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ABSTRACT 

Using continuous wave nmr the linewidths of the 199Hg 

and 201Hg resonances in liquid mercury have been measured 

over the temperature range 2450 K to 4130 K. From the line­

widths the values of the longitudinal relaxation rate, R1 , 

were calculated for each isotope. R1 for the 201Hg isotope 

was found to consist of two significant contributions; R1mt 
due to the hyperfine interactions and R1q , due to the inter­

action between the nuclear electric quadrupole moment and the 

local time dependent field gradient. Using the 199Hg rates, 

which were entirely due to the magnetic interaction, it was 

possible to isolate the two contributions to the 201Hg rate 

and hence accurately determine the variation of R1q with 

temperature. 

The theories of nuclear quadrupole relaxation that were 

available predicted that R1q should vary with temperature 

approximately as n-1 , where n is the diffusion coefficient. 

However, the variation of R1q for the 201 Hg spins was found 

to be much slower than this with R1q varying approximately 

T-~. as A review of the reliable experimental data from 

both nmr and pac (perturbed angular correlation) experiments 

showed that R1q followed a similar trend in a number of 

liquid metals. Therefore the theory of nuclear quadrupole 

relaxation in liquid metals was re-examined and a new version 

is presented together with detailed calculations of the 

variation of R1q with temperature for liquid mercury. 



Agreement between theory and experiment is obtained provided 

the range of the quadrupole interaction is small compared 

to the interatomic spacing. 

The theory has been extended to cover the case of a 

liquid binary alloy in which it predicts a faster variation 

of R1q with temperature than in the pure metal. Using pulsed 

nmr R1q has been determined as a function of temperature 

for 85Rb in Rb50atr~a and for 69Ga in a number of Gallium 

alloys. The 85Rb results were not accurate enough to 

determine the trend of R1q• However, the 69Ga results were 

found to agree qualitatively with the theory. 
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CHAPTER ONE 

Nuclear Magnetic Resonance in Liquid Metals 

1.1. Nuclear Relaxation 

Each nucleus in a metal with a non-zero spin angular 

momentum I has an associated magnetic moment ~ such that 

~ = vnln, where Vn is the nuclear gyromagnetic ratio. 

The interaction between the nucleus and a steady magnetic 

field H is described by the Hamiltonian, 

'If) = -II.H = - V b I. H = - V b I H 1.1. ""'.1:._ n - - n zz 

where z is the direction of H. 

The nuclear Zeeman energies are determined by the 

eigenvalues of I z and are given by E = - VrP mHz where 

m = 1,1-1, •••• ,-1. Transitions between these states are 

governed by the selection rule ~m = :1 and may therefore be 

stimulated by an alternating magnetic field with an angular 

frequency given by w = V nHz. 

Following absorption of energy from the radio frequency 

field a return to thermal equilibrium is achieved by energy 

transfer between the nuclear spin system and its surroundings, 

usually termed the "lattice". This process is characterised 

by the spin-lattice relaxation time, T1 • 

Besides interacting with their environment. the spins 

may interact with each other and the spin-spin relaxation 

time, T2 , describes this interaction. 
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In thermal equilibrfum the spin system has no nett 

magnetisation in the x-y plane but produces a steady magnet­

isation ,Mo ' in the z direction owing to the presence of 

the applied field. In the absence of an exciting field and 

given that the relaxation along the x, y and z directions 

may be described by single characteristic times, the equations 

, 1.2 

, 

first suggested by Bloch (1), may be taken as operational 

definitions of the relaxation times T1 and T2• For this 

reason T1 and T2 are sometimes called the longitudinal and 

transverse relaxation times respectively. 

For solids, where the magnetic dipole-dipole interaction 

between spins is important the resonance line shape is 

Gaussian rather than the Lorentz shape implied by 1.2. 

Usually the line width is greater than the intrinsic width 

governed by T1 • Bodily motion of the spins reduces the 

transverse effects of the dipole-dipole interactions and, 

when the correlation time of the molecular motion is small 

compared to the Larmor period, as it is in liquids, T1 

and T2 become equal. This is the condition known as extreme 

narrowing. 
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In metals the contribution to the spin-lattice relaxation 

rate R1 (=1!T1 ) from the dipole-dipole interaction is usually 

so relatively small that it is obscured by the hyperfine 

contribution. Indeed, it has only been observed in Li(2). 

1.2 The HyPerfine Interaction 

The most important interaction in a metal is that between 

the nuclei and the surrounding conduction electrons. 

This interaction manifests itself in two ways, firstly, it 

produces a shift, termed the Knight shift, in the nuclear 

resonance frequency and secondly, it provides a mechanism 

for spin-lattice relaxation producing a contribution R1m 
to R1 • In principle it is possible to determine R1m from 

the measured Knight shift using the Korringa relationship. 

The Hamiltonian for the hyperfine intcmction may be 

expressed as follows (3), 

Je= 2 
[ :n .§. fi(r) + (3!'.(§.. r) Ve VnTl I· -.§.)+~ I 

r 5 ;J" ;J" 

+ core polarisation terms 1.4 

where Ve is the gyromagnetic ratio of the conduction electrons, 

I is the spin of the nucleus at the origin, 

1 and ~ are the orbital and spin angular momentum of 

the electrons respectively, 

r is the radius vector from the nucleus to the electron. 

The first term inside the square brackets describes the 

effect of the electron spins at the nucleus and is called 
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the contact term. It is large for electrons which can be 

described by mainly s-type wave functions which peak sharply 

at the nucleus. The second term represents the dipole­

dipole coupling between the nuclear and electronic magnetic 

moments and the final term represents the interaction 

between the nucleus and the orbital angular momentum of the 

electrons. 

In addition to these direct interactions an indirect 

interaction between the conduction electrons and nucleus may 

occur. When the conduction electrons are polarised the spin 

up and spin down core electrons experience unequal forces 

causing their spatial wave functions to be altered in a 

different manner. This effect is termed core polarisation. 

As mentioned above the hyperfine field produced by the 

conduction electrons makes the resonance frequency for a 

nucleus in a metal different from that of the same nucleu~ 

in a non-metallic substance. Quantitatively, the Knight shift, 

K, is defined by 

K == v -v 1.5 m r 
vr 

where vm and vr are the resonance frequencies of the nuclei 

in the metal and the non-metallic reference respectively. 

It is now well understood that the dominant contribution 

to the Knight shift and relaxation rate arises from the contact 

term in the hyperfine Hamiltonian. The contribution to the 

Knight shift can be written as (4,5) 

1.6 
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where X is the Pauli paramagnetic spin susceptibility and 

<1~(o)I~>F represents the average density of the conduction 

electrons at the Fermi surface on the nucleus. 

Assuming that the conduction electrons behave independ­

ently it can be shown, (5), that the contribution to the 

relaxation rate from this term is 

where kB is Boltzmann's constant, T is the lattice temperature 

and .g(EF) is the density of electron states at the Fermi 

level. 

From 1.6 and 1.7 we obtain 

1.8 

1.9 

which is the well known Korringa relationship (6). 

It is generally accepted that the electrons in metals 

do not in fact act independently. Pines (7), Silverstein (8), 

Moriya (9) and Narath and Yeaver (10) have investigated 

electron - electron interactions. The latter authors introd-

uced the correction factor K(a) giving 
2 

T1l) TKl) 2K(a) = n ( Vel" 
4n1Cj3 Vn 

1.10 
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where a = 1- XO , X being the real spin susceptibility 
X 

compared to XO which is for independent electrons. 

Rearranging 1.10 we have 

2 

R16 - ";kB [~:] K(o) 
T K 2 

b 
1.11 

Several authors have attempted to calculate R1m using 

1.11 and the measured Knight shifts. However, values obtained 

by this method are unlikely to be accurate for the following 

reasons. Firstly,there is the uncertainty in the value of 

K(a).. It is difficult to calculate K(a) although several 

attempts have been made (11), (12), (13). Furthermore, the 

only experimental method of obtaining K(a) in liquid metals 

uses 1.11. Therefore values of K(a) used have been at best 

approximate guesses. Secondly, this method ignores the 

fact that, in addition to the contact term, both the orbital 

term and core polarisation may contribute to R1m and K in a 

way that is not described by 1.11. The core polarisation 

contributions induced by the s-like part of the conduction 

electron density merely attach themselves to R16 and K6 

in 1.11 but the relationship has a different form for the p 

core polarisation and the orbital term (10). From presently 

available theoretical calculations (11) it seems likely that 

contributions from non-s terms could easily be of the order 

of 0.1 of the magnitude of those from other terms. It is 

therefore not justifiable to dismiss them and, as will be­

come apparent in what follows, the quantitative relationship 

between the Knight shift and the magnetic relaxation rate 

is too approximate in many cases to be of value in the 
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analysis of the r.elaxation rate"s in heavy polYrnlent. liquid 

inetafs •.. 

1.3 The Nuclear Quadrupole Interaction 

If a nucleus has spin quantum number I>i then it will 

possess a nu~lear electric quadrupole moment. Spin lattice 

relaxation may then occur via the interaction between the 

nuclear electric quadrupole moment and the local time -

dependent electric field gradient associated with the nuclear 

environment. 

There are two types of quadrupolar relaxation possible 

in metals. In one process the time-dependent electric field 

gradient results from the translational motion of the charge 

of electrons having p or d character at the nucleus (14), 

(15). Relaxation results from a scattering process analagous 

to that encountered in the magnetic relaxatio~. However, 

estimates of the strength of the e]~ronic scattering process 

have shown it to be too weak to account for the observed 

quadrupolar relaxation in liquid metals (14), (15), (16). 

The second process results from the motion of ions whose 

charge produces an electric field gradient at neighbouring 

nuclei. This process has been discussed by Sholl (17), 

Warren (18), and Yul'met'ev (19). Both Sh.oll and Warren 

use essentially.the same model of free metallic ions 

interacting with each other by a screened potential. The 

conduction electrons are regarded as screening ~he ion cores 

and the electric field gradient at a given nuclear site is 

taken as the sum of the appropriate derivatives of the 
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screened potentials from all other ions. The positions of 

the ions and the way they move in time are described in 

terms of the van Hove correlation functions (20). 

The basic expression for the quadrupolar relaxation 

rate, R1q , is derived by perturbation theory where the 

quadrupole Hamiltonian is taken as a perturbation on the 

nuclear Zeeman states. The result is (3), (21), 

00 

J(w) = I e-iwr~,(l)dl 
-00 

v2(r) = rL(1 dV) 
dr r dr 

1.12 

1.13 

1.14 

1.15 

1.16 

1.17 

where ~ is the nuclear~drupole moment, the bar in 

equation 1.14 denotes an ensemble average, and um(rA) is 

the electric field gradient at a nucleus at the origin due 

to an ion at rAe um(rA) is expressed as the product of a 

spherical harmonic Y2m (normalised to'one) and a radial 

function, v2(r), which is determined by the ion-ion 

potential vCr). An important contribution to the field 

gradient is due to the distortion of the ion-ion charge 

distribution about the nucleus at the origin by the external 
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field gradient and the nuclear quadrupole moment. This 

contribution is taken into account by the inclusion of the 

factor (1-Voo) where Voo is the Sternheimer antishielding 

factor. This is strictly only correct when the field 

gradient at the origin arises from charges external to the 

core and since the conduction electrons in a metal contribute 

to v2(~) and do penetrate the core the correct treatment of 

antishie~ing may require a modification of the ion-core 

value. 

Equation 1.12 is derived within the extreme narrowing 

approximation, i.e. that .. J(2wo ) = J(wo ) = J(D), where Wo 

is the nuclear Larmor frequency. This is a necessary 

condition for an exponential approach to thermal equilibrium 

of the spin system (3). 

The ion-ion potentials used by Sh'oll are those developed 

by Appapillai and Williams (22). The interionic potential 

is given by 

1.18 

* * where q is the wave numbe~ Z the effective charge and FN 

the normalised energy wave number characteristic. This 

particular form of pseudopotential was chosen because it is 

thought to be quantitatively correct at near neighbour 

distances. Warren uses the potential given by Harrison (23) 

which is the same as that used in an earlier paper by Sh'o 11 

(21) and which is thought to be strictly only correct for 

large r. 
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Having chosen the form of .the. interionic potential the 

calculation of R1q is reduced to an evaluation of the 

correlation function of the electric field gradient given by 

equation 1.14. The ensemble average in 1.14 is formed 

using 1.15 from which we obtain 

F"'Ct-t)FC-m')Ct) = li. umh (t- I ))Um~(::I!.Ct)) 1.19 

where r A (t-l) is the position of the Ath. ion at time t-r 

relative to the nucleus at the origin. 

= u_m has been used. 

* The property um 

Equation 1.19 may be divided into two parts. The first 

contains those terms where A = IJ and may be called the two­

particle term. The second part or three-particle term 

contains the cross products, i. e. A *' IJ 

Now equation 1.14 may be expressed as 

where P(ro ,t-l;r1 ,t) dro dr1 is the probability of finding 
- --

an ion in dro at ro at time t-l and an ion in dr1 at r 1 at 

time t given that the~e is one at the origin throughout. 

Obviously P = Pa + Pd where the two-particle or self-term, 

Ps ' is the probability of finding the same ion at ro at 

time t-t and at r 1 at time t relative to an ion at the 

origin and the three-particle or different term, Pd , is the 

probability of finding an ion at ro at time t-r and a 

different ion at r 1 at time t relative to an ion at the 

origin. 



11 

If the motion of ions at ro and r 1 were relative to a 

fixed origin in the liquid the function P could easily be 

written in terms of the van Hove functions G and Gs • These 

are defined as follows. G(~,t) is the probability of finding 

ions at the origin at t = 0 and at r at time t and G (r,t) is s -
the ~robability of finding the same ion at the origin at 

time t = 0 and at r at time t. Because the origin in the 

definition of P is a moving nucleus some approximation is 

required in relating P to the van Hove functions. Further 

approximations are also necessary since P includes three 

body correlations while the van Hove functions are, by 

definition, two body correlation functions. 

The correlation functions Gs<E,t) and G(E,t) are 

related to the dynamic structure factors Ss(~'w) and S(~,w) 

by the Fourier transforms, 

1.21 

and 

1.22 

where p is the number density of the liquid. 

Ss <~,w) determines the cross-section for incoherent 

scattering oftlOOrmal neutrons and S(~,w) determines the 

cross-section for coherent scattering of neutrons or light. 

Uben a neutron is scattered the momentum transfer and energy 

transfer that occur are given by bq and nw. 
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Using the relations 1.21 and 1.22 with suitable approx­

imations for Ps and Pd the integrals required in evaluating 

J(o) in equation 1.12 can now be evaluated. Sholl finally 

obtains the following expressions for the relaxation rate, 

00 00 

R1q 'self= 26 f q2I~~q)dq f Ss2(q,W)dw 
o -00 

for the self-term alone and 
00 00 

26 f q2In2(q)dq I S(q,w)Ss(q,w)dw 
o· - 00 

for the self and different terms. 

and 

2 

6 = 2n ~2I+3) leQ(1- Yoo )j p 
15I~(21-1) h 

00 

f 2 n . 
In(q) a r v2(r)g (r)j2(qr)dr 

o 

1.23 

1.24 

1.25 

1.26 

where g(r) is the radial distribution function and j2(qr) 

is a Bessel function. 

Sholl suggests the following approximations for R1q : 

(A) expression 1.24 with n = i or 1 

(B) expression 1.24 with n = 1 and Sd in place of S plus 

expression 1.23. 

In order to calculate R1q the final integrals in 1.23 

and 1.24 must be evaluated. Although Ss(q,w) and S(q,w) 

can, in principle, be measured by inelastic neutron scattering 

in prac tice there are experimental limitations on the r~ge 

of q and w that can be investigated and on the liquid metals 

that can be studied. Sholl uses a model for S (q,w) given s 

by Egelstaff and Schofield (23) which is 
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1.27 

where D is the diffusion constant and K1 is a modified 

Bessel function. y is a parameter that can be determined 

by fitting Ss(q,w) to the experimental data that exists for 

large q and is given by 

y = kTjH*D 1.28 

where T is the temperature and M* is the effective mass of the 

ion. Barker et ale (24) have shown that the experimental data 

for Ga end Rb can be described by 1.27 and 1.28 with M* 

equal to the actual mass of the ion. 

Sh 011 uses several theoretical expressions for Seq,w) 

the simplest of which is the Vineyard approximation (25) 

S(q,w) == Seq) Ss(q,w) 1.29 

where Seq) is the structure factor given by 
00 

Seq) == f S(q,w)dw 
-co 

1.30 

Sho 11 discusses the integral involving Ss(q,w) in 

1.23 as follows. If the motion. of an ion were random in 

the sense that at time t it had no memory of its previous 

motion then 

for all t such that 0 ~ t1 ~ to. Putting t1 cit the Fourier 

transform of 1.31 at w == 0 gives 
00 f S s 2 ( q ,w) dw = iSs e q , 0 ) 

-<Xl 

1.31 

1.;2 
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This can be verified by taking the classical diffusion limit, 

i.e. small q of 1.27 which is 

Expression 1.32 is not true for the general form of 

S (q,w) but So 0.11 states that the most significant contri­
s 

bution to the integral occurs over a range of values of q 

that is sufficiently small for it to be a good approximation. 

Using the Vineyard approximation the final integral in 

1.24 can now be expressed as 

00 ·00 

/ S(q,w)Ss(q,w)dw = Seq) Iss 2(q,W)dW = is(q,o) 1.34 
-00 -00 

Warren's final expression for R1q is 

00 

R
1q 

= e/q2s (q,0) I 1
2dq 1.35 

o 
which is the same as Sho ll's result given by 1.24 and 1.34 

with n.1. Warren arrives at his expression by assuming that 

Ss(q,w) and S(q,w) are Lorentzians of equal width. He quotes 

Skold et ale (26) who compared careful measurements of Ss(q,w) 

for liquid Ar. They found that both were closely Lorentzian 

but the widths at half maximum differed by roughly 20 to 

3~~. However, Warren states that including a correction 

for such a difference in width only alters the final result 

for R1q by about 2%. 
As pointed out by Sboll the pseudopotential theory 

used to derive the ion-ion field gradient v2(r) while valid 

outsi~e the ion cores does not accurately describe the 

conduction electrons within the core at the origin. 



15 

Furthermore, the field gradient due to these electrons should 

not be multiplied by the ionic ( 1- Vex» since this is only 

valid for field gradients arising from charges external to 

the core. S h 011 estimates that the values of (1- Voo) v 2(r) 

he uses could lead to an error in the absolute value of R1q 
of at least an order of magnitude. Therefore there seems 

little point in discussing in detail the calculated values 

of R1q and we shall consider the variation of R1q with 

temperature predicted by the theory. 

The product v2(r)~(r) in the integral 1.26 for I (q) 
. n 

is a highly peaked function and because of this the predom-

inant contribution to R1q comes from ions that are "nearest 

neighbours" to the relaxing nucleus. If, as suggested by 

£ h 011, v 2(r )gD(r) is approximated by a fJ function then 

I n (q)::An j 2(QO) where o~ro' the cutoff of g(r) at small r. 

The integrands in 1.23 and 1.24 are then products of the 

damped oscillatory functions In2(q) and either the monoton­

ically decreasing function Ss(q,o) or the damped oscillatory 

function S(q,o). 

Now the parameters that can influence the variation of 

R1q with temperature are the density, the potential, the 

van Hove functions Ss(q,o) and S(q,o) and the radial distri­

bution function. The effects of temperature variations in 

the density and potential should be small and can be neglected. 

According to Sho 11, over the important region of integration 

S (q,o) is well approximated by the diffusion limit and its s . 

temperature variation will therefore be determined by that of 

n-1 • Furthermore, the theoretical models chosen by Sho 11 
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for S(q,o) suggest that it also has a n-1 dependence on 

temperature. This is easily seen for the Vineyard approxim­

ation given that the structure factor, Seq), is independent 

of temperature. Warren, however, chooses a theoretical 

model for S(q,o) given by Cocking and Egelstaff (27) which 

predicts a quite different temperature variation. According 

to this model S(q,o) is given by 

S(q,o) = N12 
n 

[S(g)] 3/2. 
q 

1.36 

where M is the atomic mass and N12 is a parameter determined 

by fitting the expression to neutron diffraction data. Now 

if Seq) is in&p&dent of temperature 1.36 predicts that 

S(q,o) will have a temperature dependence of the form T-~. 
Now the experimental data of Page et al (28) shows that 

for liquid Gallium, over the relevant range of q, Seq) is 

indeed almost independent of-temperature and that the 

frequency width of the Lorentzian quasi-elastic peak 

increases approximately as T3/2 so that S(q,o) decreases at 

about that rate. This is slightly slower than n-1 since for 

liquid Ga D is approximately proportional to T2. It certainly 

is not as slow as the variation predicted by Cocking and 

Egelstaff's model and for this reason their model is thought 

to be a poor representation of S(q,o). 

The important effect on g(r) of increasing the 

temperature is the decrease in roe Because of the steepness 

of v
2
(r) for small r even a small decrease in ro could 

cause a significant increase in In(q) and hence R1q• Using 
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the model of the hard sphere temperature variation of Pro­

topapas et al (29) Sb 0 11 calculates for the case of Sb 

a 2~~ increase in R1q when the temperature is increased by 

about 3000 K. Diffusion constants typically increase by a 

factor of two or three over this range. Therefore the 

theory predicts that the overall dependence of R1q on temper-

ature should be that R1q will decrease with increasing 

temperature but not quite as fast as n-1 • This is a similar 

resul t to that obtained by S ho 11 in his original paper (21) 

where the motion of the ions was assumed to be adequately 

described by the diffusion approximation. 

S h 011' s original theory has been extended to cover the 

case of a liquid binary alloy by Titman (30) and Claridge 

et al (31). These authors point out that, if three particle 

terms are important, then the magnitude of R1q for either 

ionic species of an alloy will be a non~linear function of 

its fractional concentration. They also predict that R1q 

will have a similar temperature dependence in alloys as in 

pure metals. 

At the time the present stUdies were undertaken experi­

mental data on the variation of R1q with temperature in 

liquid metals and alloys was available from both conventional 

nuclear magnetic resonance measurements and also from 

measurements using the more recently developed perturbed 

angular correlation (pac) methods. In the pac experim~nts 

nuclear reactions with a pulsed particle beam are used to 

produce and align isomeric nuclear states leading to an 

anisotropic distribution of emitted radiation. Using the 
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spin rotation method the lotigitudinal relaxation time is 

determined from the envelope of the v-ray intensity 

modulation caused by an external magnetic field perpendicular 

to the beam detector plane. An alternative method depends 

on the measurement of the time-dependent v-ray anisotropy 

in successive time windows with respect to the beam pulse. 

The pure metal data obtained using nmr and pac methods was 

as follows. 

Measurements of R1 for the 69Ga and71Ga spins in liquid 

gallium made by Cartledge et al (32) and Kerlin and Clark 

(33) using nuclear magnetic resonance indicated a variation 

of R1~ with temperature that was much slower than that 

given by the inverse of the self-diffusion coefficient. 

However, measurements of the relaxation rate of trace amounts 

of 71Ge in liquid gallium made by Riegel et al (34) using 

the perturbed angular correlation method showed a relatively 

rapid decrease proportional to n-1 • 

Similar contrasting results existed for liquid mercury_ 

Using nmr Cornell (35) had shown that R for the 201 Hg 1q 
spins decreased slowly with increasing temperature. However, 

using the pac method on trace amounts of 206pb nuclei in 

mercury Br~uer et al (36) reported that R1q decreased as n-1 • 

Measurements of R1 for121 Sb and123Sb using nmr had 

been reported by ~arren and Clark (16). Their measurements 

showed (37) that R1q decreased with temperature but not as 

fast as n-1 • 
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Nmr measurements of R1 in 209Bi had been reported by several 

groups (37), (38), (39). The most recent measurements,which 

agreed well with the earlier one~ were those of Heighway 

and Seymour (39) who found from their analysis that R1q 
decreased with temperature at a rate given approximately by 

n-1 • However, their interpretation of their results involved 

the use of the Korringa relationship to estimate R1m-

The temperature dependence of R1 in 115In had been 

measured by many different groups using nmr (40),(41), (42), 

(16), (43). Again extraction of R1q from the measured R1 

involved the use of the Korringa relationship and mainly due 

to errors inherent in this method of interpretation no 

general agreement had been reached on the temperature variation 

of R1q • 

It can therefore be seen that there was a great deal of 

ambiguity in the pure metal data and no clear indication of 

a general trend in the variation of R1q with temperature. 

As with pure metals the temperature dependence of R1 .q 
in liquid alloys was also not well established. Although 

many attempts had been made to measure the temperature 

dependence of R1q in alloy systems (31), (16), (38), (39), 

(43), (44), (45) most of these used the Korringa relationship. 

This method is particularly unreliable if the results are td 

be compared to the pure metal case since, although the 

Knight shift can be measured in the alloys, changes in the 

core polarisation and orbital terms and K(c) are difficult 

to estimate. The only data that did not depend on the 
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Korringa relationship for its interpretation wasthat of 

Warren and Clark (16) on 121Sb and ~23Sb in InSb and that 

of Cartledge et al (45) on 69Ga in Ga-In alloys. In both 

of these systems alloying produced a marked increase in the 

rate'of variation of R1q with temperature compared with the 

relatively slow variation in the pure metal. 

In consideration of the experimental data outlined 

above it was felt that further work would be useful in the 

following areas. Firstly, in order to obtain reliable data 

on the variation of R1q with temperature in a pure metal 

it was decided to re-examine the variation of R1 with 

temperature for the 199Hg and 201 Hg spins in liquid mercury. 

In principle, mercury offers an experimental situation for the 

very accurate determination of R1q using the nmr technique. 

Furthermore, the work of Cornell (35) had been limited to a 

small number of data points. Secondly, an attempt was made 

to obtain further accurate data on the variation of R1q 
with temperature in liquid alloys in order to check whether 

the rate of variation of R1q is faster in an alloy than in 

the pure metal. 

