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ABSTRACT

Over the last decade, the state-of-the-art in text mining has moved
towards the adoption of machine learning as the main paradigm at the
heart of approaches. Despite significant advances, machine learning-
based text mining solutions remain costly to design, develop and main-
tain for real world problems. An important component of such cost
(feature engineering) concerns the effort required to understand which
features or characteristics of the data can be successfully exploited in
inducing a predictive model of the data. Another important component
of the cost (knowledge engineering) has to do with the effort in creating
labelled data, and in eliciting knowledge about the mining systems and
the data itself.

I present a series of approaches, methods and findings aimed at re-
ducing the cost of creating and maintaining document classification and
information extraction systems. They address the following questions:
Which classes of features lead to an improved classification accuracy in
the document classification and entity extraction tasks? How to reduce
the amount of labelled examples needed to train machine learning-
based document classification and information extraction systems, so
as to relieve domain experts from this costly task? How to effectively
represent knowledge about these systems and the data that they ma-
nipulate, in order to make systems interoperable and results replicable?

I provide the reader with the background information necessary to
understand the above questions and the contributions to the state-of-
the-art contained herein. The contributions include: the identification
of novel classes of features for the document classification task which
exploit the multimedia nature of documents and lead to improved
classification accuracy; a novel approach to domain adaptation for
text categorization which outperforms standard supervised and semi-
supervised methods while requiring considerably less supervision;
and a well-founded formalism for declaratively specifying text and
multimedia mining systems.

v



BLANK PAGE
IN

ORIGINAL



ACKNOWLEDGMENTS

First I would like to thank my thesis supervisor, Fabio Ciravegna, who
introduced me to the captivating worlds of Text Mining and Knowl-
edge Management. He not only gave me valuable advice, but also, and
perhaps more importantly, taught me by example a number of skills
that will accompany me for the rest of my life. Christopher Brewster
provided me with countless hours of interesting discussions and reflec-
tion, which ultimately led to my personal growth. Ioao Magalhaes and
Cristina Kadar were great collaborators, with whom I had deep tech-
nical discussions. I enjoyed working with them, and greatly benefited
from our interactions.

I spent seven years at The University of Sheffield and two years at
IBMResearch - Zurich. I would like to thank the following collaborators,
faculties, staffs, fellow students and friends, who made that period of
my life a memorable experience: Rodrigo Carvalho, Ziqi Zhang, Ajay
Chakravarthy, Lei Xia, Anna Lisa Gentile, Aba-Sah Dadzie, Matthew
Rowe, Neil Ireson, Elizabeth Cano, Mark Greenwood, Laura Smith, Rav-
ish Bhagdev, Victoria Uren, Mario Lucie, Vit Prajzler, Daniel Svonava,
Michal Lohnicky, Hamish Cunningham, Dorothea Wiesmann, Michail
Vlachos, Niraj Aswani, Danica Damljanovic, Rob Gaizauskas, Abdel
Labbi, Dick Husemann, David Guthrie, Ben Allison, Sanaz Jabbari,
David Martinez, Sinziana Mazilu, Suvodeep Mazumdar, Lucy Mof-
fatt, Felix Muller, Horacio Saggion, Jose San Pedro, Mark Sanderson,
Elisa Sottile, Lucia Specia, Mark Stevenson, Gill Wells, Yorick Wilks,
Elena Montafies, Beat Gfeller, Alexiei Dingli, Angelo Dalli, Phil Moore,
Wim Peters, Cristian Ursu, and Valentin Tablan. During this period,
I was also fortunate to participate in several extremely interesting
research projects and activities. I would like to thank the following
fellow researchers for their valuable discussions and insights: Steffen
Staab, Philipp Cimiano, Spiros Nikolopoulos, Oscar Corcho, Javier Ar-
tiles, Sebastian Blohm, John Domingue, Vanessa Lopez, Steve Fullerton,
Luca Gilardoni, Siegfried Handschuh, Pierre Grenon, Alberto Lavelli,
Lorenza Romano, Agnieszka Lawrynowicz, Abraham Bernstein, Andriy
Nikolov, Enrico Motta, Marta Sabou, Luis Sarmento, Hugo Zaragoza
and Claudio Giuliano.

vii



Finally I wish to thank my family: my parents Jose Ant6nio and
Maria Augusta, who always encouraged me to go one step further and
supported me in doing so; and my dear fiancee Nathalie, who fills my
life with so much love, happiness and well-being. Without them, this
thesis would not have come to fruition.

viii



CONTENTS

I THE DOMAIN OF TEXT MINING 1

1 INTRODUCTION 3
1.1 Research Questions 9
1.2 Contributions 10

1.3 Impact 12

1.4 Summary 14

2 FROM UNSTRUCTURED TO STRUCTURED DATA 17

2.1 Anatomy of an Unstructured Information Mining Sys-
tem 18

2.2 Text Mining from a Machine Learning Viewpoint 21

2.2.1 Text Categorization as a Classification Task 21

2.2.2 Entity Extraction as a Classification Task 22

2.3 Evaluating Text Mining 25
2.4 Models for Text Classification 28

2+ 1 Generalised Linear Models 28

2.4.2 Margin Classifiers 30

2.4.3 Feature Selection 33

2.5 Models for Entity Extraction 35

2.5.1 Rule Induction Approaches 35

2.5.2 Single-Object Labelling Approaches 39

2.5.3 Sequential Labeling Approaches 41

2.6 Supervision Requirements 44

2.6.1 Semi-supervised Learning 44

2.6.2 Transductive Learning 45

2.6.3 Feature Labels versus Instance Labels 46

2.7 Ontology and Semantic Annotation 47

2.7.1 Ontology Languages 48

2.7.2 Foundational Ontologies 50

2.7.3 Core Ontologies 53

3 OPEN PROBLEMS IN TEXT MINING 59

3.1 Problem 1: The Cost of Engineering Features 59

3.2 Problem 2: The Cost of Obtaining Labelled Data 63

3.3 Further Problems 65

3.3.1 Problem 3: The Systemic Problem 66

3.3.2 Problem 4: The Communication Problem 67

ix



x Contents

3.3.3 Problem 5: The Replicability Problem 68

II TACKLING THE COST OF FEATURE AND KNOWLEDGE ENGI-

NEERING 69

4 FEATURE ENGINEERING FOR TEXT MINING 71

4.1 Successful Features for Entity Extraction 71

4·1.1 Datasets 72

4·1.2 A Detailed Study 73
4·1.3 Results 77
4·1.4 Discussion 82

4·1.5 Analysis of the Results 82

4·1.6 Analysis of the Errors 84

4·1.7 Validation 86

4·2 Exploiting Cross-Media Correlations 87

4·2.1 Image Analysis 88

4·2.2 Proposed Approach 90

4·2·3 Multimedia Document Representation 91

4·2-4 Multimedia Document Processing 91

4·2·5 Multimedia Document Categorization 95
4·2.6 Experiments 96

4·2·7 Results and Discussion 97

4·3 Related Work 99

4-4 Conclusions 103
5 OVERCOMING THE SCARCENESS OF LABELLED DATA 107

5.1 Semi-supervised Entity Extraction on a Real-World Use-
Case 108

5·1.1 The Use Case 109
5·1.2 Learning Algorithms 110

5·1.3 Dataset 113

5·1.4 Labelling Data 113

5·1.5 Dataset Generation 115

5·1.6 Learning Approach 116

5·1.7 Experimental Setup 116

5·1.8 Results 117
5.1.9 Discussion 118

5.2 Adapting to Different Domains through Feature Label-
ing 120

5.2.1 Proposed Approach 121

5.2.2 Datasets 123

5.2.3 Evaluation Methodology 124



Contents xi

5.2.4 Labelling Data 124

5.2.5 Optimiser and LDA implementations 126

5.2.6 Results and Discussion 126

5.3 Related Work 129

5.4 Conclusions 132

6 A FORMALISATION OF MULTIMEDIA MINING 135

6.1 Requirements 136

6.2 Proposed Ontology 137

6.2.1 Information Extraction Tasks and Systems 138

6.2.2 Information Extraction Subsystems 139

6.2·3 Text Decomposition 140
6.2-4 Text Tagging 142

6.2·5 Models for Classification and Extraction 142

6.2.6 Semantic Annotation 144

6·3 Discussion 144

6.4 Related Work 148

6.5 Conclusions 151

7 CONCLUSIONS 153

III APPENDICES 157

A OPEN-SOURCE SOFTWARE AUTHORED 159

A.1 The Runes Framework 159

A.2 The Aleph Library 159

A.3 The T-Rex Systems 160

B PAIRING START AND END OF BOUNDARY PREDICTIONS 161

BIBLIOGRAPHY 163



LIST OF FIGURES

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6
Figure 7
Figure 8

Figure 9
Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

xii

Relative sizes of the Library of Congress, the
surface and deep Web, email and data on hard
disks. 4

The basic anatomy ~f an unstructured informa-
tion mining system. 20

An excerpt of a seminar announcement. Which
rules would extract the speaker "Ralph Hill" in
the above text, but also other speakers in other
texts like this one? 23
Spectrum of leniency in what is considered an
entity mention match in Entity Extraction. 28

An illustration of the basic principle behind Sup-
port Vector Machines 31
Search space produced by rule specialisation. 37
Rule specialisation illustrated. 38
The relationship between Naive Bayes, Hidden
Markov Model, Maximum Entropy Markov Mod-
els and Conditional Random Fields. 44
The DOLCE top-level ontology. 50
The Descriptions & Situations ontology design
pattern. 51
The Ontology of Information Objects pattern. 52

The Ontology of Plans pattern. 53
The main concepts in the Core Software Ontol-
ogy. 55
The Decomposition pattern in the COMM ontol-
ogy. 56
The Content & Media Annotation pattern in the
COMM ontology. 57
The Semantic Annotation pattern in the COMM

ontology. 57

Example of a Web news article. 62



Figure 18

Figure 19
Figure 20

Figure 21

Figure 22

Figure 23

Figure 24

Figure 25

Figure 26

Figure 27

Figure 28

Figure 29

Figure 30

Figure 31

Figure 32

Figure 33

List of Figures xiii

Service discovery in service-oriented architec-
tures. 67

An excerpt of a workshop call for papers. 74
The effect of token window length on the Seminar
Announcements corpus. 78
The effect of token window length on the Work-
shop Call for Papers corpus. 81
The effect of feature selection on the Seminar
Announcements corpus. 81
The effect of feature selection on the Workshop
Call for Papers corpus. 82
Retrieval results for the individual media, multi-
media and cross-media configurations. 97
Precision-recall graphs for the individual media,
multimedia and cross-media configurations. 100

Learning curves for the first dataset generated
from 20-newsgroups. From left to right descend-
ing: Cars vs Games, Cars vs Hardware, Cars vs Games
vs Hardware vs OS, and Cars vs Games vs Hardware
vs OS vs Politics vs Religion. 129

Learning curves for the second dataset generated
from 20-newsgroups. From left to right descend-
ing: Camp vs Sci, Ree vs Talk, Camp vs Ree, and
Camp vs Talk. 130

