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ABSTRACT 

The need for reduction of CO2 emission from refrigerator compressors has motivated 

the research which is described in this thesis. The main focus is the development of 

high efficiency linear motors for direct-drive linear compressor systems to be used in 

domestic refrigerators. Three design variants of tubular moving-magnet linear motors 

are identified as potential candidates. The analytical methods are established for 

predicting open-circuit flux density distribution, flux-linkage, back-emf and thrust force 

for each motor and the results are validated by finite element analysis. The leading 

design parameters of the motors are optimised analytically for maximum efficiency 

under the rated operating condition and volumetric constraints, with due account of 

the effect of compressor loads under the nominal operating condition. The 

analytically optimised designs are further refined using finite element method, which 

can accommodate more complex geometries and material non-linearities. Eddy 

current loss in rare-earth NdFeB permanent magnets and in supporting tube, and 

iron loss in the stator cores of the moving-magnet motors are also analysed 

extensively using finite element method. The influence of circumferential 

segmentation of the permanent magnets and the supporting tube on the eddy current 

loss is investigated, and the iron loss is evaluated against various armature velocity 

profiles under both no-load and on-load conditions. 

For the purpose of cost reduction, a tubular moving-iron linear motor which employs 

relatively cheap permanent magnet material, Strontium ferrite, is investigated, and its 

leading design parameters are optimised using finite element analysis technique. 

A representative prototype motor was constructed and its static performance, such 

as flux linkage, cogging force and thrust force were measured. The measured results 

are compared with finite element predictions. The measurement of no-load iron loss 

was also carried out using specially designed test rig and suspension springs to 

eliminate frictional loss, and the on-load iron loss was obtained by subtracting the 

copper loss and eddy current loss from the measured input power when the motor . 

was operating at resonant frequencies with variation of strokes. The measured 

results validate the analytical and finite element predictions. Finally, the motor 

efficiency has been measured based on separation of mechanical loss and 

electromagnetic loss. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction 

Worldwide energy consumption has risen by around 30 % in the last 25 years [1] and 

the rate of increase appears to be accelerating. Currently, industrialised countries 

consume about four times as much energy as developing countries. However, 

economic growth which is being encouraged in countries such as China, India and 

Brazil is expected to increase significantly for the foreseeable future , and this will put 

further pressure on energy supplies and necessitate energy conservation measures. 

Of the various household appliances, refrigeration represents a significant and 

growing electrical load, accounting for approximately 14 % of the total UK electrical 

power consumption [2] [3] . Thus, the refrigeration load has a very significant impact 

on the UKs emissions of carbon and CO2. The electrical power consumption of 

refrigerators is obviously related to the efficiency of their compressor systems. 

Hence, cost-effective measures for improving efficiency are highly desirable, and are 

in demand on a global scale. 

Crank to oonvert rotary motion to 
linear motion 

Crank Piston Cydinder 

Fig. 1.1 Schematic of conventional refrigerator compressor 

The conventional refrigerator compressor comprises a rotary electric motor, usually a 

single-phase induction motor, which drives a reciprocating pump through a crank, as 

shown in Fig . 1.1. The overall efficiency is relatively low, due to the inherently low 

efficiency of induction motors and the mechanical friction of the crank-driven piston 

movement. This will be evident from Fig. 1.2, from which it will be seen that the 

1 



overall efficiency of the such a compressor is around 60 %, although incremental 

improvements in efficiency continue to be made, by reducing both the induction 

motor losses and the side force between the piston and cylinder. 

Fig. 1.2 Efficiency of induction motor driven compressor [4] 

Fig. 1.3 highlights the role of the compressor in the refrigeration cycle. As well as 

compressing the refrigerant gas, the compressor raises its temperature. The 

condenser dissipates the heat and the gas condenses before flowing through an 

expension valve. This reduces the pressure and the refrigerant expands and 

evaporates. Finally, the evaporating refrigerant absorbs heat from inside the 

refrigerator. Standard conditions for measuring the refrigerator efficiency are: an 

evaporator temperature of -25°C, an ambient temperature of 32°C and a condenser 

temperature of 55 °C. Clearly, in practice the actual temperatures will vary over quite 

a wide range, and typically might be -10 °C/32 °CI 55°C. 

Currently, most refrigerators employ simple on-off refrigeration systems, the on/off 

duty cycle of a fixed-speed compressor being determined by the refrigerator 

temperature setting and the load. Although variable-speed compressors are available 

to enable the refrigerant gas flow rate to be continuously varied to meet the required 

cooling capacity, and, thereby, improve the compressor efficiency to - 85 %, low 

speed operation is not possible because of piston lubrication problems. Further, 

variable-speed operation increases manufacturing cost, and since the consumer 
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product sector is very cost-sensitive, the commercial take-up of variable cooling 

capacity refrigerators has been poor. 

Nevertheless, refrigerators have recently been introduced which employ a direct

drive linear motor driven compressor [5] [6]. Such a compressor eliminates the need 

for a rotary-to-Iinear motion conversion cranks which reduces the complexity, volume 

and power loss due to mechanical friction. A direct-drive linear compressor is also 

more robust, quieter, more reliable and less costly, and improves the dynamic 

performance [7]. 

Evaporator 

Compr • ."or 

Condenser 
E><psnslon 

valve 

a. 

Fig. 1 .3 Refrigeration cycle 

Entalpy 

A further feature of direct-drive linear compressors is the fact that both the frequency 

and the amplitude of the piston stroke can be easily varied [8], whilst a conventional 

compressor with a rotary motor and a crank has a fixed stroke. Thus, it readily 

facilitates variable cooling capacity, whilst eliminating the side force on the cylinder 

wall caused by the crank. This not only significantly reduces the frictional loss, but 

also makes it possible to operate without a lubricant, i.e. oil-free operation, since the 

clearance of a few micrometers between the cylinder and the piston is filled with gas, 

which acts as both lubricant and seal. Fig. 1.4 illustrates the scale of the reduction in 

energy consumption which should be achievable by employing a direct-drive linear 

compressor rather than a rotary/crank driven compressor, and by implementing 

variable cooling capacity operation. 
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Fig. 1.4 Energy consumption of different compressor technologies [4] 

Fig. 1.5 shows a schematic of a direct-drive linear compressor, although in practice 

the linear motor and compressor would be much more highly integrated. 

Spring Linear motor Piston Cyclinder 

+-Inlet 

"'-'--'-"'Ui11 -----E 
Shaft 

Fig. 1.5 Schematic of direct-drive linear compressor [4] 

For maximum efficiency and piston stroke for a given supply current, and therefore, 

maximum refrigerant gas flow, the electrical supply frequency to the linear motor 

should coincide with the mechanical resonant frequency of the moving mass (Le. 

mover of linear motor plus piston). The mechanical resonant frequency,f,. is given by: 

f. =_1 IT 
r 2tr m 1.1 
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where kT and m are the total equivalent system spring stiffness and the total moving 

mass, respectively. 

In addition to eliminating the friction loss associated with the crank and facilitating 

continuous by variable cooling capacity, by varying the supply current and the 

frequency (over a relatively narrow range), although a small amplitude stroke will 

compromise the volumetric efficiency; a direct-drive linear compressor enables soft 

start/stop operation, which is conducive to low noise. 

The total equivalent spring stiffness results from the stiffness, k, of the suspension 

springs on which the mover and piston are supported, the stiffness , kg , of the 

refrigerant gas as it is compressed and the stiffness, kc , due to the cogging force of 

the linear motor. Both kg and kc are highly non-linear functions of the piston stroke , 

whilst kg also depends on the evaporator/ambient/compressor operating 

temperatures. Thus, as will be evident from equation 1.1, the mechanical resonant 

frequency may vary significantly, typically as shown in Fig. 1.6, and the electrical 

supply frequency needs to track this at all times in order to maintain maximum 

operational efficiency under all operating conditions. 
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Fig. 1.6 Typical variation of mechanical resonant frequency with stoke and 

evaporator/ambient/compressor temperatures [4] 
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Clearly, the design of the linear motor will have an important influence on the 

operation of a direct-drive reciprocating compressor. The research which is reported 

in this thesis assesses the merits of favoured motor topologies, and presents 

comprehensive analyses and performance predictions, validated by experimental 

measurements. 

1.2 Aim of research 

The aim of the research was to develop a reciprocating linear motor for use in 

domestic refrigeration compressor systems. The specific objectives were: 

i. To identify the most promising candidate topologies of linear reciprocating 

motor in terms of their stroke, mass, efficiency and cost. 

ii. To establish an analytical framework for the analysis and design 

optimisation of the most appropriate linear reciprocating motors and to 

validate the results by finite element analysis. 

iii. To undertake design optimisation, using finite element analysis and the 

findings from the analytical study. 

iv. To prototype the most efficient of the linear motors and perform 

comprehensive static and dynamic testing and validate the performance 

predictions. 

1.3 Basic operation of linear motors 

In principle, for every rotary electrical machine configuration a linear counter part may 

be realised. The process of slicing and unrolling a rotary induction motor to obtain a 

linear motor, either planar or tubular, is illustrated in Fig. 1.7 (a) [9], whilst the same 

process for realising flat and tubular linear permanent magnet motors is illustrated in 

Fig. 1.7 (b). 

A linear machine produces a thrust force directly to a load. As with all doubly-excited 

electromagnetic machines, the thrust force is developed when a straight current

carrying conductor is placed in a magnetic field, as shown in Fig. 1.8, the direction of 

the force being determined by Fleming's left-hand rule. 
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Fig. 1.8 Basic concept of linear motion [10] 

1.4 Literature review on linear machine technologies 

The first linear electric motor was patented in the USA more than a century ago [9]. 

Over the years, thousands of international papers and monographs have dealt with 

the topic of linear motors in a variety of applications, such as artificial heart devices 

[11]. cryogenic coolers [12]. compressors [8] and automotive actuators [13]. 

Essentially, there are five linear machine technologies which can be considered [14] 

as candidates for linear compressor refrigerator systems, viz: 

I. linear induction machines 

ii. linear synchronous machines 

iii. linear switched reluctance machines 

iv. linear DC machines 

v. linear permanent magnet brushless machines 
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1.4.1 Linear induction machines 

Linear induction machines have been developed predominantly for producing 

continuous linear motion, especially for heavy duty applications such as 

transportation, conveyor systems and, more recently, lifts [15]. They generally 

require a poly-phase power supply and a multi-phase primary winding in order to 

produce a travelling magnetic field and induce current in the secondary. Various 

topologies are feasible, such as short secondary/long primary, long secondary/short 

primary, moving secondary or moving primary, single or double-sided. For oscillatory 

operation, a controllable inverter drive is used to reverse the direction of the travelling 

magnetic field. The direction of movement may also be reversed by interchanging 

two phases of the 3-phase power supply. However, a single-phase power supply can 

still also drive a linear induction machine, as reported by West and Jayawant [16]. 

They designed an oscillatory induction motor for shuttle propulsion. The motor 

consisted of two ring coils placed symmetrically at the two ends, as shown in Fig. 1.9. 

The conducting ring acts as the secondary and was placed around the lamination 

stack located between the two coils. The motor produced a stroke of 25.0 mm at 12 

Hz at an input of 100V A. 

Laminated strip 

Tuning capacitors 

Conducting ring 
'secondary' 

Gramme ring coil 

Single-phase a.c. supply 

Fig. 1.9 Single phase linear oscillating induction motor [15] [16] 

However, the motor had poor performance especially at low speed, and due to the 

relative complexity of the physical assembly of the stator, the need for a multi-phase 

winding and a poly-phase supply, the use of linear induction machine in low power 

reciprocating applications is limited. 
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1.4.2 Linear synchronous machines 

Linear synchronous machines with permanent magnet excitation have been 

employed widely in high performance systems, especially for long stroke applications 

[17]. However, such machines have also been applied in reciprocating motion 

applications such as cryogenic refrigerators, vibrators [18] and artificial hearts [19]. 

Again, however, their application is limited due to the relative complexity of the stator 

winding and the power supply requirement. The production of reciprocating motion 

also requires a reversal of the multi-phase voltage sequence or a power electronic 

inverter to facilitate speed reversal, whilst position feedback is required to sense the 

end of the travel. However, complexity of the stator winding configuration and the 

need for a multi-phase power supply makes the conventional topology of linear 

synchronous machine un-suitable for low power reciprocating applications. 

1.4.3 Linear switched reluctance machines 

Linear switched reluctance machines, of the form illustrated in Fig. 1.10, are available 

in various commercial sectors and their design, optimisation and control remain the 

subject of ongoing research [20] [21]. In general, the machine requires position 

feedback to synchronise the commutation of the phase currents with the relative 

position between the stator and mover teeth. Mechanically switched reluctance 

machines are very robust and relatively simple, and may be cheaper than other 

technologies. However, their relatively poor operating characteristics, in term of their 

thrust force capability and efficiency, means that such machines are generally 

inappropriate for low power, high efficiency reciprocating applications. 

Stator 
core 

Fig. 1.10 Tubular switched reluctance linear machine [20] 
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1.4.4 Linear DC machines 

Linear DC (commutator) machines are usually used for long stroke applications, with 

position feedback, in applications such as robotics and positioning tables, and they 

offer advantages due to their smooth, easy and accurate control of force and position 

[22]. Basak [23] described variants to brushed DC linear motors, in which the 

armature consists of a helical winding on a cylindrical armature which is energised 

via brushes. However, such motors are relatively expensive to manufacture, suffer 

from brush wear, and, hence, are high maintenance, and there are relatively noisy 

during operation. 

1.4.5 Linear permanent magnet machines 

In general, the use' of direct-drive linear motors in the reciprocating motion 

applications under consideration is prohibitive due to their complexity, cost and 

power supply requirements. The problems with reversing the phase sequence for bi

directional operation from a poly-phase power supply [16] and position feedback to 

facilitate synchronisation of the excitation current [17] with the mover position is likely 

to exclude the use of linear induction machines, linear synchronous machines, linear 

switched reluctance machines and linear DC machines for low power reciprocating 

applications, especially in linear vapour compressor systems. 

Linear permanent magnet machines offer certain advantages for reciprocating 

compressor applications for which the machines are required to produce a high force 

capability and have a high efficiency, whilst requiring a low power supply and being 

easy to control [24]. The permanent magnet linear machine shown in Fig. 1.11 is 

arguably the simplest configuration. No field winding is required since the permanent 

magnet produces the excitation flux for the motor [15]. The moving armature has a 

short active length whilst the length of the permanent magnet array corresponds to 

the desired stroke in order to produce optimum thrust force. 
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Both planar and tubular topologies can be realised a tubular topology being preferred 

for a higher thrust force capability. In addition, both slotted and slotless topologies 

should be considered [25] for improving the thrust force and for reducing the cogging 

force, respectively. Other topologies which should be considered are iron-cored and 

air-cored armature configurations, in order to enhance the dynamic capability of a 

linear motor. As intimated at earlier, a lightweight armature is generally preferred for 

a vapour linear compressor [26]. In general, however, the permanent magnet linear 

motors can be classified into three categories, viz.; 

i. 

ii. 

iii. 

1.4.5.1 

moving-coil 

moving-iron 

moving-magnet 

Moving-coil motors 

Normally, a moving-coil linear motor comprises a stationary permanent magnet, 

either radially or axially magnetised in the stator and a moving-coil armature. The 

various generic forms of moving-coil linear motors have been compiled by Clark [15], 

as illustrated in Fig . 1.12. The motors in Fig. 1.12 (a) and (b) are used extensively in 

loud-speaker applications, which often use low cost sintered ferrite for the permanent 

magnet and mild steel for the magnetic circuit. However, a low air-gap flux density is 

produced due to the low remanence of the permanent magnet material. 

However, rare-earth permanent magnet materials, such as Somarium Cobalt, SMCo 

or Neodymium Iron Boron, NdFeB are generally used in the topologies shown in Fig . 

1.12 (c) -(g) in order to produce more thrust force for specific applications such as 
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computer disk drives [26] [27], robotics and aerospace actuators [28] [29]. The use 

of high energy, high coercivity rare-earth magnets is conducive to a high magnetic 

loading, which reduces the electrical loading, while at the same time reducing the 

volume of copper, which may reduce the moving mass. The magnetic loading is the 

peak radial flux density in air-gap of the machine, meanwhile, the electrical loading is 

the total rms current per unit length of periphery of the machine. Other advantages of 

moving-coil linear motors include a small hystereSiS loss, a light-weight armature, 

and high-speed operation under closed-loop servo-control. 

The slotless C-type moving-coil permanent magnet linear motor shown in Fig. 1.13 is 

a well-known topology which is often used to improve the accuracy of the speed 

and position control [30] [31] [32] [33]. Such motors also provide the significant 

advantage of minimising or even eliminating the cogging force and also enhanCing 

the dynamic capability due to the light-weight nature of the moving-coil armature [33]. 

Bruno [8] introduced the tubular moving-COil linear motor comprising either a single or 

several radially magnetised permanent magnets, as shown in Fig. 1.14 and Fig. 1.15, 

respectively. The linear motors were designed for 5.0 mm to 20.0 mm strokes. The 

use of rare-earth NdFeB permanent magnets reduced the inertia and improved the 

performance of the linear motors. However, the linear motors required a special 

arrangement to supply the current to the moving coil in order to avoid flying leads, 

whilst a position sensor was required in order to achieve bi-directional motions, 

which increases the manufacturing cost. 
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Fig. 1 .12 Moving-coil linear motor topologies [15] 
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Fig. 1.13 C-type moving-coil permanent magnet linear motor [30] [31] [32] [33] 
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Fig. 1.14 Moving-coil tubular permanent magnet motor with radially magnetised magnet [8] 
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Fig. 1.15 Moving-coil tubular permanent magnet linear motor with several radially magnetised 

magnets [8] [34] [35] 
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In addition, the axially magnetised tubular permanent magnet linear motor illustrated 

in Fig. 1.16 has been developed [36] [37). It is claimed to have a higher specific 

thrust force capability than other topologies, but requires more permanent magnet 

material. To improve the design, the modified topology [38] shown in Fig. 1.17 has 

been proposed. Both the magnets and the associated pole-pieces are annular 

shaped and supported on a non-ferromagnetic rod . It offers several advantageous, 

such as eliminating the need for a non-magnetic tube to contain the magnets and 

pole-pieces, and reducing the volume of permanent magnet material. 

Mild steel 

Armature Coil 

- - -
Pole-pieces 

Permanent magnet 

Non-magnetic tube 

Fig. 1.16 Moving-coil linear motor with axially magnetised magnets [36] [37] 
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Fig. 1.17 Improved moving-coil linear motor with axially magnetised magnets [38] 

Wang et al [39] introduced the radially magnetised tubular permanent magnet linear 

motor shown in Fig. 1.18. The radial magnetised magnets have significant advantage 

in providing radial fluxes directly to moving-coil armature in order to produce better 

performance of the motor. The up-side down radially magnetised magnets provide 
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faster returning fluxes and significant in reducing the thickness of back iron. 

Therefore, the cost of material can be reduced . 

Armature ~.~~: -

Mild steel 

Coil 

Back iron 

Pole pieces 

Permanent magnet 

Fig. 1.18 Moving-coil linear motor with radially magnetised magnet (39) 

A further improvement was proposed by M.G. Lee et al [40] who introduced the 

planar moving-coil linear motor with trapezoidal magnet arrays shown in Fig . 1.19 for 

use in a high precision positioning system. After optimisation, the motor was shown 

to produce a higher thrust force per volume than an equivalent motor equipped with 

conventional quasi-Halbach magnetised magnet arrays. However, the design can be 

improved by employing a tubular topology to enhance the force capability, as will be 

discussed in Chapter 2. 

Lamination ----l~~ ••••• ~~.IIJII ....... \ • / + \ . / t \ • ;;",'1--- Permanent magnet 

IXIXIXIXIXI>((I Coil 

j . \ +/ . \ t / . \ 

Fig. 1.19 Moving-coil permanent magnet linear motor with trapezoid magnets (40) 

However, moving-coil linear motors do suffer from a number of disadvantages [3] 

[15], viz.: 

i. Difficulty in dissipating heat from the coils 

ii. Fragility of the connections and flying leads 

iii. Limited access to moving-coil. 
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iv. Limited stroke and thrust force capability 

Based on the foregoing, a moving-coil topology was not considered suitable for a low 

power reciprocating linear motor for a refrigerator compressor system. 

1.4.5.2 Moving-iron motors 

Moving-iron permanent linear motors lead to be simpler designs since they are often 

only required to have a uni-directional force capability and use a mechanical spring to 

reverse the motion of the plunger when the motor is de-energised [9]. 

Linear moving-iron motors have been developed for implanting in the human body 

[11]. For example, the motor shown in Fig. 1.20 was designed by Yamaguci et al [41] 

for use in an artificial heart. It had a diameter of 70.0 mm, an axial length of 40.0 mm 

and used a radially magnetised NdFeB ring magnet, and had a stroke of up to 14.0 

mm and a maximum force capability of 20 N, the plunger moving mass being 40 g. In 

order to produce the maximum thrust force, the minimum air-gap clearance between 

the armature and magnet was relatively small, 0.35 mm. This small clearance 

necessitated careful assembly, which, in turn , lead to a relatively high manufacturing 

cost. 

Lamination 

Permanent 
magnet 

Fig. 1.20 Moving-iron linear motor for artificial heart [11] 

The tubular moving-iron linear motor shown in Fig . 1.21 was introduced by Evan [7] 

for multi-purpose applications. The machine has a diameter of 46.0 mm, an axial 

length of 57.0 mm and employs axially magnetised NdFeB magnets with a 
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remanence of 1.125 T. The thrust force was 40 N. The linear armature motion was 

varied by current control in open-loop, without the need for a position sensor. 

However, whilst various design parameters were optimised, certain design features 

need to be further optimised, especially for the armature. The depth and width of the 

central section of the armature are very significant parameters in order to achieve 

optimum performance. If the width of the armature teeth is too narrow, a high flux 

density results in the armature teeth which causes a high iron loss, whilst if the tooth 

height is too small, the change of flux with axial displacement of the armature may be 

reduced, which results in poor performance. The dimensions of the permanent 

magnets also need to be optimised in order to enhance the performance. Details of 

the optimisation and modification of this linear motor are discussed in Chapter 4. 

Boldea [9] introduced the moving-iron linear motor topology shown in Fig. 1.22, in 

which a rare-earth NdFeB permanent magnet and two coils are mounted on the 

stator. The merit of this topology is that the permanent magnet flux interacts directly 

with current-carrying coils in order to produce optimum thrust force. However, the 

armature mass is relatively heavy, so the frequency of oscillations is limited to a few 

Hertz [11], although the mass of the armature may be reduced by employing a 

ferromagnetic tube instead of a solid armature. 

Lamination 
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Fig. 1.21 Moving-iron of tubular permanent magnet linear motor [2] 
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Fig. 1.22 Moving-iron tubular permanent magnet linear motor [9] 

Lequesne [8] introduced the modified armature shown in Fig. 1.23 in order to reduce 

the moving mass and improve the force/volume capability. 2-springs are used to 

support the armature in order to produce bi-directional force. When the armature is at 

one end of its stroke, one of the spring is compressed whilst the other spring is 

released. The compressed spring is held in that state by the permanent magnet. 

When linear motion is desired, the coils are excited in such a way as to reduce the 

level of the magnetic force below that of the spring force, and the spring then drives 

the plunger to the other end of the stroke. The performance of the linear motor was 

compared to that of a moving-coil linear motor, on the basis of devices designed for 

the same stroke, i.e. 10.0 mm and the same volume. It was concluded that the 

moving-iron linear motor is relatively poor in terms of energy conversion from 

electrical to mechanical compared to the moving-coil linear motor and limited in the 

frequency of operation. The relative complexity of the moving-iron linear motor also 

required high precision manufacture and assembly, especially for the armature in 

order to avoid damage during the reciprocating operation, which increases 

manufacturing cost. 
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Fig. 1.23 Moving-iron tubular permanent magnet linear motor [8] [42] 

Sidell and Jewell [43] designed the moving-iron linear motor for high temperature 

applications, up to BOO °C. The bi-directional motor has a diameter of 130.0 mm, an 

axial length of 12B.0 mm and an air-gap length of 1.0 mm. The thrust force at 800 °C 

with 40 A excitation was 260 N. The design study illustrated the fact that there are no 

fundamental limitations to the operation of electromagnetic devices in ambient 

temperature of up to 800°C, although there is inevitably a marked reduction in 

performance compared to devices operating near room temperature. This is due to 

the large increase in the resistance of the windings which, in turn, limits the current 

density that can be employed, and the reduced flux carrying capability of the cobalt

iron material from which the ferromagnetic cores were machined. 

Wang et al [44] developed a small linear permanent magnet machine for generating 

electrical power as illustrated in Fig. 1.24. It is a two-phase tubular device, the stator 

having both permanent magnets and coils, while the moving-armature is a simple 

salient iron core. With an axial stroke of 4B.0 mm at a velocity of 0.3 mis, the 

generator could generate 3 mJ of a energy. Despite the small amount of energy 

which is produced, the generator is suitable for applications that require relatively low 

levels of electrical power, such as remote electronic locks. 
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Fig. 1.24 Moving-iron linear generator for low power applications [44] 

However, a higher energy moving-iron linear permanent magnet generator has been 

developed by Mueller et al [45] for renewable energy applications. It is a low speed, 

3-phase linear electrical generator for a wave energy converter. Fig. 1.25 shows only 

a single-phase to ease understanding of the system. The toothed armature 

constructed from iron laminations, moves between two C cores, which have a coil 

wound around each pole and magnets mounted on the pole-faces. The rotor tooth 

and slot width are similar in dimension to the magnet pitch. When the armature teeth 

are fully aligned with the magnets, flux flows as shown by the dotted line. As the 

armature moves this flux decays to zero at the unaligned position and then reverses 

polarity. In this way, the coils experience a change in flux-linkage over a sma" 

displacement of the armature. The machine generated 2.8 kW at an rms current of 

28 A. The toothed armature is an attractive concept for a tubular linear reciprocating 

motor with light-weight armatures. 

However, even though many applications have been considered for moving-iron 

linear motor topologies, they tend to suffer from a number of disadvantages, viz. : 

i. Heavy moving mass, which can reduce the dynamic capability of the 

motor. 

ii. A relatively low thrust force capability due to low air-gap flux density. 

Based on the foregoing. moving-iron topologies were not considered to be suitable 

candidates for use in low power linear reciprocating for vapour compressor systems 
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Fig. 1 .25 Moving-iron linear generator for wave energy converter [45] 

1.4.5.3 Moving-magnet motors 

Moving-magnet linear motors have been designed for widely varying applications, 

such as air-compressors [12] , artificial hearts [46], automotive systems [13], and 

robotics [47] [48] . 

Various possible design variants for both planar and tubular linear motors have been 

compiled by Clark [15], the linear motors shown in Fig. 1.26 and Fig . 1.27 

encompassing slotted and slotless stators, permanent magnet and permanent 

magnets/ferromagnetic armatures, and variable and constant air-gap designs. 

Jack et al [49] conducted a trade-off study on the moving-magnet linear motors 

illustrated in Fig. 1.28. The single-phase short-stroke tubular motors were designed 

for use in refrigerator compressor systems, and used soft magnetic composites and 

rare-earth NdFeB permanent magnets. All the deSigns were optimised and had same 

thrust force, 113 N, and copper loss, 1.75 W. In order to full-fill the requirements, the 

slot area, the outer diameter and the number of turns needed to be adjusted. The two 

designs in Figs. 1.28 (a) and (b) were proposed in order to achieve a light moving 

armature. However the motors inherently had very weak performance capabilities, 

and required more slot area to obtain the desired thrust force. A special support for 

the permanent magnets especially for the motor in Fig. 1.28 (b), is required and not 

easy to fabricate, which increases the manufacturing cost. The design shown in Fig. 

1.28 (c) had three magnets attached to the armature, and exhibited significantly 

improved performance, whilst the outer diameter of motor was reduced. Due to the 

cost of NdFeB, only a single magnet is used in the motor shown in Fig. 1.28 (d), 
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whilst the orientation of the permanent magnet was changed from radial to axial in 

the motor illustrated in Fig. 1.28 (e). 
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Fig. 1.26 Planar configurations of moving-magnet linear motor [15] 

24 



ria..B><i' 
a) b) 

c) d) 

• • 
• • e) 

Soft magnetic material f) 

~ Coil 

[]] Permanent magnet 

Fig. 1.27 Tubular configurations of moving-magnet linear motor [15] 

The slotless moving-magnet tubular motor illustrated in Fig. 1.29 was employed in a 

diaphragm compressor for a medical bed by Mitchell et al [50]. The outer diameter 

and axial length of the motor were 40.0 mm and 34.0 mm, respectively, whilst the 

radially magnetised bonded NdFeB permanent magnets had a remanence of 0.57 T. 

The maximum thrust force produced was 2.5 N with a supply current of 1 A. 

However, by employing a slotted stator configuration and higher remanence NdFeB 
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magnets the force capability can be increased significantly. Other applications for the 

moving-magnet linear motors in the healthcare sector especially include implantable 

artificial hearts [11] [46] [51], and implantable hearing aids [15] [52] [53]. 

The axially tubular permanent magnet linear generator shown in Fig. 1.30 has been 

developed [24] for on-board generation of electrical power for telemetry vibration 

monitoring systems. It is a single-phase device, which is capable of generating 20 

mW at 5 V, with a nominal resonant frequency of 50 Hz and a stroke of 0.8 mm. The 

two axially magnetised sintered NdFeB magnets and the mild steel pole-pieces give 

rise to an essentially radial magnetic field in the region occupied by the stator 

winding. However, the generator has a relatively heavy armature although this can 

be reduced by using the technique illustrated in Fig. 1.17 [38], which also reduces 

the volume of permanent magnet material. The technique has been applied to the 

slotted, five-phase, tubular permanent magnet linear motor [54] shown in Fig. 1.31. 