In the course of this work further pac results were 

published which removed much of the ambiguity in the earlier 

data. Pac measurements in liquid In (46), Pb (47), Sn(48), 

Bi (48) and Hg (49) all showed a slow variation of R1q with 

temperature. An examination of this work together with our 

Hg results and the other reliable nmr data revealed that in 

a number of liquid metals R1 varied with temperature 
. q 

approximately as T-~. Further, the new pac data on InSb (46) 
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showed that the variation of R1q with temperature for In 

was much faster in the alloy than in the pure metal. It 

therefore seemed appropriate at this stage to re-examine 

the theory of quadrupole relaxation to see if a new version 

could be produced which predicted the now well established 

slow variation of R1q with temperature in pure metals and the 

relatively faster variation in alloys. 
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CHAPTER TWO 

Nuclear Quadrupole Relaxation in Liquid Mercury 

2.1 Introduction 

In order to observe the behaviour of nuclear quad­

rupolar relaxation in liquid metals it is necessary to reduce 

the observed relaxation rate, R1 , into its components R1m 
due to the magnetic hyperfine interaction and R1q due to the 

electric quadrupole interaction. There are two methods of 

doing this. One is to use the modified Korringa relationship 

to estimate R1m• As shown in Chapter 1 this method is 

unreliable and leads to uncertainty in the interpretation 

of experimental data. In the case of a nuclear species which 

has two isotopes with observable resonances another method 

exists whereby it is possible to unambiguously separate the 

magnetic and quadrupolar contributions. 

For the two isotopes A and B the total relaxation rates 

are given by (1) 

R1A = 
A R1m 

A + R1q 2.1 

B B 
R1B = R1m + R1q 2.2 

Now A 2 

~ 
= F(IA) [ QA I 2., 

F(IB) ~ R1q 
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where F(l) = 

and ::! -[~r 
A 

Equations 2.1, 2.2, 2.3, and 2.4 can be solved for R1m , 
B A B 

R1m , R1q and R1q in ter~s ofBthe observed values of R1 , 

2.4 

.F(I) and the ratios (Yn / Yn ) and (QA/QB). Obviously this 

method is most accurate when the two isotopes have widely 

differing gyromagnetic ratios or quadrupole moments and when 

the two contributions are of similar magnitude. Table 2.1 

shows the metals to which the two isotope method can be 

applied. From this it will be seen that mercury has a 

particularly fortunate combination of nuclear parameters. 

The 199Hg isotope has spin I = t so that its relaxation is 

entirely magnetic and there is no quadrupole contribution. 

The other isotope, 201Hg , has a relatively small gyromagnetic 

ratio but an appreciable electric quadrupole moment. This 

combination of parameters is likely to lead to R1q > R1m 
and, in fact, Cornell (2) showed that ~ 90% of the observed 

rate of this isotope is quadrupolar in origin. 

Thus mercury appears to offer a particularly advantageous 

set of experimental criteria from which to determine R1m and, 

more importantly, R1q• Unfortunately the 201Hg resonance 

is very weak and because of the large quadrupolar contribution 

its relaxation rate is rather rapid. These factors make the 

actual experimental measurement of R1 difficult and this is 

discussed in the next section. 



Table 2.1 Metala to which the two iaotope method ia applicable. 

Vn Q 

JIIetal Iaotope Spin I ( -1 -1 (xe10-24 Af B QA/QB a g V n Vn 
:110') 2 em ) 

Rub1d1U11 85Rb 5/2 2.58' 0." 0.295 2.067 
87Rb '/2 8.754 0.15 

Copper 6,Cu '/2 7.091 -0.15 0.9" 1.071 
65Cu '/2 7.596 -0.14 

Mereury 199Hg 1/2 4.78, 0.0 2.708 00 

20'Hg '/2 1.766 0.5 

Gallium 69aa '/2 6.421 0.2,'8 0.787 1.586 
71Ga '/2 8.158 0.1461 

AntimoD1 12'Sb 5/2 6.402 -0.8 1.847 0.8 
12'Sb 7/2 '.467 -1.0 
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2.2 Experimental Method 

2.2.1 The Continuous Wave and Pulsed n.m.r. Techniques 

Nuclear magnetic resonance can be observed using either 

continuous wave or pulsed methods. In both of these the 

radio' frequency field' for exci tin g the resonance is supplied 

by surrounding the specimen by a coil whose axis is per-

pendicular to the main field. 

In continuous wave n.m.r. the r.f. field is continuously 

applied to the sample while the external magnetic field is 

swept linearly through the resonance condition. The effect 

of the resonance on the coil is to produce a change in its 

impedence related to the complex nuclear magnetic 

susceptibility, 
II 

X= X -iX 

, 
The change in inductance of the coil is proportional to X 

" and its effective series resistance varies as X (3). 

Basically, two types of circuit are used to detect these 

changes. In bridge circuits the coil is made part of a 

balanced bridge network so that small changes in the 

impedence of the coil upset the delicate balance. In 

practice the bridge is adjusted to leave a residual un­

balance in either amplitude or phase. In the former case the 
n 

change in X is detected and an absorption curve is 

obtained. For liquids this has a Lorentzian form, the 

normalised line shape function being given by 
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g(H) -1 
= n 2.6 

This is the usual way in which a bridge circuit is operated. 
, 

A residual unbalance in phase detects X giving the dispersion 

curve. The other type of circuit used is the marginal 

oscillator. Here the coil containing the sample is made 

part of a self-oscillating circuit, just sufficient feed-

back being provided to sustain the oscillations. Under these 

conditions the amplitude of oscillation is critically 

dependent on the resistance of the coil and hence is very 

sensitive to the effective change in resistance associated 

with a nuclear magnetic resonance. tlarginal oscillators 

therefore give a pure absorption signal proportional to X". 

The dispersive component of the susceptibility produces a 

frequency modulation of the oscillator which is not detected. 

In order to improve the sensitivity of continuous wave 

spectrometers the technique of audio-frequency modulation 

of the external magnetic field is used. On the slow sweep 

by which the resonance is traced there is superimposed a 

sinusoidal variation in the audio range. This gives an 

a.f. output from the r.f. receiver and detector suitable 

for selective amplification. The a.f. signal is finally 

rectified in a phase sensitive detector and amplifier. 

The output of the phase sensitive detector is proportional 

to the coefficient of the first harmonic term in the Fourier 

expansion of the resonance line shape. If the amplitude 

of the magnetic field modulation is small compared to the 
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width of the line then this output will be proportional to 

the derivative of the resonance curve (4). The distance 

between the peaks of the derivative curve is then equal 

to the width, fiR, between the points of maximum and minimum 

slope on the absorption curve. For the Lorentzian curve 

given by 2.6 this is 

One can therefore, in principle, determine the spin-spin 

relaxation time, T2 , from such a measurement of the linewidth. 

In practice, however, the natural linewidth is broadened 

owing to the inhomogeneity of the external magnetic \field. 

T2 in 2.7 must then be replaced by an effective spin-spin 

relaxation time T; given by 

1 = 1 2.8 - -
T2 

, 
where T2 is determined by magnetic field inhomogeneity. 

In pulsed n.m.r. the external magnetic field is kept 

constant and r.f. power at the Larmor frequency is applied 

to the sample in very short pulses. 

If, as in section 1.1., we let the external magnetic 

field lie along the z-direction then the exciting field, 

H1 , lies in the x-y plane. In the steady state the spin 

system will have a nett magnetic moment, Mo ' directed 

along z. When a pulse of duration At is applied this has 

the effect of tipping Mo away from the z axis such that a, 

the angle between Mo and the axis, is given by 
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2.9 

Thus for a n/2 pulse, Mo is turned into the x-y plane and 

for a n pulse into the negative z direction. It is assumed 

here that H1 is sufficiently large for the condition ~t ~ 

T1 , T2 to be satisfied otherwise relaxation effects will 

occur within the duration of the pulse. 

Following a n/2 pulse, Mo rotates in the x-y plane 

inducing a signal in the coil which, in a single coil 

apparatus, acts as both transmitter and receiver coils. 

The signal is observed to decay exponentially and is termed 

a free induction decay. The time constant of the decay is 

T; as defined in 2.8. This experiment is, in fact, analagous 

to the continuous wave method outlined above, an exponential 

in the time domain being related to a Lorentzian in the 

frequency domain by the Fourier transform. 

The spin-lattice relaxation time, T1 , can be measured 

by using two pulses in succession. For liquids, where 

T1 = T2 , a n - n /2 pulse sequence is used. The first pulse 

tips Mo into the negative z direction. After a time t the 

second pulse rotates the magnetisation into the x-y plane 

where it produces a free induction decay the height of 

which will be proportional to the magnitude of the longitud­

inal magnetisation, M(t), at time t. By varying t the 

growth of M(t) can be observed and T1 can be found from the 

equation 

2.10 
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The direct method of measuring T1 using pulse techniques 

as outlined above is the most straight-forward method 

available and therefore to be preferred provided it can 

be applied to the particular spin system in which one is 

interested. Unfortunately we could not use ·this method for 

measuring T1 for the 201Hg spins in liquid mercury for the 

following reasons. Firstly, the magnitude of the exciting 

field, H1 , of our existing pulse spectrometer was of the 

order of 15g. Using 2.9 the length of a n/2 pulse for this 

isotope is calculated to be about 60 ~s. Because of the 

large quadrupole contribution T1 for 201 Hg is about 25 ~s. 

Thus the condition ~t ~ T1 was not satisfied. Secondly, 

the recovery time of the receiver of the spectrometer was 

about 50 ~s. which was again not negligable compared to T1 • 

Thirdly, our spectrometer was, overall, not sensitive enough 

to be able to display the 201Hg resonance on an oscilloscope 

thus making it difficult to set up experimental parameters 

such as the external magnetic field and the r.f. pulse 

lengths. It was therefore decided that the most straight­

forward approach would be to measure the linewidth of the 

201Hg resonance in a continuous wave experiment. Since in 

a liquid T1= T2 , T1 may be obtained from the line-

width corrected for broadening by the inhomogeneity of the 

external field. 

2.2.2. Experimental Arrangement 

It was decided to use a bridge system for the continuous 

wave experiments rather than a marginal oscillator. This 

choice was made since, because of the weakness of the 201Hg 
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resonance signal, we required a high r.f. power level in 

order to increase the signal size and also a high frequency 

stability as we proposed to average the signal over long 

periods of time. Both of these are more easily achieved 

with a bridge. A block diagram of the complete spectrometer 

is shown in figure 2.1. Its components were as follows. 

2.2.2.1. The r.f. Transmitter,Bridee Rnd Receiver 

A crystal controlled oscillator was employed as a high 

stability frequency generator the output frequency of which 

was 6.0 MHz with a stability of 1 part in 106 • This was 

built using a 12 MHz crystal oscillator from Meon-Electronics 

Ltd. The design included a Schmitt trigger circuit which 

clipped the output of the crystal oscillator before 

frequency division, thus removing a certain amount of noise 

from the signal. The output from the oscillator was 2v. 

peak to peak. This was amplified in a power amplifier consis­

ting of two stages, a C class stage employing an EL360 valve 

driven by an A class stage which used an E180F valve. The 

maximum output from this transmitter was 20v peak to peak. 

The bridge used was of the form first employed by 

Anderson (5). The bridge circuit and component values are 

shown in figure 2.2. This type of bridge was chosen for two 

reasons. Firstly, the phase and amplitude controls are 

completely orthogonal. Resistive balance is obtained by 

adjusting the capacitors C and the reactive balance is 
I 

controlled by the capacitors C. Secondly, because it does 
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not employ a dummy circuit its long term stability is 

better than many other bridge arrangements. The residual 

unbalance was set to 200mv. using a Hewlett Packard Model 

175A high frequency oscilloscope. 

The receiver consisted of three stages of r.f. amplif­

ication followed by a diode detector. Field effect transistors 

type 3N201 obtained from Texas Instruments were used because 

of their low noise characteristics. The input to the 

amplifier was tuned as was the drain of the first stage. 

The overall gain of the amplifier was _104 • The crystal 

oscillator, transmitter, bridge and receiver were all made 

in the electronics workshop of the Physics Department under 

the supervision of Dr.R.L. Havill. 

2.2.2.2. The PSD and Averager 

The output from the receiver was fed first to a Princeton 

Applied Research Model JB4 phase sensitive detector and 

from there to the digital signal averager made by Tracor. 

The averager consisted of an NS-544 digital memory 

oscilloscope together with a series 500 power supply and 

display unit. 

2.2.2.3. The Magnet System and MAgnetic Field Modulation 

The magnet system used consisted of a Varian V-?300 12 

inch electromagnet with V?800 basic power unit and a Fieldial 

Mark II field regulator which uses a Hall effect probe 

attached to one of the pole caps to detect and regulate the 

magnetic field. Using pole caps with a face diameter of 

41-" and an air gap of 1.5" the magnetic field was continuously 

variable up to a maximum of about 25kg. The maximum set 
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field used in these experiments was 20.8465 kg. which is the 

resonant field,for the201Hg isotope at a frequency of 

6.0 MHz. At this field the performance specifications of the 

system indicate field regulation within 20 mg. for a + 10% 

line voltage or load resistance change and long term field 

stability to within 200mg. for a ± 50 0 temperature variation. 

The specifications also give the magnetic field resetability 

as within 20mg. The field regulator was used to provide 

automatic sweeping of the field with a variety of sweep 

ranges and sweep times. 

Magnetic field modulation was provided by two coils of 

26 swg copper wire connected in series. Each coil was 22.5 cm 

in diameter and had 135 turns giving a resistance of 40 n. 

The wire was wound onto strong brass formers which were 

securely fastened onto the pole tips. In order to minimise 

vibration and so reduce modulation pick-up the coils were 

potted in glue to form a solid unit. The modulation 

frequency was derived from the phase sensitive detector and 

was set at a nominal 127 Hz. to avoid mains pickup. An 

H & H 50 watt power amplifier was used to provide the 

modulation current. The current was'measured using an 

avometer and the voltage across the coils monitored on an 

oscilloscope. 

2.2.2.4. The n.m.r. Probe and Temperature Controller 

The n.m.r. probe used is shown in figure 2.3. Because 

of the weakness of the 201f~ resonance a sample tube with a 

large internal diameter of 12 m.m. was used. This fitted 

snugly into the r.f. coil which was 22 m.m. long and 
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consisted of 32 turns of 28 swg enamelled copper wire. 

The coil was potted in araldite cement and held firmly in 

position in the outer, cylindrical, brass jacket by refrasil 

tape. The probe itself was securely bolted to a rigid 

platform located above the magnet gap. In this way the long 

term stability of the bridge was improved and effects due 

to modulation pick up minimised. Temperatures above room 

temperature were obtained using a heater coil wound non­

inductively around the brass jacket. The coil was made from 

3.5m of Eureka wire with a total resistance of about 30 ohms 

and was insulated with refrasil sleeving. The temperature 

of the sample was measured using a platinum/platinum - 13% 

rhodium thermocouple with its junction placed between the 

r.f. coil and the sample tube. The thermocouple acted us 

a sensing element for a "Eurotherm" model DRS/PID/SOR 

temperature controller. The heater current was supplied 

by a variac which was set between 10v and 50v depending on 

the temperature required. By using this temperature controll­

ing equipment the sample temperature was kept within 1°0 of 

the required value. For temperatures below room temperature 

the heater was removed and the outer brass tube surrounded 

by a glass dewar. By filling the dewar with a mixture of 

ice and water a sample temperature of 7°0, constant to 100, 

was obtained. Similarly, filling the dewar with liquid freon 
o maintained the sample at a steady temperature of -28.2 c. 

Liquid freon was obtained from cans of "Arcton 12" from 

IOI Limited. In the latter case the temperature was measured 

using a copper/constanton thermocouple and potentiometer. 
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2.2.3. Sample Preparation 

Because of the r.f. skin effect it was necessary to 

have the sample in the form of small particles dispersed 

in an insulating medium, the diameter of the particles 

being smaller than the skin depth of the r.f. field. 

Using a value of 98.4. 10-8 ohms metres for the resistivity 

of liquid mercury at 500 C the skin depth was calculated to 

be about 200 ~m. The sample was made by rapidly shaking 

99.9999% pure mercury obtained from the Koch Light Company 

with liquid paraffin in a conical flask and decanting the 

resulting suspension into several large tubes. After a 

short time the tiny mercury particles settled at the bottom 

of the tubes and the clear liquid paraffin was returned to 

the conical flask. This was repeated until the required 

amount of sample was obtained. Microscopic analysis showed 

that the sample consisted of particles with diameters of the 

order of 50~m. The sample was finally tr~nsferred to the 

sample tube which was sealed off under arg~ at 1/3 atmon­

pheric pressure. Samples prepared in this way were found to 

be sufficiently stable for prolonged experiments below about 

1500 C. 

2.2.4. Calibration of Magnetic Field Modulation 

As stated earlier, if the magnitude of the magnetic 

field modulation is small compared to the resonance linewidth 

then the output of the phase sensitive detector will be pro~ 

portional to the derivative of the resonance line shape. 

If the modulation is large compared to the linewidth this 

is no longer true. In particular the linewidth obtained from 

the experimental derivative is larger than the true linewidth. 
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Modulation effects in magnetic resonance have been discussed 

by several authors (6), (7), (8), (4). Smith (4) points out 

that if the modulation amplitude is much greater than the 

true linewidth then the measured linewidth is approximately 

equal to the peak to peak modulation amplitude and suggests 

that this may be used as a basis for modulation calibration. 

In fact an analytical treatment based on the work of Wahlquist 

(see Appendix I) shows that, if bHmeas represents the measured 

linewidth, Hw the modulation amplitude, and bll the true line­

width then 

2.11 

provided Hw~ bH. 

Expression 2.11 was used to calibrate the 'mo dulation 

in these experiments. The two set fields were 7.6953 KG. 

for the 199Hg isotope and 20.8465kg. for the 201Hg isotope. 

A sample of Li metal was used to calibrate the modulation at 

the lower field and the deuterium resonance in deuterium 

oxide doped with ferric chloride was used at the higher field. 

The resonances were observed using a variable frequency 

marginal oscillator the output of which was fed to the phase 

sensitive detector and from there to a pen recorder. The 

frequency of oscillation was measured using a timer counter 

TC8 made by Advance Instruments. Care was taken to ensure 

that each sample occupied a central position in the 

magnet gap. The procedure used was as follows. First the 

various magnet sweep widths to be used were calibrated by 

obtaining three narrow resonance lines on the pen recorder. 
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Tben tbe linewidth of the sample was measured as a function 

of peak to peak modulation voltage. Tbe corresponding 

modulation current was also recorded. Figure 2.4 sbows 

the results obtained at the low field. Tbe straight line 

is a least squares fit to the top 13 points. The negative 

intercept gives a linewidtb of 0.67g for the Li sample. 

By shifting the line up by this amount the graph of modulation 

amplitude against modulation voltage shown in Figure 2.5 

was constructed. In practice, the modulation amplitude was 

set using the modulation current as this could be read more 

accurately than the voltage. Unfortunately, the current 

could not be used directly in the calibration procedure as 

the avometer scale was found to be non-linear. 

2.2.5 Measurement of the Linewidths 

The linewidth of 199Hg resonance is about 5g. and that 

of 201Hg about 25g. The resonances were observed using 

magnetic field sweep widths of 50g. and 250g. respectively. 

Eacb sweep took 30s. and the output time constant, t , of 

the phase sensitive detector was 0.3s. If T represents the 

time taken to traverse the linewidth, then, for both isotopes, 

Til - 10 and hence asymmetry in tbe linesbape due to a time 

constant effect was avoided. The magnet was swept continuouay 

in the sawtooth mode and a negative going ramp derived from 

the field regulator was used to trigger the averager about 

2s. after the beginning of each sweep. The averager was run 

in the internal advance mode at a sweep speed of 50 ros. per 
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channel. Since only half of the available memory of 1024 

channels was used each averager sweep lasted 25.6s. There 

was thus a delay of about 4s. between averager sweeps during 

which the magnetic field fell back to its initial value. 

Averaging times were about 4 hr. for the 201 Hg line and 

1 hn for the stronger 199Hg line. The bridge was balanced 

to detect the absorption mode. Because of a slow drift off 

balance it was necessary to rebalance the bridge after 

every 8 scans with the averager temporarily halted. In 

this way the dispersion signal never exceeded 10% of the 

absorption signal in anyone sweep and the average over 

many sweeps was not large enough to give any detectable 

asymmetry·to the lineshape. 

The linewidth was obtained using a computer program 

to fit the expression given by Wahlquist (6) to the observed 

derivative curve. The program automatically corrected for 

modulation broadening. However, this was never more than 

0.5g. in - 25g. for the 201Hg line although we did allow it 

to rise to 1.5g. in - 5g. for the 199Hg line in order to 

save averaging time. A small amount of field dependent 

modulation pick up was observed at the high field which was 

taken into account in the program by adding a sloping base­

line to the Wahlquist formula. An outline of Wahlquist's 

theory together with details of the computer program are 

given in Appendix I. 

2.2.6 Measurement of the Knight Shift and its Variation 

with Temperature 

The program was also designed to give the position of 
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the centre of the resonance lines ~~d using this information 

r€lative changes.in the Knight shifts of the isotopes could 

be calculated. The absolute values of the Knight shifts 

were determined as follows. First, an averaged mercury signal 

was obtained on the first half of the averager memory. 

Then, using the marginal oscillator, three narrow signals 

from a sample of doped D20 accurately placed in the central 

position in the magnet gap previously occupied by the mercury 

sample were obtained on the second half of the memory. 

During this procedure the magnetic field was kept on in order 

to avoid errors in resetting. The position of the centre of 

the mercury line was found using the program and the value 

of the magnetic field at this position calculated using the 

deute~m signals. Deuterium oxide was used to provide 

markers for both mercury isotopes. On compnring the positions 

of resonances from the.D20 sample relative to signals from 

a Li metal sample a small paramagnetic shift in the deuterium 

resonance was found. The shift was equivalent to an error 

in gyromagnetic ratio of 0.008%. This was taken into account 

in the calculation of the mercury Knight shifts. 

Finally, the inhomogeneity of the external magnetic 

field over the region occupied by the mercury sample was 

determined by placing the same size of sample of doped Dcr 
at the same position in the magnet gap and obtaining resonances 

at the high and low fields. The sample was doped to give a 

natural linewidth of about 0.1g. The linewidths at the two 
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fields were obtained using the computer program. It was 

found that the magnetic field contributed 0.7~to the 

201Hg line and 0.5g. to the 199Hg line. 

2.3 Experimental Data 

The, variation with temperature of the linewidths of the 

201Hg and 199Hg isotopes of liquid mercury is shown in 

Figure 2.6. The linewidths are corrected for modulation 

broadening and broadening by the inhomogeneity of the magnetic 

field. 

The total longitudinal relaxation rates for the two 

isotopes were derived from the linewidths using equation 

2.7 which may be written as 

2.12 

since T1 = T2• The value of the gyromagnetic ratio for the 

199· 199 4 7 3 3 -1 -1 Hg ~sotope, Yn = • 8 O. 10 s • g ., was taken 

from the n.m.r. measurements of Proctor and Yu (9). The 

gyromagnetic ratio of the 201Hg isotope was calculated 

using the magnetic moment . given by Cagnac and Brossel (10) 

which gives 201 = 1.7658. 103 -1 -1 Figure 2.7 Yn s • g • 
, 

shows the variation with temperature of the relaxation rates 

of the. two" isotopes. 

The magnetic contribution, R1m , to the relaxation rate 

of the 201 Hg isotope was calculated from the relaxation 

rate of the 199Hg isotope using equation 2.4. which is 

R201 
1m = 
~ 1m [ 

201]2. ' Yn = 0.136 
y199 
n 

2.13 
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This was then subtracted from the total relaxation rate of the 

.201Hg isotope to give the quadrupole contribution, R~~1. 

It is easily seen that relaxation via the quadrupole inter­

action is the dominant relaxation process for this isotope. 

Also the quite different dependence on temperature shows 

up the different origin of the relaxation in the two isotopes. 

The quadrupolar contribution is seen to decrease slowly 

with temperature whereas the magnetic oontribution has the 

characteristic linear variation with temperature associated 

with the Korringa rela~ion. 

The Knight shifts of the 1991Ig and 201Ug resonances 

were found to be 2.424 ~ 0.00~0 and 2.43 ~ 0.01% respectively 

at a temperature of 200 0. The gyromagnetic ratios given 

above were used in the calculation of the Kni~ht shifts. 

The poorer error in the value given for the 201 Hg isotope is 

due to the lower signal to noise ratio and wider line. 

The variation of the Knight shift with temperature is 

shown in Figure 2.8. The figure was constructed by calculat­

ing the ,shift of the metal resonance relative to its 

position at 20°0. The experimental error for each point 

here is greater than that in the absolute shifts given above. 

This is because the magnet was switched off between runs and 

we relied on the resetting action of the Fieldial to give 

the same value of magnetic field at the start of the sweep 

for each run. Unfortunately, the magnet's behaviour at the 

time of these ex~eriments was well below specification in 
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this respect. The straight line represents K-1 dK/dT = 
- 20.10-5 K-1 with respect to an estimated Knight shift of 

2.453% at the melting point. 

Them results have been reported in the pUblications 

by Havill et al (11) and Marsden et al (12). 

2.4 Discussion 

For both the 199Hg and 201Hg isotopes of liquid mercury 

we have measured the Knight shift, K , together with its 

dependence on temperature and the temperature variation of 

the spin - lattice relaxation rate, R1• These measurements 

have been made in the course of our principal aim which 

was to determine the variation of the quadrupolar relaxation 

rate, R1q , with temperature for the 201Hg isotope. There­

fore, in what follows, while concentrating on the interpret­

ation of R1q , we attempt a simple discussion of K. 

2.4.1 The Knight Shift B.nd its Temperature Dependence 

Blumberg et al (13) have measured the Knight shifts of 

the 199Hg and 201Hg isotopes and obtained 2.724 i 0.005% 

for 199Hg and 2.722 ~ 0.005% for 2~1Hg. From these measure­

ments they deduced a small hyperfine structure anomaly al­

though this is difficult to justify in the light of their 

experimental error. It is not easy to explain the difference 

between their data and ours. However, our value for the 

Knight shift of the199Hg isotope is in close agreement with 

the 2.418% found by Havill (14). Further agreement is found 

in the data quoted in a review article by Seymour (15) where 

a value of 2.4~fo is given for the Knight shift of 199Hg , 
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together with a temperature dependence K-1 dK of -15. 
CIT 

The theory of the Knight shift in liquid metals is very 

complicated and for details the reader is referred tothe 

review articles by Seymour (15) and Titman (16). 

From Chapter 1 it will be remembered that the direct 

Fermi contact interaction leads to a Knight shift given by 

eq. 1.6 which is 

2.14 

This may be more conveniently written as 

2.15 

where 0 is the atomic volume and OFF is the probability 

density of the conduction electrons at a nuclear site 

averaged over the states at the top of the Fermi distribution. 

The Pauli susceptibility for independent electron spins Xp 

is replaced in 2.15Qy~ which takes into account the enhance­

ment of the Pauli value by the presence of many body 

electron-electron interactions in the Fermi gas (17). 