Learning curves for the dataset generated from
SRAA. From left to right: Auto vs Aviation and
Real vs Simulated. 130

Positioning the Ontology of Information Extrac-
tion (ONIX) in the framework of existing ontolo-
gies. 137
Ontology pattern in ONIX for describing core top-
level Information Extraction concepts. 138
Ontology pattern in ONIX for describing Informa-
tion Extraction subsystems. 139
Ontology pattern in ONIX for characterising text
segmentation. 141
Specialising COMM locators in ONIX for text data. 141



Figure 34

Figure 35

Ontology pattern in ONIX for characterising build-
ing and applying data models. 143
Sample semantic description of an IE system using
the Ontology of Information Extraction. 146

LIST OF TABLES

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Table 8

Table 9

Table 10

Table 11

xiv

Contingency table. 25

Details on the entity classes in the Seminar An-
nouncements corpus. 73
Details on the entity classes in the Workshop Call
for Papers corpus. 74
The effect of different classes of basic features on
the Seminar Announcements dataset. 78
The effect of different classes of basic features on
the Workshop Call for Papers dataset. 79
The effect of adding classes of advanced features
on the Seminar Announcements dataset. 79
The effect of adding classes of advanced features
on the Workshop Call for Papers dataset. 80
The impact of space and newline tokens on the
Seminar Announcements dataset. 80

The impact of space and newline tokens on the
Workshop Call for Papers dataset. 80

Comparing the T-Rex Entity Extraction system
with other state-of-the-art systems on the Seminar
Announcements dataset. 86
Comparing the T-Rex Entity Extraction system
with other state-of-the-art systems on the Work-
shop Call for Papers dataset. 87



Table 12

Table 13

Table 14

Table 15

Table 16

Table 17

Table 18

Table 19

Table 20

Table 21

Table 22

Detailed retrieval results for the cross-media con-
figuration: mean precision at 10, mean precision
at 30 and mean average precision. Note that FP
< FN since low confidence predictions are dis-
carded, in other words, the classifier may not
output a prediction for every document. 98
Summarized retrieval results for the individual
media, multimedia and cross-media configura-
tions: mean precision at 10, mean precision at 30
and mean average precision. 99

The list of ontology concepts used in the evalua-
tion. 114
Detailed results per class for the supervised con-
figuration. 117

Detailed results per class for the graph-based
semi-supervised configuration. 118

Detailed results per class for the large-scale con-
figuration. 119

Characteristics of the datasets used for evaluating
the proposed approach. 125
Initial labelled features and discovered zLDA fea-
tures for Cars vs Hardware. 126

Classification accuracies and the amount of la-
belled information (either instances or features)
used in different sets of experiments. Note that
for the TransJerzLDALF method, the reported re-
sults correspond to selecting a fixed number of
18 features per topic (cf. learning curves), but the
features outputted by zLDA can overlap and thus
the size of the feature set used is smaller when
merged. 127

Performance comparison with [35]. 128

Performance comparison with [169]. 128

xv



xvi ACRONYMS

ACRONYMS

ONIX Ontology of Information Extraction

SOA Service-Oriented Architecture

NLP Natural Language Processing

IE Information Extraction

IR Information Retrieval

DC Document Classification

TC Text Classification

RE Relation Extraction

EE Entity Extraction

NER Named Entity Recognition

ML Machine Learning

SVM Support Vector Machine

XML Extensible Markup Language

UML Unified Modeling Language

ODF Open Document Format

HTML Hypertext Mark-up Language

PDF Portable Document Format

DOC Microsoft's Word document

OWL Web Ontology Language

RDF Resource Description Framework

RDFS RDF Schema

DOLCE Descriptive Ontology for Linguistic and Cognitive
Engineering

CSO Core Software Ontology

COMM Core Ontology of MultiMedia



ACRONYMS xvii

W3C World Wide Web Consortium

URI Universal Resource Identifier

URL Uniform Resource Locator

DnS Descriptions & Situations

010 Ontology of Information Objects

OOP Ontology of Plans

API Application Programming Interface

MPEG Moving Picture Experts Group

KB Knowledge Base

lA Image Analysis

UIMA Unstructured Information Management Architecture

GATE General Architecture for Text Engineering

00 Object Oriented

IG Information Gain

CE Cross Entropy

SA Seminar Announcements

WCFP Workshop Call for Papers

HMM Hidden Markov Model

EM Expectation Maximization

MEMM Maximum Entropy Markov Models

CRF Conditional Random Fields

NB Naive Bayes

RRM Regularised Risk Minimization

GLM Generalised Linear Model

RSS Really Simple Syndication

LSI Latent Semantic Indexing

PLSA Probabilistic Latent Semantic Analysis

GE Generalised Expectation

LDA Latent Dirichlet Allocation

WWW World Wide Web



BLANK PAGE
IN

ORIGINAL



Part I

THE DOMAIN OF TEXT MINING



INTRODUCTION

Stepping into a local library or bookstore for the first time, it is hard
not to feel at the same time empowered and overwhelmed by the sheer
amount of knowledge stored there, knowledge that would take a single
individual the span of several lifetimes to acquire, if that was possible
or desirable. That kind of feeling is magnified when typing a query into
a Web search engine for the first time, and seeing anywhere between
thousands and hundreds of millions of natural language documents,
images and video become instantly accessible. Figure 1 shows the
relative sizes of the Library of Congress and the Web in 2009.

With the barriers, physical or otherwise, of access to information
gone, the scale of the individual is replaced by the scale of the collec-
tive. After a mere two decades of existence, the Web now empowers
communities, social cliques, companies, governments, and many other
kinds of collective entities, which search for, consume, combine and
release information in digital form on a daily basis. Information that,
even if in digital form, is a direct product of human communication and
thus authored by humans for humans to understand, not for machines
to process. This kind of information is called unstructured because its
intended meaning is only loosely implied by its form. Unstructured
information lacks explicit semantics (structure), which, given the state-
of-the-art, is required for machines to interpret it as intended by the
human author or needed by the end-user application.

Unstructured information is by far the largest, most current and
fastest growing source of knowledge available [85]. In 2008, more than
30 million websites were created, adding to the already existing 200

million websites (aprox.). However, the Web is just the tip of the ice-
berg. It is estimated that around 80% of the unstructured information
generated is stored out of Web reach. Corporate, scientific, social and
technical documentation including best practices, manuals, research
reports, medical abstracts, problem reports, customer communications,
contracts and emails abound within organization's Intranets. These
text and multimedia artefacts contain pieces of knowledge that may be

1

Unstructured
information
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Figure 1: A diagram representing the relative sizes, in 2009, of 1) the Library
of Congress, 2) the surface Web, 3) the surface + deep Web, 4) the
surface + deep Web + e-mail traffic and 5) the size of text data on
hard disks sold in that year. Source: [122].

critical to solve problems, analyse trends, identify opportunities and
take decisions.

Because machines cannot, as yet, reliably interpret unstructured
information, the admirable networking and indexing infrastructures
currently in place on the Internet and in organization's Intranets to facil-
itate access to such large volumes of information is missing one crucial
piece. In fact, only relatively simple and popular information needs can
be satisfactorily fulfilled by current technology, namely those that can
be successfully expressed through a collection of keywords and/ or for
which popular results exist. For more complex or atypical information
needs, the retrieval experience often resembles that of finding a needle
in a haystack: determining the right way of expressing the informa-
tion need via often limited query mechanisms becomes a methodical
and repetitive trial and error task; the analysis of the returned results
becomes a time-consuming sifting through an overwhelming amount
of irrelevant documents; and, afterwards, once potentially suitable in-
formation is discovered, it needs to be checked, understood, manually
extracted from inside documents and collated with other information
coming from different sources.

Clearly, the usefulness of unstructured information would increase
significantly if it could be used to reliably answer queries about entities
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(e.g., people, organizations) relevant to the problem at hand, and their
relationships (e.g., owner, director, employee). In other words, querying
unstructured information repositories should be made as reliable as
querying structured ones.

The canonical example of structured information is a relational
database table. Structured information may be defined as informa-
tion whose intended meaning is explicitly represented in the structure
or format of the data, and is therefore unambiguous. For instance,
the information stored in classic relational databases has the intended
interpretation for every field data explicitly encoded in the database
via column headings. Another example is the information stored in
an Extensible Markup Language (XML) document, where some of the
data is wrapped by tags which provide explicit semantics about how
those data should be interpreted. Unstructured information, in contrast,
is structure-free and therefore requires an external interpretation act
in order to approximate and extract its original intended meaning or
semantics.

How can unstructured natural language and multimedia information
be handled as if it was structured, and according to the end user or
application needs? A natural solution is to endow unstructured infor-
mation with some form of "added" structure, which explicitly provides
the semantics required to interpret it correctly.An example of assigning
semantics would be labelling regions of text in a text document with
appropriate XML tags that, for example, might identify the names of
organizations or products. Another example would be extracting ele-
ments of a document and inserting them in the appropriate fields of
a relational database, or using them to create instances of concepts in
a knowledge base. But who is able or willing to do it? What kind of
technology can be used as support? How much would it cost? At what
scale can it be done? These are some of the questions that arise when
starting to think about the problem.

In specialised domains, such as engineering, legal or medical do-
mains, experts are needed to interpret the information. However, ex-
perts are rarely available or willing to spend their time doing so. There-
fore, even though the amount of information can typically be kept fairly
manageable, the cost of adding semantics per unit of information is
very high in specialised domains. On non-specialised domains, such
as (most of) the Web, the converse is true: anyone can interpret the
information, but, expectedly, the amount of information generated per

Structured
information

From unstructured to
structured

The need for
automation
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second on the Web immediately outpaces any attempt to perform the
task manually. In fact, even if/when adding semantics to newly created
content was/is second nature to webpage authors, the caveat is that
semantics is "in the eye of the beholder", that is, different end users
or applications will want to interpret the information according to
their own needs, which cannot be specified a priori. Thus, be it due to
high cost or unmanageable scale, adding semantics to unstructured
information is not something easily achieved with humans.

In the past three decades, there has been a considerable amount
of research on automating the processes that deal with "structuring
unstructured information". Within the domain of Text Mining, in par-
ticular, Document Classification and Information Extraction are two
very active research fields which are addressing the problem.

Document Classification (DC) [150], also known as document cate-
gorization or topic spotting, is the task of labelling documents with
thematic categories, or classes, from a pre-defined set. When restricting
it to natural language text, the task is better known as text catego-
rization. Document classification provides structure to a document .
collection by attaching a small amount of semantics to each document
(a topic label). It has been applied in many contexts, ranging from
document indexing based on a controlled vocabulary, to document
filtering, automated metadata generation, word sense disambiguation,
population of hierarchical catalogues of Web resources, and in gen-
eral any application requiring document organization or selective and
adaptive document dispatching.

Information Extraction (IE) [6] is the task of identifying mentions of
entities and their relationships in documents. It identifies, classifies, and
structures into entity and relationship classes, segments of interest in
unstructured data sources, such as natural language text. Information
Extraction subsumes two main subtasks: Entity Extraction (EE) and
Relation Extraction (RE). Both are usually customized and targeted at a
particular application domain.

