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ABSTRACT

Using continuous wave nmr the linewidths of the 199Hg

and 201

Hg resonances in liquid mercury have been measured
over the temperature range 245°K to 413°K. From the line-
widths the values of the longitudinal relaxation rate, Rq,

were calculated for each isotope. R1 for the 204

Hg isotope
was found to consist of two significant contributions; qu,

due to the hyperfine interactions and R, , due to the inter-

1q
action between the nuclear electric quadrupole moment and the
local time dependent field gradient. Using the 199Hg rates,
which were entirely due to the magnetic interaction, it was

possible to isolate the two contributions to the =01

Hg rate
and hence accurately determine the variation of R1q with
temperature.

The theories of nuclear quadrupole relaxation that were
available predicted that qu should vary with temperature
approximately as D'q, where D is the diffusion coefficient.

However, the variation of qu for the 201

Hg spins was found
to be much slower than this with qu varying approximately

as T"2. A review of the reliable experimental data from
both nmr and pac (perturbed angular correlation) experiments
showed that qu followed a similar trend in a number of
liquid metals. Therefore the theory of nuclear quadrupole
relaxation in liquid metals was re-examined and a new version

is presented together with detailed calculations of the

variation of R, with temperature for liquid mercury.

1q



Agreement between theory and experiment is obtained provided
the range of the quadrupole interaction is small compared
to the interatomic spacing.

The theory has been extended to cover the case of a
liquid binary alloy in which it predicts a faster variation
of qu with temperature than in the pure metal. Using pulsed
nmr R1q has been determined as a function of temperature
for 85Rb in RbS50at%lNa and for 69Ga in a number of Gallium
alloys. The 85Rb results were not accurate enough to
determine the trend of qu. However, the 69Ga results were

found to agree qualitatively with the theory.
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CHAPTER ONE

Nuclear Magnetic Resonance in Liquid Metals

1.1. Nuclear Relaxation

Each nucleus in a metal with a non-zero épin angular
momentum I has an associated magnetic moment p such that
p = ynlli, where vy, is the nuclear gyromagnetic ratio.

The interaction between the nucleus and a steady magnetic

field H is described by the Hamiltonian,
X=-pE=-ynIl.H=-ynLH 1.1.

where z is the direction of H.

The nuclear Zeeman energies are determined by the
eigenvalues of IZ and are given by E = - yﬁbmHz where
m=I,J-1,....,-I. Transitions between these states are
governed by the selection rule Am = :ﬂ and may therefore be
stimulated by an alternating magnetic field with an angular
frequency given by o = YnHz'

Following absorption of energy from the radic frequency
field a return to thermal equilibrium is achieved by energy
transfer between the nuclear spin system and its surroundings,
usually termed the "lattice". This process is characterised
by the spin-lattice relaxation time, T,

Besides interacting with their environment.the spins
may interact with each other and the spin-spin relaxation

time, T2, describes this interaction.



In thermal equilibrhm1the_spin system has no nett
magnetisation in the x-y plane but produces a steady magnet-
isation ’Mo’ in the 2z direction owing to the presence of
the applied field. In the absence of an exciting field and
given that the relaxation along the x, y and z directions

may be described by single characteristic times, the equations

Py = My o S =N 1.2
a1, t 1,
and
at, = MM 1.3
at 7,

first suggested by Bloch (1), may be taken as operational
definitions of the relaxation times T1 and T2. For this
reason T1 and T2 are sometimes called the longitudinal and
transverse relaxation times respectively.

For solids, where the magnetic dipole-dipole<interaction
between spins is important the resonance line shape is
Gaussian rather than the Lorentz shape implied by 1.2.
Usually the line width is greater than the intrinsic width
governed by Tq. Bodily motion of the spins reduces the
transverse effects of the dipole-dipole interactions and,
when the correlation time of the molecular motion‘is smail
compared to the Larmor period,»as it is in liquids, 'I‘1
and T2 become equal. This is the condition known as extreme

narrowing.



In metals the contribution to the spin-lattice relaxation
rate R1 (=1/T1) from the dipole-dipole interaction is usually
so relatively small that it is obscured by the hyperfine

contribution. Indeed, it has only been observed in Li(2).

1.2 The Hyperfine Interaction

The most important interaction in a metal is that between
the nuclei and the surrounding conduction electrons.
This interaction manifests itself in two ways, firstly, it
produces a shift, termed the Knight shift, in the nuclear
resonance frequency and secondly, it provides a mechanicm
for spin-lattice relaxation producing a contribution qu

to R1. In principle it is possible to determine R, from

1m
the measured Knight shift using the Korringa relationship.

The Hamiltonian for the hyperfine intersction may be

)+

+ core polarisation terms 1.4

expressed as follows (3),

3 = v v n2L. [ Bn s b(r) + (5;@-;) -
. : e

H\J 0]
N

where y, 1s the gyromagnetic ratio of the conduction electrons,

I is the spin of the nucleus at the origin,
1l and g are the orbital and spin angular momentum of
the electrons respectively,

r is the radius vector from the nucleus to the electron.

The first term inside the square brackets describes the

effect of the electron spins at the nucleus and is called



the contact term. It is large for electrons which can be
described by mainly s-type wave functions which pesk sharply
at the nucleus. The second term represents the dipole-
dipole coupling between the nuclear and electronic magnetic
moments and the final term represents the interaction
between the nucleus and the orbital angular momentum of the
electrons.

In addition to these direct interactions an indirect
interaction between the conduction electrons and nucleus may
occur. When the conduction electrons are polarised the spin
up and spin down core electrons experience unequal forces
causing their spatial wave functions to be altered in a
different manner. This effect is termed core polarisation.

As mentioned above the hyperfine field produced by the
conduction electrons makes the résonance frequency for a
nucleus in a metal different from that of the same nucleus
in a non-metallic substance. Quantitatively, the Knight shift,
K, is defined by

K-—' Vm —Vr C . 1.5

where Vi and V. aré the resonagce frequencies of the nuclei
in the metal and the non-metallic reference respectively.

It is now well understood that the dominant contribution
to the Knight shift ahd relaxation rate arises frbm the contact
term in the hyperfine Hamiltonian. The contribution to the
Knight shift can be written as (4,5)

§5=§QXP<UM0H2>F 1.6



where X_ is the Pauli paramagnetic spin susceptibility and
<lw(o)l D>p Tepresents the average density of the conduction
electrons at the Fermi surface on the nucleus.

Assuming that the conduction electrons behave independ-
ently it can be shown, (5), that the contribution to the

relaxation rate from this term is
2
3,3 2.2 Ny 2
Rqp = §_ n”n’y, " v, |w(o)| >F[g(EF‘)] kg T 1.7

where kB is Boltzmann's constant, T is the lattice temperature
and _g(EF) is the density of electron states at the Fermi
level. |

From 1.6 and 1.7 we obtain

5 2
Tqg = 1 [ ‘Xp | 1.8

"kBVn Yo n; E(EF)

'I‘K6

and putting Xp = (yén)g g(EF) we have
= ‘
T, K" [Ye] 1.9

which is the well known Korringa relationship (6).

It is generally accepted that the electrons in metals
do not.in fact act independently. Pines (7), Silverstein (8),
Moriya (9) and Narath and Weaver (10) have investigated
electron - electron interactions. The latter authors introd-

uced the correctlon factor K(a) glVlng

T

25 TK5K(a) = [Ve] 1.10



where a= 1- 53,5 X being the real spin susceptibility
X

compared to X° which is for independent electrons.

Rearranging 1.10 we have
2 2
il Yo

Several authors have attempted to calculate qu using
1.11 and the measured Knight shifts. However, values obtained
by this method are unlikely to be accurate for the following
reasons. Firstly,there is the uncertainty in the value of
K(a).. It is difficult to calculate K(a) although several
attempts have been made (11), (12), (13). Furthermore, the
only experimental method of obtaining K(a) in liquid metals
uses 1.11. Therefore values of K(a) used have been at best
approximate guesses. Secondly, this method ignores the
fact that, in addition to the‘contact term, both the orbvital
term and core polarisation may contribute to qu and K in a
way that is not described by 1.11. The core polarisation
contributions induced by the s-like part of the conduction
electron density merely attach themselves to R16 and Kg
in 1.11 but the relationship has a different form for the p
core polarisation and the orbital term (10). From presently
available theoretical calculations (11) it seems likely that
contributions from non~s terms could easily be of the order
of 0.1 of the magnitude of those from other terms. It is
therefore not justifiable to dismiss them and, as will be-
come apparent in what follows, the quantitative relationship

between the Knight shift and the magnetic relaxation rate

is too approximate in many cases to be of value in the



analysis of the relaxation rates in heaﬁy polyvalent,liquid

metals. -

1.3 The Nuclear Quadrupole Interaction

If a nucleus has spin quantum number I>3 then it will
possess a nuclear electric quadrupole moment. Spin lattice
relaxation may then occur via the interaction between the
nuclear electric quadrupole moment and the local time -
dependent electric field gradient associated with the nuclear
environment.

There are two types of quadrupolar relaxation possible
in metals. In one process the time-dependent electric field
gradient results from the translational motion of the charge
of electrons having p or 4 character at the nucleus (14),
(15). Relaxation results from a scattering process analagous
to that encountered in the magnetic relaxation. However,
estimates of the strength of the electronic scattering process
have shown it to be too weak to account for the observed
quadrupolar relaxation in liquid metals (14), (15), (16).
The second process results from the motion of ions whose
charge produces an electric field gradient at neighbouring
nuclei. This process has been discussed by Sholl (17),
Warren (18), and Yul'met'ev (19). Both Sholl and Warren
use essentially the same model of free metallic ions
interacting with each other by a screened potential. The
conduction electrons are regarded as screening the ion cores
and the electric field gradient at a given nuclear site is

taken as the sum of the appropriate derivatives of the



screened potentials from all other ions. The positions of
the ions and the way they move in time are described in
terms of the van Hove correlation functions (20).

The basic expression for the quadrupolar relaxation
rate, R1q, is derived by perturbation theory where the
quadrupole Hamiltonian is taken as a perturbation on the

nuclear Zeeman states. The result is (3), (21),

- 5(2I+5)(eq)2 J(0) 1.12
41°(2I-1)n=
m Iy
J(w) = /e'l““gmm.(t)dr 1.13
B (1) = P - 0)p(-2" ) (4) 1.14
p(m) | Zup(y) = T Vo, Xop(@)) 1.15
= %
¢ = (1-vg )(%g,) 1.16
1 | .
v2(r) dr(r %%) 1.7

where Q is the nuclear qudrupole moment, the bar in
equation 1.14 denotes an ensemble average, and um(rA) is
the electric field gradient at a nucleus at the orzgin due
to an ion at Ty um(rA) is expressed as the product of a
spherical har;;hic Y;; (normalised to one) and a radial
function, v2(r), which is determined by the ion-ion
potential v(r). An important contribution to the field
gradient is due to the distortion of the ion-ion charge

distribution about the nucleus at the origin by the external



field gradient and the nuclear quédrupole moment. This
contribution is taken into account by the inclusion of the
factor (1-y,,) where y, is the Sternheimer antishielding
factor. This is strictly only correct when the field
gradient at the originarises from charges external to the
core and since the conduction electrons in a metal contribute
to v2(p) and do penetrate the core the correct treatment of
antishielding may require a modification of the ion-core
value.

Equation 1.12 is derived within the extreme narrowing
spproximation, i.e. that “J(2ub) = J(“b) = J(0), where R
is the nuclear Larmor frequency. This is a necessary
condition for an expénential approach to thermal equilibrium
of the spin system (3).

The ion-ion potentials used by Sholl are those developed
by Appapillai and Williams (22). The interionic potential

is given by
oo
v(r) = 4" ( _2_/ 1*\; (q) singr dq 1.18
n g q

where q is the wave number, z* the effective charge and F§
the normalised energy wave number characteristic. This
particular form of pseudopotential was chosen because it is
thought to be quantitatively correct at near neighbour
distances. Warren uses the potential given by Harrison (23)
which is the same as that used in an earlier paper by Sho ll
(21) and which is thought to be stfictly only correct for

large r.
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Having chosen the form of.the;.interionic potential the
calculation of qu is reduced to an evaluation of the
correlation function of the electric field gradient given by
equation 1.14. The ensemble average in 1.14 is formed

using 1.15 from which we obtain
‘Fm(t-t)F("m >(t) =;%15Kfl.(t- t))umf(fﬂ(t)) 1.19

where r, (t-1) is the position of the Ath. ion at time t-t
relati;; to the nucleus at the origin. The property u;
= u_p has been used.

Equation 1.19 may be divided into two parts. The first
contains those terms where A=y and may be called the two-
particle term. The second part or three-particle term
contains the cross products,i.e. A#p

Now equation 1.14 may be expressed as

Bym (1) =//um(f‘_o_)“;'(I_‘jp(fg_'t"‘f;\_'t)ff_g_ dry 1.20

where P(ro,t-t;r1,t) dr  dr, is the probability of finding

an ion in dro at T, at time t-1 and an ion in drq at Tq at

time t given that there is one at the origin throughout.
Obviously P = Ps + Pd where the two-particle or self-term,

P

g9 is the probadbility of finding the same ion at T, at

time t-1 and at r, at time t relative to an ion at the
origin and the three-particle or different term, Pd’ is the
probability of finding en ion at r  at time t-1 and a

different ion at T4 at time t relative to an ion at the

origin.



11

If the motion of ions at T, and r1 were relative to a

fixed origin in the liquid the function P could easily be
written in terms of the van Hove functions G and Gs. These
are defined as follows. G(r,t) is the probability of finding
ions at the origin at t = o and at r at time t and Gs(g,t) is
the probability of finding the same ion at the origin at
time t = o and at r at time t. Because the oriéin in the
definition of P is a moving nucleus some approximation is
required in relating P to the van Hove fuhctibns. Further
approximations are also necessary since P includes three
body correlations while the van Hove functions are, by
definition, two body correlation functions.

The correlation functions Gs(i,t) and G(r,t) are
related to the dynamic structure factors Ss(g,w) and S(q,w)

by the Fourier transforms,

o o _ |
S (@) = 1 L ar [ey(z,1)e (@ E0gr 121
and |
{ i(g.r~wr)
= » - 0_“wt
8(g,0) %H-lodt /[G(s,t) ple ar 122

where p is the number density of the liquid.

Sq (qyw) determines the cross-section for incoherent
scattering of thermal neutrons and S(g,w) determines the
cross-section for coherent scattering of neutrons or light.
When a neutron is scattered the momentum transfer and energy

transfer that occur are given by hq and ho.
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Using the relations 1.21 and 1.22 with suitable approx-
imations for Ps and Pd the integrals required in evaluating
J(o) in equation 1.12 can now be evaluated. Sholl finally

obtains the following expressions for the relaxation rate,

fo's) o s}
0 - Q00
for the self-term alone and
® o 5 fo's)
Ry = 28 [d°1, (q)quS(q,w)Ss(q,w)dw 1.24
0" -
for the self and different terms.
2
B = 2n (2I+3) |eQ(1- Yo )| p 1.25
151¢(2I-1)
and
7 2 n :
I.(q) = /r vo(r)g (r)J,(arldr 1.26
3 .

where g(r) is the radial distribution function and Jz(qr)
is a Bessel function.

Sholl suggests the following approximations for R1
4 or 1

q
(A) expression 1.24 with n

(B) expression 1.24 with n = 1 and Sd in place of S plus
expression 1.23,.
In order to calculate qu the final integrals in 1.23
and 1.24 must be evaluated. Although Ss(q,w) and S(q,w)
can, in principle, be measured by inelastic neutron scattering
in prac tice there are experimental limitations on the range
of q and w that can be investigated and on the liquid metals

that can be studied. Sholl uses a model for SB(q,w) given

by Egelstaff and Schofield (23) which is
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Dqg/ Y

5.(0,0) = ¢ 2, K, lo2:022]Y) .20
: Iwg+(qu)§|% v

where D is the diffusion constant and K1 is a modified

Bessel function. y is a parameter that can be determined
by fitting Ss(q,m) to the experimental data that exists for

large q and is given by

y = kT/M"D | 1.28

where T is the temperature and M* is the effective mass of the
ion. Barker et al. (24) have shown that the experimental data
for Ga and Rb can be described by 1.27 and 1.28 with M*
equal to the actual mass of the ion. ,

Sho-ll uses several theoretical expressions for S(q,w)

the simplest of which is the Vineyard approximation (25)

S(q,w) = S(q) Ss(q,m) 1.29
where S(q) is the structure factor given by
oo ,
S(q) = / S(q,w)dw 1.3%0
-0

Sho 11 discusses the integral involving Ss(q,w), in
1.23 as follows, If the motion. of an ion were random in
the sense that at time t it had no memory of its previous

motion then
Gy (z,t) =/Gs(,1:,t1)Gs(z-il,t-t1)dr1 1.3

for all t such that o<t, gt Putting t, =3t the Fourier

transform of 1.31 atw= o gives

(oo} ‘ ‘
/Ssg(q,w)dw = 3 5_(q,0) - 1.32
_m .
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This can be verified by taking the classical diffusion limit,
i.e. small q of 1.27 which is

- [ 2

0°+(Dg")°

Expression 1.32 is not true for the general form of
Ss(q,w) but Sholl states that the most significant contri-
bution to the integral occurs over a range of values of g
that is sﬁfficiently small for it to be a good approximation.

Using the Vineyard approximation the final integral in

1.24 can now be expressed as

e o) Q0
[ sCa0)s(ai0)d0 = 5Ca) [ 5.%(q,0)dw = 35(a,0) .34
-0 - Q0

Warren's final expression for qu is

o o]
R, - 8 [2°5(a,0)14%aq 1.35
0

which is the same as Shall's result given by 1.24 and 1.34
with n=1. Warren arrives at his expression by assuming that
Ss(q,w) and S(q,w) are Lorentzians of equal width. He quotes
Skold et al. (26) who compared careful measurements of Ss(q,w)
for liquid Ar. They found that both were closely Lorentzian
but the widths at half meximum differed by roughly 20 to
320%. However, Warren states that including a correction
for such a difference in width only alters the final result
for qu by about 2%.

As pointed out by Sholl the pseudopotential theory
used to derive the ion-ion field gradient v2(r) while valid

outside the ion cores does not accurately describe the

conduction electrons within the core at the origin.
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Furthermore, the field gradient due to these electrons should
not be multiplied by the ionic (1-y,) since this is only
valid for field gradients arising from charges external to
the core. Sholl éstimates that the values of (1-ya,)'v2(r)
he uses could lead to an error in the absolute value of qu
of at least an order of magnitude. Therefore there seems
little point in discussing in detail the calculated values

of R1q and we shall consider the variation of R1 with

q
temperature predicted by the theory.
The product v2(r)gn(r) in the integral 1.26 for In(q)
is a highly peaked function and because of this the predom-

inant contribution to R comes from ions that are "nearest

1q
neighbours"” to the relaxing nucleus. If, as suggested by
Sholl, vz(r)gé(r) is approximated by a 6 function then
In(q)=An32(qo) where o~r,, the cutoff of g(r) at small r.
The integrands in 1.23 and 1.24 are then products of the
damped oscillatory functions Ine(q) and either the monoton-
ically decreasing function Ss(q,o) or the damped oscillatory
function S(q,0).

Now the parameters that can influence the variation of

R, ., with temperature are the density, the potential, the

1q
van Hove functions Ss(q,o) and S(q,0) and the radial distri-
bution function. The effects of temperature variations in

the density and potential should be small and can be neglected.
According to Sho ll, over the important region of integration
Ss(q,o) is well approximated by the diffusion limit and its
temperature variation‘will therefore be determined by that of

D'q. Furthermore, the theoretical models chosen by Sho 1l
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for S(q,0) suggest that it also has a p~7 dependence on
temperature. This is easily seen for the Vineyard approxim-
ation given that the structure factor, S(q), is independent
of temperature. Warren, however, chooses a theoretical
model for S(q,0) given by Cocking and Egelstaff (27) which
predicts a quite different temperature variation. According

to this model S(q,0) is given by

5(q,0) = 12 [__T] [sq(g)|3/2. 1.36

where M is the atomic mass and N12 is a parameter determined
by fitting the expression to neutron diffraction data. Now
if S(q) is in&permdent of temperature 1.326 predicts that
S(q,0) will have a temperature dependence of the form T'%.

Now the experimental data of Page et al (28) shows that
for liquid Gallium, over the relevant range of q, S(q) is
indeed almost independent of ‘temperature and that the
frequency width of the Lorentzian quasi-elastic peak
increases approximately as 23/2 so that S(q,0) decreases at
about that rate. This is slightly slower than D'q since. for
liquid Ga D is approximately proportional to T2. It certainly
is not as slow as the variation predicted by Cocking and
Egelstaff's model and for this reason their model is thought
to be a poor representation of S(q,0).

The important effect on g(r) of increasing the

temperature is the decrease in r_. Because of the steepness

0

of v2(r) for small r even a small decrease in r, could

cause a significant increase in In(q) and hence qu. Using
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the model of the hard sphere temperature variation of Pro-
topapas et al (29) Sho 1l calculates for the case of Sb
a 20% increase in R1q when the temperature is increased by
about 300°K. Diffusion constants typically increase by a
factor of two or three over this range. Therefore the
theory predicts that the overall dependence of qu on temper-
ature should be that qu will decrease with increasing
temperature but not quite as fast as D'q. This is a similar
result to that obtained by Sholl in his original paper (21)
where the motion of the ions was assumed to be adequately
described by the diffusion approximation.

Sholl's original theory has been extended to cover the
case of a liquid binary alloy by Titman (30) and Claridge
et al (31). These authors point out that, if three particle
terms are important, then the magnitude of qu for either
ionic species of an alloy will be a non-linear function of

its fractional concentration. They also predict that qu

will have a similar temperature dependence in alloys as in
pure metals.

At the time the present studies were undertaken experi-
mental data on the variation of qu with temperature in
liquid metals and alloys was available from both conventional
nuclear magnetic resonance measurements and also frbm
measurements using the more recently developed perturbed
angular correlation (pac) methods. In the pac experimsnts
nuclear reactions with a pulsed particle beam are used to
produce and align isomeric nuclear states leading to an

anisotropic distribution of emitted radiation. Using the
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spin rotation method the lorigitudinal relaxation time is
determined from the envelope of the y-ray intensity
modulation caused by an external magnetic field perpendicular
to the beam detector plane. An alternative method depends

on the measurement of the time-dependent y-ray anisotropy
in‘successive time windows with respect to the beam pulse,.
The pure metal data obtained using nmr and pac methods was

as follows.

Measurements.of R1 for the:69Ga and71Ga spins in liquid
gallium made by Cartledge et al (32) and Kerlin and Clark
(%23) using nuclear magnetic resonance indicated a variation
of R1q with temperature that was much slower than that
given by the inverse of the self-diffusion coefficient.
However, measurements of the relaxation rate of trace amounts
of ’Ge in liquid gallium made by Riegel et al (34) using
the perturbed angular correlation method showed a relatively

1

rapid decrease proportional to D™ .

Similar contrasting results existed for liquid mercury.

201

Using nmr Cornell (35) had shown that qu for the Hg

spins decreased slowly with increasing temperature. However,

206

using the pac method on trace amounts of Pb nuclei in

mercury BrHuer et al (36) reported that R1q decreased as D™ .
Measurements of R1 forngSb andquSb using nmr had
been reported by Warren and Clark (16). Their measurements

showed (37) that qu decreased with tempepature but not as

fast as D'1.
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Nmr measurements of R1 in 209Bi had been reported by several
groups (37), (38), (39). The most recent measurements,which
agreed well with the earlier ones were those of Heighway

and Seymour (29) who found from their analysis that qu
decreased with temperature at a rate given approximately by
D"q. However, their interpretation of their results involved
the use of the Korringa relationship to estimate qu.

The temperature dependence of R1 in 1ﬂ51n had been
measured by many different groups using nmr (40),(41), (42),
(16), (43). Again extraction of qu from the measured R,
involved the use of the Korringa relationship and mainly due
to errors inherent in this method of interpretation no
general agreement had been reached on the temperature variation
of qu.

It can therefore be seen that there was a great deal of
ambiguity in the pure metal data and no clear indication of
a general trend in the variation of qu with temperature.