Although the Knight shift has been measured with fair 

accuracy for most metals in both the liquid and solid states 

it has proved difficult to test 2.15 in a general way. The 

important quanti ties PF and X appearing on the righthand 

side of 2.15 have been measured independently only in a few 

cases, notably the alkali metals, and then only in the solid 

state. Good agreement between theory and experiment has 
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been obtained in the cases of Li and Na (18), (19). 

For other metals the direct term of PF must be 

obtained from pseudopotential theory and combined with a 

value of X determined from some independent calculation. 

As a first step in the evaluation of PF the single or­

thogonalised plane wave calculations of Mahanti et al (20) 

and Heighway and Seymour (21) have met with some success. 

A further refinement may be introduced by allowing for the 

effect of scattering of the conduction electrons by the 

ion-cores. This principle has been adopted in a number of 

papers concerned with the evaluation of PF (22), (23) (24). 

The Knight shifts of most liquid metals are weakly 

dependent on temperature. Almost all measurements have been 

made atronstant pressure so that the temperature coefficient 

reflects the effect of the volume expansion of the liquid. 

The effect of the variation of X and PF may be found from 

1 (i) K) _ 1 (a X ) +.L (a PF ) 
K rT' p - x FT p PF ~ P 

2.16 

The intrinsic dependence of X on temperature is very small 

and the main change occurs through the effect of the volume 

expansion on the density of states and the electron-electron 

enhancement. Ford and Styles (25) have found that (1/X) 

(dX/~T)p lies between -2. 10-5 and -3. 10-5 K-1 for a number 

of liquid metals. The temperature coefficient of PF must 

be calculated from the appropriate pseudopotential theory. 

As observed with liquid mercury the temperature coef­

ficient is often negative for polyvalent metals. The 
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calculations of Ford and Styles (25) for Ga, Cd, In, Sn, 

Ph and Bi and Halder (26) for Cd, Sb, and In give values 

for (11K) (~K"ldT) close to the experimental magnitudes. , p 

As far as the author is aware only a simple calculation of 

the temperature variation of the Knight shift in liquid mercury 

based on the single orthogonalised plane wave method has been 

carried out (15) giving a theoretical value of -7. 10-5 °C-1 

for 1 (dK). K Ctl 

2.4.2. The Magnetic Relax8tion Rate 

The linewidth of the 199Hg resonance has been measured 

by Cornell (2) and Blumberg et al (1~). Cornell's mea~ure­

ments were made at three temperatures ranging from 2~30K 

to 3630 K but Blumberg's measurement was restricted to room 

temperature. Our linewidths agree with Cornell's within 

the experimental error but our room temperature linewidth 

is considerably smaller than that given by Blumberg et a1. 

This could possibly be explained by overmodulation of the ' 

resonance line by these authors. 

Our data may be analysed using the modified Korringa 

relationship introduced in Chapter 1. Equation 1~11 relating 

the contributions to the Knight shift and relaxation rate 

produced by the s- like part of the conduction electron 

density may be written as 

2.17 

It was pointed out that 2.17 describes the contributions 

from the contact term in the hyperfine Hamiltonian and the 
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core polarisation induced by the s-like conduction electrons. 

It is not, however, valid for contributions from the p-

core polarisation and the orbital term. Equation 2.17 

containsthe correction factor K(a) which, as stated 

previously, is difficult to calculate. Accurate calculations 

have only been made using an interacting electron gas model 

for the alkali's where K(a) is found to lie between 0.6 

and 0.7. 

The solid line in figure 2.7 shows a fit to the relaxation 

rates of the 199Hg isotope using 2.17 with our measured value 

of K, including its variation with temperature, and assuming 

K(a) = 0.81. Thus a possible conclusion is that the Knight 

shift and relaxation rate are simply produced by the s-

terms. However, 0.81 is perhaps a rather large value for 

K(a) which lies in the range 0.67-0.75 for most liquid metals. 

Our value of K(a) may be brought into line with these values 

by allowing quite small contributions from non-s terms. 

For example, if these are taken to be of the order of 1/10 

of the magnitude of the observed shift and of the opposite 

sign K(a) is reduced to 0.7. Non-s terms of this magnitude 

seem reasonable in the light of the presently available 

theoretical calculations (27). Until some way can be found 

to separate the non-s terms the true value of K(a) will 

remain a matter of conjecture. 

2.4.; The Quadrupole Relaxation Rate 

Cornell (2) also measured the 1inewidth of the 201 Hg · 

resonance at three different temperatures 2650 K, 317°K and 
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3560 K and Blumberg et al (13) measured the linewidth at room 

temperature. Our linewidths are about 2~~ smaller than 

Cornell's but much closer to Blumberg's result. It is not 

possible, from the published material, to discover the reason 

for these differences. However, Cornell's analysis of his 

results taken in conjunction with his measurements on the 1ine­

width of the 199Hg isotope lead to a temperature variation 

of R1q which is in agreement with our own. 

Further information on the variation' of R1 with temper-. q 

ature in liquid Hg has been obtained using pac techniques. 

A direct comparison of absolute values of quadrupolar relax­

ation rates obtained using nmr and pac methods is not possible 

because of a lack of precise values for the nuclear quad-

rupole . moments of the excited nuclear states. 

The earlier measurements of BrBuer et al (28) on trace 

amounts of 206pb nuclei in liquid mercury were interpreted 

as representing a variation in R1q with temperature pro­

portional to the reciprocal of the diffusion coefficient. 

This is a much faster trend than that observed in our 

experiment. However, there is considerable scatter in their 

data, the observed relaxation rate varying by as much as a 

factor of two between different measurements at the same 

temperature. Greater weight should be attached to their 

recent, more accurate, measurements on 202T1 nuclei in 

liquid mercury (29). In this data the decreasing trend in 

R1q is much slower and generally in agreement with our own. 
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As pointed out in Chapter 1 the major problem in cal­

culating the absolute value of R1q lies in the calculation 

of the electric field gradient and antishielding. In 

particular Sholl (30) points out that, in his theory, the 

effects of the conduction electrons inside the co~e, at,the 

origin are inaccurately described. These problems have been 

discussed separately by Lodge (31) andSchirmacher (32). 

Now there are essentially two approaches to the inter­

action of an ion core in a metal with all other charge. One 

is to take the point charge interaction of the ion cores and 

add s'eparately to this the interaction with the conduction 

electrons. This is basically the approach used by Lodge. 

The other approach, as used by Sholl, is to regard the 

electrons as screening the ion cores and to describe the 

potential at a given site as a sum of screened potentials 

from all other ion-core positions. 

In the introduction to his paper Lodge states that the 

efg in a metal may be calculated from the equation (3;) 
00 

q = f [1+ vCr)] q(r)dr 2.18 
0 

where q(r)dr is the contribution to the efg from charge, 

other than that of the local ion core, lying between r and 

r + dr and vCr) is the radial dependent antishielding 

factor (34) 

Equation 2.18 may be simplified to give (35) 

2.19 

where qlatt is the erg at a nucleus from conduction electrons 
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and ions outside the ion core surrounding the nucleus, the 

lattice region, and qloc is the efg from conduction electrons 

within that ion core, the local region. The factors Yoo 

and R are the St~eimer antishielding factor and the core­

correction factor respectively and take into account the 

distortions induced in the ion-core surrounding the 

nucleus in question. 

The very involved theory of Lodge eventually produces 

an expression for q that is considerably more complicated than 

2.19. However, when approximations are allowed in order to 

make calculations using model orthogonalised wavefunctions, 

it is found that for Be and Mg metal the values of q given 

by Lodge's expression differ from those given by 2.19 by only 

10%. Thus, while being a valuable theoretical paper this 

t r e atment goes little way in helping to accurately calculate 

efg's in liquid metals. Furthermore, it is difficult to see 

how Lodge's treatment may be incorporated into the pseudo­

potential approach used by S ho 11. 

Schirmacber (32) has calculated the efg in Ga and In 

using a pseudopotential theory that attempts to accurately 

describe the effects of the conduction electrons inside the 

core at the origin. The results of :his calculations differ 

significantly from those of Sholl (30) especially in the 

degree of overlap between the efg function and the radial 

distribution function. This will be discussed in detail in 

Chapter 3. 
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Since the magnitude of R1q depends on the strength of 

the electric field gradient, the effective antishielding of 

the quadrupole moment and also critically on the degree of 

overlap between the efg function and g(r) it is obvious that 

a comparison between theory and experiment in absolute terms 

is not possible at this stage. We therefore turn to a dis­

cussion of the variation of R1q with temperature. 

It was shown in Chapter 1 that Sholl's theory predicts 

that R1q will vary with temperature in a way which is slightly 

slower than n-1 • Line A' on figure 2.7 represents a variation 

proportional to D-1 for liquid mercury. The self diffusion 

data of Meyer (36) was used to construct this line. It 

will be seen that the temperature variation of R1q is much 

slower than that predicted by the theory. A much better 

fit to the data is obtained with line B which represents a 

variation with temperature proportional to T-~. 

As shown in figure 2.9.the variations of R1q with 

temperature in liquid mercury and a number of other liquid 

metals are directly comparable. The results illustrated in 

the figure, taken from nmr and pac measurements, were chosen 

because they were thought to be particularly reliable. As 

shown in the introduction to this chapter the most accurate 

values of R1q are obtained when measurements can be made on 

two isotopes with very different gyromagnetic ratios or 

quadrupole moments, one of the isotopes having a relatively 

large quadrupole contribution. These criteria were satisfied 
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for the nmr measurements on Ga(37), Sb(38), our own Hg(12) 

and the pac measurements in liquid Sn(39) which were made on 

excited states of the two isotopes 114Sb and 122Sb • ReliabE 

measurements of R1q using a single isotope -can only be 

made if R1q ~ R1m• This condition was satisfied. in the 

case of the pac data on 117Sb in liquid In (40) and is 

particularly true for the pac measurements in liquid Pb(41) 

and Bi (39) which were made on trace amounts of 207po, the 

relaxation~ which is almost entirely quadrupolar in origin. 

The line drawn through the data represents T-~ and it 

can be seen that the quadrupolar relaxation rates in all 

seven metals appear to fit a relation of this form up to 

temperatures equal to about twice the melting point, Tm. 

It is believed that the controversy that has entered into the 

interpretation of R1q in liquid metals has arisen because 

in some cases the experimental error Was too large and in 

others the criteria for the separation of R1q indicated 

above were not satisfied. 

Nuclear quadrupole relaxation is brought about via the 

interaction between the nuclear electric quadrupole moment 

and the local electric field gradient which is made randomly 

dependent on time by the thermal motion. The nuclear Larmor 

period is of the order of 10-8s.compared to a typical 

correlation time for ionic diffusion in a liquid metal of 

-14 I' about 10 s. t 1S therefore easy to see why one would . 

expect the dominant contribution to R1q to come from trans­

lational diffusion of the ions leading to a predicted temper­

ature dependence of 1/D. 



However, the experimental data is obviously at variance 

with this prediction. The theories given by Sholl (30) and 

Warren (43) re'late R1q to the ionic motion through the van 

Hove function S(q,o). At small q, corresponding to movements 

over large distances, i.e., translational diffusion, this has 

a Lorentzian form and varies with temperatures as 1/D (30). 

However, at high q.that is for movement over relatively 

small distances, it has the ideal gas form varying with 

temperature as T-~. 

Since the experimental data aem.onstrates that R1q 
varies with temperature as T-~ this suggests that the main 

contribution to S(q,o) comes from the region of k space where 

q. is relatively large. We have therefore re-exnmined the 

theory of quadrupolar relaxation in liquid metals and in 

the next chapter a new version of the theory is presented 

which goes some way in explaining the experimental data. 
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CRAnER THREE 

Theory of Nuclear Quadrupole Relaxation in Liquid Metals 

3.1 Introduction 

It was shown in Chapter 1 that Sholl' s theory (1), 

which treats the liquid metal as a collection of N mobile 

screened ions, leads to a quadrupolar relaxation rate given 

by 

with 

and 

= 3(2I+3)(eQ~2 J(o) 
412(21-1)n 

00 

J(mwo) = f <Fm(t)F:, (0) e-imwotdt 
-00 

v2(r) :: rd (1 dyer)) arrar 

3.2 

3.3 

3.4 

3.6 

The angular brackets denote an ensemble average, Yoo 

is the Sternheimer anti shielding factor, Y2m is a spherical 

harmonic normalised to unity and v2(ri ) is the radial electric 

field gradient function derived from the electric potential, 

vCr), at the nucleus at the origin due to an ion at the 

position r i , 6i , 'Pi· 
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It was also pointed out in Chapter 1 that the ensemble 

average contains two types of terms, i.e., 

, ' 

The first term on the right-hand side of ;.7, called the 

pair term, describes the correlations of the electric field 

gradient at the nucleus at the origin due to the same ion 

at two different times. In the second term, the triplet term, 

the gradients at the two times are from different ions. 

These ionic configurations are shown in Figure ;.1. 

The ensemble average may also be written as 

where P is the probability of finding a pair of ions within 

To + dro of each other and the some pair or another pair 
- -
within r 1 + dr1 of each other at a time t later. The origin 

of ro and r 1 is fixed on the same ion throughout the motion 

(figure 3.2) 

If, for the moment, the screened ion model is assumed 

to be correct, the problem becomes one of evnluating the joint 

probability function, P, and the radial electric field 

gradient v2(r). An exact expression for P has yet to be 

discovered and consequently an approximate form must be used. 

The simplest approximation for the pair terms, i.e. for the 

self-part, Ps ' of the joint probability function, is to write 

Fs as the convolution of two van Hove functions, i.e. 



8 
r i (0) 

Figure 3.1 Schematic Representation of the Selt and Triplet Terms in Equation 3.7. 



(t;L 

G) 
~ 

(b) 

Figure ,.2 Schematic representation of the relative motions of ions described by the 

probability function P. The ion at the origin has a solid circle at the 

centre. (a) represents the pair term and (b) the triplet term. 

r
1 
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where the initful probability of finding the pair ro apart 

is given by the pair distribution function g(ro) and the 

atomic densityp. The subsequent motion of each ion is 

represented by the self-part,Gs(!.,t), of a van Hove correl­

ation function,G(r,t), defined by - , 

3.10 

The trouble with this approximation is that it does not have 

the correct symmetry with respect to the interchange of ro 

and r 1 (2). Furthermore, it does not take into account any 

correlation in the motion of the two particles during the 

interval t, i.e. the convolution implies independent motion 

of the ions. From a computational point of view the latter 

difficulty results in the integral in the expression 3.8 

over the variable r 1 having no cut off for r 1 • 0 and, 

consequently, an infinitely large value. This result is 

equivalent to the physical condition that the two particles 

occupy the same position at time t. 

Torrey (3) sought to overcome both difficulties by 

arbitrarily restricting ro and r 1 to have magnitudes greater 

than a where a was some nearest distance of approach of the 

ions and g(ro ) .was taken as unity for ro> a and zero for 

ro"< a. Oppenheim and Bloom (4) working from the equations 

of motion of particles in a classical liquid arrived, with 

certain plausible approximations, at the result 
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which satisfactorily disposes of the symmetry problem and 

also overcomes the difficulty associated with the zero 

value of r 1 . However, the original equations of motion 
t 

from which they worked are only valid in the hydrodynamic 

limit of Gs(E,t) where it is a solution of the diffusion 

equation. Since this approach gives R1q proportional to 

n-1 (5) the Oppenheim and Bloom solution does not appear to 

be a suitable starting point from which to explain the present 

data. Neither Torrey, nor Oppenheim and Bloom give the 

triplet term. 
. 

Warren (6) and Sh 0 11 (5) have suggested that both the 

pair and triplet terms may be contained in the expression 

p • pg(rO)g(r1);rGS(:g-~.t)G(:g-~.t)dr2 3.12 
o 

H~re ·the pair term is given by the self part, Gs(r?-ro,t) 

of the van Hove function G(r2-ro ,t) and the triplet term 
--

by its distinct part, Gd(r2-ro ,t). The correlations in 
--

the motion, neg~~ed in the convolution, are supposed to be 

taken into account in the static term, g(r1 ). 

Unfortunately equation 3.12 does not encompass the 

correct balance of pair and triplet components at time t = G 

(5). At t = 0, 3.12 gives 
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whereas the exact form of P at t = 0 is, 

P = pg(ro)o(rO-r1)+pC3)(rO,r1) 
. -- -- 3.14 

Thus the triplet term is satisfied in the superposition 

approximation, where the static three particle distribution 

function, p(3), is given by 

3.15 

but the pair term is clearly overestimated by a factor g(r). 

Sholl (5) attempted to correct for this discrepancy by 

using the Oppenheim and Bloom expression for the pair term 

and equation 3.12 with Gd instead of G for the triplet term 

but this resulted in a negative value for R1q• 

where 

and 

Equation 3.12 for P leads to the result 

R1q Q 26 ~q212(q)dq_l:S(~.W)Ss(q'W)dW 

H = 2n(2l+3) l eQC1- voo)1 2
p 

1512(21-1) h 

I(q) = ;rv2 Cr)r2g(r)j2(qr)dr 
o 

which has been used in a number of calculations. The 

3.16 

3.17 

3.18 

essential features of equation 3.16 are, firstly, the 

integral over l(q) is a series of positive peaks in k space, 

their spacing being determined by the small r cut off in 

g(r) and, secondly, the integral over the dynamic structure 

factors is very approximately equal to ~S(q,o). 
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Since S(q,o) is zero at small q the first peak of 

12(q) does not enter the final computation (5). According 

to Sholl (5) and Warren (6) the main contribution to the 

integral comes from q values near the principal peak in 

Seq). Thus the variation of R1q with temperature appears to 

be primarily dependent on the behaviour of S(q,o) near the 

principal peak and this is not well known. 

As outlined in Chapter 1,Warren (6) chose to use the 

theoretical model for S(q,o) given by Cocking and Egelstaff 

(7). According to this model S(q,o) is given by 

~ 3/ 
S(q,o) = N12[ M I [S(g)) 2 

n ~ q 
3.19 

where M is the atomic mass and N12 is a parameter determined 

by fitting the expression to neutron diffraction data. The 

term T-~ appears explicitly in this expression and, since 

this is the principal temperature dependent term. Warren 

obtained essentially the correct variation of R1q with 

temperature in his calculations on liquid Ga. Similar 

calculations by Halder (8) which included a more recent 

form of v2(r) (9) adopted the same model for S(q,o) and 

arrived at somewhat similar dependences on temperature for 

In, Hg and Ga. 

In contrast Sholl (5) has s.rgued, on the basis of the 

empirical expression for Ss(q,w) given by Egelstaff and 

Schofield (10) (and given in equations1.27 and 1.28 in 

Chapter 1), that S(q,o) near the principal peak is approxi­

mately proportional to D-1 and consequently the predicted 
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variation of R1q with temperature is as T-2• 

The temperature dependence of S(q,w) is generally not 

well known. However, a few measurements have been made at 

various temperatures for Ga. (11) (12) (13) (14). The 

results from the various investigations are not entirely 

consistent. GH!ser et .al (12) (see also Copley and Lovesay 

(15»have measured S(q,w) at 305°K and 12530K. They find 

that, near the principal peak of Seq), S(q,o) is reduced by 

a factor of more than 10 between the lower and higher 

temperatures, while the width in w increases by about 5. 

Thus the integral 
co f S2(q,w)dw 

-co 
decreases by a factor of about 20. This is approximately 

t ' 1 to T-2 • propor l.ona 

Now in the same region of k-space the data of Page et 

a1 (14), taken over a much smaller range of temperature, 

may be interpreted as follows. The static structure factor, 

Seq), given by 

Seq) - ~S(q,W)dW 
-co 

3.20 

is found to be almost independent of temperature and the 

frequency width of the Lorentzian quasi-elastic peak increases 

approximately as T3/2. Thus S(q,o) must be approximately 

proportional to T-312. Since, for a Lorentzian, 

co f S2(q,w)dw = tS(q,o) 
-co 

3.21 
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_3/2 
this integral must decrease at the rate T also. This is 

a rather weaker dependence on temperature than that given 

by the data of Glgser et al but it appears to confirm that 

the rate of decrease of S(q,o) is likely to be much faster 

near the principal peak than is implied by the expression 

used by Warren and Halder. 

S~(q,w) cannot be measured for Ga but the theoretical 

work of Barker et al (13) points to a function with a 

Lorentzian dependence on w with a width slightly greater 

than that of S(q,w) and a dependence on temperature (over a 

very narrow range) of approximately T-2 for S~(q,o). Barker 

et al also observed that the Egelstaff and Schofield form for 

S (q,w) could be used to interpret the experimental data 
s' 

for S(q,w) through the Vineyard approximation (16), 

S(q,w) = S(q)Ss(q,w) , 3.22 

For the remaining liquid metals of Figure 2.9 one must 

use the Egelstaff and Schofield expression for Ss(q,w). As 

S h 011 (5) has pointed out the straightforward application 

of this expression coupled with the Vineyard approximation 

is likely to lead to the prediction that R1q varies with 

D- 1 temperature as • The Egelstaff and Schofield expression 

gives the correct form for Ss(q,w) at small and large q, i.e., 

3.23 
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and 

where 6 = kBT. How reliably the model describes the 

transition between these limits is difficult to assess. 

3.24 

Some aspects of the dynamics of liquids have been interpreted 

successfully by it. 

In particular the self.part of the intermediate 

scattering function 

00 . 

Fs(q,t) = 1 d(lle1wtS(q,w) 
-00 

for liquid argon near the principal peak in Seq) as obtained 

from molecular dynamics calculations and the Egelstaff -

Schofield model have been found to be consistent with each 

other (15). 

To sum up, the failings of the S h 011 and Warren cal-

culations are 

(i) R1q is predicted to vary with temperature approximately 
-1 i as D • This is very different from the T- variation shown 

by the experimental data. 

(ii) The correct balance between the pair and triplet con­

tributions is not maintained and, when this is corrected for, 

negative values of R1q are obtained. 

It is arguable that (i) and (ii) are related. The pair 

term contains a considerable contribution from small q values 

below the principal peak as well as contributions at higher 

q. The main contribution to the triplet term comes almost 
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entirely from below the principal peak and is negative. 

Thus, if the pair term is overestimated, as it is in expression 

3.12., then there will be a substantial spurious contribution 

to the predicted R1q which comes from that region of k space 

where the D-1 temperature variation is to be found. 

With these points in mind it was argued that a modified 

form of the theory should be sought which would better preserve 

the balance of the p~ir and triplet terms and would therefore 

give an improved prediction of the temperature variation of 

R1q• 

3.2 Derivation of the Theoretical Expression for R1q 
We note first that the quantity which determines the 

rate of change of the z-magnetisation of the spins under the 

condition of extreme narrowing depends only on the perturbing 

Hamiltonian at time t = 0.(17). Indeed we can write 

3.26 

where IC is some "correlation time" in which the correlation 

function of the random Hamiltonian has become small with 

respect to.1/wo• We do not follow this method of calculation 

here but merely make the point that the correct initial 

value of the field gradient is important. 

In the manner of Sholl and Warren we write 

0) 

Fs = pg(ro)f(ro ,r1 ) /GS(r2-r1,t)Gs'(r2-ro,t)dr2 
o -- --,---

3.27 . 

where the initial value is given by pg(ro)6(ro-r1) and the 
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assumption has been made that the interdependence of the 

motion of the two particles between t = 0 and t = t can be 

represented by some static function dependent only on the 

initial and final relative positions. The only certain 

knowledge we have of f(ro ,r1) is that it must be zero for 

r 1 less than the nearest distance of approach of the ions. 

Thus the simplest possible form of f(ro ,r1 ) which gives 

the correct initial value is that it takes the value unity 

when r 1 is greater than the cut-off in g(r) and is zero 

for r 1 less than this. Thus we write for the pair terms, 

x I dr2Gs(r2-r1,t)Gs(r2-ro,t) 3.28 
- -- --

and the pair component of J(mU)o) becomes, 

3.29 

As Sholl (5) has pointed out the integrals may be 

partially performed by substituting the Fourier transforms 

of the van Hove functions. These are 
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and a similar expression for Gs (r2-r1 ,t). The substitution 
--

gives 

The integrals over t and r 2 give b functions from which 

it is possible to reduce the double integrals in W 1")2 and 

q1 q2 to single integrals in w and q with the result that 

The assumption that the relaxation may be described by 

a single rate as implied by equation 1.3 in Chapter 1 

requires J(o) = J(wo) =J(2wo). This extreme narrowing 

condition is satisfield if mwo is much smaller than the 

frequency width of the dynamic stucture factor. This width 

is typically 1012
5-

1 in liquid metals compared towo - 108s-1 

so we may make the approximation that Ss(q,w) and Ss(q,w-mwo) 

are coincident and Jp(mwo) is independent of the index m. 
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i~.r -ig.r1 Also e -£ and e -- may be expanded in the form 

3.33 

and the angular integrals performed. Since u(ro ) and u(r1 ) -- -
may be written in terms of spherical harmonics with 1 = 2 

the-orthogonality leads to a reduction in the number of terms 

in the summation. The final result is 

00 

Jp(mwo) = 4nc2p!g(rO)v2(rO)ro2j2(qro)dro 
o 

The triplet terms may b'e treated in a similar fashion. 

They may be written, 

<Fm(t)F:. (0» triplet • Iidro dr1um(ro)u;, (r1)Pd(ro ,o;r1 ,t) -- - - - -
3.35 

where Pd is the probability that there is an atom within 

dro at ro from the relaxing nucleus at t = 0 and that there 
- --
will be a different atom within dr1 at r 1 at t = t. In - -
Figure 3.2(b) there are atoms at ro and :i with respect to 

the atom at the origin. Thus the average over the initial 

(3) ( ) positions is given by the triplet distribution p r o ,r3 • 

In the subsequent motion the atom at ro moves to some other 
-

point in the liquid while the atom at :i moves to position 
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r 1 with respect to the atom which was at the origin at t = 0 

and is now also in a different position. All of these 

motions are taken to be independent of each other and the 

final position of the atom originally at ro is assumed not 

to influence the motion. Only the correlation of the atom 

originally at :i and finally at r 1 and the atom at the origin 

is taken into account through the term f(r1) as in the pair 

term. Thus, 

Pd = f(r1 ) II p(3)(ro,~)GS(r2-.:i.,t)GS(r2-r1,t)dr3 dr2 
3.,6 

From this the triplet part of J(o) is given by 

As in the case of the pair terms the angular integrals 

may be performed if the van Hove functions are replaced by 

their Fourier transforms. 

