , from X and Y. 

An additional Enable logic signal is included. With reference to Figure 6. 1, Table 6.2 

gives the required logic description to interface signals X and Y to the power tage. 

Enable X Y State A B C D E 
0 0 0 Off 0 0 0 0 0 
0 0 1 Off 0 0 0 0 0 
0 1 0 Off 0 0 0 0 0 
0 1 1 Off 0 0 0 0 0 
1 0 0 Freewheel 0 0 0 1 1 
1 0 1 Negative Pulse 1 0 1 1 0 
1 1 0 Positive Pulse 1 1 0 0 1 
1 1 1 Freewheel 0 0 0 1 1 

Table 6.2 - Logic Derivation for Unipolar PWM Interface 

This logic was realised using a fast PAL chip (7 .5ns propagation delay) and th voltage 

monitoring system was used to ensure that the bridge switches under zero 10 s 

condi tions. 

As an initial test, the power stage was loaded with a 100llH load and driven by th 

unipolar PWM generator clocked at 150kHz. This frequency re ul ts in output pul e at 

300kHz and the maximum modulation depth was limited 70%. Figure 6. 19 h w the 

output load voltage and current for the inductive load. 
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Power Stage Supply=12Voc, Modulation Depth=70%, 10kHz Sinewave Fundamental 
Secondary Clamp=1 OOV, Load=100).tH, Modulation Frequency 150kHz 

Figure 6.19 - Output load voltage and current 

The reactive power flow due to the inductive load is evident from the I ad vol tag 

waveform. During regenerative action, the voltage pulses ri e in magnitude t th WOY 

level of the secondary side clamp. When the amplifier i providing n rgy t th 

inductor, the pulse height fa ll s back to 80V (The voltage pul e h ight li v r d by th 

main power transformer). This clamping action ha an impact n th fundam nral 

current shape since the higher voltage during the regenerative period au e a gr at r 

rate of change of load current, effectively steepening the ine-wave edge dUling t.hi 

period. Thi s can be seen more clearly in Figure 6.20. 
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Power Stage Supply=12Voc, Modulation Depth=70%, 10kHz Sinewave Fundamental 
Secondary Clamp=1 OOV, Load=1 OO~H , Modulation Frequency 150kHz 

Figure 6.20 . Load current and behaviour showing regenerativ action 

Although the operation of the power stage will not result in the dead tim di t rti n 

seen in the conventional H-Bridge Class-D system, there are three ther ff t n w 

through which distortion can occur: -

• Increased voltage pul se height during regenerative action, 

• The inability of very narrow pulses to progress thr ugh the p w r tag, 

• Voltage pulse height vari ation with load CUITent (S imilar to D link lippl in 0 

conventional Class-D power stage). 

The di stortion due to pulse height increase during regenerative acti n an b minimi d 

by using an ' intelli gent ' secondary snubber. The snubber w uld m ni t r th typi 01 

pulse height from the secondary winding and adjust its clamp level t alway b a 

small amount higher. Voltage pulse height variation whil t p t nlially au ing 

significant di stortion is unlikely to be as dominant a the inabi lity f narr w v Itag 

pulses to progress through the power stage. 
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In order to examine the impact of the narrow pulse exclusion, the linearity of the power 

stage was measured in much the same way as adopted in Chapter 3. The input demand 

was varied to cover the full range of allowable modulation depths and the average (or 

DC) output current was measured. The load consisted of a 100J.lH inductor in serie 

with a 16Q resistor and Figure 6.21 shows the linearity up to the maximum allowable 

modulation depth. 
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Figure 6.21 - DC linearity curve 

The demand voltage magnitude of 3V con-esponds to an operation pul 

approximately 75%, which is the maximum attainable fr m 

inability of narrow pulses to progress through the power stage i vident fr m th larg 

dead band symmetrical around zero demand. Outside thi dead band, th p w r ta 

shows near linear behaviour. This non-linearity is unfortunately at th 

f 

linearity characteristic and will lead to high harmonic di tortion in practi . Ind d, it 

will demonstrate very similar distortion behaviour to that found in an unbia d la 

linear output stage. 
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The load current for a low frequency demand signal was measured to demon trate the 

affect of the non-linearity on a sine-wave and Figure 6.22 shows the demand ignal (a) 

and the output load current (b) . 

(a) - Demand Voltage 
3,----.-----.-----,----,-----,----,,----,-----.----,-----. 

~ 
Q) 1 
~ 
g 0 
"0 
c: 
E -1 
Q) 

o 
-2 

, . , 
I I I I I I I • 

____ a_aw l ---- - ----~---- -- - -~------ - -~- . -------~------- - - --------t-------- f---------I--------
" I I I I • 
I I I I I. I I 

I I I I I I ' I 

----- --~--------- :------- -- -~- - - -- -- ~---------~------ --~--------- .--------~- -------t--------
I , I , I I I, 
, , I , 'I , 
I , I , I I I I 

-- - ----~---------~---------~---- - - --:---- - - - --~--- -----~--------- ---.-----~---- ----~-------. 
I I I I I, I I 

I I I I I I I' 
I I I I I I , I I ________ ~ ___ _ _ ____ ~ _________ I _________ , _________ _________ ~ _________ l _____ _ ___ J ________ l ______ ._ 

, I I ' I I I 
I I I ' I I I 
, I I I I , I 

(b) - Output Current 
3r----,----~----_r----._----~----r_--_.-----.----,-----. 

2 

<" 
~1 
~ 
8 0 
s 
~-1 

-2 .. - ........ - .. ~ ........ -----~-- .... - ........ :- .. -------~--
I I • , 
I I I , 

, , , 
I • • • 

.J._ ...... _ .. __ .J .. _ ........ _ .... , ............ _ .... , .................. 1 .. 
, I • • • 

• I I • I 
• • I I I 

Power Stage Supply=12Voc, Clamp=100V, Load=100IlH 8Q, 
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Figure 6.22 - Effect of narrow pulse disappearance on sinewave demand 

The non-linearity causes the dead bands in the output CUITent profile and th 

to odd-order harmonic distortion. 

6.5 Operational Efficiency 

will I ad 

The power conversion efficiency of the primary side thr ugh the main p w J' 

transformer was demonstrated at above 80%, Figure 5.47. In pra ti ,th r a 

nature of the output filter and load will result in a net power fl w ba k thr ugh th 

secondary side snubber resulting in a lowering of the overall effi i n y. 

