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SUMMARY 

Magnetorheological (MR) fluids enable the rapid and continuous alteration of flow 
resistance via the application of a magnetic field. This unique characteristic can be 
utilised to build semi-active dampers for a wide variety of vibration control systems, 
including structural, automotive, and aeronautical applications. As an example, MR 
fluids could enhance the performance of aircraft landing gear, which are subject to 
widely varied and unpredictable impact conditions with conflicting damping 
requirements. 

In this thesis, a numerical sizing methodology is developed that enables the impact 
performance of MR landing gears to be optimised. Using real data provided by landing 
gear manufacturers, the sizing methodology is applied to both lightweight aircraft, and 
large-scale commercial jets in order to demonstrate scalability. For both aircraft types, 
results indicate that the peak force and the severity of fatigue loading can be enhanced 
over a wide range of impact conditions. However, it is shown that MR landing gears 
can be heavier than passive systems. To validate the numerical approach, a prototype 
MR landing gear shock strut is designed, fabricated, and tested. Good correlation 
between the model and experiment is demonstrated, particularly for low velocity 
excitations. 

MR dampers exhibit highly non-linear force-velocity behaviour. For landing gear 
impacts, it transpires that this behaviour can be used to an advantage, where it is shown 
that an acceptable performance can be obtained using open-loop control i.e. with a 
constant magnetic field. However, this non-linear behaviour is highly undesirable for 
other scenarios (e.g. an aircraft taxiing), and as a consequence, the choice of an effecti\'e 
control strategy remains an unresolved problem. A further aim of this thesis is therefore 
to develop effective control techniques for broadband excited MR vibration systems. 

Through an extensive series of numerical and experimental investigations, case studics 
representative of the general single-degree-of-freedom and two-degree-of-freedom 
vibration isolation problem are presented. In the experiments, the hardware-in-the-Ioop
simulation method is adopted, which provides an excellent means to bridge the gap 
between theory and practice when the behaviour of a specific component is complex. 
Here, the MR damper is physically tested, whilst the remainder of the structure is 
simulated in real-time. The results demonstrate that the chosen control strategy can 
provide significant performance benefits when compared to more commonly used 
strategies and equivalent passive systems. Furthermore, the control strategy is shown to 
be insensitive to factors such as the type of input excitation. 
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NOMENCLATURE 

a Amplitude of sine wave signal 
(/10 Outer cross-sectional area of the cylinder containing gas 

a2i Piston area 
(/20 Outer cross-sectional area of the cylinder that seals against the piston head 
ao Cross-sectional area of a passive orifice 
A Energy absorbed by the shock strut 

AI Cross-sectional area of the bobbin core 
A2 Cross-sectional area of the flux return 

A3 Cylindrical area at !}le interior of the bobbin flange 

Ac Cross-sectional area of the copper wire 

A[ Pole area of the fluid 

A.I Pole area of the valve material 
h Mean annular circum ferencc of the valve 
B Feedback gain 

Br Magnetic flux density in the fluid 

BI Magnetic flux densi!y_}n thc valvc material 
c Tyre constant 
C Road surface fitting ,constant 

Crt Discharge coefficicnt 
Cli Passive damping coef11cient 

CPOS1 Post yield damping coefficient 
Cpre Pre-yield damping coefCicient 

, 

C,· Damping coefficient of the tyre 
d Mean valve diameter 

df! Orifice diameter of the passive valve 
D Set-point gain of the linearised system 

Dmax Maximum shock strut displacement during an impact 

Df! Piston head diameter 

D. 
\m,1\ 

Shock strut displacement at the maximum piston vclocity 

DIS Set-point gain of the fully active skyhook system 
DISm Set-point gain of the fully active modified skyhook system 

DMR Set-point gain of linearised skyhook system 
D MRm Set-point gain of the linearisecl modified skyhook system 
D SAS Set-point gain of the ideal semi-active skyhook system 

--

D,)'ASm Set-point gain of the ideal s~mi-active modified skyhook system 

r Frequency 
F Actual damping force 

-~----

Fd Set-point damping force 

F" Gas spring force 

FiJ Hydraulic clamping force 
, 

F 
hJlhl\ 

Maximum damping force requirement of the landing gear 
--_ .. 

FI}I(/X Maximum shock strut force during an impact 

FI Shock strut force 
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FI Tyre force 
-

F) Yield force 
g Acceleration due to gravity (9.8Ims-L

) 

G Feedforward gain 
--

G(s) Transfer function of the yield stress response 
h Valve gap height 
he Coil height 

Hf Magnetic field strel:tgth in the fluid 

HI' Magnetic field strength in the valve material 
I Current 

---

IcH Constant current level of the open-loop system 
II Initial current 

12 Final current 
11/1([.\ Switching current of the on/off controller 

k Linear sti ffness of the fluid 
K Vehicle suspension sti ffness 

Ki.l·o Stiffness of SDOF mass-isolator 

KlI' Linear tyre sti ffness 
I Length of individual valve 

1([ Active valve length 
------_. 

Ie Length of wire 

11' Length of the passive valve's orifice 

II Total length of the multi~staged valve 
L Lift 

Le Inductance ofthe coil 
L, Length of flux path through the valve material 
1111 Mass representing fluid inertia 

1112 Mass of piston head 
111 Gas exponent 

1111' Distributed mass of aircraft 
-1 

-_. 

1111' Mass of valve _ .. _ ... -

111". Mass of wheel and tyre assembly 
M Mass of SDOF mass-isolator 

Me Mass of vehicle 
11 Number of individual valves/stage number 
N Number of turns 

p Power 
p Pressure 

PI Fluid pressure in chamber 1 
P2 Fluid pressure in chamber 2 
p([ Gas pressure 
p([o Initial gas pressure 

-- --_. 

Q Volume flow rate 
-~--

Qi Volume flow rate into control volume 
-----

Qil Volume flow rate into chamber 1 
QJ 1- Volume flow rate into chamber 2 
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Qmax Maximum valve flow rate during impact 
Qo Volume flow rate out of control volume 

Qol Volume flow rate out of chamber 1 
Qo2 Volume flow rate out of chamber 2 

r Tyre exponent 

Re· Resistance of coil 
Re Reynolds number 
Ret Critical Reynolds number 

s Laplace operator 

S(~J) Displacement power spectral density of road surface 
t Time 
ta Bobbin core radius 
tb Bobbin flange height 

td Instant of time when shock strut deflects 
v Fluid volume 

VIO Initial fluid volume in chamber 1 
V20 Initial fluid volume in chamber 2 
Va Gas volume 

VaO Initial gas volume 
V Piston velocity 
Vc Horizontal vehicle velocity 

VII/ax Maximum piston velocity 

v"illk Aircraft sink velocity 
W Road surface exponent 
We Coil width 
W Aircraft weight 
x Displacement of the shock strut 

XI Displacement of the mass representing fluid inertia 
X2 Displacement of the piston head 
X/J Displacement of the base 
Xc Displacement of the vehicle mass 
XII/ Displacement of the isolated mass 
x,. Road surface height 
XlV Displacement of the wheel mass 
X Distance along the mean valve radius 
z Displacement of SDOF in~pact system 

Zp Displacement of distributed aircraft mass 
Zw Displacement of wheel and tyre assembly 
-', Critical acceleration that causes shock strut deflection 

a Modified skyhook weighting parameter 

fJ Bulk modulus of fluid 

X Quasi-steady MR damping function 

c5 Dimensionless valve length 

!Jill r Extra mass of fluid 
1\1\ Pressure drop across the inactive valve length 
/\ P,,, Pressure drop across the active valve length 
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/JP/}/{I.\ 

Lit 
---

LiQ 

~ 
-~ 
-~'--

(I) 

.~~ 

Zero-field pressure drop 
----~-~------------

Maximum valve pressure drop (Active + inactive) 
Time delay associatcd with the actuator dynamics 

~~,tg~l~~~I~l;U~OW r=c __ ___ ~ _= ___ ----=---: ... ----=-~. = 
Magnetic flux in the Iluid ~ 

- ---~-----~~-~-- ~- -- ~~- -- ~---~--.-~~--------- - -----j 

Magnetic flux in the \alve material ! 
~ -~~ ----- -- - --~-~-~--- --~---~~------- .. ---~--1 

Volume fraction oi'irol1 particles 

Phase associated with the actuator dynamics 
- -----~--~ -- -------~--.-----.-~---------~-----

Shear rate 

,1 Control ratio 
- ~-- ~ --- ----_.--- ~~-~-~~ -~-

~ Viscosity of MR fluId 
-- -- - - --- ------ ----~--------j 

Magnetic constant (j7T ~ L0 ~Jl~l_) _______ ~ ___________ j 
__ ~_ __Density ~Qlycl~~IIi~ oil _______ ~~ _~~~~ __ ~ ___________ ~. ~j 
__ PllIL Density of'MR fluid ! 

-Resistivity of' copper -- ~-- - ----------- --- --I 

T Time constant 
--------- ---------------

-.!..I- MR fluid yield stress 
f------- ~--.~--~~~-.~ -~ 

r I,,,,, Maximum MR fluid vil'ld strcss 

Wavc-null1 ber 

Damping ratio 
--- -------- --- ---

Minimum damping rati() 
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ABBREVIATIONS 

ADLAND European project name- 'Adaptive landing gear for improved impact 
absorption' 

CBA Car Body Acceleration 
ER Electrorheological 

FEA Finite Element A~~~~ys~~ ___ 
GM General Motors 

---

HILS Hardware In the Loop Simulation 
LSL Large Scale Leyered 
LST Large Scale Tclescopic 

LVDT Linear Variable Displacement Transducer 
PSD Powcr Spectral Density 

NASA National Aeronautics and Space ~dministration 
RMS Root Mean Square 
SDOF Single Degree OrFreed~m 
SWS Suspension Working Space 
WCF Wheel Contact Force 

I 2DOF Two Degree or Freedom 
--

5 



MR Shock Absorbers Chapter 1: Introdllction 

CHAPTER 1. INTRODUCTION 

The theory of vibration within an engineering context has been studied for over a 

century II, 2]. This early research was fuelled by the need to understand and hence 

better control the vibrations in machines and structures (such as rotating shafts, turbine 

blades, buildings and bridges), which were ever increasing in size and complexity [2]. 

The original solutions described by Timoshenko [2J and Den Hartog [1 J were often 

based upon the use of passive devices such as the addition of springs, dampers and/or 

masses. However, achieving a desirable performance over a wide range of excitation 

conditions was soon recognised as a problem [1]. This 'passive' limitation led to the 

development of active and semi-active systems, which can alter their suspension 

characteristics in response to sensed variables [3]. One of the most novel 

methodologies to date incorporates the use of smart fluids, which can be used to build 

semi-active devices. Such fluids enable the rapid and continuous alteration of flow 

resistance via the application of an electric or magnetic field [4]. 

In what follows, the relative merits of passive, active, and semi-active vibration control 

methodologies are described with particular emphasis on the use of 'resilient isolation' 

[5J or suspension systems. This will serve to highlight the significant benefits that can 

be gained by employing smart fluids in such systems. Particular attention is given to 

aircraft landing gear and vehicle suspensions, which are the key systems investigated in 

this thesis. The introduction concludes with some background information, and the 

outline and objectives of the present research. 

6 



MR Shock Absorbers Chapter i: introduction 

1.1 The relative merits of passive, active, and semi-active suspensions 

Passive suspensions are the most frequently adopted solution to vibration control. This 

is due to their inherent simplicity, reliability and low cost. To give just a few examples, 

passive suspensions are utilised in automobiles, aircraft, locomotives, and buildings [5]. 

As shown in Figure 1-1, passive systems typically comprise masses, springs and 

dampers, which are "passive" in the sense that a power source is not required [6]. Thus, 

the suspension elements can only store and dissipate energy associated with local 

relative motions. Moreover, this energy cannot be controlled, as the suspension 

properties remain fixed for all time. This characteristic represents the passive system's 

most significant shortt~lll, as the suspension parameters will only be optimal for specific 

conditions [7]. Therefore, where structures are subject to a wide variety of excitation 

conditions, performance will sutTer. 

As an example, aircraft landing gears are subjected to a wide range of impact conditions 

due to variations in sink speed, angle of attack and mass. The landing gear must be able 

to absorb sufficient energy in severe impacts or crash landing scenarios in order to 

minimise structural damage. To accommodate this requirement, the performance for 

more common (i.e. less severe) impacts will be compromised, and this will reduce the 

aircraft's structural fatigue Ii fe and increase levels of passenger discomfort. 

Furthermore, the damping requirements during taxiing connict with the impact phase of 

landing. For example, a low damping rate is required such that the full stroke of the 

shock absorber is utilised in the face of high velocity impacts [8]. During taxiing, a 

high damping rate is required in order to accommodate the lower velocity excitations 

and thus prevent excessive heave and pitch motions [8]. Similar perfOlll1anCe trade-offs 

exist for vehicle suspensions. Large variations in road surface conditions, vehicle mass, 
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and driving style result in conflicting suspension configurations that provide optimal 

performance. For example, Sharp and Hassan [7] showed that to obtain good 

performance over many different road surfaces with a fixed suspension working space, 

wide variations in the suspension parameters are required. Another classic perf01111anCe 

trade-off can be explained by comparing sports cars with conventional family vehicles. 

Whilst sports cars have stiff suspensions to maximise handling, this degrades the ride 

quality. On the other hand, family cars have softer suspensions to improve passenger 

comfort, but this is at the detriment of road holding [3]. Clearly, such perfo1111ance 

conflicts cannot be overcome with passive suspension elements. 

To overcome the limitations described above, considerable attention has been paid to 

active suspension systems [9-14], which began to be developed most notably in the 

1950's and 60's [3]. Typically, a hydraulic actuator is used to both supply and dissipate 

energy to and from the vibrating structure. Here, electro-hydraulic servo-valves control 

the flowrate of high-pressure fluid that is pumped into and out of the actuator. 

Consequently, using appropriate sensors and control logic, signi ficant vibration 

perfonnance can be achieved over wide ranging excitation conditions. 

As an example, McGehee et al. [9] presented an experimental investigation of an active 

landing gear, and demonstrated that the initial decelerating force during touchdO\vn 

could be reduced by 32% under certain conditions. In passenger vehicles, Crolla noted 

that an active system could enhance ride comfort by 3Y/,;) [15]. However, in the same 

article, Crolla also pointed out that the development of active vehicle suspensions has 

been "dropped". This is due to the associated high cost, power consumption, weight 

and complexity, which significantly outweigh the potential performance enhancements. 

8 
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For example, Csere [16] noted that the Nissan Infinity active suspension was $5500 

more expensive than a conventional suspension, 2021bs heavier, and absorbed 3-5 

horsepower. Again, due to the increased weight, cost and complexity, active landing 

gears have not been introduced onto production aircraft [8], in spite of the significant 

research developments in this field [9,10,17-19]. 

Semi-active systems offer an attractive COmpr0111lSe between passIve and active 

suspensions. Such systems provide a means to control energy storage and/or 

dissipation. However, unlike active systems, semi-active devices cannot increase the 

energy of the system, thus the power requirements are significantly lower. Furthermore, 

their performance can approach that of fully active systems [7, 20], whilst their weight, 

cost and complexity is potentially more comparable to passive devices. 

Arguably, the most significant semi-active control policy to date was described by 

Karnopp, e/ 01. [6]. The concept was based on work by Bender, et 01. [21], where linear 

optimal control theory was used to derive the optimum control force for a single-degree

of-freedom (SDOF) system. It transpired that this optimum force could be realised by 

the series combination of linear passive clements shown in Figure 1-2. This is called 

skyhook damping, as in most practical cases it is not possible to connect the damper to 

an inertial reference [6]. The performance advantages of skyhook damping are 

illustrated in Figure 1-3, which shows typical transmissibility plots for SDOF systems. 

In contrast to a passive system (Figure 1-3(a)), skyhook control enables the significant 

attenuation of the resonant peak without degrading the high frequency response (Figure 

1-3(b)). 

9 
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To emulate the skyhook configuration, an active system is required to generate the 

necessary force inputs. However, Karnopp [6 J described how this policy could be 

implemented in a semi-active manner, by adopting what is commonly referred to as a 

clipped optimal approach. Essentially, a semi-active damper generates the skyhook 

force when there is a requirement for energy dissipation. As shown in Figure 1-4(a), 

this occurs when the skyhook force has the same direction as the relative velocity across 

the damper. When an energy input is required, the semi-active device produces no force 

at all, or (at least) the level of energy dissipation is minimised. 

Various semi-active dampers have been proposed, which are often controlled by altering 

the geometry of the oil now passages or orifices. Karnopp [6J proposed the clcctro

hydraulic device shown in Figure 1-5, which enabled the separate control of 

compressive and rebound forces using solenoid operated poppet valves. eebon el 01. 

[22J investigated a valve adjustable semi-active damper for lorry suspensions. These 

authors pioneered the hardware-in-the-loop-simulation (HILS) method, which enabled 

various controller designs to be investigated experimentally. Here, the semi-active 

damper was physically tested with a hydraulic actuator, whilst the remainder of the 

vehicle was simulated in real-time. Using realistic road excitations and a skyhook

based controller, it was shown that vehicle body accelerations could be reduced by 22% 

over an optimally damped passive system [22]. 

Semi-active damping has also been investigated for aircraft landing gear. Ghiringhclli 

[23J used an electro-hydraulic servo-valve to aIter the orifice shape during the impact 

phase of landing. The device was showll to outperform an equivalent passive system 

with an optimised orifice. Maemori ct ([/. [24] used a stepping motor to rotate a 

10 



MR Shock Ahsorbers Chapter 1: Introduction 

"control tube" that altered the flow passages during landing impacts. In another study, 

Kriiger [8] numerically investigated the control of semi-active landing gears for aircraft 

taxiing manoeuvres. A time constant of 25ms was used to account for the control valve 

dynamics, although the actuation methodology was not addressed. In that study, Kriiger 

demonstrated reductions in RM S vertical cockpit acceleration of up to 40%. 

Despite the significant advantagcs associated with reduced power consumption, semi

active devices utilising variable orifice methods are still potentially unfeasible. For 

example, they require a large number of moving parts, and components are often similar 

to those used on active systems (e.g. electro-hydraulic valves). Consequently, they can 

be as complex, costly and bulky as active devices. Smart fluids on the other hand, 

provide an excellent, and arguably the most superior means to provide vibration control. 

Such fluids permit semi-active damping via alteration of the fluid properties rather than 

the flow geometry. Their key advantages are as follows: 

• The fluid properties can be rapidly and reversibly changed USll1g a low power 

electrical source. For example, the smart fluid shock absorber produced by Delphi 

(known as MagneRide [25]) has a peak power of 20W, and the RMS value is just a 

small fraction of this [26]. 

• The response times, which are typically under 10ms, are faster than other semi

active shock absorbers [26]. 

• Smart fluid devices are fairly straightforward to design within the constraints of 

existing passive designs. 

1 1 
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• No small moving parts are required. Carlson [26] noted that Delphi's MagneRide 

shock absorber has 60% fewer parts than their previous electro-mechanical seml

active damper system. 

In conclusion, the cost-effectiveness and simplicity of smart fluid devices could 

approach that of passive systems, unlike other active/semi-active systems. Combining 

this with their potential to provide performance benefits that approach active systems, 

smart fluids are clearly a superior solution to vibration control. The above factors have 

contributed to the significant commercial success of smart fluid devices, [26-28], which 

has not been experienced by any other active/semi-active system. 

At this stage, it is appropriate to give a more detailed description of smart fluids, which 

is dealt with in the next section. 

1.2 Smart fluids 

There are two main classes of smart fluid the first exploits the electrorheological (ER) 

effect, and the second utilises the magnetorheological (MR) effect. ER fluids comprise 

micron-sized semi-conducting particles dispersed in an insulating oil. On the other 

hand, MR fluids consist of micron-sized magnetisable particles (typically iron) 

suspended in a non-magnetisable liquid such as mineral oil, silicone oil or \vater. 

Microscopically, when the appropriate field is applied (magnetic or electric), 

polarisation causes the formation of particle chains as illustrated in Figure 1-6(a). The 

strength of these chains, which is determined by the intensity of the applied field, 

provides an increased resistance to flow. In macroscopic terms, this increased 

resistance exists in the form of a controllable yield stress, which is much like a Bingham 

plastic as shown in Figure 1-6(b). It is this yield stress phenomenon that can be utilised 
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to build highly controllable semi-active devices such as dampers, clutches, actuators, 

and brakes etc. In the "Field-Off' condition, the response is often approximated to that 

of a Newtonian fluid i.e. where the shear stress is linearly proportional to the shear rate 

(see Figure 1-6(b)). 

Although practical ER fluids were produced over twenty years ago [29, 30], a mass

produced device is yet to be seen in the market. Considerable developments in MR 

fluid technology occurred nearly a decade later [28], yet they have had significant 

commercial success, most notably in the automotive industry. For example, General 

Motors have featured MR shock absorbers on many of their Cadillac and Corvette 

vehicles since 2002 [26]. The reason for this present difference in commercial viability 

is largely associated to the fluid properties. 

ER fluids have lower controllable force levels and require very high voltages in order to 

generate electric fields of up to 6kY/mm [4]. Also, ER fluids have a narrow working 

temperature range (typically between ISoC to 90°C [31]), which makes them unsuitable 

in hostile environments. As an example of how this has restricted commercialisation, 

the use of ER fluids in the aerospace industry was ruled out, owing to a reluctance to 

provide the necessary voltages [4]. Furthermore, the extreme temperatures associated 

with high aircraft altitudes would have provided an additional barrier. In contrast to ER 

devices, MR fluids can be powered by a low voltage source and can operate between 

-40°C to ISO°C [28]. Consequently, they are far better suited to aerospace applications, 

and the more recent developments in MR fluids have lead to a renewed interest in this 

field. 

13 
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Despite the present success of MR fluids, a wide variety of control strategies are in use 

(either experimentally or commercially) and as yet, there is no consensus on how best to 

perform automatic control. This is primarily due to the inherent non-linear behaviour of 

smart fluid devices, which can be observed by considering the simplified behaviour 

shown in Figure 1-6(b). This behaviour makes the goal of tracking a prescribed force 

demand a challenging task, which has often led to the development of relatively 

complex semi-active controllers. 

1.3 Backgl'ound, objectives and outline 

A significant part of the present research has been carried out under the European 

ADLAND project [32J - 'Adaptive landing gear for improved impact absorption'. The 

ADLAND partners have investigated the feasibility of incorporating various semi-active 

devices within aircraft landing gear. One key method involves the design of aircraft 

shock absorbers incorporating MR fluids, which is a key focus of this thesis. MR fluids 

were chosen (rather than ER) due to their superior commercial potential, particularly for 

aerospace applications as outlined in Section 1.2. 

The feasibility of MR landing gears will depend on whether specific design and 

packaging requirements can be met, since space and weight are vital design 

considerations. Consequently, one key aim of the present research is: 

To develop ([nd experimental~y valic/ate crrecti1'c device design and sizing procedures 

for MR landing gears subject to packaging constmillts. 

The design methodology will primarily focus on the impact phase of an aircraft's 

landing. Here, the landing gear loads are at their largest and most unpredictable levels, 
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thus the effect on the load and fatigue life of structural components is most significant. 

Furthermore, the methodology mList consider the effects of fluid compressibility and 

high velocity flow, which are particularly significant in an impact scenario. Open-loop 

control studies will also be performed to illustrate the potential of MR landing gears to 

adapt to a wide range of impact conditions. 

As described in Section 1.2, the choice of an effective control strategy in MR 

suspension systems remains an unresolved problem. A further key aim of the present 

thesis is therefore: 

To develop effective closed-loop controllllethodologies that can overcollle the inherent 

non-linearity of MR dampers. 

This thesis will focus on two general case studies ~ (1) a broadband excited SOOF 

mass-isolator, and (2) a 200F mass-isolator subject to realistic roadway excitations. 

Such configurations are highly representative of vehicle suspensions and aircraft taxiing 

manoeuvres. 

The thesis is organised as follows. Chapter 2 presents a review of the literature, which 

serves to highlight the novelty of this thesis. This begins with a history of smart fluids, 

and a description of the various configurations of device. The key modelling formats 

and control methodologies are then described, paying particular attention to flow mode 

damping devices similar to that used in this research. Due to the significant landing 

gear focus of this thesis, the literature review concludes with a detailed history of 

aircraft shock absorber design. 
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In Chapter 3, the MR landing gear design methodology is described. Using real data 

provided by landing gear manufacturers, the methodology is applied to both lightweight 

aircraft, and large-scale commercial jets in order to demonstrate scalability. To validate 

the numerical approach, a prototype MR landing gear shock strut is designed, 

fabricated, and tested, which is the subject of Chapter 4. Here, the purpose built damper 

test facility that was used to perform the experiments is also described. 

In Chapters 5 and 6, the focus is moved away from the specific problem of landing gear 

applications, and the more general issue of closed-loop control is considered. This is 

relevant to aircraft taxiing scenarios and the ride characteristics of automotive vehicles. 

In Chapter 5, a control methodology is described that overcomes the inherent non-linear 

behaviour of smart fluid devices. This methodology is illustrated numerically through a 

series of investigations of SOOF and 200F structures. In Chapter 6, experiments are 

performed in order to further validate the efficacy of the control approach. The HILS 

approach is adopted, where a commercial MR damper is physically tested and the 

remainder of the SDOF and 2DOF structures is simulated in real-time. Finally, 

Chapter 7 prcsents the key conclusions 0 f this research and some suggestions for further 

work. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 A history of smart fluids 

Willis Winslow was the first to describe the formulation of ER fluids in the 1940's [33, 

34]. However, the properties of these early fluids were found to be abrasive, 

chemically unstable, and liable to rapid deterioration [4]. Consequently, early 

commercial exploitation was not possible. It was not until the 1980's that more usable, 

non-abrasive ER fluids were developed [29, 30]. MR fluids were also discovered in the 

1940's by Jacob Rabinow [35], although considerable developments did not take place 

until the late 1980's / early 1990's [28, 36]. This renewed interest led to the significant 

commercial exploitation and mass production of MR fluid devices, which was largely 

fuelled by research conducted at Lord Corporation [37]. The advances in other 

technologies such as microprocessors, sensor technologies, computer processing speeds 

and battery power, no doubt aided the commercial exploitation at that time [36]. 

Commercialisation began with the development of MR fluid rotary brakes for use in 

aerobic equipment in 1995 [26]. In 1998, MR dampers were introduced into the heavy

duty truck market for suspension seat applications [26]. However, the most significant 

commercial activity for MR fluids has bcen in primary vehicle sllspensions. In 2002, 

General Motors (GM) introduced the first primary MR suspension on the Cadillac 

Seville STS [26]. The shock absorbers, known as MagneRide [25], are manufactured 

by Delphi Corporation but incorporate Lord Corporation's MR fluid [26]. Since 2002, 

GM have used MagneRide shock absorbers 011 the 2003 and 2005 Corvette, two of the 

2004 Cadillacs (SRX and XLR), and three 2005 Cadillac models (STS sedan, SRX 

roadster, and XLR SUV) [26]. Carlson [261 also noted that MR shock absorbers would 
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feature on the 2006 Cadillac DTS and the 2006 Buick Lucerne. Most recently, it has 

been announced that Delphi's MagneRide system will also feature on the 2007 FetTari 

599 GTB Fiorano [38] and the 2007 Audi TT [39]. 

Various other commercial devices have been developed by Lord Corporation, which 

include MR rotary brakes for force-feedback elements in steer-by-wire systems, and 

large-scale MR dampers (up to 180kN) for civil engineering applications e.g. for 

earthquake protection. To accommodate this wide range of commercial devices, Lord's 

MR fluid production levels in 2004 were in the order of tens of thousands of lit res [26]. 

Clearly, MR fluids have had substantial commercial success, but the first mass

produced ER device is yet to be developed. The key reasons for this can largely be 

explained by considering the relative merits of ER and MR fluids. Carlson, et {II. 

presented a key paper that addressed this issue in 1995 at the 5th International 

Conference on ER fluids, MR suspensions and Associated technology [28]. After 

describing the relative merits of ER and MR fluids, Carlson went onto describe the first 

mass-produced MR devices. Sims, et {I/. [4] noted that it was only at this time that ER 

specialists became aware of the immense progress that had been made at Lord 

Corporation. The key points that Carlson addressed were as follows: 

• ER fluids exhibit yield strengths in the range of 3-5kPa, whereas MR fluids arc 

capable of delivering yield strengths of up to 100kPa. Consequently, an ER 

device must have an active fluid volume (i.e. the volume exposed to the 

electric/magnetic field) that is two to three orders of magnitude greater than an 

equivalent MR device. 
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• ER fluids have a narrower operating temperature range. Typically, ER fluids must 

operate within 15°C to 90°C [31], whereas MR fluids are usable over the range -

• An ER device must be supplied \vith a very high voltage source in order to 

produce the necessary electric field strengths (2-5kV [40]). On the other hand, 

MR fluid devices require a low voltage source (12-24V [40]), which can be 

provided by more conventional power supplies. Note that the power requirements 

of ER and MR devices are similar (~50W) due to the contrasting current 

requirements (1-1 OmA for ER, and 1-2A for MR) [40]. 

• Unlike M R fluids, ER fluids are highly sensitive to the presence of contaminants. 

Clearly, MR fluids have a greater potential for commercial exploitation. This is 

particularly true for aerospace applications, where the use of ER fluids was ruled out 

due to a reluctance to provide the necessary vo Itages [4]. 

2.2 Smart fluid devices 

Smart fluids arc suited to a wide variety of applications, by using the ER/MR effcct in 

one of three possible modes of operation: 

The first mode of operation is the flow mode, which is illustrated in Figure 2-1 (a). 

Here, the fluid is forced between two stationary electrodes (ER) or poles (MR). The 

resistance to flow can then be controlled via the application of an electric/magnetic 

field, which is perpendicular to the direction of flow. This configuration is widely used 

to build controllable damping devices sllch as that shown in Figure 2-2(a). Here, 

motion of the piston rod forces fluid through an annular orifice. Activation of the 
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ERlMR fluid enables control of the pressure drop and hence damping force due to the 

development of a fluid yield stress (see Figure 1-6(b )). The flow mode configuration 

can also be used to build hydraulic control devices, servo-valves and actuators. 

Kordonsky [41] demonstrated how a series of ERlMR valves could be utilised to control 

the motion of a hydraulic actuator. This is illustrated in Figure 2-2(b), where the 

flowrate through the two inlets (2 and 4) and the two outlets (1 and 3) can be readily 

controlled to generate the desired actuator motion. 

The second mode of operation is the shear mode, which is illustrated in Figure 2-1 (b). 