The angular part of p(3)(~':i) may be explicitly 

displayed by means of the exact relation (18) 
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where 6 is the angle between ro and ~,Pl(cOS6) is the 

Legendre function and gl(rO,r,) is a function of the radial 

magnitudes, of the position vectors. As will be shown later 

the I = 2 symmetry of the quadrupole interaction picks out 

the I = 2 term in equation ,.,8 and the measurement of the 

quadrupole relaxation rate appears to be the only experiment 

which depends on this term. Thus this expression is of no 

immediate use in'calculating R1q since the form of g2(ro ,r,) 

is not known. The alternative, but approximate form, is the 

superposition approximation i.e., 

p(3)(ro,r3) = p2g(ro)g(r
3
)g(ro,) ,.39 

where g(ro,) = g(lro-r,1 ) and r o, = ro2+r32-2ror3cos6 

Within the superposition approximation Jt(o) may be written 

Jt(o) = p2 fdt Idr1f(r1)u*(~) Idrog(ro)u(~) 

x II g(r3)g(ro3)Gs(r2-:i,t)Gs(:g-.:Q,t)dr2 dr, 

The integration then proceeds as for the pair terms 

after sUbstitution of the Fourier transforms of the van Hove 

functions. The expansion of the resulting exponential is then 

made and the integration over the angular parts of q performed. 

The result is 

3.40 
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Now the angular part of the final integral is 

This angular integral may be solved by the use of well­

known relationships between the spherical harmonics (19) 

and, according to Sholl (5) the result is 

n 

2n / g(ro3)P2(cos6)sinOdtl 
o 

Thus finally, 

Jt(o) = Bnp2c2 ~dr1r12v2(r1)f(r1)j2(qr1) 
o 

x fooq2dq~dwSs2(q,w~rOV2(rO)g(ro)ro2 
-00 0 0 

00 I 

X f dr3g(r3)r3 2j2(qr3) / g(ro3 )P2(z)dZ ,.42 
o -I 

where z = cosO. 

Since the only significant angular term in ~3)(ro'~) 
is P2(cos6) then Jt(o) may be re-written to include the 

exact form of p(3) (r 0 ,~) in the following way. 

Firstly the superposition approximation is replaced 

by the exact form by putting 

Thus g(ro3 ) is no longer the pair distribution function 

but is now defined by the equation 
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3.44 

Tbe rigbt-band side of equation 3.44 is tben substituted 

into tbe last integral in the expression 3.42 for Jt(o) i.e. 

n 

/g(ro3)P2(cos6)sin6d6 = 
o 

Because of the orthogonality of the Legendre function 

the only non-zero integral is 

Thus Jt(o) becomes for the exact ~3)(r r ) 
o 3 

00 00 

( ) 2 2/ () 2 )f 2 J t 0 = 16n; c dr1v2 r 1 r 1 f(r1 )j2(qr1 q dq 
o -00 

x rdWSs 2(q,w) rdro v2(ro)r/ rdr3g2(ror3)r/j2(qr3l 
o 0 0 

3.47 

The same result may be obtained directly by substituting 

3.38 into 3.37 and integrating. 

The quadrupole relaxation rate may therefore be written 

in the superposition approximation as 

00 . 

R1q ~ 26 / l [Ip(Q)+2nPl t (Q)ldQ !S9 2(q,w)dw 3.48 
o -00 
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where 
00 00 

Ip(q) = f f(r1)v2(r1)r12j2(qr1)dr1! g(ro)v2(ro)ro 2j2(qro)dro' 
o 0 

3.49 

00 00 

It(q) = f f(r1)v2(r1)r12j2(qr1)dr1 f g(ro)v2(ro)ro 2dro 
o 0 

x rg(ryr32j2(Qr3)dr3 j g(ro3 )P2(z)dZ 
o -I 

and 

Wben the exact form of p(3)(r r~) is used It(q) must o :> 

3.52 

Eq~ation 3.52 cannot, of course, be used in computation 

as the form of g2(ror,) is not known. 

3.3. Calculation of the Temperature Dependence of R1q 
The calculation may proceed only in the superposition 

approximation. The three basic quantities required are 

v2(r), g(r), and Ss(q,w). As we have already pointed out 

the last of these is most significantly dependent on 

temperature. Also since, for the metals of interest here, 
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very few measurements have been made which give the variation 

of S (q,w) with temperature over the wide range of q-values s 
required, we must use either the Egelstaff and Schofield 

empirical expression or a theoretical model. 

Of the latter, the most promising are based on the Mori 

technique, as explained by Copely and Lovesay (15). However, 

although an expression for Ss(q,w) may be arrived at (15) 

it contains parameters which are not readily quantified. In 

contrast, the Egelstaff and Schofield formula is a closed 

expre~sion for Ss(q,w) which depends only on the atomic mass 

and self-diffusion coefficient apart from q, w and the 

temperature. This expression, therefore, appears to be the 

only viable form of Ss(q,w) for our purposes. 

The Egelstaff and Schofield expression may be written as 

-i ~ 
nSs(q,w) = Ck2D[w2+(q2D)2] exp (C q2D)K1 \ c[w2+(q2D)2] I 

3.53 

where c = mD/kBT and K1 is a modified Bessel function of the 

first kind whose asymptotic behaviour is such that, as in­

dicated in equations 3.23 and 3.24, Ss(q,w) has the correct 

limits at large and small q. 

The integral that appears in the expression for R1q is 

!Ss2Cq ,w)dw and with Ss(q,w) given by 3.53 this has 

been evaluated numerically by Sholl (5) to give, to within 1%. 
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where x = cDK2 is a dimensionless parameter and CexK1(x) 

is nSs(q,o). Thus our expression for R1q may be written as 

00 

= 6/ dq q2[Ip(q)+2npIt(q)]Ss(q'O)IO.582+cDg~{213.55 
o O.582+cDq2 

The final term varies from 1 tov'2 as q goes from zero to 

infinity and is not very sensitive to temperature. It in­

dicates the departure of the Egelstaff and Schofield expression 

from the Lorentzian form of Ss(q,w) for which 

00 

/ Ss 2(q,w)dw = tSs(q,o) 
-00 

In the ideal gas limit Ss(q,w) is Gaussian and then 

00 

/Ss2(q,w)dw = 1 Ss(q,o) 
-00 v2 

3.57 

It is clear that R1q as given by equation ;.55 will 

have the T-t variation characteristic of the ideal gas limit 

if [Ip(q)+2n pI t (q)] are such as to drive the significant 

part of the integral to large q values. An examination 

of I (q), for example, immediately showsthat this can only 
p . 

be the case if the spatial extent of the products v2(r1) 

f(r1)r1
2 and v2(ro)g(ro)ro2 are small compared to the 

intera t ornic spacing a; the principal peak of the static 
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structure factor occuring near the wave vector 2n/a. 

According to&hirmacher (9) the electric field gradient 

around an ion in a liquid metal may be written as 

3.58 

In his calculations the contribution from the ionic charges, 

u ion ' was assumed to derive from point charges at the ionic 

sites and the conduction electron contribution,ucond,was 

calculated from pseudopotential theory. Using a local 

pseudopotential of the Ashcroft (20) empty core type the 

result for v2(r) is, in atomic units, 

;.59 

where the dielectric constant, in the absence of exchange, 

is given by 

;.60 

where 11 = qJ2kF,kp being the value of the wave vector at the 

Permi surface. Rc is an adjustable parameter. 

The significant featureJof expression 3.59 is that the 

second term peaks in the neighbourhood of r = a and is 

negative. At larger r it is of the order of 1/r ;, but 

oscillates slightly. Thus, near to r = a, v2(r) falls very 

rapidly below 1/r3 and then executes small amplitude 

oscillations about zero. These general features are 
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illustrated in Figures 3.3 to 3.5 for Hg and Ga which were 

obtained using numerical integration to evaluate the second 

term. 

In earlier calculations Schirmacher (9) and Halder (8) 

obtained similar results for Ga and In but found that the 

rapidly decreasing part of v2(r) came at r < a and 

consequently only the slowly decaying oscillatory part of the 

field gradient was assumed to have any significance.- How­

ever, the position and strength of the peak in v2(r) depends, 

albeit slightly,on the choice of Rc. Now Re , and for that 

matter, the equivalent parameters of other model single ion 

potentials, are often chosen to fit the experimental values 

of the electron transport properties, for example, the 

resistivity. They are not related directly to the ion-

core as measured by the interatomic spacing. It might be 

argued, therefore, that the appropriate value of Rc for the 

resistivity is not necessarily the best choice to give the 

electric field gradient. Halder nndScnirmacher obtained 

their values of Rc from Cohen and Heine (21) and the 

resistivity was the principal experimental data used to 

determine Rc. 

We have therefore investigated the effect of adjusting 

Rc and the results are shown Figures 3.3 to 3.5. Figure 3.3 

showsthe results obtained for Hg with R = 0.91 and 1.62. c 
The lower value is considered to give the best fit to the 

resistivity data, but clearly the larger Rc gives a better 
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overlap with g(r) for our purpose. In Figure 3.4 are shown 

the results obtained for Ga with Rc = 1.05 and 1.5. The 

former value fits the resistivity. It will be seen that 

for both values overlap occurs but this is not as marked as 

in the Hg case with Rc = 1.62. 

Figure 3.5 shows how v2(r) changes for Ga when Rc 

takes the values 0.84, 1.05 and 1.26. The steep part of 

v2(r) does not change a great deal but rather the long range 

part diminishes as Rc increases. According toa~hirmacher's 

calculations the inclusion of exchange terms in E(q) produces 

a further diminution. 

It is found that the values of the ratio Hc/ro for the 

metals of interest are found to lie between 0.23, 

the value corresponding to Ga with Hc = 1.05,and 0.33 which 

corresponds to Hg with Rc = 1.62. Therefore we expect the 

results for these metals to lie between the two limits 

illustrated. 

Now the field gradient obtained in this way does not 

include the enhancement from the Sternheimer antishielding. 

Edirmacher has included this effect in his calculations. 

The deformation of the ion core by the electric field 
. 

gradient which produces the anti shielding was obtained by 

a variational method. The general effect was to increase 

v2(r) by an order of magnitude and to bring the steeply 

varying part to slightly larger values of r. However, the 

calculation of the Sternheimer enhancement by Lodge (22) 
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seems to indicate that the calculations may not be quite as 

straight;forward as Scl1irmacher suggests. 

Furthermore, it is well known that for heavy metals 

the pseudopotential is non-local. It would, however, be a 

major undertaking to attempt calculations of v2(r) using a 

full non-local pseudopotential. 

Bearing these problems in mind we shall proceed by ,­

considering v2(r) to be essentially of the form given by the 

local theory described above and assume that it falls rapidly 

to zero just beyond the cut-off in g(r). The product v2(r) 

g(r) r2 will then be a sharply peaked function whose width 

is much less than the interatomic spacing. This product 

will then, in fact, be similar to that obtained by Sholl (5) 

from the ion-ion potential although, of course, asSChirmacher 

has pointed out, the ion-ion potential should not be used to 

calculate the field gradient. Since we do not have a definitive 

form for this product, we suppose that the interaction can 

be represented by a delta function, i.e., 

where b ~ a. We then integrate over all delta functions 

between b = a and 1+~a, taking the profile of our integration 

to be a right-angled triangle of base ~a. The parameter ~ 

we will call the range of the interaction and the triangle 

profile represents an attempt to recreate the profile of 

v2(r)g(r)r2 as given by Sholl (5). We regard the range as 
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an adjustable parameter. The corresponding product f(r1) 

v2(r1)r1
2 may be treated in the same way. If we formulate 

the problem in this way g(r) does not enter into the two 

particle terms directly but merely helps to determine the 

strength of the fi functions. 

Details of the calculations are given in Appendix II. 

However, the general procedure adopted is given below together 

with the significant features of the results. 

The calculation proceeds first with the evaluation of 

Ip(q) and It(q). For a fi function interaction at a the pair 

term is just 

3.62 

which does not converge. The·convergence is introduced by 

the allowed range of~. Typical results for two different 

ranges are shown in Figures 36 and 3.7. where also it can 

be seen that I (q) is a series of positive peaks in k-space. 
p . 

In order to evaluate It(q) it is first necessary to 

calculate the final integral in equation ;.50. The form of 

this integral multiplied by 2npg(r)r2 is shown in Figure ;.8. 
-

Calculations were made for Hg and for a hard sphere liquid 

with a packing fraction n = 0.455. Computing time was reduced 

by using simulated forms of the appropriate pair distribution 

functions as indicated in the Appendix. The significant 

features of this integral are the large negative contribution 

and the extent in real space which is of the order of the 
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pair term 

~-- triplet term 

Figure '.7 Plot of q2[Ip(q) + 2n pl t (q))as a function of q for liquid mercury with a range 

~ = 0.2a. 

q 

100/a 



r, 

1 

Figure '.8 Plot of the function 2n pg(r,)r,2 Jf g(rO,)P2(z)dz against r, for liquid mercury with a 
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interatomic spacing. Consequently the convol u t·ion with 

the spherical Bessel function results in a series of negative 

going peaks which decay rapidly towards high q values. The 

general features of It(q) can be seen from Figures 3.6 and 

3.7. The sum Ip(q) + 2npIt (q) is also shown and generally 

this consists of a large negative peak at low q values which 

gives way to a series of positive peaks at high q. 

The final integration was carried out in accordance 

with equation 3.55 with Ss(q,o) given by the Egelstaff and 

Schofield expression with parameters appropriate to liquid 

Hg. It is clear that the final result for the temperature 

variation of R1q will not simply be a T-t dependence but is 

some complicated balance of a negative triplet contribution 

whose dependence on temperature is principally n-1 and the 

positive pair terms which change from a n-1 variation at low 

q to a T-~' variation at high q. 

The results obtained using the Hg pa1r distribution 

function are shown in figure 3.9. It can be seen that if the 

range of the interaction, fl, is 0.1a then a slow variation 

of R1q with temperature is obtained. However, as the range 

is increased to 0.2a a negative result for R1q is obtained. 

This can be understood with reference to figures 3.6 and 

3.7 where it will be seen that as the range increases Ip 

tends to lower q values but It remains hardly changed. 

This result tends to imply that we have overestimated the 

triplet contribution in our calculations which could be 

due to our use of the superposition approximation. We have . 
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studied the effect of reducing It and find that for the 0.1a 

and 0.2a range a reduction of It by about 5% to 10% leads 

to a predicted variation of R1q which is very close to T-~. 

Similar results were obtained using the hard sphere g(r). 

These are shown in Figure 3.10. With a range of 0.1a and 

including all the triplet term the variation of R1q was 

found to be close to T-~ but if the range was increased we 

had to reduce It to get a positive result. If only 75% 

of It is included in the calculations then as the range is 

increased from 0.1a to 1.0a the temperature dependence of 

f T-1 to T-2• R1q increases rom 

Although we did not carry out calculations for any other 

metals, sincethe pair distribution functions of most metals 

are similar, as are the parameters in the Egelstaff­

Schofield expression, we would only expect minor differences 

in the results. 

3.4 Discussion 

The differences between Sholl's (5), Warren's (6) and 

the present calculations have already been described. For 

the sake of completeness it might be pointed out that earlier 

calculations either neglected the triplet term (23), (24), or 

used a restricted form of the correlation function (1) 

which was not capable of giving the observed temperature 

dependence. 

A·possible criticism which may be levelled at our 

model is that the joint probability function given by 
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equation 3.27 which is 
(Xl 

Ps = pg(ro)f(ro ,r1) I Gs(r2-r1,t)Gs(r2-ro,t)dr2 3.63 
o -- ---

is not symmetric under the reversal of ro and r 1(2). An 

alternative may have been to have used the joint probability 

function of Oppenheim and Bloom which is explicitly symmetric 

in ro and r 1 • However, the apparent non-reversal is probably 

not significant in the approximation used here for the follow­

ing reason. Since the motion of the two particles is taken 

to be independent r 2 , r o ' and r 1 are then independent 

variables which may be integrated over all directions. 

Consequently, as an examination of equation 3.49 shows, the 

final result for the pair term contribution to R1q is devoid 

of angular terms and is merely proportional to the product 

of two quite separate integrals over the radial magnitudes 

ro and r 1 • Interchange of ro and r 1 does not alter this 

product. In fact, actual calculations using the Oppenheim 

and Bloom joint probability function gave similar values 

of the pair and triplet terms to those u5ing equations 

3.49 and 3.50. 

The physical process involved in our model may be 

described in the following way. Consider the relaxing 

nucleus surrounded by a shell of atoms. Generally the atoms 

will be distributed over most of the surface of the shell and 

the resultant efg could be calculated from the pair and 

triplet distributions. The fluctuations of the efg are 
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caused by the flexing of the shell as the atoms change their 

radial positions. If the potential is short range, 

movements of the atoms over distances both large and small 

compared with the atomic spacing will contribute to R1q 
through the pair terms. However, if an atom makes a diffusive 

step of the order of the interatomic spacing, a, then the 

void it leaves behind is filled by the movement of other 

atoms. The effect of the replacement of one atom by another 

is contained in the triplet term which is spread over a range 

of a in real space. It thus tends to cancel the diffusive 

motion, leaving mainly the high q part of the pair term 

i.e. the small distance motion of the atoms to be the principal 

contribution to R1q• Clearly, as the range of the potential 

is increased the strength of the high q terms will fall 

and our model will thus lead to an approximately T-i 
temperature dependence when the range is small compared to 

-1 . a and to a D dependence when 1t is of the order of a. 

Unfortunately, as we have already indicated, our 

calculations give a triplet term which is too large except 

when the range of interaction is of the order of 0.1a. This 

negative result for R1q may be caused by overestimation of 

the triplet term due to calculation error or the use of the 

superposition approximation. Calculation error certainly 

exists since the integrals involve functions of complicated 

shape and in order to reduce the computing requirements we 
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have made fairly drastic simplifications of these shapes. 

However, we feel that the 25% reduction required to give 

R1q positive when the range of interaction, 6 - a is too 

large to be explained in this way. As evidence we point 

to the fact that a similar result is obtained for both the 

mercury and the hard sphere g(r)s which, in our approximations, 

have quite different shapes. Remember g(r) only enters the 

triplet term, whereas in the p~ir term it has been reduced 

to a 6 function. The error caused by the superposition 

approximation is unknown, but is, in general, thought to 

be sUbstantial atne~rneighbour distances. However, our 

calculations show that the reduction factor for the triplet 

term required to keep R1q positive is smaller for the short 

ranges than for the long range interactions. 

During the course of our work Gaskell (25) has suggested 

an approximate method of formulating the pair correlation 

function. He divides the efg into a short range part lying 

within the atomic core, whose radius is only slightly larger 

than the interatomic spacing, and a long range part which is 

zero inside this core but may be non-zero outside. For the 

long range pert the core thus plays the role of f(r) in our 

model. Within the core he restricts the position vectors of 

the particles to certain angles thus keeping the interaction 

within finite bounds. More importantly, he argues that, 

because of the short range, the joint probability appearing 

in Equation 3.9 may be replaced by its short time approximation. 

This is equivalent to taking the ideal gas approximation 
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for Ss(q,w), which, as has been pointed out, has a T-~ 

dependence. Gaskell further treats the triplet term 

according to the Sholl-Warren formula but with the total 

van Hove function replaced by its distinct part. Thus his 

R1q consists of a pair term with a T-~ dependence~plus 

another pair term from the long range part of the field 

gradient and a triplet term. In order to obtain agreement 

with experiment he therefore suggests that the contribution 

from the long range component of the field gradient and that 

from the three particle terms are either small or show a 

marked degree of cancellation. However, if the long and short 

range field gradients are taken to be the long and short 

range parts of. tbe frhirmacher field gradient then the triplet 

term is likely to be large and negative at small q and the 

long range pair term will be small and positive. Thus the 

final result of Gaskell's model would seem to be the sum of 

two terms, one positive with a T-~ dependence, the other 

negative with a n-1 dependence. The fault in his theory 

lies in his assumption that the short range pair term involves 

only particle motions over short distances. In fact, as 

pointed out above, the change in position of a particle may 

be of any length and consequently there is no need to make 

the distinction between short and long range terms. The 

Fourier transform of his joint probabilty function would 

then cover the range of q values to be found in our calculations 

with a similar cancellation occuring at low q through the 
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distinct part in the triplet term. 

There are two physical phenomena that contribute to 

the temperatured~endence of R1q that we have yet to describe. 

Both of these involve the changes in g(r) with increasing 

temperature. 

As pointed out in Chapter 1 the principal effect is a 

decrease in the cut-off at small r. In our model we assume 

that v2(r) g(r) r2 is a sharply peaked function thus implying 

that v2(r) falls sharply to zero just beyond the cut-off in 

g(r). Since v2(r) is a rapidly varying function, the ampli­

tude of the peak is sensitive to the compression of the ion 

cores. As the temperature increases, the kinetic energy of 

the particles will further compress the cores during collisions. 

Thus IpCq) and ItCq) will both increase and, although 

cancellation is maintained, the result will be an increase 

in R1q• Sholl has estimated the increase in R1q from this 

effect with the aid of the semi-empirical calculations of the 

hard-sphere diameters in liquid metals by Protopapas et al 

(26). The calculations have been extended by Cartledge et 

al (27) who find a predicted increase in R1q of between 20 

to 3~~ for the range Tm to 2Tm for the liquid metals of 

interest. 

The other effect on g(r) of increasing the temperature 

is that the peak of g(r) flattens. This leads to a reduction 

in the amplitude of the 0 functions used to calculate R1q 
in our approximate method. Hence this effect would produce 

a decrease in R1q with temperature. Although we have not 
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made detailed calculations of the extent of this effect it 

would obviously tend to cancel the increase in R1q caused 

by the "squashyness" of the ion cores described above. 

The overall temperature dependence of R1q therefore 

depends on a large number of parameters which include the 

form of the interionic potential, the relative sizes and 

extent in k space of the pair and triplet contributions and 

the radial distribution function. It is therefore not 

surprising that a definitive form of the theory of R1q 
in liquid metals which agrees with the experimental data has 

yet to be produced. 

The important feature of the model proposed here is 

that, owing to the cancellation occuring between the pair and 

triplet contributions at low q,it predicts an approximately 

T-~ dependence of R1q on temperature provided that the range 

of the quadrupolar interaction is small com~d to the 

interatomic spacing. Furthermore, it is shown in the next 

chapter that our model is reasonably successful in 

predicting the temperature dependence of R1q in liquid binary 

alloys. Hence, further effort on this difficult theoretical 

problem would seem worthwhile in view of the information 

that may be deduced about the ion-ion potentials and 

molecular dynamics in liquid metals and alloys. 

The work described in this chapter is contained in the 

publications by Havill et al (28) and Titman.et al (29). 
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CHAPTER FOUR 

Nuclear Quadrupole Relaxation in Liquid Metal Alloys 

4.1 Introduction 

The theory of nuclear quadrupole relaxationin pure metals 

presented in chapter three can be easily extended to cover 

the case of a binary alloy. For a pure liquid metal the 

ensemble average required to calculate J(o) is given by 

equation 3.8 which is 

(Fm(t)F:. (0» = // um(.:2.)u:. (r1)P(ro,0;r1~)dro dr1 

4.1 

In a liquid binary alloy consisting of A and B type ions 

this becomes the sum of four terms as below. 

+ If 

+ /f 
4.2 

where PAB(ro ,0;r1 ,t)dro dr1 is the probability of finding 
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an ion of type A in dro at ro at time zero and an ion of type 

B in dr1 at r 1 at time t given that there is an ion of type 

A at the origin. The first two terms in equation 4.2 give 

rise to pair and triplet contributions to R1QA whereas the 

latter terms can give rise only to triplet contributions. 

Following the same method as in chapter three we can 

write 

= pcgAA(ro)fAA(r1) ~GSA(r2-r1,t)GSA(r2-ro,t)dr2 
o -- ---

4.3 
00 

= p( 1-c )gAB(r o)fAB(r1) f GSA (r2-r l' t)GSB(r2-r 0' t )dr2 o -- ---
4.4 

for the pair terms and 

FAAt = f AA(r1 ) Ilplli(ro,r3)GSA(r2-~,t)GSA(r2-r1,t)dr2 dr, 

4.5 

FBBt = f AB(r1 ) /f pi~~(ro ,r3)GSB(:g-~' t)GSA (:?:.-~, t")dr2 dr, 

4.6 

PABt = f AB (r1 ) Ilpi1~(ro,r3)GSB(~-:i,t)GSA(~-~,t)dr2 dr, 

4.7 

FEAt = fAA (r 1) II pill (r 0 ,r3)GSA (~-~, t )GSA (~-~, t )dr2 dr3 

4.8 

for the triplet terms, where p is the number density, c the 

fractional concentration of A, gAA,gAB partial radial distri­

bution functions, fAA is the partial equivalent of the 



95 

function f in the pure metal theory, GSA is the self-part 

of the van Hove correlation function describing the motion 

of an A type ion and pill(ro ,r3) the three particle 

correlation function i.e. the probability of finding ions of 

type A at ro and .:l. given an ion of type A at the origin. 

Using the superposition approximation we have 

p(3)(r r) 2 2 
= c p gAA(ro)gAA(r3)gAA(r03 ) AAA 0' 3 

(3)( ) 2 2 
PABB r o ,r3 = (1-c) P gAB(ro)gAB(r3 )gBB(ro3 ) 4.10 

(3)( ) 2 
PAAB r o ,r3 = c(1-c)p gAA(rO)gAB(r3)gAB(r03 ) 4.11 

4.12 

Substitution ~'f equations 4.3 to 4.12 into 4.2 then gives 

for the pair term contribution 

00 

x f GSA(r2-r1,t)GSA(r2-ro,t)drodr1dr2 
o -- -- ---

4.13 

and the triplet term oontribution 
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x GSA (:,g-:l.' t)GSA (.=g-:i' t)dr2dr3 

x Y~-.:l.' t )GSA (~-:l.' t )dr2dr3 

4.14 
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If we assume that GSA= GSB ' independent of composition, 

then J(o) and hence R1QA can be written down by analogy with 

the pure metal case; 

00 00 

= 26/ Ss2(q,W)dW J q2dq[CIp(fAA,gAA'V~)+(1-C)Ip(fAB,gAB'V~) 
-00 0 

4.15 

00 

where Ip(fAA,gAA'V~) = J fAA(r1)~(r1)r12j2(qr1)dr1 
o 

and 

00 

x I gAA (IQ)r~(r o)r 0 2 j2 (qr o)dr 0 4.16 
o 

00 

It (~,V~,f AB ,gAA,gAB,gAB) = J f AB(r1 )v~(r1 )r1
2 j2 (qr,1)dr1 

o 

00 2 
x I gAB(r3F3 j2(qr3)dr3 

o 
1 

x / gAB(ro3 )P2(z)dz 
-I 4.17 
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Equation 4.15 may be written 

4.18 

where Ip(aa) and It(aba) are given by (4.16) and (4.17). 