Under PDM and closed loop control, the conversion efficiency with a fourth I'd r fi lt r 

and 4,Q termination was measured. This initi al test wa und rtaken at I w p w r with a 

5V main DC supply. With a pulse duty cycle of 70%, this should lead t an av rag 

power output of lOOW at full modulation depth. Figure 6.23 give the ffi i n y a a 

function of modulation depth for this load. The efficiency was mea ured u ing a high 
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bandwidth power analyser with the input power taken as the power drawn from the 

main DC supply and the output as the AC power in the load, after the power filter. 
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Figure 6.23 - Overall conversion efficiency at low power output 

This efficiency profile unfortunately demonstrate poor performance of th ov ra il 

amplifier system. Since the forward conversion path ha been demon trated t op rate 

efficiently, the poor performance must be due to two main fac tors: -

• Loss in the power filter 

• Excessive loss in the secondary side snubber. 

The series resistance of the filter was measured at 200mO and fo r a 40 I ad thi 

represents an efficiency drop of 5%. Furthermore, in practice th filt r indu t r 

immediately after the power stage also carry a relative ly high rippl current at th 

switching frequency and this leads to a small additional 10 . At pr ent the ec ndary 

side snubber is not optimised and in practice, it showed exce ive 10 . Th nubber al 

appears to be under-rated since operation at the full 12V 0 link vo ltage with a r activ 

load has resulted in its destruction on a number of occa ion. One reason fc r a laeg r 

than expected return power is the nature of the PDM output pectra. Wherea the PWM 

output consists of the fundamental frequency, the switching frequ ncy and harmonic 
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around the switching frequency, the PDM spectrum contains significantly more energy 

at low frequencies in addition to the fundamental signal. The power filter has to filter 

this additional low frequency noise and this leads to a higher return power for a PDM 

driven system. 

In order to test this hypothesis, the return power measurement system of Figure 5.35 

was used with PDM of the output stage and the return power measured as a function of 

modulation depth, Figure 6.24. The solid line represents a polynomial data fit as u ed 

earlier. 
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Figure 6.24 - Measured input, output and return power levels under PDM 

The profiles of Figure 6.24 support the argument that the return power I vel under P M 

is significantly greater than that in the equivalent PWM modulator. Indeed the clamp 

return power is typical1y 60% of the full output power and remain cl e t thi lev I 

over the full range of modulation depths. Consequently a p or efficiency f the n rgy 

return snubber will severely compromise the operation effic iency f the new p w r 

stage and is the cause of the results in Figure 6.23. 
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Using the measured data of Figure 6.24, the amplifier efficiency was estimated as a 

function of modulation depth and efficiency of the secondary side snubber circuit 

Figure 6.25. 
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Figure 6.25 - Estimated as integrated power stage efficiency functions of 

secondary snubber efficiency and modulation depth 

Assuming an optimised design of the secondary snubber circuit with a return pow r 

efficiency of greater than 90%, the integrated power stage would be expected t have an 

efficiency of around 65% at 90% modulation. It should al 0 be noted that due thigh 

levels of return power, it was only possible to test the amplifier at maximum utput 

powers .n. 50W, Figure 6.24. At higher output power a further impr vcm nt in 

efficiency would be expected 

In order to compare the conventional Class-D power stage and the new p wer 

secondary side snubber was removed from the new power tage and th lin ar active 

clamp circuit connected in its place, This allows for direct mea urem nt f th r turn 

power in the new power stage under a PDM regime. The mea urement conditi n 

maintained as for the H-Bridge power measurements and with a 5V main link v ltage 

the measured pulse heights at the power stage output were 37V. on quently the 

linear active clamp circuit was set to 40V, The duty cycle wa set t 70% giving 25W 
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output power at maximum modulation depth. Figure 6.26 shows the measured powers 

up to full modulation depth. The relative levels of power flow in the new power stage 

under PDM show a similar behaviour to those of the normal H-Bridge in Figure 6.24. 

The actual return power, relative to the output power is however higher, suggesting that 

the new power stage is sending more power back to the DC link per Watt of output 

power. The blue line represents the polynomial data fit. 
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Figure 6.26 - Measured power flow in new power stage under ])DM 

6.6 Conclusions 

Modulation of the new power stage has been demon trated under both PWM and PDM 

modulation schemes. Distortion under both modulation scheme di tortion ccur a a 

result of the increased output voltage during regenerative p w r fl w thr ugh th 

secondary side snubber. The distortion has been hown t be tr ng function f th 

voltage clamp level and therefore the use of an intelligent nubber which track th 

normal voltage pulse height, will assist in minimising thi form of di torti n. PWM 

operation is further compromjsed due to the inability of narrow pul e t pr gr 

through the power stage. 
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Closed loop operation under PDM has demonstrated that the power stage can deliver a 

THD figure of 0.5% and although this is above the desired 0.1 %, further improvem nt 

to the differential amplifier in the feedback loop will lower this figure. The differential 

probe used in the present feedback loop was prone to EMI interference and thi s i likely 

to raise the harmonic distortion. 

Under closed loop PDM operation, the power stage output spectrum showed the n i e 

floor increasing with frequency. Interestingly, the behaviour of the load impedance doe 

affect the output spectrum since any load inductance causes an effective under- loading 

of the filter at high frequencies . This leads to a second peak in the output spectrum, 

which disappears when a resistive termination is used. 

In practice, the overall system efficiency is significantly lower than expected and thi 

attributed to three main factors: -

• Loss in the power output filter. 

• Excessive secondary return power occurring with the power stage under PDM. 

• Inefficiency in the secondary side return snubber. 

The loss in the power filter can be minimised by designing the filter induct r 

lower resistance. The return power under PDM was hi gher than t d and 

necessitates an increased power rating of the secondary side snubber. M r 

efficiency of this snubber is critical to system efficiency and should b c n ider d m r 

closely. Since the return power is so hi gh relative to the output p wer, the argum nt r r 
using the amplifier with the bi -directional power transformer i str ngth ned. r . th 

highly efficient forward conversion path is used to send the regenerativ n rgy ba k t 

the primary and this should yield an increase in efficiency. A mall n rgy r very 

snubber wi ll be required, however, to provide an energy r tum path b tw n th 

primary side switching off and the output H-Bridge freewheeling th I ad L1rr nt. 
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7 Summary and Conclusions 

This thesis has described the results of applying switched-mode technique to the 

development of a high power car audio amplifier. The present linear amplifiers have 

been shown to be at best 50% efficient with the efficiency dropping significantly with 

the reactive loads found in practice. Alternative linear designs have been highlight d 

which can offer higher conversion efficiency although the extra complexity involved is 

considered prohibitive. Literature reports that Class-D amplification can yield 

conversion efficiencies beyond 80% and the application of this technology to a car 

audio system would result in a smaller, lighter and cheaper amplifier. 

