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Abstract

Pure mathematics is often classified as continuous or discrete, that is into topology
and combinatorics. Classical topology is the study of spaces in the small, modern
topology or homology theory is the study of their large scale structure, The latter
and its applications to General Systems Theory and implications on computer

programming are the subject of our investigations,

A general homology theory includes boundary and adjoint operators defined over a
graded category. Singular homology theory describes the structure of high dimensional
Simplicial complexes, and is the basis of Kron's tearing of electrical networks, De
Rham Cohomology Theory describes the structure of exterior differential forms used to
analyse distributed fields in high dimensional spaces. Likewise optimal control
Droblems can be described by abstract homology theories., Ideas from tensor theory are
QUsed to identify the homological structure of Leontief's economic model as a real
Sxample of an optimal control system. The common property of each of the above
Systems is that of optimisation or equivalently the mapping of an error to zero, The
Criterion may be a metric in space, Oor energy in an electrical or mechanical network
Or system, or an abstract cost function in state space or money in an economic system

nd is always the product of a covariant and a contravariant variable.

The axiomatic nature of General Homology Theory depends on the definition of an
qdmissable category, be it group, ring or module structure. Similarly real systems
Qre analysed in terms of mutually recursive algebras, vector, matrix or polynomial.
hlu-ther the group morphisms or mode operators are defined recursively. An orthogonal
QQmputer language, Algol82, is proposed which is capable of manipulating the objects
uﬁscribed by homological systems theory, thus alleviating the tedium and insecurity

l'1curred in implementing computer programs to analyse engineering systems,



Glossary

This work was written in parallel rather than from beginning to end - it just grew
and as such it should be read, to a certain extent, in the same way. It is not
necessary to follow all the mathematical sections through 1in detail, many have
probably been dealt with better elsewhere, eg in the references: it is the ideas
behind them that are important, It is felt ﬂowever that it is worthwhile introducing
some mathematical concepts, all of which appear in the thesis, at this stage. An
object will often be denoted by the same character regardless of the category we view
it from, We will in fact comnsider an object to be in whichever category is convenient

at a given time, The categories of objects used in this thesis are described below

and shown pictorially in Fig(0.1). The following is (conventionally) written in terms
of multiplicative groups., For additive groups, group multiplication must be replaced

by addition, inversion by negation and unity by zero.

A semigroup is a set G together with an associative binary operation GxG->G, ie for

any x,y,z in G, (xy)z=x(yz).
A monoid is a semigroup with an identity, e st, for any x<{G, xe=ex=x,

4 group is a monoid st for any x<G there exists an inverse /x=x—] st x/x=/xx=e.

An abelian group is a commutative group ie xy=yx, For instance the set of integers

Qnder addition is an abelian group as is the set of reals under addition or

‘hultiplication.
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A subgroup is a subset preserving the group operation. Tf H is a subgroup of G, (or
isomorphic to a subgroup of G) a coset of G by H is a set of elements gH, the quotient
group G\H is the <class of cosefs of G by H with the law of composition
(g) (g'H)=(gg’')H. (G modulo BH.) Eg. the quotient set of the integers by the set of
even numbers under addition is the <class {odds, evens}, This is one of the most
important concepts in the geometric theory. For example if G=(R3,+) and
n:(n,+):(h,0,0} then G\H consists of al1 lines parallel to the x-axis (each line is a

2

coset) and has two degrees of freedom - we can write R3\R=R which explains the term

2

quotient. Similarly if H=(R“,+) then G\H consists of all the planes perpendicular to

the z—axis. G\H is a disjoint partition of G where the elements of G\H are copies of

H'

A homomorphism or structure preserving map h:A-)>B between abelian groups is a function

satisfying (ah)(a’h)=aa’h, then Oh=0 and (/a)h=/ah. The kernel (null-space) of h is
the subgroup h—1(0) of A, the image (range) of h is the subgroup Ah of B, the cokernel
of h is the gquotient group B\Ah of B and to complete the duality we may define the

coimage of h as the quotient group A\h—1(0). Then h is a monomorphism (monic or 1:1)

if its kernel is zero, see Fig(0.2), an epimorphism (epic or onto) if its cokernel is
zero (equivalently if B is the image of h), see Fig(0.3), and an isomorphism or

information preserving map A~B if it is monomorphic and epimorphic, see Fig(0.4). An

endomorphism of A is a homomorphism A->A and an automorphism of A is an isomorphism

A->A, Tf B is a subgroup of A then the monomorphism i:B->A given by ai=a, a<B is
called the inclusion map or injection, the epimorphism p:A->A\B which sends each
element of A into its coset is called the projection or surjection., For completeness

homeomorphisms, diffeomorphisms and holomorphisms are continuous, differentiable and

integrable maps respectively.
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Now consider matrix multiplication as a homomorphism, n:RM->yg" is & homomorphism
(into) iff H(0)=0, ie H is full rank, H is a monomorphism (1:1) iff H"1(0)=0, ie Ha=0
implies a=0, ie H is full rank and n>=m. H is an epimorphism (onto) iff b\Ha=0, ie

for any b there exists an a such that b=Ha, ie I is full rank and m)=n. H is an

isomorphism iff it is 1:1 and onto, ie full rank and square.

The behavior of tensor products of monomorphisms (eg torsion products in homological
algebra) is often described using the terminology of exact sequences, There are such
exact sequences of vector spaces, abelian groups, or more generally modules over any
ring R, commutative or not. A triple
f g
C->D-JE

of abelian groups and homomorphisms is exact at D iff image(f)=kernel(g) and g.f=0. A
sequence of abelian groups and homomorphisms

£

£, f £
...—>Gl—>G2—§G3—§...—>Gn-§...

is (long) exact iff each triple is exact, see Fig(0.5). An exact sequence
f &g
0->C->D->E->0
is called short exact, see Fig(0.6), This sequence is exact if and only if f is a
Monomorphism, g is an epimorphism, and it is exact at D, D is an extension of E by C,
'Phis is a generalisation of the concept of isomorphism in the sense that h:G1—>G2 is
¥n jisomorphism iff

h
0—>G1—)G2—)0
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is exact,

Note that in a short exact sequence as above, f is a monomorphism and identifies C

with a subgroup C’'<D. Thus up to isomorphism any short exact sequence can take the

form

0->C’'->D->D\C’'->0

where D-)D\C' is an epimorphism because taking C’=im(f) from Fig(0.6), f' and g' are

both isomorphisms.

A ring R is a set together with two identities {1,0} corresponding to two binary
operations (.,+) st R is an abelian group under addition and a monoid under
multiplication and the law of distributivity holds, ie x(y+z)=xy+xz. The set of reals

under addition and multiplication is a ring, A commutative ring is a ring which is

commutative under multiplication,

An integral domain is a commutative ring without zero divisors, ie no pair x,y exists

st xy=0 where O is the identity under addition,

An ideal is a subset S of a ring R iff § is stable ie x,y<(S => x-y{(§ and «r<(R,s<S =)

rs<S§. A principle ideal S=Rr is an ideal generated by a single element r<R, A

principle ideal ring is a ring in which every ideal is principle., A principle ideal

domain is a principle ideal ring which is also an integral domain,
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A field,R is an integral domain st R-{0} is an abelian group under multiplication ije
every element is a unit (element with a multiplicative inverse) except zero so R does
not necessarily have to have an infinite element. Eg. the ring of polynomials K[z},

over a field K is an integral domain. The units of K[z] are the polynomials of degree

0.

A (left) vector space, X over a field K is a set X and a map called scalar

multiplication, st KxX->X:(a,x)->ax and the usual laws of distributivity, etc hold.
This is a generalisation of the conventional vector space in which K=R. The outer or
direct product of two vectors (multivalued objects) is essentially the set of products
of their elements, {xi,yj}. The inner product is the contracted set or scalar
produced by summing over certain of these products, eg as in the ordinary matrix
product. The exterior product is an asymmetric sum, usually the contracted set

[xiyj—xjyi} as in the conventional cross product of vectors.

An R-module is a generalisation of a K-vector space where the field, K is replaced by
a ring R, eg the space of polynomials K[2]. An R-module is said to be finitely
generated iff there exists a finite set of generators or basis, and is called a free
R-module if this basis is unique. A free R-module thus is nearly the same as a vector

space. Since we are only interested in commutative rings we do not distinguish

between left and right R—modules.

A graded module G is a module representable as a direct sum of a finite or denumerable

number of modules,
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An (associative) algebra over the commutative ring R with unit 1 is a left (right)
module over R possibly lacking a unit, the multiplication satisfies (ra)(r'a')=rr'aa’

where r,r' are in R, A ring is an algebra over R,

A category, C is a class of objects obj(C), together with:

(1) A function assigning to each pair (X,Y) of objects in C a set mor(X,Y). An

element f<mor(X,Y) is called a morphism f:X->Y of C with domain X and codomain Y,

(2) A law of composition assigning to each triple of objects (X,Y,Z) in C a function
mor(Y,Z)xmor(X,Y)~>mor(X,Z). For morphisms g:Y->Z and f:X-)>Y, this function is
written as gf:X->Z such that the following axioms hold:

(1) Associativity. ITf h:Z->W, g:Y->Z, £:X->Y then h(gf)=(hg)f.

(2) Identity. For each Y of C there exists I:Y-)Y st If=f for f:X-)Y and gI=g for

g:Y->X.

If C and C' are two categories a functor F:C->C’ is & pair of functions:

(1) An object function which assigns to each object A of C an object F(A) of C'.

(2) A mapping function assigning to each morphism f:X->Y of C a morphism

F(f):F(X)->F(Y) of C' satisfying F(I(X))=I(F(X)) for any IKC and F(gf)=F(g)F(f) for

any gf<C.



CHAPTER 1 Introduction: History

The recent integration of methods formerly peculiar to particular disciplines has led
to satisfactory new techniques. This thesis attempts to unify various branches of
engineering and scientific programming methodology within a very general branch of
continuous mathematics known as differential topology (homology theory). The idea was

(1]

originally suggested by Kron » as 8 justification of his work on network theory and

[12]

tearing, based on an insight by Roth[1]], and later extended by Branin and

(6]

Nicholson .

We give an account of Kron's systems theory, in the light of recent work and extend it
into a unified theory with emphasis on the inherent physical structure of abstract
general systems. Kron, in fact, is directly or indirectly responsible for many of the
scientific computational methods used today. He continually emphasised that there
must be an underlying justification for the proliferation of mechanical and electrical
network analogies used as an aid to solve problems in widely varying scientific
fields, engineering and sociology. Homology theory[S] was developed by pure
mathematicians as an abstraction of certain classical branches of mathematics: the
derivation and meaning of the word 'homology’ is similar to that of 'analogy'. We
take the view here that the role of the applied mathematician should be to interface
the work of the pure mathematician to reality in a natural and useful way. In

particular we attempt an integration of General Homology Theory, Optimal Systems

Theory and Orthogonal Programming Languages,

This Chapter presents the historical background to Kron’s network theory, the
relevance of homology theory and the parallel developments in optimal control.
Chapter IJ introduces the basic tools of least squares matrix algebra and presents a

new theorem giving necessary and sufficient conditions for a very wide class of
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systems to be optimal, Commutative diagrams are introduced and it is demonstrated
that the solutions can be read off Roth's diagram. This idea originated in network
theory and was extended to the distributed case by Branin and to optimal control by
Nicholson. We present the general case. A hypothesis giving the set of sufficient
categories for the homology theorem to'hold is stated. The equations of Pontryagin's
maximum principle are easily obtained =as a special case, Chapter III reviews the
electrical network as a chain complex structure with the current and voltage vectors
as additive groups[IO]. Nicholson’s scattering theory is applied to the orthogonal
network, Chapter IV reviews electromagnetic field theory in terms of exterior
differential forms[2] and describes Kron's network model of Maxwell'’s equations and
Branin's algebraic diagram, The finite element method is described and justified
using de Rham’s theorem. Chapter V gives some of the properties of physical structure
of general systems. Well known analogies between very different physical systems can
be shown to be based in their common mathematical structure, The difference between
tensors—in—the—small and tensors—in-the—large, covariance, contravariance and

scattering theory are explained. Jt is emphasised that one should always be aware of

the tensorial structure even when working in matrix notation,

Chapter VI applies Kron's ideas to optimal control theory. The multistage optimal
control problem is presented in partitioned matrix form and the solution obtained from
the Homology Theorem, Roth's diagram for each torn stage is shown to model that for
the overall problem and the Riccati equation is read straight off the diagram, The
system is then reconnected into a form consistent with Kron's algebraic diagram for
the 'multidimensional space filter' thus optimal control theory is presented as a
chain complex in matrix form. This geometric analysis is seen to have much in common
with that of Wonham[9] et al., The scattering structure of the orthogonal form of
these equations is shown to 1lead to the Chandrasekar equations, The analysis is

repeated for continuous optimal control. Chapter VII applies these ideas to

Leontief’s input—output model of the economy. Prices and commodity flows are shown to
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be the co— and contravariant variables and the model shown to constitute a generalised
network with 'money’ as the wutility function, The Walras law is the topological
constraint equivalent of the optimisation problem, Some interesting results are

obteined for the continuous and discrete dynamic cases,

Tn Chapter VIII we give the formal definition of a chain complex and state the
Eilenberg-Steenrod axioms for a general homology theory in an admissable category. The
de Rham cohomology theory of differential forms and the singular homology theory of
simplicial (chain) complexes are shown to be special cases and the de Rham theorem is
stated., Chapter IX gives a brief history of the development of high level computer
languages and a computer language, Algol 68, which is capable of treating matrices,
tensors, groups and algebraic diagrams as objects and manipulating them directly is
described. The Conclusion reviews the results in the text and proposes some topics
for future research. It is explained why this structure (homology theory) is thought
to be the generalised network that Kron and Branin were looking for. Applications to
general systems theory in terms of K[z] modules and to Artificial Intelligence with
regard to the 'core’ of a program are discussed. Appendix I shows the relevance of
algebraic diagrams to the analysis of transmission zeros, Appendix II derives de
Rham's theorem, this is mainly included to demonstrate the way mathematicians handle
abstract objects, An abstract homology theory is described in terms of general chain

complexes, Appendix III describes Amari's generalised diakoptics in operator form.
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1.1 Network theory

Gabriel Kron was born in Transylvania in 1901, obtained a degree in electrical
engineering at Michigan University in 1924, and rather than continue on to
postgraduate work went on a lone walking tour around the world, taking copies of
Weatherburn's 'Vector Analysis’ and Forsythe's 'Differential Equations’. From his
return in 1928 he worked for GEC until his retirement in 1966: he died suddenly in
1968, He received an honorary doctorate from Nottingham University in 1961, Over
this period of time he developed, published and practiced a general theory of
electrical machines, networks and general systems, with emphasis on both the
physical structure of abstract systems and on his method of 'Diakoptics’ or
solution by tearing (decomposing) the network or system into smaller subsystems,
solving each part separately and recombining to give the overall solution which, at
least in the linear case, is exact., One great advantage of this method is that if
any change were required to be made to any part of the system only that part mneed
be solved again and the system recombined., Kron, in 1959, on an IBM ’'card program
calculator’, inverted a 256 by 256 matrix by tearing into 16 subdivisions each
taking about an hour to solve. Most of Kron's work appeared in the ’'Electrical
Journal' as a series of articles (1957 to 1959), later published as 'Diakoptics’
(1963). DBapp systemised Kron’'s mnetwork theory taking care of many special cases

such as singular subdivisions.

Kron's electrical network analysis can be classified into two dual formulations:
the mesh method and the node method, These are more general than the classical
notions of a dual network as they include the non-realisable dual of a planar
network., Thevenin’s and Norton's theorems and Kirchoff’s laws are all taken into
account. The mesh method essentially involves defining a 'spanning tree’ over the

network. The currents in the branches of this tree are then independent, A
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rectangular connection matrix of 1's, -1's and O's is set up relating the directed
currents in these ©branches to notional directed mesh (closed loop) currents. The
unknown currents and voltages can be found in terms of the current and voltage
generators by simple matrix manipulation (vectors in the large), including one
matrix inversion of the order of the number of meshes involved. The connection
matrices of the dual node method are annihilators of the mesh connection matrices.
Kron retaliated to criticism of his method by showing that his singular connection
matrices were part of a larger nonsingular matrix by including the link (non—tree)
branches into an ’'orthogonal network of solenoidal and lamellar currents’, He
further insisted that his matrices were in fact second rank tensors (he called them
tensors—in—-the—large), the voltage and current vectors exhibiting the covariant and
contravariant properties of ‘'across and through variables’. Diakoptics is an
extension of this method which allows subsections of the network to be solved
separately and the solutions combined with the remaining 'intersection network’
using — from a matrix manipulation point of view — the Householder inversion lemma,
Kron saw the intersection network as & 'miniature model of the original system’. A
large number of small matrices has to be inverted resulting in greater
computational efficiency. Kron continually emphasised that the network and not the
equations should be torn as there is an actval loss of information in going from
one to the other. He applied tearing to many practical cases including mechanical
networks, linear programming models of transportation and load flow problems, (he
is responsible for most methods of economic dispatch used today), network models of
Poisson and diffusion equations and Schrodinger’s equation, plastic and elastic
fields, molecular models and to the solution of ’‘divided difference’ equations,
Despite the fact that he visualised the method of tearing in a number of

interconnected spaces, Kron never used higher rank tensors in his publications,
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A number of other groups have contributed towards this work, most particularly the
'Research Association for Applied Geometry' in Japan and the 'Tensor Society of
Great Britain’. Kron became known in Japan in 1953. His work was applied by the
RAAG to numerous practical problems, including tearing of plastic and elastic
fields, electrodynamic, aerodynamic and hydrodynamic problems and notably tearing
of Shannon's information space, In a similar way the TSGB publishes a quarterly

journal extending Kron's work.

1.2 Homology theory

Roth (1959) showed how Kron's network theory was based in homological algebra and
produced an algebraic diagram of exact sequences, in which consecutive pairs of
maps annihilate each other, involving Kron's connection matrices. This was later
extended by Branin (1966) to electromagnetic field theory and by Amari (1962) to
the diakoptical case. Amari also dealt with diakoptical eigenvalue analysis,
Onodera (1960) classified tearing into two duval «cases, diakoptics or open
circuiting being the cohomological case and codiakoptics or closed circuiting the
homological case. Eondo and Iri (1958) dealt with the homology groups in detail in
'"Theory of Trees, Cotrees, Multitrees, and Multicotrees’. Before Krom died he
stated that he felt the correct algebraic structure for an excited electrical
network was a 'fibre bundle’: a statement which appears to have been taken
seriously by the topologist Steenrod, but never extended further. Kron however
took Roth’'s algebraic diagram and extended it into a 'multidimensional space
filter’ (1959) involving most of the basic concepts involved in his work including
Gauss’' and Stokes' theorems. Kron pointed out that De Rham’s theorem, which he
interpreted as stating that there exists an isomorphism between the homological,

topological structure of wunderlying ’'dead’ electrical networks and the
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cohomological, algebraic structure of the superimposed '‘live’ electromagnetic
fields justified his network equations, De Rham’s theorem also can be taken to
give an isomorphism between electrical network theory of simplicial complexes and
electromagnetic field theory of differential forms (Grassman algebra), justifying
the methods of finite differences and finite elements where discretisation of
fields is carried out by modelling the field with a mesh and taking the limiting
case as the mesh gets finer, Kron's First Generalisation Postulate states that
'The n algebraic equations of a physicgl system with n degrees of freedom may be
replaced by a single equation having the same form as that of a single unit of the
system, if each variable is replaced by the appropriate n-matrix.’ Rothman
discusses the 'Philosophical Meaning of Tensor Theory’, pointing out that Kron was
a 'dignified follower of the Greek philosophers’ in his 'continuous aim of finding
a general principle’ in Nature. Further that 'There is still a gap between the
most advanced concepts of differential manifolds and Kron's representation,

Cartan, De Rham, Hodge etc, take into consideration only two spaces being

neighbours and not a network of spaces.’

Electromagnetic theory was treated by Maxwell in terms of vector analysis (in the
small)., This was found unsatisfactory by Einstein who used tensors (in the small)
to develop Relativity Theory. Misnor and Wheeler progressed one stage further in
their remarkable book 'Gravitation’ and worked (partly) in terms of Eli Cartan’s
exterior 'differential forms’: these are the objects whose topology 1is described
by the de Rham cohomology theory. Differential forms were popularised by Harley

(131 et al in their book 'Differential Forms on

Flanders (1963) and used by Lynn
Electromagnetic Circuits’ to describe FKron’s network models of electromagnetic
fields. The operators grad, div and curl of electromagnetic theory can be
generalised both to tensors and differential forms when just the boundary operator,

d and the Hodge star operator, * cover all cases. A coboundary operator and a

generalised Laplacian can be defined in terms of these,. The Hodge theorem
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generalises Helmholtz' theorem in higher dimensional spaces, Network theoretic

versions of these formulae are also available, eg. the Poincare lemma becomes

Kron's lemma.

Most of the work carried out in homological algebra by topologists disregarded
practical applications other than to pure mathematics. A number of ‘classical’
homology theories arose based on (1) the structure of simplicial complexes (high
dimensional polytopes) called singular homology (2) the structure of differential
forms (high dimensional fields) called de Rham cohomology theory and (3) the
structure of chain complexes, based on module theory eg. rings of polynomials, see
Fig(10). The most important concept in singular homology theory is that of the
short exact sequence ie, that the boundary of a simplex does mnot itself have a
boundary. This is equivalent in de Rham cohomology theory to a generalisation of
the statements curl(grad(.))=0 and div(curl(.))=0, These concepts both indicate
some kind of minimisation - in the electromagnetic case that of energy. A ring
consists of a set and two operations known as addition and multiplication subject
to certain restrictions, Sets, groups, rings and modules etc, are known
collectively as categories, Eilenberg and Steenrod defined a general homology
theory over an arbitrary category subject to certain admissible conditions and gave
the necessary structure and axioms for the structure to include the classical
homology theories. Warner bases his general cohomology theory on axiomatic sheaf
theory. Hilton noted that homology theory describes covariant objects and
cohomology theory describes contravariant objects and instead used the terms

cohomology and contrahomology respectively. Bourgin uses the generic term omology.
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1.3 Control theory

The idea of a General Systems Theory was proposed by Ludwig von Bertalanffy and
extended by Preston Hammer, Wayne Wymore, Norbert Weiner, Herbert Simon, G J Klir,
David Wismer et al, After the definition of dynamical systems by Kalman, Falb and
Arbib[4] (1969) in terms of semigroups, mathematical systems theory of optimal
control based on the use of commutative diagrams soon followed. This was fully
axiomised by Kalman whose work was based in module theory, the special case being a
ring of polynomials in the inverse 2z (shift or discrete Laplace) operator.
Mesarovic and Takaharals] (1975) concentrate on the structural aspects of an
abstract imput—output system, rather than optimality and have classified different
realisations of systems and their interrelationships in terms of categories and
functors. Kalman's work originates partly in Arbib’s treatment of automata theory
and it is pointed ount that a formal system of natural language is an example of a
general system in this sense. Work in Artificial Intelligence: natural language
and image processing - and in Computer Science - has recently been progressing
towards this formulation, Indeed Kron saw his multidimensional space filter as a
foundation for a self organising intelligent automaton. Computer languages like

Algol 68 and Lisp allow rich algebraic structures to be defined and manipulated.

Classical control theory originated from the frequency domain techniques of Bode,
Nyquist, Nichols, Evans (root 1locus) and Routh and Hurwitz and reappears in the
neoclassical techniques of Macfarlane, Rosenbrock et al, In the USA, Rellman and
Kalma; dealt with dynamic programming and Gaussian estimation theory, respectively,
leading to matrix Riccati and Chandrasekhar type differential equations, the
separation (certainty equivalence) principle and Liapunov stability theory. In the
USSR Pontryagin and his coworkers used the more general calculus of variations of
Yagrange and Hamilton to formulate the celebrated Maximum Principle. Recently

Wonham, Denham, Macfarlane et a2l have provided a geometric basis for control theory
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similar to that of functional analysis, Owens has applied this to the analysis of
transmission and decoupling =zeros 1linking the frequency response and state space
control theories, These are the fixed modes which are invariant under feedback and
duality., Multilevel decomposition and coordination has been dealt with by Pearson
for LQG systems, and Mesarovic in the set theoretic case (with a preoccupation for
existence theorems). Nicholson (1971 - 1979) took Kron's electrical network theory
and showed how it was analogous to the general and sequential least squares problem
(as applied to tearing of a multimachine system), to multivariable control, to
discrete and continuous optimal control theory and Kalman-Bucy filtering (also
duals in a sense) and to the discrete and continuous smoothing problems by showing
how each theory fitted into the mathematical structure of scattering theory using
Redheffer's star operator, He also suggested implementing specialised computer
hardware to realise this operation, Quittard—Pinon[16] (1981) has used a Roth type
diagram in Time Series Analysis, Bellman’s original work on invariant imbedding
involved using a scattering formulation. Kailath , Ljung and Friedlander used this
work to show that the Chandrasekhar equations could replace the Riccati equation of
dynamic programming with more computational efficiency in many cases. Flanders
treats Lagrangian dynamics in the context of differential forms, deriving the
Buler-Lagrange equation and the Hamiltonian equations which are the basis of the
Pontryagin maximum (minimum) principle (usually proved using fixed point theorems).
Vanacek extended optimal control and estimation theory into the realms of higher
Qimensional tensors, a natural formulation for the representation of multilevel
Systems, Vanacek mentions that his solution should apply to the Toeplitz equations

Which have since been solved in the general case by Khabie—Zeitoune (1980},

QOur work will show how optimal control theory and general systems theory fit into
the homological scheme of things, filling in many gaps in current knowledge and
Geriving some new and efficient algorithms in the process. Our approach is that

Qpy optimisation problem, whether it be energy minimisation, cost function
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minimisation or minimisation of & metric is equivalent to mapping something to
zero. This something may simply be the system error, or the boundary of a boundary
or it may be something of the form curl(grad) or div(curl) or it may be a metric on
a manifold eg vector space. The induced short exact sequence(s) involves the
boundary operators of homology theory. Indeed Wonham's algebraic systems theory
implicitly uses many of these concepts without explicitly naming them. It is hoped
that the reader will ©be able to see any particular problem in the context of the
whole scheme and thus be able to find the most efficient solution in a systematic
chapter we deal with certain fixed topics eg. optimality,

manner, Jn each

orthogonality, duality, tearing, scattering, ’'live’ and ’'dead’ structures, co- and

contravariance, discretisation, analogies, de Rham'’s theorem, tensors and
categories, The presentation is informal, rigour being 1left to the more
mathematically inclined. The work is largely self contained though the Glossary

and References [1] and [6] at the end of this chapter should be considered as

essential.

(8]

who has also wused

K

Q1gebraic geometry as a tool in systems theory. His work concentrates on frequency

The author has only recently discovered the work of Hermann

Qomain concepts rather than optimality thus complementing this thesis. We find it
Televant however to quote freely from a review of his book by Wonham[7], 'Let
A:pxn and B:nxm be fixed matrices with elements in a number field K... Let F:mxn
% nd T:nxn be matrices over K representing, respectively, state feedback and change
©f basis (so T is nonsingular). Thus the set of all matrices we can hit, up to
kimilarity, by means of feedback, is  just the image of the map
r=Kmxn+xnx"—>Knxn:(F,T)-)T—I(A+BF)T. Notice the minor abuse of notation: as a
t“tional map, f is actually defined only on a subset of its indicated domaim, in
tl]is case where det(T)#0., Tn algebraic geometry f is said to be defined 'almost
»

‘erywhete'... Generally speaking most of the formal structural synthesis problems

.}‘Qt have been studied in linear multivariable control could be posed as questions
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about the rational map f or suitably extended versions of it... Now comes the
remarkable algebro—geometric fact: if the field K is C, you can conclude that f
itself is 'almost onto', namely, the image of f includes almost every point of the
codomain. So you can either hit or get as close as you like to every point of the
codomain! In our example it turns out that (the derivative of f) Df is onto just
when (A,B) is controllable., Then (K=C), for almost any Ao(cnxn there will exist a
feedback map F(C™*™  such that A+BF is similar to Ao‘ The catch is that you may

need F to be complex even when A, B, and'Ao are all real: and complex F may not

have any systemic interpretation, and so may not be admissable in the original
problem context. In the case K=R (where system theorists feel more at home), the
implication 'Df onto => f almost onto’ is no longer true. The foregoing approach,

of using systemic properties to infer Df onto, to infer f almost onto..., therefore

breaks down.

Now there may be other ways, as yet undiscovered, in which algebraic geometry might
help. Hermann is very enthusiastic about this... The scenario is dramatic. The
bad guys are the ‘'modern algebraic geometers, (who are not only) uninterested in
applications—orientated material’ (p. 105) but inflict on the unsuspecting public
their ’gobbledy—gook and Bourbaki-style generalised nonsense... (being evidently)
afflicted with a Death Wish, fatally smothering a beautiful, classical subject...'
(p. 15). The good guys are the nineteenth century founders of the subject
(Kronecker figures prominently), who are asserted to be 'much closer in spirit to
the need (sic) of modern applied mathematics... (because) they were often much
more concerned about progress in general science than are todays mathematicians!’
(p. 74). Fven if wunwilling to take sides, one cannot Lelp but recognize an
authentic cri de coeur...' (Wonham[7]). These are this author’'s sentiments
exactly., He would number Kron amongst the good guys... When reference was made to

the TSGB the Head of a certain Mathematics Department declared 'Oh, We don't talk

about that.,'
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One of the most important groups of results in mathematics that can be derived from
homology theory are the 'fixed point theorems’ of Brouwer, Kakutani, etc,. These
were used profusely by the mathematical economists to prove the existence of
general equilibria in abstract economic systems. The general linear case of these
models is the Leontief dynamic input-output model, as treated by Livesey. This is
taken as a major example of an abstract control system with a wealth of inherent
structure, Franksen (1969) discusses an electric network analog of Leontief's
economy in detail in 'Mathematical Programming in Economics by Physical Analogs'.
All the wusual properties crop wup,. Prices are taken as covariant and commodity
flows as contravariant variables. The objective function is thus money! The
attempts of Franksen, Bott (a topologist, who used Grassman algebra) and Whitin to
produce network models of the Leontief economy and Franksen's orthogonalisation of
the input-output model and introduction of mnegprices are critically discussed.
Teldahl'’s peculiar distributed economy, the natural extension of which is a
relativistic economy with a finite time horizon, is shown to be a natural result.

Walras’ law is shown to be the economic minimum energy criterion,
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CHAPTER II The Homology Theorem: FRoth's diagram

The various manifestations of tearing in orthogonal systems are reelised by a set of
Telated algorithms on partitioned matrices. Nicholson has shown how the ordinary
Least squares problem can be represented on Roth’s diagram and thus has a dual pair of
Solutions, given by Kron's lemma, The Homology Theorem gives conditions on a
topological system such that Rotb's diagram commutes if and only if the system is
Sptimal. Roth's diagram is constructed from an exact sequence related to the chain
QQmplex containing the system matrix and one of its annihilators. The adjoint system
g constructed from & set of homomorphisms from this sequence to the optimisation
Cxriteria or metric. Finally the Bamiltonian equations of Pontryagin’s maximum
btinciple are shown to be implicit in Roth's diagram for the general nonlinear optimal

t=Qntrol problem and the Euler-Lagrange equation can be read off the diagram.

2.1 Tearing in ortbogonal systems

Kron introduced the celebrated orthogonal or complete network concept in reply to
criticism of the 'non-physical’ form of the 'singular connection tensors’ in his
circuit theory, The symmetry of the system is achieved by filling in the missing
parts of the rectangular arrays — often with zero or unit submatrices - producing
square matrices, by identifying the missing wvariables, Though this method
overspecifies the system it has many computational and descriptional advantages.
Jt will be found in the following chapters that the method is also important in
general systems theory, though we more often use the singular form for derivations

because of its nilpotent properties,
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? Tyurther network called the intersection network, consisting of & <collection

' Darticular peculiarity in

The Homology Theorem: Roth’s diagram Page 29

Kron used the orthogonal system as a basis for his method of tearing. In the
‘finite element method’' the connected system is a distributed field and the torn
system is a lumped parameter representation, In optimal control theory the
connected system will be assumed to be continuous and the torn system discrete.
Tearing in fact is a ubiquitous concept. It may occur in space, as in the finite
©lement method, in time as in optimal control, across a network, as in Kron's
Original method, between states in a decomposed system, or levels in a hierarchical
System, or between spatial dimensions, as in Kron's space filter., In the same way

that the homological structure of Kron's network theory gives rise to the optimal

Solution, it is the homology of the tornm network which forces the exact solution in

% l3iakoptics. Kron's method of tearing as applied to networks in fact has one

that as well as producing a number of subnetworks a

of

f Single unconnected network elements is left, This is due to the fact that to

glilﬁ elements from the network, No other decomposition method uses this technique

erarate the subnetworks, rather than just cutting branches Kron actually removes

{qlnd it is in fact not really necessary for network tearing.

N'Qrious algorithms are used as the basis of tearing in different problems. Kron's

: Lakoptics is simplistically based on Householder's formula

o
« CA+BCD)=/A-/AB/(/C+D/AB)D/A or in more conventional notation

#

E oy -1 - - - o1 -
+ A4pep) 1=a"1-a"1B(c" Y+pa~1B) "1pa7T,

»
él‘Qreas in the orthogonal case use is made of Schur’s lemma
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X)) -/X X /(X,~X /X X )]
dc a’b d ¢’ "a’b
/Xch) /(Xd—Xc/XaXb)J

/(X -X /X
L-/X X /(X X,
We will continue to use the slash notation to emphasise the ease of programming
matrix algorithms, There is no ambiguity in its use as the / operator is monadic
and therefore takes a higher priority than a diadic operator. Confusion may
however arise when differential operators are involved. We take /(zP)=z/P.
Chapter IX describes extensions to the language Algol68 in which matrix equations

in the above form can be programmed direétly.

The derivation of the discrete Riccati equation for multistage optimal control is
based on the partitioned matrix version of the recent (196-) Thomas algorithm for

the inversion of tridiagonal matrices,

For 2; }Igzx2_g
A3x;+B§x§+C§X4—ds
Ajxyo1*Byx*Cixyig=dy
An n-1 B x =dn

: 2 =hH2
we can write the new system A i—lxi~1+ci—1xi b i-1

and hence the recursive algorithm

-1
2 - - i=
(1) A2 =B.-A.A*,_,7'C, ,, i=2,....nm,
- 1., i=
(2) b2 =d.-AA%, b2, i=2,...,m,
—1b3

(3) x =A%

nl

(4) xi=A’ 1(bz -C X,.,), i=n-1,...,1,

i+l

This is also the basis of sequential least squares estimation and can be shown to
be a special case of the recursive ’'staircase method' of inversion for general
block matrices involving successive application of Schur's lemma to a square

submatrix partitioned such that the upper left and lower right hand blocks are

square,



The Homology Theorem: Roth's diagram Page 31

2.2 Ordinary least squares

(41,

This is the basis of all linear quadratic methodology. Paraphrasing Nicholson

'A least squares estimate for the parameter vector x in the measurement equation

y=Ax+v

with known mean and covariance properties

E(v)=0, E(vv')=R, E(xx')=S, E(vx')=0,

is obtained by minimising the function

J(x)=(y-Ax)'/R(y-Ax)+x'/Sx.’'