Here, relative motion between the electrodes/poles places the smart fluid in shear. This 

relative motion can be either translational or rotational, and activation of the fluid 

enables direct control of the force or torque required to cause displacement. Shear 

mode configurations can be utilised to build dampers [42], clutches [43], brakes [44], 

and structural composites [45]. Examples of rotary MR clutches are given in Figure 

2-3. Such devices could replace torque converters in automatic driveline transmissions 

in order to provide better control during vehicle launch, and to improve high-speed 

efficiency (by reducing slip) [43]. Smart fluid clutches could also be utilised to provide 

more precise control of engine fan speed and hence temperature. General Motors have 

developed such a system and state an improvement in fuel economy between 1-3% [46]. 

With regards to shear mode dampers, Lou, et 01 [47] developed an ER device for a 

landing gear, which is illustrated in Figure 2-4. This uses a screw-nut mechanism to 

convert translational motion of the piston rod into rotational motion between shearing 

disks. Variation of the ER fluid yield stress thus provides controllable torque and hence 

axial damping force levels. 
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The third key mode of operation is the squeeze mode, which is illustrated in Figure 

2-1 (c). Here, the electrodes are free to translate in a direction parallel to the applied 

field, which subjects the fluid to tension, compression, and shear forces [4]. This mode 

is particularly suited to vibration isolation applications requiring small displacements 

(typically a few millimetres) and large forces [4J e.g. automotive engine mounts. 

Squeeze flow devices have also been developed to control the vibration of flexible rotor 

systems [48J. 

There also exist additional 'mixed' modes of operation, which use a combination of the 

above three. Perhaps the most commonly used mixed mode device is the shearlflow 

mode damper, which is illustrated in Figure 2-5(a). Here, an annular orifice is fOlllled 

between the piston head and the cylinder wall. Piston motion results in the 

simultaneous relative motion between the valve walls (shear mode), and the flow of 

fluid through the annular orifice ( flow mode). Berg and Well stead [49J developed 

another type of mixed mode device for an aircraft landing gear. Their device, which is 

presented in Figure 2-5(b), combined the shear and squeeze modes of an ER fluid. 

Here, the relative translation of the charge plates shears the fluid, whilst simultaneously 

squeezing it between the opposing peaks and troughs. 

The present thesis predominantly focuses on the flow mode configuration of device, 

which is arguably the most suited to damper design. This is particularly true where 

sizing constraints are a vital concelll, which is often the case for aircraft landing gear. 
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2.3 Modelling of smart fluids 

Accurate models of smart fluids are vital, as they enable the effective design and sizing 

of devices, and aid the development of high performance controllers. Furthermore, they 

permit an assessment of the feasibility/commercial viability of new applications. 

There are two main classi fications of model: (1) Quasi-steady models and (2) Dynamic 

models. Quasi-steady models predict the behaviour (e.g. pressure drop or damping 

force) during steady flow conditions i.e. where the fluid shear rate is constant. Such 

models are useful for initial device design and sizing purposes. Dynamic models 

account for the transient flow behaviour, which can include effects such as fluid 

compressibility and fluid inertia. Consequently, they are better suited to accurately 

predicting device performance as part of a complete vibrating structure, and thus enable 

the more effective development of control strategies. In what follows, a review of both 

quasi-steady and dynamic modelling formats is presented. Particular attention is given 

to smart fluid dampers, which are the key focus of this thesis. 

The quasi-steady behaviour of smart fluids is commonly characterised as a Bingham 

plastic (see Figure l-6(b )). Bingham fluids exhibit a yield stress phenomenon, where 

flow will only oceur once this critical yield stress value has been exceeded. Much 

attention has been paid to the development and validation of quasi-steady models for 

Bingham plastic flow through annular ducts, which is the most common configuration 

for an MR damper (see Figure 2-2(a) and Figure 2-5(a)). Kamath, et al. [50] developed 

one-dimensional axisymmetric models for both flow mode and mixed mode ER 

dampers. A mixed mode device was f~lbricated and experimental results strongly 

supported Bingham plastic behaviour. However, the yield stress and viscosity 
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predictions were poor, where fluid property values had to be updated before good 

con-elation was achieved. 

To simplify the quasi-steady analysis, annular passages are commonly approximated to 

parallel flat plates. The constitutive equation describing Bingham plastic flow between 

parallel flat plates is well known and can be found documented in various textbooks 

[51]. Numerous investigators have shown analytically that the parallel plate 

approximation compares well with more complex axisymmetric models [52-54]. In 

general, this is valid provided that the valve gap is sufficiently small, and that the mean 

annular radius is sufficiently large for curvature effects to be negligible [55]. Various 

non-dimensional forms of the Bingham plastic equation for parallel plate flow have also 

been derived [55-57]. Such forms are advantageous as they enable design concepts to 

be tested at model-scale before full-scale prototypes are built [57]. 

The performance of smart fluids can deviate from idealised Bingham plastic behaviour, 

particularly at high velocities. With reference to Figure 2-6, smart fluids may exhibit 

shear thickening or shear thinning behaviour, where the apparent viscosity tends to 

increase or decrease with increasing shear rate. Various authors have characterised this 

effect using the Herschel-Bulkley model [58-60], which assumes that the shear stress is 

proportional to a power law of the shear rate. As a simplification to the Herschel

Bulkley model, Dimock, et al. proposed using a bi-linear post-yield viscosity function 

in the Bingham plastic equation [61]. Here, a critical shear rate was used to define a 

region of high shear rate flow and a corresponding reduction (shear thinning) or 

increase (shear thickening) in the fluid viscosity. Peel and Bullough [55] developed an 

alternative approach, which used empirical coefficients to modify the equation for 
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Bingham plastic flow between parallel flat plates. Furthennore, dimensionless variables 

were used, thus enabling the updated model to be effectively applied to any other 

geometry of device. 

Whilst the above models are effective at predicting the post-yield quasi-steady response, 

they do not account for the significant dynamic behaviour that is observed in real 

devices. To give an example of this behaviour, Figure 2-7 shows the sinusoidal 

force/velocity response of Lord Corporation's RO-I005-3 MR damper [62]. Also 

shown superimposed is the quasi-steady response for Bingham plastic flow between 

parallel flat plates. This clearly illustrates the inadequacy of the quasi-steady model 

under dynamic conditions. With reference to the experimental response, the key 

dynamic effects are in the form of a hysteresis loop, which has been attributed to fluid 

compressibility [63], and the appearance of underdamped oscillations, which are 

associated with the fluid inertia [63]. Furthermore, the pre-yield response appears to be 

viscoelastic in nature. This is in direct contrast with the quasi-steady model, which 

assumes rigid pre-yield behaviour. 

Stanway, et al. [64] made the first step towards the development of effective dynamic 

models [4]. The authors proposed a phenomenological model of an ER damper, which 

used the paraJlel arrangement of a viscous damper (to model the post-yield response) 

and a Coulomb friction element (to model the yield stress). The form of the model is 

shown in Figure 2-8(a). Gamota and Filisko [65] proposed an extension of this model 

in order to account for the viscoelastic pre-yield behaviour. The extended model, which 

is shown in Figure 2-8(b), could more effectively account for fluid compressibility 

effects. However, it is signi ficantly more complex due to the increased number of 
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parameters and degrees of freedom. Furthermore, the goveming equations are stiff and 

therefore numerically difficult to solve [M]. 

Spencer, ct al. [66] proposed the use of a BOlle-Wen model, which can effectively 

capture the hysteretic behaviour, whilst being more numerically straightforward to 

solve. The most basic configuration is presented in Figure 2-8( c), which uses a non

parametric element in parallel with a viscous damper and a spring. This provides 

acceptable predictions of the experimental response, although it was shown that an 

additional degree of freedom is required for significant accuracy [66]. A key 

disadvantage of the Bouc-Wen model is that it requires the identification of a large 

number of parameters. Consequently, many investigators have focused on the 

development of effective system identification techniques [67-69]. 

Kamath and Wereley [70] developed another dynamic modelling approach. The authors 

proposed a viscoelastic-plastic model in order to enhance the predictions of the pre

yield (viscoelastic) behaviour and the transition to post-yield (plastic) flow. The form 

of the model is shown in Figure 2-8(d). Here, non-linear shape functions are uscd to 

determine the weighting of two linear shear flow mechanisms - one that dcscribes the 

pre-yield behaviour (parallcl viscoLls damper and linear spring) and one that describes 

the post-yield behaviour (viscous damper). VarioLls other non-parametric techniques 

have been developed for the dynamic modelling of smart fluid dampers. For example, 

Gavin, ct al. [71] fitted Chebyshev polynomials to experimental data, and Choi, ct af. 

[72] fitted 6th order polynomials. Chang and Roschke [73] developed a neural network 

of an MR damper, which was trained using a Bouc-Wen model. 
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Many of the above model formats are highly complex and require the identification of 

many parameters. FUlihermore, the parameters can often lack physical significance and 

the models are usually developed in parallel to existing laboratory devices. 

Consequently, the model is likely to be well suited to a particular device, and thus 

cannot be used for different designs. Sims, ct 01. [74] developed a more general 

modelling approach that overcomes the above shortfalls. The foml of the model is 

presented in Figure 2-8(e), and comprises a quasi-steady damping function in series 

with two masses and a linear spring. The linear spring accounts for the fluid 

compressibility, whilst the masses III I and Ill] represent the fluid inertia and the piston 

head mass respectively. Furthermore, the damping function can be derived from 

analytical models such as the Bingham plastic equation for flow between parallel flat 

plates [63]. This physical significance means that the model parameters can initially be 

based upon constitutive relationships using fluid properties (e.g. bulk modulus) and 

device geometry, rather than using observed experimental behaviour. Thus, an accurate 

dynamic model can be developed prior to device manufacture, which is vital for 

prototyping. Nonetheless, the fomlat of the model also enables an updating or system 

identification procedure to be performed. An accurate representation of many real 

devices is therefore possible. Sims, ct 01. [74] details an effective system identification 

procedure, and it is shown that the resulting model is extremely efficient in reproducing 

an MR damper's behaviour with broadband mechanical and electrical excitation. This 

model is used in the present study in order to develop effective control strategies for 

MR mass-isolators and vehicle suspensions. 
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2.4 Control of smart fluid devices 

There are two key objectives that must be addressed 111 order to design effective 

controllers for smart fluid based vibration systems: 

1. To calculate the desired damping force that will provide the optimal 

performance. 

2. To determine the corresponding input current/voltage that achieves this desired 

force. 

To achieve the above, a wide variety of control strategies are 111 use (either 

experimentally or commercially) and as yet, there is no consensus on how best to 

perform automatic control. A key reason for this is the inherent non-linear behaviour of 

smart Ouids, which makes the goal of tracking a prescribed force demand a challenging 

task. Consequently, investigators have focused on the development of relatively 

complex semi-active controllers, in an attempt to fully exploit their potential within 

automatic control systems. For example, Lyapunov stability theory and clipped optimal 

control strategies have been implemented in structural control with some success [75-

77] and have been shown to compare well with equivalent ideal semi-active and fully 

active systems [78]. Neural networks have been investigated for both structural [79] 

and automotive [80] applications, as well as fuzzy control schemes [68, 81, 82] and H.t:: 

controllers [83, 84]. Investigators have also implemented sliding mode control for both 

automotive [85, 86] and aerospace [87J applications. 

With many of the above control strategies, investigators often simplify the force 

tracking strategy by using onloff or bang-bang methods. Examples include the clipped-
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optimal control of structures [76-78], and the skyhook control of vehicle suspensions 

[20, 88] and automotive engine mounts [89]. Here, the smart damper's current/voltage 

supply is switched to a pre-determined level when a dissipative force is required within 

the controllable range of the device. Sims, ct al. [20] concluded that the on/off 

approach is effective under sinusoidal excitation but breaks down under more realistic 

random inputs. Also, Simon and Ahmadian [88] demonstrated that an on/off controller 

can enhance RMS vibration levels, but at the detriment of the peak value. 

Alternative force tracking methodologies include the development of approximate linear 

relationships between the control current and the desired damping force [78]. Also, 

Choi, et al. [72] used a polynomial model of an MR damper to analytically generate the 

inverse damper dynamics (i.e, the required current for a given force), In a more recent 

study, Du, et af [84] used this methodology to implement HU) control of an MR vehicle 

suspension. However, the authors concluded that the desired force could not be tracked 

accurately due to the insufficiency of the polynomial model to describe the low velocity 

behaviour. More complex force tracking strategies have utilised neural networks, which 

are trained to predict the control current for a given force [90-93]. As an example, Kim 

and Roschke [90] trained a neural network using experimental MR damper data, and 

illustrated that the force/velocity response could be linearised. Chang and Zhou [91 ] 

used a Bouc-Wen model for training, and tracked force demands from optimal control 

laws for both single and multi-degree-of-Creedom systems. 

Many of the above control methodologies are likely to be sensitive to parameter 

uncertainty. This is because they are derived using specific experimental or numerical 

behaviour, and thus the force tracking accuracy will suffer if this behaviour changes e.g. 
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due variations 111 temperature and hence viscosity, or due to differences in fluid 

properties between batches. Research at the University of Sheffield has pursued an 

alternative approach to controller design, which helps overcome this problem. The 

control strategy uses force feedback to linearise the force/velocity behaviour of a smart 

fluid damper [94, 95]. This feedback linearisation permits accurate set-point force 

tracking within the control limits imposed by the fluid properties and device geometry, 

thus enabling various control algorithms to be implemented effectively. Moreover, as 

the damping force is used as an etTor signal, the strategy desensitises control system 

performance to parameter uncertainty. 

In a previous numerical study based upon an ER damper [96], feedback linearisation 

Was shown to be effective for a single-degree-of-freedom (SDOF) mass-isolator with 

sinusoidal excitation. A later article [20] extended this work to investigate an ER 

vehicle suspension, where a 32% reduction in car body acceleration was demonstrated 

with the linearised controller. In that study, although a broadband mechanical excitation 

was used, the model had not been formally validated under such circumstances, and the 

excitation conditions were not representative of actual roadways. One aim of the 

present thesis is to overcome these issues raised by the earlier work, and to illustrate the 

performance of the feedback linearisation strategy in comparison with on/off control 

schemes. Furthermore, the control methodologies will be investigated experimentally. 

The experiments are performed uS1l1g the hardware-in-the-loop-simulation (HILS) 

method, which provides an excellent means of bridging the gap between theory and 

practice when the behaviour of a specific component is complex. Besinger, Cebon, 

and Cole pioneered this technique in the 1990's, with particular emphasis on heavy road 
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vehicles [22, 97]. Here, a semi-active damper was physically tested, whilst the 

remainder of the vehicle was simulated 111 real time. However, this work did not 

consider the use of MR dampers, which pose additional problems due to their highly 

nonlinear behaviour [77]. More recently, researchers from the smart materials 

community have considered the use of HILS techniques for MR engine mounts [89] and 

suspension seat applications [98]. MR vehicle suspensions have also been considered 

[85, 99], although these contributions did not accurately model the roadway excitation 

conditions. This is particularly important for MR dampers as the non-linear behaviour 

means that the performance can be especially sensitive to the excitation. 

2.5 Landing gear shock absorber design 

A key focus of the present thesis is related to the design and sizing of MR landing gear 

shock absorbers. It is therefore appropriate to review the previous and existing designs, 

which is the subject of this section. This will serve to highlight the significant 

advantages of an MR landing gear, and will enable an enhanced understanding of the 

performance requirements. 

A landing gear has two key tasks. First it must absorb the kinetic energy of the aircraft 

during initial touchdown i.e. the impact phase of landing. Secondly, it must both 

suspend the aircraft and provide adequate isolation from surface irregularities during 

taxiing. Although the tyres playa role, it is the shock absorbers that have the main 

responsibility for fulfilling these tasks [100]. 

The main types of passive aircraft shock absorber can be grouped as follows - (I) Those 

using a solid spring made of steel or rubber e.g. coil or leaf springs, (2) those using a 

fluid spring with gas or oil, and (3) those using a mixture of gas and oil, which are 
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generally referred to as oleopneumatic [101]. To characterise the impact perfo1111ance 

oflanding gears, the shock absorber cfficiency is commonly defined as [101]: 

Efficiencv (%) = A xl 00 
FmaxDmax 

(2-1 ) 

where A is the energy absorbed by the shock absorber during its stroke (obtained from 

the area beneath the force/displacement curve), and Flllax and D lllax are the maximum 

force and displacement during the impact respectively. Currey [101] compared the 

efficiency and relative weights of the basic passive configurations, which is shown in 

Figure 2-9. Clearly, oleopneumatic shock absorbers provide the most superior impact 

performance, with an efficiency of lip to 80% (Figure 2-9(a)). Furthermore, they have 

the lowest weight penalty compared to any other design (Figure 2-9(b )). Consequently, 

oleopnellmatic designs are the most widely used configuration 011 modern aircraft, 

which are therefore the focus of this research. Nonetheless, some of the other 

configurations are still in use 011 lightweight aircraft, which is hll-gcly due to their 

simplicity, reliability, maintainability and low cost [101]. 

A passive oleopneumatic shock absorber is shown schematically in Figure 2-10. When 

the shock strut compresses, fluid is forced turbulently through the main ori fice in the 

piston head, resulting in a quadratic damping effect, and thus absorbing energy. The 

fluid subsequently compresses the gas in thc upper chamber, providing a non-linear 

stiffness effect, and therefore enabling the aircraft to support its own weight. A typical 

landing impact response that would be obtained from this configuration is illustrated in 

Figure 2-11. Here, the total shock absorber force is the sum of the damping and spring 

forces. With reference to Figure 2-11(a), the damping force reaches a peak during the 

initial stages of the impact i.e. when the piston velocity is at a maximum. The gas 
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spring force peaks at a later stage when the shock absorber reaches full compression. 

Consequently, the sum of these forces results in an oscillating response with two 

maxima. The corresponding total force/displacement response is shown in Figure 

2-11 (b). Through consideration of the shock absorber efficiency (Eq.2-1), the optimal 

impact performance will result in the most rectangular force/displacement response as 

indicated in Figure 2-11 (b). This provides the lowest possible peak force, and also 

reduces fatigue loading due to elimination of the force fluctuations. 

Several numerical studies focusing on passIve oleopneumatic landing gears can be 

found in the literature. Milwitzky and Cook [102] described a two-degree-of-freedom 

(200F) impact model of a telescopic (or cantilever) type landing gear. The telescopic 

configuration, which is illustrated in Figure 2- I 2(a), is the most widely used due to its 

superior cost and weight effectiveness [I ()3]. Milwitzky and Cook's model was 

comprehensive, and accounted for the hydraulic resistance of the orifice, the non-linear 

gas spring force (using the polytropic gas compression law), the tyre force/deflection 

characteristic, the internal friction, the wing lift forces, the inclination of the landing 

gear, and the effccts of whcel spin-up loads. The model was shown to be accurate, 

Where numerical predictions correlated well with experimental landing impact data. 

Wahi [104, 105] extended certain aspects of this model in order to account for dynamic 

affects. In particular, fluid compressibility was included via the incorporation of a bulk 

l110dulus term. Furthermore, a variable polytropic exponent was introduced in the gas 

law (Milwitzky and Cook [102] assumed a constant value), which is more consistent 

with the heat transfer characteristics within the device [105]. 
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Reddy, et al. [106] presented a 200F model of a levered landing gear configuration, 

which is illustrated in Figure 2-12(b). Such configurations incorporate additional 

mechanical arms and hinges, which help reduce the bending loads and hence the 

excessive bearing frictional forces that are induced during wheel spin-up. Yadav and 

Ramamoorthy [l 07] numerically investigated both telescopic and levered landing gear 

configurations within a 400F heave-pitch model. 

Tn the literature, many passIve solutions are described that attempt to improve the 

Impact efficiency and enhance the impact/taxiing performance over a wide range of 

conditions. For example, metering pins (illustrated in Figure 2-10) are commonly used 

to improve the device's efficiency by changing the damping characteristics during 

impact. Flugge [108] presented a methodology for optimising the shape of the metering 

pin. However, this was based on one landing case, and the author noted that the 

resulting shape would not be optimal for eli f'f'crent excitation conditions. 

Taxiing performance can be improved using a double acting shock absorber, which is 

illustrated in Figure 2-13 [101]. The problem arises from the inherent non-linear gas 

spring characteristic, which results in an excessive suspension stiffness under static 

loads. By incorporating a low and a high pressure gas chamber in to the shock strut, a 

1110re linear stiffness results, which gives rise to a softer suspension during taxiing. 

Messier Dowty designed an adaptive double stage nose landing gear in the 1990's 

[100]. Essentially, the pi lot could switch fr0111 a single stage function, which is used for 

the impact phase, to a double stage function during take-off and taxiing manoeuvres. 

Reductions in landing gear loads of 20% and 8% were achieved during taxiing over 

repaired and unprepared runways respectively II 00]. 
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Schnitzer [109] drew attention to another performance limitation that exists 111 

conventional landing gears. He noted that, whilst the shock absorber may perform well 

over smooth runways or during low velocity impacts, excessive loads would be 

generated when loads are applied rapidly e.g. over rough surfaces or during heavy 

landings. This is a direct result of the quadratic nature of the damping force, which 

causes the shock absorber to behave in a rigid manner at high velocities. In another 

sense, Kruger [8] noted that the low damping requirement for hard landings results in a 

damping factor that is too small for taxiing conditions. This is exactly related to the 

problem that Schnitzer addressed. As a passive solution to the problem, Schnitzer 

proposed a rate-actuated metering pin or valve [109, 110], which provides velocity 

dependent damping control. A schematic diagram of such a device is presented in 

Figure 2-14. During low rates of compression, Ouid is able to fill the restriction tube 

fast enough to balance the pressures and maintain the plunger in its equilibrium 

position. However, for high rates of compression, the fluid cannot fill the restriction 

tube quick enough. Consequently, the plunger is lifted, which causes an increase in the 

orifice size and hence a reduction in damping levels. 

Many of the above passive solutions are still limited in perfon11<mce, as they will be 

tuned to specific landing impact/runway disturbances. Consequently, to accommodate a 

Wider range of input conditions, investigators have sought alternative solutions, for 

example using active landing gear. 

SUbstantial research efforts at NASA Langley Research Center have focused on the 

design of active landing gears since the 1970's [111]. Three possible actuator 

Configurations were originally considered- (l) series-pneumatic, (2) parallel-hydraulic, 
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and (3) series-hydraulic [Ill]. The series-pneumatic approach regulated the gas 

pressure in the upper chamber using two gas acculllulators and electronically controlled 

valves. In the second approach, a hydraulic actuator was used in parallel to the spring 

and damping elements of the existing shock strut. The series-hydraulic configuration 

regulates the fluid pressure in the lower chamber as illustrated in Figure 2-1S(a). This 

was found to be the most feasible active solution [111], and has been investigated in all 

subsequent active landing gear research at NASA. 

Ross and Edson [112] presented an analytical and experimental active landing gear 

investigation of the series-hydraulic configuration. Results were presented for vertical 

drop tests (where zero horizontal velocity was assumed), and also for impact and roll 

conditions onto both flat and sinusoidal runway surfaces. The control strategy used 

energy relations to maximise the shock strut stroke for any given impact, thus 

minimising the force transmitted to the aircraft. Essentially, this was achieved by 

comparing the kinetic energy of the aircraft with the work potential of the shock strut. 

When the work potential exceeded the kinetic energy, the hydraulic actuator was 

initiated, and the present value of the wing/gear interface force was set as the desired 

value for the remainder of the impact. Results indicated that the reduction in peak force 

over a passive system was between 9-31 %, depending on the aircraft sink speed and the 

static gas pressure. In a separate report, Ross described the controller, hardware, and 

sensors used to implement this active control concept in more detail [17]. 

Ross and Edson also demonstrated the performance of an active landing gear while 

rolling over repaired bomb craters [113]. During rolling, active control is initiated only 

when the wing/gear intert~lce force exceeds a preset tolerance or limit about the static 
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value. The commanded force to the actuator is then set to this limit value until the 

actual force is back within range. Using dynamic simulations, the authors demonstrated 

that the peak wing/gear interface force could be 74% lower than with a passive system. 

McGehee and Dreher [9J presented an experimental investigation of an active landing 

gear. The authors used a specially constructed carriage equipped with the active gear, 

which could be both propelled and dropped along a runway with various surface 

iITegularities. The control methodologies for impacts and taxiing were based on those 

used in previous studies, as described above. For vertical impact tests, the authors 

demonstrated that the percentage reduction in force improved as the aircraft sink speed 

was increased (e.g. from 8% at a sink rate of O.91l1/s to 32% for a sink rate of 1.7m/s). 

However, for more realistic impacts performed with an initial forward velocity, the 

control effectiveness reduced with increasing horizontal speed (e.g. for a sink rate of 

1.7m/s, performance improvements were 31°;;) at 8 knots and 11 % at 80 knots). This 

was attributed to the larger strut binding-friction forces, which the actuator cannot 

control. Such forces are generated as a result of the moments applied to the gear during 

wheel spin-up, or whilst traversing surface irregularities during rolling/taxiing. The 

authors also presented the taxiing performance using step bump excitations of various 

frequencies. It was found that the control effectiveness reduced with an increased 

frequency, which was due to the low bandwidth oCthe actuator. 

In a more recent investigation, Horta presented a di fferent configuration of the series

hydraulic landing gear, where electro-hydraulic servo-valves were connected to both the 

upper and lower fluid chambers [10J. Using sinusoidal runway disturbances, 

experimental results indicated that closed-loop control could reduce vibrations around 
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the natural frequency by factor of four when compared to the open-loop system. The 

control of impact forccs was not investigated. 

The above review of active landing gears has indicated that signi ficant performance 

benefits are possible over conventional passive devices. However, such active systems 

are inherently bulky, heavy, and have relatively complex actuation devices requiring 

large power supplies. As a result, active systems are yet to be introduced onto 

production aircraft [8]. 

Semi-active systems represent an attractive COmprOll11Se between passIve and active 

systems, where existing solutions aim to regulate energy dissipation through semi-active 

damping. This type of device is illustrated in Figure 2-15(b), where damping forces can 

be controlled either by altering the orifice shape (e.g. using a servo-valve or piezo

valve) or by changing the fluid properties (e.g. using smart fluids). Research conducted 

in the 1980's at Messier Dowty investigated the use of servo-valves to control orifice 

diameter [100]. However, the reduction in loads during tests was found to be 

negligible. Ghiringhelli [23] presented a numerical and experimental study of' semi

active landing gear impacts, which also used servo-valves to control the orifice shape. 

Energy relations were used to calculate the desired/optimal load profile according the 

input conditions, and numerical results indicated load reductions of up to 15%. The 

experimental results contained high frequency oscillations due to inadequate filtering of 

the sensor signals. KrUger [8] presented a numerical study of a semi-active aircraft 

landing with a variable orifice diameter. Input excitations representative of actual 

runways were used to investigate taxiing performance, and a first-order low-pass filter 

with a 25ms time constant was used to account for the system dynamics. Skyhook, 
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fuzzy-logic and state-feedback based controllers were shown to perfom1 well, where 

reductions in vertical cockpit acceleration were between 25-40% depending on the 

aircraft mass, speed and runway conditions. The fuzzy-logic and state-feedback 

controllers were particularly superior at damping higher modes of vibration. Maemori, 

et af. [24] used a stepping motor to alter the flow passages during landing impacts. 

Optimal orifice areas were calculated for a range of aircraft masses such that the 

acceleration of the fuselage during impacts was minimised. Numerical results indicated 

that the semi-active device could handle mass variation much better than the optimum 

passive device. 

The ADLAND project partners have developed another semi-active approach, which 

uses piezoelectric material to alter the orifice gcomctry [114]. This is known as a piezo

valve and the concept is shown schematically in Figure 2-16. Here, a stack of 

piezoelectric material expands and contracts under the application of a voltage. This in 

tum displaces a poppet, which modifies the flow geometry of the main orifice. 

Considering specifically the use of smart fluids in landing gears, various shock absorber 

designs have been proposed in the literature. For example, Lou, e! al. [47] presented a 

shear mode ER shock strut, which was described previously (see Figure 2-4). To 

control the impact response, the authors used kinetic energy relationships to calculate 

the lowest possible landing gear force that results in the most efficient or "box-like" 

force/displacement response (see Figure 2-11(b)). Simulated results indicated that the 

peak acceleration could be reduced by 23%. 

Another ER landing gear was proposed by Berg and Well stead [49]. The authors used 

a shear/squeeze mode device (see Figure 2-5(b)) ill series with a conventional passive 
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shock strut. Particular attention was gIven to fail-safety, where the inclusion of a 

locking mechanism could revert performance to that of the passive device. In terms of 

control, the authors suggested that the ER damping coefficient should be altered 

according to the frequency of the input excitation, although an exact methodology was 

not described. 

Choi and Wereley [87] investigated the use or a flow mode ER/MR landing gear shock 

strut for the control of impacts. The authors developed a sliding mode controller that 

was designed to be robust against variations in aircraft mass, lift force, viscous 

damping, and the gas spring stiffness. Numerical results indicated that the acceleration 

and displacement response of the aircraft could be signi ftcantly improved using sliding 

mode control. 

Whilst the above ERlMR investigations have helped to demonstrate the benefits of 

using smart fluids to implement semi-active control in landing gear, they have often 

overlooked packaging requirements/constraints, and the errects of fluid compressibility 

in numerical models. Sizing constraints are vital for aerospace applications such as 

1anding gear, and will be used as a key constraint in the present study. The 

consideration of fluid compressibility is particularly important when considering 

impulsive loading, as fluid compressIOn will reduce valve flow and hence 

controllability. Therefore, the present thesis aims to develop a dynamic model of the 

MR shock strut that accounts for fluid compressibility. Wahi [105] modelled fluid 

Compressibility in passive landing gear, however this analysis did not consider the two 

fluid chambers separately (one either side of the main orifice), as is the intention of this 

research. 
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2.6 Summary of Chapters 1 and 2 

The first two chapters in this thesis have described the limitations of traditional passive 

suspensions, whilst highlighting the advantages that can be gained using semi-active 

devices. Moreover, magnetorheological fluid based devices were identified as a 

particularly superior means to provide semi-active vibration control. For example, an 

MR fluid based aircraft shock absorber could be utilised to enhance both the landing 

impact and taxiing perfol1nance, thus improving fatigue life and levels of passenger 

discomfort. Although this application has been considered in previous research, 

specific design and packaging constraints were overlooked. Furthermore, the effects of 

fluid compressibility were neglected in numerical models. Fluid compression degrades 

controllability by reducing valve flow, and this will be particularly significant in impact 

applications. Consequently, the above issues will be given special attention in the 

present work. 