A further requirement of the car audio amplifier is a front-end switched mode power 

supply to provide the high voltage DC rails for the amplifier. In practice the p w r 

supply and associated output fi lter represents over 50% of the volume and co t of the 

amplifier, and introduces a further element of loss. The thesis explore method f 

combining the power supply and a switching amplifier to reduce the verall siz , 

component count and cost of the amplifier system, whilst impr ving it effi ien y. 

Traditionally, a PWM scheme is used to modulate the switche in the p w r utput 

stage and in theory, can offer the required performance for a r ali ti swit hing 

frequency of 140kHz. In practice however, PWM requires the output v Itag pul 

be defined to an accuracy of ±lOOps and this is not attainable in a practi al p w r fag. 

Signal processing techniques using noise-shaping can lessen thi r qui!' m nt alth ugh 

hi gh accuracy is sti ll required. Consequently, the practi cal la ar 

more suited to the constant width pulses to be found with PDM. he u f ingl it 

quantisation in PDM results in a highly linear modulation schem . In rd r t a hi a 

minimum 60dB noise floor and 20kHz power bandwidth, it ha b en h wn that a P M 

modulator with at least a fourth order noise-shaper is required. M dulat r f I'd I' 

greater than two can show unstable behaviour and therefore a new d ign m th 

based on a linear feedback system, has been explored. The meth d I gy ha r 

stable modulators up to third order and it is believed that with a higher rd r m d 1 f I' 

the sample and hold element, stable modulators beyond third order wi ll b attainabl 

The effective switching frequency of a PDM driven system has b en h wn 
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significantly less than for PWM. Therefore, a PDM system can be driven at up t 2.5 

times the clock frequency of a PWM system for equivalent switching loss. At present, 

the second order modulator achieved in practice doesn ' t offer the required pelformance 

for a full bandwidth system and therefore the amplifier is more suited to a ub-w ofer 

application. 

The prototype H-Bridge constructed in Chapter 4 has verified that Class-D amplifier 

can indeed offer conversion efficiency in excess of 80%. The switching times of the 

MOSFETs used in the power stage were measured at 75ns and this, combined with the 

SOns reverse recovery of the freewheel diodes has shown that the switching loss i the 

dominant loss mechanism in the converter. Conduction loss in the output filter and 

devices is estimated to be equal to half the switching loss. Since the switching loss 

component is dominant, the capability of the gate drive circuitry used in prac tice has 

been shown to have a critical influence on overaJl efficiency, with efficiency variation 

of greater than 20% seen between different gate drive systems. 

The practical operation of a Class-D amplifier does not provide an ideal r pli ati n f 

the input switching signal and this distortion can have a significant effect on the fidelity 

of the system. Of the distortion mechanisms highlighted, the nece sary use of dead tim 

is the major cause of power stage non-linearity. The uncontrolled CUlT nt during Ih 

dead time not only reduces the output signal level but also introduce high I v I f 

odd-order harmonic distortion. A model has been developed which can pr dict th I 

of open loop THD under PWM control. For a practical power tag wit hing at 

140kHz, the use of 200ns dead time results in a peak THD f 8%. It i diffi ult t 

reduce the dead time much below 200ns and therefore thi s give an indi ati n f th 

likely open loop performance of the power stage. 

Under PDM, the THD is more difficult to predict although empiri al m a urem nt 

suggest that the PDM scheme is less susceptible to dead time di t rti n. A 

cause of hrumonic distortion in a practical amplifier is the effe t f p r 

compliance. 

ndary 

lin k 

Reactive power flow between the load and the amplifier cause the D link t flu tllat 

at twice the signal frequency, resulting in a 2nd and other even order harm ni terms I 
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appear in the output spectrum. These levels, however, are significantly less than th s 

introduced by dead time and can be minimised with the use of a large link capacit r. 

Reduction of the distortion to acceptable levels has been achieved through clo ed loop 

operation. Feedback schemes which operate on a cycle by cycle basis offer the highest 

attenuation of the harmonic distortion and this is easily achieved for PDM by imply 

feeding back the power stage output to the modulator input. This technique has resulted 

in a factor of 20 reduction in the THD for a PDM system. 

The main focus of the research presented in this thesis is concerned with the 

development of a new power stage topology specifically for in-car audio use. To thi 

end, a power stage was developed which removes the requirement for an intermediate 

high DC voltage supply and reservoir capacitor. Removal of this stage has result d in a 

physically smaller system, which uses approximately half the number of dec upling 

capacitors found in the present system. Moreover, removal of this DC tage ha all w d 

for soft switching of the output stage. In practice, the major 

encountered with the development of this power stage were related t 

in parasitic inductances in the circuit and providing an efficient path for the r a tiv 

energy in the loudspeaker load to be returned to the input supply. 

Through careful circuit design and the use of integrated magneti c ,th primary id 

parasitic inductance was reduced to 16% of the level of the initial pr totype ir uit. h 

integrated nature of the transformer also eases fabrication of the p wer tag inc lh 

windings are realised on the PCB. Recapture of the energy stored in th tran r I'm I' 

leakage inductance was achieved with an active snubber which al 

for a extra demagnetisation winding on the transformer. Furth I'm r ,the nubb I' 

allows for a duty cycle of up to 70% and this has been shown to increa th 

of the power conversion process. Again, the performance of the gate dtive ir uitry ha 

been shown to significantly influence the conversion efficiency, in this a e 

as 10%. The optimal design of the primary side of the c nv rt r ha r In a 

forward conversion path, with an efficiency, which peaks at 88% and is ab v 

between 30W and 300W output. 
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Since reactive energy is transferred cyclically between the amplifier and it load, 

removal of the intermediate DC stage and its energy storage capacitors ha pre ented 

the need for an energy return path to the primary 12V suppl y. The power-rating 

requirement for the return path was found through measurements and differ 

significantly for PWM and PDM. Other than the fundamental output signal, the PWM 

spectrum mainly contains energy at high frequency. This high frequency component 

produces only a small amount of return power PWM. Thus, for PWM, the fundmental 

signal frequency component is the dominant cause of return power. 