In this case, the non-ferromagnetic tube is employed and it is more lighter than the 

solid non-magnetic rod, which illustrated in Fig. 1.17. The axially tubular permanent 

magnet linear generator has also been developed by [55] for the direct drive marine 

energy conversion application. The generator can produce the rated power of 3 kW 

at 0.5 m/s. Another application of the axially tubular permanent magnet linear 

generator was used in automotive applications [56] [57] [58] [59]. For example, 

Zheng et al [58] developed a free piston energy converter in a series hybrid electric 

vehicle. The free piston energy converter converts chemical energy directly to 

electrical energy, and is a potential energy efficiency power source for use in a hybrid 

vehicle [57]. The design is compact structure and reliable [60]. 
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Fig. 1.28 Trade-off study on moving-magnet linear motors [49] 
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Fig. 1.29 Siotiess tubular moving-magnet linear motor for diaphragm compressor [50] [61] 
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Fig. 1.30 Axially tubular permanent magnet linear generator [24] 
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Fig. 1.31 5-phase tubular moving-magnet linear motor with non ferromagnetic tube [54] 

Sunpower Inc [62] patented and manufactured a low moving mass design of moving

magnet tubular motor which had stationary armature back iron and a homo polar 

radially magnetised magnet, as shown in Fig . 1.32, in which only the permanent 

magnet reciprocates. The motor has been employed commercially in applications, 

such as linear alternators, and refrigerator and gas compressors. Almost the same 

topology has been considered in [63] and applied to a household linear refrigerator 

compressor system. Physically, the topology results in an additional air-gap, which 

compromises the force capability as well as a high leakage (external) field . Even 

though the design results in a light-weight armature for improving the dynamic 

capability, the motor has a relatively high manufacturing cost especially because of 

the need to provide a special support for the permanent magnet armature in order to 

facilitate robust reciprocating operation. Further, for same thrust force capability, the 
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number of turns needs to be increased, which results in a higher copper loss and 

reduced efficiency. 

Lamination 

Permanent 
magnet 

:------ --- Coil 

Shaft 

Fig. 1.32 Moving-magnet tubular permanent magnet linear machine with 2 air-gaps [62] 

By employing a Halbach magnetised armature [34] , based on bonded NdFeB magnet 

material in a slotted tubular motor as shown in Fig . 1.33, an essentially sinusoidal 

back-emf and virtually zero cogging force can be achieved. Compared with a 

conventional moving-magnet linear machine, the Halbach magnetised armature does 

not require back-iron and can have significantly reduced armature mass, which 

improves the dynamic capability, whist the permanent magnet material is more 

effectively utilised, which results in a higher air-gap flux density for a given grade and 

size of magnet. 

Lamination ---

Coil 

Halbach magnetised 

Fig. 1.33 Moving-magnet tubular permanent magnet machine with Halbach magnetisation 

[34] 
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Improvement have been reported for such motors [34] [57] [64] [65] [66] since the 

manufacture of an ideal Halbach magnetised cylinder is relatively difficult, in 

particular using quasi-Halbach magnetised magnet. The unique feature of such a 

magnetisation is that axially and radially magnetised magnets are combined as 

shown in Fig. 1.34. The axially magnetised magnets effectively provide a return path 

for the radial air-gap flux easily, so that the flux in the armature back-iron is relatively 

small. Hence, a very thin ferromagnetic tube or even a non-magnetic tube can be 

used to support the magnets. Thus, the structure is simplified and the manufacturing 

cost will also be reduced. Moreover, the fundamental field of Halbach array is 

stronger, by a factor of 1.4 for an ideal Halbach magnetisation distribution, compared 

with that of a conventional radially magnetised magnet array, and, thus, the 

efficiency is increased [65]. 

A number of studies have demonstrated that moving-magnet linear motors can offer 

higher efficiencies than moving-coil linear motors [67] [68]. Further, a comparison 

between moving-coil and moving-magnet linear motors has indicated that the volume 

of magnet required for a moving-coil is greater than for a moving-magnet linear 

motors of the same power [15] [62]. In addition, the absence of flying leads to the 

armature makes moving-magnet linear motors more reliable and rugged, making 

them more suitable for higher duty operation [69]. 

Permanent 
magnet ~-t-~ 

Back iron 

Shaft 

Fig. 1.34 Armature for moving-magnet tubular permanent magnet motor with quasi-Halbach 

magnetisation [64] [66] 
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1.5 Proposed designs 

Of the competing machine topologies and technologies which have been reviewed, 

the 'best' design is quite hard to establish and certainly needs a comprehensive 

evaluation [49] due to the requirements of the applications. However, the most 

important criteria for the evaluation of linear motors for air-vapour compressor 

applications are based on their force capability, simplicity and cost-effectiveness. 

From that basis, a single-phase, moving-magnet tubular linear motor with a slotted 

stator manufactured from a soft magnetic composite is considered to be most 

suitable for the compressor application [70] [71]. 

Thus, three design variants have been selected for further analyses viz. a single-slot 

tubular moving-magnet magnet linear motor, with different magnet configurations -

viz. iron-cored and air-cored quasi-Halbach magnetised magnets having a 

rectangular or trapezoidal cross-sections as illustrated in Fig. 1.35 and Fig. 1.36 and 

Fig. 1.37. In all cases, the quasi-Halbach magnetised armature generates a 

magnetic field which links with the single-phase stator coil, and a reCiprocating thrust 

force is produced as the result of the interaction between the permanent magnetic 

field and the stator current when it is synchronised with the armature motion [72]. 

A ferromagnetic support tube will be used in the iron-cored quasi-Halbach 

magnetised motors with rectangular and trapezoidal magnets since this results in a 

stronger air-gap field, and, therefore, a better force capability. However, since a 

lightweight armature is frequently desirable, for comparison purposes, a non

ferromagnetic support tube will also be considered for the air-cored quasi-Halbach 

magnetised motor with rectangular magnets, since may have merit in terms of a 

higher dynamiC capability [71]. 

Actually, the iron-cored quasi-Halbach magnetised motor with trapezoidal section 

magnets shown in Fig. 1.37 derives from Fig. 1.19, which is transformed from a 

planar moving-coil motor into a tubular moving-magnet motor. Due to the volumetric 

effect, the tubular motor topology may provide an enhanced thrust force density. 

In terms of the stator configuration, there are difficulties in constructing a tubular core 

from laminations formed In the radial or axial planes since the magnetic field is 

basically in a radial/circumferential plane to produce axial force and the stator coils 

carries alternating current [49]. Thus, the most appropriate materials for tubular cores 
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are soft magnetic composites, SMC, which are made of compression compacted 

insulated iron powder. SMC has isotropic magnetic properties and this not only easily 

accommodates time-varying magnetic fields in all directions but allows a large 

number of design variants to be realised . 

All the design variants will go through the complete design process in order to 

establish the most suitable candidate tubular motor for the linear air compressor 

system under consideration. The design process involves evaluating analytically the 

open-circuit flux distribution, the back-emf and the thrust force for each of the 

armature magnetisation patterns. the analytical solutions being validated by finite 

element calculations. 

Stator __ _ 
core 

---Coil 

n;==r~=rT~~=j'~=-- Permanent 
magnet 

~;::::;:==:::;::=;:::;:::==;:::;~___ Ferromagnetic 
tube 

Fig. 1.35 Iron-cored quasi-hal bach magnetised motor with rectangular magnets 
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Fig. 1.36 Air-cored quasi-Halbach magnetised motor with rectangular magnets 
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Fig. 1.37 Iron-cored quasi-Halbach magnetised motor with trapezoidal magnets 

1.6 Conclusions 

The basic requirements of a linear compressor system for refrigeration applications 

have been briefly introduced and clearly, an efficient linear motor is required. An 

extensive literature review has been conducted encompassing various topologies of 

linear motor in order to identify the promising candidates for refrigerator compressor 

systems. Linear machine technologies such as linear induction machines, linear 

synchronous machines, linear switched reluctance machines, linear DC machines 

and linear permanent magnet machines, have been considered. In this case, 

however, tubular moving-magnet linear motors appear to offer significant advantages 

over the competing technologies, in terms of the achievable force density, reliability, 

simplicity of construction and electrical supply requirements. Therefore, a single

phase, single-slot tubular permanent magnet linear motor with various armature 

configurations, viz. iron-cored and air-cored quasi Halbach magnetised magnets 

having rectangular or trapezoidal cross-sections, has been selected for further 

analysis. 

1.7 Scope of research 

Various external pressures such as the Kyoto protocol, the UK Carbon Trust are 

emphasising the need to reduce CO2 emission, which is the motivation for the 

research which is described in this thesis. The research is focused mainly on the 

need to produce the highest efficiency linear motor which will provide a direct-drive 

to a linear compressor system for a house-hold refrigerator. 
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1.7.1 Scope ofthesis 

The thesis is structured into 7 chapters: 

Chapter 1: Introduction and literature review 

This chapter presents the fundamentals of refrigerator compressor systems. the aim 

of the research and an extensive literature review of various linear machine 

technologies and topologies. Based on their force densities, reliability, simplicity of 

construction and electrical supply requirements, three promising candidates of 

tubular moving-magnet linear motor have been selected for further analysis. 

Chapter 2: Analysis of open-circuit magnetic field distribution, flux-linkage, back-emf 

and thrust force of tubular moving-permanent magnet linear motors 

In order to minimise the time for design optimisation, analytical solutions have been 

developed for the three tubular motor design variants, to predict the open-circuit 

magnetic field distribution, the coil flux-linkage, the back-emf and the thrust force. 

The analytical results are validated using finite element analysis. A comparison the 

open-circuit air-gap magnetic field distribution in the three design variants has also 

been carried-out. 

Chapter 3: Design and optimisation of moving-magnet linear motors 

The design optimisation of the mOVing-magnet linear motors is discussed in this 

chapter. The developed analytical method is employed to optimise the leading design 

parameters. whilst due to the limitation of analytical techniques in term of accounting 

for the influence of saturation, for example, and the relative complexity of the 

deSigns, finite element analysis is undertaken to refine the parameters. 

Chapter 4: Design and optimisation of moving-iron linear motor for reciprocating 

compressors using finite element analysis 

In order to investigate a potentially low cost motor topology, a moving-iron linear 

motor has been introduced and optimised using finite element analysis. The motor 

employs a low cost magnet material, Strontium ferrite and produces the same rated 

output power. Further, this chapter compares four design variants based on material 

cost and performance in order to obtain the most cost-effective solution. 
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Chapter 5 : Analysis of eddy current loss and iron loss in moving-magnet linear 

motors using finite element analysis 

This chapter addresses the analysis of the eddy current loss in the tubular permanent 

magnet linear motors using the finite element technique. The influence of the eddy 

current loss in the permanent magnets of various segmentations Le. solid magnet 

ring , single slit, 8 segments and 12 segment magnets. The iron loss which results in 

the stator core is also analysed using axi-symmetric step finite element analysis. for 

various velocity profile, viz, sinusoidal, rms constant and average constant velocities. 

This variation of iron loss with the stroke and on no-load and on-load conditions is 

also considered. 

Chapter 6 : Prototyping and measurements 

This chapter describes the prototyping of the moving-magnet linear motors, and the 

static test-rig which was established to measure the flux linkage. the cogging force 

and the thrust force. The measured results are used to validate finite element 

predictions. This chapter also describes the measurement of the iron loss when the 

linear motor is operated at resonant frequency with different strokes, the results 

again being used to validate the finite element predictions. 

Chapter 7: Conclusions 

The main findings of the research are summarised. and the areas which are worthy 

of further investigation are identified. 

References 

[1] L. Lopes, S. Hokoi, H. Miura, and K. Shuhei, "Energy efficiency and energy 

saving in Japanese residential" Science Direct: Energy and Building, vol. 37, 

no. 7, pp. 698-706, July 2005. 

[2] J. Wang and D. Howe, "Summary of literature review of linear compressor 

patents for refrigeration applications." University of Sheffield, Carbon Trust 

Porject Number 2003-3-51-1-1. April 2004. 

[3] J. Wang, D. Howe, and Z. Lin, "Comparative studies on linear motor 

topologies for reciprocati"ng vapour compressors," IEEE International Electric 

35 



Machine and Drives Conference, IEMDC'07, Turkey, vol. 1, pp. 364-369, May 

2007. 

[4] Z. Lin, J. Wang, and D. Howe, "A resonant frequency tracking technique for 

linear vapour compressors," IEEE International Electric Machine and Drives 

Conference, IEMDC'07, Turkey, vol. 1, pp. 370-375, May 2007. 

[5] K Kim, D. Kim, Y. Song, and K Kim, "Linear compressor," US patent. no. 

20040247457A1,2004. 

[6] Z. S. AI-Otaibi and A. G. Jack, "Utilising SMC in single-phase permanent 

magnet linear motors for compressor applications," 14th lET International 

Conference on Power Electronics, Machines and Drives, PEMD, York, UK, 

vol. 1, pp. 752-753, 2-4 April 2008. 

[7] S. A. Evans, I. R. Smith, and J. G. Kettleborough, "Permanent magnet linear 

actuator for static and reciprocating short stroke electromechanical systems," 

IEEElASME Transactions on Mechatronics, vol. 6 , no. 1, pp. 36-42, March 

2001. 

[8] B. Lequesne, "Permanent magnet linear motors for short strokes," IEEE 

Transactions on Industry Applications, vol. 32, no. 1, pp. 161-168, February 

1996. 

[9] Boldea and S. A. Nasar, "Linear electric actuators and generators," IEEE 

Transactions on Energy Conversion, vol. 14, no. 3, pp. 712-717, September 

1999. 

[10] I. Boldea and S. A. Nasar, "Linear motion electromagnetic systems," New 

York; Chichester: Wiley,lSBN 0471874515, 1985. 

[11] M. Watada, K. Yanashima, Y. Oishi, D. Ebihara, and H. Dohneki, 

"Improvement on characteristics of linear OSCillatory actuator for artificial 

hearts," IEEE Transactions on Magnetics, vol. 29, no. 6, pp. 3361-3363, 

November 1993. 

36 



[12] R. E. Clark, D. S. Smith, P. H. Mellor, and D. Howe, "Design and optimisation 

of moving-magnet actuators for reciprocating electro-mechanical systems," 

IEEE Transactions on Magnetics, vol. 31, no. 6, pp. 3746-3748, November 

1995. 

[13] I. Martins, J. Esteves, G. D. Marques, and F. P. D. Silva, "Permanent magnet 

linear actuators applicability in automotive active suspensions," IEEE 

Transactions on Vehicular Technology, vol. 55, no. 1, pp. 86-94, January 

2006. 

[14] D. Howe, Z. a. Zhu, and R. E. Clark, "Status of linear drives in Europe," 

Invited Paper at Linear Drives for Industry Applications, LDIA 2001, Nagano, 

Japan, October 2001. 

[15] R. E. Clark, "Resonant linear permanent magnet actuator for compressor," 

PhD Thesis, University of Sheffield, 2000. 

[16] J. C. West and B. R. Jayawant, " A new oscillatory motor," Proceedings of 

lEE 109A, pp. 292-300, August 1962. 

[17] G. W. M. Lean, "Review of recent progress in linear motors," IEEE 

Transactions on Magnetics, vol. 135, no. 6, pp. 115-128, November 1998. 

[18] O. Roubicek and Z. Pejsek, "Oscillatory synchronous linear motor with 

permanent magnet excitation," IEEE Proceeding., vol. 127, no. 1, January 

1980. 

[19] H. Yamada, M. Nirei, H. Ota, K. Kawakatsu, and T. Nakajima, "Development 

of linear electromagnetic actuator for implantable artificial hearts," IEEE 

Transactions on MagnetiCS vol. 4, no. 9, 1989. 

[20] J. Corda and E. Skopljak, "Linear switched reluctance actuator," Sixth 

International Conference on Electrical Machines and Drives, ICEMS 1993, vol. 

376, pp. 535-539, September 1993. 

[21] P. J. Hor, "Direct linear electrical drive system for high speed packaging 

applications," PhD Thesis, University of Sheffield .. 1998. 

37 



[22] G. W. McLean. "Review of recent progress in linear motors." lEE Proceedings 

of Electric Power Applications. vol. 135. no. 6. pp. 380-416. November 1998. 

[23] A. Basak. Permanent magnet linear motor. Clarendon Press,Oxford Science 

Publications, 1996. 

[24] J. Wang, W. Wang, G. W. Jewell, and D. Howe, "Design and experimental 

characterisation of a linear reciprocating generator," lEE Proceeding in 

Electrical Power Applications, vol. 145, no. 6, pp. 509-518, November 1998. 

[25] P. J. Hor. Z. Q. Zhu, D. Howe, and J. Rees-Jones, "Minimisation of cogging 

force in a linear permanent magnet motor," IEEE Transactions on Magnetics, 

vol. 34, no. 5, pp. 3544-3547, September 1998. 

[26] I. Boldea and S. A. Nasar, "Linear electric actuators and generators," IEEE 

International Electric Machine and Drives Conference Record, USA, 1997. 

[27] I. Boldea and S. A. Nasar, Linear electric actuators and generators. 

Cambridge, UK: Cambridge University Press, 1997. 

[28] G. P. Widdowson, "Design optimisation of permanent magnet actuators," PhD 

Thesis, University of Sheffield, 1992. 

[29] D. S. Smith, "High performance actuators for automotive and aerospace 

applications," PhD Thesis, University of Sheffield, 1994. 

[30] G. H. Kang, J. P. Hong, and G. T. Kim, "A novel design of an air-cored type 

permanent magnet linear brush less motor by space harmonics field analysis," 

IEEE Transactions on Magnetics, vol. 37. no. 5, pp. 3732-3736, September 

2001. 

[31] J. K. Kim, S. W. Joo, S. C. Hahn, J. P. Hong, D. H. Kang, and D. H. Koo, 

"Static characteristic of linear BLOC motor using equivalent magnetic circuit 

and finite element method," IEEE Transactions on Magnetics, vol. 40, no. 2, 

pp. 742-745, March 2004. 

38 



[32] Y. B. Tang, Y. G. Chen, B. H. Teng, H. Fu, H. X. Li, and M. J. Tu, "Design of a 

permanent magnetic circuit with air-gap in a magnetic refrigerator," IEEE 

Transactions on Magnetics, vol. 40, no. 3, pp. 1597-1600, May 2004. 

[33] M. Andriollo, G. Baccini, G. Martinelli, A. Morini, and A. Tortela, "Design 

optimisation of slotless linear PM motors," Proceedings of 4th International 

Symposium on Unear Drives for Industry Applications, LDIA2003, 

Birmingham, United Kingdom, pp. 203-206, September 2003. 

[34] J. Wang, G. W. Jewell, and D. Howe, "A general framework for the analysis 

and design of tubular linear permanent magnet machines," IEEE 

Transactions on MagnetiCS, vol. 35, no. 3, pp. 1986-2000, May 1999. 

[35] Y. He, Z. Q. Zhu, and D. Howe, "A PWM controlled linear servo motor system 

for friction wielding," Proceedings of ~d International Conference on Electrical 

Machines,CICEM '95,Hangzhou, China, vol. 2.3, pp. 51-55, 

AugusVSeptember 1995. 

[36] J. Wang, D. Howe, and G. W. Jewell, "Design optimisation and comparison of 

tubular permanent magnet machines," Proceedings of Industrial Electrical 

and Engineering, Electrical Power Applications, vol. 148, no. 5, pp. 456-464, 

September 2001. 

[37] Z. P. Xia, Z. Q. Zhu, and D. Howe, "Magnetic field distribution in tubular PM 

motors with axially magnetised magnets," Proceedings of 4th International 

Symposium on Unear Drives for Industry Applications, LOlA 2003, 

Birmingham, United Kingdom, pp. 442-445, September 2003. 

[38] J. Wang, D. Howe, and G. W. Jewell, "Analysis and design optimisation of an 

improved axially magnetised tubular permanent magnet machine," IEEE 

Transactions on Energy Conversions, vol. 19, no. 2, pp. 289-295, June 2004. 

[39] J. Wang and D. Howe, "Design optimisation of radially magnetised iron cored, 

tubular permanent magnet machines and drive systems," IEEE Transactions 

on Magnetics, vol. 40, no. 5, pp. 3262-3277, September 2004. 

39 



[40] M. G. Lee and D. G. Gweon, "Optimal design of a double-sided linear motor 

with a multi-segmented trapezoid magnet arrays for a high precision 

positioning system," Journal of Magnetism and Magnetic Materials, vol. 281, 

no. 2-3, pp. 226-346, October 2004. 

[41] M. Yamaguci, M. Nagumo, M. 110, and H. Yamada, "Static thrust analysis of a 

cynlidrical moving core linear OSCillatory actuator," Electrical Engineering in 

Japan, vol. 133, no. 6, 1993. 

[42] S. Guerin, E. Sedda, C. Fageon, J. P. Yonnet, and C. Chillet, "An original 

configuration of linear motor with parallel polarisation," Proceedings of 4th 

International Symposium on Linear Drives for Industry Applications, 

LDIA2003, Birmingham, United Kingdom, pp. 557-559, September 2003. 

[43] N. Sidell and G. W. Jewell, "Short stroke, bidirectional linear actuator for high 

temperature applications," lEE Proceedings of Electric Power Applications, 

vol. 147, no. 3, pp. 175-180, May 2000. 

[44] J. Wang, W. Wang, G. W. Jewell, and D. Howe, "A low power, linear, 

permanent generator/energy storage system," IEEE Transactions on 

Industrial Electronics, vol. 49, no. 3, pp. 640-648, June 2002. 

[45] M. A. Mueller, N. J. Baker, P. R. M. Brooking, and J. Xiang, "Low speed linear 

electrical generators for renewable energy applications," Proceedings of 4th 

International Symposium on Linear Drives for Industry Applications, 

LDIA2003, Birmingham, United Kingdom, pp. 29-32, September 2003. 

[46] C. H. Yang and S. A. Nasar, "A permanent magnet linear OSCillatory motor for 

the total artificial heart," Electrical Machines and Power System, vol. 15, pp. 

381-395, 1988. 

[47] H. Lu, J. Zhu, and Y. Guo, "Development of a slotless tubular linear interior 

permanent magnet micrometer for robotic applications," IEEE Transactions 

on Magnetics, vol. 41, no. 10, pp. 3988-3990, October 2005. 

[48] H. Lu, J. Zhu, Y. Guo, and Z. Lin, "A miniature short stroke tubular linear 

actuator and its control," Proceedings of International Conference on 

40 



Electrical Machines and Systems, ICEMS2007, Seoul, Korea, pp. 1680-1685, 

October 2007. 

[49] A. G. Jack, Z. S. AI-Otaibi, and M. Persson, "Alternative designs for oscillating 

linear single-phase permanent magnet motors using soft magnetic 

composites," International Conference on Electrical Machines and Drives, 

ICEMS 2006, Nagasaki, Japan, November 2006. 

[50] J. K. Mitchell, J. Wang, R. E. Clark, and D. Howe, "Analytical modelling of the 

air-gap field in reciprocating moving magnet actuators," Journal of Magnetism 

and Magnetic Materials, vol. 272-276, no. 1, pp. E1783-1785. May 2004. 

[51] D. Ebihara and M. Watada, "Development of a single winding linear 

OSCillatory actuator," IEEE Transactions of Magnetics, vol. 28, no. 5, pp. 

3030-3032, September 1992. 

[52] W. Affane and T. S. Birch, "A micro-miniature electromagnetic middle-ear 

implant hearing device," Proceedings of 8th Euro-sensors Conference, 

Toulouse, France, September 1994. 

[53] H. Bernhard, C. Stieger, and Y. Perriard, "Micro-actuator for new implantable 

hearing device," 41th IEEE Industry Applications Conference Annual Meeting, 

IAS2006, Florida, USA, October 2006. 

[54] B. Tomczuk, G. Schroder, and A. Waindok, "Finite element analysis of the 

magnetic field and electromechanical parameter calculation for a slotted 

permanent magnet tubular linear motor," IEEE Transactions on Magnetics, 

vol. 43, no. 7, pp. 3229-3236, July 2007. 

[55] N. J. Baker, M. A. Mueller, and E. Spooner, "Permanent magnet air-cored 

tubular linear generator for marine energy converters," 2nd International 

Conference on Power Electronics, Machines and Drives, PEMD 2004, 

Edinburgh, United Kingdom, March/April 2004. 

[56] A. Canova, G. Grusso, M. Otella, M. Repetto, and N. Schofield, "Soft 

magnetic composites for tubular linear actuators," International Conference 

on Electrical Machines and Drives, ICEM2002, Brugge, Belgium, 2002. 

41 



[57] J. Wang and D. Howe, "'A linear permanent magnet generator for a free

piston energy converter,"' IEEE International Electric Machines and Drives 

Conference,IEMDC2005, Texas, USA, pp. 1521-1528, May 2005. 

[58] P. Zheng, A. Chen, P. Thelin, W. M. Arshad, and C. Sadarangani, "Research 

on a tubular longitudinal flux PM linear generator used for free-piston energy 

converter,· 13th International Symposium on Electromagnetics, Bradenburg, 

Germany, May 2006. 

[59] N. Schofield, A. Canova, and M. Ottella, "'A tubular linear actuator for steer

by-wire applications,"' Proceedings of 4th International Symposium on Linear 

Drives for Industry Applications, LDIA2003, Birmingham, United Kingdom, pp. 

560-563, September 2003. 

[60] T. A. Johansen, O. Egeland, E. A. Johannessen, and R. Kvamsdal, "Free 

piston diesel engine timing and control - toward electronic cam and 

crankshaft,· IEEE Transactions on Control System Technology, vol. 10, no. 2, 

pp. 177-190, March 2002. 

[61] R. E. Clark, D. Howe, and G. W. Jewell, "'The influence of magnetisation 

pattern on the performance of a cylindrical moving-magnet linear actuator, n 

IEEE Transactions on Magnetics, vol. 36, no. 5, pp. 3571-3574, September 

2000. 

[62] R. Redlich, • A summary of twenty years experience with linear motors and 

alternators,· Sunpower Inc., Athens, Ohio, U.S.A, 1996. 

[63] B. C. Woo, D. H. Kang, and D. K. Hong, "A simulation of the transient state in 

linear actuator for household electric appliances,· 7th International 

Conference on Electrical Machines and Systems, ICEMS2004, Seoul, Korea, 

2004. 

[64] M. G. Lee, S. Q. Lee, and D. G. Gweon, • Analysis of Halbach array and its 

applications to linear motor,· Pergamon, Mechatronics, vol. 14, no. 1, pp. 

115-128, February 2004. 

42 



[65] S. M. Jang, J. Y. Choi, H. W. Cho, and S. H. Lee, "Thrust analysis and 

measurement of tubular linear actuator with cylindrical Halbach array," IEEE 

Transactions on Magnetics, vol. 41, no. 5, pp. 2028-2031, May 2005. 

[66] S. M. Jang, J. Y. Choi, S. H. Lee, H. W. Cho, and W. B. Jang, "Analysis and 

experimental verification of moving magnet linear actuator with cylindrical 

Halbach array," IEEE Transactions on Magnetics, vol. 40, no. 4, pp. 2068-

2070, July 2004. 

[67] T. Yamada, S. Koganezawa, K. Aruga, and Y. Mizoshita, " A high 

performance and low profile moving magnet actuator for disk drives," IEEE 

Transactions on Magnetics, vol. 30, no. 6, pp. 4227-4229, November 1994. 

[68] E. 8yckling and E. Perkio, "Dynamic properties of moving magnet 

transducers," IEEE Transactions on Magnetics, vol. 16, no. 2, pp. 68-73, 

March 1990. 

[69] B. Lequesne, "Permanent magnet linear motors for short strokes," IEEE 

Industry Applications Symposium Annual Meeting, lAS 1992, vol. 1, pp. 162-

170,1992. 

[70] J. F. Eastham, "Novel synchronous machines: Linear and disc," Proceedings 

of Instrumentation Electrical Engineering, vol. 8-137, pp. 49-58, 1990. 

[71] J. Wang and D. Howe, "Tubular modular permanent magnet machines 

equipped with quasi-Halbach magnetised magnet - Part 1: Magnetic field 

distribution, EMF and thrust force," IEEE Transactions on Magnetics, vol. 41, 

no. 9, pp. 2470-2478, September 2005. 

[72] J. Wang, Z. Lin, and D. Howe, "Analysis of a short stroke, single phase quasi

Halbach magetised tubular permanent magnet motor for linear compressor 

applications," lET Electric Power Application, vol. 2, no. 3, pp. 193-200, 

January 2008. 

43 



CHAPTER 2 

ANALYSIS OF OPEN·CIRCUIT MAGNETIC FIELD DISTRIBUTION, FLUX· 

LINKAGE, BACK·EMF AND THRUST FORCE IN TUBULAR MOVING·MAGNET 

LINEAR MOTORS 

2.1 Introduction 

A comprehensive literature review on linear motors was conducted in Chapter 1, and 

it was concluded that a single-phase, a single-slot tubular moving permanent magnet 

linear motor, which could have various magnet configurations - such as iron-cored or 

air-cored quasi-Halbach magnetised magnets having rectangular or trapezoidal 

cross-sections, is the most appropriate topology for a direct-drive linear refrigerator 

compressor system. All the motors have been employed a soft magnetic composite 

(SMC) material, Somaloy 700, for stator core, and carries a single coil as shown in 

Fig. 2.1. The use of an SMC material facilitates near net-shape, low cost 

manufacture, as well as good utilization of the available space to achieve a compact 

design. In addition, a coil is easy to manufacture and results in a very high packing 

factor, which is conducive to high efficiency [1]. The maximum armature stroke is 

approximately 10.5 mm and Table 2.1 summaries the key design parameters and 

specification of the tubular linear motors. 

This chapter describes the analytical predictions of the open-circuit magnetic field 

distribution, the flux-linkage, the back-emf and the thrust force for the three design 

variants, the results being validated by extensively finite element analysis. Analytical 

models are a particularly useful tool to aid the design of permanent magnet linear 

motors. Although unable to account directly for material non-linearities and the 

complex leakage flux paths which exist in many devices, the ability to generate 

algebraic equations relating operational performance to leading design parameters 

enables a direct insight into the influence of the various parameters to be obtained. In 

turn, this allows initial dimensioning of a motor to be performed. In addition, such 

equations are well suited to being incorporated into computer aided design 

algorithms, and numerical design optimisation schemes, which facilitates easier and 

faster solutions compared to the finite element method [2]. However, the 

determination of a suitable valued for a leading design parameter from an analytical 

solution generally needs to be checked and possibly refined using the finite element 

method, since this can accommodate more complex geometries of magnetic circuit, 
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material non-linearities, distributed field sources, time-transient excitation, and 

relative motion effects [3]. 