Chapters 1 and 2 also drew attention to the non-linear behaviour ofMR dampers. This 

makes the objective of achieving a desired force (and hence the application of classical 

control techniques) very difficult. Consequently, there is no general consensus on how 

to best perform automatic control. Previous research at the University of Sheffield has 

focused on a methodology known as feedback linearisation, which simplifies this force 

tracking issue. However, this research did not formally validate the approach under 

realistic broadband excitations. Furthel1nore, the approach is yet to be investigated 

eXperimentally as part of a complete vibrating structure. 

This discussion underpins the principal objectives of this thesis that were described in 

Section 1.3. 
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Figure 2-1: Smart fluid modes of operation. (a) Flow mode, (b) shear mode, and (c) squeeze mode. 
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Figure 2-10: Schematic representation of a passive oleopneumatic landing gear shock strut. 
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CHAPTER 3. MR LANDING GEAR - A DESIGN 

METHODOLOGY 

3.1 Introduction 

As discussed in Chapters 1 and 2, aircraft landing gears are subjected to a wide range of 

excitation conditions, which result in conflicting damping requirements. A novel 

solution to this problem is to implement semi-active damping using MR Ouids. In this 

chapter, a design methodology is developed that enables the performance of MR 

landing gears to be optimised, both in terms of the damping and magnetic circuit 

performance. Unlike previoLis work [42, 87], the sizing methodology incorporates the 

packaging c:onstraints of the existing passive design. This is an essential feasibility 

consideration as space and weight are vital performance indicators in landing gear. 

The design approach focuses on the impact phase of an aircraft's landing, where large 

variations in sink speed, angle of attack, and aircraft mass makes an MR device very 

attractive. To implement the design procedure, two numerical tools arc developed - a 

valve size optimisation spreadsheet, and a landing gear impact model. The landing 

impact model is based upon that developed by Milwitzky and Cook [102], but is 

extended to account for the MR flow behaviour and the Ouid compressibility. This 

latter aspect is important in impulsive loading applications such as aircraft landing, as 

fluid compression will reduce valve flow and hence the controllable MR effect. 

The design approach is initially demonstrated by presenting an in depth case study of 

the Polish Institute of Aviation's 1-23. This is a lightweight aircraft for 

personal/business usc, but to demonstrate scalability, case studies for large-scale 
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commercial jets are also presented. This was made possible using landing gear data 

provided by the ADLAND partner Messier Dowty [103]. 

This chapter is organised as follows. To begin, the MR landing gear design philosophy 

and the numerical tools required to implement it arc described. These tools include a 

landing impact simulation, where both MR and passive shock strut models are derived. 

The passive simulation will serve to validate the landing impact model in general via 

comparisons to experimental drop test data. A valve sizing spreadsheet tool is then 

derived, which enables the simultaneous optimisation of the magnetic circuit and 

damping performance. Next, the methodology is illustrated using ease studies for both 

lightweight and bIrge-scale aircraft. Finally, a general discussion of the results is made 

and the key conclusions are drawn. The research in this chapter formed the first part of 

a two-part journal paper submission [116], and the abstract for this work is given in 

Appendix A.I. In addition, two conference papers were produced [117, 118]. 

3.2 The Design Methodology 

In this section, an MR landing gear design methodology will be developed. The aim is 

to find a way of designing the device so that it can achieve an optimal performance over 

a range of impact scenarios. This must be achievcd without exceeding the packaging 

constraints of an equivalent passive device. Furthermore, the magnetic design of the 

MR valve must be considered. 

The MR valve configuration investigated in this study is shown in Figure 3-1. Here, 

fluid flows through an annular orifice and the magnetic flux is generated via a coil 

wrapped around a steel bobbin. The active section of the valve (i.e. the length exposed 
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to the magnetic field) is where the path of magnetic flux crosses the annular orifice. 

The fluid volume adjacent to the coil remains inactive. 

It will be shown that the geometry of this device can be optimised from a magnetic 

perspective using analytical methods, and that this magnetic behaviour is relatively 

insensitive to the valve gap h. In contrast the damping behaviour is difficult to optimise 

because of the nonlinear interaction between fluid flow, tyre deflection, and shock strut 

gas compression. It is, however, highly sensitive to the valve gap h. 

The design approach used is summarised in Figure 3-2. To begin, the MR shock 

absorber is sized to be that of the equivalent passive device, in terms of its length and 

diameter. This dictates values for the extemal geometry of the MR valve (length I and 

diameter Dp). Initial estimates for the valve's flow diameter d and active length III can 

then be determined. At this stage the precise values arc not important because they will 

be optimised later, from a magnetic standpoint. 

Lai1ding impact simulations are then performed, usmg data for the actual aircraft 

structure, to predict behaviour. This is perfoll11ed for the case where the fluid yield 

stress is at its maximum value T. ,and the impact scenario is at its most severe. 
J Illa~ 

Consequently, for less severe impacts with lower damping requirements, the yield stress 

can be controlled to give superior perfom1ance over the existing passive system. In this 

Worst-case simulation, the valve gap h is modi fled to achieve desirable landing 

behaviour, which can be compared to experimental data from the passive device. 

Essentially, the aim is to achieve an equal balance bet\veen the damping and gas spring 

forces. From this result, the pressure drop iJ.PIIlIIX at the maximum valve flow rate QIIlIIX 
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IS detennined, and the two properties [LlPIIIII \, QII/(/\] are used to characterise the 

requirement of the valve. 

The task now is to optimise the magnetic performance of the valve, whilst still 

achieving the desirable [L1PII/{/\' QII/{/x] characteristic. Furthermore, the aIm IS to 

maxImIse the controllability of the valve, thus maXlllllSll1g the range of impact 

conditions that can be optimally damped. This involves revising the valve's mean 

radius and active length, choosing the electric circuit configuration, and finally 

modi fying the valve gap so as to maintain the [,,1]>11111\' QIIIII\] characteristic. Because the 

magnetic behaviour is relatively insensitive to the valve gap, it is not normally 

necessary to repeat the magnetic optimisation once the valve gap h has been finally 

chosen. 

With the optimal valve geometry, the landing impact simulations can be repeated to 

check that the performance is close to that found for the preliminary design. Because the 

[LlPIi/{/x, QII/Il\] characteristic is unchanged, the damping performance will not differ 

greatly between the magnetically optimised design and the preliminary design. 

The design approach reqtllres two modelling approaches: a time-domain landing 

simulation including MR damping, and an analytical approach for optimising thc 

magnetic design of the valve. These numerical tools are derived in thc following 

sections. 
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3.3 Oleopneumatic shock strut modelling 

3.3.1 MR shock strut model 

A schematic diagram of an MR oleopneumatic shock strut is shown in Figure 3-3. This 

is similar to a typical passive device (see Figure 2-10), except that an MR valve replaces 

the conventional circular orifice and the metering pin. The key equations used to 

formulate the dynamic model are also shown in Figure 3-3, which are described as 

follows. 

Neglecting internal friction, the shock strut force PI IS readily derived usmg the 

following pressure-area balance: 

(3-1) 

where PI and P2 are the pressures in chambers '1 ' and '2', a2i and aJa are the inner and 

outer cross-sectional areas of the cylinder that seals against the piston head, FiJ is the 

hydraulic damping force and Fg is the gas force. The present study has assumed that the 

pressure in chamber' 1 ' is equal to the gas pressure in chamber 'a'. This is valid when 

the fluid inertia is negligible and if the mass of the dividing piston is small. For the 

shock struts considered in this study, the fluid and gas volumes are mixed (i.e dividing 

piston mass = Okg) and fluid inertia has been neglected for simplification purposes. 

The gas pressure Pa (and hence chamber '1' fluid pressure) IS determined from the 

polytropic law for the compression of gases: 
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P (= P. ) = P (~JIII 
(l 1 aO 

V 
(/ 

(3-2) 

where PaG is the initial gas inflation pressure, VI1 () is the initial gas volume, VII is the 

current gas volume, and 111 is the polytropic exponent. For passive landing gears, III is 

often assumed as 1.1, which has been shown to correlate well with observed behaviour 

when the fluid and gas volumes are mixed [101]. 

Dynamic effects are incorporated in the form 0(' fluid compressibility usmg a bulk 

modulus term. This is a vital consideration for shock absorber modelling, especially ('or 

impact scenarios. Assuming constant density, it can be shown that the general mass 

flow continuity equation accounting for the fluid compressibility of a control volume is 

(see Appendix B): 

dv v dP 
dt + fJ dt = Q; - Qo (3-3) 

where v is the control volume (which changes according to piston position and/or fluid 

compression), f3 is the bulk modulus, P is the pressure, and Qi and Qu are the volume 

flow rates into and out of the control volume respectively. 

With reference to Figure 3-3, Eq.3-3 is applied to each fluid chamber, which introduces 

non-linear sti(,fness terms into the model. During compression, Qi] = Qui = 0, where 

sUbscripts '1' and '2' denote chambers j and 2, respectively. Also, assuming there is 110 

compression in the valve, then Qo] = Qil = Q. Finally, assumll1g a constant bulk 

modulus, the mass flow continuity equation for each chamber is: 
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Q 
dVI VI d~ =-+--
dt f3 dt 

(3-4) 

(3-5) 

Here, VI = V IO + VIIO - (a 2a - a2i )x - VII and v2 = v21l - {[2iX, where x denotes the piston 

displacement, and the subscript '0' represents the initial conditions. Equations 3-1 to 

3-5 were formulated in Simulink and the corresponding block diagram is shown 111 

Figure 3-4. Here, Eq.3-4 is solved for V" whilst Eq.3-5 is solved for Pl. The gas 

volume VII is then deduced by geometry, which in turn gives PII = P, (Eq.3-2). This 

model formulation is necessary as it avoids the presence 0 f an algebraic loop. 

Finally, in order to model the MR effect, a look-up table containing the pressure-

f10wrate (L1P-Q) characteristics of the MR valve as a function of yield stress is 

generated. The term L1P is calculated by summing the individual pressure drops across 

the active and inactive regions of the valve. Thc active pressure drop is determined by 

the 'solution of the Buckingham equation for Bingham plastic flow bctwecn parallel flat 

platcs [55]. This has been shown to characterise smart fluids wcll for annular flow, 

where the height of the valve gap is negligible in relation to the mean valve diameter. 

The cOITesponding Buckingham equation is as follows: 

Here, ~" is thc active valve pressure drop, III is the active valve length (equal to 2tiJ in 

Figure 3- I (b)) and b is the mean annular circumference of thc valve (equal to 7[(/ in 

Figure 3-1 (b )). The two key unknowns in Eq.3-6 are the Bingham plastic yield stress T\ 
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and the viscosity 1', which can be estimated from the MR fluid manufacturer's data. 

The inactive pressure drop is readily determined using the equation for Newtonian flow 

between parallel flat plates, i.e. Eq.3-6 with Tj. = o. 

By specifying the valve geometry, fluid yield stress and volume flow rate, Eq.3-6 can be 

solved for l1P. There is only one physically meaningful root to this equation, which is 

obtained using Newton's method. It can be shown that the fIrst guess of l1P given by 

Eq.3-7 will have converged on the desired root by ten iterations [119]. 

!":,p(l) = 31 [, + 121'IQ 
h hh.1 

(3-7) 

This initial guess ensures that the most positive root of Eq.3-() is converged upon, which 

represents the only root where the maximum shear stress in the fluid is greater than the 

Bingham plastic yield stress, hence representing fluid flow. Equation 3-6 was solved in 

Matlab for a range of yield stress and volume flow rate values, which results in a look 

up ·table with flow rate and yield stress as the input and pressure as the output. 

However, from Figure 3-4 it can be observed how the inverse of this is required to solve 

the dynamic model i.e. pressure is required as the input and flow rate is required as the 

output. This was achieved using interpolation by sampling the previously generated 

pressure/flow rate curves at equally spaced pressures, and then repeating the procedure 

at equally spaced yield stresses. 

A final important point is that the pressures in the dynamic shock strut model were 

found to drift when subject to several excitation cycles. The author believes that this is 

due to a lack or mass continuity in the model as a result or the constant density 

assumption in Eq.3-3. Nonetheless, the model was considered to be accurate over a 
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single cycle, particularly during the compression phase, which is the most important for 

landing impacts. For longer simulations, the pressure drift problem can be overcome by 

linearising the stiffness teml in Eq.3-3 i.e. the ratio vI/J becomes a constant. It should 

also be noted that the derivation of Eq.3-3 has some similarities to the wave equation 

used in acoustics [120]. As fUliher work, it would therefore be interesting to use the 

theory of acoustics to derive the model without the assumption of constant density. 

3.3.2 Passivc shock strut //Iodcl 

It is desirable to model the landing impact response or the existing passive shock strut. 

This enables the complete landing impact model to be validated before performing 

equivalent simulations of the MR device. The passive shock strut model is readily 

derived via substitution of" Eq.3-G with the well-known equation describing the 

discharge through an orifice, that is: 

Q" c"a"J ~ (P, - p,) (3-8) 

where Q is the volumetric flow rate, C, is the cocfTicient of" discharge, ao is the cross

sectional area of the orifice and p is the density or hydraulic oil (872.6 kgm
oJ 

for 

Aeroshell 41 which is a standard oil used in landing gear shock absorbers [121 J). An 

uncertainty arises here regarding the value to be taken lor the coefficient of discharge. 

The nominal value for a sharp edged orifice is 0.6 1122], although there is evidence of 

appreciable variation in the discharge coefficient with Reynolds number during an 

impact [102]. Nonetheless, this value serves as an intuitive first guess. 
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3.4 The landing impact model 

In this section, a two-degree-of-freedom (200F) landing impact model is derived. For 

simplification purposes, wheel spin-up forces have been neglected. 

A Cree-body diagram of the 200F impact model is shown in Figure 3-5. This 

corresponds to a telescopic type of landing gear, which is consistent with the majority of 

aircraft considered in this thesis. Here, the relative displacement between the airframe 

and wheel assembly corresponds to the displacement of the shock strut. The equations 

of motion for the system are as follows: 

IJI i =111 (T-L-F 
p p pC s (3-9) 

(3-10) 

where 1111' is the distributed aircraft mass i.e. the cflective aircraft mass that acts over a 

single shock absorber, 111 11 , is the mass of the wheel/tyre assembly, =1' and =11 are the 

displacements of the drop mass and the wheel/tyre assembly, L is the aerodynamic lift 

force from the wings. F, is the shock strut force (Eq.3-1) and FI is the tyre force. The 

aircraft lift maintains a constant value equal to a percentage of the aircraft's weight IV. 

Normally, L = 0.6711' for lightweight utility aircraft and L = 11' for largcr transport 

aircraft [101]. The lyre force FI was approximated llsing the Collowing power law, 

which was shown by other investigators [102] to correlate well with observed 

behaviour: 

(3-11 ) 

Here c and I' are empirical constants. For simplification purposes, tyre hysteresis was 

neglected. 
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An added complexity in the model arises due to the initial shock strut inOation pressure 

PliO, which generates an extension force. Assuming that the shock strut is rigid in 

compression and bending, the wheel and drop mass erfectively remain locked until this 

initial force is overcome, i.e. the system behaves as a single-degree-of-freedom (SOOF) 

system [102]. Therefore two separate models arc required with the SOOF model 

triggering the 2DOF model at the instant this initial rorce is exceeded. The equation of 

motion for the SOOF system is: 

(3-12) 

where z = 2" = 2" .. The initial condition for this S[)OF model is set in terms of the sink 

velocity, V'!lIk (= i(O)). At the instant t = td when the shock strut bcgins to deOect, 

F, = P"O(l20 (sec Eq.3-1 and note that p]=P,=PIIO ). Substituting this expression into 

Eq.3-9 and noting from above that z" = z gives: 

i = IJ1 j )g-L-P"O({20 

r" 
/II" 

(3-13 ) 

Eq.3-l3 represents the critical acceleration to be exceeded to cause shock strut 

deOection and Eq.3-12 is solved until this value is reached. The 200F system is then 

triggered with the resulting initial conditions from the SOOF system at time t = td. 

3.5 MR Valve geometry optimisation 

The complete MR landing impact model has now been derived, and what remains is to 

determine the optimal MR valve geometry. In this section, a methodology for 

optimising the performance ofMR valves subject to si/ing constraints is presented. 
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With reference to Figure 3-1, it is desirable to achieve large magnetic fields in the fluid 

(hence a large MR fluid yield stress), passing through a large active length. Also, to 

minimise the power requirements for a given fluid yield stress, a large number of coil 

turns arc required. However, due to packaging constraints on valve diameter and 

length, this will reduce the active length. Furthermore, a larger coil will reduce the 

cross-sectional areas of the magnetic circuit, which may cause saturation of thc valve 

material. This demonstrates the balance that is required between power and active 

length in order to optimise a geometrically constrained valve. A sizing methodology 

that addresses this balance will now be derived in terms of the valve geometry and valve 

performance. 

3.5. J Geometry formulation 

Rosenfeld and Wereley [123] developed a set of analytical rules to describe an optimal 

geometry of an MR valve. The geometry was optimal in the sense that saturation of the 

magnetic circuit is avoided as far as possible. For completeness, the approach is briefly 

summarised below. 

Three critical valve areas of the MR valve shown in Figure 3-1 are first defined, and it is 

important that the material in these areas cloes not reach magnetic saturation. The areas 

arc the circular cross-section of the bobbin core A /, the annular cross-section of the flux 

return A2 and the cylindrical area at the interior of the bobbin flanges Ai [123]. The 

valve geometry that best prevents magnetic saturation is achieved when these critical 

areas are equal. This helps maintain a constant flux clensity throughout the magnetic 

circuit so that a particular region clocs not saturate prematurely. With reference to 

Figure 3-1 (b), these critical areas can be described by the following equations: 
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A = 7r t 1 (3-14) I a 

A2 = 7r(O.25D~ - (ta + We + /1)2) (3-15) 

where til is the bobbin core radius, D" is the constrained MR valve diameter (which 

corresponds to (/2i in Figure 3-3), We is the coil width, and tl! is the bobbin flange height. 

Setting Eq.3-14 equal to Eq.3-15 results in a quadratic equation in til for which the 

meaningful positive solution is: 

(3-17) 

With D" constant, Eq.3-17 is solved for a variety of coil widths We and for a constant 

valve gap h. The term We was calculated as the multiple of the coil diameter for 24-

gauge copper wire (diameter = O.S I (1I11m) with the number of coil wraps. Thus a '10 

wrap' coil corresponds to a width of IOxO.516mm. Setting Eq.3-14 equal to Eq.3-16 

gives the bobbin flange height t" as follows: 

(3-18) 

From Figure 3-1 (b), it can be seen that the active valve length fa is thus: 

I = 2t = t {/ b {/ (3-19) 

An ideal valve would have a fully active length thus it becomes useful to define a 

dimensionless valve length c5: 

5= 1,// (0 < 5<1) (3-20) 

where I is the total length of the valve (which is constrained to a fixed value), and c5= I 

represents the ideal case. Finally the coil height he is given by: 
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h = I-I 
C (1 

(3-21) 

To calculate the number of turns N, the value of he was rounded down to the nearest 

multiple of the coil diameter. This height in coil diameters was then multiplied by the 

wrap number to give an approximate value for N. 

Through inspection of Eq.3-17, it can be observed how the bobbin core radius, and 

hence the active valve length (Eq.3-l9), are independent of the total valve length. Thus 

for a fixed valve length, the packaging constraint on diameter may result in low 

dimensionless valve lengths, and hence performance could suffer. One method to 

overcome this constraint is to size a valve with a reduced length and then to stack 

identical valves together such that the total length remains unchanged. The geometry of 

an individual valve is then formulated for a valve of length: 

1= I/n (3-22) 

where If is the constrained total length of the stacked valve and 11 is the number of 

individual valves (or stage number). This is shown schematically in Figure 3-6 for II = 

1 to n = 2. Note that the wire in each adjacent coil must be wound in opposite 

directions to ensure the correct direction of magnetic flux. 

3.5.2 PCljormance 

An efficient MR valve will be able to achieve the maximum fluid yield stress without 

saturation of the magnetic circuit and without exceeding the maximum operating current 

of the solenoid wire. To assess the above requirements, an analytical methodology is 

developed, which proves to be relatively straightforward due to the equal critical areas 

of the valve. This method allows the optimal valve geometry to be rapidly and 

efficiently detern1ined in a spreadsheet. This approach differed from that used by 
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Rosenfeld and Wereley [123], who resorted to a more complex and time-consuming 

finite element analysis (FEA). In the present study, FEA will be used to later Yalidate 

the analytical approach. The analytical methodology mentioned above, and some 

important performance indicators are now derived. 

First, the magnetic flux density HI and the magnetic field strength III are specified 

according to the maximum fluid yield stress TI"",.,,' This information is obtained from 

the MR fluid manufacturer's data sheets. Next, the required magnetic flux in the fluid 

¢/was calculated as: 

(3-23) 

where Al ( = mit,,) is the pole area of the fluid. Using the principal of continuity of flux, 

the flux density in the valve material HI was determined as: 

¢,. ¢f 

A, 
(3-24) 

where ¢I and A.I are the flux and pole area of the valve carrier material respectively. 

Also, AI is the bobbin core cross-sectional area (Eq.3-14), which is equal to A2 and /1 3 

(Equations 3-15 and 3-16). The carrier material was assumcd to be mild steel due to its 

high magnetic permeability and good saturation properties. The magnetic circuit can be 

considered eapable of achieving the maximum fluid yield stress if Bs < 1.3T, which 

approximately corresponds to the saturation level of the steel. Next, the current J 

required to generate the magnetic 1icld is determined using Kirchhofrs law. This 

should not exceed 2.5A, which is a reasonable maximum current for 24-gauge copper 

wire [123] and is given by: 

71 



MR Shock Absorbers Chapter 3: MR Landing Gear - A Design Methodology 

1= (H,L, +H{2h)/ N (3-25) 

where N is the number of turns (as calculated in Section 3.5.1), Hs is the magnetic field 

strength in the steel, and Ls and 217 are the length of the flux path in the steel and fluid 

respectively. The term H., was readily determined using a B-H curve for 1018 steel. 

The parameter Ls is not as straightCorward to calculate and was approximated as the 

distance around the centre of each steel section. 

Another important performance indicator is the power p required to generate the 

maximum fluid yield stress, which was determined as follows: 

(3-26) 

where Re is the resistance of the coil, 0 is the resistivity of copper (l.72x 10.8 Om), Ie is 

the total length of wire (estimated by summing the circumferential length for each turn), 

and Ae is the cross-sectional area of the wire. Also, it is noteworthy that for a multi-

stage design (n >1), Eq.3-26 holds regardless of whether the valve windings are 

arranged in series or in parallel. 

The time constant was calculated llsing the analogy of a resistance and inductance in 

senes: 

Le N¢ N¢Ae 
T=-=-=--

Re IRe [(J"/c 
(3-27) 

where Lc is the circuit inductance and ¢ (=¢,=¢f) is the magnetic flux. 

Valve controllability was characterised in ternlS of a control ratio Ie, which is defined as 

follows: 
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(3-28) 

Here, !1~,,,,, is the maximum-field pressure drop (at T,,,,.,,), and !1J~) is the zero-field 

pressure drop i.e. where the entire valve length is inactive. The term !1~l\"\ was 

calculated using Eq.3-6 by summing the pressures across the active and inactive (T\ 

OkPa) regions of the valve. 

Reynolds number Re was also uscd as a performance indicator. This is important as the 

MR effect is strongly dependent on laminar flow, and previous research has suggested 

that turbulent flow regimes could reducc device perf0l111anCe [124]. For an MR landing 

gear, the onset of turbulence is more probable due to the associated higher velocities 

during impacts. Valve Reynolds number was therefore calculated using the parallel 

plate approximation as follows: 

Re = Pw/J 
ph 

(3-29) 

where PMR is the density of MR fluid, and h (=nd) is mean annular circumference. For 

flow to remain laminar, Re must rcmain below the critical value Ree . However, an 

uncertainly arises as MR fluids are non-Newtonian and RCe for such fluids is unknown. 

As an approximate benchmark, the critical value for Newtonian flow between parallel 

flat plates was assumed. By using the hydraulic mean diameter and by assuming a 

critical value of 2000 for pipe flow, this can be approximated as Rcc = 1000. 

3.6 MR landing gears for lightweight aircraft 

In what follows, the design methodology outlined 111 Figure 3-2 is applied to a real 

aircraft using the numerical tools described in Sections 3.3-3.5. Here, the aim is to size 
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an MR nose landing gear for the Polish Institute of Aviation's 1-23, which is a 

lightweight personal/business aircraft. With reference to Figure 3-2, the results in this 

section arc organised as follows. First, the landing gear system is defined, along with 

the corresponding parameter values required by the numerical tools. To validate this 

system, simulations of the existing passive landing gear are performed and compared to 

experimental drop test results. Next, a preliminary design study is presented in order to 

calculate the desirable MR valve performance [LlPIII(Jx, QIIIII\]. This desirable 

perf0l111anCe is then used to calculate the 'optimal' valve size, which fully considers the 

constraints of the magnetic circuit. FEA is also used to validate the magnetically 

optimised design and hence the sizing methodology. Finally, the impact performance of 

the optimal design is investigated. 

3.6. J Parameter definition and validatiol/ 

To begin the design process, experimental drop test data from a worst-case impact on 

the 1-23 landing gear was provided by the Polish Institute of Aviation [125]. The 

Institute's test facility is shown in Figure 3-7, which has the capability of simulating 

aircraft lift forces using pneumatic actuators as well as wheel acceleration forces by 

applying an initial wheel angular velocity. However, experiments were performed 

without initial wheel spin-up in order to permit direct comparisons with the model. To 

generate the worst-case impact, a drop mass corresponding to maximum payload, and 

the worst-case sink velocity was used. An equivalent model of this drop test was then 

developed using the numerical approach described in Sections 3.3 and 3.4. 

Table 3-1 lists the parameters used to construct the equivalent model. With reference to 

Figure 3-8, the shock strut model parameters PliO, Vld}, v/o, V20, a2i, and (/2IJ correspond to 

74 



MR Shock Absorbers Chapter 3: MR Landing Gear - A Design Metlzodologv 

the actual 1-23 nose gear values. The gas constant III was estimated as 1.1, which is a 

good approximation when the fluid and gas volumes are mixed [101]. With regards to 

the impact model (Figure 3-5), the parameters Ill,,, /1/", L, and Vlin!; cOITespond to the 

experimental drop test conditions. The tyre law constants c and r (Eq.3-ll) were 

determined by curve fitting to the compression phase of the tyre response from an 

impact test. This is illustrated in Figure 3-9, where the displacement of the dropped 

mass has been subtracted frolll the shock strut deflection and plotted against the 

measured tyre force. As shown, acceptable correlation is achieved during compression 

of the tyre. 

[n order to validate the landing impact Illodel, a passive simulation was perfo1111ed (by 

replacing Eq.3-6 with Eq.3-8) and compared to the worst-case experimental drop test 

data. The result is presented in Figure 3-10, which shows the force/time and 

force/displacement responses for two values of discharge coefficient. For C, = 0.52 the 

model accounts well for observed behaviour, particularly in terms of impact duration 

and maximum deflection. The simulated peak force is overestimated, although this 

could be due to errors and/or a variation in the lift force during the experiment. 

Furthermore, the discharge coefficient is lower than the nominal value of O.C) for a sharp 

edged orifice, although this could be explained by the larger pressure loss due to friction 

in the 5mm long valve (see Figure 3-8). In other words, the "sharp edged" orifice 

assumption is not valid. A variable discharge coefficient Illay also contribute to this 

inaccuracy. It can also be observed that the reduction in force with displacement during 

the rebound phase does not correlate well with the experimental data. This is because 

the model does not account for the effect of the recoil orifices (shown schematically in 

Figure 3-8), which is a secondary issue at this stage of the design and is outside the 
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scope of the present study. A final point from Figure 3-10 is that the point where the 

shock force becomes negative represents the tyre leaving the ground. Beyond this 

point, the model is invalid. In conclusion, the overall correlation shown in Figure 3-10 

is good and the landing impact model was considered to be of sufficient accuracy 

during the compression phase to be used as a tool for investigating the perf01l11ance of 

the MR device. 

Before presenting the MR landing impact and sizing results, the MR fluid properties 

must be defined. Experimental validation of these properties is dealt with in Chapter 4. 

In the present chapter, properties /ar Fraunhofer's AD57 MR fluid were assumed [126], 

and of key importance are the bulk modulus, yield stress, and viscosity. The bulk 

modulus of MR fluid is unknown, but the base value for a standard hydraulic oil ((3 = 

1.7GPa [127]) serves as a reasonable approximation. The viscosity and yield stress 

were calculated from the fluid manufacturer's data, which is shown in Figure 3-11. 

With reference to Figure 3-II(a), the viscosity was estimated as O.IPas. This is an 

extrapolated value as the shear rates in a flow mode device may be two to three orders 

of magnitude greater than that shown in Figure 3-11 (a). In terms of Reynolds number, 

this is a conservative estimate (Reynolds number is inversely propOliional to the 

viscosity). From Figure 3-11 (b), the maximum fluid yield stress r. was taken as 
\1l\J\ 

55kPa, which is generated at a flux density of O. 7T and at a magnetic field strength of 

236kAlm (Figure 3-11 (c)). The above properties are summarised in Table 3-2. The 

MR fluid's density PAtH is also given, which was used to calculate the Reynolds number 

(Eq.3-29) and the mass of the fluid. 
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3.6.2 Preliminary MR design 

As shown in Figure 3-2, the first stage of the design process is to determine a desirable 

valve performance (Steps 'A' to 'E'). This is achieved by calculating the MR valve 

geometry without a detailed consideration of the magnetic circuit. The MR shock strut 

design considered in this study is that shown in Figure 3-3, where the existing passive 

ori flce (Figure 3-8) has been replaced with an MR valve. With reference to Figure 

3-1 (b), the total length I, and diameter Dp of the MR valve are 45m111 and 36111111 

respectively, which correspond to the geometrical constraints of the existing passive 

device. The mean valve diameter d and the dimensionless valve length (Y were chosen 

intuitively as 10mm and 0.5 respectively, giving an active valve length Iii equal to 

22.5mm. The valve gap h is then determined using an iterative process by perfol111ing a 

worst-case landing impact simulation to achieve the desired performance at the 

maximum fluid yield stress (T. = 55kPa). 
\111,1:\ 

Figure 3-12 presents the corresponding results, which shows the shock strut's force/time 

and force/displacement responses for a range of valve gap sizes. The worst-case 

experimental drop test data are also shown superimposed, which provides a useful 

performance benchmark. Clearly, II = 0.5mm results in large damping forces during the 

initial stage of the impact. For h = 0.65mm, damping levels are insufficient, and this 

results in large forces at the end of the impact due to excessive gas compression. The 

optimum response that provides the lowest peak force occurs when h = 0.57mm. 