Rearranging terms, 

4.19 

Now, if we assume that the field gradient due to an 

A ion and a B ion are identical apart from a constant 
B A . 

factor 0 i.e. v2 = OV"2 then 

It(abb) = 0 2 
It(aaa) 

= 0 4.20 

This assumption is not an unreasonable one if theSchirmacher 

pseudopotential approach is used to calculate the field 

gradient. 

Substituting 4.20 into 4.19 we obtain 

. 2 
- c(1-c)(1-o) 2nplt (aaa) 4.21 
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which may be written as 

4.22 

where 4.23 

and 4.24 

It will be seen that equation 4.22 predicts that the 

quadrupolar relaxation rate in a binary alloy can be thought 

of as being proportional to the sum of two separate terms. 

The first term, containing both pair and triplet term~ is 

similar to that obtained for the pure metal case. It was 

shown in chapter 3 that, provided the range of the quadrupolar 

interaction is small compared to the interatomic spacing, 

this term leads to a variation of R1q with temperature that 

is approximately proportional to T-~. The second term, 

however, contains only the triplet terms which contribute a 

temperature variation proportional to n-1 • It will be 

appreciated that this contribution to the relaxation rate is 

a positive one since the triplet terms themselves are 

predominantly negative. 

The first term in equation 4.22 is linear in c but the 

second term has a quadratic dependence on c. Therefore, the 

theory predicts that the rate of variation of R1QA wtth 

temperature will increase as the concentration of A increases 

up to a fract!onal concentration of 0.5. 

A review of the reliable experimental data indicates 

that the predicted increase in the rate of change of R1q 
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has been observed in the following work. Using nmr Warren 

and Clark (1) found a slow variation of R1q with temperature 

for the 121Sb spins in pure liquid Sb. This contrasted 

with the much faster variation found in liquid InSb. The 

latter result has recently been confirmed by von Hartrott 

et al (2) who, using pac measurements on the 117mSb isomer, 

found R1q approximately proportional to 1/D in InSb. 

Cartledge et al have examined the variation of R1q 
with temperature for the 69Ga spins in a number of Ga alloys. 

Their data for GalIn alloys (3) agrees closely with the ~ 

theoretical variation predicted by the new alloy theory. 

As the amount of In is increased the rate of change of R1q 
for the 69Ga spins gradually increases. However, a similar 

effect was not observed in other Ga alloys containing Al, 

Zn and Sn (4). In these the temperature variation of R1q 
remained the same as in the pure metal. This may be explained 

by the fact that most of the alloys were of low concentration. 

However a similar result was obtained with a'Ga30at%Sn alloy 
-where one might expect a faster variation to be observed. 

In this case the fact that it was not may be due to the small 

temperature range that was covered. 

'We decided to investigate more alloy systems as described 

below in order to obtain further reliable data. 

Holcomb and Norberg (5) have measured the variation 

of R1" for the 85Rb and 87Rb sp~ns in liquid Rubidium. Their 

data has been analysed by Rossini and Knight (6) who found 
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that the 87Rb relaxation is almost entirely magnetic in 

origin but that approximately 10% of the relaxation 

of the 85Rb isotope is quadrupolar. However, this small 

quadrupolar contribution taken together with the large error 

in the measurements makes it difficult to estimate the 

variation of R1q with temperature. We therefore decided to 

attempt to obtain more accurate data on the variation of R1q 
with temperature in liquid Rb. Having done this we would 

then observe the variation of R1q with temperature for 

85Rb in a Rb50atraNa alloy where one would expect to see a 

relatively larger quadrupole contribution which has a faster 

variation with temperature. Kasck (7) has observed a small 

quadrupolar contribution to R1 for 85Rb in n number of Rb/Cs 

alloys but did not determine the dependence of R1q on 

temperature. 

We also decided to extend the work of Cartledge et al 

by looking at further Ga alloys. Now the theory really 

relates only to substitutional alloys. However, perfectly 

substitutional alloys do not exist so a strict test of the 

theory is impossible. On the other hand Cartledge et al (4) 

have shown the existence of a "size effect" i.e. they ob­

serve an increase in the magnitude of R1q which is proport­

ional to the difference in size between the solvent and 

solute ions. We decided to investigate alloys where one 

would expect a large "size effect" even though these show 

the maximum departure from the substitutional case 



102 

because these alloys are likely to contain a large 1/D like 

contribution to R1q• The alloys chosen were Ga10at%Mg, 

Qa20atr~g, Ga20atr~1 and Ga61.5at%Bi. 

4.2 Experimental Method 

In chapter 2, section 2.2.1 continuous wave and pulsed 

nmr techniques were introduced and compared. It was shown 

that the most direct method of measuring T1 is to use pulse 

techniques but that this can only be done when the lengths 

of the pulses, ~t ~ T1 ,T2 otherwise relaxation effects will 

occur during the duration of the pulses. Using the pulse 

spectrometer desc~~ed below this condition was satisfied 

for ali the metals studied in this chapter and therefore 

pulse techniques were used throughout. Since we were 

investigating liquids where T1= T2 the n-n/2 pulse sequence 

was used. 

4.2.1 The Spectrometer 

A block diagram of the pulse spectrometer used' in these 

experiments is shown in figure 4.1. It was similar to the 

one used by Jolly (8) and Cartledge (9) and a fuller 

account can be found in these references. The spectrometer 

had, however, been modified to operate with a single coil 

and with phase sensitive detection. A swept pulse delay 

had also been added. These alterations will be described 

in the text. 

4.2.1.1 The Magnet 

The magnet was the same Varian system that was used for 

,the continuous wave experiments described in chapter 2. 
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4.2.1.2 The Frequency Generator System 

The first component of the frequency generator system 

was a high stability frequency generator the output frequency 

of which was 4.4 MHz with a stability of 1 part in 107. 

A gated frequency doubler was used to minimise break 

through of the resonance frequency between pulses. The 

output from the frequency generator of about Bv peak to peak 

was fed into a class A amplification stage followed by the 

gated pentode frequency doubler and finally a gated pentode 

class C stage. 

The output was then fed to the main power amplifier 

which consisted of three class C amplifier stages, the first 

being gated. The output of the power amplifier consisted 

of r.f. pulses at B.8 MHz which were fed tothe coil in the 

probe via a A/4 length of low capacity co-axial cable. 

4-.2.1.3 The Pulse Generator System 

The pulse generator system consisted of a series of 

modules supplied by Farnell Ltd. and a swept pulse delay 

unit which was made in the electronics workshop of the 

Physics Department. A block diagram is shown in figure 4.2. 

The pulse repetition unit had repetition rates from 

0.1 Hz to 10 MHz. Throughout these experiments a repetition 

rate of 50 Hz was used. The pulse width unit had ranges of 

0.1~s.to 1s. The swept pulse delay unit produced a linear 

ramp of ,variable length from 1~s. to 100ms. with sweep times 

of 5s. to 250s. and adjustable delay between sweeps. 
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Both of the pulse output units had variable outputs up 

to 20v. One output unit fed 20v pulses into the pulse 

amplifier which consisted of three amplification stages 

giving 250 volt positive going pulses on a 150 volt negative 

line. These pulses were used to gate the screen grids of the 

frequency doubler and other stages in the frequency generator 

system described above. 

The other output unit· provided the reference pulse 

for the box car integrator. The pulse was of variable width, 

the sampling gate width of the integrator, and was adjusted 

so t~at it was delayed a certain time after the second pulse. 

4.2.1.4 The Receiver, Detector and Averager 

The resonance signal induced in the coil of the probe 

was fed via a A/4 length of co-axial cable to a tuned pre­

amplifier. The arrangement of the transmitter, sample coil 

and pre-amplifier is shown in figure 4.3. 

The output from the pre-amplifier was fed to the main 

receiver which consisted ofa number of amplifying stages 

followed by the phase sensitive detector. The reference 

signal for the detector was obtained from the frequency 

generator via a phase shifter. 

The output from the detector was fed into a Brookdeal 

broadband, low noise, amplifier, type 450. The output from 

this amplifier was then fed into a Brookdeal boxcar integrator 

type 415, and a Hewlett Packard oscilloscope. The reference 

pulse for the boxcar integrator, taken from the pulse 
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generator system as described above, had a magnitude of 1v. 

and a width of 5~s. The delay between the second r.f. pulse 

and the reference pulse was generally about 80~s. so as to 

make the signal to noise ratio as large as possible. 

The output from the boxcar integrator was taken to the 

Tracor digital signal averager. 

4.2.1.5 The Sample Probe And Temperature Controller 

The sample probe used in these experiments is shown in 

figure 4.4. 

The r.f. coil was 20 mm. long and consisted of 14 turns 

of 32 swg copper wire insulated by refrasil sleeving wound 

on silica tubing. The coil was potted in high temperature 

cement to hold it in place. 

Heat was provided by a 128 turn coil of resistance wire 

insulated in refrasil sleeving wound non-inductively around 

the outer pyrex tube. The total resistance of the wire was 

about 40 ohms. 

The temperature of the sample was measured using a 

platinum/platinum - 13% rhodium thermocouple with its junction 

placed immediately beneath the sample tube. As in the 

continuous wave experiments temperature control was obtained 

by using the thermocouple as a sensing element for a Eurotherm 

temperature controller. The beater current was supplied by 

a Variac set between 20v and 70v. Using this system the 

temperature of the sample was kept constant to within 0.5 0 0 

of the required temperature. The probe was insulated from 

the magnet pole pieces by passing cold water through the brass 

jacket as shown in the figure. 
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4.2.2 Sample Preparation 

4.2.2.1 Preparation of the Rb sample and the Rb/Na alloy 

Since Rubidium is highly reactive almost all the 

preparation of the Rb sample and the Rb/na alloy sample was 

carried out in a glove box under an inert atmosphere of 

Argon gas. 

The pure Rb sample was prepared in the following way. 

99.9% pure Rb was obtained from the Koch Light Co. in the 

form of a 19. sample sealed under argon in a glass ampoule. 

This was placed in the glove box together with the other 

apparatus required. The glove box was then sealed and 

99.99o/~ pure argon allowed to flow through the box for 

about 15 mins. thus ensuring that all the air in the box had 

been replaced. 

About 30 ml of degassed heavy liquid paraffin together 

with about 2ml of oleic acid were placed in n large pyrex 

tube and heated to a temperature of about 60 °c by a small 

heating coil. The ampoule containing the Rb was then lowered 

into the oil and the Rb, m.p. 39.0 °C, allowed to melt. 

The ampoule was then quickly removed from the oil, its seal 

was broken, and the liquid Rb was poured into the oil. 

A high speed stinBr was then lowered into the oil and the 

mixture of oil and metal was whisked for about 10 min. 

During this time it was ensured that the temperature of the 

mixture did not fall below 39 °C. Following this the sample 

was transferred to a large sample tube and since it now 

consisted of tiny particles of Rb di~)er.ood in oil it could 
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safely be removed from the glove box. 

Finally, the sample was poured into a 1 cm diameter 

pyrex test tube and centrifuged so that most of the excess 

oil could be removed. The tube was then sealed off under 

argon at approximately ~ atmospheric pressure. 

The RblNa alloy sample was prepared in a similar way 

except that, following the melting of the Rb in the ampoule, 

it was poured into a pre-weighed sample tube containing 

degassed oil. As the Rb solidified in the oil it sank to 

the bottom of the tube so that the tube could safely be 

removed from the glove box and re-weighed. The appropriate 

amount of Na was then added to the tube and it was returned 

to the glove box and the glove box sealed. After allowing 

about 10 min. for the atmosphere in the glove box to become 

inert again the oil was decanted from the sample tube. 

The remaining oil was then washed off several times with 

ether. The sample tube was then lowered into degassed oil 

plus a little oleic acid in a large pyrex tube and the oil 

was heated to about 20 °0 above the liquidus temperature 

of the alloy. The metals were stirred with a glass rod for 

about 15 min. to allow them to form an alloy. During this 

time it was ensured that the temperature of the oil was kept 

well above the liquidus temperature of the alloy. The sample 

tube was then quickly removed from the pyrex tube and the 

alloy poured into the oil. The rest of the preparation then 

followed the same procedure as for the pure Rb sample~ 
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4.2.2.2 Preparation of the Ga Alloys 

All the metals used to prepare the Ga alloys were 

obtained from the Koch Light Company and were at least 

99.999% pure. 

The alloys were prepared and dispersed in liquid 

paraffin using the method described by Cartledge (9) however, 

since it was required to heat the alloys to temperatures 

well above the boiling point of liquid paraffin, about 

220 °c, it was necessary to use an alternative method of 

insulating the alloy particles from each other. The particles 

were thus dispersed in silica as follows. 

The alloy particles in oil were poured into a large 

sample tube and the particles allowed to settle to the bottom 

of the tube. The excess oil was then poured off and the 

alloy was washed several times with ether to remove the rest 

of the oil. An equal volume of silica powder was then added 

to the alloy ~~d the mixture was vigorously shaken in ether. 

In this way a homog~s mixture of alloy and silica particles 

was obtained. This was then transferred to a 1 cm. diameter 

test tube and centrifuged. Finally, the tube was sealed off 

under argQn at about ~ atmospheric pressure. 

4.2.3 Measurement of Relaxation Rates 

As stated previously measurements were made using the 

n-n/2 pulse sequence. Typical pulse lengths were as follows. 

For the 85Rb isotope a n/2 pulse took 20~s and a n pulse 

40 ~s and for the 69Ga isotope the corresponding pulse 

lengths were 8 ~s and 16 ~s. These will be seen to be much 
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shorter than the relaxation times which were of the order 

of 2.5 ms for 85Rb and 450 ~s for 69Ga• 

In order to achieve a reasonable signal to noise ratio 

all the signals were averaged. Typical averaging times 

were 10 min. for 85Rb and 30 min. for 87Rb , 69Ga and 71Ga • 

Averaging was carried out as follows. A signal derived 

from the swept pulse delay was Used to trigger the averager 

which was run in the internal advance mode at a sweep speed 

of 12.5 ms per point. Since only the first half of the 

averager memory was being used, i.e. 510 channels, each 

averager sweep took 6.4s. The sweep time for the linear 

ramp was 5s but, by adjusting the delay between sweeps to 

about 2s., the total cycle time was approximately 7 seconds. 

Now using the n-n/2 pulse sequence the growth of the 

nuclear magnetisation is described by equation 2.10 which is 

4.25 

where M(t) represents the magnitude of the longitudinal 

magnetisation at time t and M(o) is the equilibrium magnet­

isation. Obviously in order to analyse a recovery curve 

one requires a baseline. This was aahieved in our 

experiments by blanking out the first pulse at the end of 

each ramp using a signal derived from the swept pulse delay 

unit. This left the n/2 pulse which simply gave a signal 

representing M(o). This signal was therefore recorded for 

the last 1.4s. of each averager sweep providing a convenient 

baseline for the preceeding curve. 
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A ramp of length 10 ms. was used for the 85Rb spins. 

For the 87Rb , 69Ga and 71Ga spins a 1 ms. ramp was used 

owing to their relatively shorter relaxation times. The 

ramps were calibrated using the circuit shown in figure 

4.5. The circuit used two separate pulse generators made 

by Intercontinental Instruments In corporated and worked 

as follows. The n pulse from the Faxnell pulse generator 

was used to trigger the first pulse generator which itself 

triggered the second pulse generator producing another pulse 

after a fixed delay. The delay was measured on the timer, 

an Advance Instruments Timer Counter TC8. This pulse, about 

10 ~s long, was fed together with the n/2 pulse, also about 

10 ~s long, to a coincidence circuit made from a 7408 i.c. 

The output from the coincidence circuit triggered a monostable 

multivibrator made using a 74121 i.c. which acted as a 

"pulse stretcher" producing an output pulse of about 400~s. 

This pulse was fed to the second half of the signal averager 

memory. By using various fixed delays several markers were 

obtained on the averager sweep from which the sweep could be 

calibrated. The sweeps used were calibrated at the beginning 

of the experiments and the calibrations periodically checked. 

The spectrometer produced an inverted magnetisation 

recovery curve. Also the baseline was shifted by an amount 

M(~relative to the usual baseline representing zero 

magnetisation. Therefore the equation of the curve with 

respect to the baseline was, from 4.25 
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M(t) = - M(o)[1-2exp(-t/T1 )]+M(0) 

i.e. M(t) = 2M(0)exp(-t/T1) 4.26 

4.27 

and a graph of In[M(t)) against t gave a straight line with 

gradient -R1• Throughout this work the best straight line 

fit to the data was estimated by eye. 

4.3 Experimental Data 

4.3.1 Relaxation Measurements in Pure Rubidium and in th~ 

Rb50at%Na Alloy 

4.3;1.1 Rubidium Results 

The observed spin-lattice relaxation rates for the 85Rb 

and 87Rb spins as a function of temperature in pure Rb and 

in the Rb50atr~a alloy are shown in figure 4.6. 

For each sample measurements were made at 100 intervals 

starting from room temperature. The melting points of the 

samples are shown on the figure. The upper limits to the 

temperature ranges were determined by the decomposition of 

the samples. This was probably caused by reaction of the 

metals with residual oxygen in the oil. 

The quadrupolar and hyperfine contributions to the total 

relaxation rate of the 85Rb isotope were separated using the 

method outlined in Chapter 2, section 2.1. The method uses 

equations 2.1 to 2.4 which we repeat here for convenience. 
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For two isotopes A and B we have 

4.28 

4.29 

also 4.30 

2I+3 where F(r) 
= I 2(21-1) 

and 4.31 

A A B B Solving these equations for R1m , R1q , R1m and R1q we have 

4.32 

A 
R1A-4lR1B 4.33 R1q = 

1- d>/e 

RB 
1m = R A/el> 1m 4.34 

B R A/e 4.35 R1q = 1q 

Equations 4.32 and 4.33 were used to reduce the total 

relaxation rate of 85Rb into its component parts. The value 
85 

of Vn 
7!l 

used was 0.295 and Q85 was taken as 2.067. The 

n Q87 
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values of R~~ and R~~ derived in this way are shown as a 

function of temperature in pure Rb and in the Rb50at%Na alloy 

in figure 4.7. The corresponding values for the 87Rb isotope 

can be calculated using equations 4.34 and 4.35. 

The errors in the derived values of R1q and R1m depend 

upon the accuracy of the values of R1 for 85Rb and 87Rb • 

Typical limits of error are indicated in the figures. 

4.;.1.2 Sodium Results 

The observed spin lattice relaxation rate for the 23na 

spins as a function of temperature in the Rb50atr~a sample 

are shown in figure 4.8. The lower end of the temperature 

range was determined by the liquidus temperature of the alloy. 

4.3.2 Relaxation Measurements in the Gallium Alloys 

4.3.2.1 Gallium Results 

The observed spin-lattice relaxation rates for the 

69Ga and 71Ga spins as a function of tamperature in Ga20atr~1, 

Ga61.5at%Bi, Ga10atr~ and Ga20atraMg are shown in Figures 

4.9, 4.10 and 4.11. The lower end of the temperature range 

was determined by the liquidus temperature of each alloy. 

Isotopic separation of the 69Ga rates into the quadru­

polar and:qyperfine contributions was achieved in 'the manner 

described above. The value used for was 0.787 and for 

~; the value 1.586 was used. 

The temperature dependence of the derived values of 

R
1q 

and R1m for 69Ga in the alloys studied is shown in 

Figures 4.12, 4.13 and 4.14. 
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4.3.2.2 Aluminium Results in the Ga20at%AI Alloy 

The variation of the spin-lattice relaxation rate as 

a function of temperature for the 27AI spins in Ga20atr~1 

is shown in figure 4.15. 

4.3.2.3 Bismuth Results in the Ga61.5at%Bi Alloy 

The observed spin-lattice relaxation rate for the 209Bi 
I 

spins as a function of temperature in the Ga61.5at%Bi alloy 

is shown in figure 4.16. 

4.4 Discussion 

4.4.1 Results obtained in Pure Rb and the Rb/Na Alloy 

Holcomb and Norberg (5) measured T1 for the 85Rb and 87Rb 

spins over the temperature range 253°K to 4130 K. Above the 

melting point our values for R1 for 85Rb are about 20% smaller 

than theirs whereas our values of R1 for 87Rb are approximately 

10% higher. These differences lie within the joint error bars 

of the two sets of data. Below the melting point we do not 

observe the sharp discontinuity in R1 that is seen in their 

data. This latter difference may be explained by the presence 

of impurities in their sample. They, in fact, state that the 

purity of the Rb sample was not especially good. Furthermore 

they find T2 < T1 for 85Rb in the liquid phase which tends to 

suggest impurities in the sample. Although we did not check 

the equality of T1 and T2 in our ssmples they were, as stated 

in 4.2.2.1, prepared from Rb which was 99.9% pure. 

4.4.1.1 Hyperfine Contribution to R1 for 85Rb 

Assuming only s-like contributions to the Knight shift 

and magnetic relaxation rate our data may be analysed using 

the modified Korringa relationship given in Chapter 1, 

equation 1.11, which is 
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4.36 

The solid line (a) on figure 4.7 shows a fit of this 

equation to our pure metal data using the Knight shift measure­

ments of Gutowsky and McGarvey (10) (11) who give the Knight 

shift at ~he melting point KL = O.66~~ and 1 • ~KL = 14.10-5• 
XL dT 

The fitted line assumes K(a) = 0.60 and is independent of . 

temperature. In a similar analysis of Holcomb and Norberg's 

data Rossini and Knight (6) find K(a) = 0.75 in the pure metal. 

The Knight shifts of both components of the Rb/Na alloy 

system have been measured over a wide range of composition 

by Rimai and Bloembergen (12) and van Hemmen et ale 

Both authors find the familiar linear dependence of Knight 

shift on concentration but differ on the magnitude of 

K -1aK where K represents the shift of the resonant nucleus 
o 0 c 0 

in the absence of the non-resonant nucleus whose concentration 

in the alloy is given by c. Rimai and Bloembergen find 

K -1 0K = 0.518 and 0.270 for Na and Rb in Na/Rb whereas 
o ~ 

van Hemmen et al give· values of 0.54 and 0.45. Now it 

is a general rule (14) that Ko-1~K is approximately the same 
de 

for each atomic specliE in a binary alloy. Therefore we shall 

use the data given by van Hemmen et al • We shall 

assume that ~KL is the same as in the pure metal. Then, 
.~ 

again, assuming that K and R1m have only s-like contributions 

line (b) on figure 4.7 shows a fit of equation 4.36 to our 

data which gives a value of K(a) = 0.74. The difference 
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between this and the value of K(a) obtained for the pure 

metal is probably not significant and merely reflects 

experimental error. Ho~ever, the fact that values of K(o) 

lying in the range 0.60 to 0.75 have been obtained in the 

pure metal and alloy indicates the relative unimportance of 

non-s terms. 

4.4.1.2 Quadrupolar Contribution to R1 for 85Rb 

In the pure metal our R1q values of 85Rb are about four 

times larger than tl10se obtained by Rossini and Knight. 

This is due to the differences in the original R1 data. 

Owing to the large e~~ bars on our R1q data it is difficult 

to say with any degree of certainty how R1q varies with 

temperature although it does appear to increase slowly with 

temperature. Rossini and Knight concluded from their analysis 

that R1q was constant with increasing temperature although, 

once again, their error bars were quite large. It may be 

instructive to note how these relatively large error bars 

arise. The average error in our measurements of R1 for 

87Rb was about 2~~ ~~d that in 85Rb about 10%. However, 

when equation 4.33 is used'to calculate R1q for 85Rb , because 

of the close cancellation between the terms in the numerator 

the nett error is about 6ry~. This close cancellation arises 

because of the relative magnitudes of the total relaxation 

rates of the two isotopes and the value of ct>, the ratio of the 

gyrom~gnetic ratios. Thus, although the two isotopes of Rb 

have quite different gyromagnetic ratios and the hyperfine 

and quadrupolar contributions to R1 for 85Rb are both 
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significant Rb turns out not to be such a good candidate for 

separating the relaxation components as Qne would expect. 

Again, owing to the large error it is difficult to say 

bow R1q varies in the alloy. 

4.4.1.3 Analysis of the 23Na Data 

The variation of R1 with temperature' in pure liquid Na 

has been measured by Holcomb and Norberg (5), Naratb and 

Weaver (15) and Jolly and Titman (16). No evidence for a 

quadrupole contribution to R1 has been found and all tbe 

authors agree that the contact term determines the magnetic 

relaxation in the liquid phase. 

The variation of R1 with temperature for the 23Na spins 

in Na/Tl alloys bas been determined by Hanabusa and Bloembergen 

(17) and Jolly and Titman (16) who also investigated Ha/Rg 

alloys. The latter authors found that in the alloys Na7at% 

Tl, Na10at%Hg and Na15at%Hg a sUbstantial quadrupolar 

contribution to R1 was present which varied with temperature 

approximately as n-1 • 

The straight line on figure 4.8 indicates the variation 

of R1s calculated from equation 4.36. Ks was calculated 

from the value of the Knight shift at the m.p. for pure Na, 

KL = 0.116% (10) (11) 

that 1 aKL = 18.10-5, 
XL-rT 

and 1 .oK = 0.54 (13). We have assumed 
~~ 

the same as in the pure metal (18). 

This is not unreasonable as Kellington and Titman (19) 

found that ~KL is unaffected by the addition of Tl to Na. 
W-
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Finally, we assumed that K(a) is unchanged from the pure 

metal value 0.62 given by Jolly and Titman. It will be 

seen from Figure 4.8 that the trend of the data suggests 

the presence of a quadrupole contribution to R1 which is 

relatively very small compared to the hyperfine contribution. 

This result is similar to that obtained by Kaeck who studied 

RbjCs alloys (7). Unfortunately, since R1q is only of the 

same order of magnitude as the experimental error it is 

impossible to accurately determine its temperature 

dependence. 

4.4.2 Results Obtained in Ga Alloys 

Cartledge et a1 (4) (9) have measured the variation 

of R1 with temperature for the 69Ga and 71Ga spins in pure 

liquid Gallium over a temperature range of 2400 K to 570oK. 

They found that the magnetic contribution, R1m , to the 

relaxation rate of 69Ga fitted the modified Korringa relation­

ship given by equation 4.36 with K(a) independent of 

temperature and equal to 0.694. It was therefore concluded 

that non-s contributions to the relaxation and Knight shift 

were not significant. Their data for R1q for 69Ga showed 

a variation with temperature approximately proportional to 

T-i. This data is, in fact, shown in chapter 2, Figure 2.9. 

Similar results to these have also been obtained by Kerlin 

(20). 

4.4.2.1 The Hyperfine Contribution to R1 for 69Ga in the 

Alloys 

Since the analysis of the temperature variation of the 
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hyperfine contribution to R1 is not the main point of this 

thesis only a brief discussion will be given. 