Under PDM, there is significant spectral energy at low frequency and thi lead to a 

high level of return power. The magnitude of the return power was undere timated in 

the integrated power stage design and the use of an active snubber ha resulted in 

inefficient operation. Optimisation of this snubber or the use of the bi-directional power 

transformer circuit should increase the initially disappointing efficiency. However, 

assuming a capability of providing an efficient return path for the load reactiv 

the overall efficiency of the proposed integrated power stage was estimated t exc cd 

65%. 

The new power stage was run under both open and closed loop op rati n with th I vel 

of the secondary side active clamp being significant in the cause of di t rti n. Again, 

the second order modulator gave 35dB dynamic range for a 20kHz bandwidth and thi 

could be improved with a higher order design. 

Future Work 

There are a number of areas in which further research should impr v th p rf rmnn 

of the new amplifier. 

1. Further development of the hi gh order ~L modulator de ign thr ugh th u f a 

high order Pade approximation to the sample and hold modul at r elem nt. AI ,th 

power stage introduces a small time delay, equal to the dead time, whi h wi ll 
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influence the closed loop stability of the amplifier. This delay should be incJud d in 

the modulator design to ensure a stable system. 

2. The output filter at present has an output resistance of 200mQ, which leads to 

excessive loss in the filter inductors. This filter resistance should be decrea ed by 

either using a heavier gauge wire or by using inductors with ferute cores to reduce 

the copper loss. 

3. Improving the return power efficiency, such that it is similar to that of the main 

forward conversion path . This can be achieved by either employing bi -dir tional 

transformer circuit or by increasing the power rating and efficiency of the secondary 

side snubber. 

4. At present, the EMI produced by the power stage has not been measured and for a 

commercial system, this would need to be quantified. 
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9 Appendix A - Mathematical Proofs 

9.1 Working for Equations (2.1), (2.2) and (2.3) 

The efficiency of the generic power stage shown in Figure 2. 1 (repeated below) can be 

found through consideration of each of the transistors collector current and colle tor

emitter voltage. 

01 rCI 
NPN 

INPUT 

10 

BIAS 

rc

' 

~i 
SPEAKEF 

02 --
PNP 

Figure 9.1 - Generic linear power stage 

For an ideal power output stage (i.e. no cross-over problems and zero bi as), the utput 

load voltage and load current for a sinewave demand wi ll be as shown in igur .2. 

Due to the symmetry of the system, the power di ssipation in both d vice will b similar 

and it is therefore suffic ient to calculate the power lost in a single d vi 

and then double it to yield the total power loss. 

onsider the power lost in Ql. The device will only di ipat p wer wh n th I ad 

current is positive so the power lost in Q1 over a single cyc le is: -

(9.1) 
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Figure 9.2 - Load voltage and current for a reactive load 

U ing I p = ~I ' the power loss in a single device is: -

Therefore, the total power loss in the output stage is: -

T 

(9.2) 

9.3) 

The maximum level of power dissipation can be found through diff r ntiati n r 'S 

and occurs when: -

2VDC 

Vp = ( ) 
1l cos fjJ 

9.4) 
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Since a practical power stage cannot produce an output voltage swing which i gr at r 

than the DC supply rails, Equation 8.4 is only valid for: -

2 
cos(¢) ~ -

n 

(9.S) 

With a lower power factor, the maximum power loss case occurs when Vp=Vdc. Thu , 

the maximum power loss takes on two different equations dependent on the pow I' 

factor: -

MAX 

2 o ~ cos(¢)< -
7! 

(9.6) 

The power stage efficiency can be found simply by considering the total utput p w r 

as : -

(9.7) 

Therefore, the conversion efficiency is: -

. lOO x ? V 
Efficlency,(%) = OUT = 257! - P c (¢) 

POUT + PLOSS V D 

9.8) 

9.2 Working for Equations (4.6) and (4.7) 

The solution presented in Equations (4.6) and (4.7) is found thr ugh uri I' annly i f 

the error voltage defined over a fundamental cycle as: -
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o 

- (2k + msin(mt») 

28 

- (2k + msin(wt») 

o 

2k - msin(mt) 

-28 

2k - msin(mt) 

o 

T T 
-- ~t < --+t 

2 2 1 

T T 
- - +t ~t< -- +t 2 1 2 2 

T 
--+t2 ~t< -t2 

2 

T 
t2 ~ t < -- t2 

2 
T T 
-- t? ~t< -- tl 
2 - 2 
T T 
--t 5:t< -
212 

(9.9) 

Due to the odd-nature of this waveform and the fact it has no DC comp 11 nt, th 

sol ution is given by: -

Where, 

~ 

Verror(t) = Lb" sin(nwot) 
n=1 

T 

2 2 

b" = - f Verror (t) x sin(nwot)dt 
T T 

2 

The simplest way to proceed is to find the Fourier integra l for each f th 

(9.10) 

(9.11) 

mp n nt 

of Verror(t) and then to combine them to find the overall lution. Furth I'm r , th 

s lution for the component at the fundamental frequency (n=1) mu t b va luut 

separately due to the nature of the solution. 