Entity Extraction addresses the problem of locating mentions of
predefined types of entities, where the entity classes can be very diverse,
ranging from people and companies in business applications to cells
and proteins in biomedical applications. An important subclass of the
problem is to identify named entities, in which case the technique is
called Named Entity Recognition (NER). For example, when given the
sentence "The TImes graphically describes Queen Victoria's last visit to
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Sheffield in May 1897", a name entity recognizer specialized in people,
organizations, locations and dates should identify the named entities
"The Times" of type Organization, "Queen Victoria" of type Person,
"Sheffield" of type Location and "May 1897" of type Date.

Relation Extraction works on the output of the former, that is, assum-
ing that the relevant entities have been correctly identified, the task of
RE is to find pre-defined relationships between them. Again, the set
of relevant relationships to consider depends on the type of narrative,
ranging from corporate acquisitions mentioned in newspaper corpora
to protein interactions described in biomedical literature. For exam-
ple, given the sentence mentioned earlier, a relation extraction system
that is designed to identify relationships between people and locations
should extract a VisitedCity relation between "Queen Victoria" and
"Sheffield".

Prior to the last decade, the most actively researched approaches to
document classification and information extraction can be classified
as Knowledge Engineering [156] approaches. In essence, this type of
approach consists in manually defining a set of rules encoding ex-
pert knowledge on how to classify documents or extract entities and
relations from them. In the last decade, research on this family of
approaches has increasingly declined in favour of the Machine Learn-
ing (ML) paradigm [121]. The ML paradigm has at its heart a general
inductive process that statistically determines the relevant character-
istics of the classes of interest and builds an automatic classifier, in
this case of documents, entities or relationships, from that. Machine
learning-based approaches generally achieve an accuracy comparable
to that achieved by human experts, but offer considerable savings in
expert labour, since no intervention from either knowledge engineers or
domain experts is needed for the construction of the classifier or for its
porting to a different set of classes. It is the machine learning approach
to document classification and information extraction that this thesis
concentrates on.

Orthogonally to the task being performed, machine learning ap-
proaches can be divided into three categories, according to the as-
sumptions they make about the availability of labelled examples and
unlabelled examples.

Unsupervised approaches to document classification, also known as
document clustering [140], require no labelled examples and instead
rely on the hypothesis that documents having similar contents are rele-

Relation Extraction

Knowledge
Engineering vs.
Machine Learning
approaches
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vant to the same query. The similarity between documents is usually
measured with associative coefficients from the vector space model,
e. g., the cosine coefficient. Unsupervised approaches to information
extraction [41, 31, 79] typically exploit the redundancy of information in
large scale repositories such as the Web in order to extract frequent facts,
starting by applying a few simple pre-defined patterns, and later induc-
ing more complex patterns from the way these facts appear expressed
in a large number of documents. Thus, unsupervised approaches make
certain assumptions aboutthe structure of the data (e. g., redundancy
in the way facts are expressed) and ~re designed to exploit them in
some way (e. g., clustering of frequent patterns).

When labelled examples are available, either by consultation with do-
main experts or by relying on a safe heuristic to derive labels for some
of the examples (as done in chapter 4), supervised learning approaches
can be adopted, typically leading to improved accuracy with respect to
unsupervised ones. A number of learning algorithms have been used to
train classifiers for document classification, including the popular Naive
Bayes [115] and Support Vector Machine (SVM) [44] algorithms. The
latter have also been successfully applied in named entity recognition
[110] and relation extraction [172, 45], rivalling the performance ob-
tained by maximum entropy models [23] and conditional random fields
[102], two other state-of-the-art algorithms applied to these tasks. Thus,
supervised approaches are able to exploit the information provided by
the labels to guide the inductive process.

In many domains, the cost of obtaining labelled examples far sur-
passes the cost of obtaining unlabelled examples. In fact, unlabelled
examples can often be obtained for free. This is the case with (generic)
text and images, which can be obtained by simply crawling the Web
or a repository of interest, for example. Given the availability of these
large amounts of "cheap" unlabelled examples, recently there has been
a trend to exploit them in order to mitigate the effect of insufficient
labelled examples on classifier accuracy. This family of approaches is
designated semi-supervised learning. Semi-supervised approaches have
been successfully applied to document classification [127], named entity
recognition [125] and relation extraction [36]. The learning scheme lies
somewhere between supervised and unsupervised: the class informa-
tion is learned from the labelled examples and the underlying structure
of the data from the whole of the examples, including the unlabelled
ones. When labelled examples are hard to obtain, making the right
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assumptions about how these two aspects relate, e. g., similar examples
yield similar classes, has been shown to lead to improved accuracy [34].

Research on the application of machine learning methods to docu-
ment classification and information extraction is fundamental, for it
deals with improving systems' accuracy in performing the tasks in
place of humans and with reducing the amount of labelled examples
needed. These problems are far from solved, except when considering
"easy" domains and tasks, such as that of identifying people's names
in an English text. This leads us to the the main motivation behind the
work presented in this document.

1.1 RESEARCH QUESTIONS

The goal of this thesis is to provide a set of approaches, methods
and findings aimed at reducing the cost of creating and maintaining
document classification and information extraction systems.

Several components to that cost constitute open problems in text min-
ing, as we shall see in chapter 3. The two main components addressed
in this thesis are:

FEATURE ENGINEERING: the cost of feature engineering is related to
the effort put into understanding which characteristics or features
of the data should be considered in the process of inducing a
classification model.

KNOWLEDGE ENGINEERING: the cost of knowledge engineering! con-
cerns the effort in creating or revising labels for documents or
mentions of entities or relations in the documents. It also relates
to the effort in eliciting knowledge about systems and data in
order to make systems interoperable and results replicable.

The three research questions addressed throughout this thesis stem
from these two challenges.

The first research question addressed in this thesis is the following:

Which classes of features lead to an improved classification
accuracy in the document classification and entity extraction
tasks?

The second research question addressed in this thesis is the following:

r Knowledge Engineering is an engineering discipline that involves integrating knowledge
into computer systems in order to solve complex problems normally requiring a high
level of human expertise.lys]

Goal of this Thesis

The two challenges
addressed

First research
question
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How to reduce the amount of labelled examples needed to
train machine learning-based document classification and
information extraction systems, so as to relieve domain
experts from this costly task?

The third research question addressed in this thesis is the following:

How to effectively represent knowledge about text mining
systems and the data that they manipulate?

I tackle the cost of engineering features and knowledge for machine
learning-based text mining in Part II, addressing each of the above
questions. Some novel findings regard~g feature engineering for entity
extraction and multimedia document classification are presented in
chapter 4, addressing the first research question. Innovative applications
of advanced machine learning methods to text mining, which tackle
the cost in obtaining and maintaining labelled examples are presented
in chapter 5, addressing the second research question. Finally, a for-
malism for representing multimedia mining is proposed in chapter 6,
addressing the third research question.

In the remainder of Part I, chapter 2 will provide the reader with
the necessary background to understand the technical aspects required
to address the research questions, while chapter 3 will introduce the
reader to the above challenges in more detail.

1.2 CONTRIBUTIONS

This thesis is the culmination of several years of work on addressing
the aforementioned research questions, which have materialised into
the following contributions to the scientific community:

1. (Feature Engineering) A proposal of novel features for the docu-
ment classification task which exploit the multimedia nature of
the documents, together with a study that shows a consistent
improvement in system accuracy when using those features, over
several baselines. These ideas were partially disseminated via the
following publications:

a) J. Iria, F. Ciravegna and J. Magalhaes. Web News Categoriza-
tion using a Cross-Media Document Graph. In Proceedings of
the ACM International Conference on Image and Video Retrieval,
Santorini, Greece, July 2009.
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b) J. Iria and J. Magalhaes. Exploiting Cross-Media Correlations
in the Categorization of Multimedia Web Documents. In Pro-
ceedings of the IICAI' 09 Workshop on Cross-Media Information
Access and Mining, Pasadena, USA, July 2009.

2. (Feature Engineering) An exhaustive study on the impact of differ-
ent general-purpose feature types in the entity extraction task,
showing which features perform better in terms of overall sys-
tem accuracy. The study also reveals that the use of rich external
resources greatly contributes to the performance of IE systems
and it is more likely to explain the differences in performance
reported by several systems than the design decisions relative to
the learning model. These ideas were partially disseminated via
the following publications:

a) J. Iria. Relation Extraction for Mining the Semantic Web. In
Semantic Web - Concepts And Applications, Ravi Kumar Jain
(editor), Icfai University Press, 2008.

b) J. Iria, N. Ireson and F. Ciravegna. An Experimental Study on
Boundary Classification Algorithms for Information Extrac-
tion using SVM. In Proceedings of the EACL 2006 Workshop on
Adaptive Text Extraction and Mining, Trento, Italy, April 2006.

3. (Knowledge Engineering) A study on the use semi-supervised learn-
ing in the entity extraction task, which shows that, by exploiting
unlabeled data, less labeled data is needed to achieve the same
accuracy as supervised learning. These ideas were partially dis-
seminated via the following publications:

a) J. Iria. Automating Knowledge Capture in the Aerospace Do-
main. In Proceedings of the 5th ACM International Conference
on Knowledge Capture, Redondo Beach, California, September
2009.

4. (Knowledge Engineering) A novel approach to domain adaptation
for text categorization, which merely requires that the source
domain data are weakly annotated in the form of labeled features,
and an empirical study that shows that the proposed approach
outperforms standard supervised and semi-supervised methods,
and obtains results competitive to those reported by state-of-the-
art domain adaptation methods, while requiring considerably
less supervision. These ideas were partially disseminated via the
following publications:
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a) C. Kadar and J. Iria. Domain Adaptation for Text Cate-
gorization by Feature Labeling. In Proceedings of the 33rd
European Conference on Information Retrieval, Dublin, Ireland,
April 2011. (runner-up to best paper award)

5. (Knowledge Engineering) A formalism for declaratively specifying
unstructured multimedia information mining systems, their sub-
systems and components. A declarative specification of such a
mining system is also.an unambiguous description of the system
that can be used to document experiments and help lowering
the entry barrier to novice developers. These ideas were partially
disseminated via the following publications:

a) J. Iria. Formally Describing Unstructured Multimedia Infor-
mation Mining. Under review at Journal of Web Semantics.

b) J. Iria. A Core Ontology of Knowledge Acquisition. In Pro-
ceedings of the 6th European Semantic Web Conference, Herak-
lion, Crete, June 2009.

6. Three open-source software frameworks and libraries made avail-
able to the community, allowing to replicate the experiments and
build on top of the existing systems (see Appendix A):

T-REX a library for text classification, entity and relation extrac-
tion, available at http://t-rex.sourceforge .net.

RUNES a plugin-based data processing framework, available at
http://runes.sourceforge.net.

ALEPH a machine learning framework and library, available at
http://aleph- ml. sourceforge. net and http://www .mloss.
org/software/view/172/.