As far as the author is aware there have been no reported 

measurements of the Knight shift of Ga in Ga/Al, Ga/Bi or 

G~Mg alloys. Therefore, in order to proceed we shall 

assume that the Ga Knight shift is the same as in the pure 

metal i.e. Ks = 0.452~and also that its variation with 

temperature is given by 1 .aKL = -7.2.10-5 as in the pure 
XLw-

liquid metal. 

Again, assuming only s-like contributions, and a K(a) 

that is inEpendent of temperature, the straight lines on 

Figures 4.12, 4.13 and 4.14 indicate a fit of equation 4.36 

to the R1m data obtained in the Ga20atr~l, Ga61.5nt%Bi, 

Ga10atr~g and Ga20atroMg alloys. There seems little point 

in deriving ,values of K(a) from these lines due to our lack 

of knowledge of the true Knight shift. However, the goodness 

of fit probably indicates that the hyperfine interaction in 

these alloys is adequately described by the modified Korringa 

relationship. It is interesting to note that Cartledge et 

al (4) (9) found that equation 4.36 described the R1m data 

in GalIn, Ga/Sn and Ga/Zn alloys where the Ga Knight shift 

is known and found no evidence of substantial non-s 

contributions. 

4.4.2.2 Analysis of R1 data for 27Al in G820At% Al 

El-Hanany and Zamir (21) have shown that in pure Al 

R1 is entirely due to the hyperfine interaction. The 

straight line on Figure 4.15 shows a fit of equation 4.36 
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to the 27AI R1 results obtained in the Ga20atr~1 alloy using 

KL = 0.16~fo and 1-.~KL = 0.84.10-5 °K-1 , the values 
KLrT 

appropriate to pure ,AI. 

Although we have not used the true Knight shift for the 

alloy the fitted line indicates that R1 can be accounted for 

by the hyperfine interaction. This conclusion agrees with 

that of Cartledge (9) who measured R1 for 27Al in Ga8atr~1 

and Claridge et al (22) who studied Al11 at%Si. The probable 

explanation for the unobservable R1q in Al and its alloys 

is the small value of the Sternheimer antishielding factor. 

4.4.2.2 Analys'is of R1 data for 209Bi in Ga61.5at%Bi. 

The variation of R1 with temperature in pure Bi has 

been studied by Rossini and Knight (6) and Heighway and 

Seymour (23) using nmr techniques. Both groups agree that 

the data is best interpreted by assuming a substantial 

contribution to the Knight shift from non-s electrons, the 

contribution from the orbital term and from core-polarisation 

due to p-type electrons being of the order of -0.25K • s 

Taking this into account and using 4.36 to estimate R1s 
Heighway and Seymour found a small quadrupolar contribution 

which varied with temperature as n-1• However, as mentioned in 

chapter 2, recent pac measurements (24) on trace amounts of 

207po in liquid Bi have shown unequivocally that R1q varies 

approximately as T-i. This clearly shows the danger in 

attempting to separate the hyperfine and quadrupolar contri­

butions using the Korringa relationship. 
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We have the further difficulty in attempting to analyse 

our data in the Ga61.5at%Bi alloy in that we do not know the 

Bi Knight shift in this alloy. It is possible to fit 

equation 4.36 to the data shown in Figure 4.16 using the 

value of Ks for pure Bi. However, the general trend of the 

data is found to be flatter than that given by this analys1s 

and, bearing in mind the experimental error, it is tentatively 

concluded that there is a small quadrupolar contribution 

present. It should be noted that Claridge et al (22) examined 

the alloys Bi50at%In, Bi50at%Pb, Bi50atr£b and Bi50at%Sn 

using nmr and found, in each alloy, a quadrupolar contribution 

to R1 for 209Bi which had a fairly rapid variation with 

temperature. However, once again, these authors used the 

Korringa relationship to estimate the hyperfine contribution. 

4.4.2.4 Quadrupolar Contribution to R1 for 69Ga in the Alloys 

As a preliminary exercise we shall attempt to fit the 

theoretical expression for R1q in a SUbstitutional alloy 

given by equations 4.22, 4.23 and 4.24 to the data obtained 

with the Ga61.5at%Bi alloy. We choose this alloy because 

its concentration is nearest to the 50at% value where, 

theoretically, the largest diffusion like contribution is 

present. 

The Schirmacher formula for v2(r) eiven by equation 

3.59 gives a proportional to the ionic charge, Z,and hence 

the valency. Claridge et al (22) have found no evidence 

for this. However, this is probably due to the fact that the 

proportionality only holds for substitutional alloys. For 

the Ga/Bi alloy we have a = 5/3. We shall take B = 10A 
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from the difference between the two and three particle 

terms found in the calculations of Chapter 3. Larsson et 

al (25) have measured D for Ga between 3030 K and 500oK. 

Their results show that D is approximately proportional to 

T2 over this temperature range and we shall assume a similar 

proportionality occurs above 500oK. Then the curve (a) on 

Figure 4.13 represents the variation of R1q predicted by 

. A T-i and B ~D-1. equation 4.22 assum1ng oc ~ 

It will be seen that the trend of the data is much faster 

than that predicted by the substitutional theory. In fact 

a better fit to the data is obtained by puttine R1qOC D- 1 as 

shown by curve (b). The data for R1q in the Ga10atr~g, 

Ga20atr~g and Ga20atr~1 alloys also fit a variation of this 

form as shown by the curveson Figures 4.12 and 4.14. 

The fact that R1q in these alloys is found to vary with 

temperature more rapidly than the theory predicts must be 

due to the fact that the alloys are non-substitutional and 

related to the "size effect" described by Cartledge et al 

(4). Consider the relaxing nucleus surrounded by a shell 

of atoms. The presence of a bigger or smaller atom in the 

shell will cause a large distortion in the electric field 

gradient. Should this atom leave the shell via a diffusive 

step then the effect will be a large 1/D contribution to 

During the course of the present work an expression for 

R1q in a binary alloy has been published by von Hartrott 

et al (2). Their treatment is based upon the extension of 
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Warren's theory to binary alloys by Gabriel (26). Gabriel's 

expression forthe relaxation rate in a binary alloy may be 

written as 

4.37 

where aaa(q), abb(q) and aab(q) are partial interference 

functions an~ ua(q) an~ ub(q) are the Fourier transforms 

of the effective field gradients caused at the probe atom 

by the two atomic species constituting the alloy. 

Using the mean interference function a(q) defined by 

4.38 

equation 4.37 can be rearranged in a form that is analagous 

to the cross section for scattering of neutrons from an 

ensemble of nuclei containing two nuclear species with 

different scattering length; here the total cross section 

consists of a coherent and an incoherent part. 
00 

R1q~ f [UCOh(q)2a(q)+uinc(q)2]Ss(q,O)d3q 
o 

where 

and 4.39 
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Finally, using the Vineyard approximation, S(q,w) = a(q)Ss(q,w), 

equation 4.39 gives 

4.40 

It is then argued by the authors that R1q consists of two 

distinct terms~ the first of which does not change appreciably 

with temperature but the second of which varies approximately 

as D-1 • However, this is not at all apparent from the form 

of equation 4.40. The first term is similar to the formulae 

given by Sholl and Warren for the pure metal case and therefore 

gives an approximately 1/D dependence. Also u inc (q)2 in the 

second term is a series of small peaks extending up to large 

q values and therefore this term does not give a 1/D dependence. 

Thus we dispute von Hartrott's interpretation of equation 

4.40 and point out that it does not correctly describe the 

variation with temperature of R1q in a binary alloy as he 

suggests. 

4.4.3 Summary 

In this chapter our new version of the theory of quad­

rupole relaxation in liquid metals has been extended to cover 

the case of liquid binary alloys. It was found that the theory 

predicted an increase in the rate of variation of R1q with 

temperature with increase in alloy concentration. 

Unfortunately, the experiments on the Rb50at%Na alloy 

gave results for R1q that were not accurate enougb to compare 

with the theory. However, an increase in the rate of 

variation of R1q for the69Ga spins was found in the alloys 
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Ga10atraMg, Ga20atraMg, Ga20atr~1 and Ga61.5at%Bi in qualitative 

agreement with the theory. Similar results have been obtained 

by Cartledge et al (3) in GalIn alloys and von Hartrott et 

al (2) in InSb. 

Thus the theory appears to give a reasonable description 

of quadrupolar relaxation in liquid metals and alloys. 

Furthermore, it is likely to be applicable to the liquid 

inert gases, with the use of the appropriate interatomic 

potentials, and it also appears to explain recent unpublished 

data on molten alkyl halides (27) 
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APPENDIX I MODULATION BROADENING OF LORENTZ IAN LINES 

1 THEORY 

The theory presented below is an outline of the analysis 

given by Wahlquist (1). 

Let Ha(t) be the homogeneous applied magnetic field 

whose time dependence involves only the slow linear sweep 

across an absorption line. Let Ho be the field at which 

resonance occurs, Hi the half-width (distance between half­

intensity points) of the true line, and Hw the amplitude 

of the sinusoidal modulation with circular frequency w. 

The normalised unsaturated Lorentzian absorption line may be 

written 

g(H) :: -1 n 1 

and under modulation a signal will be generated which is 

proportional to 

-1 
n 2 

The sweep rate is assumed to be very small so that H (t) a 

remains essentially constant over a time interval 2n/w. 

Writing Ha-Ho = H6 and Fourier analyzing get) 
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-1 = n 

00 

= H.;, L an (H-t ,Hw' H6 )posnwt 
7n n =0 

where the integrals for the Fourier amplitudes 

n 

3 

w 
an (H -t ' Hw ' H6 ) :z (w / n ) I 

n 

cosncut dt 
(~H~)2+(Hb +Hwcoswt)2 

w 4 
may be performed by a standard technique of contour 

integration. Using phase detection of the fundamental the 

recorded signal will be proportional to the Fourier co-

efficient a1 -

Define dimensionless parameters 0 and 6 where 

and the auxiliary variables y and u where 

2 2 
y = 1+6 +0 

u = Y + [y2 _40 2] ~ 2<u<00 

5 

6 

Then the result of the integration for n = 1 may be expressed 

as 

~ )
2 (2y -u)~ 

a1 = .:!:. (, ----r---­
UI 2(U-2)t(u-v) 

7 

~he detected signal, a1 [Hi ,Hw,H
6
(t)], is obtained by 

restoring the linear time variation~ Ha' or equivalently, H
6

• 
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The pertinent properties of the resultant curve, wbich is 

similar in shape to the derivative of the Lorentzian curve, 

may be obtained by taking the derivative 

3 i 2 -e2/Hc,) )u eu -u-2vu+2y) 
(u-2)"t(u-v)3 

8 

Setting the factor (u2-u-2vu+3v) to zero generates relation­

ships giving the location and amplitude of the two anti­

symmetric peaks of a1 for any modulation amplitude. Letting 

the symbol for any quantity with a suffix p attached denote 

that quantity evaluated at the peaks, these relations are 

9 

10 

11 

12 

2. CALIBRATION OF MODULATION 

It is required to show that, if bHmeas • represents the 

measured linewidth and bH the true linewidth measured 

between points of maximum and minimum slope, 

13 

provided Hw ~ bH. 
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From 9 and 11 we have 

= + 

using the binomial expansion. 

Ii' Hw ~ H~ then 6 ~ 1 and ignoring terms of higher than 

first order in B, 

== + 

Putting ~ = i H~/Rw and R~ = V35H we obtain 

CRt))p = .± [Hw-~] 

3 THE COMPUTER PROGRAM 

The program uses the subroutine E04GAF written by the 

Numerical Algorithms Group. The subroutine finds the 

minimum of the sum of squares of m non-linear functions, 

or residuals, each of n variables, 
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S(~) = f f = 

m 

I 
i = I 
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2 
[ f i (X1 'X2 ' • • • • • 'Xn )] " (m ~ n) 14 

The user must supply subroutines to calculate the values of 

the functions and the Jacobian matrix, J,of first partial 

derivatives of the functions where J ij = ~fi/~Xj. 

The method used is based on an iterative technique 

due to Marquardt (2), (3), where, at the point ~, given 

a parameter A.>O, the correction 6 required to give an im­

proved estimate of the minimum is obtained by solving for 6 

the equations, 

15 

D is a diagonal matrix and. D .. > 0, i = 1(1)n. If the sum 
~~ 

of squares S(~ +Q) is less than S(~) then ~+Q is accepted 

as the starting point for the next iteration, otherwise A 

is increased and the process is repeated. When A = 0 the 

equations 15 are the same as in the Gauss Newton method 

for which convergence is quadratic, but which may diverge. 

The effect of including A is to introduce an adjustable bias 

towards the steepest descent vector of the sum of squares, 

2JTf, where progress is assured but may be slow, whenever 

the method appears to be diverging. 

Further details of the subroutine and its implement­

ation can be found in document no. 427 of the NAG library 

manual. (ICL 1900 system). 

In the present case the subroutine is used to fit to 

the experimental data a function of the form, 
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0(2 y -u)~ 
=+ +AH+B 

-C u---2-) ...... ;-( U---y-) a 
16 

by adjusting the values of H~t Ho ' A, B and C. The first 

term in 16 is the expression 7 given by Wahlquist for a 

modulation broadened line including an arbitrary constant C 

representing the amplitude of the signal. The second and 

third terms represent a linear baseline of slope A and 

intercept.B. 

The program is listed below together with the output 

obtained from the analysis of a typical 201 Hg signal. The 

five variables are stored in the array X where 

X(1) = Ho X(2) = 0 X(3) = H~ X(4) ~ A X(5) = B 17 

The program automatically calculates initial estimates of the 

variables before entry into E04 GAF. After each iteration 

the sum of squares and the current values contained in X 

are printed out. Following the final exit from the SUbroutine 

the fitted curve is calculated and the graph plotter used 

to display this together with the original signal. The 

graphical output obtained from a 199Hg signal is also shown. 
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LIBRARVtSUBGROUPNAGG) 
pRO G. RMH~~GO) 
J N PUT 1 a,~ R 0 
oUTPUJ -=--2:: LP O_ 
cOMPACT 

__ ,- cOMPR~si=, lNTE!3ER AND , L9G ICA L 
MASTER HUGO 

-~ - --- . 

. -. ~ -----

o HI ENS ! 0 N_ X ( 5 ) , E ( 5 ) I 0 ( 5 ) , F ( 51 0 ) ,L/ ( 555 ) , SA ( 51 2 ) , Tl T l E (Q ) , G N A M E (32) , 
'HNAME (11),S NAMf (16),C HARS (12) 

OATA GNAME (1)/32 HGRAPH OF SIGNAL AND FI TTFO CU R l /, HNAM (1)/11Hr.HA 
1/ N Nf L N 0 •. 1.. ' S N A M f (1 ) I 1_6 H S t G N A LA M P L t T U 0 E 1 , C H A R S <1 ) 11 Z H IJ r [) T H (j / 

COMMON ~C(510),HA(S10),AV(6,5), HOMEG , RETA /H O~L T (5 10),AL P HA(51O),G A 
#M M A ( 510, , U ( S 1 0) , A 1 ( 510) 

- - EX T ERN AC FU N C T , L ~ Q ; ", 0 NIT 
lCOUNT;:I O- _ 
RE AD(1,1 00 ) MCOUNT 

100 FORHAT(12) 
CALL GPHG ~ A PH(7 , ?HP01H U GO ,6) 

_ . _ CALL _MOVeORIG<Z . O ,- 1~ .O ) 
5 00 cONTyNU f _ 

YFAIL=O 
MODEe: 1 
IPRINT!j _ 
r" AXFUN~ 50 
N;;5 .' 
REA(l(1,'10)TITLE 

110 ;ORt1AT(9l8) 
REAO(1 : 'ZO) HOMEG:GPCM 

1~O ~ORMAT( j 7,2) _ 
HOMEG= ( HOMEG.S 11 .0 )/(GP CM* 1? 8Z) 
RE AO(1, '13 0 )lS1,t S2 -

130 FOR I>1AT(2I4) 
READ (1, 40) (SAC}),1=1, 512) 

140 FORMAT(AF7.0) 
Le O . 

1 

06 1 Ic11,51 0 
Lal +1 __ _ 
SA(J)=SAtL) 
wRJTE(2,1S0)TITL E 

150 FOR MAT(/l11/1H ,9A8-> 
\JRXTEO~;16Q) 

160 FOR HAT(/11H ,16HO ATA INPUT CHEC K) 
W R I T E ( 2 ; 110) ( SA ( I ) , j iii ( , 51 0 ) 

1 7 0 FOR ,,' A T ( 1 101 , 1 6 F 1 . n ) 
HII O 
00 2 J ~B1,IS2 

2 

:5 

M=~1 ... 1 
HA ( M)!:I 
SC(M)DSA1 I ) 
I \J :: O~ + 4 ) * N + I~ 
SC~lAX :.1 '~ 0 
SCM J N· 1:~ES 
DO :3 h :1, M 
JF( SC (I).GT.SC MAX) SCMAX=SC(J) 
rF( SC (I).LT.SCr I N) SCM I N=SC Ct) 



---------- -" KI:1 
-:.':- __ L-Z 

DO 41=1,'" 
" I F J S C ( I 2 ~ E 9 . S.C '·1 A X) K;;; I 

--,---'-

4 rF( s c5I).EQ.SCMIN) L=I_" ... 
- - - eASE=(SCt1AX-SCMlN)/2.0+SCMIN 

X(S)=BASE 

5 
6 

A1P=SCMAX"X(5) 
DO 5 I=K,L 
If(SC(I,~X(5).GT.O, O ) GOTO 5 
X(1)=J~1"+!S 1 
X(1)=X(n"'O.5 
GOTO 6 _ 
CONTINUF, 
HDELP=(K .. L) 12.0 
ALPHP=HnELP/HOMEG 
UP=4,O;ALPHP*ALPHP-2,O*ALPHP*SQ RT(4.0*A LPHP*ALPHP-3,O) 

--- x(2)~A1p/(SqRT(2.0*Up-',O)/(SQRT(UP)*SQ R T(UP"2. 0 )*(up.2.0») 
- X ( 3) = H 01-1 E G * ( up,.. 2. 0) • S Q R T ( 3,0/ ( 2 • () * U P - 3. () ) 

X(4)·O.O 
WRITE(2,180)K,L,~CMAX,SCMIN 

180 FORI-1A T(1111-1 ,1HK,J4111H ,1HL.J4 // 1H ,5H CMAX,F7.0111t1 , 5HSCM JN,F7, 
110) - - " 

E (1) 1:1 , .OE.:5 
e(Z)=1.0e-5 
E(3)=1.0e"5 
e(4)=1.0e"S 
E(5)=1.0e-S 
CAL LeO 4 G A F ( M , til , X , F , S , E , MOD E , 0 , 1./ , I W , FUN r. T , L S Q , M 0 NIT , t pRJ NT, M A. X FUN, 

1IFAIL> 
wRITE(Z,1 9 0)tFAIL 

190 FORHAT(111H ,6HIFAIL=,11) 
cALL MONITCM,N,X,F,S,E,-1) 
IFAIL=1 
r A:tJ+1 
cALL F01AOF(N,AY,IAdFA IU 
wRJTe(2,2 00)IFAIL 

2 0 0 FOR t, A T C / /1 H , 6 H I F A I L = , I 1 ) 
wRITE(2,210) 

210 FORMATC"JI1H ,9HVARIANCEJ> 
FA C = s I (I ' " N ) 
WRITE(2~220) . 

7.20 FOR MAT(/1H ,11X, 4HX (1),11X,4HX( ? ),11X,4 H)« 3).11 X ,4HX(4),11X,4HX(S) 

8 

if) 
DO 7 I=1.N 

r'=1+' 
DO 8 J ="1 , 1 
D(J)=FAC. AY<I1,J) 
JFCI.Ea:3) X3 VAR =O ( 3) 

7,30 FORMATC'E15.4) 
1 wRITE(2,230) coeJ),J=1,I) 

wCH=x(3)/1.7321 
WG-(WCH.17.82*GPC M)/511.0 
X3~'D::SQIUeX3VAR) 
oWCH=WCH*X3MO/X(3) 
DWG=Oi.tCH*WG/WCH 

-. 

w~ITE(2,240)WCH,OWCH,WG,DWG,X3M O 

240 FORMAT(11111H ,3HWC H,F8.2111H , 4HDWCH,F R.2111 H ,2HWG ,~ 8. 2 /11H , HD 
#wG ,F8.4111H ,4HX~ MD ,F8.4) 

sETA=O.5*X(3)/HOMEG 
DO 9 1-1,510 
HA(l)=1 
HDELT(I>=HA(J)"X(1 ) 
ALPHACt)CHDELT(I)/HOMEG 
GAMMA(I)=1, O+S£TA·BETA+ALPHA(I) *A LPHA(J ) 
U C 1 ) = G A" M A ( I ) + S Q R T ( GAM M A ( I ) • GAM M A ( J ) .. 4 • () • ALP H A ( J ) * ALP H A I» 



--- -- - A' ( I ) = X ( 2 ) * S Q R T ( 2 , 0 * GAM M A ( 1 ) - U < I ) ) / ( S 0 R T < U ( I ) - 2. • 0 ) • ( U ( I ) - GAM MAC r } 
- - ___ - II ) 

yFC HA (I),GT,X(1» A1 (1)=-A1 <I) 
A' (1)=A1 (I)+X(4). HA ( I )+X( 5 ) 
iAil r=S ACI)-BAS E 

9 A1(I)=A1(I>-BASE 
CALL MOVEORIGC~S.O,O;O) 
CALL HGPSYM 8 LCO.n,12,O,O.8,TITL E,O. O,72) 
CALL HGpSYMRL(O.O,8.5,O.6,GNA~E,O.O,32) 
SFH=16.0/509.0 
00 10 1;:1 ,510 

10 HA(J)=(HACI>-1.0)*SFH 
SAMAX=SCMAX-BASE 
A1MAX=-1.o 
00 11 la1,510 _ 

11 IF(A1 (1). GT,A 1MAX) A1M AX=A, (J) 

SPMAX=SAMAX 
IFCA1 MAX.GT.SAMAX) SPMAX=A1MAX 
S PAM P=4 '~ 0 
tFCWG,GT_'O.O) SpAMP=2,0 
SFS=SPA~ll'/SPMAX 
DO 12 1;:1,510 
sA (n=SACI)*SFS 

12 A1 (J)=A~ (I)*SFS 
CALL HGPAXISVCO,O,0.O,HNAME,-11,16. 0 ,0. ,1.0, 50 Q.O,16.0,-4) 
AL.;;2.0*SPAMP 
NH=4 
IFCWG.GT.10.0) NH=3 
CALL HGpAXISV(O.n,~SPAMP,SNA~IE,1~,AL,90.0,-SPMA X ,SP M AX, S PA MP ,NH) 

CALL HGPLINE(HA,SA,S10,1) 
CALL HGPLINE(HA,A1 ~"0,1) 
CALL HGPS VMBL (5.5,-S .O,O. 6,CHAR S ,O.n,12 
cAI.L HGI'NUMBER(S.5,-S.O,O.6,WG, ) .0, 0 , 2 , 1 ) 
I CQUNTcq COlJ~ T+1 
JF(ICOUNT,LT.MCOUNT) GOTO 500 
CAI.~ GPHF. DP~OT(2S.0) 
sTOP 
eND 

sUB ~ OU1IN~ FUNCTCM,N,X,F,JFL) 
LOGICAL _ If!. __ _ 
DIMENSION XCN),F(M) 
COMMON ~C(510),HA(510>,AV(6,5), nMEG,AETA,HO LT ( 10),ALPHAe510 ),G A 

#MMA(S10 ) ,U(510) ,A1 ( 510) 
aE TA=O .S* X( )/HO MF.G 
DO 1 1=1 ,~I 
HDeLT(I)=HAeJ)~X(') 
ALPHA(J).HDELT(I)/HOMEG 
GAM MA(I)=1.0+BETI\*BETA+ALPHACI) ALP HA CI) 
U(I)=GAMMA(I)+SQRTCGAMMA(I)*GAM MACI ) -4. 0*ALPHAeY)*ALPHA CI» 
A1(I)=X(2>*SQRT(2.0*GAM MAeJ)-UC 1»/(SQR T(U(I >-2,O)*CUCI ) -GA MMA C!» 

II ) 

JFCHA(I).GT.X(1» A1 (1)=-A' (I) 
1 F(I)=A1(t>+X(4)*HACI).X(S)-SCCI) 

RETURN 
ENO 



sUaROUTINE LSQ (M,N,X,F,A,V) 
DIM F. N S J (') III X ( N) , F ( M) , A ( N , N) , V ( N) , A J A C C 51 1) , 5 ) 

- C 0 t~ f 0 N S C ( 5 1 0) , H A ( 5 1 0) , A V C 6 , 5 ) , HOM E II , fl ErA , H DEL T ( 5 1 0) , " L P HAC 51 0) , G A 
#MMA(510),U(510)rA1 (510) 

DO 1 1=1, M 
A J A C ( I , 1 ) = X ( 2 ) * ( 1 • 0/ HOM E G ) * S CJ R T ( t l C I ) ) " ( I I ( J ) .1 J ( t ) .. lJ C J ) -7. . 0 * GAt., M A ( I ) 

# • U ( I ) + 3 -: 0 * GAM M A ( I ) ) I ( S Q R T ( U C I ) .. ? . 0) * C U ( ! ) - G At" t-l A ( I ) ) • ( II ( 1 ) - GAM M A ( I ) 
IJ ). (LJ (I )",,(iA~1MA (I») 

AJAC(I,2)=SQRT(2.0.GAMMA(I)-U(Jl)/CSQRT ( U(l'-2, ).<UCI)- AM MA(I») 
AJAC(I,~}=X(2).(1.0/HOMEG).BETA QRT (2. n.~AM M A( 1 )-U(t».CGAMMA(1)+ 

#u <J)RU(I)*U ( J»/<SQ RT (U(I>- 2 .0) .(U(I )- 2 . 0).CU( I -GA MACt».CU(I)-G 
IJAMMA (1»).CUCI)-GA MMA (I») 

AJACCI,4)=HACI) . _ 
AJAC(l,5)=1.0 
rFCHACD.lE.X(1» GOTO 1 
AJAC(I,2)=·AJACCI,2) 
AJAC(I,~)=-AJAC(t,3) 

1 CONTI NUl: 
o03J=1,N 
003I=1,J 
SUt-\=O.O 
002 K a 1,t-I 

2 sUM=SUM+AJACCK,I)*AJACCK,J) 
AVO ,J)a2.0 .SUM 

3 A<l,J)·SUM 
00 5 I=1, N 
SUM=O.O 
D04K=1,M 

4 SU M= SUM.F ~)*AJAC(~,t) ~ 
5 - V(I)=Sur, 

100 
1 

110 
2 

1 20 

130 

140 

3 

RETURN 
END 

SUSROUTJNf MONIT(M ,N, ~ ,F,S,V,IR) 

oIMENSJ~N X(N),F(M),V(N) 
COMMON ' 1C (510)'"A(510),AVC 6 ,5), H O MEG , aETA ,HD ~ LT(510),ALPHA(510),GA 

II t~ ,., A ( 5 1 0 ) , u C 5 1 0 ) , A 1 (5 1 0 ) 
IF(IR.G ,0) GOrO 1 
wRJTE(2,1 00) 
FORI AT(III/1H ,45HFIT TO A MODULATION BROADENED LOR ENTZ IAN LINE) 
CONT I NUF. 
IF(IR,LT.O) GOTD 2 
wR!TE(2;110) JR 
FORHAT(111H ,J6,25H EVALUATIONS OF RESIOUA LS ) 
cONTINLJF. 
wRITE(2~120)S 
FOR~' AT ( 11 H ,1 7 H SUM 0 F S QUA RES I: , E 1 7 .9 ) 
wRITeC2;,30) (XCI),I c 1"O 
FORflATC1H , 6H X("=,E17.9,6H XC ? \=, 17.1J,6H X(3 ) = , E17 .9, 6H X(4);: , E 

#17.9,6H X<S);,E17.9) 
tF(IR,LT.O) GOTD 3 
wRITE(2,140) (V(I>tla::1, N) 
FORMAT(1H ,17HPR ESENT GRAOIENTS/1H , 6X , 17,9, 6X,E17 .9,6 X ,E17.9,~X, 

# E17 .9, 6x ,E17.9) 
cO NTyNUf: 
RETURN 
END 

---



3 1 • 5 • 7 6 H G 2 0 1 R () I) 1.1 T E .... IJ 4 4 ~ c:; 

DATA 1 NPUT CHFC K 
35664. 
35397. 
3534J. 
35369. 
3581R. 
35949. 
35634. 
35941 • 
35852. 
35867. 
35981. 
36092. 
36440. 
36729. 
36672. 
35881. 
34710. 
34050. 
33986. 
34577. 
34626. 
34862. 
35385. 
35038. 
35152. 
35124. 
3523 7 . 
35104. 
35317. 
35299 . 
35199. 
35190. 