We will now demonstrate how Roth's diagram may be used in general 1least squares

problems by rewriting the optimisation in standard form using partitioned matrices

min [v]'[/R q[Vv]
lxl L /allx]
subject to
(I Al[v]=y
Lxl

and putting

HpiM

The partitioned vector in the cost function must appear explicitly in the

[2]

constraints, It is then placed top centre in Roth’s diagram and is mapped to
its adjoint by the weighting matrix of the cost function, The partitioned

coefficient matrix in the constant equation appears top right, the other three
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positions are held by its adjoint (transpose) and annihilators so that the
horizontal rows are exact and the diagram commutes, The solution can then be read

directly off the diagram remembering that isomorphisms may be reversed by inverting

the associated matrix.

By analogy with the electric circuit problem Roth’s diagram takes the following

form
[y1=
r A Lol
L-1J
0 ———=x » [Ax]
h e L-xl] > )
(o -11 (1 A
+H[v]——————— y—=0
/P= LxJ
(/S+A' /RA)
[/R ] L=
/8 /(R+A'SA)
v [/RAx]
04— /Px - L-/sxl I
A’ -1] LAl Y
0 @ +[/Rv] @ P 0
L/sx]

and we can find the optimal estimate x° from the left hand square

x°=P[A’ -II[/R T[y]=PA’'/Ry
L /sllx!

Any inverse of [ A] will give x° from [Ax], eg [0 -I].
L-1l L-xl

'This diagram requires some explanation, It is an extension of the idea of s
Commutative diagram in pure mathematics. The latter is a diagram of objects and
homomorphisms such that following the arrows round from A to B gives the same
esult whichever path is taken, in the sense that the composition of the functions
labelling the arrows is the same, Only if an arrow is labelled with an isomorphism
may it be followed backwards and the inverse functioq taken, Our version of Roth's

Wjagram above, is shown in a more pictoriasl form in Fig(2.1). The object
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([y]}={[Ax]}G{[v]}=im[ Al@ker {1 Al
Lo L-xJ Lxl L-1l

considered as the group of all values of [y' 0']' and is split into the direct sum
of its subgroups such that the substructure of the problem can be clearly seen,
based on the technique used by Branin., The category of the objects in the diagram
depends on the problem, In ordinary least squares we deal with vector spaces, in
network theory with the singular homology groups, in control theory with K[s] or
K[z] modules and in field theory with differential forms. Commutative diagrams may
be considered as dual, in a sense, to signal flow diagrams as used in control
theory, in that mappings in the former compose to the identity round a closed locop

whereas objects in the latter sum to zero at a2 summing point.

Roth's diagram in general gives two forms of solution, For instance given the
overspecified equation set y=Ax+e where A is nxm and n)m we may wish to minimise
the weighted sum of squares of the error e=y-Ax with covariance matrix /Q with la =

left annihilator and ra = right annihilator (see Fig(2.2))

la(A)
x = 0
=C'

e C ! @ > ()

0—rx° >

A'QA /(C’'/Qc)

r——0 + P> N
o

0 ¢—— A'QAx? @«—— QAx
A' + ra(A')
0 44— Qe % . ¢ 0
= =C
Qy

min(y-Ax) 'Q(y-Ax) subject to y=Ax+e

gives from the diagram x°=/(A’QA)A’Qy (round the left hand side)
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and y°=Ax°=A/(A'QA)A'Qy

therefore e=y-y°=(I-A/(A'QA)A’Q)y ... (A'Qe=0)

=/QC/(C'/QC)C'y (round the right hand side)

which must be true for all values of y so we can state

Theorem (Kron's lemma) If A and C are rectangular nonzero matrices such that

ker(A’))im(C) and Q is nonsingular and of commutative order then

A/(A'QA)A'@+/QC/(C’/QC)C'=I

where the underscore just groups the weighted coboundary elements together. This
Virtually unknown formula completes the set available for naive matrix manipulation
and we will call it Kron's lemma - as he seems to have had little else named after
him, Tt is the analog of the definition of the Laplacian in electromagnetic

theory, and finds important application in Bowden’s algorithm for fitting data to

‘Qodels[w] .

t?inally Kron emphasised in his later papers, particularly 'Four Abstract Reference
Brames of an Electrical Network’ that the mathematical structure of an electrical
Network is that of the 'fibre bundle’. According to Kron ‘The most frequently
Cited example of a complex is the so—called polyhedron, in which each p-network
Torms the boundaries of 2 (p+1)-network ... A special case of the polyhedron is
the graph., The topological complex associated with a conventional electric network
15 however quite a different structure. The p-networks happen to be coincident
instead of bounding each other, This rather unusual type of complex is called a

¥ iber bundle.’ We will expand somewhat on this by demonstrating the connection
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between fibre bundles and ordinary least squares, A fibre bundle 1is a pentuple

(B,X,Y,p,g) where B, X and Y are topological spaces, B is the bundle space, X is

the base space, Y is the fibre and g is the bundle group, 8 group of homeomorphisms

on the Y. p is a continuous map p:B->X. The space Yx=p—1(x) is called the fibre
and each Yx is homeomorphic to Y. In matrix notation the projection may be

written Pb=x where the fibre over x is 2—15, the coimage of P. A cross section of

Qver x

B is a continuous map f:X-)B such that pf(x)=x, This is equivalent to taking a

bseudoinverse of P, g+:1—>§ such that gg+5=é where g+=/(g'gg)g'g for any Q. The

Mathematics of fibre bundle theory is well developed and closely interwoven with

homology theory. There is ample scope for future research here,

2.3 The Homology Theorem

The notation y=Ax+e will be used in this section to preserve continuity with the

Least squares theory. Let C be a 'sufficient’ category (as will be explained

}5elow) then if x,y<C and

A
x-)y

is such that y>Ax then the monomorphism
id

Ax-Dy

iy called the (natural) inclusion map or injection, the epimorphism

p
y—>y\Ax
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which sends each element of y into its <coset 1is called the projection or
surjection, hence the sequence
id p
0->Ax->y->y\Ax—->0
is short exact. The 'zero' of y\Ax is Ax., This is shown more clearly in the Venn

type diagram, in Fig(2.3), (ignore the dashed lines for now).

For example if A=[1 1]' we have [1 1]'R->R2->R2\[1 11'R. R3\[1 11'R is the set of
straight lines in the 'xy plane’ parallel to x=y, [1 1]'R is simply the set of
points {x,x} (common notation in geometric control theory). Obviously the line x=y
is the 'zero' in the quotient set as 'addition of lines’ (x,y:x=y+tcl+{x,y:x=y} =

{x,y:x=y+tc} shows,

We wish to choose x given y to minimise some cost function r(x,y). We can write
x°={x:y=Ax,dr(x,Ax)/dx=0}=£f(y). Therefore y°=Ax°=Af(y) which is a contraction
mapping. If Af obeys certain continuity properties then there is a fixed point of
the function at which y=y°. For example using the Kakutani fixed point theorem

(proved using homology theory!) Af must be upper semicontinuous,

Now consider the homology group H=ker(A®)\im(A)=Z(A®)\B(A), where A® is any left
annihilatorof A. We have the sequence Ax=B(A)<Z(A°)(y. In the diagram below all
rows and columns are short exact, We shall see a similar diagram for electric

circuit theory in which H1=O, and the dual cohomology group H1=Z(A')\B(A°'),
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o
t

H1=ker(A°)
im(A)
pt
id A°
0 -> Z'=ker (A°) => y => B%=im(A°) -5 0

idt
2 id A 1
0 -> Z°=ker(A) -> x -> B =im(A) -> O
*
0

The short exact sequence 0->Bl->Zl->H1—>0 is contained in the sequence
0->Ax->y->y\Ax->0, see Fig(2.3) again. JIn general the sequence
A A°
0->x->y->im(A°%)->0
is not short exact (see Fig(2.4)). For example if A=[1 1 0]' and A%=[1 -1 1] then
A°[0 1 11'=0 but [0 1 11'#Ax for any value of x. However A° can always be chosen
such that the sequence is isomorphic to

id p
0-)>Ax~->y—>y\Ax->0

hence ker(A®)=im(A) and H=0 (see Fig(2.5)). For instance in the matrix case if
x<RD, y(Rn, n{m then y\Ax(Rn-m=Rn\Rm and A° must be a (p-m) x m matrix,
n—-m

A°<Hom(Rn,kn—m), the set of all homomorphisms from R® to R , a generalisation of

the idea of dual space. For a more detailed description of Hom, see the beginning

of Ch VIII.

Next consider the contravariant mappings shown by dashed arrows in Figs (2.¢), For
the diagrams to commute define the adjoints A®:f->fA and A®%:g-3gA°,  with
fA(Hom(x, r(x,y)), f<Hom(y,r(x,y), gA®<Hom(y, r(x,y)) and g<Hom(A%y,r(x,y)) where

r(x,y) (R, some coefficient group. The * operator will be found to transpose
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matrices, conjugate complex numbers, negate the Laplace operator and invert the lag
operator of time series analysis. It also relates curl, grad and div and higher

order operators of partial differential equations,

The following diagram is short exact (by symmetry)
A* A®s
0<-Hom(x, r(x,y))<-Hom(y, r(x,y))<-Nom(A%, r(x,y))<~0

and is related to the original sequence by three isomorphisms depending on the
structure of the coefficient group R, We choose these isomorphisms such that the
diagram commutes. Following the Venn diagram, Fig(2.2) clockwise round the left
hand side, we can see that there is a contraction mapping from y back into itself,
Further convergence is obtained in one iteration, x° can thus be found from y. We
have again borrowed the notation from least squares theory., Note that though x#x°,
normally {x}={x°}. This may be confusing as we are using the notation x as an
abbreviation for {x}. Strictly we should also consider the case where {x°}<{x},
though this follows naturally. Another form of solution may be found by following
the mappings clockwise around the right hand side of the diagram, giving e® from y.
Note that the diagram is rotationally symmetrical, this is precise as can be seen
by the duality in the theory. Fig(2.8) shows the five types of chain that occur

when the sequences are not exact, This is important in network theory,.

So for at least some categories the following is true,

The Homology Theorem For a given sufficient category C and spaces E,F,G in C and a

suitable monomorphism, f (or epimorphism §g) there exists an epimorphism g

(monomorphism f) such that the following diagram is exact

f 8
0-)YE->F->G->0,
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There exists a short exact sequence relative to a scalar field R with the arrows

reversed
f' g‘
0{-Hom(E,R)<~Rom(F, R) (-Hom(G,R)<-0
where Nom(E,R) is the contravariant set of all homomorphisms E->)R and f* is the
adjoint function *:f->f*, Further there exist natural isomorphisms
f 8
0-> E - F = G -0

~ ~ ~
— -—

0<{-Hom(E,R) <{-~Hom(F, R) (-Hom(G, R) <-0
£ g*
then the solution of the optimisation problem min r{x) with respect to e<E with
r{R, x<F is given if and only if the diagram commutes. That is the diagram

commutes for all optimal E®, F°, G°, f°, g%, etc with respect to some r.

Commutation of Roth's diagram is equivalent to optimality. This appears to be true
at least for continuous problems, eg it may not hold in linear programming due to
the inequality constraints, despite the inherent duality in the problem.
Nevertheless the Kuhn-Tucker conditions may well have their analogs within homology

theory.

Rypothesis C is a sufficient category for the Homology Theorem to hold if and only
if it is an admissable category for homology theory (see Chapter VIII), and the
axioms for homology theory hold. A system of the form described above will be

termed a homological system.
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2.4 The nonlinear case

Consider the scalar case given y=f(x)+e. We want

min llell or _g(y—f(x))2=0
x dx

and dropping the constant dy2/dx=0,
d(£(x)2-2y£(x))/dx=0

or d((e-y) (e+y))/dx=d(e2-y?)/dx=0
giving d(f(x)z)/dx=2ydf(x)/dx.

Alternatively we can construct Roth's diagram as shown below,

2y=
£(.) £°

x ————p= (y—e¢) —————p-0
+

(d(£(x) ()7 (y+e) —- .

dx

_d(£(x)?)=2y_df (x)+—— (y-e)
dx dx +

0 ¢ (y+e) +——.

_d(f(x).) '

dx =2y £O¢

The general term in Hom(x,f(x)z) is df (x)%/dx. Reading around the lhs we have

1

x°=(d(f(x)£(.))/dx)” '2(df(x)/dx)y.

Page

40
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In fact the scalar case, though an interesting example, can be seen to have little

practical value as it is about equivalent to setting df(x)/dx=0., However it does

lead us on to the time varying case,

The general time varying problem[gl can be written in state space form

min / F(x,u)dt subject to g(x,u)=sx-f(x,u)=0,

u

with one of either 5(0)=50 or E(O)=3° usually set to zero, The solution is given

by the Euler—Lagrange equation from the calculus of variations

( a - 8 a)L(E._“:E)’:O,
a(x,u) d(sx,su)

where the Lagrangian L(x,u,p)=F(x,u)+p’g(x,v)=p’'sx-H(x,u,p),

where p' is called the Lagrange multiplier or costate variable and the Hamiltonian
H(x,u,p) is the difference between kinetic and potential energy in the mechanical
These are the equations of a conservative holonomic (integrable) system,

case.,

Flanders[8] treats them in terms of differential forms.

Performing the (partial) differentiations as in the following table

F(z,u) | p'sx 2'f(z,0)
d OF(x,un) | 0 -p'af(x,v)
d(x,n) 5—(._:;— ;(-.:._u—)—
-3 0 0 (-sp’,0) | O
3(sx, su)

the solution is dF(x,u)-sp’(I,0)-p’df(x,u)=0,

d(x,u) 3(x, )

SHEFFIELD
UNIVERSITY
_LIBRARY

|
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Note that all of this is achieved without reference to (5,3)0.

The alternative approach is to construct Roth's diagram (see Fig(2.7)). Writing

x,u —u) and construct

f =3f(x,u)/dx we can split (5.3)0 into two parts (5,3)+(50—_ o

X

the top short exact sequence below.

X1
LEzJ
L —> =[x, -x] >0
o Lu)-ul
° £-s11 0]
+x]
Lul >g(x,u0)
9F (.)
9(x,n)
\
. 4——— OF(x -x,n ~u)
[/(f +sI)E V' a(z,n) 3f' (x,u)+s[I]
L -1 u] E— [_QJ
dF (x,u) d(x,u) Y
0 = - P
9(x,n) =[£, '+sI]
LEl )

Following Chang we can drop the integral in the s—plane (see Chapter VI for a
discussion of this) and take F(x,u) as the coefficient group. The general term in
Hom((x,u),F(x,un)) is 3F(x,u)/d(x,u) hence the central isomorphism is 8F(.)/d(x,n)
giving the lower sequence. The Lagrange multiplier appears at the bottom right and
the initial conditions at the top right. The Euler-Lagrange equation is implicit
in the mapping at the bottom right., The lack of symmetry between the upper and
lower short exact sequences (*:f->3f'(x,u)/d(x,u)) can be removed by considering
small changes in the diagram then

3f(x,n)=0f(x,n)dx+df(x,u)du

-—

dx du
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and *:3f(x,u)/d(x,v)->3f'(x,u)/d(x,u) as expected.
Finally we have the Hamiltonian
H(x,u,p)=p'f(x,v)-F(x,u)=p'sx-F(x,n),
therefore sx=dH(x,u,p)/dp ... (1),
Further (8/3x-sd/(sx))(p’'sx-H(x,u,p))=0
therefore sp=—dH(x,u,p)/dx ... (2).

(1) and (2) are the equations of Pontryagin’s maximum principle. Other equations

can be derived by partially differentiating F, L or H with respect to x, u, p or t.

For example expanding

dH(x,u,p) =0H(x,n,p) dp+dH(x,u,p) dx

dt op dt d0x dt

=1'p-p’'1=0,

which will be found to be related to the Walras law in an economic context.

The foregoing analysis can easily be extended to the discrete case following

Ref(5). The gradient matrices may be calculated using the techniques in Ref(1),
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CHAPTER I1I Singular Homology Theory: Network Theory

We review the application of the topological structure of chain complexes to the
analysis of the electrical network as an optimal system in the light of the results of
the last chapter. Kron's orthogonal network and the associated algebraic diagram are

introduced. We briefly mention scattering theory and network tearing[3—16],

3.1 Topology

Point set topology is the study of spaces in the small, that is the way in which
adjacent points of a space are connected. It is concerned with topological spaces,
with real fields, rational fields, integer fields, compact spaces, Hausdorff
spaces, Banach spaces, Hilbert spaces. It does not matter much what the dimension

of the space is.

Algebraic topology is the study of spaces in the large. It is concerned with
objects and their relationships in n-dimensional space. It does not matter so much
what the point set topology of the space is. It is the study of the effects of

dimensionality upon structure,

One of the implications of homology theory is that the algebraic topological
structure of different n-dimensional spaces are isomorphic regardless of the

differential structure of the underlying manifold[17]

. Imagine for instance two
interlinked toroids in Fuclidean 3-space. These can be approximated by covering

the surfaces with small plane faces or facets. The faces can be represented by a

number of points in our space, with lines joining appropriate points being
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boundaries of the faces. That these simplicial approximations are homotopic with
our original toroids, that is that they can be continuously deformed until they are
identical, and that the topological properties of the linkage has not changed due
to the approximation seems obvious - though is non trivial mathematically
especially in the general case. That the homological structure is independent of
the triangulation used can also be seen, If we now replace our real n-space with
an integer valued discrete n—space, it can be seen that if the scale is made small
enough with respect to the size of the éoroids then the points can be approximated
by integer valued n—tuples. Again the simplicial approximations generated by these
points are homotopic to the original toroids and their homological structure

remains unchanged. It can be seen that the point set topology is irrelevant,

Studying the properties of simplicial approximations to general objects in n-space
is tantamount to studying the properties of n—space itself, Other isomorphisms are
that between the homological structure of a space and the cohomological structure

of its dual: and between a space and superimposed functions (de Rham’s theorem).

3.2 Chain complexes

The notation in this chapter conforms with that of the network theorists, Kondo,
Iri, Roth etc, Romology groups are shown superscripted and cohomology groups
subscripted. An abstract cell Er is an entity bearing an integer dimension, degree

or grade, r. A cell complex is a collection of cells together with
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(1) an incidence relation on pairs of cells Ar<Br—1' relating eg. a surface to its

edges,

(2) a set of integer valued incidence numbers Cab(r) on A, and B__; such that

Cab(r)#O =) Br—1<Ar and

(3) }bCab(t)Cbc(r—l)=0 where it is assumfd that for all but a finite number of b

values either Cab(r) or Cbc(r—I) is 0,
If Br—1<Ar then B__; is a face of A but this does not guarantee Cab(r)#O.

An (orientated) r-simplex Sr is an ordered set of r+1 points or vertices

(P_,P "”'Pr)' A simplicial complex is a cell complex where the r-cells are

o' 1
r~simplexes. The boundary dS of a simplex S is a formal sum of simplices of one
lower dimension with integer coefficients

i L
d(Po,....Pn)=i§0(—1) SN SR )

where the prime means that Pi is omitted. In this case (3) is equivalent to the
statement that the boundary of a boundary is zero ie dd(Po,,,,,pr) gives two terms
in (Po,...,P.',....P.'.....Pr) of opposite signs so that everything cancels. The

O-vertices or faces determine the complex uniquely.

A chain complex is a cell complex where the r—cells are r-chains ie formal sums

C= Aisi and the Ai may be real constants or elements of K-modules, etc. The
boundary of a chain is defined by dC= Aidsi and by linearity ddC=0, Dual cell and

cochain complexes can be defined similarly. This is the basis of Kron’'s network
theory. The Ai are the 'live’' voltages or currents superimposed on the ‘'dead’

network of simplexes Si'
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[4]. Ty is defined

We follow Kondo and Iri 'The group of r-—chains (cochains) Cr (C

as the additive group with the S (s¥) as its basis, then the boundary and

r

coboundary operators d:Cr—)Cr“1 and d:Cr-->Cr+1 also d:C°->0 and d:Cn->0. The set
of those elements of Cr which are mapped to 0 by d forms the group of r-cycles Zr.

The set of those elements of Cr which are images of elements of C forms the

r+1

subgroup of r—boundaries Fr' From dd=0 we have the subsets Cr>zr>Fr' Since the

groups now under consideration are commutative, every subgroup is a normal
subgroup. Therefore the factor groups Cr\zr and Zr\Fr are of interest., Since by

the following

definition Zr is the kernel of the homomorphism d:Cr—)Fr_1

isomorphism may easily be observed: CI\Zr ~ Fr___1 in connection with the first of

the factor groups. As for the latter it is well known that Hr=zt\Fr ~ B *T_ where
Br is a free additive group of rank Rr and Tr is a group isomorphic with the direct
sum of & number of cyclic groups the ith of which is of order tr(i) such that
tr(i+1) divides tr(i). Br is called the rth Betti group, Rr the rth Betti number,

Tr the r-dimensional torsion group, the tr(i)'s the r-dimensional torsion

Qoefficients and Hr’ the r-dimensional homology group. Finally Cr is isomorphic to

represents an r—tree, All the above extends to

the sum Cr ~ zr+Vr where Vr ~ Fr-1

the dual case simply by reversing the order of the indices and swapping subscripts

and superscripts, Therefore the index r+1 must be replaced by r-1 and vice wversa.

r

l‘\urthermore the First Duality Theorem states that B™ =~ Br and TF ~ ’I‘r+1 or

Qquivalently that Rr=Rr and tr=tr+1. In particular since obviously F’=0 and F_=0

n

W - n _ n - - n= = 0= (o] n=
Z° ~ B and Ho ~ Zo ~ Bo and T =0, To 0 also C=Z" and C Zn' From

¢ have H

Yhe fact that a one cell is incident to one and only one O-cell with positive sign
Qnd one and only one O-cell with negative sign, it follows that T°=T1=0 and R%=R
is equal to the number of connected components of the complex. A complex whose
§\dimensiona1 homology group vanishes is called acyclic in the dimension r, Thus
‘:he chain group C is a free group and its basis may be sorted into five types of

Qsis chains distinguished by their behaviour with respect to the boundary and

(4]

‘é“boundaty operators.’ The interrelationships of the various groups are
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summarised in Fig(3.1).

The above description is also applicable to the 2-dimensional complex of a
conventional network in which every r-dimensional cycle (r>0) can be made to bound,
The 1-dimensional homology group vanishes because by definition there exists no

non-bounding 1-cycle, The diagram representing the homological structure of a

network is as follows

-+ O

0 0->2°->¢c%->0

' ? ' d
m2=p% 0->z'->cl-3F%->0
t t d 1

0->z2->c2-F'-30 0
1 4t

0 0

All rows as well as all columns are exact, The relations between topological and

electrical network terminology are defined as follows



The interrelations of various groups such as have been expounded in the abovem

@(S‘D cdn be summarized in the following diagrams.

0 0
¥ 2 L
0—Z;—>Cj—F35-1—0
11-.i_B; 0——sZ3-1 s C3~ mrecocne
”7“i137"+T5"
v
0
0
2 v
...... ._gcl',‘-ﬂ___,p;_,o 0
? Diacran  +1-1
0—sZ;—C5—+F;71—0
'
H;=Bj;4Tj %
v 3
0
2 |
...... — s C) = F)—0
v
0 25— C—0
0 0 '
¥ sy H9=RY
} y ; !
”6:35 0—»2{-——-»(,'{——» ......
¥ v
0 Hi=B]
¥
0
0
¥
...... ._.C'_,_._,P'_____’o 0
’ v
0—2Z]—C]—F],;—0
v
H!=B;+T] :
v 3
Diagran —1-1 0
0
|
Y

Ili:‘:ll,{-f- T!
Y

]
/

In the above diagrams all rows as well as all columns are exact.?’

is said 10 be exact if for each integer r, the image
Especially, 0—+A -5 mcans that /A is a sub-

Vl) A sequence of homomorphisms «--—>A 1A, e
of ¢, :A,.y—>A, coincides with the kernel of Vet A, AL,
group of B, (1-»B-»0 means that A is mapped onto B; thercfore 0-»A—~+B-»C-»0 means that C=B/A, and

U->/-»B-»0 means that A= B, ctc.
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| topological terminology | network terminology |
| e em e - e e e e -

| 0-cell I node |
| bounding O-cycle | node-pair |
| basis of 0—-dim. non cocycles | independent nodes |
| 1-cell | branch i
| 1-cycle or boundary | loop |
| 1-cocycle or coboundary | cut—set or star |
] 2-cell | mesh |
| basis of 2-dim. non cycles | independent meshes |

Co' C1 and C2 are the groups of nodes, branches and meshes and Fo and F1=Z1 the

groups of node-pairs and loops respectively.

3.3 Networks with superimposed physical quantities

Ve have so far investigated the connection relations of elements of a2 network ie,
the properties of a network as a lifeless object. A network (or system) however,
becomes a due object of investigation only when some physical quantities such as
currents and voltages (inputs, states and outputs) are superimposed on it, or in
other words, when it becomes live, In this section, in order to investigate a live
network we shall deal with the groups with superimposed physical quantities as the
coefficients, Specifically we introduce the time factor into our analysis by
considering modules of polynomials in s over a chain complex. In general, physical
quantities, such as current and voltage, form an additive group: when their
instantaneous values only are of importance, they can be considered to belong to
the field of real numbers: when they are regarded as functions of time, or more
generally as distributions with respect to time, they should be considered to
belong to a certain topological group of the respective functions or distributions:
when the steady state analysis of a linear alternating current network 1is our

concern, they can be regarded as belonging to the field of complex numbers, etc.
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In any case we denote by K the group to which the respective physical quantities
belong. In the most general case K may be a principle ideal domain and our

manifold is a chain complex.

Tn his topological analysis of Kron's method of tearing, Roth[7] studied the
isomorphism between the middle short exact sequence of the above diagram and its
dual (see also Fig(3.2) showing the substructure of the problem in network theory

notation)

o->r (x)->¢ (&) 95p° (K)->0

0(—H1(K)<—C1(K)(EPO(K)<—0

Hu Kondo Roth
cycles  H (%) AL B (K)
1 1 1
chains HI(X.A) C C (X)=R (K,Ko)
boundaries BO(A) F° P°(K)

Comparison of notation

The table should clarify notational differences which appear to have caused
problems in the past, particularly because Roth calls Hr(x) the r-dimensional
homology group instead of Hr(K,Ko). Jt only shows correspondences between the way
the authors use the variables, not the groups themselves - ie it depends whether
one looks at the homology sequence or the chain complex. Ko is the O-skeleton of
points. The topologist Steenrod defined the property of 'ohmicness’ (generalised
power definiteness) of the isomorphism H ~ H* for the general network problem to

have a unique solution,



Fig(32) Chain groups in the elecmical Neork problem

T-YE

histed I‘“"’“
isomorphism

E-ZL

Fig(s-e;) Roﬁ\‘s diagmm for the elecvicol nebvork problem



Singular Homology Theory: Network Theory Page 53

Roth describes the process of solving the network as 'an untangling of a twisted
isomorphism between the homology and cohomology sequences of K modulo its zero
skeleton’ (see Fig(3.3) showing the substructure of the group homomorphisms). Note
how Branin's diagram has to be redrawn to show Roth's twisted isomorphism, BRranin
ignored the underlying topological structure of the network and considered mappings

between the spaces of the superimposed algebraic structure ie the coefficients of

the homology groups.
Now define the vectors
i of b branch currents and
I of corresponding generators,
i' of m mesh currents,
e of b branch voltages and
E of corresponding generators and
e’ of n node-pair voltages,
then Roth’'s isomorphism becomes Ohm’'s law E+e=Z(I+i) or I+i=Y(E+e) where Z is the
diagonal matrix of ©branch impedances. Kirchoff’s voltage and current laws are
represented by the top and bottom sequences of Roth's diagram, We define a bxm
matrix C relating mesh and branch varisbles where the incidence numbers
cij=(1,—1,0) if the ith orientated branch is (positively, negatively, not) incident
to the jth orientated mesh., Each branch or ’primitive network’ consists of one
impedance (R,L,C) and one source (I,E). In a similar way define the nxm matrix
relating the mesh and node variables then the following diagram commutes (ie. we

get the same answers whichever way round we follow the arrows) and the rows are

short exact hence A'C=0 where A' is the transpose of A,
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Y

wd
[T e s
e
=<
< Il O + [T m——
>
O  Mm———— ey

This is Branin's form of the diagram (see also Fig(3.3)) actually due to Roth, By

following the arrows around we obtain

C A v=Z) J=YV
0->i'=>J->1'->0 E+e=Z(I+1i) I+i=Y(E+e)
~ ~ o~ C'e=0 Kirchoff A'i=0
0¢-E'<-V<(-e'{~0 C'E=E' A'I=T"
C' A i=Ci' e=Ae’
mesh branch node i'=/(C'ZC)C’ (E-ZI) e’'=/(A'YA)A' (I-YE)

As can be seen the solution for i’ (e’) can be written down directly by following

the arrows round the right (left) hand side of the diagram,

These solutions are a result of the inherent energy minimisation
minllill =minllell or d i'Zi=0 d e'Ye=0
e! z i Y de' dai’
The dual of this in the sense of de Rham's isomorphism is distance minimisation
over the underlying manifold considered as a metric space. Another equation we can
of course invoke is that of power invariance under coordinate transformation, that

is ie=i'e’ (cf energy methods in electromagnetic theory),.
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3.4 The orthogonal network

Kron[14] retaliated to criticism of his method with regard to the use of singular
connection matrices, by including extra 'open meshes’ in the branch to mesh
transformation resulting in a square C. Consider the mesh method and define (1) a
spanning tree of t branches with independent currents over the network: the b-t
cotree branches are called links, (2) a 'set of b paths through the network
consisting of m closed paths or meshes and b-m open (lamellar) paths, which give
enough degrees of freedom to take all the current into account, We perform a
non-singular transformation from tree and link branches to open and closed meshes.
¥e make a minor change in notation from Branin's to Kron’s in that we now show
lamellar varisbles in large letters and solenoidal variables in small letters,
This only means that e and E are interchanged. Kron also showed current related

variables superscripted and voltage related variables subscripted,

Nicholson[6] showed as follows how the solution to the orthogonal network problem
could be exhibited as a scattering product involving two consecutive obstacles,
'The general electrical network problem includes the connection of b-primitive
branches specified by E+e=Z(I+i) or V=ZJ where Z is a symmetrical impedance matrix
for the primitive network and e,I represent branch voltage and source current
vectors respectively. In the orthogonal formulation the branch connections are
defined in terms of square non—singular connection matrices C=[Cc Co] and
A=[A® A%]=/C' related to specified closed and open paths containing variables
iC-,ec' and Io"Eo' respectively. The open meshes can always be chosen to pass
through the tree branches resulting in the form of connection matrix shown below.
Yn the connected network

J=[C ] ic'1 and V=[AS AO][e "1
c o {IO'J LES ]
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and with specified trees and links

tec ,t
c=[C AtCT
I.C lc AlOJ

A=TA

tc LA

JIFre, 171,
lc Io ]

IR

where 1 is the unit matrix. The branch variables E,i and the tree-branch

Eo' and mesh currents i°’ are related by

1=A%E ", i={:;]=cci

——

E=[E t
LE,

The branch variasbles are also constrained by the Kirchoff laws

C,'E=0, A°'i=0, and E'i=0,

New equivalent sources €

branches respectively, with

1. I= [I 1=C 1°'~rA '11

e, 1=A%_'=[0
¢ Lrl Lo

e=[ ¢
leIJ LC el

'e and 19/=A0"1 represent equivalent induced mesh-voltage and

where o '=C
c c
current sources respectively with arbitrary sources e,I,

and rearranging gives the solutions

. b ,vd L8 d o
[i®9=f =2z /2 I°IY0/Y Y —Y Yoy
LE_* ] lzd—zc/z:z: :JL J L yd d “ile ')
where
[z, z,1=c,’ 1z, ¢, 11 rc 'Z.C +Z, C 'Z 1
Lz? zbJ L1t olt ® z, Jitodt®t :c: 1t z:J
re8 votero 1, Uyt W01 Y YA
Lye y9) L1 alrdl vliin all taley! ytealeylal)

The usual mesh and node solutions are included with i=L(e-ZI) and E=M(I-Ye)

represent the

L=C_/(C_'ZC)C ' and M=A®/ (A®'YA®)AC ' =2-7127
C

branch impedance matrices respectively.

