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In this thesis we consider models of random graphs where, unlike in the 
classical models G (n, p) the probability of an edge arising can be correlated 
with that of other edges arising. Attention focuses on graphs whose ver­
tices are each assigned a colour (type) at random and where edges between 
differently coloured vertices subsequently arise with different probabilities 
(so-called RRC graphs), especially the special case with two colours. Vari­
ous properties of these graphs are considered, often by comparing and con­
trasting them with the classical model with the same probability of each 
particular edge existing. Topics examined include the probabilities of trees 
and cycles, how the joint probability of two subgraphs compares with the 
product of their probabilities, the number of edges in the graph (including 
large deviations results), connectedness, connectivity, the number and order 
of complete graphs and cliques, and tournaments with correlation structure. 
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1 Introduction 

1.1 Summary 

In this thesis we consider models of random graphs where, unlike in the clas­
sical models G (n, p), the probability of an edge arising can be correlated 
with that of other edges arising. Attention focuses on graphs whose ver­
tices are each assigned a colour (type) at random and where edges between 
differently coloured vertices subsequently arise with different probabilities 
(so-called RRC graphs), especially the special case with two colours. Vari­
ous properties of these graphs are considered, often by comparing and con­
trasting them with the classical model with the same probability of each 
particular edge existing. Topics examined include the probabilities of trees 
and cycles, how the joint probability of two subgraphs compares with the 
product of their probabilities, the number of edges in the graph (including 
large deviations results), connectedness, connectivity, the number and order 
of complete graphs and cliques, and tournaments with correlation structure. 
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1.4 The basic notions in random graphs 

This thesis aims to initiate the study of some models of random graphs with 
a correlation structure. A graph G = (V, E) is a finite set V = V (G) 
of vertices and a set E of edges between certain of these vertices; two 
vertices with an edge between them are said to be adjacent. We do not 
allow edges from a vertex to itself, so that there are no loops, and normally 
forbid multigraphs where there can be multiple edges between two vertices. 
Occasionally the edges will have an orientation, that is the edge between i 
and j is directed from i -+ j or j -+ i; this is a digraph. 

One mechanism for generating random graphs occurs where the set E is 
chosen by some stochastic mechanism, the set V having been fixed in advance. 
(Randomness in the order of V is also possible, though less studied). It is 
technically convenient (for counting arguments) to study labelled graphs 
on V = {1, 2, ... n}, that is to distinguish between isomorphic graphs which 
are not the same labelled graph. Then a model of random graphs is a rule 
assigning probabilities to each of the 2n(n-l)/2 possible labelled graphs on n 
vertices. There are obviously uncountably many ways in which one could 
do this, and very little can be said in such generality. To make progress 
one needs an amenable probability distribution; and it is clearly desirable 
that interesting events should be independent, to facilitate calculations of 
probabilities. Since the basic relation in the theory is adjacency, we might 
guess the interesting events are whether or not each possible edge occurs; 
these remarks show why much previous work on random graphs has been 
on the model G(n,p(n)) (or Gp(n) if n is clear; we shall describe this model 
as the classical model), where each possible edge arises with probability 
p(n) independently of other edges. (Often this is written G(n,p) taking the 
dependence of p on n as read; we shall try to avoid this). Another common 
model is G(n, M(n)), where M(n) of the n(n - 1)/2 possible edges occur, 
all sets of M( n) edges being equally likely; the main reason why this model 
is rather harder to study is that it has less good independence properties. 
These models are studied extensively in the standard text [B] where many 
results on the subject, whose study was initiated by Erdos and Renyi, are 
presented in a unified way; we shall often refer to this book. 

There are (at least) two main strands in random graph theory. The first 
is proving the existence of graphs with some property p, by showing that, in 
some model, P{G has p} > O. A standard example is graphs with arbitrarily 
high girth and chromatic number (this is noteworthy as a graph of large girth 
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looks locally like a tree, and trees have chromatic number 2). Arguments of 
this type can in principle be replaced by counting arguments, but in practice 
this is often impractical, so the probabilistic method yields new insight. In 
fact it is often very hard to get graphs which are explicit examples, even if the 
random graph argument indicates there are many such graphs; for example, 
concerning graphs of high girth and chromatic number, no explicit examples 
were known for many years after the probabilistic proof; the first construction 
by Lovasz required ideas from multigraph theory, and ideas from other parts 
of mathematics (the Weil estimates from number theory) were needed to get 
the first reasonably intuitive examples (so-called Ramanujan graphs). 

The second strand, studied more in [B), is asymptotic behaviour when 
the number of vertices n is large; as exact enumerative formulae are usu­
ally intractable, we instead consider some family of probability spaces such 
as {G(n,p(n))} for all n, or {G(n, M(n))}, and examine the proportion of 
graphs in G(n,p(n)) having pas n -+ 00, by suitable approximations. We say 
almost every (a.e.) graph in G (n,p) has p iflimn-tCXl P{G(n,p) has p} = 1. 
We note that this terminology, though standard in random graphs, differs 
from the use of a.e. in general probability theory; it is really a convergence 
in probability notion. 

Of great importance is the discovery that many interesting graph prop­
erties (but not all; see for example [T) and, to emphasise that the property 
is of interest, [CO)) have a 0 - 1 law in the following loose sense; given p(n) 
either a.e. graph in G(n,p(n)) has p or a.e. graph does not have p. Often 
there is a threshold function, that is a function p* (n) such that 

lim p((n)) = 00 '* lim P{Gp has p} = 1, 
n-tCXl p* n n-tCXl 

but lim p(n)) = 0 '* lim P{Gp E p} = 0 
n-too p* ( n n-tCXl 

(p*(n) is not unique but this matters little). Indeed Bollobas and Thomason 
show every monotone property has a threshold (p is monotone if and only 
if, given subgraphs Hand K of G, we have 

(K :::; H :::; G) and (K has p) '* (H has p) ; 

if the property p is monotone then P {Gp has p} is an increasing function of 
p). 
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1.5 A new model; our approach to its study 

The assumption that the edges arise independently and equiprobably is 
clearly desirable to facilitate probability calculus. However, quite apart from 
the obvious purely mathematical desire to understand what happens in more 
general circumstances, this assumption is clearly problematic in practice; for 
example, we may know that the vertices are of different types and that the 
probability an edge arises depends on the types of its two vertices. Thus 
we want to consider models, generalising G (n,p(n)), where whether an edge 
arises depends on the types of its two vertices. We chose to study such mod­
els because, while they are easily seen to differ from Gp in many ways, they 
retain a lot of independence to make calculations work, since conditional 
on the types of the vertices, edges still arise independently, though not now 
usuallyequiprobably. 

The types are conveniently represented by assigning one of k different 
colours to the vertices, provided it is clearly understood that these colourings 
have nothing to do with proper colourings where we assign a colour to each 
vertex so that no adjacent vertices are the same colour. We also emphasise 
that the objects of study are graphs, not coloured graphs; theorems will 
discuss the probability that a graph has some property, not that a graph 
with some kind of colouring has it (although in proofs we will of course 
consider the colours). Sloganising, we see things in monochrome. 

A further question is whether one wants to specify the number of vertices 
of each colour randomly or deterministically. There are arguments both ways, 
but generally models where colours are assigned to each vertex independently 
(in the cases we shall consider, from some multinomial distribution) have 
better exchangeability properties, in that the probability that an edge arises 
is the same for all edges, allowing us to compare the behaviour of graph 
invariants in our model and a classical model with that probability, which 
will be denoted by the good classical letter ll. We shall call such graphs RRC 
graphs, standing for random randomly coloured graphs, to reflect the 
two levels at which randomness is present, and we shall talk about RRC 
or new models, as opposed to the classical ones. In fact, we shall often be 
comparing the behaviour of a whole range of new models, as the probabilities 
of edges between vertices of given types vary, subject to the constraint that II 
stays fixed, with a classical model with probability ll. Of course, sometimes 
we can only prove results for certain types of RRC models, for example, those 
with just two colours. 
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1.6 What is already known about this subject? 

On the subject of classical random graphs, a great deal is known; several 
important developments have occurred since [B] appeared in the mid-1980s; 
[Bl] summarises some of these, but the subject is still evolving. 

On the other hand, there seems, on the basis of a literature search and 
a personal communication from A Thomason, to be no literature on RRC 
graphs. There are scattered papers on the situation where the edge between i 
and j arises with probability Pij, independently of all other edges (the model 
denoted G{n, (Pij)} in [B], II.l); see [Ke], [Ko] and [Ju]. Thus, if we condition 
on the colouring of the vertices, we can (and sometimes will) use their results. 

Models closely related to some of ours have been studied in [AK], which is 
basically concerned with the behaviour (for large n) of colouring algorithms 
for graphs which consist of k (k constant) blocks of nearly equal size, no 
edges between vertices in the same block and edges between blocks arising 
independently with probability P = c/n for some constant c. However the 
questions considered there are algorithmic and do not directly bear on this 
material. 

There has been some study of other models where edges are no longer 
independent; for example, the so called random cluster model studied in 
[BGJ], where, with n vertices, the probability that the set E of edges arises is 
(up to a normalising constant to make the expression a probability function) 
plEI (1 _ pt(n-l)/2- IEI qc(V,E) where c (V, E) is the number of components 
of the graph G = (V, E). This model is motivated by ideas from statistical 
physics. Another model, where one generates n independent random points 
uniformly on [0, l]d and says two points are adjacent if and only if their Zoo 
distance is at most some prescribed value x(n) E [0,1], has recently been 
studied by Appel and Russo (see [AR] and references therein), who discuss 
the rates of convergence or divergence, as n -7 00 and x(n) varies with n, of 
the maximum and minimum degrees and the connectivity; other recent work 
on this model has been done by Penrose and others. It is easy to see that 
these models have a quite different correlation structure from ours. 

Of course, there has also been study of models such as all r-regular graphs, 
([B], II.4), which in some sense have a correlation structure; however we shall 
only consider models which assign a probability to every graph on n vertices 
(except in Chapter 8). We mention also recent work by Ruczinski, Wormald 
and others on graph processes with bounded maximum degree (see [RW] and 
references therein); again the correlation structure there is very different from 
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ours. 
In addition to the fact that there is a lack of previous literature on such 

models, it is true that many probabilities (for example, the probability of 
a cycle) which are trivial to work out classically, are less obvious in our 
models. Hence some chapters consider such preliminary problems, and so 
have a rather different flavour from much of the random graphs literature, 
though later chapters contain results which look more like the usual theory. 
Again due to the lack of previous knowledge, we sometimes get a feel for 
the behaviour of invariants by simple simulation experiments (usually based 
on FORTRAN programs); however, as the aim is always to get analytic 
results, these are not critical, so we do not discuss them in detail. Also 
we sometimes use MAPLE to simplify cumbersome algebraic expressions, 
mostly in counterexamples to putative theorems rather than being critical 
to the development. We have marked such equations by using some phrase 
such as 'using computer simplification'; the technique is probably no more 
unreliable than hand calculation, though we have usually tried to check some 
simple cases of such formulae by hand. Similarily, some matrix computations 
have been performed in MATLAB. 

We mention one way in which our models will be harder to study than the 
classical one. If p is a property of graphs with threshold probability O:'*(n) 
in GOLl and we have an RRC model with probabilities pij(n) then, setting 
r(n) = minl<i,j<dpij(n)} and t(n) = max19,j~dpij}, it is clear that 

lim r(n) = 00 =} lim P{Ga has p} = 1 but 
n-+oo 0:'* (n ) n-+oo 

lim t(n) = 0 =} lim P{G has p} = o. 
n-+oo 0:'* ( n ) n-+oo 

However in our situation, some of the pij(n) will be larger than O:'*(n) and 
others will be smaller, so the behaviour is less easy to predict. 

1.7 Contents of the various chapters of this thesis 

We now outline the areas examined in this thesis, discussing the main results 
proved; these are all original results (so far as we know), though of course 
some of them will depend for the proofs on the work of other authors. In the 
first four chapters, we consider how the correlation structure is and is not 
manifested in our models. 
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In Chapter 2 we consider the probabilities of simple configurations of 
edges, such as trees and cycles, arising, and see whether they are the same 
as, greater than, or less than classically. The main original results are a 
classification of when trees have the same probability of arising as classically, 
several partial results towards the conjecture that the probability that any 
tree arises is always at least as large as classically, formulae for the probability 
of a cycle, and some consequences including the fact that the probabilities of 
cycles distinguish between classical and new models except in trivial cases, 
fairly precise results on when cycles are more or less likely than classically, 
and an asymptotic estimate of the probability of a cycle. 

This leads naturally to considering in Chapter 3 how the joint probability 
of two subgraphs arising compares with the product of their probabilities of 
arising. The main result is Theorem 3.1, stating that in a certain model Gp,q 
defined in section 1.8 below, provided p > q, the joint probability is always 
at least as large as the product of the probabilities. Much of the rest of 
the chapter consists of complements to and extensions of that result; what 
happens if q > p, a (partial) extension to some more general models, and 
proving that certain putative extensions are not possible. We also discuss 
the role of the FKG and Janson inequalities, which are used to study such 
questions in the classical model; it is shown that these inequalities do not 
hold in general in our setup, but that some at least of their consequences can 
be recovered by different methods. 

In Chapter 4 we forget about the pattern of the edges and concentrate 
simply on their number, mainly by relating its moments in the new and old 
models; results include comparison of the moments, especially the mean and 
variance for all models, a stochastic dominance result for one class of models, 
a discussion of properties generalising independence for the edges leading to 
a central limit theorem and some discussion of Poisson approximation, and 
an estimate of the maximum degree in Gp,q by exploiting results of Bollobas 
on the classical model. 

In Chapter 5, we study the more technical subject of large deviations in 
the number of edges; a form of the Gartner-Ellis theorem is used to obtain a 
complete result for Gp,q, despite some technical subtleties, some consequences 
on the non-existence of martingales are noted, and some partial results for 
general models are obtained by exploiting a link with the seemingly unrelated 
area of ESS theory. 

In Chapter 6 we study connectedness; G is connected if it has just one 
component. Even if G is disconnected, we are interested in the number of 
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components and their orders. We also study the various related measures of 
connectivity, that is how fragile the connectedness of a connected graph is. 
The main results include theorems giving the probability of connectedness in 
Gp,q for small values of p and q, a result (using a result of Juhasz) on one of 
the various measures of connectivity in Gp,q and some consequences for the 
other measures, and some results on the diameter of our graphs. 

In Chapter 7 we study cliques; a complete subgraph of G is A c 
V( G) with all possible edges between vertices in A existing in Ej a clique a 
complete subgraph contained in no other complete subgraph. Its order is the 
number of vertices in it. We compare numbers and orders of cliques in our 
and the classical model, and also discuss related topics such as independent 
sets and chromatic numbers. The main results are formulae for the expected 
numbers of these in our models, and some discussion of their asymptotic 
behaviour, with partial results on the variability of the number of complete 
graphs, and the fact that the distribution of clique sizes is often multimodal. 
We also consider the evolving clique, a birth process to generate a complete 
graph, and obtain some results comparing how it grows in our models with 
classically. 

So far we have discussed only simple graphs, but there are other models 
where similar ideas could be useful. One such is tournaments, that is 
complete graphs made into digraphs by orienting each edge i - j from i to j 
or vice versa (not both). There is a classical model of random tournaments, 
where the edge between i and j goes i -t j or j -t i equiprobably, with the 
orientations of different edges being independent. Here, by analogy with our 
models of undirected graphs, we make the orientation of an edge dependent 
on the random colours of the two vertices involved. We investigate some 
basic properties of such models in Chapter 8; main results include formulae 
for the probability of a (directed) cycle and results on when it is more or less 
likely than classically; comparison of the joint probability of two subgraphs 
with the product of their probabilities in a certain model; results on the 
number of (directed) 3-cycles and the probability of irreducibility; and the 
outdegrees of the vertices, including large deviations. 

Finally, in Chapter 9, we summarise where we have got to and give some 
pointers to future topics meriting investigation. We also make some brief 
remarks about applications and statistical questions related to the work. 
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1.8 Basics, especially notation. 

The main purpose of this subsection is to introduce some notation which 
will be used throughout the thesis. Much of it will be fairly standard. The 
word positive means strictly greater than zero; non-negative means positive 
or zero, with similar conventions for negative and non-positive. Similarily, 
functions or sequences will be called increasing if they do so strictly and 
non-decreasing if they are only increasing in the weak sense. [a, b] denotes 
the closed interval a ~ x ~ b and (a, b) the open interval a < x < b. Vectors 
will be written in boldface, for example s, and matrices will be denoted by 
capital letters. Logarithms are to the base e, that is natural logarithms, 
unless another base a is indicated as a subscript, for example log a (n). The 
rth derivative of f(x) will often be denoted pr}(x). The symbol ~ will be 
used to indicate approximate equality, often where higher order terms of an 
expansion are of little interest. 

There will be no global numbering of equations; however (*), (&) and sim­
ilar markers will occasionally be used on equations which will be frequently 
discussed within that chapter. The symbol. denotes the end of a proof (or 
absence of one if the result is obvious in its context). 

Graphs, as stated before, are finite, without multiple edges or loops, and 
undirected (many authors call these simple graphs), except edges are directed 
in Chapter 8. We consider labelled graphs on vertex set V = {1, 2, ... n} 
throughout this thesis, unless explicitly stated otherwise; thus, if we talk of 
the probability that some collection of edges arises, we mean the probability 
that some particular collection of labelled edges arises, not that some graph 
isomorphic to that collection arises. As mentioned before, this simplifies 
counting arguments, but is a weakness in some situations where we really 
want to examine unlabelled graphs. Classically this problem is controlled by 
a theorem of Wright ([BJ, Theorem 1X.3) which says roughly that, unless M 
is extremely large or extremely small, the numbers of unlabelled and labelled 
graphs on n vertices with M edges, UM and LM respectively, satisfy 

LM 
UM"" -, as n -t 00. 

n. 
(UM 2:: LM/n! clearly; the main work the other way is showing a.e. such 
graph has trivial automorphism group). A result for Go follows from the 
theory linking the properties of G M for values of M close to n( n - 1)0:/2 to 
properties of Go; see [BJ, Theorem 11.2 for details. The link between GM and 
our models is more tenuous, however, and we have no corresponding result. 
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Given nand k, the number of colours, we specify a k-vector of probabilit­
ies s = (SI,S2",Sk)T, where Si is the probability that a vertex receives colour 
i, so that Si ~ 0 Vi and E7=1 Si = 1. We let ~k be the k-dimensional simplex 
of such vectors; the support of s E ~k is {i : Si =J. o}. 

We also specify a k by k matrix P where Pij is the probability that an 
edge between a vertex of colour i and one of colour j arises. Of course we 
must have the Pij E [0, 1], and since our graphs are undirected P must be 
symmetric; these are the only restrictions on sand P. 

Definition 1.1 An RRC model of random graphs with parameters s 
and P is any model of random graphs obtained in the above way. We will 
denote it by f(n, k, s, P). 

We shall also often consider the family of such models as n varies, with 
k, sand P fixed. (It may well be interesting to study the situation where 
k, and hence sand P, vary with n in some structured way, but we shall not 
do so in this thesis. We will however sometimes deal with the case when, 
though s (and so also k) remain fixed, P varies with n). 

As noted before, we will often compare the behaviour of some graph 
invariant in the f(n, k, s, P) model, or a family of such models, with a classical 
model (or family of models) where edges arise independently with the same 
average probability E~=lj=l SiSjPij = 0', so that any differences between the 
two models or families of models are due solely to the correlation structure 
in f(n, k, s, P). Since the events of interest are often that some collection 
of edges arises, we are often comparing the probability of what is in some 
sense the same event A in two different regimes; we shall usually describe it 
as P{A in f(n, k, s, PH or P{A in Ga } to make it clear in what model the 
calculation is being carried out. 

Let Ni(S), for S C V(G) be the number of vertices in S of colour i; when 
S is the whole ofV(G), we shall omit mention of it. We let n = (NI' N2 ... Nk ). 

Of course Ni '" Bin(n, s;). Jointly, the Ni have a multinomial distribution; 

An obvious special case, where better results are often possible, is when 
k = 2, so that there are two colours, red and blue, and 

P{v is red} = s, P{v is blue} = 1 - S, Pll = p, P22 = r, Pl2 = P21 = q. 

14 



Since such models often occur in this thesis, we introduce the special notation 
sGp,q,r for them. Note that the first subscript after the G always refers to the 
red-red edge probability, the second to the red-blue probability, and the third 
to the blue-blue probability. We often specialise further to the case s = 1/2; 
then we omit s and write Gp,q,r' If the red-red and blue-blue probabilities are 
equal, we will write sGp,q or Gp,q rather than sGp,q,p or Gp,q,p; thus if there are 
only two subscripts on the right, we have p = r. Since Gp,q is the simplest 
RRC model other than the classical model, many of our results will be about 
it. We have 

0: = S2p + 2s(1 - s)q + (1- s)2r in sGp,q,n 

0: = (S2 + (1 - s )2) P + 2s (1 - s) q in sGp,q, 

p + 2q + r . P + q . 
0: = III G pqr and 0: = -- III G pq . 

4 " 2' 

We often write Pp,q{A} or Pa{A} instead of P{A in Gp,q}, or P{A in Ga}. 
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2 Manifestation of correlation structure in trees 
and cycles 

2.1 TID models 

We introduced f(n, k, s, P) in order to generate models with a non-trivial 
correlation structure so our first task is to investigate how these correlations 
are manifested in behaviour different from that of Go.. We shall see that, at 
least in families of RRC models, as n varies, correlation structure is always 
manifested, except in trivial cases; however, it will be convenient to delay 
the precise statement and proof until Theorem 2.17. 

We saw in Chapter 1 that, by the definition of the corresponding classical 
model, the overall probability that a given edge arises is the same in both 
models. Thus the first question to address is when the probability of several 
edges all arising is the same as classically. We first note the intuitively obvious 
fact that collections of edges on disjoint vertex sets are independent. Note 
that the events we are dealing with here are just the events that some given 
edges arise; we say nothing about the other edges. 

Lemma 2.1 Suppose that, in some RRC model, A is the event that some 
collection of edges on vertex set U arises, B is the event that some collection 
of edges on vertex set V arises, and that U and V are disjoint so there are 
no common vertices or edges. Then A and B are independent events. 

Proof. Writing c(U) and c(V) for possible colourings of U and V 

P{A n B} = L P{A n B I c(U), c(V)}P{c(U), c(V)}. 
c(U),c(V) 

Conditional on c(U) and c(V) the edges arise independently, so this is 

L P{A I c(U),c(V)}P{B I c(U),c(V)}P{c(U),c(V)} 
c(U),c(V) 

L P{A I c(U)}P{B I c(V)}P{c(U), c(V)} 
c(U),c(V) 

since whether or not the edges in A (respectively B) arise depends only on 
c(U) (respectively c(V)). Since U and V are disjoint, they are coloured 
independently, so this is 

L P{A I c(U)}P{B I c(V)}P{c(U)}P{c(V)} 
c(u),c(V) 
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and carrying out the two summations this is P{A}P{B} as required .• 

Thus attention focuses on connected sets of edges. Often in graph theory 
the simplest connected graphs are trees, that is connected subgraphs with 
no cycles; a related notion is forests, graphs whose components are trees. 
(A particular type of tree we shall often consider is a path, a tree whose 
vertices can be renumbered 1, 2 ... n so that the edges are i - (i + 1) for each 
1 :s; i :s; (n - 1); the length of this path is n - 1). Thus we ask when the 
probability that the edges of a tree arise in one of our models is the same as 
classically. Again note that we only ask whether or not the edges arise; we do 
not ask anything about the other edges. We make the following definition; 

Definition 2.1 An RRC model r(n,k,s,P) is TID (for tree indiscern­
ible) if and only if, for all trees T on :s; n vertices, the probability that the 
edges of T arise is equal to the probability that they arise in the corresponding 
classical model. 

Theorem 2.2 The model r (n, k, s, P) is TID if and only if, for all i such 

that Si -# 0, Ej=l PijSj = Q. 

Proof. Any tree T can be built up sequentially. The first edge arises with 
probability Q in both models. Thereafter, at each stage, we are at some 
vertex v and know its colour; by the definition of tree, the next vertex w has 
not yet occurred so its colour is unknown. Thus, taking T to be the path 
1 - 2 - 3, we require that P{v - w I c(v)} = Q for all colourings c(v) of v 
which have a non-zero probability of occuring and all vertices v, w E V( G), 
if the probability of this tree is to be the same as classically; that is, we need 

k 

LPijSj = Q VI :s; i:S; k such that Si -# O. 
j=l 

Conversely if this condition holds, the model is TID, as required .• 

Note that Theorem 2.2 shows that whether or not a family of models is 
TID can be tested on one particular tree, namely the path of length 2. Of 
course it does not imply that the distribution of the number of trees which 
arise is the same in the two models, as the joint existence of trees may be 
correlated in the new model even when they are not in the classical model. 
We discuss how the probability of trees compares with its classical value in 
non-TID models in section 2.4; for now, we draw corollaries of Theorem 2.2. 
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Corollary 2.3 The probability of all the edges of a given forest F arising in 
G is the same in any TID model r (n, k, s, P) and in the Ga. 

Proof. Since the various components in a forest have neither vertices nor 
edges in common, whether they arise or not is independent in both models, 
by Lemma 2.1. Thus, in both models, the probability that all the edges 
arise is just the product of the probabilities of the various components; the 
components of a forest are trees, and Theorem 2.2 shows that the probability 
of a tree arising is the same in the two models. The result follows .• 

Theorem 2.2 also shows that there are lots of TID models. For example, 
if all the Sj are equal (so in particular none of them is zero) the model is 
TID if and only if all row (or column) sums of P are equal (to ka); thus the 
matrix is a scaling of a stochastic symmetric matrix, and even the number an 
of symmetric permutation matrices (recall a permutation matrix has exactly 
one 1 in each row and column, all other entries being zero, so they are a subset 
of the symmetric stochastic matrices) satisfies an rv e-l!4nn!2e...fo-n!2/2 by 
[VW, p128J. More precise information about the structure of the convex set 
of symmetric stochastic matrices may be harder to get since (for example) it 
is not true that every symmetric stochastic matrix is a convex combination 
of symmetric permutation matrices (in three dimensions, the four symmetric 
permutation matrices are 

010 
A = 1 0 0 

o 0 1 

001 
B = 0 1 0 

100 

100 
C = 0 1 0 

001 

100 
D = 0 0 1 

010 

and then we have that M = ,xA + pB + vC + (1 -,x - p - v)D is 

l-,x-p 
,x 
p 

,x 
p+v 

l-,x-p-v 

p 
l-,x-p-v 

,x+v 

and thus we have the constraint that m22 ~ m13; however the matrix 

0.3 0.2 0.5 
0.2 0.4 0.4 
0.5 0.4 0.1 

though symmetric stochastic, does not satisfy this constraint. 
Theorem 2.2 also allows us to completely classify when sGp,q,r is TID; 

analogous results for models with several colours would be more complex. 
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Corollary 2.4 sGp,q,r is TID if and only if 8 = 0, 1 or (r - q) / (p + r - 2q), 
or p = r = q. In particular, Gp,q is always TID. 

Proof. The cases when 8 = 0 or 1 are easy, so we suppose 8 ~ {O, I} Then 
using Theorem 2.2 the model is TID if and only if 

82p + 28 (1 - 8) q + (1 - S)2 r = 8p + (1 - s) q = (1 - s) r + sq (*) 

{:} 8(Sp+ (1 - 8)q) + (1- s)(sq + (1- s)r) = sp + (1- 8)q = sq + (1- 8)r 

{:} s (p - q) = (1 - 8) (r - q). 

Hence, if p+ r - 2q =I 0 we get 8 = (r - q)/(p+ r - 2q) and thus calculate the 
common value in (*) to be (rp - q2)/(p - 2q + r). If p + r - 2q = 0 equation 
(*) becomes 2s(q - r) + r = 8p + (1 - 8)q = (1 - s)r + sq and the previous 
equality implies (as p + r - 2q = 0) r = q and thus p = q also. 

Finally, to see that Gp,q is TID, note that if p = r and p + r - 2q =I 0 
(r - q)/(p + r - 2q) = 1/2 as required. If p + r = 2q, p = r '* q = p also .• 

To close this section, we consider when, given a symmetric k by k matrix 
P with Pij E [0,1], there exists s E Lln such that r(n, k, s, P) is TID. We 
first note that we can always obtain degenerate TID models from old ones 
by adding further colours which all arise with probability 0, and expanding 
the matrix P by adding rows and columns, with any entries in [0,1] we like, 
subject to the symmetry condition on P, to correspond to these colours. Thus 
we define f(n, k, s, P) to be non-degenerate if Si =I 0 for all 1 ~ i ~ k, 
and note that we can restrict attention to non-degenerate models; now the 
condition for tree indiscernibility in Theorem 2.2 is purely a system of linear 
equations in the Pij and 8 j. 

Certainly, even then there need not be such an S; for example if r = 0.3, 
q = 0.4, P = 0.6, (r - q)/(p + r - 2q) = -1 tt [0,1] so no Gp,q,r is TID, by 
Theorem 2.4. More generally, if some row of P is a multiple =11 of another, 
Ps cannot be a constant multiple of 1 = (1,1, ... l)T unless the multiplier 
is zero, which is impossible if sand P are positive. For the matrix with 
all entries equal to a however, any choice of s makes the model TID. We 
summarise the main restrictions in the following theorem. 

Theorem 2.5 Let s be a vector in Llk making f(n, k, s, P) into a family of 
non-degenerate TID models. If t is any vector in Lln making r(n,k, t, P) 
into a family of non-degenerate TID models, then Pt = Ps. Hence if P is 
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invertible, there is at most one such S; there is such an s if and only if all 
components of P- 11 are ~ o. 

If P is singular there is no such s if the equation Ps = Al has no solutions 
with s E ~k and A ~ 0; there is one solution if that equation is soluble and 
3v with Pv = 0 and L7=1 Vi = 0; otherwise there are infinitely many such s. 

Proof. By Theorem 2.2, a non-degenerate model is TID if and only if we have 
Lj=1 PijSj = fr Vi. This is if and only if Ps = Al for some A; the left to right 
implication is clear, and in the other direction, if Ps = AI, pre-multiplying 
both sides by sT and using the facts that sT Ps = fr and that L7=1 Si = 1, 
we have A = L7,j=1 SiSjPij = fr. Thus, if Ps = Asl and Pt = ATI, we have, 
as L7=1 Si = 1, that AT = sT Pt = t T Ps by P symmetric; this is AS by the 
same argument, so Ps = Pt, and so if P is invertible s = t as stated. 

Otherwise P is singular. Then if s f. t both make the model TID, as 
Ps = Pt by the previous paragraph we have s - t is in the kernel of P 
and the sum of its components is zero. Conversely, if the kernel contains 
such a vector z, adding a suitably small non-zero multiple of it to s, all of 
whose components are positive since the model is non-degenerate, gives a 
distinct vector t which still has positive components summing to 1 and for 
which Pt = J.LI for some J.L; then any convex combination of t and s will also 
have these properties, so there are indeed infinitely many choices of s making 
r(n, k, s, P) TID .• 

2.2 Correlation structure in cycles in Gp,q. 

In this section we consider cycles. It is clear that the argument of Theorem 2.2 
fails for cycles, and we will show that this is not just an accident of the method 
of proof; cycles do show up the correlation structure, except in certain trivial 
cases. In this section, we deal with the case of Gp,q where an explicit result 
is possible, before considering the general RRC model in section 2.3, where 
the result is less explicit. The fact that cycles are important in manifesting 
correlation structure in our models will be reinforced in chapters 3 and 4. 

We first obtain the formula for the probability of a cycle in Gp,q. In the 
proof, for the sake of notational clarity, we describe the r-cycle whose edges 
join 1 and 2,2 and 3, ... , (r -1) and r, and rand 1 as 1 -+ 2 -+ ... -+ r -+ 1, 
but this should not be misinterpreted as meaning that the edges are oriented. 
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Theorem 2.6 

(
p _ q)r 

Pp ,q{l --+ 2 --+ ... --+ r --+ I} = a r + -2-

Proof. P{l --+ 2 --+ ... --+ r --+ I} = P{l --+ 2 --+ ... --+ (r + 1) I c(l) = c(r+1)}. 

Set Pr = P{l --+ 2 --+ ... --+ r I c(l) = c(r)}, so that the probability of the 
cycle is Pr+1 , and Qr = P{l --+ 2 --+ ... --+ r I c(l) =I- c(r)}. By conditioning, 
and the fact that Gp,q is TID by Corollary 2.4, we have 

r-l P{l 2 } Pr + Qr Q 2{ r-l Pr} ( ) a = --+ --+ ... --+r = ~ r= a -- * 
2 2 

Also, since the events that 1 --+ 2 --+ ... --+ r arises and that r --+ (r + 1) arises 
are independent conditional on c(l), c(r) and c(r + 1), 

P. PrP + Qrq D p. P - q r-l r+l = 2 ~ Fr+l = r-
2

- + qa . 

by the formula (*) for Qr and some manipulative algebra. But the solution 
of the recurrence Xr = aXr-l + bcr

-
2 with initial condition X2 = d is 

cr - 2 _ ar - 2 

Xr = ar
-

2 d + cb provided a =I- c. 
c-a 

So here, we see that if a = (p - q)j2 =I- c = a, as d = p and b = q, that 

(
p _ q)r-l a r- 1 _ (l~=!l.y-l (P _ q)r-l 

Pr+1 = P -2- +qa (~_ 9) ~ Pr+1 = (p - a) -2- +ar 

which by some more manipulation is equal to the expression in the statement 
of the theorem. Otherwise a = c, that is p;q = ~, so q = 0, and then the 
only way the cycle can arise is for all the vertices to be the same colour, 
which happens with probability 2-(n-l); conditional on this, the cycle arises 
with probability pn so the probability of the cycle is 2fl which is again easily 
seen to be equivalent to the expression in the statement of the theorem. • 

Corollary 2.7 

(
p _ q)r-l 

Pp,q{l - 2 - ... r I c(l) = c(r)} = ar
-

1 + -2- and 

( ) 

r-l 

P{l - 2 - ... r I c(1) -I- c(r)} = ar- 1 - p; q 
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Proof. The formula for Pr was proved explicitly in the theorem; the one for 
Qr follows from it and (*) .• 

The formulae in Corollary 2.7 will be used quite often in Chapter 3. In 
Theorem 8.3 we will see a slightly different argument which can be modified 
to give another proof of Theorem 2.6. A proof similar to Theorem 2.6 works 
rather more generally; for example, in a model with k equiprobable colours, 
all diagonal entries of P equal to p, and all off-diagonal entries q, it shows 

P{an r-cycle} = (p + (: - l)q) r + (k -1) (P ~ qr 
but as Theorem 2.12 will subsume this result, we omit the proof. 

Corollary 2.8 The expected number of cycles of even length is larger in Gp,q 

than Go for all r. The expected number of cycles of odd length is larger in 
Gp,q than in Go when p > q and smaller when p < q. In particular, the 
probability is the same as classically if and only if p = q. • 

This can be thought of informally as reflecting the fact that if q > p the 
graph is becoming more like a bipartite graph with classes the reds and the 
blues. (Recall a bipartite graph can only have cycles of even length). 

Note that these calculations for trees and cycles depend heavily on the 
good exchangeability properties of our model. With predetermined numbers 
of reds and blues, the probability of a tree or cycle would depend on the 
colours of previous vertices making the formulae more complex. 

2.3 The probability of a cycle in more general models 

We now find the probability of a cycle in any f(n, k, s, P). We first define a 
non-negative symmetric matrix Q and a non-negative vector v by 

qij = ylsiPij yIsj and Vi = yIsi for 1 ::; i, j ::; k. 

so that vTQv = Q and (v, v) = 1, where (x,y) = Ej=l XiYi is the usual 
inner product for k-dimensional real vectors. We shall often make use of the 
elementary fact that Q has k real eigenvalues (counted with multiplicity), 
and that there is an orthonormal basis of eigenvectors of Q. The trick of 
working with Q rather than P is, since it depends on taking the square roots 
of the Sj, rather unnatural from a probabilistic point of view, but it clearly 
works. 
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The next theorem summarises the basic facts from the Perron-Frobenius 
theory of non-negative matrices, which we shall use at various points in what 
follows. Note that we deal mostly with symmetric matrices, making the 
distinction between left and right eigenvectors redundant. 

Theorem 2.9 Let A be a non-negative k by k matrix. Suppose that for every 
pair i,j of indices, 1 ~ i,j ~ k there is a positive integer m(i,j) with Am(i,j) 

having its (i,j) entry positive; we say A is irreducible. Then there exists 
an eigenvalue A (the maximal, or Perron-F'robenius eigenvalue) of A with the 
following properties; 

1. A is real and positive. 
2. With A can be associated positive right and left eigenvectors of A. 
3. A ~ 1 JL 1 for any other eigenvalue JL =1= A. If the stronger condition than 

irreducibility, that A is primitive holds (that is, there exists k > 0 with all 
entries of Ak positive) holds, then A >1 JL 1 for all other eigenvalues JL. 

4- The eigenvectors associated with A, for any irreducible A, are unique 
(up to constant multiples). 

5. For any irreducible A, A is between the minimal and maximal row 
sums of A. 

Proof. [Sel pp 1-6 and 20 .• 
We start by obtaining a general formula for the probability of an r-cycle. 

Theorem 2.10 

k 

P {I -+ 2 -+ ... -+ r -+ I} = l: Ai in r ( n, k, s, P) 
i=1 

where Ai are the k eigenvalues of Q counted with multiplicity. 

Proof. Conditioning on the colours of the vertices of the r-cycle 

k 

P{l -+ 2 -+ ... -+ r -+ I} = l: Si! Si2 ... SirPi! i2Pi2ia ···Piri! 
;! , ... i r =1 

k 

l: qi li2qi2ia···qi r i! 
il,.··in =1 
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using the definition of Q. We now sum out the variables one by one, each 
such summation corresponding to a matrix multiplication, obtaining 

k k 

L (Qr);l;! = tr(Qr) = LA~ 
i=1 

where tr denotes the trace; the last equivalence is simple linear algebra .• 

We first check that this result includes the generalisation of Corollary 2.7 
mentioned after that result, using the following easy lemma. 

Lemma 2.11 Let I be the k by k identity matrix, and J the k by k matrix 
all of whose entries are equal to 1. Then the eigenvalues of P = (p - q) I +qJ 
are p + (k - 1) q with multiplicity 1 and p - q with multiplicity (k - 1). 

Proof. Clearly 1 is an eigenvector with eigenvalue p + (k - l)q. As P is 
symmetric it has an orthogonal basis of eigenvectors, so any other eigenvector 
v is perpendicular to 1; thus Jv = 0 and so Pv = (p - q)v as required .• 

Theorem 2.12 Suppose we have a model with k equiprobable colours, with 
all diagonal entries of P being p, and all off-diagonal entries q. Then 

(
P+(k_l)q)r (p_q)r 

P{anr-cycle} = k +(k-l) -k-

Proof. Since the Si are all equal, we will have Q = tP . Now P = (p-q)I +qJ 
and so the result follows from Lemma 2.11 and Theorem 2.10 .• 

It is interesting to note that the error term here is (for large r) smaller 
when k > 2 than when k = 2; informally speaking, having many colours to 
choose from dilutes the correlation structure. 

The natural analogue for cycles of the notion of tree indiscernibility is 

Definition 2.2 An RRC model f(n, k, s, P) is cycle indistinguishable 
(CID) if and only if the probability of every cycle (of whatever length) in 
that model is equal to the probability of that cycle in the corresponding clas­

sical model. 

Again, note that we are talking about the probability that the cycle arises, 
possibly with some other edges, not that the cycle arises and nothing else. 

We now show that the definition is a damp squib; any CID model with 
n ~ 8 is essentially the same as the corresponding classical model. The proof 
proceeds by first understanding the spectrum of Q in a CID model. 
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Theorem 2.13 Suppose we have an RRC model r (n, k, s, P) with n ;::::: 8. 
Then r (n, k, s, P) is CID if and only if Q has one eigenvalue equal to 0: and 
all other eigenvalues are 0. 

Proof. The case when Q = 0, or equivalently 0: = 0, is trivial, so we 
assume Q =J. 0 and so a =J. 0 for the rest of the proof. As the model is CID, 
o:r = ~;=I Aj for all r :S n by Theorem 2.10. In particular, a 4 = L:f=I At 
and 0:

8 = L:f=I A? Note that all terms in both ofthese relations are real and 
non-negative. Squaring the first relation, and equating the two expressions 
for a8 , we have that the sum of all the cross-terms At A1 (i =J. j) must be 
zero; as the cross-terms are themselves non-negative, each cross-term must 
be zero, and this implies that all but at most one of the At must be zero; 
thus all but at most one of the Ai must be zero; then the remaining one must 
be 0:. 

The converse is immediate from Theorem 2.10 .• 

In fact, the additional restrictions on Q enable us to say quite a bit more. 

Lemma 2.14 If r(n, k, s, P) is a CID model with n ;::::: 8, the eigenvector of 
Q with eigenvalue a {whose existence and uniqueness follow from Theorem 
2.13} is v = (Js1, -/82, .. ·.JSkf· 

Proof. Again the case when Q = 0 {:} a = 0 is trivial, so we assume 0: =J. 0 
for the rest of the proof. As Q is symmetric, it has a basis of eigenvectors 
{ei} for 1 :S i :S k which are orthonormal with respect to the standard inner 
product (,); let el be the eigenvector with eigenvalue 0:. If v = L:;=I /Jjej, 
then Qv = /Jlo:el => 0: = (Qv, v) = /J~ a => /J~ = 1 since a =J. 0. Also 
(v, v) = 1 => L:;=I/J; = 1 => /Jj = 0 for j ;::::: 2 so v = /Jlel is an eigenvector 
of Q with eigenvalue a, as required .• 

Lemma 2.15 Let r(n, k, s, P) be a CID model with n ;::::: 8. If Q =J. 0, Q 
consists (after re-numbering the colours) of an r by r block of positive entries 
qij = AiAjqll for 1 :S i, j :S r :S k, with zeroes in the other k2 

- r2 positions; 
also, all the entries of the r by r block are positive. 

Proof. If 0: = 0, then Q = 0 and the result is trivial. Otherwise 0: > O. By 
Theorem 2.13, Q has rank 1 so any two rows are linearly dependent. Thus if 
two rows both contain a non-zero entry, either is a non-zero multiple of the 
other. Renumber the colours so that the rows which do not consist entirely of 
zeroes are the first r ::; k rows. Thus (by symmetry) any non-zero entries are 
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in the top r by r submatrix of Q, which we shall call R; R inherits symmetry 
from Q, each row of R has at least one non-zero entry, and the i-th row of 
R is a non-zero multiple Ai of the first row; thus by symmetry also the i-th 
column is Ai times the first column. Thus qij = Aiqlj = AiAjqll and so, since 
some qij, 1 :S i,j :S r is non-zero, qll is non-zero and thus all the qij > 0, as 
claimed .• 

We can now pull strings together. 

Theorem 2.16 Let r(n, k, s, P) be a GID model with n 2: 8. Then there 
exists r :S k such that after renumbering the colours, the support of s is the 
first r components and P has an r by r block with all elements equal to a in 
the top left-hand comer, the other k 2 - r2 entries being arbitrary (subject to 
P being symmetric with entries in [0,1]). In particular, the probability of any 
set of m edges arising is am irrespective of the colouring, so that the model 
is essentially a classical one. 