56S ~ . 
35411 . 
35325 . 
353c; 4 . 
358 S~ . 
35992. 
35 6 56 . 
359 58 . 
358 45. 
35916 . 
36004 . 
3 6 1 31 • 
3 6 45 3 . 
36737. 
36618 . 
3 5 797 . 
3 4639 • 
3 40~9 • 
3"9 85 , 
34615, 
3 46 45. 
34866 , 
353 66 , 
35 050 , 
351 88 . 
351 43 . 
35 303 . 
3 5128 , 
3 5311 , 
35335, 
352 11 . 
351 6 7 , 

' Sft41. . 
35437 . 
3 ~? 9R . 
3 5 ~47 , 
3SRS~ . 
36029 . 
3Sf.tl4 , 

598 6 , 
35R3 R. 
35 9 29 • 
35997 . 
3618~ . 
364 0 5 . 
36 "51. 
36C;86 . 
~568Q . 

34S51 . 
34t.1'J . 
3 4 1'10 3 . 
341.63 • 
3 4 ft56 . 
34R9 8 . 
35 "( 51 • 
35 0 91 . 
35?32 . 
35151. . 
35313 . 
3517 5 . 
35281 • 
3534 8 . 
352 31. . 
"l5 fl99 . 

3 56' 0 . 
354 110 . 
352 0 4 . 
353~8 . 
358f..7 . 
360~ O . 

35579 . 
36 0 15 . 
~5812 . 

359 0 4 . 
359 8 1 . 
3~249 . 
j 6 .~ 9 3 . 

3 67 3 5 . 
36553 . 
~S6S 8 . 
344 ~' . 

4016 . 
3 4 015 . 
.5'. 6 ?Q . 
34 65 5 . 
31.952 . 
353 1'\ 4 . 
35 0 C)1 . 
352411 . 
35,,1.5 . 
353~5 . 

5178 . 
35248 . 
353 ~ o . 

352" 6 . 
~S Q Y2 . 

,«; , , . • 
3543 3 . 
'5' OQ. 
3 S~2 3 . 
S ~ 7 (\ . 

~ 6 ( I 0 8 . 
'5 5 77 , 
'5991 • 
1:S ~ 51 , 
3591 6 . 
'5~62 . 
,6' 6 4 . 

~ . 
"t!. l. 5 4 . 
,4 ~:) 1 • 
11. " 0(-, . 
"!- 4 f, 9 1'J . 
l I. 7 u ~ . 

Q6 f1 . 
lS l 1 3 . 
~5102 . 

~5?5 ~ . 
\5194 . 
"tS2J3 ·J . 
't5?3 f' . 
~S?5 () . 

' 53 3 5 . 
"l5?7", . 
~ 4 9 7 '=' , 

s " r:, 1 • 
354° 0 . 
3 5 ~1Q . 

3 5 3 57 . 
3 5",, 79 . 
3 6 1J 3 6 . 
35s 0 3 . 
3S Q~ 1 . 
35 fi 43 . 
35 9 76 . 
35Q1.4 . 
3 6 3~? 

3 (..42 4 . 
3 (- 7 ?~ . 

31. t. ft 1 . 
3551 2 . 
3 4 4 7 2 . 
3 t. iI ~ 1. 

4 n 71 . 
31.7 2 0 . 
3 4 ,1.7 8 . 
35 0 34 , 
352 t- 3 . 
3S 0 k~ , 
35 l6B . 
351°3 . 
35? .R6 . 
35249 , 
3 5 2l. 0 . 

, sc:,,'t . 
'ss ns. 
3S 3 4~ . 
3 5164 . 
3S R t-i' . 
36 00 ~ . 

35573 . 
36 0 0 4 , 
35 R 4't . 
~50 8 e . • 

5 0 3 (1 , 
36~ 6 't . 

36t.5 R . 
~673Q . 

36l.1f. . 
35 4 35 , 
ll.l5 1) . 
34 0 37 . 
'412""( • 
34"2!'1 . 
34719 . 
351 ') 7 . 
~5 2 49. 
35 (\ ~1 . 

35? J38 , 
35194 , 
35217 . 
35:>87 . 
3S?3 R , 
3 53 6 4 . 

S? 6 ii , 

3 4 QQr' . 

3 "') 0 7. 
Y;St. O. 
3 «; ' 6 2 . 
35 39" . 
3 <;l\ k 2 . 
~ " OC' R . 
3C, 6 " . 
3t-0 22 . 
.3 5.139 7 . 
3 (..0 12 . 
3 S ~l.7 . 

'S 6 :t Q 4 . 
:V' 4Q2 . 
31. 7 3 1 • 

3"'~ S\ ? 
3 5 3 
34 ' '- 1 . 
31. 0 7 6 . 

. ~c; r; " . ~ S4 6 ~ . 

35t-1 ? 'SS 8 l. . 
35 41 .R . \5 1. 21. . 
'')1. ~ 7 . 355 2 ' . 
3 5 8 C; 4 . , S R ll • • 
359" 0 . ~5 8 7 A . 
356 5 :>. 3 5 6 6 0 . 
35~ ~1 • • 35961 . 
35Q" . liSQ1 ? . 
359'4. 3 593t'l . 
3597 1 . ~f> 0 1~ . 

' t. n3 . ~<S1.1 !,\ . 

3t- r;7? 3 6)b7 . 
367 1) 3 . ~~ 6~R . 
36 2 ,,0 , ~623A . 

352 57 . ~51¢ A . 
H?:> 1 . ~41 8 1') . 

3[. """ . ~ f. (\9 1 . 
, 3'-i' ~ 1 . "!-4~4 n . 

5 4 ~ L() . 34(')1.7 . 
~L.77~ . ~4~'~ . 

3531~. 35344 . 
35 0Q ~ . ~5 0 7"< . 

.!- 1. 1 S I'J . 1i 4 
3.1. 7 11 . 34 
"5 1. 71.1 . 3 
3<;17' . 3522 7 , 
3 S 17 ~ . 35 1 39 . 
3') (\x ;. 3511? . 
3 '3 0 1 . 353 0 9 . 
3S17 ~ . 35157 . 
35" 8 2 . 3515 6 . 

5? I..6 . 35? 8 1 . 
3' ?f.. ? 35?4 R . 
3 '3 75 . 3 534 1 . 
3<; ? 1) 5 . 35755 , 
' 4j(,~X . 3- l. h2~. 

'51 (11 • • 3510/ • • 
3S2A, . 352 77 , 
351S ~ . 351 8 7 , 
351'7 . 35111 . 
353liQ. 35347 . 
35?f l. . 3527' . 
357.92 . 3 527 R . 
352 " ,. . ~ ';270 . 

31. R 15 . ~ 4 Ron , 

.~C;46' . 
35S 85 . 
'541 8 . 
3 56 1 2 . 
35859 . 
3')849 . 
~S7 0 2 . 
3S93<i . 
35938 . 
35914 . 

1, 0 19 . 
36 457 . 
~,(.6 09 . 

721. 
36 159 . 
3 51 0 1\ . 
~H' 58 . 
3 .1. 068 . 
'4)9 0 . 
3 .1.6 0 1 • 
34B3('1 . 
3'53£.5 . 
35 0 59 . 
3'; 1 05 . 
35256 . 
3 <;175. 
35121 • 
35315 . 
3 52 8 1 • 
35253 . 

r;? p. ~ . 

3l. 7 Q~ . 

~ S l.5 6 . 
35«;47 . 
354 19 . 
35"-23 . 
'5~ 47. 
~5P. 1 0 , 

357 4 0 . 
~5916 . 

35935 . 
359 41, 
~6 (\ 2 0 . 

3 'lt.7f.. . 
36 1,5~ . 

3 ':J1-79 . 
31,142 . 
3 5 (\ 17 . 
~1. 1 3 ) . 

Y. 1. "I 77 . 
~l. L. 3' • 
1:4C;71 . 
~4 .c: 2R . 
"'S5~6~ . 

y,5 " a2 . 
35101 , 
35?1. 9 , 
35 16 9 . 
35' 1 7 . 
35334 . 
~5?"Q . 
3570 8 , 
~5?85, 

~4 R 2? , 

~ '; 4'" • 

35 5 0 4 . 
3 54 11 , 
3 S7:n . 

SA "'5 . 
5 7 7 2. 

3 5 60 5 . 
35Q 0 2. 
35 " 
35Q~5 . 
36 () 1, 3 . 
3 6'; 1 0 . 
.s ~t'- C; R 

J~ 6 R 2 . 
3 6 , 'd . 
3 4 9 ')9 . 
31,1 114 . 
3 4 /\ 1 ~ , 
3 t.4<. l. . 
34 )h 7. 
3 4 R 1:~ . 

35 376. 
3 5 0 f7. 
35 09 , . 
3 S2 () 4 . 
3 51~a . 

35115 , 
353? 0 . 
352 0 1 . 
3527 4 , 
$57 1. 5. 
34t<79 . 

~ ) I.~ l. 

~5L.3' . 
~5 3 9 

3 575~ , 
~ 5 R 8 () . 

3 5732 . 
3 SR7 ,) . 
""( 5 BP1 • 
' 59 1 5 . 
3 5Q 6Q . 
36 080 . 
3 0) 1 8 . 
~6 "f, 1 • 
~ 6f,8 4 . 

' 0 ) 5 0 . 
3 4 R7f. . 
\4 {) ~3 . 

31,() ' 7 , 
3 t. r \ 1 R. • 

3 l. ,)9 C) . 
H a O? , 
3'539 8 . 
35 !1 57 . 
35 10 1. . 
3517' . 
352 0 3 . 
3 5 1 1 n . 

· 35 3 7 0 . 
3 52 f' ? 
352 (1s-.. . 
~5?5'i . 

y; 4 79 • 
3 5 390 . 
55 393 . 
~ S!l- 1 2 , 
j '5 9?S , 
3 5 7 f1 7 . 
3 59 1t • • 
35tiS? 
3 589 " . 
35 9 71 • 
.5 6 ' 0 5 , 
3651 8 . 
S 6 ~ Q 7 . 
3 6 6 6 3 . 
35 9 7 5 . 
.5 t.7R, t. . 
~':' (l v 4 . 

3'~ ? 6 . 
3 1. 'i?7 , 
.5 t.6 t" • 
3 t. i1 '" • 
3 ) l. r! 5 , 
3 s n 57 , 
3 5 1 ~9 , 
3 5 1 4 2 . 
3) 2 3 3 . 
35 " (1 , 
:S 5 32 f . 
~ 5 j l'9 • 
3 ) 1 9 2 . 
~57'7 . 



L. 290 

SCMAX 36751. 

SCMJN 339 ~ 5. 

, EV Al UAT1 0N S OF RESID UALS 

SUM Of SQ UUES :: O . 2~01li849"E 08 
X(1). O.248S 00000F. 0 3 X(2 ):: O. ,6 89 42279 E 06 'I« " S) : n . 1 31 737 BS 2E 0 , ~(') = o . oooOnOOOo E 00 X( S ) : O . 3 5 ~ 6~ (l u()O f n s 

PRESENT GRADIE NTS 
.340399 01 3E 06 O. 7 06 71 S1 2 8 E 07. - O. 33 632 13S2E n~ - O. 726674?9QE 07 - O . 2p7l156~~F. 0 5 

3 EVAL UATI ON S OF RE SI DU4LS 

SUM Of SQUARES = 0 . 13780 47 7 0 ,= 08 
X(1). O.2463 6 20S 1 E ~ 3 X(2) : (t . 255 0 43299E 06 x ( 3):: 0 .1 716 05 1' 5E ~~ x(4 )= - 0 . c689?~327f 00 X (~ ): U. 35t."7 9 36 IJE 05 

PRESENT GRADIE NTS 
~O , ~2652Q7 0 2 8E (I S - " . 27 0 3Q 79 9 9 E OJ fl . 246S4 880 4F O J, 0 . 1 ()8 7 7 4711E 0 7 - 0 . 7~714 lS~2E 0 4 

4 EVALUATI ONS OF IlEStD UALS 

SUP1 OF SQUARES ;: 0 .1 2277 51 32E DB 
X(1): O.246555 8 ~ OE n3 X(2 ): O . '4 S 0 29 ~ 2 8 E 06 ~ ( 3) = O.1 00 2233"'4 F. n ~ 1 (4) : - 0. . ~Y36QQ79~E 00 XeS)= O . 3~~ I)0 7'2 () E P ) 

PRESENT GR~~JE N TS 
!'O.54245251 BE f) S . (\ . 1 0 51'5312E 03 O. 3578S ('l 20 2E {\ f. ('l . 11 8 2 () 3~34E 07 O. r'U 7 11S 2 3 5E 0 1 

5 EVAL UATI ON S OF RE SI DUALS 

SUM OF SQ UARES = O,1 059 1 491'iE 0 
X(1)= O.24691 0367E 0 3 X(2) = 0 . ' 6 77 7.4 0 34 E On x(3) = 0 . 1 0 21 0 1 3? lH (q w(') : - 0 . ~61?R 1 G~SE on X ( ~ )= i) • :~ ') 5 I) " ~ 2 l. 5 F I) 5 

PRESENT GRA DIENTS 
O.11459 41QOE ns - () . 5268 31 ~6f,E 01 " . 2 38 212 0 PdE r. c; () . ~9?5 ;> 2~~~F 05 o . 3 ? 4 7 375 (' 1 E 11 1 



13 EVAL UATIONS OF RESI OU Al~ 

SUM OF 
X(1)a 
P~ESENT 

SQ UARES = 0 ,1 058 5641 
0.24 6~5'7 00 E 03 X(Z) = 
GRA DI ENTS 
0.160145555E - 1)1 

E 08 
I) . 1676 f1 0283E 06 ,«3)= 

f'l . 263072"R89E - OS 

15 EVAL UATIONS OF RESIDUALS 

SUM O~ 
X(1)c: 

SQ UARES = 0,1 0565641 
0.24685170 0E 0 3 X(2) = 
GRAD IENTS 
O,6241174 69E - 1") 1 

E OR 
O. 1676 00 28 3E O~ v(3)= 

P~ESE N T -
0 . 26 06 66 19 3E .. OC; 

18 eV ALUATIO NS OF ~ESI DU ~LS 

SUM OF 
X(1). 

PRESENT 

- rFAIL=O 

SQ UARES ~ O, 10S856412E 08 
O: 246851700E (13 X(2) = t) . 1676 0n ?83 E 06 X c:.~l = 
G~A f) l erHS 
o :61 049 7 3 4 2 E -. 1) 1 (\ . t6,12R935E - O'; 

.1 01 RSB3 "'( 3E I) X (4)= - O . 661Q?4~4'f 00 X( S)= U. 35 S92 1)8 tJi!E os 

() . 353'9 29 0 1E - f) 1 0 . 1 00 212 09 7E - 01 - O . '4Q7 2~ebd~ - 0 3 

O .1 0 1 ~S83'~E f'l ~ x(4) : - O . ~o19?4?4 3 E 00 ~(5): O . 35592{') ~92 E ·15 

. 34S~ 02nt-O E - 1' 1 O. 14? (1 ;.'1117QE- 01 - 0 . ' ~ 7 ~4~6~0E - n 1 

O . ' 0 1 ~ 5 63'3E 0 ~ y(4) = - O . A61~?424~E 0 y ( 'i ) = O. 3SC; v21,;"Q? 

11 . 3 4 45 0 9E - O (I • , 4'- 4 t" 2 5 a 5 E - 111 - n . 172'3 R 2' 4 ~ - 0 3 



FIT TO A MODULA TI nN BpOAD~ N ED LORE NTZI AN LI NE 

SUM OF S QUA~ES = O., OS8S6412E O~ 
X(1)= O.246 B5170 0E 03 X(2 )~ O. 1676 0Q283E 06 x ( 3) e O . 10'R5 8 3~3E n! y(4 )= - O, 66 19?42 43 E 00 X(S) = O. 355926692E 05 

IFAII.= O 

V~RIANCES 

)( ( ., ) 

O.5713E !!!01 
O.7972E 00 
O.1571e ,,03 
O.14Z1E t;01. 

"O.1083E~ 01 
O.1044E 03 

WCH 58, 81 

DWCH 0.62 

WG 24.2 6 

DIJG 0.2578 

x3MD 1.0 824 

X(2) 

O. 2252 E oa 
O. 4920E 04 
O, S457E 02 

- " . 214 7 r: OS 

. X ( 3 ) 

u . "72E 0' 
u . 16Q9E .. 0 1 

- u .4 310E 0 1 

X (<.) 

O. 1Z RQF. ., 0 
- O. 3 287E 00 

XeS) 
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APPENDIX II CALCULATION OF THE TE1'1PERATURE DEPENDENCE OF R1Q 

1 THEORY 

As shown in Chapter 3 the quadrupole relaxation rate 

is given by the following expression, 

1 

where the pair integral is given by 

00 2 00 

Ip(q) = / f(r1 )v2(r1)r1 j2(qr1)dr1/g(rO)v2(ro)ro2j2(qro)dro 
o 0 

2 

the triplet integral is given by 

00 00 

It(q) = / f(r1)v2(r1)r12j2(qr1)dr1! g(ro)v2(ro)ro 2dro 
o 0 

00' I 

X ! g(r3)r:;3j2(qr3)dr3 f g(ro:;)P2(Z)dz 
o -I 

and 

4 

5 

'z = cosB 6 

1 .1 THE PAIR INTEGRAL 

As explained in Cbapter :; we treat f(r1)v2(r1)r12 and 

g(ro)v2(ro)ro2 as delta functions giving 
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7 

2 
For a delta function at a this gives Ip(q) = [j2(qa)] 8 

and if q is expressed in units of 1/a this simply becomes 

9 

For a delta function at b I a, for example b = 1.05a then 

2 
Ip (:J = [ j 2 (q 1.05)] 10 

1 .2 THE TRIPLET INTEG HAL 

Treating f(r1)v2(r1)r12 as a delta function reduces 

the first integral to j2(qr1 ). In the second integral 

g(ro)v2(ro)r02, is also treated as a delta function which 

picks out some particular value of r o ' say 2 b, so that ro3 = 

2 2 r3 +b -2r3 bcos6in the final integral. To integrate requires 

a form of g(ro3 ). In our calculations we used simplified 

forms of g(r03 ) for the hard sphere model of a liquid and 

for liquid mercury. We shall describe first the calculations 

based upon the hard sphere model. 

1.2.1 CALCULATIONS USING THE HARD SPHERE MODEL 

We chose the hard sphere form for packing fraction 

n = 0.445 (1). This was simplified using straight line 

approximations as shown in figure II 1. 

For clarity we shall consider the case b = a initially 

and then extend the results for the general delta function 

position. We therefore put ro = a and, letting r3 = r, 

ro3 = p we have from 5 and 6 



4 I 
For, 

...... 
~ J.i r < a, g(r) = 0 -flO 

3 L \\ a < r < 1.25a, g(r) = - 12r + 16 
a 

r > 1.25a, g(r) = 1 

\ \ 
2 

1 

r 

a 1.25a 2a 

Figure 11.1 Simplified form of the hard sphere g(r) used in the calculations. 
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Also, in order for the integral to converge we write 

1 1 I g(P)P2(z)dz = I [g(P)-1]P2(Z)dZ 
-I -I 

Considering first the region 0 < P < a, we have 

I 1 I [g(P)-1]P2(Z)dZ = -i I (3z
2-1)dz 

r/28. -I 

2 = -x (4-x) putting x = r 
1b a 

The limits in equation 13 should be noted. When p = 0, 

Z = a2+r2 ~ 1, 
2ar 

setting the upper limit at 1. When P = 

Z = r2 = r giving the lower limit. Thus when r = 2a 
2ar 2a 

integral is zero. 

Now considering the region a ~ p ~ fi . we have at 

p = a, z = 'r/2a and at p = fi ' 

i.e. z, = 16r2 _9a2 

-32ar 

where z, is the required limit. 

11 

12 

13 

a, 

the 
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Then 

\ 

![g(P)-1]P2(Z)dZ 
-\ 

Expression 14 is correct for r ~ 2a. However when 

r = 2a the upper limit equals 1. Now z is integrated only 

between -1 an 1 so that for r > 2a we must cut off the 

integral at the upper limit of 1. 

Thus for r > 2a we use 

\ I [g(p )-1] P2 (z)dz 
-\ 

I 

= ~ I [15-12(1+x2_2XZ)~](7z 2_1 )dz 

1£_.2-
2 32x 

15 

To summarise, for r ~ 2'a we use expressions 13 and 14 

to evaluate the integral but for r > 2a expression 15 must 

be used. 

\ 

We shall now consider the general case b I a where 

p2 = b2+r2_2brz 

For the region 0 ~ p ~ a we have 

\ 

I [g(P )-1] P2 (z)dz = -~ I (3z,2 -1 )dz 
n -\ 

16 
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where n is the limit of z when p = a i.e. a2 = b2+r2_2brz 

1 

Then f [g(P)-1]P2(z)dZ 
-I 

= -i (1-n'-1+n) 

2 = ~n(n -1) 

17 

18 

It should be noted that this integral equals zero when n 

equals 1 i.e. at 

a =.±. (b-r) 

The positive sign gives r = 0 which ~s below the cut-off at 

r = a. The negative sign g~ves r = a+b wh~ch is equivalent 

to r = 2a for the delta function at a. 

For the region a ~ p ~. 2!i , at p = a, z = n as above. at 
4 

p = ~ . t we have 

where < is the required limit 
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Again when r > a+b we must cut off the top limit at 1 

and in this region 

Writing x = ria as before 17 and 18 become 

I 

![g(P)-1]P2(Z)dZ = 4n(n
2
-1) 

-\ 

where 2 2 n = b +x -1 
~ 

= with Y = b 
a 

Equations 20 and 21 become 

I 

/ [g (p ) -1 ] P 2 ( z ) d'z 
-\ 

and 
I 

/ rg(p )-1] P2(z)d~ 
-I 

n 
= i !~5-12(y2+x2_2xyz)i](3z~-1)dZ 

( 

n 

= i / [15_12(y2+x2_2xyzyt] (3~2_1 )dz 

\ 

The condition r = a+b becomes x = 1+y. 

21 

22 

23 

24 

25 

26 

Thus to summarise for the general delta function 

position b ! a, for x~1+y we use expressions 22 and 24 to 

evaluate the integral with n and ( given by 23 and 26. For 

x>1+y we use only expression 25. 
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1.2.2 CALCULATIONS USING g(r) FOR LIQUID MERCURY 

The simplified form of the radial distribution function 

used for mercury is shown in Figure 11.2. It is based upon 

that given by Kaplow et al (2). 

Again for clarity we shall first consider the case 

b = a. For the region 0 < p < a, we have 

1 

![g(p)-1]P2(z)dZ 
-I 

I 

= -~ f (3z2-1 )dz 
r72a 

2 = -x (4-x) with x = ria 
1b 

27 

which is the same as the result for the hard sphere model. 

Again when r = 2a the integral is zero. 

Considering now the region a ~ p ~ 1.18a, when p = a, 

z :: r/2a = x,when p = 1.18a, the required limit z, is given 
~ 

by 

222 
Zl :: a +r -p 

Hence 
1 

·2ar 

![g(P)-1]P2(Z)dZ 
-I 

r/2a 

= if (~-9.17] (3z
2
-1)dz 

z' 

r'/ .. 2a 
= i I [~(a2+r2-2arZ)~-9.17] (3,z2_1 )dz 

z' a 

x/..2 
= if [9.17(1+x2_2XZ)i_9.17]<3z2_1)dZ 

!. 0.196 
2- x 28 



4 

.-... 
f..t ......... 
bO 

3 
2.65 

2 

1 

a 1.46a 2a 
1.1& 

For, 

r < a, g{r} =' 0 

8<r<1.1&, g(r) = 9.17r - 8.17 
a 

1.1& < r < 1.46a, g(r) = - 5.89£ + 9.6 
a 

r> 1.468, g(r} = 1 

r 

Figure 11.2 Simplified form ot g(r) tor liquid mercur.y. 
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For the region 1.18a ~ p ~ 1.46a, when p = 1.18a, z = x 
~ 

-0,196, when p=1.46a, the required limit zit is given by 
x 

2 2 222 z" = r +a -1.46 a = r +(1-1.46 )R = x-O.566 
2ar 2a r ~ x 

Then 
~_O.196 

1 f [gC p )-r2CZ )dZ 
-I 

2 x 
= ~ f [8.60-5 .89(1+X2-2xz)"t] (3z2-1)dz 

.!_O .. 566 
As before the upperxlimit of z for any integral must 

29 

not exce~d 1 and so we replace the upper limit of the integral 

by 1 in expression 28 when x>2 and in expression 29 when x 
2 

-0.196 >1, i.e. x> 2.18. 
x 

To summarise, for 1 ~ x ~ 2, 

1 

/ [gC p )-f2(z)dZ= -x (4_x
2

) 
_I 1b 

For 2 ~ x ~ 2.18, 

x/2 
+ i / [9.1?(1+x2_2XZ)~-9.1?](3z2_1)dZ 

x/2-0.196/x 

X/2-0·t96/ X 

+ ~ / 8.60-5.89(1+x2_2XZ)~]C3z2_1)dZ 30 

x/2-o.566/x 

1 1 

f[gC p )-1]P2(Z)dZ = i f [9.1?(1+x2_2XZ)i_9.17] C~z2-1)dZ 
-I x/2-0.196/x 

x/2-0.196/x 
+ i I [8.60-5.89(1+x2_2XZ)~ ]C3z2-1)dZ 31 

x/2-0.566/x 

and for x~2.18, 
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1 1 

/ [g(p )-1 ]P2(Z)dZ = i / [8.6.0-5.89(1+X2_2XZ)~](3Z2_1)dZ 
x/2-0.566/x . 32 -I 

We shall now extend the results as before for the general 

case b I a. 