As with pure metals the temperaturé dependence of Rﬂq
in liquid alloys was also not well established. Although
many attempts had been made to measure the temperature
1q in alloy systems (31), (16), (38), (39),

(43), (44), (45) most of these used the Korringa relationship.

dependence of R

This method is particularly unreliable if the results are td
be compared to the pure metal case since, although the
Knight shift can be measured in the alloys, changes in the
core polarisation and orbital terms and X(a@) asre difficult

to estimate. The only data that did not depend on the
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Korringa relationship for its interpretation wasthat of

12150 anda 3233p in InSb and that

Warren and Clark (16) on
of Cartledge et al (45) on %%a in Ga-In alloys. In both
of these systems alloying produced a marked increase in the
rate of variation of R1q with temperature compared with the
relatively slow variation in the pure metal.
In consideration of the experimental data outlined

above it was felt that further work would be useful in the
following areas. Firstly, in order to obtain relisble data

on the variation of R1 with temperature in a pure metal

q
it was decided to re-examine the variation of R1 with
temperature for the 199Hg and 201Hg spins in liquid mercury.
In principle, mercury offers an experimental situation for the
very accurate determination of R1q using the nmr technique.
Furthermore, the work of Cornell (%5) had been limited to a
small number of data points. Secondly, an attempt was made

to obtain further accurate data on the variation of qu
with temperature in liquid alloys in order to check whether

the rate of variation of R,  is faster in an alloy than in

1q

the pure metal. ~
In the course of this work further pac results were

published which removed much of the ambiguity in the earlier
data. Pac measurements in liquid In (46), Pb (47), Sn(48),
Bi (48) and Hg (49) all showed a slow variation of qu with
temperature. An examination of this work together with our
Hg results and the other reliable nmr data revealed that in

a number of liquid metals qu varied with temperature

approximately as T'%. Further, the new pac data on InSb (46)
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showed that the variation of R with temperature for In

1
was much faster in the alloy th:n in the pure metal. It
therefore seemed appropriate at this stage to re-examine
the theory of quadrupole relaxation to see if a new version
could be produced which predicted the now well eétablished

slow variation of R1 with temperature in pure metals and the

q
relatively faster variation in alloys.
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CHAPTER TWO

Nuclear Quadrupole Relaxation in Liquid Mercury

2.1 Introduction

In order to observe the behaviour of nuclear quad-
rupolar relaxation in liquid metals it is necessary to reduce
the observed relaxation rate, R1, into its components qu
due to the magnetic hyperfine interaction and qu due to the
electric quadrupole interaction. There are two methods of
doing this. One is to use the modified Korringa relationship
to estimate qu. As shown in Chapter 1 this method is
unreliable and leads to uncertainty in the interpretation
of experimental data. In the case of a nuclear species which
has two isotopes with observable resonances another method
exists whereby it is possible to unambiguously separate the
magnetic and quadrupolar contributions.

For the two isotopes A and B the total relaxation rates

are given by (1)

A A
R1A = R,]m + R,‘q 2.1
B B
Now A >
25 I | %

19
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where F(I) = _ 2T +3
1<(21-1)

A Al 2
B B
Rﬂm Yn

A

Equations 2.1, 2.2, 2.3, and 2.4 can be solved for qu,

B A B
Im? qu and R1q in terms of the observed values of R1,

B
F(I) and the ratios (Yn / Y,) and (QA/QB)' Obviously this

R

method is most accurate when the two isotopes have widely
differing gyromagnetic ratios or quadrupole moments and when
the two contributions are of similar magnitude. Table 2.4
shows the metals to which the two isotope method can be
applied. From this it will be seen that mercury has a
particularly fortunate combination of nuclear parameters.

The 199Hg isotope has spin I = } so that its relaxation is
entirely magnetic and there is no quadrupole contribution.
The other isotope, 2O1Hg, has a relatively small gyromagnetic
ratio but an appreciable electric quadrupole moment, This

combination of parameters is likely to lead to R, >R

1q 1m
and, in fact, Cornell (2) showed that ~ 90% of the observed

rate of this isotope is quadrupolar in origin.

Thus mercury appears to offer a particularly advantageous
set of experimental criteria from which to determine qu and,
more importantly, R1q. Unfortunately the 2O1Hg resonance
is very weak and because of the large quadrupolar contribution
its relaxation rate is rather rapid. These factors make the
actual experimental measurement of R,1 difficult and this is

discussed in the next section.



Table 2.1

Metals to which the two isotope method is applicable,

Yo Q
Metal Isotope Spin I ( -13.1 (xe10724 Yﬁ/Y: QL/QB
3 2
x10”) cm”)
Rubidium | CO°Rb 5/2 2.583 0.31 0.295 2.067
8T 3/2 8.754 0.15
Copper €3cu 3/2 7.091 -0.15 0.9%3 1.071
65cu 3/2 7.596 -0.14
199
Mercury Hg 1/2 4,783 0.0 2.708 0o
201g, 3/2 1.766 0.5
Gallium 69Ga 3/2 6.421 0.2318 0.787 1.586
Mea 3/2 8.158 0.1461
Antimony | '%'sp 5/2 6.402 -0.8 1.847 0.8
1234y, 7/2 3,467 1.0
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2.2 Experimental Method

2.2.1 The Continuous Wave and Pulsed n.m.r. Techniques

Nuclear magnetic resonance can be observed using either
continuous wave or pulsed methods. In both of these the
radio frequency field for exciting the resonance is supplied
by surrounding the specimen by a coil whose axis is per-
pendicular to the main field. -

In confinuous wave n.m.r. the r.f. field is continuously
applied to the sample while the external magnetic field is
swept linearly through the resonance condition. The effect
of the resonance on the coil is to produce a change in its
impedence related to the complex nuclear magnetic
susceptibility,

X= X =1iX 2.5

The change in inductance of the coil is proportional to X'
and its effective series resistance varies sas X“ (3).
Basically, two types of circuit are used to detect these
changes. In bridge circuits the coil is made part of a
baslanced bridge network so that small changes in the
impedence of the coil upset the delicate balance. In
practice the bridge is adjusted to leave a residual un-
balance in either amplitude or phase. In the former case the
change in X" is detected and an absorption curve is

obtained. For liquids this has a Lorentzian form, the

normalised line shape function being given by
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g(H) = n~ > 2.6
1+ (H-H )® y°1,°

This is the usual way in which a bridge circuit is operated.
A residual unbalancé in phase detects X' giving the dispersion
curve. The other type of ciréuit used is the marginal
oscillator; Here the coil containing the sample is made
part of a self-oscillating circuit, Jjust sufficient feed-
back being provided to sustain the oscillations. Under these
conditions the amplitude of oscillation is éritically
dependent on the resistance of’the coil eand hence is very
sensitive to the efféctive change in resistance associated
with a nuclear magnetic resonance. Marginal oscillators
therefore give a pure absorption signal proportional to x".
The dispersive component of the susceptibility produces a
frequency modulation of the oscillator which is not detected.

In order to improve the sensitivity of continuous wave
spectrometers the technique of audio-frequency modulation
of the external magnetic field is used. On the slow sweep
by which the resonance is traced there is superimposed a
sinusoi dal variation in the audio range. This gives an
a.f. output from the r.f. receiver and detector suitable
for selective amplification. The a.f. signal is finally
rectified in a phase sensitive detector and ampiifier.

The output of the phase sensitive detector is proportional
to the éoefficient of the first harmonic term in the Fourier

expansion of the resonance line shape. If the amplitude

of the magnetic field modulation is small compared to the
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width of the line then this output will be proportional to
the derivative of the resonance curve (4). The distance
between the peaks of the derivative cﬁrve is then equal
to the width, 0H, between the‘points of maximum and minimum
slope on the absorption curve. For the Lorentzian curve
given by 2.6 this is |

6H = 2 2.7

5 \’Tg

One can therefore, in principle, determine the spin-spin
relaxation time, T2, from such a'meésuremént of the linewid@h.‘
In practice, however, the natural linewidthris broadened
owing to the inhomogeneity of the external magnetié\field.
T, in 2.7 must then be replaced by an effective spin-spin

(] 0] * (]
relaxation time T, given by

A =1 +1 : 2.8
T 0
where T2‘ is determined by magnetic field inhomogeneity.
In pulséd n.n.r. the external magnetic field ié kept

constant and r.f. power at the Larmor frequency is applied
to the sample in very short pulses. ‘

| 1f, és in section 1.1., we let the external magnetic
field lie along the»Z-difection then the éxciting field,
H,, lies in the x-y plane. In the steady state the spin
system will have a nett magnetic moment, Mo, directed
along z. When a pulse of duration At is applied this has
the effect of tipping Mo‘away from the z aiis such that a,

the angle between MO and the axis, is given by
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a = vnH1 At 2.9

Thus for a n/2 pulse, M is turned into the x-y plane and
for a n pulse into the negative z direction. It is assumed
here that’H1 is sufficiently large for the condition At & ,
T1, T2 to bé satisfied otherwise relaxation effects will
occur within the duration of the pulse.

Following a n/2 pulse, M  rotates in the x-y plané
inducing a signal in the coil which, in a single coil
apparatus , acts as both transmitter and receiver coils.,

The signal is observed to decay exponentially and is termed

a free induction decay. The time constant of the decay is

Tg as defined in 2.8. This experiment is, in fact, analagous
to the continuous wave method outlined above, an exponential
in the time domain being related to a Lorentzian in the
frequency domain by the Fourier transform.

The spin-lattice relaxation time, Tq, can be measured
by using two pulses in succession. For liquids, where
T, = T5, 8 r1—r1/2 pulse sequence is used. The first pulse
tips Moyinto the negative 2z direction. After a time t’the
second pulse rotates the magnetisation into the x-y plano
where it produces a free induction decay the height of
which will be proportional to the'magnitude of the longitud-
inal megnetisation, M(t), at time t. By varying t the
growth of M(t) can be observed and T1 can be found from the

equation

M(t) = M, [ 1 -2 exp (-t/T,‘)‘] 2.10
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The direct method of measuring T,l using pulse techniques
as outlined above is the most straight-forward method
available and therefore to be preferred provided it can
be applied to the particular spin sfstem in which one is
interested. Unfortunately we could not use :this method for

2O1Hg spins in liquid mercury for the

measuring 'I‘1 for the
following reasons. Firstly, the magnitude of the exciting
field, H,, of our existing pulse spectrometer was of the
order of 15g. Using 2.9 the length of a |1/2 pulse for this
isotope is calculated to be about 60 ps. Because of the

large quadrupole contribution 'I‘1 for 201

Hg is about 25 pus.
Thus the condition At & T, was not satisfied. Secondly,
the recovery time of the receiver of the spectrometer was
sbout 50 ps. which was again not negligable compared to T1.
Thirdly, our spectrometer was, overall, not sensitive enough
to be able to display the 201Hg resonance on an oscilloscope
thus making it difficult to set up experimental parameters
such as the external magnetic field and the r.f. pulse -
lengths. It was therefore decided that the most stréight-
forward approach would be to measure the linewidth of the
201Hg resonance in a continuous wave experiment. Since in
a liquid T,= Te,'T1 may be obtained from the line-

width corrected for broadening by the inhomogeneity of the

external field.

2.2.2. Experimental Arrangement

It was decided to use a bridge system for the continuous

wave experiments rather than a marginal oscillator. This

choice was made since, because of the weakness of the 201Hg
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resonance signal, we required a high r.f. power level in
order to increasé the signal size and also a high frequency
stability as we proposed to average the signal over long
periods of time. Both of these are more easily achieved
with a bridge. A block diagram of the complete spectrometer
is shown in figure 2.1. Its components were as follows.

2.2.2.1. The r.f. Transmitter ,Bridge and Receiver

A crystal controlled oscillator was employed as a high
stability frequency generator the output frequency of which
was 6.0 MHz with a stability of 1 part in 106. This was
built using a 12 MHz crystal oscillator from Meon -Electronics
Ltd. The design included a Schmitt trigger circult which
clipped the output of the érystal oscillator before
frequency division, thus removing a certain améunt of noise
from the signal. The outpﬁt from the oscillator was 2v.
peak to peak. This was amplified in a power amplifier consis-
ting of two stages, a C class stage employing an EL260 valve
driven by an A class stage which used an E180F valve. The
maximum output from this transmitter was 20v peak to pesak.

The bridge used was of the form first employed by
Anderson (5). The bridge circuit and component values are
shown in figure 2.2. This type of bridge was chosén fdr two
reasons. Firstly, the phase and amplitude controls are
completely orthogonal. Resistive balance is obtained by
adjusting the capacitors C and the reactive balance is

]
controlled by the capacitors C . Secondly, because it does
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not employ a dummy circuit its long term stability is
better than many other bridge arrangements. The residual
unbalance was set to 200mv. using a Hewlett Packard Model
175A high freguency oscilloscope.

The receiver consisted of three stages of r.f. amplif-
ication followed by a diode detector. Field effect transistors
type 3N201 obtained from Texas Instruments were used because
of their low noise characteristics. The input to the
anplifier was tuned as was the drain of the first stage.

The overall gain of the amplifier was ~104. The crystal
oscillator, transmitter, bridge and receiver were all made
in the electronics workshop of the Physics Department under
the supervision of Dr. R.L. Havill.

2.2.2.2. The PSD and Averager

The output from the receiver was fed first to a Princeton
Applied Research Model JB4 phase sensitive detector and
from there to the digital signal averager made by Tracor.
The averager consisted of an NS-544 digital memory
oscilloscope together with a series 500 power supply and
display unit.
2.2.2.3. The Magnet System and Magnetic Field Modulation

The magnet system used consisted of a Varian V-73200 12
inch electromagnet'with V7800 basic power unit and a Fieldial
Mark II field regulator which uses a Hall effect probe
attached to one of the pole caps to detect and regulate the
magnetic field. Using pole caps with a face diameter of
431" and an air gap of 1.5" the magnetic field was continuously

variable up to a maximum of about 25kg. The maximum set
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field used in these experiments was 20.8465 kg. which is the

resonant field for the201

Hg isotope at a frequency of
6.0 MHz. At this field the performance épécifications}of the
system indicate field regulation within 20 mg. for a * 10%
line voltage or load resistance change and long term field
stability to within 200mg. for a + 500 temperature variation.
The specifications also givé the magnetic field resetability
as within 20mg. The field fegulator was used to provide
automatic sweeping of the field with a variety of sweep
ranges and sweep times,

Magnetic field modulation was prbvided by two coils of
26 swWwg copper wire conﬁected in series. Each coil was 22.5 ¢m
in diameter and had 135 turns giving a resistance of 40 0O,
The wire was wound onto strong brass formers which were
securely fastened onto the pole tips. In order to minimise
vibration and so reduce modulation pick-up the coils were
potted in glue to form a soiid unit. The modulation
frequency was derived from the phase sensitive detector and
was set at a nominal 127 Hz. to avoid mains pickup. An
H & H 50 watt power amplifiér was used to provide the
modulation current. The current was measured using’an
avometer and the voltage across the coils monitored on an
oscilloscopé.

2.2.2.4. The n.m.r. Probe and Temperature Controller

The n.m.Tr. probe used is shown in figure 2.3. Because
of the weakness of the 2O1Hg resonance a sample tube with a
large internal diameter of 12 m.m. was used. This fitted

snugly into the r.f. coil which was 22 m.m. long and
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consisted of‘52 turns of 28 swg enamelled copper wire.
The coil was potted in araldite cement and held firmly in
position in the outer, cylindrical, brass jacket by refrasil
tape. The probe itself was securely bolted to a rigid
platform located above the magnet gap. In this way the long
term stability of the bridge was improved and effects due
to modulation pick up minimised. Temperatures above room
temperature were obtained using a heater coil wound non-
inductively around the brass jacket. The coil was made from
%.5m of Eureka wire with a total resistance of about 30 ohus
and was insulated with refrasil sleeving. The temperature
of the sample was measured using a platinum/platinum - 13%
rhodium thermocouple with its Jjunction placed between the
r.f. coil and the sample tube. The thermocouple acted as
a sensing element for a "Eurotherm" model DHS/PID/SCR
temperature controller. The heater current was supplied
by a variac which was set between 10v and SOV depending on
the temperature required. By using this temperature controll-
ing equipment the sample temperature was kept within 1°C of
the required value. For temperatures below room temperature
the heater was removed and the outer brass tube surrounded
by a glass dewar. By filling the dewar with a mixture of
ice and water a sample temperature of 700, constant to 1°C,
was obtained. Similarly, filling the dewar with liquid freon
maintained the sample at a steady temperature of -28.2°C.
Liquid freon was obtained from cans of "Arcton 12" from
ICI Limited. In the latter case the temperature was measured

using a copper/constanton thermocouple and potentiometer.
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2.2.%. Sample Preparation

Because of the r.f. skin effect it was neceésary to
have the sample in the form of small particles dispersed
in an insulating medium, the diameter of the particles
being smaller than the skin depth of the r.f. field.

Using a value of 98.4. 1078

ohms metres for the resistivity
of liquid mercury at 50°C the skin depth was calculated to
be about 200 pm. The sample was made by rapidly shaking
99.9999% pure mercury obtained from the Koch Light Company
with liquid paraffin in a conical flask and decanting the
resulting suspension into several large tubes., After a
short time the tiny mercury particles settled at the botfom
of the tubes and the clear liquid paraffin'was returned to
the conical flask. This was repeated until the required
amount of sample was obtained. Microscopic analysis showed
that the sample consisted of particles with diameters of the
order of 50pm. The sample was finally transferred to the
sample tube which was sealed off under argon at 1/3 atmos-
pheric pressure. Samples prepared in this way were found to
be sufficiently stable for prolonged experiments below about
150°C.

2.2.4. Calibration of Magnetic Field Modulation

As stated earlier, if the magnitude of the magnetic
field modulation is small compared to the resonance linewidth
then the output of the phase sensitive detector will be pro-
portional to the derivative of the resonance line shape.

If the modulation is large compared to the linewidth this
is no longer true., In particular the linewidth obtained from

the experimental derivative is larger than the true linewidth.
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Modulation effects in magnetic resonance have been discussed
by several authors (6), (7), (8), (#). Smith (4) points out
that if the modulation amplitude is much greater than the

true linewidth then the measured linewidth is approximately
equal to the peak to peak modulation amplitude and suggests
that this may be used as a basis for modulation calibration.
In fact an analytical treatment based on the work of Wahlquist
(see Appendix I) shows that, if bﬂmeas represents the measured
linewidth, H; the modulation emplitude, and 6H the true line-
width then

OHmeas = 2H ~0H 2.1

provided H > bH.

Expression 2.11 was used to calibrate the 'mo dulation
in these experiments. The two set fields were 7.6953 kg.
for the 199Hg isotope and 20.846%5kg. for the 2O1Hg isotope.
A sample of Li metal was used to calibrate the modulation at
the lower field and the deuterium resonance in deuterium
oxide doped with ferric chloride was used at the higher field.
The resonances were observed using a variable frequency
marginal oscillator the output of which was fed to the phase
sensitive detector and from there to a pen recorder. The
frequency of oscillation was measured using a timer counter .
TC8 made by Advance Instruments. Care was taken to ensure
that each sample occupied a central position in the
magnet gap. The procedure used was as follows., First the
various magnet sweep widths to be used were calibrated by

obtaining three narrow resonance lines on the pen recorder.
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Then the linewidth of the sample was measured as a function
of peak to peak modulation voltage. The corresponding
modulation current was also recorded. Figure 2.4 shows

the results obtained at the low field. The straight line
is a least squares fit to the top 13 points. The negative
intercept gives a linewidth of 0.67g for the Li sample.

By shifting the line up by this amount the graph of modulation
amplitude against modulation voltage shown in Figure 2.5
was constructed. In practice, the modulation amplitude was
set using the modulation current as this could be read more
accurately than the voltage. Unfortunately, the current
could not be used directly in the calibration procedure as
the avometer scale was found to be non-linear.

2.2.5 Measurement of the Linewidths

The linewidth of 199Hg resonance is about 5g. and that
of zqug about 25g. The resonances were observed using
magnetic field sweep widths of 50g. and 250g. respectively.
Each sweep took 30s. and the output time constant, v, of -
the phase sensitive detector was 0.3s. If T represents the
time taken to traverse the linewidth, then, for both isotopes,
T/t ~ 10 and hence asymmetry in the lineshape due to & time
constant effect was avoided. The magnet was swept continuoudy
in the sawtooth mode and a negative going ramp derived from
the field regulator was used to trigger the averager about
2s. after the beginning of each sweep. The averager was run

in the internal advance mode at a sweep speed of 50 ms. per




40

channel. Since only half of the available memory of 1024
channels was used each averager sweep lasted 25.6s. There
was thus a delay of about 4s. between averager sweeps during
which the magnetic field fell back to its initial value.

Averaging times were about 4 hr, for the 201

Hg line and
1 hr. for the stronger 199Hg line. The bridge was balanced
to detect the absorption mode. Because of a slow drift off
balance it was hecessary to rebalance the bridge after
every 8 scans with the averager temporarily halted. 1In
this way the dispersion signal never exceeded 10% of the
absorption signal in any one sweep and the average over
many sweeps was not large enough to give any detectable
asymmetry -to the lineshape.

The linewidth was obtained using a computer program
to fit the expression given by Wahlquist (6) to the observed
derivative curve. The program automatically corrected for
modulation broadening. However, this was never more than
0.5g. in ~ 25g. for the <O Hg line although we did allow it
to rise to 1.5g. in ~ 5g. for the 199Hg line in order to
save averaging time. A small amount of field dependent
modulation pick up was observed at the high field which was
taken into account in the program by adding a sloping base-
line to the Wahlquist formula. An oufline of Washlquist's
theory together with details of the computer program are

given in Appendix I.

2.2.6 Measurement of the Knight Shift and its Variation

with Temperature

The program was also designed to give the position of
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the centre of the resonance lines and using this information
relative changes-.in the Knight shifts of the isotopes could

be calculated. The absolute values of the Knight shifts

were determined as follows. First, an averaged mercury signal
was obtained on the first half of the averager memory.

Then, using the marginal oscillator, three narrow signals

from a sample of doped D20 accurately placed in the central
position in the magnet gap previously occupied by the mercury
sample were obtained on the second half of the memory.

During this procedure the magnetic field was kept on in order
to avoid errors in resetting. The position of the centre of
the mercury line was found using the program and the value

of the magnetic field at this position calculated using the
deuterium signals. Deuterium oxide was used to provide

markers for both mercury isotopes. On compar ing the positions
of resonances from'the.Dzo sample relative to signals from

a Li metal sample a small paramagnetic shift in the deuterium
resonance was found. The shift was equivalent to an error

in gyromagnetic ratio of 0.008%. This was taken into account
in the calculation of the mercury Knight shifts.

Finally, the inhomogeneity of the external magnetic
field over the region occupied by the mercury sample was
determined by placing the same size of sample of doped Dé)
at the same position in the magnet gap and obtaining resonances
at the high and low fields. The sample was doped to give a
natural linewidth of about 0.1g. The linewidths at the two

SELFHELD
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fields were obtained using the computer program. It was
found that the magnetic field contributed 0.7g., to the
Zqug line and 0.5g. to the 199Hg line,

2.3 Experimental Data

The variation with temperature of the linewidths of the
201Hg and 199Hg isotopes of liquid mercury is shown in
Figure 2.6. The linewidths are corrected for modulation
broadening and broadening by the inhomogeneity ofjthe magnetic
field. | |

The total longitudinal relaxation rates for the two
isotopes were derived from the linewidths using equation

2.7 which may be written as
R, = y@? y, of | 2.12

since Tq = T2. The value of the gyromagnetic ratio for the
199Hg isotope, Y1?9 = 4,7830. 107 =7, 3-1., was taken
from the n.m.r. méasurements of Proctor and Yu (9). The
gyromagnetic ratio of the 201Hg isotope was calculated
using the magnetic moment ‘- given by Cagnac and Brbssel (10)
which gives yZO" = 1.7658. 10% 71, g~1. Figure 2.7

shows the varfation with temperature of the relsxation rates

of the two isotopes,

The magnetic contribution, R
201

1m® to the relaxation rate

of the‘ Hg isotope was calculated from the relaxation

rate of the 199Hg isotope using equation 2.4, which is

=55 n = 0. 2.13
Rﬂm vi;;

n
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This was then subtracted from the total relaxation rate of the
201 201

. 1q L]

It is easily seen that relaxation via the quadrupole inter-

Hg isotope to give the quadrupole contribution, R

action is the dominant relaxation process for this isotope.
Also the quite different dependence on temperature shows
up the different origin of the relaxation in the two isotopes.
The quadrupolar contribution is seen to decrease slowly
with temperature whereas the magnetic oontribution has the
characteristic linear variation with temperature associated
with the Korringa relation. .

The Knight shifts of the '2°lg and < Hg resonances
were found to be 2.424 + 0.002% and 2.43 + 0.01% respéctively
at a temperature of 20°C. The gyromagnetic ratios given
above were used in the calculation of the Knight shifts.

201Hg isotope is

The poorer error in the value given for the
due to the lower signal to noise ratio and wider line,

The variation of the Knight shift with temperature is
shown in Figure 2.8. The figure was constructed by calculat-
ing the shift of the metal resonance relative to its
position at 20°C. The experimental error for each point
here is greater than that in the absolute shifts given above.
This is because the magnet was switched off between runs and
we relied on the resefting action of the Fieldial to give
the same value of magnetic field at the start of the sweep

for each run. Unfortunately, the magnet's behaviour at the

time of these experiments was well below specification in
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this respect. vThe straight line represents alk dK/4aT =
- 20.10"2 X~ with respect to an estimated Knight shift of
2.45%% at the melting point.

These results have been reported in the publications
by Havill et al (11) and Marsden et al (12).

2.4 Discussion

For both the 199Hg and 201Hg isotopes of liquid mercury
we have measured the Knight shift, K , together with its
dependence on temperature and the temperature variation of
the spin - lattice relaxation rate, R1. These measurements
have been made in the course of our principal aim which

was to determine the variation of the quadrupolar relaxation

rate, qu, with temperature for the 201Hg isotope. There-
fore, in what follows, while concentrating on the interpret-
ation of qu, we attempt a simple discussion of K.