Proof. Again if a = 0, Q = 0 and everything is trivial; thus we assume a i- 0 
and so Q i- O. By Lemma 2.15, after renumbering the colours, Q consists of 
an r by r block, r :S k, where there exist Ai > 0 such that qij = AiAjqll > 0 
for 1 :S i, j :S r and has its other k 2 - r2 entries zero. Note that the trace of 
this block must be a since this is the sum of the eigenvalues of the block, so 

r 

L A~qll = a (*). 
j=1 

Also, v (renumbered at the same time as Q obviously) is the eigenvector of 
Q with eigenvalue a by Lemma 2.14. Using the fact that vTQv = a, we have 

By the Cauchy-Schwarz inequality, we thus have 

Here we use the fact that L:j=1 v; = 1 by the definition of v together with 
the fact that v j = 0 for j > r, and the fact (*) above to evaluate the second 
sum. Thus we have equality in Cauchy-Schwarz, which implies that Aj = CVj 
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for all 1 ~ j ~ r, where c is some constant; in fact, c2ql1 = 0: by use of (*) 
again. Thus 

ViPijVj = qij = AiAjql1 = Vic2ql1Vj = ViO:Vj '11 ~ i,j ~ r 

and as Vi =f 0 for 1 ~ i, j ~ r we see Pij = 0: for these values of i and j (the 
others are essentially arbitrary) and now all claims have been proven .• 

That being CID is a highly demanding property is in keeping with the 
remarks on the central role of cycles in showing up correlation structure made 
after Corollary 2.7. Note that in particular, this shows that CID implies TID; 
we will reprove this in section 2.4. Of course there are TID models which are 
not CID; an example is Gp,q with P =f q, by Theorem 2.6. 

Theorem 2.16 makes it easy for us to show that correlation structure 
is always manifest in families of RRC graphs except in the circumstances 
described in the statement of Theorem 2.17, which we will henceforth refer 
to as trivial cases (note that degenerate and trivial are distinct notions!). 

Theorem 2.17 Let f(n, k, s, P) be an RRC model with n 2: 8. Then the 
edges arise independently with constant probability 0: if and only if all entries 
of P which correspond to colours arising with non-zero probability are equal 

to 0:. 

Proof. If the edges arise independently with probability 0:, then the prob­
ability of any cycle is equal to its classical probability, so the model is CID 
and hence of the form stated by Theorem 2.16. On the other hand, if the 
model is as stated, we have, for any collection of edges, that the probability 
that they all arise is equal to the probability that they arise conditional on 
all vertices taking one of the colours which arise with non-zero probability, 
by Bayes' theorem, since the probability of any vertex taking another colour 
is zero and the vertices are coloured independently. Since after this condi­
tioning the edges do arise independently with probability 0:, the edges do 
indeed arise independently with probability 0:. • 

It may be possible to get pathological behaviour for n ~ 7; this is certainly 

possible for n = 3. 
One aspect of Theorem 2.10 is that it gives the asymptotic rate of decay 

for the probability of the cycle; 

Theorem 2.18 Suppose Cr denotes an r-cycle, and Al 2: ... 2: Ak are the 
eigenvalues of Q (which are all real as Q is symmetric). Then 

1· logP{C2r} I (\) d I" 10gP{C2r+d 1 ( ) 1m = og Al an 1m = og /-l 
r-+oo 2r r-+oo 2r + 1 

27 



where /1 is the largest eigenvalue of Q for which -/1 is not an eigenvalue with 
the same multiplicity (or zero if the spectrum of Q is symmetric about the 
origin). 

Proof. By Theorem 2.10 

1· log P {Cr } l' log(~~=l Ai) ( ) 
1m = 1m * 

r~oo r r~oo r 

= lim (log(Ar) + log(l + ~7=2(A;jAY)). 
r~oo r r 

If r is even, this is 

log(A) + lim log(1 + B) 
r~oo r 

where 0 ~ B ~ k - 1, and the limit term goes to zero as r --t 00 giving the 
claim. 

Otherwise r is odd. Then for each eigenvalue T} for which -T} is an ei­
genvalue of the same multiplicity, the rth powers of T} and -T} cancel in the 
expression (*). For the largest eigenvalue /1 for which -/1 is not an eigenvalue 
with equal multiplicity, /1 must have greater multiplicity than -/1 (consider 
a large odd value of r in Theorem 2.10 and use the fact that the probability 
of an r-cycle is non-negative). If the multiplicity of /1 is n1 and that of -/1 
is n2 < n1, we have by (*) 

lim log(~7=lAn = lim(log(nl-n2)+log(/1r)+log(1+~(A;j/1Y/(nl-n2))) 
r~oo r r~oo r r r 

1 () 1
· (log(n2 - nd + log(1 + ~(A;j /1Y /(nl - n2))) 

= og /1 + 1m 
r~oo r r 

where the sum is now over only those Ai whose modulus is less than /1; hence 
by the same argument as before, the error term goes to zero, and the claim 
is now proven. • 

The case where the spectrum of Q is symmetric about the origin can 
happen, for example in Go,q where as observed before the probability of a 
cycle of odd length is indeed zero. Of course if Q is primitive, Al = /1. 

28 



2.4 Are trees more likely to arise than classically? 

In the previous sections we discussed under what circumstances the probab­
ility that a tree or a cycle arises is the same as classically. We now ask how 
such probabilities compare with the classical value when they are not equal 
to it, and in particular when they are greater than or less than classically. 
In this section we consider this problem for trees, and in the next section 
we give results on the question for cycles, which will depend on one of the 
results we prove in this section. 

Initial calculations of the probabilities of some trees on small numbers 
of vertices in some simple RRC models suggested that they are always at 
least as likely to arise as classically, and this, after proving the result in some 
special cases, eventually led us to make the following conjecture. 

Conjecture. Let f(n, k, s, P) be any RRC model, and let T be a tree. 
Then the probability that all edges of T arise is at least as large as in the 
corresponding classical model. 

We do not offer the conjecture with any great confidence; we have no very 
firm heuristic to make us believe it, merely the various special cases we have 
proven. However, even if the conjecture is in fact false, the question of when 
trees are more or less likely to arise than classically is likely to be of interest. 

We again emphasise that we are talking about the probability that all the 
edges of the tree are present, not the probability that these edges arise and 
that no others do; the latter probability seems to be harder to talk about in 
general. For example, even in the simple case of a graph on three vertices, 
let A be the event that the edge 1- 2 arises and neither 1- 3 nor 2 - 3 does, 
and B be the event that the edges 1 - 2 and 1 - 3 arise but that 2 - 3 does 
not arise; then a short calculation conditioning on the colours of the vertices 
shows that 

PiA in Gp,q} - PiA in Ga } = (p; q)3 but 

P{B in Gp,q} - P{B in Ga } = _(p; q)3 

which is positive for p > q in one case and negative for p > q in the other. 
We first show that an obvious naive approach to proving the conjecture 

does not work, at least in simplistic form. It is tempting to believe that we 
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can argue along the following lines; consider some vertex v of degree 1 (recall 
that the degree of a vertex is the number of vertices adjacent to it) in the 
tree T (any tree has at least two vertices of degree 1), and let T' denote T 
with v removed; then, considering the colour of the vertex w adjacent to v 
in T, we have that 

PIT} = ~ (f,P;;S;) s;P{T' I c(w) = i} 

and it seems heuristically reasonable (since getting off to a good start ought, 
other things being equal, to leave one ahead at the end) that the sequence 
P{T' I c(w) = i} should be increasing with the Ej=1 PijSj; if this were true, 
we would be done via the following standard inequality. 

Lemma 2.19 Suppose Sj ~ 0 with E7=1 Sj = 1 and 0 ~ al ~ a2 ~ .. . ak and 
o ~ b1 ~ b2 ~ ... bk are increasing sequences. Then 

k k k 
E sjajbj ~ E Sjaj E sjbj. 
j=1 j=1 j=1 

If the aj are increasing and the bj are decreasing} we get 

k k k 
E sjajbj ~ E Sjaj E sjbj . 
j=1 j=1 j=1 

Proof. This can be proven directly; in addition, it is immediate from the 
FKG inequality (Theorem 3.14) .• 

However the heuristic step in the above argument is false. We can see 
this by considering the case of a star, that is a graph on n vertices in which 
n - 1 vertices have degree 1 and the other has degree n - 1; clearly stars are 
trees. Then, letting v be the vertex of degree n - 1 and w be one of the n - 1 
vertices of degree 1, in sGp,q,r with q = 1, P > r but both much smaller than 
q, we have, conditioning on c( v), that 

P{T I c(w) = red} - P{T I c(w) = blue} 

= sp(1 - S + spr-2 + (1 - S) (8 + (1 - 8) rr-2 

-8 (1 - S + spr-2 
- (1 - 8) r (8 + (1 - S) rr-2 
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= S (p - 1) (1 - s + Spr-2 + (1 - s) (1 - r) (s + (1 - s) rr-2 

=~(P;T-'(P-l+(l-r)G:;r') ifs=~ 
and because p > r this will be less than zero for sufficiently large n. Thus, 
using the second part of Lemma 2.19, we see that in fact the probability of 
the tree consisting of the above, with a further edge w - u, is less than the 
product of the probability of the star and the probability of the edge. This is 
of course not itself inconsistent with the conjecture, and indeed Theorem 2.24 
will prove the conjecture for stars, but it does suggest that if the conjecture 
is true, it will not be for entirely straightforward reasons; in the language of 
dynamic programming, the problem is not a one-step problem. 

(One might note that whilst the condition that the ai and bi are both 
ordered the same way is sufficient for the inequality in the first half of Lemma 
2.19, it is clearly not necessary, and ask what work has been done on exten­
sions of Lemma 2.19; but the only result we are aware of in this direction 
[S8] is not helpful, partly because it is only stated for the case of equiprob­
able colours, but mainly because the condition given for the inequality to 
hold cannot be checked without much more detailed knowledge of the prob­
abilities of trees conditional on the colour of one vertex than we have at 
present). 

We first prove the conjecture in the important special case of a path. To 
do so, we first obtain a formula for the probability of a path in a general 
RRC model, using ideas similar to those in Theorem 2.10. 

Theorem 2.20 In an RRC model r(n, k, s, P), with Q and v as before, 

k 

P{ a path of length (r - I)} = . L: (Qr-1) ili
r 

JSil Sir = VT 
Qr-1 V . 

11,lr=1 

Proof. The probability is 

k 

L: 8il Si2· .. SirPil i2Pi2ia·· ·Pir_1 iT 

il,i2··· i r=1 

which, introducing Q as in the proof of Theorem 2.10 for cycles is 

k 

L: VB:; qil i2 q i2ia·· ·qir_1 ir.JSi: 
il,i2··· i r=1 
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and performing matrix multiplication again as in the proof of Theorem 2.10 
this is indeed 

k 

L A(Qr-l) .. A=VT Qn-1V .• 
il,ir=1 Illr 

In the case when the colours are equiprobable, the formula reduces to 

which again is easily checked to agree with the known formula in Gp,q. 

However this formula is less tidy than Theorem 2.10 since the lack of a 
final edge back to the start leaves the weight vlSil Sir in the sum. More 
importantly, this argument applies only to paths, not all trees. 

The other main tool we shall use is the following inequality, motivated by 
a problem in genetics, and due to Mulholland and Smith. 

Theorem 2.21 Let w be a non-negative k-vector and A a non-negative k 
by k symmetric matrix. Then 

w T Anw (w Twf-l ~ (w T Awf 
with equality if and only if n = 1 or w is an eigenvector of A. 

Proof. [MSj .• 

Theorem 2.22 The probability that the path 1 - 2 - ... - n arises is always 
at least as large in r(n, k, s, P) as classically. For n > 2, if there is equality, 
v must be an eigenvector of Q. 

Proof. The probability of the path is, by Theorem 2.20 

v T Qn- l v 

where v = (JSi, ... .JSk)T as usual. Taking the matrix A in the Mulholland­
Smith theorem to be Q and the vector w to be v, we rapidly see that all the 
conditions of the theorem are satisfied, and so the above is 

(vTQvr-
1 

a n - 1 n-l 
> =--=a 

(vTvr-2 1 
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with equality if and only if v is an eigenvector of Q .• 
In Chapter 3 we use the fact that the path 1 - 2 - 3 is at least as likely as 

classically to show that the variance of the number of edges is no less than 
classically in RRC models; this special case can easily be proven directly using 
the Cauchy-Schwarz inequality. We discuss the implications of Theorem 2.22 
for probabilities of cycles in section 2.5. It also gives new insight on when a 
model is TID; 

Lemma 2.23 A model is TID if and only if v is an eigenvector of Q (when 
its eigenvalue is automatically 0:). 

Proof. If the model is TID, the probability of a path of length r is o:r, so v 
is an eigenvector of Q by Theorem 2.20 and Theorem 2.21. Conversely, if v 
is an eigenvector of Q, Qv = /1V for some /1; multiplying on the left by v T we 
deduce /1 = 0:, and so writing the relationship out, Ej=l VSiPijSj = o:VSi so 
if Si =I- 0, we have Ej=l PijSj = 0:, which is exactly the condition in Theorem 
2.2 for tree-indiscernibility .• 

In particular, this makes it clear that CID implies TID, by Lemmas 2.23 
and 2.14 although of course Theorem 2.16 supersedes this result. 

We next give the promised proof of the conjecture for stars. 

Lemma 2.24 Let T be a star. Then PiT in r(n, k, s, PH 2 PiT in Go}. 

Proof. Conditioning on the colour of the vertex of high degree, we see 
PiT} = E~=l Sia?-l where ai = Ej=l PijSj is the probability of an edge 
conditional on the colour of one end being i, and so is non-negative. By 
the convexity of the function x -+ xr for x 2 0 and r 2 1, this is at least 
(E~=l Siai)n-l = o:n-l which is the classical probability of the star. • 

This argument works for any tree T consisting of several copies of some 
other tree T' all joined (in the same way) to a single central vertex (so that 
there is symmetry present), provided that the probability of T' is at least as 
large as classically (for example, if T' is a path). 

Our last piece of evidence for the conjecture is a theorem of Kingman, 
which is a simplification and generalisation of an earlier proof by Atkinson, 
Watterson and Moran of a matrix inequality; Kingman himself later gener­
alised his result to a version concerning Radon-Nikodym derivatives rather 
than partial averages. We change his notation slightly to avoid confusion 
with our use of the term 0:; in our application the numbers Pi, qi, .. will all 
be equal to Si· 
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Theorem 2.25 Let aijk ... be a set of non-negative numbers) and denote the 
set of indices by K. If we have non-negative numbers Pi) qj ... with "EPi = 
L qj = ... = 1) and K = (3 U (3' is a partition of K into two subsets let , ) 

Piqj ... = P,. = Q {3Q {3' and define the partial average of a,. over (3' to be 

A,.((3) = L a,.Q~' 
(3' 

so that) if for example K = {i,j} and (3 = {i}) A,.((3) = "Ek=l aikSk) and if 
(3 is empty) A,.((3) = a. Then) if the A,.(n)) for n = 1,2, ... are some partial 
averages of the aCX ) and An are non-negative) we have 

La/tp,.IIA;n(n) ~ o)+"E An • 
,. n 

Proof. [Ki] • 
This theorem allows us to show that the probability of a tree consisting of 

two stars, which we then join by adding an edge between the two centres, is 
at least as large as classically. More generally it shows that the probability of 
some tree, with copies of itself attached at various points, is at least as large 
as classically, taking aijk . .lm = Pij···Plm to be the product of the probabilities 
of the various edges in the tree conditional on their colourings, and is thus 
somewhat more general than the result about stars. The above suggests 
(informally speaking) that any counterexample to the conjecture must have 
a fairly high degree of asymmetry. 

These various proof techniques amongst them are easily seen to imply 
that any counterexample to the conjecture must have at least six vertices. 
The simplest case which is not covered by any of the results is when the 
tree has one vertex of degree 3, with one vertex of degree 1 joined to it, and 
two paths of length 2. However one can check by a computation that the 
probability of this tree arising in sGp,q,r is at least as large as classically. 

Another obvious testing ground for the conjecture is when the matrix P 
is of a special form. Suppose for example P has zeroes on the diagonal and 
ones elsewhere. Then the probability that the tree arises is clearly equal to 
the probability that the colouring is a proper colouring, in the sense of chro­
matic numbers. In the case when the colours are equiprobable, the model 
is TID, and so, since a = 1 - 11k clearly, this allows us to recover the fact 
that the number of proper colourings (which is kn times the probability that 
a colouring is proper) is equal to k(k - It-I, though of course this fact is 
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more easily obtained in other ways. When the colours are not necessarily 
equiprobable, so that Q = 1 - L:;=1 s~, the situation seems harder to under­
stand in general. However for k = 2 it yields easily to the arithmetic-mean 
geometric-mean inequality. Indeed if k = 2 we can write s = (s,l - S)T 
and consider whether some fixed vertex v is red or blue. Then note that the 
colours must alternate for the tree to arise, and so the probability of the tree 
is sa(1- S)b + sb(l- s)a, where a is the number of vertices at even (including 
zero) distance from v and b the number of vertices whose distance from v is 
odd, so that a + b = n. Thus 

P{T in r(n, k, s, PH - Pcr{T} 
= sa(l - s)b + sb(l - st - (1 - S2 - (1 - S)2t+b-1 

~ 2Jsa+b(1 - s)a+b - (2s(1 - S)t+b-l by AM-GM inequality 

= 2s(a+b)/2( 1 - s )(a+b)/2( 1 - 2a+b-2 s(a+b)/2-1 (1 - s )(a+b)/2-1 

= 2s(a+b)/2(1 _ s)(a+b)/2(1 _ (4s(1 _ s))(a+b)/2-1) 

and this is non-negative since 4s(1 - s) ~ 1 for s E [0,1 J (either by calculus 
or further use of the AM-GM inequality), and (a + b)/2 is positive. 

It is natural to ask if we can deal with the case when T is an m-ary tree, 
that is T has a vertex (the ancestor), joined to m other vertices (the first 
generation), and for each vertex of the first generation there are mother 
neighbours (the second generation), and so on for n generations. The cases 
of one and two generations are covered by the above arguments; in general, it 
is very easy to write down the following relations for the in,i, the probability 
that an m-ary tree with n generations arising conditional on the root having 
colour i; 

In,i = (t Piisiln-1,j) m 

J=l 

simply by conditioning on the colours of the vertices adjacent to the root; 
this recurrence relation (whose initial conditions are 10,i = 1 Vi and Jr,i = 

(L:;=l PijSj) m) seems however to be intractable, at least partly because it is 
non-linear. 

Since we cannot at present prove the full conjecture, we make two spec­
ulative remarks which may provide some insight into an eventual solution. 
Firstly, note that the proofs of Theorem 2.24 and Theorem 2.25 both use a 
convexity inequality, and Theorem 2.22 can be shown to be a generalisation 
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of a convexity inequality; is this a hint? Note finally that there is something 
slightly peculiar about the fact that we can prove the conjecture at both ends 
of a spectrum; namely, when the degrees of the vertices of the tree are as 
equal as possible (a path) and when they are as unequal as possible (a star). 
Does this remark contain the seed of a result? 

Note that amongst the cases where the probability is greater than its 
classical value, in at least some of them it is persistently greater, in the sense 
that, as T varies in natural families, we have 

1
. log(P{T on n vertices}) 
1m > 0:'. 

n-+oo n 

For example, in the simple case when k = 2, s = (s, 1 - s) with s =1= 1/2 and 
P has zeroes on the diagonal with all other entries being one, it is easy to 
check that for a path the above limit is 

(log(s) + log(l - 8))/2> log(1/2) > log(2s(1 - 8)) = log(O:') 

where we have used the strict concavity of log and that 48(1 - s) < 1 for 
8 =1= 1/2. Similarily, it is easy to check that this property holds for stars 
as the number of vertices goes to infinity in this model. It is not clear how 
generally this will hold. 

2.5 Some further insight into the probabilities of cycles 

In this section we show how the Mulholland-Smith theorem gives insight into 
when cycles are more or less probable than classically. 

Theorem 2.26 Let Q be a non-negative symmetric k by k matrix satisfying 
v T Qv = 0:', where 0:' is a constant and v a fixed non-zero non-negative vector 
of norm 1. Then the Perron-Frobenius eigenvalue of Q is at least 0:'. There 
is equality if and only if v is an eigenvector of Q. 

Proof. We recall the standard fact of linear algebra that for a symmetric k 
by k matrix Q, we have, letting Al :::: A2 :::: ... Ak be the eigenvalues of Q, 

max vTQv = Al 
v:vTv=1 

where Al is the largest eigenvalue; there is equality if and only if v is an eigen­
vector of Q. Indeed writing v = L:7=1 /-Ljej where the ej are an orthonormal 
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basis of eigenvectors of Q, so that L:7=1 p,~ = 1, we have 

k 

vTQv = LP,;Ai :s; A] 
I 

since the p,~ are all non-negative. To get equality, we must have that the sum 
of the p,~ for those Ai which are equal to Al must be one; thus v is indeed an 
eigenvector of Q. Thus we have, since v is of norm 1, 

a = vTQv:s; max wTQw = Al 
w:wT w=1 

with equality if and only if v is an eigenvector of Q as required .• 

Corollary 2.27 If r is even, the probability of an r-cycle is at least as large 
as classically in any RRC model. Also, if there is an even r 2 4 for which 
the probability of an r-cycle is the same as classically, the model is trivial. 

Proof. The first sentence is immediate from Theorem 2.10 and Theorem 
2.26. For the second, we note that if the probability of an r-cycle is a r , then 
as the greatest term in Theorem 2.10 is N 2 ar and all the other terms are 
non-negative, we must have A = a and all the other eigenvalues are zero; 
thus the model is CID and so trivial by Theorem 2.16 .• 

The analogous statement for cycles of odd length is false; there are models 
which are TID, give 3-cycles the same probability as classically, and are not 
trivial. For example, with three equiprobable colours, if P satisfies Pll = 
P23 = P32 = {J E [0,1] and all other entries are zero; then the model is non­
trivial, the probability of a 3-cycle is ({J /3)3 = a3 since all vertices must 
be colour 1 for the triangle to have a chance of forming, and the model is 
TID since the colours are equiprobable and all row sums of P are equal. In 
fact more generally, the probability of any cycle of odd length is the same as 
classically by the same argument. Thus, whilst it is sufficient to check the 
TID condition on the simplest tree imaginable (the path 1 - 2 - 3), it is not 
enough to check the CID condition on the simplest cycle imaginable. We can 
generalise this example as follows. 

Theorem 2.28 Suppose r(n, k, s, P) is a family of RRC models where P 
does not depend on n and the probability of any cycle of odd length is the 
same as classically. Then there is at least one eigenvalue of Q equal to a, 
and those of the other k - 1 eigenvalues of Q which are non-zero occur in 
pairs of equal modulus and opposite sign. In particular, the rank of Q is odd. 
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Proof. We again use the formula of Theorem 2.10. If the top eigenvalue 
is greater than a it must have a matching eigenvalue of equal modulus and 
opposite sign, as if all other eigenvalues are of smaller modulus it would 
dominate the formula for large enough r, making the probability of the cycle 
greater than classically; on the other hand, this eigenvalue cannot have mod­
ulus greater than the top eigenvalue as then the probability of long enough 
cycles would be negative. Thus we pair off the top eigenvalue, and then 
repeat the argument on the next largest eigenvalue greater than a (if any; 
this eigenvalue may equal the top eigenvalue since Q is imprimitive). Thus 
all unpaired eigenvalues are at most a. Thus we must have an eigenvalue a, 
as otherwise all the eigenvalues would be less than a and for large enough r 
their sum would not be as large as a r

. For each further eigenvalue equal to a 
there must be a matching one of opposite sign, to keep the total probability 
of the cycle equal to a r

. Now consider the eigenvalues less than a; as the 
sum of their r-th powers is zero for all odd r by the above remarks, we sec, 
considering the largest of these eigenvalue(s) first, that each must have a 
matching eigenvalue of opposite sign; we then apply the same argument to 
the next largest eigenvalue, and so on. This gives the first statement of the 
result, and the second is an immediate corollary .• 

This allows us to deduce that the general Q with this property is a simple 
generalisation of the one in the example above. 

Theorem 2.29 Suppose a family of RRC models, with P not depending on 
n, has the same probability of all cycles of odd length as classically. Then 
there is an orthonormal basis e;, 1 ::; i :S k consisting of el an eigenvector of 
Q with eigenvalue a, the eigenvectors with eigenvalue 0, and the remaining 
basis elements can be partitioned into pairs on which Q acts by a 2 by 2 
matrix with zeroes on the diagonal and a positive constant f3 off the diagonal. 

Proof. Let wand u be orthonormal eigenvectors of Q whose corresponding 
eigenvalues are f3 > 0 and -f3. Then 

Q(w + u) = f3(w - u) and Q(w - u) = f3(w + u). 

In other words, Q acts on the space generated by w + u and w - u by in­
terchanging the two vectors and dilating them, so that on this 2-dimensional 
subspace it acts by the 2 by 2 matrix with zeroes on the diagonal and f3 
elsewhere. Now by Theorem 2.28 all the eigenvectors other than one with 
eigenvalue a and those with eigenvalue zero come in pairs like this, and so 
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with respect to the basis obtained from the earlier one by replacing each such 
pair of eigenvectors wand u with (w + u)/v'2 and (w - u)/v'2, which it is 
easy to check still form an orthonormal basis, we get the claim .• 

We now draw some more consequences of Theorem 2.26. 

Corollary 2.30 If the model is not TID, the probability of any cycle of large 
enough length is greater than classically. In particular, in Gp,q,r with r f= p, 
the probability of any long enough cycle is greater than classically (even when 
q> max{p,r}). 

Proof. Combining Theorem 2.26 with Lemma 2.23, we see that A > 0:, and 
then the result follows considering large enough values of r the cycle length 
by using Theorem 2.10 .• 

We emphasise that Corollary 2.30 is a result about long enough cycles, 
not all cycles. We use the following lemma; 

Lemma 2.31 

P{l - 2 - 3 - 1 in sGp,q,r} - P{l - 2 - 3 - 1 in Go} 

= S3p3 +3s2(1-s )pq2 +3(1-S)2 srq2 +(l-s )3r3 - (s2p+2s(1-s )q+(l-s )2r? 

Proof. This expression is obtained from a simple calculation, conditioning 
on the eight possible colourings of the three vertices .• 

Lemma 2.32 There exist S,p, q and r for which sGp,q,r has v not an eigen­
vector of Q, and a cycle whose probability is less than classically. 

Proof. For the first part, Theorem 2.8 suggests that we should take (say) 
p = 1/2, r = 11/20 and q > max{r,p} as then it seems likely that, as p and r 
are close, the probability will still be less than classically for suitably large q. 
And indeed taking s = 1/2, p = 1/2 r = 11/20 and q = 7/10 in the previous 
lemma, we clearly have that v is not an eigenvector and the expression in 
Lemma 2.31 evaluates to about -0.000424 < 0 as required .• 

Exactly how long a cycle of odd length has to be to guarantee that it is 
at least as likely to arise as classically under the conditions of Theorem 2.30 
will depend heavily on the nature of Q and v and seems difficult to say much 
about in general. 

The case of Gp,q with both p and q positive so that Q is primitive but 
q > p so that the probability of cycles of any odd length is less than classically 
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by Corollary 2.8 shows that the restriction in Theorem 2.30 that v should 
not be an eigenvector of Q is genuinely necessary and not just a restriction 
of our method. Needless to say, having all odd length cycles no more likely 
than classically is quite a demanding condition; 

Corollary 2.33 Suppose the probability of an r-cycle, for all odd r, is less 
than or equal to its classical value. Then the largest eigenvalue for which 
there is not an eigenvalue of equal modulus and opposite sign is at most 
o. If there is equality the eigenvalue of maximum modulus amongst those 
remaining must be non-positive. 

Proof. This is very similar to Theorem 2.10 or Theorem 2.28. Again we 
must have that any eigenvalue greater than 0 pairs off with one of opposite 
sign and equal modulus. Thus if J1- is the largest unpaired eigenvalue, J1- :::; 0; 
again there is no unpaired negative eigenvalue of modulus greater than J1- as 
otherwise the probability of the cycle would be negative, so J1- has the largest 
modulus of the unpaired eigenvalues. If J1- = 0, then the sum of the r-th 
powers of the remaining eigenvalues is non-positive for all r odd, and so the 
largest in modulus of them must be non-positive .• 

The other question which demands attention is how much larger than 
classically ,\ can be. Theorem 2.9, part 5, gives an upper bound, namely 
the largest row sum of the matrix Q (the lower bound in that theorem is of 
course superseded by Theorem 2.26); it is not clear if one can significantly 
improve this upper bound in our special circumstances. 
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3 Joint probabilities of sub graphs and the role 
of the FKG inequalities 

3.1 The main theorem on joint probabilities 

In the previous chapter we discussed how the probabilities of certain simple 
kinds of subgraphs compare with their classical values, obtaining results 
which held or were conjectured to hold, in wide generality. In this section, 
we compare the joint probability of any two potential subgraphs arising with 
the product of their individual probabilities (we shall often abbreviate po­
tential subgraph by subgraph if there is no danger of confusion); this is a 
more general question, since the subgraph is now arbitrary, but our results 
will work less generally. Our main result (Theorem 3.1) is that, in Gp,q, if 
p > q, the probability that two subgraphs both arise is at least as large as 
the product of their individual probabilities. Much of the rest of the chapter 
consist of glosses on, extensions of and complements to Theorem 3.1, and 
counterexamples to putative extensions. We also show that the so-called 
FKG inequality, which experience of the classical model might suggest is an 
appropriate tool for proving Theorem 3.1, will not give the result, and show 
that various related notions of association do not apply either. Finally, we 
consider what can be said for 3-cycles by doing exact calculations. 

We shall write, if C is a graph on {1, 2, ... n} (recall again that graphs are 
labelled unless explicitly stated otherwise) P{ C} for the probability that all 
the edges in C arise (again, we do not ask about the other edges). We work 
in Gp,q until section 3.5, and will be comparing, for two subgraphs Cl and C2 , 

Pp,q{ C I n C2 } with Pp,q{ CI}Pp,q{ C2 }; here P{ CI n C2 } means the probability 
that the graph contains both the subgraphs Cl and C2• In particular, note 
that when C, CI , C2 and so forth are used in this chapter, they are not 
arbitrary events; they are events of the form all the edges in some set arise. 

Of course, if the two subgraphs have neither edges nor vertices in common, 
Lemma 2.1 says that whether or not they arise is independent. This is also 
true in Gp,q if they have exactly one vertex v (and so no edges) in common, 
since 

P{CI n C2 I c(v) = red} P{Cl n C2 1 c(v) = blue} 
P{ C I n C2 } = 2 + 2 ; 

by symmetry (as the colours are equiprobable) the probability of each sub-
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graph conditional on c( v) is independent of the particular colour c( v); hence 

P{Cl n C2 } = P{Cl n C2 I c(v) = red} = P{Cl n C2 I c(v) = blue} 

so we write P { C 1 n C 2 I c( v)} for their common value, and note that in the 
same way we can write P{Ci } = PiC; I c(v)}. Then, using the fact that Cl 

and C2 are independent conditional on c( v), we have 

However, the existence of two subgraphs with only vertices in common is 
not in general independent in Gp,q' A simple example is when C l is the path 
1- 2- 3 and C2 the edge 1- 3; then by Theorem 2.4 P{Ct}P{C2 } = 0:3 but 
by Theorem 2.6 P{Cl n C2 } = ((p + q)/2)3 + ((p - q)/2)3. More generally 
if we break any r-cycle up into two paths, Theorems 2.6 and 2.4 tell us that 
(provided p > q) 

P{Cl n C2 } = (p; qr + (p; qr ~ (p; qr = P{C1 }P{C2 }. 

Theorem 3.1 will show that this is an example of a general phenomenon. In 
the proof, we shall mark two inequalities (&) and (*) to which we shall make 
repeated reference later in the chapter. We shall also spell some points in 
the proof out rather carefully to facilitate drawing corollaries later. 

Theorem 3.1 Let C1 and C2 be two potential subgraphs on n vertices. Then, 
ifp > q, 

Proof. First of all, we assume for convenience that q =j:. 0, dealing with the 
special case q = 0 separately later. 

We assume to begin with that Cl and C2 have no edges in common, so 
that they are edge-disjoint. Define S; to be the number of edges of C 
whose two end vertices are the same colour (call such edges non-switches) 
and let n; be the number of edges in Ci · Then, as C1 and C2 are edge-disjoint 
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where () = log(pjq) which exists and is positive since p > q > 0. Similarily 

P{ Cd = qnl E (eOSI ) and P{ C2 } = qn2E (eOS;) 

where Si is the number of non-switches in Ci, a copy of the colouring of C2 

which has neither vertices nor edges in common with C l , so that SI and Si 
are independent. Then we have 

= q"l +"2 (E (eO(SI +S2)) _ E (eO(SI +S2))) 

as SI and Si are independent. Thus, as q -::J 0, it suffices to show 

E (eO(SI+S2)) ~ E (eO(SI+S;)) 

for which it is sufficient to prove that the two Taylor expansions satisfy 

f: ()rE((SI ,+ S2Y) ~ f: ()rE((SI ,+ SiY) (&). 
r=O r. r=O r. 

Since as we noted above () > 0, this will follow if we can show that 

Towards this, number the edges of Cl and C2 in any way, giving C; the 
numbering induced by that on C2 , and let SI = L: Ii, where Ii is an indicator 
of whether the i-th edge of Cl is a non-switch, S2 = L: Jj , where Jj is an 
indicator of whether the j-th edge of C2 is a non-switch and S2 = L: J; where 
J; is an indicator of whether the j-th edge of C; is a non-switch. Then, 
considering the binomial expansions of E((SI + S2Y) and E((SI + SiY) for 
all values of T, we see it suffices to show that 

E(IaJa2 ... IamJbl ... Jb,) ~ E (IaJa2 ... IamJ:I ... J~) (*) 

for all choices of al , ... am and bl , ... b,. In fact we can restrict to the case where 
m ::; nl and 1 ::; n2 as otherwise some I, J or J* occurs to a power higher 
than 1, but because the Ii, Jj and J; are indicator variables this reduces to 
the case m ::; nl and 1 ::; n2· 

Note that, in each component of the graph whose edges are those in­
volved in the expression (*), a product of indicators is 1 if and only if all 
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the indicators are 1, i.e all the vertices involved are the same colour, and is 
o otherwise. 

Suppose first m + I < min(g(Cd,g(C2)) where g(C) is the girth of the 
graph C, that is the length of the shortest cycle, so that no cycle in C1 

and no cycle in C; is present on the right-hand side of (*). Then the right­
hand side of the equation (*) is equal to the probability that the product of 
indicators there is 1, which is the probability that all the Is and J*s involved 
are equal to 1. As C1 and C; have neither edges nor vertices in common, 
all m + I indicators are of different edges, and since there are no cycles, at 
each stage when we check whether or not the next edge is a non-switch, we 
know the colour of one of the vertices, and not that of the other; since we 
are in Gp,q they are the same with probability 1/2, so that the right-hand 
side is (1/2)m+l since m + I is the number of edges being considered. If there 
are no cycles on the left-hand side of the equation (*) we will get the same 
value there; however there can be cycles on the left-hand side since C1 and C2 

interact with each other (for example if II is the edge 1 - 2, 12 the edge 2 - 3 
and J1 the edge 3 - 1). Such cycles mean that the indicators are correlated; 
in the example, if It =1 and 12=1, J1 is automatically also 1. However by 
stripping away enough of the indicators (t of them, say) to reduce to the 
indicators of a maximal forest in the collection of edges being examined we 
regain independence of the remaining indicators, and the left-hand side of 
(*) is (1/2)m+l-t > (1/2)m+l as required. 

Next we drop the condition m + 1< min(g(Cd,g(C2 )) so thus there may 
be some cycles in the two subgraphs C1 and C2 present. However any such 
cycle present on the right-hand side of (*) will also be present on the left­
hand side, so the correlation effect appears, making an equal contribution, 
on both sides; moreover, as in the preceding paragraph, there can be further 
correlation on the left-hand side of (*) due to cycles forcing some of the 
indicators to be 1, as illustrated with II, 12 and J1 above, so again the result 
holds. 

Next we show that removing the edge-disjointness condition can only 
increase p{C1nC2 }-P{C1}P{C2 }. Since P{Cd and P{C2 } will not change, 
it suffices to show P{ C1 n C2 } increases. To see this, note that the formula 
for P{ C1 n C2} will now double count some of the edges so giving a larger 
power of p or q or both than is in fact appropriate, thus underestimating the 
true value of P{C1 n C2 , and P{Cd and P{C2 } are of course unchanged. 
Thus if suffices to show that (*) still holds; and the right-hand side of (*) 
is not affected by the change, as C1 and C; are disjoint by construction; 
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however, on the left-hand side, additional correlation structure may increase 
the expectation. 

Thus it only remains to deal with the case q = O. Here the subgraphs 
arise if and only if all the vertices in each component are the same colour. 
But again, the correlation structure, through cycles, can force some vertices 
to be the same colour when both graphs are present, when they are not forced 
to be the same colour in the independent copies of the two subgraphs, and 
so we get the required inequality. Alternatively we could just argue by the 
continuity of the probability of C as a function of q .• 

Corollary 3.2 Let CI , C2 ... Ck be k subgraphs. Then in Gp,q with p > q 

Also if CI , C2,,,Cr are some of these subgraphs 

Proof. The proof of the first claim is by induction on k. The case k = 2 is 
Theorem 3.1, and as several subgraphs together are a subgraph, we have 

P{ CI n C2 n ... n Cd = P{( CI n C2 n ... n Ck-d n Cd 

~ P{C1 n C2 n .. , n Ck-1}P{Cd by Theorem 3.1 

~ P{CtlP{Cd ... P{Cd by the induction hypothesis. 

For the second claim, it is sufficient to show that 

for which, by the first part of this corollary, it suffices to prove 

However this is a consequence of Theorem 3.1 on noting that the graph 
consisting of all edges in one or more of the graphs CI , C2",Cr and the graph 
consisting of all edges in one or more of the graphs Cr+1, ... Ck are both 
themselves subgraphs .• 
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Theorem 3.3 Let Si be the number of edges of Ci which are non-switches 
as above. Then for non-negative integers rand s we have 

Proof. This follows from expanding out the two expressions in the statement 
of the theorem as sums of indicator functions, and making repeated use of 
inequality (*) in the proof of Theorem 3.1. • 

Corollary 3.4 In Gp,q with p > q all moments E(NT) of N} the number 
of cycles in the graph} are at least as large as the corresponding ones in 
the corresponding classical model. The same is true for Nk the number of 
k-cycles for any k 2: 3. 

Proof. N is a sum of the indicators of whether each possible cycle arises. 
Now expand out NT to get a sum of products of such indicators. Each such 
product is 1 or 0, being 1 only if all the cycles are present. But by Theorem 
3.1 the probability that they are all present is at least as large as classically, 
and the result follows. The proof for Nk is identical. • 

An argument similar to the argument in the proof of Theorem 3.1 will 
be found in Theorem 4.12 below. Theorem 3.1 is closely related to a result 
of Harris [Hal in the theory of percolation on the two-dimensional integer 
lattice where bonds (edges) are open (arise) with probability p and closed 
(fail to arise) with probability 1 - p, independently of each other. However 
the method of proof is quite different. We will show in section 3.8 that unlike 
Harris's result, ours cannot be put in the context of the FKG inequality. 

Note that the argument does depend on the fact that p > q in that it 
uses () = log(p/q) > 0 to reduce proving the inequality between Taylor series 
to an inequality between Taylor coefficients. If p < q, so that () < 0 this will 
not work; for example, if C1 is the path 1 - 2 - 3 and C2 the edge 1 - 3, 

P{C1 n Cd = (p; q)3 + (p; q)3 < (p; q)3 = P{CdP{C2}. 

On the other hand, it is not true that P{C1 n C2 } < P{CdP{C2 } always 
holds when q > p either, because if r is even the probability of an r-cycle is 
greater than classically by Theorem 2.6. We discuss the case p < q in detail 
in section 3.3. 

If p = q of course P{C1 n C2 } = P{C1}P{C2 } if C1 and C2 are edge 
disjoint, and P{C1 n C2} 2: P{C1}P{C2 } otherwise, with equality only if 
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p = q = 0, as otherwise a 2n
-

t
, where t is the number of common edges, 

exceeds a 2n • 

Some special cases of Theorem 3.1 can be proven more directly; for 
example, if two edge-disjoint cycles have r common vertices which can be 
numbered so that there is exactly one arc of Cl and one arc of C2 between 
m and m + 1 for each m (including of course arcs between r and 1 to close 
the cycles) then a proof very similar to Theorem 2.6 gives the result, though 
of course not all pairs of cycles are of this form. 

Finally note that the fact that the colours are equiprobable is not needed 
in Theorem 3.1. Indeed the probabilities of the colours only come into the 
argument at the point where we have to prove inequality (*), namely that 

E (IaJa2 ... IamJb! ... Jb,) ~ E (IaJa2 ... IamJ;! ... J~) 

and remark that the right-hand side is (1/2)(m+l) in the case when there are 
no cycles present on the right-hand side (with obvious modifications for the 
case where there are cycles on the right-hand side). However, all that matters 
for this argument is that (assuming that the m + I indicators on the right­
hand side form a connected component; if not, just argue componentwise) 
the right-hand side is sm+l + (1 - s)m+l where s is the probability that two 
vertices are both red, whereas the left-hand side will be sm+l-t + (1 - s r+1- t 

for some t ~ 0, and thus will be at least as large as the right-hand side. 
However we shall see later, when we try to extend Theorem 3.1 to sGp,q,r, 

that the probabilities of the various colours do become important, at least 
to our method of proof. The assumption that different vertices are coloured 
independently is important, as otherwise it would be much harder to under­
stand the variables 51, 52, etc. 

3.2 Detailed comparison of the joint and individual 
pro babilities 

We now make a more detailed comparison of the two Taylor series in Theorem 
3.1 (see equation (&)). We make the following definition. 

Definition 3.1 The newgirth of two (labelled!) subgraphs C l and C2 is the 
length of the shortest cycle in the graph whose edges are those of C l and those 
of C2 which is not in either Cl or C2 . If no new cycle is introduced, we say 
the newgirth is infinity. 
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Theorem 3.5 Suppose the two subgraphs Cl and C2 are edge-disjoint. Then 
the two Taylor expansions in inequality (&) have coefficients which agree up 
to and including the term in (}g-l, where 9 is the newgirth of C l and C2 . (If 
the newgirth is infinity, the claim is that the two series are identical). 

Proof. The terms of the two Taylor expansions in (}k involve (writing the 
5 i as sums of indicators as in the proof of Theorem 3.1) only products of 
at most k indicators. But the k indicators cannot be those of a new cycle 
caused by putting the two subgraphs together unless k :2: g, and having a 
new cycle is the only way we get the Taylor series on the left-hand side of 
(&) to be different from the Taylor series on the right-hand side of (&) as we 
saw in the proof of Theorem 3.1. • 

Corollary 3.6 SI and S2 are uncorrelated if C1 and C2 are edge disjoint. 

Proof. 5 1S2 is a sum of products of pairs of indicators, and a pair of edges 
cannot define a cycle, so by the previous result 

However the two variables are not independent; for example, suppose Cl 

and C 2 are both cycles so of length n (so they pass through each of the n 
vertices of the graph); then if SI is n, all the vertices are the same colour so 
52 must also be n. 