7· Participation in the international academic competition
PASCAL Challenge on Evaluating Machine Learning for Information
Extraction",

1.3 IMPACT

At the time of writing, more than thirty publications cited the afore-
mentioned publications derived from this thesis, including:

2 http://nlp.shef.ac.uk/pascal/

http://t-rex.sourceforge
http://runes.sourceforge.net.
http://nlp.shef.ac.uk/pascal/
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1. T. Berners-Lee, W. Hall, J. Hendler, K. O'Hara, N. Shadbolt, and D.
Weitzner. A Framework for Web Science. Foundations and Trends
in Web Science, 1 (1). pp. 1-130,2006.

2. A. Lavelli, M. E. Califf, F. Ciravegna, D. Freitag, C. Giuliano, N.
Kushmerick, L. Romano and N. Ireson. Evaluation of machine
learning-based information extraction algorithms: criticisms and
recommendations. Language Resources and Evaluation, 42 (4). pp.
361-393, 2008.

3. N. Aussenac-Gilles and D. Sorgel. Text analysis for ontology and
terminology engineering. Applied Ontology, 1 (1). pp. 35-46, 2005.

4. F. Suchanek, G. Ifrim and G. Weikum. Combining linguistic and
statistical analysis to extract relations from web documents. In
Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Philadelphia, PA, USA, Au-
gust 2006.

5. M. Tchalakova, B. Popov, M. Yankova. Methodology for Boot-
strapping Relation Extraction for the Semantic Web. In Proceed-
ings of The Twelfth International Conference on Artificial Intelligence:
Methodology, Systems, Applications, Varna, Bulgaria, September
2006.

6. M. Chen, X. Liu, and J. Qin. Semantic relation extraction from
socially-generated tags: a methodology for metadata generation.
In Proceedings of the 2008 International Conference on Dublin Core
and Metadata Applications, Berlin, Germany, September 2008.

7. R. Pasley, P.Clough, and M. Sanderson. Geo-tagging for imprecise
regions of different sizes. In Proceedings of the 4th ACM Workshop
on Geographical Information Retrieval, Lisbon, Portugal, November
2007·

8. L. Specia and E. Motta. A hybrid approach for extracting seman-
tic relations from texts. In Proceedings of the COLING-ACL 2006
Workshop on Ontology Learning and Population, Sydney, Australia,
2006.

Furthermore, the work described in this thesis has given origin to
other work, published with colleagues:

1. Z. Zhang and J. Iria. A Novel Approach to Automatic Gazetteer
Generation using Wikipedia. In Proceedings of the ACL 2009 Work-
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shop on Collaboratively Constructed Semantic Resources, Singapore,
August 2009.

2. L. Xia and J. Iria. An Approach to Modeling Heterogeneous

Resources for Information Extraction. In Proceedings of the 6th In-
ternational Conference on Language Resources and Evaluation (LREC-
08), Marrakesh, Morocco, May 2008.

3. M. A. Greenwood and J. Iria. Saxon: An Extensible Multimedia

Annotator. In Proceedings of the 6th International Conference on Lan-
guage Resources and Evaluation (LREC-08), Marrakesh, Morocco,

May 2008.

The aforementioned open-source projects have had several hundred

downloads each so far, and have attracted the attention of several

companies.

1.4 SUMMARY

The goal of this chapter was to familiarize the reader with the general

problem of providing structure to unstructured data, to introduce the

tasks of document classification and information extraction, to present

the research questions addressed in the thesis, and to summarize the

contributions made to the state-of-the-art in the area.

The following is a summary of the thesis structure.

PARTI - THE DOMAIN OF TEXTMINING

CHAPTER 2, FROM STRUCTUREDTO UNSTRUCTUREDDATA: provides the

reader with the necessary background to understand the technical
aspects of the work presented in the remainder of the thesis.

CHAPTER 3, OPEN PROBLEMSIN TEXT MINING: explains in detail the

open problems in text mining that are relevant to the work pre-
sented in Partt IIof this thesis.

PART II- TACKLINGTHE COST OF FEATUREAND KNOWLEDGEENGI-
NEERING

CHAPTER 4, FEATUREENGINEERING FOR TEXT MINING: investigates the
impact of incorporating diverse feature types intp boundary clas-

sification algorithms for Entity Extraction, and proposes novel
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Document Classification features able to generically exploit infor-
mation from across different parts of multimedia documents.

CHAPTER 5, OVERCOMING THE SCARCENESS OF LABELLED DATA: investigates
the impact of using semi-supervised learning in the task of Entity
Extraction from highly technical documents, and proposes using
feature labelling, as opposed to instance labelling, in adapting an
existing Text Classification model to different domains.

CHAPTER 6, A FORMALISATION OF MULTIMEDIA MINING: proposes a novel
formalism for describing unstructured multimedia information
mining systems, extending existing state-of-the-art formalisms for
describing software and multimedia content.

CHAPTER 7, CONCLUSIONS: concludes with a review of the main contri-
butions of this thesis.
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FROM UNSTRUCTURED TO STRUCTURED DATA

Imagine that we would like to automatically categorise multimedia
documents obtained from a popular news website according to a set of
pre-defined topics. Available is a set of examples of such categorisation,
and therefore a natural decision is to adopt a supervised machine
learning-based approach to the problem, to exploit the availability of
labelled data. Moreover, the system would benefit from making use
of both text and image features, as both are potentially valuable. For
example; the presence of images with certain characteristics (e.g., vivid
colours) increases the likelihood that the surrounding text concerns a
given category (e. g., sports).

Additionally, we would like to automatically recognise certain classes
of entities in text, e. g., the judge in a competition, the venue of a confer-
ence. The output of the system consists in populating a database table
with all the entities found together with metadata about exactly where
in the documents they were found. Available is a set of examples of how
to recognise the entities in question, in the form of manually marked-
up text by a human annotator, which again leads to the decision of
employing a supervised learning approach. This system would benefit
from using external resources to aid the classification of candidate
text segments. Concretely, the use of gazetteers of people and location
names, and World Wide Web (www) resources, holds the potential of
increasing the accuracy of the classifier.

The above are examples of the Text Classification (TC) and Entity
Extraction (EE) tasks, and constitute a good starting point for thinking
about the core problems addressed in this thesis. In the remainder of
this chapter I will introduce the reader to the technical background
required to understand the contributions to the state-of-the-art in text
mining set forth in Part II of the thesis.

2
Motivating example:
document
categorisation

Motivating example:
entity extraction

17
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2.1 ANATOMY OF AN UNSTRUCTURED INFORMATION MINING SYS-

TEM

In the last decade, most of the approaches that were proposed to solve
text mining problems have followed the general trend in Information
Retrieval (IR) and Natural Language Processing (NLP)of moving to-
wards the adoption of machine learning as the main paradigm at the
heart of the approaches. From a bird's eye perspective, the design of
a ML-based approach to most current text mining problems can be
regarded as following three main steps:'

1. Cast the problem as a classification task: identify the target classi-
fication object, and how to obtain labelled examples for it, to train
a classifier

2. Select an off-the-shelf learning algorithm with the appropriate
characteristics, e. g., the right time complexity

3. Determine which features in the text characterise the object, ex-
tract them and pass them to the learning algorithm

Accordingly, systems built to deliver text (or, more generally, mul-
timedia) mining functionality address at least four major functional
concerns:

DECOMPOSITION: Both text and images need to be decomposed into
finer-grained media segments, which constitute the building
blocks for deriving Information Extraction patterns and mod-
els. Text is typically decomposed into sentences, phrases and
tokens. Images are typically segmented into regions of interest.

SEGMENT ANALYSIS: Media segments need to be processed and, in
many cases, tagged, that is, extra information, obtained through
some form of analysis and/or use of external resources, is at-
tached to the segment, with the purpose of enriching the patterns
and models mentioned in the previous point. Typical text tagging
tools are part-of-speech and orthography taggers [139], which
attach tags at the token level, or chunkers [1], which attach tags
at the sentence level. Typical image analysis tools are colour [160]

and texture analysers [163], and edge detectors [124].

DATA MODELLING: Predictive classification/extraction models, capa-
ble of classifying segments into classes of interest given the de-
composed and tagged input media, need to be constructed. The
classes of interest come from.an understanding of the problem do-
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main, which is ideally encoded in the form of a domain ontology.
Manually built models consist mainly of text patterns, carefully
created, tested and maintained by domain and linguistic experts.
Automatically induced models are created by machine learning-
based systems, which require the availability of at least a few
labeled media segments, and tap into a wealth of machine learn-
ing literature for a choice of algorithms and meta-algorithms [121].

Those useful for the understanding of the ideas in this thesis will
be introduced in the following sections.

SEMANTIC ANNOTATION: Extraction models need to be applied over
unseen media to infer new information, typically outputted in
the form of semantic annotations [77]. In the simplest case, which
we will restrict ourselves to here for the sake of exposition, the
application of the models directly yields the target information of
interest. In other cases, though, some form of validation, consis-
tency checking, and merging of intermediate information may be
required, which would add further concerns to this list.

Figure 2 illustrates the basic anatomy of an information extraction
system. There is a wealth of literature on automating the several types
of tasks delimited by the above concerns, and methods and software
systems exist for each of them, featuring varying degrees of capability,
correctness and performance.
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Throughout this thesis, the focus will be mostly on novel, more
effective methods for data modelling (chapter 4 and chapter 5). A con-
tribution to solving the semantic annotation problem is also presented
in chapter 6.

2.2 TEXT MINING FROM A MACHINE LEARNING VIEWPOINT

When adopting a Machine Learning (ML) approach to text mining, most
tasks are adequately modelled as classification tasks, as mentioned
in the previous section. Classification can be described as the task of
assigning a class Y to an observation x. More formally, a learning
algorithm (in the supervised setting) takes a set of labeled training
examples, (X:ltY,),···, (xn,Yn) as input, where Xi E X is typically a
feature vector that characterises some object in the data X, and the
corresponding label u, belongs to a finite set of classes denoted as ~.
The goal of classification is to form a hypothesis h : X H ~ which maps
an input X to an output y.

2.2.1 Text Categorization as a Classification Task

Document classification is the task of assigning documents to one
or more pre-defined categories, based on their content [150]. More
formally, the task consists of assigning a Boolean value to each pair
(dj, cd E 1> x e, j = 1 ... 11>1, i = 1 ... Iel, where 1> is the set of docu-
ments to classify and e is the set of pre-defined categories that those
documents may belong to. Thus, a value of True attributed to (dj, c.)
means that dj may be "filed under" Ci,while, conversely, a value of
False means that it may not.

From a ML perspective, the task is that of approximating the unknown
target function 11.: 1> x e -+ {True,False}, by a function of the same form
h : 1> x e -+ {True, False}, called the classifier, such that 11. and h provide
identical outputs given identical inputs (as much as possible).

When the task is to assign exactly one category to each dj E 1>,
this is called single-label classification. When multiple categories may
be assigned, the task is termed multi-label classification. Moreover, in
the most common variants of the task, the categories or classes e are
treated as pure string labels, since no additional knowledge about their
meaning is utilised.

Document
classification
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Text Classification (TC), also known as text categorization, is the
variant of document classification that deals with documents that con-
tain only text, or, equivalently, assumes that the textual part of the
document content is the only part that carries valuable information
for discriminating between documents. The most widely used feature
representation is the bag of words, where each document is represented
as a vector of words and their frequency in the corpus.