2.4.1 The Knight Shift and its Temperature Dependence

Blumberg et al (13) have measured the Knight shifts of
the 499Hg and 201Hg isotopes and obtained 2.724 + 0.005%
for 199Hg and 2.722 + 0.005% for 2Q1Hg. From these measure-
ments they deduced a small hyperfine structure snomaly al-
though this is difficult to justify in the light of their
experimental error. It is not easy to explain the difference
between their data and ours. However, our value for the
Knight shift of the199Hg isotope is in close agreement with
the 2.418% found by Havill (14). Further sgreement is found
in the data quoted in a review article by Seymour (15) where

a value of 2.42% is given for the Knight shift of 199Hg,
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together with a temperature dependence ok g% of -15.
d

102 °¢ -1,

The theory of the Knight shift in liquid metals is very
complicated and for details the reader is referred tothe
review articles by Seymour (15) and Titman (16).

From Chapter 1 it will be remembered that the direct
Fermi contact interaction leads to a Knight shift given by

eq. 1.6 which is

K, = %QXP<|UJ(O)I2>F 2.14
This may be more conveniently written as

where Q is the atomic volume and QPp is the probability
density of the conduction electrons at a nuclear site
averaged over the states at the top of the Fermi distribution.
The Pauli susceptibility for independent electron spins Xp
is replaced in 2.15by X which takes into account the enhance-
ment of the Pauli value by the presence of many body
electron-electron interactions in the Fermi gas (17).
Although the Knight shift has been measured with fair
accuracy for most metals in both the liquid and so0lid states
it has proved difficult to test 2.15 in a general way. The
important quantities Pp and X appearing on the righthand
gside of 2.15 have been measured independently only in a few

cases, notably the alkali metals, and then only in the solid

state. Good agreement between theory and experiment has
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been obtained in the cases of Li and Na (18), (19).

For other metals the direct term of PF must be
obtained from pseudopotential theory and combined with a
value of X determined from some independent calculation.

As a first step in the evaluation of PF the single or-
thogonalised plane wave calculations of Mahanti et al (20)
and Heighway and Seymour (21) have met with some success.

A further refinement may be introduced by allowing for the
effect of scattering of the conduction electrons by the

ion-cores. This principle has been adopted in a number of
papers concerned with the evaluation of Pp (22), (23) (24).

The Knight shifts of most liquid metals are weakly
dependent on temperature. Almost all measurements have been
made at constant pressure so that the temperature coefficient
reflects the effect of the volume expansion of the liquid.

The effect of the variation of X and Pp may be found from

i), -208), 5 (),
p X ) D Pp T D

The intrinsic dependence of X on temperature is very small
and the main change occurs through the effect of the volume
expansion on the density of states and the electron-electron
enhancement. Ford and Styles (25) have found that (1/X)
(AX/BT)p lies between -2. 10~° and -3, 10=2 -7 for a number
of liquid metals. The temperature coefficient of PF must
be calculated from the appropriate pseudopotential theory.
As observed with liquid mercury the temperature coef-

ficient is often negative for polyvalent metals. The
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calculations of Ford and Styles (25) for Ga, Cd, In, Sn,
Pb and Bi and Halder (26) for Cd, Sb, and In give values
for (1/K) (be/bT)p close to the experimental magnitudes.
As far as the author is aware only a simple calculation of
the temperature variation of the Knight shift in liquid mercury
based on the single orthogonalised plane wave method has been
carried out (15) giving a theoretical value of -7. 10”2 °C'1
for 1 (dK\ .

t (59)

2.4.2. The Magnetic Relaxation Rate

The linewidth of the 199Hg resonance has been measured
by Cornell (2) and Blumberg et al (13). Cornell's measure-
ments were made at three temperatures ranging from 233°K
to 563°K but Blumberg's measurement was restricted to room
temperature. Our linewidths agree with Cornell's within
the experimental error but our room temperature linewidth
is considerably smaller than that given by Blﬁmberg et al.
This could possibly be explained by overmodulation of the
resonance line by these authors.

Our data may be analysed using the modified Korringa
relationship introduced in Chapter 1. Equation 1,11 relating
the contributions to the Knight shift and relaxation rate
produced by the s- like part of the conduction electron
density may be written as

2

Rig = 4nkp v,

K 2 TK(a) (nyeg.)‘1 2,17

It was pointed out that 2.17 describes the contributions

from the contact term in the hyperfine Hamiltonian and the
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core polarisation induced by the s-like conduction electrons.
It is not, however, valid for contributions from the p-

core polarisation and the orbital term. Equation 2.17
containsthe correction factor K(a) which, as stated
previously, is difficult to calculate. Accurate calculations
have only been made using an interacting electron gas model
for the alkali's where K(a) is found to lie between 0.6

and 0.7.

The solid line in figure 2.7 shows a fit to the relaxation
rates of the j99Hg isotope using 2.17 with our measured value
of K, including its variation with temperature, and assuming
K(a) = 0.81. Thus a possible conclusion is that the Knight
shift and relaxation rate are simply produced by the s-
terms. However, 0.81 is perhaps a rather large value for
K(a) which lies in the range 0.67-0.75 for most liquid metals.
Our value of K(a) may be brought into line with these values
by allowing quite small contributions from non-s terams.

For example, if these are taken to be of the order of 1/10
of the magnitude of the observed shift and of the opposite
sign K(a) is reduced to 0.7. Non-s terms of this magnitude
seem reasonable in theflight of the presently available
theoretical calculations (27). Until some way can be found
to separate the non-s terms the true value of K(a) will
remain a matter of conjecture.

2.4.3 The Quadrupole Relaxation Rate

Cornell (2) also measured the linewidth of the <O 'Hg

resonance at three different temperatures 265°K, 317°K and
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556°K and Blumberg et al (13) measured the linewidth at room
temperature. Our linewidths are about 20% smaller than
Cornell's but much qloser to Blumberg's result., It is not
possible, from the published material, to discover the reason
for these differences. However, Cornell's analysis of his
results taken in conjunction with his measurements on the line-
width of the 199Hg isotope lead to a temperature variation
of qu which is in agreement with our own.

Further information on the variation - of R1q with temper-
ature in liquid Hg has beenrobtained using pac techniques,
A direct comparison of absolute values of quadrupoler relax-
ation rates obtained using nmr and pac methods is not possible
because of a lack of precise values for the nuclear quad-
rupole . moments of the excited nuclear states.

The earlier measurements of BrHuer et al (28) on trace

amounts of 206

Pb nuclei in liquid mercury were interpreted
as representing a variation in qu with temperature pro-
portional to the reciprocal of the diffusion coefficient.
This is a much faster trend than that observed in our
experiment. However, there is considerable scatter in their
data, the observed relaxation rate varying by as much as a
factor of two between different measurements at the same
temperature. Greater weight should be attached to their

202Tl nuclei in

recent, more accurate, measurements on
liquid mercury (29). 1In this data the decreasing trend in

qu is much slower and generally in asgreement with our own.
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As pointed out in Chapter 1 the major problem in cal-
culating the absolute value of qu lies in the calculation
of the electric field gradient and antishielding. In
particular S holl (30) points out that, in his theory, the
effects of the conduction electrons inside the core at the
origin are inaccurately described. These problems have been
discussed separately by Lodge (31) andSchirmacher (32).

Now there are essentially two approaches to the inter-
action of an ion core in a metal with all other charge. One
is to take the point charge interaction of the ion cores and
add separately to this the interaction with the conduction
electrons. This is basically the approach used by Lodge.
The other approach, as used by Sholl, is to regard the
electrons as screening the ion cores and to describe the
potential at a given site as a sum of screened potentials
from all other ion-core positions.

In the introduction to his paper Lodge states that the

efg in a metal may beafalculated from the equation (33%)
q = / [1+ v(r)] q(r)dr 2.18
0

where g(r)dr is the contribution to the efg from charge,
other than that of the local ion core, lying between r and
r + dr and y(r) is the radial dependent antishielding
factor (34)

Equation 2.18 may be simplified to give (35)

Q= Q¢ (1"Ym) * Q4c (1-R) 2.19

where Q) ¢+ is the efg at a nucleus from conduction electrons
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and ions outside the ion core surrounding the nucleus, the
lattice region, and Qe is the efg from conduction electrons
within that ion core, the local region. The factors Yoo
and R are the Starheimer antishielding factor and the core-
correction factor respectively and take into account the
distortions induced in the ion-core surrounding the
nucleus in question.

The very involved theory of Lodge eventually produces
an expression for q that is considerably more complicated than
2.19. However, when approximations are allowed in order to
make calculations using model orthogonalised wavefunctions,
it is found that for Be and Mg metal the values of q given
by Lodge's expression differ from those given by 2.19 by only
10%. Thus, while being a valuable theoretical paper this
treatment goes little way in helping to accurately calculate
efg's in liquid metals. Furthermore, it is difficult to see
how Lodge's treatment may be incorporated into the pseudo-
potential approach used by Sholl.

' Schirmacher (32) has calculated the efg in Ga and In
using a pseudopotential theory that attempts to accurately
describe the effects of the conduction electrons inside the
core at the origin. The results of 'his calculations differ
significantly from those of Sholl (30) especially in the
degree of overlap between the efg function and the radial
distribution function. This will be discussed in detail in

Chapter 3.
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Since the magnitude of qu depends on the strength of
the electric field gradient, the effective antishielding of
the quadrupole moment and also critically on the degree of
overlap between the efg function and g(r) it is obvious that
a comparison between theory and experiment in absolute térms
is not possible at this stage. We therefore turn to a dis-

cussion of the variation of R1 with temperature.

q
It was shown in Chapter 1 that Shol l's theory predicts

that qu

slower than D"q. Line A on figure 2.7 represents a variation

will vary with temperature in a way which is slightly -

proportional to 0~ for liquid mercury. The self diffusion
data of Meyer (36) was used to constfuct this line. It
will be seen that the temperature variation of qu is much
slower than that predicted by the theory. A much better

fit to the data is obtained with line B which represents a
variation with temperature proportional to T"%.

As shown in figure 2.9.the variations of qu with
temperature in liquid mercury and a number of other liquid
metals are directly comparable. The results illustrated in
the figure, taken from nmr and pac measurements, were chosen
because they were thought to be particularly reliable. As
shown in the introduction to this chapter the most accurate
values of qu are obtained when measurements can be made on
two isotopes with very different gyromagnetic ratios or

quadrupole moments, one of the isotopes having a relatively

large quadrupole contribution. These criteria were satisfied
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for the nmr measurements on Ga(37), Sb(38), our own Hg(12)
and the pac measurements in liquid Sn(329) which were made on

M4y ana 122sp.  Relisbk

excited states of the two isotopes
measurements of R1q using a single isotope can only be

made if qu > qu. This condition was satisfied . in the
case of the pac data on M7sp in liquid In (40) and is
particularly true for the pac measurements in liquid Pb(41)
and Bi (39) which were made on trace amounts of 2O7Po, the
relaxation o which is almost entirely quadrupolar in origin.

The line drawn through the data represents T‘% end it
can be seen that the quadrupolar relaxation rates in all
seven metals appear to fit a relation of this form up to
temperatures equal to sbout twice the melting point, Tm‘

It is believed that the controversy that has entered into the
interpretation of R1q in liquid metals has arisen because

in some cases the experimental error was too large and in
others the criteria for the separation of qu indicated

above were not satisfied.

Nuclear quadrupole relaxation is brought about via the
interaction between the nuclear electric quadrupole moment
and the local electric field gradient which is made randomly
dependent on time by thethermal motion. The nuclear Larmor
period is of the order of 10'85.compared to a typical
correlation time for ionic diffusion in a liquid metal of

148

about 10" "'s. It is therefore easy to see why one would .

expect the dominant contribution to R, to come from trans-

1q
lational diffusion of the ions leading to a predicted temper-

ature dependence of 1/D.
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However, the experimental data is obviously at vériance
with this prediction. The theories given by Sholl (30) and
Warren (43) relate R1q to the ionic motion through the van
Hove function S(q,0). At small q, corresponding to movements
over large distances, i.e., translational diffusion, this has
a Lorentzian form and varies with temperatures as 1/D (30).
However, at high g,that is for movement over relatively
small distances, it has the ideal gas form varying with
temperature as %,

Since the experimental data dem.onstrates that qu
varies with temperature as 'IT'J‘r this suggests that the main
contribution to S(q,0) comes from the region of k space where
q. is relatively large. We have therefore re-examined the
theory of quadrupolar relaxation in liquid metals and in

the next chapter a new version of the theory is presented

which goes some way in explaining the experimental data.
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CHAPTER THREE

Theory of Nuclear Quadrupole Relsxation in Liquid Metals

2.1 Introduction

It was shown in Chapter 1 that Sholl's theory (1),
which treats the liquid metal as a collection of N mobile

screened ions, leads to a quadrupolar relaxation rate given

by
2
R1 = §§2I+§2§egé Jfo) 3.1
1 41°(2I-1)n
with
m .
J(me,) = /(Fm(t)F;l.(o)> e~ 1Moty 3,2
)
o
Fp(t) = ) u(x; (v) 3.3
i=1 -
um(ri)= CVZ(ri)Y2m(Oi(pi) 2.4
c = (1=y_ ) (4n % .
Yoo (Eg) 3.5
and : v,(r) = r%;(% dz(r)) 3,6

The angular brackets denote an ensemble aversge, Yoo

is the Sternheimer antishielding factor, PO is a spherical
harmonic normalised to unity and v2(ri) is the radial electric
field gradient function derived from the electric potentiel,
v(r), at the nucleus at the origin due to an ion at the
position r

iv 040 @50
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It was also pointed out in Chapter 1 that the ensemble

average contains two types of terms, i.e.,

<Fy () (02> = < (t)) (i<°>)>
Lu( 1 (9)ug (,<o>)> 3.7

Ll
The first term on the right-hand side of 3.7, called the

ﬁair term, describes the correlations of the electric field
gradient at the nucleus at the origin due té the same ion

at two different times. In the second term, the triplet ternm,
the gradients at the two times are from different ions.

These ionic configurations are shown in Figure 3.1.

The ensemble average may also be written as

<FE (00> = [fuy(modug, (2)P(zy1054,8)dr, dzy 3.8

where P is the probability of finding a pair of ions within

Ty * dr, of each other and the same pair or another pair

within r, + dr, of each other at a time t later. The origin
of T, a;E.rq_;; fixed on the same ion throughout the motion
(figzie 3.53

If, for the moment, the screened ion model is assumed
to be correct, the problem becomes one of evaluating the Jjoint
probability function, P, and the radial electric field
gradient ve(r). An exact expression for P has yet to be
discovered and consequently an approximate form must be used.
The simplest apprdximation for the pair terms, i.e. for the
self-part, P, of the joint probability function, is to write

Pg as the convolution of two van Hove functions, i.e.



r4(0) < £ \)

ri(t) : ri(t)

4
/

Figure 3.1 Schematic Representation of the Self and Triplet Terms in Equation 3.7.



Figure 3.2

S—
(v)

(a)

Schematic representation of the relative motions of ions described by the
probability function P. The ion at the origin has a s0lid circle at the
centre. (a) represents the pair term and (b) the triplet term.
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P, = ps(ro)/Gg(f_g_-_{p_,t)c‘rs(ig_-r_q,t)ifg 2.9

where the initisl probability of finding the pair r, apart
is given by the pair distribution function g(ro) ZZ& the
atomic density p. The subsequént motion of each ion is
represented by the self-part,Gs(gﬁt); of a van Hove correl-

ation function,G(r,t), defined by

G(r,t) = Gd(g,t) + Gs(g,t) , 3.10

The trouble with this approximation is that it does not have
the correct symmetry with respect to the interchange of Ty
and T, (2). Furthermore, it does not take into account ;;&
corQZIation in the motion of the two particles during the
interval t, i.e. the convolution implies independent motion
of the ions. Froma computational point of view the latter
difficulty results in the integral in the expression 3.8
over the variable T4 having no cut off for Ty =0 and,
consequently, an infinitely large value. This result is
equivaleht to the physical condition that the two particles
occupy the same position at time t. |

Torfey (3) sought to overcome both difficulties by
arbitrarily restricting r, and T, to have magnitudes gfeater
than a where a was some nearest distance of approach of the

ioné and g(ro) was taken as unity for ry>a and zero for
r, < a. Oppenheim and Bloom (4) working from the equations
of motion of particles in a classicalliquid arrived, with

certain plausible approximations, at the result
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Py = ps%(ro)g%(r,,)/Gs(f_g_-i,_,t)Gs(r_g_—ﬁ,t)gr_g_ 3.1

which satisfactorily disposes of the sygmetry problem and
also overcomes the difficulty associated with the zero
value of Tqe Howevér, the original equations of motion
from which fhey worked are only valid in the hydrodyneamic
limit of G_(r,t) where it is a solution of the diffusion

equation. Since this approach gives R, proportional to

1
p~ (5) the Oppenheim and Bloom solutioz does not appear to
be a suitable starting point from which to explain the presenﬁ
data. Neither Torrey, nor Oppenheim and Bloom give the
triplet term.

Warren (6) and Sho1l (5) have suggested that both the
pair and triplet terms may be contained in the expression

P = pg(ry)e(rg) [ Golrpo-ry,6)G (-, t)dr, 3.12
0

Heére -the pair term is given by the self part, Gs(rg-ro,t)
of the van Hove function G(rz-ro,t) and the tripl;;.;;}m
by its distinct part, Gd(re:;;T;). The correlations in
the motion, neglxxed in t;;.;;ﬁvoiution, are supposed to be
taken into account in the static term, g(rq).

Unfortunately equation 3%.12 does not encompass the
correct balance of pair and triplet components at time t = o

(5). At t = 0, 3.12 gives

P = pg(r,yle(r,) 6(3—3‘_1%928(%)8(1‘1)8( Itg=241) 3,13
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whereas the exact form of Pat t = o is,

- og(r )o(ry 1)+p(3)(ro,r4) | 3.4

Thus the triplet term is satisfied in the superposition
approximation, where the static three particle distribution

function, p(B), is given by

0P (xyir) = o8z, )8(r,)eCIgrq1) 3.15

but the pair term is clearly dverestimated by a factor g(r).
Sknoil (5) attempted to correct for this discrepancy by
using the Oppenheim and Bloom expressidn for the pair term
and equation 3.12 with Gd insteéd of G for the triplet term

but this resulted in a negative value for R

1q°
Equation 3.12 for P leads to the result
qu 28 fq 12(Q)dq fS(q,w)s (q,w)dw 3.16
0
where B = 2n(21+5) [ gg1-n32] , 3.17
151°(21-1) |
and I(q) = ]pve(r)r g(r)Jg(qr)dr o R 3,18
0

which has been used in a number of calculations. The
essential features of equation 3.16 are, firstly, the
integral over I(q) is a series of positive peaks in k space,
their spacing being determined by the small r cut offvin
g(r) and, secondiy, the integral over thé dynamid structure

factors is very approximately equal to 3S(q,0).



63

Since S(q,0) is zero at small q the first peak of
Iz(q) does not enter the final computation (5). According
to Sholl (5) and Warren (6) the main contribution to the
integral comes from q values near the principal peak in
S(q). Thus the variation of Rﬂq with temperature appears to
be primarily dependent on the behaviour of S(q,0) near the
principal peak and this is not well known.

As outlined in Chapter 1,Warren (6) chose to use the
theoretical model for S(q,0) given by Cocking and Egelstaff
(7). According to this model S(q,0) is given by

3/

S(q,0) = ng [ M ]% [SQS]M 5.19
n B q

where M is the atomic mass and N12 is a parameter determined

by fitting the expression to neutron diffraction data. The

term T'% appears explicitly in this expression and, since

this is the principal temperature dependent term,Warren

obtained essentially the correct variation of R, with

1q
temperature in his calculations on liquid Gg. Similar
calculations by Halder (8) which included a more recent
form of v,(r) (9) adopted the same model for S(q,0) and
arrived at somewhat similar dependences on temperature for
In, Hg and Ga.

In contrast Sholl (5) has asrgued, on the basis of the
enmpirical expression for Ss(q,w) given by Egelstaff and
Schofield (10) (and given in equations1.27 and 1.28 in
Chapter 1), that 5(q,0) near the principal peak is approxi-

1

mately proportional to D~ and consequently the predicted
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variation of qu with temperature is as T"2.

The temperature dependence of S(q,w) is generally not
well known. However, a few measurements have been made at
various temperatures for Ga. (11) (12) (13) (14). The
results from the various investigations are not entirely
consistent. Gliser et al (12) (see also Copley and Lovesay
(15)) have measured S(q,e0) at 305°K and 1253°K. They find
that, near the principal peak of S(q), S(q,0) is reduced by
a factor of more than 10 between the lower and higher -
temperatures, while the width in w increases by about 5.

Thus the integral

(¢ +]
/Sg(q,m)dm
oo

decreases by a factor of sbout 20. This is approximately

proportional to T2,

Now in the same region of k-space the data of Page et
al (14), taken over a much smaller range of temperature,
may be interpreted as follows. The static structure factor,
S(q), given by .

S(q) = joS(q.w)dw . 3.20

~o
is found to be almost independent of temperature and the

frequency width of the Lorentzian quasi-elaétic peak increases

3/2

approximately as « Thus 8(q,0) must be approximately

-3
proportional to T ]2. Since, for a Lorentzian,

(00} :
[s%(a,0)a0 = 35(q,0) 3,21
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this integral must decrease at the rate T'B/2 also. This is
a rather weaker dependence on temperature than that given
by the data of Gl8ser et al but it appears to confirm that
the rate of decrease of S(q,0) is likely to be much faster
near the principal peak than is implied by the expression
used by Warren and Halder.

S;(q,w) cannot be measured for Ga but the theoretical
work of Barker et al (13) points to a function with a
Lorentzian dependence on w with a width slightly greater
than that of S(q,w) and a dependence on temperature (over a
very narrow range) of approximately -2 for Sé(q,o). Barker
et al also observed that the Egelstaff and Schofield form for
Ss(q,u) could be used to interpret the experimental data

for S(q,w) through the Vineyard approximation (16),
S(qyw) = 8(a)8,(q,w) 3.22

For the remaining liquid metals of Figure 2.9 one must
use the Egelstaff and Schofield expression for Ss(q,w). As
Sholl (5) has pointed out the straightforﬁard application
of this expression coupled with the Vineyard approximation
is likely to lead1to the prediction that R1q

varies with
temperature as D” '. The Egelstaff and Schofield expression

gives the correct form for Ss(q,g) at small and large q, i.e.,

‘s (q’ ) I - e 125_.-2’ q < . 3.25
S — ——_?
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S (q,w)_.< mB )%exp (—m&ﬁ) R q2> 1 3.24
s — —] —
2nq 2q mBD

where B = kBT. How reliably the model describes the
transition between these limits is difficult to assess.
Some aspects of the dynamics of liquids have been interpreted
successfully by it.

In particular the self<part of the intermediate
scattering function

o.2] .
Po(a,t) = [ awe™"s(q,0) 3.25
~00 '

for liquid argon near the principal peak in S(q) as obtained
from molecular dynamics calculations and the Egelstaff -
Schofield model have been found to be consistent with each
other (15).

To sum up, the failings of the Sholl and Warren cal-

culations are

(i) R1q is predicted to vary with temperature approximately

1. This is very different from the T'% variation shown

as D
by the experimental data.

(ii) The correct balance between the pair and triplet con-
tributions is not maintained and, when this is corrected for,

negative values of R, are obtained.

1q
It is arguable that (i) and (ii) are related. The pair

term contains a considerable contribution from smali q values

below the principal peak as well as contributions at higher

q. The main contribution to the triplet term comes almost
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entirely from below the principal peak and is negative.

Thus, if the pair term is overestimated, as it is in expression
3.12., then there will be a substantial spurious contribution
to the predicted qu which comes from that region of k space

1 temperature variation is to be found.

where the D~
With these points in mind it was argued that a modified

form of the theory should be sought which would better preserve

the balance of the pair and triplet terms and would therefore

give an improved prediction of the temperature variation of

qu. |

3,2 Derivation of the Theoretical Expression for R1

, k ‘ | q
We note first that the quantity which determines the

rate of change of the z-magnetisation of the spins under the
condition of extreme narrowing depends only on the perturbing

Hamiltonian at time t = 0.(17). Indeed we can write

R, "~<lJ€,(o)|2§> w 3.26

whefe‘tc is some "correlation time" in which the correlation
function of the random Hamiltonian has become small with
respect to,ﬂ/woi We do not follow this method of calculation
here but merely make the point that the correct initial

valﬁe of the field gradient is{important.