The difference between the first two distinct coefficients in the two power 
series in Theorem 3.5 can be quite large. For example, if C1 is a (2n+1)-cycle 
1 - 2 - 3 - .... - (2n + 1) - 1 and C2 is also a (2n + 1 )-cycle 1 - 3 - 5 -
..... (2n + 1) - 2 - 4 - ... (2n) - 1, we see that there are a full (2n + 1) triangles 
introduced; this is the maximum number possible since the edge with the 
lowest number can be chosen in (2n + 1) ways and everything else is then 
forced; in this case thus the difference between the two Taylor coefficients is 
(2n + 1)(1/4 - 1/8) = (2n + 1)/8 since the probability that three edges on 
the right-hand side of (&) are all non-switches is 1/8 but on the left-hand 
side if two of them are non-switches so is the third, so the probability is 1/4. 
Presumably taking two long cycles, we can get arbitrarily large newgirth but 
still have the difference between the coefficients growing linearly with n. 
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3.3 Comparison of joint and individual probabilities 
when q > p 

We now consider what can be said in the harder case when q > p. 

Theorem 3.7 Suppose q > p, and that Cl and C2 are edge-disjoint. Then 
there is a neighbourhood q E (0:, 0: + f) where P { C 1 n C 2} - P { C I} P { C 2} > 0 
or is < 0 according as the newgirth is even or odd. 

Proof. By the argument in Theorem 3.5, the coefficients of the two Taylor 
series agree for powers of (J less than g, where 9 is the newgirth of the two 
subgraphs, so we concentrate on the coefficient of (JY. By the argument of 
Theorem 3.1, each product of 9 indicators on the right-hand side of equation 
( *) in the proof of Theorem 3.1 is at least as large as the corresponding 
product on the left-hand side, and since we have taken the term in (JY, there 
is at least one collection of indicators for which the left-hand side is actually 
greater than the right-hand side. As (J < 0, (JY > 0 if 9 is even and is < 0 
otherwise; thus, taking (J sufficiently close to 0 we see that there is a region 
q E (0:,0: + f) (where E will depend on p, q, Cl and C2 ) in which we have 
P{Cl n C2 } - P{Ct}P{C2 } > 0 if 9 is even and < 0 if 9 is odd .• 

Note that this, coupled with Theorem 3.1 for p > q shows that for edge­
disjoint subgraphs with even newgirth, p = 0: is a local minimum of the 
expression P{Cl n C2 } - P{Cl }P{C2 }. 

This shows that if the newgirth is odd P{Cl n C2 } < P{Ct}P{C2 } for 
q E (0:,0:+ f); however, whilst the inequality sometimes then holds for all 
q > 0: (as putting two paths together to make a cycle of odd length in Gp,q 
shows, using Theorems 2.4 and 2.6) it does not always do so. We will show 
this by considering the case of two cycles Cl and C2 with three vertices and 
no edges in common. This is the simplest case of edge-disjoint cycles where 
there is any chance of a counterexample, as if Cl and C2 have at most one 
vertex in common we saw before Theorem 3.1 that they are independent, and 
if the two cycles intersect in exactly two vertices, with no edges in common, 
the following result implies there is no change of sign in the interval (0:,20:). 

Theorem 3.8 Suppose the cycles Cl and C2 have exactly two vertices a and 
b (and no edges) in common. Then P{Cl n C2 } < P{Ct}P{C2 } if and only 
if p < q and the following statement holds for the two paths making up one 
of the two cycles, and does not hold for the two paths making up the other 
cycle," 
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Both the paths between a and b in the cycle are of odd length, or the longer 
of these two paths is of even length and the shorter of odd length. 

Proof. The case p = q = 0 is trivial, so we assume at least one of p and q 
is strictly positive for the rest of the proof. CI consists of two arcs between 
the two common vertices; let them be PI of length i and P2 of length j, 
and similarily let C2 consist of P3 of length k and P4 of length 1. To keep 
notation under control, we will write a for (p + q)/2 and (3 for (p - q)/2; 
then, conditioning on the possible colourings of the two common vertices, 
and using Corollary 2.7 to find the probabilities of the various paths, we see, 
using computer simplification, that P{C1 n C2 } - P{CrlP{C2 } is 

which is < 0 if and only if exactly one of the two factors is. Clearly neither 

factor can be negative if (3 > 0; if (3 < 0 then, dividing by (Ptq
) k+1 as 

p + q > 0, the first factor is negative if and only if 

(p- q)k + (p- q)1 < O. 
p+q p+q 

which in turn holds if and only if k and 1 are both odd or the smaller of them 
is odd and the larger even. The statement of the theorem is now clear. • 

We can now proceed to the promised counterexample. Take two edge­
disjoint cycles which have three vertices a, band c in common. Let CI consist 
of the paths PI, P2 and P3 and C2 of the paths P4 , P5 and P6 , with PI and 
P4 going from a to b, P2 and P5 from b to c and P3 and P6 from c to a; let the 
lengths of P1 , ... P6 be i,j, k, f, sand t respectively. Conditioning on the eight 
possible colourings of a, b and c, and again using Corollary 2.7 to find the 
probabilities of a path conditional on the colour of its end vertices, computer 
simplification gives 

= (3i+ i+t a k+r+s + (3i+ i+r+s ak+t + (3i+k+s ai+r+t + (3i+k+r+t a i+s 

+ai+ i+t (3k+r+s + ai+k+r+t (3i+s + ai+k+s (3i+r+t + a i+r (3i+k+ s+t 

+ai+s+t (3i+k+r + a i+j+r+s (3k+t + (3i+8+t ai+k+r + (3i+r aj+k+ s+t 
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The result then follows considering the case when i = 2, j = 2, k = 1, r = 1, 
s = 2, t = 3, when the formula becomes (reverting to p and q now) 

and putting q = zp and removing the factor pll, the resulting polynomial in 
z is 

3 Z2 9z4 15z6 17 Z8 3z lO 

512 - 512 - 256 + 256 - 512 + 512 

which has roots at (amongst other places) z = V3, which is about 1.73; at 
z = 1. 7 the polynomial is negative but at z = 1.8 it is positive. It may well 
be possible to get, with more complicated CI and C2 , cases where the set 
of q (for fixed a) such that Pp,q{CI n C2} 2: Pp,q{CdPp,q{C2} has several 
connected components. 

3.4 Detailed comparison for non-edge-disjoint subgraphs 

We saw in Theorem 3.1 that when the cycles are not edge-disjoint, we have 
(for p > q) P{CI n C2} 2: P{CdP{C2}. It is arguably more appropriate in 
this case to take account of the fact that the cycles are not edge-disjoint, and 
so that edges will be counted twice, and see if any more detailed result can 
be proved. One naive idea along these lines uses the following definition; 

Definition 3.2 The intersection number i( CI , C2 ) of two subgraphs CI 

and C2 is the number of common edges of the two subgraphs. 

We might then consider just how small we can take /'i" independent of the 
choice of Cj but depending on p and q, such that 

/'i, = 1 is clearly possible by Theorem 3.1; in GOt we can take /'i, = a as is easy 
to see. One result to improve on /'i, = 1 is easy; 

Theorem 3.9 Let CI and C2 be subgraphs in Gp,q, with p > q. Then if 
/'i, = p, we have 
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Proof. Recall that in the last paragraph of the proof of Theorem 3.1 we saw 
that, because the two subgraphs have edges in common, 

P{ Cl n C2 } 2:: E (pSI +S2 qnl +n2-S1-S2) 

since the right-hand side counts the common edges of the two subgraphs 
twice. Now for each of these t edges, we get an extra factor q or p on the 
right-hand side of the inequality. Since p > q the extra factor is at most p 
in each case, so in fact if we put a similar factor on the left-hand side we do 
not invalidate the inequality, and this gives the required result .• 

One might hope to be able to get a K, less than p, since (loosely speaking) 
about half the edges to be double counted are same-different. One obvious 
guess would be that K, = Q is possible, but this is not true. Indeed if the two 
subgraphs have an r-cycle (for some r) amongst their common edges, as the 
probability of that cycle is greater than its classical value, a compensation 
factor of Q is likely not to be enough; this gives the simple counterexample 
of taking Cl and C2 to be the same triangle; then i(Cl , C2 ) = 3 but 

This still leaves the possibility that we can take K, = Q when the two 
subgraphs have no cycle amongst their m common edges. Attempts to prove 
this along the lines of Theorem 3.1 seem not to work, since we now need a 
further random variable 53 the number of non-switches which are in both 
subgraphs; then of course 5;, defined in the obvious way, will be zero, and 
so we need to show that, with () = log(p/q) > 0 as before, that 

(1 ~ eO )ffieO(Sl+S2-Sa) 2:: eO(Sl+S;) 

and this seems harder to handle than the previous expression; for example, 
we cannot just ignore the factor (Ht)ffi 2:: 1 since if we could, that would be 
saying that we could take K, = q which we shall see in a minute is impossible, 
and comparison of each coefficient of the two Taylor series looks daunting. 
Nonetheless, brute force methods, similar to those used in section 3.3 to show 
that the set of q where the joint probability of subgraphs exceeds the product 
of their probabilities need not be connected, enable us to prove the claim in 
several cases when Cl and C2 are cycles with small numbers of vertices and 
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edges in common, namely the following; 

1. exactly one path (and no other vertices) in common 

2. exactly two non-incident edges in common 

3. one path and one other vertex in common 

4. one path and two other non-adjacent vertices in common. 

However it is not clear how to proceed in general, and so we offer an 

Open Problem. Is it true that if Cl and C2 are two subgraphs, and the 
graph of their m common edges is cycle-free, then for p > q 

Note that we certainly cannot do better than K = a. Indeed if Cl is the 
subgraph 1 - 2 - 3 and G2 the subgraph 2 - 3 - 4, Pp,q{ Gi } = a 2 in both 
cases, but Pp,q{ Cl n C2 } = a3 so we must have K 2 a. 

3.5 Several colours but only two edge probabilities. 

We next consider what can be said when there are more than two colours 
involved. In the special case where there are k colours (not necessarilyequi­
probable) and all same-same probabilities are equal to p and all same-different 
probabilities are q, an argument entirely analogous to Theorem 3.1 shows that 
P{Cl n C2 } 2 P{Ct}P{C2 } for p > q; Si is defined as before to be the num­
ber of edges in Ci both of whose ends are the same colour, and the argument 
runs through. More generally, given k colours and all edges arising with 
probability q except those between two vertices both of colour i (1 :::; i :::; r), 
where r :::; k, then P{Cl n C2 } 2 P{Ct}P{C2 } for p > q by imitating the 
proof of Theorem 3.1 with the modification that Si is now the number of 
edges of Ci between two vertices which are both the same colour j, for some 
1 :::; j :::; r, and the various indicator variables undergo an obvious analogous 
change of meaning. When we get to proving the analogue of (*) it is enough 
to note that the product of indicators on the right-hand side (*) is 1 if and 
only if for each edge involved both ends have the same colour out of the set 
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{I, 2 ... r}, and that as before some of the Jj may be forced to be 1 in cycles 
by the correlation structure whilst the J] are not forced to be 1. 

One might try to develop these ideas by introducing, given an RRC model 
with k colours and only two edge probabilities p and q, a (probably looped) 
graph, the structure graph, on the k colours as vertices with an edge 
between vertices i and j if and only if edges between a vertex of colour i 
and one of colour j arise with probability p, and asking for which structure 
graphs we have that P{CI n C2 } 2: P{Ct}P{C2 } for p > q. So for example 
the case just discussed is the special case where the structure graph consists 
of loops at some vertices and no other edges. If, for example, the structure 
graph is complete (where now we insist a complete graph must include a loop 
at each vertex, unless it has only one vertex, when it either can or cannot 
have such a loop), the result holds rather trivially; if the components of the 
structure graph are all complete graphs, the property holds, essentially just 
by identifying all the colours in each complete graph; this works because 
in a graph all of whose components are complete, if i is connected to j, i is 
adjacent to j. However it seems rather harder to take this circle of ideas much 
further. The simplest structure graph not covered by the above observations 
is one with two equiprobable colours 1 and 2 with the only edge being 1 - 2 
(and no loops); this is (in light disguise) a Gp,q model with q > p and by 
Theorem 3.5 we can have P{CI n C2 } ::; P{Ct}P{C2 } in this case. 

3.6 The situation in sGp,q,r. 

In general with more than two parameters matters are more complex. We 
first note that we cannot prove a statement analogous to Theorem 3.1 in 
Gp,q,r with r > p > q > 0 by the same method; for, letting Sl be the number 
of red-red edges in Cl , Tl the number of blue-blue edges in Cl , and defining 
S2, T2 , S; and T; in the obvious analogous manner, the joint probability 
is again a two variable generating function evaluated at 81 = log(pj q) and 
82 = log(rjq), which exist and are positive by the assumptions, we reduce as 
in Theorem 3.1 to showing that 

E (((8I S1 + 82Tt) + (81S 2 + 82T2)r) 

2: E (((8I S1 + 82Tl ) + (8l S; + 82Tnr)· 
Now let SI = E?:!:1 Ii where Ii is an indicator of whether the i-th edge of Cl 

(with respect to some numbering of the edges of Cd is red-red, 
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S2 = L:?~1 Jj where Jj is an indicator of whether the j-th edge of C2 (in 
some numbering of the edges of c2) is red-red, 

S2 = L:i~1 J; where J; is an indicator of whether the j-th edge of C; (in the 
numbering induced by that on C2 ) is red-red 

T1 = L:l'';1 LI where LI is an indicator of whether the l-th edge (in the same 
numbering as for S1 above) of C1 is blue-blue, 

T2 = L:;;=1 Mm where Mm is an indicator of whether the m-th edge of C2 (in 
the same numbering as for 52 above) is blue-blue, 

T; = L:~~1 M:n where M:n an indicator if the n-th edge of C; is blue-blue. 

Then, to get the obvious analogue of the previous argument to work, we 
would have to prove that 

E(Ial···laJbl ... JbjLq ... LC1Mdl···Mdm) 2: E(Ial···laiJ~ ... J~Lq ... Lc,M;! ... M;m) 

for all choices of the subscripts, but it is clear that by judicious choice of C1 

and C2 and the edges we can make the left-hand side zero but the right-hand 
side positive; for example, if C1 and C2 are cycles which intersect in two 
vertices a and b only, where there is an edge of C1 between a and b, and 
a path of length two in C2 between them, in the case where the indicators 
under consideration are those of whether the edge of C1 is blue-blue, and the 
two edges in C2 are both red-red; then clearly the left-hand side is zero, but 
the right-hand side is k. 

To get round this in sGp,q,r where r > p > q, define S1 to be the number 
of edges in C1 which are non-switches, as before, and S2 and 5; similarily, 
but now define T1 to be the number of blue-blue edges in C1 and T2 and T; 
to be the number of blue-blue edges in C2 and C; respectively. Then 

= q",+n'E m T,+T, m s,+s, 

r/p and p/q are> 1 by the assumptions, and it now seems reasonable that 
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powers of the Ti and the 5 j are non-negatively correlated. However, as the 
actual statement of the theorem shows, some caution is required. 

Theorem 3.10 Let Cl and C2 be two fixed graphs on vertex set {1, 2, ... n}. 
Then in sGp,q,r, if r > p > q and s ::; 1/2 we have P{ Cl nC2} 2: P{ Cd P{ C2 }. 

Proof. As in Theorem 3.1, we treat q = 0 as a special case, so assume for 
the moment that q =I- O. We have 

PiC, n C,} ~ qn.+n'E (~) T.+T, (~r'+s, ~ q",+n'E (elh(T.+T,)+o,(s.+s,)) 

where 81 = log(r/p) and 82 = log(p/q) exist and are> 0 as r > p > q > O. 
Similarily 

P{ Cd = qnl E (eOI Tl +02 SI) and P{ C2} = qn2E (eOI T2'+02 S;) 

where 5; is the number of non-switches in C;, a copy of the colouring of C2 

which has neither vertices nor edges in common with Cl (so that 51 and 5; 
are independent), and Ti is the number of blue-blue edges in C;. Hence 

= qnl+n2E (e0J(Tl+T2)+02(SI+S2)) _ qnlE (eOITI+02SI) qn2E (eOIT:i+02S;) 

= qnl+n2E (eOdTl+T2)+02(SI+S2)) _ qnl+n2E (e°J(Tl+T:i)+02(SI+S;)) 

since 51 and 5; are independent and Tl and Ti are independent. Hence 
(again by q =I- 0) it is enough to show that 

expanding both sides out as bivariate Taylor series, this would follow from 

As 81 > 0 and 82 > 0, this will follow if we can show that 
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Towards this, number the edges of C1 and C2 in any way, giving C; the 
numbering induced by that on C2 . Then let 

T1 = "£ Ii, where Ii is an indicator of whether the ith edge of C1 is blue­
blue 

51 ="£ J j where Jj is an indicator of whether the jth edge of C1 is a non­
switch. 

T2="£ L/, where L/ is an indicator of whether the lth edge of C2 is blue­
blue 

52=,,£ Mm, where Mm is an indicator of whether the mth edge of C2 is a 
non-switch. 

T;; = "£ Li, where Li is an indicator of whether the lth edge of C; is blue-blue 

52 =,,£ M:n where M:n is an indicator of whether the mth edge of C; is a 
non-switch. 

Then, considering the binomial expansions of E((51 +52)8) and E((T1 +T2Y), 
etc, for all values of T, we see it is enough to show that 

E(Ial··Ia;Lbl··LbJCJ .. JcjMdl··Mdm) ~ E(Ial··Ia;L'b1 .. L'b/CJ .. JCjM;1 .. M;m) (@) 

for all possible choices of the suffices. In fact we can restrict to the case 
where no indicator occurs to a power higher than the first, since the variables 
involved are indicators. 

As before, each expectation of a product of indicators is 1 if and only if 
all the indicators are 1. This happens if all the vertices in each component 
of the graph whose edges are indicated by the random variables involved are 
the same colour when the indicators involved are all Js, Ms or M*s, and if 
all the vertices are blue if all the indicators involved are Is Ls or L *s. Note 
also that if a component of the graph formed by the edges indexed by the 
Ms and Js has any vertex (or edge) in common with any component of the 
graph formed by the edges indexed by the Is and Ls then for both products 
of indicators to be 1 every vertex of both components must be blue. Hence, 
since s ::; 1/2, we see that the joint probability of the two events A, that all 
the edges in some component of the graph indexed by the Is and Ls are 1, 
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and the event B, that all the edges in some component of the graph indexed 
by the Ms and Js are 1, is at least as large as the product of the probability 
of A and the probability of B. For if the edges involved in the events A 
and B have neither edges nor vertices in common, the result follows from 
Lemma 2.1; otherwise, since they have common vertices, all the vertices in 
both components are forced to be blue, and if k is the number of vertices in 
the component indexed by Is and Ls, l the number in the component indexed 
by the Js and Ms, and t 2: 1 the number in both components, 

P{A n B} = (1- s)k+I- t 2: ((1 - s)l + sl)(1 - s)k = P{A}P{B}; 

the inequality works because the extreme case is when t = 1 when the in­
equality asserts that (1 - 8)1-1 2: 81 + (1 - s)1 Vl which is equivalent to 
(1 - 8)1-1 2: SI-1 i.e that 8 S ~. 

We can now prove (@). As in Theorem 3.1 we first suppose C1 and C2 

are edge-disjoint. Using the remarks in the previous paragraph, we have that 

2: E(Ial ".IajLb1 ".Lbl)E(Jq ".JcjMdl,,·Mdm)· 

By the argument in Theorem 3.1 in turn, using the fact that there can be 
cycles on the left-hand side not on the right-hand side, and that in such a 
cycle an indicator can be forced to be same-same, or blue-blue, because all 
the other edges in the cycle are, we see that this is 

Finally, it remains to pass from this back to the expression we want to have 
at the end of the proof, namely 

but of course on the surface the argument of the previous paragraph sug­
gests that this may be somewhat greater than the last quantity considered. 
However, we will be able to get round this if we can show that 

E(Ial "Ia;Lbl "LbJq "JcjMd1"Mdm) - E(Ial"IajLbl"Lbl)E(Jq "JcjMdl"Mdm) 
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To prove this, recall we have just shown that PiAn B} > P{A}P{B} when 
a component of the graph indexed by the Is and Ls intersects a component 
of the graph indexed by the Js and Ms, and note that this will happen more 
often when the Ls and Ms are present than when the L*s and M* are, as 
then there will be more intersections between Cl and C2 . 

The final step is to show that removing the edge-disjointness condition 
can only increase the difference. We used edge-disjointness to obtain the 
formula for P{Cl n C2 } - P{Ct}P{C2 }. However if they are not disjoint, 
the true value of P{ Cl n C2 } will be at least as large as that suggested by 
the formula before, since that formula now double counts some of the edges 
and so includes a larger power of p, q or r than is in fact appropriate, so 
giving a value of P{Cl n C2 } - P{Cl }P{C2} lower than the correct one. So 
it suffices to show that (@) still holds. However the right-hand side of (@) is 
not affected by dropping the requirement that the subgraphs be edge disjoint, 
since C l and Ci are disjoint by definition and on the left-hand side there may 
still be additional correlation structure arising from cycles as before which 
will increase the expectation. 

The case q = 0 is also handled by an argument similar to that used in 
Theorem 3.1. • 

The proof may admit further generalisation. For example, it seems likely 
that if there are k colours, with same-same probabilities Pll < P22 < .. ·Pkk 

and all same-different probabilities q, where q < Pi/vj, and where we look 
at the random variables S the number of same-same edges, T the number of 
edges between two vertices of the same colour from 82, ... 8k, U the number of 
edges between two vertices of the same colour from 83, ... 8k, and so on, that, 
provided a string of inequality conditions on the 8i hold, so as to ensure that 
when components of the graphs indexed by different types of indicators meet, 
the joint probability is at least as large as the product of their individual 
probabilities, we will get an analogous result. However we have not studied 
this in detail. Note that as soon as we let the same-different probabilities 
differ, the situation becomes more complex. 

The argument of Theorem 3.10 depends on the assumption that 8 ::; 1/2. 
It is natural to investigate whether there is a simple example with r > P 
and s > 1/2 for which the result fails, to see if the condition is genuinely 
necessary, as opposed to just being a limitation of our method. However 
such an example does not seem entirely straightforward to find. Of course 
the above proof will fail, since some colourings will give the wrong inequality 
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in (@) but it is not clear if these might be outweighed by the cases where the 
inequality goes the right way. The simplest possible example, by the results 
in Chapter 2 and earlier in this chapter is when we join a path of length one 
to a path of length two in the middle. 

Lemma 3.11 In sGp,q,r, the probability of this configuration is always at 
least as large as the product of the individual probabilities. 

Proof. This is a simple exercise in conditioning on the colours of the vertices; 
we have that the joint probability minus the individual probabilities is (by 
computer simplification and factorisation) 

(1 - s) s (r(l - s) + q + sp)(q - r + rs - 2 sq + Sp)2 

which is clearly positive as required .• 
Also, if we look at CI = 1 - 2 - 3 and C2 = 1 - 3, then it seems 

on the basis of numerical trials that in any sGp,q,r with p, r > q we have 
P{CI n C2 } ~ P{Ct}P{C2 }, though we do not have a complete proof here. 
Similarily a 4-cycle is not less likely than its individual edges by Theorem 
2.27; and again numerical experiments suggest it is not less likely than the 
two paths of length 2 either. Lacking a clear method with which to attack 
this question in general, we leave it open. 

3.7 Several colours, switches likelier than non-switches 

We next consider what happens when there are several colours and the same­
different probabilities are large but the same-same probabilities are small. 
The heuristic here is that with many colours there should be few same­
same edges in both cycles and so it seems possible that we might yet get 
P{CI n C2 } ~ P{Ct}P{C2}. However we shall show that some care will be 
needed over the statement of any such result, using the following lemma. 

Lemma 3.12 Suppose we have a path of length (n - 1), 1 - 2 - ... - n 
and have k ~ 2 colours. We assign to each of the vertices one of the k 
equiprobable colours, except that we insist that i and i + 1 are of different 
colours at each stage, so that vertices 2, ... n are effectively being assigned one 
of k - 1 colours equiprobably. Then the probability that the vertices 1 and n 

are the same colour is (k - 1)n-2 - (_1)n-2 

k(k - 1)n-2 
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Proof. Let an be the probability in question. Then by conditioning on the 
colour of vertex (n - 1) we have the obvious recurrence relation 

1 - an -1 
an = an-I.O + k _ 1 {:} (k - l)an + an-1 = 1, 

with initial condition a3 = k~l. It is then easy to check that the formula 
given is the solution of this recurrence .• 

Theorem 3.13 Suppose we have an RRC model with k equiprobable colours, 
with all same-same probabilities equal to p and all same-different probabilities 
equal to q, where p < q. Then there is a neighbourhood q E (a, a + €) in which 
P{CI nc2}::; P{Ct}P{C2 } if the newgirth of the two subgraphs is odd, and 
P{ CI n C2 } ~ P{ CilP{ C2 } if the newgirth of the two subgraphs is even. 

Proof. Let 51 be the number of edges of C1 where the two end vertices are 
of different colours, and 52 and S; be similarily defined for C2 and C2. By 
arguments similar to those in Theorem 3.5 and 3.7, it suffices to prove 

E(lal la2 .. l am Jb1 ••• Jbl ) ~ E(Ial la2 ... lamJ:l ••• J~) 

for all choices of the 1;, Jj and Jj*; here the Ii are indicators of whether the 
ith edge of C1 is a switch, the Jj indicators of whether the jth edge of C2 

is a switch, and the J; indicators of whether the jth edge of C2 is a switch. 
Again the expectation of a product of indicators is equal to the probability 
that the indicators are all 1, that is, that there is a switch of colour at each 
stage, and again correlation structure arises only if there are cycles amongst 
the indicators. 

As in the proof of Theorem 3.5, we look at the first term for which the 
two sides differ, which is that term of the Taylor series where the power of 
8 is the newgirth of the two subgraphs, and then take 8 small enough to 
obtain the statement of the theorem. We thus look at cycles whose length 
is the newgirth; then there is some cycle on the left-hand side which is not 
present on the right hand side. On the right-hand side, the probability all 
the indicators are 1 is (1 - !) n, since there is no cycle there and so at each 
stage the only question is whether the next vertex is a different colour from 
the present one. On the other hand, on the left-hand side, where there is a 
cycle, we must use Lemma 3.12 to close the cycle, and so we see that the 
probability is 

1 - - 1 - ---'------'--'---( l)n-l ( (k _1)n-2 - (-I t -2) 
k k(k - 1)n-2 
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hence the left-hand side is greater than the right-hand side if and only if 

(
1_(k-1)n-2_(_1)n-2) (_~) 

k( k - 1 )n-2 > 1 k 

(k - 1)n-2 _ (_1)n-2 . 
<=> 1> (k _1)n-2 <=> n IS even 

giving the result .• 

Again it may be that the assumption of equiprobable colours can be 
relaxed at the expense of introducing more complex formulae. Of course the 
above result only describes behaviour in a neighbourhood of p = qj it may 
be true that, for q sufficiently greater than p in some sense and sufficiently 
many colours, the inequality P{CI n C2 } ~ P{CJ}P{C2 } holds; however it 
is not clear what such a statement should be. 

3.8 The role of the FKG inequalities. 

We now turn as promised earlier to the question of how Theorem 3.1 ties up 
with the FKG inequalities and related matters. We first recall a definition 
which will allow us to state the FKG inequality; 

Definition 3.3 A function f from the subsets of a finite set to the real num­
bers is non-decreasing if A c B :::} f(A) :S f(B), and an event is non­
decreasing if its indicator function is non-decreasing. 

Thus, for example, the event that all of some specified collection of edges 
arises in a RRC graph is clearly an increasing event. 

Theorem 3.14 Suppose that p, is a probability measure on the subsets of 
some finite set S, satisfying the inequality 

p,{x U y}p,{x n y} ~ J.t{x}p,{y} Vx, Y E L 

(such a J.t is said to be log-supermodular). Then if f and 9 are non­
negative non-decreasing functions on ve 

L: p,(x)f(x) L: p,(x)g(x) :S L: p,(x)f(x)g(x). 
xEL xEL xEL 

That is, E(f(x))E(g(x)) :S E(f(x)g(x)). 
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Proof. This is standard; see e.g [B2J, Theorem 19.5 .• 

Log-supermodularity is often satisfied, as the next example shows; 

Lemma 3.15 Suppose s = (Sl,S2, ... Sk) with L:7=lSi = 1 and Si 2: O'v'i. 
Define, for A C {1, 2, ... k} J.l( A) = fliEA sdli~A (1 - Si) so that elements 
of {1, 2, ... k} are in A independently, with P{i E A} = Si. Then J.l is log­
supermodular; more precisely, J.l{A U B}J.l{A n B} = J.l{A}J.l{B}. 

Proof. This is again standard, and easy to see by considering the contribu­
tion of each element i of {1, 2 ... k} to both sides .• 

We first explain how the FKG inequality is used classically to obtain the 
analogue of Theorem 3.l. 

Theorem 3.16 Suppose J.l is a measure for which the FKG inequality holds 
(e.g J.l is log-supermodular). Then, if A and B are events whose indicator 
functions are non-decreasing, we have 

P{A n B} 2: P{A}P{B}. 

and if C is an nondecreasing event and D is a nonincreasing event (that is, 
the indicator function of D is nonincreasing) we have 

P{C n D} ::; P{C}P{D}. 

Proof. This again is standard; the first claim is proven by applying the 
FKG inequality when f is the indicator function of A and 9 is the indicator 
function of whether the set contains all the elements of B (so that f and 9 
are clearly non-negative and increasing), and noting that the expectation of 
an indicator variable is the probability that it is l. 

For the second part, let f be the indicator function of C and 9 the indic­
ator function of D, so that f is nondecreasing and 9 nonincreasing; then f 
and h = sUPXEL(g) - 9 are both nondecreasing and positive. Applying the 
FKG inequality to them and tidying up we get that p{CnD} ::; P{C}P{D} 

as required .• 
The result of Harris which was mentioned in the remarks after Theorem 

3.1 is an immediate corollary of Theorem 3.16 since the event that all the 
edges in some set arise is clearly an increasing event. 

We now show that the FKG inequality fails for J.l the probability measure 
in Gp,q with p > q. Thus, although P{C1 n C2 } 2: P{C1}P{C2 } still, by 
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Theorem 3.1, the classical method of proof cannot be used. More precisely, 
we shall exhibit three subgraphs Cl , C2 and C3 for which, although p > q, 

(Note in passing that if it were not for the fact that we only consider events 
of the form "all edges in a certain set arise" in Theorem 3.1, the previous in­
equality would hold more generally. Indeed we would have, using repeatedly 
the easy fact that Cl U C2 = (Cf n Cnc

, 

P{C3 n (Cl U C2 )} = P{C3 } - P{C3 n Cf n Cn 

~ P{C3 } - P{C3 }P{Cf n Cn by Theorem 3.1 

= P{C3 }P{Cl n C2 }). 

Let C l be the graph on vertices 1,2,3,4 with edges 1 - 2 and 2 - 4, C2 

be the graph on these vertices with edges 1 - 3 and 3 - 4, and C3 be the 
edge 2 - 3 (note these three subgraphs are edge-disjoint). We note a lemma 
which will be used again in section 3.11. 

Lemma 3.17 Let A be the triangle 1 - 2 - 3 - 1 and B be the triangle 
1 - 2 - 4 - 1. Then in Gp,q, with a = (p + q)/2 and (3 = (p - q)/2 as before, 

P{A n B} = E(p4 + 2p2q2 + 4pq3 + q4) 
8 

(a + (3)(a2 + (32)2 + (a - (3)(a 2 
- (32)2 

= 2 

Proof. Considering whether 1 and 2 are the same or different colours, and 
using Theorem 2.6, we have 

~ W; q)' + (P; q)'r + ~ W; q)' - (P;q)')' 
and this is easily checked to be equal to both expressions. • 

Then in G using Theorems 2.4 and 2.6 it is easy to see that p,q 

P{C3 n {Cl U C2 }} = P{C3 n Cd + P{C3 n C2 } - P{Cl n C2 n C3 } 

= 2 (p; qr -~ (p4 + 2p2q2 + 4pq3 + q4) . 
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However 

P{C3 }P{Cl U C2 } = P{C3 } (P{Ct} + P{C2 } - P{Cl n C2 }) 

= p;q (2 (p;qr - (p;q)4 - (P;qf) 
whence it is easy to show that 

In particular, the measure is not log-supermodular. Similar more general 
examples along the same lines could be constructed by considering a rhombus 
with all sides paths of length k, letting Cl consist of two adjacent sides of 
the rhombus and C2 consist of the other two sides, so that C l n C2 is the 
rhombus, and letting C3 be a path of length 1 between two opposite vertices, 
one of them in Cl and the other in C2; in this case similar reasoning shows 
that 

which again is negative for p > q. So the phenomenon is not purely one 
that is restricted to small subgraphs. It seems likely that it has more to 
do with the fact, that if Cl and C2 are present, this implies that there is a 
high probability that the two end vertices of C3 are the same colour and so 
P{ C l n C2 n C3 } is larger than one might otherwise expect, since the presence 
of C3 is positively correlated with the presence of Cl and C2• 

Note that the failure of the FKG inequalities must reflect the lack of 
independence in our models, as Lemma 3.15 makes it clear that, for these 
models, inhomogeneity alone is not an obstruction to the results. That the 
FKG inequality can fail when independence no longer holds has been noted 
before; for example, in [ASE] it is noted that if A is a fixed subset of {1, 2, ... k} 
and Ai, 1 S; i S; m are random subsets of {I, 2, ... k} where P{l E AJ = PI, 

then 
P {A n Ai # 0 Vi} ~ II P {A n Ai # 0} 

but that this can fail if instead the A; are random r-subsets of {I, 2, ... k}. 
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3.9 Some remarks on the Janson inequality 

A consequence of the FKG inequality which is commonly used in the classical 
theory is the so-called Janson inequality; 

Theorem 3.18 Suppose {Ai} for i E {I, 2, ... n} are events in a probability 
space such that, for S C {I, 2, ... n}, we have 

1. ViandSwithi f/: S P{Ai I njEsAj}:S; P{Ai}. 

2. Vi f= j and S with i, j f/: S P{Ai n Aj I nkESAD :s; P{Ai n Aj }. 

Let M = fli=l P{Ai}; then, if P{Ai} :s; EVi and ~ = L P{A; n Aj} where 
the sum is taken over pairs of events which are dependent but not identical, 
we have 

A 
M:S; p{ni=lAi}:S; Me 2(1-<) 

In particular, if E = 0(1) and ~ = 0(1) we get the asymptotic formula 

p{nAi} rv M. 

Proof. [ASE] gives a proof due to Boppana and Spencer, which is somewhat 
more elementary than Janson's original one .• 

In our applications, of course, the events Ai will be that some set of edges 
arises. In particular, they will be increasing events, so both conditions in the 
Janson inequality would follow if the FKG inequalities held, since if Ai is an 
increasing event Ai is a decreasing event. However our counterexample to the 
FKG inequalities above implies that even the first condition in the Janson 
inequalities does not hold in our models. Indeed recall that we exhibited 
three subgraphs such that 

Now, by elementary probability theory, we have 

P{C3 n (Cl U C2 )} :s; P{C3}P{Cl U C2 } 

<=? P{C3 n (Cl U c2t} ~ P{C3}P{(Cl U c2t} 
<=? P{C3 n C~ n Ca ~ P{C3}P{C~ n Cn 

<=? P{C3 1 C~ n Cn ~ P{C3}. 
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and so for the Ci as in the previous section, the first condition in the Janson 
inequalities fails to hold for any p > q. 

The failure of the Janson inequalities in our setup is is a pity since in 
the classical model this theorem is an important tool for estimating joint 
probabilities of events. For example, since we lack a tool to prove that the 
probability of all of some collection of events is close to the product of their 
probabilities, if we have some random variable which is a sum of identically 
distributed indicators, we will have difficulty proving that the r-th moments 
of the sum are close to the r-th powers of the mean we want to converge 
to; this suggests that the Poisson paradigm (which means essentially the 
idea that the probability of rare events can be approximated, for large n 
by a Poisson distribution) may be less widely applicable in our models than 
classically. 

Of course in practice the Janson inequalities are often used as an asymp­
totic tool, and the above argument does not rule out the possibility that it 
may still be possible to get good approximations to the probability of an 
intersection of events by the product of their probabilities; and we shall see 
some partial evidence to support this idea in the section 3.11. However a 
more sophisticated argument than classically will be needed, and it is not 
clear how generally such ideas can be got to work. 

3.10 Are 8 1 and 82 associated random variables? 

We begin by recalling the following definition. 

Definition 3.4 Random variables Sand T are associated if 

E(f(S)g(T)) ~ E(f(S))E(g(T)) 

for all bounded increasing functions f and g. 

This inequality is (rather confusingly) sometimes called the FKG inequal­
ity; we will call it FKG(2) to distinguish it from what we called the FKG 
inequality. Recall that in Theorem 3.3 above we showed that 

This suggests the possibility at least that the random variables S1 and S2 
are associated, but this too turns out to be false. To get a counterexample, 

67 



note that Theorem 3.3 implies the special case of FKG(2) where f and 9 are 
both of the form x t-+ xr; consequently, it holds for any pair of increasing 
functions f and 9 which can both be expressed as a limit of polynomials 
with non-negative coefficients. However this does not cover all increasing 
functions; for example, any such function, being a limit of a series whose 
terms are convex functions is itself a convex function. Thus we try non­
convex functions to get a counterexample and in fact some simple ones work. 
For example, ifC1 is the cycle 1-2-3-4-5-1 and C2 = 1-3-5-2-4-1, 
and f(x) = g(x) = 1 - e- X which is clearly bounded and increasing but is 
concave we have 

on simplifying. Considering the following cases; 

1. All five vertices the same colour (2 of the 32 cases): S1 = 5, S2 = 5. 

2. All vertices except one are the same colour (10 cases): SI = 3, S2 = 3. 

3. Three vertices are one colour, two vertices which are adjacent on C l 

are the other colour (10 cases): then SI = 3, S2 = 1. 

4. Three vertices are one colour, but the other two vertices, which are not 
adjacent on Cl are the same colour (10 cases); SI =1, 52=3. 

we see that 

whereas 

as required. In fact we can do a similar calculation for the same two cycles 
with the functions f and 9 both being x --+ x! and we again find that the 
random variables SI and 52 are not associated. 

The above discussion leaves open the possibility that FKG(2) might 
still hold if we only look at bounded increasing convex functions f and 
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g. However it is fairly clear that not all increasing convex functions arise 
as limits of polynomials with positive coefficients (for example, those with 
bad differentiability properties), so something more would have to be said. 
The notion of association arising when we restrict the increasing functions f 
and 9 to be convex does not seem to have been studied in the literature on 
association, and it is far from obvious if such a property would be useful. 

3.11 Some exact results on numbers of 3-cycles 

It is of some interest to do some exact calculations for N3 the number of 
3-cycles. This section is partly motivated by the failure of the Janson in­
equalities discussed above, since in the classical model they are a standard 
tool for estimating the probability that a graph is triangle-free (see [S]). Some 
of our results will be seen to offer some support for the notion that, although 
the Janson inequalities fail in simplistic form, something similar seems to 
work at least some of the time. We start by giving exact formulae for the 
expectation and variance of the number of 3-cycles. 

Theorem 3.19 Let Na be the number of 3-cycles in Gp,q' Then 

EN, = (~) ((P;q)' + (P;qr) 
and Var(Na), the variance of N3 is equal to 

pn(n - l)(n - 2)(18np3q2 - 24npqa - 6nq4 - 6np4 - 12np2q2) 

96 

pn(n - l)(n - 2)(27npq4 + 3np5 - 4Sp3q2 - 4p2 - 12q2) 

96 

pn(n - l)(n - 2)(72pq3 + 36p2q2 - Sp5 + lSp4 - 72pq4 + lSq4) 

96 

For sufficiently large n, Var(Na) is greater than or less than its classical value 
according as p > q or < q. 

Proof. Since N3 is the sum of indicator variables of whether or not each 
3-cycle is present, using the formula for the probability of a cycle in Theorem 
2.6 and the linearity of expectation, we have 

E(N,) = (;) W;q), + (P;qr) 
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For the variance, we need to obtain E(Nj). Now N3 is a sum of indicator 
variables of whether the potential cycles arise. If two 3-sets have no vertices 

in common, as (;) (n;3) of the (;) 2 pairs of 3-sets do, or one element in 

common, as 3(~) (n~3) do, the existence of the two cycles is independent by 
Lemma 2.1 and the remarks before Theorem 3.1. If they are the same, as 
(;) pairs are, the joint probability is the probability of one of them. The 
only other case is if they have one common edge when by Lemma 3.17 the 
joint probability is p(p4 + 2p2q2 + 4pq3 + q4)/8. Thus 

+3(~) (n ~ 3)P(P' + 2p'q'8+4
pq3 + q') + (~) W ~ q)' + (P ~ qr) . 

As (n~3) + 3(n;3) = (~) _ 3(n;3) - 1 = (;) - (3n - 8), we have that 
(temporarily using 0 and (3 to simplify writing the expressions) 

Varp,q(N3) = E(Nj) - E (N3)2 

= (~)' (03 + (3')' - (3n - 8) (;) (1' + (33)' _ (;)' (13 + (33)' 

+3 (~) (n ~ 3) (1 + (3)(1' + (3')' ~ (1 - (3)(1' - (3')' + (;) (13 + (33) 

= -(3n - 8) (;) (03 + (33)2 

+3 (;) (n ~ 3) (1 + (3)(1' + (3')'; (1 - (3)(1' - (3')' + (;) (13 + (33) 

pn(n - 1)(n - 2)(18np3q2 - 24npq3 - 6nq4 - 6np4 - 12np2q2) 

96 
pn(n - l)(n - 2)(27npq4 + 3np5 - 48p3q2 - 4p2 - 12q2) 

96 
pn(n - l)(n - 2)(72pq3 + 36p2q2 - Sp5 + lSp4 - 72pq4 + lSq4) 

96 
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by computer simplification. Thus 

384(Varp,q(N3) - Vara(N3)) (3 3 2 2 2 2 
n(n-1)(n-2)(q-pp = 9p +3q +27pq +9pq-18p -6q -24pq)n 

+ ( _8q3 - 72pq2 + 18q2 - 24p2q + 72pq - 8 + 54p2 - 24p3) (*). 

For the last claim, note that the coefficient of n on the right-hand side is 
always non-positive as 

9p3 + 3q3 + 27pq2 + 9p2q - 18p2 - 6q2 - 24pq 

= 9 (p3 _ p2) + 9 (p2q _ p2) + 3 (q3 _ q2) + 24 (pq2 _ pq) + 3(pq2 _ q2) 

and each individual bracket is clearly non-positive (they can all be zero if 
p = q = 1 or p = q = 0, but then of course the constant term is also 0). 
Thus for n sufficiently large, the variance with p > q is always greater than 
or equal to its classical value, and for p < q it is always less than or equal to 
its classical value .• 

Note that whilst Theorem 3.4 says that Ep,q (N~) ~ Ea (ND for p > q, this 
of course does not imply Varp,qN3 2: VaraN3 for p > q. Indeed if p = 0.999 
and q = 0.998 the right-hand side of (*) is -0.08376616n + 8.1790642 which 
is only negative for n 2: 98. However, this does show that with p > q the 
variance is greater than classically for large enough n. 

Theorem 3.19 has implications for the question of when a random graph 
is triangle free that is, there are no triangles (3-cycles) present. 