Soft rregnetic cot1l)OSite Soft magnetic corT'4X)Sile 

Permanent magnet fl' . .... . 
~ .. . . 

• ~ 
i. Iron-cored quasi-Halbach magnetised 

motor with rectangular magnet 

ii. Air-cored quasi-Halbach magnetised motor 

with rectangular magnet 

iii. Iron-cored quasi-Halbach magnetised motor with trapezoidal magnet 

Fig . 2.1 Three design variants of tubular linear motors 

Table 2.1 Design parameters and specification of linear motors 

Item Value Units 
Rated Voltage (rms) 230 V 
Rated Current (rms) 0.5 A 
Outer diameter of stator 100 mm 
Axial length 50 mm 
Pole-pitch 25 mm 
Air-gap length 0.8 mm 
Radial thickness of magnets 5 mm 
Permanent magnet material Sintered NdFeB -
Remanence 1.14 T 
Soft magnetic material Somaloy 700 -
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2.2 Open-circuit magnetic field distribution 

The determination of the open-circuit magnetic flux distribution is fundamental to an 

analytical method and a key element of the design process. Additionally, it enables 

the air-gap average flux density, coil flux-linkage and thrust force to be determined. 

These are the most significant considerations in predicting the geometry and 

performance of a linear motor. A variety of techniques have been employed to predict 

open-circuit magnetic field distributions, arguably the most common approach being 

to use a lumped parameter magnetic equivalent circuit [4] [5]. However, this 

technique suffers from problems associated with model inaccuracy, particularly when 

the flux leakage is significant and the flux paths are complex. Hence, general 

frameworks and comprehensive analytical solutions have been established and 

reported, for various moving-magnet linear motors such as axially [6] [7], radially [8] 

[9] and Halbach magnetised designs [2] [10]. These analytical tools provide 

significant information, especially in regard to the open-circuit flux distribution which 

results with each magnetisation distribution. 

In order to establish an analytical solution for the open-circuit flux distribution in all 

three linear motor design variants under consideration, the following assumptions 

have been made: 

I. The stator core is slotless and the permeability of the ferromagnetic core 

is infinite. However, a Carter coefficient will be introduced if the influence 

of stator slotting effect is to be taken into account [2] [10] [11]. 

ii. The axial lengths of the machines are infinite and the analytical model 

comprise an infinitely long sleeve and a series of permanent magnet 

armatures extending to infinity along the machine axis. If the separation 

distance, Ti, between the two adjacent armatures is sufficiently large, the 

magnetic field distributions of the motor can be represented by one of the 

repeated elements [11] [12]. 

The three magnetisation distribution variants to be considered are: 

I. Iron-cored quasi-Halbach, rectangular section magnets 

ii. Air-cored quasi-Halbach, rectangular section magnets 

iii. Iron-cored quasi-Halbach, trapezoidal section magnets 

The iron-cored and air-cored quasi-Halbach magnetized motors are shown in Figs. 

2.2 (i) and (ii), and each moving-magnet armature comprises three radially 
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magnetized magnets and two axially magnetized magnets, each of which has a 

rectangular cross-section radially magnetized magnet at the centre of the armature is 

twice that of the radially magnetised magnets in the ends. In order to produce a 

higher air-gap field, a ferromagnetic support tube is used in the iron-cored quasi

Halbach magnetised linear motor. However, a non-magnetic support tube has an 

advantage in term of reducing the mass, and eddy current loss in the moving 

armature, as will be described in Chapter 5. 

The quasi-Halbach magnetised motor in Fig. 2.2 (iii) comprises three trapezoidal 

cross section radially magnetized magnets and two trapezoidal cross section axially 

magnetized magnets, the shape of the trapezoids being governed by the angle, p. It 
may produce a better air-gap field distribution than the motors shown in Figs. 2.2(i) 

and (ii), which may result in a higher force capability [13]. A ferromagnetic support 

tube is used to further enhance the force capability of the motor. 

For, both iron-cored quasi-Halbach magnetised motors, the open-circuit magnetic 

field analysis is confined to two regions: region I is an airspace region where the 

permeability is /1<J, and region II is the permanent magnet region where the 

permeability is J.1#r, ~ being the relative recoil permeability which for rare-earth 

permanent magnets is close to unity. However, in the air-cored quasi-Halbach 

magnetised motor, the magnetic field analysis has to encompass three regions, viz., 

airspace regions I and III, and the permanent magnet region II. 

T"" and T mz are the axial length of the central radially and axially magnetized magnets 

respectively. The pole-pitch is defined as Tp = Tmr+Tmz, and the fundamental period 

of the magnetization is given by TiP' The separation distance 1', between two adjacent 

armatures must be much greater than the pole-pitch, Tp. The magnetization 

distribution for each analytical model are represented in Fig. 2.3, the iron-cored and 

air-cored quasi-Halbach magnetised motor with rectangular section magnets having 

the same magnetisation distribution as in Fig. 2.3 (i), since they have identical 

configuration of permanent magnets. 
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= 

i. Iron-cored quasi-Halbach magnetisation, rectangular section magnets [1] 

z 

ii. Air-cored quasi-Halbach magnetisation, rectangular section magnets [11] 

:: 

iii. Iron-cored quasi-Halbach magnetisation, trapezoidal section magnets [14] 

Fig. 2.2 Analytical field models 
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-r,,1 -re 
-T~2 

a. Radial component 

r 

8,/uo 

b. Axial component 

I. iron and air-cored quasi-Halbach magnetised, with rectangular magnets 

a. Radial component 

-r"l1 T,,'2 • 

b. Axial component 

II. Iron-cored quasi-Halbach magnetised, with trapezoidal magnets 

Fig. 2.3 Magnetisation distributions 

Generally, the field equations in term of the vector magnetic potential As for the 

tubular (axi-symmetric) motors are: 
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2.1 

Whilst for the tubular axi-symmetric air-cored motor, the field equations are: 

2.2 

The magnetization, M in the cylindrical coordinate system is given by: 

2.3 

where Mr and Mz denote the components of M in the radial and axial directions, 

respectively. The magnetization distributions shown in Fig. 2.3, may be expanded 

into Fourier series, with Mr and Mz expressed as functions of Z as: 

-
M, = LM".cosm"z; 

11=1,2,3, •• 2.4 

-
Mz = LMz" sinm"z 

"-1.2.3 .... 

where mIl = 21lJ'1 / Tip and Tip = Tp + TI • 

For the motors equipped with rectangular section quasi-Halbach magnetised 

magnets: 

M =- 2Brem [Sin m"Tm, -sinm T +sinm (T + Tm,)] 
". 11

0
1lJ'l 2 " p "mz 2 

M 
4B,nII' mIlT mz • m"Tp =---sm--sm--

DI 1101lJ'l 2 2 
2.5 

For the motor with trapezoidal section magnets: 
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Mm =(M mTl -MmT2 )+(M mT4 -M rnT3) 

Mm = (MmTl +MmTl +MmT3 ) 2.6 

where MrnT1, MrnT2, MrnTJ, MrnT4, MznT1, Mz"T2, and Mz"T3 are described in Appendix B. 

Thus, equation 2.1 and 2.2 may be further written as equation 2.7 and 2.8 

respectively: 

2.7 

a (1 a ) a (1 a ) ~ . -;- --a (rAIJ(') +-;- --;-(rAIle ) = L.JP,. smm"z 
uz r 'Z ur r ur n=I,2,3 ... 

a (1 a ) a (1 a ) az -; az (rAI,lIJe) + ar -; ar (rAI,lIJe) = 0 
2.8 

a (1 a ) a (1 a )... - --(rAIIB ) +- --:\(rAIIB ) = Ip.. smmnz az r az ar r or ,,=1,2.3 .•• 

where for the motors having rectangular sections magnets: 

P,. = 4Brem [sinmn Tmr -sinm"Tp + sin mn(Tmz + Tmr)] 
T~ 2 2 2.9 

whilst for the motor having trapezoidal section magnets: 

P,. = POm,.M rn 2.10 

For the iron-cored motors, the boundary conditions that need to be satisfied are: 

BzI I R = 0; r= I 

2.11 

H zll r.Roo = H :111 r=R .. ; H:I1lr=R, = 0; 
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Solving equation 2.7 subject to the boundary conditions 2.11 results in the following 

expressions for the flux density components: 

-
Brl(r,z) = - ~JalnBll (mnr)+blnBKI (mnr)]cos(mnz) 

.. =1.2 •••• 2.12 

BzI(r,z) = f[alnBlo(mnr)+blnBKo(mnr)]sin(mnz) 
11=1,2 .... 

-
Bru(r,z) = - I{ [F .w(mnr) +aun]B~(mnr)+ [-F'aN(mnr) + bUn]B~(mnr) }COS~nZ) 

11=1.2,... 2. 13 
-

BzlI(r,z) =- I{ [F~4N(mnr)+alln]BJ.,(mnr)-[-F'aN(mnr)+bJJn]Bx;,(mnr) }sin(!nnz) 
11=1.2 .... 

where Blo(';, Blf-) are modified Bessel functions of the first-kind and BKo(-), BKf-) 

are modified Bessel function of the second-kind of order 0 and 1, respectively, and 

F d -), FB" -), aft .. bl", alln. and bIIn are defined in Appendix C. 

For the air-cored motor, the boundary conditions that need to be satisfied are: 

BrIll r=Ro = B rill I r=Ro ; 

Alllli r=O = 0; 

H zll r=R,. = H zIll r=R,. ; 

H zlll r=Ro = H zllll r=Ro ; 

2.14 

Solving equation 2.8 subject to the boundary conditions 2.14 results in the following 

expressions for the flux density components: 

Brl (r, z) = - f [a'I" Bll (m"r) +b'/ .. BKI (m"r)]cos(m"z) 
,..1,2, ... 2.15 

BzI(r,z) = f[a'ln Blo (m"r) +b'/" BKo(mllr)]sin(mllz) 
".1,2, ... 

-
BrU(r,z) =- I{ [F.w(mnr)+a'un]B~(mnr)+[-F'aim"r)+b'un}BA;(mnr) }COSVnnZ) 

""1.2, ... 2.16 

Bzll(r, z) = - f{ [~N(m"r) + a'un]BJ., (m"r) - [-F'aN(mnr) + b'un]Bx;, (mnr) }sin(!nnz) 
.... 1.2. ... 
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-
Brm (r. z) = ~:ra'm" BI[ (m"r)]cos(m"z) 

"=1.2~_ 2.17 

BzlU (r. z) = f [a'm" BID (m"r)]sin(m"z) 
"=1.2 •... 

where a '[III b '[III a '1[", b'II" and a 'III" are defined in Appendix D. 

2.3 Flux -linkage, back-emf and thrust force 

For all three design variants, when a slotted stator is employed, the slotting effect 

may be accounted [2] by introducing a carter coefficient, Ke, given by 

2.18 

where g' ::: g+h"/Pr' 1;, is the stator slot-pitch, g is the air-gap length, hm is the radial 

thickness of the magnets, and r is a slotting factor [2] [11] given by 

r = i (.!!!L tan -1 (.!!!L) -In 1 + (-~-i J 
1f 2g' 2g' 2g' 2.19 

where bo is the width of slot opening. The effective air-gap length, ge and the 

equivalent stator bore radius Rae are given, respectively: 

g. =g+(Kc -l)g' 

R,. =Rm + g. 2.20 

where R". is the outer radius of the magnets. A general framework established in [2] 

has shown that the flux-linkage which results with a stator coil can be obtained by 

integrating the radial flux density component at r = Rae. Therefore, the total flux-

linkage, '1/ w is given by 

.. 
IfIw = L¢"" sinm"zd 

,,=1 2.21 
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where 

Nwp = number of series turns per phase 

Kdpn = winding factor 

= Km.Kpn 

Kdn = sin mnbo 12 
mnbo 12 

and 

Krn = Rse[alnBII (mnR"e}+blnBKI(mnRse) for the iron-cored motors. 

Krn = Rse[a'Jln BII (mnRse) + b'ln BKI (mnRse) for the air-cored motor. 

The induced back-emf, ew• in a single-phase stator winding is obtained as: 

2.22 

2.23 

where KEn = 21/N .."K",Kdpft' Ke(ztiJ is the back-emf coefficient and v is the velocity of the 

armature. 

By passing the current i into the stator coil, the instantaneous thrust force, Fr can be 

obtained from: 

2.24 

where Kr(ztiJ, is defined as the thrust force coefficient of the motor, is identical to 

Ke(Zd} and is also dependent on the displacement of the permanent magnet 

armature. 
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2.4 Magnetisation patterns 

2.4.1 Quasi-Halbach magnetisation - rectangular magnets 

Confirmation of each magnetization distribution i.e radial and axial component of 

magnetization, is clearly essential in order to determine accurate results from the 

derived analytical expressions and to predict the performance of the motors. Fig. 2.4 

shows that the Fourier series approach used to model quasi-Halbach magnetizations 

provides a sufficient accurate representation when the number of harmonics is equal 

to 80 for both the radial and axial magnetisation components. However, the 

magnetisation waveforms will be smoothed by increasing number of harmonic. 

Therefore, the number of harmonics is doubled for iron-cored quasi-Halbach 

magnetisation for trapezoid magnets. 

1.2 
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Fig. 2.4 Fourier series representation of Mrn and M:n quasi-Halbach magnetisation with 

rectangular magnets 

2.4.2 Quasi-Halbach magnetisation - trapezoidal magnets 

Normally, for a quasi-Halbach magnetisation distribution, the Mr and Mz components 

of magnetisation are determined only as function of ::. However, when magnets 

having a trapezoidal cross-section magnets are employed, the field components vary 

in a much more complex manner with respect to both r and z, as shown in Fig . 2.3 

(ii). Both Mr and Mz of Trapezoidal magnetisation need to be expressed as functions 

of rand z in order to obtain accurate predictions of the resulting air-gap field , and 

this can be quite time-consuming to establish. 

However, a relative simple approach has been developed whereby the distribution of 

the Mr and Mz are synthesised by subtracting and/or adding much simpler 

magnetisation distributions. These are expressed as function z alone, and each of 

these simple magnetisation distributions is expanded into a Fourier series. For 

example, in order to obtain the radial magnetisation distribution, MmT4 at the middle of 

the central radially magnetised magnet is subtracted from MrnT3 as illustrated in Fig. 

2.5. The same process is employed to obtain the magnetisation distribution due to 

the two ends radially magnetised magnets, MmT/ being subtracted from MmT2 as 

shown in Fig. 2.6. By adding the two magnetisation distribution, the resultant radial 

magnetisation distribution can be synthesised as shown in Fig. 2.7 i.e. 
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2.26 

The axial magnetisation distribution, Mz , is similarly synthesised from three simplified 

distributions i.e. MzlITJ, MZIITZ and MZIIT3 of which represented by Fourier series. By 

adding all three magnetisation distributions, the resultant axially magnetisation is 

obtained as illustrated in Fig. 2.8, i.e. 

2.27 
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Fig, 2,8 Representation of axial magnetisation distribution 

2.5 Comparison with results from finite element analyses for open-circuit 

magnetic field distribution 

Once sufficiently accurate Fourier series representation of the radial and axial 

components of magnetisation have been established, the analytical model for the 

open-circuit magnetic field distribution for each of the these tubular motors can be 

investigated , Initially, the main design parameters for three motors were assumed to 

be identical. The dimension of the outer radius of magnets, Rm, the axial length of 

radially magnetised magnet, Tmr and the axial length of axially magnetised magnets, 

7~11~ are 20,0 mm, 7,5 mm and 5,0 respectively, The magnets are sintered NdFeB, for 

which the remanence, Brem is 1.14 T and recoil permeability, /1 r = 1,05, For each 
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motor, the analytically predicted and finite element calculated distribution the radial 

flux density component, B" in the air-gap as a function of the axial position, Z , at a 

constant radius = 0.024 m and zero displacement of the moving-magnet armature, 

were compared. 

2.5.1 Iron-cored quasi-Halbach magnetised motor with rectangular magnets 

Figs. 2.9 (a) and (b) show the no-load flux distribution at the initial position and 

maximum stroke position respectively. For the initial position, the flux distribution is 

symmetrical with respect to the axial centre of the motor, and hence, the coil flux

linkage will be zero. At maximum position the coil flux linkage is essentially produced 

by one magnet pole. 

a. z = 0.0 mm 

b. = = 10.5 mm 

Fig. 2.9 Open circuit flux distribution 

61 



Fig. 2.10 compares the analytically predicted and finite element calculated 

distributions of radial flux density, Elr for the iron-cored quasi-Halbach magnetised 

motor with rectangular magnets. As will be seen, the analytical and finite element 

prediction are quite similar. The average value of E lr over one pole-pitch from the 

analytical and finite element analyses are 0.64 T and 0.67 T, respectively, the 

percentage difference being relatively small, viz. 4.30 %. 
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•..... FE 
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Fig. 2.10 Blr for iron-cored quasi-Halbach magnetised motor with rectangular magnets 

2.5.2 Air-cored quasi-Halbach magnetised motor with rectangular magnets 

Fig . 2.11 shows open-circuit flux distributions corresponding to two armature 

positions, viz. zero displacement and the maximum stroke position. As will be seen, 

leakage flux in the inner bore of the air-cored quasi-Halbach magnetised armature 

with rectangular magnets is relatively small, which justifies the use of a non-magnetic 

support tube [14] . 

62 



a. z = 0.0 mm 

b. :; = 10.5 mm 

Fig. 2.11 Open-circuit flux distributions 

Fig . 2.12 compares the analytical and finite element predicted distributions of Elr for 

the air-cored quasi-Halbach magnetised motor with rectangular magnets. Again the 

analytical solution agrees extremely we" with the finite elements prediction. The 

average values of B lr from the analytical and finite elements analyses are 0.46 T and 

0.48 T, respectively, the percentage difference being only 5.10 % . 
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Fig. 2.12 B lr for air-cored quasi-Halbach magnetised motor with rectangular magnets 

2.5.3 Iron-cored quasi-Halbach magnetised motor with trapezoidal magnets 

Figs. 2.13 (a) and (b) shows the no-load flux distribution of initial position and 

maximum position respectively. For the initial position, the flux distribution is 

symmetrical with respect to the axial centre. Hence, the coil flux-linkage is zero. As 

the armature move to the left, the flux-linkage increases and reaches nearly a 

maximum value at the maximum stroke position. Fig . 2.14 compares analytical and 

finite element prediction distribution of Blr for the iron-cored quasi-Halbach 

magnetised motor with trapezoidal magnets. As will be observed, the analytical and 

finite element solution are almost similar, the average value of B lr from the analytical 

and finite element analyses being 0.66 T and 0.67 T, respectively, the percentage 

difference being 2.54 %. 

a. z = 0.0 mm 
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Fig. 2.14 B" for iron-cored quasi-Hlabach magnetised motor with trapezoidal magnets 

2.6 Comparison with analytical results for different motors 

2.6.1 Air-cored and iron-cored quasi-Halbach magnetised motor with 

rectangular magnets 

Fig. 2.15 compares the radial flux density component which results in the iron-cored 

(ferromagnetic support tube) and the air-cored (non-magnetic support tube) quasi

Halbach magnetised motors with rectangular magnets. It shows that the iron-cored 

motor produced a higher air-gap flux density than the air-cored motor, the average 

values for the iron-cored and air-cored motors being 0.64 T and 0.46 T respectively, 

i.e. the iron-cored motor has an air-gap flux density which is 29 % higher, and, 
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hence, has a higher thrust force capability. However, the mass of the armature also 

needs to be considered when evaluating the performance as will be discussed later. 
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Fig. 2.15 Blr for air-cored and iron-cored quasi-Halbach magnetised motor with rectangular 

magnets 

2.6.2 Iron-cored quasi-Halbach magnetised motors with rectangular and 

trapezoidal magnets. 

Fig . 2.16 compares the air-gap flux density distribution of the iron-cored quasi

Halbach magnetised motors equipped with rectangular and trapezoidal magnets. As 

will be seen, a slightly different distributions result due to the different magnet 

configurations. However, the average values of Blr for the motors with rectangular 

and trapezoidal magnets are 0.64 T and 0.66 T, respectively, i.e. the use of 

trapezoidal magnets increased the air-gap flux density by 2.49 %, and hence, result 

in a higher thrust force capability. 
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Fig. 2.16 Blr for iron-cored quasi-Halbach magnetised motors with rectangular and 

trapezoidal magnets 

2.7 Comparison with finite element predicted back-emf 

2.7.1 Iron-cored quasi-Halbach magnetised motor with rectangular magnets 

Fig . 2.17 compares the analytical and finite element predicted back-emf for the iron

cored quasi-Halbach magnetised motor with rectangular magnets at a constant 

armature velocity of 1.0 m/s. The number of coil turns is 1024. As will be seen, the 

agreement is fairly good, the average values of the back-emf calculated by the 

analytical expression and from finite element analyses being 95.14 V and 100.88 V 

respectively, the percentage difference is 6.04 %. 
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quasi-Halbach magnetised motor with rectangular magnets 

2.7.2 Air-cored quasi-Halbach magnetised motor with rectangular magnets 

Fig . 2.18 compares the back-emf for the air-cored quasi-Halbach magnetised motor 

with rectangular magnets. The armature velocity and the number of coil turns are 

same as previously stated. The analytical prediction agrees reasonably well with the 

finite element prediction, the average value of back-emf derived from the analytical 

expression and finite element analyses being 82.74 V and 79.19 V, respectively, the 

percentage difference being 4.29 %. 

- - -
120 1 

--Analytical 
100 t .... ----- ..... FE 

I •• -.. 
> 80 

1i 
60 1 Q) 

~ 
!Xl 40 1 

': I r -
0.001 0.003 0.005 0.007 0.009 0.011 

Axial position. m 

Fig . 2.18 Back-emf of air-cored quasi-Halbach magnetised motor with rectangular magnets 
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2.7.3 Iron-cored quasi-Halbach magnetised motor with trapezoidal magnets 

Fig. 2.19 compares the back-emf for the iron-cored quasi-Halbach magnetised motor 

with trapezoidal magnets. As can be observed, the analytically derived waveform still 

agrees reasonably well with that derived from finite element analyses, the average 

values being 96.08 V and 102.38 V, respectively, for the analytical and finite element 

predicted values, the percentage difference being slightly higher at 6.55 %. The 

effect on copper loss may be different. 
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Fig. 2 19 Sack-emf of Iron-cored quasi-Halbach magnetised motor with trapezoidal magnets 

2.8 Discussions 

As regard the open-circuit flux distributions for the three variants of the quasi

Halbach magnetised motors, the analytical solutions agree well with finite element 

predictions The percentage difference between the analytical solutions and the finite 

element predictions for the air-cored and iron-cored motors with rectangular magnets 

and the Iron-cored motor with trapezoidal magnets being 5.1 %, 4.3 % and 2.54 %, 

respectively. 

The comparison of the open-circuit field distribution for the air-cored and iron-cored 

quasi-Halbach magnetised motor with rectangular magnets showed that the iron

cored increased the magnitude of the air-gap flux density by 29 %. Thus, the quasi

Halbach magnetised magnets on a ferromagnetic tube, yields a higher force 

capability. However, the air-cored motor also offers significant advantageous in term 
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of a lower mass armature which may actually increase the force/mass capability. 

Also, due to the lower flux density in the air-cored motor, the iron loss and the eddy 

current loss in the magnets are likely to be decreased. Hence, the efficiency of the 

motor may be increased. These issues will be considered later. 

The comparison of the open-circuit field distributions for the iron-cored quasi-Halbach 

magnetised motor with rectangular and trapezoidal magnets showed that the 

trapezoidal magnets result in a slightly higher air-gap flux density i.e. 2.49 %, and, 

hence, yields a marginally higher force capability. 

The good agreement between the analytical and finite element predicted air-gap flux 

density distributions and back-emf waveforms provided assurance that the analytical 

method should be used for further analyses, since it is less time-consuming and a 

more effective way of optimising the motor design. 

2.9 Conclusions 

In summary, analytical formulae for predicting the open-circuit magnetic field 

distribution, the flux linkage, and the back-emf and thrust force of Single-phase, 

single slot, tubular moving permanent magnet motors have been established. The 

accuracy of the analytically derived formulae has been validated by comparing with 

results deduced from finite element analyses. Analytical solutions and finite element 

predictions of the open-circuit magnetic field distribution and back-emf agree 

reasonably well for all these motors under consideration. The developed analytical 

tool should provide a useful means of aiding for the design optimisation of the 

proposed motors [15]. 
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CHAPTER 3 

DESIGN OPTIMISATION OF SHORT-STROKE, SINGLE-PHASE TUBULAR 

PERMANENT MAGNET MOTORS 

3.1 Introduction 

An extensively analysis of open-circuit magnetic field distribution, flux-linkage, back

emf and thrust force in the air-cored and iron-cored quasi-Halbach magnetised 

motors having rectangular and trapezoidal magnets have been established in 

Chapter 2. The good agreement between the analytical and finite element predictions 

provided assurance that the analytical method can be used for further analyses, and 

computationally efficient design optimisation. 

This chapter describes a design methodology to achieve optimal performance for the 

linear motors which drive a reciprocating vapour compressor using analytical method. 

The direct-drive linear compressor has been modelled and it was integrated with the 

linear motors in order to produce a complete system model. The optimisation 

procedures of the motors will take into account of the effect of compressor loads 

under the nominal operating condition [1] [2]. 

The leading design parameters of the motors have been optimised for maximum 

efficiency under the rated operating condition and volumetric constraints. The 

optimisation of leading design parameters using analytical model may have limited 

accuracy and, therefore the parameters will be refined using the finite element 

method, which can accommodate more complex geometries of magnetic circuit, 

material non-linearities, distributed field sources, time-transient excitation, and 

relative motion effects [3]. 

3.2 Modelling of direct-drive compressor systems 

Fig. 3.1 shows a schematic of a direct-drive compressor system which consists of a 

linear motor and compressor system, and both are integrated using a direct-drive 

shaft. The direct-drive compressor system model consists of mechanical model, 

compressor model and electrical model, which are derived and combined to form a 

• complete system model. 
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Fig. 3.1 Schematic of a linear reciprocating compressor system [4] 
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The relevant symbols and variables are defined as follows: 

Symbol 

x, 

x 

u 

p 

P, 

Description 

Equilibrium piston pOSition i.e. the centre of reciprocating oscillation, m 

Static piston position when there is no displacement in spring, i.e. preset 
piston pOSition, m 

Piston position referred to the cylinder head, m 

Amplitude of piston oscillation, m 

Pressure in compression chamber, N/m2 

Suction pressure, N/m2 

Piston back pressure, N/m2 

Discharge pressure, N/m2 

Gas force in compressor, N 

Electromagnetic force of linear motor, N 

3.2.1 Mechanical model 

With reference to Fig. 3.1, the mechanical behaviour can be modelled as mass

spring-damper system as shown in Fig. 3.2. The governing equation of motion is 

74 



dx 2 dx 
m-2 +B-+K(x(t)-Xs) = f e(t) + f c(x(t)) + f g (t) 

dt dt 3.1 

where the gas force, /g, and the electromagnetic force , Ie , and the cogging force,!c, of 

the linear motor act on the combined mass of the piston, the linear motor plunger and 

the connecting parts. K is the total stiffness of springs and B is the viscous damping 

coefficient that represents the frictional effect between cylinder and the piston. 

K 

m 

B 

Fig. 3.2 Mass-spring-damper model 

3.2.2 Compressor model 

Referring to Fig. 3.1, when the pressure in the compression chamber is greater than 

the discharge pressure, Pd , the discharge valve opens, and as a result, the pressure 

will stay at the discharge pressure until it start to fall. If the pressure is less than the 

suction pressure, Ps , the suction valve opens, and consequently the pressure 

remains at the suction pressure until it start to increase. The gas force, /g, acting on 

the piston results from the pressure difference between the front and the back 

surface of the piston. The force is given by 

f g (t) = Ap (p(t) - Pb) 3.2 

where Ap , p(l) and Pb are the piston pressure, the pressure in compression chamber 

and the piston back pressure, respectively. 

The piston back pressure, Pb , can be assumed to be equal to the suction pressure, 

Ps, in an ideal gas compression cycle. In addition , it can be assumed that the 

refrigerant gas in the compression chamber satisfies, the ideal gas law: 
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pV; = constant 3.3 

where the pressure will be dependent on the compression chamber volume, V, or 

piston displacement. 

3.2.2.1 No pumping operation 

No pumping operation occurs when the gas pressure in the cylinder neither exceeds 

the discharge pressure, Pd, nor falls below the suction pressure P" Referring to Fig. 

3.3, if the piston moves to the rightmost, x= Xo+Umm and leftmost position, x=Xo-Umn, 

the pressure in cylinder is equal to P, and Pdrespectively. This will be described as 

P,(Xo +Umn )" = constant 

Pd(Xo -U"u,)" = constant 

where Umn is the displacement of the piston from the central position, Xl). 

Combining equations 3.4 and 3.5 yields 

and solving for U"", gives 

pI/II _pI/II 
U = d , X 

lflii pI/II +pl/II 0 
d I 

It can be concluded that no pumping take place when U<Umn• 

3.4 

3.5 

3.6 

3.7 
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Fig. 3.3 Pressure-displacement diagram of a compression cycle 

3.2.2.2 Pumping operation 

The pumping operation occurs when the piston amplitude is greater than Umn• 

Referring to Fig. 3.3. the operation take place when compression chamber pressure 

p(t) is higher than PI and equal or less to Pd. This will be illustrated as 

(/)=P(U+XO)" 
P I X(/) 

p, < p(/)S Pd 3.B 

P(/) = P - 0 (u X)" 
d X(/) 

p, < pet) sPd 3.9 

Once the piston amplitude U is determined. the clearance volumetric efficiency. T/vc • 

• 
and the mass flow rated. m. can be calculated by: 

1/~ ~ 1- (X;; U) [ ( ~r -1] 3.10 

~= W::' (1-X~U[(~ r -1]J 3.11 

where Va is the specific volume of the gas at the suction temperature and pressure. 

and Is determined from the thermodynamic properties of the refrigerant [5]. 
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3.2.3 Linear motor model 

The electromagnetic force,Ie(t), of the linear permanent magnet motor is produced by 

the interaction between the stator current, ia, and the permanent magnet field. The 

force can be evaluated by: 

3.12 

where the force coefficient, Kr. is slightly position dependent due to the finite 

armature length, as described in Chapter 2. 