In the manner of Sholl and Warren we write

S

——

o
P = pg(ro)f(ro,r,‘)/Gs(re-ﬁ,t)Gé(L-ig,;t)dra 3,27 ‘i
; 0 . —_— :

where the initial value is given by "pg(ro)ﬁ(ro-rq) and the
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assumption has been made that the interdependence of the
motion of the two particles between t = 0 and t = t can be
represented by some static function dependent only on the
initial and final relative positions. The only certain
knowledge we have of f(ro,r1) is that it must be zero for
T4 less than the nearest distance of approach of the ions.,
Thus the simplest possible form of f(ro,rq) which gives
the correct initial value is that it takes the value unity
when r, is greater than the cut-off in g(r) and is zero

for T, less than this., Thus we write for the pair terms,
»
<Fm(t)Fm.(0)>pair - //dro dr, um(fg)u;.(fl)pg(ro)f(rq)

/.drgG (r2 1,t)G (r ,t) 3.28
and the pair component of J(mmo) becomes,

Tp(mog) = p fat [fu (e up, (zq)e(r,)2(ry)ar, dzy

‘/G (r ,t)G (re-r ,t)dr 3.29

As Sholl (5) has pointed out the integrals may be
partially performed by substituting the Fourier transforms

of the van Hove functions. These are

Gy(mamer®) = ()7 [ 209 faa,8, Cagroppe” (22 Eeredr

3,30
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and a similar expression for Gs(r -rq,t). The substitution

gives
Jp(mwo) = p/ei<w1+w2-m“o)tdt

x ‘[/um(ro)u;.(rq)g(ro)f(ro)dro dr,

b'e //dwqdw2//dq1 dqgss(-q_l,wq)ss(g_aaw2>

x MU Intele) [t TataTodar, s
The integrals over t and s give & functions from which

it is possible to reduce the double integrals in w0, and

aQ 9 to single integrals in w and q with the result that
2
I (mo,) = (,51) p [[unlzedug: (zqddr, arg(r,)e(r,)

x /dw /ggss(g,w)ss(g,m-mwo)eig'(f_g'f‘_1> 3.32

The assumption that the relaxation may be described by
a single rate as implied by equation 1.3 in Chapter 1
requires J(0) = J(w,) =J(2w ). This extreme narrowing
condition is satisfield if D, is much smaller than the
frequency width of the dynamic stucture factor. This width
is typically 10128—1 in liquid metals compared t0ub ~ 1085'1
so we may make the approximation that Ss(q,m) and Ss(q,w-mmo)'

are coincident and Jp(mwo) is independent of the index m.
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ig.r -ig.r
Also e -2 and e —J-may be expanded in the form
SHEEL)> ()17 (80, 1 (8,9, )3; (ar) 3.33
m -

and the angular integrals performed. Since u(ro) and u(rq)
may be written in terms of spherical harmonics with 1 = 2
the-orthogonality leads to a reduction in the number of terms

in the summation., The final result is
— > I 2
Jp(mwo) = 4nc p/rg(ro)v2(ro)ro Jo(ar ddr
0

® o
x 701‘(::',])va(r,l)I',12,j2(qr,])dr,1 /q- dq /Ssz(q,w)dm
° o ® 3,34

The triplet terms may be treated in a similar fashion.
They may be written,
»*
<R (00D yoier = ffar, amquy(ryduti (2))Bg(xg,037426)
3.35

where Pd is the probability that there is an atom within

dr, at r, from the relaxing nucleus at t = o0 and that there

will be a different atom within dr1 at T, at t = t. In

Figure 3.2(b) there are atoms at

o and fi with respect to

the atom at the origin., Thus the average over the initial
positions is given by the triplet distribution p(5) (ro,r3).
In the éubéequent motion the atom at r, moves to some other
point in the liquid while the atom at-Ei moves to position
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r, with respect to the atom which was at the origin at t = o
;;a is now also in a different position. All of these
motions are taken to be independent of each other sand the
final position of the atom originally at r, is assumed not

to influence the motion. Only the correizgion of the atom
originally at fé and finally at fl and the atom at the origin

is taken into account through the term f(r1) as in the pair

term. Thus,

Pa = 100) [[ 0% e 20000 (xgr 20 (xgm 02y anp

%.2%6
From this the triplet part of J(o) is given by
J (o) = /dt /&f(rq)ug.(ﬁ) /Ef_gum(f_g)
p's //b(a)(ro,iz)Gs(re-fi,t)G (rg-ro,t)dr2 Eﬁi
3.37

As in the case of the pair terms the angular integrals

may be performed if the van Hove functions are replaced by

their Fourier transforms.

The angular part of 9(3)(ro’£2) may be explicitly
displayed by means of the exact relation (18)

0(3)(39,32> = 02‘%81(1‘0,1‘3)131(0080) 5.%8
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where 8 is the angle between T, and fﬁ’Pl(Cosa) is the
Legendre function and gl(ro,r5) is a function of the radial
magnitudes. of the position vectors. As will be shown later

the 1

2 symmetry of the quadrupole interaction picks out
the 1

2 term in equation 3.3%8 and the measurement of the
quadrupole relaxation rate appears to be the only experiment
which depends on this term. Thus this expression is of no
immediate use in calculating qu since the form of ge(ro,ra)
is not known. The alternative, but approximate form, is the

superposition approximation i.e.,

NE

RELY pzs(ro)s(rB)s(r@) 5.39

where 8<r03) g(lro-r3|) and Tz = r02+r32-2r0r3cos6

Within the superposition approximation Jt(o) may be written

J. (o) = p? /dt /_c_i_xif(rq)u'(f_l) /drog(ro)u(_z_‘_g)

X //g(r5)s(ro3)Gs(f§-£2,t)Gs(f_g—f_g,t)_cgg E}_

The integration then proceeds as for the pair terms
after substitution of the Fourier transforms of the van Hove
functions. The expansion of the resulting exponential is then

made and the integration over the angular parts of q performed.

The result is

J, (o) = '16n2 2.2 dr,.r 2f(r Wo(ra)is(ar,)
t —_——(-;3‘?—/11 17V2 ¥/ d20ar

x /qedq /dmsse(ql,w) /vz(ro)g(ro)g(r5)s(ro5)

x ng(aowo>Y§m(65<p5)J2(qr5)§£2 dry 3.40
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Now the angular part of the final integral is

/ Y, (8 _0,)sind do dd / B(ro5) o Oy05)5in0,d8,d0, 3.4

This angular integral may be solved by the use of well-
known relationships between the spherical harmonics (19)

and, according to Sholl (5) the result is

n
2n/g(r05)P2(cost))sin0d8
0

Thus finally,

Jt(o) 8"0202fdr 2(r1)f(r1)32(qr1>
0

o o
X /q2dq/dm852 (qyw) drov2(ro)g(ro)ro2
0 0

Zoo
0o

!
x / dng(rE)r5232(qr3)/g(roB)P2(z)dz 3,42
0 2

where z = cos®f.
Since the only significant angular term in ;ﬁa)(ro,fz)

is Pg(cosﬁ) then J (o) may be re-written to include the
exact form of pca)(r :_5) in the following way.

Firstly the superposition approximation is replaced

by the exact form by putting

g(ry)e(rs)e(ryz) =§ 81 (r,rz)P) (cosb) 3,43

Thus ?g(rOB) is no longer the pair distribution function

but is now defined by the equation
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g(ry3) = EZgl(rorB)Pl(cosa) 3,44

1
g(r,)8(rz) 1

The right-hand side of equation 3.44 is then substituted

into the last integral in the expression 3.42 for Jt(o) i.e.

n
g(r_ z)P,(cos8)sindds = g (r r,)
0/ 0372 (T )g(r5) /Z 1¥70%3

X Pl(cosﬁ) Pa(cosa)sinﬂda 3.45

Because of the orthogonality of the Legendre function

the only non-zero integral is
./Ib(cosa)Pg(cosﬁ)sinadG =‘% o ‘ 3,46

Thus Jt(o) becomes for the exact ;ﬁB)(rorB)

o) ' @
J,(0) = 16n 2.2 [ar, v (r,)r 2f(r )i~(ar.,) q2dq
t -—%—-0/1211 1732 1_40

© ®
/clmssg(q,m)/drovz_,(ro)ro2 fdr582(ror3)r3232(qr3)
0 0 0

3.47

The same result may be obtained directly by substituting
%.%8 into 3.37 and integrating.
The quadrupole relaxation rate may therefore be written

in the superp051tlon approximation as

® : '
, Rﬂq‘s 26‘/q?[Ip(q)+2nplt(q)]quZSS2(q,w)du ; 3,48
0 .
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where

6] Qo
I() = /f(r,1)v2(1'1)r,,z.j‘;_,(qrq)dr,I ofg(ro)vz(ro)rfjg(qro)dro'
0

3.49
Qo (@ o >
I.(q) = /f(r1)vz(r1)r1232(qrq)drq /g(ro)vz(ro)ro ar,
0 0
|
x jpg(rébazjz(qra)drB./g(rOB)Pg(z)dz %.50
0 2 ‘
and
: eQ(’\—Jv NE
B = 2n(2I+3)p of f ] 3,51
151°(21-1) n '

When the exact form of p(B)(ror3) is used It(q) must
be replaced by

® 2 2
I.(q) = %/drqu(r,])rq f(r,l)Ja(qr1)/droro va(ro)
0 : 0
7 2
ple /dragz(rora)r3 Je(qr3) 3.52
0

Equation 3.52 cannot, of course, be used in computation

as the form of g2(ror3) is not known.

%,3., Calculation of the Temperature Dependence of R1q

The calculation may proceed only in the superposition
approximatidn. Thevthree basic quantities required are
v2(r),'g(r), and Ss(q;m). As we have already pointed out
the last of these is most significantly dependent on

temperature. Also since, for the metals of interest here,
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very few measurements haﬁe;been made thch give the variation
of Ss(q,m) with temperature over the wide range of g-values
required, we must use either the Egelstaff and Schofield
empirical expression or a theoretical model.

Of the latter, the most promising are based on the Mori
technique, as explained by Copely'and Lovesay (15); However,
although an expression for Ss(q,w) may be arrived at (15)
it contains parameters which are not readily quantified. 1In
contrast, the Egelstaff and Schofield formula is a closed
expression for Ss(q,m) which depends only on the atomic mass
and self-diffusion coefficient apart from q, w and the
temperature. Thié expressipn, therefore, appears to be the
only viable form of Ss(q,w) for our purposes.

The Egelstaff and Schofield expression may be written as
- . 1
nSS(q,w) = ck2D[w2+(q2D)2] exp (chD)K1i c[m2+(q2D)2] ;
3.53
where ¢ = mD/kBT and K1 is a modified Bessel function of the

first kind whose asymptotic behaviour is such that, as in-

dicated in equations 3.23 and 3.24, Ss(q,w) has the correct
limits at large and small q.

The integral that appears in the expression for R1q is

‘/Ssg(q,w)dw and with Ss(q,m) given by 3.53% this has

been evaluated numerically by Sholl (5) to give, to within 1%,
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X
/Ssz(q,w)dw - CeTK () [O.582+X\/§ 3. 54
2n 0.582+x

where x = cDK® is a dimensionless parameter and Cequ(x)

is nSs(q,o). Thus our expression for R1q may be written as

(0 o]
- 2l1- 2
Ry, = 6/ da a [Ip(q)+2np1t(q>]ss(q.o)[o.582+cnq2\/2] 3.55
0 0.582+cDq

The final term varies from 1 to V2 as q goes from zero to
infinity and is not very sensitive to temperature. It in-
dicates the departure of the Egelstaff and Schofield expression

from the Lorentzian form of Ss(q,w) for which
T 2
/SS (qy0)duw = '}Ss(q’o) 5.56
-0

In the ideal gas limit Ss(q,w) is Gaussian and then

.57

AN

(0 9]
[8.2(aw)a0 = 1 5,(a,0)
Joo \/é- ‘

It is clear that qu as given by equation %.55 will
have the T'% variation characteristic of the ideal gas limit
if [Ip(q)+2ant(q)] are such as to drive the significant
part of the integral to large q values. An examination
of Ip(q), for example, immediately showsthat this can only
be the case if the spatial extent of the products v2(r1)
f(r,])r,]2 and v2(ro)g(ro)ro2 are small compared to the

interat omic spacing aj; the principal peék of the static
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structure factor occuring near the wave vector 2n/a.
According to Schirmacher (9) the electric field gradient

around an ion in a liquid metal may be written as

u(r) = uy (v, 4(r) | . 3.58

In his calculations the contribution from the ionic charges,
uion,”Was assumed to derive from point charges at the ionic
sites and the conduction electron contribution,ucond,was
calculated from pseudopotential theory. Using a local
pseudopotential of the Ashcroft (20) empty core type the

result for v2(r) is, in atomic units,

- e(q

2
v,y(r) = BZ[%%!“ Q Jg(qr)cos(ch)< 1_- 1)] 3.59

where the dielectric constant, in the absence of exchange,

is glven by

£(q) = 1f§E§ [1+<%%nf>ln ] - 2.60

nq

s

where n = q/2kF,kF being the value of the wave vector at the

Fermi surface. Rc is an adjustable parameter.

The significant feature,of expression 3.59 is that the
second term peaks in the neighbourhood of r = a and is
negative. At larger r it is of the ofder of 1/I,B, but
oscillates slightly. Thus, near tor = a, va(r) falls very
rapidlj below 1/r5 and then executes small amplitude

oscillations about zero. These general features are
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illustrated in Figures %.3 to 3.5 for Hg and Ga which were
obtained using‘numerical integration to evaluate the second
term.

In earlier calculations Schirmacher (9) and Halder (8)
obtained similar resulfs for Ga and In but found that the
rapidly decreasing part of vz(r) came at r < a and
consequently only the slowly decaying oscillatory part of the
field gradient was assumed to have any significance.- How-
ever, the position and strength of the peak in v2(r) depends,

albeit slightly,on the choice of RC. Now R and for that

)
matter, the equivalent pérameters of other model single ion
potentials, are‘dften chosen to fit the experimental values
of the eléctron;transport properties, for example, the
resistivity. They are not related directly to the ion-
core as measured by the interatomic spacing. It might be
argued, therefore, that the appropriate value of Rc for the
resistivity is not necessarily the best choice to give the
electric field gradient. Halder andSchirmacher obtained
their values of R, from Cohen and Heine (21) and the
resistivity was the principal experimental data used to
determine Rc.

We have therefore investigated the effect of adjusting
R, and the reSults are shown Figures 3.% to %.5. Figure 3.3
shows the results obtained for Hg with Rc = 0,91 and 1.62.

The lower‘value is considered to give the best fit to the

resistivity data, but clearly the larger RC gives a better
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Figure 3.3 Plot of vz(r) aguina: r for liquid mercury using
the parameters ky = 0.7231 a.u,  and R, = 1.62 a.u, Curve a
represents vz(r). b represents 1/r3 and ¢ represents the
second term in the square brackets in expression 3.59. Curve
d represents g(r) for 1iquid mercury. The dotted curve,e,

represents vz(r) obtained with R, = 0.91,
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Figure 3.4 Plot of va(r) against r for liquid mercury using
kr = 0,72 a.u.". Curve a represents vz(r) with Rc = 1,5,
the dotted curve,e,represents v2('r) with R = 1,05, The rest
of the notation is the same as in Fipure 3,3,
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Figure 3.5 Plots of vz(r) against r for 1iquid Ca with
kF = 0,8776 a.u."1 and various values of Rc. For curve a
Rc = 0,84, curve b, Rc = 1,05, curve c, Rc = 1,26,
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overlap with g(r) for our purpose. In Figure 3.4 are shown
the results obtained for Ga with Rc = 1,05 and 1.5. The
former value fits the resistivity. It will be seen that
for both values overlap occurs but this is not as marked as
in the Hg case with RC = 1.62.

Figure 3.5 shows how ve(r) changes for Ga when R
takes the values 0.84, 1.05 and 1.26. The steep part of
v2(r) does not change a great deal but rather the long range
part diminishes as R, increases. According to Schirmacher's
calculations the inclusion of exchange terms in £(q) produces
a further diminution.

It is found that the values of the ratio Rc/rO for the
metals of interest are found to lie between 0.23,
the value corresponding to Ga with RC = 1.05,and 0.33 which
corresponds to Hg with Rc = 1,62. Therefore we expect the
results for these metals to lie between the two limits
illustrated.

Now the field gradient obtained in this way does not
include the enhancement from the Sternheimer antishielding.
Sdirmacher has included this effect in his calculations.
The deformation of the ion core by the electric field
gradient which produces the antishielding was obtained by
a variational method. The general effecp was to increase
v2(r) by an order of magnitude and to bring the steeply
varying part to slightly largef values of r. However, the

calculation of the Sternheimer enhancement by Lodge (22)
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seems to indicate that the calculations may not be quiﬁé as
straight-forward as Schirmacher suggests.

Furthermore, it is well known that for heavy metals
the pseudopotential is non-local. It would, however, be a
major undertaking to attempt calculations of v2(r) using a
full non-local pseudopotential.

Bearing these problems in mind we shall proceed by .
considering v2(r) to be essentially of the form given by the
local theory described above and assume that it falls rapidly
to zero Just beyond the cut-off in g(r). The product v2(r)
g(r) r® will then be a sharply peaked function whose width
is much less than the interatomic spacing. This product
will then, in fact, be similar to that obtained by Sholl (5)
froh the ion-ion potential although, of course, asSchirmacher
has pointed out, the ion-ion potential should not be used to
calculate the field gradient. Since we do not have a definitive
form for this product, we suppose that the interaction can

be represented by a delta function, i.e.,
v, (£)g(r)r? = 6(b) 5.61

wherg b 2 a. We then integrate over all delta functions
between b = a and 1+Aa, taking the profile of our integration
to be a right-angled triangle of base Aa. The parameter A
we will call the range of the interaction and the triangle

profile represents an attempt to recreate the profile of

ve(r)g(r)r2 as given by Sholl (5). We regard the range as
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an adjustable parameter. The corresponding product f(rq)
ve(fq)r12 may be treated in the same way. If we formulate
the problem in this way g(r) does not enter into the two
particle terms directly but merely helps to determine the
strength of the § functions.

Details of the calculations are given in Appendix II.
However, the general procedure adopted is given below together
with the significant features of the results.

The calculation proceeds first with the evaluation of
Ip(q) and It(q). For a & function interaction at a the pair

term is Jjust

0®I (@) = a%3,%(aa) 3.62

which does not converge, The convergence is introduced by
the sllowed range of A. Typical results for two different
ranges are shown in Figures 36 and 3.7. where also it can
be seen that Ip(q) is a series of positive peaks in k-space.
In order to evaluate It(q) it is first necessary to
calculate the final integral in equation 3.50. The form of
this integral multiplied by 2npg(r)r2 is shown in Figure 3.8.
Calculations were made for Hg and for a hard sphere liquid
with a packing fraction n= 0.455. Computing time was reduced
by using simulated forms of the appropriate pair distribution
functions as indicated in the Appendix; The significant
features of this integral are the large negative contribution

and the extent in real space which is of the order of the
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Figure 3.6 Plot of q2[Ip(q) + 2ant(q)] as a function of q for liquid mercury with a range
A = 0.1a, Also shown separately are the pair and triplet terms.



pair term

triplet term

Figure 3.7 Plot of QZ[Ip(q) + 2ant(q)]as a function ©f q for liquid mercury with a range
A = 0,2a.



Figure'3.8 Plot of the function 2npg(r3)r32/g(ro3)P2(z)dz against r3 for liquid mercury with a
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interatomic spacing. Consequently the convolut:ion with

the spherical Bessel function results in a series of negative
going peaks which decay rapidly towards high q values. The
general features of‘It(q) can be seen from Figures 3.6 and
3,7. The sum Ip(q) + 2ant(q) is also shown and generally
this eonsists of a large negative peak at low g values which
gives way to é series of positive peaks at high q.

The final integration was carried out in accordance
with equation 3.55 with Ss(q,o) given by the Egelstaff and
Schofield expression with parameters appropriate to liquid
Hg. It is clear that the final result for the temperature
variation of qu will not simply be a T-% dependehce but is
some complicated balance of a negative triplet contribution

whose dependence on temperature is principally D'1

and the
positive pair terms which change from é D'1 variation at low
q to a T"% variation at high q.

The results obtained using the Hg pair distribution
function are shown in figure 3.9. It can be seen:that if the
range of the interaction, A, is O.1a then a slow variation
of Rqq with temperature is obtained. However, as the range
is increased to O0.2a a negative result for qu isyebtained.
This can be understood with reference to figures 3.6 and
%,7 where it will be seen that as the range increases Ip
tends to lower g values but It remains hardly changed.
This result tends to imply that we have overestimated the

triplet contribution in our calculations which could be

due to our use of the superposition approximation. We have
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studied the effect of reducing It and find that for the 0.1a

and 0.2a range a reduction of It by about 5% to 10% leads

to a predicted variation of qu which is very close to T'%.
Similar results were obtained using the hard sphere g(r).

Theée are shown in Figure 3.10. With a range of 0.1a and

including all the triplet term the variation of qu was

found to be close to T-J‘r but if the range was increased we

had to reduce I, to get a positive result; If only 75%

of It is included in the calculations then as the range is

increased from O.1a to 1.0a the temperature dependence of

R. increases from T"1 to T'2.

4
: Although we did not carry out calculations for any other
metals, since the pair distribution functions of most metals
are similar, as are the parameters in the Egelstaff-
Schofield expression, we would only expect minor differences

in the results.

%.4 Discussion

The differences between Sholl's (5), Warren's (6) and
the present calculations have already been described. For
the sake of completeness it might be pointed out that earlier
calculations either neglected the triplet term (23%), (24), or
used a restricted form of the correlation function (1)
which was not capable of giving the observed temperature
dependence;

| A possible criticism which may be levelled at our

model is that the Jjoint probability function given by
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equation 3.27 which is

(¢ o]
PS = pg(ro)f(ro’r'l)/Gs(r2'£j_’t>Gs(£g_'£g’t)dr2 3.63
0

is not symmetric under the reversal of r  and r1(2). An
alternative may have been to have used the Jjoint probability
funétion of Oppenheim and Bloom which is explicitly symmetric
in T, and Tpe However, the apparent non-reversal is probably
not significant in the approximation used here for the follow-
ing reason. Since the motion of the two particles is taken
to be independent Ths ro; and r, are then indépendént
variables which may be integrated over all directions.
Consequently, as an examination of equation 3.49 shows, the
final result for the pair term contribution to R1q is devoid
of angular terms and is merely proporticnal to the product

of two quite separate integrals over the radial magnitudes

T, and Ty Interchénge of T, and T, does not alter this
product. In fact, actual calculations using the Oppenheim
and Bloom Jjoint probability function gave similar values

of the pair and triplet terms to those using equations

2.49 and 3.50.

The physical brocess involved invour model may be
described in the following way. Considef the relaxing
nucleus surrounded by a shell of atoms. Generally the atoms
will be distributed over most of the surface of the shell and

the resultant efg could be calculated from the pair and

triplet distributions. The fluctuations of the efg are
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caused by the flexing of the shell as the atoms change their
radial positions. If the potential is short range,

movements of the atoms over distances both large and small
compared with the atomic spacing will contribute to R,

through the pair terms. However, if an atom makes a diffusive
step of the order of the interatomic spacing, a, then the

void it leaves behind is filled by the movement of other
atoms. The effect of the replacement of one atom by another
is contained in the triplet term which is spread over a range
of a in real space. It thus tends to cancel the diffusive
motion, leaving mainly the high q part of the pair term

i.e. the small distance motion of the atoms to be the principal
contribution to qu. Clearly, as the range of the potential
is increased the strength of the high q terms will fall

and our model will thus lead to an approximately s
temperature dependence when the range is small compared to

a and to a D’q

dependence when it is of the order of a.
Unfortunately, as we have already indicated, our
calculations give a triplet term which is too large except
when the range of interaction is of the order of 0.1a. This
negative result for qu may be caused by overestimation of
the triplet term due to calculation error or the use of the
superposition approximation. Calculation error certainly

exists since the integrals involve functions of complicated

shape and in order to reduce the computing requirements we



87

have made fairly drastic simplifications of these shapes.
However, we feel that the 25% reduction required to give

R, positive when the range of interaction, A~ a is too

1
lagge to be explained in this way. As evidence we point

to the fact that a similar result is obtained for both the
mercury and the hard sphere g(r)s which, in our approximations,
have quite different shapes. Remember g(r) only enters the
triplet term, whereas in the pair term it has been reduced

to a 6 function. The error caused by the'superposition
approximation is unknown, but is, in general, thought to

be substantial at near neighbour distances. However, our
calculations show that the reduction factor for the triplet
term required to keep qu positive is smaller for the short
ranges than for the long range interactions.

During the course of our work Gaskell (25) has suggested
an approximate method of formulating the pair correlation
function. He divides the efg into a short range part lying
within the atomic core, whose radius is only slightly larger
than the interatomic spacing,and a long range part which is
zero inside this core but may be non-zero outside. ZFor the
long range part the core thus plays the role of f£(r) in our
model. Within the core he restricts the position vectors of
the particles to certain angles thus keeping the interaction
within finite bounds. ,Mofe importantly, he argues that,
because of the short range, the joint probability appearing

in Equation 3.9 may be replaced by its short time approximation.

This is equivalent to taking the ideal gas approximation
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for Ss(q,w), which, as has been pointed out, has a 72
dependence. Gaskell further treats the triplet term
according to the Sholl-Warren formula but with the total
van Hove function replaced by its distinct part. Thus his

R consists of a pair term with a T-% dependence, plus

1
anzther pair term from the long range part of the field
gradient and a triplet term. In order to obtain agreement
with experiment he therefore suggests that the contribution
from the long range component of the field gradient and that
from the three particle terms are either small or show a
marked degree of cancellation. However, if the long and short
range field gradients are taken to be the long and short

range parts of. the Schirmacher field gradient then the triplet
term is likely to be large and negative at small g and the
long range pair term will be small and positive. Thus the
final result of Gaskell's model would seem to be the sum of
two terms, one positive with a T'% dependence, the other
negative with a p~ dependence., The fault in his theory

lies in his assumption that the short range pair term involves
only particle motions over short distances. In fact, as
pointed out above, the change in position of a particle may
be of any length and consequently there is no need to make

the distinc tion between short and long range terms. The
Fourier trgnsform of his Joint probabilty function would

then cover the range of q values to be found in our calculations

with a similar cancellation occuring at low q through the
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distinct part in the triplet term.