Firstly, consider the solution for bn when n=1. 
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T 

T 
2"+12 

f -(2k + msin(CtX»sin«(Vl)dt (a) 
T 2"+1, 
- 12 

f 28 sin(CtJt)dt 
T 

2"+12 
-I, 

f-(2k + msin(wt»sin(wt)dt 

(b) 

( ) 
2 2 2V 

bl = T f Verror (t)xsin(CtJt)dt = ;c - 1
2 

: J (2k - msin(wt»sin(wt)dt (d) 

The solutions are: -

-2T8 
(b) = cos(CtJtJ 

n 

I, 

T --/., 
2 -f -28 sin(wt)dt 

12 

T 
"2-1, 

f (2k - msin(wt»sin(wt)dt 
T 
"2-12 

(e) 

(I) 

(d) = _1 (8kT(cos(CtJt I ) - COS(Wt2 )) + mT(sin(2wI2 ) - sin(2wt l )) + 4I1m('1 - (2 )) 
8n 

(9.12) 

(9.1 ) 

(9.14) 

(9. 15) 

9.16) 

(9.17) 
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(9.18) 

Fortunately, these part solutions are similar so the overall solution is relatively simple: -

(9.19) 

Using, 

. ( ) 2k sm wtl =- and 
. 2(k + 8) 

Sin (wt 2) = ---!...._-f.. 

m m 

This simplifies to: -

boo. , ~ 4':C( k(cos(IlJI,)-cos(IlJI, ))+ ;(IlJI, - mt, )- OCOS(IlJI, )] 

(9.20) 

For the higher order harmonics, the analysis is identical except that bn i defin d a : -

T 
-"2+12 

f -(2k + msin(mf» in(nmt)dt (a) 
T 

2+ /1 

- I , 

i"28 sin(nwt)dt 
T 

-"2+12 

-I I 

T f -(2k + msin(ca» in(nmt)dt 
b 2 f2 V () . ( )d 2Voc -12 

/I = - (" or t XSIn n.evt t = -- I 

T T T J 2" (2k - msin(ca» in(ncvt)dt 
'I 
T 
"2- /2 

f -28 sin(n.CtJ()dt 

'2 
T 
"2- /1 

(b 

( ) 

d) 

f (2k - msin(ca» in(llmt)dt J) 
T 
"2-12 

(9.21 
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The part solutions are now: -

(a) = - cr!n,,) + mn' (cos(na<, )sin (a<, ) - cos(na<, )sin(a<, )) 
( 

2k(l - n2Xcos(n0Jt2)- cos(nOJtI)) J 
nm n - 1 ( ) + mn(sin(nOJt I )cos(OJt I ) - sin nmt2 cos(mt2)) 

25 
(b) = - cos(n0Jt2 )(cos(nn-)-1) 

nm 

25 
(e) = - cos(nmtJ(cos(nn-) - l) 

nm 

(f) = - T!n" )) + mn' (cos(na<, )sin(a<, ) - cos(na<, )sin (1lJI, )) 
nm n - 1 ( 

2k(1 - n 2 Xcos(nOJt2) - cos(nOJt I)) J 

+ mn(sin(nm{1 )cos(mt l) - sin(nmt2 )COS((J)(2)) 

Note that (a)=(f), (b)=(e) and (c)=(d) and simpli fication gives: -

(9.22) 

(9.23) 

(9.24) 

(9.25) 

(9.26) 

(9.27) 
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b" = 
4V 8 + DC cos(nwt2 )(cos(nn) - 1) 

nn 

And therefore, 

+ 2n 2 ((k + 8)cos(nwt2 ) - k cos(nwt, )) 
[ 

2k(1 - n 2 X cos(nwt2 ) - cos(nwt, )) J 

b = 2VDc (1 - cos(nn)) +mn(sin(nwt,)cos(wt,) -sin(nwt2 )cos(W/2 )) 

" nn(n 2 -1) 

Hence, 

b = 4VDC(1 - cos(nn)) 
" nn(n 2 - 1) 

- 28cos(nwt2 )(n 2 - 1) 

+ n;l (sin(nwt, )cos(wt,) - sin(nwt2 )COS(Wt2)) 

+ 8 cos(nwt2 ) 

+ k(cos(nwt 2 ) - cos(nwt,)) 

9.3 Working for Equation (5.12) 

(9.28) 

(9.29) 

(9. 0) 

For a reactive load driven by a sinusoidal voltage source, the pha e hift un- nt fI w 

causes a bi-directional power flow at twice the fundamental frequ n y f th dri ing 

voltage source as shown in Equation (9.31). 

"2 

pet) = ~Zl (cos<p -cos(2wt - <p») 

(9. 1) 
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Where V is the peak applied voltage, 'Z, is the magnitude of the load imp dance (at 

radls) and qJ is the load phase shift in rad (at CJ.) radls frequency). Figure 9.3 h w the 

nature of this power flow (in this case for a phase shift of rr/4). 

(a) • Load Voltage 

I I I' I I I 
' I I I I I I 

~ --------- ,------- ---~- -- -----~- -------,---------,--------- ,--------- , ---.-.---, ... ---.-
Q) •• 
01 • , 

~ 0 ----- - --~---------~-- --- ----~--------~--- ------ -- ------.--------- . ---------.--------- . --------
g :: : : : : : : : 

o 
lime 

(b) - Load Current 

lime 
A verag Output P w r 

o 

Figure 9.3 - Power flow in a reactive load 

The level of return power can be found by calculating the energy retum d during th 

regenerative period and averaging it over one cycle of the pow r n w wa r I'm. 

Mathematically, this is equivalent to Equation (9.32) below. 

2 ~/(/J V2 
PRETURN = - f -'-I (cos rp - cos(2ta - rp) )dt 

T 0 22 

Solution of (9.32) gives the retum power as shown in (9.33) bel w. 

9. 2) 
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A2 

P RETURN =~I 11(<pcoS <P -Sin<p~ 
2nZ 

(9.33) 

227 



Appendix B - ilter D ign 

10 Appendix B - Filter Design 

The first design choice is to decide what order filter to use. A hi gher rd r filt r i 

preferable since it will offer increased attenuation of the switching frequency 

components. However, a higher order filter will be larger and will hav a higher 

equivalent series resistance than a lower order filter. The graphs in Fi gure 10.1 h w th 

level of attenuation achieved at the switching frequency for a number of diff r nt I'd I' 

filters and filter types. 

Butterworth Filter 
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Figure 10.1 - Level of switching frequency attenuation with differ nt ord .. flit rs 

he x-axis in Figure 10.1 represents the switching frequen y n rmali d t th fi It r 

comer frequency. The six curves in each graph represent the att nuati n pI' fi l f r 1 It 

61h order filters (with the 61h order giving the hi ghest). 

With both the PWM and PDM driven power stages, the likely witching fr 

be around 150kHz. For a low pass comer frequency of 20kHz, thi will giv 

to 1l0dB attenuation with the Butterworth filters or 15dB to l30dB with the h b h 

filters. In [9.1], Himmelstoss utilises a fourth order filter which i likely t gi ar und 
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70 to 80dB of attenuation with a 20kHz baseband and 150kHz switching frequency. A 

fourth order filter can be implemented as shown in Figure 10.2 

Figure 10.2 - Fourth order filter prototype 

In the process of filter design, it is assumed that the load is purely re istive. In practic , 

the loudspeaker presents a very complicated reactive impedance and the level t which 

this impacts on filter performance will be djscussed later. If the load is treated a a 4.Q 

resistance, standard tables can be used to find component value of L1, L2, 1 and _. 