The voltage equation of the motor is governed by 

v(t)=Le dia + Ria +Ke(x(t»dx 
dt dt 

3.13 

where the back-emf coefficient, Ke, is equal to the force coefficient Kr [6]. The 

cogging force,/c(x(t)), may exist especially for a slotted motor due to the interaction 

between the permanent magnet and the stator tooth. Le and Re are the winding 

inductance and resistance of the linear motor, respectively. 

3.2.4 Steady state model 

The gas force, fit) in the steady-state is assumed periodic with a fundamental 

frequency equal to the supply frequency,! The force may be expanded into a Fourier 

series of the following form: 

-
f,(t)=F, + Lalcos(jox)+blsin(jOX) 

I-I 3.14 

where F" al and hi are the static gas force and ;th harmonic force components 

respectively. 

If high order harmonic force component are filtered out, equation 3.14 may be 

simplified to: 
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Ig (t) = F, + a l COS(j ox) + hi sin(j ox) 3.15 

and the resulting piston motion in the steady-state will be sinusoidal. Thus, the piston 

displacement may be assumed to be: 

x(t)=Xo +u(t) 3.16 

where u(t) = U cos(ax). Substituting equations 3.14 - 3.16 into equation 3.1, and 

decoupling the static and dynamic component results in two separate equations: 

K(Xo -X,)-F, =0 3.17 

m +B+~-+~+~~OO=~~ d
2
u(t) ( h) du 

dt 2 
(J) dt 3.18 

where keq and heq are the equivalent stiffness and hysteretic damping coefficient of the 

gas force, respectively and are given by 

k =_ a.(U,Xo) 
eq U 

h =_ b.(U,Xo) 
eq U 

3.19 

It follows that the mechanical and electrical dynamics equations 3.13 and 3.18 in the 

steady state may be represented by the frequency domain equations: 

3.20 
• • • 

jKr{J)U+(jOJL. +R.)/=V 

• • • 
where (J) is the angular frequency of the supply, U,I and V represent the piston 

amplitude phasor, and the motor current and voltage phasors, respectively [7]. 

Using the analogy between mechanical and electrical quantities, equations 3.20 can 

be represented by the electrical equivalent circuit shown in Fig. 3.4, in which the 
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. 
displacement phasor, U, is analogous to the electric charge phasor, and j OJU is the 

equivalent current phasor. Thus the mass is equivalent to an inductor whilst the 

spring is analogous to a capacitor. The power dissipated in the equivalent resistance 

hei ro represents the effective work which is done on the gas compression . The 

interaction between the electrical and mechanical systems is represented by the two 

current controlled voltage sources. 

• I 

• 
V 

jde 

• 
KrV ())U) 

• 
K r I 

I 

I 

f 

B 

..... ...... .. 
/ ' . """ 

/ j'())U \. 
: \ 

I 

\ 

\ 

.... '" . ....... .. _ .. 
i 

./ 

jOJm 

Fig. 3.4 Electrical equivalent circuit of linear compressor 

. 
Solving for J yields: 

3.21 

where Z~f ' Ru and Lu are the equivalent impedance, resistance and inductance of the 

linear compressor system, and are given by: 

3.22 
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Lec =Ki(K +keq -(Jim)1 a 

a=(K +keq -(Jim)2 +(CtJB + heq)2 

The equivalent resistance, Ree, representing the mechanical system and gas 

compression cycle can be separated into the viscous damping component, Rev, and 

compressor work component, Rep, i.e, 

Rev =(Ji KiBI a 

Rep = tUKiheq I a 

3.23 

The input and output powers, Pit" and P UUI, the efficiency, 'I, and the power factor, 

cosqJ, of the system, therefore, can be calculated from: 

Pill = VI COS rp = Rep I 2 +Pfo 

PUUI = RepI2 

P UUI Re/
2 

'1=-=_--:!:...._-
Pili RepI2 + Pfo 

3.24 

where Pie is the iron loss of the motor and can be predicted analytically or by finite 

element analysis. It can be shown [8] that the system operates most efficiently at the 

resonant frequency, 10 = ~(keq + K) I m 121i. It is evident that operating conditions of 

the compressor will affect the input impedance of the electrical system. 

3.3 Number of coil turns 

Equation 3.21 can be used to determine the number of coil turns for a given rms 

supply voltage, V,.,.., under nominal operating conditions. The rms value of the motor 

current, I, can be expressed in terms of the rms current density, J,.,.." the packing 

factor, PI, the number of coil turns, Nc, and the effective coil area, Ae: 
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3.25 

The resistance of the coil is given by: 

3.26 

where Ie is the average length of the coil per turn, and p is the resistivity of the copper 

wire. Thus the voltage across the equivalent resistance can be expressed as: 

J(R + Rec) = (KRe + KRec)Nc 

KRe = 211iepJ rms 

KRec = fIJI rmsAePfK;'PT «(J1/J + heq) I ~ 

3.27 

where KFPT = KrlNc is the average motor force coefficient over the piston stroke per 

turn. Similarly, the inductance of the motor is proportional to the square of coil turn 

Nc: 

3.28 

where LsD is the average inductance over the piston stroke per turn. The voltage 

across the equivalent inductance is written as: 

JOJ(L + Lee) = (KLe + KLec)Ne 

KL, = OJLsoJ rmsAePf 

KLee = fIJI rmsAePfKiPT (K + Keq - m(j)2) I ~ 

3.29 

For a given value of permissible rms current density, Jrms, which is dependent on the 

thermal constraints of the motor, the number of coil turns can be obtained from 

equation 3.21 and is given by: 

3.30 

As is evident, the number of coil turns, Ne, is strongly influenced by the compressor 

operating conditions as well as the motor design parameters. Thus it is essential that 
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the steady state operational behavior of the compressor is taken into account in the 

motor design optimization. 

3.4 Iron loss calculation 

An analytical model of iron loss calculation for tubular permanent magnet machine 

has been reported in [9]. The paper described a simple analytical method to predict 

flux density waveforms in discrete regions of the laminated stator of a tubular 

permanent magnet machine, and employs an established iron loss model to 

determine the iron loss components. 

In this study, the same technique has been employed to establish an analytical 

method for predicting iron loss, Pie, in short-stroke single-phase tubular permanent 

magnet motors. The stator core is divided into three regions viz. the tooth, tooth tip 

and yoke as shown in Fig. 3.5. 

Tooth 
. 2 

Tooth tiP 

• 1 

Tooth 

Tooth tiP 

Fig. 3.5 Region of stator core 

The prediction is based on the flux density waveforms for each region being 

analytically determined. The total iron loss is given by: 

Pj~ = 2)P',; + Pd + Pe; ) 3.31 
j m 
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Phi, P ci and Pei are the hysteresis loss, the classical eddy current loss and excess 

eddy current loss in i'h region, respectively. For SMC materials, the classical eddy 

current loss component. Pc. is negligible due to the conductivity of the material is 

virtually zero. However. the excess eddy current loss component which is associated 

with domain wall effects may still exist [10]. 

3.4.1 No load condition 

3.4.1.1 Tooth tip region 

Fig. 3.6 shows the finite element predicted flux density waveforms in the tooth tip 

region of the iron-cored quasi-Halbach magnetised motor with rectangular magnets. 

As can be seen. the waveforms both radial and axial flux density components can be 

approximated as trapezoidal. 

On open-circuit. the peak flux entering in the tooth tip can be evaluated analytically 

from: 

1 (J 'fpt12 ) 'l'tt = '2 0 2nR,B,dz 3.32 

where B, is determined using the expression given in equation 2.12. 

The resulting peak flux density in the tooth tip region can be obtained from: 

B 'l'tt 
"max = )2 R2 Jr«R, + h, + 11th -, 

3.33 

where R, is the inner radius of stator core and the other geometric parameters being 

given in Fig. 3.7. 
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Fig. 3.7 Geometric parameters of stator core 

The transition time, la, of the trapezoidal flux density waveform is given by the 

following empirical equation: 

T T 
I =~ . p 
a V (T,lIf + 2g / f.Lr ) 

3.34 

where g is the air-gap length, f.Lr is the relative recoil permeability of the magnets, v is 

the linear speed of the armature, T,lIr and Tmz are, respectively, the axial lengths of 

the rad ially and axially magnetised magnets and Tp is the pole pitch. Equation 3.34 is 
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based on the fact that the transition time, ta, is approximately proportional Tnc with 
v 

Tp 
as scaling factor 

(T mr + 2g / Jir ) 

3.4.1.2 Tooth region 

The flux passing through the tooth can be obtained from the following integration: 

3.35 

where Zd = vt is the axial displacement of the moving armature. The flux is dominantly 

in radial direction. The resulting flux in the tooth region varies with time as the 

armature reciprocates. The average flux density in the tooth can be estimated by: 

3.36 

Fig . 3.8 shows the finite element predicted flux density components at the centre of 

the tooth region. It is evident that the radial flux density component is dominant. 

Hence, equation 3.36 can be used to predict iron loss in the tooth region. 
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3.4.1.3 Yoke region 

The flux passing through the yoke is the same as in the tooth given in equation 3.35. 

However, the resulting flux density component in the yoke region is essentially in the 

axial direction as illustrated by finite element predicted flux density waveforms shown 

in Fig . 3.9. Therefore, the flux density in the yoke region can be evaluated analytically 

by 

3.37 

where Re and hys are the outer radius of the stator and the yoke thickness , 

respectively 
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The armature reaction field can also be derived using the analytical model described 

in Chapter 2. The resultant field in the air-gap is obtained by superposition of the 

open-circuit and the armature reaction fields . The flux density waveforms in the 

different regions and the on-load iron loss are then evaluated in the same way as 

under the no-load operation. 
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With reference to the assumption made in section 2.2, the current distribution may be 

represented using a current sheet model, as shown in Fig . 3.10 and can be 

expanded into Fourier series of the following form: 

-
J sCz)= LJ" cosm"z 

,,=1 .2 ... 

where 

2NJ K K I n =-- dll pll 
T,p 

2JlJ1 
m =-

" 1/p 

K _ sin(mnbo / 2) 
dll - mnb

O 
/ 2 

K P" =-1 

3.38 

3.39 

3.40 

3.41 

3.42 

If the separation distance between two adjacent coils , Tip , is sufficiently large, the 

armature reaction field can essentially be represented the one in the middle. 

, , 
b ~ i I ---:.' , ~ 
r- N,} b. , 

, , , 
·N,} bo: - - - - - - _ .- - .- - - - _ .- - .- .- - - - - - - - - I....&-

Fig. 3.10 Equivalent current sheet distribution 

By assuming the recoil permeability of the magnets is equal to that of free space, the 

magnetic field is confined in the air-region as shown in Fig . 3.11 . 
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Fig. 3.11 Armature reaction field model 

The magnetic vector potential Ae is governed by: 

0(10 ) 0(10 ) - --(rAe) +- --(rAe) =0 
dZ r OZ or r dr 

The boundary conditions to be satisfied by equation 3.43 are given by: 

B z I r = Ro = 0; for ferro-magnetic supporting tube 

Br I r=O = 0; for non-magnetic supporting tube 

H zlr=Rs = J s 

3.43 

3.44 

where Ro is the outer radius of the mild-steel supporting tube of the motor. Solving 

equation 3.43 and subject to boundary conditions of 3.44 yields the expressions for 

flux density components: 

00 

B, =-~JAnBlo(m"r)m" cos(m"z)] 
,,=) 3.45 

00 

Bz = ~::rA"BIo(mnr)mn sin(mnz)] 3.46 
n=1 

For the motor with non-magnetic supporting tube, where 

A = J"po 
" BIo (m"Rs )mll 

3.47 
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The flux density components for the motor with magnetic support tube can be 

similarly derived. Using analytically predicted flux density waveforms, the hysteresis 

and excess loss densities in each region can be evaluated by: 

3.48 

3.49 

where f, Bm and Be are the frequency, amplitude of the fundamental flux density, and 

electrical degree, respectively. The coefficients ~ kh and ke associated with the 

hysteresis and excess loss components and determined from manufactured data 

sheet. 

3.5 Motor design dimensions 

Since design optimisation of the iron-cored quasi-Halbach magnetised motor with 

rectangular magnets has been reported [1], only two motors i.e. air-cored quasi

Halbach magnetised motor with rectangular magnets and iron-cored quasi-Halbach 

magnetised motor with trapezoidal magnets, will be optimised for the direct-drive 

linear compressor system. 

Fig. 3.12 (a) and (b) show the schematic and design parameters of air-cored motor 

with rectangular and iron-cored motor with trapezoid magnets, respectively. The 

relevant variables and symbols are defined as follows 

Symbol Description 

B Stator under cut angle 

bo Width of slot opening 

Brem Remanence of permanent magnet 

hi Tooth tip height 

hm Radial thickness of magnets 

hym Radial thickness of supporting tube 

hYI Yoke thickness of stator core 

Re Outer radius of stator core 
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R j Inner radius of supporting tube 

Rm Outer radius of magnets 

T mr Axial length of radially magnetised magnet at the centre 

T mr2 Axial length of radially magnetised magnet at two ends 

T mz Axial length of axially magnetised magnets 

Tp Pole pitch 

Tpe Extended tooth tip length 

Tpw Tooth pitch width 

Tw Tooth width 

As will be observed, the design parameters such as stator slot opening, bo • and 

height of tooth tip, hit have less significant influence on the performance of motors 

and their values are fixed to 10.0 mm and 1.0 mm, respectively. In general, the 

performance improves as hm is increased. However, an increase in the volume of 

rare-earth magnet material will increase the cost and result in a heavier armature, 

which is usually adverse for a reciprocating moving-magnet motor [11]. Therefore, 

the radial thickness of magnet is fixed at 5.0 mm to produce an acceptable air-gap 

flux density and thrust force capability. The air-gap length, G, is fixed to 0.8 mm due 

to minimum assembly tolerances. The motor efficiency improves as the outer stator 

radius, Re, increases. However, an initial design scan shows [1] [12] that for the given 

design specification the efficiency improvement diminishes when Re is greater than 

50.0 mm. Hence, this value is chosen for the outer stator radius, Re. 

For the iron-cored quasi-Halbach magnetised motor with trapezoidal magnets, the 

permanent magnet angle, p, has been optimised using finite element technique. Fig. 

3.13 shows finite element predicted back-emf waveforms with different values of p 
when the armature velocity is 2.1 m/s. As will be observed, the angle of 45 degrees is 

selected where it produced the highest average of back emf. 
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Fig. 3.12 Schematic and design parameters of linear motors 

z 

92 



300 

250 1- - _____ - - - - - - -

~ 
200

1 <p 150 
.::,(. 
() 
(II 

co 100 1 

50 

- - - - 60 degrees 

--45degees 

- - - - - . 30 degrees 

0 +1--------.--------.---------,--------.--------, 

0.000 0.001 0.002 0.003 0.004 0.005 

Time, s 

Fig. 3.13 Influence of permanent magnet angle, /3, on back-emf at velocity 2.1 m/s 

The leading design parameters, which have significant influences on the motors 

performance and require to be optimised are the dimension ratios, R,,/Re and Tm,/Tp. In 

addition , the influence of the pole-pitch width, Tpw, and the remanence of permanent 

magnet, Brem , on the motor/system efficiency is also investigated. 

The tooth width Tw , the stator yoke thickness, hys , and the radial thickness of the 

mover back-iron, hI"" are dependent on given flux density levels in these regions, and 

their values are determined during the optimisation process. In addition, the area of 

the tooth width is approximately similar with the area of the stator yoke in order to 

avoid the saturation of flux density. 

3.6 Design optimisation 

The optimisation is aimed to achieve maximum motor or system efficiency under 

specified operating conditions and volumetric constraints as tabulated in Table 3.1. 

The motor output power is kept to its rated value of 88.5 W by adjusting the 

magnitude of current when the leading design parameters change. By example, Figs. 

3.14 (a) and (b) show that the output power is kept to 88.5 W as the two leading 

dimensional ratios , R"/R~ and Tn/I Tp are varied for both air-cored and iron-cored 

motors. This ensures motor efficiency is calculated against the same output power 

during the optimisation process. 
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Table 3.1 Fixed design parameters and operational conditions 

Description Value Units 

() 30 0 

bo 10 mm 

G 0.8 mm 

hI 1 mm 

Re 50 mm 

Tp 25 mm 

Tpt 3.5 mm 

Output power, POUI 88.5 W 

Rated armature stroke, Xm 10.5 mm 

Rms voltage supply, V mrs 230 V 

Frequency,! 50 Hz 

Stator core material Somaloy 700 -
Permanent magnet material NdFeB -

100 j~ ____________________________________________ _ 
80 

~ I 60 ' •.•.•. Rm/Re=O.44 ---Rm/Re=0.46 _. - . Rm/Re=0.48 

~ 40 j 
o 

20 

l 
oL 
0.32 0.60 

T 

0.40 0.44 0.48 

Tmrrrp 

0.52 0.36 0.56 

a. Air-cored quasi-Halbach magnetised motor with rectangular magnets 
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b. Iron-cored quasi Halbach magnetised motor with trapezoidal magnets 

Fig. 3 .14 Variations of Tm/Tp and R,,/Re with constant output power 

3.6.1 Air-cored quasi-Halbach magnetised motor with rectangular magnets 

3.6.1.1 Influence of Tn,/Tp and R",IRe 

The ratio of Tm/Tp represents the combined effect of radially and axially magnetised 

magnets in order to produce a maximum fundamental radial flux density in the air 

gap [13]. Meanwhile, the ratio of RnIR~ represents the optimal balance between 

electrical loading and magnetic loading [11] in order to achieve maximum motor 

efficiency. In this study, the motor efficiency is optimised with respect to both 

dimensional ratios. 

Fig . 3.15 shows the variations of the motor efficiency and compressor system 

efficiency with the two dimensional ratios when air-cored motor drives a typical 

compressor for household refrigerators. As will be seen, there are optimal ratios of 

7~,/r" = 0.44, RnlRr = 0.46 which yields the maximum motor efficiency and 

compressor system efficiency of 92.46 % and 86.12 %, respectively. It is evident that 

the optimal ratios of Tm/Tp and R,/ Rr for the maximum system efficiency essentially 

coincide with the values for the maximum motor efficiency. 
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Fig. 3.15 Influence of R,,/R, and Tm/ Tp on efficiency 

Fig . 3.16 shows the variations of copper loss and iron loss with Tm/ Tp and Rni Re. As 

will be observed in Fig. 3.16 (a), copper loss decreased when the ratio of Rnl Re is 

increased from 0.44 to 0.48. This is because the slot area decreases as R,/ Re 

increases, which tends to increase resistance of the coil. However, the coil flux per 

turn increases and the motor current for the same output power decreases, resulting 

in the decrease of copper loss. It is also evident that for a given R"IR. there is a 

specific Tm/ Tp ratio which yields minimum copper loss. At this ratio, the coil flux per 

turn reaches the maximum, and hence the minimum current and copper loss. 
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Meanwhile, the iron loss increases with the increases of R,,/Re of as shown in Fig. 

3.16 (b). This is due to the increase in flux density in the stator core which yields the 

increase of iron loss. Further, the iron loss tends to increase when T,1l / Tp is varied 

from 0.32 to 0.60. As T",/Tp increases, the radial flux density component becomes 

more significant in the tooth tip region. Consequently, the iron loss increases. 
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Fig. 3.16 Influence of R"IR, and Tm/Tp on power loss 
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3.6.1.2 Influence of tooth pitch width, Tpw 

Fig. 3.1 7 shows the variation of motor efficiency and compressor system efficiency 

with tooth pitch width, Tpw and the ratio of R"IRe, at the optimal ratio of Tm/I'p = 0.44 

and other parameter being the same as stated in Table 3.1. As will be seen, motor 

efficiency and compressor system efficiency increased when Tpw was increased. 

However, the increase in I'pw gives rise to a large motor size, and hence great cost. 

Considering the overall system dimensions and cost, a tooth pitch width Tpw = 40.0 

mm is selected. It is also evident that the optimal ratio R,/ Re for the maximum motor 

and system efficiency with different values of Tpw are virtually the same, which implies 

that this optimal ratio is independent of the tooth pitch width. 

Fig . 3.18 shows the variation of copper loss and iron loss with Tpw and the ratio of 

R,,/Re' As will be seen, the copper loss decreases when the Tpw is increased. This is 

due to the slot area increase which allows more space for the coil and hence, a 

reduction of the coil resistance. The iron loss, on the other hand, decreases when Tpw 

is increased. This is due to flux density being decreased in stator core. 
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Fig. 3.18 Influence of Tp" on power loss 

3.6.1.3 Influence of remanence of permanent magnets, B rem 

Fig . 3.19 shows the variation of motor efficiency, compressor system efficiency with 

the ratio of R,,/Rr for two values of Brem at Tpw = 40.0 mm. As will be seen, the 

performance of motor and system efficiency increased with a higher value of 

remanence, B,em' This is due to the fact that a larger E ren" produces stronger magnetic 

field , which results in a higher coil flux per turn and a better performance. It should be 

noted that the optimal ratio of R"/ R. for maximum motor or system efficiency 

decreases slightly with an increase in B rem. 
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3.6.2 Iron-cored quasi-Halbach magnetised motor with trapezoidal magnets 

3.6.2.1 Influence of Tm,/Tp and R,,/Rt! 

Fig . 3.20 shows the variation of the motor efficiency and compressor system 

efficiency with Tm/Tp and R,,/Re ratios. As will be seen, there are optimal ratios of 

Tm/Tp = 0.4, R,/ Rr = 0.38 which yields the maximum motor efficiency of 93.31 %. 

Again the optimal dimensional ratios for the maximum motor efficiency appears to 

coincide with those for the maximum system efficiency. 

Fig. 3.21 shows the variation of copper loss and iron loss when the ratios of Tm/Tp 

and R,/ R, are varied. As will be seen, copper loss decreases when the ratio of RnlRe 

is increased. This trend is similar to that observed for the air-cored quasi-halbach 

magnetised motor with rectangular magnets. 

However, the copper loss continues to decrease as Tm/Tp increases. The opposite 

trend is observed for the iron loss which increases with Tm/Tp- The optimal Tm/Tp 

occurs when the total loss is at minimum. 
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Fig. 3.21 Influence of R,,/R. and Tm/ Tp on power loss 

The influence of tooth pitch width, Tpw, and the remanence of magnets, Brem, on motor 

or system efficiency is similar to those observed in sections 3.6.1.2 and 3.6.1.3. The 

results are shown in Figs. 3.22 and 3.23 for completeness. 
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3.7 Design refinement with finite element analysis 

The analytical model is a useful tool to aid the initial design optimisation. However, it 

cannot accommodate complex geometries and material non-linearities [14]. These 

limitations can be overcome by employing finite element technique in order to obtain 

more accurate results. Therefore, the leading parameters such as the ratios of Tm/ Tp 

and R",IR" need to be refined . All operational parameters and motor dimensions 

obtained from the design optimisation described in section 3.6 was used to build an 

initial two-dimensional axi-symmetrical finite element model. 
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By neglecting the friction loss and eddy current loss, the efficiency of the motors, 1], is 

evaluated by: 

3.50 

where P ouJ, Pie and P cu are output power, iron loss and copper loss, respectively. The 

iron loss was calculated using finite element predicted flux density distribution in 

stator core, and the iron loss model given by equations 3.48 and 3.49, details of 

which will be described in Chapter 5. 

3.7.1 Air-cored quasi-Halbach magnetised motor with rectangular magnets 

Fig. 3.24 shows the finite element predicted variation of efficiency of the air-cored 

motor with T",/Tp ratio at R,,/Re = 0.4 when operating at the rated conditions. The 

maximum efficiency, 93.47 %, was achieved at T".,ITp = 0.4. It is evident that the 

optimal T""ITp ratio is slightly lower than that obtained from the analytical model, 

T".,ITp = 0.44. In addition, the efficiency is slightly increased from 92.4 % (analytical) 

to 93.47 % (finite element). This is due to the fact that the radial air-gap flux density 

predicted by finite element is slightly greater than that of analytical prediction. Thus, 

for the same output power, the motor current will be lower, resulting in an increase in 

efficiency. 

The ratio of R,,/Re has also been refined in order to achieve more accurate optimal 

design. Fig. 3.25 shows the efficiency of the air-cored motor as a function of the R,,/Re 

ratio at T".,ITp = 0.4. As will be observed, the maximum efficiency, 93.50 % is 

achieved at R"/Re = 0.42. The optimal ratio of R,,/Re is also slightly lower compared to 

that of the analytical design, R,,/Re = 0.46. This has a benefit that higher efficiency is 

achieved with less magnet material/volume. 
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3.7.2 Iron-cored quasi-Halbach magnetised motor with trapezoidal magnets 

Fig . 3.26 shows the finite element predicted variation of efficiency of the iron-cored 

motor with T",/Tp ratio at RIIIR~ = 0.4. The maximum efficiency, 94.12 % is achieved 

at TIII /T" = 0.4. In this case, the optimal T",/Tp ratio is the same as that of the 

analytical design but the efficiency is higher than the analytical prediction due to the 

same reason as explained in Chapter 3.7.1. 
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Fig . 3.27 shows the variation of efficiency with RnlRe ratio at ~nlTp = 0.4. As will be 

observed, the maximum efficiency, 94.24 % is occurs at Rn/Re = 0.36, i.e Rm = 18.0 

mm, which is 1.0 mm less than that obtained from the optimisation based on the 

analytical model. 
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3.8 Summary of final design dimension 

Table 3.2 and Table 3.3 shows the design parameters obtained from the design 

optimisation for air-cored quasi-Halbach magnetised motor with rectangular magnets 
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and iron-cored quasi-Halbach magnetised motor with trapezoidal magnets, 

respectively. 

Table 3.2 Optimal design parameters of air-cored quasi-Halbach magnetised 

motor with rectangular magnets 

Description Dimension Units 

Outer radius of stator core, R, 50.0 mm 

Yoke thickness, hys 3.3 mm 

Airgap length, G 0.8 mm 

Outer radius of magnet, Rm 21.0 mm 

Magnet height, hm 5.0 mm 

Pole pitch, 1p 25.0 mm 

Tooth width, Tw 9.4 mm 

Tooth pitch width, Tpw 40.0 mm 

Axial length of radially magnetised magnet, T"" 10.0 mm 

Axial length of radially magnetised at ends, T",,2 5.0 mm 

Axial length of axially magnetised magnets, Tmz 15.0 mm 

Slot opening width, bo 10.0 mm 

Tooth tip height, h, 1.0 mm 

Stator under cut angle, (} 30.0 0 

Table 3.3 Optimal design parameters for iron-cored quasi-Halbach magnetised 

motor with trapezoidal magnets 

Description Dimension Units 

Outer radius of stator core, R, 50.0 mm 

Yoke thickness, hY6 3.3 mm 

Air-gap length, G 0.8 mm 

Outer radius of magnet, Rm 18.0 mm 

Magnet height, hm 5.0 mm 

Supporting tube height, hym 3.5 mm 

Pole pitch, 1p 25.0 mm 

Tooth width, Tw 9.4 mm 

Tooth pitch width, Tpw 40.0 mm 

Axial length of radially magnetised magnet, Tmr 10.0 mm 

Axial length of radially magnetised at ends, T",,2 5.0 mm 

Axial length of axially magnetised magnets, T mz 15.0 mm 
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Slot opening width, bo 10.0 mm 

Tooth tip height, hI 1.0 mm 

Permanent magnet angle, p 45.0 0 

Stator under cut angle, 8 30.0 0 

3.9 Conclusions 

A design methodology to achieve optimal performance of the direct-drive linear 

compressor system employing two-types of linear permanent magnet motors have 

been described, and the influence of the leading design parameters on the system 

efficiency have been studied analytically. According to Fig. 3.4 and equation 3.21, the 

compressed gas has a significant effect on input impedance of linear motor, and it is 

essential that the gas load effect is taken into account in the design optimization. 

Due to the limitation of analytical solution which cannot accommodate complex 

geometries and material non-linearities, the leading design parameters have been 

refined with finite element analysis, which results in slightly different values and 

improved efficiency. 

The efficiency of the iron-cored quasi-Halbach magnetized motor with trapezoidal 

magnets is higher than that of the air-cored quasi-Halbach magnetized motor with 

rectangular magnets. However, the air-cored motor has a lower moving-mass, and 

requires a less stiffer spring for reciprocating compressor operation, which is 

conducive to improving dynamic capability [15]. 
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CHAPTER 4 

DESIGN AND OPTIMISATION OF A MOVING-IRON LINEAR MOTOR FOR 

RECIPROCATING COMPRESSORS USING FINITE ELEMENT ANALYSIS 

4.1 Introduction 

A comprehensive design optimisation for the leading design parameters of the 

moving-magnet linear motors have been described in Chapter 3. However, the 

moving-magnet linear motors employ NdFeB permanent magnet which may increase 

the material cost. The permanent magnets have to be circumferentially segmented 

as will be described in Chapter 5 in order to reduce the eddy current loss [1] where 

this process may increase manufacturing cost. This chapter introduces an alternative 

design, moving-iron linear motor as shown in Fig. 4.1 for refrigerator compressor 

system. The motor is evolved from the original design of Evan [2] and employ 

relatively cheap permanent magnet material, viz., Strontium ferrite. The ring magnets 

mounted on the stator are easy to manufacture [2] [3] and their resistivity is a few 

order of magnitude higher than that of NdFeB. Hence, eddy current loss in the 

magnets is negligible. Further, the moving-iron armature has a robust structure and 

may be optimised to have a lower mass which is conducive to improve dynamic 

capability of the compressor system [4]. 

The thrust force of linear motor, F, may be estimated by the following equation: 

4.1 

where D, L, Band Q are the outer diameter, the axial length, the magnetic loading 

and the electric loading of the motor, respectively. As will be seen, the thrust force 

can be enhanced by increasing the motor size, its magnetic loading and electrical 

loading. Due to the use of Strontium ferrite, which has a low remanence, the 

magnetic loading of the motor will be reduced. To achieve the same thrust force with 

satisfactory efficiency, the motor size i.e. the axial length and the outer radius have to 

be increased. Since the ring magnet are mounted on the stator, the required volume 

will be much greater than that of the moving-magnet designs. However, the cost of 

magnet material will be much cheaper [5] [6]. The increase in electrical load can 
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increase thrust force capability at the expense of reduction in motor efficiency when 

the available slot area is fixed . 