There are two physical phenomena that contribute to
the temperature dependence of R1q that we have yet to describe.
Both of these involve the changes in g(r) with increasing
temperature.

As pointed out in Chapter 1 the principal effect is a
decrease in the cut-off at small r. In our model we assume
that v,(T) g(r) 2 is a sharply peaked function thus implying
that v2(r) falls sharply to zero Jjust beyond the cut-off in
g(r). Since vz(r) is a rapidly varying function, the ampli-
tude of the peak is sensitive to the compression of the ion
cores. As the temperature increases, the kinetic energy of
the particles will further compress the cores during collisions.
Thus Ip(q) and I,(q) will both increase and, although
cancellation is maintained, the result will be an increase
in qu. Sholl has estimated the increase in R1q from this
effect with the aid of the semi-empirical calculations of the
hard-sphere diameters in liquid metals by Protopapas et al
(26). The calculations have been extended by Cartledge et
Val (27) who find a predicted increase in qu of between 20
to 30% for the range T, to 2Tm for the 1liquid metals of
interest.

The other effect on g(r) of increasing the temperature
is that the peak of g(r) flattens. This leads to a reduction
in the amplitude of the 6 functions used to calculate qu
in our approximate method. Hence this effect would produce

a decrease in R, with temperature. Although we have not

1q
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made detailed calculations of the extent of this effect it
would obviously tend to cancel the increase in qu caused
by the "squashyness" of the ion cores described above.

The overall temperature dependence of R1q therefore
depends on a large number of parameters which include the
form of the interionic potential, the relative sizes and
extent in k space of the pair and triplet contributions and
the radial distribution function. It is therefore not
surprising that a definitive form of the theéry of qu
in liquid metals which agrees with the experimental data has
yet to be produced. |

The important feature of the model proposed here is
that,owing to the cancellation occuring between the pair and
triplet contributions at low q,it predicts an approximately
T'% dependence of qu on temperature provided that the range
of the quadrupolar interaction is small compred to the
interatomic spaéing. Furthermore, it is shown in the next
chapter that our model is reasonahly successful in

predicting the temperature dependence of R,  in liquid binary

1
alloys. Hence, further effort on this difficult theoretical
problem would seem worthwhile in view of the information
that may be deduced about the ion-ion potentials and
molecular dynamics in liquid metals and alloys.

The work described in this chapter is contained}in the

publications by Havill et al (28) and Titman et al (29).
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CHAPTER FOUR

Nuclear Quadrupole Relaxation in Liquid Metal Alloys

4.1 Introduction

The theory of nuclear quadrupole relaxationin pure metals
presented in chapter three can be easily extended to cover
the case of a binary alloy. For a pure liquid metal the
ensemble average required to calculate J(o) is given by

equation 3.8 which is

CE(0EL (00> = [f uylegdug, (2))B(ry,05r48)ar, dary

4.1

In a liquid binary alloy consisting of A and B type ions

this be;omes the sum of four terms as below.
KEL(E)F7 () = //u§<i>ug‘:(r_1>PAA<£9_,o;_x_~1,t>aﬁ311
* ] e e )P iz 8T, 64
+ // uﬁ(&)uﬁf(ﬁ)PAB(ig,O;ﬁ,t)&E_,l
R

4.2

where PAB(EQ’O;fl’t)drO dr, is the probability of finding
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an ion of type A in dr, at rg at time zero and an ion of type

B in dr, at rq at time ¢ glven that there is an ion of type
A at ;;; origin. The first two terms in equation 4.2 give
rise to pair and triplet contributions to R1QA whereas the
latter terms can give rise only to triplet contributions.

Following the same method as in chapter three we can

write
PAAp = pchA(r )fAA(r1) SA(r t)GSA(rg—r ,t)dr2
0
4,3
oo
PBBP = D(q"c)gAB(ro)fAB(rq)/GSA(ia“il’t)GSB(rz'ro9t)dr2
: = 9 =

T

for the pair terms and

Ppay = £pa(T9) //pﬁz)x(ro’ra)GSA(f_g‘_a_’t)Gsk(ie_'r_mt)d_r_e_ dry
4.5
Pppy = f48(7q) //pgg(ro’ra)GSB(Q‘fg't)GSA<f§'fj_4t'>§_£2_ dry
4.6
Pppe = fap(Tq) //pﬁ%(ro,%)(‘: p(To-T3. £)Ggy (rp-r,8)dry dry
4.7
PBAt = fAA(r1) /79(5)(ro’r5)GSA(r2‘_2’t)GSA(r2 _2,t)dr2 Eié
4,8

for the triplet terms, where p is the number density, c the
fractional concentration of A, Bap1BAR partial radial distri-

bution functions, f,, is the partial equivalent of the
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function £ in the pure metal theory, GSA is the self-part

of the van Hove correlation function describing the motion
of an A type ion and pg?g(ro,rB) the three particle
correlation function i.e. the probability of finding ions of

type A at r  and fé given an ion of type A at the origin.

Using the superposition approximation we have

02)(xg1rs) = P02y, (T )6y, (75)8p (T3) 4.9
pf\g%(ro,r;) = ("‘c)2928AB(I'0)8AB(1‘5)SBB(%3) 4.10
pﬁ%(ro,%) = 0(1-0)pgsAA(ro)gAB(r5)gAB(r03) 4,11
p&%ﬁ(ro,%) = c('l-c)pggAB(ro)gAA(r5)sAB(r05) &2

Substitution of equations 4.3 to 4.12 into 4.2 then gives

for the pair term contribution

CROLC> IR B ORI CRTINCH)

®©
x‘!.GSA(fgffl,t)GSA(ngfg,t)drodrqdr2

/AR CIRLICEO RO TNNEN
6 o]

* [ Gtz D0etrymrg smtentny
’ 4.13

and the triplet term ocontribution
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<R (OF (00> i ey = ff 0 A (T dup (7 rq)fy,(rq)dr, dry
x // égpegAA(ro)gAA(r3)gAA(r05)
X GSA(re-ié,t)G (_g-_l,t)dr _2
J] SR e tnterengeny
x [[(1-c)20%8,5(r o Jeyp(rs)Enp(ros)
Gss(rg-iz,t)G s (FpmTq,6)dr drs
+ff uﬁ<52>u§?<f_1>}AB<r1>_c1_g_og_r_1 |
x [[ cm—c)pesu<ro>gAB<r5>gAB<r05>
e e e R
+//uﬁ<_r_o)u Yyt aa(71)dng87
X// 0(’1-0)pgsAB(ro)gAA(r5)gAB(ro3)

x(‘gA(r2 _é’t)GSA(re _}_’t)drE__i

4.4
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If we assume that GSA= GSB’ independent of composition,
then J(o) and hence R1QA can be written down by analogy with

the pure metal case;

Qo Q@
R"Q.A 26/582(Qaw>dw/q2dq [CIp(fAAaSAA9V%)+(1‘C)Ip(fAB,8ABvVg)
- 00 0

+

A A
2”9021t(v2’V2’fAA’sAA’gAA’gAA)

B

B ,
anp (1-C)2It (VZ ’v2’fAB’gAB’gAB’gBB)'

+

A _B
+ 2"00(1’C)It(v2$vg’fABsgAAaSAgagAB)

+

2“0‘3(1‘C)It(Vga‘rgafAA’SAB’SAAaSAB)] 4.15
A 7 5.
where Ip(fAA,gAA,v2) = /.fAA(rq)vé(rq)rq jE(qr,])dr1
0

Co
x [ epa(m)olrydro iylargdar, 416
0

and

o)
I.t(V'gavg"fAngAAsSAB’SAB) = /fAB(I'q)Vg(rq)rqzj‘?(qrﬂ)drq
0
7 2
X /.SAA(ro>Vg(ro)ro dro

0
7 2
X /SAB(I‘})B Jz(qr5)dr5
0

|
x [ 8yp(r,3)Po(2)dz
- 4,17
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Equation 4.15 may be written

R1QACX pr(aa)+(1-c)Ip(ab)+2np[c2It(aaa)+(1-c)2It(abb)

+ 2c(1-c)It(aba)] 4,18
where Ip(aa) and It(aba) are given by (4.16) and (4.17).
Rearranging terms,

RﬂQA‘x c[Ip(aa)+2ant(aaa)]+(1-c)[Ip(ab)+2nplt(abb)]

+ 2npc(1-c)[EIt(aba)-It(aaa)—It(abb)] 4,19

Now, if we assume that the field gradient due to an
A ion and a B ion are identical apart from a constant

factora i.e. vg = ové then

I (ab) _ .2 It(abb) - 6® and It(aba) - a

a
Ip(aas , ItZaaaS ItfaaaS

4,20

This assumption is not an unreasonable one if the Schirmacher
pseudopotential approach is used to calculate the field
gradient.

Substituting 4.20 into 4.19 we obtain

R1QA°( c[Ip(aa)+2ant(aaa)]+(1—c)02[Ip(aa)+2nplt(aaa)]

- c(1¥c)(1—a)22np1t(aaa) 4,21
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which may be written as

R1QA°( [c+(1-c)a2]A-c(1-c)(1—0)2B 4,22
where A = Ip@aj+2np1t(aaa) A 4,23%
and B = 2npI,(aga) 4,24

It will be seen that equation 4.22 predicts that the
quadrupolar relaxation rate in a binary alloy can be thoughﬁ
of as being proportional to the sum of two separate ferms.
The first term, containing both pair and triplet terms, is
similar to that obtained for the pure metal case. It was
shown in chapter 3 that, provided the range of the quadrupolar
interaction is small compared to the interatomic spacing,
this term leads to a variation of qu with temperature that
is approximately proportional to T'%. The second term,
however, contains only the triplet terms which contribute a
temperature variation proportional to p~'. It will be

appreciated that this contribution to the relaxation rate is
a positive one since the triplet terms themselves are
predominantly negative.

The first term in equation 4.22 is linear in ¢ but the
second term has a quadraﬁic dependence on ¢. Therefore, the
theory predicts that the rate of variation of R1QA with
temperature will increase as the concentration of A increases
up to a fractional concentration of 0.5. |

A review of the reliable experimental data indicates

that the predicted increase in the rate of change of qu
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has been observed in the following work. Using nmr Warren
and Clark (1) found a slow variation of qu with temperature

12181) spins in pure liquid Sb. This contrasted

for the
with the much faster variation found in liquid InSb, The
latter result has recently been confirmed by ven Hartrott

117m

et al (2) who, using pac measurements on the Sb isomer,

found R,  approximately proportional to 1/D in InSb.

1q

Cartledge et al have examined the variation of qu

with temperature for the %9 spins in a number of Ga alloys.
Their data for Ga/In alloys (3) agrees closely with the ~
theoretical variation predicted by the new alloy theory.
As the amount of In is increased the rate of change of qu
for the 69Ga spins gradually increases. However, a similar
effect was not observed in other Ga alloys containing Al,
7zn and Sn (4). In these the temperature variation of qu
remained the same as in the pure metal. This may be explained
by the fact that most of the alloys were of low concentration.
However a similar result was obtained with a Ga3?0at%Sn alloy
where one might expect a faster variation to be observed.
In this case the fact that it was not may be due to the small
temperature range that was covered.

‘We decided to inveétigate more alloy systems as described
below in order to obtain further reliable data.

Holcomb and Norberg (5) have measured the variation
of R, for the 8%Rb ana 87Rv spins in liquid Rubidium. Their

data has been analysed by Rossini and Knight (6) who found
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that the 87Rb relaxation is almost entirely magnetic in
origin but that approximately 10% of the relaxation
of the 85Rb isotope is quadrupolar. However, this small
quadrupolar contribution taken together with the large error
in the measurements makes it difficult to estimate the
variation of qu with temperature. We therefore decided to
attempt to obtain more accurate data on the variation of qu
with temperature in liquid Rb. Having done this we would
then observe the variation of qu with temperature for
85Rb in a Rb50at%lNa alloy where one would expect to see a
relatively larger quadrupole contribution which has a faster
variation with temperature. Kaeck (7) has observed a small
quadrupolar contribution to R, for 85Rb in a number of Rb/Cs
alloys but did not determine the dependence of qu on
temperature.

We also decided to extend the work of Cartledge et al
b& looking at further Ga alloys. Now the theory really
relates only to substitutional alloys. However, perfectly
substitutional alloys do.not exist so a strict test of the
theory is impossible. On the other hand Cartledge et al (4)
have shown the existence of a "size effect" i.e. they ob-

serve an increase in the magnitude of R, which is proport-

1q
ional to the difference in size between the solvent and
solute ions. We decided to investigate alloys where one
would expect a large "size effect" even though these show

the maximum departure from the substitutional case
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because these alloys are likely to contain a large 1/D like

contribution to R The alloys chosen were Gal10atlg,

1q°
Ga20atidlg, Ga20at¥%Al and Ga61.5at%Bi.

4,2 Experimental Method

In chapter 2, section 2.2.71 continuous wave and pulsed
nmr techniques were introduced and compared. It was shown
that the most direct method of measuring T1 is to use pulse
techniques but that this can only be done when the lengths
of the pulses, At & T,,T, otherwise relaxation effects will
occur during the duration of tﬁe’pulses. Using the pulse
gpectrometer described below this condition was satisfied
for all the metals studied in this chapter and therefore
pulse techniqﬁes were used throughout. Since we were
investigating liquids where T1= T2 the n-n/2 pulse sequence
was used.

4.,2.1 The Spectrometer

A block diagram of the pulse spectrometer used in these
experiments is shown in figure 4.1. It was similar to the
one used by Jolly (8) and Cartledge (9) and a fuller
account can be found in these references. The spectrometer
had, however, been modified to operate with a single coil
and with phase sensitive detection. A swept pulse delay
had also been added. These alterations will be described
in the text.
4.2.1.1  The lMagnet

The magnet was the same Varian system that was used for

‘the continuous wave experiments described in chapter 2.
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4,2.1.2 The Frequency Generator System

The first component of the frequency generator system
was a high stability frequency generator the output frequency
of which was 4.4 MHz with a stability of 1 part in 107.

A gated frequency doubler was used to minimise break
through of the resonance frequency between pulses. The
output from the frequency generator of about 8v peak to peak
was fed into a class A amplification stage followed by the
gated pentode frequency doubler and finally a gated pentode
class C stage.

The output was then fed to the main power amplifier
which consisted of three class C amplifier stages, the first
being gated. The output of the power amplifier consisted
of r.f. pulses at 8.8 MHz which were fed tothe coil in the
probe via a A/4 length of low capacity co-axial cable.

4.2.1.3 The Pulse Generator System

The pulse generator system consisted of a series of
modules supplied by Farnell Ltd. and a swept pulse delay
unit which was made in the electronics workshop of the
Physics Department. A block diapgram is shown in figure 4.2.

The pulse repetition unit had repetition rates from
0.1 Hz to 10 MHz. Throughout these experiments a repetition
rate of 50 Hz was used. The pulse width unit had ranges of
O.1us. to 1s. The swept pulse delay unit produced a linear
ramp of variable length from 1ps. to 100ms. with sweep times

of 5s. to 250s. and adjustable delay between sweeps.
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Both of the pulse output units had variable outputs up
to 20v. One output unit fed 20v pulses into the pulse
amplifier which consisted of three amplification stages
giving 250 volt positive going pulses‘on a 150 volt negative
line. These pulses were used to gate the screen grids of the
frequency doubler and‘other stages in the frequency generator
system described above.

The other output unit - provided the reference pulse
for the box car integrator. The pulse was:of variable width,
thé sampling gate width of the integrator, and was adjusted
so that it was delayed a certain time after the secbnd pulse,

4.2.1.4 The Receiver, Detector and Averager

The resonance signal induced in the coil of the probe
was fed via a A/4 length of co-axial cable to a tuned pre-
amplifier. The arrangement of the transmitter, sample coil
and pre-amplifier is shown in figure 4.3.

The output from the pre-amplifier was fed to the main
receiver which consisted of a number of amplifying stages
followed by the phase sensitive detector. The reference
signal for the detector was obtained from the frequency
generator via a phase shifter.

The output from the detector was fed into a Brookdeal
broadband, low noise, amplifier, type 450. The output from
this amplifier was then fed into a Brookdeal boxcar integrator
type 415, and a Hewlett Packard oscilloscope. The reference

pulse for the boxcar integrator, taken from the pulse
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generator system as described above, had a magnitude of Av.
and a width of 5pus. The delay between the second r.f. pulse
and the reference pulse was generally about 80ps. so as to
make the signal to noise ratio as large as possible.

The output from the boxcar integrator was taken to the
Tracor digital signal averager.

4,2.1.5 The Sample Probe and Temperature Controller

The sample probe used in these experiments is shown in
figure &4.4.

The r.f. coil was 20 mm. long and consisted of 14 turns
of 32 swg copper wire insulated by refrasil sleeving wound
on silica tubing. The coil was potted in high temperature
cement to hold it in ﬁlace.

Heat was provided by a 128 turn coil of resistance wire
insulated in refrasil sleeving wound non-inductively around
the outer pyrex tube. The total resistance of the wire was
about 40 ohms.

The temperature of the sample was measured using a
platinum/platinum - 13% rhodium thermocouple with its Jjunction
placed immediately beneath the sample tube. As in the
continuous wave experiments temperature cantrol was obtained
by using the thermocouple as a sensing element for a Eurotherm
temperature controller. The heater current was supplied by
a Variac set between 20v and 70v. Using this system the
temperature of the sample was kept constant to within 0.5 °c
of the required temperature. The probe was insulated from
the magnet pole pieces by passing cold water through the brass

jacket as shown in the figure.



|
|

i

!

connection to rf

coil |
”T;,

-

%
J | e

3
o {

. 2?2 > ¥ater out
g:cket Z ¢\
Z 2N

oo |
- |

refrasil tape

TN
JSNANNRNY

——_
*oooooOOOJio‘o\QUUOUO\OO
\

sample tube.\\\\N

| —— rf coil

\ 9

thermocouple high temperature
Cement
1
silica—/////‘
tubing

pyrex
tubing\#

«——— water in
————/

&N&&/ooaaoo&omﬁé&aonoo000
MNNN

\

connection to—— T~ connection to
thermocouple heater

Figure 4.4 The Probde.



106

4,2.2 Sample Preparation

4.2.2.1 Preparation of the Rb sample and the Rb/Na alloy

Since Rubidium is highly reactive almost all the
preparation of the Rb sample and the Rb/Na alloy sample was
carried out in a glove box under an inert atmosphere of
Argon gas.

The pure Rb sample was prepared in the following way.
99.9% pure Rb was obtained from the Koch Light Co. in the
form of a 1g. sample sealed under argon in a glass eampoule,
This was placed in the glove box together with the other
apparatus required. The glove box was then sealed and
99.999% pure argon allowed to flow through the box for
about 15 mins. thus ensuring that all the air in the box had
been replaced.

About 30 ml of degassed heavy liquid paraffin together
with about 2ml of oleic acid were placed in a large pyrex
tube and heated to a temperature of about 60 °¢ by a small
heating coil. The ampoule containing the Rb was then lowered
into the oil and the Rb, m.p. 39.0 °C, allowed to melt.

The ampoule was then quickly removed from the oil, its seal
was broken, and the liquid Rb was poured into the oil.

A high speed stirmr was then lowered into the oil and the
mixture of o0il and metal was whisked for about 10 nin.
During this time it was ensured that the temperature of the
mixture did not fall below 39 °C. Following this the sample
was transferred to a large sample tube and since it now

consisted of tiny particles of Rb dispersed in oil it could
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safely be removed from the glove box.

Finally, the sample was poured into a 1 cm diameter
pyrex test tube and centrifuged so that most of the excess
oil could be removed. The tube was then sealed off under
argon at approximately 3 atmospheric pressure.

The Rb/Na alloy sample was prepared in a similar way
except that, following the melting of the Rb in the ampoule,
it was poured into a pre-weighed sample tube containing
degassed oil. As the Rb solidified in the oil it sank to
the bottom of the tube so that the tube could safely be
removed from the glove box and re-weighed. The appropriate
amount of Na was then added to the tube and it was returned
to the glove box and the glove box sealed. After allowing
about 10 min. for the atmosphere in the glove box to become
inert again the oil was decanted from the sample tube.

The remaining oil was then washed off several times with
ether. The sample tube was then lowered into degassed oil
plus a little oleic acid in a large pyrex tube and the oil
was heated to about 20 °C above the liquidus temperature

of the alloy. The metals were stirred with a glass rod’for
about 15 min. to allow them to form an alloy. During this
time it was ensured that the temperature of the o0il was kept
well above the liquidus temperature of the alloy. The sample
tube was then quickly removed from the pyrex tube and the
alloy poured into the oil. The rest of the preparation then

followed the same procedure as for the pure Rb sample.
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4,2.2.2 Preparation of the Ga Alloys

A1l the metals used to prepare the Ga alloys were
obtained from the Koch Light Company and were at least
99.999% pure.

The alloys were prepared and dispersed in liquid
paraffin using the method described by Cartledge (9) however,
since it was required to heat the alloys to temperatures
well above the boiling point of liquid paraffin, about
220 °C, it was necessary to use an alternative method of
insulating the alloy particles from each other. The particles
were thus dispersed in silica as follows.

The alloy particles in 0il were poured into a large
sample tube and the particles allowed to settle to the bottom
of the tube. The excess o0il was then poured off and the
alloy was washed several times with ether to remove the rest
of the oil. An equal volume of silica powder was then added
to the alloy and the mixture was vigorously shaken in ether.
In this way a homogereous mixture of alloy and silica particles
was obtained. This was then transferred to a 1 cm. diameter
test tube and centrifuged. Finally, the tube was sealed off
under argqn at about 3 atmospheric pressure. |

4.2.3 Measurement of Relaxation Rates

As stated previously measurements were made using the
n-n/2 pulse sequence. Typical pulse lengths were as follows.
For the 85Rb isotope a n/2 pulse took 20ps and a n pulse
40 ps and for the 69Ga isotope the corresponding pulse

lengths were 8 ps and 16 ps. These will be seen to be much
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shorter than the relaxation times which were of the order
of 2.5 ms for 85Rb and 450 us for 69Ga.

In order to achieve a reasonable signal to noise ratio
all the signals were averaged. Typical averaging times
were 10 min. for 85Rb and 30 min. for 87Rb, 69Ga and 71Ga.

Averaging was carried out as follows. A signal derived
from the swept pulse delay was used to trigger the averager
which waé run in the internal advance mode at a sweep speed
of 12.5 ms per point. Since only the first half of the
averager memory was being used, i.e. 510 channels, each
averager sweep took 6.4s. The sweep time for the linear
ramp was 5s but, by adjusting the delay between sweeps to
about 2s., the total cycle time was approximately 7 seconds.

Now using the n-n/2 pulse sequence the growth of the

nuclear magnetisation is described by equation 2.10 which is
M(t) = (o) |1-2exp(~t/1,) ] 4.25

where M(t) represents the magnitude of the longitudinal
magnetisation at time t and M(o) is the equilibrium magnet-

isation. Obviously in order to analyse a recovery curve

one requires a baseline, This was achieved in our
experiments by blanking out the first pulse at the end of
each ramp using a signal derived from the swept pulse delay
unit. This left the n/2 pulse which simply gave a signal
representing M(o). This signal was therefore recorded for
the last 1.4s. of each averager sweep providing a convenient

baseline for the preceeding curve.
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A ramp of length 10 ms. was used for the O°Rb spins.
For the 87Rb, 69Ga and 71Ga spins a 1 ms. ramp was used
owing to their relatively shorter relaxation times. The
ramps were calibrated using the circuit shown in figure
4,5, The circuit used two separate pﬁlse generators made
by Intercontinental Instruments In corporated and worked
as follows. The n pulse from the Farnellkpulse generator
was used to trigger the first pulse generator which itself
triggered the second pulse generator producing snother pulse
after a fixed delay. The delay was measured on the timer,
an Advance Instruments Timer Counter TC8. This pulse, about
10 ps long, was fed together with the n/2 pulse, also about
10 ps long, to a coincidence cifcuit made from a 7408 i.c.
The output from the coincidence circuit triggered a monostable
multivibrator made using a 74121 i.c. which acted as a
"pulse stretcher" produciﬁg an output’pulse of about 400us.
This pulse was fed to the second half of the signal averager
memory. By using variousvfiied deléys several markers were
obtained on the averager sweep from which ?he sweép could be
calibrated. The sweeps used were calibrated at the beginning
of the experiments and the calibrations periodically checked.

The spectrometer produced an inverted magnetisation
recovery curve. Also the‘baseline was shifted by an émount‘
M&ﬁrélative to the usual baseline representing zero
magnetisation. Therefore the equation of the curve with

respect to the baseline was, from 4.25
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M(s) = - (o) |1-2exp(-t/2,)] +11(0)
i.e. M(t) = 2M(o)exp(~t/T,) 4.26
Hence _
;Ln[M(t)] - ln[2 M(o)] ~t/1, 4.27

and a graph of 1n[M(t)] against t géve a straight line with
gradient -R,. Throughout this work the best straight line
fit to the data was estimated by eye. |

4,3 Experimental Data

4,%.1 Relaxation Measurements in Pure Rubidium and in the

RbS0at%Na Alloy

4,%2.1.1 Rubidium Results

The observed spin-lattice relaxation rates for the 85Rb
and 8‘7Rb spins as a function of temperature in pure Rb and
in the Rb50at%lNa alloy are shown in figure 4.6.