Furthel1110re, it could be argued that this MR response is inherently superior to the 

passive system. For example, the fluctuation in force is less severe and maintains a 

more constant value throughout the impact. In other words, the MR response has a 

superior impact efficiency (Eq.2-1), which would provide an enhanced fatigue life for 
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the aircraft. This is a direct result of the Coulomb-viscous nature of the MR damping 

function, which provides large forces at low velocities. In contrast, the passive system 

has a quadratic damping function (Eq.3-8), which results in larger fluctuations in the 

overall shock strut force. 

Referring to the design flowchart (Figure 3-2), the desirable valve performance was 

then determined as IJPlllax = 12.2MPa, which occurred at Qlllax = 2x 1 O-J m\-I during the 

optimum impact response (1z = 0.57mm). 

3.6.3 Optimal MR design 

In what follows, a sizing study is presented that uses the magnetic circuit theory 

presented in Section 3.5 to optimise the internal valve geometry (Steps 'F' to 'I' 111 

Figure 3-2). The key aims are as f't)llows: 

• To achieve the desirable valve performance [IJPIII{I\' Qlllax] at the maximum 

yield stress. 

• To achieve the maximum yield stress without saturation of the steel, and 

without exceeding the maximum current rating of the copper wire. 

• To maximise the control ratio, and hence the range of impacts that can be 

optimally damped. 

Figure 3-13 presents the perfonmmce results of each valve for wrap numbers between 

4-16 and for stage numbers equal to 1 and 3. Where applicable, the results were 

calculated with the maX1111Um now rate from the preliminary design 

(Qlllax = 2xl0-J m 3s- I
), and at the maximum yield stress T

"
",,, = 55kPa. Furthermore, the 
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results are shown for two valve gap sizes - the preliminary valve gap size (ll = 0.57mm), 

and h = 0.59mm, which transpires to be the optimal design, as will be illustrated in the 

following analysis. 

First, Figure 3-13(a) plots the magnetic flux density that will result in the steel in order 

to generate maximum yield stress in the fluid. This is shown as a function of wrap 

number and since the critical area is independent of the total valve length (Equations 

3-14 to 3-16), the results are independent of the stage number. The observed increase in 

magnetic flux density with wrap number is a direct result of the reduced steel cross

sections due to a larger coil. The saturation limit of the steel (1.3T) is also shovil1 and is 

exceeded for valve geometries with a wrap number greater than 12. These geometries 

were therefore eliminated from the design process, as magnetic saturation could prevent 

the maximum fluid yield stress from being generated. Also, it is important to note how 

the magnetic flux density is independent of the valve gap size. 

Figure 3-13(b) shows the control ratio for each valve configuration. Due to a larger coi I 

size, and hence a smaller active valve length, the control ratio reduces with increasing 

wrap number. This result illustrates the key advantage of stacking geometrically similar 

valves together, where superior performance is achieved with increasing stage number. 

It can also be observed how the effect of the valve gap size h on the control ratio is 

fairly signi ficant. This is because of the cubic influence of h on the pressure drop in the 

Buckingham equation (Eq.3-6). 

The above results suggest that the optimum valve design must have a low wrap number 

and a high stage number. However, they fail to recognise the implications that such 

valve configurations have on the required current, which is now addressed in Figure 
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3-13(c). As shown, higher currents are associated with a decreasing wrap number and 

an increasing stage number, which is a result of the lower magneto-motive force that a 

smal1er coil generates. As 2.SA was considered as the maximum safe operating current 

for the copper wire, this eliminated a 4-stage valve design (not shown in Figure 

3-13(c)). The 3-stage-12-wrap design appears to provide the optimal configuration 

where superior control ratios are achieved with acceptable current levels. Furthermore, 

note how the valve gap size has no significant impact on the required current, and hence 

the optimal wrap and stage number. 

A further advantage of a multi-valve configuration is a reduced time constant, which is 

observed in Figure 3-13(d) for increasing stage number and decreasing wrap number. 

Note that the reduction in time constant for large wrap numbers is due to saturation of 

the steel. Again, as with the previous performance indicators (except control ratio), the 

time constant is largely independent of the valve gap size. 

Next, the Reynolds number (which is independent of stage number) is investigated in 

Figure 3-13(e). Clearly, the Reynolds number remains below the critical value at the 

maximum anticipated flow rate during the impact. This is a promising result and 

suggests that valve performance should not be inhibited by turbulent flow. Also, the 

valve gap size has a negligible influence on performance. 

Using the above results, it can be deduced that a 3-stage-12-wrap valve provides the 

optimal configuration. However, obtaining the desired maximum field performance 

(L1P/JII/I = 12.2MPa) has so far been neglected, which is now addressed in Figure 3-13([). 

As illustrated in the above results, the valve gap size lz has no significant effect on the 

optimum wrap and stage number. Therefore, it is straightforward to tune h as a final 
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step in order to achieve the desired pressure drop. This is shown in Figure 3-l3( I), 

where it can be observed that the optimulll 3-stage-12-wrap valve correlates well with 

the desired performance when h is equal to 0.59mm. 

The key geometrical parameters and performance indicators of the optimal 3-stage-12-

wrap valve design are given in Table 3-3. In summary, this design maximises the 

dimensionless valve length US = 59(;;)) and hence control ratio (IL = 2.26), without 

magnetic saturation (Bs < 1.3T), and without significantly exceeding the 2.5A rating of 

the copper wire. For example, the maximum yield stress is achieved at 2.6A, which 

could be sustained for short periods 0(' time. Furthermore, this was found to require just 

16.5W of power, and could be supplied by a low voltage source of 2.IV, or 6.3V, 

depending on whether the individual stages are wound in parallel or series. Also, the 

optimal design has a time constant of 19ms. In practice, if a current driver is used (the 

definition of time constant in Eq.3-27 assumes constant voltage) and the coils are 

arranged in parallel, the time constant will be lower than this [53]. Finally, Table 3-3 

presents figures regarding the extra mass of the device. As the MR fluid is 

approximately four times denser than conventional hydraulic oil, the fluid is 0.8kg 

heavier. The mass of the MR valve is OAkg, which is not likely to be significantly 

heavier than the existing passive valve. Therefore, the additional mass of a single shock 

strut should not exceed one kilogram, which is approximately 0.2% of the distributed 

aircraft mass IJ/p (see Table 3-1) 

To further clarify the performance of this optimised geometry, Figure 3-14 compares its 

quasi-steady pressure/flowrate characteristic with the preliminary valve design. (Jood 

correlation is observed, which suggests that the desired impaet performance will be 
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achieved, Furthermore, it can be observed that the optimal valve has a slightly superior 

control ratio, This is a result of the conservative estimate of dimensionless valve length 

«()= 50%) that was assumed in the preliminary sizing analysis, 

3,6.4 FEA o/the magnetic circilit 

In order to validate the sizing methodology, an axisymmetric FEA of the optimal valve 

geometry (see Table 3-3) was performed, This was investigated using the software 

package FEMM [128J, and in order to model the magnetic characteristics of the MR 

fluid, the fluid manufacturer's /3/11/ data (Figure 3-11(c)) was used in the simulation, 

Figure 3-15(a) shows the flux density contour plot from this analysis, This corresponds 

to a current of2,6A (as determined in Section 3,6,3), where the aim is to achieve a fluid 

flux density ofO,7T across the active valve gap (therefore achieving the maximum fluid 

yield stress), The distribution of flux density is highly uniform within the critical valve 

areas, and the circuit remains unsaturated as expected, 

Figure 3-15(b) plots the variation of the fluid flux density normal to the valve gap, as a 

function of the distance 'X' along the mean valve diameter (as indicated on Figure 

3-15(a)), As shown, the flux density across the active valve gap adjacent to the MR 

fluid is approximately 0'()5T, which is 7(Yt) lower than the desired value, This is due to 

flux leakage into the bulk of the MR l1uid at the valve entry/exit, which is observed in 

Figure 3-15(a), In contrast, the flux density in the active lengths constructed from two 

adjacent valves is observed to be O,7T as desired (Figure 3-15(b)), 

The above fInite clement analysis validates the analytical magnetic circuit analysis 

presented In Section 3,("], Ideally, the analytical approach should be updated to 
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account for flux leakage, but this is likely to have no significant influence on the 

optimised geometry and performance, especially for a multiple-stage design. 

3.6.5 MR landing gear impact performance 

In the following discussion, the optimal valve geometry IS investigated within the 

aircraft landing gear impact simulation. It is assumed that the full MR fluid yield stress 

range can be generated, which is a valid assumption after consideration of the FEA 

results in the previous section. 

First, Figure 3-16 presents the worst-case landing impact results, which is compared to 

the experimental (passive) data, and to the preliminary valve's performance. As shown, 

the desired performance is still maintained, and no further refinements to the valve 

design are necessary. This demonstrates the robustness of the proposed design 

methodology. 

Next, the effect of fluid compressibility on the MR landing impact response is 

investigated in Figure 3-17. Here, the worst ease landing impact response is shown for 

a range of bulk moduli, which represent different amounts of entrapped air \vithin the 

fluid. As seen, the effect of reducing the bulk modulus is to reduce the damping force 

and increase the maximum deflection. This is because fluid compression prevents valve 

flow, and such effects are likely to be of particular importance when investigating 

control. For example, Figure 3-17(a) illustrates a slight change in the rate of increase in 

force with reduced bulk modulus. This effect could contribute significantly to the total 

device time constant where fluid compression is preventing valve flow and hence 

controllability. Experimental validation is required to get a better indication of typical 

bulk modulus values, which is dealt with in Chapter 4. 

83 



MR Shock Ahsorhers Chapter 3: MR Landing Gear - A Design Methodology 

Finally, to illustrate the controllability of the optimised design, Figure 3-18 presents the 

impact responses of the shock strut with less severe input conditions. The results are 

shown in open-loop control i.e. where the yield stress is maintained constant throughout 

the impact. In Figure 3- 18, results lar two di fferent input excitations are shown. The 

'soft impact' uses the original drop mass (see Table 3-1), but lowers the sink velocity to 

the minimum anticipated value: V'iIlA = I m/s. The 'very soft impact' also has a sink 

velocity of 1 mis, but simulates a drop mass of just 284kg, which is 60(10 of the original 

(maximum) value. 

For the son impact, it can be obsened that lowering the yield stress from 55kPa (the 

maximum value) to 6kPa, best minimises the force during the impact. Furthennore, the 

maXImum yield stress response is a good indicator of the wide range of controllable 

force that IS available. As before, the MR impact response IS inherently efficient 

without the need for closed-loop control. 

For the very soft impact, the control limits of the design can be observed. For example. 

it could be argued that the damping provided by the base viscosity of the fluid (T, = 

OkPa), results in damping forces that are slightly high during the initial stages or the 

impact. This is best observed in Figure 3-18(b), where it can be observed that the forces 

at the end of the impact are lower. Nonetheless, the impact efficiency is still good. 

To summarise, the feasibility or incorporating MR landing gears onto lightweight 

aircraft has been demonstrated. For example, highly controllable and reasonably 

lightweight devices can be designed that accommodate a wide range of landing impacts. 

The next step is to investigate the scalability orMR landing gears by performing similar 

sizing studies for large-scale aircraft. 
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3.7 MR landing gears for large-scale aircraft 

The following case studies focus on two different landing gear shock struts produced by 

Messier Dowty. The first sizes an MR device for a telescopic landing gear. where the 

shock strut displacement is equal to the relative displacement between the airframe and 

wheel (Figure 2-12(a)). In the second case study. the design of an MR shock strut for a 

levered configuration is investigated. Here, the relative displacement between the 

airframe and wheel is greater than the shock strut displacement (Figure 2-12 (b». 

3.7. j Large-scale telescopic (Un) landing gear 

The aim of this study is to size and optimise the performance of an MR valve for a 

large-scale telescopic or LST landing gear. To recap, the sizing approach (Figure 3-2) 

aims to achieve an acceptable worst-case landing impact performance in the maximum 

fluid yield stress condition. Consequently, lower damping levels are available for less 

severe impacts. Furthermore, by maximising the device control ratio i.e. the ratio or 

pressures between the maximum-field and zero-field conditions, the range of impacts 

that could be optimally damped is maximised. 

An existing LST landing gear and an equivalent MR shock strut are shO\vn 

schematically in Figure 3-19. Here. the MR valve is constrained to the existing internal 

diameter or the passive device (I)/} •. ~ III mm), and a constraint of I 00m111 was placed on 

the valve length 1/. Furthermore, extra fluid passages must be included to prevent the 

formation of a vacuum between the piston rod and the outer cylinder. 

To aid formulation of a realistic landing impact model, actual aircraft data was provided 

by Messier-Dowty [103]. The model parameters used in the analysis are given in Table 

3-4. Here, the aircraft lift force was assumed to be equal to the aircraft weight, which is 
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110rmal for large-scale aircraft [10 I]. Values were also assumed for the wheel mass, and 

the parameters used in the tyre deflection law. For the shock strut model, the gas law 

parameters were chosen to give an equivalent spring force F,,, to the existing passive 

strut. The corresponding gas law is shown in Figure 3-20. Note that the modelling 

complexities associated with the existing orifices and metering pin (see Figure 3-19(a)) 

meant that a passive shock strut model was not developed for this study. 

After using the landing impact model to calculate the desirable MR valve performance 

(steps A-E in Figure 3-2), the magnetic circuit design and device controllability were 

optimised (steps F-G). The corresponding geometry and performance of the optimised 

designs are given in Table 3-5. Here, two different MR fluids were used to optimise the 

valve (Fraunhofer's AD57 and AD275 [126]), and the reasons for this will become clear 

in the following discussion. 

The optimal configuration with AD57 MR fluid has a single valve stage, and a good 

control ratio (Ie = 2.05 at r. ,Qlllil\)' Furthermore, the maximum yield stress can be 
\11\,1'., 

achieved without saturation of the steel (B, = 0.81 T < 1.3T), and without exceeding the 

maximum current of the copper wire (l = 2.28A < 2.5A). Vitally, the desirable MR 

valve perf0l111anCe is close to being achieved, thus an acceptable worst-case impact 

perfol111ance should result. However, the maximum Reynolds number is about 3.6 

times greater than the critical vallie, which could cause performance to suffer. An 

effective way to overcome this is to use an MR fluid with a higher off-state viscosity. 

However, this higher viscosity may calise the control ratio to suffer due to the larger off-

state force. 
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Fraunhofer's AD275 is an MR fluid with a larger viscosity. This is illustrated in Figure 

3-21 (a), and can partly he explained by the slightly higher volume fraction of iron 

particles (AD57 = 35°1<, and AD275 = 36%). As a consequence of this larger iron 

content, AD275 also has a higher maximum fluid yield stress equal to 65kPa (Figure 

3-21 (b)). This larger viscosity and yield stress is an effective combination as it pel111its 

a new MR valve to be sized with a lower Reynolds number (due to the larger viscosity), 

but without significantly arrccting the control ratio (due to the larger yield stress). This 

result is illustrated in Table 3-5, which also presents the optimal valve configuration 

with AD275 MR fluid. Here, a viscosity of O.2Pas was assumed, which is an 

extrapolated estimate from the viscosity/shear stress response in Figure 3-21 (a). Also a 

slightly higher fluid density or 3570kgm-3 was used due to the higher iron content. As 

shown, the maximum Reynolds number has been reduced by a factor of 1.9, whilst the 

control ratio is only 4% lower than the design with AD57 fluid. Although the Reynolds 

number is still nearly twice the critical value, this serves as a useful example to illustrate 

how higher viscosity/higher yield stress fluids could be exploited in devices to maintain 

the Reynolds number within laminar values. 

The other important performance indicators are the maximum pO\ver, time constant and 

the increased mass, which are fairly similar for both designs. Focusing on the AD275 

design, the maximum pO\ver requirement is 56W, which could be supplied by a voltage 

source of 15Y, or 30Y, depending on whether the individual stages are wound in 

parallel or series. The time constant of the magnetic circuit is quite large (74ms), but 

the use of a current driver would improve this. The extra mass of fluid iJlIl} (compared 

to the passive device) is approximately 16.7kg. When combined with the mass of the 

valve, the total extra mass of a single shock strut will be around 22kg, which includes a 
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2kg deduction for the mass of the existing passive valve and metering pin. Although 

this is just 0.2% of the distributed mass, this is a notable inerease that could render the 

solution as unviable. However, it is feasible that an enhanced fatigue life will result in 

weight savings for other aircraft components. Furthermore, it is possible that the overall 

diameter of the shock strut could be reduced, thus lowering the extra fluid mass. This 

design would also benefit I"rol11 a lower maximum Reynolds number due to a smaller 

piston area. However, the pressure drop required to produce an equivalent damping 

force Fh would be increased, which could result in a larger wall thickness and hence 

additional mass. Fluid compressibility effects would also be amplified, and the sealing 

efficiency could be degraded. A more detailed analysis of this kind of device is outside 

the scope of the present study, and requires further investigation. 

To better illustrate the performance of the optimised design, the worst-case landing 

impact response for the valve designed with AD275 MR fluid is shown in Figure 3-22. 

Here, the sink velocity was set to 3.CJ6m/s, and the yield stress is at its maximum level 

(Tv = 65kPa). Purthermore, Figure 3-22(b) presents the corresponding experimental 

force/displacement response. As expected, the performance of the optimised MR shock 

struts is good i.e. the peak force is minimised, and thus the impact efficiency is 

maximised. In comparison with the experimental data, the impact efficiency is superior 

for the MR design, in spite or the use of a metering pin in the passive device (see Pigure 

3-19(a)). This inherent open-loop efficiency of the MR design eould be particularly 

beneficial for large-scale devices, which have larger time eonstants. Por example, 

closed-loop control may not be required and thus the magnitude of the time constant is 

less crueial. 
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Figure 3-23 presents the numerical landing impact performances with less severe input 

conditions. Here, V,illk = 2ms- l
, and the aim is to lower the MR fluid yield stress such 

that the peak force is minimised. As shown, an efficient impact response is provided 

when 'ry = 3kPa, which provides further scope to optimise even less severe landings. 

3.7.2 Large-scale lel'ercc! (r.)'L) landing gcar 

The following investigation represents an interesting addition to the prevIous case 

study, as the levered confIguration will provide lower piston velocities. The existing 

shock strut design and an equivalent MR device is illustrated in Figure 3-24. As shown, 

the diametrical constraint on the MR valve was 133mm, and the constraint on piston 

length was 50mm. 

Again, the aim of this study is to maximise the device control ratio whilst generating a 

desirable pressure drop /jj>IIII/\ at QII/II\' T. . However, the available landing gear data 
\ IIL!\ 

did not permit determination of the desirable performance in the usual manner i.e. using 

impact simulations. Instead, information about the maximum permissible shock strut 

forces was used to size the dc\ice as follows. 

First, the maximum piston velocity VII/IIX (and hence QIIIIIX) was calculated US111g 

experimental data from a worst-case impact on the LSL landing gear. With reference to 

Figure 3-25(a), which illustrates a typical velocity/displacement response, this was 

determined as 1.26ms-1 for a sink velocity of 3ms- l
• Next, data describing the maximum 

permissible shock strut forccs was used to calculate the damping requirement I'~ at 
I!IIJ\ 

this velocity. This is illustrated in Figure 3-25(b), which shows the maximum 

permissible shock strut force as a function of displacement. As the forces due to 
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friction and gas compression are also superimposed, the maximum damping force can 

be determined. With reference to Figure 3-25(a), the maximum piston velocity occurs 

at the displacement /) = JOmm. Thus from Figure 3-25(b), the maximum damping 
\'111.1\ 

requirement FI was determined as JOOkN. 
1111.1\ 

The next step is to determine the maximum pressure drop LJPII /{/\ that corresponds to 

F This was readily calculated as 21.6MPa using a pressure/area balance on the 
11111.1\ • 

shock strut. Finally, the magnetic circuit sizing methodology (Section 3.5) was used to 

determine the optimal valve geometry that generates this desired performance at QIII<'" 

r In this study, properties for AD275 MR fluid were used (r. = 65kPa, I' -~ 
lilln '111,1\ 

O.2Pas), as they were previously shown to provide a supenor Reynolds number 

performance without significant detriment to the control ratio. 

Note that the above methodology will not be as accurate as that used in the previous 1-

23 and LST case studies, where preliminary impact simulations were used to determine 

thc desired performance. This is because it does not fully consider the non-linear 

interaction between fluid compressibility, tyre deflection and the shock strut's gas 

compressIOn. Furthermore, due to the inherent differences in damping behaviour 

between the passive and MR landing gear, the maxImum piston velocity in the MR 

device is likely to differ from that in Figure 3-25. Nonetheless, the above methodology 

will provide good ballpark results, and will enable a useful assessment of feasibility. 

The geometry and performance of the optimised MR valve is given in Table 3-5. As 

shown, this is a single stage design, and the maximum fluid yield stress can be achieved 

without exceeding the current rating of the wire, and without magnetic saturation. 
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Furthermore, the maximum power requirement (25W) could be readily supplied from a 

lOY source, With II = (),82mm, the desired valve pressure drop of 21 ,6MPa is achieved, 

thus an acceptable worst-case landing impact performance should result. Furthermore, 

the control ratio is reasonably high ("l = I ,81), thus accommodating a large range of 

impacts, 

The most signi tieant di ffcrence with the previous LST design is the maximum Reynolds 

number, which remains sub-critical. This is a result of the lower piston velocities 

associated with the levered design, which outweigh the increase in piston diameter (and 

hence force) that is required to absorb an equivalent amount of energy, Thus it could be 

argued that MR landing gears for large-scale aircraft are particularly suited to levered 

con figurations, 

3.8 Summary of Chapter 3 

In this chapter, a sizing mcthodology was developed for MR landing gear shock struts, 

Using packaging requirements as a key constraint, the sizing methodology maximised 

the device's control ratio, whilst accommodating for a worst-case impact. 

Consequently, the semi-active landing gear can produce desirable behaviour for a wide 

range of impact conditions, unlike a passive device. 

A 2DOF landing impact model, and a valve size optimisation tool were developed to 

implement the design methodology, The impact model was designed to be equivalent 

to existing landing gear drop tests, which permitted accurate design assessments. 

Furthermore, the model accounted for fluid compressibility, This is important when 

considering device control, especially under impUlsive loading, The valve sizing 

methodology included an analytical assessment of the magnetic circuit, which was 
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fOl1l1ulated in a spreadsheet. This permitted the fast and efficient dete11l1ination of the 

optimised geometry, which was validated using a finite element analysis. 

To illustrate the proposed design methodology, three case studies were presented -- one 

for lightweight aircraft and two for large-scale aircraft with different landing gear 

configurations (one telescopic and one levered). The methodology proved to be very 

robust, where the desired worst-case impact performance of the magnetically optimised 

valves was accurately achieved. Moreover, widely adjustable valve control ratios 

resulted in damping levels that could accommodate a large range of impact conditions. 

Therefore, when combined with an appropriate control strategy, the optimised designs 

should demonstrate significant advantages over passive systems. Even in open-loop 

control (i.e. constant yield stress), it was shown that the MR effect provides an 

inherently superior damping performance over conventional passive orifices. For 

example, the impact efficiency, and hence the severity of fatigue loading was 

significantly improved. This could be particularly beneficial for large-scale landing 

gears, which suffer from larger time constants. 

A key issue that arose for large-scale telescopic landing gears was the excessive valve 

Reynolds number, which could cause performance to suffer. To overcome this, it was 

shown how MR fluids with larger viscosities and yield strengths could be used to 100ver 

the Reynolds number, without significant detriment to the control ratio. Furthermore, it 

was shown that levered con figurations arc particularly advantageous, where the lower 

piston velocities provide an inherently low Reynolds number. Smaller piston areas 

could also be used, although the effect of this on the structural integrity, scaling 

efficiency, and fluid compressibility would require investigation. 
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MR landing gears will inevitably weigh more than their passive counterparts because of 

the high Ouid density. For example, for both small and large-scale aircraft, the extra 

mass of an MR shock strut was approximately 0.2°;;) of the distributed mass. However, 

an enhanced fatigue life should provide weight savings for other aircraft components. 

Feasibility will also be dependent on fail-safety, which was not directly considered in 

this study i.e. in the event of a power failure, and the subsequent loss of the MR effect, 

the landing gear must provide acceptable damping performance during a worst-case 

landing. A novel solution might incorporate a permanent magnet within the MR valve 

[129], which could be designed by updating the numerical sizing tools presented in this 

chapter. 

In conclusion, this chapter has made an important first step to help demonstrate the 

feasibility of MR landing gears for small and large-scale aircraft. However, the results 

were based on a time-domain model that has assumed values for certain parameters. 

Consequently, the model needs validating, and this will be addressed in Chapter 4. 
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---