Page

It are then referred to the links and open path or

56

voltages

tree

nodal

Combining the equations

where

branch admittance and
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Kron generalised the conventional electric network to a k-dimensional polyhedron or
wave model. The electromagnetic structure formed by interconnecting two or more
wave models into one mnetwork is called a 'multidimensional space filter’., The
equations represent the orthogonal formulation of the electrical network problem,
and a similar form is used to characterise each ’'isolated' higher dimensional
network, The square connection matrices as well as their four submatrices
(boundary operators) can be arranged into an algebraic diagram as illustrated in
Fig (3.4). Rectangular incidence matrices M(i) of —-1,0 and 1 elements interconnect
the spatial elements in adjacent networks, such as branches with nodes or planes,
and are related to the boundary operators or partial connection matrices Cc' A° for

the ith and i+1th networks with
C_(A°(i+1) "=M(1), C (1) 'A(1)=0, M(i~1)M(1)=0, L(1)N(i=1)'=0,

It is emphasised that with an isolated q-network, =no incidence matrix M is
associated, only a connection matrix C or A. The transformation diagram includes
residual type operators directed horizontally between similar closed and open path
variables, with dimpedance -~ admittance type projection operators projected

vertically between the closed and open path dual variables,

Kron introduced a concept of wave propagation into the polyhedron model, with a
transverse electromagnetic wave associated with closed path dielectric and magnetic
variables (d(i)',e(i)) and (h(i),b(i)’') respectively, and a longitudinal wave
associated with open path dielectric and magnetic variebles (D(i)’',E(i)) and
(R(i),B(i)') respectively where the primed variables are differentials with respect
to time. Propagation proceeds from the O-dimensional points to the higher
dimensional network elements, and induces electrical and electromagnetic variables,
consistent with the form of Maxwell's field equations. A cycle of ‘open—circuit’

wave propagation repeats after each two dimensions and is represented by the
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general steps
b(i+1) "+B(i+1)=Z(i+1)/M(I)Y(i)M(i-1)"(b(i-1)'+B(i-1)"'), i=1,3,5,...

where b(0)=0, the primed variables are differentials with respect to time and
/ML) = Cc(i)Ao(i+1)' = Co(i+1)A°(i)' which can be identified with the operation
curl—1 in the continuum, EKron noted that (1) in passing to the next higher
dimension in a horizontal direction the transverse (solenoidal) waves or the
longitudinal (lamellar) waves alternately disappear, (2) in propagating across the
material network in a vertical direction a missing portion of the wave reappears
and (3) after each two dimensions the cycle of annihilation and creation of an
entire electromagnetic wave repeats itself. Kron associated the variables
d(i)'+D(i)' and b(i+1) '+B(i+1)’' of the polyhedron model with the ith and i+1th

i+1 of the estimation problem: the

order divided differences (1-z N1 and (1-271)
minimisation of error being associated with that of energy. Similar properties may
be derived using the scattering representation of a flow process, and this also
provides an analytical basis for many of the physical concepts discussed by Kron.
The scattering formulation includes inherently the effects of interaction " between
coupled obstacles or networks compared to the open circuit prqpagation across the

polyhedron with a pathway defined by the incidence matrices M(i) which apparently

avoids the necessity for considering such interaction,

The interconnection of physical components will in general introduce an effect of
mutual interaction or feedback, with the subsystems being influenced by and
reacting with the adjacent subsystems. The scattering problem, concerned with the
interconnection of obstacles in a flow process defined in terms of incident and
reflected variables, introduces similar effects of reaction within a combined
scattering matrix relating the input and output variables, The solution matrix of

the orthogonal network can be decomposed into a Redheffer star product
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r —/Zazb [2,V°[Zy O V[-/2, /Z,7=[C "2, 0 1*[-1 170/Z,
de-zc/zﬂzb Zc/ZaJ de z 1L-/7 /zaJ L Z, zt(‘tJ L-1 1
b,od va b ,udyc d d b & dyryl,1 1
[Y°/YS YO-Y /Y YU =[/Y, ~/Y 1*[Y Y 71=[1 -170/Y"*[Y A Y,
L /yd —7y9v¢] L/y? -/¥9) Lo y©J L1 -1 Lo alvyly

where o is the Kronecker or tensor product, The star product can thus represent
the form of an orthogonal network solution and illustrates a basis for connecting
network tree and link elements., Jt may appear that the solution does not introduce
inherently the properties of a return difference operator. This would be supported
by Kron's reference to the polyhedron model as an open c¢ircuit structure of
networks, however the orthogonal network solution can be considered to contain a
return difference effect within the off diagonal elements and thus includes the
ability to incorporate a priori information., In the scattering problem this effect
and the return difference operator are introduced into each successive stage of the
nmultistage process by the effects of the connecting zone between adjacent
obstacles, in contrast to the connection of adjacent orthogonal networks in the

polyhedron model based on the incidence matrices M(i).'

3.5 Tearing

The process of tearing involves the removal of just enough complete branches to
split the network up into a number of unconnected subnetworks., This collection of
removed branches is known as the intersection mnetwork and should preferably be
taken from the most loosely coupled branches of the original network. Kron
emphasised that mere partitioning of the network equations is & far more difficult
task to perform efficiently than that of tearing the network as information is
actually lost in formulating the equations from the network., For the mesh method

(6]

with voltage sources , Ohm's law of the intersection network is
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where Z is a diagonal matrix of known nodal impedances and i and e are unknown
vectors of equivalent current sources due to subdivision, and nodal voltages across

the removed branches, respectively. For the subnetworks

Zi= +e

where Z is the block diagonal matrix of known mesh impedances, one block for each
subnetwork, and E, i and e are partitioned vectors of known voltage sources,

unknown mesh currents and unknown equivalent voltage sources of the torn branches

respectively. Also

i=Ci and
e==C'e

where C is a partitioned connection matrix relating the intersection network to the

subne tworks. The fundamental equations of diakoptics can thus be written

Substituting and using Householders formula the unknown mesh currents are

i=/(Z+C'20)E e (1)

=(/2-12C" 1 {/7+C1ZC" ) C/DE e (2)
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Now computing equation (1) involves inversion of Z+C'ZC which is of the dimension
of the total number of meshes of the original network. Computing (2) involves the
inversion of Z, a block diagonal matrix in which each block is of the dimension of
the number of meshes in the associated submetwork, and of Z, the diagonal matrix of
intersection impedances and /Z+C/ZC' of the dimension of the number of branches of
the intersection network. Thus equation (2), the basic equation of Diakoptics
results in a considerable saving of computational effort, JIn a similar way Onodera
developed the dual node method with' current sources or codiakoptics which

effectively allows the removal of nodes rather than branches. The fundamental
equations of codiakoptics are

ry -s]rs1=r11
Lc' ziLil LolJ

Kondo’'s generalised diakoptics allows each subnetwork to be solved by either the

mesh or the node method, whichever is the most convenient.
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This Chapter looks at the space of exterior differential forms or de Rham Cohomology
Theory and its relationship to vector and temsor algebra in the small. Boundary and
Coboundary operators and the Hodge * operator are introduced, putting the analysis
into the c¢ontext of General Homology Theory. Maxwell’s equations for electromagnetic
Waves are displayed on an extended form of Roth's diagram and Branin's network model

is shown to be the basis of the Finite Element Method.

4.1 Exterior differential structures

The study of differential forms[1 - 4] generalises the concepts of gradient,
divergence and curl of a vector or temsor field to higher dimensional spaces. Let
R be the field of real numbers and L an n-dimensional vector space over R. For
each p=0,1,...,n we shall construct a new vector space VPL, the space of
differential or exterior p-forms on L. We begin with V°L=R, vli=L  and
dim(VpL)=nCp=n!/(p!(n-p)!). 0O¢p¢n. Exterior p-forms are objects that occur under
an integral sign or as the result of a differentiation, For example a 1line
integral takes & 1-form in 3-space w=Adx+Bdy+Cdz, a surface integral takes a 2-form

w=Pdydx+Qdzdx+Rdxdy and a volume integral takes a 3-form w=Hdxdydz. The absence of

terms dzdy, etc suggests some kind of symmetry. The absence of terms dxdx, etc

suggests skew—symmetry.
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The exterior product of two one forms is a generalisation of the cross product of

two vectors

gl?32=(A1B2—BIA2)dxtdy+(B1C2—C182)dyfdz+(C1A2-A1C2)dzfdx

In general f:VpLquL~>Vp+qL. The wedge product obeys the distributive law and the
alternation rules dxtdz=-dztdx etc and dztdz=0 etc., Tt is not commutative. Note
that the t is often ommitted so that dxtdy=dxdy. The exterior product thus
represents an element of area with a ro;ational orientation. The cross product is
a vector mutually at right angles to both w, and w,. We write ¥itw, =¥ (w aw,).
Misnor and Wheelerll] visualise the exterior product of two 1-forms as a honeycombd
or eggcrate structure, independent of the z-axis, with a rotational arrow in each
tube produced. Imagine a stationary bundle of straws each rotating in the same

direction. The tubes are narrow and their cross section is irrelevant, but their

number gives the magnitude of the 2-form.

A p—form can be expressed in terms of the components of a skew—symmetric tensor of
rank p in a general coordinate system

= dx t...td
¥ %T 2 Aab...p xa xp

An alternative formulation as the ordered sum over a set of p-tuples can be made.
Fxterior multiplication of forms must satisfy the associative law, unlike cross

multiplication of vectors. Further for a p-form w and a g-form v

wtv=(-1)P ¢y if p+q¢n (anticommutation)

=0 if p+q’n,
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The inner product of two l-forms in 3-space fl-!2=A1A2+B1B2+C1C2, often written

(!1.!2), with heavy or double brackets, In general .:VPLxVPL->R. For two p—forms

!=!1f!2...?g and !=v11!2...fyp the dot product is given by the determinant of the
matrix whose ijth element is !i’xj‘ Tt follows that the inner product of a p-form

and a g-form is nonexistent and further that the inner product is commutative and

distributive.

The 1-form wxv is known as the dual of thé 2-form wtv, as above. Hodge defined the

star operator
wtv=ew,vds, *:VPL->V'PL
where * being monadic operates first, ie only onw, and ds is an n-dimensional

volume. The star operation on w gives the dual n—p form *w, Its value can be

found by equating coefficients. Wheeler has shown that for the general case
‘.z: (-1) np+p+s!

vhere w is a p—form in n-space and s is the number of minus signs in the inner

product of the base vectors,

The gradient of a scalar is an example of an exterior derivative, This can be

generalised using the rules

d(wtv)=dw+dv, g(gf!)=g!1!+(—l)pg1g1 and d(dx)=0.
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, +
We have Q:VPL->Vp 1L. Note that the gradient cof a scalar is the generalised curl
of a O-form dw, the conventional curl of a vector is the dual of the generalised
curl of a 1-form *dv. A p-form w is called closed if dw=0 and exact if there

exists a p~1 form y such that w=dv.

The generalised divergence takes a p—form into a p-1 form, The conventional
divergence of a vector gives a scalar. The extension of this concept to a p—form
is in three stages (1) the dual of w gives a n-p form *w (2) the exterior
derivative d*w takes the n—p form into an n-p+1 form (3) a dual of this n-p+1 form

gives the required p—-1 form *d*w. Wheeler defines the divergence or codifferential

operation as
22:(_1)np+n+s+1.g.z.

If w is a p~form and v is a p+1 form then (dw) .v=w.(dv). This may be interpreted

as saying b and d are adjoint,
The Laplacian of a vector w is written in vector notation
grad(divw)-curl(curlw)) or d(d.w)-dx(dxw).

In the notation used in differential forms, the Laplacian of a p—form in n-space is

L=dbw+bdw. We have L*=*L.

— —

L is self adjoint ie Lw.v=w.lv. The form is called harmonic if the Laplacian of w

is zero, then dw=0 and bw=0,
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If w is a p-form then the second differential

In Euclidean 3-space the application of this equation to a scalar a and a vector v

gives

*dda=0 and *d*(*dy)=*d(dv)=0.

This is a way of expressing the well known equations curl(gradient)=0 and

div(curl)=0.

Bodges theorem If w is any p-form then there is a p-1 form v, a p+1 form u and a

harmonic form y such that w=dv+bu+y, where dv, bu and y are unique. This is the

generalisation of Helmholtz theorem in 3-space., Euclidean space can be decomposed

as the direct sum
Ep=£Ep+Hp=g_b_Ep+P_dEp+Hp=ng—1 +_§Ep+l +Hp

where HP is the space of harmonic p—forms, the space orthogonal to LEP., We define
the Green's operator g:Ep—>LEp by setting Ga equal to the unique solution of

Lw=a~Ha in LEP, G commutes with d, b and L or any operator which commutes with L.

From the Hodge theorem LG+B=1,

The generalised Stokes theorem
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§ds!=jsgﬁ

where w is a p-form, to be integrated over the p+1 dimensional boundary of S and dw

is a p+1 form to be integrated over the p-dimensional region S,

As yet we have made no mention of the time factor in our analysis. Again the most
general case is that of modules of polynomials in s over the chain complex of

exterior differential forms. We consider Maxwell's equations for electromagnetic

fields.

4.2 Network model for Maxwell’s equations

Branin[sl has generalised Kron's 2-network analysis to that of a 3-network of
nodes, branches, meshes and volumes, This completely describes the 2-network
problem with inductive linkages in the sense of Kondo and Iri and provides a useful
introduction to Kron's network model of Maxwell's field equations which it

describes. Branin gives the transformation diagram for a simply connected

3-network as follows

volume meshes branches nodes
C C
GRS & ig L 0, ¢,
Y34 J 0 i St o
Y4 I -y i°
Yt
e <- E, Y°4
8 {- e2 {—~ E1
c.,' O (- e (~ E
23 c 1 c . o
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The middle square does not commute. The basic theorems regarding boundary and

coboundary  operators C01C12=0 and C12C23=0 hold, also Y3=/(C23'22C23) and

Y°=C01Y1C°1'. As the Betti numbers of a simply connected complex are all unity,

that is the homology groups all vanish, the dimensions of the subspaces are

Subspace Dimeqsion
i%,E =n_-1=rank(C_,)
B, eq P (=1, rank(C_,
1
i ey p2=n1—p1=rank(C12)
3 - - = =
i“,1 req P3=n,"P,=nj rank(C23)

where the n, are the numbers of j-cells in the 3-complex. Corresponding to the two

J

Eirchoff laws for a linear graph are four such laws for a 3-complex

2, c..i%=0 or i%=c,, 13

1
12 231

qi1=0 or il=c

¢ 12

c

= ' = =
12',1=o or °1‘C01'E1' C23 e, 0 or 2 C12'E2.
.

Similarly, there are two expressions corresponding to Ohm’s law
2
iLex'=y! (e +B,) or i7+17=¥"(e,4E,).

Branin states that he 'originally expected to find two versions of the 3-network
problem analogous to Roth's electrical network problem for a linear graph, However
every attempt to set up and solve a Roth type problem, with i° and e, specified has
failed - apparently because such a problem is underdetermined. The only 3-network
problem which the author has been able to define and solve corresponds roughly, to
the electrical network problem — but with notable differences. Specifically one

1 2 2 1

cannot assume arbitrary vectors I, E,, T%, B, since E, and I are determined by I

and E2. The 3-network problem, then is
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given (1) a simply connected 3-complex and its connection matrices C 1 012 and
)

2

. . 1
C,3, (2) the isomorphisms Y and Y" or Z, and Z, and (3) the arbitrary vectors 1!

and EZ’

2 2

find the vectors iI, i“, 17, 13

and E , F., e;, e, such that Kirchoff's and Ohm's

laws hold.’
Branin derives the solutions

_ vl ' 2 , . 1

2, 20 1y 1 2 2
T22/(Cy " (/(Cy,¥%C 5 )=21)Cqp) €y (Zy T+ (C Y C1p ) C Y 7E,),

1 1

_ vl
Eo—/(colY Col')col(l Y El)'

3_ g2
I°=/(Cy5'2,Cyq)Cpq ' (Ey-Z,17),

1 .2
and obtains i ,1 184589 from Kirchoff’'s laws. These equations are related to the

discrete Riccati equation.

Maxwell’s equations summarise the macroscopic electromagnetic field theory. In

vector notation
cur1E=—-dB/dt, curlB=J+dD/dt,

divB=0, divD=p,
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B=pll, D=¢E and J=cE

where E is electric field, H is magnetic field, B is magnetic flux, D is electric
flux and J is electric current density. p is electric charge density. p, & and o
are the permeability, permittivity and impedance of the medium respectively
(equivalent to L, C and R.) From B=curlA we have curl(E+dA/dt)=0 with divA=0 (or
divA=-eudv/dt which is the Lorentz gauge and is equivalent to the continuity

equation) hence g+dé/dt=—gtad(v). where A is the vector magnetic potential and v is

the scalar electric potential., Under the Lorentz gauge from
curl(curlA)=grad(divA)-div(gradA)
2 2 Ao

we obtain ped A/dt"-AA=pJ

s 2 2
and similarly ped“v/dt“-Av=p/e,
the wave equations, where A=div(grad). An extended version of Branin’s diagram |is
shown in Fig (4.2). Further we can find from div(J+dD/dt) = div(oc+de/dt)E =
(c+de/dt)p/e = O that op+edp/dt=0. The Poynting vector or power flow P=ExH, the

Poynting theorem is divP=sB.H+E.(sD+J). By defining the natural set of 1-forms

Maxwell's equations become
*4E=b*E=-sB, *dR=b*H=J+sD,

sd%B=bB=0, *d*D=bD=p. Maxwell'’s equations can be further condensed as one spinor

equation.
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From Stoke's theorem and Gauss' theorem

§dS-=—jjs'SB' §dsﬂ=jjs'(l+82).
§Jdv'§=0' §Idv‘2=fjfv*p.

where dS is the boundary of a surface S and dV is the boundary of a volume V.

(4]

These are Maxwell’'s equations in exterior integral form. Lyan goes on to derive

Maxwell’s equations in space time coordinates and as tensor densities:

- — P
dE /dx-dE, /dy==e,  dB /dt,

- - P
dHy/dx dB_/dy epxy(J +dDP /dt),
dBP /dp=0 and dp® /dp=p,

in Cartesian coordinates where all differentials are partials and p is an arbitrary

direction, Again the metric tensor appears in arbitrary coordinate systems.

Maxwell’s equations can be used to construct a network model of fields in free
space. This is equivalent to the method of finite differences in which the space
is discretised with a regular Cartesian mesh, The region is first subdivided and
then integrations performed in the subregions presented as network quantities.
¥When Maxwell’s equations are expressed in exterior derivative form the network
model will be independent of the choice of coordinates. Kirchoff's voltage and
current laws for the network are interpreted by the relation ddw=0 for differential

forms. Stoke's theorem reduces some of the surface and volume integral's to 1line

and surface integrals. In this form they interpret Faraday's and Ampere'’s laws,

The model developed by Kron, see Fig(4.1.1), makes use of ideal transformers in



De Rham Cohomology Theory: Field Theory Page 75§

addition to resistors, inductors and capacitors. However it is difficult to
display Maxwell's equations in an algebraic diagram based on Kron’'s model,
therefore Lynn introduced another mnetwork model, see Fig(4.1.3), in which the
integral's of the differential forms of electric field are lumped into the branches
representing the edges of each block of the discretisation, Fach edge of each
block in the Cartesian mesh is replaced by a primitive electric circuit branch
consisting of a voltage source in series with a resistor and capacitor in parallel,
This in fact is a standard procedure in network analysis and design, Considering a
branch parallel to the x—axis and taking the x component, or the dual dydz
component out of each term in Maxwell's equations the voltage across the RC pair is
Exdx. The current through the resistor is deydz and through the capacitor is
oD*dydz. The conductance and capacitance respectively are odydz/dx and jwedydz/dx
using complex algebra where w is the frequency in radians., From dxA=B the voltage
across the ideal source is oAxdx due to the mesh current Bxdydz. The voltage
across a branch is thus oAxdx+Exdx. The total impedance of the branch is
1/(o+jwe). Maxwell's equations can be reconstructed from the network in the
obvious way. In a similar way the relationship between the surface and volume
variables (2-network) can be developed. Branin’s and Lynn’s algebraic diagrams for
the network field model are shown below, A Venn type diagram is shown in Fig(4.2).

This should be compared with Branin's diagram for a 3-network.

The most important question left open on the subject of partial differential
equations is the insertion of the boundary conditions into Roth’s diagram for the

Homology Theorem which is of course essential for solving real problems!
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\ﬁg (&3 Rn example of the confusion sumounding duol Yy (IEEESpectrum)

" Nelp wanted
b\Jallty is & useful concept in circuit theory.

: L'lllng it, one may take a circuit and a true

the “‘medium’ of electromagnetic radiation
is continuous and cannot be construed as a
planar graph.
Timethy Jordanides
California State University
Long Beach, Calif.
1. Whitney, H., “Nonseparable and planar graphs,”

Trans. Amer. Math. Soc., vol. 34, no. 2, pp. 339-362,
1932

I=f Jeds
s

and the application of Gauss's theorem. The
relations between the voitage registered by
a voltmeter connected in paralle! across a
circult element (L, R, or C) and the current
registered by an ammeter placed in series
with i are derived from Maxwell's equations

(4)

> Natement regarding I, perform the dual

Lransformation on both, and obtain another 2
e statement regarding another circuit. Cir- t
< St theory is based on Maxwell's equations.
i:_;"\ereforo, duality must be inherent in them.
2 Ne would guess that two of the equations
st be the duals of the other two. How--
¥ Ver, this is not obvious from their usual for-
‘:"‘Ulatlon. | have made local inquiries con-

?;;h:rnlng ways of formulating Maxwell's equa-

in many texts (see, for example, W. H. Hayt,
Jr., Engineering Electromagnetics). This
contradicts the statements cited above.
Equations (1) and (3) suggest the fol-
lowing dual pairs In Maxwell's equations.
E: Electric field J: current density
A: Magnetic vector D: displacement div
. potential curl
Stokes' theorem

“Ming, M., Electric Networks. New York: Wiley,
op. 198-201,

Circuit theory is not based on Maxwell's
equation, It is founded on the definition of
flumped elements (resistance, capacitance,
etc.) and of two rules of connection (Kirch-
hoff's laws). If one writes this set of equa-

tions, it is directly apparent that the inter- Gauss's theorem

i
$_Qng guch that the duality principle Is Imme- (‘ change of voltage and current ylelds the closed path closed surface
fif“litoly obvious from them. | have met with | same set although some equations are B: magnetic flux p: electric charge
‘“le success. Therefore, | now call on the transformed Into another equation of the density density
'k'gev community for assistance. set. This is the only basis of duality that Is a A: magnetic flux {1: electric charge
"« The word “duality’’ Is ambiguous. | am property of Kirchhoff's model for electric linkage

 ea 2NCerned with the principle that regards as

:"\"al pairs: mesh and node; KVL and KCL:

‘2 Jhage and current; series and parallel: etc.
‘i 8M specifically not concerned with the
; "‘nclple which regards as dual pairs: B and

*HandE.
Any information on this equation will be
Rpreciated.
John A. Baldwin, Jr.
Dept. of Electrical Engineering
University of California
Santa Barbara, Calif.

Maxwell or Kirchhoff?

| agree with John A. Baldwin, Jr. (Oct. 1975,
p. 26) that duality Is a very useful concept in
clrcult theory. On the contrary, it is very ne-
bulously defined in electromagnetic theory.
This perhaps can support the thesis that
“'circuit theory is based on Maxwell's equa-
tions"” is a miconception. Rather, circuit
theory is based on graph theory and Ohm’s
law and Kirchhoff’'s laws. The word ‘‘dual-
ity in circuit theory Is very unambiguous.

The parallelism between mesh and node,
KVL and KCL, voltage and current, etc., Is
very striking. Two circuits are called dual if
the corresponding graphs are dual. The pur-
pose here is not to discuss the abstract
properties of dual graphs but simply to state
the result, which is: The necessary and suf-
ficient condition for a network to have a
geometrical dual is that it Is a planar net-
work.! Rules for finding the dual of a net-
work, once It is determined that it has a
dual, are fairly well known to circult theo-
rists.? In matrix form, the duality condition
bot-aen two networks Ny and N can also
L ted as A, = B, where A, is the Inci-
dent matrix of Ny and B3 is the loop matrix
of Nj. Furthermore, the number of branches
of Ny and N, must be equal and the rank ot
Ay must equal the rank of B,. Thus, the cor-
respondence between the nodes of N,
(rows of A;) and the loops of N, (rows of
B,) coupled with the correspondence be-
tween the branches of Ny and Np constitute
the duality conditions.

The reason why Maxwell’s equations can-
not be formulated to reflect the principle of
duality lies, in my opinion, in the fact that

]

cireuits.

The Maxwell model is totally different.
For Instance, it relies on the existence of a
three-dimensional space that Is totally Ig-
nored by Kirchhoff's model. As a resuit of
these different axioms, one model yields
partial differential equations and the other

However, there are difficulties involved with
going further. For example, the equation D
= ¢E has the dual A = ?J, which appears to
be nonphysical. .
Although the existence of duallty in
lumped-constant electromagnetic theory
does not guarantes its existence in the con-

Forum

ordinary differential equations. This stresses
that the two mathematical models, although
applied to the same physical phenomenon,
enjoy different properties. One should not
expect duality to be a property of Maxwell's
model because it is a property of Kirchhott's
model.

The letter raising this interesting problem
points to a basic flaw in engineers' educa-
tion. Much too often, there is a total confu-
sion between the models and the physical
reglity. They are so well identified that one
expects the same properties to belong to
the one end and to the other. Then, it is
quite natural to expect ditferent modeis to
enjoy the same property.

Jacques Neirynck
Ecole Polytachnique Fédérale de Lausanne
Lausanne, Switzerland

| would take exception to Prof. Neirynck's
response, particularly the statements, ‘‘Cir-
cuit theory is not based on Maxweli's equa-
tions. It is founded on the definition of
lumped elements (resistance, capacitance,
etc.) and of two rules of connection (Kirch-
hotf's laws) . . . The Maxwell model is totally
different.” *

All five of these lumped-constant equa-
tions are derivable from Maxwell's equa-
tions. Kirchhoff's voltage law (KVL) follows
from

curl (E +ﬂ) =0
at

a
v.,=—f E-di
b

and the application of Stokes' theorem.
Kirchhotf's current law (KCL) follows from

h)]

(2)

div(J + 22) =0 (3)
at

tinuum version of the same science, there
Is, on the other hand, no reason to rule it out
categorically.

Duality Is also a property of the lumped-
constant science of mechanics: mass,
dashpot, spring, Newton's force, and veloci-
ty laws. However, local Inquiries have come
up with no evidence of duality In continuum
mechanics. There are too many colnciden-
ces for duality to bs an accidentat property
of lumped-constant scisnces.

| thank those who responded to my origi-
nal inquiry. However, the question remains
unanswered. Briefly put, it is this. The five
equations of linear lumped-constant circult
theory are

diy
v, =[—
T

Va = gR — r/G

dve
Ic =C—
c
Z h =0 (KCL)
node

2 v =0 (KVL)
mesh

It one performs the transformation / <+ v,
L C R+ G KVL « KCL, megh «
node, one ends up with the same equations
but in a different order. s there a similar set
of transform pairs that changes the equa-
tions of continuum electromagnetic theory
into themseives?

John A. Baldwin, Jr,
University of Calitornia
Santa Barbara, Calif
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volume meshes branches nodes

grad curl div
0 ————p #]] ——— J4+§) ————# sp

I —nd ot+ed ~
dt dt
0e¢—— -sB4—— E,sA€¢&—— v
div curl grad
Branin
& ) &
0 > *H » J+juD ———r jup

o —jop J j ctjuwe ~

04— —%juB +—E, juA¢—— v
9 d ]

Lynn

4.3 The finite difference method

An efficient method is given for solving the finite difference equations of a
Laplacian field over a finite region. The area is split up into rectangular

subregions and a new algorithm for solving each subregion is presented.

Lynn[4] states that the network model for the region of space studied is
established by first dividing the region into subregions small enough to give the
desired degree of accuracy. The subregions are blocks formed with edges de' dxz
and dx3. In fact the 1limit as dxi-)O does not have to be taken to produce an exact
solution for each point, This is the method of finite differenceslIz] or finite

elements. For example consider Laplace’s equation in two dimensions for a scalar

potential, (38+63)a=0, with given boundary conditions. De Rham's theorem not only

justifies the finite element method but also differentiation by limits,
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Laplace’s equation over a region in two dimensional space is usually solved on a
computer using the finite difference method. This involves covering the region
with a regular Cartesian mesh, The potential of an interior point is given by
ao=(aN+aS+aE+aw)/4, the adjacent potentials at each point of the compass, with
similar formulae for points adjacent to the boundary. The equations are exact and
involve no discretisation error, They are usually solved by relaxation — an
iterative Gauss-Seidel process which scans through the points in turn in some
predefined order updating the current estimate of the potential at a point in terms
of the values at the surrounding points. Convergence can be improved by using
Carre's method of successive overrelaxation which overestimates the error by an

optimal factor.

The method is quicker than the finite element method which relies on direct matrix
inversion by ordinary methods, but does not result in an explicit matrix inverse
hence the problem must be resolved for every new set of boundary conditions. Much
more efficient for this kind of problem are methods of partitioned matrix
inversion, or tearing[ll. Systems of this nature typically result in the inversion
of a tridiagonal block matrix which can be solved for a particular right hand side
(set of boundary conditions) by the partitioned matrix version of the Thompson
algorithm — or inverted by the block staircase method. With a further 1level of
partitioning we can prove what we hope to be an even more efficient inversion
algorithm for subregions of the problem. This method has the advantages that (1)
it is efficient, The conventional way to estimate the speed of an algorithm is to
calculate the number of multiplications necessary to achieve a desired degree of
accuracy. Assume we are working on a machine with a wordlength that is long
compared to the accuracy required. Then the amount of time it takes our recursive
algorithm to solve the problem to different degrees of accuracy is fixed, whereas
convergent iteration takes longer and longer for higher levels of accuracy. (2) It

gives an exact inverse so that we can change our boundary conditions without
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resolving the problem. (3) It solves the problem in pieces so that we can actually
change the shape of the boundary in one particular section without resolving any of

the other subregions, This is one of the main advantages of Kron’s method.

Assuming the region can reasonably be split up into a small number of rectangular
subregions plus a number of gonrectangular subregions near the boundary which must
be solved by direct inversion, then for any such mxn regiom with assumed boundary
conditions (found by the usual diakoptical methods) to find the potential at each

point we must invert the well known matrix

I 1 where Z = [-4 1 ]
YA | 1-41
121 1 -41

1 -4 1
1 1-41
2} 3 1 -4

where Z is an mxm matrix and the partitioned matrix has n rows and n columns. I is

the unit matrix.

We now present a new algorithm for inverting this matrix by tearing the region into

n columns. Assume the inverse is a partitioned matrix with n rows and n columns

where each element is an mxm matrix xij' Then

i.j-xi+1'j=5ijlt 1lj=1lo'oln

Xi_q, it 2%

where Sij is the Kronecker delta function (0 if i=j and 1 otherwise)

and X ,=X 0.
o)

n+1,j=



De Rham Cohomology Theory: Field Theory Page 79
Define Zi+1=ZZi_Zi—l' a polynomial in Z, where

ZO=I, Z_.=0, Z_2=-I etc.

1

We can now write an orthogonal type equation

In a natural way this can be written in state space form Z,,172Z,.

We also have

i
=[Z; ~Z;4]
bz, 2354

1N

Theorem xij=zmin(i,j)—lzn-max(i,j)/Zn

where /A=A—1 the ordinary matrix inverse (this notation 1is preferred when

implementing matrix algorithms in Algol68).

Proof Substituting in —xi-l.j+zxij—xi+l.j=6ij

(1) For i=j, xi—l,j=zi—2zn—i/zn‘ xij=zi-lzn—i/zn' xi+1'j=zi_lzn_i_1/zn and 61j=I.
Therefore —Xi_l‘j+ZXij--Xi+1 j=

_zi-ZZn—i/zn+zzi—1Zn—i/Zn_Zi—izn-i—l/z =

(=2, 2 H(Z, p¥Z)Z "2y T )2,

i-2%n
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(Z.7

Znei"Zi-12 )/Z_=1=8 .. QED

i-1%n-i-1 j

Y/

1,5 2i-2%nj 17,

(2) For i<¢j and hence i>j b symmetry X, =
J IS A 24 YA ij Zi-lzn—j n,

/Zn' X
Xi+1,j=ZiZn—j/Zn and Sij=0.

+ZX,

We have *Xi_ 1,j_xi+1.j=

1,j

"2y 02y (/2,472 42,

; 17 -7 _

] /Zn=0' ‘QED

J
The programming overheads for awkwardly shaped regions in the general case may
prove unwieldy, but for specific problems this would seem to be an ideal method.
The use of Algol68 as the programming medium would lessen the burden considerably.
An attempt to solve the equations using Kron's network analysis, with electric
field as the dual variable, resulted in a less efficient algorithm, This 1is in
fact the basis of the boundary element method. An alternative approach to the
analysis of distributed systems is in terms of the directional Laplace and

z-transforms,

(sx2+sy2)¢=0 and it is easy to show that

(z -2+2 —1+z -2+2 -1)d=0 as before.
X x y y

A similar approach can be taken in c¢ylindrical coordinates,



De Rham Cohomology Theory: Field Theory Page 81

4.4 References

(1) Misner, Thorne and Wheeler, Gravitation, Freeman, San Francisco, 1973,

(2) Warner, Foundations of Differential Manifolds and Lie Groups, Scott Foresman,

1971,

(3) Flanders, Differential Forms with Applications to the Physical Sciences,

Academic Press, 1963.

(4) Lynn, Balasubramanian and Sen Gupta, Differential forms on electromagnetic

networks, Butterworth, 1970,

(5) Mizoo, Iri and Kondo, On the Torsion and Linkage Characteristics and the

Duality of Electric, Magnetic and Dielectric Networks, RAAG Memoirs, Vol 2, 1958,

(6) Nicholson, System concepts in Krom’s polyhedron model and the scattering

problem, Int. J. Control, Vol 20, No 4, 1974,

(7) Roth, An application of algebraic topology: Kron's method of tearing, Q.

Applied Math, April 1959.

(8) Branin, The Algebraic-Topological Basis for Network Analogies and the Vector

Calculus, Symposium on Generalised Networks, Poly. Inst. of Brooklyn, April 1966,



De Rham Cohomology Theory: Field Theory Page 82

(9) Bramellar, Practical Diakoptics for Electrical Engineers, Chapman and Hall,

1969,

(10) Isodori et al, Nonlinear decoupling via Feedback: A Differential Geometric

Approach, IEEE Trans AC-26 No 2, 1981,

(11) Orner et al, Least Squares Simulation of Distributed Systems, YEEE Trans

AC-20, No 1, Feb 1975,

(12) Bowden, Laplacian Arrays: Part I, A direct solution of the discretised form

of Laplace’'s equation, Matrix and Tensor Quarterly, March 1982,

(13) Kron, Diakoptics: The piecewise solution of large scale systems, McDonald,

1963,

(14) Bowden, Computer aided design of pole pieces for an X-band magnetron, Dept.

of Electrical Engineering, Sheffield University, 1974,

(15) Bowden, Matrix Manipulation in Fortran, Basic, Pascal and Algol68, NELP

Computer Centre Document, No 448,

(16) Plonsey and Collins, Principles and Applications of Electromagnetic Fields,

McGraw-Hill, 1961,

(17) Davies and Radley, Electromagnetic Theory, Vols I and II, Oliver and Boyd,

1969 and 1972.



De Rham Cohomology Theory: Field Theory Page 83

(18) Chern, Some new viewpoints on Differential Geometry in the Large, Rulletin of

the American Mathematical Society, Vol 52, pp 1-30, 1946.



CHAPTER V Physical Structure in General Systems

Tensor space is introduced and a comparison of the use of tensors in the small (ie
Vector algebra) with the exterior algebra is made. Contra and covariance in general
Rystems is discussed and leads to the definition of tensors in the large (ie matrix

R 1gebra), Our discussion of scattering theory is continued.

5.1 Tensors—in—the—small

The tensor product of two finite real vector spaces is the quotient space

JoE=(IxK)\(J.K) where the inner product space J.K is the subspace of the Cartesian

product Jxk generated by elements of the form (j1+jz,k)—(j1.k)-(j2.k) and

(j,ak)-a(j,k) etc a<R, j<J, k<K, that is (jl+j2)ok=jlok+jzok and a(jok)=joak etc.