For each sample measurements were made at 10° intervals
starting from room temperature. The melting points of the
samples are shown on the figure. The upper limits to the
temperature ranges were determined by the decomposition of
the samples. This was probably caused by reaction of the
metals with residual oxygen in the oil.

The quadrupolar and hyperfine contributions to the total
relaxation rate of the 85Rb isotope were separated using the
method outlined in Chapter 2, section 2.1. The method uses

equations 2.1 to 2.4 which we repeat herefor convenience.

-
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Solving these eguations

Equations 4.%2 and
relaxation rate of 85Rb
85

of Yn

n

used was 0.295 and Q85 was taken as 2.067.
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and B we have

A A
B B
= R1m+R1q 4.29
- PO [ 4.30
F(I
21+ :
where F(I) = —Z—z———
I (21-1)
[ = 4,321
A B B
for qu, qu, qu and qu we have
-6/
= RqAAnR1B 4,33
- ®/0
A
A
= quﬂ) 4.35

4.33 were used to reduce the total

into its component parts. The value

The
Q87
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values of R?Z and R?i derived in this way are shown as a
function of temperature in pure Rb and in the RbSOat%Na alloy
in figure 4.7. The corresponding values for the 87Rb isotope
can be calculated using équations 4.%4 and 4.35.

The errors in the derived values of R, and R, depend

1q 4m
upon the accuracy of the values of R1 for 85Rb and 87Rb.
Typical limits of error are indicated in the figures.

4,3,1,2 Sodium Results

The observed spin lattice relaxation rate for the 25Na
spins as a function of temperature in the Rb50at%Na sample
are shown in figure 4.8. The lower end of the temperature
range was determined by the liquidus temperature of the alloy.

4,%3,2 Relaxation Measurements in the Gallium Alloys

4,%3,2.1 Gallium Results.

The observed spin-lattice relaxation rates for the
69Ga and 71Ga spins as a function of tamperature in Ga20at%Al,
Ga61.55t%Bi, Ga10at%ﬁg and Ga20at%ig are shown in Figures
4,9, 4.10 and 4.11. The lower end of the temperature range
was determined by the liquidus temperature of each alloy.
Isotopic separation of the 69Ga rates into the quadru-
polar andhyperfine contributions was aachieved in the manner
described above. The value used for ygg was 0.787 and for

v

n

Q6 the value 1.586 was used.
Q;1

The temperature dependence of the derived values of

qu and qu for 69Ga in the alloys studied is shown in

Figures 4.12, 4.1 and 4.14.
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4,%,2,2 Aluminium Results in the Ga20at%Al Alloy

The variation of the spin-lattice relaxation rate as
a function of temperature for the 27A1 spins in Ga20at%Al
is shown in figure 4.15.

4;5.2.5 Bismuth Results in the Ga61.5at%Bi Alloy

The observed spin-lattice relaxation rate for the 209Bi
spins as a function of temperature in the Ga61.5at%Bi alloy
is shown in figure 4.16.

4.4 Discussion

4.4,1 Results obtained in Pure Rb and the Rb/Na Alloy

Holcomb and Norberg (5) measured T, for the 85Rb and 87Rb
spins over the temperature range 253°K to 415°K. Above the
melting point our values for 31 for 85Rb are sbout 20% smaller
than theirs whereas our values of Rq for 87Rb are approximately
10% higher. These differences lie within the joint error bars
of the two sets of data. Below the melting point we do not
observe the sharp discontinuity in R1 that is seen in their
data. This latter difference may be explained by the presence
of impurities in their sample. They, in fact, state that the
purity of the Rb sample was not especially good. Furthermore
they find T, < T, for 85Rb in the liquid phase which tends to
suggest impurities in the sample. Although we did not check.
the equality of ‘I‘1 and T2 in our ssmples they were, as stated
in 4.2.2.1, prepared from Rb which was 99.9% pure.
4,.4,1.1 Hyperfine Contribution to Rq for 85Rb

Assuming only s-like contributions to the Knight shift
and magnetic relaxation rate our data may be analysed using
the modified Korringa relationship given in Chapter 1,

equation 1.11, which is
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R

2 -
1s = 4nkByn ngTK(u)(nyez) 1 4,326

The solid line (a) on figure 4.7 shows a fit of this
equation to our pure metal data using the Knight shift measure-
ments of Gutowsky and McGarvey (10) (11) who give the Knight

shift at the melting point K = 0.662% snd 1_ . 3K, = 14.1072,
L ST

The fitted line assumes K(a) = 0.60 and is independent of .

temperature. In a gimilar analysis of Holcomb and Norberg's

data Rossini and Knight (6) find K(a) = 0.75 in the pure metal.
The Knight shifts of bofh components of the Rb/Na alloy

system have been measured over a wide range of composition

by Rimai and Bloembergen (12) and van Hemmen et al.

Both authors find the familiar linear dependence of Knight

shift on concentration but differ on the magnitude of

Ko_1%% where Ko represents the shift of the resonant nucleus

in the absence of the non-resonant nucleus whose concentration

in the alloy is given by ¢. Rimai and Bloembergen find

KO‘1%§ - 0.518 and 0.270 for Na and Rb in Na/Rb whereas

van Hemmen et al give. values of 0.54 and 0.45. Now it

is a general rule (14) that Ko"1%§ is approximately the same

for each atomic species in a binar; alloy. Therefore we shall

use the data given by van Hemmen et al ., We shall

assume that 9K; is the same as in the pure metal. Then,

3T

again, assuming that K and R, have only s-like contributions
line (b) on figure 4.7 shows a fit of‘equation 4,26 to our

data which gives a value of K(a) = 0.74. The difference
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between this and the value of K(a) obtained for the bure
metal is probably»not significant and merely reflects
experimental error. However, the fact that values of K(a)
lying in the range 0.60 to 0.75 have been obtained in the
pure metal and alloy indicates the relative unimportance of
non-s terms. |

4.4.,1.2 Quadrupolar Contribution to R, for 8rp

In the pure metal our qu values of 85Rb are about four
times larger than those obtained by Rossini and Knight.
This is due to the differences in the original R1 data.
Owing to the large emar bars on our qu data it is difficult
to say with any degree of certainty how qu varies with
temperature although it does appear to increase slowly with
temperature. Rossini and Knight concluded from their analysis
that qu was constant with increasing temperature although,
once again, their error bars were quite large. It may be
instructive to note how these relatively large error bars
arise. The a#erage error in our measurements of R1 for
87Rb was about 20% and that in 85Rb about 10%. However,
when equation 4.33% is used‘to calculate qu for 85Rb, because
of the close cancellation between the terms in the numerator
the nett error is about 60%. This close cancellation arises
because of the relative magnitudes of the tbtal relaxation
rates of the two isotopes and the value of ®,the ratio of the
gyromggnétic ratios. Thus, although the two isotopes of Rb
have quite different gyromagnetic ratios and the hyperfipe

and quadrupolar contributions to R1 for 85Rb are both
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significant Rb turns out not to be such a good candidate for
separating the relaxation components as ane would expect.
Again, owing to the large'error it is difficult to say

how R,. varies in the alloy.

1q '
4.4,1.% Analysis of the 25Na Data

The variation of R, with temperature in pure liquid Na
has been measured by Holcomb and Norberg (5), Narath and
Weaver (15) and Jolly and Titman (16). No evidence for a
quadrupole contribution to R1 has been found and all the
authors agree that the contact term determines the magnetic
relaxation in the liquid phase.

The variation of R1 with temperature for the 23Na spins
in Na/Tl alloys has been determined by Hanabusa and Bloembergen
(17) and Jolly and Titman (16) who also investigated Na/Hg
alloys. The latter authors found that in the alloys Na7at%
T1, Na10at%Hg and Nal15at%Hg a substantial quadrupolar
contribution to R1 was present which varied with temperature
spproximately as p~1,

The straight line on figure 4.8 indicatés the variation
of Rﬂs calculated from equation 4.36. Ks was calculated
from the value of the Knight shift at the m.p. for pure Na,

K = 0.116% (10) (11) and 1 _.3K = 0.54 (13). We have assumed
K; de

that 1 9Ky = 18.10'5, the same as in the pure metal (18).
KiTST

This is not unreasonable as Kellington and Titman (19)

found that BKL is unaffected by the addition of Tl to Na.
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Finally, we assumed that K(a) is unchanged from the pure
metal value 0.62 given by Jolly and Titman. It will be

seen from Figure 4.8 that the trend of the data suggests

the presence of a quadrupole contribution to R1 which is
relatively very small compared to the hyperfine contribution.
This result is similar to that obtained by Kaeck who studied
Rb/Cs alloys (7). Unfortunately, since qu is only of the
same order of magnitude as the experimental error it is
impossible to accurafely determine its temperature
dependence.

4.4,2 Results Obtained in Ga Alloys

Cartledge et al (4) (9) have measured the variation
of R, with temperature for the 696a and 716a spins in pure
liquid Gallium over a temperature range of 240°%K to 570°K.
They found that the magnetic contribution, Rop» to the
relaxation rate of 69Ga fitted the modified Korringa relation-
ship given by equation 4.3%6 with K(a) independent of
temperature and equal to 0.694. It was therefore concluded
that non-s contributions to the relaxation and Knight shift

were not significant. Their data for R for 69Ga showed

1
a variation with temperature approximategy proportional to
T‘%. This data is, in fact, shown in chapter 2, Figure 2.9.
Similar results to these have also been obtained by Kerlin
(20).

4,4,2,1 The Hyperfine Contribution to R1 for 69Ga in the

Alloys
Since the analysis of the temperature variation of the
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hyperfine contribution to R, is not the main point of this
thesis only a brief discussion will be given.

As far as the author is aware there have been no reported
measurements of the Knight shift of Ga in Ga/Al, Ga/Bi or
Ga/Mg alloys. Therefore, in order to proceed we shall
assume that the Ga Knight shift is the same as in the pure
metal i.e. KS = 0.45286and also that its variation with

temperature is given by{%_.BKL = -7.2.10"5 as in the pure

L 37
liquid metal.

Again, assuming only s-like contributions, and a K(a)
that is independent of temperature, the straight lines on
Figures 4.12, 4.13 and 4.14 indicate a fit of equation 4.%6
to the R, data obtained in the Ga20at#Al, Ga61.5at%Bi,
Ga10at%lg and Ga20atillg alloys. There seems little point
in deriving values of K(a) from these lines due to our lack
of knowledge of the true Knight shift. However, the goodness
of fit probably indicates that the hyperfine interaction in
these alloys is adequately described by the modified Korringa
relationship. It is interesting to note that Cartledge et
al (4) (9) found that equation 4.3%6 described the qu data
in Ga/In, Ga/Sn and Ga/Zn alloys where the Ga Knight shift
is known and found no evidence of substantial non-s
contributions. |

4.4.2.2 Anelysis of R, data for 2701 in Ga20at% Al

El-Hanany'and Zamir (21) have shown that in pure Al
R1 is entirely due to the hyperfine interaction. The

straight line on Figure 4.15 shows a fit of equation 4.3%6
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to the 27Al R1 results obtained in the Ga20at%Al alloy using

K

Ky 57

appropriate to pure Al.

Although we have not used the true Knight shift for the
alloy the fitted line indicates that R, can be accounted for
by the hyperfine interaction. This conclusion agrees with
that of Cartledge (9) who measured R, for 2741 in Ga8at%Al
and Claridge et al (22) who studied Al11 at%Si. The probable

explanation for the unobservable R, in Al and its alloys

1q
is the small value of the Sternheimer antishielding factor.

4.4.2.3 Analysis of R, data for “O9Bi in Ga61.5atiBi.

The variation of R, with temperature in pure Bi has
been studied by Rossini and Knight (6) and Heighway and
Seymour (23) using nmr techniques. Both groups agree that
the data is best interpreted by assuming a substantial
contribution to the Knight shift from non-s electrons, the
contribution from the orbital term and from core-polarisation
due to p-type electrons being of the order of -O.25Ks.
Taking this into account and using 4.3%6 to estimate R18
Heighway and Seymour found a small quadrupolar contribution
which varied with temperature as D'q. However, as mentioned in
chapter 2, recent pac measurements (24) on trace amounts of
207Po in liquid Bi have shown unequivocally that qu varies
approximately as T"%. This clearly shows the danger in

attempting to separate the hyperfine and quadrupolar contri-

butions using the Korringa relationship.
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We have the further difficulty in attempting to analyse
our data in the Gab61.5at%Bi alloy in that we do not know the
Bi Knight shift in this alloy. It is possible to fit
equation 4.%26 to the data shown in Figure 4.16 using the
value of Ks»for pure Bi. However, the general trend of the
data is found to be flatter than that given by this anaiysis
and, bearing in mind the experimental error, it is tentatively
concluded that there is a small quadrupolar contribution
present. It should be noted that Claridge et al (22) examined
the alloys BiS50at%In, Bi50at%Pb, BiS50at%Sb and BiS0at%Sn
using nmr and found, in each alloy, a quadrupolar contribution
to R, for 2°%Bi which had a fairly rapid variation with
temperature. However, once again, these authors used the

Korringa relationship to estimate the hyperfine contribution.

4.4,2.4 Quadrupolar Contribution to R, for 69Ga in the Alloys
As a preliminary exercise we shall attempt to fit the

theoretical expression for R,, in a substitutional alloy

q
given by equations 4.22, 4.23 and 4.24 to the data obtained
with the Ga61.5at%Bi alloy. We choose this alloy because
its concentration is nearest to the 50at% value where,
theoretically, the largest diffusion like contribution is
present.

The Schirmacher formula for v2(r) given by equation
3,59 gives g proportional to the ionic charge, 2,and hence
the valency. Claridge et al (22) have found no evidence
for this. However, this is probably due to the fact that the
proportionality only holds for substitutional alloys. For

the Ga/Bi alloy we have a = 5/3. We shall take B = 10A

-~
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from the difference between the two and three particle
terms found in the calculations of Chapter 3. Larsson et
al (25) have measured D for Ga between 303°K and 500°K.
Their results show that D is approximately proportional to

e

over this temperature range and we shall assume a similar
proportionality occurs above SOOOK. Then the curve (a) on
Figure 4.13 represents the variation of R1q predicted by
equation 4.22 assuming A o<'T"} and B QLD"1.

It will be seen that the trend of the data is much faster
than that predicted by the substitutional théory. In fact
a better fit to the data is obtained by putting R1q0< 0~ as
shown by curve (b). The data for qu in the Ga10atiig,
Ga20at%Mg and Ga20at%Al alloys also fit a variation of this
form as shown by the curveson Figures 4.12 and &4.14.

The fact that qu in these alloys is found to vary with
temperature more rapidly than the theory predicts must be
due to the fact that the alloys are non-substitutional and
related to the "size effect" described by Cartledge et al
(4). Consider the relaxing nucleus surrounded by a shell
of atoms. The presence of a bigger or smaller atom in the
shell will cause a large distortion in the electric field
gradient. Should this atom leave the shell via a diffusive
step then the effect will be a lérge 1/D contribution to
B4

q
During the course of the present work an expression for

qu in a binary alloy has been published by von Hartrott

et al (2). Their treatment is based upon the extension of
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Warren's theory to binary alloys by Gabriel (26). Gabriel's
expression forthe relaxation rate in a binary alloy may be

written as

Ryq / [ca2ua(q)2aaa(q)+cb2ub(q)2abb(q)+2cacbua(q)ub(q)aab(q)

o ERCOENEN [N ERCHSLES 4,37

where aaa(q), abb(q) and aab(q) are partial interference
functions and ua(q) and ub(q) are the Fourier transforms
of the effective field gradients caused at the probe atom
by the two atomic species constituting the alloy.

Using the mean interference function a(q) defined by

= 2 2., 2. 2
a(q) = c “a  u “+e Ty Ta e cpu wa 4,38
2.2, 2 2
cgTuy e U THe Cpu Uy

equation 4.37 can be rearranged in a form that is analagous
to the cross section for scattering of neutrons from an
ensemble of nuclei containing two nuclear species with

different scattering lengthj; here the total cross section

consists of a coherent and an incoherent part.
o
2= 2
Ry @ [ [oon(@%a(@%u5,.(2)%]s,(as000%
0

2

. 2 1
where  u,.,(q) [caua(q)+cbub(q)_

(9)°

and

Yinc = cacb[ua(q)'ub(q>‘ 39
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Finally, using the Vineyard approximation, S(q,w) = a(q)Ss(q,m),

equation 4.39 gives

Ryq oc/[ucoh(q)gS(q,w)mim(q)gSs(q,w)] ’q 4.40

It is then argued by the authors that qu consists of two
distinct terms, the first of which does not change appreciably
with temperature but the second of which varies approximately

1.‘ However, this is not at all apparent from the form

as D~
of equation 4.40. The first term is similar to the formulae
given by Sholl and Warren for the pure metal case and therefore
gives an approximately 41/D dependence. Also uinc(q)2 in the
second term is a series of small peaks extending up to large

q values and therefore this term does not give a 1/D dependence.
Thus we dispute von Hartrott's interpretation of equation

4.40 and point out that it does not correctly describe the
variation with temperature of qu in a binary alloy as he

suggests.

4.4,% Summary

In this chapter our new version of the theory of quad-
rupole relaxation in liquid metals has been extended to cover
the case of liquid binary alloys. It was found that the theory
predicted an increasé in the rate of variation of R1q with
temperature with increase in alloy concentration.

Unfortunately, the experiments on the Rb50at%Na alloy
gave results for R1q that were not accurate enough to compare
with the theory. However, an increase in the rate of

variation of R, for the69Ga spins was found in the alloys

1q
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Gal0atAlg, Ga20atillg, Ga20at%Al and Gab1.5at%Bi in qualitative
agreement with the theory. Similar results have been obtained
by Cartledge et al (3) in Ga/In alloys and von Hartrott et

al (2) in InSb.

Thus the theory appears to give a reasonable description
of quadrupolar relaxation in liquid metals and alloys.
Furthermore, it is likely to be applicable to the liquid
inert gases, with the use of the appropriate interatomic
potentials, and it also appears to explain recent unpublished

data on molten alkyl halides (27)
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APPENDIX T MODULATION BROADENING OF TORENTZIAN LINES

1 THEORY

The theory presented below is an outline of the analysis
given by Wahlquist (1).

Let Ha(t) be the homogeneous applied magnetic field
whose time dependence involves only the slow linear sweep
across an absorption line. Let H_ be the field at which
Tesonance OCCUTS, H% the half-width (distance between half-
intensity points) of the true line, and H  the amplitude
of the sinusoidal modulation with circular frequency w.

The normalised unsaturated Lorentzian absorption line may be

written

g(H) = n 3, 1

-

(3Hy )+ (H-H)*

and under modulation a signal will be generated which is

proportional to

S[H(t)] -l 2y 2
‘ (%H%)2+[Ha(t)+chosum-H0]2

The sweep rate is assumed to be very small so that Ha(t)
remains essentially constant over a time interval 2n/w.

Writing H -H = Hy and Fourier analyzing g(t)
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g(t) = n” 2y
(%H%)2+(H6+chosw§)2
[o o]
= H Z an(H ;A Hb)posnwt ] 3
-E% n =o :

where the integrals for the Fourier amplitudes

n
. w
a_(H,,H ,H ) = (w/n) cosnwt dat
n Wy 5 -
n (%H%) +(H_+H coswt)

may be performed by a standard technique of contour
integration. Using phase detection of the fundamental the
recorded signal will be proportional to the Fourier co-
efficient 4.

Define dimensionless parameters a and B where
a = (Hb/Hw) -0<a<o 4B= (%H%/Hw) 0<B< oo 5

and the auxiliary variables y and u where

= 148%40°

3
|

u

%
v+[y2-402]~ 2 <Uu < ™ 6

-

Then the result of the 'integration for n = 1 may be expressed

as
2 (2y ~u)?

2(u-2)% (u-y)

8q = _-t<2)
L

The detected signal, a, [H ’Hm’Hb(t)]’ is obtained by

restoring the linear time variation of Ha’ orequivalently, H

6
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The pertinent properties of the resultant curve, which is
similar in shape to the derivative of the Lorentzian curve,

may be obtained by taking the derivative

(daq/dH ) = -12/Hh?)u%(u -u-?vu+By)A 8
(u-2)7 (u-y)?

Setting the factor (u2-u—2vu+5y) to zero generates relation-
ships giving the location and amplitude of the two anti-
symmetric pesks of a,; for any modulation amplitude. Letting
the symbol for any quantity with a suffix p attached denote

that quantity evaluated at the peaks, these relations are

(H6>P =@ = (ap/26)H, ?
(ag)p = & %(2/H%)2[7(;&-—3y] 10

- [1«%52-%“52%)%]’} »
v, = .2%524—%8(62%)% 1z

2. CALIBRATION OF MODULATION

It is required to show that, if GHmeas.

measured linewidth and 8H the true linewidth measured

represents the

between points of maximum and minimum slope,

meeas = 2Hw-6H 13

provided H, > 6H.
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From 9 and 11 we have

(1), - = [14525 0 62DHn,

14
1+

[ +36°-30(2)F (143 %52)] %Hm

using the binomial expansion.
If H > H% then B & 1 and ignoring terms of higher than

first order in B8,

(),

i
1+

' H
1-30?x,,

=+ p-%ﬁ(%)%%]ziw

1
1+

el

Putting 8 =  Hy/H, and Hy = V361 we obtain

(Ha)p - I[Hw—gg

But  BHy, .2 [(Hy),|
Hence meeas = 2Hm—6H.

3 THE COMPUTER PROGRAM

The program uses the subroutine EO4GAF written by the
Numerical Algorithms Group. The subroutine finds the
minimum of the sum of squares of m non-linear functions,

or residuals, each of n variables,
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m
T 2
S(l‘:.) =ff = z [fi(x13x2t°'°°-’xn)] ’ (m > n) 14
i=1 '
The user must supply subroutines to calculate the values of

the functions and the Jacobian matrix, J, of first partial
derivatives of the functions where Jij = bfi/éxj.

The method used is based on an iterative technique
due to Marquardt (2), (3), where, at the point x, given
a parameter A>o0,the correction b required to give an im-
proved estimate of the minimum is obtained by solving for &
the equations,

(3%34AD)5 = -3°¢ 15

D is a diagonal matrix and.Dii> 0, i = 1(1)h. If the sum
of squares S(x +08) is less than S(x) then x+§ is accepted
as the starting point for the next iteration, otherwise A
is increased and the process is repeated. When A = O the
equations 15 are the same as in the Gauss Newton method
for which convergence is quadratic, but which may diverge.
The effect of including A is to introduce an adjustable bias
towards the steepest descent vector of the sum of squares,
2JTf, where progress is assured but may be slow, whenever
the method appears to be diverging.

Further details of the subroutine and its implement-
ation can be found in document no. 427 of the NAG library
manual. (ICL 1900 system).

In the present case the subroutine is used to fit to

the experimental data a function of the form,
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£(H)) = + c(2y -u)% + A Ha+‘B 16
(u-2)% (u-y)

by'adjusting‘the values of Hy, H , A, B and C. The first

o?
term in 16 is the eipression 7 given by Wahlquist for a
modulation broadened line including an arbitrary constent C.
representing the amplitude of the signal. The second and
’third terms’répresent a linear baseline of slope A and
intercept B. |

‘The program is listed below together with the output
obtained from the analysis of a typical 201Hg signal. The

five variables are stored in the array X where

S X(1) = H, X(2)=C X(3) =Hy X(#) =& X(5) =B 17

The program éutomatically calculates initial estimates of the
‘variables before entry into EO4 GAF. After each iteration

the sum of squares and the current values contained in X

are printed out. Following the final exit from the subroutine
the fittéd curve is calculated and the graph plotter used
toldispiéj this together with the original signal. The ;

graphical output obtained from a 199Hg signal is also shown.