Theorem 3.20 In Gp,qJ let p '" cln and q '" din where c and d are constant. 
Then 

(c3 +3cd2 ) 

lim P {G is triangle free} = e 24 • 
n-too 

Proof. We first notice that the relevant probability is the probability of 
the two events A that there is no monochrome triangle and B that there is 
no polychrome triangle. Next note the probability that the event happens 
equals the probability that it happens conditional on the number of reds and 
blues both being n/2 + o(nl/2+£), since the latter happens with probability 
tending to one. Given the numbers of reds and blues, of course, the events A 
and B are independent, and do not depend (in the limit) on the variability 
in the numbers of reds and blues. 
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We estimate A first. Recall that the classical calculation of the probability 
that G;;- is triangle-free is fairly robust to the exact form of the probability 
(see [S] for discussion of this); in particular, as it depends only on the fact 
that Q rv ~, it is not sensitive to the slight variability in the number of reds 
and blues and so 

lim P {no monochromatic triangle} = (lim P {N3 (G (!!:, 2a)) = O}) 2 
n-+oo n-+oo 2 n 

( 
a3) 2 0 3 

= e- T by the classical calculation = e-24" as C = 2a. 

Thus it suffices to show that P{ no polychromatic triangle} rv e-cd2 /8. 
We use the Janson inequalities. Each potential polychromatic triangle 

arises with probability pq2. The two assumptions required for the Janson 
inequalities hold for the potential polychromatic triangles, since we have 
conditioned on the number of reds and blues, so we need only show that (in 
the terminology of Theorem 3.18) ~ and fare 0(1) and that M rv e-cd2

/ 8 • 

To do this, note first that as p and q are both rv cK/n for some constant 
K, we have f = 0(1) as required (indeed it is O(n-3 ). To show that ~ is 
0(1), we need only consider the case when the two polychrome triangles have 
one edge in common, as otherwise they are independent or identical. In this 
case, there are about (n/2)4 choices of the vertices in the two triangles, and 
since the probability of the two triangles arising is some constant divided by 
n5 we get that .6. = 0(1) as required. 

Finally, to apply Theorem 3.18 we note that, since if the first vertex is 
from the about n/2 reds the other two vertices are chosen from the about 
n/2 blues, and similarily if the first vertex is blue; again the slight variability 
in the numbers of reds and blues is not important, and thus 

cd2 
/ (n/2) d2/ M = (1 - _)2.n 2. 2 rv e-c 8 .• 

n3 

It may be possible to use similar techniques to obtain insight into the 
probability that the graph contains no subgraph isomorphic to some fixed 
graph H for at least certain other types of H, and possibly other questions 
which are classically solved with the Janson inequalities. However, we have 
not examined this in detail. 
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4 Manifestation of correlation structure in the 
number of edges 

4.1 The number of edges; introductory remarks 

In the previous two chapters we concentrated primarily on questions about 
the probability of particular patterns of edges, such as trees or cycles. In this 
chapter and the next we instead consider the simpler random variable £, the 
number of edges in the graph (we shall sometimes write £a or £p,q if we wish 
to emphasise the model in which we are working). We also consider some 
closely related random variables, such as the degrees of the vertices. Often 
we shall compare moments E(£r) in the new and classical models, or look at 
several moments simultaneously via a generating function. In Chapter 5 we 
shall continue this general line of enquiry by looking in some detail at large 
deviation principles for our models (which depend on all moments through 
the moment generating function). 

In the classical model £a rv Bin( n( n - 1) /2, a), and it is consequently 
as well (or ill!) understood as such random variables are. However in our 
models the distribution will usually be more complex. For example, even in 
Gp,q the probability function is the following rather messy expression which 
does not seem to have any simplification. We adopt the convention that any 
binomial coefficient (~) is zero unless a ~ b are non-negative integers). 

Lemma 4.1 P {£p,q = k} is given by 

n k (n 2 -n .( .)) 2 (O( 0)) (n) L L -2- - ~ n - z zl(1-p) n 2-
n

- i(n-i)-i z: ~ ~ l-i(1_q)i(n-i)-k+i 2in . 

• =0 J=O J J 

Proof. Conditional on their being i reds, which happens with probability 
(7) /2 n , there are i(n - i) same-different edges and hence n(n -1)/2 - i(n - i) 
same-same edges. Thus to get a total of k successes, we must have, for some 
o :S: j :S: k, k - j successes in the i(n - i) independent trials with success 
probability q and j successes in the n(n - 1)/2 - i(n - i) independent trials 
with probability q; the result follows from the form of the probability function 
of the binomial distribution. • 

The analogous formulae in more complex RRC models would be even 
worse. Thus we concentrate on other aspects about which rather more can 
be said. 
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4.2 Generalisations of independence for the edges. 

Of course £ = L:l$i<j$n Xij where Xij = 1 if edge i - j is present and 0 
otherwise (we put Xii = 0 Vi). Classically the Xij are independent, but 
Theorem 2.17 shows that this will be true here only for trivial models. We 
thus ask what properties generalising independence the Xij have. 

We first note that the Xij are not exchangeable. Recall discrete random 
variables Xl, .. Xn are exchangeable if and only if for all n and permutations 
7r of {1, 2 ... n} we have 

P{XI = Xl, ... Xn = Xn} = P{X1I"(1) = XI,X1I"(2) = X2, ... X 1T(n) = xn} 

and that an infinite such sequence is exchangeable if and only if all its finite 
subsequences are. For example, i.i.d random variables are exchangeable. See 
the survey [AJ for more information about exchangeability. 

Lemma 4.2 Suppose the indicators Xij of the edges in an RRC model are 
exchangeable. Then there are at most three vertices or the model is trivial in 
the sense of Theorem 2.17. 

Proof. If there are at least four vertices and the model is not TID, then 
letting 1,2,3,4 be some of the vertices, the events A, that the edges 1- 2 and 
3 - 4 both arise, and B, that the edges 1 - 2 and 1 - 3 arise, have different 
probabilities, contradicting exchangeability. Thus we now assume the model 
is TID. If there are more than four vertices, we consider the events A that 
the cycle 1 - 2 - 3 - 4 - 1 arises, and B that the tree 1 - 2 - 3 - 4 - 5 
arises. By exchangeability and TID, these both have probability a 4

; but by 
Theorem 2.27 if a cycle of even length has the same probability as classically, 
the model is trivial as required. 

On the other hand, it is easy to check that for three vertices or less, the 
Xij are exchangeable in all RRC models. Thus it only remains to show that if 
the indicators are exchangeable when there are four vertices and the model is 
TID, then the model is trivial. For this, we note that exchangeability implies 
that the probability of a 4-cycle is equal to the probability of a 3-cycle C 
with an extra edge attached to one vertex v say; this probability is 

k 

L SiP{C I c(v) = i} LPijSj = aP{C} 
19$k j=l 

since the L:;=l PijSj are equal when Si "=I 0 by the TID assumption; it also 
implies that P{ C} = a3

, since the latter is the probability of the path 
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1 - 2 - 3 - 4 by exchangeability and the fact that the model is TID. Hence 
together these assumptions force the probability of a 4-cycle to be the same 
as classically, and again the result follows from Theorem 2.27 .• 

Lemma 4.2 is unsurprising since De Finetti's theorem, a key result in 
exchangeability theory says that an infinite sequence is exchangeable if and 
only if it is a mixture of i.i.d sequences ([AJ, section 2); that is, conditional 
on some (possibly vector-valued) parameter, the variables are i.i.d. However 
here, whilst independence arises conditional on the colours of all the vertices, 
they are not then identically distributed unless the model is trivial. The Xij 
do however have the property that for all 1 :::; i,j :::; n 

informally, permuting the labels of the vertices leaves the distribution of 
the degrees unchanged. This property is termed weak exchangeability 
in [AJ; the general structure theorem 14.21 proven there, namely that any 
weakly exchangeable array is of the form Xij = g( 1/J, ~i, ~j, Aj,j), where 9 is 
any function such that g(a,.,., d) is symmetric for any (a, d) and 1/J, ~i and 
Ai,j are uniform on (0,1), says nothing in this particular case which is not 
already obvious, but the property will be useful when we consider a central 
limit theorem for £, when this property will be seen to be equivalent to a 
property we will require then. 

Another direction in which one can generalise the notion of independence 
is to dissociated random variables [BHJJ; 

Definition 4.1 For a collection r ofk-subsets i = {i1, ... ik} of{1,2, ... n}} 
random variables Ii for i E r are dissociated if the subsets of random 
variables 

(h i E A) a nd (Ii, i E B) 

are independent whenever 

(u i) n (,U i) = 0. 
lEA IEB 

For k = 1 dissociation is the same as independence of the h but for k 2:: 2 
it is (much) more general. Of course for us k = 2, the set r consists of all 
n( n - 1) /2 potential edges of the graph, and the indicators are dissociated 
by Lemma 2.1. In fact a stronger property will sometimes hold; 
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Definition 4.2 A dissociated family (Ij, j E r) of random variables) indexed 
by the edges of a graph r is strongly dissociated if also) V Her 

1 j n UiEHi 1= 1 => I j is independent of (Ii : i E H) . 

Lemma 4.3 An RRC model is TID if and only if the indicators of the edges 
are strongly dissociated. 

Proof. If the model is TID, consider P{Ij = 1 and Ii = 1Vi EKe H}. 
If the i E K and j have no common vertex, the events are independent by 
Theorem 2.1; otherwise there is one vertex, v say, in common and 

P{Ij = 1 and Ii = 1 Vi EKe H} 

k 

= LP{Ij = 1 and Ii = 1 Vi E K 1 c(v) = l}sl. 
1=1 

k 

= L P{Ij = 1 1 c(v) = l}P{/i = 1 Vi E K 1 c(v) = l}sl. 
1=1 

But as the model is TID, P{Ii = 1 1 c(v) = l} = 0: if P{c(v) = l} =I- 0 by 
Theorem 2.2, and so this is P{Ij = 1}P{Ii = 1 Vi E K} as required. 

Conversely, if the indicators are strongly dissociated, the probability of 
the path 1 - 2 - 3 is (treating 2 as the common vertex between j the edge 
1 - 2 and i the edge 2 - 3) the product of their probabilities which is its 
classical value; and as in Theorem 2.2, this implies the model is TID .• 

Note that in general there are dissociated families of pairwise independ­
ent random variables which are not strongly dissociated. Dissociated and 
strongly dissociated variables are widely used in Poisson approximation the­
ory ([BHJ]) and will be useful in our discussion of that topic for £ later. 

4.3 Expectation and variance of the number of edges. 

We first consider the expected number of edges of £, which is very easy to 
relate to its classical value. 

Theorem 4.4 E£a = E£ in an RRC model r(n, k, P, s). 
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Proof. Immediate from E = El~i<j~n Xij , the fact EXij = a and linearity 
of expectation. • 

We next consider the variance Var(£). Since the variance of a sum of n 
independent Bernoulli random variables is maximised, as their probabilities 
Pi vary with E~l Pi = na fixed, when all the Pi are equal, we might naively 
guess that Var( E) will be smaller in RRC models than classically. However 
it transpires that the correlation structure at least cancels out this effect. 

Lemma 4.5 Let Xi (1 ::; i ::; n) be identically distributed and pairwise in­
dependent. Then Var(E?=l Xi) = n Var(Xi)' 

Proof. Expanding, and using that the Xi are identically distributed, 

Var( LXi) = Cov( LXi, LXi) 

= nCov(Xi,Xi) + n(n -l)Cov(Xi,Xj} = nVar(Xi) + n(n -l)Cov(Xi,Xj); 

where j =f i; but Cov(Xi, Xj) = 0 as the Xi are pairwise independent so this 
is nVar(Xi) as required .• 

Theorem 4.6 In any TID RRC model f(n, k, P, s), Var(£) depends only on 

a = E SiSjPij· 

Proof. E = El<i<j<n Xij . Since the model is TID the Xij are pairwise 
independent with-the- same distribution. The result follows by Lemma 4.5 
taking the Y; to be the indicators in the corresponding classical model. • 

A similar argument bounds Var( E) below for any RRC model; 

Theorem 4.7 In any RRC model r, Var( £r) ~ Var( Eo) with equality if and 

only if the model is TID. 

Proof. As in Theorem 4.5 YarE = E19,j,k,l~n Cov(Xij , X k,). The covari­
ances where Xij and Xkl have no vertex in common, or are the same edge, 
are the same as classically, so we need only consider the cases where there is 
one common vertex. Then the two edges form a tree so by Theorem 2.22 the 
joint probability is no less than classically, with equality if and only if the 
model is TID. The result follows. • 

One can of course prove Theorem 4.6 in other ways, e.g by considering 
the probability generating function (see section 4.4 below). 
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We now turn attention to higher moments, which, even in a TID model, 
will not be the same as classically because some of the sets of 3 edges we 
consider in the expression for E(£3) are cycles and so the probability that 
they arise will be different from classically (unless the model is trivial). Of 
course similar remarks apply to higher moments. However, we would expect 
(informally speaking) that most sets of r edges, where r is small compared 
to n, would contain few cycles, and so that, if the model is TID so that the 
probability of the other r-sets arising is the same as classically, the difference 
between E(£T) in the new and classical models would not be very large. To 
make these ideas more precise, if f( n, k, s, P) is TID the only sets of indicators 
which do not contribute the same amount to the new and classical moments 
are those which contain a cycle; thus if f(n, r) is the probability that a graph 
with r edges chosen at random is a forest (that is, it has no cycles), then 
E(£F) - E(£~) will be a sum over the (n(n - 1)/2Y(1 - f(n, r)) cases where 
there are cycles present of some non-zero quantity; thus some insight into 
the difference between the two can be had by understanding f(n, r). 

Theorem 4.8 Of the (n(n~I)/2) total possible choices of r distinct edges on 
n labelled vertices, 

are forests. If we choose r edges, with replacement, from a set of n(n - 1 )/2 
edges, with all choices being equiprobable, then the probability that the edges 
selected form a forest is 

( n ) nn-s kki-2 "s ( 1)j (s) ( ')T 
f( ) 

_ ~ Ekl+ ... kn-.=nki>1 kl,··kn-. i=1 i L..Jj=O - j S - J 
n, r - ~ (n(n - 1)/2)r 

Proof. A forest on n vertices with r edges has I, 1 ::; 1 ::; n, components, 
which are trees. Thus if a component has m vertices it has m -1 edges. Thus 
if k· 1 < i < 1 are the numbers of vertices in the I components, we have I, __ 
E~=l ki = nand E!=l (ki - 1) = r so l = n - r. Since the number of trees 
on m labelled vertices is mm-2 by Cayley's theorem the first claim follows 
considering the various ways to select the vertex sets of the components and 
the tree within them. 
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For the second statement, we have, writing Ar for the event that r edges 
chosen randomly with replacement form a forest, we have 

r 

P{Ar } = L: P{A I 8 distinct edges }P{we get 8 distinct edges} 
s=o 

r 

= L: P{s distinct edges form a forest}Pn,r,8 
8=0 

r '" _. ( n ) TI~-8 kki -2 
_ ~ L.k\+ ... kn_._nk.~1 k\, .. k n _. .=1. 
- L...J (n(n-l)/2) Pn,r,s 

8=0 s 

by the previous paragraph, where Pn,r,s is the probability that, in taking a 
sample of size r with replacement from a population of size n(n - 1)/2, we 
get 8 different elements in our sample. This is clearly equal to the probability 
that in putting r balls into n(n - 1)/2 cells with each ball equally likely to 
go in each cell so that there are (n(n - 1)/2Y possible outcomes, we get 
n(n -1)/2 - 8 empty cells, which by formula 11.7 on page 60 of [Fe] is 

(n(n~I)/2) L:j=o( -1)3 (j) (8 - jY 
(n(n - 1)/2Y 

and the result follows cancelling (n(n~1)/2) top and bottom .• 

This formula is of course rather intractable. For doing asymptotics, it may 
be worth notin~ that the number of ways to select r edges without replace­
ment is (n(n~l) 2) which provided r stays fixed as n -t 00, is asymptotically 
the same as the total number of ways of selecting r edges with replacement 
namely (n(n - 1)/2Y /r!. 

The above discussion also makes it clear that whether the first moment 
which is not the same in the new and classical models (the r-th moment, 
say) is greater than or less than classically will depend on whether r-cycles 
are more or less likely than classically; the techniques of Chapter 2 can be 
applied to this question. 

If the model is not tree-indiscernible, even the second moment will differ 
from classically, considering two incident edges; by Theorem 4.7 it will be 
larger than classically. 

To illustrate all this, consider Gp,q' Elementary calculations (which we in 
fact did on the computer using the generating function of £) give 

E (£;,q) = E (£~) + n (n - 1) (n _ 2) (P ; q) 3 
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and thus the skewness S = E (((£ - f..t)/(J)3) where f..t and (J are the mean 
and standard deviation of £, depends on p and q, rather than just their 
average; it is greater than classically if p > q and less if q > p. Similarily to 
the calculation for skewness, we see that 

(p - q)3 n(n - l)(n - 2) 
= -2- 2 (q (2n + 1) (n - 3) + (2n + 7) (n - 3) p + 12) 

so the kurtosis K = E( (£ - f..t) / (J)4) depends on both p and q rather than 
just their average; for n 2: 3, the right hand bracket is positive so the fourth 
moment is greater than classically if p > q and less if q > p. We shall expand 
on these observations in section 4.5. 

Note that in the above examples we have that (for r = 3,4) 

1· E(£;,q) 1 O( -3) 
n~~ E(£~) = + n . 

If we allow r to vary with n, it is unrealistic to expect this to be true in 
general; for very large values of r, for example, most collections of r edges 
will contain several cycles, and so the difference will be greater. We do not 
know if some such statement does hold if we insist that r stay fixed. 

4.4 Normal approximation of the number of edges 

In the previous section we showed that in TID models E(£) and Var(£) 
depend only on a. One obvious question to ask next is whether there is 
asymptotic convergence of £ to a normal distribution, if the Pij do not depend 
on n; of course in the classical situation this is true by the De Moivre-Laplace 
theorem. We now show that it is also true here provided the model is not 
TID; we comment briefly on the situation when the model is TID below. In 
section 4.7 we shall discuss the situation where the probabilities are small for 
large n and where Poisson approximation is more appropriate. 

The technique is Silverman's central limit theorem for exchangeable dis­
sociated random variables. This requires some notation to state. Define an 
m-tuple to be an ordered set of m distinct positive integers J = {jl, ... jm}, 
and let P(m) be the set of all m-tuples and P(m, n) the set of all m-tuples 
whose elements are drawn from the set {I, 2, ... n}. (In our application m = 2 
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and the 2-tuples are the edges of the graph). For J E P(m) and 7r a permuta­
tion of the integers, J 7r is the m-tuple (j17r, .•. j m 7r), and a rearrangement 
of J is an m-tuple K with {j E J} = {k E K}. 

1im • will denote an array of random variables X J indexed by all J E 
P(m). We will say that the array is dissociated if and only if the random 
variables in it are dissociated, in the sense of section 3.2. 

A dissociated array is exchangeably dissociated if and only if for any 
finite sequence J, ... Z of m-tuples and any permutation 7r of the integers, 
(XJ, ... Xz) and (XJtr, ... XZll') have the same distribution. Thus for m = 2 
a dissociated array is exchangeably dissociated if and only if it is weakly 
exchangeable in the sense we defined in the discussion after Lemma 4.2. 

Finally, note that 1im • is symmetrical if and only if, whenever the m­
tuples J and K are rearrangements of each other, we have XJ = X K a.s.; 
this will be true in our application as the edges are undirected. We can now 
state a weakened form of the theorem (it is easy to generalise the theorem to 
non-symmetrical exchangeably dissociated arrays, but we will not need this). 

Theorem 4.9 Suppose 1im • is a symmetrical exchangeably dissociated array 
of real random variables with finite variance and zero mean. For each positive 
integer n let Sn = LJE1'(m,n) X J. Then 

nm~nl/2 ~ N (O,m2p) 

in distribution as n ~ 00, where p = Cov(XJ, X K ) for any two m-tuples J 
and K with exactly one element in common. 

Proof. [Si] .• 

Theorem 4.10 In any RRC model which is not TID, E has an asymptotic­
ally normal distribution. 

Proof. We need only note that Sn = 2(E - n(n - 1)a/2) so that Var(Sn) = 
4Var(£). Thus the result follows from the fact that p above is non-zero 
because the model is not TID .• 

If the model is TID, Silverman's theorem is of course still true, but as then 
p = 0 we have that this normalisation of E converges to a degenerate normal. 
A moment's thought shows that, since YarE is the same as classically by 
Theorem 4.5, namelyn(n-1)a(1-a)/2, if we want (En -n(n-1)a/2)/(nK

) 
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to converge to a non-degenerate distribution, we must have /'i, = 1. We 
suspect that if the model is TID, this will converge, but do not have a proof 
at the moment. 

It may well also be possible to imitate a more traditional method of proof 
of this fact, by showing that the moment generating functions mn(O) of E 
as n varies, suitably normalised in the usual way, converge to the moment 
generating function of a normal with mean 0 and variance 1. Indeed the 
generating function of E is easy to obtain; 

Theorem 4.11 In any RRC model r(n, k, P, s), En has moment generating 
function mn (0) given by the following formula, with the sum taken over all 
integers nl, ... nk such that ni ~ 0 for all i and Ei ni = n; 

Proof. This is a simple argument conditioning on the numbers of vertices of 
each colour and using the well-known fact that the moment generating func­
tion of a single Bernoulli trial with success probability a is ae() + 1-a. Indeed 
if we get ni vertices of colour i (with probability (nl ,n: ... nJ n~=l s'ji) there 
are ni(ni - 1)/2 potential edges between vertices of colour i, each of which 
arises independently with probability Pii and ninj potential edges between 
vertices of colour i and colour j, which arise with probability Pij· • 

However, whilst it is probably possible to get the result this way, some of 
the details of convergence do not look altogether pretty. However, Theorem 
4.11 will be useful in Chapter 5. 

4.5 Stochastic dominance questions 

In section 4.3 above, we obtained partial results on how close the moments 
of E are to their values in the classical model. A related question is to 
ask whether the moments are larger or smaller than their classical values. 
For the first moment which is not exactly equal to its classical value (the 
second moment if the model is not TID, and the third moment if the model 
is TID) we noted that the answer was straightforward; however, for higher 
moments, the answer is in general less clear; for example, in Gp,q with q > P 
the contribution from cycles of odd length will be less than classically by 
Theorem 2.6, but the contribution from 4-cycles will be more than classically, 
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and it is not obvious what the overall effect will be. However if we restrict 
attention to a smaller class of models, we can use techniques from Chapter 3 
to attack the question. Our first result is the argument similar to Theorem 
3.1 which was promised in the remarks after that theorem. 

Theorem 4.12 
E(£;,q) ~ E(£~)Vr if p > q. 

Proof. We consider each of the n(n - 1)/2 possible edges in the random 
graph on n vertices, letting Kn denote the set of all possible edges on these 
vertices. We take for each such edge a random variable Ue rv Un[O,l] and 
assume the various Ue are all independent as e varies. We describe the 
number of edges in the two models in terms of these variables and indicator 
variables Ie; two different ways of generating the Ie will give the two different 
models. Firstly, if we let Ie rv Bin(l, 1/2), independently of each other and 
the Ue , then defining 

£ = L: (I{Ue < q} + IeI{q ~ Ue < p}) 
eEKn 

we see that the edge e contributes to the sum with probability q when Ie = 0 
and with probability p - q conditional on Ie = 1, so the overall probability 
that it contributes is q + (p - q)/2 = (p + q)/2, and the differing edges are 
independent, so the resultant random variable £ is the number of edges in 
the G a model. 

On the other hand, we can define Ie to be 1 if and only if e is a same­
same edge with respect to the random colouring of the vertices, and to be 0 
otherwise; then as the edge in question contributes with probability q if Ie is 
zero, and with probability p if Ie is 1, we clearly get the Gp,q model. (Note 
that this is effectively a coupling of the two distributions). 

Now we work out E(£r) in both models. We will get a sum of expecta­
tions of products of r indicators (some of them possibly repeated) as in the 
inequality denoted (*) in the proof of Theorem 3.1. Again as in that theorem, 
such a product is 1 if all the indicators involved are 1, and is 0 otherwise. As 
in Theorem 2.1, we note that if the Ie are defined by the first approach, the 
distinct Ie are independent, whereas in the second there may be correlation 
structure induced by cycles forcing an Ie to be 1 because the indicators of the 
other edges in the cycle are 1, so again if we can strip away edges to reduce 
to a maximal forest within the relevant subgraph, and see that the value of 
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the expectation in the case when the Ie are correlated with p > q will be at 
least as large as when they are not correlated .• 

Corollary 4.13 If p > q, then mep,q(O) ~ meo(O) for 0 > O. 

Proof. Apply theorem 4.12 recalling that 

Again it is natural to ask what happens if q > p. The analogue of the 
formula above is £ = LeEKn I {Ue < p} + leI {Ue E (p, q)} but now to get the 
Gp,q model we must say that Ie = 1 if and only if e is a red-blue edge, and 
so the nature of the correlation structure is more complex. As 

E (£;,q) = E (£~) + n (n - 1) (n _ 2) (P ; q) 3 

we see that for q > p there is a neighbourhood 0 E (-f, 0) in which mep,q(O) ~ 
me", by arguments similar to those used in Theorem 3.6. 

It is natural to ask if we can generalise Theorem 4.12 to models other 
than Gp,q, for example in the same sort of way as Theorem 3.10 generalises 
Theorem 3.1, and this turns out to be true. 

Theorem 4.14 If q < p < r we have 

Proof. This is similar to Theorem 4.12 and 3.10. This time, we have for 
each potential edge e two random variables Ue and Ve, where the Ue and 
Ve are all independent of each other, and all have a uniform distribution on 
[O,IJ. We also have for each edge two indicators Ie and Je. We will show 
that under two regimes for generating the Ie and Je the numbers of edges in 
Gp,q,r and Go: are given by 

£ = L: (I(Ue < q) + IeI(q ~ Ue < p) + JeI(p ~ Ue < r)) (*) 
eEKn 

and will use this to compare the moments in the two regimes. Firstly, we let 

1 .1 11 5 1 
Ie = I(Ve < 2) '" Bm(l, 2) and Je = I(Ve < 8 or 2 ~ Ve ~ 8) "-' Bin(l, 4) 
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so that the Ie and Je are independent. Then in the formula (*) we can only 
get one term on the right-hand side contributing for each edge as before, and 
a given edge does contribute with probability 

p - q r - p p + 2q + r 
q + -2- + -4- = 4 

with the edges contributing or not independently of each other; thus this 
regime gives the model GO/. 

Secondly, we consider the colouring in Gp,q,r and let Ie be an indicator of 
whether or not the edge in question is same-same, and Je be an indicator of 
whether the edge is blue-blue. Then again each edge contributes either 1 or 
o on the right-hand side of (*). If the edge is red-blue, the contribution is 
1 with probability q. If the edge is red-red, Ie = 1 and Je = 0 so the edge 
contributes 1 with probability q + (p - q) = p. If the edge is blue-blue, it 
is automatically same-same, and so the probability that it contributes 1 is 
q + (p - q) + (r - p) = r. Hence under this regime we do generate the number 
of edges in Gp,q,r' 

We now compare moments of £r in the two regimes. As in the proof 
of Theorem 3.10, expanding out and considering the various terms being 
summed on each side, it is enough (as the indicators I(Ue < q), I(q ::; Ue < p) 
and I (p ::; Ue < r) are the same on both sides) to prove that the expectation 
of any product of Ies and Jes in the Gp,q,r regime is at least as large as the 
corresponding product of Ies and Jes in GO/. The argument for this is the 
same as that in Theorem 3.10; after taking account of any extent to which 
a component of the Ie and the Je intersect, and are thereby forced to be 
blue-blue rather than just same-same, the edges of a maximal forest in the 
GO/ regime are independent, but on the other side the existence of cycles may 
force some indicators to be 1 automatically. • 

As in Chapter 3, some further generalisation of the result may well be 
possible, but we have not investigated this. 

4.6 Correlation structure and the degree sequence 

Another possible manifestation of correlation structure is the extent of de­
pendence of the degrees Xi of vertex i in some RRC model such as Gp,q' 
(Recall that the degree of a vertex in a graph is the number of vertices 
adjacent to that vertex). Of course in any RRC TID model, each Xi is a 
Bin( n - 1, a) random variable, but the degrees are dependent and so we 
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consider which aspects of that dependence structure manifest the differences 
between the two models. We first note that the pairwise correlation of the 
degrees is the same as classically. 

Theorem 4.15 The pairwise correlation of degrees in any TID RRC model 
is 1/ (n - 1); in particular, it does not depend on the model. 

Proof. The Xi satisfy E?=l Xi = 2£ and have the same distribution (being 
an exchangeable sequence) so we have (for i =I- j) 

::::} n (n - 1) E (XiXj) + nE (Xl) = 2n (n - 1) a (1 - a) + (n (n - 1) a)2 

::::} E(XiXj) = a(l- a) + ((n - 1) a)2 since E(Xl) = na(l - a) + n2a2. 

E(XiXj) - EXiEXj 1 
::::} corr (Xi, Xj) = = --

vVar(Xi)Var(Xj) n - 1 

as required .• 
So we must look at more complex interactions to show up distinctions. 

Recall that the degree sequence of the graph is the set of degrees re­
arranged in non-increasing order, d1 2: d2 2: .... 2: do; of particular interest 
are the minimal degree {; (G) = do and the maximum degree ~ (G) = d1. 

In the classical model, a great deal is known about the degree sequence; we 
summarise what we will need. 

Theorem 4.16 1. If y is a fixed real number with 

1
. a(l - a)n 
1m - 00 

0-+00 (log( n))3 - , 

lim P{~ < an + V2a(1- a)nlog(n)f(y,n)} = e-e-Y 

0--+00 

where 

( 
log log( n) log J27f y) 

f(y,n) = 1- 4log(n) - 2log(n) + 2log(n) . 
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2. Suppose m = m( n) = o( n) but m( n) -+ 00, and that w( n) -+ 00 arbitrarily 
slowly. Define x by 1 - <I>(x) = min, where <I> is the distribution function of 
a standard normal. Then a.e. Ga satisfies 

1 dm - an - xva(l - a)n I::; w(n) a(l - a)n 
mlog(nlm)' 

3. Suppose m = o((a(l- a)nl log(n))1/4), but liIIln-+oo m(n) = 00. Then a.e. 
Ga is such that for any function w(n) tending to zero as n -+ 00, 

di - di+1 ~ va(l - a)n/log(n)w(n)/m2 if i < m. 

Also, if m and w(n) go to infinity with n, a.e. Ga has 

w(n)va(l - a)n 
di - di+1 ::; V for some 1 ::; i ::; m 

m2 log(n) 

so that the lower bound on the gaps is essentially best possible. 

Proof. Part I is [BJ, Theorem III.3', page 61. Part 2 is [B] Theorem III.12, 
page 67. The two statements in part 3 are [B] Theorem III.15 (page 68) and 
Theorem III.16 (page 69) respectively .• 

We now turn to our models. For the rest of this section, we work with Gp,q 
with p and q independent of n; it may well be that some at least of our results 
work more generally, but we have not checked this. Initially, unsure what 
behaviour of .6. and 6 to expect, we considered computer simulations of the 
maximum and minimum degrees, generating 25 graphs on 1000 vertices in 
Gp,q with p+q = 1. These suggested (informally speaking) that the maximum 
and minimum degrees do not change much as the difference between p and 
q increases, until we reach a certain point (for our graphs, near to p = 0.85) 
where the maximum degree seems to become noticeably smaller and the 
minimum degree larger; that is there is a suggestion that the values become 
more tightly concentrated around the mean. This of course would imply, 
since the variance of £ is the same in the two models by Theorem 4.6, that 
there must be more vertices of moderately high or moderately low degree in 
Gp,q to compensate for the lack of vertices of very high or low degree. 

We now try to turn these observations into mathematics. Note first that 
the minimum degree of a Gp,q has the same distribution as the maximum 
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degree of a G1- p ,l-q subtracted from n -1; hence, for the level of analysis we 
will carry out, we need only look at the maximum degree. We start with the 
easy observation that the distribution of ~ in Gp,q with a :::; 1/2 will differ 
from the distribution in Ga. 

Lemma 4.17 The distributions of the maximum degree in Ga and G2a ,Q are 
different for any a :::; 1/2. 

Proof. Suppose first a < 1/2, so that both a and 20 satisfy the technical 
condition in Theorem 4.16 part 1. If p = a, by Theorem 4.16, again recalling 
that 

(
log log( n ) log -J2; y) 

f(y,n) = 1- 410g(n) - 210g(n) + 210g(n) 

we have 

lim P{~ < an + (2nlog(n)0(1 - 0))1/2 f(y, n)} = e-e- II
• 

n-+<Xl 

On the other hand, if p = 20 and q = 0 (possible by a :::; 1/2), no red-blue 
edges arise, so the maximum degree is just the larger of the maximum degree 
of the reds and the maximum degree of the blues; letting m be the larger of 
the number of reds and the number of blues 

lim P{~ < 20m + (40(1 - 20)mlog(m))1/2f(y,m)} = e-e- II
• 

n-+oo 

The new upper bound for ~ minus the old one has first few terms 

20m + )40(1 - 20)mlog(m) - (an + (2nlog(n)0(1 _ 0))1/2). 

Since m = n/2 + cn1/ 2 , where c> 0, this is dominated by the term 

(n log(n))1/2( )20(1 - 20) - )20(1 - a)) 

which is negative unless a = 0; thus the distribution of ~ differs from clas­
sically, with smaller values being more likely. 

Next we consider what happens when a = 1/2; then the technical con­
dition in Theorem 4.16 no longer holds, so it does not give the behaviour of 
~ when p = 20. However, if p = 1 and q = 0 the maximum degree is one 
less than the greater of the number of reds and the number of blues, so is, 
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for any function w(n) which goes to infinity with n, ~ n/2 + o( ynw(n)) with 
probability tending to 1 as n -+ 00, including 

w(n) = (IOg(n)) t (1 _ loglog(n) _ IOg((27l")~) 
2 410g(n) 210g(n) 

so with overwhelming probability ~ is smaller than when p = q = 1/2 .• 

Of course, if a > 1/2 we cannot consider G2a ,o, but then in G2a - 1,l 

~ ~ n/2 + n/2(2a - 1) + J2(2a - 1)(2 - 2a)n/2Iog(n/2) 

,...., na + J2(2a - 1)(1 - a)nlog(n) 

which will be different from the classical maximum degree (unless a = 1). 
This much, which uses only a crude estimate of ~ in Ga shows that 

~ does depend on both p and q rather than their average. However, we 
really want some kind of estimate for ~ in all Gp,q' We will get one by 
exploiting the more detailed results in Theorem 4.16. The proof will depend 
on understanding the maximum degree of a vertex in the graph of vertices 
its own colour and the maximum degree of a vertex in the bipartite graph of 
red-blue edges. We shall show that both these are tightly concentrated; and 
that the number of vertices of high degree in the graph of vertices their own 
colour is small, so that they do not have high degree in the bipartite graph 
also, whereas the vertices that do have high degree in the bipartite graph 
have low degree in the graph of vertices of their own colour. 

The information on the maximal degree of a vertex in the graph of ver­
tices of its own colour, and how many vertices have degrees close to ~, was 
given in Theorem 4.16. We thus need to understand the maximum degree in 
a bipartite graph whose two vertex classes are a (judiciously chosen) subset 
of the red vertices, and the (about n/2) blue vertices, and each edge arises in­
dependently with probability q; in fact we will be considering the red vertices 
only, so need only consider, for each of the vertices of one colour, the number 
of edges to the opposite colour; thus the problem is to find the distribution of 
the maximum of some number f(n) of independent random variables X n , 

each of which is Bin(n, q). This question can be tackled using the following 
form of the DeMoivre-Laplace theorem; 

Theorem 4.18 Suppose 0 < h = xJq(1- q)n = o((q(1 - q)n)2/3). Then) 
if Yn ,...., Bin(n,qL we have P{Yn 2: qn + h} ,...., 1 - <I>(x) where <I> is the 
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distribution function of the standard normal. In particular, if x -+ 00 with n 

-x2 /2 e 
P{Yn 2:: qn + h} '" IiL . 

v27rx 

Proof. [B] Theorem 1.6 • 

We shall also use a form of the product formula for the exponential; 

Lemma 4.19 Let an be a sequence of real numbers. Then 

lim an = a =} lim (1 - ant = e-a
. 

n-+oo n-+oo n 

Conversely, if 
lim (1 - an t = c E [0,1] 

n-+oo n 

exists, then 
c E (0,1) =} an -+ a E (0,00). 

Proof. The first claim is standard, see [D] p112. For the rest, let a 

-loge(c) > O. Then, for any € > 0, 

1· (1 a + €)n -a-{ 1m - -- = e < c 
n-+oo n 

and so 
(1 - a + € t < (1 - an t 

n n 
for all large enough n, that is an < a + €. Similarily an > a - € for all large 
enough n .• 

This allows us to approximate the maximum degree in the bipartite graph. 

Theorem 4.20 The maximum of l nfJ J independent Bin(n, q) random vari­

ables (where q is constant and 0 < 6 < 1) is qn+V26q(I - q) log(n)n+smaller 

order terms. 

Proof. Note that, taking x = Vk log(n) in Theorem 4.18, we have 

P{ max Y; ::; qn + vklog(n)vq(I- q)n} 
1$i$n6 
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= (1- P{Y1 2: qn + Vklog(n)vq(l- q)n}t6 

and so we must have, by Lemma 4.19, that 

nO P{Yi 2: qn + Vklog(n)vq(l - q)n} -+ a 

for some a E (0,00), if we are to get a non-degenerate distribution. But then 
nO times any quantity asymptotically equivalent to the probability must also 
tend to a; by Theorem 4.16, Theorem 4.18 and the fact that liIIln-+oo x = 00, 
we must have 

1
. 0 e-k log(n}/2 0 1 
1m n = n = a 

n-+oo V2rrklog(n) V27rklog(n)nk/2 

and this expression will go to infinity as n goes to infinity if k < 26 and to 
zero if k > 26, giving the required result .• 

We can now pull strings together. The idea will be to consider vertices in 
(say) the reds which are between the nO-fth and nO+fth in the degree sequence 
within the reds - we shall refer to these, for convenience, as these vertices. We 
will then consider the value of 6 which maximises the implied upper bound 
B + f( E) on the maximum degree amongst these vertices for small values of E, 
using Theorems 4.16 and 4.20; and will then show that the actual maximum 
degree of these vertices is at least B + g( E) where 0 < f - 9 -+ 0 as E -+ 0; 
we will then show that the degree of the mth vertex in the degree sequence, 
where m < nO- f or m > nO+f cannot compete with the degree obtained 
above. 

Theorem 4.21 In Gp,q a.e. graph has maximum degree (where dots denote 
higher order terms) 

~ = an + Vp(l- p) + q(l - q)vnlog(n) + ... 
Proof. We first note we can suppose that we have n/2 reds and n/2 blues, 
since the above arguments show that the slight variability in the number of 
reds and blues is unimportant. Again by the symmetry, we need only look 
at (say) the red vertices, since the top degree in the blues will be the same. 

By Theorem 4.16 part 2, in a.e. Gp we have, if m is o(n/2) but goes 
to infinity with n/2, we get (see the proof of Theorem III.12 in [B] for the 
assertion about x) 

dm - pn/2 rv xVp(l - p)n/2 where x "-' V2log(n/2m) 
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where dm is the degree of the vertex in the subgraph of vertices of its own 
colour. Thus if m = (n/2)O for 1 > t > 0, x '" J2(1 - b") log(n/2). Thus, 

for these vertices, x is about -/2(1 - b") log(n/2) and the maximum internal 

degree amongst these vertices is thus about pn/2+ -/p(l - p)(l - b")nlog(n). 
Also, by Theorem 4.20, the probability that the maximum degree of these 

vertices in the red-blue graph is less than qn/2 + J2kq(1 - q)(n/2) log(n/2) 
is, for large values of n about 

-k log(n/2) 
(1 _ e )(n/2)6+<_(n/2)6-< 

-/47fb" log( n/2) 

= (1 _ 1 r/26+<-(n/2)6-<. 

-/47fb" log( n/2) (n/2)k 

Since, for large enough values of n, nO+f 
- nO- f > (1 - 'fJ)nO+f for any 'fJ > 0, 

by an obvious modification of Theorem 4.20 we see that this expression will 
go to 1 as n -t 00 if b" + f < k and to 0 if b" + € > k. Consequently, the 
maximum red-blue degree amongst these vertices is about (letting n go to 
infinity and € to zero) 

qn/2 + -/b"q(l - q)nlog(n) 

hence the overall top degree amongst these vertices is bounded above by 

an + (-/b"q(l- q) + -/(1- b")p(l- p))-/nlog(n) (*). 

We choose the value dopt of b" which maximises this expression; for this, we 
have 

f(x) = ViJq(l- q) + -/(1 - x)Jp(l - p) 

=} df = X- 1/ 2 Iq(l - q) - (1 - xtl/2Jp(1 _ p) 
dx V 

so the unique turning point is when (1- x)q(l- q) = xp(l- p), that is when 

q(l - q) 
x = --~--:'---:-

q(l - q) + p(l - p) 

and at this value of x, the second derivative of f is easily checked to be 
negative, so this is a maximum; and at this value of x we see easily that 

f(x) = -/p(l - p) + q(l - q) 
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(note this if p = q, p = 20: or p = 0 this upper bound agrees with the exact 
value in Theorem 4.16). 

Next we show that this upper bound is attained (to within Evnlog(n)) by 
these vertices. For this, with dopt = q(l- q)/( q(l- q) + p(l- p)), the internal 

degrees amongst these vertices are all about pn/2+v p(1 - p)(1 - dopt)n log(n) 
on letting E go to zero. By the same variant on Theorem 4.20 as before, the 
maximum red-blue degree amongst these vertices is still (letting E -t 0) about 

qn/2 + Vdoptq(l- q)nlog(n) 

and so looking at whichever of these vertices has maximal red-blue degree, 

we do indeed get a vertex whose degree is within Evnlog(n) of the upper 
bound (*). 

Finally we have to show that if m < ndopt-f, or m > ndopt+f, then the 
degree of that vertex is not large enough. For this, we note that the upper 
bound on the degrees in equation (*) still applies; and so, as that upper 
bound has a unique maximum at fJ = dopt , for such m the maximum degree 
will be less than the upper bound on the maximum degree which will be less 
than the value it attains near dopt .• 

Corollary 4.22 The minimum degree is maximised when p = 0:. 

Proof. It is a simple exercise in calculus to show that the function p -+ 

V p(1 - p) + (20: - p)(1 - 20: + p) has its unique turning point at p = 0:, 
which is a maximum by considering the second derivative. • 

Our techniques do not yield as detailed an approximation to the maximum 
degree as in the classical model; this would need much more work. Note 
that the result makes it clear that the symmetry between p and q which we 
observed is genuine and not just an accident. 

Theorem 4.21 also explains the observation that the maximum degree did 
not vary much until p or q took fairly extreme values, as the map x -+ x( 1-x) 
is known to be fairly flat around x = 1/2; note however that this does depend 
on p + q = 1 so that 1/2 is the average value. 

Note that the next term in the estimate of the maximum degree is harder 
to get; it seems likely to be dominated by the variability in the numbers of 
reds and blues which is of order ,.;n. 

One might be tempted to believe that the vertex, v say, which is of top 
degree in the subgraph of vertices of whichever of the reds and the blues are 
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more numerous, might be likely to be the vertex of top degree in the whole 
graph if p > q. However it seems unlikely that this will be true in general. 
Indeed since the gaps between the degrees in Theorem 4.16 part 3 are only 
o(n 1

/
2

) there seem to be a reasonable number of vertices whose degrees can 
overtake v when the bipartite degrees are added on. 

Some more detailed statements which are possible about degrees and 
numbers of edges in the classical model will not hold here. For example, a 
result, whose importance for developing much of the theory is emphasised in 
[B] Chapter II.3 states (crudely speaking) that, for a wide range of values of 
0', most Go: have all vertices of about the same degree and all not too small 
subsets of the vertices have similar numbers of adjacent vertices. 