A number of filter types are available which utilise different polynomial 

different performances. Himmelstoss uses three design criteria in specifying a filt r f I' 

a half bridge converter: frequency response (attenuation and phase), the gr up delay and 

the step response. Whilst the frequency response gives an indication of the I v I f 

attenuation of the switching frequency, the group delay use the pha e I' 

calculate the time delay for different frequencies passing through the filter. 

or a comer frequency of 20kHz and a 4.Q load, the component value for th filt r 

are as shown in Table 10.1. 

Filter Type Ll (IlH) Cl (IlF) L2 (IlH) 2 (Il 4) 

Chebychev (O.5dB ripple) 45.7 3.75 48.4 l.81. 

Legrende 51.3 3.3 45.5 1.27 

Butterworth 48.7 3.13 34.4 0.76 

Linear Phase 48.4 2.07 23.5 0.58 

Maximally Flat 47.8 1.94 19.5 0.42 

Gaussian 46.2 1.67 15.6 0.36 

Table 10.1 - Component values for the ix filters 

Whilst the value of inductor LI does not vary much between filt r typ ,th th f' 

component values vary significantly between types. In terms of the phy i al iz f lh 

filter, the smaller the component values the better. In general, the Gau ian filt r w uld 
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be the smallest. The attenuation characteristics of the six filters are shown in Figure 

10.3. (Figure 10.3 to Figure 10.6 are reproduced from [9.1]). 
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Figure 10.3 - Attenuation characteristics of the six filters 

Of the six filters analysed, the Chebychev polynomials offer the largest attenuation of 

the switching frequency component. This, however, is at the expense of the pass-band 

ripple and poor phase characteristic. The phase response of the six filters is shown in 

Figure 10.4. 
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Figure 10.4 - Phase response of the six filters 

The phase shift of the Chebychev filter is the highest and Figure 10.5 below shows the 

group delay of each filter type over the audio band. (The group delay effectively is the 

gradient of the phase response - a flat group delay indicating that all frequencies are 

delayed by exactly the same amount oftime). 
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Figure 10.5 - Group delay oftbe six different filters 
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For audio applications, a flat group delay is preferable to prevent dispersion of the input 

signal. It is clear from Figure 10.5 that the Chebychev filter has a far from uniform 

group delay. The Linear Phase, Maximally flat and Gaussian filters offer the flattest 

group delay and are therefore most suitable for the filter. The step response of the filters 

also highlights the weakness of the sharper cut-off filters (Chebychev, Legrende and 

Butterworth) in audio applications. Figure 10.6 demonstrates the overshoot behaviour of 

these three filter types is much worse than the smoother cut-off filters. 
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Figure 10.6 - Step response of the six filters 
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Not only does the Gaussian filter have a flat group delay, it has a faster transient rise 

and no overshoot. In this respect, it is the optimal choice for the power filter. Tn 

addition, the inductors and capacitors used in the Gaussian filter are the lowest of the six 

filter types and therefore will yield a physically smaller filter. 

10.1 Practical Implementation 

Since the power filter is outside the feedback loop, the linearity of the overall amplifier 

is very dependent on the linearity of the filter. As such, the components used in the filter 

must operate in a linear manner over the entire dynamic range of the amplifier. 

Polypropylene capacitors will offer very linear performance and low ESR and are 

readily available in the voltage and capacitance values required. The inductors, 

however, must be custom designed for the filter. Due to the low output load resistance, 
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the series resistance of the inductors must be as low as possible in order to achiev hi gh 

efficiency. In order to achieve a symmetrical design, the circuit shown in Figur 1 .2 

can be adapted by halving the inductor values and using the circui t a shown in igur 

10.7. 

Ll L2 

Rl 

Figure 10.7 - Symmetrical filter prototype 

The inductors can be realised with a number of turns of wire with or without an ir n 

core. If an iron core is used, a greater inductance can be achieved than if no or i u d. 

The use of a core, however, may lead to a non-linear inductance at high curr nt I v I 

when the core may begin to saturate. It is possible to use a core with an air-gap, whi h 

can Iinearise the inductance. Table 10.2 lists the relative features of air-cor d, ir n r d 

and gapped core inductors. 

Air-Cored Ferri te Core Ferrite Cor with 

with Gap n Gap 

Size Largest Middle Smalle t 

Linearity Most Linear Middle Lea t Linear 

Leakage Fl ux (EM!) Highest Middle Lw t 

Table 10.2 - Relative Aspects of Inductor Type 

The larger the air-gap, the more the inductor wi ll behave li ke an air- r d d vi whi l t. 

the shorter the air-gap, the more the core material propertie will dominat b havi Uf. 

In order to maintain the lineari ty of the amplifier, it was decided that air- r d indu t rs 

would be used. If major EM! problems do result then the best sol uti n w uld m t 

the use of a gapped core for the inductor. 

The design of an air-core inductor is complicated by the fact that th 

this type of inductor can be large and therefore inductance cal ulati n i m whtlt 

difficu lt. Fortunately, previous work [9.2] using first principles, upprted y mpiri al 

measurements has eased the design of air-cored inductors and in [9.3] , Di ka n gi 
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three equations from which it is possible to specify the inductor parameters completely. 

The equations are all based on the generic air-cored design where a solenoid type 

winding is used. Figure 10.8 shows a section through such an inductor. 

r 

............... ~~ :::::::::;.-:;.-i::: ............... ~~ ................ .................... ~-:; 
~,,!~!.::.~::.~.::.~~ ............... ~~ ................ "."' ....... "' .... ".".~ .... ,.rI'. ............... ~~ ............... ~~ 
................ ~~ ............... ~~ ................ ................. 
............... ~~ .. ............. ~~ ................ ................ 
...... I' .... rI'.~~ ............... ~~ 
j.":j.-:;~:-~:.-::.. ................ ..."' ............. 

Figure 10.8 - Generic air cored inductor 

Dickason gives the design equations for two inductor aspect ratios; r=h and r=2h. The 

larger radius design is utilised when very small inductances are required and are 

difficult to achieve with the aspect ratio of r=h. 