Paran 
~~~~~~~~~~ 

leter Symbol/unit Value 
Initial gas pressurc 

, volumc Initial g~s 
Initial fluid volul 11C of chamber I 

--

Initial fluid volul 11C of chamber 2 
---_. 

, inncr cylindcr Inner area of the 
Outer area of th 

Diameter of thc cx 
Length ofthc cxis 

Gas co 
Distributed, 

e inner cylindcr 
isting main orifice 
,ting main orifice 
nstant 
lircraft mass 

Mass of whee II 
1----------

lyre assembly 
linG orce 

-----

'locilL ___ 
I--~-----

Sink ve 
Tyrc co nstant 

_--...L-____ ~~~_c~ ponent 

PliO Ibar 9.5 
I J VIIO cn1 170 

VIO IcmJ 201 
I J V20 cm 132 
~ 2 (l2i cm 10.18 

{l.?'/ c m2 13.85 
d,/171111 4.8 
1,/111111 5 

m/- 1.1 

111/,Ikg 473 
1I1\.Ikg 4.7 

LIN 3120 
V'illkl ms-I 2.43 

cI- 8 x IOh 

r/- 2.26 

Table 3-1: Landing impact model parameters for the 1-23 nose gear. 

Parameter 

tress Maximum yield s 

Flux dcnsity at r 
)'111.1\ 

1 at r Magnetic field strengtl 

Bulk modulus 
--

---_. 

Viscosity 

1'1Il,(\ 

-------

Density 
--

Symbol/unit 

T ym.l \ 
IkPa 

BriT 

H/kAm- l 

,8 IGPa 

I'IPas 
Ik -1 

PM!? ·g111· 
Table 3-2: Properties for AD57MR Iluid ]1261. 
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Value 

55 

0.7 

236 

1.7 
0.1 
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I 

~ ---

Parameter Symbol/unit Value 

Total constrained length ofvalvc stack i,/mm 45 

Constrained val\'e diameter Do /mm 36 
--

Stage number nl- 3 
, Coil width 11')mm (l.19 

Valve gap llcight Ii /mm n.59 

Bobbin corc radius tll/mm 8.88 
-- .. _.-. 

Flangc~~ight tiJ /mm 4.44 

Mean valvc diametcr dlmm 30.72 

Dimensionless valve length 81- 0.59 

Number of turns oC gauge-24 \vire NI- 132 

Flux density in the steel at r 
1'111,1\ 

Bs·/T 11.2 
---- .- ... __ .. --

Current to achieve r 
\'111,1\ 

IIA 2.6 
--~-

Power to achieve r 
11111\ 

P/W 16.5 

Desired MR valv~ pressure drop LlPII/II)MPa 12.2 

Maximum pressure drop at r. ,Oll/IIX 
IUI.I\ ""-

LlP /MPa 12.3 

Control ratio at r. ,011/111 
\111,1\ ""-' 

JJ- 2.26 
.---

Reynolds nllllll)_c~: at QII/1I1 RC/- 680 

Time constant rims 19 

Mass oC\'alve 1Il,.lkg 0.4 
.-

Extra mass oC fluid Lllll/kg 0.8 
- ---------- --- -- -- - -- ---- -- ------- ----- --------

Table 3-3: Geometry and key performance indicators of thc optimised 1-23 valvc 

..... 
~ 
~ 
Q. 

S -
..... 
= ... ..... 
'" ~ 
~ 
0 

..c 
rJl 

Parameter ~- Symbol/Unit 

Distributed aircraft 
Mass of wheel am 

assembly 
Lift forcc 

Tyre constan 

n 
It 

lass ____ !llJ/kg ----

yre III,/kg 

LlkN 
el-

-_._-

Tyre eXpOne!l 

Initial gas press 1I1 

11 

cr 
Initial gas volul 

Piston rod area/rei" 
area 

'c 

c 
cncc 

--

Piston head at" ea 
---_. 

Polytropic CXpOI le Ilt _ ... _--

r/-

PliO Ihor 

\'1I1i IClIl 3 

(/Iolen/ 

-----;---;r 
(/ ]/ClII-

11/1-

Value 

12790 
30 

125.8 
l ()X 1 0(, 

2.26 

19 

3494 
77.24 

96.77 

1.2 

Table 3-4: Parametcrs used in the LST landing gcar impact model. 
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LANDING GEAR/FLUID 
Parameter Symbol/unit LST/ LST/ LSL/ 

AD57 AD275 AD275 

Total constrained length of valve stack Zt /mm 100 100 50 

Constrained valve diameter Dnlmm 111 111 133 
Stage number nl- 2 2 I 

>. Coil width wj mm 5.16 6.19 8.26 l--<1/ Valve gap height h /mm 1.12 1.38 0.82 8 
0 Bobbin core radius ttl/mm 35.97 35.26 42.27 <1/ 

C,!) Flange height tb/mm 17.98 17.63 21.13 
Mean valve diameter d lmm 83 .38 84.3 101.86 

Dimensionless valve length 0/- 0.72 0.71 0.85 

Number of turns of gauge-24 wire NI- 270 336 224 

Flux density in the steel at 'r Ym" Bs /T 0.81 0.84 0.84 

Current to achieve 'r Y IIA 2.28 2.21 2.16 
mall: 

Power to achieve 'r Ym.x PIW 56 65 25 

<1/ Maximum flowrate QmlL/ m3s·1 0.0291 0.0291 -
OJ 
c Desired MR valve pressure drop LIP"'l,)MPa 19.3 19.3 21.6 C':I 

8 
l- Maximum pressure drop at 'r Y , Q",rLt LIP !MPa 19.4 19.4 21.6 .s IlIliX 
l-
<1/ 

Control ratio at 'r Y ,Q"'lLt ~ AI- 2.05 1.94 1.81 
max 

Reynolds number at Q"'lLt Rel- 3644 1955 976 
Time constant . /ms 72 74 91 
Mass of valve mvlkg 7.7 7.7 5.5 

Extra mass of fluid iJ.mj kg 15 16.7 unspecified 

Table 3-5: Geometry and performance of the optimised large-scale landing gear designs. 

(a) 
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magnetic nux I-+---'-.:::-_~,--+-I 

Coil 

Active = ~ 
length 

Annular nuid 
passage 

Steel bobbin 

Flux return 

(b) 

d 

.---- ---- - - 1--------1 

Figure 3-1 : A flow mode MR valve. (a) Valve configuration and (b) valve nomenclature. 
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Figure 3-2: A flowch'lrt descrihing the MR landing gear design methudology 
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Figure 3-3: Summary of the dynamic MR shock strut model 
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Figure 3-4: Simulink block diagram of the dynamic MR shock strut model. 
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Figure 3-5: Free-body diagram of the landing impact model. 
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Figure 3-6: Improving the dimensionless valve length using the stacking method. 
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Figure 3-7: The Polish Institute of Aviation's landing gear drop test facility (125). 
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Figure 3-8: Schematic diagram of the existing 1-23 nose gear. 
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Figure 3-9: Tyre response from an impact test on the 1-23 nose landing gear r125]. 
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Figure 3-10: Experimental and simulated passive landing impact r esponses for a range of 
discharge coefficients Cd. 
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Figure 3-11: Properties of Fraunhofer's ADS7 MR fluid 1\261. (a) Viscosity Hrsus shear rate 
without magnetic field, (h) shear stress versus magnetic flux density at a shear rate of IS·I, and (c) 

magnetisation measurements (B,lIr curH). Data measured at 2S°C. 
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performance. lj. = 55kPa. 
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Figure 3-15: Axi-symmetric FEA analysis of the optimised valve geometry. (a) Flux density 
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Figure 3-16: Worst case landing gear impact performances of the 1-23 aircraft. ; = 55kPa. 
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(b) equivalent MR design. 

109 



MR Shock Absorbers Chapter 3: MR Landing Gear - A Design Methodology 

300 

250 

Z200 
6 

~ 
~ 150 

100 

50 

~L---0.0~5--~0.-1 --0~.1-5 --~0.2---0~.25---0~.3---0.~35---0~.4~ 
Displacement (m) 

Figure 3-20: Gas spring function of the LST landing gear. 
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Figure 3-21: Comparison of the properties between AD57 and AD275 MR fluid. (a) Viscosity 
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(a) 

150 -... 
I "' ... 

I ... 

I "'''' ... , "', , , 
I " 

z 
C. 

100 Q) 

~ 
.2 -2 
iil 
.x: 
0 
0 

.s:: 
If) 

0.1 0.2 

Time (s) 

"t =3kPa 
y 

----- "t =65kPa 
y 

... 
... 

\ 
\ 

\ 
\ 

0.3 

\ 
\ 

\ 
\ 

\ ... ... 
0.4 

z 
c. 

150 

~ 100 

.2 
2 
iil 
15 
o 
t3 50 

, ..... - ...... , 
I "' ... 

I ' , \ , \ , \ 

0.1 

I 
I 
I 
I 

(b) 

0.2 0.3 

Shock strut displacement (m) 

0.4 

Figure 3-23: MR impact performance of the LST device with less severe input conditions. Vrink = 

2ms· l
• Valve optimised with AD275 MR fluid. 
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Figure 3-24: Shock strut designs for the LSL landing gear. (a) Existing design [103[, and 
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Figure 3-25: Calculation of the MR damping requirement for the LSL landing gear. (a) Shock 
strut velocity/displacement response during worst-case impact and (b) maximum permissible shock 

strut forces P031. 

112 



MR Shock Absorhers Chapter 4: MR Landing Gear - Experimental Validation 

CHAPTER 4. MR LANDING GEAR- VALIDATION USING 

EXPERIMENTAL DATA 

In Chapter 3, a methodology for optimising the impact performance of MR landing 

gears subject to packaging constraints was detailed. The methodology was 

demonstrated by sizing MR devices for both lightweight and largc-scale commercial 

aircraft. Using equivalent landing impact models, it was shown that appropriate 

damping levels could be achieved for a wide range of impact conditions. However, the 

model format and its parameters were not validated experimentally. In pa11icular, the 

MR fluid's yield stress, viscosity, and bulk modulus properties were not known 

accurately. The gas exponent, which is used to model the shock struts non-linear 

stiffness, must also be validated. 

The aim of the present chapter is to experimentally validate the MR landing gear model 

developed in Chapter 3. This model was based upon that developed by Milwitzky and 

Cook [102] and so in this work, the authors will focus on validating the novel aspects of 

the revised model. These were: the inclusion of shock strut fluid compressibility, the 

model of the MR flow hehaviour, the magnetic design, and the device time constant. 

As the validity of the landing impact model is well established [102], these novel 

aspects can be investigated by considering the MR shock strut independently from the 

rest of the landing gear structure, using various configurations of excitation velocity. 

As a result of this validation exercise, the model and design procedure described in 

Chapter 3 can be used to predict the MR landing gear performance prior to device 

manufacture. 
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The present chapter is organised as follows. First, the design and manu facture 0 r the 

MR landing gear shock strut is described along with the corresponding dynamic mndel 

of the device. After describing the experimental facility, an investigation is then 

presented which aims to \alidate the quasi-steady performance of the MR valve. Here, 

the accuracy of the yield stress and viscosity predictions is tested. After validating the 

MR Ouid's bulk modulus and the gas spring function, the sinusoidal response of the 

shock strut is then compared to model predictions. Furthermore, an analysis of the 

device's time constant is given, which is a vital performance indicator when considering 

potential control strategies. After a discussion of the results, the main conclusions are 

drawn. The research in this Chapter formed the second part of the two-part journal 

submission [130J, and the abstract for this work is given in Appendix A.II. 

4.1 Design and manufacture of the MR shock strut 

In order to fabricate an MR landing gear shock strut for this investigation, it \\as 

decided to retrofit an M R valve to an existing passive device. The passive shock strut 

was acquired from a RALL.YE, which is a lightweight trainer/tourer aircraft built by the 

Socata Aircraft company some years ago [131]. A schematic drawing of this shock 

strut is shown in Figure 4-1 (a). 

In order to retrofit an MR valve, some design modifications \vel'C necessary and these 

are illustrated in Figure 4-1 (b). The MR valve is incorporated within the inner cylinder. 

and the gas transfer tube has been removed, as this posed significant restrictions on the 

magnetic circuit. The MR valve is secured into place by the piston head. which 

completely seals against the outer cylinder. Therefore to prevent the formation of a 

vacuum, four Ouid transfer orifices were included within the piston rod, which were 
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sufficiently large so that the pressure drop across them was negligible. To accurately 

characterise the performance of the MR valve, two static pressure transducers [132J 

were incorporated (one on either side of the piston). These were rated at 0-207bar 

gauge (0-3000 psig), and measured the fluid pressure on the 'non-gas side' of the 

piston, and the gas pressure on the 'gas side' (see Figure 4-1(b)). The shock strut was 

filled with ADS7 MR fluid [133], and charged with Nitrogen gas to a pressure of 7.~bar 

(at full extension of the shock strut). By comparing the volume of MR fluid (~I73ml) 

with the internal volume of' the shock strut, the initial gas volullle "110 was calculated as 

CJ(Jcny' . 

The geometry of the MR valve was dete1l11ined USl11g the magnetic circuit SIZlJ1g 

methodology developed in Chapter 3. Here, the valve gap size was fixed at O.CJmm, and 

the optimum valve configuration was determined. This provided the greatest control 

ratio, and could achieve the maximum fluid yield stress without magnetic saturation, 

and without exceeding the maximum current rating of the copper wire. With reference 

to Figure 3-1 (b), the resulting valve geometry is given in Table 4-1. The method of 

assembly and manufacture 01' this valve is illustrated in Figure 4-2. The annular valve 

gap was accurately maintained using two valve-gap support spiders. These spiders were 

manufactured from titanium, whose non-magnetic properties direct the magnetic flux 

into the active region of the valve. The flux return and valve core \vere manufactured 

from a low-carbon mild steel due to its high magnetic permeability. Also, the coil was 

surrounded with a wear resistant resin that was machined to the same diameter as the 

bobbin flange. This protected the coil from the abrasion of iron particles and 

furthermore, provided a smooth surface to encourage laminar valve flow. 
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4.2 Dynamic model of the MR shock strut 

In what follows, a summary of the dynamic MR shock model is provided. In this 

discussion, attention will be drawn to the parameters that were assumed in Chapter 3, 

and which therefore require validation. For a more detailed description of the modelling 

format, the reader is referred to Section 3.3. 

A schematic diagram of the MR shock strut and the key equations used to fonmtlate the 

corresponding model arc presented in Figure 4-3. As shown, the shock absorbcr force 

F, is readily derived using a pressure/area balance. This is slightly different to that used 

in Chapter 3, due to the difference in the configuration of device. The gas pressure was 

determined using the polytropic law for the compression of gases, where the key 

unknown is the gas exponent 111. In Chapter 3, this was assumed to be 1.1, which is 

known to correlate well when the fluid and gas volumes are mixed [101]. Fluid 

compressibility was modelled using the mass flow continuity equation. Here, the bulk 

modulus f3 is unknown, and the base value for a standard hydraulic oil (1.7GPa) was 

assumed as a reasonable approximation. Pinally, the MR effect was characterised using 

the Buckingham equation for Bingham plastic flow between parallel flat plates [55]. Tn 

order to formulate the quasi-steady valve function, the Buckingham equation is solved 

in terms of the active pressure drop /I,.~", j(Jr a range of flow rates Q and MR fluid yield 

stress values 1). Each /I,.~" term is then summed with the inactive pressure drop /I,.~" ' 

which is calculated using the Buckingham cquation for 1). = OkPa. Once arranged as a 

3-D look-up table, the quasi-steady valve function can be used within the dynamic 

model. The two key unknowns in the Buckingham equation are the MR fluid viscosity 

Jl, and the relationship between the MR fluid's yield stress and the applied magnetic 
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field/cunent. As described in Chapter 3, the viscosity was assumed as 0.1 Pas for AD57 

MR fluid. This is an extrapolated value taken from the manufacturer's MR f1uid 

property data at 25°C (Figure 3-11). Calculation of the yield stress/cunent relationship 

is dealt with in Section 4.4. 

4.3 Description of the test facility 

A photograph of the damper test facility is shown in Figure 4-4. A cOlTesponding 

schematic diagram is also provided in Figure 4-5, which illustrates the interaction 

between the various hardware and software components. The setup comprised an 

Instron PLL25K servo-hydraulic actuator [134], which was controlled by two high 

response Moog scrvo-valves [135] and an Instron 8400 digital controller [134]. This 

enabled accurate displacement feedback control, and the system could deliver ±25kN 

force, ±50mm displacement and velocities of up to ±1 ms- I
. A Kepco BOP amplifier 

[136] also provided high bandwidth dynamic current control for the MR valve. 

The MR shock strut's displacement and current were controlled extemally using real

time control software. Here, a host PC running xPC target [137] was used to develop 

the excitation signals and test automation scripts. This was coded in Simulink, 

compiled as a C-programme, and subsequently downloaded onto a target PC, which 

performed the real-time control of the actuator. The target PC comprised a 1.3GHz 

AMD Athlon processor with 128Mb of RAM, which was booted from a floppy disk 

containing the xPC operating kernel. 

Data logging was achieved VIa a National Instruments PCI-MIO-16XE-10 data 

acquisition card [138]. This was capable of sample rates up to 100kHz and supported 

an interface board with eight 16-bit analogue differential input channels (A/D 
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conversion) and two 16-bit analogue output channels (D/ A conversion). Once a test had 

completed, the measurement data stored on the target PC's RAM was uploaded to the 

host PC ready for post-processing. This measurement data was acquired from an 

inductive disp1acement transducer, which was also used for position feedback control of 

the actuator, two static pressure transducers (as described in Section 4.1), and an Instron 

±25kN dynamic load cell (IST Dynacell [134 D. 

Finally, to permit continuous testing without overheating of the shock strut, copper 

tubing was coiled around the shock strut body and fed with mains water. 

4.4 Quasi-steady analysis 

In this section, an analysis IS presentcd that alms to validate the quasi-steady 

pressure/flowrate function of the MR valve i.e the Buckingham equation (sec Figure 4-3 

or Eq.3-6). The validated function can then be used as a look-up table within the shock 

strut model to predict the dynamic behaviour. 

The experimental quasi-steady behaviour was determined USll1g a constant velocity 

excitation, where the aim was to achieve a steady-state pressure drop. This was applied 

in the compression phase of the shock strut's stroke only. The extension phase was not 

considered as the initial shock strut pressure was not high enough to prevent cavitation 

of the fluid. The valve pressure drop was then calculated by subtracting the static 

pressure sensor readings. Here, it is assumed that the gas pressure is equal to the fluid 

pressure in the piston rod, which is a valid assumption as there is no dividing piston. 

A typical result from this test is shown in Figure 4-6. This is shown for a step-velocity 

excitation from Oms- I to 0.1ms- 1 at time 7s, and for a range of input currents between 
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OA and 2A. Clearly, steady-state conditions are soon achieved after the step velocity 

ehange is applied. The quasi-steady pressure drop can therefore be determined, which 

was calculated as the mean value over the second half of the response. This was 

repeated for velocity excitations between 0.01 111S·
1 and OAms· 1 in order to form the 

quasi-steady valve function. 

Before the numerical model can be correlated with experimental data, the yield 

stress/current relationship of the MR valve must be determined. This was calculated by 

performing a 2-D axisymmetric finite clement analysis (FEA) of the MR valve, which 

was carried out using FEMM software [1281. FEA was used instead of the more 

straightforward analytical analysis presented in Part 1, as it permitted the effects of nux 

leakage to be more accurately accounted for. In this analysis, the mean nux density 

across the active valve length was calculated for each current magnitude. The yield 

stress corresponding to this mean applied field was then determined using the nuid 

manufacturer's data (Figure 3-11(b». Consequently, the Buckingham equation can be 

formulated and eompared to the experimental quasi-steady valve performance. 

The corresponding results are shown in Figure 4-7 for the OA and 1 A responses. In the 

initial model, a viscosity equal to 0.1 Pas was assumed (as described in Seetion 3). Also, 

the initial yield stress for the 1 A response (I ()kPa) was calculated using Fraunhofer's Bf~ 

[[[data for ADS7 MR nuid. Clearly, the numerical results do not eorrelate well with the 

experimental behaviour, sinee the viscosity and yield stress predictions are too low. 

To improve correlation, these parameters were updated, and the corresponding results 

are also shown in Figure 4-7. I-Iere, the viscosity was increased to 0.14Pas, and the 

yield stress for the 1 A response was increased to 43kPa. The higher than predicted 
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viscosity may partly be due to temperature effects. For example, the Ouid 

manufacturer's viscosity information was measured at 25°C, but the actual nuid 

temperature was likely to be lower than this due to the presence of the cooling circuit. 

As shown in Figure 4-7, the updated paramctcrs signi ficantly improve the model's 

prediction of the low velocity behaviour, particularly for the I A response. However, 

con'elation deteriorates at high velocities, where a larger resistance to Oow is observed 

in the experimental data. This could be attributed to a shear-thickening phenomenon, 

where the apparent viscosity increases with increasing shear rate. The Buckingham 

equation, which uses the Bingham plastic relationship between shear stress and shear 

rate (see Figure 1-6(b)), does not account for such behaviour. Another reason might be 

due to the valve gap support spiders (see Figurc 4-2), which obstruct now. The 

quadratic nature of the quasi-steady response could be a result of turbulence caused by 

this obstruction. 

To summarise the yield stress results, Figure 4-8 compares the rEA predictions with the 

updated experimental values between OA and 2/\. The error between the predicted and 

observed yield stress values is clearly very large when Fraunhofer's (FhG-lSC) BrHr 

data are used in the FEA analysis. This error is partly due to repeatability problems, 

which is indicated in Figure 4-8 by the triangular markers. Here, the quasi-steady test 

was repeated for certain current values, which has resulted in a reduced yield stress. 

This could be due to increased amounts of entrained air as a result of mixing with the 

gas. Another reason might be due to a better homogeneity of iron particles, which has 

developed during the final higher velocity tests. This is fairly probable because the 

AD57 MR fluid was found to suffer significantly from sedimentation problems. 
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Nonetheless, the error between the repeated experimental results and the numerical 

predictions with FhG-lSC's data is still very large. It was originally thought that this 

was due to a poor tolerance on the valve gap, although this was found to be 

insignificant. Another reason might be due to a \'ariation in the f1uid properties between 

batches. However, i?r/-II measurements that were later provided by a different 

ADLAND partner (Cedrat [139]) indicated that the error was most likely caused by 

inaccurate Bf~lI/ data. This result is also illustrated in Figure 4-8, where the FEA 

analysis was repeated with Cedrat's B/~fI/ data in order to predict the yield stress. 

Clearly, the accuracy of the yield stress predictions IS signi ficantly improved, 

particularly when correlated with the repeated test results. 

Further credence to the above result is given by considering David Carlson's empirical 

equation [26], which is known to provide a uscCul prediction of the Brl If response for 

virtually any MR f1uid: 

(4-1 ) 

Here, cD is the volume fraction of iron particles and flu is the magnetic 

constant (4rrx I 0-7H/m ). As shown in Figure 4-9, Carlson's equation correlates very 

well with Cedrat's Brill measurements, but the correlation with Fraunhofer's data is 

poor. This further suggests that Fraunhofer's H/~I Ifdata are inaccurate, thus giving rise 

to the poor yield stress predictions shown in Figure 4-8. 

4.5 Dynamic analysis 

In the following analysis, the aim is to accurately predict the dynamic response of the 

MR shock strut. First, the bulk modulus of the MR f1uid, and the shock strut's gas 

spring function are validated. The validated parameters and the updated quasi-steady 
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valve function (from Section 4.4) are then used to predict the sinusoidal response of the 

shock strut. Finally, an investigation is presented to identify the time constant, which is 

an important performance indicator when considering potential control strategies. 

4.5.1 Fluid compressihility 

The compressibility of a Ouid directly determines the rate of change in fluid pressure. 

An effective way to investigate this, and hence validate the associated bulk modulus ft, 

is to analyse the pressure transients in a step-\'elocity test. Here, an incompressible 

Ouid would correspond to an instantaneous development of the quasi-steady valve 

pressure drop. 

The results from this analysis are shown in Figure 4-10 for a step velocity input between 

0111S-
1 and 0.1 I11S-

1
, and for current excitations of' O.SA and I A. The updated quasi

steady valve function has been included in the model, which is accurate for the chosen 

input conditions (see Figure 4-7). As indicated by the steep pressure gradients, the 

numerical response with f3 = 1.7GPa is too 'stifT'. By updating the bulk modulus to 

O.3GPa, i.e. to a more compressible (or less stif'f) value, the correlation in slope with the 

experiment is improved. However, the model docs not account for the higher order 

dynamics observed in the experiment. For example, the rate of change in pressure in 

the experiment is more gradual at the beginning than at the end of the response. 

Furthermore, the experimental response has an 'underdamped' nature. This could be 

attributed to Ouid inertia, which is not accounted for in the model. Nonetheless, the 

general slope of the experimental response correlates well with the model, and therefore 

serves as a useful methodology to approximate the bulk modulus of the MR fluid. The 
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lower observed value of 0.3GPa is probably due to entrapped air, which may have been 

introduced during mixing orthe fluid prior to filling. 

4.5.2 Gas model 

Before the dynamic response of the shock strut model can be investigated, the gas law 

(see Figure 4-3 or Eq.3-2) must first be validated. The key parameters that require 

validation are the initial gas volume Vilo and the gas exponent 111. 

As mentioned in Section 4.1, the initial gas volume was calcuated to be 60cn,:'. 

However, due to filling di rficulties, a degree oC error was probable in this calculation. 

Consequently, Vilo must be validated, and this was effectively achieved using the 

following isothermal analysis. In the experiment, pressure measurements were taken in 

2mm increments across the full stroke of the shock strut. Between each measurement, 

enough time was allowed to ensure that the pressure had reached a steady isothermal 

value. The experimental results are shown in Figure 4-11 (a) as the 'stationary 

measurements'. The results are then compared to a simulation oCthe gas pressure in the 

dynamic model with 111 = 1 i.e. an isothermal compression, and with f3 = 0.3GPa (the 

updated value). Also, the initial gas pressure (PliO) was determined according to the 

experimental reading. As shown in Figure 4- I I (a), by updating the initial gas volume 

Crom 60cm3 to 66cm 3
, excellent correlation in the isothermal gas pressure is achieved. 

Identi lication of the gas exponent is addressed in Figure 4-11 (b). Here, the numerical 

and experimental gas pressure responses are compared using sinusoidal excitations. As 

shown, by updating the gas exponent Crom /JI = 1 to III = 1.33, good correlation is 

achieved. This suggests that the gas compressIOn lS more adiabatic than expected, 

where /}/ 1.1 was originally assumed (Section 4.2). The reason for this could be 
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explained by considering the difference in flow regimes between passive and MR shock 

struts. For example, the assumed value was based on typieal behaviour from 

eonventional passive shock struts [101], which rely upon turbulent flow. In contrast, 

MR damping is based upon laminar flow. Therefore, in the passive shock strut, more 

energy is likely to be transferred away from the gas as a result of the more 

vigorous/turbulent mixing with the fluid. Consequently, the gas exponent will be more 

isothermal in nature. Further credence is given to this point by considering a passive 

device that uses a floating piston to separate the fluid and gas. Currey [101] suggests 

that the more adiabatic value of m = 1.35 should be used, which correlates well with the 

observed MR behaviour. 

A final point is how the model does not account for the observed hysteresis in the 

experimental response. This is attributed to the heat transfer processes within the shock 

strut, which is associated with a variable gas exponent Ill. Wahi [105] described how 

this variation could be modelled in landing gear. However, for the purpose of the 

present study, the accuracy obtained with the existing model was considered as 

acceptable (Figure 4-11(b)). 

4.5.3 Prediction of the sinllsoidal response 

In this section, the updated quasi-steady valve function (Section 4.4), bulk modulus 

(Section 4.5.1), and gas law (Section 4.5.2) arc used to validate the dynamic behaviour 

of the shock strut model. This is investigated using two types of sinusoidal excitation. 

First, complete cycles were used to validate the low velocity behaviour. Here, the 

velocity and current was limited in order to prevent Iluid cavitation during the extension 

phase of the stroke. Therefore, to investigate higher velocity/higher current behaviour, 
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half cycles were applied in the compression phase only. In the analysis, shock strut 

pressures are modelled rather than forces. This enables the effects of friction to be 

eliminated, which were found to be fairly significant. For example, Figure 4-12 shows 

the friction force response as a function of displacement (Figure 4-12(a)) and velocity 

(Figure 4-12(b)) for various sinusoidal excitations. The responses were estimated by 

subtracting the pressure/area balance (using the pressure transducer readings) from the 

measured force. Clearly, the friction force tends to decrease with increasing velocity. 

This could be attributed to fluid escaping under the seals, or even an increase in seal 

temperature. The friction is also higher towards maximum compression, which is due 

to the more significant compression of the rod seals under higher gas pressures (sec 

Figure 4-1 (b)). Furthermore, friction slightly increases with the current magnitude. 

This could be due to compression of the piston hcad seal under the higher pressures on 

the non-gas side. In conclusion, the behaviour of the seals is highly complex and thus 

dirficult to analytically model. An empirical model could be developed, but this would 

be very device specific. Furthem10re, it is likely that the device/seal design could be 

altered in order to make the frictional forces less signi ficant. For the purpose of the 

present study, it is therefore appropriate to neglect friction and to concentrate on 

modelling the fluid pressure. 

Figure 4-13 compares the fluid pressure predictions with the experiment, for a full 

sinusoidal excitation with amplitude {/ = 25ml11, and frequency.r = O.5Hz. Here, the 

fluid pressure on the non-gas side of the piston (Pl in Figure 4-3) is shown as a function 

of displacement. Displacement is used because it provides a better insight into thc gas 

spring effect, which contributes significantly to the response (due to the large stroke). 

Furthermore, the updated yield stress values in the model correspond to those from the 
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initial quasi-steady experiments (see Figure 4-8). This is because the full sinusoidal 

tests were performed before the quasi-steady experiments, thus the fluid behaviour 

should more accurately correspond to the initial test. Clearly, the correlation between 

model and experiment in Figure 4-13 is excellent throughout the range of excitation 

currents. 

As a further example, Figure 4-14 presents the results for a full sinusoidal excitation 

with a = 10mm, and f= O.5Hz. This time, the fluid pressure is shown as a function of 

velocity, which is more appropriate as the damping efTect dominates the response, 

Again, excellent correlation is observed, particularly in the post-yield behaviour. The 

fluid compressibility effect can be observed through the hysteresis in the pre-yield 

behaviour. The observed inaccuracies in this region may be attributed to the UI1-

modelled higher order dynamics (see Figure 4-10). Nonetheless, correlation is still 

good. 

The higher velocity response is presented in Figure 4-15, where a half cycle excitation 

with a = 25mm, and{= 3Hz was used. This result is effectively represented in terms of 

the pressure drop as a function of velocity. Also, note that the updated yield stress 

values correspond to those from the repeated quasi-steady experiments (see Figure 4-8). 

This is because the half-sine tests were performed allcr the quasi-steady experiments. 

As expected, Figure 4-15 illustrates good prediction of low velocity response, but the 

model breaks down at higher velocities due to the quadratic damping behaviour. 

4.5.4 Device time constant 

The time constant is a vital performance indicator and will have a large influence on 

potential control strategies. The power supply, the magnetic circuit design, and the 
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smart fluid rheology all contribute to the time constant associated with a change in the 

excitation current. Furthermore, fluid compressibility will have an affect, and this must 

be isolated from the other contributors. 

In the present study, the time constant was investigated by applying a step change in 

current, from II to h, during a constant velocity excitation. The corresponding yield-

stress response in the dynamic shock strut model was then simulated using the 

following transfer function G(~) [74, 94]. 

1 
G(s)=--

T.S' + 1 
(4-2) 

Here, T is the time constant, and s is the Laplace operator. To identify the time constant, 

the transient behaviour between the steady-state pressure levels can be correlated. The 

numerical and experimental step responses are shown in Figure 4-16 for h = 1 A and 12 

= 2A. The initial current for both cases corresponds to II = O.SA. Also, the numerical 

yield stress values correspond to those updated inline with the repeated quasi-steady 

test. This is because the time constant analysis was performed after the quasi-steady 

experiment. 

With reference to Figure 4-16, the 'ideal response' aSSllmes that the step change in yicld 

stress is generated instantaneously. This represents the effects of fluid compressibility 

only. Therefore, the observed error between the ideal case and the experiment 

corresponds to the time response of the power supply, magnetic circuit, and fluid 

rheology. As shown in Figure 4-16, the time constant associated with these factors was 

identified as T = 1.8I11S, where excellent correlation with the experiment is observed. 

Due to the use of a current driver in the experiment, this is approximately 80% lower 
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than predicted in the sizing analysis, where a constant voltage source was assumed 

(Eq.3-27). This rapid response suggests that the landing gear shock strut would be 

highly suited to feedback control strategies (and the usc of a constant current source). 

The time constant of the complete experimental response (i.e. including nuid 

compressibility effects) was also calculated to be 2.5ms, which is the time taken for the 

pressure to reach 63% of its final value. Therefore, the overall time constant is 

increased by 28<Yo due to compression of the nuid. This is likely to become even more 

significant at higher velocities, but could be improved via the removal of entrapped air 

prior to filling e.g. using a vacuum pump. 

4.6 Discussion 

[n the present study, it has been shown that an accurate model of the MR valve's quasi

steady performance will result in good predictions of the shock strut's dynamic 

behaviour. However, using the existing Buckingham equation for Bingham plastic 

now, only the low velocity behaviour produced good agreement due to a quadratic 

dan:ping effect. 

The Bingham plastic model could be modified to better characterise the MR nuid's high 

velocity behaviour. For example, Peel and Bullough [55] adopted a dimensionless form 

of the Buckingham equation, and demonstrated how empirical relationships could be 

defined to describe shear thinning behaviour. This method could be adopted to further 

update the model and hence enhance predictions of the high velocity response. 

Moreover, due to the dimensionless form of Peel and Bullough's approach, the updated 