Let J* be the dual space consisting of all real linear functions omn J -then the

tensor space Jrs associated with J, r times covariant and s times contravariant is
Jo...0o0Jo0oJ*o ... 07J%,

r—copies s—copies

The direct sum T(J)=§ , where J°°=R is the tensor algebra of J,. It is a

r,ers
noncommutative, associative, graded algebra under o-multiplication. Let C(J) be
the subalgebra §pJp° of T(J) and I(J) be the two sided ideal in C(J) generated by
the set of elements of the form joj for j<J and set IpJ=I(J) n Jpo‘ I; follows
that I(J)= pIPJ and is a graded ideal in C(J). The exterior algebra V(J) of J is
the graded algebra C(I\I(J). If we set V°T=R, V'J=J and VpJ=Jp°\IpJ', K52 as
before then V(J)=§prJ- In particular the residue class containing jlo,,,ojp is

Viteootv. These definitions should be compared with those in Section(4.1),

describing the space of differential p-forms,
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We now look at the exterior derivative, product and the Hodge star operator in

tensor notation, A differential p—form, in terms of a skewsymmetric tensor of rank

w=— A pdxa1dxb?...fdxp

= p! ab...
where we use Einstein’s summation convention, ie, summation is assumed over
repeated (dummy, umbral or running) contra—covariant pairs of indices on the same
side of an equality. If the tensor Aab;‘ p transforms between coordinate systems
using the same transformation tensor as the base vectors it is called covariant

(subscripts). If the trensformation involves the inverse of the base

transformation tensor it is called contravariant (superscripts),

The exterior product of two 1-forms

w=A dxa v=B dxb
- a - b
is

1 _ a, . b
wtv Z(AaBb AbBa)dx tdx

and the skew—symmetric tensor AaBb-AbBa is thus seen to give the exterior product.

This can be generalised to higher forms by use of the generalised Kronecker delta,

The simplest form is well known:

6:=0, i#fa and =1 otherwise

The general form is given by the determinant of a matrix whose ijth element is &, ,,
1)

For example
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siio|si si slik_|gl g1 51
ab a b abc a b ¢
s & 8d 83 8

a b a b ¢
C(pipd_gis] k .k .k
(basb bbﬁa) Sa Gb Bc

=1 (-1) if the (ij...) are distinct and constitute an even (0odd) permutation of the

{ab...} and =0 otherwise and we can write

(AaBb AbBa) babAiBj

In general the exterior product of a p~form w and a gq—form v is given by

= 1 dmn...pq...sw
abc...r plgq! ab...r mn,..P QG...8

The inner product of two p—forms in terms of coefficients V and W is

1 ab...p
- L]
p!vab...p
The repeated indices sum the components of V and W, This process is known as
contraction in tensor terminology. The skew—symmetric tensor W is expressed in

terms of contravariant components, This in fact is a special case of contraction

in which the tensor is not merely reduced in rank but in fact results in a scalar,

A special skew—symmetric tensor e is now introduced whose terms are 0, 1 and -1,

In n dimensions the Levi-Civita tensor

g2 Py, —1 or 0
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depending on whether (1) an even permutation of a,b,...,p will restore the sequence
1,2,...,n0 or (2) an odd permutation will restore it or (3) any index 1is repeated,
respectively. The tensor ¢ 1is wuseful for dealing with determinants and dual

tensors. Jf a tensor W of rank p has V as its dual tensor then

ij...k_1 W 8ab...cij...k
p! ab...c

A

This agrees with the definition of the Hodge star operator. If non Cartesian

coordinates are used a more general form'involving the metric tensor must be used.

The generalised Kronecker delta can be used to find the temnsor form of the exterior

derivative, If W is a skewsymmetric tensor of rank p, the generslised curl

bc...®©

is

1 8abc...eaw /axa
p! mn,..q bec...e

The divergence is obtained by taking the dual of the curl of the dual of a tensor,

It is seen that the maze of indices often makes it difficult to observe the

differences between different types of quantities. Flanders[13]

compares tensor
analysis with the exterior algebra and concludes that each has its own natural area
of application particularly with regard to symmetry. Tensor analysis only consists
of techniques for handling indexed quantities and lacks an established substantial
body of deep results comparable to the exterior calculus. In tensor analysis it is
often difficult to see the range of application as everything seems to work in a
coordinate patch, Tensor fields do not behave themselves under mappings whereas
there is always a naturally induced differential form due to a mapping on a space,
It is often difficult to discover the deeper invariants in physical situations

using tensors, whereas they appear to arise naturally in the exterior algebra,

Tensor analysis of geometric situations restricts one to the use of natural frames
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associated with a local coordinate system. The exterior algebra allows the use of

Cartan’s moving frames, Often a combination of techniques is in order, This 1is

particularly illustrated in Misner and Wheeler's 'Gravitation’,

§.2 Covariance and contravariance

According to Branin[2] ‘In devising network models for dynamical systems the
traditional approach has been to make a term by term comparison between the
different equations describing the dynamical system and those describing a cognate
electrical system, Although this practice wusually works, it 1is by no means

infallible and may even fail to lead to an analogy when one actually exists.

The inherent weakness in this approach is the fact that, in comparing the equations
of performance of the dynamical system, with either the mesh or the nodal equations
of the electrical system, one is completely unable to recognise the differing
topological character of the two types of variable involved. 1In other words, after
the mesh or nodal equations have been compiled, no trace remains to indicate which
variables sum to zero at a point and which sum to zero sasround a closed path.
Consequently either the mass—inductance or the mass—capacitance analogy may emerge,

depending on whether the mesh or nodal equations were taken as a standard of

comparison,

As long as the mechanical system being modelled can be represented as a planar
graph, no practical difficulty arises from using either of these two analogies,
This is because of the well known theorem that any planar graph has a dual in which
the roles of the two types of network variable may be interchanged. When the graph

representing the mechanical system is nonplanar, however, ... the mass—inductance
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analogy ... fails, since it implies that force, which sums to zero at a point, is
analogous to voltage which sums to zero around a closed path, The mass—capacitance
analogy, on the other hand, always applies because it is topologically consistent

in making force the analogy of current and velocity the analogy of voltage.'

These ideas are inherent in  traditional distributed field theory using
'tensors—in—-the—small’., [Kron extended them to 'tensors—in-the—large’ in his
network analysis. The best introduction to the subject is Franksen's excellent
series of papers on the 'economic network' concept. Franksen draws an analogy
between economics and engineering, working on the basis that they both make similar
assumptions, constructs an electrical network analogy of Leontief’s input-output
analysis and solves it using quadratic programming. He assumes pure elasticity of
demand and plasticity of supply and solves the problem in a similar way to Kron
using the simplex method. Starting with Weyl’'s ideas of symmetry he introduces
generalised versions of the First and Second Laws of Thermodynamics. The First Law
is based on the observation, by Leibnitz in 1693, that 'In any isolated system
there must be an invariant entity changeable in form but indestructable,’ This is
equivalent to conservation of energy in physics or Walras’' law in economics (see
Chapter VII). This entity may be written as the product of two quantities of the
form flow and potential. The Second Law may be stated 'A flow will only occur from
a higher potential to a lower potential.’ This gives rise to the concept of an
orientated graph in network theory and is responsible for Franksen’s definition of
'negprices’ or negative prices in economics in that commodity flow will only occur
from a sector which has a low velue for that commodity to a sector which has a high
value. He also notes that analogies may be made between systems of this sort by
means of homomorphisms (actually functors) ie mappings that retain the structure of
organisation, Generalisations of the classical concepts of covariance and
contravariance may be made in terms of transvariables (across variables) that sum

to zero around a closed loop and are measured on the intervel scale between two
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points of a system without cutting the interconnections (one poiht may be chosen as
reference) and intervariables (through variables) that sum to zero at a node and
are measured on the ratio scale by cutting the interconnections of the system and
inserting the measurement device in between the cut points. Franksen further
classifies the variables of a system into the intensive and extensive reference
frames and defines the economic equivalents of content, cocontent, energy and
coenergy. In mechanics the statements of Kirchoff's 1laws are replaced by
D’Alembert’'s principle - the well known technique of summing forces to zero at a
point, The table below compares the classifications in various physical systems,
Note that quadratic cost function weighting matrices and impedance tensors are
doubly contravariant, Any vector in real space has dimensions MmTtLl where the

vector is contravariant if 1 is positive, covariant if negative and invariant if

zero. It is intensive or extensive depending on t,
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5.3 Tensors—in—the—large

(1]

Kron was insistent that the objects he was dealing with were actually
"tensors—in-the—large’, with all the properties of conventional tensors except
those associated with a coordinate system, and not just matrices which are simply
arrays of numbers. This was (1) because the variables they transformed possessed
properties of co— and contravariance and (2) by analogy with electromagnetic theory
(tensors—in—the~small) . For this reason he (followed by many others) used matrices
with indices representing their dimensions. There is little loss in simplicity in
using tensor notation in control and systems theory - one should at least always be
aware of it in a similar way to the systems approach to engineering currently
popular — and there are a number of advantages. The Einstein summation convention
comes to the rescue as far as matrix multiplication is concerned. Tensors with
ranks higher than 2 can be wused when representing multivariable or multilevel
systems. Multiple indices can be handled just as easily in most programming
langnages — and the summation convention could even be implemented in Algol 68!
The structure of tensor equations is much richer than that of matrix equations,
More nonlinear equations can be represented (though this could be considered a
disadvantage when formulating a model) and the positions of the indices point to
contravariant (superscript) or covariant (subsript) variables giving a closer
representation of physical reality than matrices. Tensors are commutative under
multiplication. Further outer products (and sums), similar to the Kronecker
product of matrix notation, are directly represented. These methods make way for
more efficient computational algorithms. Thus we have both an improved and a more

general philosophy. In practice tensors are only normally used in field theory and

at the level of abstract mathematics.
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Various mathematical structures are available for the study of physical systems,
The operations of addition or multiplication in a particular field structure can
can be used as a means of classification. If associative the object is =
semigroup. Jf also there exists an inverse, an identity element and the operator
commutes we have an abelian group. If both operations exist and are distributive
the whole structure is called a ring, The <c¢lassifications along with their
associated operations are called categories. Transformations between categories
are called functors eg the ’'forgetful functor’ always takes a category to a more
simple one by omitting part of its structure, This is a concept often wused
intrinsically in proofs eg fixed point theorems. Inevitably the generality of
theory and the specificness of results have an inverse relationship depending on
the mathematical structure used to define the system. According to Vanacek 'Let us
refer to one area in which the introduction of richer structures has proved useful,.
The Maxwell theory of electromagnetic field in vacuum can be described either by 24
scalar equations or by 8 vector equations or by 3 tensor equations or by ome spinor
equation. (It is to be understood that this is not just through the trivial direct

sum.) The mentioned reduction at the same time contributed to the knowledge and

the deepening of the Maxwell theory.'’

A tensor (in—the-small) A, of rank 1, is defined as a column or row vector in R®
and as contravariant or covariant according to whether its components transform
under a change in coordinate system, with i as free index, as

At=pdaxlor A=A g’

1
dyj dy

respectively, with summation assumed from 1 to n,
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A tensor (in-the—large)

or A
j‘]'jz'oo-;jm i‘piza..o)in;jIszonao.jm

i )i no.-,i
A 1’72 n

of rank n+m is said to be n times contravariant and m times covariant and exists in
n+m dual coupled linear subspaces written as

i1 i i

R 'sk 2z...:R °R" R x...:R’
iy 3 im

where some of the Rj are dual to s&me of the Ri. In a problem where nfm, or some
of the spaces are not dual, then we simply have not included all the variables in
the real problem (orthogonal formulation). The tensor can be visualised as an n+m
dimensional array of elements and written as a Eik by Ejk partitioned matrix where
the covariant indices are allowed to vary across the matrix and the contravariant
ones down, Normal addition adds corresponding elements in tensors of the same rank
end dimensions, Inner (matrix) multiplication occurs when contra~covariant pairs
of indices from different elements in an outer product are equal with summation by
contraction over those pairs. Inverses are defined in terms of the unit tensor,
Scalar products are &allowed. VWhen inverting a square tensor (rank 2) the

1 above is covariant, Normally we

appropriate indices are raised or lowered, ie dy
make no distinction between a tensor x and its component xj. Contravarjiant and
covariant indices should always balance across an equation (in the same way as
powers of MLT in physics units). The Kronecker delta (unit tensor) is a special

case of the generalised unit tensor

1in.00i iq i i
A 127 g 172 gm

Sqdge-dp 132 s

=1 if every contra—covariant pair of indices are equal and =0 otherwise, as well as

the generalised Kronecker delta,
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The transposes of

11'i2:---1in pemI{iltiznocooin}
A, are A (
J-l-jzo-t-:jm perm2 j-lnjz;....jm}
ie any permutations of the indices. Symmetric and skewsymmetric parts of the

tensor are respectively

A /p! and

(i ip)= permAperm{il...ip}

1000
P

A (-1)./p!

(i

1.00

= A
ip] perm perm{il...ip]

wvhere P=¢e
perm{il...ip}

The dual of a tensor
iliz..'ip i]iz."ip
*A i 1 %% 0.t /p!
(p+1)-¢. n 112..' n

The exterior product (basis of the Grassman algebra) is the skewsymmetric part of

the outer product, for instance the vector cross product is reiated to the exterior

product by the Hodge star operator, *:xxy—)xty

xxy=[%,y,-xyy; ], 2xty=xy’'-yx'=[0 LYY LY
Y%y X yy7x.yy 00 nyxiyy
xiyj-xjyi gYpTXRYy XV XY 0

Exumples[sl (1) The Luenberger canonical form for systems of the form A(s)x=Bu cean
be written in tensor notation

m
AE xA 4D %) (B, 3T )+(E, xA.)

where (E,. ) .=I (if i=g and j=h)
ij gh

=0 (otherwise),

2 m
and A(s)=A1+A2s+A33 +,..-8
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and the Ai are nxn matrices and we can write sx=Ax+Bu. This will be seen in the

next chapter. Use may be made of the Kronecker delta to represent such systems,

(2) Multilevel or decomposed systems may be represented as higher order tensors,
Vanacek[7] has derived new higher order Riccati equations for estimation and
control in this way, using adjoints in tensor space, These problems may be
represented within Roth’s diagram, Vanacek concludes by saying ’'we are convinced

that (the LQG problem) ... has not been closed yet. This is because of not fully

digged algebraic structure (1)’

(3) The Lyapunov stability matrix equation can be written

Lo v o et sl ssi A v0 o
ATpQ A0 =M BT 4R AT I8y

Now if Qij is symmetrical we have

=—6k

1 edyd oadadoadpdyqonid
(Ak81+6kA1+(A16k+61Ak)(1 4.9, 1

ji J

and Qij can be found from inversion. This algorithm can be programmed directly
with the help of a delta function, with less effort than say Macfarlane's

algorithm,

5.4 Scattering theory

Paraphrasing Nicholson[14]: ‘The interconnection of subsystems in many physical
and socioeconomic systems introduces effects of feedback with each unit being
influenced by its neighbours, The general scattering problem is concerned with the
introduction of such obstacles into, or distributed parameters in, flow processes

in which disturbances are reflected, transmitted or absorbed at a subsystem or

obstacle boundary. In a serial flow process the interaction between coupled stages
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is defined in terms of a combined scattering matrix.’' Nicholson has used this as an
analytical basis upon which Kron's polyhedron model could be investigated, Vith

two adjacent obstacles the reflected and incident waves are represented by

rv31=Ilrv1-| and I'V =T I' 1 where Ifl’si Ui]
Lv, 1 Lv,d Lv,J l ¢! lw; R, J

The cascaded process may also be represented by a transformation or signal flow

diagrams
v’ I v3 e v5 vl Sl v3 Sz v5
-> | I => | I - > >
| | | | | | |
I I, | I T, | W, ¢ U, ¢t + W t U
T T B L Ty g 2 | 2
<~ | | - | | <= < <
v2 ——— v4 - Vg A2 R1 v4 R2 v6
then for the combined structure
5
[v™ =T, *T r /(I U,.¥,)8 02+SZU1/(I W U )R ]rv 1
lvz.l ! 2L +R W, }(f 1 W,)8, R,/ (I~ wgu )R:Jl.vs.l

vhere 11*12 defines the star or scattering product of two partitioned matrices.
The star product has a higher priority than normal matrix multiplication. It is
associative and distributive but not commutative, takes the ordinary matrix inverse

and obeys the transposed conjugate relationship,

Nicholson has represented the internal structure of the combined scattering matrix
in Fig (5.1) and es an interconnected lattice type structure Fig (5.2) having much
in common with the double helix model for the DNA molecule due to Watson, Half of
this molecule serves as & template for the reproduction of further molecules and
also for the production of RNA and various enzymes. It is worth noting the growing
interest in the AI field in the use of the DNA molecule as a model for the
production of intelligent programs, There 1is recent interest in representing

(91

recursive or ladder algorithms as lattice structures Nicholson has further

investigated scattering in distributed media, electrical networks, invariant
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embedding, coupled mode theory, control and estimation theory and generalised

interacting cellular structures,

[15] '... consider the formulation of the state equations for a

According to Kalman
(possibly nonlinear) dynamic system, given the equetions of its components and the
connection structure... Since no additional structure is specified, the convenient
admittance—impedance hybridisation of the multibranch analysis is not applicable to
the present development... On the other hand the scattering variables, with the
output vector, y the reflected wave and the input vector, wu the incident wave,
yield & uniform set of variables that serve to characterise the most commonly
encountered components of network and system theory. In fact, in many
nonelectrical systems the physical interpretation of the scattering varisbles is
far more natural than for the immitance (voltage and current) variables, For

instance in an economy the scattering variables may be identified with income and

expenditure (while the immitance variables correspond to prices and commodity

flows).'
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CHAPTER VI Optimal Control Theory

This chapter applies Kron's ideas to optimal control theory. It takes much from the
work of Nicholson but, rather than concentrating on scattering theory, uses Roth's
Qiagram to quickly get results and to show the analogies between differeant problems,
and different forms of the same problem, A sequence of mappings associated with
Qultistage optimal control is introduced and shown to constitute a chain complex, thus
Lor the first time giving the direct connection with homology theory. Wonham's
Reometric theory is closely paralleled, but from a far more structural point of view,
According to Wonham[9] '...the geometry was first brought in out of revulsion against
the orgy of matrix multiplication which linear control theory mainly consisted of, not
X0 long ago. But secondly and of greater interest, the geometric setting rather
Quickly suggested new methods of attacking synthesis which have proved to be intuitive

qnd economical: they are also easily reduced to matrix arithmetic as soon as you want

to compute.’

6.1 The partitioned system

Consider the multistage linear optimal coantrpl problem, in a similar form to that

dealt with by Nicholson{ll,

min 5 y(t) 'Q(t)y(t)+u(t:-1) 'R(t-1)u(t-1)
t=1

where
zx(t)=x(t+1)=A(t)x(t)+B(t)u(t), t=0,,,..,n1

with
y(t)=C(t)x(t) and x(o)=x°.
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This can be rewritten as an ordinary least squares problem as follows:

x(1)'rc(1)ra(1c(1) x(1) *Tulo) 'TR(o) u(o)
min | x(2) €(2)'Q(2)C(2) x(2) u(l) R(1) u(l)
u .o .o . cee . ce
B x(n) C(n)'Q(n)C(n) JLx(n) u(n—-1) R(n-1) JLu(n-1)
where
I x(1) =[A(o)x (o) J+[B(0) u(o)
-A(1) I x(2) 0 B(1) u(1)
Cam-n tllxty i lo” "B(n-1) Jlu(a-1)
or

min x'Qx+u’Ru

u

vhere
Ax=xo+§E given x .

— o [s)

Substituting for x

d((x _-Bu) '/A'Q/A(x ~Bu)+u’'Ru)=0
du’ (o] 0

and it is easy to show that the optimal control

=(/§-/3§'/(é/g§'+§/§§')E/B)E’/A'Q/égo
using Householder's formula. We have to invert a matrix of the form

/Q  -/QA’ +[B/RB'
-A/Q A/QA'+/Q —-/QA’ B/RB'

-A/Q -A/QA'+/Q B/RB’
This is the block tridiagonal matrix inversion problem of multistage linear optimal

control, The finite differences problem to which a direct solution was obtained at

the end of Chapter IV is a special case,
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6.2 Practical aspects

We have the following possible methods of solution

(1) Direct inversion., Does not make use of the special structure of the matrix.

Very slow and inefficient. Similar methods such as LU decomposition used by many

commercial packages.

(2) Sparse matrix techniques. Better, but wusing brute force techniques on

structured matrices is never going to be very efficient.

(3) The Thomas recursive matrix algorithm given in Chapter II, Needs to be

resolved for every new set of initial conditions,

(4) The discrete Riccati equation. This is virtually the same as (3), The usual
problems mentioned are that the P matrix must either be stored at every reverse
step or recalculated at every forward step, and must simultaneously be kept
Infinite time optimisation of a time invariant system leads to the

symmetrical.

algebraic Riccati equation and a constant P matrix,

(5) Staircase inversion (using Schur’'s lemma). This is similar to (3) and (4) but

actually produces the inverse.

(6) Explicit solution along the lines covered in Section (4.3). This appears to be

feasible for the time invariant case. Define the sequence Z(i) such that
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YZ(i-1)+4ZZ(i)+Y'Z(i+1)=0
where Y=B/RB'-A/Q

and Z=B/RB'+A/QA'+/Q

so that
[Z(i+1)J=[-/Y'Z =/Y'Y|[2(i) ]
Lz¢i) J LU 1 o Jz(i-1)l

or
Z(i+1)=ZZ(i)

and
Z(n)=2"2(0)=2'Z(n-1) .

Further defining the two series

F(-1)=-/YY' G(-2)=-/YZ
F(0)=0 G(-1)=I
F(1)=I G(0)=0
F(2)=—/Y'Z G(1)=—/Y'Y

which both fit the equation for Z(i) and

[F(n) G(na-1)1=[F(2) G(1)T°[F(0) G(-1)]
LF(a-1) G(n-2)J LF(1) G6(0)J LF(-1) G(-2)]

=[F(1) G(i~-1) fF(n~i) G(n—-i-1)7
Lr(i-1) 6(i-2) JLF(n-i-1) G(n-i-2)l
which produces the identities relating the F’'s and G's. It is possible to find
explicit formulas for the ijth element of the inverse partitioned matrix, in terms

of the F's and G's., These appear to be related to the Chandrasekar equations.

(7) When Bellman[32] first postulated the principle of optimality which led to the
techniques of dynamic programming and Kalman filtering he was actually
investigating scattering problems in layers, which he termed invariant embedding,

and as such dealt not only with the Riccati equation but also Chandrasekar's

equations, Largely ignored in control theory until recently these have now been

shown by Kailath[2 - 6] et al to be more efficient than the Riccati equation in

some time invariant cases.
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(8) Direct calculation of p(o) from P(n) and, say, x(o) using scattering products

and a doubling formula, This is the most efficient method of all though appecars to

be virtually unknown in practice. Like the FFT it is most useful when the number

of time intervals can be written as an integer power of 2, Vrite

[x(n)J=[E FY"[x(0) 1=[E_ F_7[x(0) ]=[x(n)
Lp(n) ) LG HI [p(o)J Lg® HzJ[p(o)J LP(n)x(n)]

and
p(o)=/(P(n)Fn—Hn)(Gn—P(n)En)x(o).

6.3 A Kron type approach

We again rewrite the multistage optimal control problem, this time in standard

ordinary least squares form

given [A -BIT ]=50
Lul

X
u

to which the results can be written down by inspection from— Roth’s diagram (see

Fig(6.1))

giving
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[x1=/T0 7(A -B)J'/([A -BI/TQ 7[A -BI')[A -Blx

lal L7 RJ "ri™ 7 T 77
=([I 1-[/ABV/([/AB1'/[Q 1[/AB))[/ABT'[Q@ Tx
a1 LTd UURLTILTIL RICS

which are precisely the formula we derived earlier for u®, Note how the use of
Householder's formula is replaced by the use of Kron's lemma, This approach bears

much in common with the use of direct (topological) rather than energy methods in

electromagnetic theory.

The costate vector p appears quite naturally in Roth's diagram giving as usual
Qx=A'p and

Ru=-B'p or

p(t)=C(t)'Q(t)C(t)x(t)+A(t) 'p(t+1) where p(n)=C(n)’'Q(n)C(n)x(n)

and u(t)==/R(t)B(t) 'p(t+1),

The optimal trajectory and undetermined multipliers are thus defined by a two point
boundary value problem and represented by & pair of coupled linear difference

equations in scattering form

[x(t+1) =[A(t) -B(t)/R(t)B(t)']r x(t) 1

L p(t) JLlctoryracercct)  A(e) ' Jlp(e+1) ]
with

[x(0) ]=[x ]

Lp(n)J Lc¥n) ra(n)C(n) x(n)

We have investigated manipulation of the block diagonal equation p=Px but have yet

found no useful results.
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6.4 The torn system

Now let us tear the original problem back up into n stages. For the rest of this

chapter we assume without 1loss of generality C(t)=I unless otherwise stated. We

may minimise the zeroth Hamiltonian

min H(o)
such that x(t+1)=A(t)x(t)+B(t)u(t)
where 2H(t)=x(t)’Q(t)x(t)+u(t) 'R(t)u(t)+2H(t+1),

By Bellman's Principle of Optimality or Invariant Embedding we may minimise the tth
Hamiltonian with respect to u(t) by assuming that the t+1th Hamiltonian is optimal

with respect to wu(t+1). Further taking the optimal value of H(t) to be quadratic

with respect to x(t)
H(t)=x(t)'P(t)x(t)

and augmenting the state space x(t+1) with u(t), the term in x(t) is invariant and

the 2 drops out as the two remaining terms are both quadratic. We may again define
a standard ordinary least squares problem
min [x(t+1) J'[P(t+1) 1rx(t+1)]
Lou(t) 11 R(t) L u(t)

given
[/A(t) —-/A(£)B(t)I[x(t+1) J=x(t)
L u(t)
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from which the results may again be written down by inspection from Roth's diagram

(see Fig(6.2))

[B(t)]
LT | [/A(t) =/A(t)B(t)]
u(t) ——x(t+1)] > x(t)
L u(t)
[P(t+1) ] P(t)-Q(t)
L R(t)J
[ p(t+1) 7
0a———LR(t)u(t)] - A(t) 'p(t+1)
[B(t)]' [/A(t) -/A(t)B(t)]’
lr

where the costate vector

p(t)=P(t)x(t).

This transformation is the basis of the sweep method of solution. From the right
hand square of the diagram we have the backward recursion relationship

P(t)-Q(t)=/([/A(t) =/A(t)B(t)]/[P(t+1) ][/A(t)' M
L R(t)IL-B(t)"/A(t)']

=A(t)'/(/P(t+1)+B(t)/R(t)B(t)')A(t) or from the 1lhs ..,

=A(t)'(P(t+1)—P(t+1)B(t)(R(t)+B(t)'P(t+1)B(t))_lB(t)'P(t+1))A(t)

or Riccati equation, where P(n)=Q(n). We will therefore in future draw this
diagram reversed from left to right which turns out to be comsistent with Kron's
notation. Observe the similarity between Roth's diagram for the partitioned system
and for the torn systems!: Q is replaced by P(t+1) which represents the
contribution to the objective function of time increments from t+1 to n. The other
differences are due‘to the inverted definition of A in the partitioned system. Wec

see that we can write H(t)=p(t)'x(t). This can be considered as an example of

Kron's First Generalisation Postulate. The torn system is a model of the original

system,
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The diagram also gives Lewis' recent form for the solution of singular systems and

can be extended to the decentralised and minimum time cases with Q=R=0 (11,12]

6.5 The reconnected system

We can now perform a bit of surgery on our commutative diagrams, following Kron's
procedure in Ref[8] and join the sequence together into the algebraic diagram for a

multistage linear optimal control problem in Fig(6.3).

The interface matrix E(t) is introduced in order to glue successive stages of the
problem together. Kron had no problem with this as the consecutive stages of the
space filter were assumed to be of compatible order and E(t) set to I, Working on
the assumption that the top and bottom sequences are reverse complex conjugate

(though this is not necessarily true) we have, for the diagram to commute
P(t+1)-Q(t+1)=E(t)*(B(t) 'P(t+1)B(t)+R(t))E(t)

.

Performing an eigenvalue analysis on both sides

U(t)'xU(t)U(t)=E(t)*v(t)'kv(t)V(t)E(t)

and by abuse of notation

E(6)=/V(tA ()0 S ()0 o).
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where the U(t) {lU(t)l and V(t) {kv(t)] are the vcigenvector matrices {diagonal
eigenvalue matrices} of P(t+1)-Q(t+1) and B(t)'P(t+1)B(t)+R(t) respectively. There
asppears to be a relationship between the E matrices and the Chandrasekar equations
in the time invariant case, as P(t+1)-Q=Y(t+1)/Y(t+2)P(t+2)A and
B'P(t+1)B+R=/P(t+1)(I-/A'Y(t)/Y(t+1)) where P(t+1)-P(t+2)=Y(t+2)Y(t+1)", It may

also be of interest to investigate the annihilators of E(t).

Alternatively from the inverse (time invariant) scattering structure we may

identify the interface matrices with the elements E=—/RB'zP and E*=zPB/R of the

inverse interface matrix,

Following Kron and Nicholson we have a (reverse) homology sequence along the top of
the diagram, & scattering sequence through the middle and a cohomology sequence
along the bottom, see Fig(8.4). This is consistent with Kron'’s diagrams but not
with Nicholson's optimal control analogy which is in forward sequence form, The

optimisation criteria appear as vertical mappings as usuval,

That the sequence of incidence matrices

M(t)=[B(t)E(t)/A(t+1) —B(t)E(t)/A(t+1)B(t+1)'|=[—B/RB'zP/A B/RB'zP/AB]
L E(t)/A(t+1) -E(t)/A(t+1)B(t+1)J L -/RB’2zP/A /RB'zP/AB

define a chain complex can be seen as follows:

(1) The K~module sequence [x(t+1)' u(t)']’ is (intuitively) contravariant.

(2) M(t)M(t+1)=0
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(3) im(M(t+1)) < ker(M(t))

The surprising fact that (3) is not an equality can be demonstrated thus
Example For a constant time system with

A=I, B=[1 11’, E=[1 1]

we have M=[1 1 =27 so [1 1 =271 1 -27=0
11-2 11 -2f11 -2]
11-=-2 11 -24L1 1 =2

but given x(t+1)=[2 0]', u(t)=1 then
11-2727=0 but [2 11 -27.
[1 1 -2][0 0 1 1‘—2J[.]
11 -21L1 1 11 -21L.

Thus for the first time we have a sequence of matrices each of whichannihilates its
successor but that do not form an exact sequence, The matrices are singular
(obviously), and nilpotent in the time invariant case. The reason this does not
normally happen is that we always choose minimal annihilators. Matrices of this

form do not exist with dimension less than 3x3.

The kermel of M in (!l,xz,n)-space is a plane 11*12=20. The image is the subspace

X,=x,=u, 8 straight line, We are interested in the homology module
H(M)=ker(M)\im(M)=[!1+x2=2u]\{x1=x2=u]=

{11,x2,(x1+x2)/2}\[u.u.0}=
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[(11,~x1,0)+[u.u.“} }

which is a series of straight lines parallel to im(M) parameterised along a

perpendicular line through the origin. There is one degree of frecdom as R2\R=R.

We have BE/A(x(t+1)-B(t)u(t))=0. The im(B) is just the space x(t)=0, the ker(M) is

BEx(t)=0,

6.6 The forward form

If we use [x(t)' u(t)']’ as the augmented state space then Roth's diagram (see

Fig(6.4) for the substructure) becomes

[/A(t)B(t)]
L-1 | [A(t) B(t)]
u(t) » [x(t) ] > x(t+1)
Lu(t)J
fP(t)-Q(t) ] P(t+1)
l L -R(t)J
f[ACt) 'p(t+1) ]
0 ¢—————— LB(t) 'p(t+1) Je@———— p(t+1)
[/A(t)B(t) T’ [A(t) ']
L-1 J LB(t)'J

which is equivalent to

min x(t)'Q(t)x(t)+u(t) 'R(t)u(t)-p(t) 'x(t)

and we have the forwards recursion relationship
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/P(t+1)=[A(t) B(t)]/[P(t)—Q(t) ][A(t)']
~R(t) ILB(t)’
gi‘ich is of course the Riccati equation,

tending order consistent

o

vVestigating the forward scattering formulation,

¢

*?7 The orthogonal system

The diagrams must be

with Nicholson’s analogy.

Page 113

glued together in

This can be demonstrated by

Networks Backwards Forwards
t - )
WIE) w2l Bl
(] - * -—
I Bl 5] )
e [ 5:4] 14241
. [thl] :sz] " ]
2 ! ’ ’ [}
iz; 2] [Cqe ™ ] s kil [ AT -y im © 1+ (o) /)
4 . -0 - '
AT 8] ioniar] (2]
t .
[Y Yl] -/(zP)/R] [/(P Q)_/R]
y1 1 1,1 Jont /A .
] ¥3 Y4] [Al'zl Yt+A1'§1:1] t-/Ang /E?Pig)] [Bfg §§EP)]
Sattering matrices
R 1 R s s A e et T
3 -~ ' - —Q)A’
-“:Ziiiiing /N .R/AB /(Anfiﬁz] [_g A/ (P Q)g‘]
S Werse IN [ /A /AB/RB’/A'] [A —B/RB']
&stem L-Q /A’ Q A'
ihverse I [—/RB'zP /R<R-B'zPB)/R] [/RB'/A'(P—Q) -/R(R+B'/A'(P-Q) /AB) /R
Nterface zP-Q zPB/R P -(P-Q) /AB/R ]
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?rhc table compares the orthogonal network with orthogonal forwards and backwards

?hhltistage optimal control. We use z the (monadic) forward shift operator rather

?‘han time coefficients. The vectors are augmented and their relationships defined

1,

terms of square and nonsingular connection matrices. Note A/(P-Q)A' =
}§/P+B/RB'. All the standard network -equations can be derived. Note that
N, (1] ( ¢ 10

“dcholson defines the control variables ec,Eo) and (i ,I ) the other way round

®nce the inside out appearance of his admittance matrix, Nevertheless he

3tfectively arrives at our results using only scattering theory, mnot Roth's
?ilgrum. The internal structure of the orthogonal connection matrices is shown in
“15(3.4),

*8 The scattering structure (inverse forward form)

is important to note that the matrix derivations above, and for the rest of this
ther are carried out without reference to the variables they transform. Indeed
- Sygh some of the variables are equal to zero, this does not affect the results.
first wish to investigate the discrepancy between the system matrix and the

[1- 6, 24 - 30]

. Uttering matrix This is defined by the E matrix in the space

1ter and represents the interface between successive stages, The interface was

o g Wm WJW W’@W

»‘9

ined as unity by Kron (I°(t+1)=i °(t) and E (t+1)=e (t)) and ignored by Nicholson

o

presents an apparently trivial decomposition of the system matrix. We will
‘o use the forward form of the scattering matrix as the decomposition is simpler

this case, we use the inverse form as this is the normal system matrix, and

(

¢s the same results as Nicholson. It is surprising how apparently dual forms

i iy o

Sy occasional discrepancies. The derivation of the (top right hand element of
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the) interface matrix is difficult so we just present the results, Note the + sign

in the top right hand element of the interface matrix, We have always had a - sign

in terms of this form before. The left hand side of the interface matrix 1is the

same as Nicholson’s matrix, but he uses zeros in the right hand side,

[A -B/RB']=
la A |

[/RB'/A’'(P-Q) -/R(R+B'/A’(P—Q)/AB)/R] * [-B z/P+B/RB']
L P -(P-Q) /AB/R L-R B'l

system matrix = interface matrix % scattering matrix

Transformation diagram of decomposition of system matrix

A
X ) zZx
| |
Qi t -B/RB’ is equivalent to
I |
p < zp
A'
/RB'/A' (P-Q) -B
x > -u > zX
[ | I |
P ¢+ ~-/R(R+B’'/A'(P-Q)/AB)/R ; { -R t 2/P+B/RB’
| ! |
P < 0 < zp
-(P-Q)/AB/R B’

Nicholson's transformation diagrams are in fact essentially signal flow diagrams,.