Theorem 4.23 1. Suppose 0 < a(n) < 1/2. Then for a.e. GO} ifU C V(G) 
with I U 1= u} u > 252logen we have} writing E (U) for the set of edges 
between the elements of U 

2. Let f E (0, k), a(n) ~~. Then for a.e. Go:, VW C V(G) s.t I W I~ 
r61;2~n 1, writing r (z) for the set of vertices adjacent to z) we have 

12loge n 
I {z E V - W :11 r (z) n W I -a I W II~ Ea I W I} I:::: 2 

f a 

Proof [B] page 44 .• 

Clearly these statements cannot be true in our models. Indeed, taking U 
first to be a large set of reds in a Gp,q,r with r =I- p and then a large set of 
blues (such sets exist with overwhelmingly high probability) the analogue of 
the first statement fails. To see that the analogue of the second statement 
fails consider Gp,q with p large, q very small, W a large set of reds; then for 
z a blue vertex we have 

II r (z) n W I -a I W II~ a I WI> w: I W I 

and in sGp,q,r (p =I r) it is not even true that all vertices have about the same 
degree. 
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4.7 Poisson approximation and total variation distance 

Earlier in this chapter we showed that, in the circumstances where the num­
ber of edges is approximated by a normal classically, this continues to be true 
in our models (unless they are TID). The other classical situation where one 
obtains a good approximation to a binomial is when the probability is small 
and we can use a Poisson approximation, and in this section we discuss how 
well we can do this for £p,q and £0' whose laws we denote by £p,q and £0 
respectively. Our measure of closeness will be the following; 

Definition 4.3 The total variation distance between two probability laws 
taking values in {O, 1, 2 ... } is 

dTV (A, /l) = sup{1 A (A) - /l (A) I: A c N} = ~ ~ 1 A{j} - /l{j} 1 
J_ 

Theorem 4.24 Let (Ii,j, {i,j} E E(G)), be a strongly dissociated family of 
Bin(l, a) random variables, indexed by the N edges of graph G. Let d;,j be the 
minimum of the degrees of i and j, W = ~{i,j}EE(G) Ii,j and A = EW = N a. 
Then 

In particular, if rand (Ii,j) vary so that A --+ Aoo and N --+ 00, keeping 
(Ii,j) strongly dissociated and equidistributed, W converges in distribution to 
a Poisson with mean Aoo· 

It the 1- . are merely dissociated rather than strongly dissociated, and J t,J 

E(Ii,jlj,k) = a(J' for all i, j and k, we have 

A ((J'+a)~j=ldj(dj-1)) 
= (1 - e- )(a + N . 

where di is the degree of vertex i in the graph. 

Proof. The first paragraph is [BHJ] Theorem 2.0. The second is [BHJ] 
Corollary 2.N.1. • 
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[BHJ] gives an example (2.3.4) to show that the strong dissociation prop­
erty is needed to get the full power of this result. 

In our situation G is the complete graph on n vertices, so all vertices have 
degree n - 1 and N = n(n - 1)/2, and the variables are strongly dissociated 
if and only if the model is TID as remarked in Section 4.1. Thus we have the 
following corollary. 

Corollary 4.25 If we have a TID model, then if £ is the law of the number 
of edges, then we have 

dTV (£ (W), Po (A)) ~ (1 - e-") 2a (n - ~) 

so for any a = 0(n- 1 ) we get a Poisson approximation result. For non-TID 
models, the result becomes 

= (1 - e-")(a + (0" + a)2(n - 2)). 

so that a = o(n- 1 ) and 0" = o(n- 1 ) suffices for convergence to a Poisson 
distribution, though with a less powerful constant. 

Proof. Clear from the above .• 
It is not clear whether we can improve significantly on this by exploiting 

additional structure in our indicators. 
Note that the condition 0" = o(n-l) is in fact not needed; we must have 

maXPij f"V a, and since Ehjlj,k ~ max{pi,jF by a monotonicity argument, 
we have that 0" ~ max{pi,j F / a and this is of the same asymptotic order as 
Q, as required. 

More generally we can ask about the total variation distance between the 
laws of Ep,q (say) and Ea. When Poisson approximation is sensible, which as 
we saw above is when p and q are 0(n- 1

) we have 

by the triangle inequality; Theorem 4.25 and the Prohorov estimate ([BHJ], 
page 2) of the distance between Bin(n,p) and Po(na) then yield an upper 
bound on the total variation distance, but that bound is likely to be very 
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weak. We can bound the total variation distance from below by the prob­
ability of any configuration of edges whose probability varies a lot from its 
value in the classical model; as different probabilities require cycles, and 
the probability of a triangle differs from its classical value most, namely by 
((p - q)/2?, we can consider n/3 independent triangles to get a lower bound 
n((p - q)/2)3/3; again this is not very powerful. 
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5 Large deviations in the number of edges. 

5.1 Probability theoretic background. 

In this chapter, as promised in Chapter 3, we consider the probability of a 
large deviation in [; the number of edges in our models. In general, if Sn is 
a sequence of random variables and Sn = Ei!:l Xi, where the Xi are random 
variables each with mean J-l, a large deviation principle is an estimate of 
P{Sn 2: n(J-l + En for f =I- o. Of course some kind of law of large numbers 
will usually ensure that this probability tends to 0 as n goes to infinity, but 
we aim to understand the rate at which it does so; in practice this usually 
means finding a suitable normalising function f(n) for which 

1
. log P{Ei-l Xi 2: n(J-l + En _ 
1m f( ) - C, n-+oo n 

where c =I- 0 is a constant; this is (unsurprisingly) more difficult. 
The relevance of this to random graph theory is that there we often 

want to show that if some result leads to something interesting happening 
with small failure probability, then if we apply the result exponentially many 
times, the failure probability remains small (note that a polynomially small 
error probability could still blow up if we applied the result exponentially 
many times). So, for example, historically, it was not possible to improve the 
estimate that for a.e. Go (0 < a < 1) the chromatic number X(Go ) is at most 
(1 + o(I))n/(210gd n ) (here d = 1/(1 - a)) to a proof that this bound is the 
correct asymptotic value, until it had been proven that the probability that 
the independence number of a graph is unexpectedly small is exponentially 
small; see [Bl], Chapter 4 section 1 for more details of all this. 

The basic case of large deviation theory is when the Xi are i.i.d. It will be 
helpful to recall the basic theorem, to illustrate how the moment generating 
function relates to the large deviation probability; 

Theorem 5.1 Let Xi be i. i. d with mean o. Suppose the moment generating 
function M(t) of Xi is finite in some interval around o. Then if a > 0 and 
P{Xi > a} > 0, 

where the expression on the right-hand side is E (0, 1). 
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Proof. This is standard; see e.g [GS], Theorem 5.11 • 

We note that some work has already been done on generalisation of the 
upper bound (which is usually the easier part of a large deviations principle 
to prove) to the case where the Xi are not identically distributed, but are 
still independent; the following theorem is an example. 

Theorem 5.2 Let XI, ... Xn be independent Bernoulli ro's with E(Xi) = Pi, 
P = "L'i:l pdn and Q = 1 - P. Then, for all 0 < t < Q, we have 

n ((pP+ t)P+t (QQ_ t) Q-t) n p{EXi ~ n(P+t)}:::; 
i=1 

Proof See [McD] .• 
In our models, if the Xi 1 :::; i :::; n( n - 1) /2 are (dependent) indicators 

of whether or not each edge is present, Theorem 5.1 and a monotonicity 
argument show that, with Pmax = maXi,j Pij, 

n(n-l)/2 ( +) ( 1) 
P { E Xj ~ pmax E2 n n - } 

j=1 

is exponentially small in n(n - 1 )/2, and putting Pmin = min;,j Pij, there is of 
course a similar result for P{"Lj;~-1)/2 Xj :::; (Pmin - E)n(n -1)/2}. However, 
quite apart from the fact that this does not give the exact rate of decay, it 
does not tell us anything about what happens for values between Pmin and 

Pmax· 
Thus we want a large deviation principle which allows for some degree 

of dependence amongst the Xi. An appropriate framework for the kind of 
problems we will study here is that of the so-called Gartner-Ellis theorem. 
(Not all large deviation principles can be obtained in this way; for example 
[0] gives a large deviation principle for the order of the giant component of 
a COl where the rate function (see below) is not convex so cannot arise from 
the Gartner-Ellis theorem). General discussion of Gartner-Ellis theory can 
be found in for example [DZ]. Let us merely note that such theorems are in 
general quite delicate and some care is needed in stating the exact form of the 
theorem needed for a particular situation. The particular form we use here, 
which is designed to cope with the difficulties arising when the rate function 
is not differentiable at the origin, was first used by Biggins and Bingham 
[BB]. Since their proof was omitted there, we give it here. 
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Before the proof proper, it will be helpful to make a few observations 
about convex functions. Suppose ¢ is a convex function which is differentiable 
at 0, which is in the interior of the set where ¢ is finite, and that y = ¢'(O). 
Then, defining 

I (y) = sup(ylt - ¢ (It)) 
p 

we have 
I (y) = yO - ¢ (0) 

and for any f > 0 
I (y + f) - I (y) - Of > o. 

This is almost obvious; in detail, note first that, as ¢ is differentiable at 0, 
it is finite in some neighbourhood of O. Clearly I(y) 2: yO - ¢(O). If we had 
I(y) > yO - ¢(O), then, by the definition of supremum, there would exist a It 
with 

Ylt - ¢(It) > yO - ¢(O) :::} y(1t - 0) > ¢(It) - ¢(O). 

But, since ¢ is convex, we know that "'(It) = (¢(It) - ¢(O))j(1t - 0) is a 
nondecreasing function of It by [We, 5.1.2J; hence in particular, if It > 0, we 
have 

. ¢(x) - ¢(O) 
y> 11m 0 = y 

x~(} x-
giving a contradiction; and a similar argument deals with the case when 
It < O. Thus I (y) = yO - ¢( 0) as required. For the second claim, 

I(y + f) - I(y) = sup(y + f.)1t - ¢(It) - yO + ¢(O) 
p 

~ (y + f)O - ¢(8) - yO + ¢(O) = f.O. 

lt remains to show that we cannot have equality. If we did, we would have 

Hence, if f. > 0, this would imply 

y=lim¢(It)-¢(O) >y+f. 
p~(} It - 8 -

giving the desired contradiction. A similar argument, considering It < 0 deals 
with the case f < o. We now proceed to the theorem proper. 
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Theorem 5.3 Suppose we have a sequence of random variables Sn and an, 
a sequence of positive numbers tending to infinity. Define 

CPn (0) = 10g(E( e(}Sn )) 
an 

We assume that 
lim CPn (0) = cP (0) 
n~oo 

exists pointwise (we allow cP and the CPn to be infinite; note it is the assumption 
of the existence of this limit, in analogy to what would happen if the Sn were 
sums of i.i.d variables, when of course CPn = cP for all n, that limits the 
dependence. Note also that cP, being a limit of convex functions, is convex). 
We define the rate function I(y) by 

I(y) = sup (Jty - cp(Jt)). 
JJ 

For any function cP, define D</> = {x : cp(x) < oo} and when Int(D</» is non­
empty, define cP~ and cP~ to be the right and left derivatives of cP (which exist 
as cP is convex. Since cP is convex so is D</>). Then if 38 > 0 ED</>, we have 

liminf -log(P{Sn ~ anX}) ~ I(x) Vx > cP~ (0). 
n~oo an 

If in addition y = cp' (0) for some 0 E Int( D</», so cP is differentiable at 0, 
then 

. -log(P{Sn > anX}) < I( ) w hmsup _ y vX < y. 
n~oo an 

Proof. By Markov's inequality, 

P{ Sn ~ anY }eOany ~ EeoSn = ean</>n{O) 

provided 0 > 0; hence 

-log P{S > a y} 
liminf n - n ~ sup (YfJ - cp(fJ)). 
n~oo an 1-'>0 

Thus if y > cP~ (0) the concave function y Jt - cP (Jt) is increasing at Jt = 0 and 
so the final bound is indeed I (y ). 
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In the other direction, if (n is the measure corresponding to Sn we define 
the conjugate probability measure 

with associated random variables S~. Then, denoting the ball of radius f 

around a point y by B£ (y), we have for small f that 

P{Sn > an(y - En > P{Sn E anB£ (yn 

eantPn(8)-8yan r e8yan-8u(~ (du) 
JanB«Y) 

> e(an¢n(8)-8yan)e-8wn P{S~ E anB£ (yn. 

As I (y) = yB - ¢ (B), the proof will be completed (taking logarithms, letting 
n go to infinity and finally letting E go to zero) if we can show that 

converges to 1 sufficiently quickly. 
For this, note that we have 

(8 being the dummy variable in the generating function). Since by assump­
tion B E lnt (D¢), and the derivative of ¢ (8 + B) - ¢ (B) with respect to 8 at 
s = 0 is y by the remarks before the theorem, we can apply the first part of 
the theorem to the random variables S~ to obtain that 

1 
.. f-logP{S~~an(Y+f)} > 
1m III I (y + E) + ¢ (B) - B (y + E) 

I(y + f) - I(y) - BE. 
n-+oo an 

Since I(y) is a convex function, with derivative B at y, the remarks before 
this theorem imply this bound is positive, and so 

PiS! ~ an (y + En 

goes to zero like the sequence e-anD for suitable b > O. The same argument 
applied to the sequence - S~ shows that 
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goes to zero like e-anl' for suitable I > o. Hence 

completing the proof. • 

An obvious irritation here is that there are two separate statements for 
the liminf and the limsup, when we would prefer to have a statement about 
the limit. In general, this cannot be guaranteed, but mild assumptions will 
give such a statement. 

Corollary 5.4 Suppose 38 > 0 E D</>. Then, Vy E Int{y : y = ¢' (J.l)} for 
some J.l J we have 

1· log (P {Sn ~ anY}) - I ( ) 1m - y. 
n--+oo an 

Proof. This is an immediate corollary of the previous theorem, since in the 
interior of the region where ¢ is finite, the rate function is continuous; see 
e.g [BB] Corollary 1. • 

The link with our situation of course arises by taking Sn to be the sum 
of the n(n - 1)/2 Xj so that we must take an = n(n - 1)/2. 

5.2 A large deviations principle for Cp,q. 

In this section we will prove a large deviations result for the model Gp,q giving 
full information on what happens in that model. In the following section we 
shall give a partial result valid for any RRC model. 

The first step, of course, is to obtain the function ¢ in the statement of 
Theorem 5.3. A key role in our derivation will be played by the following 
lemma, which will occur again in later chapters. 

Lemma 5.5 For 0 < x < 1, 

with the error term being 0 (*). For -1 < x < 0, 
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2 log (2-n L~ (~)(1 + x)(n2 -n)/2-i(n-i) (1 _ x)i(n-i)) 
lim .=0 • = _lo..:::.g-,-( 1_-_x2

....:.,.) 

n-+oo n(n - 1) 2 

with the error term again being 0 (~). For x = 0, the expression (and so its 

limit) is O. 

Proof. The statement for x = 0 is trivial. Suppose x > O. We have 

2Iog(2-n L~=o (7)(1 + x)(n2 -n)/2-i(n-i)(1 - x)i(n-i)) 

n(n - 1) 

2 log (2-n (1 + x)(n
2
-n)/2 L~=o (:) (~)i(n-i)) 

n(n - 1) 

2 log (E~=o 2-n (:) (~r(n-i)) 
= log (1 + x) + n (n _ 1) 

which, since 0 < (1 - x)/(1 + x) < 1, is 

2 log (E~-o 2-n (7)) 
::; log (1 + x) + n(n-- 1) = log(l + x) 

since of course Ei=o 2-n (:) = 1. This gives an upper bound; to get a lower 
bound, we note that, just considering the i = 0 term, we have 

2 log (Ei=o 2-n (:) (1 + x)( n2 
-n )/2-i(n-i) (1 - x )i(n-i)) 

n(n - 1) 

2 log (2-n (~) (1 + x)( n
2
-n )/2) 

>--'---~--:-------'-
- n(n-1) 

2n log(2) (1 ) = log (1 + x) - n(n _ 1) = log (1 + x) + 0 ;; 

as n -t 00, and the result follows. 
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Finally if -1 < x < 0 so that (1 - x)/(1 + x) > 1 we have 

2 log (E?=o 2-n (7) (1 + x)( n2 _n )/2-i(n-i) (1 - x /(n-i)) 

n(n - 1) 

< 2 log (1 + x)(·'-·)/2 2:'=0 2-· (7) (~) l,.oJ) 
n(n - 1) 

since the function i(n - i) is maximised as i ranges over (0, n) when i is as 
close as possible to n/2. The above expression is asymptotically 

n loge-X) 1 1 - x (1) log(1 - x 2 ) 1 
log(1+x)+ 2(n~~) =log(1+x)+2"log(1+x)+0 ;; = 2 +0(;;). 

This gives the upper bound; to obtain a lower bound, this time, rather than 
looking at the case when i is as small or large as possible, we look at the 
term when i = In/2J, observing that 

2 log (E?=o 2-n (7) (1 + x /n2 _n )/2-i(n-i) (1 - x )i(n-i)) 

n(n - 1) 

2 log ((1 + x)(n2 -n)/2 2-n (Ln/2J) O~) Ln/2J(n- Ln/2J)) 

~ n(n-1) . 

Now by Stirling's formula, 

for sufficiently large n, so then the above is 

nlog (I-X) 2 log ( I ) 
log (1 + x) + ffi + ~ 

2(n-1) n(n-1) 

= log( 1 + x) + -2
1 

log( 11 - x) + O( ~) = log( \- x
2
) + O( ~ ) 

+x n n 
as n goes to infinity, so that the result again follows .• 
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It is worth noting that the lemma uses estimates which are in some sense 
very crude; in both cases, note that one of the bounds is obtained by ignoring 
all but one term in the summation, however which term varies (dramatically) 
between the two cases. We shall comment more on this later. 

We can now obtain the function ¢ (8) in the Gartner-Ellis theorem; 

Theorem 5.6 

~ (8) = log (peO + 1 - p) if (p - a) (eO - 1) > 0 
'f' Z 0:( eO - 1) + 1 ' 

log (peo + 1 - p) + log (qeO + 1 - q) . (p - 0:) (eO - 1) 
¢ (8) = 2 if 0:( eO _ 1) + 1 < 0 

and is 0 otherwise. 

Proof. We have 
2 log (E (eOSn )) 

¢n(8) = n(n - 1) 

2 log (E?=o 2-n (7) (peO + 1- p)(n
2

-n)/2-i(n-i) (qeO + 1- qr(n-i)) 

n(n - 1) 

log ( E?=o 2-n (7) (1 + x) n
2

2-n -i(n-i) (1 - x )i(n-i)) 

= log ( aeo + 1 - a) + n (n _ 1) 

where x = ((p - o:)(eO - 1))/(a(eO - 1) + 1); we use here the fact that 
(peo+1-p)/(o:eo+1-0:) = 1+x and that (qeo+1-q)/(o:eo+1-0:) = 1-x 
which is easily checked from the definitions. Also, as 1 + x and 1 - x are 
both positive, we can apply Lemma 5.5, together with the fact that 

) ( 
(p - a) (eO - 1)) (0 ) 

log (aeO + 1 - a + log 1 + aeo + 1 _ a = log pe + 1 - P 

to obtain the first statement of the theorem. For the rest, we have 

( ) 1 ( ( (p - a) (eO - 1)) 2) 
log o:l + 1 - a + 2 log 1 - a( eO _ 1) 
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= 10 (ae() + 1 _ a) + ~ 10 ((a(e() -1) + 1)2 - ((p - a)(e() - 1))2) 
g 2 g (a(e() - 1) + 1)2 

_ log(p(e(} - 1) + 1) + log(q(e(} - 1) + 1) 

2 
on factoring the difference of squares on the top of the right-hand side and 
simplifying. 

Finally, the statement when x = 0 is clear .• 

Corollary 5.7 If p > a} 

Ifp < a, 

¢ (B) = log (pe() + 1 - p) if B > 0, 0 if B = 0 and 

log(pe(} + 1 - p) + log(qe(} + 1 - q) IB 
2 z < o. 

¢ (B) = log (pe() + 1 - p) if B < 0, 0 if B = 0 and 

log(pe(} + 1 - p) + log(qe(} + 1 - q) if B > O. 
2 

Proof. This is immediate from the previous theorem (5.6) on unwinding the 
condition on x = (p - a)(elJ - l)/(a(e() - 1) + 1) into one on B .• 

Note that this result is compatible with Corollary 4.13 showing that when 
p > q we have mCp,q(t) 2: mCa(t) for t 2: 0 and that :l f > 0 such that 
mCp,q(t):S mca(t) for t E (-f,O). 

Given ¢, it is easy to complete the derivation of the rate function; 

Corollary 5.8 When p > q} the rate function I(y) is the maximum of 

sup (By - log (pe() + 1 - p) ) , 0 and 
(}>o 

(B log(pe() + 1 - p) + log(qe(} + 1 - q)) 
sup y - 2 . 
(}<o 

When p < q) the rate function is the maximum of 

sup (By - log (pe() + 1 - p) ) , 0 and 
(}<o 

(
B log(pe() + 1 - p) + log(qe(} + 1 - q)) 

sup y - 2 . 
(}>o 
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Proof. This is immediate from the previous corollary .• 

Thus different rules govern large deviations above and below the mean. 
Note that if y > p > a the rate function is the same as in independent 
Bernoulli trials with probability p, as if p > q so that pee + 1-P < qeD + 1- q 
for 0 < 0, we have 

(0 10g(peO + 1 - p) + 10g(qeO + 1 - q)) (0 (0 )) 
sup y - :s; sup y - log ae + 1 - a . 
0<0 2 0<0 

A similar argument will of course work when y < p < a. 
In the classical case, when the rate function is 

I(y) = sup (Oy -log (aeO + 1- a)) 
° 

it is easy to show by elementary calculus that the supremum on the right­
hand side is attained for 0 = 10g(y(1- a)/((l- y)a). For the range of values 
for which the rate function is an average of the rate functions for p and q 
we can in principle differentiate, solve a quadratic equation in eO and take 
logarithms to find the value of 0 at which the function has a turning point 
(which is a maximum by concavity of the rate function). Unfortunately, the 
expression obtained is very intractable. Calculations suggest the value of 0 
for which the rate function is maximised is slightly greater than classically if 
y > a and smaller if y < a but even this does not seem easy to prove. 

The relationship between this analysis and the question of how close 
the moments of the number of edges in the new model and the classical 
model are merits brief comment. Recall that we have shown that ¢ (0) =I­
log ( aeo + 1 - a) although they would have been equal if there had not been 
the correlation structure. Since the left-hand side is the limit of the norm­
alised cumulant generating functions of E in our model, and the right-hand 
side is the limit of the normalised cumulant generating function in the clas­
sical model, and the cumulant generating function is well-known to be closely 
linked with the moments of the distribution, one might naively imagine that 
the fact that the two limits are different would mean that the moments of the 
two distributions Ep,q and Ea cannot be very close to each other. However the 
link with the moments depends on differentiability of the functions at 0=0, 
and since we have seen that this does not hold for the limiting function, the 
situation is not too clear. 

There is a subtlety which produces some complications; 
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Lemma 5.9 If p > q ¢(h) is differentiable Vh -=I- 0 and takes all values in 
(p, 1) and (0, ~) J but is not differentiable at h = o. 

If q > p ¢( h) is differentiable V h -=I- 0 and takes all values in (~, 1) and 
(0, p) J but is not differentiable at h = o. 
Proof. Only the statement about behaviour at h = 0 requires proof. Assume 
p > o. At h = 0 we have 

lim (¢(h) - 0) = lim (lOg(p(e
h 

- 1) + 1)) 
h-+O+ h h-+O+ h 

_ 1. (p(e h 
- 1) _ (p(eh 

- 1))2 ) _ 
- 1m h h + ... -p 

h-+O+ 

and by an analogous argument 

lim ( ¢( h) - 0) = (p + q) , 
h-+O- h 2 

proving the claim. The argument for p < 0 is similar .• 
Thus, whilst the above result coupled with Corollary 5.8 shows that we 

get a meaningful estimate of 

1
. -log(P{Sn ~ n(n2-1}x}) 
1m --~~~~~~~~ 

n-+oo n(n-l} 
2 

for x E (p,l) and (O,~) if p > q, and for x E (~, 1) and (O,p) if q > p, 
we do not get any meaningful lower estimate of the probability for values of 
x between p and (p + q)/2; the above limit will just be degenerate. 

This raises the question of whether there is a real rate function for the 
missing gap; for example, it might be the case that in that interval 

1
. log(E( etn )) 
1m ----::-'---'--~ 

n-+oo nit 

exists and is non-trivial for some choice of 0 < K < 2. The right choice turns 
out to be K = 1, as the following theorem shows. 

Theorem 5.10 Suppose c is between p and o. Then 

log (P{ En ~ cn(~-l}}) 
lim = p(c) 

n-+oo n 

where p(c) = clog(c) + (1 - c) log(l - c) + log(2) 
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Proof. There are three disjoint ways in which such a large deviation can 
arise; 

1. There is a large deviation in the number Nl of reds, and then a num­
ber of edges asymptotically equivalent to the number we would expect to 
arise, conditional on the number of reds, do arise; then NI "" (1/2 + f)n for 
some f =I- 0 and the number of edges is of order of magnitude 

(
N1(N1 - 1) (n - NJ)(n - NI -1)) N ( ) 

P 2 + 2 + q 1 n - NI . 

2. There is a large deviation in the number of reds, and then there is a 
large deviation in the number of edges arising, which however is not asymp­
totically the number we would expect given the large deviation in the number 
of reds; then Nl '" (1/2 + f)n for some f =I- 0 but the difference between the 
number of edges and 

P ( NI (~ - 1) + (n - Nt) (~ - NI - 1)) + q NI (n - Nd 

is of order of magnitude cn2 for a suitable constant 

3. There is no large deviation in the number of reds, but there is a large 
deviation in the number of edges arising; then Nl "" n/2 but £ '" (a+£);(n-l) 

for some f =I- O. 

We shall show that the first case occurs with probability which is expo­
nentially small in n, whereas the other two occur with probability which is 
exponentially small in n2

• 

We first consider the case where the large deviations in the number of 
reds is above the mean. Concerning the first way of getting a large deviation, 
recall that NI '" Bin(n, 1/2) where NI is the number of reds. By the classical 
theory, (using Theorem 5.1) 

P{N > an} = e-n1(a)+o(n) for ~ < a < 1 
1 - 2 

for l(a) = alog(a) + (1 - a)log(1 - a) + log(2); the main point is that 
this expression is exponentially small in n, rather than in n2 . Now, since the 
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function x -+ x(l-x) is monotone increasing for x E [0,1/2] and is monotone 
decreasing for x E [1/2,1]' if we have at least an reds and so at most (1 - a)n 
blues, we have at most a(l - a)n2 potential red-blue edges and so at least 
(n2 - n)/2 - a(l- a)n2 potential same-same edges; thus, conditional on this 
large deviation in the number of reds, we get at least 

((n2 - n)/2 - a(l - a)n2)p + a(l - a)n2q) + o(n(n - 1)/2) (*) 

edges if p > q, and at most (*) edges if q > p, with probability tending 
to 1 as n goes to infinity. (Note that as a ranges over [0,1], the expression 
((n2 - n )/2 - a(l- a)n2)p + a(l- a )n2q) takes all values between n(n - 1 )p/2 
and n( n -1 )0./2 by continuity, and no other values; this is why this argument 
works for all c between p and a and not for any other c). 

However, by contrast, if we are in the second situation, and so get an 
reds but some asymptotic number of edges other than (*), then that requires 
a large deviation in the number of red-blue edges or the number of same­
same edges in addition to the large deviation in the number of reds; and 
as the number of same-same edges and the number of same-different edges 
are both of order n2 in n, the probability of this is asymptotically e-An2 for 
some A > 0. (This claim is clear if the number of reds and the number of 
blues are both of order n; even if one of them is so small that it is of order 
o(n), then the number of vertices of the other colour must be > (1 - €)n for 
any 1 > € > 0, so the large deviation in the number of edges still requires 
a large deviation in the number of edges between two vertices of the other 
colour, which will occur with the stated asymptotic probability). Hence the 
probability of getting asymptotically (*) edges is (by the previous remarks 
about the monotonicity of g) equal to e-n1(a)+o(n). 

The only other case to consider is the third one, that is the probability of 
a large deviation in the number of edges when there is no large deviation in 
the number of reds; then there are asymptotically n/2 reds and blues, and so 
there are asymptotically n2/4 red-blue edges and n2/4 same-different edges 
and so the large deviation in the number of edges requires a large deviation 
in at least one of the number of same-same or the number of same-different 
edges, which will happen, again by the classical theory, with probability 
e--rn2+o(n2) for some, > ° and this gives the required result. 

Finally, observe that the argument for the case when the large deviation 
in the number of reds is below the mean is identical. • 

We can now clarify the intuitive picture of what is going on here. For 
c in the range between p and (p + q) /2, we can get large deviations more 
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cheaply than usual just by allowing a large deviation in the number of reds 
(with probability exponentially small in n) to make a large deviation in the 
number of edges highly likely; and to get a larger deviation, the cheapest 
thing to do is just modify the numbers of reds and blues further. However, 
outwith that range, since we can push the number of reds or blues no further, 
we have to get the large deviation by the more traditional and harder method 
of getting a large deviation in the number of edges, which has probability 
negative exponential in n2• This also illuminates why, in Lemma 5.5 our 
estimates relied on the seemingly crude procedure of just considering one 
term (that corresponding to a monochrome colouring for p > q, and that 
corresponding to as close as possible to equinumerous reds and blues for 
q > p); for the above shows that being in this state is in fact necessary for 
the exponential in n2 probabilities to control the large deviation probability. 

The above shows that we can have, in a reasonably natural situation, 
n( n - 1) /2 trials where the probability of a large deviation is only exponen-

tially small in In(n - 1)/2, rather than the usual n(n -1)/2. It is natural to 
ask if we can use this potential for getting large deviations in the number of 
edges more easily than we would do normally, for c between p and (p+ q)/2, 
to prove purely graph theoretic results. This is not clear; it is often stated 
that we want exponentially small bounds on the probability that a graph 
does not have some property, but in fact it seems that often at least only 
exponentially small in some power of n will do. 

Recall that classically, one way to prove the upper bound in such large 
deviation inequalities is by using a martingale inequality. 

Definition 5.1 A sequence of random variables Sn is a martingale with 
respect to a sequence Xn of random variables if and only if E I Sn 1< 00 for 
all n and for all k ~ 1 E(Sk+1 I Xl, X 2 , •.• X k) = Sk. 

Recall the following upper bound on the probability of a large deviation; 

Theorem 5.11 Suppose Sn is a martingale with respect to the Xi) and that 
there exists a sequence of real numbers Ci such that P {I Si - Si-l I::; Ci} = 1 
for all i. Then for x > 0 we have 

x 2 

P{I Sn - SO I~ x}::; 2exP(-2Ei:l c~)· 

Proof. [GS] Theorem 12.2 (3) .• 
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For example, in the classical model, with X ij = 1 if the edge i - j arises, 
o otherwise, and Yij = X ij - a, EYij = 0 and the Yij are independent, so 
defining Sn = L:1~i<j~n Yij, we easily see that Sn is a martingale and that 
I Sn - Sn-1 I~ max{a, 1 - a}. Hence, by Theorem 5.11, we get 

PiS > an(n - I)} < (_ a2
n

2
(n - 1)2) 

n_ 2 _2exp 4n(n-1)c2 

where c = min{a,l - a}. However we know that for large enough n, no 
such inequality can hold in Gp,q for a between p and a, as the probability of 
a large deviation is exponentially small in n rather than n2

• Of course, for 
the X ij themselves, this is because the next indicator is in general no longer 
independent of the previous one, which can be shown more elementarily, e.g 
by Theorem 2.17; however what our argument proves is the slightly stronger 
fact that there is no martingale Yn which converges to the number of edges 
minus the expected number. It seems likely that similar slight imbalances 
between the numbers of reds and blues will stop us applying martingale 
techniques in various similar circumstances. 

It is clear that we can use the ideas of this section to get random graph 
models where the probability of a large deviation in the number of edges is 
negative exponential in arbitrarily small powers of n by having a hierarchy 
of correlation structure. For example, if n = m2 we might generate m2 

independent random variables, taking values 0 and 1, indexed by ordered 
pairs (i,j), 0 ~ i ~ m - 1 and 1 ~ j ~ m, and then say that vertex 
k is red if both entries of (i,j), where k = im + j, are zero or both are 
one, and is blue otherwise; then a large deviation in the number of the is 
(say) which are 1, which will happen with probability exponentially small in 
m rv (n(n -1 )/2)1/4 will give a large deviation in the number of reds or blues, 
and so a large deviation in the number of edges with that probability; and 
the idea can obviously be iterated to get arbitrarily small powers of n. Note 
of course that this setup would not have the good independence properties 
of our models; in particular the colours of the vertices will be correlated. 

One thing we have not confirmed yet, strictly speaking, is that the cases 
which lead to large deviations above are the only cases which lead to large 
deviations; some more insight into this will follow in the next section, when 
we consider what happens for general RRC models. 
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5.3 Large deviations; the general case 

We next consider how generally the argument for the large deviations above 
can be made to work. Crudely speaking the same argument, considering a 
monochrome colouring to get one bound, and a colouring with as close as 
possible to the expected number of vertices of each colour to get the bound 
in the other direction, will still give a rate function, but this function is 
unfortunately much less explicit than in the previous argument, and we will 
not be able to take the argument much beyond that point; however some 
partial insights will be possible. 

Theorem 5.12 In a r(n, k, P, s) RRC model, considering the probability of 
a large deviation in the number of edges, the function cP (8) in the Gariner­
Ellis theorem is the maximum of the quadratic form 

over the simplex 

k 

L SiSjaij where aij = log (PijeO + 1 - Pij) 
i,j=l 

k 

~n = {(Sl' ... Sk) such that Si ~ 0 for all i and LSi = I}. 
i=O 

Proof. Recall that in r(n, k, s, P), by Theorem 4.11 the moment generating 
function of en is 

'" (. n . ) Ilk sJ,', II (0 )jrj. II (0 )jrUr-1)/2 ~ Prse + 1 - prs Prre + 1 - Prr 
)I, ··Jk 1=1 l:::r<s:::k r 

the sum being over ji, 1 :S i < k, such that ji ~ 0 for all i and j1 + ... + jk = n. 
Let arB = log (PrseO + 1 - Pr~' we have 

2Iog(E( eoe")) 
cPn (8) = n(n _ 1) 

2 log (E Cl,~.jJ nsf' n (PrseO + 1 - Prs yrj. n (Prreo + 1 - Prr )jrUr-1)/2) 

n(n - 1) 
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the sum being over the same indices as last time, the first product from the 
left being over 1 ranging from 1 to k, the second over 1 :::; r < s :::; k and the 
last over 1 :::; r :::; k. This is 

- 21 (" ( n ) Ilk j, Il a j j arrirUr-i) ) - og L.ijl + ... +j,,=n \.il , ... j" 1=1 51 1 <r<s<k e .. r , III <r<k e 2 

n(n - 1). 

Clearly the quadratic form f(x) = 1:7,j=1 XiXjaij attains its maximum on the 
compact set ~k = {(Xl, ... Xk) : Xi ~ OVi, 1:7=1 Xi = I} at some point m 
(which may well be far from unique). We now show that the function ¢ is 
intimately tied up with such maxima. 

Writing j for (j1, ... jk), we have that the above is 

( ) 

k . !(j)-1:: I irarr 
2log(" . . _ . n. Il S3l e 2 L.i31 +···+3,,-n 31, ... 3" 1=1 I 

n(n - 1) 

( 

. n2
!(m)-L;" lirarr) 

2log 1:jl + ... +j,,=n CI ,~.jJ Il;=l sf' e 2 r 

< ----~----------~--~--------------~ 
n(n - 1) 

n2f(m) 2log1:jl+ ... +j/c=n CI,~.jJeji(log(Si)-¥) 
= n(n-1) + n(n-1) 

_ n2 f (m) + 2 log (hn) 
-n(n-1) n(n-1) 

where h is the multivariate moment generating function of a multinomial 
distribution with k equiprobable colours, evaluated at 8 where 

( 
aii) Oi = log Sj - 2" ; 

in particular it is independent of n and so the logarithm of hn is order of 
magnitude n and so is comfortably killed by the n(n -1) denominator. Thus 
we have shown that 

limsup¢n(8) :::; f(m). 
n-+oo 

In the other direction, we can take the term with jr as close as possible to 
nmr subject to the restriction 1:jr = n. Then jr and nmr are asymptotically 
the same; hence, for n sufficiently large, 

E( ellEn) ~ (. n .) II s1' ef (m)n
2
(1+o(1)) 

J1, .. ·Jk 
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~ liminf <Po ~ f (m) 
0-+00 

since Stirling's formula shows that the logs of the multinomial probabilities 
are of order of magnitude n at most, so that they are killed by the n 2 term 
on the bottom .• 

We are thus clearly interested in questions about the maxima over ~k 
of sT As. There are two aspects of this; one is trying to find out what this 
maximum is, and the second is asking which colourings lead to this maximum. 
We start with the first question. It is not clear how to simplify the expression 
for <P in Theorem 5.12; however one observation can be made. 

Theorem 5.13 Suppose A is a symmetric k by k matrix, so that its eigen­
values are real. Then maxSE~n sT As ~ /-l1' 

Proof. By the symmetry, A has a basis of eigenvectors {ei} 1 ~ i ~ k, 
which are orthonormal with respect to the usual inner product (,) which 
satisfy Aei = /-liei where /-l1 ~ /-l2'" ~ /-lk· Let m be an vector in ~k which 
gives the maximum (which is attained as ~k is compact); then, for some 
choice of Ai, we have 

k k k 

m = L Aiei ~ Am = L Ai/-liei ~ m T 
Am = L A~/-li' 

i=1 i=1 i=1 

But also, again by the orthonormality of the eigenvectors, we have that 

k k 

LA~ = (m,m) = Lm~ ~ 1 
i=1 i=1 

since m E ~k. Hence we have 

m T Am = tA~/-li ~ tA~ (mF/-lj) ~ m'i),x/-lj as required .• 
1=1 .=1 J 

In fact we need only consider the submatrix of A corresponding to those 
rows and columns i for which mi =I O. By the interlacing lemma of linear 
algebra, if A is a symmetric matrix, B is A with the ith row and column 
omitted, and Al ~ A2 ... ~ Ak and /-l1 ~ /-l2'" ~ /-lk-l are the eigenvalues of A 
and B respectively, then Al ~ /-l1 ~ A2 ~ /-l2··· ~ Ak-1 ~ /-lk-1 ~ Ak. 

It is natural to ask for a lower bound also, but no good bound of this 
type is obvious. 
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We next address the question of when the upper bound is attained. To 
get E7=1 )..?/1j = /11 when E7=1)..? :s; 1 we must have that )..1 = ±l with all 
the other )..i being zero; as )..1 :2: 0, it is 1. Then el = (e1, .. . ek)T must satisfy 
E7=1 ej = 1 as it is in ~k, and E7=1 e? = 1 as it is an orthonormal vector; 
thus E7=1 ei(l - ed = 0; as 1 :2: ei :2: 0 for e1 in ~k, we deduce that one ei is 
1 and the rest are zero. 

We now consider questions of which colourings give rise to the maximum. 
This is the subject matter of much of ESS theory, the basic definitions from 
which we recall. 

Definition 5.2 Let A be a real k by k matrix. Then an evolutionarily 
stable strategy (ESS) of A is an p = (PI, ... Pk) E ~k such that 

1. pT Ap :2: qT Ap Vq E ~n' 

2. If q f. p E ~n and pT Ap = qT Ap then pT Aq > qT Aq. 

The curious name arises from game theory in biology; if two populations com­
pete for limited resources, with a finite number of different pure strategies 
each individual can adopt, and if an individual of the first population playing 
strategy i against an individual from the second playing j receives a payoff 
ajj, then an ESS s is a deployment of the population which maximises the 
overall payoff; we can think of Sk as the probability that an individual should 
play pure strategy k in any particular conflict. We will consider how many 
and what kinds of ESSs A can have. Note that there are matrices with no 
ESSs and others with several ESSs. 

Definition 5.3 The support R(s) of s E ~k is {i : Si f. O}, 1 :s; i :s; k. 
The pattern of ESSs for A is the set of supports of all the ESSs of A 

(a subset of the power set of{1,2, ... k}). A set of subsets of{1,2, ... k} which 
is the pattern of ESSs for some matrix A is an attainable pattern. 

Example 1. If there is some j such that ajj > ai/Ii f. j, then the j-th 
pure strategy is obviously an ESS; in fact, it is the only ESS with Sj > O. 
Such a strategy is said to be diagonally dominant. 

Example 2. If A is symmetric, an ESS of A is just a maximum of the 
quadratic form represented by A on the simplex. For example, in genetics, 
with k alleles AI, ... Ak and genotype AiAj having viability aij, classical theory 
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shows that, if the allelic frequency is s in one generation and s' in the next, 
where 

,Sj(As)j . 
Sj = T A for all 1 ::; z ::; k 

s s 

the mean fitness V = sT As is non-decreasing from one generation to the 
next, and is constant only at an equilibrium point; one proof of this uses 
Theorem 2.25. Hence for a symmetric matrix, if we start from an s all of 
whose components are positive, the process converges to a local maximum, 
and every such vector is a locally stable equilibrium of the equation above. 

Note that thus ifr(n,k,s,P) is a TID model, s' = s as Sj #- O::} (Ps)j = 
0; so s is an equilibrium point of the system. However it need not be a 
maximum, as s = (1/2, 1/2)T and Gp,q with p > q makes clear. 

Theorem 5.12 shows that it is of interest to determine what patterns of 
ESSs a matrix can have. There are some simple combinatorial restrictions; 

Lemma 5.14 Let p and q be ESSs of A, R(p) be the support of p and 
S(q) = {m E !:l.k : m T Ap = pT Ap} so that R(p) C S(p). Then R(q) rt 
S(p) and R(p) rt S(q). In particular, for ESSs p #- q of A, R(q) rt R(p). 

Proof. This result is in [Be] .• 

Definition 5.4 A set ~ of subsets of {1, 2, ... n}. is a Sperner family if 
A, B E ~ and A =f. B ::} A rt Band B rt A. 

For example, the previous result makes it clear that an attainable pattern of 
ESSs is a Sperner family. 

Theorem 5.15 Let ~ be a Sperner family of subsets of {1, 2, ... n}. Then 

Proof. This is Sperner's theorem; see [B2] or [A] for much discussion .• 

Of course by Stirling's formula the upper bound on the size of I ~ I is 
abou t 2n / J27rn = o( 2n) as n -+ 00. In fact further restriction on attainable 
patterns exclude certain Sperner families; for example, the triangle exclusion 
rule [CV] says that if X :J {I, 2, 3} then not all of X - {I}, X - {2} and 
X - {3} can be supports of ESSs. [BCV] gives further information on this, 
and the maximum number of ESSs there can be in a pattern, including the 
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fact that it grows exponentially with k at a rate between 301/ 9 ~ 1.459 ... and 
2 (note these results are for symmetric matrices). 