End disk 

Permanent 
magnet 

Fig. 4.1 Tubular moving-iron linear motor 

Similar to the moving-magnet motor designs, the tubular stator core is made of soft 

magnetic composite (SMC) material, Somaloy 700, and carries a single coil. The use 

of an SMC material facilitates near net-shape, low cost manufacture, as well as good 

utilization of the available space to achieve a compact design. Also, the eddy current 

component of iron loss at the mains operating frequency of 50 Hz is negligible [7] [8] 

due to very low conductivity. 

Finite element technique is employed to optimise all leading deSign parameters of 

moving-iron linear motor. Although the technique is more time consuming compared 

to the analytical method [9] [10], it is more accurate and can accommodate relatively 

complex geometries of the motor topology [11]. The design optimisation is aimed to 

achieve maximum efficiency at the rated output power of 88.5 W subject to 

volumetric constraints. 

The principle of operation of the motor is similar to that of single-phase flux switching 

motor. A constant polarising magnetomotive force, mmf, is produced by two-ring

shaped permanent magnets, and the variable mmf that is produced by current in the 

coil acts in different directions relative to the polarising mmf at the two ends of the 
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motor. This increases the air-gap flux density at one end of the toothed moving

armature and reduces it at the other, causing the armature to move [2] back and forth 

as the polarity of the current changes. Since the moving armature is exposed in 

alternating magnetic field, SMC material should be used to minimising eddy current 

loss. 

This chapter also compares the performance and the cost of material for a number of 

design variants, including: iron-cored quasi-Halbach magnetised motors with 

rectangular magnets and trapezoidal magnets, and air-cored quasi-Halbach 

magnetised motor with rectangular magnets. 

4.2 Performance evaluations 

4.2.1 Open-circuit flux distribution and back-emf 

Figs. 4.2 (a) and (b) show the open-circuit flux distribution of an initial design at the 

initial position and maximum position respectively. At the initial position, the flux 

distribution is symmetrical with respect to the axial centre. Hence, the coil flux-linkage 

is zero. As the mover moves to the right, the flux-linkage increases. However the rate 

of increase in the flux-linkage decreases as the mover displacement increases. 

The mover moves from initial position at the constant speed and reaches the rate of 

stroke of 10.5 mm at t = 0.005 s. After this, the direction of movement is reversed, 

the mover return to the initial position at t = 0.01 s. 

a. z = 0.0 mm 
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b. z == 10.5 mm 

Fig. 4.2 Open-circuit flux distribution 

Fig . 4.3 shows the back-emf waveform for the moving-iron linear motor with a 

constant speed in both directions. The constant speed was chosen for illustration 

purpose. However, the sinusoidal speed will be used for the optimisation process in 

order to represent the actual operating condition . As will be seen from the back-emf 

waveform, the induced voltage decreases rapidly when the mover displacement is 

greater than 5.0 mm. This indicates that 10.5 mm stroke is not appropriate for this 

design, or in order to improve performance for the required stroke, the motor design 

needs to be optimised. 
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Fig. 4.3 Back-emf and constant speed of moving-iron linear motor 
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4.2.2 Motor efficiency 

The optimisation is based on achieving maximum efficiency produced by the motor. 

By neglecting the eddy current and friction losses, the efficiency of the motor is 

calculated by the following equation: 

4.2 

where P 0lIl, Pie and P cu are output power, iron loss and copper loss, respectively. 

The average output power, P 0lIl. over an electrical period of T, is determined by: 

1 JT Pout = - ET (t) is (t)dt 
T 0 4.3 

where Ent) and is(t} are the instantaneous of terminal voltage and motor current, 

respectively, obtained from finite element analysis. 

If the coil resistance is not included in the finite element model, the induced voltage 

di 
across the coil from finite element analysis includes inductance effect, L -, and 

dt 

back-emf, ew, and from equation 4.3, the output power is given by 

1 J T (di) 1 f T 1 f;2 p. t = - L-+ew i,dt = - ew isdt+- L i,di 
ou T 0 dt TOT i, 4.4 

The second terms in equation 4.4 is zero since i1 = i1 for a periodically current 

waveform. 

The basic equation to quantify the copper loss is determined by 

Pcu = i,."./ R 4.5 

where irms and R are the rms current and resistance of the winding respectively. The 

winding resistance, R, can be determined by 
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4.6 

where p, I and S are the resistivity of copper at a given temperature, the length of 

wire and the cross-sectioned area of wire, respectively. In this study, the resistivity at 

nominal operating temperature of 80 °C, 0.0068e-8 Wm, is used. 

The length of wire and the cross-sectioned area of wire are determined as follows 

4.7 

4.8 

where r, Nc, SII and PI are the average radius of the coil, the number of turns, the 

effective slot area and the packing factor, respectively. 

From the above equations, the winding resistance is given by 

R=2trp-'!"""N 2 
lfSII c 

4.9 

As will be seen from equation 4.9, the resistance, R, is a function of the effective slot 

area, SII' and the number of turns, Nc• They may vary with design parameters. 

In the Flux-2D post processor, iron loss can be calculated based on Bertotti model 

[12] using transient magnetic field solution over a specified electrical period. In order 

to quantify the iron loss, Pie, hysteresis losses coefficient, kh' and excess loss 

coefficient, ke, need to be identified. For the SMC material, Somaloy 700, 

conductivity. 0, Is set to zero and the coefficients of k,. and ke are determined from the 

manufacturer data sheet using curve fitting. 
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4.3 Design optimisation 

4.3.1 Motor design dimensions 

Fig. 4.4 shows the schematic and design parameters for the moving-iron linear 

motor. The relevant variables and symbol are defined as follows: 

Symbol Description 

8 Stator tooth tip under cut angle 

bo Slot opening 

G Air-gap 

Hlf Thickness of armature tube 

H" Height of armature tooth 

H", Height of permanent magnet 

H., Height of stator tooth tip 

~ Outer radius of armature 

R. Outer radius of stator 

TIf Width of armature tooth 

T ... Width of stator tooth 

Tu Stator end disk 

TIN Width of armature tube cut 

H,. Height of stator top edge cut 

T", Thickness of permanent magnet 

Tpw Tooth pitch width 

In the above 16 design parameters, 1/.", T/Je, H,e and (J have insignificant influence on 

the motor performance and therefore, their values are fixed to 1.0 mm, 2.0 mm, 2.0 

mm and 30 ., respectively. Although the force capability of the motor increases as 

the air-gap length decreases, its minimum value is limited by manufacture and 

assembles tolerances. In this design study, the air-gap length, G, is fixed to 0.8 mm 

which Is the same as the air-gap of the moving-magnet motors described in Chapter 

3. 

In order to achieve satisfactory performance, the outer radius of the stator, Re, and 

the thickness of permanent magnet, Tm are increased to 55.0 mm and 10.0 mm, 

respectively. With the axial length of the stator core T pw being the same as the 

moving-magnet designs, the total axial length of the stator, including the two SMC 

disks at both ends, has been increased to a 90.0 mm. The resulting motor size 

represents the maximum available volume for a typical refrigerator compressor. 
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Fig. 4.4 Schematic and design parameters of a tubular moving-iron motor 

The thickness of armature tube, Hrll the width of stator tooth, Tw, and the thickness of 

the stator back-iron are determined by the maximum permissible flux density in order 

to avoid high level of saturation in SMC material. The maximum permissible of flux 

density is set to 1.15 T which is close to the knee point of the Soma loy 700 B-H curve 

as shown in Fig . 4.5. 

The thickness of stator end disk, Tex. also need to be determined in order to provide 

sufficiently permeable path for the coil flux when the armature is at the maximum 

stroke as shown in Fig. 4.2 (b). The thickness should be closed to the width of the 

armature tooth, Tr l • This is to avoid the flux travels to a large air-gap which may 

reduce the motor performance. In this design study, Tex is initially set to 11.5 mm. 

Thus, the leading design parameters which have significant influences on the motor 

are: 

i. Width of armature tooth, Tn 

ii. Height of armature tooth, Hlr 

iii. Ratio of RtI'Re 

iv. Height of permanent magnet, Hm 
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Fig. 4.5 8-H curve of Somaloy 700 

The initial design dimensions and the specified operating conditions are illustrated in 

Table 4.1 . The design optimisation of the linear motor is aimed to achieve the 

maximum efficiency at the rated output power, i.e., Pspec = 88.5 W under the 

volumetric constraint. The optimisation is initially undertaken with a fixed peak value 

of motor current, h and assuming sinusoidal armature velocity at 50 Hz and the 

rated stroke, and the resulting output power will vary as design parameters change. 

In order to obtain the same output power, P3peC' for a given set of design parameters, 

and by assuming the output power is proportional to the motor current, the motor 

current, Inn< which yields P speCJ is adjusted using the following formula: 

P 
I -~l nr,. - I 

~ 4.10 

Table 4.1 Initial dimension parameters and operational conditions 

Description of parameter Value Units 

Air-gap, G 0.8 mm 

Height of armature tooth , H,r 5.0 mm 

Height of stator tooth tip, H" 1.0 mm 

Outer radius of armature, Ra 20.0 mm 

Outer radius of stator, R, 55.0 mm 

Stator tooth tip under cut angle, e 30 0 

Thickness of armature tube, Hrt 6.0 mm 
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Thickness of permanent magnet, Tm 10.0 mm 

Tooth pitch width, Tp ... 40.0 mm 

Width of armature tooth, Tn 10.0 mm 

Width of stator tooth, T" 6.0 mm 

Output power, P our 88.5 W 

Rated armature stroke, Xm 10.5 mm 

Rms voltage supply, V rms 230.0 V 

Frequency,! 50.0 Hz 

Stator core material Somaloy 700 -

Remanence of Strontium ferrite, Brem 0.396 T 

With the new current, I new. the motor performance is calculated again. Fig. 4.6 shows 

the variation of initial and adjusted motor current with height of the armature tooth. 

The resulting output powers are shown in Fig. 4.7. As will be seen, with the fixed 

peak current of 0.5 A, the output power varies slightly with the design parameter and 

is below the rated value of 88.5 W. Thus the motor current has to be increased 

proportionally. With the adjusted current values, the efficiency of the motor is 

evaluated by finite element simulations, and results are shown in Fig. 4.8. As will be 

seen. the level of current adjustment is relatively small. and hence, the assumption 

that the output power is proportional to the current is justified. The same procedure is 

used to determine efficiency variations with other design parameters. 
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Fig. 4.6 Variation of motor current with height of armature tooth 
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Fig. 4.7 Variation of output power with height of armature tooth 
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Fig. 4.8 Variations of efficiency with height of armature tooth 

4.3.2 Influence of width of armature tooth, Tn 

6 

6 

The width of armature tooth, Trl provides the main path for magnetic flux to flow from 

the stator to the armature. If the tooth is too narrow, the flux cannot path through 

easily to the armature, which reduces flux-linkage and motor efficiency. However, if 

the tooth is too wide, the saliency effect is reduced which affect the rate of change of 

flux, and results in a poor performance of the motor. 
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With other leading parameters fixed to their initial values, the armature tooth width is 

varied from 9.0 mm to 11.0 mm and the resulting variation of motor efficiency is 

shown in Fig. 4.9. As will be seen, at Trt = 10.0 mm, the motor produces the 

maximum efficiency, 90.56 %. It should be noted that the optimal Trl coincides with 

the thickness of the permanent magnet disk, T,II' 
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Fig. 4.9 Variation of efficiency with influence of width of armature tooth 

11 

Fig. 4.10 shows the variation of copper loss and iron loss with Trt • The iron loss 

includes the losses in the stator core, in the two end disks, and in the moving 

armature. As can be seen, the iron loss increases slightly with Tr/l while the copper 

loss decreases with Trl. At Trl = 10.0 mm, the sum of the two loses is at minimum . 
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Fig. 4.10 Variation of iron loss and copper loss with influence of width of armature tooth 
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4.3.3 Influence of height of armature tooth, H tr 

The armature tooth height has a significant impact on the performance of the motor. 

For example. if the armature tooth height is too small again the saliency effect is not 

significant which reduces the rate of change of flux and results in poor performance. 

If the armature tooth is too high, reluctance is increased which also leads to a low 

performance. 

Fig . 4.11 shows the variation of motor efficiency with Htr• when Tr/ is set to its optimal 

value of 10.0 mm. the other parameters unchanged. The maximum motor efficiency, 

91 .56 %, occurs at H tr = 5.0 mm. 

The iron loss decreases when the height of armature tooth increases as shown in 

Fig . 4.12. This is due to the decrease in flux density in the stator and armature, as 

the reluctance increases. Meanwhile, the copper loss increases when the height of 

armature tooth is increased. This is because the motor current has to increase in 

order to provide the same output power. 
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Fig. 4.11 Variation of efficiency with influence of the height of armature tooth 
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Fig. 4.12 Variation of iron loss and copper loss with influence of height of armature tooth 

4.3.4 Influence of R,/R~ 

The ratio of R/R~ determines the balance between electrical and magnetic loadings 

of the motor. This balance is important in order to achieve maximum performance. 

Increase in the outer radius of the armature, results in a great change of flux-linkage 

but reduces electrical loading since the slot area becomes less. In addition, the 

magnetic flux due to permanent magnets also reduces due to the reduction of the 

magnet volume. 

Initially, the height of the magnet, Hm, varies with changes of the inner radius of the 

coil as shown in Fig. 4.4. The RJ Re ratio is varied from 0.364 to 0.418 when Hlr and 

1 ~, are set to their optimal values. As will seen from Fig. 4.13, the maximum 

efficiency,- 91 .60 % is obtained at R/ Re = 0.4. 

The copper loss reduces slightly when the ratio of RJ Re is increased as shown in Fig. 

4.14. As R/ R, increases although the slot area decreases which tends to increase 

the motor resistance, the coil flux-linkage and back-emf per turn increase. The motor 

current required to achieve the rated output power decreases. Thus, the combined 

effect results in very slight decrease in copper loss. The iron loss increases slightlr 

when the ratio of R/R~ is increased. This is mainly due to the volume of the armature 

in which flux density varies rapidly as the armature moves is increased, resulting in a 

higher iron loss. 
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4.3.5 Influence of height of permanent magnet, Hm 

Theoretically, increases the height of permanent magnet, Hm , will produce more 

output power and, hence better motor efficiency. The disadvantage of this is that the 

cost of permanent magnet material will also increase. However Strontium ferrite is 

relatively cheap and the increase in magnet material cost is not significant. 

Fig . 4.15 shows the variation of motor efficiency with the height of magnet, Hili , when 

H,r, Tn and R/R~ are at their optimal values. As will be seen, the motor efficiency 
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continues to increase as Hm increase. However, the maximum Hm value of 32.0 mm 

is limited by R/R~ ratio, and the motor produces the maximum efficiency, 92.10 %. 

Fig. 4.16 shows the variation of the copper loss and iron loss with the magnet height, 

Hm. The copper loss reduces when the height of magnet increases. This is due to the 

reduction of motor current for the same output power. The iron loss increases slightly 

when the magnet height is increased due to increase in flux density in the stator and 

moving armature. 
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Fig 4 16 Variation of iron loss and copper loss with height of permanent magnet 
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4.4 Two parameters optimisation 

The four leading design parameters discussed in sections 4.3.2 to 4.3.5 are 

optimised individually using finite element analysis. However, one parameter may 

influence other parameters in term of optimal performance of the motor. In order to 

check if the above design process reaches an optimal design, two leading 

parameters varied simultaneously. As has previously stated, only three leading 

design parameters are considered for optimisation, i.e. width of armature tooth Trio 

height of armature tooth Hrt and the ratio of R/ Re, and the height of magnet, Hm varies 

with the inner radius of the coil. 

Fig . 4.17 shows the variation of motor efficiency with Trt and Hrl and other parameters 

being the same as stated in Table 4.1. As will be observed, the motor produces the 

maximum efficiency, 91 .56 % at Trt = 10.0 mm and Hrl = 5.0 mm. This result Trt 

coincides with those obtained previously, which implies the influence of one 

parameter on the optimal design on the other is insignificant. 

91 .60 I 
91.52 

.~.-.--~----.-.~ .. ..- .. ..- .. --. 

.-- 6 0°. r . . . . . . . . . . . . . " ......... . . . . 
~ ..... 
~ 91.44 A' •.. 
'0 
IE 
UJ 

91 .36 

91 .28 
4 5 

Htr, mm 

Fig. 4 .17 Influence of Trl and Hrr on efficiency 
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6 

Fig. 4.17 shows the variation of motor efficiency with Trt and K/ Re at the optimal value 

of J fir = 5 0 mm and other parameters being the same as stated in Table 4.1. As will 

be seen, the optimal dimensions for Trt and R/ Rt are 10.0 mm and 0.4, respectively, 

which YIelds the maximum motor efficiency of 91 .6 %. 
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Based on the results shown in Figs. 4.19 and 4.20, the optimal dimensions of T,." HI,., 

and R,/Re are essentially the same as those obtained in sections 4.3.2, 4.3.3 and 

4.3.4. 
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Fig. 4 .18 Influence of Trt and R/ Re on efficiency 

4.5 Comparison material cost and performance 

0.42 

To evaluate the relative merits of the moving-iron motor design, material costs and 

performance of four design variants, viz.; iron-cored quasi-Halbach magnetised 

motor with rectangular magnets; iron-cored quasi-Halbach magnetised motor with 

trapezoidal magnets, air-cored quasi-Halbach magnetised motor with rectangular 

magnets and moving-iron linear permanent magnet motor are compared. 

All the linear motors were optimised and employs soft magnetic composite material, 

Soma loy 700 for the stator core. The stator carries a single coil supplied from 240 

Vrms at 50 Hz. Rare-earth NdFeb permanent magnet is employed in all motors 

except for the moving-iron linear motor which uses low cost permanent magnet 

material Strontium ferrite. 

The price and the density of materials used for comparison are tabulated in Table 

4.2. The price for each material is in US dollars per kilogram. As will be seen, the 

price of NdFeB permanent magnet is 15 times higher than that of Strontium ferrite 

and the most expensive material. 
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The volumes of each material used in four designs are given in Table 4.3. The 

moving-iron linear motor requires the largest volume of Strontium ferrite permanent 

magnet. This is due to the fact that the thickness of the magnets and the size of the 

stator has to be increased in order to achieve reasonably high efficiency. In addition, 

the magnets are placed on the stator, and hence has a large volume. For moving

magnet motors, air-cored quasi-Halbach magnetised motor with rectangular magnets 

uses more rare-earth NdFeB material than the other two. This is because the optimal 

R,,/Re ratio of the air-cored motor (R,,/Re = 0.42) is higher than that of the iron-cored 

designs (R"/Re = 0.36). The magnet volume of iron-cored quasi-Halbach magnetised 

motor with rectangular magnets and iron-cored quasi-Halbach magnetised motor with 

trapezoidal magnets are very close because both motors have the same axial length 

and virtually identical optimal R,,/Re ratios. 

Table 4.2 Price and density of materials 

Material Price (2007) Density 

USD/kg kg/m3 

Somaloy 700 3.69 7320 

NdFeB 45.00 7500 

Strontium ferrite 3.00 4800 

Copper 8.00 8230 

Mild steel 1.00 7800 

Somaloy 700 material is employed for the stator core of all four motors and the 

plunger of moving-iron motor. It is evident that the moving-iron motor needs more 

Somaloy material, due to the motor size being increased and the additional material 

for the plunger. For all moving-magnet linear motors, the volume of Soma loy material 

decreases as the optimal R,,/Re ratio increases. The same trend is observed for the 

volume of copper being used. 

Mild steel is used to support permanent magnets in iron-cored quasi-Halbach. 

magnetised motors with rectangular or trapezoidal magnets. As will be observed from 

Table 4.3, the iron-cored quasi-Halbach magnetised motor with rectangular magnets 

uses slightly more mild steel compared to the iron-cored quasi-Halbach magnetised 

motor with trapezoidal magnets, since it requires a thicker tube for a given peak flux 

density. 
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Table 4.3 Volume of motors 

Linear motor Magnet Somaloy Mild Copper Total 
700 steel 

m3 m3 m3 m3 m3 

Iron-cored quasi-
Halbach magnetised 
motor with rectangular 2.43E-05 1.71 E-04 1.35E-05 1.46E-04 3.55E-4 
magnets 
Iron-cored quasi-
Halbach magnetised 
motor with trapezoidal 2.43E-05 1.71 E-04 1.24E-05 1.46E-04 3.54E-4 
magnets 
Air-cored quasi-
Halbach magnetised 
motor with rectangular 2.91E-05 1.65E-04 - 1.30E-04 3.24E-4 
magnets 
Moving-iron permanent 
magnet motor 1.26E-04 3.98E-04 - 1.37E-04 6.60E-4 

Table 4.4 shows the material costs for each linear motor using the data in Table 4.2 

and Table 4.3. As will be observed, the total material cost for each motor is virtually 

the same. For moving-magnet linear motors, the material cost is dominated by rare

earth NdFeB permanent magnet and copper. 

However, for moving-iron linear motor, the cost is mainly contributed from Somaloy 

700 and copper. This is due to a large stator volume. In contrast, the cost of 

Strontium ferrite is less significant. 

Table 4.4 Material costs 

Linear motor Magnet Somaloy Mild Copper Total 
700 steel price 

USD USD USD USD USD 
Iron-cored quasi-
Halbach magnetised 
motor with rectangular 8.22 4.62 0.106 9.61 22.55 
magnets 
Iron-cored quasi-
Halbach magnetised 
motor with trapezoidal 8.22 4.62 0.096 9.61 22.54 
magnets 
Air-cored quasi-
Halbach magnetised 
motor with rectangular 9.81 4.47 - 8.57 22.85 
magnets 
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Moving-iron permanent 
magnet motor 1.81 10.74 - 9.01 21.56 

All the linear motors have been optimised against the same rated output power, 88.5 

W. The efficiency. IJ, iron loss, Pie. and copper loss, P cu as well as moving mass, m, of 

all the linear motors have been shown in Table 4.5. 

Table 4.5 Efficiency. output power, losses, and moving mass 

Linear motor IJ Pout Pie Pcu m 
% W W W kg 

Iron-cored quasi-
Halbach magnetised 
motor with rectangular 94.23 88.61 2.82 2.60 0.29 
magnets 
Iron-cored quasi-
Halbach magnetised 
motor with trapezoidal 94.24 88.60 2.79 2.63 0.28 
magnets 
Air-cored quasi-
Halbach magnetised 
motor with rectangular 93.50 88.67 2.38 3.78 0.22 
magnets 
Moving-iron permanent 
magnet motor 92.10 88.79 5.01 2.60 0.33 

Based on the data tabulated in Table 4.5, the iron-cored quasi-Halbach magnetised 

motor with trapezoidal magnets has slightly higher efficiency than iron-cored quasi

Halbach magnetised motor with rectangular magnets. Its armature mass is also 

slightly lower than that of the iron-cored motor with rectangular magnets. However, 

its manufacturing cost may be higher due to the process of cutting trapezoidally 

shaped magnets [13] . 

Air-cored quasi-Halbach magnetised motor with rectangular magnets has the 

advantage of low moving mass which can improve the dynamic capability of the 

compressor. The moving-iron linear motor is - 2 % lower in efficiency than the 

moving-magnet candidates. This together with a large size and weight makes it less 

attractive for the linear compressor application. 

Based on the data in Table 4.5, it is difficult to select the best candidate since their 

cost and efficiency are quite close to each other. However, for the light weight of 
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armature and ease of manufacturing, the air-cored quasi-Halbach magnetised 

magnet with rectangular magnets has been selected for prototyping. 

4.6 Conclusions 

Finite element technique has been used to optimise the design of the moving-iron 

linear motor. It has been shown that in order to achieve satisfactory efficiency, the 

volume of the motor has to be increased Significantly. However with the available 

space on a typical household refrigerator compressor, the efficiency of the moving

iron motor is still much lower than the moving-magnet designs. It has also been 

shown that the material cost of the moving-iron motor is very close to those of the 

moving-magnet motors. However, its manufacturing cost is likely to be lower, since 

the permanent magnets have a simple shape, and will be easier for assembly. 

An extensive comparison of performance and material costs for four design variants 

have been carried out and based on the light weight of armature which is conducive 

to improve dynamic capability of the compressor system and ease of manufacturing, 

the air-cored quasi-Halbach magnetised magnet with rectangular magnets has been 

selected for prototyping. 
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CHAPTERS 

ANALYSIS OF EDDY CURRENT LOSS AND IRON LOSS IN TUBULAR 

PERMANENT MAGNET LINEAR MOTORS USING FINITE ELEMENT METHOD 

5.1 Introduction 

Usually, the eddy current effect in permanent magnets is neglected and the 

assumption is acceptable for ferrite magnets since their conductivity is a very low, 

and suitable for a low speed applications [1] [2] [3]. However, in the linear motor 

design described in Chapter 3, rare-earth permanent magnets such as NdFeB have 

been used because their high energy product, which is conducive to producing a high 

trust force density but they have a relatively high electrical conductivity. When the 

armature reciprocates, the variation of the working points of the permanent magnets 

and the excitation current will induce eddy currents flow circumferentially in moving 

permanent magnets and the support tube [4] [5]. The eddy current loss in the 

permanent magnets will contribute to temperature rise of the linear motor, which may 

affect the motor performance. 

In order to reduce the eddy current loss, circumferential segmentation of the 

permanent magnets and the supporting tube will be employed, an their effectiveness 

will be analysed using two- and three-dimensional finite element techniques. The 

two-dimensional (2-D) finite elements method is employed to quantify the eddy 

current loss in ring and slit ring permanent magnets as well as the supporting tube as 

shown in Figs. 5.1 (a) and (b). The significant advantage of the two-dimensional 

analysis is less time consuming compared to the three-dimensional analysis. 

However, the two-dimensional analysis leads to overestimation of the eddy current 

losses [5]. Thus, the three-dimensional finite element analysis is necessary to 

quantify the eddy current loss more accurately and also to illustrate the influence of 

circumferentially segmenting the magnets and supporting tube, as shown in Figs. 5.1 

(c) and (d) [4], on the loss. 

This chapter also describes the calculation of the iron loss in the SMC stator core of 

the iron-cored quasi-Halbach magnetised motor with rectangular magnets using two

dimensional time-stepped axi-symmetric finite element analysis. The iron loss is 

evaluated under various armature velocity profiles, on both no-load and on-load. The 
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influence of the electrical conductivity of the SMC material on the iron loss of the 

tubular motor has also been investigated. 

a. Ring b. Slit ring 

c. Eight segments d. Twelve segments 

Fig. 5.1 Magnet and supporting tube configurations 

5.2 Eddy current loss 

5.2.1 Two- and three dimensional finite element models 

Fig. 5.2 shows the 2-D axis-symmetrical cylindrical model of the tubular permanent 

magnet linear motors which are used to quantify the eddy current loss in ring and slit 

permanent magnet configurations. As will be seen the supporting tube in Fig. 5.2 (a) 

is non-ferromagnetic and non-conducting material, and can be represented as air. 

However, for the iron-cored quasi-Halbach magnetised motor with trapezoidal 

magnets as shown Fig. 5.2 (b), the analysis of eddy current loss in the supporting 

tube needs to be considered , since the mild-steel supporting tube can induce eddy 

current. 

Each radially or axially magnetised ring magnet and the ferromagnetic supporting 

tube is modelled as a conducting region in the 2-D axi-symmetrical finite element 

mode/. The terminal effect of the conducting region is represented by a resistance 

connected in parallel with the conductor M, as shown in Fig. 5.3. For a complete ring 

magnet or supporting tube, the induced eddy current will flow in circumferential 
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direction. The resistance is zero. Meanwhile, for a ring magnet or support tube with a 

slit, the induced current cannot flow in a complete circle, and this effect is 

represented by an infinite resistance. In the actual finite element model, the value of 

the resistor for ring and slit are 1e-10 nand 1e10 Q respectively, and the resistivity 

of the permanent magnet is set to O.16e-5 Q/m. 

Coil 

a. 

Coil 

4-+----- SMC 

Permanent 
04---

magnet 

Air-cored quasi-Halbach magnetised motor with rectangular magnets 

..,1---- SMC 

Ferromagnetic 
tube 

Permanent .---
magnet 

b. Iron-cored quasi-Halbach magnetised motor with trapezoidal 

Fig. 5.2 2-D axis-symmetrical cylindrical model linear motors 
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PM5 PM4 

Fig. 5 3 CircuIt of 2-0 mod I 

Fig. 5.4 shows the three-dimensIonal (3-D) meshed mod Is of the lin r motor . 

which are used to quantify eddy current loss in circumf r ntially m nt d 

permanent magnets and the supporting tube. The magn t nd Ih 

segmented circumferentially into 8 and 12 pieces as sho vn in FIgs. 5 1 (c) n (d), 

Only one eighth and one twelfth of the motors have to be analysed due to symm try. 

---s c 
Coil 

a, Air-cored quasi-Halbach magnetised motor th ree an ular m gn I 
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SMC 

b. Iron-cored quasi-Halbach magnetised motor with trapezoidal magnets 

Fig. 5.4 3-D meshed model linear motors 

Non linear B-H characteristics of the soft magnetic composite stator core, Somaloy 

700, and the mild steel , as well as physical properties of the materials are identical in 

the 2-D and 3-D models. Since the motor operates close to resonance and exhibits 

sinusoidal position and velocity profiles, two dimensional and three-dimensional finite 

element analyses were performed by assuming that the reciprocating motion of the 

armature follows a sinusoidal velocity profile and that the coil is excited with 

sinusoidal current waveform which is in phase with the velocity when the motor is 

operating on-load. 

5.2.2 Eddy current loss at no-load condition 

For no-load operation the motor current is zero. The variation of magnet working 

paints take place due to presence of the teeth and the slot, as the armature 

reciprocates. Consequently, eddy current will be induced in the armature. Figs. 5.5 

(a ) and (b) show the time variation of flux density of the air-cored and iron-cored 
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quasi-Halbach magnetised motors, respectively under no-load condition at the axial 

centre of inner and the outer radius of PM1. It is evident that the magnitude of flux 

density varies with time and leads to inducing eddy current in the magnet. It is also 

evident that, the influence of the finite stator core length and the slot on the variation 

of flux density at a particular points is dependent on its radial distance from the inner 

bore of the stator core [4] . 