model would not be device specific, thus enabling new valve geometries to be 

accurately characterised prior to manufacture. However, this approach is only valid if 
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the quadratic damping behaviour is a property of the fluid e.g. shear thickening. If the 

valve gap support spiders affected the response, then the quadratic behaviour would be a 

property of the device. To detemline this, higher velocity shear stress/shear rate 

characteristics of the MR fluid is required. For example, fluid data for AD57 MR fluid 

is available at shear rates up to 1000s-1 [126], but in the flow mode shock strut, shear 

rates were found to be two orders of magnitude greater than this. 

In Chapter 3, it was suggested that turbulence could hinder device performance as a 

result of the large impact velocities associated with landing gear. However, the test 

facility was limited to operating at relatively low/sub-critical Reynolds numbers. 

Nonetheless, there is the possibility that turbulence has occurred unintentionally, due to 

the obstructions to flow in the valve design. This may have led to the quadratic 

damping effect that is observed in Figure 4-7 and Figure 4-15. Here, it can be seen how 

a deteriorating control ratio with increasing velocity is exacerbated by the more 

substantial quadratic damping in the zero-field condition. However, if this phenomenon 

is a result of shear thickening rather than turbulence, then it is possible that the control 

ratio might be so low at high Reynolds numbers that the effects of turbulence arc 

insignificant. Again, fluid property data at significantly higher shear rates is required in 

order determine the cause of this quadratic damping phenomenon. 

4.7 Summary of Chapter 4 

In this chapter, the manufacture and testing of an M R oleopneumatic landing gear shock 

strut was described. This was sized and modelled using the numerical approach 

described in Chapter 3, where the aim was to validate the MR landing gear design 

methodology. 
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In a quasi-steady analysis, it was found that the initial analytical predictions of yield 

stress and viscosity were poor. The error in the yield stress results was largely due to 

the use of inaccurate magnetic fluid property data (the H;-H( curve). Here, cOITelation 

between model and experiment was significantly improved using a new Br!-!j curve, 

which was later validated. Using updated viscosity and yield stress values, the 

prediction of the low velocity behaviour was significantly improved, but correlation at 

higher velocities deteriorated due to a quadratic damping effect. 

In a dynamic analysis, the bulk modulus of the MR fluid was identified as O.3GPa. In 

general, this resulted in a good prediction of the pressure transients, but the model failed 

to account for higher order dynamics, and fluid inertia. The gas exponent was identified 

as 1.33, which is higher than the value commonly used tor an equivalent passive shock 

strut. It was thought that this could be attributed to the differing valve flow regimes, 

and hence heat transfer characteristics between passive and MR devices. After 

formulating the dynamic shock strut model with the updated parameters, excellent 

cOITelation with the experimental behaviour was demonstrated using low velocity 

sinusoidal excitations. Therefore, if an accurate model ot the quasi-steady behaviour 

can be developed, a good prediction of the dynamic shoek strut performance will result. 

However, in order to validate the landing gear design methodology, the quasi-steady 

MR valve function must be analytically formulated throughout the velocity range of the 

device. The dimensionless model updating approach described by Peel and Bullough 

could be adopted to achieve this [55], but only if the observed quadratic behaviour is a 

property of the fluid and not the device - behaviour slIch as shear thickening. This will 
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be dependent on acquIrIng more detailed nuid property information at significantly 

higher shear rates. 

The lack of repeatability in the experimental results presented a further problem. It was 

found that the yield stress tended to decrease after many tests. This could be attributed 

to mixing of the fluid with the gas, or even a lack or homogeneity between the iron 

particles and the base nuid i.e. sedimentation. This could prove a significant problem in 

landing gears, which are only in use for a fraction or an aircrafls flight. Large degrees 

of sedimentation will inevitability cause excessive damping forces during impact. 

Consequently, there is a strong requirement for sedimentation resistance in MR fluids 

ror landing gear applications. 
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Parameter SymboVUnit Value 
Valve length t/mm 14 

Valve gap height h/mm 0.6 
Bobbin core radius ta/mm 5.79 

Flange height tb/mm 2.89 
Mean valve diameter d/mm 20.42 

Outside diameter Do/mm 28 
No. of turns of 

copper wire (Diameter = 0.45mm) N/- 136 

(a) 

o 

Gas chamber 

(b) 

Table 4-1: The optimised valve geometry. 
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Figure 4-1 : Schematic diagrams of the oleopneumatic shock struts. (a) Commercial passive shock 
strut taken from a RALLYE aircraft and (b) modified shock strut with MR 

va lve. 
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Figure 4-2: MR piston head design 
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Figure 4-3: Summary of the dynamic MR shock strut model. 
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CHAPTER 5. CONTROL OF MR DAMPERS - A NUMERICAL 

INVESTIGATION 

5.1 Introduction 

In Chapter 3, open-loop control was shown to be efTective for enhancing the efficiency 

of landing gear impacts. However, open-loop strategies will not be effective for other 

broadband excited systems such an aircraft taxiing or a road vehicle suspension. For 

these systems, feedback control is required to provide any signi ficant performance 

enhancements over conventional passive systems. 

The non-linear behaviour of smart fluid dampers provides a major barrier towards the 

development of effective control strategies. More specifically, the goal of tracking a 

prescribed force demand is a difficult task. As discussed in Chapter 2, research at the 

University of Sheffield has developed an approach that first Iinearises the damper's 

behaviour using force feedback [94, 95]. This reed back linearisation makes the 

objective of achieving a desired force more straightt'orward, and will be investigated 

exte'nsively in the present thesis. 

The approach is illustrated by implementing skyhook-based control laws ror single

degree-of-freedom (SOOF) and two-degree-of-freedom (200F) vibration systems 

subject to realistic broadband excitations. Furthermore, the Iinearised systems are 

benchmarked against more simplistic onloff control schemes, as well as idealised 

passive, semi-active and fully active dampers. This is important, as previous studies 

have not always compared the performance to equivalent passive systems, alternative 

control designs, or idealised active systems. As a result, it is often difficult to compare 

the performance of different smart damper control strategies. 
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The present study is based upon the MR damper model developed by Sims, et al. [74], 

which was briefly described in Section 2.3. New experimental results are used to 

validate the model under closed-loop conditions with broadband mechanical excitations. 

Two numerical case studies are then investigated: an SDOF mass-isolator with a variety 

of broadband excitation signals, and a 2DOF system excited by realistic road profiles 

[140, 141]. The 2DOF model is configured to represent a vehicle suspension, although 

the results from the study should be equally applicable to an aircraft taxiing. 

At this stage, it is worth pausing to consider the motivation for this generic approach to 

the control problem, rather than focusing on the specific problem of aircraft taxiing. 

The key reasons for this generic approach are as follows: 

• Vehicle dampers are commercially available. I n fact, this study begins by testing 

Lord Corporation's automotive seat damper [62]. 

• Roadway models are clearly defined and so excitations can be realistic. 

• Hardware-in-the-loop-simulation (HILS) testing (Chapter 6) can be achieved on 

full-scale vehicle dampers, but not on large-scale aircraft landing gear. 

• The control principles are relevant to SDOF systems and vehicles, as well as 

aircraft. 

The present chapter is organised as follows. First, the modelling strategy for the MR 

damper is described. Next, the theory of feedback linearisation is summarised and 

experimental results are compared to model predictions. After that, the SDOF control 

systems are described before presenting the corresponding results, and the 2DOF 

investigation is then presented in a similar manner. Finally some general issues are 
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discusscd and conclusions are drawn. The research described in this chapter was 

published in reference [142], and the abstract for this work is givcn in Appendix A.III. 

Also, much of the SDOF study was presented at the 11th SPlE International Symposium 

on Smart Structures and Materials, San Diego, USA [14:11. 

5.2 MR damper model 

In earlicr work [74, 144] a general modelling approach was described that can be 

applied to a variety of smart fluid devices, and enables a model updating or system 

identification procedure to be performed so that the model can be adjusted in line with 

observed behaviour. In the present study, the model developed by Sims ct al. [74] will 

be used, and this model is summarised here for the sake of completeness. 

The model is based on Lord Corporation's RO-l005-3 MR damper [37] and a schematic 

drawing of this device is shown in Figure 5-1(a). This is a flow mode device (see 

Figure 2-1 (a)) where movement of the piston rod forees fluid through an annular orifice. 

An accumulator is also incorporated to accommodate for the change in the working 

volume caused by the presence of the piston rod. This introduces an clement of 

stiffness to the damper response, however this was found to be insigni ficant when 

compared to the suspension stiffness terms in the SOOF and 200F models. 

Consequently, the effect of the accumulator has been neglected in the development of 

the MR damper model. 

The form of the model is a bi-viscous damper in series with a mass and a linear spring, 

as shown in Figure 5-1 (b), and can be strongly linked to the constitutive behaviour of 

the device. For example, the valve flow (which is assumed to be quasi-steady) is 

represented by the non-linear function X and is a function of the quasi-steady velocity 
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:\-1 and the control signal J to the smart damper. The spring element of stiffness k is 

incorporated to account for fluid compressibility and the lumped mass IJJ I represents 

fluid inertia_ The co-ordinate X2 corresponds to the displacement of the damper piston. 

The resulting physical significance means that parameters can initially be chosen based 

on constitutive relationships using fluid properties such as bulk modulus, viscosity and 

yield stress [63]. However, in practice, fluid properties may vary between devices, for 

example due to environmental effects or manufacturing tolerances. Consequently, a 

model updating procedure is desirable so that the model accurately predicts observed 

behaviour. This procedure has been adopted to I"orm an accurate model of the 

commercial MR damper used in this study. A description of this model updating 

procedure is detailed by Sims et al. [74]. 

Figure 5-2 compares a typical set of predictions from the updated model with the 

corresponding test data for a range of sinusoidal excitation conditions. The model 

results agree very well with observed behaviour. The previous study [74] also validated 

the model under non-sinusoidal test conditions, making the model an appropriate tool 

for the present investigation. Furthermore it was demonstrated that the dynamics of the 

electro-magnetic circuit and smart fluid rheology could be modelled using a first order 

lag term, where a time constant between 3-5ms was shown to be adequate. Throughout 

this study, a 3ms device time constant has been used as part of the controlled MR 

systems. 

5.3 Feedback Iinearisation 

The non-linear behaviour of smart fluid dampers makes the objective of achieving a 

desired force very difficult. Researchers at The University of Sheffield have developed 
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one solution to this problem using feedback linearisation, which is briefly summarised 

below. 

The control strategy is shown in block diagram form ill Figure 5-3(a). Here, feedback 

control is being used to implement a semi-active force generator. Through appropriate 

selection of the feed forward gain G, and the feedback gain E, it can he shown how the 

actual damping force F becomes equal to the desired set-point damping force F" [94]. 

If the set-point force is proportional to the piston velocity then the force/velocity 

response is linearised. The values of G and B were previously determined through 

extensive experimental testing on the MR damper, which lec! to G = 0.0015 and 13 = 0.6. 

For a detailed description of the methodology that was used to arrive at these values, the 

reader is referred to Sims, ct al. [94,95]. 

Figure 5-3(b) shows schematically how feedback linearisation can be integrated within 

a vibrating structure such as a mass-isolator or vehicle suspension. Here, the linearised 

damper is able to track a force demand derived from a separate controller, for example a 

skyhook or optimal controller. However, the desired force will only be met if it lies 

within the control limits imposed by the device geometry and MR fluid properties. This 

is better described with the help of Figure 5-4, which illustrates the control envelope of 

the MR damper. If the desired force lies within this cnvelope, then feedback 

linearisation can accurately achieve that force. However if an energy input is required 

i.e. the desired force lies within quadrants 2 and 4, or if a dissipative force requiremcnt 

(\Vitllin quadrants 1 and 3) is lower than that governed by the base viscosity of the fluid 

(I=OA), then this force cannot be achieved. In this scenario, the MR damper will remain 

in its 'off state to minimise the energy dissipated. Alternatively, if the desired force is 
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a dissipative one and exceeds the upper boundary of the control envelope (I=2A), then 

the damper cunent will saturate at its maximum level to maximise the energy 

dissipated. 

5.4 Validation 

In previous work, the proposed linearisation technique was shown to be effective for an 

ER damper under sinusoidal mechanical excitation [94, 95]. However, the present 

study was based upon a model of a commercially available MR damper and the 

simulated mechanical excitation was non-sinusoidal. Consequently it was necessary to 

validate this model under closed-loop conditions with a broadband mechanical 

excitation. 

To achieve this, the MR damper was mounted in the servohydraulic test machine 

described in Section 4.3, and excited with a broadband command signal. This was 

generated by filtering a white noise signal to reduce its high frequency content (i.e. 

above 25Hz) to within the duty of the MR damper. Meanwhile, the xPC real-time 

digi1al signal processing system (see Figures 4-4 and 4-5) was used to implement the 

feedback linearisation strategy. With reference to Figure 5-3(a), the set-point F" was 

made proportional to the mechanical excitation velocity: 

1\/ = DV (5-1) 

Here, V is the damper excitation velocity (equivalent to '\-2 for the model shown in 

Figure 5-1) and D is a controIIer set-point gain. The feedback strategy should result in 

viscous damping behaviour with an effective damping rate equal in value to the 

controIler gain D. 
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Figure 5-5 shows a sample of the input displacement signal and Figure 5-CJ(a) shows the 

resulting experimental force/velocity responses for a range of set-point gains between D 

= 2kNs/m and D = 20kNs/m. Shown superimposed arc straight lines of slope D, which 

represent the idealised responses. Very good linearisation is demonstrated for values of 

D between 2 and] OkNs/m thus validating the controller's behaviour under broadband 

excitation. For the set-point D = 20kNs/m, the control limits of the MR damper can be 

observed. For example, the force beyond ± O.OSm/s is less than the ideal viscous force, 

resulting in a non-linear response (owing to saturation). 

To validate the model under closed-loop conditions, Figure 5-CJ(b) shows the simulated 

linearised responses under identical excitation and controller conditions as for the 

experiment. Again, highly linear characteristics can be observed with the actual 

responses closely matching the ideal responses. Moreover, the simulated results 

correlate very well with the experiment and the onset of saturation in the response 

(D=20kNs/m) is predicted accurately. 

5.5 SDOF study 

Having demonstrated the experimental and simulated performance of the feedback 

linearisation strategy under broadband excitation, the approach will now be used as part 

of a simulated mass-isolator vibration problem. The performance will be benchmarked 

against a range of idealised systems and an on/off control strategy. For each system, the 

input excitations and, where applicable, the MR damper model were identical in order 

to permit a direct comparison between them. The mass-isolator and damper control 

configurations are now described, before presenting the simulated results. 
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5.5.1 Mass-isolator configurations 

The basic parameters [or the mass-isolator were chosen to give a system natural 

frequency of 5Hz and a damping ratio of 0.1 when the M R damper was in its 'off state. 

This frequency is well within the range of frequencies validated experimentally and 

resulted in a mass M of 115kg and a spring stiffness Kiso of 113.5kN/m. Three different 

broadband displacement inputs were investigated for each system. The first input was 

generated with a constant velocity amplitudc (i.e. white noise) over the frequency range 

O-IOOHz. The second and third inputs were generated by passing this signal through a 

finite impulse response filter, designed with a least-squares method to produce cut-off 

frequencies at 25Hz and 10Hz respectively. 

Five damper configurations were investigated and these arc described below. 

• Passive system 

Previous studies have not always compared the performance of MR systems to 

equivalent passive systems. For example, investigators commonly use the MR damper 

in iis 'on' or 'off state to represent a passive suspension [85]. [n the 'orr state, the 

damping is likely to be less than that of a well-damped passive device, whereas in the 

'on' state the damping will be higher than a well-damped passive device. A more 

realistic passive benchmark was used in the present study wherc the damping force was 

generated by a viscous damper with damping coefTicient C~) as shown in Figure 5-7(a). 

C~) was varied to optimise the passive system response to enable a true pcrfon11<mce 

comparison with the MR systems. 
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• MR Iinearised skyhook control 

As described in Chapter 1, skyhook control is where the damping force is proportional 

to the ahsollite velocity of the isolated mass (see Figure 1-2). This is optimal for an 

SDOF system and enables the resonant vibrations to be suppressed without degradation 

of the higher frequency response (see Figure 1-3(b)). Under certain conditions skyhook 

control requires an energy input, but feedback linearisation can be utilised to accurately 

achieve the skyhook force within the semi-active limits of the MR damper (see Figure 

5-4). With reference to Figure 5-7(b), the set-point force is given by: 

(5-2) 

The controller subsystem of Figure 5-7(b) corresponds to that shown in Figure 5-3(a). 

• Onloff skyhook control 

In semi-active vibration control, onloff skyhook control strategies are commonly 

investigated [22, 88]. The strategy involves switching the input current to a 

prec!etermined and constant level when the force required by the skyhook control law is 

a dissipative one: 

I = 1m", : ,\-'" (.\-111 - '\-h) > 0 - Energy dissipation required (5-3) 

I = 0: ~\-III (.\-111 - o\-h) ~ 0 - Energy input required (5-4) 

The controller gain III/ax dictates the current applied in the 'damper on' condition. Since 

no force feedback is required, the need to measure or estimate the damping force is 

eliminated. Onloff skyhook control therefore represents a major simpli rication over the 

linearised skyhook controller. However, the performance may suffer, and by studying 
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the behaviour of the two controllers under identical circumstances, a fair comparison 

can be made. 

• Fully active skyhook control 

In this system, the desired skyhook force was assumed to be produced by an ideal force 

actuator capable of instantaneously supplying and dissipating energy. This represents 

the ideal skyhook system and will act as an upper boundary of performance for the MR 

damper systems. The fully active system is shown in Figure 5-7(c), where the force F is 

given by: 

F= D .. r /s f1I 
(5-5) 

• Ideal semi-active skyhook control 

In this system the desired skyhook force is achieved only if the force is a dissipative 

one, otherwise zero damping force is transmitted i.e: 

(5-6) 

F = 0 : .X' ("~ -.\:) ~ 0 
III J1/ h (5-7) 

This will act as a more realistic upper performance boundary for the MR based systems. 

5.5.2 ,,)'DOF Results 

First, the MR linearised skyhook system is compared with the fully active skyhook 

system. Figure 5-8(a) shows the transmissibility cur\'es, obtained lIsing Welch's 

numerical method [145], for the displacement input filtered to 25Hz. The passive 

response for Cp = 2kNs/m is also shown since, of all the passive damping rates for this 

particular input, it had the lowest root-mean-square (RMS) acceleration, whieh is an 
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important performance indicator. As expected, the fully active system improves both 

the low and high frequency response with increasing controller gain D,s This is superior 

to thc MR system where a slight degradation in thc high frequency response is observed 

with increased controller gain DMIi . Nonetheless, there is a significant improvement 

over the passive system. 

Figure 5-8(b) compares the transmissibility curves, aga1l1 for the displacement input 

filtered to 25Hz, between the linearised MR skyhook system and the idealised semi

active skyhook system, which represents a more realistic performance benchmark. For 

skyhook gains of 3kNs/m, it can be seen how the frequency response of the MR system 

around the natural frequency is better than the ideal semi-active system, but worse at 

higher frequencies. For skyhook gains of 6kNs/m, the semi-active system is superior 

throughout the frequency range. 

Figure 5-8(c) compares the transmissibility curves between the linearised MR skyhook 

and the on/off MR skyhook systems. Much like a passive system, there is a clear 

compromise between the low and high frequency performance of the on/off system with 

increasing controller gain III/fiX' For example, the low frequency response is superior to 

the MR system for large gains, but this is at the expense of' a poorer high frequency 

response compared to both MR and passive systems. 

It is difficult to get a clear indication of the relative perftmllance between the above 

systems using transmissibility plots alone. For example, a trade-ofT has been 

demonstrated between the low and high frequency responses when the controller gain is 

increased and thus it becomes difficult to determine an optimum value. Direct 

comparison is made more straightforward when a conflict diagram is used. This is 
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where the RMS value of one performance indicator is plotted against that for another, as 

a controller gain is varied. This not only helps to optimise the control systems but also 

gives clarity on the inevitable trade-offs between the performance indicators 

themselves. Suitable perfonnance indicators are the RMS acceleration, which 

represents the severity of the vibration of the mass, and the RMS working space, which 

is a common design constraint. The conflict diagram has also been used as a means to 

compare the three different displacement inputs. Figure 5-9 presents the conflict 

diagrams for each of the input excitations. 

In the case of the input signals filtered to 10Hz (pigure 5-9(a)) and 25Hz (Figure 

5-9(b)), feedback linearisation is seen to enhance RMS acceleration compared to the 

on/off control strategy. For the unfiltered input signal containing frequencies up to 

100Hz (Figure 5-9(c)), there appears to be no significant advantage gained by 

implementing feedback linearisation, where RMS acceleration levels are similar to the 

on/off system. 

With regards to the benchmark systems, Figure 5-9 dcmonstrates how the ideal seml

active and fully active skyhook systems are superior in terms of acceleration, but this is 

at the expense of larger working spaces. Furthermore, the performance benefits of a 

fully active system are substantially better than the ideal semi-active system if larger 

working spaces can be tolerated. 

To better illustrate the relative performance between systems, optimum controller gains 

(i.e. DMR, DIS, D.)~IS, 1111I1X and Cp ) were chosen for thc input signal filtered to 10Hz such 

that RMS acceleration was minimised. These gains, which are shown in Table 5-1, 

were then maintained for all three excitation conditions and the resulting performance is 
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indicated on Figure 5-9. Figure 5-10 then compares the percentage performance 

improvements of the controlled systems over the optimised passive system at the chosen 

operating points. For the signal filtered to 10Hz, this resulted in a 25% reduction in 

RMS acceleration for the linearised system compared to a 15% reduction for the on/off 

system. The optimised onloff system performs quite well, but when analysing the 

position of the operating points on Figures 5-9(b) and 5-9( c), a key advantage of 

feedback Iinearisation becomes apparent. From Figure 5-10, it can be observed how 

RMS acceleration for the linearised system remains consistently low regardless of the 

input conditions. By comparing Figures 5-9(a) and 5-9(b), this arises because the shape 

of the conflict curve, and thus the optimum controller gain DMR , remains unchanged. 

On the other hand, the on/off system is very sensitive to the input conditions and RMS 

acceleration levels are degraded as frequency content increases. This occurs because of 

the change in shape of the conflict curve between Figures 5-9( a) and 5-9(b), which also 

explains the improved working space levels. Therefore the 'straightforward' onloff 

system may in fact need a rather more complex control strategy to alter the controller 

gail~ according to input excitation. This would be necessary to ensure that its 

implementation is justifiable against its passive counterpart. 

For the linearised system subject to the unfiltered signal (Figure 5-9(c)), there is a 

change in shape of the conflict curve compared to rigures 5-9(a) and 5-9(b). However 

perfo1111ance does not suffer due to its shallow gradient. It should be noted that the 

accuracy of the results presented in Figure 5-9(c) and Figure 5-10(c) is less certain, 

because the MR damper model does not take into account high frequency behaviour, 

and has not been validated above 25Hz. At high frcquencies, seal friction effects and 

device joints may have an important role. Also, the attenuation of high frequency 
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vibrations is likely to be outside the duty of the isolator, due to the compliance of the 

mechanical connections and bushings. 

To illustrate performance of the benchmark systems, Figure 5-1 O(a) demonstrates a 64%) 

improvement in acceleration for the fully active system compared to 3m;;) for the ideal 

semi-active system. This is clearly superior to the MR systems, however the 

corresponding working spaces are 58% and 18% worse than the passlve system 

respectively. This is a consistent result across the range of excitation conditions. 

5.6 2DOF Study 

The results presented so far have demonstrated the relative performance of two MR 

damper control strategies, compared to ideal passive, semi-active and fully active 

dampers. In this section, the analysis is repeated using a two-degree-of-freedom system 

that is representative of a vehicle suspension problem. As before, the same input 

excitations and MR damper model (where applicable) were used for each control system 

in order to permit a direct comparison between the control strategies. 

It should be mentioned that the MR damper under investigation was not specifically 

designed for use in a primary vehicle suspension. HO\\'ever, the intention here is not to 

fine-tune the actual device for a specific vehicle but rather to demonstrate the 

performance potential of linearising an MR damper to implement semi-active vehicle 

control strategies. For this purpose, a simplified vehicle model serves as a useful case 

study. The vehicle model is first described before presenting the simulated results. 
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5.6.1 Quarter car model 

In the design of suspension for passenger vehicles, it is desirable to achieve low levels 

of car body acceleration, thus ensuring passenger comfort, and adequate control of 

dynamic tyre loads, thus ensuring vehicle safety and stability. The dynamic tyre load is 

associated with the reduction in a tyre's ability to generate shear forces if the load on it 

is fluctuating substantial1y about the mean value. A relatively low value of dynamic 

tyre load implies relatively little impail111ent of shear force generation and hence good 

vehicle manoeuvrability due to road roughness [7]. This must be designed within a 

finite amount of space, which acts as a constraint to the designer. The three main 

criteria often used to assess vehicle performance are therefore: 

• RMS vehicle body acceleration, 

• RMS dynamic wheel contact force, 

• RMS suspension working space. 

It transpires that these fundamental features of suspensIon design arc effectively 

captured in the quarter car model [15] which has therefore been used in this study. 

Figure 5-11 (a) shows a schematic quarter car model with an idealised passive 

suspension. Parameters were chosen so as to represent a typical family saloon car and 

are shown in Table 5-2. To characterise performance, the above three performance 

indicators were calculated, where lower values correspond to superior performance 

levels. 
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5.6.2 Quarter car configurations 

Five configurations of suspension damper were investigated and these configurations 

are described below. 

• Passive 

As for the SDOF study, the passive quarter car model (shown in Figure 5-1 I (a)) was 

investigated to provide a useful performance benchmark to assess the MR systems. The 

damping coefficient Cp was varied between 1 kNs/m and 5kNs/m, which approximately 

corresponds to sprung mass damping ratios betwcen 0.2 and 1. 

• MR Iinearised modified skyhook control 

For 2DOF systems such as the quarter car, it is wcJ1 known that skyhook control 

attcnuates vibration at the natural frequency of the sprung mass but has an adverse 

effect at the natural frequency of the wheel mass (wheel hop frequency) [3, 146, 147]. 

This has led to an altemative strategy known as modi fled skyhook control, which 

com.bines the concept of skyhook damping with passive damping in an attempt to gain 

the advantages of both [22]. This is particularly advantageolls for a semi-active device 

since the introduction of passive damping means that the control law will dissipate 

power more frequently. Consequently, the semi-active damper will approach more 

closely the behaviour of an ideal actuator [3]. With reference to Figure 5-ll(b) and 

Figure 5-3(a), the set-point control force Fd is given by: 

(5-8) 

Here, a is a weighting parameter between 0 and 1. a= 1 corresponds to a viscous set

point damping force thus emulating the passive systcm and ex = 0 corrcsponds to a pure 
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skyhook set-point force. As before, the desired force will only be achieved accurately if 

it is within the control limits of the MR damper (see Figure 5-4). 

• Onloff modified skyhook control 

The input current for the onloff controller is given by: 

J = 111111\: (a (xc ~ ·x- II ) + (1 ~ a)."X-c)(xc ~ XII) > 0 - Energy dissipation required (5-9) 

1= (a (x, ~xlI)+(1~a)xc)U( ~.~II)::::;O -Energyinputrequired (5-10) 

• Fully active modified skyhook control 

With reference to Figure 5-11 (c), the ideal damping force F is given by: 

F = D . (a(x ~ X ) + (1 ~ a)."X- ) 
/,)111 C H' (' 

(5-11) 

• Ideal semi-active modified skyhook control 

Again referring to Figure 5-11(c), the ideal semi-active damping force is given by: 

(5-12) 

(5-13) 

5.6.3 Real road disturbance 

In order to realistically assess the capability of the !VIR damper as part of a vehicle 

suspension, a broadband random signal, representative of a typical road profile was 

generated to provide an input to the quarter car model. The profile of a single track 

along the length of a road surface can be approximately described by a displacement 

power spectral density function (PSD) S(\I') at wave-number \1' (cycles/m) as follows 

[ 140]: 
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(5-14) 

Here, C and ware fitting constants describing the severity of road roughness. The 

wave-number \jJ is given by PVc, where f is the vibration frequency and Vc is the vehicle 

speed. Consequently, for a given vehicle speed, the inverse fast Fourier transform can 

be used to determine the road surface heights in the time domain [141]. Motorway, 

principal and minor road excitations were generated with frequency content between 0 

to 15Hz. Table 5-3 shows the corresponding values of C, 1\1 and V, and Figure 5-12 

shows a typical motorway excitation in the time and frequency domain. 

5.6.4 2DOF Results 

To begin, Figure 5-13(a) shows the PSD of wheel contact force for the MR Iinearised 

modified skyhook system. The responses shown arc for the motorway excitation and 

are compared to the passive system with CI' = 2kNs/m, which corresponds to a damping 

ratio of 0.4. For the MR system, responses are shown for a range of a with controller 

gain DMRIII = 3kNs/m. In the pure skyhook case (a =, 0), the vibration at the sprung mass 

natural frequency has been significantly reduced but, as expected, an adverse effect at 

the wheel hop frequency is observed. It can be seen how increasing a, and thus 

augmenting the system with passive damping, Improves this by allowing the 

magnitudes of the two resonant peaks to be compromised against one another. Through 

appropriate parameter selection, the MR system is clearly superior to the passive 

system. 

Similarly, Figures 5-13(b) and 5-13(c) compare the motorway PSD plots of the passive 

system with the fully active and ideal semi-active modi fled skyhook systems 
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respectively. Skyhook gains equal to 3kNs/m have been used in both cases. A key 

difference between the fully activelideal semi-active systems and the MR linearised 

system is in the mid frequency range (3-9Hz), where the fully activelideal semi-active 

systems achieve much lower vibration levels. Reducing the damping rate at OA, for 

example by changing vehicle parameters or fluid properties, should improve the MR 

system in this range and push the perf0l111anCe levels nearer to the ideal semi-active 

system. It can also be observed how the performance levels of fully active and ideal 

semi-active systems are similar for values of rx which give acceptable levels of wheel 

hop vibration. 

Next, the on/off modified skyhook system is investigated. Figure 5-13(d) shows the 

PSO of wheel contact force for the controller gain 111/(1\ = O.O()J\. Again, the motorway 

excitation has been used as an example. The vibration at the sprung mass natural 

frequency is clearly lower than the passive system, however the wheel hop response is 

very poor with no significant gain in performance when rx is increased. A pure skyhook 

strategy (a = 0) is therefore optimal for the on/ofT control strategy. 

As with the SOOF system, the conflict diagram can be used to optimise and compare 

each control strategy. For the quarter car model, these have been constructed by 

plotting RMS car body acceleration and RMS wheel contact force versus the RMS 