We next check that Theorem 5.12 agrees with Corollary 5.8 and Theorem 
5.10 for Gp,q. Putting s = (8,1-8), and maximising f(8) = sT As by calculus, 
we find (for P i- q, the only case of interest) f(1)(8) = 0 {::} 8 = 1/2 for 
8 E (0,1), and that f(2)(8) = 4((peO + 1- p) - (qeO + 1- q)) is negative if and 
only if (p- q)( eO -1) < 0; for (J > 0 this is if and only if P > q, and for (J < 0 if 
and only if P < q; thus in these cases the maximum is for 8 = 1- 8 = 1/2. In 
this case we easily check that ST As = aeo + 1 - a. Otherwise the maximum 
occurs at 8 = 0 or 1; whichever we take we get ¢ = pee + 1 - P as required. 

We can approach the result when P > q in another way; 

Theorem 5.16 Suppose :3ro such thatProroeo+l-Proro = max (Prseo + 1 - Prs) 

in r(n,k,8,P). Then ¢(8) = log (Proroeo + 1- Proro). 

Proof. This is very reminiscent of Lemma 5.5. We have 

210 ('LJ n ) It 8 jl n ( Pr. e8+1-Pr. )jrj, n ( prre8+1-Prr ) ir<i;-I) 
g VI, ... jh 1=1 1 l~r<s~k ProrOelJ+1-Proro ProrOelJ+1-Proro 

+----~~~----------~n~(~n~-~I~)~~--~~~~~~---

the sum again being over non-negative integer values of j1, ... jk such that 
E~=1 ji = n. By the multinomial theorem and the fact that log is monotonic, 
this is 

~ log (Proroeo + 1 - Proro) . 

In the other direction, taking only the term with all vertices of colour ro 

which tends to 
log (Proroeo + 1 - Proro) 

as required (again exploiting Stirling as in the above proofs to show that the 
logarithm of the binomial coefficient is only order of magnitude n) .• 

Yet another proof for P > q uses the fact that the maximum corresponds 
to an ESS and the fact that P > q implies A is diagonally dominant. 
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Again note that the argument shows up one way in which large deviations 
are overwhelmingly likely to arise, i.e through a monochromatic colouring. 
However it is clear that in general, the possibility of multiple ESSs means 
that there may be many colourings which give the maximum. 

Another question is how the patterns of ESSs change under perturbation 
of the coefficients of the matrix A (both perturbations from changing Band 
changing the entries of P whilst preserving a). Note that the entries of A are 
a nice smooth function of B. Broom (personal communication) has initiated 
the study of how the pattern of ESSs can change as the matrix varies over the 
space of k by k matrices, but the technical restrictions required for his ideas 
to work (namely, that the two regions of the space of matrices giving rise to 
the two different patterns should have a common boundary of co dimension 
1) are inconvenient for us since we see no reason to suppose that they hold. 

It is more or less obvious that here, as in Gp,q getting large deviations 
in the number of vertices of some colour will provide large deviations on 
the cheap in the number of edges, and thus that the rate function will be 
uninformative for certain ranges of the parameter values. Indeed in general 
there will be several such intervals where this problem, and the associated 
one of the function ¢ not being differentiable arise. This is likely to lead to 
further complications. 
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6 Connectedness and connectivity in RRC graphs 

6.1 A formula for the probability of connectedness 

In this chapter we discuss when random graphs in our models are connected, 
and if so, what their connectivity is. We first illustrate briefly how one 
could obtain an exact formula for the probability of connectedness. We 
then consider the threshold in the classical model, and use knowledge of the 
classical model to estimate the probability of connectedness in Gp,q if one of 
p and q is small. Then we discuss connectivity. 

There are two ways of computing exactly the probability of connectedness 
in the classical case. One, due to Takacs [Ta] solves the more general problem 
of finding the distribution, for a random graph G(n,p) with a given set S of 
vertices, of the number of the n vertices in the component of a vertex in S, 
by turning the problem into one about queuing theory. This approach seems 
hard to generalise to our models, since key independence properties are lost. 
Thus we examine the other approach, an iterative one, mimicking the fol­
lowing theorem of Gilbert, which is easily proven considering the probability 
that the component containing the vertex 1 has order k. 

Theorem 6.1 Let p be given, and Pn = P{G(n,p) is connected}. Then 
Pn = 1 - Ei::: (~=DPk (1 _ p)k(n-k) . 

Proof. [B], pl77, Exercise 1. • 

The result has already been generalised to the case of independent edges 
arising with possibly different probabilities; 

Theorem 6.2 Let Pij = P{the edge i - j arises} in a graph on n labelled 
vertices, and Pn be the probability that such a graph is connected. Then 

Pn = 1 - L P{ G on {1, 2 ... n}\Y connected} II (1 - Pij) 

YC{1,2, .. n}\k iE{1,2, ... n}\Y,jEY 

where k is any element of {1,2 ... n}. 

Proof. See [Ke] .• 
(If all the Pij are equal to p this formula reduces to Gilbert's). This 

shows that we can calculate the probability of connectedness in our models 
by conditioning on the various possible colourings and applying this formula 
for each case arising. This is a daunting task however, even when we have 
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noted that only the numbers of vertices of each colour are really important, 
especially if the number of colours k is large. Thus good asymptotic results 
are even more necessary here than classically. 

6.2 Variability in P{ Gp,q connected}. 

We first give a simple example to show that the probability of connectedness 
may vary substantially in our models as compared with the corresponding 
classical model. The following simple example illustrates this. 

Theorem 6.3 P{Gp,q connected} takes all values in [2-(n-l), 1- 2-(n-l)] as 
p and q vary with p + q = 1. 

Proof. If q = 0 and p = 1 then G is connected if and only if all n vertices are 
the same colour, which happens with probability 2-(n-l). If p = 0, q = 1, each 
vertex is adjacent to every vertex of the opposite colour so the probability 
of connectedness is the probability that the graph is not monochrome, which 
is 1 - 2-(n-l). The result follows by the intermediate value theorem, since 
P{ Gp,q is connected} is a polynomial in p and q so a continuous function .• 

This suggests very different behaviour for large p and large q. However, 
we now prove a result limiting the extent of asymmetry between p and q. 

Theorem 6.4 Let A c V(G), 0 ~ A ~ V(G). Then, if E(A, B) is the set 
of edges between the two sets of vertices A and B 

and the expression on the left-hand side is symmetric between p and q. There 
is equality if and only if p = q or 1 A 1 or 1 AC 1 is 1. 

Proof. If 1 A 1= i, then P{E(A,AC) = 0 in Gp,q} 

I 

= L P{E(A, AC) = 0 1 Nl (A) = j}P{Nl (A) = j} 
i=O 

= t (! ((1- p)i (1 - q)i-i + (1- q)i (1 _ p)i_i))n-i Gj 
i=O 2 2 

since if there are j red vertices in A, then for any element not in A, if it is 
red the probability that it is joined to no element of A is (1 - p)i(1 _ q)i-i 
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and if it is blue the probability is (1 - q)i(1 - p)i-i. This expression is 
symmetric between p and q as required. To prove the inequality, recall that 
since f (x) = xn

-
i is a strictly convex continuous function of x, for ai 2:: 0 

with 2:~=1 ai = 1, we have f (2:7=1 aixi) ~ 2:i=1 ad (Xi) with equality if and 
only if f is linear or the xi take only one value. The result follows noting 
that (to ~! (1 - p)i (1 - qy-i ~ (1 - q)i (1 _ p)H) ) n-i 

(
1 - p 1 _ q) i(n-i) ., 

= -2- + -2- . = (1 - a)'(n-I) as required .• 

Note that the symmetry depends on the fact that we only consider two 
sets; with three non-empty disjoint sets A, B, C involved, it is easy to show 
that P{E(A,B) = E(B,C) = E(A,C) = 0} is asymmetric betweenp and 
q. Also it is clear that asymmetry between p and q enters into the formula 
only through the probability that Gp,q has;:::: 3 components; for, by the 
inclusion-exclusion formula, we have 

P{G connected} = 1 - L P{E (A, AC) = 0} 
AcV(G), V(G)#A#0 

+ L P{E(A,AC) = E(B,BC) = 0} - ... 
A#BCV(G) V(G)#A,B#0 

The first non-constant term is symmetric by Theorem 6.3 so P{ Gp,q is connected} 
is asymmetric between p and q only if some higher term in the formula is 
non-zero. This means we must have at least three components since if 

P{E(A,AC) = E(B,BC) = 0} > 0 with Ai- B c V(G), V(G) i- A,B i- 0 

at least three of An B, An BC, AC n B and AC n Be must be non-trivial. 

6.3 Asymptotics for P{ Gp,q} connected. 

We now recall the following result, which describes the asymptotics of the 
probability of connectedness in the classical case. 

Theorem 6.5 Suppose a = (log (n) + C + 0(1)) In. Then 

lim P{ Go is connected} = e-e-
c

• 
n-+oo 
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Proof. See [B], Theorem VII.3 •. 

Thus log(n)/n is the threshold for the probability of connectedness. Some 
remarks on the proof will enable us to introduce ideas which will be useful 
in the sequel. The main point is that, for Q: sufficiently large, a.e. graph 
consists of a so-called giant component and some isolated vertices. Thus 
the probability of connectedness is, in the limit, the probability that no 
vertex is of degree O. As we have already seen, the degrees are dependent, 
even in the classical model; however, for Q: as in the theorem, they behave 
asymptotically as if they are independent in various ways; in particular, the 
standard extreme value analysis for the minimum of n independent binomials 
is applicable, which is why we get the familiar distribution on the right hand 
side. 

Note that some insight into the analogous problem for random graphs 
where edges arise independently but with possibly differing probabilities can 
be had from the following result; 

Theorem 6.6 Let Pij be the probability of the edge i - j in a random graph 
on {I, 2, ... n}, the various edges being independent. Let qij = 1 - Pij and 
Qir = maxj, < ... jn-r qij, qih ... qijn_r and A = L:?=l QiO so that A is the expected 
number of isolated vertices. If 

1· d l' \ \ d l' L~j (L:i-l Qir r (). ) 1m max Q iO = 0 an 1m /\ = "0 an 1m L.J , - e - 1 = 0 
n-+oo 1 :5i:5n n-+oo n-+oo t=l r. 

then a. e. such graph consists of a giant component and isolated vertices, 
whose number converges in distribution to a PO(AO) random variable. 

Proo[ [Ko] • 
It is not easy to check the conditions of the theorem, especially the last 

one, though that condition holds if every Pij = (log(n) + 0 (1)) /n [B, pI77]. 
A problem with attempting to apply Kovalenko's result in our situation is 
that we get different models according to the random number of vertices of 
each colour and it is not clear how to put the results together. 

Note that the expected number of isolated vertices in Gp,q is the same as 
the number in Go, as a vertex is isolated if and only if the tree comprising 
all edges out of that vertex arises in the complement of the graph, so the 
probability of the event is the probability of that tree in G1-p,l-q which, 
as Gp,q is TID is the same as classically; now use linearity of expectation. 
However other moments will differ from classically. 
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To clarify the notion of giant component, we quote the following theorem. 

Theorem 6.7 For a.e. graph with at least l(n/2) + 2 log (n) n 2/ 3J edges, 
there is a unique giant component with at least n 2/ 3 vertices, all other com­
ponents having at most n2/ 3/2 vertices. 

Proof. [B) Theorem VI.1 • 

In our models, it is quite possible that we do not have a unique giant 
component; for example, with k colours, if the Pii (1 ::; i ::; k) are large 
enough to ensure there is a giant component amongst the vertices of colour 
i, there can be several large components if all Pij, i =I j are small enough. 

We now move towards a generalisation of Theorem 6.5 to Gp,q,r when 
a = (log( n) + c) / nand q is sufficiently small. The proof will be heavily 
dependent on the above results on the structure of the random graph in the 
classical model. We first note that in our circumstances we can refine the 
result on existence of the giant component. 

Theorem 6.8 If a = (log(n) + c + 0(1)) In, then a.e. Go consists of a giant 
component and isolated vertices) whose number converges in distribution as 
n goes to infinity to a Po(e-C

) random variable. 

Proof. The first statement is demonstrated in the course of the second proof 
of Theorem VII.3 in [B) (page 151). The second sentence is Theorem V.3 in 
[B) (page 94) in the special case k = 1. • 

For the next lemma, it will be helpful to recall the generalisation of the 
product formula for the exponential in Lemma 4.19. 

Lemma 6.9 Let Cn ~ 0 be a sequence tending to c. Then 

. n (1 - cn /n2 )i(n-i) (7) .=.£ 

11m " = e 4 • 
n-+oo L.J 2n 

i=O 

Proof. We first note that, as i(n - i) ::; l n; J for 1 ::; i ::; n, the quantity to 
be evaluated is 

l n 2 J 
~ lim (1 - cn /n2

) 4 = e-c
/
4 by Lemma 4.19. 

n-+oo 

In the other direction, since for any 1/2 > E > 0, the number of reds i satisfies 
liIDn-+oo P{i(n - i) ~ (n2 (1/2 - E)2)} = 1 and hence 

n-1 (1 - cn /n 2 )i(n-i) (~) 
r " I n~~ L.J 2n 

i=l 
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by Lemma 4.19. Letting f go to zero now gives the result .• 
We can now go to our main result. 

Theorem 6.10 Suppose we are in Gp,q,r with 

P 
= 2 log ( n) + C1 + o( 1) and r = 2 log (n) + C2 + o( 1 ) C3 

---"-'---'----~ and q = -2 
n n n 

where the Ci are constants. Then 

lim P{G r is connected} = e-1/ 2(e-CJ /2+e
-C

2/2) (1 _ e-C3 / 4) . 
n-+oo p,q, 

Proof. We first note that with probability tending to 1, the numbers of reds 
and blues are both n/2 + o(n1/2+f) for any E > O. Hence by Theorem 6.8, 
again with probability tending to 1, the reds consist of a giant component 
and isolated vertices, and the same is true of the blues. Because of this, the 
event that the graph is connected is (up to an error probability which tends 
to zero) the disjoint union of the following two events; 

1. The number of components in the reds is one and the number of compon­
ents in the blues is one, and there is an link between these. 

2. There is at least one vertex which is isolated in the reds or the blues 
but is joined to the other vertices by adding red-blue edges. 

We first claim the probability of the second event tends to zero as n goes 
to infinity. Indeed for any particular red vertex, the probability that it is not 
joined to any of the blue vertices is 

( 

C3 )n(1/2+0 (1)) 
1--

n2 

which clearly goes to 1 as n goes to infinity. Thus the overall probability of 
the second event is a sum, over the Poissonly distributed numbers of vertices 
isolated in their own colour, of events with probability tending to 0 with n, 
and so itself tends to zero. 

We may thus concentrate our attention on the first event, A say. It itself 
is the intersection of three events; the reds being connected, the blues being 
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connected, and there being a red-blue edge. We consider the limit, as n 
goes to infinity, of the probabilities of each of these three events in turn; 
as we will see, given that there are n/2 + o(nl/2+~) reds, the answers do not 
depend on the exact number of reds, and so, since the events are independent 
conditional on the number of reds, it is enough to work out the individual 
probabilities and multiply them together. We start with the probability that 
the reds are connected. We have 

210g(n) + Cl + 0(1) log(n/2) + log(2) + cd2 + 0(1) 
P = n = n/2 

log(n/2 + o(nl/2+~)) + log((n/2)/(n/2 + o(nl/2+~))) + log(2) + cd2 + 0(1) 
n/2 

log(n/2 + o(nl/2+~)) + log(2) + cd2 + 0(1) 
n/2 

10g(n/2 + o(nl/2+~)) + log(2) + cl/2 + 0(1) 
n/2 + o(nl/2+~) 

where we use the fact that liIIln--+oo 10g(n)/nK = 0 for any Ii > 0 to mop up 
the extra terms caused by the above changes into the 0(1) term. Hence by 
Theorem 6.5 

_e-(log(2)tCI/2) -1/2e-C1/2 
lim P {the reds are connected} = e = e . 

n--+oo 

The proof that the 

} 
1/2 -C2/2 lim P{ the blues are connected = e- e 

n--+oo 

is identical. Hence it remains to get a good estimate of the probability that 
there is a red-blue edge, conditional on the numbers of blues and reds being 
as above. But we have just seen that this varies from the exact probability 
that there is a red-blue edge by at most an error term tending to zero as n 
goes to infinity. Hence we may approximate it by the exact answer, which is 

P{there is a red-blue edge} = 1- P{no red-blue edge} 
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and hence we can apply Lemma 6.9 to see that 

lim P{a red-blue edge} = 1 - e-C3
/
4 • 

n-+oo 

Consequently, putting all the strands together, 

lim P{G r is connected} = e-l/2e-CJ/2 e-l/2e-C2/2 (1 _ e-ca / 4) 
n-+oo p,q, 

In fact we have shown rather more. Since the event described as 2 in 
the proof has probability tending to zero, with probability tending to one we 
have that the number of isolated vertices is the sum of the number of vertices 
isolated in the reds and the number of vertices isolated in the blues. As 

_ log(n/2) + log(2) + Cl + 0(1) d _ log(n/2) + log(2) + Cl + 0(1) 
P - n/2 an r - n/2 

these are asymptotically Poisson with parameters e-q /2 and e-c2 /2 respect­
ively, by Theorem 6.8, and the numbers of isolated vertices in the reds and 
blues are asymptotically independent, we have that the total number of isol­
ated vertices is asymptotically Poisson with parameter (e-q + e-C2 )/2. 

Note the correlation structure does show up, for the corresponding clas­
sical probability is e-e-(Cl +C2)/4 since, as q = C3/n2 = 0(1), 

p + 2q + r log(n) + (Cl + c2)/4 + 0(1) 
a= 4 n 

The argument fails in its present form if the colours are not equiprobable; 
indeed if s < 1/2, we have 

(210g(n)+c+o(1)) _ 2slog(sn)+d+o(1) 
P = n - sn 

where d is a constant whose exact value is immaterial; thus p is less than the 
critical probability log(sn)/sn by about (1 - 2s)log(sn)/n, which is more 
than any particular c/n; hence, again by Theorem 6.5, the probability that 
the reds are connected is in the limit zero, and the probability that all the 
red vertices are joined to a blue one (the blues will, by contrast, be connected 
with probability tending to 1) will also tend to zero, and so the probability 
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of connectedness will tend to zero. However we can remedy this by breaking 
down a between p and r in a more appropriate way. Clearly we want, if there 
are about sn reds and (1 - s)n blues, to have 

p = log(sn) + CI + 0(1) and r = log((1 - s)n) + C2 + 0(1) 
sn (1 - s)n 

for suitable choices of CI and C2 to get the above argument to work. However 
then, recalling that q = o(l/n), we have 

a = S2p + 2s(1 - s)q + (1 - s )2r 

slog(sn) + SCI + (1- s)log((I- s)n) + (1 - S)C2 + 0(1) 
n 

so we must have SCI + slog(s) + (1- s)log(l- s) + (1- S)C2 = c. Then an 
analogous argument to that above will give us the non-degenerate limit 

lim P{sGp q r is connected}. 
n-+oo ' , 

It is natural to ask how far these techniques may be used to investigate 
the probability of connectedness for other values of the probabilities. We 
consider the case where the classical graph is sparse, that is we have a = c/ n 
where C is a constant. The following result of Erdos and Renyi shows that 
the behaviour of such graphs with respect to their number and order of 
components is critically dependent on the size of c. 

Theorem 6.11 If C > 1, in a.e. G(n,c/n) the largest component has order 
Nn,c such that 1 Nn,c - (1 - t(c))n I~ w(n)Jn where 

so that s(c) = ct(c) is the unique root of se- S = ce-C in (0,1]; and the other 
components have orders X such that (I X - (log(n) - 5Ioglog(n)/2) I) /T ~ 
w( n) for any w( n) tending to infinity with n, where T = C - 1 - log( c). 
However, ifc < 1 all components are small, having orders which are O(log(n)). 

Proof. The first sentence is [B] Theorem Vl.ll; the rest is implied by [B] 
Chapter V and stated explicitly in the introduction to chapter VI. • 
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This so-called double jump phenomenon was one of the earliest ex­
amples in random graph theory of a radical change in the structure of the 
random graph arising from a slight change in the parameter. Much more de­
tailed results are now known about how the transition occurs, see e.g [JKLP]. 

We now suppose we are in Gp,q with p + q = 2a/n and p = c/n, q = din, 
or perhaps p = 2a/n - f /n2, q = e/n2; what is the behaviour here? Of 
course if a < 1/2 then both c and d are less than 1 so we will only get 
small components, but (for example) if c > 1 the red and blue sets will a.s. 
have large components and there is interest in firstly whether the two giant 
components will join up and if so how much else will join up with them. 

The first question is approachable. Indeed a.e such graph has a giant 
red component C1 with about w (c) n vertices, and a similar component C2 

of blues. Thus the probability that there is no edge between them will be, 
( )

w(c)2(n2+o(n2)) by an argument based again on Lemma 6.9, 1 - q which by 
the product formula for the exponential will go to 0 as n goes to infinity if 
q = c/n, but will go to e- fw (c)2 if q '" f /n2. 

It seems harder to understand the probability of full connectedness here. 
Of course it is obvious that this probability will tend to zero, from the nature 
of the threshold probability for connectedness, but one might hope to under­
stand the rate at which it goes to zero, show that this is the same rate at 
which the the probability of no isolated vertex goes to zero, and deduce 
something about the asymptotic form of the probability of connectedness. 
However O'Connell [0] has recently shown that, if a = a/n, the properties 
of being connected and of having no isolated vertices no longer have the same 
asymptotic probability in the classical model; more precisely, he shows that, 
for any c > 0, defining a > 0 uniquely by 1 - e-a = c/ a, 

. 10g(P{G(n,c/n) is connected}) I ( -C) 
m ( c) = hm = og 1 - e , 

n-too n 

. 10g(P{G(n,c/n) has no isolated vertex}) I (c) (c - a)2 
g( c) = hm = og - - """'-----.:~ 

n-too n a 2c 

and one can show that g(c) > m(c)Vc > o. 

6.4 The limiting probability of connectedness; small p 

The other extreme is when p = 0, q = 2(log(n) + x + o(l))/n, when with 
probability tending to one the graph is bipartite, with classes the red vertices 

130 



and the blue vertices. The probability that a random bipartite graph is 
connected seems to have first been addressed by Palasti [Pal; further results 
were proved by Klee, Larman and Wright [KLW], and later by Saltyakov 
[Sa]. The techniques used in all these papers are similar; in particular, a key 
step in each proof is to prove an analogue of the result of Erdos and Renyi 
that connectedness is essentially the same as having no isolated vertex. We 
now give the result of [KLW] and show how it solves our problem. 

Theorem 6.12 Suppose we have a random graph with vertex classes whose 
orders are nl ~ n2 respectively, where n = nl + n2. Let 9 be fixed and, be 
bounded, and suppose there are £ = n2(nl - (nl - ,)e-(log(n2 ))/n1 ) edges, all 
such graphs being equally probable. Then, if f3 = (n2 - nd log(n)jn -+ band 
, -+ 9 as n ---t 00, we have that the probability that the graph is connected 
tends to e-e-9 (1+e-

b
). 

Proof. [KLWl (some notation has been changed to avoid confusion) .• 

Theorem 6.13 lfp = 0, q = 2(10g(n)+x)jn, liIDn~oo P{Gp,q is connected} = 
e-e-:Z: . 

Proof. First note that without loss of generality the blues are at least as 
numerous as the reds; then there are Nl = nj2 - o(n l/2+() for any t > o. 
Thus f3 = o(n(-l/2log(n)) so f3 ---t 0 with n. 

Next note that the number of edges will, with probability tending to 1 as 

n -+ 00, be 
,,_ 2(10g(n)+x)(1+ ((-1)) 
c - nln2 0 n . 

n 
Indeed there will be nln2 independent trials, and with probability tending 
to 1 nl ~ nj2 + Vnw(n) and n2 2: nj2 - Vnw(n) for any w(n) tending to 
infinity with n, we see that the standard deviation of the number of edges 
produced is a constant times n minus smaller order stuff, which gives the 
claim. This expression is in turn equal to 

(log(nj2) + 10g(2) + x) (1 + ( (-1)) 
nln2 jon n 2 
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replacing n/2 by n2 and nl respectively, and noting for example that the 
series for log(l + x) implies log(n/2 + cfn) = log(n/2) + O(n- 1/ 2 ). 

By Theorem 6.12 it will suffice to show that this is equal to 

n2(nl-(nl-,)e-(log(n2))/n1 )(*) 

where, -+ x + log(2). To see this, note that (*) is 

= n2n l (1 - e-log(n2)/nl ) + n2,e-log(n2)/nl 

= n2Iog(n2) + O((log(n2))2) + n2"f + O(log(n2)) = n2Iog(n2) + n2"f + 0(n2) 

using the Taylor expansion of the exponential; and the last line is the required 
expression .• 

In particular, in the limit the probability of connectedness is the same 
as in the classical case. This in turn begs the question of how the limiting 
probability of connectedness varies as q varies in the range from a to 2a; for 
example, is it constant? The question does not seem easy to approach using 
the kind of technology we have developed, since it is possible for the whole 
graph to be connected without the reds being connected, and possible for 
the whole graph to be connected without the bipartite graph on the reds and 
blues being connected. 

6.5 Connectivity properties of RRC graphs 

In the previous sections, we have seen that we have to work quite hard 
to get the correlation structure showing up in the limit in our models for 
connectedness. In this section we deal with connectivity, that is the strength 
of connectedness for a connected graph, where as we shall see rather more 
satisfactory results seem to be possible. 

There are various measures of connectivity. They include the following; 

Definition 6.1 The vertex-connectivity /'i, (G) is the minimum order of 
a set of vertices whose removal renders G disconnected. 

The edge-connectivity ,\ (G) is the minimum order of a set of edges 
whose removal renders G disconnected. 

(Fiedler's) algebraic connectivity JL( G) is the second smallest eigen­
value of the Laplacian matrix V' (G), where we recall that V' (G) = D - A 
where D is the diagonal matrix with the degree of vertex i in the i th position 
and A is the adjacency matrix of G, defined by aij = 1 if the vertices i and 
j are adjacent in G and aij = 0 otherwise. 
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Another commonly used measure of connectivity is the minimum degree 
<5( G). Closely tied up with connectivity is the diameter of the graph; 

Definition 6.2 The diameter d( G) of a graph G is the maximum, over all 
pairs x =f:. y E V( G), of the lengths of the shortest path in G from x to y (we 
put d( G) = 00 if G is not connected). 

It is not hard to see that <5 2: A 2: K, 2: p,. Given <5 2: A 2: K, positive integers, 
it is possible to exhibit a graph with minimal degree <5, edge-connectivity 
A and vertex-connectivity K" but this behaviour is atypical in the classical 
model, as the next result makes clear. 

Theorem 6.14 Let a Ga evolve, by adding one edge at each time 1,2, ... , 
and let k = k(n) be any function from {1, 2, .. n} to {1, 2, ... (n -1)}. Then in 
a.e. Ga the vertex-connectivity (which is a non-decreasing function of time) 
first becomes k at the same time as the minimum degree first becomes k. In 
particular, for a. e. G a, <5 = K,. 

Proof. [B], Theorem VIl.4 • 

(We will see in Theorem 6.15 below that in Ga with a constant, p, is clas­
sically of the same order of magnitude as <5 and K,). However the analogue of 
Theorem 6.14 cannot be true in general in Gp,q; for if q is very small (order of 
magnitude 1/n2 ) there will tend to be at least two monochromatic compon­
ents which may however (e.g if p is constant) have large minimum degrees. 
Similarily, the fact that in the classical model a.e. graph has a Hamiltonian 
cycle as soon as it has minimum degree at least two ([B], Theorem VIII.9), 
cannot be true in such a Gp,q model; for although the minimum degree will 
be (as we have seen in Chapter 4) at least as large as before, the fact that 
there is no connection between the reds and the blues means there can be no 
Hamiltonian cycle. This at least suggests that the measures of connectivity 
are more spaced out in our models; we explore this notion. 

The only previous result relating connectivity in our situation is the fol­
lowing, for which a preliminary definition is required. 

Definition 6.3 A sequence Xn of random variables is said to be o(n"Y) In 

probability if V<5 > 0 and K > 0 ::lno such that 

n > no :::} P{I Xn I> K} < <5. 
n"Y 
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Theorem 6.15 Let a, p, q and r be constants. Then given f > 0, we have 

J-L = an + o(nl/2+f) in probability in Ga. 

If we have i reds and n - i blues, with red-red edges arising with probability 
p, blue-blue edges with probability r and red-blue edges with probability q, then 

J-L = On + o(nl/2+f) in probability, where 

O 
. { pi + q(n - i) qi + r(n - i)} 

= mIn q, , . 
n n 

In particular, if q < min(r,p) J-L = qn + o(nl/2+f). 

Proof. [Ju] • 
We now use this result to obtain a result for our model. 

Theorem 6.16 In sGp,q,r! "If> 0, 

J-L = On+o(nl/2+f) for a.e. graph, where 0 = min{ q, q(l-s )+ps, qs+r(l-s n. 
Proof. Given f > 0 a.e. sGp,q,r has between sn - n l /2+f/2 and sn + nl/2+f 

red vertices. Hence 

pi + q(n - i) = q(l _ s) + o(n- l / 2+f ) and 
n 

qi + r(n - i) = qs + r(l _ s) + o(n-l/2+f). 
n 

Hence, for a.e. sGp,q,r, 

. { pi + q(n - i) qi + p(n - i)} o = mIll q, , ---'-----'-
n n 

= min{q,q(l- s) + pS,qs + r(l- sn + o(n-l/2+f). 

Since o(n-l/2+f/2)n is o(nl/2+f) the result follows .• 

Hence, for example, in Gp,q if p > q, 0 = q but if q > p, 0 = (p + q)j2; 
again there is different behaviour for p > q and q > p. It is easy to see, 
simulating graphs in Gp,q on 500 vertices, that the observed behaviour of J-L 

is close to that described by the above theory; in fact, this yields the further 
insight that the connectivity seems to continue to be an increasing function 
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of q (though less rapidly) for q > p; whereas for q < p it increases linearly 
with q, here it only increases with the square root of q roughly; this will be 
caused by the slight imbalance in the numbers of reds and blues (which is of 
course of size order y'n); causing one of (pi +q(n -i))jn and (qi +r(n - i))jn 
to be slightly smaller than the other. 

Juhasz remarks that his article was motivated by the idea that J.L manifests 
the extent to which the graph is breakable into two blocks, so that a similar 
result holds in our models is unsurprising. 

It seems likely that there is a generalisation to several colours, with the 
weakest link again controlling the size of J.L, but we have not formalised this. 

What can we say about the other two measures? We start with A, using 
the following lemma. 

Lemma 6.17 If a graph has A < ~ then its diameter is ~ 3. 

Proof. [PI] • 
This suggests the diameter may give us a grip on when A =j:. ~. For this, 

we shall require information on the diameter. 

Theorem 6.18 Suppose c > 0 is real, that d > 1 is an integer, and that 

Then 

lim P{d(Go ) = d} = e-c
/

2 and lim P{d(Go ) = d + I} = 1 - e-c
/

2
• 

n-too n-too 

Inpariicular, ifliffin-toop2n = 00 andliffin-toopn-2Iog (n) = 00 a.e. G(n,a) 
has diameter 2. 

Proof. [BJ, Theorem X.I0 and Corollary X.ll • 
This allows us to deduce something about the behaviour of Aj 

Theorem 6.19 A.e. Gp,q with p and q non-zero and constant has A = ~. 

Proof. By Theorem 6.18 a.e. Go: with a constant and non-zero has diameter 
2. Clearly the diameter of our Gp,q is bounded above by that of Gmin{p,q} and 
below by that of Gmax{p,q}; since both these are 2 for a.e. graph, a.e. Gp,q 
has diameter 2. Hence, by Lemma 6.17, a.e. such graph has A = ~ .• 
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Hence, using Corollary 4.22 and the fact that the minimum degree of a.e 
Gp,q is n - 1 - ~ where ~ is the maximum degree, A will be larger than 
classically for a.e graph. (Of course when q = 0 a.e. Gp,q is disconnected and 
so has A = 0 but will still have large o. Also note the result is for p and q 
constant; if q = c/n2 with c constant, clearly A will be close to c/2 but 0 will 
still be large). 

/'i, seems to be rather harder to say much about; however it seems highly 
likely that it will like 0 and A be of about the same order of magnitude 
as classically, since in a.e. graph every vertex will have about an + o( n) 
neighbours. 

We close this section with some more remarks about the diameter. We 
saw in Theorem 6.18 that the case when a = c/ Vii is where the result on 
where the diameter being 2 breaks down, so let us analyse what happens 
then somewhat more closely. Suppose 

a a+b a-b 
a= y'n=2and p = ~andq= ~ 

n-2 yn-2 yn-2 

where of course -a < b < a. Let i =/:- j be two vertices, and consider 

Hn (p,q) = P{d(i,j) > 2 in Gp,q}. 

Now conditional on whether or not the vertices i and j are the same colour, 
the event d(i,j) > 2 is the two independent events that i and j are not 
adjacent, and that for all other vertices k E {1,2, .. n} - {i,j} the path 
i - k - j is not present; thus 

1 (2 + 2)n-2 1 
Hn (p, q) = 2" (1 - p) 1 - P 2 q + 2 (1 - q) (1 - pqt-2 

so that 

e-(a2
+b

2
) + e-(a

2
-b

2
) a2 ( 2) 

J~Hn (p,q) = 2 = e- cosh b 

which is symmetric in p and q (unlike Hn ), is uniquely minimised by b = 0 for 
fixed a, and we can get Hn to be arbitrarily close to 1/2 by taking b as close to 
a as we like. (Note that a.e. graph with these probabilities is connected, by 
Theorem 6.5). Thus the behaviour of the diameter at this critical probability 
distinguishes between Ga and Gp,q. Again the symmetry is misleading for 
the more general question of the probability that two vertices are at distance 
at least k from each other. 
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6.6 Isoperimetric inequalities and the concentration of 
measure. 

A consequence of the fact that /-l is small in Gp,q for small values of q is that, 
crudely speaking, the graph G will have less good expanding properties. To 
formalise this, we have the following definition; 

Definition 6.4 A graph G on n vertices is said to be an (n, c)-magnifier 
for some c > 0 if, letting N(X) denote the set of vertices adjacent to the 
vertices in X, 

n 
\IX C V(G) such that I X IS; 2" we have I N(X) -X I~ c I X I· 

(An inequality of the type mentioned in the definition, or more generally one 
relating the number of points at distance at most k from sets A to the order 
of A is called an isoperimetric inequality). This notion is then used in 

Theorem 6.20 If G is an (n, c)-magnifier, then 

Proof. [AI] .• 

c2 

/-l(G) ~ 4 + 2c2 

Sharper results are possible for special classes of graphs, e.g regular 
graphs. 

Theorem 6.16 above on /-l in our models thus implies that the graph will 
(for p > q) be a less good expander than classically. Our results also imply 
that certain functions on the graph will be less tightly concentrated than 
classically. This we formalise through the following definitions and theorem. 
It will be helpful to turn G into a probability space by putting the uniform 
distribution on its vertex set; then a function on G can also be thought of as 
a random variable. 

Definition 6.5 1. A function f : V( G) -t R is said to be Lipschitz if 

I f(x) - f(y) IS; d(x,y) \lx,y E V(G) 

where d is the graph distance. 
2. If f is a random variable, a Levy mean for f (which need not be 

unique) is a number Mf such that 

1 1 
P{f ~ Mf } ~ 2 and P{f S; Mf } ~ 2· 
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Theorem 6.21 Let G be a graph such that whenever f is a Lipschitz func­
tion on G with Levy mean Mj , we have P{I f - Mj I> t} < a. Then for any 
subset A of V(G) with PiA} 2: 1/2, we have, letting A(t) denote the set of 
points at distance at most t from A in the graph metric that P{ A(t)} 2: (I-a). 

Proof. [Le], Theorem 6 .• 

So if we have a worse isoperimetric inequality, the concentration of these 
functions cannot be as tight as it would have been in the classical model. 
Another simple reason why various invariants are less tightly concentrated 
in our models is that usually there will be a slight imbalance between the 
numbers of reds and of blues, so that the value of the invariant on the reds 
and on the blues are slightly different (despite the fact that red-red and blue­
blue edges arise with the same probability). This ties up with our remarks 
in Chapter 5 on the failure of the martingale inequalities in our models. 
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7 Complete graphs and cliques 

7.1 Introduction 

In this chapter we discuss the closely related subjects of cliques, chromatic 
numbers and independent sets in our models. Here again there is an extensive 
theory for the classical model, and many of the results have been sharpened 
substantially since the appearance of [B]; see [Bl] for a summary of some of 
the progress, much of which is concerned with obtaining tighter concentration 
results by the use of martingale inequalities. We recall the basic definitions; 

Definition 7.1 A complete subgraph of order r in a graph G is C C VI 
with I C 1= r with all r( r - 1) /2 edges between these r vertices present in G. 

A clique is a complete subgraph of G which is maximal with respect to 
the inclusion partial order on subsets of VI so that it is contained in no other 
complete subgraph. 

The clique number w (G) of a graph G is the order of the largest clique 
in it. 

There is no uniform terminology in the literature; some authors use the term 
clique for what we have described as a complete graph. Cliques arise in 
many applications, including design of sequential logic networks in electrical 
engineering, Bayesian statistics for expert systems in medicine and artificial 
intelligence, and in taxonomy. There is also a link with ESS theory via the 
following result; 

Theorem 7.1 Suppose A is an n by n real symmetric matrix with aij=O for 
i=j, otherwise aij = ±l. Define a labelled graph G(A) on {I, 2, .. n} with an 
edge between i and j if and only if aij = 1. Then there is a bijection between 
the set of supports of ESSs of A and the set of cliques of the graph G(A). 

Proof. See [eV] .• 
There is thus considerable interest in finding all cliques of a graph. Whilst 

some effort has been made to get good algorithms for the problem, it is 
intrinsically difficult; for example, ascertaining whether a graph on n vertices 
has a clique of order 2: k is an NP-complete decision problem. (A decision 
problem is a question to which the answer is "yes" or "no"; an instance of 
it is any object to which the question is addressed; a decision problem is in 
NP if, given an instance for which the answer is "yes", there is a certificate 
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verifying the fact which can be checked in polynomial time; in the case of the 
clique for example, by checking that all edges between the r 2: k vertices are 
present, and that no other vertex in the graph is adjacent to all r vertices. 
A subclass of the NP-problems are the problems in P, which is the class of 
decision problems for which there exists a polynomial time algorithm which 
solves every instance of the problem in polynomial time. It is not known 
if NP is a larger class than P, but the two classes are widely believed not 
to coincide. The NP complete problems are a subclass of the NP problems; 
if anyone NP complete problem could be solved in polynomial time, then 
every problem in NP could be solved in polynomial time. See [ShTa] for more 
on this; for our purposes, we need only note that it means that the problem 
is hard). Thus it is of interest to study random behaviour. We summarise 
the basic facts about the likely numbers and orders of cliques in the classical 
model; 

Theorem 7.2 In Go, fora constant and b = l/a, given 0 < € < 1/2 a.e. GOt 
has no clique of order less than (1 - €) 10gb ( n) or greater than (2 + €) 10gb ( n ) , 
but at least one clique of each order r between (1 + € ) 10gb ( n) and (2 - € ) 10gb ( n ) . 

Proof. [B] Theorem X1.4 .• 
Dual in some sense to the notions of complete graph and clique is the 

notion of an independent set; 

Definition 7.2 A independent set of order r in a graph G is a set of r 
vertices where none of the r( r - 1) /2 possible edges amongst those r vertices 
are present. The independence number i( G) of G is the order of the 
largest independent set in G. 

Since a complete graph in G is an independent set in its complement (the 
graph which has the same vertices as G and an edge between two vertices 
if and only if the corresponding edge is not present in G) we see that the 
probability that some set of vertices form a complete graph in f(n, k, s, P) 
is equal to the probability that the same vertices form an independent set in 
r(n, k, s, J - P) where as before J is the k by k matrix of ones; this allows 
us to translate many statements about the random behaviour of cliques into 
ones about the behaviour of independent sets, and vice versa. 

Definition 7.3 The chromatic number x( G) is the smallest number of 
colours with which we can assign a colour to each vertex of G in such a way 
that no two adjacent vertices have the same colour. 
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We re-iterate that these proper colourings have nothing to do with the 
notion of colouring which underlies our models. 

Theorem 7.3 In Go, with a constant, we have, with d = 1/(1 - a), 

x(Ga ) = (~+O(1)) log~(n) fora.e. Ga. 

Proof. [B1] Chapter 4, Theorem 5 .• 

It is easy to see that x( G) 2: w( G); the previous result makes it clear that 
in general it is substantially larger. 

7.2 Expected numbers of cliques and complete graphs 

We now consider what can be said about expected numbers of cliques in 
our models; the method will also give the expected number of complete 
graphs and independent sets. Let the random variables X r, Y,. and Zr be the 
number of cliques of order r, the number of complete graphs of order rand 
the number of independent sets of order r respectively; if we need to make 
it clear in which model, we will do so. 

Theorem 7.4 In r(n, k, s, P), 

where the ni, 1 :::; i :::; k satisfy ni ~ 0 and E:=1 ni = r, and (with the same 
notation) 

Proof. We give the argument for Xr and then comment briefly on the modi­
fication needed for Y,.. First note that by linearity of expectation, considering 
each r-subset of V( G) separately, the answer is (~) times the probability that 
r particular vertices form an r-clique. This event in turn consists of these r 
vertices forming a complete graph and, for each of the other n - r vertices it 
being untrue that that vertex is joined to all of the r vertices. Observe that 
whether or not each of these n - r vertices are joined to all the r vertices 
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happens independently conditional on the colours of the r vertices. Thus, 
conditioning on the colours of the r vertices, and each of the n - r other 
vertices, we see that, letting ni be the number of the r vertices which are of 
colour i so that L:=l ni = r, 

For Y,. the only modification required is that we no longer need to worry 
about whether the other n - r vertices are or are not joined to the complete 
graph and so the formula becomes 

Corollary 7.5 The number of independent sets of order rJ ZrJ satisfies 

Corollary 7.6 In Gp,q we have 

E (X,) = (~) t, ~! p,(,-1)!2-'('-')q'('-') (1 _ p'q'-' ~ q')f-') n-, , 

E (Y,.) = (n) t ~: p,(,-1)!2-'('-')q'('-') 
r 1=0 

and E (Zr) = (n) t (:] (1 - pr(r-l)/2-i(r-i) (1 _ q)i(r-i) . 

r i=O 2 

Proof. These formulae are immediate substituting the relevant parameter 
values into the general formulae in the preceding theorem. , 

The above formulae require interpretation if any of the Pij is zero, as then 
problems about the value to assign to 00 arise; we note that the interpretation 
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00 = 1 is appropriate here. In particular, in Gp,q if q = 0 r vertices form a 
clique if and only if they are all the same colour, all edges amongst themselves 
exist and for each of the other n - r vertices, not all the edges to the r-set 
exist, so that 

_ (n) pr(r-l)/2 ( pr) n-r 
E(Xr) - 1--

r 2r-l 2 

and if p = 0 so that there are no triangles and so no complete graphs of order 
2: 3, we see that (since any edge is now a 2-clique) 

E (X2 ) = qn(: - 1) and E (XI) = n (1 _ ~) n-l 

We first use this to get an estimate of the actual number of independent sets, 
using Lemma 5.5. 

Theorem 7.7 In Gp,q, E (Zr) is asymptotically, as r and hence n go to 
infinity, 

(~) (1 - py(r-l)/2 eO(r) if p 2: a 

and (;) ((1- a)2 - (p - a)2r(r-l)/4 eO(r) if p :S a. 