If the required inductance is L ().lH), the DC resistance R (Q), then the core parameters 

are as follows: -

r = h r = 2h 

h=J(86~R) h-m 956R 

N =6.28J(~) N = 4.16J(~) 
d = O.84th 

.IN 
d = 0.738h 

IN 

Where all dimensions are in cm and N is the required number of turns. For the low 

values of filter inductance required, the r=2h aspect ratio will be used. For the filter 

construction described in Figure 10.7, two 23.l).lH and two 7.81lH inductors are 

required. With an allowable DC resistance of 50mQ per inductor, the required 

dimensions are h=7mm, N=24 turns and d=l mm for the 23.1).lH inductor and h=4mm, 

N=18 turns and d=0.7mm for the 7.8).lH inductor. 

To minimise high frequency loss due to the skin effect, Litz wire must be used to wind 

the inductors. The skin depth can be calculated using Equation (10.1) and for copper at 
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a frequency of 150kHz, the skin depth is O.17mm glvmg a maximum conductor 

diameter ofO.34mm. The closest available strand diameter is O.3mm. 

(10.1) 

To achieve an equivalent conductor diameter of 1mm, 11 parallel strands of O.3mm

diameter wire are required and for the O.7mm equivalent, 5 strands of O.3mm wire are 

required. The required capacitance for each ofthe filter capacitance's was realised with 

the parallel connection of a number of polypropylene capacitors. Figure 10.9 shows the 

resulting filter prototype and test loudspeaker. 

Figure 10.9 - Fourth order filter prototype and loudspeaker 

The emphasis placed on making the filter as linear as possible has resulted in a 

physically large filter. The filter could be made smaller by using non-polarised 

electrolytic capacitors and ferrite cored inductors. 
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10.2 Characterisation 

Using a real loudspeaker will result in a filter termination that is only re i ti v at v r 

low frequencies. Consequently, the nature of the filter characteri stic will b af~ t d. 

Firstly, the small signal filter transfer characteristic with a 4,Q resistive t rminati n i 

measured and Figure 10.10 shows the resulting gain, phase and group delay. The 

corresponding gain, phase and group delay as measured with a loudspeaker tenninati n 

is shown in Figure 10.11. 
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Figure 10.10 - Transfer characteristic with resistive load 

The three characteristics in Figure 10.10 show behaviour very c10 e t th pI' fil f 

the theoretical filter. By replacing the resistive load with a real loud peak r, Ih fill r 

takes on an underdamped response (peak is -15dB above the ba eband I I). hi hn 

a consequence of severely effecting the group delay. The cause of thi p ak 

likely attributable to the voice coil inductance of the loudspeaker. At th r 

frequency of 20kHz, the inductance will increase the impedance f th I ad and thi 

leads to an underdamped system. 
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---
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Frequency (Hz) 
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Figure 10.11 - Transfer characteristic with loudspeaker load 

In reality, a number of drive units will be used with associated cro - ver ir uitry. A 

such, although the impedance of the woofer will ri se considerably at high fr u n y, th 

midrange and tweeter drive units will have lower impedance, which wi ll I ad th filt r 

at the cross-over frequency. This should result in a filter characteri ti , whi h m r 

closely resembles the ideal Gaussian prototype. 
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11 Appendix C - Circuit Designs 

11. 1 Design of Natural Sampling PWM Modulator (Section 3.2.1) 

This modulator is designed to validate the theoretical spectra produced by a natural 

sampling PWM system. The modulator also allows the addition of anti -ali a ing filt r 

modules in order to find the order and comer frequency required in practic . Th 

modular diagram of thi s system is shown in Figure 11.1 below. 

t- AUDIO IN 
t- FILTERED 

ANTI·ALlASING I- NlC 
FILTER t- +12V 

I- GND 
t- -12V 

AUDIO IN 
FILTERED 

NlC 
+12V 
GND 
-12V 

PWM GENERATION BOARD 

oz z
(!)Q 

o 
~ 

Figure 11.1 - System diagram of PWM modulator 

PWMOUT 
GND 

The anti -a li as ing filter (on the left in Figure 11.1) is implemented on a plug-in 

which allows for easy filter swapping. The main PWM circui t (on th ri ght in 

It. 1) routes the audio input signal (AUDIO IN) through to the anti-alia ing filt r'V hi h 

then passes the filtered signal (FILTERED) back to the PWM b ard f r mpari n l 

the PWM reference signal (PWM REF). The resulting PWM signal i th n ~ d ut 

(PWM OUT). The circuitry for the main PWM generation board i h 

11.2 below. The circuit diagrams for the 2nd
, 3rd and 4th order anti -a li a ing filt r 

shown in Figure 11.3, Figure 11.4 and Figure 11.5 respectively. All fill r 

designed to a 20kHz comer frequency using Butterworth polynomial . h input 

reference signal is buffered with an inverting amplifier to ensure a I an 

source at the PWM comparator. 
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Figure 11.2 - Main PWM generation board 
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Figure 11.3 - Second order anti-aliasing filter module 
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Figure 11.4 - Third order anti-aliasing filter module 
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Figure 11.5 - Fourth order anti-aliasing filter module 
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11.2 Design of PDM Modulator System (Section 3.3.3.1) 

The PDM modulator was designed in a modular fashion such that the n i e- haping 

circuitry can be changed by simply changing a single plug-in PCB. The main PDM 

generation circuit is shown on the right of Figure 11.6 and the plug-in n i e hap r i 

shown on the left of Figure 11.6. 

~ 
a 
5 0 
::lZ 
c(el 

I I 

- +1 2V +12V- ~ +12V 
- ·12V ·12V- ~ '12V 

NOISE SHAPER - SHAPED SHAPED-
PDM GENERATION BOARD I- CLOCK 

- a l P PULSE O/P PULSE- ~ MOD alP 
- AUDIO IN AUDIO IN- ~ FEEDBACK 
- GND GND- ~ GND 

I I 
~o gz 
.J el 
() 

Figure 11.6 - System diagram of PDM modulator 

The circuitry of the PDM generation board is shown in Figure 11.7. The n i e- hap d 

signal from the noise-shaper board is quantised around zero volts and then ~ dint a 

type flip-flop which is clocked by the main system clock. The output of th -typ flip

flop is a logic representation of the modulator output and is fed Ollt f the m dulat r f r 

u e in driving a power stage. The rest of the PDM base circuitry f a pul 

shaping circuit which converts the logic representation of the PDM utput int n 

positive and negative pulse stream to feedback to the modulator input. 