2.2.2 Entity Extraction as a Classification _Task

As mentioned in chapter I, EE is the task of identifying mentions of
entities of interest in documents. The mentions are typically noun
phrases and consist of one to a few tokens in the text. Examples of EE

tasks include identifying the speaker featured in a talk announcement,
as is done in this chapter, or finding the proteins mentioned in a
biomedical journal article, as is done in [54],but there are many more
application domains: the MUC [70], ACE [2] and CoNLL [52] academic
competitions have, for several years, formally evaluated participant's
EE systems on corpora that have covered different domains.

Figure 3 shows an excerpt of a seminar announcement of the kind
that can be found very commonly in any University e-mail system,
circulating amongst faculty". The aim of EE is to enable the creation of
systems capable of extracting target information from documents. For
example, from the excerpt above one might be interested in extracting
the name of the speaker at the seminar. Judging from the example
shown, the task is not a straightforward one, since the name of the
speaker may appear in different forms, e. g., "Ralph D. Hill" and "Ralph
Hill", and also because the names of several other people, who do not
have the role of speaker at the seminar, appear in the text. Moreover, it
should be made clear that the goal is not to enable extracting the name
of the speaker in this particular announcement, but rather to find rules
or models of the data that allow extracting the name of the speaker in
any announcement that shares similar characteristics with this one.

Modeling Entity Extraction (EE) as a classification task involves, de-
ciding on the target classification object, how to obtain features that
characterise it, and how to obtain labeled examples. The most widely
used models are the following:

1 This example is taken from the Seminar Announcements corpus, a standard dataset for the
EE task, which will be described in more detail in subsection 4,1.1
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The Rendezvous Language and Architecture for
Constructing Multi-User Applications

Ralph D. Hill
Bellcore

When people have meetings or discuss things, they
frequently use conversational props: physical models,
[ ...]
applications built with the Rendezvous tools, and a
description of the Rendezvous tools.

Host: Brad Myers

If you would like to speak with Ralph Hill, while he is
here, please send email to Ava Cruse at avac@cs for
scheduling.

Figure 3: An excerpt of a seminar announcement. Which rules would extract
the speaker "Ralph Hill" in the above text, but also other speakers in
other texts like this one?

SEGMENT MODELS In this type of model, segments of text, composed
of one or more tokens, constitute the target classification object.
The labels are attached to each segment, and the features de-
scribe a segment and its constituent tokens. More formally, a
segmentation s of input text of length n is a sequence of seg-
ments s = Sl ... slsl such that the first segment starts at 1, the
last segment ends at n, and segment Sj +1 begins right after seg-
ment Sj ends. Each segment is composed of a sequence of tokens
t = t1 ... tltl and has a label 11E 'iJ attached to it. Segment-level fea-
tures can be, for example, the similarity of the segment to an entity
in a database, or the length of the segment. Thus, segment-level
features capture joint properties of the tokens and can potentially
be more powerful than token-level features alone. However, a
segment model is computationally more complex than a token
model, because all possible segmentations of the text need to be
tried. Examples of systems that employ this type of model include
[32,62, 145].
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TOKEN MODELS Here tokens constitute the target classification object,
labels are attached to each token, and features describe a token.
More formally, a sequence of tokens t = t 1 ••• tltl has an associated
label sequence y = '!:Jl ••• '!:Jlyl' and the problem is to determine
the correct label sequence. Naturally, since entity mentions may
span several tokens, there needs to be a way to re-assemble the
tokens into a segment. The way to do that is to consider that
each token plays a role in the segment, and assign it the label
corresponding to that role. Hence, with the "lOB" scheme, a token
gets a "B" (begin) label if it is the first token of an entity mention,
an "I" (inside) label if it is part of an entity mention but it is not
its first token, and an "0" (outside) label if it is not part of any
entity mention. The "BIE" scheme additionally uses the "E" (end)
label to mark the final token of an entity mention. Token-level
features can be, for example, the word itself, the orthography, or
the part-of-speech. Examples of systems that employ this type of
model include [102,37].

BOUNDARY MODELS In this type of model, the boundary (or virtual
separator) between two tokens in the text is the target classification
object. Labels are attached to the boundary. The features are
the same as in token models. In practice, this model is very
similar to the token model, the main difference being the labeling
scheme. Here, typically two independent binary classifiers label
each boundary as being the start of an entity (or not), and as being
the end of an entity (or not). Re-assembling the entity mentions
from a sequence of "start" and "end" labels requires solving the
problem of how to pair them - which ones to discard and which
ones to keep. Examples of systems that employ this type of model
include [61, 38, 59].

CHARACTER MODELS Here characters or character n-grams constitute
the target classification object, labels are attached to each character,
and features describe a character and their neighbouring charac-
ters. When using character-level models for word-evaluated tasks
like EE, care needs to be taken to ensure that multiple characters
inside a single word do not receive different labels. An example
of a system that explores this type of model can be found in [96].
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Does object Xi belong to class Ci?
Oracle

Yes No

Classifier Yes tp fp
No fn tn

Table 1: Contingency table, which derives the quantities tp, fp, fn, and tn from
answering the question"does object Xi belong to class Ci?".

2.3 EVALUATING TEXT MINING

Before delving into concrete MLmethods and techniques for text min-
ing, some concepts related to the empirical evaluation of ML-based
approaches need to be introduced. Rather than concentrating on issues
of computational efficiency, the evaluation of text mining systems typi-
cally focuses on determining how effective the system is, measuring its
capability of making predictions on unseen data. In particular, classi-
fication effectiveness will be measured in this thesis using the classic
Information Retrieval measures of precision and recall, as explained in
what follows.

In the context of learning theory, an oracle is an entity that is able
to provide the correct answer to the question "does object Xi belong
to class c.?", For example, an oracle can be a human domain expert
interacting with an application that wraps a learning algorithm. For
example, in ML-basedEE, the oracle consists of a method that consults
previously collected entity labels in the gold standard corpora, i.e., the
corpora that are reserved for estimating the precision and recall of the
system.

Precision of a classifier is defined as the probability of a random
candidate object being correctly classified by the classifier under class
Ci. Recall is defined as the probability of a random candidate object
that ought to be classified under class Ci by the classifier actually being
classified. In other words, precision may be viewed as the "degree of
soundness" of the classifier, whilst recall may be viewed as its" degree
of completeness". These probabilities may be estimated in terms of a
contingency table, which defines the elementary quantities tp, fp, fn,
tn. See Table 1.

The quantity tp denotes the "true positives", that is, the number of
candidate entity mentions that the classifier has predicted to belong
to class Ci, and the oracle agreed. Conversely, fp denotes the "false
positives", the number of candidate mentions that were classified in-

Oracle

Gold Standard

True positives, true
negatives, false
positives and false
negatives



Accuracy, precision
and recall

Micro-and
macro-averaging

F-measure
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correctly by the classifier, according to the oracle. Those candidate
entities that the classifier classifies as negative can be either fn, "false
negatives", or tn, "true negatives", again according to the verdict given
by the oracle. In the context of EE, fp are many times informally called
the system "mistakes", while fn the system "misses".

Based on the above unit terms it is now possible to define accuracy
(Ace), precision (Pre) and recall (Rec), as :

Ace = tp+tn
tp +fp +fn+tn

(2.1)

Pre = tp
tp+fp

and

Rec= tp
tp+fn

When computing the average precision and recall for several classes
ci E C, two different methods may be adopted:

MACRO-AVERAGING: precision and recall are first computed "locally"
for each category, and then "globally" by simply averaging over
the results of the different classes, i.e., for precision:

MICRO-AVERAGING: precision and recall are computed by directly
summing the statistics tp, fp, and fn from each class, i.e., for
precision:

In many cases it is useful to have a single measure to compare
systems. The most commonly used way of combining precision and
recall is the Fj-measure (or, simply, F-measure), their harmonic mean.
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Concretely, F-measure is defined as:

Fl = 2 x Pre x Rec
Pre+ Rec

The above formula is a special case of the more general F13formula
(setting ~ = 1):

2 Pre x Rec
F13= (1 + ~ ) x -(~~2~x-P-re-)-+-R-e-c

Measuring the accuracy of an EE system in terms of precision, recall
and F-measure involves setting up an experiment that takes the initial
corpus of documents 0 = {dj , ... ,dIDI} and splits it into sets, not
necessarily of equal size. Some sets, referred to as training data or
training corpus, are used for training the system, that is, the system is
allowed to consult the oracle for those documents, in order to obtain
the labels for the underlying learning algorithm; while the remainder
of the sets, referred to as test data or test corpus, are reserved to testing
the accuracy of the system, that is, the oracle cannot be consulted for
the documents in the test corpus.

There are numerous methods to split a corpus into training and
test sets. Two of the most popular are random splitting and n-fold cross-
validation. The former method simply draws documents at random from
0, drawing a document with probability V into the training set and
probability 1 - V into the test set, where V is a user-defined parameter.
The latter method divides the corpus into k sets, uses one of the sets
as the test set and the other k - 1 sets as the training set, and then
runs k trials so that each of the sets is used as the test set once. The
advantage of this method is that it reduces the influence of the way
the corpus is split on the results, since every document is assigned to a
training set k - 1 times, leading to decreasing variance in the F-measure
estimate as k increases. The disadvantage of this method is that the
amount of training data used increases as k increases, which can result
in model overfitting. A variant of these methods is to perform the
random splitting method k different times, in which case it is possibly
to independently choose how large each training set is and how many
trials to average over.

Because of the nature of text as object for classification, for the pur-
pose of computing tv, fp and fn there are several ways to determine
what constitutes a match between the output of the system and the gold

Cross-validation



Types of entity
matches

Multi-class
multi-label
classification

28 FROM UNSTRUCTURED TO STRUCTURED DATA

Exact Approximate PartialLR

Strictest Loosest

Figure 4: Spectrum of leniency in what is considered an entity mention match
in Entity Extraction. .

standard. The different ways vary with respect to leniency, forming a
spectrum (see Figure 4). A strict match requires the entity mention to
be perfectly recognised, while a partial match allows any substring of
the entity mention outputted by the system to match the one in the
gold standard, or vice-versa. In between these two extremes, Left-Right
(LR) matches require that either the left (start) or the right (end) of
the entity mention is correctly recognised, while approximate matches
allow a substring of the entity mention to be recognised only (but not
vice-versa).

2.4 MODELS FOR TEXT CLASSIFICATION

Text Classification is a well studied problem with a large body of
literature spanning several decades - see Sebastiani [151] for a high-
level comprehensive survey of approaches to the problem. This section
introduces selected machine learning topics required to understand the
ideas in the remainder of the thesis.