Proof. We have 

E (Zr) = (n) t (:! (1 - py(r-l)/2-i(r-i) (1 _ q)i(r-i) . 
r i=O 2 

= (n) (1 _ ay(r-l)/2 t (:! (1 + xy(r-l)/2-i(r-i) (1 _ x)i(r-i) . 
r i=O 2 

where x = (a - p) / (1 - a) has I x 1< 1. Consequently we may apply Lemma 
5.5 to conclude that 

2 log (2:r=o W (1 + xy(r-l)/2-i(r-i) (1 - x)i(r-i)) 

lim ( ) = log (1 + x) 
r-+oo r r - 1 

if 0 < x < 1, that the limit is zero if x = 0 and that it is 

log (1 - x
2)·f 1 0 

= 1 - <x< , 
2 
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the error term being 0 (lfr) in each case. Hence if r goes to infinity with n, 
we see that 

:t ~! (1 + X),(,-l)/H('-i) (1 - X),('-i) = (1 + X)'(H)/2 eO(,) if 0 < .r. < 1, 
i=O 

and (1 - X2) r(r-I)/4 eO(r) if - 1 < x < 0 

and is 1 if x = o. Hence the expected number of independent sets of order r 
in Gp,q if r goes to infinity with n is 

(n) ( a. - p) r(r-I)/2 
r (1 - o.f(r-I)/2 1 + 1 _ a. eO(r) if x E (0,1) {:? P > a., 

(~) (1 - o.f(r-I)/2 (1- (~ ~ ~)2r(r-I)/4eO(r) if x E (-1,0) {:? P < a. 

and is of course equal to its classical value otherwise. This gives all the claims 
on simplifying the formulae .• 

Note that, as in Lemma 5.5, the implied constant in the 0 statements 
will depend on p as well as a.. 

Corollary 7.8 The expected number of complete graphs on r vertices in Gp,q, 
as r goes to infinity with n, is 

(n) . (n) ( 2) r(r-l)/4 O() . r pr(r-I)/2eO(r) if p ~ a. and r 0.2 - (a - p) e r if p ::; a. .• 

For p > a. the error term in Corollary 7.8 always reduces the expectation, 
as the probability of the complete graph is clearly bounded above by its 
probability in Gp • 

It is worth considering the implications of Corollary 7.8 for the situation 
where we consider the probability of some sequence of events Bn , where each 
Bn is that some collection of edges containing a complete graph of order 
g(n), where liffin-+oo g(n) = 00, arise. The corollary says that for large n this 
probability is close to the probability of B in Gp , in the sense that 
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so the bound Pp,q{Bn } ~ Pp{Bn} is less crude than one might imagine. 
Another case where we can say something about the probability that some 

set of n vertices form a complete graph is when both p and q are of order 
n-2

• We shall require again the slight generalisation of the usual product 
formula for the exponential in Lemma 6.9. 

Theorem 7.9 Suppose p = c/n2, q = d/n2. Then 

lim Pin vertices form an independent set} = e-~. 
n-too 

In particular the limit depends only on c+ d rather than c and d individually. 

Proof. The expression to be evaluated is 

lim t (7) (1 _ pt(n-l)/2-i(n-i) (1 _ q)i(n-i) 
n-too 2n 

i=O 

n (n) (1 ) i(n-i) 
= lim (1 - t(n-l)/2 lim'" _1_' ~ 

n-too p n-too to 2n 1 - p 

(since, as we shall see, both limits exist) 

n (n) ( ) i(n-i) 
= lim (1 - pt(n-l)/2 lim L: _1_' 1 + P - q 
~oo ~oo, ~ 1-p 

1=0 

c ) n(n-l)/2 n (~) ( c _ d ) i(n-i) 
= lim (1- - lim L:-I- 1 + ----

n-too n2 n-too i=O 2n n 2 (1 - :2) 

By the lemma, the the first limit is e- f . As in the proof of 6.9, the second 
limit is e c'4 d

, and the result follows multiplying the two limits together. •. 

The result for p and q constant above suggests that the number of com­
plete graphs of order r looks, ignoring the small order term, like a monotone 
increasing function of p (in Gp,q subject to fixed a), for r going to infinity 
with n. It is natural to ask if more generally the number of complete graphs 
of order r is a non-decreasing function of p. (The case of r = 2, when the 
expected number of complete graphs of order 2 is the expected number of 
edges, which by linearity of expectation is a constant function of p, makes 
it clear that it is not always a strictly increasing function). Note that this 
claim is consistent with the fact that the complete graph is more likely to 
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arise than classically if p > q (which follows from Theorem 3.1) and is less 
likely to arise than classically for p in some neighbourhood (a - f, a) if p < q 
(by Theorem 3.7, since the newgirth of several edges put together to make a 
complete graph is of course 3). To investigate the question, we start with the 
formula in Corollary 7.5 for EY,. in Gp,q. Setting x = (p - a) la, and taking 
out the term in a n

(n-I)/2 we see that it is enough to show that the function 

fn(x) = t (7) (1 + xt(n-I)/2-i(n-i) (1 _ x)i(n-i) (*) 
i=O 2 

is an increasing function of x for x E [-1, 1]. 
Initial investigations using the computer to expand out the right-hand 

side of the formula for fn(x) for several values of n, as a polynomial in 
x, L:~~~-1)/2 a,x' suggests that the coefficients a, are always non-negative 
integers; if this is true, it would imply the function is increasing for x E [0, 1]. 
It also seems that if the large power of 1 + x dividing fn is factored out, the 
coefficients of the quotient have alternating signs, which would imply that 
f~ has no roots in (-1,0] so has the same sign in the whole interval; since 
fn( -1) = ° and fn(O) = 1 that sign must be positive, so fn is increasing on 
[-1,0] also. However proving this seems harder. Note that 

a, = t t (7) (n(n - 1)/2. - i(n - i)) (_l),-j (i(n - .i)) 
i=O j=O 2n J 1 - J 

(where again any (:) where n < m or either n or m is negative, is taken 
to be zero). It may be worth noting that not all of the summands in the 
summation are integers. It seems likely that the an are in fact counting some 
quantity, but we do not see how to prove this. 

Note that in any interval (a, b) where fn is convex and fAI)(a) ~ 0, f is 
increasing; for convexity implies that fA2)(x) ~ OVx E [a, b] so fAI)(X) is an 
increasing function; since fAI)(a) ~ 0, this shows that fAI)(X) ~ OVx E [a,b] 
and so fn is increasing on that interval. However the function is not always 
convex. Indeed for any n, as a2 = ° by essentially the same calculation as 
shows Varcp,q = Varco , we have fA2)(x) = n(n - l)(n - 2)x + ... which is 
< ° for x E (-f, 0) for some f > ° so fn is not convex there. In fact our 
computer calculations suggest that fA2

) > ° except in some interval (an,O) 
where an < ° and an ~ 0, but again this seems harder to prove. 
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Note that for n odd the polynomials are symmetric, that is if we write 
th f ~n(n-l)/2 i D • d d h" . I em as n = L-i=O ai X , a n(n-l)/2-i = ai. I'Or III ee t IS IS eqUlva ent to 
(as is easily checked) xn(n-l)/2 f(1/x) = f(x) for all non-zero x, and it is easy 
to check that this holds (using the fact that, as n is odd, i(n - i) is even for 
all values of i, so that (_1)i(n-i) = 1 in all cases). 

7.3 Clique, chromatic and independence numbers 

We now try to obtain at least an estimate of the variance of the number of 
complete graphs of order r. We are motivated by the notion of using method 
of moments ([B], page 4) to estimate the probability that there is at least 
one complete graph of order r; this method is powerful classically, see [B, 
section XL1]). We have just seen that 

EX
r 

= (n) t (:) pr(r-l)/2-i(r-i)qi(r-i). 

r i=O 2 

Now suppose we have two r-subsets of V( G) which have s vertices in common; 
note that there are (;) (:) (;=:) such pairs of. r-su~sets .. If we condition. on 
there being i reds amongst the s common vertIces, J reds III the r - s vertIces 
which are only in one of the two sets and k reds in the r - s vertices which 
are only in the second set, we see that the number of red-red edges (all of 
which of course must arise for us to get two complete graphs) is 

(j(j - 1) + i(i - 1) + k(k - 1))/2 + ij + ik, 

the number of blue-blue edges is 

((r - s - j)(r - s - j - 1) + (s - i)(s - i -1) + (r - s - k)(r - s - k - 1))/2 

+(r - 8 - j)(s - i) + (r - 8 - k)(s - i), 

and the number of same-same edges is thus the sum of the above two numbers 

8
2 

8 
f(i,j, k, r, s) = l + k2 + i 2 + 2ij + 2 ik + r2 - rj - 2" - r + 2" + si - rk - 2 ir 

and hence we get that E (X;) is given by 

r s r-s r-s n(n-I)/2 (e) f(i,j,k,r,s) (~) (r ~ 8) (r -s) (n) (r) (n - r) _1 . 
~ ~ ~ {; q q Z J k r s r - S 22r - s 
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The messy nature of this expression hardly needs emphasising! 
Since the numbers of complete graphs of different orders are clearly cor­

related (for example, the existence of a complete graph on r vertices implies 
the existence of at least r complete graphs on r - 1 vertices) it would be 
harder to get a good grip on the variability of the total number of cliques. 
However it seems intuitively likely that in the cases where the number of 
cliques has a multimodal distribution - which, as we shall see shortly, is quite 
common in our models - the variance of the total number of cliques will be 
higher than classically. 

We close this section with some remarks on the clique number. In GOt 
w( G) is almost determined; 

Theorem 7.10 Given natural numbers n ~ r, let ro be the positive real 
number such that n n+l/2pro(ro-l)/2 

-----=------;-;-T;;: - 1 
$(n - ro)n-ro+l/2r~o+1/2 -

(note the left-hand side is the expression for EXro with the factorial replaced 
by its Stirling approximation). Then, for a.e. GOt there is a constant mo(G) 

such that for n ~ mo( G), 

where b = I/o, and 

Proof. [B] Corollary X1.2 .• 
We now consider what happens in our case. The typical variation in the 

number of reds or blues will be n/2 ± /{ -vn, so that, if q is much smaller than 
p, so that the largest clique order is likely to be determined by the largest 
red clique and the largest blue clique, we will have 

w(G) ~ 2logb(n/2 ± /{Vri) - 2logblogb(n/2 ± /{Vri) 

K /{ 
= 2logb(n/2) + 2logb(1 ± y'n) - 2logb(logb(n/2) + logb(1 ± y'n) 

~ 2logb(n/2) - 210gb logb(n/2) 
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where now b = l/p; and so, in this case at least, we again see that the clique 
number is close to being determined, though it seems unlikely that it will be 
as tightly determined as in the second inequality in the previous theorem. 
Of course this approach gives no insight into the case when q > p. 

We now make a few remarks about the closely related subject of the in­
dependence number. Since the largest clique is, for 0 fixed, asymptotically 
of order 210g(n)/log(1/0) in the classical model, the largest independent 
set is asymptotically of order 210g(n)/log(1/(1 - 0)), and if p,q are con­
stant and non-zero, this implies, since the probability that r vertices are an 
independent set is bounded below by (1 - max{p, q} y(r-l)/2 and above by 
(1 - min{p, q} y(r-I)/2 that the size remains of order of magnitude log(n). 
However, if we pass to asking about the order of the largest independent 
set in a random bipartite graph (this is defined in the same way as before, 
and is still denoted by i( G)), the situation changes dramatically; the largest 
independent set becomes of order a constant times n. That this is the ap­
proximate order is clear, since if p = 0 there are no red-red edges, so the 
about n/2 reds are such an independent set. This suggests that our models 
may be a suitable context in which to understand the transition of the size 
of the largest independent state from being of order about CI log( n) to order 
about C2 n . However it is not clear how to proceed in detail with this idea. 

We next make some remarks on the chromatic number as p and q vary 
with their sum fixed. If q = 0, p = 20, and n is large, there will be two 
components of order about n/2, which we can colour separately; thus, by 
Theorem 7.3 

1 n/2 
X(Gp,q) ~ (-2 + o(l))log (n/2) 1/1-20. 

1 n logl/(I_o.)(n/2) 
~ ( - + o( 1 )) ( / ). 2 logl/(1_o.)(n/2) 210g1/(1_2o.) n 2 

Since the first fraction is approximately the chromatic number of Go. we see 
that the value here divided by the classical value is approximately 

10gl/(1-o.)( n /2) 
2Iog1/(1_2o.)(n/2) 

which using the formula loga(b) = 10gAb)/logc(a) to put all logarithms into 
the natural base e, and simplifying (recalling that 10g(1/x) = -log(x)) is 

10ge(1 - 20) _ 1 ~ 0 2 302 

2 loge (1 - 0) - + 2 + 2 + 4 + ... 
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which is close to, and slightly greater than, the classical value. On the other 
hand, if q ~ 20 and p ~ 0, the graph is close to being bipartite and so its 
chromatic number will be close to 2. It would be interesting to know exactly 
where the maximum value is. 

7.4 Asymptotic theory on expected numbers of cliques 

In this section we address questions about asymptotic numbers of cliques and 
choosing parameter values to maximise them. 

The argument for how to maximise the expected number of r-cliques as a 
function of 0 in the classical model is easy but I do not know a reference. We 
differentiate EXr = (;)or(r-l)/2(1_ or)"-r with respect to 0; 0 is a turning 
point {:} or = (r - 1) / (2n - r - 1); thus there is only one turning point which 
is a maximum as /(0) 2: ° on [0,1] and is zero at both ends. At this value 
of 0, 

EX
r 

= (n) ( r - 1 )(r-l)/2 ( 2n - 2r )n-r 
r 2n - r - 1 2n - r - 1 

which by Stirling's formula is asymptotically 

( 
r-l )(r-l)/2( 2n-2r )n-r (n/e)ny'2ii7i 

2n - r - 1 2n - r - 1 (r/e)rJ27rr((n - r)/e)n-r J27r(n - r) 

(r - 1)(r-l)/22n-rnn 

J27rr(n - r)/nrr(2n - r - l)n-(r+l)/2 

In particular, if n = ar for some constant a 2: 1, this is 

(r-l)(r-l)/2( a<>2<>-1 )r a(2a-l) 
r (2a-l)<> 1/2 211'(a-l)r 

( (2a-l)r-l )(a-l/2)r-l/2 
(2a-l)r 

which by the product formula for the exponential is asymptotically 

maximised for ((aa2a- 1 )/( (2a-l )a-l/2) )l/a maximal; its logarithm is log( a) + 
(1-1/ a) log(2) - (1-1/2a) log(2a -1) which has its unique turning point at 
a = 2.5, when the expected number of r-cliques is about 1.6287(1.25)n / Vii. 
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A somewhat trickier calculation [eV] shows that the expected total num­
ber of cliques E(X) = L~=o E(Xr) satisfies 

E(X) "V..;n {x=l e
X

"'l/2 (e-"'I
X2 

(1 - e-"'IX
)) " dx 

}x=o J27rx(1 - x) xx(1- x)1-x 

where I = -n log( Q) which is maximised for Q = 2-5/", when it is about 
1.126(1.25)n. For this value of Q, the maximal value of E(Xr) is asymptot­
ically the same as that obtained in the previous paragraph, when we set out 
only to maximise E(Xr). 

We now consider what can be said in Gp,q. We again start by considering 
the case of constant p and q.We have 

E(Xr) in Gp,q = (~) t ~: p,(,-11/2-;(,-;lq;('-;I(1 - p;q'-; ~ q;p'-; )n-,. 
1=0 

Putting q = 2a - p and expanding about p = a on the computer, we see that 
the coefficients in (p - Q) and (p - Q)2 are zero, and that the one in (p - a)3 
is 

r(r - 1)(;)(1- ar)n-r-1ar(r-l)/2(ar(2r - 3n + 2) + r - 2) 

6a3 

and consequently 

Theorem 7.11 In Gp,q with p and q constant, p = Q is a point of increasing 
or decreasing inflexion according as ar(2r - 3n + 2) + r - 2 is positive or 
negative .• 

In particular, if r ::; (3/2 - E)n for some E > 0 when n is sufficiently large, 
p = Q is a point of decreasing inflexion. 

Another case in which we can say something is when we put 

c d 
p = (n - r)1/r and q = (n - r)l/r· 

Then, for fixed r, using the product formula for the exponential for each 
value of i, we have 

( 
_ )(r-l)/2EX r cr(r-l)/2-i(r-i)di(r-i) (~)e cidr-itdicr-i 

r n r r L 1 

n~~ (;) = i=O 2r 
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Thus we put d = 2a - C and look at the ratio of this to its classical value 

( ) 1
. EXr in Gp q 

9 c a = 1m I 

r, n--+oo EXr in Go 

= t (:) (eare-(ci(2a-Cr-i+cr-i(2a-c)i)/2(2a - C)i(r-i)(~r(r-1)/2-i(r-i). 
i=O 2 a a 

For r = 1, this expression is equal to 1 clearly, so that the expected number 
of isolated vertices is (in the limit) independent of Cj of course this can be 
proved, without taking limits, as in Chapter 6. For r = 2, we have 

g2(C, a) = ea2 (e-(c2+(2a-c)2)/2(cj2a) + e-c(2a-c)ea2 /2(2a - c)j2a)j2 

= (e-(c-a)2/2(cj2a) + e(c-a)2/2(2a - c)j2a)j2 

which is ea2 /2 if C = 0 and e-a2 /2 if c = 2a. We might well expect that this is 
a decreasing function of c. To prove this, note that 

dg2 e-(c-a)2(1_ 2c2 + 2ac) + e(c-a)2(6ac - 4a2 - 2c2 -1) 

dc 8a 

2c2 - 2ac - 1 2(a-c)2 ( ) 
=o<=> =e * 6ac - 4a 2 - 2c2 - 1 

which certainly holds for c = aj to see that there are no other solutions, note 
that the numerator on the left-hand side of (*) is less than zero if and only if 

a-Ja2+2 a+Ja2+2) 
cE( 2 ' 2 

but this covers all values of c of interest as c E (0, 2a)j thus, as the right-hand 
side of (*) is ~ 1, we thus must have 

-1 - 2ac + 2c2 :s 6ac - 4a2 - 2c2 - 1 <=> 4c2 - 8ac + 4a2 :s 0 

which implies that c = a as before. We next show that 1(2) is zero at c = a 

so this is a point of inflexionj we check (on the computer) 

(e-(c-a)2 (4a - 8ac + 4a2c - 6c + 4c3 ) 

8a 

e(c-a)2 ( -4c3 + 16ac2 - c(20a2 + 6) + 8( a3 + a)) 
+ 8a 
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so if (*) holds we can substitute for e2(c-a)2 and thus 

-4e-(c-a)\a - c)(8ca3 
- 20c2a2 + 6a2 + 16ac3 - 6ac + 4c4 + 3) 

2a(6ac - 4a2 - 2c2 - 1) 

which of course is again 0 at c = a. It is also easy to check in the same way 
that 

(3) -3 
92 Ic=a= - < 0 

a 
and so c = a is a point of decreasing inflexion. 

The next case is r = 3, when 

is 0 at c = 0, 1 at c = a and 2e-3a3 if c = 2a so has at least one maximum 
in (0, 2a) if a > COg?) )1/3 = 0.613623.... We can compute the first few 
derivatives at c = a (on the computer) and deduce that 

(3a3 - 1) 3 3(a3 - 2) 4 
93(C, a) = 1- 3 (c-a) + 2 (c-a) + ... 

a a 

so c = a is a point of increasing inflexion if a < (1/3)1/3, and of decreasing 
inflexion if a > (1/3)1/3; if a = (1/3)1/3 the fourth derivative is negative and 
so it is a maximum. Since c = a is only a point of inflexion in general, the 
actual maximum must be elsewhere; use of the implicit plotter in MAPLE 
suggests, that, for small values of a there may be several values of c which 
give a turning point, and it is often not too hard to get the computer to give 
a solution c =I- a for a particular value of a but it seems harder to comment 
mathematically on these roots. 

7.5 Bimodality of the expected number of cliques 

We know that, in the classical model, for given 0, there is an essentially 
unique value of r which maximises E( Xr). Indeed 
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which is a strictly decreasing function of r, and so either there is some value 
of r for which E(Xr) = E(Xr+d are the two maximum values of the expect­
ation (for example, if n = 3, a = l/Y2, E(Xd = E(X2 )), or the maximum 
is unique. [CV] shows that if a is constant, this modal clique order is asymp­
totically logb(n) -logblogblogb(n) where b = l/a. In fact of course, in the 
classical model, we also know that the distribution of clique orders is tightly 
concentrated around the mean. 

In our models, however, numerical investigations rapidly make it clear 
that E(Xr) often has several maxima. The idea is clear; in Ga a.e. graph 
has complete graphs of all orders less than w(G) ~ 2logb(n). Now with 
probability tending to 1 there are n(l + o(nK))/2 reds and blues, for any 
K E (-1/2, 0], and so the largest complete graphs in the reds or the blues 
are of order about 2log l / p ( n); the argument is now that if q is sufficiently 
small, the prospects of a multicoloured clique with large numbers of vertices 
of both colours, of order near 2log l / p n are very small. However a precise 
result on just how unlikely this is seems rather harder to come by. 

Note also that our computations suggest that with several colours it is 
possible to have several modes. 

7.6 The evolving clique in Gp,q. 

Another approach considers a given clique evolving in time. (For another 
kind of evolution, see [W]). In the classical form of the evolution we consider, 
we start at time 1 with one vertex, and expand to a clique of order 2 at time 
2 with probability a, else staying at 1; if we eventually get to a clique of order 
2, we then might get to a clique of order 3 with probability a 2 at each trial, 
etc. Thus the evolution of Xn , the order of the clique of the initial vertex (we 
are not interested in any other cliques) is a discrete-time pure birth process 
with P{Xn+1 = r + 1 I Xn = r} = a r and P{Xn+1 = r I Xn = r} = 1 - ar. 
This is in many ways a more realistic model for the applications to ESSs, 
since it better reflects the way that, in reality, strategies are added to those 
already known. This process was studied by Cannings and Vickers [CV]. The 
main problem, of understanding the distribution of X n , is rather intractable; 
indeed, if Nj is the time spent in state j, clearly P {Nj = i} = (1-a j

) i-I a j for 
i ~ 1 and the Nj are independent so P{Xn = r} is the sum over all partitions 
ofn into r strictly positive integers oft he P{NI = il, ... Nr- l = ir-l,Nr ~ ir}. 
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This probability is 

r-1 r 

II ((1 - ai )ij- 1ai )(1 - ar )ir-1 = a r(r-1)/2 II (1 _ ai )ij-1 

j=l i=l 

r 

::::} P{Xn = r} = E a r(r-1)/2 II (1 - a i )ij -1 

i=l 

the summation being over 

{iI, ... ir such that i j ~ 1 VI :S j :S r and i1 + ... + ir = n.} 

and this expression is is not too easy to work with. Thus attention switches to 
asymptotic results on E(Xn); these are also discussed in leV] where the fact 
that, for large n, E(Xn) rv 10gb n where b = a-I is stated (without proof) to 
follow from results of Grimmett and McDiarmid [GM] on the clique number 
of random graphs in Ga. In fact the result can be obtained more easily, with 
some information about the error; we sketch the argument. 

Lemma 7.12 For any f > 0, P{Xn ~ n 1
/
HE

} is exponentially small in 
some positive power of n for large enough n. 

Proof. The probability is clearly (writing m = n1
/ HE ) :S (:)2-m (m-1)/2 

since m(m -1)/2 edges must have formed. Now as n - m(m -1)/2 is about 
_nb for some 6 > 0 for n large, and the binomial coefficient is less than 2n , 

the result follows .• 

The estimate is very crude and could probably be improved. 

Theorem 7.13 E(Xn) rv logb(n). 

Proof. Let Y,. be the time at which we enter state r + 1. Thus Y,. = Ei=l Ni , 

where Ni is (as before) the time spent in state i; the Ni are geometric with 
parameter a i and so mean a-i - 1. Thus 

Now E(Xn) is that r such that 
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The inequality on the right thus gives that (n + r)( O'r - O'r +1) ~ 1 _ O'r +1 ; 

this implies that br ~ (n+r)(I-O')+O' and so that r ~ logb(n+r)+lo&(1-
O'+O'/(n+r)). Since r < n1/2+ f with probability tending to 1 by the lemma, 
logb(n + r) = logb(n) plus a smaller order error term. Similarily, the lower 
bound in (*) shows that r - 1 ~ 10gb (n + r + 1), and again by the lemma 
IOgb( n) is close to r .• 

The argument also suggests that the variability of Xn for large n should 
be small; this is supported by simulations. 

We next consider the version of this process analogous to Gp,q where each 
vertex, having been thrown down, is randomly coloured red or blue, and then 
same-same edges arise with probability p and red-blue edges with probability 
q, so that states of the system are pairs (i, j) with i is the number of reds 
and j the number of blues, though we shall sometimes still use the notation 
P{ Xn = r} for the probability that the total number of vertices is r if this 
is not confusing. Then, in sGp,q,r, 

P{Xn = (i,j) I Xn - 1 = (i,j)} = (1 - piqj)S + (1 - qirj)(1 - s) 

P{Xn = (i,j + 1) I Xn - 1 = (i,j)} = (1 - s)qirj 

P{Xn = (i + l,j) I Xn - 1 = (i,j)} = spiqj 

Setting Fn(x,y) = Ll::;i,j::;n P{Xn = (i,j)}xiyj, so that 

r 1 or Fn 
P{Xn = r} = L 'I( _ ')10 iO r-i Ix=y=o, i=O z. r z. X y 

we see that the polynomials Fn (x, y) satisfy the recurrence 

Fn(x,y) = Fn-1(x,y) + s(x -1)Fn _ 1(px,qy) + (1- s)(y -1)Fn - 1(qx,ry) 

with F1(x, y) = sx + (1 - s)y; however, it does not seem obvious how to get 
even good estimates of the solutions of these equations. 

Whilst it is obvious that logc(n) ~ E(Xn) ~ logd(n) where c = II min{p, q} 
and d = 1/ max{p, q}, it is not clear where in this range it will be in general. 
However if q = 0 and p = 20' (so a ~ 1/2) the evolving clique will be mono­
chrome so we would expect Xn to be roughly the same as in the classical 
evolving clique with n/2 vertices and probability 20', whence 

rv ( / ) _ logl/a(n) -logl/a(2). 
EXn - logl/2a n 2 - 1 1 ( I) , + ogl/a 1 2 
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since Q ~ 1/2, 1 + log1o(1/2) E (0,1) so EXn is larger than classically. If 
p = 0 the largest clique has order 2. This suggests that the order is an 
increasing function of p for fixed Q. 

One feature that emerged from simple simulation experiments is that 
there is a tendency, when p > q, for only a few vertices of the opposite colour 
to the initial vertex to be in the clique; we will call such a vertex entering the 
clique an infiltration. On the other hand, if there is infiltration, the growth 
rate of the clique is reduced substantially; this suggests that the variability 
will be much larger in our models. We are thus lead to study the number 
of infiltrations. We start by considering the event An, that no vertex of the 
opposite colour to the initial vertex is absorbed into the clique whilst it has 
n or fewer vertices, and their intersection A. 

Theorem 7.14 In Gp,qJ if P > q PiA} > OJ but if P ~ q PiA} = o. 
Proof. Let Bi,j be the event that no infiltration occurs when the clique has 
i vertices of the initial colour, and j of the opposite colour. Then 

00 

P{Bi,j} = L P{Bi,j n we leave state (i,j) after r trials}. 
r=1 

Of course Bi,j and a vertex being absorbed on the rth trial during that state 
is the event that a vertex of the initial colour is absorbed on the rth trial. In 
each such trial, independently, the probability that the vertex is the initial 
colour is 1/2 and the probability that such a vertex is absorbed is piqj; thus 

1 
1 + (p/q)j-i· 

; ; pk ; (q/p)k 
:::} PiA;} = Jl P{Bj,o} = Q pk + qk = Q (1 - 1 + (q/p)k) 

00 (q/p)k ; q k 
:::} PiA} = g(1- 1 + (q/p)k) ~ g(l- (p) ) as p > q. 

However it is well-known that for 0 ~ z < 1, the function Il~1 (1 - zj) is 
convergent to a non-zero limit (recall the product ofthe (I-an) for an E [0,1] 
is non-zero if and only if 2::1 a; is finite). 
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On the other hand, if p ~ q, then, setting aside the trivial case p = q = 0 
we have jth factor in the product for P{Aj } is 

1 

1 (
n)· ~ 1/2 =? P{A} = lim P{Aj } = 0 if p ~ q .• + co. J I~OO 
P 

In fact, if p = q by symmetry the number of vertices of the initial colour 
is Bin(n -1,1/2) distribution when there are n vertices in total; and if q > p, 
let Sn be the number, from the n vertices in total, of the initial colour minus 
the number of the opposite colour; thus Sn is a Markov chain. If Sn = r 

there are (n + r) /2 vertices of the initial colour and (n - r) /2 of the opposite 
colour, and so, using the formulae for P{Bj,j} and simplifying 

(p/qy/2 
P{Sn+l = r + 1 I Sn = r} = (p/q)r/2 + (q/p)r/2 

(q/py/2 
P{Sn+l = r - 1 I Sn = r} = (p/q)r/2 + (q/p)r/2 

so (as q/p > 1) the chain tend to drift back towards zero when away from it, 
and in state zero, it is equally likely to go in either direction. This suggests 
that the chain should settle down, spending most of its time close to state 
zero; to formalise this, we show it has a stationary distribution whose terms 
are exponentially small in n for large n. Indeed the process is a mixture of 
two birth and death processes, one of them being what happens for r > 0, 
the other for r < o. The standard analysis ([D, p301]) shows that each of 
these has a stationary distribution, which for r > 0 is given by 

7rj = IT P{ Sn+l = k I Sn = k - I} 
k=l P{ Sn+l = k - 1 I Sn = k} 

i (p/q)(k-I)/2 (q/p)k/2 + (p/q)k/2 
= g ((p/q)(k-I)/2 + (q/p)(k-I)/2 (q/p)k/2 

i (p/q)(2k-I)/2((q/p)k/2 + (p/q)k/2) 
= g (p/q)(k-l)/2 + (q/p)(k-l)/2 

Since q > p, these terms are indeed small for large values of i, since then 
the fraction in the product is approximately (p/q)2k-2 which is small for 
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large values of k. The stationary distribution for r < 0 is very similar, and 
the stationary distribution for the whole process is the average of the two 
stationary distributions. 

Thus we now concentrate on the case p > q, and let t = q/p E [0,1). 
Whilst we have shown P{A} > 0, our estimate of it is rather crude. This 
suggests that we might get some understanding by investigating the prob­
abilities of other small numbers of infiltrations, to see if a pattern emerges. 
We start with the probability of exactly one infiltration. We have, using the 
above formula for P{Bi,j}, that 

n 

P{one infiltration up to state n} = L:P{infiltration in state i only} 
i=l 

Since this expression is 

which for p > q is 

2 t IT(1- (1)j)q; = IT(l- (1)j)1- ~/pt+l = IT(1- (~)j) 
i=lj=l p P j=l P 1 q/p j=2 p 

it converges as before to a non-zero limit. In fact similar arguments will show 
that, for any fixed r, the probability that at most r infiltrations occur will, 
when q > p, tend to a non-zero limit. 

To evaluate the limit, it seems to be easier to consider qi(n), the ratio of 
the probability of exactly i infiltrations when the clique has exactly n vertices 
to the probability of none, with qi = liIIln--+oo qi(n). Then, setting t = q/p, 
we have 

Theorem 7.15 
t(l + tn- 1 )(1 - tn) 

ql(n) = 2(1 _ t) and 
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2(n) = t2(1 - tn)(1 - tn- 1 ))(1 + tn)(1 + tn- 3 ) 

q 2(1 - t2)2 

Proof. We have t qi n

II
-l piq/(piq + qjp)) 

i=1 p' j=i [i'+l / ([i'+l + qj+l ) 

= t q; ir q(qj+l + r+l) = t t/fi t(1 + t j
+1) 

i=1 P j=i p(pqJ + [i'q) i=1 j=i tJ + t 
n . n-l 1 + ti+ 1 n ti 

= "t' II . = (1 + tn)(1 + tn-I) ,,-:---~~---,-,-
~ j=i 1 + tJ- 1 ~ (1 + ti- 1)(1 + ti) 

so it suffices to prove by induction that Vn ~ 2 

n ti t(l-tn) 
~ (1 + ti- 1)(1 + ti) = 2(1 - t)(1 + tn) (*). 

The case n = 2 is a short calculation and if the claim holds for n, then 

n+l ti t(l _ tn) tn+1 

~ (1 + ti- 1 )(1 + ti) = 2(1 - t)(1 + tn) + (1 + tn)(1 + tn+1) 

t(l - tn)(1 + tn+1) + 2tn+l(1 - t) 
2(1 - t)(l + tn)(1 + tn+l) 

and a short calculation shows that the numerator of this last fraction is equal 
to t(l+tn)(I-tn+l), giving the required result. (In particular, letting n --t 00, 
we see that PI = t/(2(1-t)), which is a monotone increasing function oft and 
is less than 1 if and only if t < 2/3). For the second claim, as the probability 
of two infiltrations up to time n is (writing the expression in terms of t) 

n-l n i-I 1 ti j-l t tJ-1 n t2 

~ jEl (l! 1 + t k ) 1 + ti (,It t + t'-
1 ) t j- 1 + t m!J.+l t2 + tm- 2 • 

n-l n i j-l t(l+t') tj- 1(I+t j ) n t2(I+tm) 
=>P2(n)=?=.L: t( n (t+tl-1)) tj-1+t II t 2 +tm- 2 .=1 J=.+1 1=.+1 m=J+l 
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= n 1 + tk n-l . t i 
. n-2 t j 

k=Il3 ( ) tr (1 + tl- 1 )(1 + tl) j~1 (1 + t j- 1 )(1 + t j ) 
But we can replace the double sum by (using (*) for n ~ 2) 

n-l t i t(1 _ tn- 2) t(1 _ t i - 2) tr (1 + ti)(1 + ti- 1) (2(1 + tn- 2)(1 - t) - 2(1 + ti- 2)(1 - t)) 

t 2 (1 - tn- 1)(1 - tn- 2) n-l ti+1(1 _ t i - 2) 

= 4(1 + tn- 2 )(1 + tn- 1)(1 - t)2 - tr 2(1 + ti)(1 + t i - 1 )(1 + ti- 2)(1 - t)' 

We prove by induction that, for n ~ 6, we have the identity 

n ti+1(1 _ ti-2) t4(1 _ tn-1)(1 _ tn- 2 ) 

~ 2(1 + ti)(1 + ti- 1 )(1 + ti- 2)(1 - t) = 2(1 + tn)(1 + tn- 1)(1 - t2)2 

The case n = 6 is a tedious calculation, and if the relation holds for n, 

n+l ti+1(1 _ t i - 2) 

~ 2(1 + ti)(1 + ti- 1 )(1 + ti- 2)(1 - t) 

t4(1 - tn- 1)(1 _ tn- 2) tn+2(1 _ tn-I) 

- 2(1 + tn)(1 + tn- 1)(1 - t2)2 + 2(1 + tn+1 )(1 + tn)(1 + tn- 1 )(1 - t) 

t4(1 - tn- 1)(1 - tn- 2)(1 + tn+1) + tn+2(1 - tn- 1 )(1 - t)(1 + t)2 
-

2(1 + t n )(1 + t n - 1 )(1 + t n+1 )(1 - t 2)2 

so the result follows from a short calculation to check the identity 

t4 (1 - tn- 1 )(1 - tn- 2)(1 + tn+1) + tn+2(1 - tn- 1 )(1 - t)(1 + t)2 

= t4 (1 - tn)(1 - tn- 1 )(1 + tn-I). 

Consequently we have that the double sum under consideration is 

t2(1 - tn- 2)(1 - tn-I) t4 (1 - tn- 2)(1 - tn- 3) t2 
4(1 + tn- 2)(1 - tn- 1)(1 - t)2 - 2(1 + tn- 1 )(1 + tn- 2)(1 - t2)2 + 4(1 + t)2 
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the last term being to allow for the i = 1 term of the summation; the i = 2 
term is of course zero. Thus the double sum simplifies further to 

2(1 - t2)2(1 + tn- 2)(1 + tn-I)' 

Thus 
n _ t2(1 - tn)(l - t n

-
1 ))(1 + tn)(l + tn- 3 ) 

q2( ) - 2(1- t2)2. 

In particular, letting n -+ 00 

q2 = 2(1 _ t2)2 

which is again a monotone increasing function of t E [0, 1]; q2 < 1 if and only 
if 2t4 - 5t2 + 2 > 0, which for t E [0,1] is true when t < 1/v'2 .• 

By similar arguments, it is easy to show that q3( n) is given by 

the sum being a triple sum over the range 1 ~ i ~ n - 2, i + 1 ~ j ~ 
n - 1 and j + 1 ~ k ~ n, and it is now obvious how to write down the 
formula for qr(n) in principle. However it is not possible to simplify this 
expression, even for q3( n), since a certain associated triple sum lacks any 
obvious simplification. However we have not shown that a simple closed 
formula does not exist, and there may well be one. Note that one obvious 
guess, that q3(n) = t3/(2(1 - t3?), can be shown to be untrue. 

One might be tempted to speculate that the probability of only finitely 
many infiltrations is (for P > q) one in the limit. However this will not be 
true. Indeed if the second vertex is an infiltration we will have one red and 
one blue; thus if the claim were true, this would with probability one end 
up with only finitely many reds, and also with only finitely many blues, so 
would be finite, which is nonsense. 

One might also be tempted to try to study Pi (n), the probability that 
when we have n vertices in total there have been i infiltrations via the obvious 
relation 

162 



If we set F(u,v) = Li,nPi(n)uivn, and t = q/p as before, then, purely form­
ally, this implies 

00 00 

F(u, v) = uv IJ -l)j F(ut 2j, vr
j
) + v 2:( -l)j F(ur 2j, vtj) 

j=O j=O 

but it is unclear how to solve this functional equation, and there would be 
serious issues of convergence to deal with. 
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8 Tournaments with correlation structure 

8.1 Introduction. 

By a tournament T we mean a complete graph where the edge between 
vertices a and b is oriented a ---7 b or b ---7 a (not both). As the name 
suggests, the simplest way to think about them is in terms of the results 
of a tournament where each player plays each other with no draws, a win 
for i against j corresponding to an edge i ---7 j. [M] is a basic reference 
for material on tournaments. They arise in practice in experimental design 
where paired comparisons are carried out, with an arrow i ---7 j if treatment 
i is preferable to treatment j, and in the study of dominance relations in 
biology, with an arrow going i ---7 j if the individual i dominates (in whatever 
sense) individual j. 

As the above two examples suggest, often an interesting problem is trying 
to determine the real underlying strengths of the players. Since a cycle, i.e 
a sequence of distinct edges a ---7 b ---7 c ... z ---7 a shows an apparent inconsist­
ency in the ordering, numbers of cycles are closely tied up with this question 
(though there are also other arguably more sophisticated measures available, 
such as the top eigenvector of a suitable adjacency matrix associated with 
T; see [M, Chapter 18]). (Some authors call what we have called a cycle a 
directed cycle, using the term cycle for any set of edges which are a cycle in 
the undirected graph but may not be in the directed one). 

The usual notion of random tournament arises when each edge goes a ---7 b 
or b ---7 a equiprobably and independently. Here some reasonable theory has 
been developed on the distribution of numbers of cycles and the probability 
that the tournament is irreducible, i.e that there is no partition of the 
vertex set into two non-empty sets A and B with all the edges between A 
and B going in the same direction, so that a reducible tournament is one 
with two groups of players, with each member of one group stronger than 
all members of the other. In fact ([MJ, page 13), a tournament is irreducible 
if and only if it has at least one cycle of length n if and only if it has at 
least one cycle of each length r such that 3 ~ r ~ n, so there is a close link 
between reducibility properties and cycles. 

In this chapter, we will seek to develop a theory of tournaments where the 
orientation of the edges depends on the random types of the distinct vertices, 
and discuss how techniques from previous chapters can be modified to give 
some insight into the behaviour of the model. The form of inhomogeneity 
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suggested by the above examples is one where there are subgroups of players 
of about equal standard who are as likely to win as to lose in matches amongst 
themselves, but tend to lose or win against other groups. So we have; 

Definition 8.1 An RRC tournament model T (n, k, s, P) is one where 
each of n vertices is independently assigned one of k colours, receiving the 
j-th with probability Sj (so s = (SI' ... Sk) E D.k) and then an edge between a 
vertex of colour i and colour j goes i -+ j with probability Pij and j -+ i with 
probability Pji (so that P is a k by k real matrix). 

Two consistency conditions forced on us by the definition are that 

1 
Pii = 2 Vi and Pij = 1 - Pji Vi,j. 

Note that in any T (n, k, s, P) model, the overall probability that an edge 
goes i -+ j and the probability that it goes j -+ i are both still equal to 1/2; 
the differences from the classical model are due to correlation structure. 

In fact, we shall also sometimes consider partial tournaments, where 
some of the edges may not exist. For convenience, we restrict to the case 
where we continue to insist that all edges between vertices of the same colour 
arise. Then we have 

P{ colour i -+ colour j} = Pij and P{ colour j -+ colour i} = pji 

where (since we continue to insist that there is at most one edge between any 
two vertices) we must still have Pij + Pji ::; 1, but we do not now insist that 
Pij = 1 - Pji. 

Again we shall often be concerned with the case of two colours red and 
blue, with edges between a red vertex and a blue one going from red to blue 
with probability P; if vertices are red with probability S we shall denote the 
model sTp and if S = 1/2 we shall shorten this to Tp. We shall also use the 
partial tournament model Tp,q where q ::; 1 - P is the probability that the 
edge goes from blue to red. 

It is clear that the distributions of most random variables of interest are 
invariant under the transformation 

(p, s) -+ (1 - p, 1 - s) in s Tp. 
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8.2 Probabilities of paths and cycles. 

We first obtain the probability of an r-cycle. The arguments are similar to 
Theorems 2.6 and 2.10; again there is a result for any T (n, k, s, P) which 
unfortunately is not too explicit, and a more direct argument for the special 
case of Tp which gives more information. This time we deal with the former 
case first. 

Theorem 8.1 Define Q by qij = VS;Pij.,;s; and v by Vi = VS; as before. 
Then the probability of an r-cycle in any model of random partial tournaments 
is equal to (letting Ai, 1 ~ i ~ k be the eigenvalues of Q) E7=1 Ai. 

If v is not an eigenvector of Q, the probability of any cycle of sufficiently 
large length is always less than classically. 

In a model of tournaments, if v is an eigenvector, cycles of length con­
gruent to ±1 (mod 4) have the same probability as classically, those of length 
congruent to 2 (mod 4) are less probable, and those of length congruent to 0 
(mod 4) are more probable. 

Proof. Conditioning on the colours of the r vertices, we have that 

k 

P{l -t 2 ... r -t I} = L silsi2 ... SirPili2Pi2i3 .... Piril 

i 1 .···i r =1 

By the definition of Q, this implies 

k 

P{l -t 2 -t ... -t r -t I} = L qili2qi2i3 ... qiril' 

il.···ir=1 

and we can now sum out the variables one by one, each such summation 
corresponding to a matrix multiplication. Doing this, we get 

k k 

L(Qr)ii = tr(Qr) = LA~ 
i=1 

by general matrix theory, as required. 
To get the remaining assertion, we deal only with the case when the model 

is of tournaments rather than partial tournaments, as the probability of a 
cycle in the partial tournament is always less than or equal to the probability 
of it in a model of tournaments obtained by adding a little on to some entries 
so as to have Pij + Pj; = 1. Then, because we have a tournament, there is a 
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skew symmetric matrix T such that, letting J be the k by k matrix of ones 
as before, 

1 1 
P = "2J + T => Q = A + S where aij = "2VSiSj and Sij = VSjSjtij 

so S is still skew symmetric. 
We first show that the top eigenvalue of Q is at most 1/2. We note that A 

is symmetric, so it has an orthonormal basis of eigenvectors ej, for 1 ::; i ::; k. 
Also A has rank 1. In addition we have that 

k 1 1 1 
(Av)j = L 2VSjSjy'sj = 2VS: => Av = -2v 

J=I 

so v = el without loss of generality and thus the other ei, 2 ::; i ::; k all have 
eigenvalue O. 