100

500

110

120

130

140

150
160

170

LIBRARY(SUBGROUPSRF7)
LIBRARY¢SUBGROUPSRGP)
LIBRARY(SUBGROUPNAGF)
LIBRARY(SUBGROUPNAGG)
PROGRAM(HUGO)

INPUT 1=CR0

OUTPUT 2=LP0

COMPACT

COMPRESS INTEGER AND LOGICAL
MASTER HuGO

PIMENSION X(5),E(5)/D(5),F(510),u(555),5A(512),TITLE(O),GNAME(32),
YHNAME(11) +SNAME(16) )CHARS(12)

DATA GNAME(1)/32HGRAPH OF SIGNAL AND FITTED CURVE/,HNAMEC(1)/11HCHA
#NNEL NO,/ SNAME(1)/16HSIGNAL AMPILITUDE/,CHARS(1)/12HWIDTH G/
COMMON 8C(510),HA(S10) /AV(S,5),HOMEG,BETA,HDFELT(510),ALPHA(510),GA
#MMA (5103 ,U(510),A1(510)

EXTERNAL FUNCT,LSQ,MONIT

JCOUNT=D

READ(1,100)MCOUNT

FORMAT(12)

CALL GPHGRAPH(7,7KHPO1HUGO,6)

CONTINUE

1FAIL=0

MODE=1

IPRINT=4

MAXFUN=5K0

NES

READ(1,110)TITLE

FORMAT(0AS)

READ (1., 120)HOMEG GPCM

FORMAT(P?7,2)

HOMEG=<unMEG-511 0)/(GPCM*17,82)

READ(1'130)13101'§2

FORMAT(214)

FORMAT(RE7.0)

L=0

pO 1 I=1,510

L= =1

SACI)=SACL)

WRITE(2,150)TITLE

FORMAT(/////1H ,9A8)

WRITE(2,160)
FORMAT(//1H +16HDATA INPUT CHECK)

WRITE(2,170) (SA(1),1=1,510)
FORMAT (AN +16F7.0)
M=0
p0 2 I=181,182
MEM+1
HA(MY=]
sC(M)=sacl)
IWS(N*L) *N+11
SCMAX=1,0
sCMIN=1 0ES
pO 3 I=q,M
1F(SC(1Yy . GT,SCMAX) SCMAX=SC(1)
tF(s (1).LT SCMIN) SCMIN=SC(1)



180

190

200
210

220

230

240

K=1

L=2

p0 4 I=9,M

1F(sc(1) . EQ,SCHAX) K=]

TF(sCc(IY,EQ,SCMIN) Ls=I

BASE=(SCMAX~-SCMIN)/2,0+SCMIN

x(5)=BASE

ATP=SCHMAX=X(5)

p0 5 I=g,L

[F(sC(I)=X(5),6T,0,0) GOTO §

x(1)=1=1+181

Xx€1)=X(4)=0.,5

c0To 6

CONTINUE

HDELP=(Kk=L)/2.0

ALPHPSHPDELP/HOMEG

UPS4, 0% AL PHP*ALPHP=2, 0% ALPHP*SQRT (4L, O*ALPHP*ALPHP=
x(2)=A1P/(SQRT(Z.O*UP-3.0)/(SQRT(UP)*SQRT(Upfs.gst?GQ:Z 0
X(3)=HOMEG* (UP=2,0)*SQRT(3,0/(2.0%UP=3,0)) '
X(4)=0,0

WRITE(2,180)K,LsSCMAX,SCMIN

FORMAT(//TH ,AHK,14//1H ,AHL,14//1H ,SHSCMAX, F?,0//1H ,5HSCMIN,F?7.

#0)

g€1)=1,0g"5
g(2)=1,0E=5
E(3)=1,0E"5
EC4)=1,0E"5
E(5)=1,0E"5
CALL EOLGAF(MsNyX FsS/E,MODE,D,, TW,FUNCT,LSQ,MONIT, 1PRINT,MAXFUN,

11FATL)

WRITEC2,190)1FAIL
FORMAT(/21H ,6KHIFAIL=,11)
CALL MONIT(M,N,X,F,S,E,=1)
1FATL=Y

1A=h+1

CALL FO1ADF(N,AV,TA,IFAIL)
WRITEC(2,200)TFAIL
FORMAT(//1H ,6HIFAIL=,11)
WRITE<25210)

FORMAT(//1H +9HVARTIANCES)
FAC=5/(11=N)

WRITE(2,220)
FORMAT(/1H '11X,LHX(1)'11X'LHX(?)'11X'L”y‘3)'11Kl4HX(L),11x,4Hx(5)

#)

p0O 7 I=4,N

11=1+1

p0 8 J=1,1

DCJ)=FACRAV(11,J)

1F(1.EQ.3) X3VAR=D(3)

FORMAT(LE15.4)

WRITEC2,230) (p(Cy),Jd=1,1)

WCH=x(3y/1,7321

Wo=(WCH17,82«GPCM)/511.,0

Xx3Mn=SQRT(X3VAR)

pWCH=WCH*X3MD/X(3)

pWG=DWCH*WG/WCH

WRITE(2,240)WCH/DWCH, WG/, DWG,X3MD

FORMAT(////1H +3HWCH,F8,2//1H ,4HDWCH,FB, >
4G FB.L//TH +LHX3IMD,F8, &) It ERi2Clil  enWay 8.2/ /1N 30D
BETA=0,5+X(3)/HOMEG

p0 9 I1=4,310

HA(I) =]

WDELT(IY=HA(I)=X(1)

ALPHACIY=HDELT(I)/HOMEG

GAMMACTIY =1, 0+BETA*BETA+ALPHACTI)4ALPHACT)
UCT)=GANMA(T) +SQRT(GAMMA(T) *GAMMA(T) =4 0% ALPHA(T) *ALPHA(I))
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11

12

ATCI)EX(2)*SQRT(2, 0%GAMMACTI)=U(CTY)/(SORT(UCII=2.0)%(U(I)=GAMMA(T))
#)

TFCHACTY ,GT,X(1)) AT(I)==A1(1)
ATCIYSAT (D) +X (L)« HACT) #X (5)
SA(I)=SA(I)~BASE

AMCI)=A1(1)=BASE

CALL MOVEORIG(25.0,0,0)

CALL HGPSYMBLCO.0+12.070,8sTITLELO.O.72)
CALL HGPSYMBL(O:OISOSIO-6IGNAME N0, 32)
sFH=16,0/509,0

p0 10 1=1,510

HACI)=(HACTI)=1,0)%SFH

SAMAX=SCMAX=BASE

ATMAX==9 0

p0 11 11,510

PFCA1CLIY. 6T, ATMAX) ATMAX=AT(])
SPMAX=SAMAX

I1FCATMAX . GT,SAMAX) SPMAX=ATMAX

SPAMPEAL, (O

1F(WG,67.10.0) SpPAMP=2,0

SFS=SPAMP/SPMAX

p0 12 1=1,510

SA(I)=SA(I)~SFS

ATCI)=SAN (1) *SFS

CALL HGPAXISV(0,0,0,0,HNAME,=11,16.0,0,0,1,0,509,0,16,0,=4)
AL=2, 0wsgpAMP

NH=4

1F(UG,67,.10.0) NH=3

CALL HGPAXISV(OD 0r=SPAMP,SNAMF,16/AL+190.0,=SPMAX,SPMAX,SPAMP,NH)
CALL HGPLINE(HA,SA,310,1)

CALL HGPLINE(HA,AT+510.,1)

CALL HGPSYMBL(5,5,"8,0.,0,6,CHARS, n N,12)
CALL HGPNUMBER(B.5/=8:+0/0.6 /WG 0)s040+247)
1COUNTEICOUNT+1

1FCICOUNT,LT,MCOUNT) GOTO 500

CALL GPHMENDPLOT(25,0)

sTOP

END

SUBROUTINE FUNCT(M)N, XsF,1FL)
LOGICAL IFL

PIMENSION X(N) ,F (M)

COMMON SC(510) ,HA(S510) )AV(6,5) ,4NMEG,BETA, HDELT(510),ALPHA(S10),GA
#MMA(S510),U(510),A1(510)

BETA=0, S*X(X)/HOMFG

p0 1 I=q,M

HDELT(I)-HA(!)-X(1)

ALPHACIY=HDELT(I)Y/HOMEG

GAMMA(I)=1 , 0+BETA*BETA+ALPHAC(I)«ALPHACI)

UCI)=GAMMA(TI) +SQRT(GAMMACTI ) «GAMMACTI ) =4 , D& ALPHACTI) *ALPHACT))
A1(I)=X(2)'SQRT(2.0*GAMMA(!)-U(l))/(SORT(U(!)’2.0)*(U(l)~GAMMA(I))
#?)

JFCHACTY . GT X(1))Y AT(1)==A1(1)

FCI)SAT (1) + X CAY*HACT)+X(5)=5CC(])

RETURN

END
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100

110

120

130

140
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SUBROUTINE LSQ(M,N,X,F,A,V)

DIMENSION X(N),F(M),ACN,N),V(NY,AJAC(S511),5)

cOMMON sCc(510) ,HACST10) )AV(6,5) ,HOMEG,BRETA,HDELT(510),ALPHACS510),GA
AMMA (510y ,U(510),A1(510)

p0 1 I=q,M

AJACCI 1) EX(2)% (1, 0/ HOMEGY*SQRT (UCID I w (UCI)*U(I)=U(T)Y=2,0%GAMMA(])
A«U(I)+I 0O*GAMMACTI) )/ (SQRT(UCTI)=2 0)*(UCTI)=GAMMACT) ) *#(LICI)=GAMMAC(T)
#)Y*(U(I)mGAMMACT)))

AVAC (I, 2)3SQRT(2, O%GAMMACI) =U(I) )/ (SQRTLUCI) =2, () w(UCT)=GAMMAC(])))
AJACCT ,3)EX(2)%(1,0/HOMEG) *BETA~GSQART (2, D« GAMMACT ) =U(CTIY)*(GAMMAC(I) +
AUCI =UCII*UCI) )/ (SAQRTCUCTII=2,0)+(UCTI)=2.0)%CUCT)=GAMMACTI) )% (U(CTI)=G
SAMMA (1YY« (UCI) =GAMMAC(CT)))

AJACCI J4)BHACT)

AVACC(I,5)=1.0

TFCHACIY . LE.X(1))Y GOTO 1

AJAC(I ,2)==AJAC(1,2)

AVAC(I ,%)=E=AJAC(T,3)

CONTINUF

p0 3 J=1,N

p0 3 I=4,)

sUM=0,0

p0 2 K=q,M

sUM=SUMSAJAC (K, IY*AJAC(K,J)

AV(]IJ)52|0*SUM

ACL,J)=gUM

p0 5 I=q,N

sUM=0,0

DO 4 KSﬂ,M

SUM=SUMaF(K)*AJAC(K,I)

vil)y=Sum

RETURN

END

SUBROUTINE MONIT(MiN/ XsFeSeViIR)

DIMENSIAON X(N),F(M)V(N)

COMMON §C(510) yHA(510) 1AV (E,5) s HOMEG/BETA,HDELT(510),ALPHA(S510),6A
HMMA(510) U (510) ,A1(510)

1FCIr.GE,0) GOYO 1

WRITE(2,100)

FORMAT(////1H ,4SHFIT TO A MODULATION BROADENED LORENTZIAN LINE)
CONTINUE

IFCIR,LT.0) GOYO 2

WRITEC2,110) 1R

FORMAT(//1H ,16+25H EVALUATIONS nF RESIDUALS)

CONTINUE ~

WRITE(2,120)8

FORMAT(/1H ,17HSUM OF SQUARES = ,E17.9)

WRITE(2,1430) (X(1),1=1,N)

FORMAT(1H ,6H X(1)=,E17,9,6H X(2)5,E17,9,6H X(3)=,E17,9,6H X(4)=,F
#17,9,6H X(5)=,E17,9)

1FCIR.LY,0) GOTO 3

WRITE(2,140) (V(1)as1=1,N)

FORMAT(4M ,»17HPRESENT GRADIENTS/TH 16X E17.9/6X,E17,9,6%X,E17.9,6X,
#E17.9:6%,E17.9)

CONTINUF

RETURN

END
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DATA INPUT CHECK
35664, 35656, 35444, 35620, 39611, 35551, 3553, 35507 BQLAL, 3SS1T, RS4LAR, 45461, 85454, 354A1, 35454, 35479,
35397, 35411, 35437, 35400, 35433, 35490, 35505, 35540, 35585, 35612, 35584, 35585, 35547, 35504, 35431, 35300,
35343, 35325, 35298, 35294, 35309, 35319, 35348, 35362, 35407. 35418, 35424, 356418, 35419, 35411, 35396, 35393,
35369, 35354, 35347, 353%5, 35323, 35357, 35364, 35304, 35432, 35487, 35527, 35612, 3542, 35721, 35753, 3SR12,
35818, ISRS3, TSRS, ISKA7, TSK7D, 35479, 35842, 35K8A2, 3ISRKR1B, 35854, ISR24, 35859, ASR4L7, 35KAS5, 3ISBBO, 85925,
35949, 35992, 36020, 36030, RAG0R, 36034, 36005, 34008, 35671, 359<0, 32SR?A, 3ISBLY, 35810, 35772, 35732, 35797,
35634, 35656, 35404, 35579, 15577, 35593, 35573, 3542%, 35427, 35k52, 5660, 35702, 35740, 35805, 35875, 35914,
35941, 35958, 35986, 36015, 5991, 35991, 36004, 34022, 35998, 35984, 35961, 35939, 5914, 35902, 5881, 3IS5ES?2,
35852, 35845, 35”38, 35812, TS5RS1, 35K843, 35R4T, 35807, 3SRRY, 35017, I5912, 35938, IS0I5, 35429, 15915, I5K96,
35867, 35916, 35920, 35904_ 15916, 35976, 35088, 36012, 35064, 359%4, 35934, 35914, 35041, 35635, 35960, 35971,
35981, 36004, 35992, 35981, 33662, 35944, 35030, 35647, 35054, 35974, TA01R, 34019, 6020, 36043, 346080, 56105,
36092, 35131, 3618%, 38249, 316264, 36332, 364, 14294, ILTR7, 36403, 4410, 3KLS57, 3ALTA, 36510, TAS1R, K518,
36440, 35453, 36405, 36393, TAIBA, 34424, 364SR, 3AL02, 3A523, 3468572, 24K567, 34609, 36AST, $AASA, ThRE1, $6AG7,
36729, 35737, 36751, 36735, 14722, 36723, 36733, 34734, 34701, 34703, 36LBR, 34721, 384679, 3ALH2. I4ABL, 36463,
36672, 36618, 36584, 36553, 16492, 3hLLh1, 36414, 3AIR2, 38315, 362k0, 4234, 36159, 3K142, 36113, 36750, 85975,
35881, 35797, 35680, 35658, 35585, 35512, 35435, 35309, 35311, 35257, 35168, 35105, 35017, 34959, 3487, 3478,
34790, 34639, 34551, 34433, M4L54, 34422, TLISO, 343Lq, 34201, 342049, 344989, 34158, 34135, 34104, 34083, 31096,
34050, 34039, 34012, 34016, 34091, 34031, 346037, 34076, 3409A, 34103, 34091, 34068, T4AT7T, 3i013, 6017, 33796,
33986, 33985, 34003, 34015, Wngh, 34071, 34123, 2154, 34247, 3LPRe, 446, L3900, 6L FV, BlLLag, 34LNNR, 3LS27,
34577, 36615, 34463, 34679, 4400, 34720, 34720, 34711, 34701, 3l6Ly, 36647, 30601, TLSTI, 34567, 34590, 34621,
34626, 34645, 34456, 34655, 702, 34478, 34716, L7477, 34749, 3477, X4R1R, 34836, JLR2B, 3LBRN2, TL502, 3uB3,
34862, 34866, 34R98, 34952, 34964, 35034, 35107, 35172, 35227, 35313, 35344, 3S3LS, IST6I, 35376, 35398, 35405,
35385, 35366, I5T51, 35304, T5T93, 3524, 35240, 35174, 35139, 3500%, IS073, 35059, 3I50A2, 35067, 35057, 35057,
35038, 35050, 35091, 350091, 5102, 35043, 35031, 35083, 35112, 35104, 35104, 35105, 35101, 35099, 35104, 35139,
35452, 35188, 35232, 35240, 5256, 35268, 35288, 35301, 35309, 3528>, 5277, 35256, 35249, 35204, 35173, 35142,
35124, 35143, 35154, 35145, 35194, 35493, 35194, 35178, 35157, 35158, 35182, 35175, ¥5169, 351R&, 5203, 35233,
35237. 35303, 35343, 35335, 5280, 35286, 35217, 35182, 35156, 351%p, 35111, 35121, 35117, 35115, 35110, 35130,
35104, 35128, 35175, ¥S5178, 5230, 35249, 35287, 35284, 35281, 353%0, 35342, 35315, 35334, 35320, 35320, 35326,
35347, 35311, 35281, 35248, 315253, 35240, 35238, 3R2A2, 35248, 35244, 35273, 35281, X5249, 35291, 35282, 35309,
35299, 35335, 35348, 35336, 35335, 35382, 35364, 35375, 35341, 35262, 35278, 35253, 25208, 35224, 3520K, 35192,
35199, 35211, 35234, 35256, 15273, 35274, 35260, 35265, 35255, 3523¢. 35279, 352RA, I52R5, 35245, I5255, $5217,
35190, 35167, 25090, 35052, 34C75, 34951, 34890, TLRIR, LRI, BLRAS, TLRBON, IL793, TLR29, 3Lk29,
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SCMAX 36751,

SCMIN 339ARS,

1 EVALUATIONS OF RESIDUALS

SUM OF SQUARES = 0,220158493%E 03 _
X(1)= 0.248500000F A3 X(2)=s 0, 358942279E 06 x(3¥)= 0,131737852E N3 x(4)= 0,000000000E 00 X(S)= 0,35%480000F 0§

PRESENTY GRADIENTS
0‘3‘_03990135 né 0,706718128€ 02 =0.336321352F N4 =0,726674299E 07 -0.,2F87213AA5F 0S
3 EVALUATIONS OF RESIDUALS
SUM OF SQUARES = 0,137894770F 08
X€C1)s 0,266362051F A3 X(2)= 0,255043299E 06 X(3)= 0.1216051L5E AT x(4)= =0,268925327F 00 X(S5)= (.354R77349E 05
PRESENT GRADIENTS
90.2652070785 neg -N,27039799%E 02 N,2L65483RC4LF N4 0,108774719E 07 =-0,2S?21425%2F 04
& EVALUATIONS OF RESIDUALS

SUM OF SQUARES = 0,122775132€ 04

X(1)= 0,246555850F 03 x(2)= 0, 145029R2K8E 04 ¥(3)= 0,100223374F N% y(4)= =0 AY3AGO?9TE 00O X(S)= 0.354007120E 05
PRESENT GRABIENTS

=0,542452518F s -N,105115312€ 03 0.357850202F ng 0,118203334E 07 0.73370S238SE 01

5 EVALUATIONS OF RESTDUALS

SUM OF SQUARES = 0 ,105914915€ 08
X€1)= 0,266510347F 03 Xx(2)= 0,167724934E 06 ¥(3)= 0,102101320F 0T ¥ (&)= =0,6612R81C35F 00 Xx(5)= 0,3580252L5F 05
PRESENT GRADIENTS

0. E8294190€ 05 -n.5263313466E 01 n,2382120R8E £S 0,792522832F 05 0.324737501E 01



13 EVALUATIONS OF RESIDUALS

SUM OF SQUARES = (,105856412E 03

X¢1)= 0,246851700F 03 X(2)= 0, 167600283E 06 Y(3)=

PRESENT GRADIENTS
0,760745555€-01 6,263072889¢=05

1S EVALUATIONS OF RESTDUALS

SUM OF SQUARES = 0,105856412¢ 0OR
X(1)= 0,2668517n00F 03 X(2)= 0.,167600283¢ 04

PRESENY GRADIFENTS ;
0,624117469E=01 0,260636193¢=05

18 EVALUATIONS 0OF RESIDUALS
SUM OF SQUARES = 0,105385A412¢ 083
X¢1)= 0,246851700F 23 X(2)s 0 167600283k 064

PRESENT GRADIENTS
0,610497342€=01 N.261128935£=05

IFAIL=0

Y(3)=

X(3)=

0.

n,

101858333F nx

353392001 E-N1

0.101R583%3E nz

0

0.,

\
0,

345A02R340E=01

101R53323F 0%

34450R100F =01

x(4)= =0,66102424%F 00

0,100212097€-01

X(4)= =0 661624243E 00

0.1462021179E=-01

y(4)= =0,66192424%E 00

(1,114“‘0f‘ZSi’*SE~||1

X(8)=

X(5)=

Y(S)=

0,355G2A892E S

=0,149720r2658E=03

0,3559264G2E A5

=G, 167RLAERNE-DT

0,355V24402F 1S

=0.1721382%4E-13



FIT TO A MODULATINN BROADENED LORENTZIAN LINE

SUM OF SQUARES = 0,105856412 03

X(1)= 0,246851700E 03 X(2)s 0,167600283E 06 x(3)=

N.101RS5832IF A% y(l)= -0,66192424%E 00 X(S5)= 0,355926892E 05

IFAIL=)
VARIANCES
X (1) X2 EXER) X (&) X(5)
0.571'-‘6‘0‘
0.7972¢ 00 0,2252F 038
0.1571E=03 0,4920€ 04 0.1172€ 01
0.1427€=04 0n,R4STE 02 0,1609E=01 0.12R9F=02
-0,.1083g=-01 -0,2147F 0S5 -0,.4310F 01 -0,32R7F 00
0.1044E O3

WCH 58, 81
DWCH 0,62
WG 24,256

pUG 0,2578

X3MD 1.0324
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APPENDIX IT CALCULATION OF THE TEMPERATURE DEPENDENCE OF R1

Q

1 THEORY

As shown in Chapter 3 the quadrupole relaxation rate

is given by the following expression,
Oo2 Qo
R, =28 [q [I (q)+2npI (q)]dqu/S 2(q,m)dw 1
1q p t s
b ~o©
where the pair integral is given by

Co (6 o]
I(a) = ./f(rq)vz(rq)rqgjz(qrq)drq/é(ro)vg(ro)roedg(qro)dro
0 _ 0
2

the triplet integral is given by

Qo (0.0
1,(2) = [ £(2)vazy)ry®dplarydary [e(zgvale,dr,2ar,
0 0

0o . |
X /s(r5)r5332(qr3)dr3/s(r05)P2(Z)dz 3

0 -1

and
eQ(1- ) 2
B8 = 2n(2I+3) Yeff ] s 4
151°(21-1) B

r032 = r02+r32-2r&%$os8 | 5
z = cosd 6

1.1 THE PAIR INTEGRAL

As explained in Chapter 3 we treat f(r,])v2(r,1)r12 and

g(r, )Vo(r,)r 2 as delta functions giving
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I(a) = dplarydis(ary) 7

2
For a delta function at a this gives Ip(q) = [je(qa)] 8

and if q is expressed in units of 1/8 this simply becomes

I,(a) [32(q>]2 9

For a delta function at b # a, for example b = 1.05a then

[

I, = [iaa 1.05)]2 10

1.2 THE TRIPLET INTEGRAL

Treating if(r,])vg(r,‘)r,l2 as a delta function reduces

the first integral to jg(qrq). In the second integral

2, is also treated as a delta function which

picks out some particular value of Ty say b, so that r032 =

g(r )vy(r )T,

r32+b2-2r5 bcosfin the final integral. To integrate requires
a form of g(roa). In our calculations we used simplified
forms of 8<r05) for the hard sphere model of a liquid and

for liquid mercury. We shall describe first the calculations
based upon the hard sphere model.

1.2.1  CALCULATIONS USING THE HARD SPHERE MODEL

We chose the hard sphere form for packing fraction
n=0.445 (1). This was simplified using straight line
approximations as shown in figure II 1.
For clarity we shall consider the case b = a initially
and then extend the results for the general delta function
position. We therefore put r_ = a and, letting r, = r,

o 3

Tz = p we have from 5 and 6



g(r)

For,

r<a, glr) =0

a<r< 1.25, g(r) = -’125 + 16

"
b

r > 1,25a, g(r)

bos @ am = = - o

Figure 11.1

a 1.25a 2a

Simplified form of the hard sphere g(r) used in the calculations.
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p2 = a2+r2-2arz 11

Also, in order for the integral to converge we write

/g(p)Pg(Z>dz =/ [g(p>—’l]P2(Z)dz 12
21 =1

Considering first the region o <p< a, we have

.
-3 [ (32%-1)az
r/2a

!
(p)-1|P,(2)dz
_/l[gp ]szd

-r (4a2-r2)
’I6a5

!}

p) .
~X_ (4-x%) putting x = 13
1%

z

a

The limits in equation 13 should be noted. When p= o,
2,2

z = a“+r~ > 1, setting the upper limit at 1. When p = a,
ar

Z = r2 = r giving the lower limit. Thus when r = 2a the
2ar  2a

integral is zero.

Now considering the region agp g 23 . we have at

p=a, z=r/2a and at p = gﬂv,'

2 2

%ga = a

i.e. 2' = jfrg-%\z = %5 - %—%r
Eéar

+r2-2arz' where z' is the required limit.
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Then

r/%a
%—‘/[45—1§(ag+r2-2arz)%](3z2-1)dz
v ga ® '

2a 32r

r/2a
3 [ps12014BZ-2Br2)?| 32713z
3 /?[15-’12(1+X2-2XZ)%](52‘2-1)dz 14
x 2
2 32x

/[g(p)—’l] P,(z)dz
21

Expression 14 is correct for r £ 2a. However when
T = 2a the upper limit equals 1. Now z is integrated only
between -1 an 1 so that for r > 2a we must cut off the
integral at the upper limit of 1.

Thus for r > Z2a we use

[

|
15—12(1+x2—2xz)%](ﬁ;z-ﬂ)dz 15
2
32

| .
[ [ste)-1]P(2)az = 2
0 x
2 X

To summarise, for r £ 2a we use expressions 13 and 14

to evaluate the integral but for r > 2a expression 15 must

be used.