suspension working space Cor each road excitation. Figure 5-14 shows the resulting 

conflict curve comparing each vehicle configuration subject to the motorway excitation. 

The modified skyhook systems have already been optimised in terms of the controller 

gain (DMRm = 3kNs/m. D'.';m = 3kNs/m and DS. ISI1/ = 3kNs/m) where that value which best 

minimised car body acceleration was chosen. With the exception of on/off control 
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(where it has already been established that skyhook control is optimal), each curve 

shown cOlTesponds to the range a = 0-1. The on/ofT conflict curve corresponds to a 

range of controller gains ["Il/I for a = 0 and the passive response corresponds to the 

range C~) = 1-5kNs/m. 

As shown in the SDOF study, the MR linearised modified skyhook system is superior to 

the on/off controller. Nonetheless, the on/orr controller docs perform well, 

outperforming the passive system. The superiority of the linearised system is more 

obvious in terms of wheel contact force because, unlike the on/ofT controller, MR 

linearised modified skyhook control is able to suppress the wheel hop vibrations. 

However, RMS wheel contact force for the linearised system is still on a par with the 

passive system. This is partly due to the way in which the controller gains were 

optimised in terms of car body acceleration as outlined previously. It is well known that 

ride comfort will be traded off against vehicle handling and optimising the controller 

gain in terms of wheel contact force should improve this result. 

To .investigate the effect of the operating conditions on performance, a specific 

operating point (a or III/(n) has been chosen and maintained for the three excitation 

conditions (motorway, principal and minor road). The performance of each controlled 

system has then been rated as a percentage improvement over the passive system with 

Cp=2kNs/111 (which cOlTesponds to a damping ratio of 0.4). The operating points were 

chosen, using the 1110torway eonnict diagram (Figure 5-14), so as to minimise car body 

acceleration whilst maintaining adequate wheel contact force and sLispension working 

space levels that are similar to the passive system. The corresponding operating points 

are indicated on Figure 5-14 and are tabulated in Table 5-4, and Figure 5-15 shows the 
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results in graphical fonTI. By first taking the motorway excitation as an example, the 

Iinearised system demonstrates a 10% improvement in RMS acceleration whilst 

maintaining similar wheel contact force levels to the passive system, whereas the onloff 

system results in a 3% reduction in RMS acceleration but RMS wheel contact force is 

4% worse than the passive system. There is a 9 (X) and 13(% improvement in RMS 

suspension working space for the linearised and onloff system respectively. By 

analysing the full excitation range, the results re-itcrate the key advantage in using 

feedback linearisation, which was demonstrated for the SOOF system. From Figure 

5-15, it can be observed how the MR linearised operating point is insensitive to changes 

in the input conditions. This is seen through the steady performance levels, which are 

consistently superior to the passive system across the full excitation range. 

Furthermore, the car body acceleration is similar to the fully active and ideal semi

active systems. In contrast to the linearised system, the optimum controller gain for the 

onloff controller is highly dependent on the input conditions. This is seen through the 

progressive deterioration of suspension working space as the harshness of the road 

surf?ce worsens. 

For some performance criteria, the MR systems can be observed to outperform the fully 

active and ideal semi-active systems. For example, the RMS suspension working space 

of the on/off system is superior for the 1110torway excitation (Figure 5-15(a)), and the 

car body acceleration of the linearised system is slightly superior for the principal road 

excitation (Figure 5-15(b )). However the fully activelideal semi-active systems always 

outperfonTI the MR systems in two out of the three performance indicators. 
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5.7 Discussion 

Using skyhook-derived control laws, this chapter has demonstrated for both SDOF and 

2DOF systems, how feedback linearisation can better harness the controllability of a 

smart fluid damper when compared to more straightforward on/off control strategies. 

In the SDOF study, the fully active and ideal semi-active systems demonstrate superior 

acceleration levels when compared to the MR systems but this is at the expense of 

poorer suspension working space levels. Fully active control is particularly superior if 

these larger working spaces can be tolerated. However, the 2DOF study did not 

demonstrate such advantages with the ideal semi-active system closely approaching the 

fully active system. This suggests that dissipative energy is required for most of the 

time. Furthermore, the similarity between the MR and ideal semi-active system 

suggests that the MR performance could be further enhanced by designing the system 

with a lower 'off-state' damping rate. 

A key advantage of feedback linearisation is how the damping behaviour becomes less 

sens.itive to extemal changes. For example, environmental effects and manufacturing 

tolerances, which would result in varying fluid properties, should have no major effect 

on performance. On the other hand, it is probable that degradation in the performance 

of an on/off system, and a shift in the optimum controller gain would be observed when 

such effects playa role. When this effect is coupled with the changing optimum 

controller gain due to variations in the input conditions, perfomlance could seriously 

suffer. 
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5.8 Summary of Chapter 5 

In this chapter, the author numerically investigated the feedback control of vibration 

isolation systems using MR dampers. The vibrating systems were investigated using 

broadband mechanical excitations, and the results have been benehmarked against ideal 

passive, semi-active, and fully active systems. 

Two control strategies have been studied: feedback Iinearisation, and onloff control. 

New experimental results have demonstrated that feedback linearisation is effective 

under broadband mechanical excitation, and that thc proposcd MR dampcr modcl 

remains valid under thesc conditions. 

An SDOF mass-isolator problem was investigated, and MR lincariscd skyhook control 

was shown to be supcrior to onloff skyhook control, demonstrating a 25%) reduction in 

acccleration over an optimiscd passive system compared to 15% for thc on/off strategy. 

Thc ideal scm i-active and fully active systems outpcrformcd both of thc MR damper 

systcms in terms of accelcration, but this was at the expense of larger working spaces. 

A iDOF system represcnting a vchicle was then investigated numcrically. The MR 

linearised controller, in conjunction with a modi flcd skyhook strategy, was able to 

outperform the passive system by 10%) in terms of car body acceleration and suspcnsion 

working space, whilst also maintaining slightly superior wheel contact force levels. In 

contrast, the on/off control strategy providcd just a ](/;) reduction in car body 

acceleration, whilst whccl contact force levels were degraded. This is because an on/off 

controller is unable to suppress wheel hop vibrations, where it was shown that a pure 

skyhook strategy is the most optimal. The fully active and ideal semi-active systems 

were generally superior to the MR systems, whcre performance was bcttcr in at least 
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two of the three perf0l111anCe indicators investigated. Nonetheless, car body 

acceleration levels for the MR linearised system were comparable to the fully 

activelideal semi-active systems. 

For both of the isolation systems, the feedback linearisation strategy was shown to be 

relatively insensitive to changes in the input excitation conditions. On the other hanel, 

the on/off strategy was highly sensitive to the input excitation. In the next chapter of 

this thesis, the behaviour will be investigated experimentally lIsing the HILS approach. 
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Control strategy 
Passive 

MR linearised skyhook 
On/ofTskyhook 

Fully active skyhook 
Ideal semi-active skyhook 

Co ntroller gain 
l' _==_ 3kNs/m 

\111 = 4kNs/m 
111111\ = 0.5A 

. -

C _._-

J)J 

--- -
f) 
--

J).\ 

/s = 7kNs/m 
.IS == 6kNs/m 

Table 5-1: Controller parameters for the optimised mass-isolator systems. 

Parameter Symbol/un it I Value 
Mass of car bod)' Me I kg 300 

Mass of wheel assembly M" I kg 35 

--

--

Suspension sti ffness K/Nm- 20000 
Tyre stiffness Kw / Nm- I 200000 

---

Cp 1 Nsm:T Passive damping rate 
Tyre damping rate Cw I Nsm-

--

1000-5000 
-----------

80 T 

Table 5-2: Quarter car suspension parameters. 

Profile I C I 
--

W Vi' (miles/hr) 

MotOJ-way 7 x 10-8 2.5 70 
-- -_ .. 

Principal road 50 x 10-8 2.5 60 
.-

Minor road 500 x 10-8 2.5 30 
- --

Table 5-3: Road profile parameters. 

Control strategy ] 
Passive 

--

MR lineariscd modified skyhook 
Onloff skyhook 

- -

Fully active modified skyhook 
Ideal semi-active modified skyhook 

ntroller gain 

~ = 2kNs/m 

Co 

C 
f), 

I 
J) 

11111/ = 3kNs/m 
--

11111\ = 0.08A 
/SII/ = 3kNs/m 

-------

f)\ .ISI1/ = 3kNs/m 

a 
-

0.25 
() 

0.6 
0.6 

Tahle 5-4: Controller parameters for the optimised vehicle suspension systems. 
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(a) 
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Figure 5-1: (a) Schematic diagram of the Lord Corporations RD-1005-3 MR damper [148J and (b) 
the lumped parameter model [74J. 
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Figure 5-2: Simulated and experimental MR damper response. 0,0.2, ••. , 1.OA [741 • 
• Experimental- Simulated 
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(b) 

Set-point 
force Fd 

r 

(a) 6Hz, 2mm (b) 12 Hz, Imm 

Current I Piston velocity V 

Skyhook/Optimal 
Controller 

B I 
I Actual r:::l Set-point 

Feedback linearisation I force, F force Fd 

Actual Set-point 
force, F r:::l force, Fd 

0.00 

Figure 5-3: Semi-active force generator. (a) Controller block diagram and (b) implementation 
within a controlled vibration system. 
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I 
Control 
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Figure 5-4: Control envelope of the MR damper. 
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Figure 5-5: Broadband input excitation used for experimental validation of feedback Iinearisation. 
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(a) (b) 

Velocity (m/s) Velocity (mi.) 

D=20kNsfm O=10kNsim O=20kNsfm D"'10kNs/m 

O=5kN slm D=2kNslm D=5kNs/m D=2kNsJm 

Ideal responses Ideal responses 

Figure 5-6: Linearised force/velocity responses. (a) Experimental and (b) simulated. G=O.0015 
and B=O.6. 

(a) (b) 

M M 

• Input 
I 

Measured / 
estimated force 

+ 
Controller 

Set-point 
force 

Fd 

(c) 

M 

Figure 5-7: Mass-isolator models. (a) Passive system, (b) MR linearised system and (c) ideal 
system. 
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_ • MR linearised skyhook: 0 MR=6kNslm 
_ Fully active skyhook: D,s·3kNslm 
_ _ Fully active skyhook: D1sl:6kNslm 

o Passive: C 1:2kNslrn 

°0~-----------------L------------------1LO------------------J1 5 

Frequency (Hz) 

2. 5 ,::----------r-;==;:;:~=.==;=;=.==.=;;==::;:;:;=;===;_-_____, 
(b) - MR lin. ari •• d skyhook: D"R"3kNslm 

o 
o 

o 
o 

00 
o 

_ • MR lin. arlsad skyhook: D"R"SkNslm 

- Ideal semi-active skyhook: 0 SAS - 3kNslm 
_ _ Ideal aemi-active skyhook: 0 SAS -SkNslm 

o Passive: Cp -2kNslm 

~1 .5 
:0 

:~ 
E 
'" c 

~ 

0.5 

°0L-----------------L---------------~lLO-----------------11 5· 

Frequency (Hz) 

2.5[------,--r=:::::;:;:;;:;;==.=::::;=.::I7=:;:::;;::::::::;:;::::::;:;;:::;--~ 
_ MR Iln. arls.d skyhook: D"R"3kNslm (c) 

o 
o 

o 
o 

00 
o 

_ • MR Iinearlsed skyhook: DMR=6kNs/m 
- On/off skyhook: ImlllcO.2A 
- - Onloff skyhook: Imlll -=1A 

o Passive: C -2kNslm 

~1 .5 
-~ 
' in 
.!!l 
E 
'" c 

~ 

0.5 /, 

°0L-----------------L---------------~lLO-----------------l15 

Frequency (Hz) 

Figure 5-8: Transmissibility comparisons b~tween (a) linearised MR skyhook and fully active 
skyhook systems, (b) linearised MR skyhook and idealised semi-active skyhook systems and (c) 
linearised MR skyhool{ and on/off MR skyhook systems. Input signal with cut-off frequency at 

25Hz. 
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Figure 5-9: Conflict curves for each mass-isolator configuration. (a) Input displacement filtered to 
10Hz, (b) input displacement filtered to 25Hz and (c) unfiltered input with frequency components 
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Figure 5-10: The percentage performance improvements of the MR and idealised systems over the 
passive system. (a) Input displacement filtered to 10Hz, (b) input displacement filtered to 25Hz and 
(c) unfiltered input with frequency components up to 100Hz. Controller parameters correspond to 

those given in Table 5-1. 
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Figure 5-11: Quarter car models. (a) Passive system, (b) MR linearised system and (c) ideal 
system. 
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CHAPTER 6. CONTROL OF MR DAMPERS - AN 

EXPERIMENTAL INVESTIGATION 

6.1 Introduction 

In thc prcvious Chapter, numerical simulations wcrc pcrfoll11cd to show thc 

effectiveness of using feedback linearisation as a scmi-active force generator. In 

particular, it was dcmonstrated that signi ficant performance enhancements arc possiblc 

when compared to more straightforward on-off control strategies and equivalent passive 

systems. Furthermore, the MR systems compared f~lvoLlrably with thc ideal scm i-active 

and fully active systems. 

The present chapter aims to build upon this work by performing experiments of both 

single-dcgrec-of-freedom (SOOF) and two-degrce-of-Creeclom (200F) structures 

subjcct to broadband excitations. In a similar manner to Chapter 5, skyhook-based 

controllers will be used to illustrate the effectiveness of feedback linearisation. The 

experiments are performed using the hardware-in-the-Ioop-simulation (HILS) mcthod, 

which is illustrated in Figure 6-1. Here, rcal-timc control software is used to simulatc 

the non-physical elements of the system i.e. mass and sti ffness. Using 01 A conversion, 

outputs from this simulation (damper displacemcnt and control current) arc then used to 

excite an MR damper using a servo-hydraulic actuator and current amplificr. 

Simultaneously, an AID convertcr provides the simulation \vith damping force data in 

order to complete the solution of the equations of motion. This providcs an cxccllent 

means to bridge the gap bctween theory and practice \,hen certain aspects of the modcl 

have complcx behaviour i.c. the MR damper. Howcver, due to the additional dynamics 

that are introduced by the servo-hydraulic actuator, thc HILS mcthod must bc validated. 

177 



MR Shock Ahsorhers Chapter 6: Control of MR Dalllpers - Experimental Studl' 

In the SDOF study, Lord Corporation's RD-l 005-3 MR damper [62] is used to perform 

the HILS tests. By comparing the HILS results to numerical simulations, both with and 

without hydraulic actuator dynamics, the aim is to validate the use of the HILS method 

to predict the relative performance of MR vibration control strategies. This is made 

possible using the previously validated model of the MR damper (Section 5.2) along 

with a servo-hydraulic system model that was provided by the equipment manufacturer 

[ 149]. 

In the 2DOF study, Carrera's Magneshock [150] MR damper is used to pcrform HILS 

experiments. This damper is made specifically for primary vehicle applications, and is 

therefore a more appropriate device for quarter-car IIILS tests. A model of this device 

was not developed. Nonetheless, due to the large similarities between the SOOF and 

200F vibration systems, the SOOF investigation will help to validate the HILS method 

in general. 

The present chapter is organised as follows. First, the experimental II rLS test facility is 

outlined before presenting the SOOF investigation. In the SOOF study, a numerical 

model of this HILS system is described, which includes a validated model of both the 

hydraulic actuator and MR damper. Comparisons are then made between the HILS 

experiments and the numerical simulations with and without actuator dynamics. Next, 

the 200F study is presented, which compares HILS experimental results for a variety 

of eontrollers. Finally, a general discussion is made and the key conclusions are drawn. 

The research in this chapter has been accepted for publication [151], and the abstract for 

this work is given in Appendix A.IV. The soor study was also presented at the II 

ECCOMAS conference on Smart Structures and Materials, Lisbon, Portugal [152]. 
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6.2 The HILS test facility 

With reference to Figures 4-4 and 4-5, the damper test racility (Section 4.3) was 

configured for HILS testing as follows. First, Simulink was used to develop the 

controllers and to model the non-physical system parameters on the host Pc. These 

models were then downloaded onto the target Pc' which perrol1lled the real-time 

simulation by transferring data to and from the hardware via the data acquisition card. 

Here, the simulated damper displacement was sent to the lnstron controller via the D/A 

converter. Simultaneously, the damping force data (measured by the load cell) was sent 

via the AID converter to the target PC, thus permitting the real-time solution of the 

equations or motion. 

At this stage, it IS worth drawing attention to the test facility's perrormance 

specifications that are most relevant to the HILS method. To perform HILS tcsts 

effectively, the servo-hydraulic system must have an excellent magnitude and phase 

response. In particular, the phase delay (i.e. the time difTerence between the desired and 

actual actuator displacement) must be minimised as large values can lead to system 

instability [153]. To maximise control system perrormance, the MR damper's power 

supply must also be dynamically responsive in order to minimise the time constant 

associated with the MR efrect. The specifications or the test racility that are most 

relevant to these ractors are as follows: 

• The bandwidth of the servo-hydraulic actuator was rated at 40Hz. This is more than 

adequate for HILS testing, where frequencies above 20Hz are outside the duty of 

shock absorbers [7]. 
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• To regulate oil flow to and from the actuator, two 381/min Moog D765 electronic 

feedback valves were used [135]. These are two-stage servo-valves that incorporate 

a position transducer (LVDT) and integrated electronics to control the main spool 

and hence oil flow. The frequency response curves of this servo-valve are 

provided in Figure 6-2, where excellent magnitude and phase response 

characteristics can be observed. Also, the step response of the spool was rated at 

2ms [135], which is far superior to conventional mechanical feedback valves. 

• To power the MR damper, a high speci fication Kepco BOP ampli fier [136] was 

used. This had a maximum DC output range of ±36V and ±CLt\. Furthermore, in 

current control mode, the amplifier had a bandwidth of 13kHz and a rise I fall time 

of 27~lS between 10%-<)(J%. Therefore, the effect of the power supply on the 

response time of the MR effect was negligible. 

In summary, the dynamic characteristics of the servo-hydraulic system and the MR 

damper's power supply arc more than adequate. ('onsequently, the stability and 

accuracy of the HILS tests, and the control system performance will be maximised. 

6.3 SDOF study 

The parameters used for the SDOF system are defined in Figure 6-3(a). The mass 

(M=80kg) and stiffness (Kiso=78.5kN/m) were chosen to give a system natural 

frequency equal to 5Hz, with a damping ratio of 0.2 when the MR damper is in the 'orr 

state. Each system was excited by the same broadband displacement excitation. This 

was generated by passing white noise (with a constant \elocity amplitude) through a 2nd 

order low-pass Butterworth filter, which was designed with a cut-off frequency at 25Hz. 
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6.3.1 Numerical modelling 

In this section, a numerical model of the experimental II I LS system will be presented. 

This will be referred to as a "HILS simulation", and the development of this model will 

help validate the effect of the actuator dynamics on the performance of the controlled 

SDOF systems. Consequently, by removing the actuator dynamics in the numerical 

model (giving an "idealised simulation"), the accuracy of using the HILS method to 

evaluate controller performance can be determined. 

Figure 6-4 shows a schematic representation of the numerical model. In accordance 

with Chapter 5, the dynamics of the electro-magnetic circuit and smart fluid rheology 

are modelled using a first order lag teml with a time constant equal to 3ms. Tn the HILS 

simulation, the actual displacement across the M R damper model, which was described 

and validated in Section 5.2, differs in magnitude and phase to the desired displacement 

due to the dynamics of the servo-hydraulic system. This was accounted for using 

numerical modcJs of the servo-hydraulic actuator, servo-valves, and controller, which 

were provided by the equipment manufacturer [14<)]. 

To validate the accuracy of the servo-hydraulic system model, a frequency response 

analysis was performed. Here, the actuator was excited with a broadband displacement 

signal that was passed though a low-pass Butterworth filter with a cut-off frequency of 

50Hz. This cut-off frequency was chosen so as to just exceed the bandwidth of the test 

facility, which is rated at 40Hz. The frequency response between the demanded input 

and the actual displacement was then calculated and compared to a cOITesponding 

simulation of the test. The results are presented in Figure ()-5, where it can be observed 

that the servo-hydraulic system model predicts both the magnitude and phase response 
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well. The magnitude of the actuator displacement remains largely unaffected in the 

frequency range of interest, and it is the phase (jJ that is likely to have the most 

significant effect on the HILS system perf01111ance. With refcrence to Figure 6-5(b), it 

can be readily shown that a time delay L1t of approximately 6111s exists throughout the 

frequency range (f'."t = - j{60f' where the units of (jJ and fare measured in degrees and 

hertz respectively). 

6.3.2 Control 

Three SDOF control strategies were investigated, which are summarised bclow. For 

more detailed descriptions, the reader is referred to Section 5.5.1. 

• Linearised system 

Here, feedback linearisation is utilised such that thc MR damper emulates a passive 

damper with a linear damping rate i.e. the set-point force to the semi-active force 

generator (Figure 5-3(a)) is proportional to the relati\'c velocity between the vibrating 

mass and the base of the SDOF isolator. This system provides a useful performance 

benchmark. 

• Linearised skyhook control 

For this system, the semi-active force generator (Figure 5-3 (a)) is used to track the 

skyhook damping force (Eq.5-2). Howcver, when implementing feedback control 

within a HILS experiment or HILS simulation, a complication arises due to the phase 

delay between the desired and actual MR damper displacements. This complication is 

shown in Figure 6-6, which illustrates the implementation of linearised skyhook control 
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within an SDOF HILS system. Here, the phase delay means that the 'simulated' 

velocity of the mass, which is used to compute desired force (and hence control 

current), does not coincide with the actual force and displacement that is being 

measured. In order to correct for this, an additional 6ms time delay is applied to the 

velocity of the mass (as shown in Figure 6-6), thus bringing the set-point and measured 

forces back in phase. This is essentially a 'virtual' velocity sensor, and the above delay 

helps it to function as similar as possible to the sensor that would be on a real system 

incorporating a physical mass, spring and MR damper. Without this additional delay, 

the controller would be able to pre-empt the displacement of the MR damper, which is 

not physically realisable. Note that the value of 6ms corresponds to the time delay 

associated with the phase response in Figure 6-5(b). 

• On/off skyhook control 

On/off control skyhook control represents a major simplification to the linearised 

controller as it eliminates the need to measure/estimate the damping force. With 

reference to Equations 5-3 and 5-4, the current supplied to the MR damper is switched 

to a constant value when the force required by the skyhook law is a dissipative one. 

For the reasons described above, a 6ms time delay was applied to the demanded control 

current within the HILS experiments and HILS simulations. This ensures that the 

timing of the demanded current corresponds to the actual actuator displacement (or 

velocity) that was used in the simulation to determine when to switch the damper 

current on. Thus the controller will function as similar as possible to a real system 

where all isolator components are physical. 
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6.3.3 SDOF Results 

For each control strategy, the following three SDOF mass-isolator investigations were 

performed: 

1. HILS experimental investigation (as described in Section 6.2). 

2. Numerical study incorporating actuator dynamics i.e. the HILS simulation (as 

described in Section 6.3.1). 

3. Numerical study without actuator dynamics i.e. the idealised simulation. Here, 

the servo-hydraulic system modcl has been switched out (see Figure 6-4) such 

that the MR damper displacement has exactly the same magnitude and phase as 

the spring displacement. This represents a simulation of the real system 

incorporating physical mass, spring and damper components. The additional 

6ms time delays that werc incorporated into the controllers described in Section 

6.3.2 wcre obviously removed in these systems. 

Comparisons betwecn the results ofthc above investigations are presented below. 

III LS experiment versus 111 rs silllulatiol1 

Figure 6-7(a) compares the frequency responses of the HILS experiment with the HILS 

simulation for the linearised skyhook system. The responses shown are transmissibility 

estimates, which were obtained using Wclch's method [145]. Clearly, there exists good 

correlation between the HILS experiment and HILS simulation, and this holds 

throughout the range of set-point gains DAI/? = 1-5kNs/m. 

In a similar fashion, Figure 6-7(b) presents the results for the onloff skyhook system. 

The correlation between the HILS experiment and HILS simulation is good for the casc 

184 



MR Shock Ahsorhers Chapter 6: Control of MR Dampers - Experimental Studl" 

l/IIilX = O.IA, but accuracy deteriorates as [/llax is increased. More specifically, the HILS 

simulation contains greatcr damping levels than observed in the HILS experiment, 

where the transmissibility is underestimated around the natural frequency and 

overestimated at higher frequencies. This discrepancy is largely due to the inaccuracy 

of the MR damper model i.e. it is likely that the fluid properties have altered sincc the 

model was first developed. Moreover, this inaccuracy is not observed in thc linearised 

skyhook system results (Figure (1-7(a)), which serves to illustrate a key advantage of 

feedback linearisation it desensitises the skyhook controller to parameter uncertainty. 

Device performance will therefore be insensitive to tluid property variations that Illay 

occur between batches, during long-telll1 use, or due to environmental effects e.g. 

tcmperature. 

The relative performance bctwcen the linearised and on/off skyh(,ok strategies can be 

dctermined by comparing Figure 6-7(a) with Figure 6-7(b). Clearly, the lincarised 

skyhook system can be tuned to outperfolll1 the on/off system throughout the frequency 

range. In particular, the linearised skyhook system is superior at substantially reducing 

the transmissibility around the natural frequency without significant degradation in 

performance at higher tl"Cquencies. Furthermore, the frequency when the 

transmissibility is amplificd rather than suppressed with increasing set-point gain, is 

superior for the lineariscd skyhook system. This will be referred to as the crossover 

frcquency and, with referencc to Figure 6-7, this occurs at approximately 10 Hz for the 

linearised skyhook system and S Hz for the on/off skyhook system. 

To further illustrate the abovc points, the performance of the various HILS experiments 

and HILS simulations are compared using the contlict diagram. This is shown in 
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Figure 6-8, where the RMS acceleration is plotted against the RMS working space as 

function of the control parameter. For each of the three controllers, the HILS 

experiments correlate well with the HILS simulations, thus validating the numerical 

model. Furthermore, the conflict diagram effectively highlights the significant 

advantages of using feedback linearisation to implement control, where much lower 

acceleration levels are achieved for a similar working space. For example, for an RMS 

working space of 3.6mlll, the RMS acceleration of the linearised skyhook controller is 

17.5% lower than the on/off skyhook controller, and 36% lower than the linearised 

system. However, the ciTeet of the actuator dynamics on the above results must be 

validated. 

HILS simulation versus ideal simulation 

The results presented above validate the HILS simulation, where good correlation with 

the experimental results has been demonstrated. This was particularly the case with the 

linearised skyhook controller, and it was shown that the poor correlation associated with 

the on/off controller was clue to a slightly inaccurate MR damper model. Therefore, by 

removing the actuator dynamics from the HILS simulation (giving the idealised 

simulation), a good indication of the performance of the real system will result. 

Moreover, the effect that the servo-hydraulic system dynamics has on the perfonmmce 

of the control systems will be evident. 

Figure 6-9 compares the transmissibility estimates between the HILS simulation and the 

idealised simulation. In general, for both linearised (Figure 6-9(a)) and on/off (Figure 

6-9(b)) skyhook systems, thc main effect of the actuator dynamics is to shift the 

transmissibility curves to larger values, and to reduce the crossover frequency. 
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Furthe1111ore, by observing the responses with the lowest set-point gains (DMR and Il11ax), 

it can be seen how the actuator dynamics have slightly increased the damped natural 

frequency. The performance of the control systems has therefore been reduced due to 

the incorporation of the servo-hydraulic system dynamics in a HILS test. Nonetheless, 

the relative performance between the linearised and onloff skyhook systems remains 

largely unchanged, which validates the use of the HILS method to predict the 

perf01111anCe of controllers in MR vibration systems. 

To further illustrate this point, Figure 6-10 compares the conflict curves between the 

idealised and HILS simulations. As shown, the key effect of the actuator dynamics is to 

degrade the RMS acceleration of the mass, but the relative performance of the 

controllers remains largely unaffected. The shapes of the conflict curves are also 

unchanged, which indicates that the optimum controller parameter determined from a 

HILS test will remain optimal in the real system. 

6.4 2DOF Study 

In the previous section, it was shown that the effect of the hydraulic actuator dynamics 

in H fLS tests is to reduce performance. However, the relative performance of the 

control systems, and the optimum controller gains remain largely unchanged. This 

result helps validate the lise of the HILS method in general, which is now used to 

investigate a 2DOF MR vibration system. 

The system parameters for the 2DOF system were chosen to represent a small sized 

passenger car as shown in Figure 6-11. However, the Carrera MR damper that was used 

in this study provided an excessive damping rate C;; in the zero-field condition. 
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Consequently, a scaling factor of 0.36 was applied to the measured damping force Fin 

order to give a zero-field damping ratio S ~ 0.2. 

To excite the quarter car system, broadband random signals representative of typical 

roads were used. Motorway and principal road excitations were generated with 

frequency content between 0-20Hz. For details on how the road signals were generated, 

the reader is referred to Section 5.6.3. 

6.4. J Feedback linearisation 

As with the previous control studies, feedback linearisation is utilised to provide 

effective semi-active force generation. For the Can"era damper, a new set of feedback 

gains must therefore be determined and validated. Sims, et ([/. [94, 95] described a 

formal approach to identify the optimal values, but a more ad-hoc approach was 

considered appropriate in the present study. Through trial and error, the feedback and 

feed forward gains 13 and C; were tuned such that the MR damping force correlated well 

with the desired value. 

In this study, values of C; equal to 0.001 and B equal to 0.8 were found to provide a 

good response. This is illustrated in Figure 6-12, where the sinusoidal response of the 

MR damper has been lincarised. Here, the set-point force to the controller is 

proportional to the piston vclocity through the damping constant D. As shown, when D 

= 6kNs/m the response is highly linear. Moreover, the actual damping rate correlates 

very well with the desired value, thus validating the accuracy of the controllers force 

tracking capability. The responses for D = 2kNs/m and D = 10kNs/m represent the 

control limits of the device. When D = 2kNs/m, the set-point damping force is lower 

than the minimum value that is governed by the viscosity of the MR fluid. 
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Consequently, the cUITent is set to OA, and the desired force is not achieved. Note that 

the yield stress effect that can be observed in this response is due to seal friction. For D 

= 10kNs/m, the set-point force is accurately achieved between ± O.06m/s. Beyond ± 

O.06m/s, saturation occurs as the maximum yield stress in the fluid has been reached i.e. 

the current is at its maximum value. Consequently, the actual force falls short of the 

set-point value. 

6.4.2 Quarter car controllers 

The quarter car controllers are briefly described below, but more detailed descriptions 

can be found in Section 5.6.2. Where appropriate, 6ms time delays were also built into 

the controllers in order to account for the 6ms phase difference between the desired and 

actual MR damper displacement. As with the SDOF study, this ensures that the 

application of the desired current corresponds to the correct MR damper 

displacement/velocity that was used to calculate it within the controller (e.g. Figurl' 

6-6). Thus, the control systems will behave as similarly as possible to the real structure, 

where all vehicle parameters are physical. 

• Open-loop 

To provide a performance benchmark for the controlled MR systems, an open-loop 

controller was investigated. Here, the cunent supplied to the MR damper was 

maintained at a constant level/()f., where values between 0 and O.2A were investigated. 

• Linearised 

As a more realistic benchmark, the MR damper was linearised using the semi-active 

force Generator that was first described in Section 5.3. As shown in Figure 6-12, this 
b 

189 



NfR Shock Absorbers Chapter 6: Control of NfR Dampers ~ Experimental Studv 

system is more representative of a conventional passive suspension with a linear viscous 

damper. The set-point gain D was varied between 1 kNs/m and 5kNs/m, which 

approximately corresponds to sprung mass damping ratios between 0.2 and 1. 

• Linearised modified skyhook control 

Here, the semi-active force generator is used to achieve the modified skyhook damping 

force (see Eq.5-8). As shown in Figure 6-12, this set-point force will be accurately 

achieved within the dissipative control limits of the MR damper. 

• On/off modified skyhook control 

The on/off controller switches the input current to a predetermined and constant len:1 

f lllax when the force required by the modified skyhook control law is a dissipative one 

(see Equations 5-9 and 5-10). This represents a major simplification over the lineariscd 

modified skyhook controller as force feedback is not required. 

6.4.3 2DOF Results 

Frequency responses for the motonvay excited Iinearised system are first presented in 

Figure 6-13. The performance is illustrated in terms of the power spectral density of the 

car body acceleration (Figure 6-13(a)) and wheel contact force (Figure 6-13(b)). As the 