Now Q is a non-negative matrix so has a non-negative eigenvalue, A say of 
maximum modulus; if w is a corresponding eigenvector, normalised to have 
modulus 1, we have 

A = w T Qw = w T Aw 

since as S is skew symmetric x T Sx = 0 for all vectors x. Now writing w = 
2:1=1 Kjej, where the Kj are real since the eigenvector is, we have 2:1=1 K] = 1, 
and so 

K2 1 
w T Aw = -.! < -

2 - 2 
with equality if and only if KI = ±1, i.e only if w = v, as required. 

Thus if v is not an eigenvalue, all eigenvalues have modulus less than 1/2 
and so for sufficiently large r the above probability is less than (1/2Y, giving 
the first claim of the second paragraph of the theorem. 

If however v is an eigenvector of Q, it must have eigenvector 1/2 as 
vTQv = 1/2 and v is a unit vector. Thus, as Av = 1/2v also, we see 
Sv = 0; thus SAy = 0 and as A kills all the other ej we infer that SA = 0; 
a short calculation shows that (SA)T = -AS and so AS = 0 also; thus, 
expanding out (A + sy by the binomial theorem, and using AS = SA = 0, 
this is 

(the last equation holds as the spectrum of A is 1/2 with multiplicity 1 and 0 
with multiplicity k - 1). Thus the cycle is more or less likely than classically 
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according as tr(sr) is more or less than zero. Now S is skew so its eigenvalues 
are purely imaginary, and occur in conjugate pairs, which are thus negatives 
of each other; thus the sum of their odd powers is zero, the sum of their 
(4r + 2)th powers is negative but the sum of their 4rth powers is positive; 
thus cycles of length divisible by 4 are more likely than classically but those 
of length congruent to 2 mod 4 less likely. • 

As an explicit example for the theorem, if 

! 1 1 0 2 "2 
0 1 1 ! 

p= "2 2 
1 0 1 1 2 2 

1 ! 0 1 
2 2 

and s = (1/4,1/4,1/4, 1/4)T so that Q = P/4, it is easy to check that the 
eigenvalues of Q are 1/2, 0, i/4 and -i/4 where i is a square root of -1; thus 
the sum of their fourth powers is easily checked to be 9/128 which is greater 
than the classical probability 1/16. (Compare the congruence condition mod 
4 for being more or less probable than classically in Theorem 8.1 with the 
one mod 2 in Theorem 2.6; what classes of combinatorial structures give 
congruences mod other values r?) 

We will see shortly that in the case with two equiprobable colours, these 
problems do not arise; cycles are always no more likely than classically, with 
equality if and only if we are in the classical situation. 

N ate also that if v is not an eigenvector, there can exist short cycles which 
are more likely than classically, so that the restriction in our theorem that 
the cycles be sufficiently long is genuinely necessary. Indeed if 

! ;! 0 
P = I 1 1 

i a ! 
2 

and s = (1/3,1/3, 1/3)T, it is easy to check, using Theorem 8.1, that the 
probability of a cycle of length four is 0.0657 > 0.0625 = (1/2)4. However, 
we did not find an example where, with the top eigenvalue less than 1/2, a 
cycle of odd length is more likely than classically; however, we do not see 
how to prove or disprove the possibility of this. 

Note that here, unlike in Chapter 2, as Q is not symmetric it need not 
be conjugate to a diagonal matrix or have real eigenvalues. We have already 
illustrated the second point; for the first, in Tp with p = 0 it is easy to 

168 



check the eigenvalues of Q are 1/2 with multiplicity 2, but of course Q is not 
conjugate to 1/2 where I is the identity matrix. 

Corollary 8.2 The rate of decay of the probability of an r-cycle C is given, 
when Q is primitive, by the top eigenvalue A of Q, in the sense that 

lim log P{ C} = log(A). 
r-+oo r 

Proof. As Q is primitive, by Perron-Frobenius theory (Theorem 2.9) Q 
has a positive eigenvalue whose modulus is greater than that of any other 
eigenvalue, and the result follows as in Theorem 2.18. (No complication 
arises from possible complex eigenvalues; the sum of powers of eigenvalues is 
still real, since the complex roots occur in conjugate pairs). • 

If Q is imprimitive this argument fails, and Tp with p = 0 shows that Q 
certainly can be imprimitive; however, in Tp with p = 0 the result still holds, 
as is easily checked. Finding an example where the result fails seems to be a 
little more difficult. 

We now turn to the more explicit argument for Tp,q (which is easily 
checked to give the same answer as Theorem 8.1). We will use a very easy 
lemma; note however there seems to be no simple analogue in sTpo 

Lemma 8.3 If Xi : 1 ~ i ~ n are independent Bin (~) random variables, 
and Sn =1 {i : 2 ~ i ~ n,Xi =1= Xi-d 1 then 

Theorem 8.4 Let u =..j4pq. Then, in Tp,q, the probability of an r-cycle is 
given by 

In addition 

( 
+ 1)r-l (1 )r-l 

P{1 ---+ 2 ---+ 3 ... ---+ r 1 c(1) = c(r)} = 7 + ~ u 

p + q ((U + l)r-l (1 _ u)r-l) P{1---+2---+3 ... ---t r lc(1)=I=c(r)}=-u- --4- - -4- . 
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Proof. Say that there is a switch between two vertices i and i + 1 with 
1 ::; i ::; n - 1 if the colours of i and i + 1 differ. Then we have 

r-l (r-l) 
P{l -+ 2 -+ 3 ... -+ ,} = " P{l -+ 2 -+ 3 ... -+ , I i switches}-i-L..J 2r - 1 

i=O 

by Lemma 8.3 and conditionin~. We need to distinguish between odd and 
even i. If i = 2k (0 ::; k ::; r;l) the pattern of transitions gets back to the 
colour it started at; hence, as there are , - 1 - 2k non-switches this case 
contributes 

lr;-l J k k (~)r-1-2k (, - 1)_1 
L p q 2 2k 2r - 1 . 
1=0 

If i = 2k + 1 we finish with the opposite colour; RBRB. .... B and BRBR. .. R 
are equiprobable by s = ~, the first and second cases contributing 

pkqk+l pk+lqk 
2 and 2 

respectively; hence together these terms contribute 

l r;-2 J (1) r-2-2k ( , _ 1) 1 
(p + q) ~ l qk 2 2k + 1 2r-1· 

l r-l J 

=> P{I --> 2 --> 3 ... --> r} = to p'q' Gf'-" (r; I) 2'~' 

1 l¥J k+I k (1)r-2-2k (, -1) 1 
+2 L p q 2 2k + 1 2r - 1 

1=0 

llr;-2J k k+1 (1)r-2-2k(,-1) 1 
+2" L p q 2 2k + 1 2r - 1 

1=0 

l r;-l J k (, _ 1) 1 ( .jP vq ) l r;2 J r;;:::.2k+1 ( , - 1) 1 
~ (4pq) 2k 4r - 1 + 2vq + 2.jP t; y4pq 2k + 1 4r - 1 

which, using the more convenient notation of u, is 

l~J Lr;-2J 
= t U2k (, - 1) _1_ + p + q L U2k+1 ( , - 1 ) _1_ 

i=O 2k 4r
-

1 u i=O 2k + 1 4r
-

1 
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since it is easy to check that 

Vp+y/q=p+q. 
2y/q 2.JP u 

As 

and 
L m-l J t p2/+1 qm-2/-1 ( m ) = (p + q)m - (q - p)m 

1=0 21 + 1 2 

the above expression is equal to 

The first claim is now clear, and the other two claims are immediate on 
noting that we have kept the terms arising from even and odd numbers of 
switches separate throughout the proof .• 

Corollary 8.5 The probability of a cycle in Tp is 

(
U+l)r (I-U)r P{1-+2-+ .. -+r-+l}= -4- + -4-

Proof. We note that 

P{1 -+ 2 -+ 3 ... -+ r -+ I} = P{1 -+ 2 -+ 3 ... -+ (r + 1) I c(l) = c(r + I)} 

and the result follows from Theorem 8.4 .• 

Note the formula agrees with what we know in the case u = 1 and also 
when u = 0 so that the cycle arises only if there is only one colour, with 
probability (1/2Y-l and then all the edges go the right way; there are two 
possible orientations, each of which arises with probability (1/2Y. 

Corollary 8.6 
Pp{1 -+ 2 ... -+ r -+ 1} 

is maximised, for p ranging over [0, 1 L at p=~ . Hence the expected number 
of r-cycles is maximised, for all 3 S r S n, at p = ~ also. 
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Proof. We use the fact that, if a and b are non-negative, then (a + b r ~ 
ar + br

, with equality if and only if at least one of a and b is o. Applying 
this to the formula for the probability of a cycle in the previous corollary, 
with a = (1 + u)/4 and b = (1 - u)/4 we see that the probability of a cycle 
is at most 1/2r with equality if and only if u = 1. The last sentence is an 
immediate consequence, by linearity of expectation .• 

It is interesting to compare Theorem 8.4 with Theorem 2.6, giving the 
probability of an undirected cycle in Gp,q; there the error term was simply 
added on to the classical value, but here it is of a different form. In view of 
the link between existence of cycles and irreducibility noted above, and the 
obvious fact that Tp is more likely to be reducible than the classical model, 
Corollary 8.6 should not be surprising. 

8.3 Joint probabilities of cycles 

Again one ultimately wants to understand the distribution of numbers of 
cycles, and for this needs to understand joint probabilities of cycles. It is 
natural to try to apply the techniques in Theorem 3.1 to compare joint prob­
abilities with products of individual probabilities here. The same basic idea 
will give some insight; however, the result we prove here will be less useful 
than Theorem 3.1. 

We deal first with the simpler case of edge-disjoint cycles. As in Chapter 3, 
we use for the rest of this section the notation P {C} to denote the probability, 
in whatever model of tournaments we are considering, that the tournament 
contains all the edges of C, that is to say the edges in question are all oriented 
in the way implied by the description of C. 

Theorem 8.7 Let C1 and C2 be two cycles which have no edge in common. 
Then in Tp,q, we have 

Proof. As in the proof of Theorem 2.1, let Si be the number of edges of Ci 

which are non-switches, i.e whose two vertices are the same colour, and let 
ni be the number of edges in Ci, so that there are ni - Si switches in Ci. 
Because the numbers of red-blue edges and blue-red edges in a cycle must be 
equal, there are (ni - Si)/2 red-blue edges, which arise with probability p, 
and the same number of blue-red edges which arise with probability q. Thus, 
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using the fact that C1 and C2 are edge-disjoint we have 

Since 4pq ~ 1, we can rewrite this as 

where 

8 = log ( Jlpq) > O. 

(This is where we use the fact that we have insisted that the same-same edges 
should all still arise. In fact we could make do with the weaker condition 
that the probability that same-same edges arise is greater than ..;pq.) Also 

Again as in Theorem 3.1 we set up a copy C; of C2 with neither vertices 
nor edges in common with C1 and let S2 be the number of edges in C2 
which are non-switches. Then, as in Theorem 3.1, considering the formula for 
P{ C1 nC2 } - P{ Cd P{ C2 } and using the fact that S1 and S; are independent, 
we need only show that 

Now we are in exactly the same situation as we were in the proof of Theorem 
3.1 since only the colouring and the number of non-switches matter. Hence 
the result follows by exactly the same argument as in Theorem 3.1 .• 

A more important respect in which the situation differs from that in 
Theorem 2.1 is that the situation for cycles with edges in common is more 
delicate here; for clearly 

P{(1 -+ 2 -+ 3 -+ 1) n (4 -+ 3 -+ 2 -+ 4)} = O. 

This suggests the following fix. 

Definition 8.2 In a tournament, two subgraphs C1 and C2 are consistent 
if all common edges are oriented the same way in both subgraphs. 
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Then the proof above runs through for consistent cycles, using the same 
argument as in the last paragraph of the proof of Theorem 3.1. We record 
this formally; 

Theorem 8.8 Let C I and C2 be two cycles in Tp,q which are consistent. 
Then 

Again, as in the discussion in section 3.4 we may ask whether if consistent 
CI and C2 have t edges in common, there exists some constant '" ~ 1 such 
that 

",t Pp { C Inc 2} 2 Pp { Cd Pp { C2 }. 

In this case, an argument similar to that in Theorem 3.9 will show that we 
can take", = max{p, 1-pl. Again we may speculate as to whether we could 
sharpen this to '" = 1/2; this sharpening holds for the simplest case, of two 
triangles with one common edge, but we do not see how to tackle the general 
question. 

In Corollary 3.4 we noted that 

when N is the number of cycles or k-cycles for some given k. We cannot 
make the analogous claim for directed cycles or directed cycles of given length 
here; by Theorem 8.5 no such inequality holds for the first moment, and the 
consistency requirement makes it hard to argue about joint probabilities and 
so understand higher moments. 

Perhaps the most important difference between this argument and that 
in Theorem 3.1 is that the argument there applied to any subgraphs CI and 
C2 , but the argument here applies only to cycles, in order to ensure that 
we have equal numbers of red-blue and blue-red edges. This is not only a 
limitation of the method of proof, as the following example in Tp shows. We 
let the first subgraph of the tournament, CI , consist of the two edges 1 --+ 2 
and 2 -+ 3, and the second subgraph C2 be 3 -+ 1. (The motivation for 
choosing this example is that one might expect that the fact that 1 -+ 2 and 
2 --+ 3 are present will tend to mean that, if red-blue edges go from red to 
blue with probability p > 1/2, then 1 is likelier to be red than blue, and so 
that the chances of 3 -+ 1 existing are less than they would be without prior 
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information). Then, considering the eight possible colourings of the vertices, 
we see that 

P{C1 n C2 } - P{CdP{C2 } 

1/4 + 3p(1 - p) (1/2 + p + q + 2pq) (2 + 2p + 2q) 
8 64 

which is -0.060025 when p = 0.99 and q = 0.01. 
In fact we can also consider the subgraphs C1 consisting of two edges 

1 -+ 2 and C2 consisting of 2 -+ 3, when 

which of course is < 0 provided p i= 1/2. These two examples together 
suggest that there is no easy generalisation of the result for cycles to more 
general subgraphs. 

8.4 Numbers of 3-cycles. 

Theorem 8.9 Z J the number of (directed) 3-cycles in Tp has 

(n) 3U2 + 1 
E(Z) = 3 16 and 

(n - 2) (n - 1) n (-26u 2n - 7u4 n + 33n + 18u4 
- 94 + 92u2 ) 

Var(Z) = 512 . 

Proof. By Theorem 8.5 and linearity of expectation we know that 

since there are (~) 3-tuples and two possible orientations, namely 1 -+ 2 -+ 
3 -+ 1 and 1 -+ 2 -+ 3 -+ 1. 

For the variance, we need E (Z2). Now Z is a sum over indicator variables 
of the possible cycles. If two 3-tuples have no vertices in common, or have 
only one vertex in common, the existence of the two cycles is independent. 
If they are identical, as (~) choices are, the joint probability is 0 if the 
two orientations are inconsistent and is the probability of one of them if 
the orientations are the same. The only other case is when they have one 
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edge in common; then, of the four possible pairs of cycles (each triangle 
being orient able two ways) only two are consistent and for each consistent 
pair the joint probability is (using Theorem 8.4 and conditioning to get the 
expression) 

~ (1/4 + pq)2 ~((!!.)2 ('1)2) = 17 - lOu
2 + u4 

4 2 + 4 P 2 + q 2 256 

so, combining the terms by computer simplification, E(Z2) is 

(n - 2) (n - 1) n (n 3 (1 + 6u2 + 9u4
) - n2(27u 4 + 18u2 + 3)) 

9216 

(n - 2)(n - 1)n(n(596 - 456u2 - 108u4 ) + 324u4 + 1656u2 - 1692) 
+ 9216 

=> Var (Z) = E (Z2) - (EZ)2 

(n - 2) (n - 1) n (-26u 2n - 7u4n + 33n + 18u4 
- 94 + 92u2

) = .• 
512 

For u = 1 this is n(n - l)(n - 2)/32 agreeing with [M] Theorem 10. 

Corollary 8.10 E(Z) is always less than classically. ffu = 1 Var(Z) takes 
its classical value; if n = 3 and u < 1 it is smaller than classically; else it is 
greater than classically. 

Proof. The assertion about the expectation is immediate from 8.6 and 
linearity of expectation. By the above calculations, the variance is greater 
than classically if and only if 

(n - 2) (n - 1) n (-26u 2n - 7u4n + 33n + 18u4 
- 94 + 92u2

) > n(n - l)(n - 2) 

512 32 

{::} n(33 - 26u2 
- 7u 4

) + 18u4 + 92u2 
- 110) 2: o. 

{::} (1 - u2)(n(33 + 7u2) - (18u2 + 110)) 2': o. 
and since (1 - u2 ) > 0 for u =I- 1, this will then be positive for n > 4 as is 
easily seen. If n = 3 the expression is (1 - u2 )(3u2 

- 11) ::; 0 with equality 
only if u = 1; thus in this case the variance is always smaller than classically 
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(unless u = 1); this case could of course be deduced from the fact that the 
function x -+ x(1 - x) is increasing for x E (0,1/2) .• 

For u = 0, for example, the variance is n(n - l)(n - 2)(33n - 94)/512 
which in particular is a good deal larger than classically for large n, though 
the method of moments estimate P {X = O} ~ (J'2 / ((J'2 + fJ,2) still shows that 
the probability of no such cycles tends to 0 as n -+ 00. 

The fact that there is no general inequality to the effect that joint prob­
abilities exceed the product of probabilities here makes it very unlikely that 
the FKG inequalities or related machinery have any insight to offer here. 

8.5 Estimates of the probability of irreducibility 

As noted above, our models will often be more likely to be reducible than 
classically. It is natural to try to estimate that probability in our models. 
As in Chapter 6, the probability that the tournament is irreducible is only 
affected when the probability that red-blue edges go the one way rather than 
the other is very large (or very small); 

Theorem 8.11 Suppose p or 1 - P is c/ n 2 
J C constant. Then 

lim P{ T is irreducible} = 1 - e-c
/
4 

n-+oo 

Proof. This is very similar to Theorem 6.10. We first note that without loss 
of generality p = c/n2 . Next, observe that with probability tending to one 
as n goes to infinity, there are n/2 + o(n) reds and blues; in particular, with 
probability tending to 1, the numbers of reds and blues go to infinity with n. 
Now we know that a.e. tournament in the classical model is irreducible ([M, 
Theorem 5]). Thus, with probability tending to 1, the reds are irreducible and 
the blues are irreducible. Thus, with probability tending to 1, the tournament 
as a whole being irreducible is equivalent to not all the red-blue edges being 
in the one direction, as then we can indeed get from any vertex to any other. 
This last probability is, by the assumption, 

n (7) (( c )i(n-i) (C )i(n-i)) 
1-'"'- 1-- + - . 
~ 2n n2 n2 
1=0 

Clearly only the sum 
n (7) ( c )i(n-i) 
L 2n 1- n2 
.=0 
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will contribute in the limit, by our assumption on p. But we saw in Theorem 
6.9 that the value of this is e-c

/
4

, and the result follows .• 

The possibility, implied by Theorem 8.1, that sometimes many cycles can 
be more likely than classically means that we have little intuition about what 
will happen in more general models. 

8.6 The degree sequence in tournaments 

Here we study the out degrees Xi of vertex i, that is the number of vertices 
j '" i where the edge between i and j is oriented from i to j. We start by 
obtaining the probability distribution and the probability generating function 
of the out degree of a single vertex. 

Theorem 8.12 In Tp we have that P{Xi = k} is given by 

n-1 k (j) (n _ 1 _ j) (n7
1
) (pk-I (1 _ p)"-l- j -k+l + (1 _ p)l r-I) 

L L I k -I 2n - 1 2J 2n - 1-J 
J=OI=O 

and the probability generating function of Xi is 

Proof. We have 

P{Xi = k I i is red} P{Xi = k I i is blue} 
P{ Xi = k} = 2 + 2 

~ {X k I . . d' d' {I 2 }\'} (n7
1

) = ~ P i = Z 18 re ,J re 8 In " ... n Z -n-

j=O 2 

~ {X k I .. hI . d' {I 2 }\ '} (n7
1

) + ~ P i = Z 18 ue, J re 8 In " ... n Z -n-

j=O 2 

n-1 k 1 (n~l) 
= L L P{Bin(j, -) = I and Bin(n -1- j,p) = k -l}+ 

j=O 1=0 2 2 

n-1 k 1 (n~l) 
+ L L P{Bin (j, 1 - p) = I and Bin(n - 1 - j, "2) = k -l}---f,;-. 

j=OI=O 
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The binomials involved are independent, so this is 

n-l k (j) (n _ 1 _ j) (njl) (pk-I (1 _ p)"-I- j-k+1 (1 _ p)' pJ-/) 
L L I k - I 2n- 1 2j + 2(n-l-j) . }=01=0 

For the second statement, the probability generating function is 

n-l 
L P{Xi = k}tk 

k=O 

= In I: I: t (j) (n - ~ - j) (n ~ l)pk_1 (1 _ p)"-I- j-k+1 (~)j tk 
2 k=O j=O 1=0 I k 1 J 2 

+ In I: I: t (j) (n -~ - j) (n ~ 1)p1_1 (1 _ p)' (~)n-l-j tk 
2 k=O j=O 1=0 1 k l J 2 

= In I: ~ t (j) (n -~ - j) (n ~ 1) (pt)k-I (1 _ p)"-I- j-(k-/) (~)j t
' 2 k=O j=O 1=0 1 k l J 2 

+ In I: ~ t (j) (n -~ - j) (n ~ 1)p1_1 (t (1 _ p))' (~)n-l-j tk- I 
2 k=O j=O 1=0 I k I J 2 

which, shifting the variable in the innermost summation of the top line from 
1 to k - 1 is 

= In I: I: (j) (pt + 1 -p)n-l- j (n ~ 1) (~)j t' 2 k=O j=O 1 J 2 

+ ;n E ~ (n ~ ~ ~ j) (p+ 1(1- plY Gf1

-; 1'-' 

which is, summing out the 1 variable, 

= In I: (pt + 1- p)"-I- j (n ~ 1) (1 + t)j 
2 j=O J 2 

1 n-l ( 1) (l)n-l-
j 

+ 2
n 
L n ~ (p + t (1 - p))j 2 (1 + t r- 1

- j 

}=o J 
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which, simplifying further and tidying up is 

1 (( l+t)n-l ( l+t)n-l) 2n pt + 1 - P + -2- + (1 - p) t + p + -2-

1 (((P 1) 3 p)n-l ((3 P) P 1)n-l) =2 2+4 t+ 4- 2 + 4-2 t+ 2+ 4 
as required .• 

Since for each pair i,j P{i ~ j} = 1/2, we have that E(Xi ) = (n -1)/2; 
it is easy to check that this is also the first derivative of the above generating 
function evaluated at 1. Similarily, the variance can be obtained from the 
probability generating function; it is 

(n - 1)(1 + 4p(1 - p)) n(n - 1)(1 - 4p(1 - p)) 
8 + 16 . 

Thus the variance grows like n2 rather than n as soon as p ceases to be 
exactly 1/2; this is as one would expect, since there will then be a bimodal 
distribution of the outdegrees, with the reds tending to have out degrees near 
to (n - 1)(p/2 + 1/4) and the blues tending to have out degrees near to 
(n - 1)(3/4 - p/2), so most vertices will have degree away from the mean 
degree by about 1 (1/2-p)n I, rather than about Vn in the classical situation. 

Knowledge of the moment generating function also allows us to under­
stand the probability of a large deviation in the degree of a vertex. This is 
again an application of the Gartner-Ellis theorem, although the details here 
are somewhat easier than in Chapter 4. We shall only work it out in the case 
when p ~ 1/2; this is no real loss of information as we have noted already, 
and it will save having to write out some cumbersome formulae which could 
in any case be derived by exactly the same techniques as we use. 

Lemma 8.13 In Tp , p > 1/2, letting ¢n be the cumulant generating function 
of the outdegree of a vertex, and ¢ = liIIln-+oo ¢n/n, 

¢(8) = log ((~ -~) eO + ~ +~) if 8 < 0 

and is zero if 8 = o. 

180 



Proof. We first assume that e > 0, so that eO > 1 and so it is easy to check 
that 

(E + ~) eO + ~ _ E > (~_ E) eO + E + ~ > 0 
2 4 4 2- 4 2 2 4-' 

since p > 1/2, In our previous notation, we have 

d, I' cPn 'f' = Im­
n-+oo n 

= 11m -log - - + - e + - - - + - - - e + - + -, 1 (1 (((P 1) ° 3 p)n-l ((3 P) (J P l)n-l)) 
n-+oo n 2 2 4 4 2 4 2 2 4 

= lim -log 2 + n - 1 log (~ ((E + ~) eO + ~ _ E) (1 + In)) 
n-+oo n n 2 2 4 4 2 

where 0 < In < 1 by the assumption, and In ---t 0 as n ---t 00. Thus, taking 
the limit, we see that 

The other case is when e < 0 so that 

o < (E + ~) e(J + ~ _ E < (~ _ E) e(J + E + ~ 
- 2 4 4 2- 4 2 2 4 

(again by p > 1/2); then the obvious analogous argument yields 

Again we must investigate the differentiability properties of <p. 

Lemma 8.14 <p is differentiable away from the origin, and the derivative 
takes every value in [0, ~ - ~] and [~ + ~, 1]. 

Proof. Only the assertion about non-differentiability at e = 0 requires 
comment, We have 

log ((;! - e) eO + e + i) 
I, 4 2 2 4 = 1m ----..:....;'---~----'-
(J-+O e 
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= lim log (( ~ - ~) (eO - 1) + 1) 
0--+0 () 

which, using the expansions of the exponential function and log(1 + x) is 

_. (~_ ~) (() + (}2 + ... ) + (( ~ _ ~) (() + (}2 + ... )) 2 + ... 3 P 
-hm =---

0--+0 B 4 2 

and an identical argument shows that the left derivative is 1/4 + p/2. The 
result follows .• 

So, as in Chapter 5, unless p = 1/2, there is some interval where the 
rate function gives no information about what is happening. We would 
again guess that in that region, the rate function is obtained by dividing 
the probability of the large deviation just by the constant 1. For, noting 
that (p/2 + 1/4) > a > (3/4 - p/2), we see that if the vertex is red (which 
happens with probability 1/2), its degree will be about (1/4 + p/2)(n - 1) 
with probability tending to 1, so with probability tending to 1 a red vertex 
has degree greater than an; on the other hand, a similar argument shows 
that with probability tending to 1, a blue vertex has degree less than an. We 
summarise all this; 

Theorem 8.15 Let Xi be the out degree of a vertex in Tp , where without loss 
of generality p > 1/2. Then, for a E [0, (3/4 - p/2)] or [(1/2 + p/4), 1], we 
have 

1
. log (P{Xi 2: an}) 
1m 

n--+oo n 

is the maximum of 

~~~ ((}y - log ( (~ - ~) eO + ~ + ~) ) , ° and 

~~~ ((}y - log ( (~ - ~) eO + ~ + ~) ) . 
For other values of a, 

1 
lim P{Xi 2: an} = -2· 

n--+oo 

Proof. This is clear from the Gartner-Ellis theorem (Theorem 5.3) and the 
foregoing remarks .• 
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It is desirable to understand the rate function somewhat more explicitly. 
By elementary calculus, the function 

has its unique turning point at 

8 - 10 ( y(l + 2p) ) 
- g (1 - y)(3 - 2p) 

and this is a maximum; the value at which the turning point occurs is positive 
if and only if y > (3 - 2p)/4; if that holds, we get 

sup (8y - log ((~ - E) eO + E + ~)) 
(J>O 4 2 2 4 

= y log(y)+y log(1+2p)-y log(l-y)-y log(3-2p)+log( 4(1-y))-log(1+2p). 

Similarily the function 

(1 p 0(3 P)) f (8) = 8y - log 4 + 2 + e 4 - 2 

has its unique turning point at 

( 
y(3-2p) ) 

8 = log (1 _ y) (1 + 2p) 

and this is a maximum too; the value at which the turning point occurs is 
negative if and only if y < (1 + 2p)/4, and if this holds we get 

~~~ (8y - log ( (~ + ~) eO + ~ + ~) ) 
= y log(y )+y log(3-2p)-y 10g(1-y)-y log(1+2p)+log( 4(1-y))-log(3-2p). 

As with the degrees in Gp,q, the outdegrees in Tp do not show up the 
correlation structure in their pairwise correlation. 

Lemma 8.16 

-1 
COrr(Xi' Xj) = --1 in Tp Vp E [0,1]. 

n-

183 



Proof. We have 
n n(n - 1) L Xi = 2 constant 

i=O 

and so, taking variances on both sides and using the fact that the out degrees 
are exchangeable, for any i "=I j we have 

as required .• 

n (n - 1) Cov (Xi, Xj) + nVar (Xi) = 0 

-1 
::::} Corr (Xi, X j ) = --

n-1 

It is thus again natural to ask what we can say about the maximum or 
minimum out degree in our models. Classically, Theorem 29 of [M] shows 
that it is near to 

(n - 1)/2 + v(n - 1) log(n - 1)/2. 

We show how to give an upper and lower bound on this quantity in our 
models. We can suppose p > 1/2 without loss of generality; thus the max­
imum degree occurs, with overwhelming probability, in the red vertices. We 
first try to bound the maximum out degree below. If we consider a vertex of 
maximum red-red degree, we get a lower bound of 

(n/2 -1)/2 + v(n/2 -1)10g(n/2 -1)/2 + pn/2 + lower order terms 

= (p /2 + 1/4) n + V n log ( n ) /4 + ... 
and if we consider a vertex of maximum red-blue degree, that is the maximum 
of n/2 independent Bin(n/2,p), we get, as in Chapter 4 

pn/2 + V2p(1 - p) 10g(n/2)n/2 + (n/2)/2 + lower order terms 

= (p/2 + 1/4)n + Vp(1 - p)nlog(n) + ... 
and so (as p(1-p) ~ 1/4) it is the first ofthese which gives the better bound. 
The same argument shows that an upper bound is 

r---

(p/2 + 1/4)n + vnlog(n)(1/2 + Vp(1 - p)) + ... 
but we are not aware of any detailed information on the rest of the out degree 
sequence, and so cannot produce as precise a result as in Theorem 4.21. Note 
that as 1 - P gets close to zero, the term is close to the maximum red-red 
degree, as one would expect; but in general, the classical case suggests that 
neither bound is terribly good. 
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8.7 A random variable related to the orientations of 
the edges 

In Chapters 4 and 5 we considered the number of edges in undirected graphs. 
Because in a tournament all n(n -1)/2 edges are always present, the number 
of edges is a rather boring random variable. However we can instead consider, 
since our tournaments are labelled, the number Z of pairs of vertices i < j for 
which the edge goes i -+ j (more generally, we could consider any n(n -1)/2 
pre-defined directions; in our models, the answer would depend on the choice 
of directions, as we shall see below, although classically of course it would not 
do so). Thus Z could be seen as measuring how far some labelled tournament 
is from a certain model; for example, we might be comparing a student's 
rankings of some objects with those of an established expert. Classically Z 
is a sum of n( n - 1) /2 indicators of independent Bernoulli trials so standard 
theory applies. In Tp the random variables are again each 1 or 0 equiprobably, 
but are now dependent; for example a short calculation shows that with 
three vertices, the probability that the edges go 1 -+ 2, 1 -t 3 and 2 -t 3 
is 1/8 + (1/4 - p(l - p))/8 which is always at least as large as its classical 
value 1/8. If however we had instead asked for the probability that the 
edges go 1 -t 2, 2 -t 3 and 3 -t 1, it would be, by Theorem 8.4, equal to 
(12p(1 - p) + 1)/32 which is smaller than classically. Note however that 
relabelling the vertices does not affect matters. 

We henceforth deal only with the ordering where we ask how many edges 
go from i to j where i < j. We already know E(Z). What is its variance? 

Lemma 8.17 

n(n - 1) . 
Var(Z) in Tp = 4 mdependent of p. 

Proof. Z = El~i<j~n Xij, where Xij = 1 if the edge between i and j goes 
i -t j. Hence 

Var (Z) = Cov (Z, Z) = Cov ( E Xij, E Xkl) 
l~i<j~n l~k<l~n 

Now Xij and Xkl are independent (and so have covariance zero) unless they 
have one or more vertices in common. The cases to consider are 
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1. X ij and Xii with (j =f l), of which there are in total 

~ '( ')( '1) _ (n + l)n(n - l)(n - 2) L- z n - z n - z - - -'---~"':""---"":'-~-":'" 

i=1 12 

cases and the covariance is (2p - 1)2/16 in each by a short calculation. 

2. X ij and X kj with i =f kj again there are (n + l)n(n - l)(n - 2) cases 
in total by a similar argument, with covariance (2p - 1)2/16 in each case. 

3. X ij and X jk with i < j < k, of which there are in total 

I: j(j - l)(n _ j) = (n + l)n(n - l)(n - 2) 
j=2 12 

cases, and here the covariance is easily checked (as in the calculations illus­
trating that Theorem 8.8 is limited to cycles) to be -(2p - 1)2/16. 

4. X ij and X ki with k < i < jj again there are (n + l)n(n - 1)(n - 2)/12 
cases, each with covariance -(2p - 1)2/16. 

5. X ij and Xij ; in each of the n(n - 1)/2 cases we have 

2 1 
Cov (Xij , X ij ) = EXij - E (Xij ) = 4 

We thus see that cases 3 and 4 cancel out cases 1 and 2, leaving us with 
variance n(n - 1)/8 which is also the variance of n(n - 1)/2 independent 
Bernoulli trials with probability 1/2, as required .• 

This result is analogous to Theorem 4.5, though the method of proof is a 
little different. Again higher moments will be different from classically. 

It seems likely that any study of large deviations in Z will depend heavily 
on how many of the first few vertices are coloured red, with a large deviation 
in them giving rise to a large deviation in the number of edges going from 
the lesser label to the greater (assuming p > 1/2), and as in Chapter 5 we 
will again get this less expensively than usual. However this situation seems 
less amenable to exact results than the previous one. 
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9 Epilogue 

9.1 Summary and directions for future work 

In this short chapter we briefly review what has been achieved in this thesis 
and indicate some possible directions for future work. 

We mentioned in the introduction that there seems to be no previous 
literature on the subject; thus the results are new (except of course, where we 
quote standard facts or results of previous authors). Three main limitations 
of the results merit comment. First, as mentioned in the introduction, much 
of Chapters 2-5 is in some sense results preliminary to developing a theory of 
our random graphs, with the corresponding questions for the classical model 
being trivial or easy, and so this material has a different feel from classical 
random graph theory. Second, some of the results (for example, the material 
on the maximum degree in Chapter 4 and the result on the probability of 
connectedness in Gp,q with q small in Chapter 6) rely heavily on exploiting 
much more detailed information about what happens in the classical model, 
to get a result for our model which is often substantially less precise. Thirdly, 
note that often we have only proved results for a limited range of values of 
the parameters; for example, the material in Chapter 4 on the maximum 
degree was only developed for p and q constant, but the classical results on 
which we relied work in far greater generality. Some of these extensions may 
be pretty easy; others likely will not. 

In Chapter 2, we discussed the probabilities of trees and cycles in our 
models, and how they compare with the corresponding classical values. A 
reasonably satisfactory solution was obtained in many respects; the main 
remaining problem is of course to resolve whether or not trees are always at 
least as likely to arise as classically, and if not to understand as far as possible 
when they will be more likely and when less likely. If the conjecture that 
they are always at least as likely as classically turns out to be false, it seems 
too much to hope for a simple categorisation of when they are more probable 
than classically, but one would hope that more general partial results than 
we have at the moment might be possible. 

In Chapter 3, we discussed when the joint probability of two subgraphs 
arising is greater or less than the product of their individual probabilities. 
There is some scope for seeing how much more generally we can get the tech­
nique of Theorem 3.1 to work; but probably more important in the long term 
is working out to what extent some result similar to the Janson inequalities 
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is applicable in our models. 
In Chapter 4, perhaps the most interesting features are the work on the 

maximum degree in graphs. There is scope for considering how far these 
techniques can be generalised to deal with, say, non-constant values of the 
parameters p and q, or indeed more general parameters. 

In Chapter 5, the main priority for future work is to see whether we 
can get a more detailed understanding of the large deviations theory in the 
general case, the Gp,q case now being fairly fully understood. There may well 
be some fairly substantial problems with this. 

In Chapter 6, one topic which merits investigation is understanding, for 
0: the threshold probability for connectedness, the behaviour of the limiting 
probability of connectedness, and in particular whether it is constant (in 
Gp,q) for q > p. Another such is the topic of the eigenvalue distribution for 
adjacency matrices in our models; classically this subject is well understood; 
see for example [B] Theorem XIV.12 and XIV.13, but it is not clear what 
will happen in here. 

Chapter 7 is, as we observed in it, a rather more experimental chapter 
than some of the others, and there is plenty scope for further work on the 
topics in it, including precise results on when the distribution of clique sizes 
is multimodal. 

In Chapter 8 again there are some questions about generalisation of the 
results, but perhaps more important is to start moving beyond the techniques 
we employed, which as we said are in general primarily modifications of 
techniques in earlier chapters, to prove results which in some cases are more 
in the spirit of traditional random tournament theory. 

9.2 Applications and statistical questions 

We have paid scant regard to the various possible applications, but there is 
plenty of scope for work on these too. One such project would be to use 
suitable random graphs from models of our kinds to generate patterns of 
ESSs, in the manner implied by Theorem 7.1, to investigate whether or not 
certain patterns of ESSs are attainable. 

Another such is the modelling of the spread of infectious diseases. Various 
models have been considered (see e.g [BJ, Chapter XIV, section 5). Another 
model is discussed by Barbour and Mollison [BM] who show that the classical 
model G(n,p) is essentially equivalent to the so called Reed-Frost model, a 
standard elementary epidemic model consisting of a Markov chain with states 
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{( i, r) : i, r 2:: 0, i + r ::; n} where, for 0 ::; j ::; n - i - r, 

P{{i, r) --+ (j, i + rn = (n -~ - r) (1 - (1 - p);r<1 _ p);(n-;-,-;) 

where i is the number of infected individuals, r the number removed. The 
construction is as follows; we take one or more vertices as the initial infected 
individuals, numbering i(O); their neighbours in the graph are the i(l) in­
fectives at time 1, and then the infectives at time 0 are removed. In general, 
i(t + 1) is the number of neighbours of the i(t) infectives at time t who have 
not previously been infected. Note that this set-up emphasises the role of 
individuals, and the lists La of those infected by a particular individual a. 
This process on the surface of things corresponds to a digraph; however we 
note that in an epidemic, just one of the two events a infects band b infects a 
occurs, so that it makes no difference to the process to make the events that 
bELa and a E Lb dependent, provided the probability of the event remains 
unchanged, and that the events remain independent of all other events. Thus 
we need only consider events that a infects b or b infects a, which still hap­
pen independently with probability p, and so we can ignore the orientations 
of the edges, and so we arrive at the (undirected) random graph G(n,p). 
Similarily the number and orders of components of a graph in G( n, p) can 
be constructed using a Reed-Frost epidemic model. The interaction between 
the two subjects goes both ways; for example, an old result of Daniels to the 
effect that the number of survivors in an epidemic is asymptotically Poisson 
is here seen to be an easy consequence of the result on the number of isolated 
vertices in G(n,p), and in the other direction one can recover the asymptotic 
order of the giant component of G(n,p) when p = c/n from the so-called 
branching process approximation to 

P{2: i(t) > n(l - lie) I i(O) = 1}. 
t>O 

Barbour and Mollison remark that the connections developed in their pa­
per lead naturally to the conjecture that the distance from a randomly 
chosen vertex in the giant component to one of the vertices furthest from 
it is klog(n) + 0(1) with variability confined to the 0(1) term, a conjecture 
which had not been obvious from purely random-graph-theoretic considera­
tions. They also show that other more detailed information about the order 
of the giant component can be obtained from more detailed study of the 
Reed-Frost epidemic. 
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In all the above models, it will be noted that we have treated all indi­
viduals as being equally likely to catch and transmit the disease. However, 
this assumption is patently unsustainable in practice; for a simple example, 
sexually transmitted diseases pass primarily from one sex to the opposite 
one, and this suggests that some model along our lines might yield a better 
approximation to what is going on here. 

It is clear that f(n, k, s, P) corresponds to a multitype Reed-Frost model, 
where, before the process starts at all, we independently assign one of k 
types randomly to each individual, and then states of the process are given 
by having, for each 1 ::; 1 ::; k, numbers i, of infectives of type land r, of 
removed individuals of type 1 (so that the number of susceptibles of type l, 
which we will here denote Z, to avoid confusion with the 8t, the probabilities 
that a vertex is of colour l, is equal to n, - i, - r/) and then the system 
changes states with probabilities given by 

k 

ZI(t + 1) f"V Bin(zl(t), II (1 - Plj)ij(t)) 
j=l 

with 
i,(t + 1) = ZI(t) - ZI(t + 1) and i/(O) = m" 81(0) = n,. 

Again of course we are looking at the situation in monochrome, so we would 
want to add up the i , etc. over all values of l. A minor irritation here is that 
strictly speaking we cannot insist in advance that we have some number ml of 
colour 1 infectives, since of course the colouring process may in principle not 
give us that many vertices of that colour. This will present no problems if the 
idea is to start with a certain number of infectives, and then let them take 
types randomly, which is closer to the spirit of only looking at the situation 
in monochrome, but sometimes in practice we may have prior information 
about what kind of individuals set the process in motion. We may well 
be able to get round this problem for many asymptotic arguments, if the 
i/(O) are fixed or only grow slowly while n goes to infinity by some kind of 
argument replacing the process with an approximation to it which always 
has at least i/(O) vertices of colour 1 and proving that the differences between 
the two processes are, in the limit, negligible. The analogous situation for 
given m/(O) and n,(O) has been studied by Scalia-Tomba [ST], who obtains 
asymptotics for the final size of the epidemic. Extensions of this work have 
been carried out by Andersson, and Ball and Clancy. 
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We have also considered only probabilistic questions. However there are 
natural statistical questions arising, as to how best to estimate the paramet­
ers of an RRC model given a sample of (labelled as usual) graphs which we 
believe to be from some such model (and which we see in monochrome). Clas­
sically this is just estimating the success probability in independent Bernoulli 
trials, and any amount of theory says that the obvious estimate is in any 
number of ways the best one; but in our case, it is easy to see that the full 
likelihood of getting some particular graph can only be written as a sum over 
all the possible colourings, which makes maximum likelihood estimation (for 
example) a rather daunting prospect. Naive estimators also present some 
difficulties; for an (over )-simple example, if we believe a sample of one graph 
has arisen from a Gp,q model, and try to estimate p and q by counting the 
number A of edges and the number B of triangles, and then solving the 
equations (;) (p + q)J2 = A and (;) (p3 + 3pq2)J4 = B, then if the sample 
consists of the graph on three vertices with edges 1-2 and 1-3, but not 2-3, 
we would get from the second equation that p = q = 0 contradicting the first 
equation. In summary, there is scope for development of sensible methods 
for addressing these problems. 
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