2 1 



Appendix C - Cir uit ign 
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Figure 11.7 - PDM base circuitry 
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Figure 11.8 - Second order noise-shaper (20kHz corner) 
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Figure 11.9 - Second order noise-shaper (5kHz corner) 

11.3 Design of Full-Bridge Power Converter (Section 4) 

Again, a modular approach was taken in the design of the full bridge power conv 11 r t 

alI ow for flexibility in testing. The main power devices chosen allow f r a D link 

voltage of up to 200V and a peak load current of 30A. This allows for a p ak p \J r f 

up to 6kW although the thermal dissipation potential of the heat ink (0.75 0 /W) u 

wi ll limit the actual power output to approximately 1kW (Based on 90~ c nv r i n 

effici ency). The modular structure of the converter is shown in Figure 11.1 
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Figure 11.10 - Modular structure of full-bridge power converter 
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The main power stage PCB (Figure 11.11) contains the power device, D link 

decoupling capacitors and power connections. The InterfacelDifferential Amplifier P B 

(Figure 11.12) plugs into the power stage PCB. This PCB contains a differ nti al 

amplifier, which attenuates the actual output voltage for use as a feedback signal in a 

closed loop design. The four gate drive PCBs (Figure 11.13) provide a floating drive 

signal to each of the four main power MOSFETs. The gate drive also provides a pre- et 

dead time. Finally, the modulator PCB provides the switching waveforms for the p w r 

converter. Both PWM and PDM strategies have been implemented. The modulat r 

circuitry is the same as that specified in sections 3.2.1 and 3.3.3.1 except the lay ut ha 

been changed to fit onto the interface/differential amplifier PCB. 
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0;-;--0 SOURCE-2 02 
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Figure 11.11 - Power stage of full-bridge power converter 
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Figure 11.12 - Design of interface / differential amplifier circuit 
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Figure 11.13 - Design of floating gate drive / dead time generator 
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11.4 Design of Full Primary Side Prototype (Section 5.2.4) 

T he full primary side power stage consists of the primary switching e lement, power 

transformer, energy recovery snubber and snubber control circuit. The snubber control 

circuit was implemented on a plug-in PCB to allow for optimisation at a later date. 

Figure 11.14 shows the full primary power stage PCB design and Figure 11.15 shows 

the snubber control circuit. (The layout of the design in Figure 11.14 is shown in section 

4 .2.4 and detail s the optimised layout for minimum leakage inductance) . 
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Figure 11.14 . Design of full primary side circuit 
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+1 2V 
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RV3 · CLAMP VOLTAGE FROM 10V to l 00V 

Figure 11.15 - Design of snubber control circuit 

11.5 Design of Full Novel Power Stage (Section 5.3) 

Figure 11.16 shows the system diagram of the full power converter. The design uses the 

same primary side design as described in Figure 11.14 although the primary side 

snubber uses more optimised components and the primary side MOSFETs have been 

uprated. The secondary side snubber is identical to the primary side except it is design 

t operate at a clamp level between lOOV and 150V. Both the snubber contro l circuits 

are the same as Figure 11.15 except for a few component value changes on the 

secondary side controller to allow for the higher clamp voltage. The plug in gate drive 

PCBs are base on those used in Fi gure 11.13 but do not incorporate dead-ti me 

generation since a variety of switching strategies have been implemented. The full 

power stage circuit diagram is shown in Figure 11.17. 
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11.6 Design of Time-Delay Modulator Interface Circuit (Section 6.3) 

This system is again designed in a modular fashion. Separate analogue and di gital 

power supplies were used to obtain optimal performance. Figure 11.18 shows the main 

PCB which incorporates the differential audio input, the PAL chip for logic generation 

and the separate regulators for the analogue and digital supplies. 
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Figure 11.18 - Design of time delay circuitry 

The time delay circuits were implemented on plug in b ard and igur 1.1 . L III 

,. 

circuit diagram for a turn-on delay circuit. The turn- ff d lay ir uit i id nti al pt 

for the reversal of diode D 1. 
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Figure 11.19 - Time delay circuit 

The PDM Modulator was a second order type (as pecified in Fi gur 11.7 and igur 

11.8) and is shown in Figure 11 .20 and Figure 11.21 below . 
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Figure 11.20 • PDM base circuitry 

_ I 



R3 
O/P PULSEo---;:=::r---i 

1k 
R2 

AUDIO INo---{==:J-"-~ 
1k 

R1 
1k 

AGND 

[l16 +12V(Analog) 
4 · 12V(Analog) 

SHAPED 
; OIP PULSE 
1 AUDIO IN 

AGND 

CONN H6 

R4 

1k 

+ 12V(Analog) 

RS 
1k 

AGND 
+12V(Analog) .12V(Analog) 

1.1, rMrM 
AGND AGND 

Appendix 

4.7nF 

R6 

1k 

U1 

ircuit D ign 

>----...... -0 SHAPED 

TL072 

Figure 11.21 - 2nd order noise shaper 
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Appendix D - Equipment Specification 

12 Appendix D - Equipment Specifications 

12.1 HP 35660A Spectrum Analyser 

Amplitude 

Frequency 

Input Range 

Dynamic Range 

Common Mode Rejection 

Residual DC Response 

Absolute Amplitude Accuracy 

Measurement Range 

Accuracy 

Windowing 

+27dBV to - SldBV 

70dB 

>80dB (Typical) 

<-30dB Relative to Full Scale 

±O.SdB ±O.03% of Input Range 

102.4kHz Single Channel 

51.2kHz Dual Channel 

±O.003% of frequency reading 

Uniform 

Flat Top 

Hanning 

12.2 NORMA D6000 High Bandwidth Power Analyser 

Voltage Measurements 

Bandwidth 

Measurement Error 

Current Measurements 

Bandwidth 

Measurement Error 

12.3 PEM Rogowski Coil 

Bandwidth 

Sensitivity 

DC-2MHz 

Typically ±1 ~ 

D -J.2MHz 

Typically ±1 ~ 

SMHz 

20mV/A 
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