2-4.1 Generalised Linear Models

Recall from subsection 2.2.1, that a learning algorithm takes a set of
training examples {(Xl, 1:)1), ... , (Xn, 1:)n)} as input, where n is the number
of examples, Xi represents a given object i from domain X, and the
corresponding labels 1:)i belong to a finite set of k classes denoted as
Y.The goal of the algorithm is to form a hypothesis f : XH Ywhich
maps an input X E X to an output 1:) E Y.The nature of the output
1:) varies with the type of classification task: in a binary classification
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setting y E {-1, +1},in a multi-class single-label setting y E {1,... , k]
and in the multi-class multi-label setting y E :P({1, ... , k}), where :P(. )
denotes the power set.

Linear models are a class of ML models that operate under the
assumption that the relationship between the input variables x =

[x 1, ... , xlxl] and the output variable y is linear, or can be approxi-
mated by a hyperplane with little error. In the TC task, x represents
the text features of a document, and y the topic to predict. The output
variable y can be regarded as a random variable with an associated
probability distribution. If so, for each document topic the goal is thus
to compute P(ylx).

A linear relationship between x and y, modelled by w, can be written
as:

E[ylx, w] = w· x = Wo +W1Xl + ... +Wlwlxlxl

where W1, ••. , Wlwl are called the regression coefficients and can be in-
terpreted as measuring the importance or weight of the several corre-
sponding model components xj , ... , xlxl, and Wo is usually called the
intercept or bias of the model.

The linearity assumption can become inadequate when trying to
model more complex data. As an extension to the simple linear model,
Generalised Linear Models (CLMs) [117] introduce a link function 9 :
9l ---+ 9l to model non-linear relations between the input and the output.
A GLM has the form:

where 9 is a monotonic differentiable function that should be chosen
according to the problem at hand. The most common choices of 9
instantiate the CLM framework into the well-studied models of linear
regression, logistic regression and log-linear regression.

To recover the linear regression model, it suffices to define the link
function as 9(x) = x . The random variable y is assumed to follow a
normal distribution with mean I.l. and variance (j2, i.e.:

This model is applicable to regression settings where y and a certain
transformation of X results in a Normal distribution. Note that in

Generalised linear
models
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many cases of interest the variable 1) is not continuous but discrete (i.e.,
expresses ''belongs to class or not") so the Normal linear model is not
adequate.

A widely adopted linear model in a variety of domains is logistic
regression [4]. To obtain logistic regression under the GLM framework,
we define the link function to be g(x) = logitlu) , where the logit
function is defined as:

logit(x) = log ( 1~ x)

In this model the random variable 1) is assumed to follow either a
binomial distribution

1) ~ Bin(n, p),

or a multinomial distribution

corresponding to the single- and multi-label classification problems
introduced in subsection 2.2.1, respectively.

2-4.2 Margin Classifiers

A margin classifier finds an optimal separating hyperplane between
data points of different classes in a high dimensional feature space
induced by a mapping of the data. The notion of margin reflects the
distance between the hyperplane and the support vectors. The notion
of optimality of the hyperplane is deeply related to the notion of mar-
gin: the best hyperplane, from a generalisation viewpoint, is the one
that maximises the margin, that is, the one that maximally separates
the points belonging to different classes. This is not only intuitively
appealing, but has also been explained formally in [165].

Support VectorMachines (SVMs) are a widely used method belonging
to the family of margin classifiers. SVMS have been applied, for more
than one decade, to a wide range of domains and are well-known
for their robustness to noisy and sparse data. The method gets its
name from support vectors, which are the data points" that determine
the position and orientation of the separating hyperplane in that space.
The hyperplane is often called the decision boundary.
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Figure 5: An illustration of the basic principle behind Support Vector Machines.
Circles and diamonds denote two different classes. The solid line
represents the maximally separating linear decision boundary (hyper-
plane). x, and X2 are support vectors. Source: [149]·

To illustrate with a simple example, consider the binary classification
toy problem depicted in Figure 5. For linearly separable problems,
there exists a separating hyperplane satisfying u, ((w, Xi)+ b) > 0, Vi E
{1,2, ... , n}, where "YiE {-1, + 1}(the class label), w E lRd (the weight
vector), Xi E lRd (a data point), b E lR(the threshold), n is the dataset
size, and (-,.) denotes the dot product. The optimal hyperplane, the
one that maximizes the margin (shown as a solid line in the figure),
can be found by solving an optimisation problem. Concretely, SVMs

find an approximate of the optimal hyperplane as linear combination
of the support vectors, by solving the following quadratic minimisation
problem:

Optimal hyperplane

maximize min{llx-xill:XElRd, (w,x)+b=O, i=l, ... ,n}
wElRd,bEIR

Rescaling wand b such that the data points closest to the hyperplane
satisfy I(W,Xi)+ b] = 1, the canonical form (w, b) of the hyperplane
is obtained, which satisfies "Yd(w,Xi)+ b) ;;0: 1, Vi E {1,2, ... ,n}. The
margin- in this case equals to II~II'

2 This can be seen by considering two closest points x j and X2 on opposite sides of the
margin, and projecting them onto the hyperplane normal vector 11:11'
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In the common case of linear classifiers, the decision boundary can
be seen as a linear function f'(x) =w T + b that minimizes the following
regularised cost function:

E(f) = L.l(w,x) +AO(f),

where wEIR d is the weight vector, b E IRis the bias, L is a prescribed
loss function, 0 is a regularization functional measuring the smooth-
ness of f, and A > 0 is the regularization parameter. Different loss
functions lead to different learning algorithms.

The classical formulation for supervised SVM uses "hinge" loss, which
is defined as l(w,x) = max(O, 1 -Yt(w,Xt)), and "Lz-norm" regular-,
isation, which is defined as O(f) = 211w112,leading to the following
primal formulation:

minimize
wEIRd

The dual formulation for the above problem is given by [44]:

OCEIR
subject to 0 ~ (Xt~ A~.

In this formulation, if we replace (Xii Xj) by Ktj, yielding

OCEIR
subject to 0 ~ (Xt~ -'-.An

then the above method is called a kernel method, and K(xt,xj) _
(<P(xtl,<P(Xj))is called the kernel function. The linear kernel maps the
space onto itself, i.e., KlineuT(Xi,Xj) = (Xt,Xj). Using the kernel, the
Xt are mapped into a higher (potentially infinite) dimensional space
by function <p : IRd H IRk, where typically d « k, SV,M finds a linear
separating hyperplane with maximal margin in this higher dimensional
space. This enables applying SVMs to problem in which the data is not
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linearly separable, by defining an appropriate 4>. Ensuring that the
kernel function is positive semidefinite guarantees the convexity of the
search space and, therefore, that the optimisation procedure converges
to a global minimum [44].

Independently of the way in which the optimal hyperplane is derived,
the SVM decision function for an input vector x is given by

(2.6)

2-4.3 Feature Selection

A technique that has enjoyed success in improving accuracy while at
the same time reducing learning algorithm running times in the con-
text of the document classification task is feature selection [60]. Feature
selection consists in choosing a subset of relevant features from the set
of possible features, throwing away irrelevant and redundant features
which may contribute negatively to the generalisation ability of the
learning algorithm. As a side effect, feature selection speeds up the
learning process and improves the interpretability of the learned model,
as algorithm, in the former, and humans, in the latter, have to deal with
less features.

Feature selection algorithms typically fall into two classes: feature
ranking and subset selection. While subset selection methods search the
setof possible features for the optimal subset using cross-validation,
feature ranking methods rank the features by a metric, and eliminate
all features that do not achieve an adequate score.

The following feature ranking metrics are used in this thesis:

FREQUENCY This method simply ranks features according to the num-
ber of times they occur in the dataset, that is

Freq(F) = tp + fp.

INFORMATION GAIN The Information Gain (re) of a feature is defined
intuitively as the reduction in uncertainty about the class of a
learning instance once the value of that feature for that instance is
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known. Uncertainty is measured in terms of entropy. The entropy
of a class Y is given by:

H(Y) = - L p(-yillog1 p(-yil·
1JiEY

The conditional entropy measures the entropy associated with fea-
ture F:

H(YIF)= L p(filH(YIF = fi.)'
fiEF

where

H(YIF= fj) = - L p(-Yilfj) logl p(-Yilfj).
lHEY

The Information Gain is the difference between the entropy and
the conditional entropy for the feature:

IGy(F) = H(Y) - H(YIF).

Because H(Y) is fixed, a feature Fl has a higher information gain
than feature Fl if H(YIF1) < H(YIF1). Thus, for the purposes of
ranking, H(Y) can be omitted.

When the learning model is formulated with binary classes and
binary features, the equation can be re-written in terms of tp, fp,
fn and tn as:

IGY={_l,+ 1}(F= {f,f}) = -p(f)e(tp, fp) - p(f)e(fn, tn), (2.8)

where p(f) = (tp +fp)j(pos +neg), p(f) = 1 -p(f), and

x x -y -y
e(x,-y) = ---logl -- - --log --.

x+-y x+-y x+-y lx+-y

From its definition, it is clear that the IG measure is a supervised
strategy, because it uses the entity mention labels in its choice of
features to retain. In contrast, the frequency measure is unsuper-
vised.

CROSS ENTROPYCross Entropy (CE) is similar to IG, the difference
being that, with binary-valued features, IG cOl!siders both the
presence and absence of the feature while CE only considers the
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presence of the feature. In fact, IG can be defined in terms of CE

as:

IGy(F) = CEy(F = f) + CEy(F = f).

The CE equation is re-written in terms of tp, fp, fn and tn as:

CEY={_l,+ l}(F = {f,f}) = -p(f)e(tp, fp),

where e was defined above.

2.5 MODELS FOR ENTITY EXTRACTION

Entity Extraction is a well studied problem with a large body of lit-
erature spanning several decades - see Moens [122] for a high-level
comprehensive survey of approaches to the problem. This section adds
to the machine learning methods and techniques introduced in subsec-
tion 2.2.1 further selected ML topics required to understand the ideas
related to EE in the remainder of the thesis.

2.5.1 Rule Induction Approaches

Most of the research on EE prior to the last decade made use of symbolic
techniques, as opposed to the statistical methods that will be discussed
later. Starting with manually built symbolic rules, approaches then
moved to pursue the automatic induction of the rules, while still keep-
ing them human-understandable. A good way to illustrate this class
of approaches is to take an advanced one as representative of its class
and review it in some detail. The (lP)2 algorithm was chosen for this
purpose. Other successful early systems include Rapier [32], SLIPPER
[40], Snow-IE [145],BWI [61] and SRV [62].

The (lP)2 algorithm [)8] is a supervised rule induction algorithm
that follows the boundary classification model. It has been successfully
applied to the EE task. The algorithm is similar to the CN2 algorithm
described in [121].

(lP)2 induces two types of symbolic rules:

1. rules that spot entity mentions in the text;

2. rules that correct the mistakes made by the previous rules.

The (lP)2

algorithm
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Rules are induced by generalising over a set of examples of entity
mentions marked with XML tags in a training corpus and taken as
positive examples. The rest of the corpus is considered to be a pool of
negative examples.