As with the hard sphere model, for the region 0 ~ p ~ a, 

1 

/[g(P)-1]P2 (Z)dZ = in(n 2-1) 
-I 

222 where n = b +r -a 
2br 

For the region a ~ p ~ 1.18a, when p = a, ~ = n • When 

p = 1.18a then 

33 

2 2 2 2 ~ (1.18) a = b +r -2br~ where ~ is the required limit 

34 

Then 

1 n 
/[g(P)-1]P2(Z)dZ = if rl~(b~+r2-2brz)"t-9.17](;z2_1)dZ 
-I ~ 35 

Again expression 34 is correct up to r = a+b, beyond which 

the top limit is 1. 

Finally, for the region 1.18a ~ p ~ 1.46a, 

1 f [g(P)-1]P2 (Z)dZ 
-I 

~ 
= i f [8.60-5.~9(b2+r2-2brz)i ]C3 z2- 1 )dZ 

A . 36 
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Once again expression 36 is alright up to ~ = 1, beyond which 

the upper limit is 1. 

Writing x = i and Y = ~ as before we can summarise 

the results as follows. 

For the region 1 ~ x ~ 1+y, 

1 

/[gCP)-1]P2(z)dZ = in(n 2-1) 
-I 

n 

+t / [9.17Cy2+x2 -2XYZ)-t-9.17] C3z2 -1 )dz 

~ 

41[8.60-5.89(l+x2-2XYZ)~] (3z,2_1 )dz 

A 37 

with 38 

39 

40 

For the region 1+y~x~xl where Xl is given by y2+XI 2_(1.18)2 
2xly 

= 1 

1 I . 

I[ g(p)-1 ]P2(Z)dZ r:: i / [9. 17(y2+x2 -2xyz)i_9•17] (3z2_1 )dz 

-I 4h8.60-5.89(y2+x2_2XYZ)'3z 2_1)dz 41 

).. 
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and for the region x > x' , 
1 I 

f[g(p )-1]P2(Z)dZ = if [S.60-5.S9(y2+x 2_2xyz)-t](3z2_1)dZ 

-I A 42 

Returning to the expression for the triplet integral 

given by equation 3, having calculated the integral over 

g(r 3) for a given value of r i.e. b we now require to o 0 

integrate over r 3
2g(r3)j2(qr3). i.e. we now require 

00 2. 
2np / g(r3)r3 j2(qr3)F(r3)dr3 

o 
1 

where F(r3) = / g(ro3 )P2 (z)dz 
-I 

Now the packing fraction n = volume of the atomic sEhere 
volume allowed for eac 

sphere 

where w = n a3 , a being the sphere diameter 
b 

and the number density n = 1. Hence 2np = 12n. 
p ;r-

We therefore require to evaluate 

Writing r3 = r and changing variable to x = r with dx = dr -a a 
00 

rex) = 12n fg(x)x2j
2(qX)F(X)dx 44 

0 

In the actual calculations F(x) is the weighted sum of 

integrals for different delta function positions. 

=w 
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2. THE COMPUTER PROGRAMS 

Calculations were carried out using two programs, 

INT1 and INT2. 

Using the expressions developed in section 1.2 INT2 

first calculated the value of the final integral in equation 

3 for various delta function positions and found the weighted 

sum of these integrals corresponding to F(x) in equation 44. 

The product 

F5(x) = 12ng(x)x2F(x) 45 

was then calculated. As mentioned previously the value 

taken for n for the hard sphere model was 0.445. For mercury 

a value of 0.375 was used. The simplified forms of g(x) 

as shown in Figures II.1 and II.2 were also used. 

The graph plotter was used to plot F5(x) and a straight 

line approximation of this function was made. This approxi­

mation to F5(x) was fed into the second program INT1 which 

initjally calculated the integral given by 44, i. e. , 

00 

rex) = f F5(x)j2(qX)dX 
o 

46 

Using a weighted sum of appropriate Bessel functions 

INT1 then proceeded to calculate q2Ip(q) and q22nplt(q) and 

then,the sum q2[Ip (Q)+2n Pl t (Q)] and each of these functions 

were output to the graph plotter. 

Next the final integral in expression 1 for R1q was 

calculated using the Egelstaff-Schofield expression for Ss(q,w) 

together with the result given by Sholl (3) i.e. 



()O 

/ S s 2 ( q , w) dw = 
-00 
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mDe~1(x) [O.582+X~1 
k T 2n O.582+x 
·B 

47 

where x = mD2g2. Expression 47 was calculated as n function 
K£T 

of q with q again in units of 1. The value of m used was 
a 

333.66. 10-27kg and a was taken as 2.6. 10-10m. this being 

obtained from the cut off in g(r) as quoted by Sholl (3). 

The product 
00 

F(q) = q2[Ip (q)+2nPlt (Q)] / Ss2(q,w)dw 48 
-00 

was then calculated and output to the graph plotter. 

Expression 48 was finally integrated over all q to give a 

result for R1q in arbitrary units. 

The above steps were repeated for four temperatures 

the lowest of which, 233~, being the melting point of 

mercury. The values used for the diffusion coefficient, D, 

at each temperature were taken from the data of Meyer (4). 

The programs utilised the following three scientific 

subroutines provided by the Numerical Algorithms Group. 

(i) Subroutine DOIACF 

This routine evaluates a definite integral to a specified 

accuracy using the method described by Patterson (5) of the 

optimum addition of points to Gauss quadrature formulae. 

(ii) Subroutine DOIGAF 

This routine integrates a function which is specified 

numerically at four or more points, over the whole of its 

specified range, using third order finite - difference 

formulae with error estimates, according to a method due to 

Gill and Miller (6) 
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(iii) Subroutine S18ADF 

The routine calculates an approximate value for the 

modified Bessel function K1 (x) using a method based on 

three Chebyshev expansions (7). 

Further details of the subroutines and their implement­

ation may be found in the NAG library manual. 

As an example the programs used to calculate the 

variation of R1q with temperature for liquid mercury using 

the mercury g(r) and a range of interaction li = 0.1 a are 

listed below together with their relevant output. The 

positions of the delta functions used for thismnge together 

with their relative weightings are shown diagrammatically in 

Figure II.,. 



tlD s= .... 
~ 

.e, .... :: 
CD 
~ 

1.0 

:a 0.5 
III 
~ 
t) 

p:: 

o 

...... 

I 
8. 1.058 1.18 

Position 

Figure 1L.' Diagrammatic representation ot the delta functions used for a range of 

interaction ~ = 0.1a. 
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IF( f: PSIL . GT.1. ) EPStL m1 . 0 
R LA B :d BOA *u 0 " + Y ( J ) * Y ( J ) -1 . I. " ,., • 4 . ) I ( 2 . h V ( J ) * BOA ) 
p= L 113 

aEPSll. 
IFAIL=1 
CALL D0 1ACF(1 , [3 , F U . I" . RE LI\CC,A BStd~C , fl CC , 1 S , ~J PTS,IF4IL) 
IF(t FAIL)11 , 1 2 ,11 

11 ~'K IT (7.,' 02) 
12 CO NTI UE 

TIiRE =O.5*A ;JS 
IFC R 4M . GT .', ) T HR~E a O .n 
TI T L(J . ('I~E + 1/ )+T I t FE 



2 C 0 iJT I '~ U E 
t-1 a 2 0 1 __ _ 
D I) 1 5 J = 1'; r~ __ __ _ _ 
TOTJ\ L( J ;; T TA L( J) *A Il P 

15 CUN TT NUe 
--p 0 1 6 J =- 1 , 11 

S I·' r: N C ( J ) = S 11 F r~ C ( J ) + T t1 TA L ( J ) 
- -16 CUN T H I g 

DO 17 J= 1; ') 
Y( J >=Y ( Jh.1. 0 
Y ( J ) =Y ( J >.1 ;) . v 

17 CO. TI NUE 
TO T t1 N =, . 0 
o 1 J=1 ';fl 
1 F ( TOT ~ L ( J ) . LT. T () rr HI) T () HI N::: T Ll T J\ I. ( J ) 

1 8 C cHJT I ~.J U E . 

2 0 

1 

2, 

7.3 

?4 

1 F ( r • Ij T • 1 > Ii I) T 1 
SF;: S • I) IT ' T I tJ 
SF : .. P 
po 20 J~1 ';' 1 1 
T O T ~ L(J ) ? T rALeJ ) *SF __ 
CO~TI N U t . 
eLl. II p LI -, E ( V , l' 0 T A -L , If, 1> 
c O ~l T 1 ;J U E 
D0 2 1 J:,:1';tl 
Y ( J )= V(J}l1-!1 . v 
V ( J ) = Y ( J) + 1 • 
C () IH I I U E __ 

00 2 ? J=1/11 
1;: . • 7f1Y( J) .. . . 17 

F11::9 . 6 0- 5. 'n C) * v ( J ) 
F_1 2;: 1 :.Q _ 
I F ( Y ( J ) • r. T • 1 • " a F 1 = F 1J _~. 
H ( vC, ). 1'.1 . '+6 ) ~1=J:L~ _ 
F2 = '(J ) .... 2 
r: 5 (I ? sT-i r t r. (J ) '" F 1 W-J: '~ *1 ~- () * 0 : ~ 75 
C( IH 1 NUE 
DO 2 J e1 , 1-1 
Y-( .I)=V ( "'1"1 . 0 
Y ( I) I: V ( 1 ) '" l' 0 • i} 
C I I~ T 1 J LJ E 
51-IMJ ' ::- 1 , 0 
[I l. ' =1 , 11 

- ~ F (. .q~ 'J C (,1 r . l. T , til N) S 1H·1J N - ~ H F tJ C ( J ) 
C U IJ T 1 rJ J 1= 

, F,. 5 . (1/ • "1 ~ ' 1 -J 
<"F .- f. 
[JO 25 JJli ', fI 

I1F NC(J ) = $f1Fr . ( J )*5F 
25 (, ON TI rJLJE 

ii L L ~ l V J: u RI r, ~ 3 u • () , • 
CAL L G P ~ S L 1 U F. ( 0 • \ , ."1 . , 2 ' . , 0 • . ) 
CA L L r; PH' I I i J r: ( • (I , .. 5 • () , 1 , , 9 ) • 0 ) 
CA LL Gp IN E( Y, StI FNC;II , 1 ) 
5 F. . ? 

U 26 ':1 ', 11 
F5 ( J)=Fr.: ( ~ *SF 

26 CON Tl i.JUe 
C, L L "1 I n R 1 ( 3 I) • \1 , ,) • 0 ) 
C A L~ G P H SL I N E ( O . 0 , O . n , ~o . n , o . 
CAL L G S L J I E ( t1 • I) , - 5 • , 1 0 • 0 , ( I . 

CALL HG J N ~ ( V , FS , H ,,) 
e, L L (j PH E tJ [> P LI T ( , 5 , ) 
PAUSF. Q 
E 1/ ;) 

• L _ .lO. __ 

- -'"" ~ .-



F1JNt:T, 
~-- D I 'l E S 

FlI :·J1 eX) 
ON y(''l t) 1} 

c (j /'-1-1 (' N ,/ , Y , . \) /\ 
- F U ~ 1 - ( Q , 1 7" s 0 R T e BOA. . -B () A + V ( J ) • Y ( J ) .. 'l • (\ * R 
II . ) . 
- R" TUR N 

EIH) 
-

,. 

--_ .. _----. _ .. 

~ -----------

--==--_:' 

• Y ( .1 ) • x ) - 9 • 1 ., ) If ( 









- - - ... - ._. - - - -
-- ----

LIBRAR.Yts lj BGROUPsRF'l) '~_ ~-
L 1 B~ ARY (SUIlGROUpSRGp) ~-. ___ . 

_ -;-__ _ LI BRA R Y ( SUB G R 0 U P NAG F ) . __ 
. LIBRARY(S1l8GROUPNAGGL . 

--=-;-:~_ ~-- P ROG R AM (~ l N T..1 ) - =~~ ~-.-~_. 
INPUT- 1-tRO . 
OUTpUl - 2.LPO 
COMPACT -

___ ~ __ - TRACE ~ 2~_ -'- __ _ 
. -=- .__ _ t·, A S T E R_ I N T1 

--- - - --r-- --=- _.. D J MEN S ION R LI M ( 6) , SUM F Q ( 5 0 0) , Q 1 (5 0 0 ) • R J 2 0 1 (5 0 0) , ~ t~ II J 2 ( 5 0 0) , PTE R M ( 5 
---- #OO)~TTERM(500),TOTFQ(500),TOTFN(500).T(4),D(4),R'Q(4),XQ(500),ESA( 

_~_ _ II 500 ) , R E D.T ( 4) , ReD R 1 (4) , F 4 X ( 5 00 ) 
_--- .. COMHON":-.D, cA, CB, SF, L 

EXT ERN A L FU rl 
___ L~SOO~- -

RELACCIJ1.0e-4 
ABSACC-O.O 
REAoC",01>RLlM 

~ 101 OR·MA1_{.6.j.s . 2 L 
__ - DO !!I 1., L 

- SUMFOCJ).O. O 
1 CONTINUE -: 

002N,1,5 
II"RLlM(N)_ 

. BaRLIM(N.' '5 
REA0(11102)CA,CB 

_'02 .~FORMAT(2~1 ~2) 
.. -- DO - 3 -1"1 , l -
- -Ral---~----'~~ 
_. __ QRR/5.0-.- -

___ · ~ FAll·1 _._- -----
____ CAL L:o 00, A C F (A , B , FUN, R E L II C C ,fd\ 5 ACe, Ace, A N S , N P T S , IF A t L ) 

SUMFQ(lj.SUMFO(I)+ANS 

~ 

3 1 CONTINUe 
2 . CONTINUe-

00 4 111, l 
RaJ 
Q1(I)!lR/5.0 

, SrtRJ2(I).O. o 
4 CUNTINUE--

~CAL ~-OPHGRAPH(7,?Hp n 1JNT1,6) _ 
-:_CALl MOVF.ORI G (2. 0 , -1 1..0 >-. . __ 

p · CALL - GPHSLINE(O.O,O.O,20.0,o.O) 
- - - C'A L l --G PHS l I tJ E ( 0 • 0 , ~ 4 • 0 , 8 .• 0 , Q 0 • 0 ) 
_-.: 00 - 5- 1-",4 O~ - ---
__ ~ R=I.,1 _._. _ 

-- - -- 0 F P N.1 ; (\. R. 0 • 01 
: AHP,,1 • O.JhO.1 
JOO 6 J-1,l 

_-----=---'"'l -X;:aQ1 (J ) .- - ------
__ -~)(II)(.OFPN---- - -_.-

"~ J2Q1(J).(3.0/x.*3- 1 .0/X). S tN(X)-( 3.0 /~*. 2 ).COS(~) 
. --:.RJ 2Q.1 (J.)-IIRJ 2Q 1 (J) *AMP- -' ---_~:l--::::_=--~ N.l'. J N U _ _ _""'="'"=--...,..-..,.-,........~ ___ -"~..",....,,,...,..,..,,--:-_~_ 

--=00 7 J a 1,l 

7 
SMRJ2(J).SMHJ2(J)+RJ2Q1(J) 
CONTINU'; 



'----- ----_. -_ .. 
IF(J. GT.1) GOlO 9 

_ --=-=-R-J M A x --4-. 0 J 

_ _ _ _ D- 8 ~~. "'-=-----__ --=--­
IF(RJ~Q1(J).GT.RJ H AX) RJ MAXaRJ 2Q 1(J) 

_ 8--CONT 1 NU E_ -- - - -
- -~ - - SF. 4. 0 I R J M A X 
_~ ___ C A L t D E r, II S (r~, , ~ J 2 Q 1) -:-- - - ___ _ 

-=-~-- 5 '.-0 CON T J N U E-
_-o.--=-- PO 10·- Ja,;L -
.:.. _ ~- PTE R M ( 1 ) a S ~t R J 2 ( I ) 1ft S tt R J 2 ( I ) w 0 1 ( T ) • a 1 ( T ) 

_ T T E R M ( I ,.. S H R J 2 ( I ) • S UM r: Q ( t ) * 0, ( I ) . 0 1 ( T ) 

TOTFQ(I)aPT E RH(I)+TT~ R M(I) 
10 . -CONTINU E . 

CALL MOUFORIG(ZS : O, O.O) 
CAL L (; PHS LI IJ e ( O. 0, O. 0, 20 . 0 , \) . 0 ) 
CALL GPHSLI N e( O .O,~4.0,8 :0 , QO .~) 
SI1MAX. "' 1 • 0 
DO 11 I-';L 
IF (SMRJ 2 (J) • GT. SMH AX) SHMAX:I!;'''RJ 2 ( J) 

,1 CONTINUE 
SF a4.0/SMMAX 

- CALL OEtiAS(01,St4RJ2) 
CALL MOVEORIG(Z5 . 0, O. O) 
CALL nPHS l INE( O.O,O.o,2 0 .0, O. O) 
CALL GPHSLI rIE( O. O, "' 4.0, 8 .0, 9 0.0) 
TMAX-·'.O 
pO 12 I-, '; L 
IF (pT!R M (IY. GT. ntAX) TMAX=PT ERIl( J) 

12 CONTINU E 
WRITE(2,109) THAX,SF 
SFa4.0/n1AX 
CALL DEGAS(01,PT ERM) 
CALL NE wPEtH3) 
CALL DEGAS(Q1,TT ERM) 
CALL NE tJ PEN(?) 
CALL DEGAS(Q1,TOTFQ) 

_ CALL NEl1PE~4(1) 
CALL MOVF.ORJG(2S ~ O, O .O) 
CALL GPHSlr ~ E( O . O 'O.O,2 0 .0' O.O ) 
CAL L G P'H S LI N E ( (\ • () , 0 • n, 4 . 0,9 ,i . n) 
CALL MO VEORIG(2S . 0, 0 .0> 
CALL GPHSlIHE( n . O,O.o,2 o . o . n . Q) 
CAL L GP I-4 LIIIE« () . O,O.O,4.0, 9 0 . (» ) 
CALL MOUFORIG(2S : 0, O.O> 
CAL L G PHS LI' fl E ( 0 • n , O. 0, 2 (). o. {) . (I) 
CALL GPHSLI NE( O. O,- 4 .0, S. O, 9n . o ) 
CALL MOV EORI G(-5 n .O,o.O) 
RKBA,.3 8E"2 3 
Re ADC' ,103) i\ ,1~ M 

1 03 FORMAT(J:5.2 •. F'i'.2) 
AaA.1.0Ew10 
R 111 R M ~ 1 • 0 E " 2 '7 
REA0(11104) T ,D 

104 _FORMAT(4F6. , /4FS.2) 
DO ,4 I~1 '.4 
D(J).D(J).' . OE .. 9· 
DO 1S J .. 1,L 
QOAaQ1CJ)/A 
XQ(J) ! (RM*O(I)*OCI)*QOA *QOA)/(RKA*TCI» 

_ F1.x . eXP(XfHJ» 
IFAIL-O 

. F2X.s'8A D F( X Q(J) ~ IFAtL) 
~ F3XD(O.5A2+Xq(J)*'.4142)/CO.5R 2 +XQ(J) 

F4XCJ)"'F1X*F2 X 
ESA(J)~(D(I)·F1X.F2X*F3X)/TCr) 
TOT~N(J).TO T FQ(J)· ES A(J) 



- . -
J F ( 1. G 1-.-' >-_G O.T 0 1 5. . 

=--:~-=_ . R IrE ( 2 ~ 1 1 0) - Q 1 (.1) ,..Q riA, X Q ( J ~ , F 4)( ( J , , f: S A ( J ~ , TOT F Q (J ) , TOT F N ( J ) 
j 1.0_.F 0 R ~1 AT ( , H_ , 7 E 1 1 • 4) __ . __ .. __ 

--=- - 0 tlU . . ~ _-1 5 -- .1: NTII'I L _ . .. _"' __ _ 
IF(1.GT •. 1) (jOTO ,6 

I -=--:-~ , _. ~ FItXMX.'" • 0 
_- -XQMAX~'" • 0 -

DO ,., J -, .; L 
JF(F4X(J) ~ GT.F4XMX) F4XMXaF4XeJ) --- IF(XQ(J)~GT.XQMAX) XOMAX.XQ(J) 

17 CONTINUE 
sFF4X.4. O/F4XI~x 
SFXQ.20 O/XaMAX _. 
WRITE(Z;109) F4Xt~X,XOtIAX,SFFI.X,Sr:XO 

109 FORMAT(1H IE11.4) 
,6 DO 18 J., ; L 
____ F4XeJ)8F4X(J)*SFF4X 

=- ..... XQ(J)IIXO(J)' .,SFXQ 
1B CONTJNUF. . 

___ CALL NEIJPEN(2) - - • 
CALL HGPSCURVE(XQ,F4X,L,O,O.n,o.o) 

--:- -.-, =-=-C " L (~ M 0 V EO RIG ( 25 :- 0 , 0 '. 0) 
IF(I.GT.1) GOTU 23 
ESAMXRII1.0 
00 22 J.1 ';L _ 

. _IF(ES~(J) : GT.ES MX) _ESAMX =ESA(J) 
22 CUNTJNUe __ 

. SFESAa4 O/ESAHX - --
__ WRIT E ( Z !._1 09 ) E S A'~)( , S r: E S A_ 

23 _ SF~SFESA ­
CALL Net.!pF,N(3) 
CALL DEGAS(01,ESA) 
CALL MOVEORIG(25.0, Q. O) 
IF(J.GT : n GOTO .;:?O 

. TOT F N M ."1 ~. 0 
..;.. 00 9 -· J .. 1 ',' L 

I F ( TOT F N ( J ) • G T • TOT F N M) TOT F tl ~1 CI TOT f: N ( .1 ) 
19 CONTINUF. .-

_ SF:rOT F~'i+.O/ T OTFtJM - ---'-- - -._-
- R I-T E (2 ,·'09 )--TOT FN~1, ~ FTOT F--- - .. -

.20 SF.SFTOTS! 
CAL L- N E Y PEN ( 1) _"- _ c~"'-"--
CALL DEGAS(O',TOTFN) 
CALL MOVF.ORIG("50.0,O.O) 
N=L -
IFAJL.O ­
CALL D01GAF(a1,TOTFN,N,ANS,ER,IFAIL) 
URIT~(Z,10S) . 

105 FORMAT(/1H ,37H . TEHPCK) _ INTEGRAL 
_ ~RITE(2'106)T(I) ~ ANS.ER,IFAJL __ _ 

ERROR 

. -- - - ...;------

- IFAtL) 

-1 0 6 FOR MAT ( 1 H , F 7 , 1 , 2 X , E 11 • 4 ~ 2 X , E 1 1 • 4 , 2 X • I 2 ) ____ __ __ _ 
R1Q(I)·ANS 

14 CONTINUE ·-
\JRITEt2;10i") 

107 FOR MAT(111H ,23H T/lM R1(HT> 1~1Q(TH» 
00 21 11I1 '~' 4 . - -
REDT(J)~T(1)/T(1) 
REDR1 (I).R1u(I)/R1Q(n -.- .. 

_- -:::-IJ ru T E ( Z , 1 0 8) - REO T (I ) • ReD R 1 (I) - - - -
10R FORMATC1H ,F6.2,7X,F§.2> 

21 - CONT I NUg - -.. -~--.-. -----
_ -~CALl:: GP . .,u;NDpLOT (;?S. 0 ) ------
_ .-= ~ U s.. .9 9!--.,...,.....,.~---..,....,..--, --.,---- ------.--- - . 
~END -_. -



FUN C T ION s: U IJ( X ) 
COMMON - O,CA,CB,SF,L 

_ FX-C,,*X.C6 

=------=== __ FQX=(ll.0/(Q*X)**3·1.0(Q.X».SI~(Q * ~)"3.0 *COS( Q *X)/( O*X)**2) 
FUlhFXtJ:n)( 

- __ -:c- RET URN - -
t __ - EN () -
~--- - -- - ---

'----,====-==~~---:---'------- -- - -----=--- ---:::....:::..:::=.:..:......~---

L __ -=-===-:=:=--==-:-::~=,...-,,:--:-:-:--=--:""'----::==::-:--~--
-~ =--==-SuBRo-urI NE~ DEGAS-tX~V) - _--
- ~HENS1~~X(5 00 ) ';Y(500) ______ _ 
~-_-_~-COMMON-(3, CA, CB, S~, L 
~~~=Z A L, __ =--=~~= --=-=_-=--=-Z=ZwO. 01 _- ____ . ______ _ 

, ___ =~_ 00_ 1 1'-1-1 L ______ -=-==:-:-

=-=-~ __ X ( J) .X 0 -) I Z -- - -----
_ Y ( I ) I V ( J ) * S F - -- - . 

_ L CONTINJlF_ 
---=_ _ ___ CAL L ~ ~ e I N E_ ( X , V , L , , ) ___ . 

---

___ DO 2 1-1,l--
X(l)aX(I)*Z 

_ 2- CON TIN U E 
RETURN -
END 

---:C~-~ - ,-,- -- - - -- ---

-------- ,,----,--. 

! 
I 
I -
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-----=~ -3J~-'-2 030E~ 2='~-:=;L;--, -==--~ -::~~.~=~-=~-~==~~~-~~:.....~~ 
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-~.--~~=:-----,.~=.=--"':"""-- -----
-- - -" 
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