The 'branches' do not commute but there is a law to be obeyed at the 'nodes'. The

decomposition in scattering form can be written as a commutative diagram with pairs
of orthogonal variables at the nodes and scattering matrices as mappings (drawn as

double arrows) commuting under the star product. Note that the scattering matrix

Chapter IIl for welectrical

can be further decomposed into a star product as in

networks. So each time step in the dynamic programming process consists of threc

substages., In the next section we consider the scattering process between the time

steps.



Optimal Control Theory Page 116

6.9 Tho Chandrasekar equations

Define the set of equations
[x =y (e+1)’ W(t+1)][x(t+1)1
Lp(t+1)J LP(t+1) Y(t+1) llp J
where p is a vector multiplier, previously assumed to be zero and x=Z'y(n) is a

terminal constraint
I B/RB']
c'ac 1l

then from the equivalence of the transformation diagrams

A Y(t+1)'
x(t) ———)—— x(t+1) > x
i | | |
c'QC ¢+ -B/RB' t ¢ P(t+1) t W(t+1) =
| | | | -
p(t) ——<(—= p(t+1) < P
A’ Y(t+1)
Y(t)'
x(t) > x
| |
P(t) t W(t)
| |
p(t) ¢ P
Y(t)

it is easy to see that

ry’ w]=rA —B/RB']‘z[Y' W
Lp vl lc'ac a'd Lp Yl

=[zY'/(I+B/RB'zP)A zW-2Y'B/RB'/(I+zPB/RB')zY
Lc’ac+A’ zP/(I+B/RB'zP)A A'/(I+zPB/RB')zY]

The equations for P and W are a dual pair of Riccati equations. The equations for
Y and Y' are a symmetrical pair of Chandrasekar equations[2 - 6]. This derivation,
based on the ideas of Kailath, et al demonstrates that the Chandrasekar equations
hold in the time varying case. Jn the general case we have W-zW=—zY'B/RB'/A'Y.

For the time invariant case it is easy to show that P-zP=2YC'QCY, from which we may

write the coupled difference equations in PB and YC’
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PR=zPB+(zYC')Q(CY')B and

YC'=A"/(I+(2PB)/RB') z2YC',

which are the Chandrasekar equations of discrete optimal control as given by
Kailath et al. Under certain conditions - ie n(n+1)/2)n(m+k) where n,m,k are the
number of states, inputs and outputs, respectively — these are more e¢fficient than

the Riccati equation,

The following differential scattering equation may also be verified

[z/Y' z2(~/Y'W) I=TA -B/RB'][ /Y’ -/Y'W
p/Y’ Y-P/Y'w J Llcrac A'llz(P/Y") z(Y-P/Y'W)]

6.10 Continuous optimal control

Continuous optimal control is isomorphic to the discrete case: z is replaced by

the Laplace operator s where z=exp(s). Consider optimal control of the linear

system
dx(t)/dt=A(t)x(t)+B(t)u(t), where y(t)=C(t)x(t),
subject to the terminal constraint x=Z'y(n),

with minimum performance index Iy(t)'Q(t)Y(t)+u(t)'R(t)u(t)dt.
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Over an infinite time horizon this is equivalent to minimising
éy‘(s)Qy(s)+u‘(s)Ru(s)ds/2
by Parseval's theorem where the integral occurs around the infinite 1left half
s-plane. Writing G(s)=C/(sI-A)B we have G*(s)Q(s)G(s)u(s)+R(s)u(s)=0 is sufficient

to minimise the integral giving u(s)=-/R(s)G*(s)Q(s)y(s).

Roth's diagram for the continuous case looks 1like this (see Fig(6.5) for the

substructure)

|

The solution is thus represented by the left hand square, The diagram also gives

[11]

the solution for singular systems . VWe again stress that the objects between

[/(sI-A)B]
R | J {sI-A —-B]

—# [x] = (sI-A)x_ or -Bu
Lul ° 0

r/(SI*'A)B'I' [-sI-A -B]'
L -1 J

the mappings are modules of polynomials in s, that is sets of time evolutions of

the state vectors.

The right hand square represents the Euler-Lagrange equation. Minimising the

Hamiltonian

§y'Qy+u'Ru+2p(sx-Ax—Bu)ds
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defines the solution of the two point boundary problem

(d -sd )(1fx}'1C'QC I x7-[x1'[A]'p+[sx]'[I1p)=0
alx' u']l dlsx’' su'l 2Llul L RJLul Lul LBJ Lsul LOJ

therefore

[€'QC [x]-[A+sI]'p=0
L rilvl LB

[sx(t)1=[A -B/RB’ x(t)]
sp(t)] L-crac  -a'llp(t)l

[2(0) [ x ]
lLp(n) ] Ler8cx(n)+ctzp

where p is a vector multiplier. Adjoint state variable and terminal constraint
relationships are then introduced with

fx  J=[Y(t)’ W(t)Irx(t)]
Lp(t)d Lp(t) Y(t)dtp

where Y'(n)=2'C and W(n)=0., Differentiating,

[0 T=s[Y! Wrx(t) THY' WI[sx(t) ]
sp(t)] Lp Yilp JLlp Yllo J

therefore

s[Y' WI[x(t)]=[-Y'sx(t) 1
lp vilp 4 Lsp(t)-Psx(t)l

[ER )

=[-Y’' 0J[A -B/RB'Trx(t)]
L-p 1ll-Cc'ac -a'llp(t) !

=[-Y’ OJfA -B/RB'I 07[x(t)]
t-p 1Jl-c'ac -A'Jlp Yllp

Therefore
s[Y’' W]=[Y'(B/RB'-A) Y'B/RB'Y
Lp v] L-PA-A'P+PB/RB'P-C'QC (PB/RB'—A')Y]

[y’ ¥ 1=[I 07 and [(sY')  (sW) 1=[A -B/RB']
Lp0 YOJ lo 11 L(sP)o (sY)OJ L-c'qC -A' ]

[Yn' wn1=[c'z C'QC]
p. oy llo z'c
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The equations for P and W are a dual pair of Riccati equatiomns. The cquations for
Y and Y' are a symmetrical pair of Chandrasekar equations, No mention of time
invariance has yet been made. It is not difficult to show that in the time

invariant case the coupled nonlinear differential equation pair
s(YC')=((PB)/RB'-A") (YC')

s (PB)=(YC’)Q(CY')B

in YC' and PB may be used instead of integrating the backwards Riccati equation and

is more efficient in certain cases (see above).

Further Y, P and W can be shown to obey the matrix differential equations

s[/Y' —/Y’W'|=[A —B/RB'][/Y' -/Y'W]
p/Y' Y-P/Y'W] L-c’ac -A' Jlp/Y’ Y-P/YVW']

An unusual approach to the solution of the Riccati equation is to write K=§Kisi.
i=0,1,... and equate powers of s. This technique could also be applied to the

Chandrasekar equations and would be particularly effective in the z-domain,

6.11 Conclusions

A major result of this chapter is to put optimal control into a multivariable

frequency response context. Specifically we have made it unnecessary to use the

state space approach at all in either discrete or continuous time by showing the

structure of optimal systems as modules of polynomials in z or s (a particularly

efficient realisation from the point of view of computer implementation.) This has

[20] [19]

and Kucera for special cases in the

been touched upon before by Chang
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[31]

s-plane, and in more detail by Kalman in the z-plane though not with respect to
optimal systems, Our treatment was however carried out on far more general, though

rather nonrigorous grounds. In the discrete time case we justified dropping the

summation sign in the minimisation by invoking the Principle of Optimality. This

appears to be a valid approach. Kalman, however, defines the product (composition)

of two polynomials (polynomial functions) in 2_1 as the 'ordinary product of

polynomials with deletion of all terms corresponding to nomnegative powers of z',

apparently a necessary consequence of the fact that the minimisation occurs only

over positive time, (and appears to be related to the difference between the

'scientific’ and ‘'control theory' versions of the z—-transform.) We appear to have
avoided the problem by writing all modules as direct sums with the initial

conditions eg. x(z)Oxo, the latter defined to be zero after t=0,

Again in the s—plane we invoked Parseval's theorem followed by the residue theorem

minj x()Q(t)x(t)+u(t)R(t)ult)de=
u " t=0

jm
min 1 x*(s)Q(s)x(s)+u®*(s)R(s)u(s)ds=
u 2nj -j*®
infinite semicircle in rhp

©

_1 min real poles in the right half plane=
2nj uw "-je

_1 min x*(s)Q{s)x(s)+u*(s)R(s)u(s)
2nj w

and drop the summation because the last form obviously includes all the poles in
the right half plane. We have assumed (1) R(s)=R*(s), Q(s)=Q*(s) or the R and Q
matrices are symmetrical in the state space case, (2) infinite time horizon, though

we know that all the results hold over a finite interval, and particularly that the

feedback matrix is constant in the infinite interval case: and yet we allow a time
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varying system., It is the fact that the minimisation occurs over real poles that

causes the problem here; thus modules in stable dual systems take the form

Hom(X(s),K[s1¥) and Hom(X(z),K[z]™)

where K[s]+ are polynomials with real poles,

and K[z]+ are polynomials in positive time.

Chang and Kucera take a mechanistic approach to the continuous time problem by
introducing the technique of spectral factorisation whereby a rational transfer
function may be decomposed into the product of two rational transfer functions
having only positive and negative poles respectively and further by partial
fraction expansion into sums of such terms, Chang in fact ‘cheats’ and drops the
integral on the grounds that it is sufficient (though not necessary) for each term
in the integrand to be minimised, though giving a detailed analysis of the
relationship between optimality and stability (system poles in lhp.) Kucera deals
with modules of rational transfer functions in discrete time and, 1like Chang,
derives an explicit solption for the optimal controller in the single—input
single—output case, in a similar form. The relationship between adjoint pairs of
discrete and continuous systems is often shown in the following diagram

discretisation

exp
-=>
F(s) <— F(z)
log
optimisation * ~ ~*
exp
F*(s) ——> F*(z)
<_.__

log
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We have advocated the use of direct polynomial manipulation rather than use of the
state space form in optimal control, along the lines of Kucera[19]. Our theory
also applies to matrices of polynomials, rational transfer functions and matrices
thereof, etc, though in no case have we rigorously proved anything - the ideas are
all results of the Homology Theorem and its associated Hypothesis — however we have
not as yet found any counterexamples! For instance we can specialise the
Hypothesis for the siso system y=f(s)u where we wish to minimise fqy2+u2dt and
speculate that the optimal control law u°=-f*qy=—f(-s)qy. For example for a second

order system (as?+bs+c)y=u we have u°=“(B$2'bS+C)_1QY which is easy, if tedious to

check by state space methods (nmote that this is actually a simple rational transfer

function example). We have

y=[0 11(s[1 T-[-b/a —c/a]) [1/aTu
L 11l 1 o J Llo 1

therefore f*=[1/a 0]J(-s[1 7-[-b/a 1])—1[0]
L 1l l-c/a 0l L1

=1/(as2—bs+c) QED.

It is easy to see that this generalises to higher order cases.

This work is intended to be taken more in the vein of Heaviside (or Kron) than
Laplace, ie the methods appear to work. A large body of deep results already
exists within General Homology Theory which seems a good candidate to make the
theory rigorous — ie, to establish the conditions under which it does work, A
number of related fields remain open for investigation eg, the relationship between
the Homology Theorem as applied to modules of polynomials in s, the Laplace
transform and to modules in z, the shift operator, and further between the Fourier
transform and Fourier series representations. It is likely that a major
application of our theory will be to time series analysis, In a sense most of the

major problems of optimal control, noninteracting control, etc have been solved,

whereas though Box and Jenkins have analysed single variable time series in detail,
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no general theory of multivariable time series analysis yet exists, The important
question here is whether the category of modules of rational polynomials, RATPOL,

[33,34] and others have

induces a homology theory. In the stocliastic domain Dodson
constructed homology theories where the base sets are 'fuzzy’ or 'hazy’, that is
over the categories FUZ and HAZ, and describes a remarkably practical application
in the paper industry. Again the 'duality’ (certainty equivalence) principle as
proposed for Kalman filtering is wunsatisfactory in the general stochastic case.
Khabie—-Zeitoune suggests that the theory of stochastic differential equations may

be important here. Finally part of Ref[10] is reproduced in Appendix(1) showing

the relevance to transmission zero theory.
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EQ’U\PTER VII Example: Leontief'’s Economy

~: thema;ical economics has progressed a long way since Adam Smith's 'invisible hand'
Vi“‘ided the economy along its course. Just over a century ago (Lausanne, 1874) Leon
".‘Irasllzl proposed a national economic model involving many self optimising decision
éh‘its -

N interests, coordination being achieved by indirect, nonlegislative price controls.

or entrepreneurs — consumers and producers who act solely on behalf of their

%‘b\ this apolitical economy allocates the consumer held factors of production between

. Nufacturers and distributes the resulting national product amongst the consumers has
* Nee been the subject of mathematical analysis. Except for the solution of a simple
Rselian system by Wald in 1935 the problem remained unsolved until the proof of the
n istence of a general competitive equilibrium by Arrow and Debreu, McKenzie, Gale and

\a1d0[4] in the 1950's (using the concepts of Pareto optimality and 'core' of an

Qhomy from game theory). Gale made the conditions for equilibrium weak enough to be

PIIFTY ]

eptable to economists, The problem is closely related to the decomposition and

traction coordination of a multilevel, hierarchical system as investigated by

ff

.4

Yson, Mesarovic, et al, The solution is similar to the proof of Pontryagin's

277
5

#’

imum principle. Roth rely on finding a mapping with certain continuity properties

N a certain space into itself, and then use the Brouwer or Kakutani fixed point

QQrems to prove existence of an optimum, Both fixed point theorems are proved using

Ology theory. The major practical problem with the work on Walras' model is a

).

4

Qccupation with existence theorems at the expense of analytical solutions,

4

O in the 1930’'s both Wassily Leont1ef[5 6] and John von Neumann formulated and

o
v

Ved simple linear multisector economic models, The former, for which Leontief was

v/

®ded the Nobel prize, is a constant, linear commodity flow model: Schwartz has

‘ed that free enterprise is the optimal strategy. The latter which has been

“tively little used is an important analysis of capital stock accumulation in an
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expanding economy for which von Neumann proved the existence of a minimax moving
equil ibrium, again in the context of game theory (although appcal to convexity has

since given a simpler solution).

More recently the dual simplex linear programming model has been widely applied in
economics practice, tbe Dantzig-Wolfe algorithm being particularly useful for large
scale systems. Less restrictive cost functions can be used and generalised linear
programming allows arbitrary (convex) constraints, The state space realisation is now
coming to the fore in econometric and optimal control applications, though
unfortunately this work has become completely detached from that of mathematical
economics thus losing the structural insight that has been achieved in this field.

Our examination of the dynamic Leontief model (for which useful data is available) in

the light of implications of Kron's work on optimal control theory, expands
-4 y

considerably upon the structure of the model.

7.1 Static equilibrium

Consider an n—sector economy producing one commodity per sector where x(i) is the
gross amount of the ith commodity produced in & particular time interval and Xij is
the amount of the ith commodity needed to produce the jth commodity. Assuming that
the Xij are defined so as to remove any ambiguity resulting from joint production
(or by-production) then the amount of the total output of the ith sector aveilable

for investment, stockbuilding, consumption and export ie final total output is

=x—-5x.-
yi i i=1 ij
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or in matrix notation y=x—Xe where ¢ is the n-unit vector. '"Input—-output’ tables
(X,x,y) of the UK economy arc readily available for many years with n from about 10
(highly aggregated) to about 100 (medium aggregation) though it is difficult to
obtain accurate data on the intra—industry transfers xii and the lcading diagonal

of X is often given as zero with gross output appropriately redcfined as x(i)-X, .,
ii

Regular (yearly) and still larger tables are available for foreign economies

(though full use has not been made of them because of the lack of adequate

computing techniques).

Assuming that linear technical coefficients of production (ie the ratios of each
component needed to make each commodity) a(i.J)=dXij/dx(j)=Xij/x(j) exist and are

approximately constant (over a few time intervals) ie constant returns to scale

then

A=X/diag(x)

where diag(x) is the diagonal matrix of x(i) and
y=x—Xe=x—(X/diag(x))(diag(x)e)=x—Ax=Dx

therefore x=/(I-A)y. Fig(7) shows the structure of the published input-output

tables before and after the above factorisation.
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Fig (7) The structure of published input-output tables, Fither input (prices) or
output (expenditure) must be shown as index numbers in the associated time series, the
other being at constant prices to the i/o base year. Hence in the table input=output.

purchases consumers -+ exports of total
by industry government goods and output
As published group expenditure services
e=[1 1 ... 1] total capital total
- intermediate formation + final
output stockbuilding output
sales by X Xe z Bsx n Y x=p
industry group
total intermediate '3 g'Ze  e'n e'Bsx e'n o'y &'z
input =a
taxes less subsidies plus Lo w'e taxes on expenditure, taxes T+E
income from employment investment + exports
gross profits and -sp'B —sp’Be zero because profits all P
trading income occur in industry sector
imports of goods, services m' m'e imports of consumption, imports M
+ gales by final buyers investment and exports
total final ¥ y'e Y
input
total input P’ p'e C+G I+S X Y Y+a
purchases consumers + exports of total
by industry government goods and output
After factoring group expenditure services
A, .=X../x. total capital total
ij 71§71 intermediate formation + final
output stockbuilding output
sales by A Ax /Rp Bsx a y o ytAx
industry group
total intermediate p'A p'Ax p'/Rp p'Bsx p'n 'y p'x
input
taxes less subsidies plus x'Q  x'Qx taxes on expenditure, taxes T+E

income from employment investment + exports

gross profits and -sp'B -sp'Bx zero because profits all P
trading income occur in industry sector
imports of goods, services n’ m'x imports of consumption, imports M
+ sales by final buyers investment and exports
total final v’ v'x Y
input
total input p' p'x C+G I+§ X Y
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A is analogous to the Keynesian propensity to consume (save) relating consumption
(saving) to national income. /(I-A) is therefore known as a matrix multiplier and as
such is usually given an interesting economic interpretation. The initial component

of production x = required for final demand is just y. But to produce this y we now

need an extra total intermediate output 11=Axo which in turn needs a component x2=A11

etc. Hence the total production required for an output y is

xJx = (L+ACT#AC. . D)) y= (THA+AT+. ) y=/ (I-A)y.

This series can be used to calculate the inverse and represented by a return

difference signal flow graph. The economic output is therefore a control input and is

Called the demand in static equilibrium or supply in disequilibrium.

Ve will only deal with A matrices which are 'indecomposable’ (Nikaido) or ‘connected’
(Schwartz) ie are not similar to

[Ayq Agp1o/TAT

LAyq 4551
\here All and A22 are square: AZI and/or A12 is a zero matrix and T is a permutation
\kttix. That is, an autarchy situation with respect to intermediate and/or total

“htputs must not exist for any subeconomy.

N e . S, o . .
ow defining A=B implies Aij Bij‘ A>=B implies A1j> Bij‘ A>B implies Aij>=Bij and

«#B: A>B implies Aij>Bij' If A>=0 it is called nonnegative: A>0, semipositive and

«30, positive. We have

(«; X, y)_)_o .
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The necessary and sufficient conditions for a solution were first investigated by

(4]

Hawkins and Simon (1949) and Georgescu—Roegen and are that all principle leading
Minors of the D matrix are positive ie that D is positive definite. This condition

for 'workability’ of the economy was extended by Nikaido who showed that all principal

Minors of D must also be positive,

7.2 Graph and network theory

(2]

3

;Ahother interesting necessary and sufficient condition has been given by T M Whitin

¢ (1954) based on the proof (derived using Grassman algebra) by Bott[1] that the

iqeterminant of the D matrix is given by the sum over all possible oriented trees of

5
i
S

éithe carrier of the open oriented graph of the system y=x+Xe. Thus if a tree can be

T

AT,

‘“Qnstructed for the Leontief matrix it can be shown that trees can be constructed for

a;‘ll leading diagonal submatrices and if the Leontief determinant is strictly positive

VRIS

e

[ 4

‘t follows that the principle minors are all positive, fulfilling Georgescu—Roegen's

Recessary and sufficient conditions for the existence of static equilibrium’., It is

i‘Qonomically unreasonable to suppose that a tree cannot be constructed in a workable

Sonomy for this would imply the existence of some industry that does not, directly or

PR
Al

““Ndjrectly, receive some share of the consumer’s dollar. Also Nikaido shows that A is
;‘\decomposable if and only if every production sector is directed to every other by a

%
;\hain of branches ie if an oriented tree spanning only those nodes exists.

i

'V/},/ WL

general electrical analogy of the I-A matrix inversion problem was constructed by

48

] ‘ankscn[12] to which tearing can be applied directly. He recognised by physical

4

‘nsoning that the correct contravariant analog of electric current is commodity flow

3

e s

state and that the analog of electric potential is economic price or costate, for

LW i vailable in the input—output tables.
ich data 1s 8
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7.3 The dual system of prices and static optimality

Now if the price of the ith commodity y(i) is p(i) and v(i) is the value added (amount
Pajd to labour) per unit x(i) then, assuming income equal to expenditure in each

l¢ctor (ie no hoarding) we have

X p =x En a +x.v i=1 n or
B3 TjLi=1%aPa %y T
' V‘p-A'p=D'p ie p=/(I-A")v.

Ef‘he adjoint system has a solution iff D' is positive definite and the Brauer-Solow

?QQndition states the equivalence of workability and profitability. The existence of a

: tl‘ee in either the primal or the dual graph is thus a necessary and sufficient

'y

By WM/,'W”‘

svﬁndition for the complete solution of the system. We have the dual Leontief pair

%s\x-Ax and v'=p’'-p'A
)
§‘h 'y=p'x—p'Ax=p'(I-A)x=v'x
3 erefore p'y=p x—p AX™Pp

hich is the Walras' law stating the equality of consumer’'s expenditure to income

&
&

i ‘nalogous to Tellegen's theorem — the law of conservation of power).

Susider the least squares problem of minimising x'Qx-y’'Ry where we are weighting the

b

s
”

Q

ZL7

£ Otal amount produced with respect to that consumed as a control variable, This

i

i

Mbresents the consumer’s choice of distribution of final demand and right to work. O

4

Q R are positive definite. We have
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Cd/dy) (y'/(I-A")Q/ (I-A)y—y'Ry)=0
therefore y=/R/(I-A)'Qx.

Now from p=/(I-A)'Qx it does not seem unreasonable to associate p with Ry and hence
‘§Qx. R is a matrix representing the utility of consumption of a commodity and Q, the
Qisutility of production, both having positive diagonal elements (except possibly for
"lste products) and relatively small off diagonal elements. Price is at least
,‘Qnotonically increasing with demand for that good and decreasing with that of others:
?lh:value added (amount payed to labour) per unit produced is normally monotonically
:}‘Nueasing (returns to scale on labour) with the amount produced of that good and
L

creasing with that of others. Again we have the further restriction that most

;f‘tiables are strictly positive, hence Franksen's treatment in terms of linear

*Qgramming, Finally all the above is entirely equivalent to producers maximisation

§
&

" profits with respect to wages as control (firms’ right to choose distribution of

““dces and wages).

taking a Kron type approach we can reformulate as an ordinary least squares

w

" Splem

M x] subject to [D -I][x]=0
I

Ta
min[x] [ y] Ly

Lyl R

?‘my-

A0

Q

it

o

te D=I-A as usual. The homological structure of the economic network is then as

lOWS
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r/n]
L1 [D -1I]
y A:rx] »> 0
Ly
@ 1
L -rlJ
[ V] v
0 ¢—————|-pJ¢——p
(/D' 1] {D'}
-1

‘%4 we have [/D' IIT v]=0
L-p

;:Qr v=(I-A)'p. Note the appearance of Franksen's negprices n=-p, defined purely from

§bhysica1 reasoning by Franksen ie so that commodities will only flow from a high

;bﬁtential to a low one, but appearing quite naturally in Roth's diagram, The

'§Q°nnection matrices also appear in Franksen's work, Note also that the minimum

i"x-p'y=0.

§h*anksen in fact ends up with equations of the form

x=[/D I1[u] and n=—p=[I —/D'][l]
Lzl Lw

L

\e,e r are the 'unemployed remainders’ or factors of production going to investment

-

L7

"Ny gtockbuilding: 1 is the ‘'acquisition or opportunity cost’ of investing the

Il

Ysources. 'The manner in which these equations have been derived clearly shows that,
" ®om the viewpoint of physical theory, they are constraints or auxiliary conditioms...

= N 4jectrical network theory the bilateral equilibrium constraints are but expressions

E ¢ Kirchoff's two laws.' Elsewhere Franksen compares the conventional approach (which

g &

* use to solve the equations) with Kron’s orthogonal (or complete) network

normally

hbroach which considers transformations of the form

%

)

a [wi=fo I 1)
ey B e 1
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Further we will see in the next section that we can write

MEE N ey

" Where we have included an impedance type transformation. Franksen, though aware of

the orthogonal approach never expands upon it in an economic context.

7.4 A continuous dynamic model

Yeontief later extended the input—output model to include a vector of stockbuilding

Dor unit time. Less naively we will assume the dynamics to be mainly due to returns

O» fized capital investment. We have

Xupy+Bsxtu

‘here x = total output

?«! = intermediate output

i‘ = consumer's expenditure + government expenditure + exports
hix = gross domestic capital formation and stockbuilding.

thrnov[7] introduced the dynamic adjoint equation
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b=A'p-B'sptw
Where p = total imput
A'p = intermediate input
¥ = income from employment + taxes on expenditure + imports
h'p = gross profits on investment and trading income.

?:Qutput and input are terms used in the tables instead of commodity flow and price.
§)\is is because both are published in units of dollars, All variebles are at factor
TQOst, that is rationalised to remove the ambiguities of economic definition., These

}‘be essentially the fundamental equations of national income/expenditure accounting.

3
F

A11 the variables can be found in the tables from which the B matrix must be estimated

- Nag economically justified. Values for the A matrix are published at regular

Ntervals.

g‘xe equations are those of a continuous descriptor system[14], an econometricist would

x
¢ xy that they are in structural form. The system of equations is fully justified both

%
e,

E luctuations in the distribution of supply or demand. For balanced growth, assuming

-

X} topological and economic grounds, It models transients in the economy due to

~

v

E‘ at money is neither injected into nor taken out of the economy, it will be seen that
Eh

is is consistent with a state of deflation — the basis of monetary policy. From the

E Lrst equation and an optimality criterion on the consumers we will now demonstrate

b .
; hat the second equation can be derived. Assume by analogy with the static case that

cost function of the form
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Jx’Qx—u'Rudt

is minimised where R and Q are symmetric positive definite. That is labour minimises
total output with consumption as control. In the same way industry maximises a cost
function of the form /p’Rp-w'/Qwdt=/p‘'u-w’'xdt that is maximises profits = turnover -

wages, This is the dual cost function of control theory, Then from Parseval's

theorem, writing
x=/(I-A-Bs)u=Gu
We have u=/RG*Qx=/R/(I-A+Bs)'Qx

Angd, assuming linearity we can associate u with /Rp giving w=Qx (elasticity of supply

qnd demand) and
D=/ (1-A+Bs) 'w=A'p-B'sp+w,

1 a similar way it can be shown that a state of optimality exists for the producers.

]\is situation is knmown in economics as dynamic equilibrium in that there is no
{pcentive for either party to change their policy. p has assumed the role of a

Lagrnnge multiplier and the system minimises the Hamiltonian

I*'Qx—u'Ru+p'(x-Ax—Bsx-u)dt.

)\king a Kron type approach the equivalent ordinary least squares problem is
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min [x]'Q
L

1x7] subject to [D-Bs -I][x7=0
Lul i

-Rilul _ Lul
and Roth's diagram looks like this

[/(D—Bs)]
) QR | [D-Bs —I]

]
——
(=T
——

C>

0 +————— [—p.l +———————p

[/(D+Bs)]' [(D+Bs) ']
I J L-1 J

From the diagram [/(D+Bs)’ 1][ 1=0.
Now the gross domestic product

D/xe=p ' (Ax+Bsx+u)

Np'A-sp’'B+w’')x,

Therefore the difference betweeﬁ total income and total expenditure
%'x-p'u=sp'Bx+p’'Bsx=s(p'Bx)

Yssuming B constant. This is the Walras Law in the dynamic case. It gives the of fect
Of hoarding on returns from investment, It is equivalent to dH/dt in Pontryagin's

Naximum principle where H is the Hamiltonian,

Rurther w'x-p'u=x'Qx—u'Ru=s(p'Bx)
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and minIx'Qx-u'Rudt=p’Bx.
Defining a Riccati matrix K by
b=k (t)Bx then B'sp=B'sKBx+B’'KBsx
Assuming B is constant and from
X=Azx+Bsx+/Rp
l D=p'p-B’ sp+Qx
{t is not difficult to show that
h'sKBx=B'K/RKBx+(A'—I)KBx+B'K(A—I)x+Qx.
}\is must be true for all x giving the dynamic matrix Riccati equation
ijh'sKB=B'K/RKB-9'(A'—I)KB+B'K(A-—I)+Q

‘\owing that K is symmetric as one would expect. Livesey has previously derived a

X . .
impler form of this equation. By comparing coefficients we can introduce the

Q.handrasekar equations.
sY'B sW]=|’Y'(/RKB—A+I) Y'/RY]
IB'skB B’sYJ LB'K/RKB+(A'-I)EB+B'K(A-I)+Q (B'K/R-A+I)Yl

S; an infinite planning horizon sK=0 is well known and



" dre constant,

Example: Leontief's Economy Puge 143
B'K/RKB+(A'~I)KB+B'K(A-1)+Q=0.
Now consider the special case of zero hoarding,
w'z—p'u=x'Qx-u'Ru=s(p’'Bx)=0.
Therefore x'B'K/REBx=x'Qx for all x

therefore B'K/RKB=Q

Which involves n(n+1)/2 equations in n(n+1)/2 unknowns which will, assuming R and Q
almost always give time invariance for K, showing that zero hoarding at
least involves an infinite planning horizon, further it gives a zero value for the

Cost function. Substituting in the time invariant Riccati equation

Rig(1-A)+(I-A’)KB=2Q.

}Iis cap be solved using the tensor algorithm of Chapter VI, Now for Lyapunov

Stability of the system it is sufficient to find a positive definite function V(t)

Xych that sV(t) is negative definite. Let

g auiipeitiagiungaap S

g writing sV=x'Lx we have L=
[P P B T+[B' 1P, PyII-A -/R]=
Lp® pPIL -p') L -BlLp] polL-q 1-a"
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[(I-A')P_B-QP B+B'P_(I-A)-B'P,Q ~(I-A')P B +QP B'-B'P /R+B'P. (1-A') ]
L-/kp_p+tr-a)8 p-bp (1-8)+BP, 5 /R, 1= (1-A%p b7 +BB_/R-BP](1-2") ]

and letting B'PB=[B’'KB 01
Lo 0l

“e have L=[B'K(I-A)+(I-A')KB=2Q -B'K/R]
L-/RKB 0l

Then if [B'KB 07>0 and [2Q -B’K/R]<0 we have stability,
Lo ol L-/RgB 0l

Otherwise, as is necessary for economic growth, we have instability - in a control

theory sense.

similarly letting B'PB=[P —-B'7] gives L =0.
LB ol 2

hinally it is interesting to note the four conditions

(]) p'u=w'x ,,. 1o money withdrawn by hoarding

(2) s(p'Bx)=0 ... a condition on the money injected into the economy or withdrawn by

U A
y -4

¥gislation

mﬁr G S

3) u=/Rp and w=Qx ... linearity

Ww oamih

‘) minj 'Qx-u’Rudt=0 ... optimality
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7.5 The discrete time model

 Loontief's original work was in discrete time

B

RTINS 9

X(t)=Ax(t)+B(x(t+1)-x(t))+u(t).

Gty ool

W

%h(t+1)=A'p(t+l)+B'(p(t)—p(t+1))+w(t+1)

E\here u(t)=/Rp(t)

(t+1)=Qx (t+1)

. Nd the variables are defined as above,

" Re take

j inI(x'Qx-u'Ru)

3

P Ax+B(z-1)x+u=/ (I-A-B(z-1))u=G(z)u.

AN -
- Ret (2 Nyax

¢ can introduce the discrete analog of the adjoint system

To prove the second equation from

St optimality by the discrete Parseval theorem
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Leontief's Economy

® matrix manipulation gives the discrete matrix Riccati equation

equation can be made symmetrical by writing either

the first case Roth's diagram can be written down from the ordinary least

% subject to [B I]fzx]=(I—A+B)x as follows
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-1l / (I-A+B) [B I)
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and P=(1-A+B) '/ ([B Il/[zP-Q ]fB'])(I—A+B)
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. Which is the first symmetrical version of the backward Riccati equation, This can be

o

: Teyersed from left to right and treated as a scction torn out of a space filter as we

N

dave seen in the optimal control case, hence the boundary operator can be found
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‘hﬁr the second case we have
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Y¢ can be seen that in fact the equations of optimal control are a special case of the

"Squations of input—output analysis, in the sense that they have less structure,

57.6 History

eontiefls' 61 derived the discrete commodity flow equation only and showed how the
;‘)stem of equations could be built up into a partitioned matrix and solved stepwise.
}:9 considered that for a closed system it would be necessary to introduce behavioural

i‘qugtions, and appears to make no mention of the pricing mechanism. Mathur (1964)

FDplied this analysis to the economy of India.