Figs. 5.6 (a) and (b) show the variations of eddy current loss at no-load in ring 

magnets for the air-cored quasi-Halbach magnetised motor with rectangular magnets 

and the iron-cored quasi-Halbach magnetised motor with trapezoidal magnets, 

respectively. The position of PM1, PM2, PM3, PM4 and PM5 are illustrated in Figs. 

5.2 and 5.4. As will be seen, the eddy current losses for both motors are dominated 

by that incurred in PM1 because it is located at the armature centre, and experiences 

large changes of magnet working points when the armature reciprocates. Therefore, 

the discussion on eddy current loss will mainly be focussed on the PM1. However, 

the distribution of eddy current loss in PM2, PM3, PM4 and PM5 are illustrated in 

Appendix D. For the iron-cored quasi-Halbach magnetised motor with trapezoidal 

magnets, the eddy current loss in the mild steel supporting tube will also be 

discussed in detail. 
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Fig. 5.6 Eddy current loss distribution in ring magnets at no-load 

5.2.2.1 Air-cored quasi-Halbach magnetised motor with rectangular magnets 

Fig. 5.7 shows the variation of eddy current loss in PM1 with time for the air-cored 

motor when the magnet is segmented into different number of pieces. As will be 

observed, the eddy current loss reaches maximum at t = 0.01 s, 0.02 sand 0.03 s. 

These time instants correspond to the maximum armature velocity, and the armature 

position being aligned with the axial centre of the stator. Thus, PM1 experiences the 

largest change of magnet working points. This trend is true for the magnet with 

different number of segmentation except for the ring magnet with a slit. Fig. 5.8 

shows the 3-D eddy current distribution in the magnets which are circumferentially 

segmented into 12 pieces at the centre of armature position. As can be seen, the 

eddy current loss density in PM1 is much greater than that in the other magnets, a 

similar trend which is observed in Fig . 5.6 (a). It is also evident that the eddy current 

loss can be significantly reduced by segmenting the magnet. However, the 

segmentation of permanent magnet into several numbers may increase the 

manufacturing cost and compromise the mechanical performance [4] . 
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Fig. 5.7 Eddy current loss in PM1 for the air-cored quasi-Halbach magnetised motor with 

rectangular magnets at no-load condition 
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Fig 5.8 3-D eddy current distribution in air-cored motor with rectangular magnets 

Fig. 5.9 shows that the variation of average eddy current loss for the air-cored motor 

with number of segments. It is evident that, the eddy current loss in the two axially 

magnetised magnets, PM3 and PM4, and in the two radially magnetised magnets at 

both ends of the armature, PM2 and PM5, are relatively small compared to the loss 

in the middle radially magnetised magnet, PM1. The total of eddy current losses in 

145 



ring, slit, a-segment and 12- segment configurations were 0.29 W, 0.17 W, 0.06 W 

and 0.02 W respectively. Thus, if all the magnets of the air-cored quasi-Halbach 

linear motor are circumferentially segmented into 12 pieces, the eddy current loss is 

essentially negligible. 
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Fig. 5.9 Influence of number of segments on average eddy current loss at no-load condition 

5.2.2.2 Iron-cored quasi-Halbach magnetised motor with trapezoidal magnets 

Fig . 5.10 shows the time-variations of eddy current loss in PM1, when it is 

segmented into different number of pieces for the iron-cored motor at no-load 

condition. A similar trend to those in Fig. 5.7 is observed albeit the magnitude of the 

eddy current loss is higher due to the use of the mild steel supporting tube. 

Fig. 5.11 shows the variations eddy current loss in the mild steel supporting tube with 

time and number of segments for the iron-cored motor. Figs. 5.12 (a) and (b) show, 

respectively the 3-D eddy current distribution in the magnets, and the support tube at 

the centre of axial position when both are segmented into 12 pieces. As will be 

observed , the eddy current loss in the supporting tube is a much higher than in the 

magnets, as is evident by comparing Figs. 5.10 and 5.11. This is due to the 

combined effect of the higher permeability, the higher electrical conductivity and the 

longer axial length of the supporting tube. 
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Fig. 5.10 Eddy current loss in PM1 at no-load condition 
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Fig. 5.12 3-D eddy current distribution in iron-cored motor with trapezoidal magnets 

Fig . 5.13 shows the influence of number segments an average eddy current loss in 

the iron-cored quasi-Halbach magnetised motor with trapezoidal magnet. As can be 
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seen, the no-load eddy current loss is dominated by the loss in the mild-steel 

supporting tube, and is significantly higher than that in the air-cored motor. 

Nevertheless, the results again confirm the effectiveness of segmenting of the 

permanent magnets and the support tube on the reduction of the eddy current loss. 

The total eddy current loss at no-load when both the permanent magnets and the 

mild steel tube are circumferentially segmented into 12 pieces is only 0.17 % of the 

rated motor output power. 
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Fig . 5.13 Influence of number of segments on average of eddy current loss at no-load 

condition 

5.2.3 Eddy current loss at on-load condition 

In order to calculate the on-load eddy current loss, it is essential to specify the correct 

phase relationship between the armature position and the coil current [4]. This can be 

obtained by considering the phasor diagram of the motor shown in Fig. 5.14. As can 

be seen, if the armature position phasor, X, is used as the reference phasor, the 

armature velocity phasor, V, and, hence, the emf phasor, E, will lead the position 

phasor by 90°. To achieve the most efficient motor operation, the motor current 

phasor, I, should be in phase with the emf phasor, i.e. lead the position phasor by 

90°. 

Fig . 5.15 shows the relationship of the motor current with the armature velocity where 

the rms sinusoidal current for the air-cored and the iron-cored motors are 0.52 A and 

0.43 A, respectively. 
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When the coil is excited with a sinusoidal time-varying current, the stator magneto

motive force distribution produces both forward and backward travelling harmonics in 

the linear motor. These harmonics travel at different speeds to the armature and will 

induce eddy current losses in both magnets and mild steel support tube. Significant 

eddy current loss in the armature will not only compromise the motor efficiency, but 

may also result in excessive heating, which could lead to irreversible deterioration in 

the motor performance. 
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5.2.3.1 Air-cored quasi-Halbach magnetised motor with rectangular magnets 

Fig. 5.16 compares the variations of flux density at the axial centre and outer radius 

of PM1 with time for the air-cored motor at no-load and on-load conditions. As will be 

observed, the influence of the armature reaction field on the flux density waveforms 

in the magnet is not very significant due to its low recoil permeability and, hence, 

large effective air-gap to the stator mmf [4]. 
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Fig. 5.16 Magnitude of flux density in PM1 at no-load and on-load condition 

Fig. 5.17 compares the time variation of no-load and on-load eddy current losses in 

PM1 when it is a complete ring magnet and when it has a single slit. A similar 

comparison is given in Fig. 5.18 when PM1 is circumferentially segmented into 8 and 

12 segments. As will be observed, the increase of eddy current loss is relatively small 

with any form of segmentation when load is applied . 

Fig. 5.19 shows the variation the total eddy current loss with number of segments at 

no-load and on-load conditions. Again, it is evident that the eddy current loss is 

essentially negligible if all the magnets of the air-cored motor are circumferentially 

segmented into 12 pieces. However, the ring magnets may be used in order to 

reduce manufacturing cost. The total eddy current loss is still relatively small, i.e. 0.4 

% of the rated motor output power [6]. 
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5.2.3.2 Iron-cored quasi-Halbach magnetised motor with trapezoidal magnets 

Figs. 5.20 (a) and (b) compare no-load and on-load flux density waveforms at the 

axial centre and radii of PM1 and supporting tube, respectively, when armature 

reciprocates sinusoidally at the frequency of 50 Hz and the same stroke length, when 

the coil is excited with the motor current supply. Similar to the air-cored motor, the 

influence of the armature reaction on the flux density waveforms in the magnet is not 

very significant due to a large effective air-gap to the stator mmf. Thus, with any form 

of segmentation, the increase in eddy current loss in the permanent magnet is 

relatively small as shown in Fig. 5.21. 

However, the flux density variation in the supporting tube due to the armature 

reaction is much more significant in that both the harmonics content and the 

magnitude of the flux density variation are increased as shown in Fig. 5.20 (b). This 

is a consequence of the high permeability of the tube, which effectively provides a 

flux return path for the armature reaction field. 
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Fig. 5.21 Eddy current loss in PM1 at no-load and on-load conditions 

Fig. 5.22 compares the variations of no-load and on-load eddy current losses with 

time in the ferromagnetic support tube, whilst the average eddy current loss is given 

in Table 5.1. As will be seen, the on-load eddy current losses is significantly 

increased compared to the no-load values irrespective of whether the support tube is 

segmented or not [4]. 
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Fig. 5.22 Eddy current loss in supporting tube at no-load and on-load conditions 

Table 5.1 Average of eddy current loss in the supporting tube 

Magnet configuration No-load On-load 

W W 

Ring 1.80 3.30 

Slit 0.64 0.98 

8 segments 0.34 0.76 

12 segments 0.08 0.24 
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Fig. 5.23 shows how the total of eddy current loss at no-load and on-load conditions 

vary with the number of segmentation. The ring configuration will result in the larger 

eddy current loss, and seriously compromise the motor efficiency. However, if both 

the magnets and support tube are segmented into 12 pieces, the total on-load eddy 

current can be reduced to below - 0.5 W. 
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Fig. 5.23 Comparison of eddy current loss between no-load and on-load conditions 

5.3 Iron loss calculation 

Whilst methods of determining the iron loss in rotating permanent magnet machines 

have been investigated extensively [7] , the calculation of iron loss in linear machines 

is relatively poorly documented. However, the iron loss in both long stroke, three

phase tubular and short-stroke, single-phase planar permanent magnet machines 

has been evaluated both analytically and by 2-D finite element analysis based on 

models formulated in the axi-symmetric cylindrical coordinate system [8] and in the 

Cartesian coordinate system [9]. In both cases, however, it was assumed that the 

permanent magnet armature moves at a constant velocity, the iron loss being 

calculated from magnetic field solutions at a number of equally spaced armature 

positions spanning a pole-pitch. For a short-stroke reciprocating permanent magnet 

motor, however, the armature velocity essentially varies sinusoidally with time. Thus, 

it is not appropriate to assume a constant velocity for the iron loss calculation. In 

order to maximize the machine efficiency, it is essential to accurately quantify the iron 

loss which results due to the oscillatory motion of the permanent magnet armature 

and the sinusoidal time-varying current in the stator coil. 
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Without loss of generality, the prediction of iron loss for the iron-cored quasi-Halbach 

magnetised motor with rectangular magnet as shown in Fig. 5.24 will be described in 

great detail. The relevant design parameters are given in Table 5.2. 

magnet 

Ferromagnetj, 
tube 

Fig. 5.24 Iron-cored quasi-Halbach magnetised motor with rectangular magnets 

Table 5.2 Design parameters of the iron-cored quasi-Halbach magnetised motor with 

rectangular magnets 

Description Dimension Units 

Outer radius of stator core, R, 50.0 mm 

Yoke thickness, hys 3.3 mm 

Airgap length, G 0.8 mm 

Outer radius of magnet, Rm 20.0 mm 

Magnet height, hm 5.0 mm 

Supporting tube height, hym 3.9 mm 

Pole pitch, Tp 25.0 mm 

Tooth width , T,. 9.4 mm 

Tooth pitch width, Tp,. 40.0 mm 

Axial length of radially magnetised magnet, Tmr 15.5 mm 

Axial length of radially magnetised at ends, Tmr2 7.75 mm 
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Axial length of axially magnetised magnets, Tmz 9.5 mm 

Slot opening width, bo 10.0 mm 

Tooth tip height, h, 1.0 

Stator under cut angle, () 30.0 0 

Magnet material NdFeB -

Magnet remanence, Bnm 1.14 T 

To quantify the iron loss of the tubular motor when its armature position and velocity 

vary sinusoidally with time over a reciprocating cycle, the time period T is divided into 

N equal time intervals, ~ = TIN. as illustrated in Fig. 5.25. 

x 

Fig. 5.25 Armature position versus time 

At a given time instant 1/ = (i-J)~, i = J,2, .. ,(N+J), the magnetic field distribution is 

calculated at the ;'h armature position XI with the coil excitation current 1/. Using the 

Bertotti model [10] [11], the iron loss density, Pie over the cycle can be evaluated 

from: 

5.1 

where Ph, Pc and Pe are the hysteresis loss density, the classical eddy current loss 

density and excess eddy current loss density, respectively. These are given by: 

5.2 
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5.3 

N 
1 S r.;~1 Il.S 

~ = kef . ""N £... BI+1 -B; 5.4 
1=1 

where B; is the flux density at XI and Bm is the peak flux density over the cycle, and J, 

0; t5, and d are the frequency, electrical conductivity, mass density and lamination 

thickness, respectively. For SMC materials, the classical eddy current loss 

component is zero. However, the excess eddy current loss component which is 

associated with domain wall effects may still exist. Thus, the coefficients a; kh and ke, 

associated with the hysteresis and excess eddy current loss components, are 

determined from measurements on SMC samples. For Somaloy 700, a = 1.75, kh = 

0.08 and ke =1.60x1 0"". K(B"J is a correction factor which is introduced to account for 

the additional iron loss which results due to excursions around minor hysteresis loops 

[12], and is given by: 

5.5 

where ~Bj is the change in flux density during the /h excursion around a minor loop. It 

should be noted that the foregoing method makes it possible to account for any time

varying armature velocity if the time interval L1t is suffiCiently small. The total iron loss 

can be obtained by volume integration of the iron loss density over the stator core, 

with due account of the tubular geometry [8]. 

5.3.1 No-load condition 

Figs. 5.26 (a) and (b) show no-load flux distributions at the initial armature position X 

= 0 and at the maximum stroke position X = 10.5 mm, respectively. As will be seen, 

at the initial position, the magnetic field distribution is symmetric and the flux 

produced by the permanent magnets is virtually "short-circuited" by the tooth tips. 

Consequently, the net flux-linkage with the coil is zero, and the flux density in the 

tooth body and back-iron (yoke) is also zero. At the rated stroke position, on the other 

hand, most of the flux from the permanent magnets flows through the teeth and back-
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iron, and the flux-linkage with the coil is a maximum. Fig . 5.27 shows the flux density 

waveforms, which result in no-load, in tooth body, back-iron and tooth tip, as 

indicated in Fig. 5.26 (a) when the armature position varies sinusoidally with time. As 

can be seen, the flux density waveforms in the tooth body and back-iron are almost 

sinusoidal, while in the tooth tip the flux-density waveform is almost trapezoidal but 

exhibits the presence of minor loops. 

Fig . 5.28 shows the variation of the no-load iron loss with frequency and the 

magnitude of the stroke, Xn/l assuming that the motion of the armature follows a 

sinusoidal waveform. As will be seen, the iron loss increases almost linearly with an 

increase in frequency. This is a consequence of the hysteresis loss being dominant 

in the SMC material at low frequencies. For a given frequency, the iron loss 

increases with an increase in stroke. This is due to the fact that the peak armature 

velocity, given by 27ifXm, is proportional to x,n. A higher peak velocity gives rise to 

faster variation of the magnetic field , and, hence, increased iron loss. 

Back iron 

Tooth 

Tooth 
tip 

a. Initial armature position 
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b. Maximum stroke position 

Fig. 5.26 No-load flux distributions at two armature positions 
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Fig. 5.27 Flux density waveforms over a reciprocating cycle 
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Fig. 5.28 Variation of no-load iron loss with frequency and stroke 

For the purpose of comparison, the iron loss of the machine is also evaluated 

assuming that the armature moves at both a constant rms velocity (.,finjX ", ) and a 

constant average velocity (4 jX", ) as shown in Fig. 5.29. 
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Fig. 5.29 Variation of velocity for 11 .0 mm stroke 

Fig. 5.30 compares the variation of the no-load iron loss with frequency for an 

armature stroke of 11.0 mm for the three different velocity waveforms. It can be seen 

that the iron loss which results with the sinusoidal velocity waveform is - 0.92 % less 

than that which results with the constant rms velocity and 3.68 % higher than that 
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with the average velocity. Thus, evaluation of the iron loss in a short-stroke, 

reciprocating permanent magnet motor assuming constant velocity will lead to either 

a slight overestimate if the rms velocity is used or a slight underestimate if the 

average velocity is used, although the percentage difference is relatively small. 

Although the electrical conductivity of SMC materials is 3 orders of magnitude lower 

than that of solid mild steel, the tubular motor topology provides a good path for 

induced eddy currents to flow in the circumferential direction. Thus, a significant 

additional eddy current loss may result. The influence of the electrical conductivity of 

the SMC on the iron loss has been investigated. Fig. 5.31 shows the no-load eddy 

current density distribution which results in the SMC stator core at 50 Hz with the 

armature displaced of 5.0 mm from the central position. The conductivity of Somaloy 

700 is assumed to be 2.22 x 103 81m. As can be seen, in most of the stator core the 

induced eddy current density is very small. However, in the tooth tip regions the eddy 

current density is -104 Aim2
. Fig. 5.32 shows the variation of the total eddy current 

loss in the SMC stator with frequency. It is evident that if the motor operates at 50Hz 

frequency, as is the case for this particular application, the additional eddy current 

loss due to the non-zero conductivity of the 8MC is -0.1 W, and can be practically 

neglected. However, at a frequency of 100 Hz, the eddy current loss increases by a 

factor of -4 to 0.42 W, which may not be negligible in many applications. 
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5.3. On-load condition 

To determine the on-load iron loss the sinusoidal armature position and current 

waveforms are considered at N equal time steps, as shown in Fig. 5.33, and at each 

time step the magnetic field distribution is calculated. The iron loss is then 

determined as before. 
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Fig. 5.33 Current and armature position waveforms for on-load iron loss calculation 

The iron loss was determined for a stroke of 11.0 mm and an rms current of 0.37 A 

which are enough to produce the rated output power, 88.5 W. Fig. 5.34 shows the 

armature velocity and resultant thrust force waveforms over full cycle. As will be 

seen, the force and velocity waveforms are almost in phase with each other, i.e. the 

machine is operating in motoring mode. 

Fig. 5.35 shows on-load flux distributions at two armature positions, viz. X = 0.0 mm 

and X = 11.0 mm, whilst Fig. 5.36 compares the no-load and on-load flux density 

waveforms in the tooth tip, tooth body and back-iron. At X= 0.0 mm the coil current is 

at its peak value, and results in a strong armature reaction field and, therefore, a 

significant tangential component of flux density in the air-gap. This tangential flux 

density component is responsible for the thrust force production, since, from 

Maxwell's stress tensor method, F =_1_88 ' where Br is the radial flux density 
: 2j1() r : 

component. 

In contrast at X = 11 .0 mm, the coil current is close to zero, and the flux density 

distribution in Fig. 5.35 (b) is virtually the same as that on no-load, Fig. 5.26 (b). The 

peak on-load flux density in the tooth body and back-iron is increased significantly 

due to the armature reaction . In the tooth tip region, however, the on-load flux density 

waveform is closer to a sine-wave and the increase in peak flux density is less 

pronounced, although the existence of small minor loops is clearly evident. It should 

also be noted that the armature reaction field produces a phase shift in the flux 
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density waveforms. 
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b. Maximum armature position 

Fig. 5.35 On-load flux density distributions at two armature positions 
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Fig. 5.36 Comparison of no-load and on-load flux density waveforms 

Fig. 5.37 compares the variation of the no~load and on~load iron losses as a function 

of frequency for an armature stroke of 11.0 mm. As will be seen, the on-load loss is 

increased by approximately 7.5 % as a consequence of the higher peak flux density 

in the tooth body and back-iron. In both cases, the eddy current loss in the stator 

core is not taken into account. 
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The iron loss of two other design variants i.e the air-cored quasi-Halbach magnetised 

motor with rectangular magnet and the iron-cored quasi-Halbach magnetised magnet 

with trapezoidal magnets has been predicted in the similar way, but the results are 

not presented. 

5.4 Conclusions 

The eddy current losses in the permanent magnets and the supporting tube of the 

air-cored quasi-Halbach magnetised motor with rectangular magnets and the iron

cored quasi-Halbach magnetised motor with trapezoidal magnets have been 

analysed using time step two- and three-dimensional finite element analysis. The use 

of segmentations offers the significant advantage in reducing eddy current loss in the 

permanent magnets and supporting tube. The eddy current loss with ring magnets 

and support tube represents 0.4 % and 6.4 % of the rated output power for the air

cored and the iron cored motors, respectively. By circumferentially segmenting the 

armature, the eddy current loss of the air-cored and iron-cored motors can be 

reduced to 0.03 % and 0.45 % of the rated output power respectively. The eddy 

current loss of the air-cored motor is much lower due to the absence of a 

ferromagnetic tube. The ferromagnetic tube in the iron-cored motor incurs 85.0 % of 

the total eddy current loss. The circumferential segmentation of the tube is less 

effective due to its longer axial length, and its higher permeability and electrical 

conductivity. 
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The iron loss of the iron-cored quasi-Halbach magnetised motor with rectangular 

magnets has been evaluated under both no-load and on-load conditions using 2-D 

time-stepped finite element analysis. This allows the iron loss to be calculated with 

arbitrary armature velocity and stator current waveforms, with due account of minor 

hysteresis loops. It has been shown that the no-load iron loss which results with a 

sinusoidal armature velocity is very close to that which would result if the armature 

moves at a constant velocity equal to the average value of the sinusoidal velocity 

profile. The eddy current loss in the solid tubular SMC stator core has also been 

quantified, and shown to be very small at the 50 Hz operating frequency of the 

application under consideration. 
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CHAPTER 6 
EXPERIMENTAL VALIDATION OF SHORT-STROKE, SINGLE-PHASE TUBULAR 

PERMANENT MAGNET MOTORS 

6.1 Introduction 

An extensive comparison of material cost and efficiency of four design variants has 

been carried in Chapter 5 in order to obtain the most suitable linear motor for 

household refrigerator compressor system. Based on light weight of armature and 

ease of manufacturing, the air-cored quasi-Halbach magnetised motor with 

rectangular magnets has been selected for prototyping. This chapter describes briefly 

the prototyping process of the motor based on the design dimension given in Table 

3.2. A static test rig will also be constructed in order to measure flux- linkage, cogging 

force and static thrust force of the air-cored quasi-Halbach motor and the results 

compared with those obtained from finite element analysis. 

This chapter also describes the iron loss measurement of the iron-cored quasi

Halbach magnetised motor with rectangular magnets. Iron loss measurement in 

rotary and linear permanent magnet machines have been discussed in [1] [2] [3] [4] 

[5] [6]. The iron loss is normally obtained by subtracting the copper loss from the 

measured input power [3] and the rotor eddy current loss is neglected. In this study, 

the eddy current loss in the moving-magnet armature will be taken into account in 

order to obtain better results [7] [8] [9]. To quantify no-load iron loss, the input power 

of the iron-cored quasi-Halbach magnetised motor with rectangular magnets is 

measured at the resonant frequency. At this condition, the motor current is minimum 

[10] and the armature reaction field is negligible. The copper loss resulting the eddy 

current loss are also small. The measured iron losses are compared with the results 

obtained from finite element predictions. 

6.2 Prototyping of air-cored quasi-Halbach magnetised motor with 

rectangular magnet 

Figs. 6.1 (a) and (b) show the armature and stator core components of the air-cored 

quasi-Halbach magnetised motor with rectangular magnets, respectively. In order to 

reduce eddy current loss, the radially and axially magnetised magnets have been 

circumferentially segmented into 8 pieces and 12 pieces, respectively, and mounted 

to a lightweight fibre reinforce polymer tube, Tufset. The carbon fibre was used to 
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strengthen the magnetic armature and to protect the magnets, as shown in Fig . 6.1 

(a). 

Permanent magnet 

Shaft 

a. Armature 

b. Stator and coil 

Fig. 6.1 Prototype of air-cored quasi-Halbach magnetised motor with rectangular magnets 

The stator core has been manufactured from Somaloy 700 +0.4 % Kenolube and 

compacted at 800 MPa by Hoganas [11] [12]. As will be seen, two-halves of the 

stator core are used for ease of assembly. The stator is housed in a non-magnetic 

casing together with spring to facilitate resonant operation as shown in Fig . 6.2. 

Linear bearings which support the moving armature are mounted at both ends of the 

casing. The complete assembly of the air-cored motor is shown in Fig. 6.3. For the 

static measurements, however, the springs were not assembled. 
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Fig. 6.2 Motor casing 

Armature Stator Motor casing 

rn:;i : 
I 

\ ~ U 

Fig. 6.3 Exploded and assembled view of the air-cored motor 

6.3 Static test rig 

Fig. 6.4 shows the static test-rig which was used to measure the variation of flux

linkage, cogging force and thrust force with armature position. The test rig comprises 
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the air-cored motor, micrometer barrel , load cell , linear variable differential 

transformer (LVDT) displacement transducer and flux meter (not shown). Generally, 

the micrometer barrel is used to adjust the armature displacement, and the load cell , 

the LVDT and the flux-meter are employed to measure the thrust force, axial position 

and flux-linkage of the coil, respectively. 

Micrometer barrel [mear motor 

Load cell 

Fig. 6.4 Static test-rig for single-phase air-cored quasi-Halbach magnetised motor with 

rectangular magnets [13] 

6.4 Static test results 

6.4.1 Flux linkage 

In this design study, the flux linkage is measured in weber (Wb) using flux meter. 

Initially, the motor coil is connected to the flux meter terminal and the armature 

position is at zero displacement, i.e z = 0.0 mm. Again , micrometer barrel is used to 

adjust the armature displacement. 

Fig . 6.5 compares the measured and finite element predicted of coil flux-linkage. As 

will be seen, the measured flux-linkage is slightly greater than that of finite element 

prediction. This may be due to that fact that the remanence of the magnets in the 

prototype motor is greater than the data sheet value used in the finite element 

predictions. However, a higher flux-linkage will provide a better thrust force. 
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Fig. 6.5 Comparison of measured and predicted coil flux-linkage 

6.4.2 Cogging force 

Cogging force was measured when the motor was not excited. Fig. 6.6 compares the 

measured and FE predicted cogging force waveforms. There is a reasonably 

correlation between the measurement and predictions, bearing in mind that cogging 

is very sensitive to tolerances in the magnetic material properties and mechanical 

assembly [13]. 
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Fig. 6.6 Comparison of measured and predicted cogging force 
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6.4.3 Static thrust force 

When the motor was excited with constant currents of 0.5 A and 0.75 A, the resultant 

force variations with armature displacement were measured by the force transducer. 

The net thrust force at a given armature position was obtained by subtracting the 

cogging force component from the measured value. Fig. 6.7 compares the variation 

of the measured and finite element predicted thrust force with respect to axial 

displacement of the armature. As will be seen, the measured thrust force is slightly 

greater than that of finite element prediction. This result is consistent with those 

observed in Fig. 6.5, and may be due to that fact that the remanence of the magnets 

in the prototype motor is greater than the data sheet value used in the finite element 

predictions. 
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Fig. 6.7 Variation of measured and predicted thrust force with axial position 

6.5 Iron loss test rig 

11 

The iron-cored quasi-Halbach magnetised motor with rectangular magnets has been 

constructed and based on design dimension given in Table 5.2. In this case, the 

armature has been constructed using two axially magnetised ring magnets and 12 

segments for each radially magnetised magnet, mounted on a ferromagnetic tube. 

For the iron loss test rig, the linear bearings which may cause the fiction loss are not 

employed instead the flexure springs as shown in Fig. 6.8 are employed and act as 

springs and bearings [14] [15] . In this case, the friction loss is assumed negligible. 
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A different non-magnetic motor casing has also been designed to accommodate the 

springs and other motor components, such as the armature, the stator core and the 

coil, as shown in Fig. 6.8. 

Flexure spring + Casing 

Fig. 6.8 Linear motor components 

Fig. 6.9 shows the test-rig configuration which was used to measure the iron loss of 

the iron-cored quasi-Halbach linear motor. The function generator is used generate 

variable frequency and amplitude signals which are amplified by a linear power 

amplifier. A step-up transformer is used to increase the voltage applied to the motor. 

A power analyser was employed to measure the motor input power, input current, 

voltage and the power factor. All results are displayed in the digital monitor of the 

power analyser. A digital oscilloscope was used to measure and record the 

instantaneous data such as motor current, voltage and the displacement of the 

armature. 
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Power analyser 

~ Current shunt terminal 

~ Vollalle terminal 

linear lVDT 

Current and Voltalle Po~ltion 

Digital oscilloscope 

Fig. 6.9 Schematic diagram of the iron loss test rig 

Fig. 6.10 shows the measured waveforms of the current, voltage, and armature 

displacement at no-load with a stroke of 9.0 mm and a resonant frequency of 49 Hz. 

As can be seen, the waveforms are essentially sinusoidal. The quantisation effect in 

the current waveform is due to discretisation by the digital scope when the data was 

saved. 
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Fig. 6.10 Measured results as functions of time at 9.0 mm stroke 

6.6 Iron loss results 

6.6.1 Measured data 

Figs. 6.11 (a) and (b) show the variations of measured input current at different 

stroke with frequency. As will be seen, for a given stroke, the motor current is 

minimum at the resonant frequency. The resonant frequency, fr, for stroke equal to 

3.0 mm to 6.0 mm is the same, i.e. 45 Hz. However, the resonant frequency varies 

when the stroke is greater than 6.0 mm as shown Fig. 6.11 (b). This is due to the 
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non-linear force-displacement characteristic of the disc spring. The stiffness 

increases as the displacement being greater than 6.0 mm. The resonant frequencies 

for 7.0 mm, 8.0 mm, 9.0 mm and 10.0 mm strokes are 46 Hz, 47 Hz, 48 Hz and 50 

Hz respectively. 
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Fig. 6.11 Variations of input current at different stroke with frequency 

48 

51 

Fig . 6.12 shows variations of motor input voltage with frequency for different values 

of stroke. As will be seen, the minimum voltage occurs at a frequency slightly higher 

than the resonant frequency. This is due to the fact that although at the resonant 
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frequency, the current is minimum, the system impedance is high since the total 

system resistance is at its maximum [10]. As the frequency increases beyond the 

resonant frequency, the decrease in the total system impedance due to both 

decreases in resistance and inductance, is faster than the increase in current. 