A tagging rule is composed of a left hand side, which consists of a
pattern of conditions over a "window" of token positions relative to
the boundary to which the rule applies, and a right hand side that is
an action of inserting an XMLtag in the text. Each rule inserts a single
tag, which can be a open or close tag, e: g., </speaker>. For example,
the following rule would insert a <speaker> tag in the text when the
sequence of tokens "Speaker:" is detected in the text:

Word_2 = Speaker /\ Orthoqruphu.i.: = punct. --+ <speaker>,

where "punct." is a class of features for punctuation characters in the
text. One other type of rules in (lP)2, called contextual rules, comple-
ment the tagging rules. They rely on the tags inserted by the tagging
rules in order to induce rules that have high precision only in the pres-
ence of a another tag. For example, contextual rules are able to close
open tags, i.e., they will use the presence of a <speaker> to insert a
missing </speaker>.

Finally, shift rules are rules that are induced by an analysis of the mis-
takes made by the tagging rules and the contextual rules. They simply
shift the predictions made by other rules to some relative position. For
example, if </speaker> is regularly predicted one token to the left of
its correct position in the text, shift rules would be able to simply shift
all predictions one position to the right.

Induction of the tagging rules is achieved as follows. For each positive
example the algorithm builds a set of initial rules from it, generalises
(or specialises) those rules and keeps the k best generalisations (spe-
cialisations) derived in this way. In (lP)2, top-down specialisation is
used. To build the initial rules, a tag in the training corpus is selected
and a text window of w tokens to the left and w tokens to the right
is extracted, which includes additional information about the tokens
(typically added by running a sequence of NLP tools, as seen in chap-
ter 6). Each piece of information stored in the 2w token window is
transformed into a condition of the type [feature class = feature
value] in the rule left-hand side, like in the example rule above. The
initial rules derived from this window consist of rules with a single
condition. An iterative cycle starts with the initial rules at iteration 0
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Figure 6: The search space produced by rule specialisation forms a galois lattice.
Each node in the lattice is a candidate rule that is scored against the
positive/negative examples in the training corpus.

and specialises rules at iteration i by introducing one single additional
condition to generate the rules for iteration i+ 1. At the end of each
iteration, the k best specialisations, according to some rule scoring
criterium (in (lP)2, precision is used), are kept and the retained rules
become part of the best rules pool R. Furthermore, when a rule en-
ters the best rules pool, all of the examples covered by the rule are
removed from the positive examples set, i. e., they will no longer be
used to derive new rules. (lP)2 is thus a sequential covering algorithm.
Rule induction proceeds iteratively until the set of positive examples is
empty.

The search space explored by (lP)2 for one given tag in the text is
illustrated in Figure 6. All possible combinations of specialisations of
the set of conditions in a rule are tried in order to form the candidate
rules. The size of the full space is 2f2w, where 2w is the size of the
token window, and f is the total number of feature classes attached to
those tokens, e. g., lemma, gazetteer, orthography. Clearly, considering
all possible candidate rules is computationally intractable even for
modest values of f and w. Thus, pruning of the search space plays a
very fundamental role in the algorithm's specialisation procedure.

Let i E Rbe the initial rule and d = s (i, c) ERa rule that is derived
from i by applying some specialisation function s : R x R ---+ R,where

Pruning the search
space
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right wrong unseen
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Figure T Interpreting rule specialisation in terms of right, wrong and unseen
patterns of the rule matched against the training corpus.

C E R is a single-condition rule that is merged with the initial rule to
restrict it further. The following inequalities hold for rule specialisation:

These can be interpreted as shown in Figure 7, in terms of tv (right), fp
(wrong) and fn (unseen) patterns applied over the corpus. Essentially,
a derived rule d moves some of the true positives and some of the false
positives of i into the the set of false negatives. What is hoped thus is
that less true positives are moved than false positives, leading to a rule
that discriminates better.

Based on this observation, (LP)2prunes the search space by checking
whether the derived rule d reduces the set of false positives:

• if fp d = fVi 1\ tv d < tVi then d does not improve i with respect
to false positives while actually reducing the set of true positives.
Rule d is thus discarded immediately, meaning that its whole
search sub-tree is pruned.

• if fp d = fVi 1\ tv d = tp, then d does not improve nor worsens i,
Depending on the bias of the algorithm, it is possible to remove i,
remove d, or to maintain both. In the case of (LP)2, d is discarded.

• otherwise, accept d into the set of accepted rules R.

The search space can be further pruned by performing subsumption
tests between the rules in the set of accepted rules R ~nd a candidate
derived rule d. That is, if::lr ER: subsumes(r, d), then d is eliminated
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from the search space>. A rule T1 is said to subsume another rule T2

when T2 matches the same entity mentions that T1 does, and does not
add to the false positives, i.e., :

{

true, iff fprl ~ fPr2 /\

subsumes( T], T2) = {p : matches( T1, p)} ::2 {p : matches( T2, p)}

false, otherwise

where matcheslr, p) returns true if rule T matches a pattern p in the
corpus and false otherwise.

Finally, the search space may be also pruned "unsafely", by resorting
to heuristics. In (lP)2, the following heuristics are used:

SCORE T,HRESHOLD a rule is kept, but not specialised further, if its
score (precision) is above a user-defined threshold.

MINIMUM MATCHES a rule is eliminated immediately if it fails to
match at least a user-defined amount of entity mentions in the
corpus. This is similar to the the classic apriori principle [3] in
itemset mining.

2.5.2 Single-Object Labelling Approaches

A simple statistical classification model for EE consists in independently
assigning an entity class 1Ji to each token Xi according to features
derived from Xi and its neighbours in x, disregarding potential corre-
lations between labels attached to nearby tokens. The set of possible
feature functions f E :r forms a feature space in lRd, where d is the di-
mensionality of the space, and normally d = In Each object to classify
is represented in this space as a vector x E lRd. This simple model can
be carried out with off-the-shelf state-of-the-art classifiers, such as a
logistic classifier or a Support Vector Machine (both used in chapter 4).

Under token or boundary models (recall subsection 2.2.2), the extrac-
tion of features that characterise a token or boundary at position i in the
text can be viewed as a function f : (i, t, 1Ji) H lR that takes as argument
the position i, a sequence of tokens t and a label 1Ji attached to the
token at position i. The function is thus allowed to look at neighbour-
ing tokens, taking into account the position where the features occur

3 Note that the reverse should also be performed - any rule r E R subsumed by d should
also be removed. In practice, r may already have been specialised, so the test is not
performed in (LP)2.
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relative to position i. The features generated in this way consist in the
combination of their value with their position. For instance, considering
the 2-neighbourhood around the token "Ralph" in the sentence from
the example in Figure 3

[... ] speak with Ralph Hill, while he is [... ]

would generate the following feature encoding (considering word,
orthography and part-of-speech features):

token.-2.speak token.-l.with token.I.Ralph token.2.Hill
pos.-2.VB pos.-l.IN pos.l.NNP pos.2.NNP
orth.-2.low orth.-l.low orth.l.firstcap orth.2.firstcap

SVM applied to ER

Several applications of SVM in the context of the Entity Extraction
task can be found in the literature. Of particular relevance to the work
in this thesis are the state-of-the-art svxr-based systems designed by
Finn and Li et al., both of which follow the boundary model.

Finn [59] introduced a variant to the usual boundary classification
approach which makes use of a two-level ensemble of classifiers, which
playa role similar to tagging and contextual rules in the (LP)2 algo-
rithm described earlier. The approach takes advantage of the fact that
high-confidence predictions for the start of an entity are an indication
of its end in the nearby text, and vice-versa. In the first level, their
approach uses high-precision classifiers so as to spot individual start
or end of fragments. On the second level, their approach uses high-
recall classifiers, but restricted to the vicinity of the individual start/
end already predicted by the first level classifiers. Their svxr-based
system implementing the multi-level approach to boundary classifica-
tion, called ELIE, shows state-of-the-art performance on the standard
datasets overviewed in subsection 4.1.1.

Li et al. [110] describe in great detail their system, called GATE-
SVM. One distinctive feature of the system is that it uses a variant
of SVM, the SVM with uneven margins, which the authors show to be
particularly helpful for imbalanced datasets, that is, datasets whose
distribution of labeled examples among classes is far from uniform.
Another interesting feature of GATE-SVM is that it uses a weighing
scheme for the token features according to distance of the token to the
boundary in the text. The system also obtained state-of-the-art results
on the same standard datasets.
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2.5.3 Sequential Labeling Approaches

The approaches to EE reviewed so far do not incorporate into the
learning model the potential interdependencies between the labels of
nearby tokens. (lP)2 proposed contextual rules to achieve that, while
in the case of SYMprevious label(s) can be added as a feature of the
learning example, but there is no account in the model itself for the
sequence of labels. This has led to a number of different models for
sequence labeling, starting with Hidden Markov Model and evolving
onto Conditional Random Fields. These models use probability theory,
specifying a probability distribution to select the most likely class y for
a given observation x.

An Hidden Markov Model (HMM)[I38] is a probabilistic finite state
automaton for modeling sequential data. It defines a set of (hidden)
states, with transitions between them. Associated with each state is a
probability distribution over the possible transitions from that state to
another state. What is more, states can output symbols, one at a time,
based on a symbol emission probability distribution. In the context of
EE, the states of an HMMrepresent the entity classes to be extracted
from the text - namely, there would be states for each entity class, and
a background state for lino class" -, while the symbols would be the
tokens in the text. The state transition and symbol emission probabilities
of an HMM,termed the model parameters, can be estimated from the
training data.

Given a sequence of symbols, e. g., a text sentence, and the HMM
that is assumed to have produced it, the typical question that an HMM
inference algorithm is required to answer is to find the sequence of
states that is most likely to have generated that sequence of symbols.
Since for EE the states are the entity classes, this is the same as saying
that, given an input sentence, the HMMfinds the most likely sequence
of entity labels that generated the sentence. Such sequence of labels will
be the background state everywhere except where the entity mentions
lie, in which case the state becomes the entity label that corresponds to
the mention. Entities can be then extracted by assembling contiguous
sequences of tokens which are labeled with the same entity class. This
is precisely what is done in [63].

What makes HMMsattractive is their solid mathematical foundation
and the fact that the problem of finding the most likely sequence can
be solved using an algorithm that runs in time linear with the number
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of observed symbols (i. e., size of the text in EE),the Viterbi algorithm
[138]. Given m labels and a sequence x of length n, there can be 0 (mn )

possible labelings of x. This exponential complexity is cut down to
O(nm2) with the Viterbi algorithm.

HMMsbelong to a class of approaches called generative, as opposed to
discriminative, to which SVMSbelong. HMMScan be seen as an extension
to the well-known Naive Bayes generative model [115] (mostly used in
document categorisation) for sequentially structured data. Generative
approaches try to model the underlying (unknown) joint probability
distribution that generates the data rather than simply trying to model
the way in which the classes can be discriminated (e. g., with an hyper-
plane as in SVMs).The joint probability of text tokens (observed symbols
x) and sequence of entity labels (hidden states y) modeled by an HMM
is given by

n

Pr(x, y) = I1p(yil'!:Ii-l )p(xilyd·
i=O

(2.10)

However, in EEand many other tasks, the problem "only" lies in finding
the hidden state sequence, not both symbols and states. Therefore, a
major drawback of generative models when compared to discriminative
models is that generative models try to solve a harder problem than
what is actually required by many applications, which unfortunately
tends to lead to intractable problem formulations that require intro-
ducing simplifying assumptions that, in turn, lead to worse results. In
fact, to keep inference tractable, HMMsuse the "output independence
assumption", which stipulates that the current observation, given the
current state, is independent of previous observations. Since in EEob-
servations correspond to tokens, this assumption is unrealistic most of
the time.