;“1tnov[7] (USSR, 1970) in his 'optimal interbranch model of socialist reproduction’
i tarts from the continuous dynamic model and after defining a Hamiltonian function of
F'O¢ia] utility introduces the dual vector 'as optimal programming of economic resource
E Yices,’ From Pontryagin's maximum principle the equations sx=dH/dx and sp=—dH/dx give

: he adjoint system. This analysis is closest to our own. Brody follows similar lines

® W4 4150 considers time optimal paths,

1 ‘Vesey[10] (1971) describes the application of control theory to input-output
3‘“Qlysis in the Cambridge Growth Model., Starting from continuous dynamic commodity
lbw he notes that Theil’s decision rules define a quadratic wutility function

ifihjx'Qx+y'Rydt and hence derives the Chandrasekar—Riccati equations

' VY/4¢=yA-YB/RB'K and —dK/dt=G+KA+A'K—KB/RB'K
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Qsing the control theory definitions of A and B. He notes that 'any model of the
®conomic system that involves guantities and prices is nonlinear' and further quotes
Morishima: ‘'Once initial output and final demand are known the entire evolution of

the system is defined’ — a two point boundary value problem.

brodylgl (Hungary, 1972) follows Goodwin and 'simply equates price increases with
®ycess demand and production increases with profit.’ (He is however aware of the
bricing mechanism.) This produces a skew symmetric matrix with pure imaginary
igenvalues except for the equilibrium point. The vectors p and x will rotate on a 2n
Qimensional hypersphere. Cross multiplying and adding gives p’'sp+x’sx=0, Brody
Ytates that this sum of squares has no economic meaning and further that the mass of
‘hpirical data gives no indication of pure sine oscillations., He then invokes measure

Lyvariance and reckons in relative rather than absolute quantities giving the

Volterra—Goodwin equations
(‘p)/p=(-Cx)/x and (sx)/x=(C'p)/p

\here by abuse of notation a/b=[a(i)/b(i)]. Cross multiplying and adding now gives
‘b'x+p'3x=s(p x)=0 ie the price of total output is kept constant. These equations
the no explicit (closed, analytic) solution but can readily be simulated on a
QQmputer and show many phenomena readily observable in real economic systems. The

‘&stem was used to simulate the US economy over the period 1958-1968.

e S B RN A )
? ? ¢

hkanksen 3[12] (1969) important contribution has been dealt with above, Teldahl's[13]

(]975) peculiar relativistic distributed economic system appears to be modelled along

Ye same lines but via De Rham’s theorem. This was apparantly used in practice on a

\“del of the Swedish economy with 121 sectors,

O A R R 1
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ff_-‘_l:inallyanote on the estimation of B, Q@ and R. This chapter is at least a

;Justification for approximating the economy with a second order differential/

;‘utoregressive model. The problem is the estimation of the capital cocfficient

;‘&trix, as figures for intermediate output are not available for non input-output

™

%?)Ears. John Sutton of the Department of Economic Studies, Sheffield University has

Rggested that intermediate output should be estimated by subtracting the factored sum
O government expenditure, consumers expenditure and capital formation from total

k
lf“ltput in the Treasury's ’'Blue Book'.
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(QMPTER VIII General Homology Theory: the Structure of Reality?

Eﬁ.e give the formal definition of a cochain complex. The Eilenberg-Stecnrod axioms for

General Homology Theory in an Admissable Category and the de Rham Thercom are

i’tated. The axioms c¢an be related to the definitions of the more specific objects

o 8¢d elsewhere in this work. We start with a discuossion attempting to show why

% Qmology theory describes the mathematics of so many diverse subjects. We conclude

?l‘at it is more than the mathematics of physics, it describes the structure of

frhformation.

8.1 Homology Theory

Homology theory is the mathematics of reality: that is, at least, much of the
reality we experience is described by homology theory. As such it is a superset of
the mathematics of physics. Conventional science describes the evolution of an
‘objective’ universe in R3. Define a vector k(x,y,z,t) representing a point in the
Ypace-time continuum, ie the electric, magnetic, gravitational and othor fields at
that point, its mass density and the direction in which that mass is moving and
¥pinning, its charge, etc, then k<(K represents at least from the point of view of

Ngwtonian physics, the entire evolution of the universe (the ‘great machine

theory'.) This structure is Misnor and Wheeler’'s superspace and is described by

llomology theory.
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Twentieth century physics has shown that life is rather more complicated than this,
Einstein’'s theory shows that as our viewpoint gets larger the universe, the
macrocosm, starts to distort (badly). Quantum theory says that as our viewpoint
gets smaller the universe gets grainy: microcosmic decisions can be predicted only
statistically. Further Bell's theorem (1962) proved that either the statistical
predictions of gquantum theory — or that some of our other ideas — were wrong,
Quantum theory won out, the Clauser—-Freedman experiment (1972) amongst others, has
shown'that Einstein’s Principle of Separability (action at a distance) one of the
basic axioms of Western Science fails. Aspect'’s exp?riment (1982) showed that
there were no hidden variables involved, leading to the conclusion that we live in
one of many parallel universes (Moorcock's multiverse, otherwise known as the many

worlds theory.) The multiverse holds at least on the medium scale and is described

by homology theory.

Consider the set K of all conceivable evolutions of the universe, ie the set whose
elements are evolutions of the universe disregarding the laws of physics, common
sense, etc. The universe at any point in space—time bears no special relationship
to that immediately ahead or Dbehind, ie K can take any value at that point. We
wust look at subsets of this superspace. Consider the set of all conceivable
states of the universe. A subset of this is the set of all possible (or
syntactically correct) states, ie states of the universe that obey the laws of
Dhysics etc. Now consider the subset of K representing all physically possible
ovolutions of the universe Q: further consider the subset R of Q containing all
Dhysically possible evolutions of the universe through the point E(x'y'z’to)' the
Nniverse as we know it exists now. This can be considered an optimal set in some
Yense., Homology theory allows us to study the quotient sets K\Q, K\R and Q\R. The
Structure R becomes more hazy as we look further into the past or future.

Qlassically there is a double cone in space-time (Bergman'’s paradigm) representing

“hat we sce as ‘now' in the past (light travelling from a distant star has taken a
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finite time to arrive) and the limits to what we can predict as the future, There
is a similar cone in R which contains a double decision tree, going both forwards
and backwards in time through k(x,y,z,t ). The tree splits in the future ecvery
time a quantum decision is made: it appears to be symmetrical in the past due to
our inability to trace our own history accurately. Decision trees of this sort can
be used to represent subjective realities rather than the objective universe. It
can be seen that these structures are supersets of the multistage decision problems
of dynamic programming. For example binary replication of DNA involves a decision
tree of a simiiar form to the above. The subsets of all conceivable evolutions of
DNA can be defined. In a similar way a sociological space, considering the world
as a sphere of interacting intelligences can be defined. In fact any decision tree
in a dynamic programming sense is described by homology theory. Kron distinguished
between the state (or network) space in which he worked, and real space, ie. the
universe. As these are both special cases of superspace R we can see that the two
concepts are mot so intrinsically Qifferent. Thus homology theory describes more
tban just physics, it can describe subjective problems: problems with deep

structure and subjective criteria — in this sense it is the mathematics of reality.

This technique of predicting all possible futures is the basis of the geometric

method in control theory.

We have defined three special cases of General Homology Theory: The first case is
Singular Homology Theory which describes topological networks with impressed
functions. DeRham Cohomology Theory describes the isomorphic system of functions
impressed on topological spaces. Axiomatic sheaf cohomology theory is the third
case: it is used for more abstract problems, eg to prove the de Rham theorem, It
is built of chain complexes, an abstraction of the polytopes used in singular
homology theory, and thus serves as a generalisation of the structure of abstract

optimisation problems. The remarkable thing is that these are all special cases of

General Homology Theory -~ and that General 'Homology Theory is based on a
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(structurally) simple set of axioms., And that these axioms therefore appear to be

the basis for a description (of at least a large part) of reality as we know it.

Homology provides an algebraic picture of topological spaces, assigning to each
space X a family of Abelian groups HO(X),....Hn(X),..., and to each continuous map
£:X->Y, a family of group homomorphisms fn:Hn(X)—>Hn(Y). Properties of the space
or the map can often be found from properties of the groups Hn or the homomorphisms
fn‘ A similar process associates homology groups to other mathematical objects,

for example, to & group or to an associative algebra,

Complexes provide a means of calculating homology. Each n-dimensional ’'singular’
simplex T in a topological space X has a boundary consisting of singular simplices
of dimension n-1. If Kn is the free abelian group generated by ell these
n-simplices, the function d assigning to each T the alternating sum dT of its
boundary simplices determines a homomorphism d:Kn—>Kn_1, This yields a 'complex’

which consists of abelian groups Kn and boundary homomorphisms d, in the form

d d d d
0<—K°<—K1< K2< K3< ceee

Moreover dd=0, so the kermel Zn of d:Kn—>Kn_1 contains the image dK The factor

n+1’

group ﬂn(K)=zn\dKn+1 is the nth homology group of the complex K or of the
underlying space X. Often a smaller or simpler complex will suffice to compute the
same homology groups for X. Given a group G there is a corresponding complex whose

bomology is appropriate to the group, for example the one dimensional homology of G

is its factor commutative group G\[G,G].

Homomorphisms of appropriate type are associated with each type of algebraic
System, Under composition of homomorphisms the systems and their homomorphisms
tonstitute a category. If A and C are abelian groups, the set Hom(C,A) of all

Rroup homomorphisms f:C->A is also an abelian group. For C fixed, it is a
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covariant functor on the category of all abelian groups A, each homomorphism

a'A~>A' induces the map a*:Hom(C,A)->Hom(C,A’) which <carries each f into its

composite af with f.

f a
C->A->A'

induces a2a%:Hom(C,A)->Hom(C,A’)

which takes a:f->af
with f<Hom(C,A), af<{Hom(C,A'), alAs,

For A fixed Hom is contravariant, Each ¢:C'->C induces the map c* in the opposite

direction, Hom(C,A)->Hom(C’,A), sending f to the composite fc.

¢c f
C'->C->A

induces c*®*:Hom(C,A)->Hom(C',6A)

which takes c:f->fc
with f<Hom(C,A), fc<Hom(C',A), clc*.

Thus HNom(?,A) applied to a complex K=? turns the arrows around to give a complex

ds ds
Hom(Ko,A)->Hom(K1,A)—)Hom(Kz,A)*>...

so if a(i):Ki—>A then a(i+1)>a(i)d:Ki+1—>A and the adjoint d*:;a(i)->a(i+1) where d*
means postmultiply by d or in the matrix case where the contravariant variables are
treated as row vectors, the conjugate transpose of d, Here the factor group

ker (d*)\im(d®) is the nth cohomology group A™(K,A) of K with coefficients A.

According to the provenance of K, it yields the-cohomology of a group G or a space
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Definition A cochain complex C* consists of a sequence of K-modules and

homomorphisms
- +
Y.L VLBV

defined for all integers q such that at each stage the image of a given
homomorphism is contained in the kernel of the next. The homomorphism Cq-->Cq+1
(which we will refer to as d9 or simply d) is called the qth coboundary operator.
dd=0 but the sequence is not long exact., The kernel 29(c*) of d% is the module of
qth degree cocycles of the cochain complex C*, and the image Bl(C*) of dq"'1 is the

module of qth degree coboundaries. The qth cohomology module Bi(C*) is defined to

be the quotient module
. . -
g%(c*)=z9(c*)\BU(C") =ker (dD\im(aT 1),

This of course only makes sense if the sequence is not long exact.

Let C* and D* be cochain complexes. A cochain map C*-)D®* consists of a collection
of homomorphisms Cc9->D? such that for each g, the diagram
c? ->p?

t t
ca*1-5pa*’

commutes., It follows that a cochain map sends the module of g-cocycles of C* into
the module of q-cocycles of D* and maps the module of q—coboundaries of C* into the

module of gq-boundaries of D*, and thus induces a homomorphism of the cohomology

modules

19cc®y->adm").
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The composition C*-)E* of two cochain maps C*-)>D* and D*-)E* induces on the
cohomology modules the homomorphism N9(C*)->HI(E*), which is the composition of

H¢c*)->a%(p*) and HY(D*)->HY(E*). A sequence of cochain maps
. + s
0->C ->D ->E ->0
forms a short exact sequence if for each q,
0->¢%>p->e%->0

is 8 short exact sequence of K-modules, A homomorphism between short exact
sequences 0-)>C*->D*->E*->0 and O0->C*->D*->E*->0 of cochain complexes consists of

cochain maps C*—>C*, D*—)D* and E*->E* such that we have a commutative diagram

* L *
0~>C ->D —>E >0
t t +

AT I
0->C ->D =>E ->0

Proposition Given the short exact sequence 0->C*->D*-)>E*->0 of cochain maps there

are homomorphisms
nde*)da (™)
for each q such that the sequence
o ESSEY ) -E ) -HrEDY HrT ()L

is exact, and such that given the above homorphism of short exact sequences of

chain complexes, the following diagram is commutative

L *
WCITASEV AN
¢t *

* + *
e SHattlcet)
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(2]

It is shown in Warner that the required homomorphism is

+
d:z3(E=)\BI(E*)->n 1(C‘). The proof by ‘diagram chasing' is easy but tedious,

An extension of a group A by a group C is a group B)A with B\A~C, in diagrammatic
language, an extension is just a sequence

B:0->A->B->C->0

of abelian groups and homomorphisms in the sense that the kernel of each
homomorphism is exactly the image of the preceding onme. B can be considered as a
product of C and A. The set Ext'(C,A)=(B} of all extensions of A by C turns out to

be an abelian group and a functor of A and C, covariant in A and contravariant in

C.

Does the homology of the complex K determine its cohomology? The answer is almost
yes, provided each K® is a free abelian group. In this case B?(K,A) is determined

'up to a group extension’ by H (K), H _,(K) and A. Specifically the Universal
Coefficient Theorem (a special case of the Kunneth theorem, which treats tensor and
torsion products) gives an exact sequence

0->Ext 1 (B__, (K),A)->E" (K, A)->Hom(H_(K),A)-)0

or Hom(B_(K),A)~H™ (K, A)\Ext ! (B__; (K),A)

1,
involving the functor Ext just introduced. If the K® are not free groups there is

a more complex answer, involving ’spectral sequences’',
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8,2 Admissable categories

Let X be a nonempty set. A class T of subsets of X is a topology on X iff T

satisfies the following axioms:

(1) X and {0} belong to T.

(2) The union of any number of sets in T belongs to T.

(3) The intersection of any two sets in T belongs to T.

The members of T are called open sets., (X,T) is a topological space.

By a topological pair[ll (X,A) we mean a topological space X and a subspace A<(X.
In case A is the empty subspace 0<X we will not distinguish between the topological
pair (X,0) and the topological space X althongh they are logically different., Thus
the topological spaces are special cases of topological pairs. By a subpair
(X',A')<(X,A) we mean a pair st X'<X end A'<A, The three spaces X,A,0 together
with their inclusion relations O0CA(X make up six pairs (0,0), (A,0), (X,0), (A,A),
(X,A), (X,X). These are the pairs associated with (X,A). In case A<0 or X=A some
of these pairs become equal., By a map f:(X,A)->(Y,B) we mean a (continuous) map
£:X->Y satisfying f(A)<B. In case A=0 the condition f(A){B is always satisfied and
hence every map from (X,0) into (Y,B) is just a map f:X->Y. In particular we shall
not distinguish between the map f:(X,0)->(Y,0) and the map f:X->Y. For example,
let (X',A’)<(X,A). The inclusion map 1i:X'->X obviously satisfies the condition
i(A')<A and hence is a map from (X',A') into (X,A)., In case (X',A’")=(X,A), i is
the identity map on (X,A). Transitivity: consider any three pairs (X.A). (Y,R),

and (7,€). If f£:(X,A)->(Y,B), g:(Y,B)->(Z,C) are maps then the composition h=g.f
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satisfies h(A)=g(f(A))<(g(B)<C and hence is a map h:(X,A)->(Z,C). Next consider an
arbitrary f:(X,A)->(Y,B). Let (X',A’')<(X,A) and (Y',B')<(Y,B) satisfy f(X')<Y’ and
£(A')(B'. There exists g:(X',A'")->(Y',B') defined by taking g(x)=f(x), for any
2<X', In case (Y',B')=(Y,B), g is called the restriction of f to (X',A')<(X,A)
denoted g=f|(X',A’). By the lattice (sec Wonham) of an arbitrary (X,A) we mean the
six associated pairs together with all the identity maps on the pairs and the
inclusion maps in the diagram
(X,0)->(X,A)->(X,X)
(0,0)—>(Aj0)->(AjA)

By the cylinder (X,A)xI over (X,A) we mean the pair (XxI,AxI) which consists of the
topological product XxI of X with I=[0,1], the closed wunit interval and its
subspace AxI. The maps k., k,:(X,A)->(X,A)xI defined by ky(x)=(x,0) and kq(x)=(x,1)

are canonical imbeddings of (X,A) into (X,A)xI.

By an admissable categorz[ll for a homology theory we mean a category, C whose

objects are topological pairs and whose morphisms are maps of topological pairs

satisfying

(1) If (X,A) is an object in C, then C contains the lattice of the pair (X,A).

(2) If f:(X,A)->(¥,B) is a morphism in C then C contains (X,A) and (Y,B) together

with all the maps that f defines from members of the lattice of (X,A) into that of

(Y,B).

(3) If £:(X,A)->(Y,B) and g:(Y,B)->(Z,C) are morphisms in C then C contains

g.f:(X.A)-)(Z,C).
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(4) If (X,A) is an object in C then C contains the cylinder (X,A)xI and the two

canonical imbeddings kO'kl of (X,A) into (X,A)xI.

(5) There is a singleton space, O in C, If O is any singleton space in C then C

contains every f:0—2>X<C.

For example the category of all cellular pairs and maps of cellular polytopes (CW
complexes) such that A is a subpolytope (or subcomplex) of X is an admissable
category. The category of all pairs (X,A) and all maps of such pairs is the
largest admissable category. Each example contains all singleton spaces. Choose
the distinguished singleton space O in condition (5) as the space that consists of
211 real numbers O only and denote it by O even though this may not always be true,.
Let ¢ be an arbitrary admissable category. Then (X,A) is admissable iff it is in
C. Similarly for f:(X,A)->(Y,B). Consider f,g:(X,A)->(Y,B). Then f and g are
homotopic in C iff there exists an admissable h:(X,A)xI->(Y,B) st f=h.k, and g=h.k,

(continuously deformable). In the examples f and g are homotopic in C iff they are

homotopic in the usual sense,

8.3 The Eilenberg—Steenrod axioms

(1]
on C we mean a

Let ¢ denote an admissable category. By & homology theory
tollection of three functions

H=(H,d,*)

B assigns to each (X,A) in C and each q in I, the set of integers, an abelian group

Hq(x,A) which will be called the gq-dimensional homology group of the topological
pair (X,A) in the homology theory, (or the q-dimensional (relative) homology group

of the topological space X modulo its subspace A.) 1In case A=0 it is called the
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Q-dimensional (ebsolute) homology group of the space X.

% assigns for any f:(X,A)->(Y,B) in C and for any q<I a homomorphism
f =f :H (X,A)->R (Y,B)
* *q g q

the homomorphism induced by f in H.

9 pssigns for any (X,A) in C and for any q<I, a homomorphism

=d(X,4,q):B (X,A)->H _(A)
d=d (X, A, q) q( -1

the boundary operator on Hq(x,A) in H.
x}urther H,* and d are required to satisfy the seven axioms:

(y Identity. If i:(X,A)->(X,A) is the id map on (X,A) in C then the induced

homomorphism i*:Hq(X.A)—)Hq(X.A) is the id automorphism of Hq(X,A) for any q<I.

(2) Composition. If f£:(X,A)->(Y,B) and g:(¥,B)->(Z,C) are maps in C then
(g.f).q=g‘q.f‘q

Tor any q<I. Hence for any q, (Hq,‘q) constitutes a covariant functor from C to A,

Yhe category of all abelian groups and homomorphisms, Writing Hq(f)=f.q for any f

in ¢ the functor is denoted by Hq and is called the g-dimensional homology functor

{1 I,

(3) Commutativity. If £:(X,A)->(Y,B) in C defined by g(x)=f(x), for any x<¢A then

q.f‘:g..d ie
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g.
H (A)->H (B)
q-1 g-1
dt dt

Hq(X,A);zﬂq(Y.B)
for any q<I.

(1) to (3) are the algebraic axioms,

(4) Exactness. If (X,A) in C and i:A->X and j:X->(X,A) denote inclusion maps then

the infinite seqguence

i®
8 W oilE xadE @,
q q q q-1
of groups and homomorphisms, the homology sequence of (X,A) is exact.

(5) Homotopy. If f,g:(X,A)->(¥,B) in C are homotopic in C then f‘q=80q' for any

q<I.

(6) Excision. If U<X is open and the closure C1(U)<Int(A) the interior of A¢X and

if the inclusion, e:(X-U,A-U)->(X,A) is in C then the induced homomorphism

e.q:Hq(X‘U.A"U)’>Hq(XvA) is an isomorphism for any q<I. e is the excision and Cagq

the q-dim excision homomorphism.

(7) Dimension. Hq(0)=0, (g#0) for any q<I.

The first six axioms constitute a generalised homology theory. G=Ho(o) is the

coefficient group of H.
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In a similar way we can define generalised (contravariant) cohomology theories with
coboundary operators using superscripts. For example taking C=((Z,R)} where

z={z%(c*)}, B={BY(C*)} and

19z, B)=23(c*)\Bi(C*)

da:89(c*)->B 1 (c#)

we have constructed the singular cohomology theory, see Fig(8.1), Construction of
homology for discrete optimal control is shown in Fig(8.2). Fig(8.3) shows the
twisted isomorphisms between homology and cohomology sequences and Fig(8.4) gives
the complete space filter including homology and scattering sequences. We finish

this discussion in Chapter X and show how the axioms may be related to definitions

in optimal control theory.

8.4 The De Rham Theorem

An n-dimensional manifold is a space which is not necessarily a Euclidean space nor
is it a domain in Euclidean space, but which from the viewpoint of the short
sighted observer living in the space, looks just like a domain in Euclidean space.
For example the 2-sphere cannot be considered part of the Euclidean plane, however
our observer on the sphere sees that he can describe his immediate vicinity by two
coordinates and so fails to distinguish between this and a small domain in the
plane. Let M be a paracompact differentiable manifold. IJts differentiable
structure will not be invoked. Let K bé a fixed principle ideal domain, The most

important cases are (1) K is the ring of integers when a K-module is an abelian

group, (2) K is the field of real numbers when a K-module is a real vector space.
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A p-form a on a differentiable manifold M is called closed if da=0, where d is the
differential operator. It is called exact if there is a (p-1) form b such that
a=db. Since dd=0, every exact form is closed. The quotient space of the real

vector space of closed p—forms modulo the subspace of exact p—forms is called the

pth de Rham cohomology group of M.

HzeR(M)=(closed p-forms)\(exact p—~forms)

For each integer p>0 we let infsp denote the real vector space generated by the

differentiable singular p-simplices in M, Hence the elements of (M,R) are

infSp
precisely the differentiable singular p-chains in M with real coefficients, For
p<0 we let infSP(M,R) be the zero vector space. The boundary operator d induces

linear transformations

d :, S (M,R)->

p'inf P infsp—l(M'R)

for each integer p, which for p<0 are simply the zero transformation. Now dd=0,

and the pth differential singular homology group of M with real coefficients is

defined by

M,R)=k d i ,
ianp( Y=ker( p)\1m(dp+1)

and is moreover & real vector space.

We define a linear mapping of the de Rham cohomology into the dual space of the

real differential singular homology

P -y, H (MR)
HdeR inf p '
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[2]

The de Rham theorem states that this is an isomorphism . Tt is the isomorphism
(information preserving map) between distributed or continuous systems and their
appropriate discrete representations. De Rham's theorem shows that any such

system, is isomorphic to any homological torn form of itself,
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QuAPTER IX Computer Programming: Orthogonal Languages

;4\ little accepted fact in the computer field is that programming languages have

By

'??fhnsic and Fortran (and Cobol in the commercial world) are still the most widely used
iﬁlinguages, though with the advent of microprocessors Pascal is becoming more popular,
%’Qﬁte that Pascal does mnot stand for 'Programming and Scientific Computational

Eg\lgorithmic Language’ but was in fact named after Blaise Pascall

%

Li‘\rly computers were programmed in machine language. This rapidly became too

iEbeorions for writing long programs and the first high level (or source) language,

£ Ortran, was written and compilers developed which could translate it into machine (or

';5Ject) code. Basic was the first interactive language, that is instead of compiling

£y

‘ighe source into object code and then running it, the program is treated as a sequence

commands to be obeyed by & program known as an 'interpreter’. Compiled code is in

ES‘eral much faster - though compilation itself may be slow, it only has to be done
Eff Re. Good Basic systems provide both an interpreter and a compiler - debugging can

carried ount interactively with the interpreter eg single lines of program may be
Qcuted either directly or indirectly, and then the program compiled for fast

Scution., Lisp and Pop—2 interpreters even allow source to be read into the user

Qgram and executed, allowing program changes at run time.

80160 was the first of the structured, modular languages =— as opposed to the

};E Yuential nature of Fortran - and was biased more towards ease of wuse than

. 3 ticiency. By structured we mean having a general, English-like, nested syntax. By

ﬁ“lar we mean & procedure orientated language, Compared to Fortran or Basic they

;ﬁ: ® easier to read, easier to program, easier to maintain, easier to translate to

“thet language, easier to debug, there is less chance of hidden bugs, degenerate
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i Cgges tend to take care of themselves (you don't find yourself having to think ‘'what

- if....') and it discourages 'spaghetti’ coding. A lot is talked in the literature on

x5“Ogramming techniques such as stepwise refinement, though flow charts are not

‘Imroved of - developing a feel for structured programming is most important, The

n ‘hmhasis is on short procedure definitions rather than long sequential brograms.

frhe art then developed in two directions. Pascal was designed to be the most
Cficient structured 1language possible, while Algol 68 became the first ORTHOGONAL
liaguage and will probably remain the most general programming language ever written
Or the near future -— it allows definition of the most abstract quantities and
Ei_ Derators possible — and although compilers remain large and slow, the code produced
Or production runs can be as fast as that from Fortran. Except for minor differences
X syntax Pascal, like Algol 60 and to & certain extent BCPL and the real time
{nguage Coral66, is a subset of Algol 68. ADA[14] is becoming the most popular
‘.trnctured language in the USA, it is based on Algol68 but with a more Pascal like

TR

- ¥ntax, gemeric typing and real time facilities thrown in,

9.1 Comparison of languages

Almost all theory of the type discussed in this thesis is conventionally programmed
as matrix algorithms in Fortran. Dynamic arrays (whose size may be specified at
tun time) and flexible arrays (whose size may be changed at run time) are not
allowed. Matrices are added, multiplied, inverted etc. by calling 1library
subroutines, usually with one operation per line, Hence much computer memory is
wasted as matrices must be dimensioned to their largest likely size, and programs

tend to be 1long and unreadable, one matrix equation taking up many lines with

explicit work space being defined for the result of each stage. Algol 60 allows
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dynamic arrays but not flexible arrays, and further allows recursive procedure
calls rationalising many function definitions. Pascal does not have dynamic arrays
but does have an explicit pointer system whereby arrays of fixed sizes may be
specified as types and created at run time on the 'heap’ (similar to a stack) and
destroyed when no longer needed. If procedures whose results are pointers to
arrays are defined recursively this process can be made semiautomatic. Algol 68
removes all these difficulties. Dynamic and flexible arrays of any rank are
allowed. An automatic garbage <collector destroys these when they are no longer
needed and the space on the heap is wanted for something else, Slices of arrays
and arrays of arrays can be manipulated and arbitrary (monadic or infix diadic)
operators may be defined allowing matrix equations to be programmed exactly how
written optimising writing, reading, correcting and maintainance of

they are
programs. The same operator may even be defined between objects of different type,
the results being understood from the context., Undefined operations may be used,
the definition being understood by a set of rules known as coercion. Objects may
even simultaneously have more than one type. Sylvester’'s expansion theorem gives
arbitrary functions of a matrix, Further Algol 68 objects may be defined in any
category necessary — sets, groups, rings, modules and their morphisms may be
manipulated. Covariant and contravariant types may be defined. It should further

be possible to define objects representing arbitrary homology theories or having

the structure represented by Kron's algebraic diagram for the space filter or

polyhedron model or the scattering structure (Nicholson suggested implementing this
as hardware) or perhaps a procedure called "ROTH which would perform the
manipulations achieved by reading around the squares in Roth’s diagram. This would
represent an extremely general scientific program, perhaps a software library or

computer language, which would be able to deal with any topological or optimisation

problem that was & special case of the theory.
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Pascal is more usually available as a P-code interpreter than a compiler, with non
of the wusual advantages. Pascal 1is first translated to P-code and then
interpreted., This is slow and non—interactive, and does not allow mixed language
programming. Their existence is partly historical —- Pascal was designed for a
hypothetical stack orientated machine which executed P~code -~ and partly due to
ease of implementation and transportability. Pascal is rapidly becoming available
on most machines that offer Fortran, and many that don’t - ie microprocessors, It
is rapidly and satisfactorily replacing Fortran for both applications and systems
work — which does not mean to say of course that one stops using programs that are
already written in Fortran! In fact mixed language programming enables one to call
Fortran libraries from Algol or Pascal. These are a highly 1liked teaching
languages, much preferred to Fortran, and give a strong feel for other structured
languages. Unlike Fortran, and particularly, as microcomputer users will know,
Basic, Pascal has a highly standardised syntax — it does not vary between machines.
UCSD Pascal is often available as a complete system including compiler 1library,
dedicated editor, debugger, assembler, compiler or interpreter, linker, filing
system and graphics (historically usually turtle (r,theta) graphics). Pascal
cohpilers are usually one pass compilers with look ahead and are hence very fast,
and produce very efficient code. Also because unlike Algol 60, the langnage was
designed to achieve this, they can be quite small. Interpreters tend to be at
least faster than Basic. An interesting point with high level languages is that
the errors tend mainly to come out in the compilation stage. Execution errors are
rare with Algol 68. Lastly Pascal has a heap and some degree of garbage collection
is specified in the Report, though this is rarely implemented. Algol68 garbage
collection is automatic. The main disadvantages of Pascal are that it does mnot

allow dynamic (and hence flexible) arrays, you cannot define your own operators and

the assignment operator does not work on structured types.
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The two main computing environments that have developed them are commercial data
processing and scientific programming. A third field that is rapidly progressing
is that of Artificial Intelligence., Here there are two main schools of thought,
One is that expert systems which can carry out specific tasks eg. in robotics
should be developed. The other is that it should be possible to develop general
intelligent programs using the theory of natural language originating from image
processing and language translation — the study of syntax and semantics. Computer
scientists have developed a number of moduvlar, structured, highly recursive,
interpretive programming languages for AI work, Spitbol (Smobol IV) is a pattern
matching language, Lisp is a theoretically based language having as its core (the
minimum number of basic operators) only five symbols, and Pop—2 combines the
facilities of a Lisp type language with some of those of Algol 68. An interpreter
for Lisp can be written in Lisp in a remarkably short number of lines. The ideal
aim of the mnatural language community is to develop a (minimal) program that can
learn, (in a general sense) - the core of an intelligent program. That is that for
example, rather than programming the computer to understand English, a program
could be written that could be taught to understand it, The Lisp interpreter
jtself was a major breskthrough in this sense though it cannot be taught in
English, only in Lisp. The mathematics of natural language is moving more towards
the structures used in homology theory — Kron predicted this when talking about the

space filter as a set of self organising polyhedra, a model for an artificial

brain.
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9.2 Automatic matrix manipulation

There are roughly two kinds of people who deal with matrices on computers. The
first bracket is the requirement for processing large amounts of numerical data.
The most commor examples are in statistics, for which large packages such as SPSS
or GENSTAT are available, Linear Programming, for which large packages such as XDLA
(ICL) and smaller programs are available, and transformations such as Eigenvalue

Analysis and Matrix Inversion. The other bracket is matrix manipulation, usually

the requirement for writing algoritbms, in fields such as Time Series Analysis,
Network Analysis, the Finite Element Method, Decomposition Theory and Modern
Control Theory. We stress that for large smounts of manipulation on relatively
smell matrices, using relatively small amounts of machine time, for non production
run jobs and testing algorithms, Algol 68, Pascal or even Basic are much better

languages than Fortran, Consider the following example. A common simple problem

in estimation is, given a rectangular matrix, A and a vector y, to find the best

estimate x° of x such that y = Ax. The least squares solution is
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9.2.1 Basic

This is certainly the simplest language to use from the point of view of a
beginner., JYts disadvantages are that it is slow, inaccurate, will only take one
matrix operation per line and requires to be given workspace. The program can
be designed using an interpreter (Prime Basic or ICL SOBS) and compiled under

VBASIC or JBAS for production runs. The example program would look something

like this,

10 input n,m

20 dim a(m,n), x(n),y(m),ws(n,n), at(n,m)
30 mat input a

40 mat input y

50 mat at=trn (a)

60 mat ws=at*a

70 mat ws=inv(ws)

80 mat x=at®y

90 mat x=ws®x
100 mat primt x

9.,2.,2 Fortran

. [1: 3 6 - 10
A typical Fortran ’ ] semicompiled subroutine library for matrix

manipulation would include the following routines: set a matrix to zero or the
gnit matrix, add, subtract, multiply two matrices (of appropriate size), scalar
multiplication, inverse, determinant, transpose, read or write a matrix, set one
matrix equal to another, negate a matrix, eigenvalue analysis, and perhaps
exponentiation or redimension, These subroutines must be supplied with the
input and output matrices, their real and virtual sizes (if different and
available) and sufficient workspace. Typical examples of

redimension not

Fortran matrix subroutine libraries are: ICL Scientific Subroutines, National

Algorithms Group (the NAG library — also available for Algol60 and 68) the
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Sheffield University Control Engineering library (ICL only) and Melsa and Jones'
Linear Control Theory package. For further information see the appropriate
reference. The subroutines can be included in a Fortran program by including
the appropriate 1library statement before the program description segment and
compiling using FORTRANL or FORLOAD wunder Maximop. The Sheffield Control
Engineering package is the most general as regards manipulating arrays and
provides facilities for dynamically redimensioning Fortran matrices inside the
calling segment[3] to minimise storage of arbitrarily sized arrays without
recompiling the program. The NAG library includes a large set of accurate and
efficient routines for inversion, determinants and eigenvalue analysis

particularly for complex and special sparse matrices, Matrix manipulation in

Fortran on & Prime machine is horrific, particularly with arrays over 64K,

nevertheless it is widely used.