Consequently, the voltage continues to decrease until such a trend is reversed . 
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Fig. 6.13 shows the variations of the total power at different strokes with frequency. 

As will be observed, the output power at the resonant frequency is minimum due to 

the minimum motor current. 
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Fig. 6.13 Variations of total power at different stroke with frequency 

6.6.2 Comparison with finite element analysis 

The measured current and armature displacement waveforms at a given stroke and 

frequency were fed into the finite element model. By way of example, Figs. 6.14 (a), 

(b) compare the measured current and displacement waveforms, respectively, with 
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that used in the finite element prediction at 6.0 mm stroke and 45 Hz frequency. As 

will be seen, at resonance, the current is very small, and the quantisation effect of the 

measurement is neglected in the prediction. 

Fig. 6.14 (b), it can be observed that, the axial displacement is not entirely 

symmetrical with respect to the centre. This may be due to the fact that the stiffness 

of the springs located at two sides is not identical. However, this asymmetry is not 

represented in the finite element model. 

Fig. 6.14 (c) compares the measured and finite element predicted motor voltage 

waveforms. As will be seen, the experimental result agrees reasonably well with finite 

element prediction. 
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Since at resonance conditions, the no-load current is very small and the resulting 

armature reaction field is negligible. The no-load iron loss, Pie, can be determined by 

subtracting the copper loss, PellJ and the eddy current loss, Peddy , from the measuring 

total input power, P" as given by 

6.1 
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The P cu and the Peddy are obtained by irm/ R and finite element prediction as described 

in Chapter 5, respectively, and the data of Pt, P cu, Peddy and f, are tabulated in Table 

6.1. 

Table 6.1 Total power, copper loss and eddy current loss at different stroke 

Stroke length P, PC" P,ddy f, 

(mm) (W) (W) (W) (Hz) 

3.0 1.000 0.026 0.001 45 

4.0 1.248 0.023 0.008 45 

5.0 1.435 0.015 0.006 45 

6.0 1.589 0.029 0.006 45 

1.0 1.681 0.030 0.012 46 

8.0 1.999 0.080 0.021 41 

9.0 2.612 0.191 0.061 48 

10.0 2.915 0.096 0.012 50 

Fig. 6.7 compares the variation of the measured and finite element predicted iron 

loss with armature stroke at the corresponding resonant frequency, f,. As will be 

seen, the finite element calculations agree reasonably well with the experimental 

results and the average percentage error is relatively small, i.e. 4.79 %. Theoretically, 

the same method may be used to obtain measured iron loss at on-load conditions. 

However, since the copper loss and eddy current loss are larger or comparable to the 

iron loss, the subtraction using equation 6.1 will result in a large error. The 

measurement accuracy will be further compounded by the fact that the vibration of 

the test rig increases under on-load conditions, and the power/energy dissipated 

through the vibration, which is a part of motor input power, cannot be quantified. 
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6.7 Performance test 

10 

The efficiency of the iron-cored quasi-Halbach magnetised motor with rectangular 

magnets is evaluated by the experimental setup shown in Fig. 6.16, where the two 

identical motors are connected back-to-back, one operating as motor and the other 

as generator whose output is connected to a variable resistor. Mechanical springs to 

facilitate resonant operation are incorporated in both the machines. 

Input 
voltage ... 

Input voltage 
Input current 

Power Analyzer 

Output voltage 
Output current 

Fig. 6.16 Schematic of load test set-up for prototype motor 

The motor is supplied by a variable frequency/amplitude sinusoidal power source, 

and the input and output powers of the motor and generator are measured by the 
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power analyzer. The losses of the machine under testing include the mechanical loss 

Pml and the electromagnetic loss Pel. The mechanical loss is due to the bearing friction 

and vibration of the test rig, and the electromagnetic loss consists of the copper loss, 

P cu, the iron loss, PITon and the eddy current loss, Peddy, of the moving-magnet 

armature. The sum of PITon and Peddy is denoted by Pie' To separate these loss 

components, three no-load tests were performed at a given supply frequency and 

armature stroke. The first no-load test was carried out with one motor only, and the 

total loss measured as the input power PL1 is given by: 

lh = Pm! +~e +Pcu1 6.2 

The second no-load test was performed with two machines back-to-back connected 

but the magnetic armature of the second machine was replaced by a dummy one 

with the same weight. Thus, the loss in the second machine is purely mechanical. 

Assume that the mechanical loss of the two machines are identical, the total no-load 

loss is given by: 

6.3 

In the third no-load test, the second machine is equipped with the magnetic armature 

which results in iron loss and eddy current loss. Again assume that these two loss 

components are identical in the two machines, the total no-load loss is given by: 

6.4 

The copper loss in each test can be quantified by measuring the input current and 

the coil resistance. Hence, the mechanical loss and the sum of the iron and eddy 

current loss can be evaluated by: 

Pm! =(lh -Pcu2 )-(1l1-Pcu1 ) 

Pie = (PL3 -Pcw3 )-(1l2 -Pcu2 ) 

6.5 

The variations of these two loss components as functions of supply frequency and 

armature stroke can be obtained by performing tests at different frequencies and 

stokes. 

189 



Load tests were performed on the back-to-back connected motor-generator system. 

The mechanical loss of the system can be separated from the measured input and 

output powers using the data obtained in the no-load tests. The copper loss of each 

machine is calculated from measured current and coil resistance and the efficiencies 

of the motor and generator are evaluated by measured input and output powers and 

the iron loss components obtained in the no load tests. Fig. 6.17 shows the variation 

of the machine efficiencies with supply frequency for a fixed stroke of 10.0 mm when 

the generator was connected to a 440 Q resistive load and its output power varies 

from 72 W to 80 W. 
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Fig. 6.17 Measured motor and generator efficiencies as functions of frequency at 10.0mm 

stroke 

The resonant frequency of the system is 44.5 Hz when the equivalent stiffness of 

compressed gas is not present. As will be seen, the efficiency of the generator is 

fairly constant with frequencies and above 93 %, which is close to the predicted value 

of 94 %. However, the efficiency of the motor deteriorates when the operational 

frequency is higher or lower that the resonant frequency of 44.5 Hz. Nevertheless, 

the efficiency at resonant frequency is around 93 %, which is also close to the 

predicted value of 94 %. 
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6.8 Conclusions 

A test rig has been constructed in order to measure the static performances of the 

air-cored quasi-Halbach magnetised motor with rectangular magnets. The measured 

flux linkage, cogging force and static thrust force of the motor agree reasonably well 

with the finite element predictions. 

A iron loss test rig has also been constructed in order to measure the iron loss of the 

iron-cored quasi-Halbach magnetised motor with rectangular magnets. The iron loss 

has been predicted at resonant frequencies at various strokes and the measured 

results were also agreed reasonably well with the finite element predictions. The 

performance of the iron-cored quasi-Halbach magnetised motor with rectangular 

magnets has also been measured and the maximum motor efficiency is 93 %. 
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7.1 Conclusions 

CHAPTER 7 

CONCLUSIONS AND FUTURE WORKS 

An extensive literature review has been conducted encompassing various topologies 

and technologies of linear motor in order to identify the most promising candidates for 

refrigerator compressors. Tubular moving-magnet linear motors offer significant 

advantages in terms of the achievable force density, efficiency, reliability and 

simplicity of construction. Three design variants were selected viz. a single-slot 

tubular moving-magnet linear motor, with different magnet configurations including 

iron-cored and air-cored quasi-Halbach magnetised armatures having a rectangular 

or trapezoidal cross-section. 

Analytical models are useful tool to aid the design of permanent magnet linear 

motors especially in order to obtain initial dimensioning of motor and also the 

technique is less time consuming compared to finite element method. In this design 

study, analytical formulae for predicting the open-circuit magnetic field distribution, 

the flux linkage, and the back-emf and thrust force of the selected motors have been 

established. The accuracy of the analytically derived formulae has been validated by 

comparing results with those deduced from finite element analyses. It has been 

shown that the analytically finite element predicted open-circuit magnetic field 

distribution and back-emf agree reasonably well for all these motors under 

consideration. 

A design methodology to achieve optimal performance of the direct-drive linear 

compressor system employing the iron-cored quasi-Halbach magnetized motor with 

trapezoidal magnets and the air-cored quasi-Halbach magnetized motor with 

rectangular magnets have been described, and the influence of the leading design 

parameters on the system efficiency have been studied analytically. It has been 

shown that in such a direct-drive system, the compressed gas has a significant effect 

on the input impedance of the electrical system, and it is essential that the gas load 

effect is taken into account in the design optimization. Due to the limitation of 

analytical solution which cannot accommodate complex geometries and material 

non-linearities, the leading design parameters have been refined with finite element 

analysis, which results in slightly different design values and improved efficiency. The 
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efficiency of the iron-cored quasi-Halbach magnetized motor with trapezoidal 

magnets is higher than that of the air-cored quasi-Halbach magnetized motor with 

rectangular magnets. However, its manufacturing cost may be higher due to the 

process of cutting trapezoidally shaped magnets. 

An alternative design, a moving-iron tubular permanent magnet motor for refrigerator 

compressor systems has been proposed and optimised using finite element method. 

Initially, the leading design parameters are optimised individually, however, one 

parameter may influence other parameters in term of optimal performance of the 

motor. Therefore, two leading parameters are required to optimise simultaneously. 

Both procedures shown the same results of leading dimension parameters were 

obtained. It has also been shown that in order to achieve satisfactory efficiency, the 

volume of the motor has to be increased significantly. However with the available 

space on a typical household refrigerator compressor, the efficiency of the moving

iron motor is - 2 % lower than the moving-magnet designs. In addition, the material 

cost of the moving-iron motor is very close to those of the moving-magnet motors 

due to employ a cheap magnet material. However, its manufacturing cost is likely to 

be lower, since the permanent magnets have a simple shape, and will be easier for 

assembly. 

An extensive analysis of eddy current loss in the moving-magnet armatures has been 

undertaken. The eddy current losses in the permanent magnets and the supporting 

tube of the iron-cored quasi-Halbach magnetised motor with trapezoidal magnets and 

the air-cored quasi-Halbach magnetised motor with rectangular magnets have been 

analysed using time-stepped two- and three-dimensional finite element analysis. The 

use of segmentations offers the significant advantage in reducing eddy current loss in 

the permanent magnets and supporting tube. By circumferentially segmenting the 

magnets, the eddy current loss of the air-cored motor is relatively small and can be 

negligible due to the absence of a ferromagnetic tube. However, the eddy current 

loss in the iron-cored motor needs to be considered due to the loss in the supporting 

tube was contributed significantly to the total eddy current loss. This is due to the 

circumferential segmentation of the tube is less effective due to its longer axial 

length, and its higher permeability and electrical conductivity. 

The iron loss of the iron-cored quasi-Halbach magnetised motor with rectangular 

magnets has been evaluated under both no-load and on-load conditions using two

dimensional time-stepped finite element analysis. This allows the iron loss to be 
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calculated with arbitrary armature velocity and stator current waveforms, with due 

account of minor hysteresis loops. It has been shown that the no-load iron loss 

which results with a sinusoidal armature velocity is very close to that which would 

result if the armature moves at a constant velocity equal to the average value of the 

sinusoidal velocity profile. 

Comparisons of material costs and performance for four design variants have been 

carried out and based on the light weight of armature which is conducive to improve 

dynamic capability of the compressor system and ease of manufacturing, the air

cored quasi-Halbach magnetised magnet with rectangular magnets has been 

selected for prototyping. A test rig has been constructed in order to measure the 

static performances of the motor. The measured flux linkage, cogging force and static 

thrust force of the motor agree reasonably well with the finite element predictions. 

An iron loss test rig has also been constructed in order to measure the no-load iron 

loss of the iron-cored quasi-Halbach magnetised motor with rectangular magnets. 

The no-load iron loss has been predicted at resonant frequencies where at this 

condition, the motor current is minimum and the armature reaction field is negligible, 

thus allows the flux density in the stator core purely dominated from permanent 

magnets. The influence of the copper loss resulting in the eddy current loss is also 

small. The measured current and armature displacement waveforms from the test rig 

at a given stroke and frequency were fed into the finite element model. The 

measured iron losses were compared and agreed reasonably well with the finite 

element predictions. Theoretically, iron loss at on-load conditions can be measured 

by supplying current to the motor. However, since the copper loss and eddy current 

loss are larger or comparable to the iron loss, the subtraction from the input power 

will result in a large error. The measurement accuracy will also be further 

compounded by the fact that the vibration of the test rig increases under on-load 

conditions, and the power/energy dissipated through the vibration, which is a part of 

motor input power, cannot be quantified. 

The techniques to separate electromagnetic and mechanical loss by three different 

measurements were introduced in order to measure the performance of the iron

cored quasi-Halbach magnetised motor with rectangular magnets. It has been shown 

that the measured motor efficiency is much higher than conventional induction motor 

and may possibly reduce the CO2 emission from refrigerator compressor system. 
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7.2 Future works 

Some issues which are worthy of further investigations are: 

• Rotational loss calculation 

In this design study, the iron loss calculation is purely based on alternating flux 

density either in axial or radial direction using Bertotti equation. However, rotational 

loss which is a part of iron loss has been discussed broadly in electrical machines. 

The loss is significant especially in designing high efficiency motor in order to obtain 

more accurate results. Theoretically, the rotational loss occurs when the flux density 

vector rotates, and its locus moves along an ellipse instead of a straight line. This 

condition normally occurs at the tooth tip and the corner jOints of the stator core as 

shown in Fig. 5.26 (b). Based on the result shown in Fig. 3.6, both radial and axial 

flux density components in the tooth tip region are Significant and the associated 

rotational loss should be analysed and quantified. 

• Implement to air-conditioning compressor system 

The design methodology for linear permanent magnet motors described in this thesis 

may be applicable to direct-drive air-conditioning systems which have a similar 

compressor system to domestic refrigerators. The air-conditioning appliances are 

widely used especially in tropical regions such as in Middle East, Asia and Africa and 

their power consumption is massive. It is therefore worthy of investigating the 

potential energy saving of employing drive-drive linear compressors for air

conditioning systems. 
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Appendix B 

Magnetisation formulae of trapezoidal magnets 

The coefficients in equation 2.6 are defined below: 

Mmn = 
( 

T +_Tmr_+T __ hm T __ Tm_r -T +_hm ] 
-4B p 2 /lIZ 2 p 2 mz 2 

_-=rem::.... cos mil ( ) sin mil ( ) 
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Appendix C 

Coefficient of the iron-cored linear motors 

let 

CI" = Blo(m"R,);C211 = BKo(m"R,); 

Cl " = Bli (m"R",); C4,. = BKI (m"R",); 

Cs" = Blo(m"R",);C6" = BKo(m"R",); 

C7" = Bll (m"Ro);Cg1l = BKI(m"Ro); 

C9" = Blo(m"Ro);Clo" = BKo(m"Ro) 

let AI". BIni and All" and BII" are solution of the following linear equations: 

1 _ C2" 0 0 
C4" 

AI" 
0 

C3" C3n C4" 1 C3"F AN (m"R",) - C4"FBN (m"R",) 
CI " C,,, CIO" BI" = 

_1 [Cs"F AN (m"RIII ) + C6"FBN (m"R",)]-B" Cs" _ C6" 
1 

C6n All" 

CI" C4" J1,CIO" BII" 
J1, 

f.l,B" 
0 0 J1,C9" 1 

Cs" 

aln. bIn. alln and blln are given by: 

a = Aln '-b = Bin. 
I"C'/"C' 

In 4n 

a - P,Alln • b _ BI/n. 11,.----'- lin ----, 
CSII CI01l 
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Appendix 0 

Coefficient of the air-cored linear motor 

Let A 'In. B'In. A'iin. BII" and A 'III" are solution of the following linear equations: 

1 _ C2" 0 0 0 
C4" 

C3" 1 PrC3" _ C4" 0 
C1" Cs" Cs" 
CSII _ C6" 1 C6" 0 
Cln C4" PrCI0" 

0 0 PrC,,, 
1 

C,,, 

Cs" C9" 

0 0 _ C9" C10" 1 
C5" PrCS" 

a 'I". b ·In. a ·IIn. b'II" and a'III" are given by: 

A' a' - In 'b' . I,,--C ' I", 
I" 

11 A' a' - I'4'r II". 
11,,-- C • 

5" 

A' a' - f.1r m". 
IIIII-- C • 

911 

B' b' - I". I,,--C' 
4" 

B' 
b' - II". IJ,,---C ' 

8,. 

A'I" 
0 

B'I" 
C3"F AN(m"Rm)-C4"FBN(m"Rm) 

A 'II" = _1 [CsIIF AN (m"Rm) + C6"FBN (m"Rm )]- B" 

B'II" 
Pr 

0 
A'III" 

B" 
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Appendix E 

Analysis of eddy current loss in tubular permanent magnet linear motors using 

finite element method 

E.1 Eddy current at no-load condition 

E.1.1 Air-cored quasi-Halbach magnetised motor with rectangular magnets 

Fig. E.1 shows the variation of eddy current loss at no-load condition in permanent 

magnets with time for the air-cored motor when the magnet is segmented into 

different number of pieces. As will be observed, it is evident that the eddy current 

loss can be significantly reduced by segmenting the magnet. 
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Fig. E.1 Eddy current loss in permanent magnets for air-cored motor at no-load condition 

E.1.2 Iron-cored quasi-Halbach magnetised motor with trapezoidal magnets 

Fig. E.2 shows the time-variations of eddy current loss in permanent magnets for the 

iron-cored quasi-Halbach magnetised motor with trapezoidal magnets at no-load 

condition. A similar trend to those in Fig. E.1 is observed albeit the magnitude of the 

eddy current loss is higher due to the use of the mild steel supporting tube. 
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Fig. E.2 Eddy current loss in permanent magnets for iron-cored motor at no-load condition 

E.2 Eddy current at on-load condition 

E.2.1 Air-cored quasiwHalbach magnetised motor with rectangular magnets 

Fig. E.3 shows the time-variations of eddy current loss in permanent magnets, when 

it are segmented into different number of pieces for the air-cored motor at the same 

on-load condition as that specified in section 5.2.3. A similar trend to those in Fig. E.1 

is observed albeit the magnitude of the eddy current loss is slightly higher due 

minimum influence of the armature reaction field . 
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Fig. E.3 Eddy current loss in permanent magnets for air-cored motor at on-load condition 
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E.2.2 Iron-cored quasi-Halbach magnetised motor with trapezoidal magnets 

Fig. E.4 shows the time-variations of eddy current loss in permanent magnets for the 

iron-cored motor at the same on-load condition as that specified in section 5.2.3. 

Similar to the air-cored motor, the influence of the armature reaction on the flux 

density waveforms in the magnet is not very significant due to a large effective air

gap to the stator mmf. Thus, with any form of segmentation, the increase in eddy 

current loss in the permanent magnet is relatively small. 
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Fig. E.4 Eddy current loss in permanent magnets for iron-cored motor at on-load condition 
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Appendix F 

Analytical solutions of iron-cored quasi-Halbach magnetised motor with 
Trapezoidal magnets 

~--------------------------------------------------------------------------------------------------------------
~ This Matlab function performs design analysis of a single phase, short -stroke, 
~ quasi-Halbach magnetised motor with trapezoidal magnets. 

~--------------------------------------------------------------------------------------------------------------

~--------------------------------------------------------------------------------------------------------------
~ B-H curve of mild steel 

~--------------------------------------------------------------------------------------------------------------
~ H B 
BHm=[ O.OOOOOOOE+OO O.OOOOOOOE+OO 

0.4010000E+03 0.5338420E+OO 
0.1101000E+04 0.1122760E+Ol 
0.3001000E+04 0.1620190E+Ol 
0.5201000E+04 0.1779050E+Ol 
0.1030100E+05 0.1908120E+Ol 
0.1400100E+05 0.1954620E+Ol 
0.2000100E+05 0.2007300E+Ol 
0.2990100E+05 0.207141OE+Ol 
0.1002010E+06 0.2335230E+Ol]; 

~--------------------------------------------------------------------------------------------------------------
~ B-H curve of Somaloy700 +0.5~Kenolube, cured at 500 C Density 7.32 

~--------------------------------------------------------------------------------------------------------------
~ H B 
BHst1=[O.OO 

97.56 
184.01 
244.07 
304.13 
360.09 
413.60 
467.11 
522.40 
578.85 
635.30 
696.62 
759.67 
824.00 
897.37 
970.75 
1054.54 
1139.52 
1240.39 
1348.17 
1467.65 
1611.74 
1777.34 
1970.42 
2209.75 

0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1.00 
1.05 
1.10 
1.15 
1.20 
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2504.06 1.25 
2874.68 1.30 
3343.02 1.35 
3947.70 1.40 
4719.33 1.45 
5698.88 1.50 
6923.93 1.55 
8417.63 1.60]; 

~--------------------------------------------------------------------------------------------------------------
~ Iron loss constants (Somaloy 700) 

~--------------------------------------------------------------------------------------------------------------
kh =0.08; 

alf= 1.75; 
ke = 1.60e-04; 
sgm=O.O; 

dst = 7.32e03; 
sth= 0.0; 

~--------------------------------------------------------------------------------------------------------------
~ Design parameters of linear motor 

~--------------------------------------------------------------------------------------------------------------
Re = 0.05 ~ Outer radius of stator core(m) 
Rm = 0.02 ~ Outer radius of magnets(m) 
hm = 0.005 ~ Radial thickness of magnets(m) 
Tp = 0.025 ~ Pole Pitch 
Tl = 0.2 ~ Separation distance (8xTp) 
msr = 0.42 ~ Ratio ofTmr to Tp 
bO = 0.01 ~ Slot opening width (m) 
Tpw = 0.04 ~ Tooth pitch width (m) 
Xrs = 0.0105 ~ Rated stroke (m)(0.0105) 

~---------------------------------------------------------------------------------------------------
~ Constants and fixed design parameters of linear motor 

~-----------------------------------------------------------------------------------------------------
Brem = 1.14; ~ Remanence of magnet 
uO = pi*4e-7; ~ Permeability in free space 
ur = 1.05; ~ Relative recoil permeability of magnet 
Pf = 0.65; ~ Packing factor 
ht = 0.001; ~ Height of tooth tip 
alp = 30; ~ Tooth tip angle (deg) 
g = 0.0008; ~ Airgap length 
Btm = 1.0; ~ 1.3 Maximum no load flux density in tooth 
Bym = 1.0; ~ 1.1 Maximum no load flux density in stator yoke 
Bymm = 1.6; ~ Maximum no load flux density in translator yoke 
Nc = 1; ~ Number of turns per pole per phase 
rhoO = 1.68e-8; ~ Resistivity of copper at 20 degree 
rtc = 0.0068e-8; ~ Temperature coefficient of copper 
aT = 43; ~ Ambient temperature 
DT = 37; ~ Maximum temperature rise of winding temperature 
Af = 1.15; ~ armature reaction factor ( approximately inverse of power 

current = 0.5 
Vac =240; 
Vm = sqrt(2)*Vac; 
f =50.0; 

factor) 
~ Current supply 
~ AC supply voltage (V) 
~ Peak voltage 
~ Supply frequency 
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pi2 = 2*pi; 

~--------------------------------------------------------------------------------------------------------------
~ Thermodynamic constants and fixed design parameters of compressor 

~--------------------------------------------------------------------------------------------------------------
global ru q4 np 

Xs = 8.25e-3; 
Xmo = 11.05e-3; 
Ap = 5.31e-4; 
Bv = 1.10; 

mp = 0.1; 

Td = -40:5:80; 

% Preset piston position (m) 
% Maximum piston amplitude 
% Piston area (m"2),NLXI1KK compressor data 
% Viscous damping (N/mls), estimated from NLX11KK 

compressor data 
% Piston moving mass (kg) 

~------------------------------------------------------------------------------------------------------------_. 
% Pressure of saturated liquid and vapor (R600a) 

%--_._-----------------------._------------------------------------------._--_._--------------------_._--------
Pslv = [0.028493 0.0365600.0463600.0581430.0721750.088737 0.l0813 0.l3065 ... 

0.156640.186420.220330.258730.301980.35045 0.404510.46456 ... 
0.530990.604190.684590.772600.868660.973221.08671.2097 

1.3427]*1.0e6; 
np = 1.1073; 
tc = 55 
te = -25 
Ps = interpl(Td,Pslv,te); 
Pd = interpl(Td,Pslv,tc); 
AP = Ap*Ps/pi; 
rp = PdlPs; 
cn= lInp; 

~ polytropic gas constant of R600a 
%input(' Condensor temperature (C) = ~; 
%input(' Evaporator temperature (C) = I); 
~ Suction pressure 
% Condenser pressure 

ruc = (Pd"cn-Ps"cn)/(pd"cn+Ps"cn); 
%----------_._-_._-_._-_._-_.--_. __ ._. __ ._--_.--._-----_.--_ .. _--_._._-_._------------------------------_._----
% Input parameters 
%._._.--••• _-_.--•••••• --•• ----•••••• _--._-------_.----_ •• _---------------_._--_._-----_ •• ---_._ •• _-----_._-_.-

disp (' The unit of all dimensional parameters is in meter'); 
Nsp = 1 %input(' Number of slots = I); 

if(Nsp = 1) 
Twp =0.0; 

else 
% only one concentric coil used 

Twp = input(' Coil pitch (Tp,m) = ~; 
end 
v = pi2*f*Xrs; 
Gr = Xmo-Xrs; 
Rs = Rm+g; 
TIp = Tl+2*Tp; 
Tlpi = pi21Tlp; 

% maximum linear velocity (mls) 
% Top clearance at rated operation 
%Rs value 
% Separation distance + 2*pole pitch 

%--------_ .• _-------_ .. ----._._._-----_._----------------------._------.-_._._.----_._-_._-_._._._--_ .. __ ._----
~ Performance prediction 
%--------------------_ .. _-_._---------_.----. __ .. _ ... _---------.... _-_ ....... _ .... _ ... _._--_._-----.---_._----. 
vcs= 111.3507; % specific volume at the suction temp.(32C) and pressure 
hI = 612.39; % enthalpy at the suction temp.(32C) and pressure (ps) 
h2 = 732.79; % enthalpy at the condensor pressure(pd) and entropy 
h3 = 336.23; ~ enthalpy at the condensor temperature(55C) and pressure (Pd) 
hI4=hl-h3; 
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Tmr = Tp*msr; 
Tmz = Tp-Tmr; 
Ro =Rm-hm; 
Tpf = Tpw/2; 
Tpt = Tpw-bO; 

% Tmr value = Tp*ratio 
%Tmzvalue 
% Outer diameter of ferromagnetic tube 

%--------------------------------------------------------------------------------------------------------------
% Carter's coefficient 

%--------------------------------------------------------------------------------------------------------------

gp = g + hmlur; 
bgp= bOl2lgp; 
Gam= 4/pi*(bgp*atan(bgp)-0.S*log(1+bgp*bgp»; 
Kc = Tpw/(Tpw-Gam*gp); 
ge = g+(Kc-l)*gp; 
Rse=Rm+ge; 

%--------------------------------------------------------------------------------------------------------------
% Calculation ofField Coefficients 

%--------------------------------------------------------------------------------------------------------------
Mra = zeros(200); 
Mrb = zeros(200); 
Ham = zeros(200); 
Hbm = zeros(200); 
ifTI==O 

Np = 20; 
else 

Np= 100; 
end 
ic = input(' Calculate coefficients? (Y or N)','s'); 
if (strcmp(ic, 'V'» 
forn= I:Np 
mn = n*Tlpi; 
mrs = mn*Rse; 
mrm = mn*Rm; 
mro = mn*Ro; 
Cl(n) = besseli(O,mrs); 
C2(n) = besselk(O,mrs); 
C3(n) = besseli(1,mrm); 
C4(n) = besselk(1,mrm); 
C5(n) = besseli(O,mrm); 
C6(n) = besselk(O,mrm); 
C9(n) = besseli(O,mro); 
eIO(n) = besselk(O,mro); 
Rspan = [mro mrm]; 
options = odeset('ReITol',le-4); 
[Ma,habm] = ode23('Fam',Rspan,[0;0],options); 
ham = habm(:,l); 
hbm = habm(:,2); 
Mb =Ma; 
PI (n) = (-2*Breml(Tlp*ur*mn»*(sin(mn*Tp )-sin(mn*(Tmr/2+ Tmz-hml2»); 
% 
P2(n)= (2*Breml(Tlp*ur*hm*mn»*(Tmr/2-hml2+Tmz)*(sin(mn*(Tmr/2+Tmz+hml2»-

sin(mn*(Tmr/2+Tmz-hml2»)+ ... 
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(2 *Breml(Tlp*ur*hm*mn) )*«Tmr/2+ Trnz-hml2)* sin(mn*(Tmr/2+ Trnz-hml2» -
(Tmr/2+Trnz+hml2)*sin(mn*(Tmr/2+Trnz+hml2»)+ ... 
(2*Breml(Tlp*ur*hm*mn*mn»*(cos(mn*(Trnz+Tmr/2-hml2»
cos(mn*CTmr/2+Trnz+hml2»); 

% 
P3Cn)= (2*Breml(Tlp*ur*hm*mn»*(Tmr/2+hml2)*(sin(mn*(Tmr/2+hml2»

sin(mn*(Tmr/2-hml2»)+ ... 
(2 *BremlCTlp*ur*hm*mn»*C(Tmr/2-hml2)*sin(mn*(Tmr/2-hml2»
(Tmr/2+hml2)*sin(mn*(Tmr/2+hml2»)+ ... 
C2*Breml(Tlp*ur*hm*mn*mn»*(cos(mn*(Tmr/2-hml2»-

cosCmn*(Tmr/2+hml2»); 
P4(n) = (2*Breml(Tlp*ur*mn»*Csin(mn*(Tmr/2+hml2»); 
pen) = (2*Pl(n)-P2(n)-P3(n)+2*P4(n»*ur*mn; 
ham = ham*P(n)/mn; 
hbm = hbm*P(n)/mn; 
B 1 (n)= 4 *Brern*(Tmr/2+ Trnz+hml2)*( cos(mn*(Tmr/2+ Trnz+hml2»

cos(mn*(Tmr/2+Trnz-hml2»)/(Tlp*ur*hm*mn)+ ... 