We shall now consider the general case b £ a where

2 = b2+r2-2brz 16

p
For the region O < p < a we have

| /[s(p)-ﬂ]rgczmz

1
-4 [ (32%-1)az
n
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where n is the limit of z when p = a i.e. a2 = b2+r2—2brz
n = b2+r2-a2 17
2br
| !
Then /[g(p)-1]P2(z)dz = -v}[za-z]
= _ n
= =3 (1=n’=1+n)
= 2n(n°-1) 18

It should be noted that this integral equals zero when n

equals 1 i.e. at

2 - pe4re-2br = (b - r)2

oY)
|

4]
]

+ (b-r)

The positive sign gives r = o which 1s below the cut-off at
r = a. The negative sign gives r = a+b which is equivalent
to r = 2a for the delta function at a.

For the region a g ps% y at p=a, 2z =n as above,at

‘):gﬂ" we have
2,.2

22%3 = bT+r

&= 16(b2+r2)—25a2
52br

-2brl where ¢ 1is tne required limit

Then .
| n
/[S(P)—"]PQ(Z)dZ = % /”15-__'_1_2(b2+r2-—2brz)%](5z2-1)dz
. c a

- 3

f\!\:

15—42<;§+£Er§pgg)%k322-1)dz 20
: 2

a 82
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Again when r > a+b we must cut off the top limit at 1

and in this region

a a a

| |
(0)-1]Ps(2)az = 3 [ [15-12(v%42%+20b Z>g, (32°-1)dz 21
!“g p ] olz)dz é[[ (_gtgzﬁ__g_ ] z V2

Writing x = r/a as before 17 and 18 become

|
[[eCer-1]po(2daz = gn(%1) 22
=
2. .2 2,.2 .
where n = b _+x =1 = +X =1 withy=D> 23
a2 2yX a
2(—a')X

Equations 20 and 21 become

-1 {
and

./[s<p)—ﬂ]P2<z>dz =2 }1ﬁ5-12(y2+x2-2xyz)%](322_1)dz 26
! N

with ¢ = 16(y°+x°)-25 26
S 52xy
The condition r = a+b becomes x = 1+y.

Thus to summarise for the general delta function
position b # a, for x<1+y we use expressions 22 and 24 to
evaluate the integfal with n and & given by 23 and 26. For

r

x>1+y we use only expression 25.
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1.2.2 CALCULATIONS USING g(r) FOR LIQUID MERCURY

The simplified form of the radial distribution function
used for mercury is shown in Figure II.2. It is based upon
that given by Kaplow et al (2).

Again for clarity we shall first consider the case

b = a. For the region o<p< a, we have

| |
-%/(322—1)dz

r/2a

_/:[g(p)-ﬂng(z)dz

-%6(4-x2) with x = r/a 27

which is the same as the result for the hard sphere model.
Again when r = 2a the integral is zero.

Considering now the region a £ p<1.18a, when p = g,

2z = v/2a = %,when p = 1.18a, the required limit 2' is given
by
z! = a2+r2—p2 = r2+(1—1.182)a2 = r -0.392a = x~0.196
2ar Jar 2a T 2 a
Hence
' r/2a

—/llg(p)—’l]Pz(z)dz %z/' [2_;_"_’2p—9.’l’7] (3z2-1)dz

r/2a

%/ [M( ae+r2-—2arz)a’-9. 17] (5'2.2-1 ddz
g0t 8

x/2
%/ [9-17(1+x2—2xz)’}-9.17](322-1)dz

x 0,196
2 X

e8



For,

ar r<a, g{lr) =0
% a<r< 1.18a, g(r) = 9.172 - 8.17
3| ; 1.18a < r < 1.46a, g(r) = - 5.89r + 9.6
. a
2,65 _ ... r > 1.46a, g(r) =1
2 -

hoe o o o A s e e A o e e =

a 1.46a 2a
1.18a

Figure E.Z Simplified form of g(r) for liquid mercury.
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For the region 1.18a < p € 1.46a, when p = 1.18a, z = x

-0.196, whenp=1.46a, the required limit 2z" is given by
X

2. 2 2.2 2
2" = r“+a-1.46%% = r +(1-1.46%)a = x-0.566
2ar Za T 27 x
Then
x 0.1

./[g(p)-ﬂP2(z)dz = 3:/[8 60-5.89(1+x -2xz)%](52 -1)dz 29
x_0.566

As before the uﬁberxllmlt of z for any integral must
not exceed 1 and so we replace the upper limit of the integral
by 1 in expression 28 when x>2 and in ekpression 29 when

- 0126 >1’ i.e. X>2.18.
X

To summarise, for 1<$x<2,

rolK

_/:[ss(p)—'l}Pg(Z)dz= "% (4-x°)

x/2
+ 3 /' 9.17(1+x -2xz)% 9. 17 (322-1)dz
x/2-0.196/x
x/2-0.196/x 1
+ %./ 8.60-5.89(1+x2—2xz)% (5z2-1)dz - 30

x/2-0.566/x

For 2£x<£2.18,

/[g(p) 1]P2(z)dz - %/[9 19(14x2-2x2)%-9. 17 (32°-1)az
x/2-0.196/x
x/2 0.196/x
3 f [8 60-5.89(14x —2xz)'} (32°-1)dz 31
x/2-0.566/x

and for x 22.18,
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1
[:[g(p)—1]P2(z)dz =x~/}2/-o[.85.66éc;;5.89(1+x2-2xg)‘3](5z2-1)d;2

We shall now extend the results as before for the general

case b £ a.

As with the hard sphere model, for the region o <pga,

i
./[g(p)-1]P2(z)dz = %n(ng-ﬂ) 33
ny

wheren = b2+r2—a2

br

For the region a £p£1.18a, when p = a, z = n . When

(1.18)282 - b%4r2-2brf where & is the required limit

¢ = b2+r25§1.18)232 = ®%(H)2-(1.18)2 34
r
2(2) (&)

Then

./[g(o)-ﬂng(z)dz = %}P[Qéiz(b3+r2-2brz)%-9.17](3z2-1)dz
- 3 35
Again expression 34 is correct up to r = a+b, beyond which
the top limit is 1.
Finally, for the region 1.18a < p £ 1.406a,

g
_/I‘[g(”"‘]Pg(Z)dz = ’})\/[8.60—.5_-_29.(b2+r2-2brz)%](322-1;Zz
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where & is given by expression 34 and A = (%)2+(§)2-(1.46)2
by,
2(3) )

Once again expression 26 is alright up to & = 1, beyond which

the upper limit is 1.

o

s r .
Writing x = 3 and y = as before we can summarise

the results as follows.

For the region 1< x < 1+y,
1
J1 QR EXOLUEELICERD
-1 :
V n
+%/ [9.17(y2+x2—2xy2)%—9.17] (32°-1)az

¢
+ i [6-60-5.89(s%x-2x72)?] (322-1)a2
A

37
with ' n = 2,x°-1 28
| 2xy
E = y2+x2-(1.18)2 9
2xy
A= y2+x2-§1.46)2 40
exy

24x'2.(1.18)°

ex'y
= 1

For the region 1+y< x ¢ x' where x' is given by y

j[g(p)"ql%(z)dz = %/[9-17(y2+x2-2xyz)%-9.17](%‘2—1)dz
4

¢
&/[8-60-5.89(y2+x2-2xyz)51(37,2-1)dz 41
A
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and For the region x:>x'f
/[g(p>-1]P2(z)dz - %/[8.60-5.89(y2+x2-2xyz)%](5z2-1)dz
-1 A 42
Returning to the expression for the triplet integral
given by equation 3, having calculated the integral over
g(roa) for a given value of r_i.e. b we now require to

integrate over rBZg(rB)jg(QrB). i.e. we now require

(¢ o)
2np [ &(z5)r5%3, (ar5)F(r;)ary
0

I
where F(ra) =‘/ g(roB)Pz(z)dz
<

Now the packing fraction n = volume of the atomic sphere =w

volume aliowed for each

sphere
where w = n33 , a being the sphere diameter
and the number density Q = 1. Hence 2np = 12n.
P 33
We therefore require to evaluate
7 en(32) 3, o
I(r5)= 12"/8(1'3)( a) Ja(qrz)F(r3)_az 43
0
Writing Ty =T and changing variable to x =‘g with dx = dr
a a
T ys 2
I(x) = 12n [g()x"5,(a)F()ax 4
0

In the actual calculations F(x) is the weighted sum of

integrals for different delta function positions.

Q
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2. THE COMPUTER PROGRAMS

Calculations were carried out using two programs,
INT1 and INT2.

Using the expressions developed in section 1.2 INT2
first calculated the value of the final integral in equation
%3 for various delta function positions and found the weighted
sum of these integrals corresponding to F(x) in equation 44,

The product
F5(x) = 12ng(x)x°F(x) 45

was then calculated. As mentioned previously the value

taken for n for the hard sphere model was 0.445. For mercury
a value of 0.%375 was used. The simplified forms of g(x)

as shown in Figures II.1 and II.2were also used.

The graph plotter was used to plot F5(x) and a straight
line approximation of this function was made. This approxi-
mation to F5(x) was fed into the second program INT4 which
initially calculated the integral given by 44, i.e.,

Oo
Ix) = [ F5(x)gp(ax)ax 46
J |

Using a weighted sum of appropriate Bessel functions
INT1 then proceeded to calculate qglp(q) and q22ant(q) and
then the sum q2[Ip(q)+2ant(q)] and each of these functions
were output to the graph plotter.

Next the final integral in expression 41 for R, was

1q
calculated using the Egelstaff-Schofield expression for Ss(q,w)

tdgether with the result given by Sholl (3) i.e.
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./S 2(q,m)dw = mDeXK (x) l . 582+xv2 ] 49
0.582+x

where X = mDeg2 . Ixpression 47 was calculated as a function

of q with q again in units of 1 . The value of m used was
a

3%3.66. 10"°’kg and a was taken as 2.6. 10~ m. this being

obtained from the cut off in g(r) as quoted by Sholl (3).

The product

F(q) = q2[Ip(q)+2ant(q)] /ész(q,w)dw 48
- 00

was then calculated and output to the graph plotter.
Expression 48 was finally integrated over all q to give a
result for qu in arbitrary units.

The above steps were repeated for four temperatures
the lowest of which, 255°K, being the melting point of
mercury. The values used for the diffusion coefficient, D,
at each temperature were taken from the data of Meyer (4).

The programs utilised the following three scientific

subroutines provided by the Numerical Algorithms Group.

(i) Subroutine DOIACF

This routine evaluates a definite integral to a specified
accuracy using the method described by Patterson (5) of the
optimum addition of points to Gauss quadrature formulae.

(ii) Subroutine DOIGAF

This routine integrates a function which is specified
numerically at four or more points, over the whole of its
specified range, using third order finite - difference

formulae with error estimates, according to a method due to

Gill and Miller (6)
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(iii) Subroutine S18ADF

The routine calculates an approximate value for the
modified Bessel function Kq(x) using a method based on
three Chebyshev expansions (7).

Further details of the subroutines and their implement-
ation may be found in the NAG library manual.

As an example the programs used to calculate the
variation of R1q with temperature for liquid mercury using
the mercury g(r) and a range of interaction A= 0.1 a are
listed below together with their relevant output. The
positions of the delta functions used for this mnge together
with their relative weightings are shown diagrammatically in

Figure II.3.
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Figure Ii.3 Diagrammatic representation of the delta functions used for a range of

interaction A = 0.1a,



LIBRARY(SUBGROUPSRF?)
LIBRARY(SUBGROUPSRGP)
LIBRARY(SUBGRUUPHNAGF)
=== T LIBRARY(SUBGROUPNAGG)
PROGRAMCINTD)

INRPUT 1=CRO

QUTPUY 2=1PD

ConpicCy

TRACE 2

“HASTER INT2

PIMENSICN TOYAL(201),Y(201),sMFNGC(2921),F5¢201)
COMNMON JaYrBOA
TEXTERNAL FUYT, FUN2
CALL GPHGRAPH(?,7HPD1INTR2,6)
CaLl WMOVECRIG(2,0:,m14,0)
CALL GPHSLIUNEC0.0/0.0420,0,0.0)
CALL OGPHSLIHNECO. . Gs=5.0,10.0,90,0)
[‘\) 500 1:1.?01
SHENCEIY=0,0
500 CONTINUE
= PO 4 121,10
RE1=1
=UA=1 0+v‘0 ar
po 2 JE1, 204

Sajelln ity
§5§/710¢,0
Y(J)=1,0+8

SIGHA’(PO!*BHA+Y(J)*V(J) w1, A)/(2.0%B0AxY (J))
Op=0,5*STGIAYCSTGIARSTGHA=Y . 0)

TF(SIGHA_ET.1.0) ONEm(,D
IF(SIGMA,.GT 1.,0) SIGHA=T, 0 7
CPS]L:(Rnﬁ*u0A+Y(J)*Y(J) AR*T,18)/7(¢2.0%Y(J)*B0A)
A=FpSIL T
BaSIGMA St
pELACCRY  0E=4
ABSACC=( 0
IFALL®Ys: ¥ Uk :
CALL DO1ﬂCF(AvBcFU4 .RELACCpARSACC.ArCoANSpNPTS.lFAlL)
IFCIFALILYD ¢10

[} WRITEC2,102) , ' .

q0e FORMAT(AH ,45H INTEGRAL DID NOT ReACH THF REAUIRED ACCURACY)

40 CONTIHUE Setias

TUO=( . B3*ANS R
IFCEPSIL.GT.1.9) THO=0,0
IFCEPSIL.GT.1.0) EPStLmY,0
RLAMBRCBOAFBOA®Y(JIRY(J) =1, 46%1,46)/ (2. 0wy (J)wRBOA)
A=RLAMB
BagpstL
1FAIL=Y. : A
CALL DOTACF(A,RB,FUH2,RELACC,ABSACC,ACC,ANS, HPTS, IFALIL)
IF¢1FALILY 11,1211

11 WRITE(Z,102)

12 CONTINVE.
THREE=D.S5*A!S e T
IFCRLAMB,GT.1.0) THRFE=OD.O0
TOTALC))eCHE+THO+THRFE



2

15

16

17

19

20

T COdTIVUE

Hm201 - . -

DO 15 J=1,M 4
TOTALGJISTOTALCY) *Allp

CUONTINUVE

20 16 J=1,H

SHENC(I) =SHFHNCCIY+TOTAL(J)
CONTINUE

D0 17 J=1.1

YCy=Y(Jam1, 0

YCJysyY(J)#1),9

CONTINUE

TOTMN=1,0

DO 18 J=17Hl
IFCTOTALCI) (LT, TOTHHY TOTMNSTOTALCS)
CONTINUE -

IF¢r.67.1) 6OTO 19

SF=5.9/ToTHH

SF==SH

DU 20 J=1,

TOTALCI) =2TOTAL(J)*SF

COdTIHUE

CALL NHGpLIHE(Y,ToTAL,I1,1)
COHTINUE

DO 21 J=14H

Yy(d)y=y(J)/10,9

YCJ)=Y(I)+1.0

ConTIhlg =

0O 22 Jm1 ;M

F19,17#Y(J)=83,17

F1129 .60=5,30%y())

F12=1.0 = e,

IFCYCd) ,67,1,.18) Fl=p1l
IFCYCd) . 6T, ].40) F1=sF12.
F2aY(J)wa?
FSCI)mSHEHC () #F1wF2+12, 00,375
CONTINUE

D0 23 Jeqi,H

YCJy=V(J)el O

YO Y (D %400

CONTIHNUE

cHMIN=1 0

Lo )L Jﬂ"l”
TF(SHRHE (Y LT, SHMTIHY SHHIN=SHFNA(J)
CONTINUF

GFs5. 0/8MMIH

CFa-trl

p0 25 JeijH

SHFNC (V) =SHFNC (J)*SF

CONTINUE

CALL MOVEORIG(30.000.0)

CAaLL GPHsLIHEéO.ﬁaﬁ.GcZO}GaO.ﬂ)
CALL GPHSLINECD.0¢™5.0010.0,90.0)
CALL HGPLIMNECY,SHFNGCYH 1)
SF".’-?

pU 24 J=1,H

FS5CI)SFS(JY #SF

COHTINUE

CALL MOVEORIG(30.0+0.0)

CALL GPHSLIHE(D,H,0,0,20,9,0,0)
CALL GPHSLINECD.Dr=5.0010.0,90.0)
CALL HGPLINECY,F3.:M1,1)

CALL GPHENDPLOT(25,9)

PAUSFE 96 ,

END
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LIBRARY(SUBGROUPSRF?)
LIBRARY(SUBGROUPSRGP) _
LIBRARY(SUBGROUPNAGF)
LIBRARY(SUBGROUPNAGG)
PROGRAMCINTY)

INPUT 1=CRQ

oUTPUT 2= PD

COMPACT

TRACE 2

MASTER INT1

DIMENGION pLIM(6),SUMFQ(500),01(500).p4201(¢500),8Ma02¢500),PTERM(S
#00)TTERM(500), TOTFQ(500), TOTFN(500),T¢4),D(4),R1Q¢A),XQC500),ESA(
#500) ,REDT(4) s REDRT (&), FAX(500)

COMMON 0,CA,CB,SF,L

EXTERNAL FUN

L=500 :

RELACC=1 ., 0E=4

ABSACCERO.0

READC1¢101)RLIM

101 FORMAT(éES5.2)
DO 1 I1m9,L
SUMEQC1)Y=m0,D

1 CONTINUE

DO 2 NB1,5

ARRLIM(N)

BERLIM(N&1)

READ(1,102)CA,CB

102 FORMAT(2E?7,2)

pO 3 IBq,L

Rm1 -

QRR/5.0

IFAL &1 =

CALL DO1ACF(A,B,FUN,RELACC,ARSACC,ACE ,ANS ,NPTS,1FALL)

SUMFQ¢I)=mSUMFQ(I)Y*ANS

CONTINUE

CONTINUE

DO 4 1m1,L

R=1

Q1¢1)=R,S5.0

SHRY2(1)=0,0

4 CUNTINUE
CALL GPHGRAPH(7,7HPOA1INTY,6)
CALL MOVEORIG(2.0:=14.0)
CALL GPHSLINECO.040.0+20.0+0.0)
CALL GPHSLINECO.0¢"4.0¢8.0¢90.0)
PO 5 129,140 '
RElml
DFpN=1,0eR*(), 01
AP=1,0=R%0_1
DO 6 Jm1,L
. X2Q1(J)
—XmXwDFPN -
RJI20QICII B (3, 0/ Xea3m]  0/XI*SIN(X)m(3.0/X%%2)* 00§ (X)
= —RJ201 (JHyeRJ2QT (J) *AHP
crho SOONRENUEL . Sooie it tip 0
00 7 Jmq,L
SHRY2(JY=mSMRJI2CJ)I+RI2Q1 (J)
7 CONTINUE

oW
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11

12

103

104

1F(1.6T.1) GOTO o

~~RJMAX==1 0
-00 8 Jm1,L

IF(RI2QA1(JI).GT,RIMAX) RJIMAX=RI?2Q1 (J)
CONTINUE

SFusg .0/ RIMAX

CALL DEGAS(NQ1,RJ2Q1)

CONTINUE

DO 10 I=17L
PTERMCI)aSHRI2CII*SHRI2(II WO (1) w01(1)
TTERMCIYRSHRI2(CI)*SUMFQ(I)Y*N1 (1) w01 (1)
TOTEQCI)BPTERH(IY*TTERM(Y)

CONTINUE -~

CALL MOVFORIG(25.0/,0.0)

CALL GPHSLINEC(D.0,0,0,20.,0,0.0)

CALL GPHSLINE(0.01"4-0'8-0'90.0)
SHMAX=E®1 .0

DO 11 I=m17L

JF(SMRJI2(I).GT.SMMAX) SHMMAX=SMRJ2(1)
CONTINUE

SF=4,0/SMMAX

CALL DEGAS(01,SMRJ2)

CALL MOVEORIG(25.0,0.0)

CALL GPHS| IHEC0,0,0,0,20.0,0.0)

CALL GPHSLINECD.0+s*4.0,8.0,90.0)
TMAX==1_ 0

p0 12 I=1,1L

IFC(PTERMC(I).GT,.TMAX) TMAX=PTERM(Y)
CONTINUE

WHRITE¢2,109) TMAX,SF

SFas,.0/TMAX

CALL DEGAS(Q1/,PTERM)

CALL NEWPENC(3)

CALL DEGASCQ1/TTERM)

CALL NEWPEN(?2)

CALL DEGAS(Q1,TOTFQ)

CALL NEUPEN(1)

CALL MOVEORIG(25.0+0.0)

CALL GPHSLINECQ.0r0.0020:000-0)

CALL GPHSLINECO.0:0.0,4.0,90.0)

CALL MOVEORIG(25.0,0.0)

CALL GPHSLINE(N.0+0.0:20.0¢0.0)

CALL GPHSLINECD.0+/0.0¢4.0:90.0)

CALL MOVFEORIG(C25.0+0.0)

CALL GPHSLINECD.0:0.0,20.040.0)

CALL GPHSLINECD.0+=4.0:8.0:90.0)
CALL MOVFORIG(=50.0,0.0)
RKB=1.3RE=23

READC1,103)A,RH

AzAwl , 0Fe10

RAsRM#1  0Em27?

READ(1¢104)T,0D

FORMAY(LFE,9/4F5.2)

) 14 !E“‘v‘

DC1)eD(1)»1 0g=9

00 15 Je1,L

Q0A=RYI(J) /A
XQ(J)e(RM*D(I)*D(I)*QOA*QOA) s (RKR*T (1))
FIXsEXP(XQCJ))

IFAIL=Q

FeXes1BADF(XqCJ) IFALL)
F3Xa(0,582+XNCJ)%1,4142) /(0 _582+XQ(J)Y)
FOXCJ)REIXwE2X

ESACI)B(D(I)*FAXwF2X*F3X)/T(1)
TOTENCIBTOTEQCYI*ESAC(Y)



IFCI.GT.1) GOTO 15
HRITEC2,110) Q1(¢J)rQOAXQ (I FAX (I FSA(II,TOTEQCIY TOTENCY)

110 FORMAT(1H ,7E11,4)

15 CONTINUE
IF(1,6T7,1) GOTO 16
FaXMxamq 0
XQMAX=="1, 0
PO 17 Jet,L
TFCRAXCUD) L GT  FAXMX) F4XMX=F4X(J)
IF(XQUI).GT.XQAMAX) XQMAX=XQ(J)
17 CONTINUg
sFFaX®mh_ 0/FLXHX
SFXQe20 _0/XaQMAX
WRITE(2,109) F4XMX XQMAX,SFFLX,SEXQ
109 FORMATC(IH JE11.4)
16 D0 48 Jmq,L
FAXCUIBEAX () *SEpébX
XQeJ)mXn(J)»SFXQ
18 CONTINUE

CALL NEWPEN(2) g
CALL HGPSCURVE(XQsF4X,L,0,0,0,0,0)

CALL MOVEORIG(25.0+0.0)
IF¢1,67.49) GOTO 23
ESAMXB=1 .0
DO 22 Jm1'L
IFCFSA(J) .Gy ESAMX) ESAMX=ESA(J)
22 COUNTINUE
SFESAm4.D/ESANX
WRITE(R2:,109) ESAMX/SFESA
23 SFasSFESA
CALL NEWPENC(3)
CALL DEGAS(Q1/,ESA)
CALL MOVEORIG(25.0,0.0)
IF¢1,.67.1) GOTO 20
TOTENMR=1.0
p0 49 Js1iL
IFCTOTENCY) .GTL.TOTENM) TOTEHUMSTOTENC))
19 CONTINUE
SFTOTFS4.0/TOTFNM
‘WRITE(2.109) TOTENM,SETOTF
20 SFmsSFTOYE
CALL NEUPEN¢1)
CALL DEGASCQ1,TOTFN)
CALL MOVEORIG(=5n,0,0,0)
NsL
IfAILRO
CALL DO1GAFCQ1+TOTFN.NsANS+ER/IFAIL)
WRITF(2,105)
105 FORMAT(/1H ,37H TEMP(K) INTEGRAL FRROR IFAIL)
WRITE(2,406)TC(I)SANS.ER,IFATL
106 FORMATCIH s F7¢1,2X0E11.442X,F114442X.12)
R1Q(I)®BANS
14 CONTINUEg
WRITYE(2,107)
107 FORMAT(,s1H ,23H T/TH RIOCT)Y /R1IQ(TM)Y)
DO 21 I=1:4
REDTC(I)=T(I)/T(1)
REDRY(I)=mRAQCI)/R1Q(Y)
: WRITEC2,108) RgDTC(I),REDRICI)
108 FORMAT(IH +F6.2,7X¢F5.2)
21 CONTINUE ]
CALL apusnanor<>s.o>
e P Al D ke
END



FUNCTION FUNC(X)

COMMON 0,CA,CB,SF,L

FXsCAsX4CB

FAX=((3.0/7 QX)) ww3=1.0/CQ*X))*#SINCQ*X) =3 0wCOSCQaX)/ (QuX) *%2)
FUN=EX*FNX

RETURN

END

SUBROUTINE DEGAS(X,Y)
DIMENSION X(¢500)5Y(500)
COMMON 0,CA,CB,SF,L

2=sL
2=2w0, 01
DO 1 1m1,L
XC1yax(y)/2
YC1)mY())wSF
1 CONTINUF
CALL HGPLINEC(X,Y,L,1)
DO 2 Im1,L
XC1)ax(yr)w2
2  CONTINUE
RETURN
END
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