Using the Sheffield library matrix manipulation is made almost as simple as
using Basic and it is fast, An optimising compiler is available for still

greater speed. Matrices can be redimensioned at run time (under TRACE 2) using

call redimension(ind,nar,a,b,...,nds,nl,n2,...)

ind is a constant initially set to zero,

is the number of arrays, with the same number
of dimensions, and size, to be redimensioned.
a,b,.. are the arrays to be altered.

nds is the number of dimensions and

n1l,n2,..is the size of each dimension.

where
nar
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The example program would look something like this:

master
dimension a(1,1),x(1,1),y(1,1),ws(1,1),at(1,1)
read(1,10)n,m

10 format(2i0)
ind = 0
call redimension (ind,1,a,2,m,n)
call redimension (ind,1,x,2,n,1)
call redimension (ind,1,y,2,m, 1)
call redimension (ind,1,ws,2,n,n)
call redimension (ind,1,at,2,n,m)
call mread (a,m,n)
call mread (y,m,1)
cdll mtrans {(at,a,m,n)
call mmult (ws,at,a,n,m,n)
cell minv (ws,ws,n,n)
call mmult (x,at,y,n,m,1)
call mmult (x,ws,x,n,n,1)
call mwrite (x,n,1)
stop
end
finish

Note that each matrix must have two dimensions,

9.2.3 Algol 68

Even using the Sheffield library the example is hardly an elegant way of
implementing equation (1), Algol 68[2‘ 10, 13) provides this elegance. It is
by far the most appropriate language for large scale matrix manipulation (large
sets of small matrices). Tts disadvantage is that compilation involves running
a large slow program. The automatic garbage collector for flexible (dynamically

redimensionable) arrays is quite an overhead on execution,

To understand how the garbage collector works one must have some ideas of the
memory structure involved. Typically, above the program area is a static data

space consisting of variables, arrays etc, defined at compile time. Above this
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is an area called the heap which is initially empty. Every dynamic data
allocation at run time will create a new area of workspace on the heap of
appropriate type. Often, veg. wvhen redimensioning a flexible array or
reassigning a pointer away from the heap, areas will become unused. Unless
these are cleared up the heap will eventually collide with the stack (used for
return addresses etc.) which is simultaneously growing down from the top of
memory. A routine called the ’‘garbage collector’' is therefore initiated at
regular intervals (particularly when space is at a2 premium) to 'scavenge’
redundant areas on the heap either by reordering the pointers or shifting the

data around - depending on the algorithm used —~ thus delaying or preventing the

crash,

The least squares problem would be programmed as follows:

'with'matlib’from’alib’

'begin’
"int'm,n; read ((m,n));
[1:m,1:n)'real’a;[1:n] 'real’x;[1:m]) 'real’y;
in(a); in(y);
x:=/("trans'a * a)*’'trans’a®y;

out (x)

'end'’

'finish'

The simplification is yet more noticeable with larger problems. The s8lgorithm
of Ref(4) has been implemented, as has =a general linear time series model
estimation program, with ease. The 1library MATLIB is available from the

author[ZJ.

Notes

(1) Duplication of data can be avoided by using references to nrrays. Rowever

rea]l arrays must be used as procedure parameters when used as workspace,
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(2) Flexible arrays may be created and destroyed eg. by x:=((0)) the overhcad
is the garbage collector, Experiments carried out at Norwich indicate theat
compiled Algol68 is as fast as Fortran: However as soon as a reference to the
garbage collector is made run time increases by a factor of around 40%. This
though does not get much worse with further calls until a situation is achieved

where the heap is so small that scavenging occurs on virtually every operation,

(3) Vhen a vector of matrices is required it must be defined
[1:n]'ref'[,] 'real’x; and each element filled up like 80!
x[i]:='1loc’'[1:m,1:m] 'real’; assignment must then be made to the x[i] by a

forced coercion eg. ('ref’[,]’real’’val’x[i]):="unit’'m;

(4) The 'proc’ sylvester = ('proc’(’'real’)’real’,[,]'real)[,]’'real: gives any

scalar function of a matrix.

(5) By defining addition, inner and outer multiplication etc for

‘mode’ 'tensor’=[,,,]} 'real’, much more general manipulations can be carried out,

(6) Using 'mode’ ‘object”’ -
‘enion'('real’,[]'real’[,}'real’,[,,] 'real’,[,,,] 'real’) and defining addition,

multiplication etc. between objects of 'mode’’object’ the size of the necessary

library is considerably lessened.

(7) Despite all this it is important to avoid duplication of number crunching -
for instance performing inv(a) more than once in a line for the sake of clarity

leads to much more computer time being used. That is the only thing Algolé68

will not do is optimise your algorithm for you,
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9.2.4 Pascal

[3, 10, 11, 121 |
Pascal ' is not such a natural language as Algolé8 for matrix
manipulation, nevertheless it has advantages over Fortran, and it is very

generally available nowadays. A Pascal version of MATLIB is available at NELP

The following notes cover most salient points,

(1) Matrix operators cannot be defined. Procedures do not return anything
Functions may not return arrays but may return pointers to arrays. Therefore

211 manipulations must be done in Forward Polish Notation (easier than it

sounds).

(2) Flexible arrays are not allowed. Even dynamic arrays are not allowed. This

does not make programs too inflexible as the dimensions may be specified

jnitially as constants,.

(3) Function and procedure parameters must be type specified only in advance
They therefore may take arrays of one size only. Occasionally this is quite
satisfactory and results in efficient use of store. This restriction does not

apply in the Paisley College implementation of the Amsterdam Prime V-mode Pascal

compiler.

(4) If matrices of more than one size are to be dealt with - or if flexible
matrices are required — the following type may be used
type matrix = t record

x:array[1:M,1:N]Jof real;
m,n:integer end;
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where M and N are constants equal to the largest dimensions used (this is the
old Fortran trick but it mnow has to produce an array larger than any matrix
used) and m and n are variables representing the current desired size of the
matrix., This can be very wasteful on space. The array part of a variable
var a:matrix may now be referred to as at.x, its elements as at.x[i,j], and its

bounds as at.m and at.n, The with statement can be useful in this context,

(5) Functions which return pointers to objects must create their own workspace
if these objects are to be referenced later. This workspace cannot have the
same name as the function has, as is allowed in Algol 68, eg.

function trn(x:matrix):matrix;

var z:matrix;i,j:integer;

begin
new(z);
for i:=1 to xt.m do for j:=1 to xt.n do
z¢[j,il:=xt[i,j]; (% data moves®)
zt.m:=xt.n; zt.n:=xt.m;
trn:=z (*pointer move®*)

end;

The procedure new does two things, It creates workspace for the pointer 2z to
point to, and it makes 2 point to this space. Garbage collection is very
different to Algol68. Two other procedures, mark and release (or somotimes
dispose) are supplied which allow the user to store the current size of the heap

and to release space no longer in use., One has to be careful not to create

redundant areas on the heap with no associated pointer as these cannot be
If the heap and the stack collide an execution error will occur,

destroyed.

(6) Given the appropriate matrix library the program may now look like this,
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program pscud(input,output);

const size = 10 (*say*);

type matrix = trecord
x:array[l:size,1:size] of real;
m,n :integer end;

var a,y,x:matrix;

function inv(x:matrix):matrix;extern;

function tran(x:matrix):matrix;extern;

function mm(x,y:matrix):matrix;extern;

procedure inn(var x:matrix);extern;

procedure out(x:matrix);extern;

begin new(a);new(y);new(x);
inn(a);isn(y);
x:=mm(inv(mm(trn(a),a)), mm(tm(a),y));
out (x)

end.

(7) Note that during the evaluation of the nested functions the values of each
bracketed subexpression must still exist., The garbage collector may be called

at the end of each expression to reclaim this workspace. It is then important

to make sure that the contents of any pointers to be later referenced are not

destroyed i.e. Dbefore calling the garbage collector we must not assign

new(x); x:= expression; but xt:= expressiont,

This last statement is invalid in Pascal for structured objects like matrix: we
must therefore define an explicit copy function which puts the results of

rexpression’ into the workspace which x points to. Finally a distinction must

be made between objects of mode matrix created for convenience and presumably

not to be destroyed by the garbage collector and workspace created by calling

functions of mode matrix which should be destroyed when no longer wanted.
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9.3 The Homology Theorem

The problem with implementing the homology theorem is that there appear to be a
number of alternative modes of attack. Sets, groups, rings and modules may be
implemented as Algol68 structures, and operators between objects in these
categories definmed. Further the type ’'mode’’category’ may be defined and coerced
to a simpler object when necessary. An abstract system (in the sense of Kalman)
may also be defined as an Algol68 structure. The adjoint system is given by the
homology theorem. The isomorphism between the two is given by the cost function.
The object is to make the implementation as non—mechanistic as possible. It is
possible to set up a library of structures, operators and procedures, equivalent to
the axioms of the categories desired, then by defining the known part of the
(arbitrary) system structure it will be possible to solve for any well-defined part
of the system remaining simply by calling the relevant procedure, from a program,
We are thus working with three levels of data: the specified category (mode or
type), the values of the homomorphisms (eg matrices) in that category, and the
values of the objects in the category (eg initial conditions of vectors).

Bomomorphisms are  procedures. A distinction is necessary between eg,
premultiplication of a vector by a matrix using an infix * operator defined for
and calling a procedure that has the same effect, uwpon the vector. It is

arrays,

possible to define an infix operator for composition of homomorphisms — and hence

of procedures!

L}

op’' . =('proc’(’category')'category'f.g)’proc'('category')'category':
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The unary adjoint operator, * may be dcfined for particular categories, (obviously
matrix transpose etc) or better, for general categories ... presumably in terms of
a procedure Hom(x,y) the group of homomorphisms from X to Y. The ring of
polynomials is a K[z] module. It is quite easy to define addition, multiplication
(time convolution for polynomials 1in z), inversion of objects of type polynomial
slong the lines suggested by Kalman's treatment of algebraic systems theory. So we
have (1) procedure/structure libraries for matrices, polynomials, rational transfer
functions etc and their manipulation, (2) an abstract algebraic procedure/operator
library dealing with homomorphisms within arbitrary categories, (3) a progranm
calling these libraries and containing our system definition and procedure calls
for extracting the solution, The solution may take the form of (1) an algebraic

2+bs+c)x(s). (no need to use a symbol

formula with no values given eg u(s)°=(as
manipulation language), (2) a numerical formula, eg as in (1) but with a, b and ¢
replaced by numbers, (3) a direct numerical answer, eg the optimal control at

specified points in time., Note a fourth form of solution is to actually derive the

optimal control in terms of the system transfer function itself,

Any transfer function or time evolution (the two things are isomorphic, one is the
impulse response of the other) may be represented in a number of possible ways:
(1) as a time series or a function of time, (2) as a polynomial in z or s, (3) as a
factorised polynomial in (S+ai) or (z—l*bi). (4) as a continuous or discrete system
(A,B,C), (5) as a system matrix G(s)=C/(sI-A)B or G(z—l), (6) A is a companion
matrix from which the system eigenvalues may be obtained. Particularly it is
necessary to consider that any object may take any of these forms, whichever |is
most efficient to manipulate under particular circumstances, The three approaches,

algebraic, frequency response and state space can all be considered simultaneously,

The diagram shows relationships between a dynamic system and its roots
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poly in s {(—==> product of factors

t
)
companion matrix (> eigenvalue analysis
Now consider implementation of these objects., A polynomial is a vector of

coetticients, a factorised polynomial is a set of factors, This can be seen when
considering group multiplication, The product of two polynomials is well known,
The product of their factors is the union of the two (unordered) sots. Whereas
group addition provides far more problems in factored form. Again the elements of
the set consist im general of reals or complex conjugate pairs, The latter have
two degrees of freedom per pair and thus may be stored as one complex number, its
conjugate being assumed, or &s a quadratic. The adjoint of & polynomial in s means

negate alternating coefficients, the adjoint of a factored polynomial means negate

all eigenvalues.

In Algol68 it is possible to implement recursive modes as will be seen in the next
section, thus matrices of polynomials etc. can be defined. It is further possible
to define recursive operators to handle these modes so that if + is defined for
both matrices and polynomials it is automatically available for matrices of
polynomials. In attempting to program self generating operators we come up against
the limitations of Algol68 showing that it is not truly orthogonal. A number of
improvements could be made to the language. (There is a proposal to implement
generic types in the mnext release of Algol68C, along the lines of ADA, but this
involves recompiling the code for a particular operator every time it is used with
2 different mode of parameter.) In Algol68 'op’ is not an object but is part of
the syntax of the language, as a result operators cannot be passed as parameters,
The same goes for MODE and modes, Logically one should not need to use 'conformity
clauses’ to find the mode of an operand as an operator can be defined for different

modes. They do however appear to be necessary to distinguish between operands of
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recursively defined modes. JTn Algol68C diadic operators cannot be used as monadic
operators which is a nuisance as * cannot be used as the adjoint. Operators do not
distinguish between contexts that require different result types, hence the action
must depena entirely on the operands. Further it is by no means obvious how

coercions on user defined modes work.

9.4 Algol82

Algol82 (Ada82) is a superset of Algol68 (Ada) designed by the author for use in
control engineering, systems theory, electronic and electrical, civil and
mechanical engineering, time series analysis, mathematics, electromagnetic theory
and other tield problems, physics, econometrics and computer graphics., Its use can
pe learned quickly and easily as it allows mathematical equations, using
sophisticated mathematical structures to be programmed exactly as they are written
in derivations, as opposed to designing an algorithm, as is necessary to write
scientific programs in Fortran, This results in much shorter programs, which are

likely to have far fewer bugs, are self documenting, easy to modify, and often

faster anc more accurate than conventional methods, (consider integration of ODEs

using expA compared to Runge-Kutta.,) Algol68 itself, though an orthogonal language
like Ada and hence effectively a superset of most other programming languages, is
difficult to learn (Ada is easier) and necessitates a large slow compiler, Because

Mgol82 prograns are S0 short they take a comparitively short time to compile

(depenaing on the implementation). Algol68 runs about the same speed as Fortran

unless tne heap is used in which case it rums about 40% slower. Algol82 binary

packages ca% of course be run on any appropriate machine without an Algol82

compiler available.
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It is hoped eventually to be able to supply a compiler which would allow the |user
to write his program in three separate modules — the first supplying the system
equations, the second the problem to be solved and the third the algorithm to be
used to solve it., The latter may be chosen automatically or perhaps for instance

defined by the form or category in which the problem is specified.

Algol182 itselt appears to have a certain amount of inbuilt intelligence in that it
contains recently discovered properties of the inherent structure of mathematics
itselt — ie the morphology of physics — in a similar way to that in which Lisp
programmers include properties of mnatural language and learning into their
programs, The author in fact believes that the 'expert system’ approach to Al
problems is wrongheaded and that it is time to reattack problems of basic
structure. Optimisation is automatically available from a Roth type structure
embedded in the language which enables automatic solution of electric circuits,
economic models, control problems etc. To implement this structure it is further
necessary to distinguish between covariant and contravariant types within the
language. The recursive Roth type structure describes a twisted isomorphism

between covariant and contravariant exact sequences of operators and objects, eg

current ana voltage, states and costates, prices and stocks etc.

The initial version of the language will allow programmers to define objects in the
following modes (types): sets, matrices, vectors, polynomials in z (the shift
operator) or s (the Laplace transform), factored polynomials (sets of roots),
rationals (quotients of eg integers or polynomials), all with integer, real or
complex coetficients. Further all normal operators are available to manipulate

+, -, *, /, transpose ¢tc, conjugate, scalar functions of matrices,

»

these types, €§

temsor products, Zzero, unit, sigma, bigpi and transput, Further the types

available are split into two sets: basic and concatenable., Basic types are eg,

reals, integers, chars, bits and booleans, Concatenable types are eg, set, matrix,
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tensor, vector, polynomial, factored polynomial, rational (pair), complex (pair)
etc and these types may be concatenated indefinitely to produce new modes like eg,
polynomial matrices, matrix polynomials (this distinction holds in that the
operations would be carried out the other way round), sets of polynomials of
complex matrices, vectors of arrays of rational factored polynomials. A basic type
aslways appears at the right hand side of the mode definition. Further all normal

operators and functions are automatically available for use with these deep

structures. (This facility is available in no other language to the authors
knowledge.) Further the user can insert new modes and new operators into the base

set. The only time conventional numerical techniques are used is if an operator

recurses down to for instance

‘op'*=([,] 'real’a,b)[,] 'real’:

in which case conventional matrix multiplication is wused. For arrays of other
objects Gaussian elimination is used eg, for the inverse of arrays of rational
polynomials, arrays of rational integers (rationals) etc, in which case an exact
answer is always obtained. Later versions of Algol82 may contain mode definitions
end efficient operators for sparse matrices along the lines of TORRIX: and for

scattering matrices. The mode definitions for the current Algol82 bootstrap are as

follows

'mode ' 'array'='ref'[,] 'type’,
lpolyrg,aref'[] 'type’,
'rational’'='struct’('notarraymode’'num,den),
'complex'='strnct'('amode’re,im),
'type'='struct'('amode'mat),
rscalar’='union’('real’,’int’', 'char’,’'bit’, 'bool’,  'cmplx’),
'notarraymode’='union’('rational’,’'scalar’, ‘poly’, ‘complex’),
'amode '=‘union’ ('notarraymode’, 'array');
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A system may be represented as a polynomial or matrix in s or z and the
corresponding object in the wusers program may thus be considered to be in the
appropriate category at the appropriate time, By changing the definition of the
category under which the program is to run the user may force a different algorithm
to be used (polynomial multiplication is much more efficient than a product of
companion matrices.) Solutions may be printed as discretised time evolutions,
functions of frequency, functions of the Laplace transform, or the z transform. In
this regard many ideas were obtained from the UMIST implementation of Professor
Rosenbrock’s work on polynomial matrices., Indeed it should be easy and efficient
to rewrite their package in Algol82. Algol82 should thus reduce programming of

packages in engineering and time series analysis etc to an almost trivial level

As far as solution of say ordinary differential equations is concerned the

transformation

sx=AX - z5=expég

always gives exact solutions (on a machine with an infinite word length) and is faster
than say Runge—-Kutta, etc, which always gives a truncation error from the Taylor
teries expansion. The Runge-Kutta method and its 1like were invented in the last
century and are no longer appropriate for linear problems. Unfortunately they are
still widely taught and used in University and industry. Writing a program to call a
Runge-Kutta routine in Fortran (several hundred lines of very obscure program
ming)
requires considerably more effort than writing a program to solve ODEs by expA in
Algo182 ... with no truncation error, no convergence problems, no need to resolve-for
new boundary conditions, total readability and maintainability and the Algol82 program

would solve any set of ODEs without recompiling.
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Partiai differential equations are catered for by the inclusion of operators such
as curl, div and grad. Automatic discretisation of analytic equations for
numerical solution wusing two dimensional 2z and s transforms giving finite
difference type solutions is available. Higher dimensional pde's may be treated by
the use of mode tensor (or even differential forms) and the corresponding use of
covariant and contravariant etc types. The Kronecker and other delta functions,
inner, outer, exterior, cross, dot and other products and operators eg contraction
would be supplied. The Hodge star operator gives the adjoint system. The general
monadic star operator, * is in fact a basic concept in Algol82: it transposes

matrices, takes s to —s, z to z—l, grad to div and div to curl etc.

The current implementations of Algol82 on the ICL1904S and the Prime 550 at NELP
use the Algol68R and Algol68C compilers, respectively and an album of Algol82
objects as a bootstrap. That is we are extending the language in the same way as &
Lisp programmer does by typing definitions of new objects into the Lisp
interpreter. Lisp is one of the few languages other than Algol68 which is truly
ortnogonal. It is more like using a subroutine library in Fortran than performing
a conventional Pascal or BCPL bootstrap, but because Algol68 is an orthogonal
language it allows definition of new syntax and redefinition of old syntax under
new circumstances, which can be held in an ‘album’. Indecd one can redefine the
syntax of Algol68 so that it looks pretty well 1like any language one cares to
consider. Hence Algol82 is a new programming language.

There are two reasons why Algol82 can be bootstrapped in the above way. One is
because Algol68 is orthogonmal e, consistent in that arbitrary modes can be
defined, operators with different meanings depending on the modes of the operands
can be defined. Ideally all Algol68 syntax should consist of Algol68 objects,

Seconaly the objects in Algol82 eg vectors, sets, matrices, polynomial matrices,

rational polynomials, etc, all obey certain 1laws such as commutativit~
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associativity, distributivity, existence of +, -, ¥, /, 1 and 0 ctc, and thus are
objects in certain mathematical categories such as groups, rings, modules,
semigroups, abelian rings etc. The final version of Algol82 is intended to allow
objects in these more sophisticated modes to be defined. This version will require
some mathematical knowledge to wuse but this is vastly worthwhile because of the
resulting reduction in overhead necessary. Objects will be available in all the
above categories with full concatenation of objects and homomorphisms and automatic
avaitability of operators and functors for these deeper structures. A large body

of results from general homology theory is thus available for use in our language
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t QMAPTER X Conclusions

8 is hoped that the appearance of yet another unifying work in the field of
‘ngineering has been justified. The review in the Introduction shows just how much

'ngmentation st1ll exists in this area. This thesis collects together most of the

Televant work, (much of which is quite difficult to obtain elsewhere) into one volume,
lh vhat the author believes is a less obscure form than has existed bofore, The
‘hcory is presented as a coherent whole, many previous gaps in knowledge, especially
‘:*om an interdisciplinary point of view, are filled in, new algorithms are derived,
Aag homology theory is introduced as the rigorous background necessary, in much the

Yne way as Nicholson used scattering theory. A substantial body of deep results in

»

mology theory already exists: a plethora of new avenues is thus opened for further
‘!“.gch, The relationship between topology and optimisation is emphasised in a
Yeilar way to the use of direct and energy methods in electromagnetic theory.
‘tructural or systemic rather than brute force methods, global rather than local
\tnous are emphasised. Kron's First Generalisation Postulate can be applied directly
A optimai control systems. The advantages of the Kron type approach are: a
_‘Qn,“tent approach to specifying & problem in a rational way leading to a natural

tQm of solution directly programmable in a high level computer language.

‘btn'; diagram exhibits many of these advantages and indeed should perhaps be used for
“qﬂcatxonal purposes providing a unifying method of teaching general optimisation and
_‘bpological problems, particularly in the substructure form introduced in this thesis,
)\e remarkable way in which the Riccati equation can be displeyed on Roth's diagram in
YW eas1ly visualisable form and hence appears almost directly from the original
‘Mxmisatlon problem could prove an invalusble aid in teaching this otherwise rather
‘\‘ucure derivation — in a similar way to that in which the Chandrasekar equations can

ht so simply derived from scattering theory. Further Roth’s diagram leads directly to
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the set of equations which we have called Kron's lemma, This most important yet
Umost completely unknown formula actually goes a long way to completing the set
Reeded for naive matrix manipulation, Returning to Fig(10), the usual way of solving

teneral optimal control problems is via Pontryagin's Maximum Principle. The latter is

‘broved by the use of Fixed Point Theorems such as Brouwer or Kakutani ,.. which in
Yheir turn are proved using Homology Theory. Control Engineers are using a black box
 ttnou whose origin they do not in general wunderstand. Our work suggests an
lternative approach via the Homology Theorem which wquld involve a much more

tometric approach to optimisation,

10.1 Generalised networks

Kron, Branin, Franksen and others devoted much effort into trying to define =
‘generalised pnetwork’ that would include 8&s special cases both conventional
electric circuits, more general networks which could be represented as graphs, and
stit]l more general systems to which tearing, or general diakoptical philosophy
could be applied. Branin generalised the conventional electric circuit to higher
dimensional networks. Kron applied tearing to arbitrary systems represented as
graphs, whilst elsewhere lamenting the 'non-physical’ mnature of this type of
tpproach. Kalman and others represented arbitrary dynamical systems as electric
circuits. Franksen tried to define economic network clements. We now propose that
the answer to this problem has been known almost as long as the problem. The
generalised network necessary to apply the diakoptical philosophy is not a
graphical concept but an abstract one: that of general homology theory -
specifically in the form of Kron'’s algebraic diagram of the multidimensional space
At the specific level many systems can be modelled as chain complexes, We

fiiter.

bave seen tnis in the case of electrical neworks and also of multistage optimal
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control. At the general level - singular homology theory, de Rham cohomology
theory — the study of simplicial complexes and of differential forms or generalised
fields respectively — and further the theory of K{z]-modules used in the study of
general systems - are all special cases of general homology theory. A conceptual
diagram of these ideas is given in Fig(10). Homology theory includes all the usual
diskoptical concepts. Covariant and contravariant variables and the scattering
structure are defined within the space filter along with pairs of adjoint boundary
operators, Roth’'s isomorphisms give impedance type network elements. Always there
is an inherent topology and an equivalent optimisation problem - minimisation of
energy or of distance or of a cost or disutility function. In the distributed case
the network can be defined by a, perhaps infinitesimal, discretisation of the field
as in the finite element method. Homology theory describes the topology of

abstract structures. A generalised network is an ebstract structure with a

topology.

10.2 General systems

This work has dealt mainly with optimal systems, though reference has been made to
non-interacting - control, pole placement, etc. The relationships between
homological systems theory and current algebraic and general systems theories

temain to be fully investigated.

The most general definition of a system, according to Mesarovic is a subset of the

Cartesian product of the input and state spaces S<XxU with S={(x,u):g(x,u)=0). We

can further define a subset of S, S° such that for all (x°,u®) in 8°, (x°,u®) are

optimal according to some performance criteria f°(1°nﬁ°)=minuf(x,u). Now various

structures may be put upon S and it seems likely that the homology theorem may hold
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in many cases, Our hypothesis is that S must be of a sufficient category for the
axioms of homology theory to hold. Mesarovic has defined categories of systems.
Kalman takes a more narrow view, considering a dynamical system S to consist of a
tuple containing a time set, the input, state and output spaces, and a state
transition map (isomorphism), input map (onto) eand output map (1:1), He
concentrates on controllability, realisability and the like. 0[is major result is
that tne natural state space of a comstant, linear, discrete system admits the
structure of a finite free K[z) module with convolution as multiplication, a result
essential to our treatment, This work originated in the treatment of finite
automata as finite semigroups by Arbib, Kalman has further, in a short paper,
treated dual systems with adjoint maps and defined the costate es X*=Hom(X,K),

noting the duality between epimorphisms and monomorphisms and the properties of the

star operator in a discrete linear system context.

The geometric control theory of Wonham et al is concerned with the concept of
subspaces of the state space which are invariant under the state transition map,
specifically the (A+BF)-invariant subspace of a system sx=Ax+Bu, y=Cx with control
law u=Fx+Bu. This is a generalisation of the familiar idea in linear algebra of an
eigenspace, ie a subspace V spanned by some or all of the cigenvectors of a matrix
A such that AVCV or AV=VE where V is the matrix of eigenvectors of A and E is, in
the distinct eigenvalue case, the diagonal matrix of corresponding eigenvalues of
A, and V=spanV. A subspace V<X is called an (A+BF)—~invariant subspace if there
exists F such that (A+BF)VCKV. An immediate result is that V is an (A+BF)-invariant
subspace iff AV(V+B, Tt can be seen that F is irrelevant hence the term
(A,B)-invariant subspace is often used! Wonham goes on to dofine controllability
subspaces and derives important applications in non-interacting control,
polc—placement, etc. V turns out to be the maximal invariant subspace of (A,R)

contained in kerC, Determining such a subspace and calculating the spectrum of

A?=(A+BF) |V where (A+BF)V=VA?, yields the transmission zeros of the system, =&
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result examined in Appendix I. The latest theory of general systems is the
algebraic—geometric approach of Hermann and Martin, described in the Introduction,
The ideas of topological duality and the geometric theory are combined. (Typically
fo(p)(x)=p(f(x)) where f is a polynomial map C™->C™, p<PF(C®) the associated ring
of polynomials and £+:PF(CT)->PF(C™).) Hermann's work is the closest to our

standpoint and the two complement each other.

10.3 Natural language

Chapter IX describes approaches to programming our theory. However systems theory
is rapidly becoming applicable to computer programming. Mesarovic has applied his

'fundamental theorem’ to a formal or 'symbol-manipulating’ system represented as an

ordered sextuple
E=(E,S,T,R,P,f) where

E is a denumerable set and represents expressions,

S<E represents sentences,
T(S represents theorems of S,
R¢(S represents refutable sentences,

PCE are unary predicates,
N denotes the set of integers.

Two mappings are given by g:E-)N and f:ExN-)E such that g is an injection and
f(e,n)<S whenever e is a predicate, e<P. Then for any e<E, g(e) is the Goedel

pumber of E. Mesarovic constructs a general system for K by establishing the

following correspondences:

Predicates P are inputs of the system,
Expressions E are the states,
Sentences S are outputs,
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The state representation r:ExP->S is r(e,p)=f(p,g(e)). There may yet be a further
application of homological systems theory. Artificial intelligence is based to a
large extent on the concept of natural language, the basic tools of which are

(2]

syntactic and semantic pgrammars, Tang and Hueng define a semantic grammar as

follows:

A word w=[a,v] consists of a semantic component v, the feature vector of the word
and & syntactic component a, which can be expressed by a label which corresponds to
a terminal or nonterminal of a context free grammar, We can write v=m(a), A
syntactic category is the set of all words with the same syntactic component, A
sentence Z is a sequence of words [31.v1].....[an,vn]. The syntactic rule Z' of Z
is LOFRRETY S Let F denote a (finite computational) algorithm and A—>A1"‘An

denote a production rule of a (Chomsky) context free grammar G=(N,T,P,S). Then

n(A)=F(m(A;)...m(A;)) means F takes m(AI)...m(An) as its inputs and assigns the
output vector of F to A. When A;,..A is null F still generates an output vector.

The notation for context free grammars is included in the following definition., A
semantic grammar G' is a 5-tuple (N’,T',P',S',f) where

(1) S’ is a set of terminal words,

(2) T' is & set of nonterminal words,

(3) P' is a finite set of ordered pairs (P,F). P is an eclement Nx(NuT)*  where
N=(AI[A,vI<N’}, the set of all nonterminal semantic categories, At=A_ua Weeu, N is
finite., T={alla,vl<T’}, the set of all terminal semantic categories, T Ts finite.
Each element in P’ is called a production, Let (P,F)<P’' and P=(A,r) then we denote
the production by a->r:F. F is an algorithm such that if P is A,...A then
m(A)=F(m(As),...,m(A ), where Apseses A <(NuT)  and F is called the feature
transfer function,

(4) N n T=0,

(5) §'={[S,v]1[S,vI<N'} where S is the distinguished nonterminal syntactic category
(start symbol) in N,

(6) G=(N,T,P,S) is the underlying (Chomsky) context—free grammar, or base, of G',

(7) £ is a Boolean function defined over {vi[S,vi<¢s'}.
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A sentence Z is well formed if Z' is acceptable under G. It seems likely that wo
can formulate G' as a general system using similar techniques to those Mesarovic
has used for treating symbol manipulating systems, Homological analysis of

semantic nets could also prove productive.

10.4 The future

The set of basic tools used in this thesis is introduced in the Glossary and
extended in Chapter II. The single most important and probably confusing concopt
is the construction of a short exact sequence from a (short) chain complex and the
fact that the former is disomorphic to a short exact sequence in standard form
involving a quotient space. Once this is properly understood it can be seen that
the latter is related to the adjoint sequence by Roth’'s twisted isomorphism, and we
can drop from abstract categories to functional analysis, matrix algebra or
whatever at leisure. This essentially is the Homology Theorem for Optimal Systems,
¥We make no more than an hypothesis on the categories or types of systems for which
the theorem holds. The author believes however that it must be possible and would
be usetul to rewrite the axioms of General Systems Theory in terms of those of

General Homology Theory. In fact the two are probably isomorphic,

Chapters III and IV cover most of the relevant work that has been published on
network tearing and field theory. The former appears in general to bo well
understood and has if anything been rather overworked by a generation of authors
fascinated by the mystique and beauty of Kron’'s work, the only remaining confusion

being caused by the incredible variety of notation being wused by authors from

varying backgrounds,
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Many questions however remain open with regard to distributed systems. Most of
this work has either been carried out by engineers interested in practical
solutions to reat problems or by mathematicians investigating the structure of de
Rham's cohomology theory. Flanders’ work on differential forms certainly helps to
bridge the gap between these two extremes but Branin'’s somewhat naive approach to
the homological structure of Maxwell's equations leaves a lot wunanswered,
particularly regarding the existence of boundary conditions in Roth's diagram. If
this problem could be satisfactorily concluded then the whole question of efficient

computer solution of partial differential equations could be reopened in the light

of network tearing.

In Chapter V we come to the conclusion that tensor algebra as a manipulative tool
probably has rather limited application, though the concepts arising from the
theory are basic to our entire philosophy and constitute the basis for didentifying
the homological structure of real systems. (Of course it depends how one looks at
it - a partitioned matrix is a fourth rank tensor.) Scattering theory is
established along with homology theory and Kron’s algebraic diagrams as the

underlying justification for analogies in science and engineering, the physical

structure of general systems.