% 

4 *Brem*( sin(mn *(Tmr/2+ Trnz+hml2) )-sin(mn *(Tmr/2+ Trnz
hml2»)/(Tlp*ur*hm*mn"2)+ ... 
4 *Brem*( (Tmr/2+ Trnz-hml2)*cos(mn * (Tmr/2+ Trnz-hml2»
(Tmr/2+Trnz+hml2)*cos(mn*(Tmr/2+Trnz+hml2»)/(Tlp*ur*hm*mn); 

B2(n) = (4*Breml(Tlp*ur*mn»*(cosCmn*(Tmr/2+Trnz-hml2»-cosCmn*(Tmr/2+hml2»); 
% 
B3Cn) = -4*Brem*(Tmr/2-hml2)*CcosCmn*(Tmr/2+hml2»-cos(mn*(Tmr/2-

hml2»)/(Tlp*ur*hm*mn)+ ... 
-4*Brem*CsinCmn*(Tmr/2+hml2»-sinCmn*(Tmr/2-
hml2»)/(Tlp*ur"'hm"'mn"2)+ ... 
-4 *Brem*( (Tmr/2-hml2)*cos(mn "'(Tmr/2-hml2»
(Tmr/2+hml2) *cos(mn'" (Tmr/2+hml2»)/(Tlp *ur*hm*mn); 

B(n) = (Bl(n)+B2(n)+B3(n»; 
c2c4 = C2(n)/C4(n); 
c3c1 = C3(n)/Cl(n); 
c3cS = ur*C3(n)/CSCn); 
c4clO = C4(n)/CIO(n); 
cSc1 = C5(n)/Cl(n); 
c6c4 = C6(n)/C4Cn); 
c6clO = C6(n)/C1 O(n)/ur; 
c9c5 = ur*C9(n)/C5(n); 
Am = eye(4,4); 
Am(1,2) = -c2c4; 
AmC2,1) = c3cl; 
Am(2,3) = c3cS; 
Am(2,4) = c4clO; 
Am(3,1) = cSc1; 
Am(3,2) = -c6c4; 
Am(3,4) = -c6clO; 
Am(4,3) =. c9c5; 

. jam = length(ham); 
jbm = length(hbm); 
ja(n) = jam; 
jb(n) =jbm; 
Mra(1 :jarn,n) = Ma; 
Mrb(l :jbm,n) = Mb; 
Ram(1 :jam,n) = ham; 
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lIbm(1 :jbm,n) = hbm; 
Rhm =[O;hamGam) *C3(n)-hbmGbm)*C4(n);(hamGam)*C5(n)+hbmGbm)*C6(n))/ur-

B(n);ur*B(n)]; 
An = inv(Am)*Rhm; 
aI(n) = An(1)/Cl(n); 
bI(n) = An(2)/C4(n); 
all(n) = -ur* An(3)/C5(n); 
bll(n) = -An(4)/CIO(n); 

end; 
save coefhic aI bI all bll Mra Mrb Ham lIbmjajb; 

else 
load coefhic; 

end; 

~--------------------------------------------------------------------------------------------------------------
~ Calculate flux coefficients of nth harmonic in tooth and yoke regions 

~--------------------------------------------------------------------------------------------------------------
Btpm= 0.0; 
forn = l:Np 
mn= n*Tlpi; 
mrs = Rse*mn; 
mro= Ro*mn; 
Ktpn = sin(mn*Tptl2); 
Bm(n) = (aI(n)*besseli(1,mrs)+bI(n)*besselk(l,mrs»; 
Km = Rse*Bm(n); 
Kmo = Ro*( all(n)*besseli( 1 ,mro )+bll(n)*besselk( l,mro) )/mn; 
phit(n) = 2 *pi2*Ktpn*Km/mn; 
phym(n) = pi2*Kmo; 
Btpm = Btpm-Km*Ktpnlmn; 

end; 

~--------------------------------------------------------------------------------------------------------------
~ Calculation of total flux in tooth and yokes 

~--------------------------------------------------------------------------------------------------------------

fori = 1:361 
z(i) = Tp/180*(i-181); 
Brs(i) = 0.0; 
Mr(i) = 0.0; 
Mrl(i) = 0.0; 
Mr2(i) = 0.0; 
Mr3(i) = 0.0; 
Mr4(i) = 0.0; 
Mz(i) =0.0; 
Mzl(i) = 0.0; 
Mz2(i) = 0.0; 
Mz3(i) = 0.0; 
psit(i) = 0.0; 
psym(i) = 0.0; 
forn= I:Np; 

mn= n*Tlpi; 
Brs(i) = Brs(i)-Bm(n)*cos(mn*z(i»; 
Mr(i) = Mr(i)+«2*Pl(n)-2*P2(n»+(2*P4(n)-2*P3(n»)*cos(mn*z(i»; 
Mrl(i) = Mrl(i)+2*Pl(n)*cos(mn*z(i»; 
Mr2(i) = Mr2(i)+2*P2(n)*cos(mn*z(i»; 
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Mr3(i) = Mr3(i)+2*P3(n)*cos(mn*z(i»; 
Mr4(i) = Mr4(i)+2*P4(n)*cos(mn*z(i»; 
Mz(i) = Mz(i)+ B(n)*sin(mn*z(i»; 
Mzl(i) = Mzl(i)+ Bl(n)*sin(mn*z(i»; 
Mz2(i) = Mz2(i)+ B2(n)*sin(mn*z(i»; 
Mz3(i) = Mz3(i)+ B3(n)*sin(mn*z(i»; 
psit(i) = psit(i)-phit(n)*cos(mn*(Tpf-z(i»); 
psym(i) = psym(i)+phym(n)*sin(mn*z(i»; 

end; 
psiy(i) = psit(i)/2; 

end; 

~--------------------------------------------------------------------------------------------------------------
~ Calculation of the thickness of back iron (yoke) 

~--------------------------------------------------------------------------------------------------------------
phimax = max(abs(psym*O.8»; % Smooth out the peak 
Rb = sqrt(Ro"2-phimax/pi/Bymm); 
hym = Ro-Rb; % Thickness of the back-iron 

~------------------------------------------------------- -------------------------------------------------------
% Calculate stator yoke thickness, tooth and slot width 

%--------------------------------------------------------------------------------------------------------------
c = max(psiy)lBymlpi; 

Re-sqrt(Re*Re-c ); % Radial thickness of stator yoke 
hys = input(' Input the thickness of stator yoke = ~; 
Rh=Re-hys; 
wb = 2*pi*7800*Tp*(Ro"2-Rb"2); 
wm = 2*pi*7500*(Tmr+Tmz)*(Rm"2-Ro"2); 
twm= wm+wb; 

Tw2 = max(psit)lBtml(pi*(Rh+Rs+ht»; 
Sw2 = Tpw-Tw2; 
Twl=Tw2; 
Swl= Sw2; 
a = tan(alp*pi/180); 
thh = (Swl-bO)/2*a; 
hs = Rh-Rs; 
Sa = (hs-ht-thh)*(Tpw-Twl);%(Sw1+Sw2)/2; 

% weight of back-iron 
% weight of magnets 

% tooth height 
% Slot area 

~--------------------------------------------------------------------------------------------------------------
% Calculate the slot volume per pole pair and permissible rms current density 

%--------------------------------------------------------------------------------------------------------------

a = Swl; 
b= Sw2; 
Rl = Rs+ht+thh; 
R2=Rh; 
c = (b-a)/(R2-Rl); 
Vs = 2*pi*(O.S*(a-c*Rl)*(R2"2-Rl "2)+ 1I3*c*(R2"3-Rl "3»; 
Vs = Vs*Nsp; % Total slot volume 
As = pi2*(Re*2*(Tp+Xrs)+(Re"2-Rs"2»; % Total surface dissipation area 
rho = rhoO+rtc*(DT+aT-20); % Resistivity of copper at operating temperature 
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~ --------------------------------------------------------------------------------------------------------------
~ Calculate mmf drops in stator and mover cores 

~--------------------------------------------------------------------------------------------------------------
Brsm = abs(max(Brs»; ~ maximum flux density at the stator bore 
Hym = interpl(BHm(:,2)',BHm(:,1)',Bymm); ~ Hm in mover yoke 
Hys = interpl(BHst1(:,2)',BHstl(:,1)',Bym*Af); ~ Hm in stator yoke 
Hyt = interpl(BHst1(:,2)',BHst1(:,1)',Btm*Af); ~ Hmin stator teeth 
DG = uO*(2*(hs-ht-thh)*Hyt+Tp*(Hys+Hym»lBrsm; ~ Fictitious air gap due to mmf 
drops 
Rsea = Rse + DG; 

~--------------------------------------------------------------------------------------------------------------
~ Re-calculate field solution 

~--------------------------------------------------------------------------------------------------------------
Rse =Rsea; 
forn= I:Np 

mn = n*Tlpi; 
mrs = mn*Rse; 
mrm = mn*Rm; 
mrO = mn*Ro; 
CI(n) = besseli(O,mrs); 
C2(n) = besselk(O,mrs); 
C3(n) = besseli(l,mrm); 
C4(n) = besselk(1,mrm); 
C5(n) = besseli(O,mrm); 
C6(n) = besselk(O,mrm); 
C9(n) = besseli(O,mro); 
CIO(n) = besselk(O,mro); 
Rspan = [mro mrm]; 
options = odeset('ReITol',le-4); 
[Ma,habm) = ode23('Fam',Rspan,[O;O),options); 
ham = habm(:,l); 
hbm = habm(:,2); 
Mb =Ma; 
Pl(n) = (-2*Breml(Tlp*ur*mn»*(sin(mn*Tp)-sin(mn*(Tmr/2+Tmz-hml2»); 
~ 
P2(n) = (2*Breml(Tlp*ur*hm*mn»*(Tmr/2-hml2+Tmz)*(sin(mn*(Tmr/2+Tmz+hml2»

sin(mn*(Tmr/2+Tmz-hml2»)+ ... 
(2 *Breml(Tlp*ur*hm*mn) )*( (Tmr/2+ Tmz-hml2)*sin(mn * (Tmr/2+ Tmz-hml2»
(Tmr/2+Tmz+hml2)*sin(mn*(Tmr/2+Tmz+hml2»)+ ... 
(2*Breml(Tlp*ur*hm*mn*mn»*(cos(mn*(Tmz+Tmr/2-hml2»
cos(mn*(Tmr/2+Tmz+hml2»); 

~ 
P3(n) = (2*Brem!(Tlp*ur*hm*mn»*(Tmr/2+hml2)*(sin(mn*(Tmr/2+hml2»

sin(mn*(Tmr/2-hml2»)+ ... 
(2*Breml(Tlp*ur*hm*mn»*«Tmr/2-hml2)*sin(mn*(Tmr/2-hml2»
(Tmr/2+hml2)* sin(mn*(Tmr/2+hml2»)+ ... 
(2*Breml(Tlp*ur*hm*mn*mn»*(cos(mn*(Tmr/2-hml2»

cos(mn*(Tmr/2+hml2»); 
P4(n) = (2*Brem!(Tlp*ur*mn»*(sin(mn*(Tmr/2+hml2»); 
pen) = (2*Pl(n)-P2(n)-P3(n)+2*P4(n»*ur*mn; 
ham= ham*P(n)/mn; 

. hbm = hbm*P(n)/mn; 
B 1 (n) = 4*Brem*(Tmr/2+Tmz+hml2)*( cos(mn*(Tmr/2+ Tmz+hml2»

cos(mn*(Tmr/2+Tmz-hml2»)/(Tlp*ur*hm*mn)+ ... 
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% 

4*Brem*(sin(mn*(Tmr/2+Tmz+hml2»-sin(mn*(Tmr/2+Tmz
hml2»)/(Tlp*ur*hm*mn"2)+ ... 
4 *Brem*«Tmr/2+ Tmz-hml2)*cos(mn*(Tmr/2+ Tmz-hml2»
(Tmr/2+Tmz+hml2) *cos(mn*(Tmr/2+Tmz+hml2»)/(Tlp *ur*hm*mn); 

B2(n) = (4*Breml(Tlp*ur*mn»*(cos(mn*(Tmr/2+Tmz-hml2»-cos(mn*(Tmr/2+hml2»); 
% 
B3(n) = -4*Brem*(Tmr/2-hml2)*(cos(mn*(Tmrl2+hml2»-cos(mn*(Tmr/2-

hml2»)/(Tlp*ur*hm*mn)+ ... 
-4*Brem*(sin(mn*(Tmr/2+hml2»-sin(mn*(Tmr/2-

hml2»)/(Tlp*ur*hm*mn"2)+ ... 
-4 *Brem *«Tmr/2-hml2)*cos(mn *(Tmr/2-hml2»
(Tmr/2+hml2) *cos(mn*(Tmr/2+hml2»)/(Tlp *ur*hm*mn); 

B(n) = (Bl(n)+B2(n)+B3(n»; 
c2c4 = C2(n)/C4(n); 
c3c1 = C3(n)/Cl(n); 
c3c5 = ur*C3(n)/C5(n); 
c4cl0 = C4(n)/CI0(n); 
c5cl = C5(n)/C1 (n); 
c6c4 = C6(n)/C4(n); 
c6clO = C6(n)/CI0(n)/ur; 
c9c5 = ur*C9(n)/C5(n); 
Arn = eye( 4,4); 
Am(1,2) = -c2c4; 
Am(2,1) = c3cl; 
Am(2,3) = c3c5; 
Am(2,4) = c4c10; 

. Arn(3,l) = c5c1; 
Am(3,2) = -c6c4; 
Am(3,4) = -c6clO; 
Am(4,3) = -c9c5; 
jam = length(ham); 
jbm = length(hbm); 
ja(n) = jam; 
jb(n) = jbm; 
Mra(1 :jam,n) = Ma; 
Mrb(1 :jbm,n) = Mb; 
Ham(l:jam,n) = ham; 
Hbm(1 :jbm,n) = hbm; 
Rhm = [0;hamGam)*C3(n)-hbmGbm)*C4(n);(hamGam)*C5(n)+hbmGbm)*C6(n»/ur
B(n);ur*B(n)]; 
An = inv(Am)*Rhm; 
aI(n) = An(1)/Cl(n); 
bIen) = An(2)/C4(n); 
allen) = -ur* An(3)/C5(n); 
bll(n) = -An( 4)/ClO(n); 

end; 
%----------------------------_ ... _--------------------
% Calculate flux linkage, force and emf coefficients of nth harmonic 
%-----------------------------------------------------------------------
forn= l:Np 

mn = n*Tlpi; 
mrs = Rse*mn; 
mnb = mn*bO/2; 
kdn = sin(mnb)/mnb; 
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if(Twp<=O) 
kpn= 1.0; 

else 
kpn = l-cos(mn*Twp); 

end 
Km = Rse*(aI(n)*besseli(1,mrs)+bI(n)*besselk(1,mrs»; 
kn = Krn*kdn*kpn; 
KT(n) = pi2 *kn; 
phi(n) = KT(n)/mn; 

end; 

%------------------------------------,--------
% Calculation of the flux linkage of stator winding 
%---------------------------

fori = 1:101 
zd(i) = Xrsl50*(i-51); 
psi(i) = 0.0; 
emf(i) = 0.0; 
forn= I:Np 

mn= n*Tlpi; 
mrs = mn*Rse; 
psi(i) = psi(i)- phi(n)*sin(mn*zd(i»; 
emf(i) = emf(i)- KT(n)*cos(mn*zd(i»; 

end 
end 
psi = psi *Nc; 
KEPT = mean(emf); 
KFPT = KEPT; 

% Average emf constant per turn 
% Average force constant per turn 

%--------------------------------,-----------------------
% Calculation of iron loss 

%----------------------------------------------------------------------------------
Ay = pi*(Re"2-(Re-hys)"2); % Yoke area 
At = Tw2*(pi*(Rh+Rs+ht»; % Tooth area 
av = 2*v/pi; % Average velocity 
Atp = pi*«Rs+ht+thh)"2-Rs"2); % Tooth tip area 
Btn = phitl At; %Flux coefficient at tooth per area 
Byn = phitl2/Ay; % Flux coefficient at yoke per area 
Btpx = phitl Atp; % Flux coefficient at tooth tip per area 
Bt = psitlAt; %Total flux at tooth per area(flux density) 
By = psiy/Ay; %Total flux at yoke per area (flux density) 
Btp = psitiAtp; %Total flux at tooth tip per area (flux 

density) 

for i = 1:361 
dBt(i) = 0.0; 
dBy(i) = 0.0; 
dBtp(i) = 0.0; 
for n = I:Np; 

mn=n*Tlpi; 
dBt(i) = dBt(i)+mn*av*Btn(n)*sin(mn*(Tpf-z(i»); 
dBy(i) = dBy(i)+mn*av*Byn(n)*sin(mn*(Tpf-z(i»); 
dBtp(i) = dBtp(i)+mn*av*Btpx(n)*sin(mn*(Tpf-z(i»); 

end; 
end; 
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T =2·Tp/av; 
f1 = 1/1'; 
dt = Tp/180/av; 
Bthm = (max(Bt)-min(Bt»/2; 
Byhm = (max(By)-min(By»/2; 
Btpm = (max(Btp)-min(Btp»)/2; 

% Electrical period 
% Electrical frequency at v 
% Time step 
% Peak: value of flux density in teeth 
% Peak value of flux density in yoke 

th_w = 2·pi·«Re-hys)"2-(Rs+ht+thhY'2)~w2·dst; % Tooth weight 
yk_w = 2·Ay·Tp·dst; % Yoke weight 
%tp_w = 4·pi·Rs·(Tpt·ht+thh·(Tpt+Tw2)/2)·dst; % Tooth tip weight 
tp _ w = 2·«(Rs+ht+thh)"2-Rs"2)·Tw2·pi+«Rs+htY'2-Rs"2)·(Sw I-

bO)/2·pi+«(Rs+ht+thhY'2-(Rs+ht)"2)·(Swl-bO)I2)12·pi)·dst; 
cl =0.0; 
c2 = 0.0; 
c3 = 0.0; 
c4= 0.0; 
c5 = 0.0; 
c6 =0.0; 
for j=1:361 

cl = cl + (dBtGY'2)·dt; 
c2 = c2 + «abs(dBtG») .... l.S)·dt; 
c3 = c3 + (dByG)"2)·dt; 
c4 = c4 + «abs(dBYG») .... l.S)·dt; 
cS = cS + (dBtpG) .... 2)·dt; 
c6 = c6 + «abs(dBtp(j»Y'l.S)·dt; 

end 

%Iron loss in tooth 
Phit = kh·f1·(Bthm"alf)·th_w; 
Pcit = sgm·sth·sthl12ldst·r-cl·th_w; 
Peit = ke·fl·c2·th w' - . 
%Iron loss in yoke 
Phiy = kh·fl·(Byhm"alf)·yk_w; 
Pciy = sgm·sth·sthll21dst·fl.c3.yk_w; 
Peiy = ke·f1·c4·yk_w; 

%Iron loss in tooth tip 
Phitp = kh·n·(Btpm"alf)·tp_w; 
Pcitp = sgm·sth·sthll21dst·fl.cS·tp_w; 
Peitp = ke·fl·c6·tp_w; 

% 
Pimt = Phit+Pcit+Peit; 
Pimy - Phiy+Pciy+Peiy; 
Pimtp = Phitp+Pcitp+Peitp; 

% Total iron loss 
Pim = Pimt+Pirny+Pirntp; 

%--- ____ u_u __ • ______ .. _. ________________________________ __ 

% Calculate self inductances per turn (bipolar winding) 
%---- ............ .. 

Ls = 0.0; 
forn=I:Np 
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mn =n*Tlpi; 
mrs = mn*Rse; 
mro= mn*Ro; 
mnb = mn*bO/2; 
kdn = sin(mnb)/mnb; 
if(Twp<=0) 
kpn = sin(mn*Tlp/4); 

else 
kpn = l-cos(Nsp*Twp*mnl2); 

end 
Im(n) = 2*kpn*kdnlTlp; 
cln = besseli(O,mro); 
c2n = besseIk(O,mro); 
c3n = besseli(O,mrs); 
c4n = besselk(O,mrs); 
c5n = besseli(1,mrs); 
c6n = besselk(1,mrs); 
Detn = c2n*c3n-cln*c4n; 
Ln = Im(n)*(c2n*c5n+cln*c6n)*kpn*kdnlmnlDetn; 
Ls =Ls+Ln; 

end 
Ls = uO*2*pi*Rse*Ls; 

~--------------------------------------------------------------------------------------------------------------
~Calculate slot leakage inductance 

~--------------------------------------------------------------------------------------------------------------
Ie= Rh-(Rh-thh-ht-Rs)l2; 
%le = (Rh+Rs+ht+thh)/2; ~ Average radius of coil 
LskO = uO*2*pi*((Rs+ht)*(htlbO+2*thhI(Sw1+bO» 

+le*(hs-ht-thh)/3/Sw 1); 
LsO = Ls + Nsp*LskO; ~ Total self-inductance per turn 

%--------------------------------------------------------------------------------------------------------------
~ Calculate resistance and inductance constants 

~--------------------------------------------------------------------------------------------------------------
omega = pi2 *f; 
m = twm + mp; ~ Total moving mass 

%--------------------------------------------------------------------------------------------------------------
~ Calculate steady state compressor characteristic 

~--------------------------------------------------------------------------------------------------------------

ic = input(' Calculate characteristic data? (Y or N)','s'); 
if (strcmp(ic,'Y'» 

fori = 1:100 
ru= O.OI*i; 

. Ru(i) =ru; 
if (ru <= ruc) 

q2 = pi; 
q4 = 2*pi; 
tbr(i) = 0.0; 

else 
al = ((Ps/Pd)Acn*(1+ru)-I)/ru; 
q2 = acos(al); 
al = ((pdlPs)Acn*(l-ru)-l)/ru; 
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q4 = 2·pi-acos(al); 
fhr(i) = (np/(np-l»·(rp·(cos(q2)+ l)+cos(q4)-1)/ru; 

end 
Qspan = [0 q2]; 
clear FFsl FFs2 FFkl FFk2 
options = odeset('ReITol',le-4); 
[qt FFsI] = ode23('Fsl ',Qspan,[O;O],options); 
isl-Iength(FFsI(:,l»; 
ikl =length(FFsI(:,l»; 
if (q4<= pi) 

fsr(i) = FFsI(isl,1)+rp·(pi-q2)-q4; 
fler(i) .. FFsI(ikl,2); 

else 
Qspan - [Pi q4]; 
[qt FFs2] - ode23('Fs2',Qspan,[0;0],options); 
is2 -length(FFs2(:,1»; 
ik2 -length(FFs2(:,2»; 
fsr(i) .. FF s I (is 1,1 )+FFs2(is2.1 )+rp·(pi-q2)-q4; 
flcr(i) - FFsI(ikl,2)+FFs2(ilc2,2); 

end 
end 
Fs - fsr·CAP/2); 
flcr .. flcr· AP; 
fhr= fur· AP; 

save charadata Ru Fs fsr fkr fur 
else 

load charadata 
end 
keqO - flcrlXmO; 
heqO .. fhrlXmO; 
[keqm,im] - max(keqO); 
keqa - mean(keqO(im: I 00»; 
rue - XrsIXmO; 
heqa - interpl(Ru.heqO,rue); 
K - m·(omega)1\2 • keqa; 
Fsa - mean(Fs(im:l00»; 
Xs - XmO • FsalK; 
XOE - Xs+FsIK; 
for i"l:lOO 

U(i) - XOE(i)·Ru(i); 
keq(i) - fkr(i)/XOE(i); 
heq(i) - thr(i)IXOE(i); 
if(i<im) 

etvCi)=O; 
else 

% Average stiffness of gas 

% Equivalent gas damping at rated operation 
% Spring constant 
% Average static force of gas 
% Piston preset position 

etv(i)-1.0-(XOE(i)-U(i»/2IU(i)·«pd/Ps)"cn-I); % Clearance volumetric efficiency 
end 

end 
%.... . •....... 
%Determine the number of turns per pole per phase 
%,..._ .. _ •• _ •• _._ .. _ .• _ ... _._ .•• _.a_a __ .. _ .. _._. ________________________ _ 

we - pi2·f; 
Jrms - (we·Bv+heqa)·XrsI(KEPT·Sa·Pt)/sqrt(2); 
Deta - (K+keqa-wc"2·m)1\2+(we·Bv+heqa)1\2; 
JSP - Jrms·Sa·Pf; 

% Jrms is determined by 
% required compressing force 
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ic = input(' input LsO 1 (y or N)','s1; 
if (strcmp(ic, 'Y'» 

LsO .. input(' Permeance of stator coil .. '); 
end 
KLO == omega ·LsO· JSP; % Bipolar winding 
KRO == 2·pi·Nsp·le·rho·Jrms; 
KREC == we·JSP·(KEPT"2)·(we·Bv+heqa}'Deta; 
KLEC == we·JSP·(KEPTI\2)·(K+keqa-wC"'2.m)lDeta; 
Nc .. round(Vaclsqrt«(KREC+KRO),,2+(KL()+KLEC)"2»; 
ic = input(' input Nc 1 (Y or N)','s'); 
if (strcmp(ic,'Y'» 

Nc == input(' Number of turns ... '); 
end 

%~------------------------------------------------------% motor parameters 

%~-------------------------------------------------------emf- Nc·emf; 
F == emf*Jrms·p~Sa; 
R == Nsp·2·pi·le·rholP£lSa.Nc.Nc; 
Le .. LsO·Nc"2; 
Ke" KEPT·Nc; 
Kt .. KFPT·Nc; 
fori == 361 

z(i) - Tp/180·(i-181); 
Force(i) .. 0.0; 
Force(i) .. Force(i)+Kt·z(i)·0.5; 

end; 

% emf constant 

% phase resistance 
% phase inductance 
% Average emf constant 
% Average force constant 

0/0- ad •••• 
. ........ _._ .• _ .. __ .. _. _ .. _ .. _.v ____ . ______ , ___ _ 

% Performance prediction 
% • TV La • va •••• ••• La ••••••••••••••••••••••• 

VCS - 111.3507; % specific volume at the suction temp.(32C) and pressure 
hI - 612.39; % enthalpy at the suction temp.(32C) and pressure (ps) 
h2 - 732.79; % enthalpy at the condensor pressure(Pd) and entropy 
h3 .. 336.23; % enthalpy at the condensor temperature(5SC) and pressure(Pd) 
h14" hl-h3; 

~----------------------...•...•••• -. . •....•...•.......•• --------------------------------------------------
% Calculate performance at a given frequency 
0/0------............ --... ...... . ... __ ... . ... ------------------

we" 2·pi·f; 
Xc-we·Le; 
Zc2 ... R"2+ XC"'2; 
al - sqrt(Zc2)/Kt; 
cl - K-wC"'2·m+(we·Kt)1\2·Le/Zc2; 
c2 - wc·Bv+we·Kt"2·RlZe2; 
fAy .. ~ Ap/vcs; 
[Um,ium]'" max(U); 
for i -l:ium 

V(i)=al.sqrt«cl +keq(i»"2+(c2+heq(i»"2)*U(i)/sqrt(2); 
Det - (K+keq(i)-wC"2·m)1\2+(we·Bv+heq(i)1\2; 
Rec - Kt·Kt·we*(wc·Bv+heq(i»lDet; 
Lee'" Kt·Kt·(K+keq(i)-wC"'2·m)lDet; 
Res(i)'" R+Rec; 
Les(i) = Le+Lec; 
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Rep(i) = Kt*Kt*we*heq(i)lDet; 
Rev(i) = (Kt*weY'2*BvlDet; 
Zes(i) = sqrt(Res(i)"2+(we*Les(i»"2); 
lei) = V(i)/Zes(i); 
cosf(i) = Res(i)/Zes(i); 
Po(i) = Rep(i)*I(i)"2; 
Pcu(i ) = R *I(i)1\2; 
Pi(i) = V(i)*I(i)*cosf(i)+Pim; 
Porn(i) = Pi(i)-Pcu(i)-Pim; 
etam(i) = Porn(i)lPi(i); 
Pv(i) = Rev(i)*I(i)"2; 
eta(i)= Po(i)lPi(i); 

end 

md(i) = 2*U(i)*fAv*etv(i); 
Pc(i) = h14 *md(i) * 1 000; 

Cop(i)= Pc(i)/Pi(i); 

% mass flow rate 
% Cooling capacity in W 
% Coefficient of performance 

dispe' Performance at 0.85 volumetric efficiency') 
Motoreff = interp 1 (etv(im: ium),etam(im:ium),O. 865) 
Systemeff = interpl(etv(im:ium),eta(im:ium),0.865) 
Outpower = interp 1 (etv(im:ium),Pom(im:ium),0.865) 
Copperloss ... interpl(etv(im:ium),Pcu(im:ium),0.865) 
COP - interp 1 (etv(im:ium),Cop(im:ium),0.865) 
PC ... interp 1 (etv(im:ium),Pc(im:ium),0.865) 
POM = interp 1 (etv(im:ium),Pom(im:ium),0.86S) 
XRS ... interpl(etv(im:ium),U(im:ium),0.86S) 

disPe' 1 D arrays: i-index for piston amplitude U' ) 
disPe' Veil - Supply rms voltage (V)') 
disPe' I(i) - Supply rms current (A)') 
dispe' Res(i) - Equivalent system resistance (ohm)') 
disPe' Les(i) - Equivalent system inductance (H)') 
dispe' Zes(i) -- Equivalent system impedance (ohm)') 
dispe' Rep(i) - Equivalent resistance for useful work (ohm)') 
dispe' Rev(i) - Equivalent resistance due to viscous damping (ohm)') 
dispe' Po(i) - Output power (W)') 
dispe' Pi(i) --Input power (W)') 
disp(' Pv(i) - Power consumption on the viscous damping (w)1 
dispe' cosf(i) - Power factor') 
dispe' eta(i) - Efficiency of linear compressor system1 
disPe' etam(i) - Efficiency of linear motor') 
dispe' etv(i) - Efficiency of Clearance volumetric efficiency') 
dispe' md(i) - Mass flow rate') 
disPe' Pc(i) - Cooling capacity in Watt') 
dispe' Cop(i) - Coefficient of performance') 
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