set-point gain D (or the effective damping constant) is increased, the resonant peaks 

corresponding to the sprung mass (l.6Hz) and unsprung mass (11.5Hz) natural 

frequencies are suppressed. For large values of D, the masses are effectively locked 

together and the system behaves as an SDOF system (as shown by the single resonant 

peak). This behaviour is typical of a linear 2DOF vibration system, and gives the first 

190 



MR Shock Absorbers Chapter 6: Control of MR Dampers ~ ExperimC'lltal Studr 

indication that the HILS technique is providing reliable results, in spite of the servo

hydraulic actuator dynamics. 

In Figure 6-14, the PSD responses of the linearised modified skyhook system are 

presented for the motOl-way excitation. Results are shown for D.\fRIII = 4kNs/m where ex 

is varied betwecn zero and one. Skyhook control (ex = 0) is 1110St superior in terms of 

passenger comfort (Figure ()-14(a)), but wheel contact force levels at the wheel hop 

frequency are poor (Figure 6-14(b)). Augmenting the system with viscous damping 

(O<ex< I) improves the unsprung mass vibrations at the expense of the sprung mass 

performance. 

The performance of the l11otorway excited on/off modified skyhook system is shown in 

Figure 6-15 for 111/(1\ = 0.15;\, where ex is varied between zero and one. Much like the 

linearised modified skyhook system, pure skyhook control (a = 0) provides the most 

superior response in terms of passenger comfort (Figure 6-15(a)). However, the on/otT 

controller is unable to signi ficantly suppress the wheel contaet force vibrations at the 

wheel hop frequency when ex is increased (Figure 6-15(b)). Although a slight 

improvement can be observed for a> 0, an analysis of the area under the PSD curves 

illustrates that there is no enhancement in the RMS value. Therefore, pure skyhook 

control is optimal for a 2DOF on/off system. 

The results of Figures 6-14 and 6-15 are promising as they directly concur with the 

previous numerical findings in Chapter 5. It is therefore apparent that the HILS method 

provides accurate results for 2DOF MR vibration systems. 
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To further illustrate the effectiveness of the semi-active force generator, the time 

histories between the set point and actual damping forces have been compared. This is 

shown in Figure 6-16 for the motorway excited linearised system. Clearly, the accuracy 

of the semi-active force generator is excellent, where the actual damping force tracks 

the commanded value very closely. For the linearised modi fled skyhook system, the 

desired force is not always dissipative, so it is interesting to investigate the tracking 

accuracy for this controller. The force/time history for this system is shown in Figure 

C)-17, and the instants when an energy input is required are also indicated. During these 

instants, the damper can no longer achieve the set-point force, and so the accuracy of 

the semi-active force generator deteriorates. Nonetheless, when the required force is 

dissipative, the force tracking accuracy is very good as before. Furthermore, it was 

found that an energy input was only required for 20% of the entire HILS test. This 

suggests that the performance of the semi-active MR system is likely to approach that of 

a fully active system. In conclusion, the semi-active force generator performs extremely 

well in the face of broadband random excitations. 

In what follows, the performance of the varIOUS quarter car control strategies are 

compared through an analysis of the conflict diagram, which enables an enhanced 

assessment of the relative controller performance. Figure 6-18 shows the conflict 

diagram for the motorway excitation, where the RMS car body acceleration (Figure 

6-18(a)) and RMS wheel contact force (Figure 6-18(b)) are plotted against the RMS 

suspensIOn working space. The variable parameter for each control system is as 

folIows: 
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• Open-Ioop- 1m is varied between 0.05-0.2A 

• Linearised- D is varied between 1-5kNs/m 

• Linearised modified skyhook~- Curves are plotted for DAfRIII = 3kNs/m and 4kNs/m, 

where a is varied between 0-1. 

• On/off modified skyhook - As skyhook control is optimal for this system (see 

Figure 6-15), a = 0 and [/llill is varied between 0.05A-O.2A. 

With reference to Figure 6-18, the open loop system clearly has the worst performance. 

This is likely due to the non-linear force/velocity characteristics, which creates a harsh 

response when the velocity changes direction. The Iinearised system, which emulates a 

passive device, improves on this response but it is the skyhook-based controllers that 

provide the best performance. Moreover, the Iinearised modified skyhook system is 

superior to the on/off skyhook system, where lower levels of car body acceleration and 

wheel contact force can be achieved. 

In Chapter 5, it was shown how feedback linearisation tends to desensitise the controller 

performance to changes in the input excitation. This can also be observed in the HILS 

results by comparing Figure ()-18 with Figure 6-19, which shows the conflict curves for 

the principal road excitation. Unlike the on/off system, the shape of the linearised 

modified skyhook conflict curve, and hence the optimum controller gain, remains 

unchanged. Again, this result illustrates the efficacy of the HILS method, where 

identical conclusions to the previous numerical study of Chapter 5 can be drawn. 
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To better illustrate the sensitivity to the input excitation, an operating point for each 

control system was chosen such that the wheel contact force is minimised on the 

motorway. These operating points are highlighted on Figure 6-18 by the circular 

markers, and the corresponding controller values are gIven in Table 6-1. The 

performance of the same controller configurations is also highlighted on Figure 6-19 for 

the principal road excitation. With the exception of the linearised modified skyhook 

system, wheel contact force levels are no longer optimal. 

This result is summarised in Figure 6-20, which shows the performance of the 

optimised controllers as a percentage improvement over the linearised system. 

Linearised modified skyhook control is clearly superior for all perf01111anee indicators 

and input excitations. for the motorway excitation, improvements in car body 

acceleration (CBA), wheel contact force (WCF), and suspension working spaee (SWS) 

arc 8.3%), 4.5%) and 18.7%) respectively. The motorway excited onloff skyhook system 

also performs well where improvements are 6.2% CBA, 1.7% WCF, and 12.1% SWS. 

However, when the input excitation changes, the onloff system performance is degraded 

and no improvement in wheel contact force and suspension working space is offered. 

On the other hand, the linearised modified skyhook system maintains superior 

performance, where improvements are 10.2% CBA, 5.4% WCF and 10% SWS. 

6.S Summary of Chapter 6 

This chapter has presented a IIILS experimental investigation of semi-active SOOF and 

200F mass isolation systems. Here, MR dampers excited by a high response servo

hydraulic actuator were used as the physical hardware components. Meanwhile, the 

non-physical system components were modelled in a real time digital simulation. For 
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each case study, the performance of feedback linearisation was investigated by 

implementing skyhook-based controllers, where comparisons were made with more 

simplistic onloff controllers and equivalent passive systems. 

In order to validate the effect of the actuator dynamics on control system perf0l111anCe, 

experimental data was compared to a numerical simulation of the HILS SOOF system. 

This incorporatcd a previously validated model of the corresponding MR damper, and a 

servo-hydraulic actuator model, which was validated herein. It was shown that the main 

effect of the actuator dynamics was to lower performance, where a shift to higher 

transmissibilities and RMS accelerations was observed. Nonetheless, the relative 

perfonmmce and the optimum controller gain of the various control systems remained 

unchanged, thus validating the use of the HILS method to predict controller 

performance. 

To give further credencc to the efficacy of the HILS method, similar conclusions to the 

SOOF and 200F numerical investigations of Chapter 5 were drawn. More specifically: 

• 

• 

For SOOF systems, it was shown that linearised skyhook control provides far 

superior transmissibility and RMS acceleration levels to onloff skyhook control. 

Nonetheless, the onloff system performed well, outperforming the linearised 

"passive" configuration. 

For 200F systems, linearised skyhook control is optimal in terms of passenger 

r: i '111(1 olltl)erformed the equivalent passive and onloff skyhook systcms COIllIOI , ' . . 

Augmenting the lineariscd skyhook system with viscous damping (m()dified 

skyhook control) cnhanced the wheel contact force levels at thc expense of car body 
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acceleration. On the other hand, an on/off modified skyhook controller cannot 

significantly enhance wheel hop vibrations i.e. the pure skyhook system is optimal. 

• Feedback linearisation desensitises the controller performance to parameter 

uncertainty. [n the SDOF study, this was indicated through the good correlation 

between the HILS simulation and the HILS experiment, despite a slightly inaccurate 

MR damper model. This slight inaccuracy could be representative of changes in the 

fluid properties due to temperature effects, or variations in the fluid properties due 

to manuf~lCturing tolerances or long-term usc e.g. in-use thickening [27]. In the 

lOOF study, the performance of the linearised skyhook systems remained optimal 

in the face 0 f roadway disturbance changes, unlike the on/off system. 

In conclusion, feedback linearisation permits very accurate set-point force traekin u in 
'=' 

the face of broadband random excitations. Not only docs this permit superior 

performance levels in comparison to more simplistic on/off methods, but also the 

sensitivity to parameter uncertainty is significantly reduced. [n the pre\ious two 

chapters, this \\as demonstrated for skyhook-based controllers, although the control 

concept is equally applicable to other well-established control techniques. For example, 

the semi-active force generator could be used to track force demands deri\'ed from 

sliding mode or optimal control laws. 
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Control strategy Controller gain a 
Linearised D =2kNs/m -
Open-loop 1 = 0.07SA -

MR linearised modified skyhook DMRm = 4kNs/m 0.4 
On/off modified skyhook L nox = 0.12SA 0 

Table 6-1 : Controller parameters for the optimised 2DOF control systems. 
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CHAPTER 7. CONCLUSIONS AND FURTHER WORK 

7.1 Conclusions 

To conclude the thesis, a summary of each chapter is provided (Section 7.1.1). A list of 

the key achievements is then presented in order to emphasise the contribution to ne\v 

knowledge (Section 7.1.2). 

7. J. I Surl/lJ/(IIY 

The thesis began by describing the relative merits of passive, active, and semi-active 

vibration control methods. [t was emphasised that semi-active schemes can offer an 

attractive compromise between the low cost and simplicity of passive systems, and the 

high performance of active systems, which arc heavier, more complex, and have 

significant power requirements. In particular, MR dampers were identified as one of the 

most promising means to implement semi-active vibration control. 

Onc application that could benefit significantly from an MR damper is an aircraft's 

landing gear. Whilst traditional passive devices are optimised for a specific impact 

condition, an MR device could better accommodate for the inevitable variations in sink 

speed, angle attack and aircraft mass. Consequently, there is huge potential to improve 

levels ofpassenger c0111fOl1 and the structural fatigue life of the aircraft. 

Tn Chapter 3, a sizing methodology was developed that enables the impact performance 

of geometrically constrained MR landing gears to be optimised. More specifically, the 

methodology pe1111its the simultaneous optimisation of the device's control ratio and the 

magnetic circuit design. Consequently, the semi-active landing gear can produce 

desirable behaviour for a wide range of impact conditions, unlike a passive device. 
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Using real data provided by landing gear manufacturers, the sizing methodology was 

applied to both lightweight aircraft, and large-scale commercial jets in order to 

demonstrate scalability. For both aircraft types, results indicate that the peak force and 

the severity of fatigue loading can be enhanced over a wide range of impact conditions. 

However, it was shown that MR landing gears are invariably heavier than passive 

systems, which was largely due to the increased mass of the fluid. Nonetheless, an 

improved fatigue life is likely to provide weight savings for other aircraft components. 

The landing gear sizing methodology was validated in Chapter 4, where a prototype MR 

landing gear shock strut was designed, fabricated and tested. Here, good correlation 

between the numerical predictions and the experimental behaviour was shown, 

particularly for low velocity excitations. At higher velocities, correlation deteriorated 

due to a quadratic damping effect. This may have been caused by shear thickening of 

the fluid or even turbulence induced by flow obstructions in the MR valve. Higher 

shear rate fluid property data would provide an enhanced understanding of this issue. 

The complex non-linear behaviour of MR dampers has meant that the choice of an 

effective control strategy remains an unresolved problem. For landing gear impacts, it 

transpired that this behaviour could be used to an advantage, where it was shown that an 

inherently efficient impact response could be obtained using open-loop control i.e. with 

a constant magnetic field. However, this non-linear behaviour is highly undesirable for 

other broadband excited systems such as an aircraft taxiing or a vehicle suspension. 

Consequently, the aim of Chapters 5 and 6 was to investigate control strategies for 

broadband excited MR vibration systems. In particular, this thesis focused on a control 

technique known as feedback linearisation, which uses force feedback to linearise the 
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force/velocity response of the MR damper. This permits accurate force tracking within 

the semi-active limits of the device, and hence the effective application of classical 

control techniques. 

In Chapter 5, numerical studies of both single-degree-or-freedom (SOOF) and two

degree-of-freedom (2DOF) MR vibration systems were performed. Using skyhook

based control laws, feedback linearisation was ShOWI1 to outperform more simplistic 

onlorr controllers and equivalcnt passive systems, whilst approaching that of ideal scmi-

active and fully active schemes. Furthermore, the use of reedback linearisation 

desensitised the controller performance to changes in the input excitation. For example, 

the perfonnance of the onloff systems deteriorated under di fferent excitation conditions, 

whilst the controller configuration for the linearised systems remaincd optimal. 

The results from this numerical study were further validated in Chapter 6, which 

presented experimental investigations of SOOF and 200F MR vibration systems. 

Hcre, the hardwarc-in-the-loop simulation (HILS) mcthod was adopted, which enablcd 

thc coi11plex behaviour of the MR damper and controller to be physically tested, whilst 

the rcmainder of thc system dynamics wcrc simulated in real-timc. After validating thc 

efficacy of the HILS technique, feedback lincarisation was again shown to outperform 

more conventional onloff systems, and to desensitise the performancc to parameter 

uncertainty. 

7.1.2 Key Contrihutions 

The key contributions of this thesis to new knowledge are as follows: 
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• A design methodology has been developed that enables the impact performance of 

MR landing gears to be optimised. This used an efficient magnetic circuit sizing 

spreadsheet, which incorporated the existing packaging constraints, and a dynamic 

landing impact model, which accounted for the effects of fluid compressibility. 

This is the first time that packaging constraints and fluid compressibility issues have 

been considered in ERlMR landing gear research. Consequently, a unique tool for 

assessing the feasibility of smaJi fluid landing gears has been developed, which 

could also be applied more generally to other impact systems. 

• A prototype MR landing gear was designed, f~lbricated and tested. In the 

experiments, a method was developed to accurately validate the quasi-steady model, 

and to measure the fluid's bulk modulus. This method utilised pressure sensor 

readings from a constant velocity test, which enabled the gas spring and frictional 

forces to be neglected. A technique for identi fying the device time constant of the 

magnetic circuit/smart fluid rheology was also developed. Here, the validated 

dynamic shock strut model enabled the effects of fluid compressibility to be 

eliminated from the identified value. 

• The numerous pUblications from this thesis will help to promote the feasibility of 

MR landing gears, and the various issues that must be addressed before the 

technology can be commercialised [116-118, 130]. 

• Feedback linearisation has been more formally investigated within SOOF and 

200F structures, where excellent force tracking accuracy has been demonstrated in 

the face of realistic broadband excitation signals. This was demonstrated 

numerically, and validated experimentally using HILS. Furthermore, the HILS 
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method was validated US1l1g a numerical model of the servo-hydraulic system 

dynamics. 

• The superiority of feedback linearisation ovcr the more commonly used on/off 

methods has been clearly illustrated. Conscquently, this thesis has made a 

significant contribution to enabling the non-linear behaviour of MR dampers to be 

better controlled. The control based publications from this thesis [142, 143, 151, 

152, 154] should help feedback linearisation become recognised as one of the most 

effective means to implement classical control techniques e.g. skyhook, optimal, 

and sliding mode controllers. 

7.2 Further work 

In this section, the potential areas for further research arc described under the following 

categories -- MR landing gear design, and the control of MR dampers. 

7.2. J MR landing gcm" dcsign 

In the .analytical sizing spreadsheet, the magnetic performance calculations could be 

improved by considering flux leakage effects in the fluid. This would further avoid the 

necessity to perform FEA. Moreover, it would enable the full yield stress range of the 

MR fluid to be better exploited, which would enhance controllability. Flux leakage 

could be accounted for by increasing the pole area of the fluid (in Eq.3-23), but the 

extent of this would require investigation/validation. 

Another interesting topic would be to investigate the cfTect of eddy currents on the 

magnetic circuit performance. Eddy currents are induced when the solenoid current 

changes, and they will act to oppose the direction of the desired magnetic field. 
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Consequently, the eddy currents could degrade the time constant associated with the 

generation of the fluid yield stress. Such effects arc likely to be particularly significant 

in larger devices, and it would be interesting to investigate whether the choice of valve 

material could improve performance. For example, silicon-iron alloy is known to 

reduce eddy current losses due to its larger resistivity [155]. These eddy ClltTent effects 

could be accurately investigated using a dynamic FEA software package e.g. FLUX 

[139]. The FEMM software used in this thesis could only perform static analyses [128]. 

In Chapter 3, a numerical model of the landing gear was developed that included the 

effects of fluid compressibility. The model was not stable over many excitation cycles, 

and this was thought to be due to the assumption of constant density in the mass flow 

continuity equation derivation (see Appendix B). To try and overcome this problem, it 

would be interesting to re-derive the model using a variable density. One method might 

be to use the acoustic wave equation, which describes the propagation of pressure waves 

in a compressible fluid [120]. The wave equation has some similarities to the model 

used in the present thesis but it does assume constant density. 

To experimentally validate the sizing methodology, this thesis focused on the relatively 

low velocity behaviour of MR landing gear shock struts. This was due to the velocity 

limitations of the servo-hydraulic actuator, which was rated at ± Ims- I
. To investigate 

higher velocity behaviour, future work should focus on the impact performance of the 

MR shock strut. The existing test facility, which incorporates a sliding mass (see Figure 

4-4), will have the capability to perform impacts up to 7ms- 1 once the drop mass 

hoist/release mechanism, and the impact zone have been commissioned. 
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Drop tests will enable an enhanced understanding of the force/velocity behaviour, the 

fluid compressibility effects, and the device's controllability under more realistic 

conditions. Fluid compressibility is likcly to be particularly important at higher 

velocities, where in this thesis it was found that at just 0.1 I11S·
I
, the time constant was 

increased by 28%. Furthermore, drop tests would enable the eCCects 01' valve turbulence 

to be better understood, which still remains a largely unexplored research topic. In the 

present study, maintaining a sub-critical Reynolds number was given particular 

importance in the sizing analysis. This could be validated by correlating impact test 

results with a dynamic MR shock absorber model. Ahmadian and Non-is [156] 

performed a similar investigation and showed that perrormance deteriorated beyond a 

certain Reynolds number. However, the Reynolds number calculations were based 

upon incompressible flow, which is highly unrealistic in an impact scenario. 

Another issue that requires further investigation is the quadratic damping eCCect in the 

prototype shock strut's response. This eCfect could be a result or shear thickening of the 

fluid, Qr even turbulence caused by the flow obstructions in the valve. Fluid property 

data at significantly higher shear rates is required to investigate this. Such data cannot 

be obtained using modern rheometers, although a way Corward might be to test the fluid 

in a bypass arrangement as shown in Figure 7-1. This would enable a parallel plate MR 

valve to be tested, thus eliminating any obstructions in the flow path. II' the quadratic 

damping effect is found to be turbulence related, then an alternative method to construct 

the annular passage must be sought. As shown in Figure 7-2, one solution might be to 

use spot welds, which would provide less of an obstruction than the valve gap support 

spiders (see Figure 4-2). Furthermore, this method would be signiCicantly more cost-

213 



MR Shock Absorbers Chapter 7: Conclusions and Further Work 

effective, as it would eliminate the expenSive wire-cutting process required by the 

existing design. 

A further issue that was raised in this thesis was the lack of repeatability in the 

experimental results. More specifically, the fluid yield stress reduced after performing 

higher velocity tests. It was hypothesised that this occurred either as a result of fluid 

mixing with the gas, or due to a reduced amount of iron particle sediment. lt would 

therefore be interesting to re-design the MR landing gear with a floating piston, which 

would separate the fluid from the gas, thus eliminating the former reason. If 

sedimentation transpires to be the problem, then it \vould be interesting to investigate 

the use of shear-thinning gels as a base lluid. Such gels are often used to prevent 

sedimentation in applications that do not see regular motion e.g. seismic dampers [27]. 

This is likely to be an important issue for MR landing gears, where sediment may build 

up during flight. 

This thesis has focused on the design of 1l0w mode MR landing gears. It would also be 

interesting to investigate whether other modes of operation could be incorporated within 

the packaging constraints e.g. shear, mixed. A shear mode device could be 

advantageous as the working volume of fluid, and hence the fluid mass would be lower. 

Furthermore, a shear mode device would eliminate compression of the fluid. A device 

combining shear and flow modes is likely to yield similar conclusions to the present 

thesis. 

Finally, it would be interesting to investigate the use of ER valves in landing gears. 

Traditionally, electrorheological (ER) fluids were ruled out {'rom aerospace applications, 

owing to a reluctance to provide the necessary voltages (lip to SkY). However, with 
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more recent advances in aerospace technology, higher voltages are becoming more 

acceptable. Although conventional ER fluids have lower yield strengths, they also have 

a much lower mass than their MR counterparts, which could make them a strong 

candidate for landing gear. One means to overcome the low yield strength of ER fluids 

would be to consider the use of multi-duct valves [157] as shown in Figure 7-3. The 

ducts, which could either be arranged in series or parallel, boost controllability by 

enhancing the active volume of fluid. 

7.2.2 Control of MR dampers 

The present thesis has made a significant contribution towards the development of 

effective controllers for MR vibration systems. In particular, using numerical and HILS 

experimental methods, feedback linearisation was shown to provide superior 

performance over more simplistic onloff strategies. The next step should be to develop 

a physical MR vibration system, which incorporates real masses and springs in addition 

to the MR damper. In comparison to the HILS method, this would eliminate the effect 

of the actuator dynamics and the need to use additional time delays that emulate the real 

sensors (see Figure 6-6). Consequently, an enhanced understanding of the real control 

system performance will result. To build a physical vibration system, the existing 

damper test facility could be modified as shown Figure 7-4. Here, the servo-hydraulic 

actuator provides the base input, whilst the drop test facility is used to constrain an 

isolated mass in the vertical direction. 

As a further extension to this thesis, it would be interesting to investigate sliding mode 

controllers, which are inherently robust against parameter uncertainty and external 

disturbances [87]. To implement this strategy, investigators commonly assume a 
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relationship between the smart damper's yield force and the applied field [86, 87]. It 

would therefore be interesting to investigate whether feedback linearisation could offer 

any advantages over this method. Lam and Liao [85] used feedback linearisation to 

track the sliding mode force (or a quarter car system. However, the authors did not use 

realistic broadband excitations, and the method was not benchmarked against other 

controllers. 

Another research topic would be to f01l11ally investigate the effects of temperature on 

control system performance. More specifically, changes in temperature will alter the 

MR fluid's viscosity, and will have an impact on performance. Fluid temperature is 

difficult to control experimentally, but analytical methods would provide an excellent 

means to investigate this e.g. using uncertainty propagation techniques [158]. Here, the 

ability of feedback linearisation to desensitise control system performance to parameter 

uncertainty could be formally investigated. Furthermore, it would be interesting to 

design a sliding mode controller that is robust against viscosity variations. To the 

author's knowledge, this has not been considered previously. 

Finally, the stability of feedback linearisation should be (o1l11ally investigated. Sims 

investigated the limit cycle behaviour of linearised MR dampers [159]. This work 

could be extended to consider the stability effects "ithin a vibrating structure. 

Furthermore, the effects of parameter uncertainty on control system stability (e.g. 

temperature) would also form an interesting topic ofresearch. 
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Figure 7-1: MR bypass damper. 
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Figure 7-2: An alternative method to fabricate the annular orifice. 
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Figure 7-3: Multi-duct ER valve (ducts can be arranged in series or parallel). 
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Figure 7-4: Experimental SDOF MR vibration system. 
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MAGNETORHEOLOGICAL LANDING GEAR. 

PART 1: A DESIGN METHODOLOGY 

DC Batterbee·I·, N D Sims·I·, R Stanwa/, and Zbigniew Wolejszat 

"'"Department of Mechanical Engineering, The University of Sheffield, 
Sheffield, S 1 3.10, UK. 

tThe Institute of Aviation, AI. Krakowska I 101114, 02-256 Warsaw, Poland. 

ABSTRACT 

Aircraft landing gears are subjected to a wide range of excitation conditions, which 
result in conflicting damping requirements. A novel solution to this problem is to 
implement semi-active damping using magnetorheological (MR) fluids. This paper 
presents a design methodology that enables an MR landing gear to be optimised, both in 
terms of its damping and magnetic circuit performance, whilst adhering to stringent 
packaging constraints. Such constraints are vital in landing gear, if MR technology is to 
be considered as feasible in commercial applications. 

The design approach focuses on the impact or landing phase of an aircraft's flight, 
where large variations in sink speed, angle of attack and aircraft mass makes an MR 
device potentially very attractive. In this study, an equivalent MR model of an existing 
aircraft landing gear is developed. This includes a dynamic model of an MR shock 
strut, which accounts for the effects of fluid compressibility. This is important in 
impulsive loading applications such as landing gear, as fluid compression will reduce 
device controllability. Using the model, numerical impact simulations are performed (0 

illustrate the performance of the optimised MR shock strut, and hence the effectiveness 
of the proposed design methodology. Part 2 of this contribution focuses on 
experimental validation. 
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MAGNETORHEOLOGICAL LANDING GEAR. 

PART 2: VALIDATION USING EXPERIMENTAL DATA 

DC Batterbee, N D Sims, R Stanway, and M Rennison 

Department of Mechanical Engineering, The University of Sheffield, 
Sheffield, S I 3.1D, UK. 

ABSTRACT 

Aircraft landing gears are sUbjected to a wide range of excitation conditions with 
conflicting damping requirements. A novel solution to this problem is to implement 
semi-active damping using magnetorheological (MR) fluids. In Part I of this 
contribution, a methodology was developed that enables the geometry of a flow mode 
MR valve to be optimised within the constraints of an existing passive landing gear. 
The device was designed to be optimal in terms or its impact performance, which was 
demonstrated using numerical simulations of the complete landing gear system. To 
perform the simulations, assumptions were made regarding some of the parameters used 
in the MR shock strut model. In particular, the MR fluid's yield stress, viscosity, and 
bulk modulus properties were not known accurately. Therefore, the present 
contribution aims to validate these parameters experimentally, via the manufacture and 
testing of an MR shock strut. The gas exponent, which is used to model the shock 
strut's non-linear stiffhess, is also investigated. In general, it is shown that MR fluid 
property data at high shear rates is required in order to accurately predict performance 
prior to device manufacture. Infol111ation regarding the likely variation in fluid 
properties between batches is vital. Furthermore, the study illustrates how fluid 
compressibility can have a significant influence on the device time constant, and hence 
potential control strategies. 
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Vibration isolation with smart fluid dampers: 
a benchmarking study 

DC Batterbec and N 0 Sims 

Department of Mechanical Engineering, The University of Sheffield, 

Sheffield, S 1 3.10, UK. 

ABSTRACT 

The non-linear behaviour of electrorheological (ER) and magnetorheological (MR) 
dampers makes it difficult to design effective control strategies, and as a consequence a 
wide range of control systems have been proposed in the literature. These previous 
studies have not always compared the performance to equivalent passive systems, 
alternative control designs, or idealised active systems. As a result it is often impossible 
to compare the performance of different smart damper control strategies. 

This article provides some insight into the relative perfonnance of two MR damper 
control strategies: onloff control and feedback linearisation. The perfornlance of both 
strategies is benchmarked against ideal passive, semi-active and fully active damping. 
The study relies upon a previously developed model of an MR damper, which in this 
work is validated experimentally under closed-loop conditions with a broadband 
mechanical excitation. Two vibration isolation case studies are investigated: a single
degree-of-freedom mass-isolator, and a two-degree-of-freedom system that represents a 
vehicle suspension system. In both cases, a variety of broadband mechanical excitations 
are used and the results analysed in the frequency domain. It is shown that although 
onloff control is more straightforward to implement, its performance is worse than the 
feedback linearisation strategy, and can be extremely sensitive to the excitation 
conditions. 
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Hardware-in-the-Ioop simulation of magnetorheological 
dampers for vehicle suspension systems 

David C Batterbce and Neil D Sims 

The University of Sheffield 

Dynamics Research Group, Department of Mechanical Engineering, 

Mappin St, Sheffield S I 3JD, UK 

ABSTRACT 

Magnetorheological (MR) fluids provide an elegant means to enhance vibration control 
in primary vehicle suspensions. Such fluids can rapidly modify their flow 
characteristics in response to a magnetic field, so they can be used to create semi-active 
dampers. However, the behaviour of MR dampers is inherently non-linear and as a 
consequence, the choice of an effective control strategy remains an unresolved problem. 

Previous research has developed a method to linearise the damper's force/velocity 
response, to allow implementation of classical control techniques. In the present study, 
this strategy is used to implement skyhook damping laws within primary automotive 
suspensions. To simulate the vehicle suspension, a two-degree-of-freedom quarter car 
model is used, which is excited by realistic road profiles. The controller performance is 
investigated experimentally using the hardware-in-the-Ioop-simulation (HILS) method. 
This experimental method is described in detail and its performance is validated against 
numerical simulations for a simplified problem. 

The authors demonstrate that feedback linearisation can provide significant performance 
enhancements in terms of passenger comfort, road holding, and suspension working 
space compared to other control strategies. Furthermore, feedback Iinearisation is 
shown to desensitise the controller to uncertainties in the input excitation such as 
changes in severity of the road surface roughness. 
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Appendix B: Derivation of the mass flow continuity 

equation 
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With reference to Figure B.l, the mass flow continuity on a fluid control volume is: 

(B.l) 

where v is the current volume of the CV (which changes according to the position of the 

piston), and subscripts 'i' and '0' denote 'in' and 'out' respectively. 

Also: 

d dv dp 
-(pv) = p--+v-
dt dt dt 

V 

r - - - - - - - - - - - - d -----, , r- -- , , , 
Q ' 'Q i_-->-'-...... '~ ,0 i ~ -.:--~. 

: CV : 
1 _____________________ J 

Figure B.I: Fluid control volume (CV). 

(B.2) 

The degree of compressibility of a fluid is characterised by the bulk modulus fJ, which is 

defined by the equation [122]: 

fJ = p dP 
dp 

Next, substitution ofEq.B.3 into Eq.B.2 gives: 

~(pv) = p(dV +~ dP] 
dt dt fJ dt 

(B.3) 

(B.4) 

Finally, by combining Eq's B.l with B.4 and assuming constant density, the general 

mass flow continuity equation accounting for fluid compressibility is: 

(B.5) 
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