These ideas culminate in the analysis of optimal control systems in Chapter VI
where we find that the three parallel themes can be represented simultaneously on
the same diagram showing a system torn in time and reconnected stage by stage, with
the scattering structure along the middle and the homological structure along the
top ana bottom of Kron's algebraic diagram for the multidimensional space filter,
Analogies abound. The partitioned system, the torn system, the reconnected system
and the continuous system are all isomorphic in a similar way to that in which
Kron's intersection network is called 8 miniature copy of the original.' The

interface between the stages may seem slightly drtificial but this appears to be
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caused by the fact that we are tearing in time rather than between spatial
dimensions. This needs 1investigating more thoroughly as do the problems incurred
by integrating only over real poles or positive time. (This asymmetry of time is
currently one of the basic problems of modern physics.) The analysis should apply
equally to the study of systems described by rational polynomial matrices, It is
expected that a major application of this theory will be to multivariable Time
Series Analysis (an area wide open for further research). It is also closely

related to the theory of noninteracting control,

In Chapter VII all the concepts thus far developed are used to identify and analyse
the homological structure of Leontief's macroeconomic model. The analysis appears
to be complete and describes the core of the Cambridge Growth Model. We come
across the classical use of fixed point theorems to prove the oxistence of a
general equilibrium in the Walras model, A further example considered by the
author is that of dynamically optimising timeslicing on a multiaccess computer
according to the priority of the users. If P, is & vector giving priority numbers
for different classes of user then the priority of a particular user is given by
g“=gp° where C is a matrix of 0's and 1's picking out the class of a particular
user. Now if b is the actual timeslice taken by each user then it is easy to see
that tne total timeslice of each class in one operating system cycle is given by
Y .=C'y,. If the dynamics of y are identified a quadratic cost function on (xc.nc)
may be minimised and the optimal dynamics of Eu (which may for instance be the

maximum time slice allowed to each user) found from the adjoint system,

The Eilenberg—Steenrod axioms of General Homology Theory are stated in Chapter
VII1. Some of the relationships with General Systems Theory can be seen. The
dofinition of an admissable category depends upon the same lattice diagram as
Wonham's geometric analysis. The * operator can be used to define the adjoint

system and relate the boundary and coboundary operators. The algebraic axioms
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(identity, composition and commutativity) appear to be related to Mesarovic's
functors between categories of systems. The exactness axiom implies optimality.
The homotopy axiom implies continuity. The excision axiom describes the necessary
degree of connectedness of the underlying spaces. All those <concepts arise in
Optimal Control Theory. They must in fact form a core or kernel for the theory.
What is needed now is cooperation between mathematicians and systems engineers to
discover tne systemic interpretations of the many deep results of homology theory
in this context. The Universal Coefficient Theorem is said to determine cohomology
from homology. That is it gives the relationship between a system and its adjoint,
However it is very difficult for a control engineer to visualise the meaning of
this without help from a mathematician., And the theorem is only a special case of
the Kunneth theorem! We mneed to understand the Meyer—Veitoris sequence, the
applications of fibre bundle and sheaf theory and more. And one day we may be able
to present the mathematicians with a computer language capable of manipulating
objects in these categories. But before this can happen Control Engineers must
start implementing their packages in Algol68 or Ada. There are some hopeful signs,

UMISL are considering rewriting their CAD package in ADA,

The concept of an orthogonal languege (Chapter IX) is probably the most
underestimated idee ever to come out of computer science. Unfortunately no
existant computer language (with the possible exception of Lisp which is too basic
for our purposes) is truly orthogonal so that the attempt to bootstrap Algolé8 or
Ada up to tne levels mentioned above is fraught with difficulty. Nevertheless an
initial attempt to introduce recursive operators on mutually recursive modes has
been successful, (I eam indebted to Chris Cheyney of the Computer Laboratory,
‘Cambridge, Ted Elsworth of the Computer Science Department, Aston University and
Trevor Elliot of NELP for their invaluable help with this.) The continual problem
is that there are so many possible ways of achieving the desired result - ;nd that

so few of them can actually be implemented in practice. As it is there are at
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least two isomorphic ways of defining recursive modes in Algol68, and at least two
vays of defining recursive operators, giving four or more combinations, The best
approach will probably only become obvious when the initial bootstrap is completed,
A further implication of Algol82 is that it should be possible to define rccursive

categories in mathematics. NB. Authors Note. Algol82 may finally be rcleased

using the name Homogol.

Summarising then, once again, the results and implications of this work, (1) 1In
the understanding and teaching of optimisation in any discipline the substructure
version of Roth’s diagram may provide a unifying, easily understood medium for
presentation. As things stand each generation of students is presented with an
exponentiaily increasing amount of theory to absorb, It is necessary to reassess
the means of presentation of the material at regular intervals, in order to offset
this growth. (2) Derivation of new algorithms, The application of homological
systems theory to existing optimisation theories should force the appearance of all
algoritnms of the LQG form. In faot few new algorithms have been found which only
goes to show what a time worn field this is (compared to say time series analysis.)
(3) More importantly we now have something approaching a complete theory of
structural optimisation, though there are still many gaps that need filling,
Philosophically homology theory describes all continuous theory between the scales
of quantum theory and relativity (see below). (4) The author believes that if this
line of investigation is continued, engineering computer languages which contain a
degree of intelligence (sic) will result., Consider the operator + operating upon
two arrays of polynomials. The existence of + for pairs of polynomials and pairs
of arrays implies the operator upon the concatenated type, This level of inference
oxists only in artificial intelligence languages as yet. Further extensions of
Algol82 using category and homology theory will enhance this inference mechanism
sti1l turther, Consider the implementation of an English compiler, (a very unusual

thing to do, all AT languages are interpreted, or threaded like Forth). A verb is
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an operator that takes objects of mode noun. A noun is an operator that takes
objects of mode adjective. A conjunction is an operator that takes objects of mode
clause. The semantics of the English language relies on inferenceo, This has
proved to be the most frustrating property to implement in a computer language. We
are suggesting a new mechanism which may well be applicable to AI, Tt is
surprising how the remarkable similarity between the syntax - and semantics - of

English and the orthogonal languages has been so little utilised,

This work coincides with increasing doubt in the minds of many physicists as to the
very nature of reality, arising partly from the inoreasing influence of Eastern
mysticism on Western philosophy, and partly due to a2 number of recent experiments
refuting the 'Principle of Separability of Space'’, one of the basic axioms on which
all Western science is based (an axiom which was questioned by quantum physicists,
though strongly supported by Einstein). Tvwo possible consequences of this,
currently being investigated, are the existence of parallel nuniverses and faster
than light transmission of information (rumour has it that Aspect, in France, has
achieved this). There is a growing literal belief in Heisenberg’s uncertainty
principle, that the observer affects what he observes, and a growing conviction
that there really is no such thing as mass—energy as substance, normally held to
create a disturbance in space-time, the idea is that a particle is a disturbance in
space—time, Consequently many scientists suspect that rather than discovering new
phenomena researchers may actually be creating these phenOmenalgl, ie it something
is believed strongly enough it may become true - the observer effects what he
observes. It is interesting to note here that Western religions, but not Eastern
philosophy, are based on the idea of unquestioning faith. These ideas are the
basis of the currently popular 'Hadron Bootstrap Theory', the idea that the only

thing required for existence is consistency. The mathematical basis of this theory

is the scattering matrix,
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Appenaix I: Topological Aspects of Inveriant System Zeros

This Appenaix is an abbreviated version of Ref[4]), and was written in 1975,

iuently Kouvaritakis and Macfarlane: Sinswat, Patel and Fallside: Owens and Davison
Qave produced a geometric analysis of transmission and decoupling zeros linking the

fuqnoncy response and state space control theories, These are the fixed modes which

e invariant under feedback and duality: im the right half of the s—plane they
{aduce a non—minimum phase system which is difficult to control. Along with Morse aad

“onham's pole allocation this completes the problem of system synthesis.

Wotivation for the topological approach is supplied by the application of homology
theory by Roth, Branin, Amari, Kondo and Iri to Kron's analysis and tearing of
%lectrical networks and physical systems: it is known that inherent (energy)
Ninimisation and invariance under coordinate transformation always occurs in physical
.hroblems anad it is proposed that the optimisation and similarity invariance found in
tontrol systems induces an inherent topology mapping the error to zero. Tho
\pplication of a Roth type diagram to dynamical systems is investigated and found to

‘lead to a new definition of transmission zeros, An orthogonalisation procedure will

Ye given, and K-partitioning used for calculating the invariant zeros.
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11.1 Transmission zeros in continuous optimal control

Quadratic optimal control of the system
sx=Ax+Bu with y=Cx and cost function minIy’Qy+u'Rudt

can be shown to lead to a pair of coupled differential equations of the form
s[x7=[A B/RB’'J[x]
Lpd Lcrac ~A'llpl

where p=—Kx leads to the backwards Riccati equation for K. This system can be

displayed on a Roth type commutative diagram as follows
/(sI-A)B C

0->u = x = y->0

B' /(sI+A')C’

We wish to investigate how the horizontal sequences in this diagram deviate from

being short exact ie
im/(sI-A)B=kerC or im/(sI-A')C'=kerB.

Now the necessary and sufficent condition for s to be a transmission zero is

s<Z(A,B,C) itf x(s)=im(/(sI-A)B) n (kerC#{0)J) where n = intersection.
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x(s) is the null transmission subspace, That is

$s¢Z(A,B,C) itf there exists x(B)<{im/(sI-A)B and x(C)<kerC st x(B)=x(C).

x(s) can be shown to have the properties
x(s) n im(B)={0} and therefore Ax(s)<x(s)®im(B).

Also as {x:x<ker(C) n C%, Ax<(x®im(B)} where C" is complex n-space is semiordered

by inclusion there exists by Zorn's lemma & maximal element x° such that
x° n (im(B))={0} and therefore Ax°<{x°®im(B),

which is Owens' canonical definition of the state space, The total number of open

loop transmission zeros is dim(x) = rank defect of

[sI-A -B]
L c o0l

Owens has illustrated the physical source of the zeros as due to inherent dynamic

state feeaback within the system structure, by means of a similarity transform

taking into account the rank defect.
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11,2 Computation of Invariant Zeros: Sqguare systems

Consider the completely controllable and observable proper system

[sI-A —B]rx]=[0}
L C oJiul Ly

or g(s)3=z. The system invariant zeros are those values of s for which P(s) is not

2 monomorphism ie kerP(s)#0 or using Schur’s formula (K-partitioning)

detP (s)=1sI-AlI1C/(sI-A)Bl=1sI-Al1G(s)]=0

the system transfer function zeros which are not poles of the state space.

We now choose pseudoinverse left and right 2nnihilators of the input and output

matrices respectively according to the commutative diasgrem in Fig (11.1).

c=[{C, C,], B=[B,7]. We have CM=0=NB eg
1 72 1
LB2J

M=M°Km=[Mo'}Km=[-/C1C2]Km. N=KnNo=Kn[No' I]-xn[—BZ/BI 1

I L I J
M BC N

0=>.=>.=>.=> .0

and the above sequence is long exact. Kn and Km are arbitrary up to KnNoMoxmaNMEI

cg we can choose Km=I. Consider

B /(sI-A) C
0 ->u->. -> . =2 y=>0

N ¢ Mt

0->u->. => . =2 y—=>0
B2 /(sI-NAM) (3



Rig(iv?) \ntemnal - struckure
of at’nogom\isoh'on procedur

fig(2) \nemaol - stucture of extended  othogonalisotion
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which commutes and by diagram chasing the triple formed by the lower scquence is
exact iff that formed from the upper sequence is also. By contradiction it can be
shown that the system transmission zeros are the eigenvalues of thec matrix NAM,
This is the 'NAM algorithm’ (Kouvaritakis) where NAM is of lower order than A equal

to the number of zeros of the system,

11.3 Orthogonalisation of Rectangular Systems

We extend the method of Sinswat, Patel and Fallside which is more general, and
seems more natural than that in the sequel to Kouvaritakis and Macfarlane’'s paper.
A Eron—type orthogonalisation is performed by an extension of the NAM algorithm
followed by K-partitioning and the eigenvalue form of Schur’s lemma, Consider the
commutative diagram in Fig (11.2), where either K, or K is again arbitrary.
Choosing §m=1 and using the coordinate transformation defined by x=>Nx where
N-{g gz} and /§=M={/g1 ”/§1C2} the system becomes sx:=A’x*+B’u
y3=Cix3
vhere A3=NAM, B3=NB, C2=CM=[I O].
B /(sI-A) C
0>u=-). => x=2y-=>0
= Nt M Nt M =
0 ¢(—u (., (- x* (—y <=0

B2 /(sI-A%?) ¢C?

The transfer function matrix G(s) is now given by C2/(sI-A2)B%, Partitioning A and

A3 correspondingly and following the procedure described in Patel G(s) can be

factorised &s
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C*/(sI-A%)B3=[I 01/[sI-A% . AT B
LAz, SI-A2 55 LB,

=/(sI-A? A312/(SI-A’22)A‘2])(B21+A’12/(sI—A‘22)B32)

11

[A* A%, T r(C1A11+C2A21)/C (€A1 Cahy 1) /C1C¥C1A ¥ Coyy
Las)] Asypd L 1c, 2ol T

r81"=fc131*C2321

LB 2J
It is shown in Patel that the invariant =zeros of B’I+Az /(sI-A3 22) , 8re
identical to those of C/(sI-A)B, but as the numerator is of lower order than G(s)

the problem of determining invariant zeros is simplified.

The internal structure of the orthogonalisation is given in the commutative diagram
Fig (11.1). The restrictions on the arbitrary components are given by
= = L} =
ENME NM=I once again, also K [0 I]/gn/gm[o I] K =I from the combined diagram
Fig (11.2) in which all invertible relations and the final nonorthogonal (I1) and
ortnogonal (|) transformations are shown. Note that commutation does not occur
rounc the perimeter., The new definitions are [Ml' Mz']'=y=Mo§m=MO[Km1' sz']' and
[N1 N2]=E=gn§°=lxn1 anlﬂo. Transformations can now be made between the

ortnugonalised system and its adjoint.

Finally the invariant zeros of the system can be found from the common 22133 of all
minimal order exact pseudoinverses of the system or its adjoint, For a general
system sx=Ax+Bu, y=Cx+Du with the same number of inputs as outputs, they are the
cigenvalues, P(A-B/DC), of A-B/DC, the transmission zeros are P(A-B/DC)-P(A) and
the decoupling zeros are P(A-B/DC) n P(A)., Similar relations hold for rectangular

systems involving the pseudoinverses.
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Mppencix Il: The De Rham Theorem

A sheat S of k-modules over M consists of a topological space S together with a wmap

p:S->M satisfying

(1) p is a local homeomorphism of S onto P

(2) p"Y(m) is a K-module for any mCM

(3) The composition laws are continuous in the topology onm S,

This is similar to the definition of a fibre bundle. The map p is <called the
drojection, and the K-module Sm=p-1(m) is called the stalk over m¢(M. Let U{M be open.
A continuous map f£:U->S such that p.f=id is called a section of S over U, The
Q-section is the section which associates with m(U the zero element of S . We Ilet
U(s,U) denote the set of sections of S over U, Let f and g belong to L(S,U) and k<K.
Define the sections (f+g)(m)=f(m)+g(m) and (kf)(m)=k(f(m)) with m<U, With these

Yperations L(S,U) becomes a K-module. The module of (global) sections of S over M

“i;l be denoted L(S).

A continuous map m:S—->S* such that p*,m=p which is a homomorphism (of K-modules) on
tach stalk is a sheaf homomorphism, A sheaf isomorphism is a sheaf homomorphism with
an jnverse which is also a sheaf homomorphism. Other definitions appear in the wusual
Vay, A sheat S over M is said to be fine if for each locally finite cover of M by
Yen sets there exists an endomorphism such that the set of endomorphisms is a
Dartici0n of unity. A sheaf of K-modules is said to be torsionless if each stalk is a

torsionless K-module X, ie there is no non-zero element x<X for which there exists a

Yon-zero element k<K such that kx=0.
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Lemma Let 0—->A1->A-)>A2->0 be an exact sequence of K-modules, and let B be a K-module.
Then the induced sequence AloB->AoB-)A20B->0 (whose homomorphisms are tensored with
the jdentity homomorphism of B) is exact, but A20B->AoB is not necessarily injective.

If however, either A2 or B is torsionless then the full sequence 0->AtoB->AoB-)A20B-)>0

is exact.

Theorem Let 0->S*—-)>S->S2->0 be an exact sequence of sheaves over M, and let T be also
2 shear over M. Then if either T or S3 1is torsionless, then the sequence
0-)§10T->SoT->830T->0 is exact. If in addition, either T or S! is a fine sheaf, then

the sequence O0->L(S*0T)->L(SoT)->L(S30T)->0 involving the modules of global sections,

is exact.

A shear cohomology theory H for M with coefficients in sheaves of K-modules over M

consists of

(1) a K-module HY(M,S) for each sheaf S and each integer g,

{2) a homomorphism g9(M, $)->BY(M,S2) for each homomorphism S->S* and each integer ¢

Rna

(3) a homomorphism A9(M,S2)->HY(M,S*) for each short exact sequence O0->Si->S->S3->0

and for each integer g
such that tne tollowing properties hold

(1) n9(M,S)=0 for q<0, and there is a isomorphism HO(M,S):L(S) such that for each
bomomorphism S->S* the following diagram commutes
R° (M, St)~L(8%)

4 t
(M, s )~L(S )
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(2) RI(M,S)=0 for all g>0 if S is a fine sheaf.

(3) If 0-)S2->8->S3->0 is exact then

”.->nq(M,s*)->nq(m,s)—>nq(m,sz)—>34+1(m,sx)—>,,,

is exact.

(4) The identity  homomorphism 1d:S->S ' induces the identity homomorphism

1d:89(m, S)->BY(M, S) .

(§) If the homomorphisms S-)S* and S1-)S3 are transitive for every q then so are the

homomorphisms (M, 8)->E%(M, S*) and g9(M, S2)->HY(M, S3) .

(6) For each homomorphism of exact sequences of sheaves
0->T2=>T->T3->0
¢ + ¢
0->81->S->82->0
the following diagram commutes
g9, T2)->E T, T)

+ t
gden, s3)->a% 1 (n, 81)

The module H9(M,S) is called the qth cohomology module of M with coefficients in the

shear S relative to the cohomology theory H.

An exact sequence 0—>A—>C°—>C1—>C2—>... ijs called a resolution of the sheat A, The

resolution is called fine (respectively torsionless) if each of the sheaves C.1 is fine

(respectively torsionless). We shall now show that each fine torsionless resolution

of the constant sheaf MiK, canonically determines a cohomology theory for M with

coerficients in sheaves of K-modules over M. We obtain a cohomology theory as follows
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(1) With each sheat S and each integer q we associate the gth cohomology module of the

L tochain complex L(C®*0S), that is we set A9(M, 8)=HY(L(C*0S)), where o 1is the tenmsor

Product.

(2) With each homomorphism S—>S* and each integer q Wwe associate the homomorphism

H%M,S)—)Hq(M,Sl), induced by the cochain map L(C*0S)~>L(C%0S%).

{3) Each short exact sequence 0->S1-)»S->S2->0 induces a short exact sequence of

tochain maps 0-5L(C*0S*)-)L(C*0S)->L(C%0S2)~>0 with which there is an associated

Yomomorphism Hq(M,S’)—>Hq+1(M,Sl) that we associate with the short exact sequence

0-)§1->S—>83->0 and the integer q.

It can now be shown that the axioms for a cohomology theory are satisfied,

Definition Let H and H be two sheaf cohomology theories on M with coefficients in

\heaves of EK-modules over M. A homomorphism of the cohomology theory H to the theory

} consists of a homomorphism Hq(M,S)->§q(M,S) for each sheaf S and each integer g,

tuch that tne following conditions hold

(1) For q=0, the following diagram commutes
H° (M, S)~L(S)
t ¢

RO (M, S)~L(S)

(2) For each homomorphism S->T and each integer q the following diagram commutes

a9y, $)->HUM,T)
4 t

p%(M, S)->HI(M, T)
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(3) For each short exact sequence of sheaves O-)>R->S->T->0 the following diagram

commutes for each integer g

d
i, T ->E (M, R)
+ )
g4, T)->ET T (M, R)
d
An 1somo§2hism B->E is a homomorphism in which each of the homomorphisms

Hq(M,S)-)gq(M.S) are isomorphisms,

Theorem Let H and H be cohomology theories om M with coefficients in sheaves of
f-modules over M, Then there exists a unique homomorphism of H to H.

Corollary A homomorphism of the cohomology theory H to the theory H must necessarily

be an isomorphism, Consequently, any two cohomology theories on M with coefficients

in sheaves of K-modules over M are uniquely isomorphic.

Theorem Assume that H is a cohomology theory for M with coefficients in sheaves of
f-modules over M. Let 0—>S—>C°—>C1—>C2—>... be a fine resolution of the sheat S,

Then there are canonical isomorphisms HI(M,S)~BY(L(C*)) for all q.

Finally it is shown that 0->MxR->E (M)->E;(M)->... 1is a fine torsionless resolution
of the constant sheaf MxR where Ep(M) is the sheat of germs of differential p—forms
tnd that 0—>MxK—)S°(M,K)—>S1(M,K)—)SZ(M,K)—>... is a fine torsionless resolution of

the constant sheaf MxK where Sp(M,K) is the sheaf of germs of functions on M with

values in K.
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Given any fine torsionless resolution 0—)MxK—)CO—)C1—)c2->_._ we have
%(M.S)=HP(L(C‘OS))- We define homomorphisms k F (M)- > fS (M,R) for each integer
20 setting kp(w)(s) equal to the integral of w over s for each differentiable
tingular p-simplex s in M. It is an immediate consequence of Stokes theorem that the
lomomorphisms kp induce a cochain map k:E‘(M)—)infS‘(M,R). Let
H (M)- >infﬂ (M,R) denote the induced homomorphism of the cohomology modules,

L
p ‘deR'p

(reatr vector space). kp‘ is called the de Rham homomorphism,

The de Rham theorem The de Rham homomorphism kp‘ is the canonical homomorphism

de RH (M)~ H (M,R)~ (M,R)

—1nf P

for each integer p.

toof The induced homomorphisms of the associated sheaves form a commutative diagram

0—)R-)SO(M.R)->81(M,R)-)Sz(M,R)->...

idt fko 1k1 sz

O—)R-)EO(M) —)EI(M) ->E2(M) -,

nsider the tollowing commutative diagram of cochain complexes in which the rows are

Xact



The De Rham Theorem

3
0—)80‘(M,R)—)S‘(M,R)—)L(S‘(M,R))—)0

tk t2
0->E*(M) ->L(E*(M)) ->0
1

1 induces the isomorphism deRHp(M):Hp(M'R)'

mfﬂp(M.R):ﬂp(M,R). Thus 3 induces de Rham’s theorem.
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Mppenaix I1I: Amari's Generalised Diakoptics

londo, Ir1[1] and Amari[2] investigated the topological foundations of tearing with
diakoptics ana codiakoptics as special cases. Tearing can be said to be a method of
tolving networks by means of network dissection. Each subcomplex thus dissected also
constitutes & complex with the relative topology of the entire complex. Wo shall deal
witn the mutuval reletions between these complexes, so that the mutual relationms

’

between the solution of the entire network and those of the subnetworks will be

clarified.

!ﬁ;section of a complextl] We use the symbols d for boundary operator and b for

tobounaary operator, Let X be a connected 2~dimensional complex which is acyclic and

\

Rcocyclic in the dimension 1, 1x a connected closed subcomplex of X and 2x=x-‘x where

Qx is an open subcomplex of X. A subcomplex X of X is called closed when cl(lx).1x

in X, where cl(lx) means the closure of ’x, namely the set of all elements of 1x and

R1l their faces. st(zx)=2x where st(zx) means the star of zx. namely the set of all

2

tlements of 2X and those which have an element of “X as a face. Then every chain of X

{s split into two parts:

e=2c+lc 20¢2x, lecx

1

This kind of splitting of a complex is called dissection, Since X is closed, a chain

1

of 1X has its boundary also in 1X, ie a cycle of "X is also a cycle of X, sand if it

bounas in 1X it also bounds in X, Therefore we use the same symbol d for the boundary

Yperators in 1X as in X. However, 2x being an open complement of a closed subcomplex

the bounaary of a chain of 2x, when regarded as a chain of X, may lie partly in Zx and

Dartly in 1X. But when a p—chain 2Cp of 2% is regarded as a chain of the open

3upcuwplex 2X itself, the boundary of 2Cp in 2X, which we shall denote by 2d2C, is to
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defined by the intersection
¢ cg2c n Ix,
P o

ere d2Cp means the boundary in X of 2CP. Therefore a cycle in 2% is not always a

¢le in X, but merely a chain of 2X whose boundary lies in 1x. and similarly, when a

2

2x. together with some chain of 1X. bounds in X it is defined to bound in “X,

1

cle in

s defined, the cycles in 2X are called relative cycles (mod X) and those of X

te1t are sometimes called absolute cycles,

a dual manner, since 2X is open, we can define cocycles in 2X by means of the same

bounaary operator b as in X, and relative cocycles in 1X by means of the coboundary

trator 1b:

o ! Ix,

Qce, homology and (relative) cohomology are defined in subcomplex 1y by means of d

1b, and cohomology and (relative) homology in zx by means of b and 2d. Moreover

1x (zx) is acyclic and acocyclic in the dimension 1 we can define trees and cotrees

3 (%x).

clic ana acocyclic properties of suboomplexes Throughout this section we assume

4t X is an n—dimensional connected complex which is acyclic and acocyclic in all the

ensions between n-1 and 1, and 1X is its connected closed subcomplex with 2X as its

%n subcomplex such that X=1X+2X. Then
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If every p-cycle (0(p<n-2) of !X which bounds in X bounds also in !X, then 2X is

lic and acocyclic in all dimensions between n~1 and 1. This is a special case of

tteorem tnat the sequence of homomorphisms
1 o n,2 Oy _\nO© _\gQ/2¢y_
()= dHNX)>E(X)=>...=>H ( X)->H (X)->H"(“X)->0

ict, where Hp(ix) denotes the pth homology group of iX. In our case, HP(X) and
(H) p=2,...,n~1 all vanish, and hence Hp(zx) p=2,...,n~1 vanish, Moreover since

):n°(x) because of the connectedness of X and 1X, HI(ZX)=O.

lfzx is acyclic in the dimensions between n—-1 and 1, then every p—cycle (0<{p<n-2)

1

which bounds in X bounds in "X,

Vader tne same assumption as in (1) it is possible to make 1X acyclic and

¢lic in the dimensions between n—1 and 1.

theorems dual to the above also hold,

ive trees ana cotrees We have assumed that the network under consideration is a

cted 2—-dimensional complex, acyclic and acocyclic in the dimensions 1. Therefore

irtus of the theorems in the preceding section, every closed subcomplex 1x as well

ts complement 2X, an open subcomplex, becomes — after adding 2-cells or meshes to

¥ need be - acyclic and acocyclic in the dimension 1. Hence we can detine trees

totrees on Ty according to the homology (cohomology) defined by means of d (Ib),

trees ana cotrees on 2x according to the homology (cohomology) defined by means of

%) ana prove that the definitions based on homology and those based on cohomology

tquivalent to each other. We shall therefore call them relative trees and cotroees

! 2

X mod 2x and relative trees and cotrees on “X mod 1x respectively, or simpiy trees

totrees on lx or 2X. The significance of these concepts — dissection of complex,
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ind trees ana cotrees relative to it — will be clear from the following theorems,

(4) Every union of a tree on 1X and 2 tree on 2X is a tree on X,

i

(§) If the iX part of a tree on X is a tree on °X, then the jx part (i,j=(1,2}, i#j)

is a tree on 5x.
(4¢) Every union of a cotree on I3 and & cotree on 2% is a cotree on X.

(5¢) If the iX part of a cotree on X is a cotree on ix, then the JX part (i,3=(1,2},

i#j) is a cotree on jx.

(6, The branches of a tree on 2x, together with all the nodes of X, form an a—tree (a

“ood consisting of a subtrees), where a-1 is the number of independent nodes of 11.

(6¢) The branches of a cotree on ‘x. together with all the meshes of X, form a

\-cotree where b-1 is the number of independent meshes of ZX.

rojections to ana injections from subcomplexes[2] Our aim is to solve & network
2

original complex X with the help of subcomplexes ’x and “X, for it

droblem on the
Vmables us to use the topological information more completely than by any other
Netnoa, Hence our present purpose is to find the relations between the groups of

cycles and boundaries of X over a suitable coefficient domain and those of X

Yhains,
{tse1r., To Ainvestigate these relations, four fundamental chain transformations 1i.
QL 1p and 2p will be defined, and they will play important roles as follows,
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Yo projection 1p:C—)iC is naturally defined regarding the iX part of a chain C as a
proj

thain 1C of ix, where C is the group of chains of X and iC is the group of chains of

5(1=1,2). Ve shall write 1p:C—>1C. 2p:C-)zC . This operation ip is called the

drojection of X onto iX. Physically speaking, to operate ip on a chain C means to

tgard physical quantities (such as currents) represented by C as those of 'X.

ince the elements of 1y are among those of X, we have an injection ti:de-yc by

i

chain of iX as a chain of X itself. We call the operation “i the

egarding a

ajection of 1X into X. This means physically that we regard the physical quantities

t 1Y a5 those of X.

e following two relations are easily proved from the facts that x=‘x+2x and each 1X

3 the complement of the other.

ﬂp+212p=1 (identity operator)

pjp=dij éxronecker's delta) 1,j=1,2 This means that 1x and 2X have no common element.

corem No information is lost by operating 1i1p+212p on a chain of X, that is, by

rojecting a chain of X into 5 and X respectively and then gathering them by the

‘njections from both 'X and 2X. This theorem shows the validity of wusing the

‘issection processes or diakoptics as a method to solve network problems,

incidence relations are the

1d in 1X and 2d in 2X are so defined

i

' qunaa:y operators in Y In subcomplexes 1X and ZX, the

Yume as in X. Theretore the boundary operators

iX part of dC, where C is the injection of "C into X. Thus we have

Yhat i4dx is the
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1, 2,2 52

llpali, 2a=*pa®i

Since X is closed d(lilc) is always on 1X only, so that we have

2pd11=0

But 2X is not closed and d(212C) may have an 1X part. Therefore we haye a non zero

operator

2, 12

1pd i=""d

]zd is an operator which transforms 2Cr into 1Ct—l, consisting in taking the 1x part

of the bounaary d(212C) of 2¢ in X. Hence 124 represents the comnection relations of

11 and zx, and the influences of 2C are carried over to 1C as wo shall see later,
2 2 1 1
The cobounaary operators b in “X and 'b in ‘X are defined by duality.

%2p21, To=lppli

By expanaing d=(1ilp+2i2p)d(1i1p+2i2p) and using dd=0 we obtain iglg=0 (and ipip=0),

Yo can also show that the operators 11 and 1p commute with the boundary and coboundary

operators, and that 11 and 1p are dual mappings, 1i‘=1p. Therefore (li,1p) is a pair

of dual chain mappings. (A chain mapping is a chain transformation that commutes with

the bounaary operator.) In the same Wway (2p,2i) is another pair of dual chain

nappings.
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anork analysis by dissection For the rest of this chapter we will represent chains

Assume that no mutual couplings exist between 1X and 2X.

2oyt i=0,

i

‘yI,i ana cochains by E,e.

nsider the admittance matrix to be a mapping y:E]—>I1 we may write 1py21=0,

admittance and impedance matrices of X as

Ymilariy for z=y_1. We define the

i . . .
rﬂpyii, iz=1pzii and we seo 1yiz=1ziy=1 the unit matrix (for

{
i i, 4 i d Jijpzii=ipii=1, 143) and we obtain

i pz i="pyz i-"py

!iz= pyli

(11542 :2p)y(1ilpe

% ordinary cases, mutual couplings even if they do exist concentrate only locally, so

bat tpnis assumption will be satisfied in most cases, if we dissect (tear) the network

dpropriately. The more general case in which this assumption is not satisfied can be

talt with by extending the method,

Undamental equation of diakoptics and codiakoptics Under the above assumptions we

utrouunce the fundamental equation of Amari’s method as follows., For 1X taking

tcount ot Kirchoff's 2nd law b(E1—e1)=0. we can put E;-e,=bE . Operating on this by

1 =1pr°—1b1E° for 1pe1 =0 and 1pb=1b1p. This is Kirchhoft’s 2nd law in

D we have E1

x.

ext from lpd(11—11)=0 we have 1d(1i1—111)=—12d(211) using 1pd=1d1p+12d2p and 2le=0.

l\is is Kirchoff's 1st law in 1X. Since y=1i1y1p+212y2p, Ohm’s law in 1X takes the

torm 1i1=1y1E1 giving 1d1y1b1Eo=1d1Il_12d211 or for 2X, 2b222d212=2b2e1—21b1E1

1
lylpTE_+1242424%=1a71!
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21b1b1E0+2b2ZZd212=2b2e1

These are Amari's fundamental equations of tearing. The following table gives the

matrix coetficients corresponding to each (co)boundary operator, operating on a

p-(co)chain:

2-chain  1-chain O-cochain l-cochain
d Cbn And b Anb Cbm
13 clolm  ala'd Ty alals clolm
2d C2b2m A2n2b 2y Aznzb 2bim
124 Clbzm A1n2b 12y, Alnzb clv?m

Bence Amari’s fundamental equations in matrix form are:
61n1bY1b1bA1b1nE81n+A1n2bC2b2mi22m=A1n1b111b

Q2m1bA1b1nE°1n+C2m2b22b2bC2b2m122m=C2m2b012b

1

1d12d+12d2d=0. Defining ﬁg=C1n2m=A1n2bC2b2m=—A1nle bzm. wo

1

¥rom dd=0 we obtain

as the incidence number between node 1n of X and mesh zm of zx, the

wutual influence between Eoln and izzm. of

interpret C1n2m

course the elements of C are simple

integers 0,1 and -1. Putting

1.1

ly=pTn'py b ba’s 'n,

ectulbz?b b Coln,
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¢ fundamental equations can be rewritten in their original form

[1Z -s][12]=[1£]
et 2zl21) 1%
ang 21 form the diakoptical coordinates of the network, Usually we dissect X in

that either 1X or 2X is composed of several disconnected subdivisions and

mutual couplings exist between them., Either 11 or 2Z will be a block diagonal

th a way

trix. It is therefore efficient to solve by partitioning because the topological

formatiun in the network has been wutilised. The special cases diakoptics and

diskoptics are clearly duals,

¢ procedure of diakoptics In this section we will show the practical procedures of

ari's methnoa, We solve the fundamental equation by partitioning the coetficient

here calculating 1Z=/1_1_f, as well as /le, which is the node voltage vector of the

Srn subnetworks, corresponds to solving the subnetworks, Substituting in the second

Yvation
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et ze?) Cpec'zn

Ives the intersection network, where the denominator is the mesh impedance matrix of

1 1

¢ intersection network. The solution E'b of node 'b in 1X is given by

wlz1+c?y).

¢ branch currents and voltages are easily obtained
v=C?b2milm, E2b=Z?b2bi’b,
v=z'p1belv, Elo=ATblaEla,

thus see tnat tne diakoptical procedure coincides with our method of partitioning

A\l

® tundamental equation. These steps are summarised in Fig(13). When the impressed

nticies I2n and e2m are not yet explicitly given we have only to calculate 1z1n1n

2y2,2n  (the factorised inverse matrices) thereafter if these impressed quantities

¢ given we can immediately calculate the response (uantities using 1ZInln and

2
n“m

codiakoptical analysis dual to the above results in the same diagram but with the

art point in the bottom centre instead of the top centre,
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