Maximum Entropy Markov Models (MEMM)[116] were introduced to
solve the limitations of HMMS.An MEMMis a discriminative approach,
because it models the conditional probability of a state given an obser-
vation sequence rather than the joint probability. It allows for arbitrary,
non-independent features on the observation sequence, and for the
transition probability to depend on past and future observations. MEMM
uses a per-state exponential model for the conditional probabilities of
next states given the current state, which is given by

(2.11)
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where fi are binary valued functions that test features in x, Ai are
Lagrange multipliers introduced for the purposes of numerical optimi-
sation (see [142] for details), and Z is a normalising constant, defined
as Z(x) = L.lIE'<i eI.r;,l Atfdx'lIl.

Linear Chain Conditional Random Fields (CRF) [102] can be consid-
ered to be the state-of-the-art approach to sequence labelling. CRFS have
been proven to be very successful in EE, for example see Sutton and
McCallum[159]; and also when applied to EE on documents from the
biomedical domain [152, 118]. Just as a HMM is a sequential extension
to the Naive Bayes (NB) model, CRF can be understood as a sequential
extension to MEMM model. While CRFS make the same assumptions as
HMM on the dependencies among the class variables, no assumptions
on the dependencies among observation variables need to be made, like
in the case of the MEMM. Figure 8 illustrates the relationship between
the four types of models overviewed in this section.

CRFS were motivated by a well-known problem with MEMMS, that
of biasing toward states with fewer outgoing transitions. The reason
for this behavior stems from the fact that the same probability mass
is allocated for modeling the labeling decision at each position in the
sequence of labels. This problem was solved in CRF by considering a
single probability distribution that models the joint probability of a
label sequence, conditioned on a sequence of observations. Therefore,
some transitions may contribute more than others to the overall score,
depending on the corresponding observations. The single exponential
model for the joint probability of the entire sequence of labels given the
observation sequence is given by

(2.12)

where Z(x) = L.lIE'<i eI.l=l I.r;,l Aifdllj-l,lIj,x,jl.

Learning the parameters of a Conditional Random Fields can be cast
as an optimisation problem. The function being optimised is concave,
like for SVM, thus a global maximum can be found efficiently using
standard procedures, such as gradient-based methods.

Conditional Random
Fields
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conditional

single class single class

sequence sequence
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Figure 8: The relationship between Naive Bayes, Hidden Markov Model, Max-
imum Entropy Markov Models and Conditional Random Fields.
Source: [1421.

2.6 SUPERVISION REQUIREMENTS

In order to obtain labelled examples required to develop text mining
models (and also to compute their performance against gold standards),
domain experts who are able to understand the corpora are typically
commissioned to annotate it, i.e., attach the aforementioned labels to
the text documents, text segments, tokens or boundaries, as discussed
earlier. This is done with the aid of dedicated software tools, such as
the one described in [39], and semantic annotation formalisms, such as
the one presented in chapter 6.

The ML methods introduced in the previous sections are intended to
model the TC and IE problems in such a way as to account for different
assumptions about, and representations for, the input documents. In
addition to that, an orthogonal aspect when choosing or designing ML

methods concerns its supervision requirements, i.e., how capable is the
method to deal with the availability of labelled and unlabelled data (or
lack thereof).

2.6.1 Semi-supervised Learning

Unlabelled data is often available at the time of classifier induction,
depending on the problem domain. If this is the case, a wealth of
literature [175] on semi-supervised learning approaches is available
that focuses on exploiting such unlabelled data in various tasks. In
particular, several variants of semi-supervised SVM were derived from
the supervised formulation, see for example [14].
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Various machine learning techniques try to solve the so-called cost-
sensitive learning problems by making strong simplifying assumptions.
In active learning [162], for instance, labels are assumed to be expensive,
but the learner may ask an oracle to reveal a label for selected unla-
belled examples. Active feature acquisition [119] makes the assumption
that obtaining features is expensive, but the learner may identify exam-
ples for which complete information is most informative in order to
classify a given test instance. Inductive transfer learning and domain
adaptation methods, such as the one studied in section 5.2, work under
the assumption that training data for a particular task or domain is
expensive, but data from other related domains may be cheaper.

In the case of semi-supervised learning, the assumption made is
that class labels are expensive to obtain, while features are implicitly
assumedto have zero cost. Semi-supervised learning consists of a
family of algorithms which can effectively combine unlabelled data
with labelled data in the learning process by exploiting the manifold
structure (also called cluster structure) in data [12, 19, 176, 177]. This is
achieved by assuming that

• nearby points are likely to have the same label; and

• points on the same structure (such as a cluster or a submanifold)
are likely to have the same label.

Note that the first assumption is local, while the second one is global.
The cluster assumption therefore implies considering both local and
global information contained in the dataset during learning.

2.6.2 Transductive Learning

Semi-supervised methods can be categorised into two types: trans-
ductive and inductive. The goal of transductive learning is merely to
estimate the labels for the unlabelled data, whereas inductive learning,
which was adopted in chapter 4, attempts to induce a decision function
which has a low error rate on the whole sample space.

In other words, in a transductive learning setting, a single optimiza-
tion problem is set up involving all training and test instances, and
the solution of that optimization problem yields labels for the test in-
stances. In such setting, the test instances provide evidence about the
distribution of the data, which may be useful when the labelled data is

Cost-sensitive
learning

Cluster assumption

Transductive vs.
inductive learning
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limited and the distribution of unlabelled data is informative about the
location of the decision boundary.

As a note, these two kinds of learning relate to two different high-
level patterns of interaction between the domain expert and the IE

systems:

• transductive learning supports well on-demand patterns of in-
teraction - for example, domain experts quickly assemble a set
of objects (documents, entities, relations, and so on), give a few
classification examples and expect fhe system to decide on-the-fly
about the labels for the remaining objects; whereas

• inductive learning is more suited to support a regular pattern
of interaction - for example, domain experts classify objects of
interest in the context of their normal workflow, and expect the
system to help spotting new objects of interest in the future.

2.6.3 Feature Labels versus Instance Labels

In some problem domains, labelled data are available in the form
of labelled features rather than labelled instances (which have been
considered so far in this chapter). This is designated the feature labelling
paradigm. The main advantage of this paradigm resides in the fact that
labelling features is less expensive than labelling documents. It is both
easier and quicker for domain experts to identify a small set of features
that are globally expected to be positively correlated with a given class,
instead of examining a set of instances in detail.

In this thesis, the generalised expectation criteria method [114, 50] is
adopted in chapter section 5.2 to translate the knowledge about which
features from the source domain are expected to apply also in the target
domain into constraints on model expectations for certain word-class
combinations. A Generalised Expectation (GE) criterion is a term in a
parameter estimation objective function that assigns scores to values
of a model expectation. Let x be the input, y the output, and e the
parameters for a given model. Given a set of unlabelled data U = {x}
and a conditional model p(ylx;e), a GE criterion G(e;U) is defined by a
score function V and a constraint function G(x, y):

G(e;u) = V(Eu[Ep(ylx;6) [G(x, y)]]).
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The GE formulation is generic enough to enable exploring many dif-
ferent choices of score functions and constraint functions. For example,
in the work presented in this thesis I maximize the GE term together
with an entropy regularization term in the objective function, although
this can be easily combined with an empirical loss term to form a
composite objective function that takes into account labelled instances
as well.

2.7 ONTOLOGY AND SEMANTIC ANNOTATION

A good part of the exposition in this thesis related to semantic annota-
tion (and, equivalently, labelled data) relies on the concept of ontology.
Additionally, the work presented in chapter 6 relies on basic knowledge
about RDF and OWL, two ontology languages adopted as standards for
encoding modern ontologies, and some knowledge about DOLCE, CSO

and COMM, three top-level ontologies that provide the backbone for the
semantic annotation formalism proposed in this thesis. This section
briefly reviews these concepts and artefacts. Itmay be skipped by the
reader familiar with them.

The Unified Modeling Language (UML) [89]will be used throughout
to depict the main concepts and associations in the ontologies used
in the thesis. In the text itself, concepts and associations will be writ-
ten in sans serif and will be labelled in a namespace-like manner.
Namespace prefixes indicate the ontology where those concepts and
associations are defined. If no namespace is used, they are defined in
ON IX, the semantic annotation formalism presented in chapter 6.

In philosophy, ontology studies the nature of being and existence.
The term "ontology" is derived from the Greek words" onto", which
means "being", and "logia", which means "written or spoken dis-
course". Computer scientists extended previous notions of ontology
into a new interpretation, which can be best expressed as "a specifica-
tion of a conceptualisation" [72]. In computer science and information
science, knowledge reuse is facilitated by the use of explicit ontology,
i. e., knowledge encoded into software systems [164] in some language.

Notation used

Ontology
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2.7.1 Ontology Languages

Ontology languages have been adopted as standards in the past few
years and increasingly more ontologies characterising various domains
are becoming available in those languages. The ontologies presented in
this thesis is encoded in OWL. Let us briefly review the main concepts
behind these languages.

The Resource Description Framework (RDF) [99] is a W3C standard
that defines a simple model for describing resources and the relations
between those resources. RDF makes no a priori assumptions about a
particular application domain or the associated semantics.

The RDF model consists of resources, properties and statements. A
resource is anything that can be named by a Universal Resource Iden-
tifier (URI) [IS], which includes not just things on the Web (such as
pages, parts of pages or collections of pages) but also tangible things,
provided that an URI scheme can be associated to them. Systems can
define some concept and each use a different (unique) URI to name it to
avoid clashes. However, systems agreeing on a common concept will
use the same URI and effectively share semantics. Note that by adopting
URIS, RDF avoids the problem of polysemy, i.e., using different terms to
denote the same resource.

A statement is basically a resource-property-value triple, which de-
fines a binary relationship between two resources (the subject and the
object) using a resource property (the predicate in RDF terminology). The
triple notation is commonly written as A(O, V), meaning that an object°has an attribute A with value V. The RDF model is also equivalently
represented as a labelled directed graph - where the nodes represent
resources and the arcs represent the properties of those resources -
and in XML serialized form.

In RDF, statements are also resources. The RDF model offers the prede-
fined resource rdf: statement and the predefined properties rdf: subject,
rdf: predicate, and rdf: obj ect to allow reifying a statement as a re-
source. Any RDF statement can be the object or value of a triple, which
in the graph representation means that graphs can be nested as well
as chained (forming an hypergraph). The RDF model also defines some
other meta-level constructs, such as container types for describing col-
lections of resources - bags, sequences, and alternatives. A bag is
unordered, a sequence is ordered, and an alternative is a set of choices.
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To allow for the creation of controlled, sharable, extensible vocabular-
ies (often named schemas), RDFSchema (RDFS) [27] was later introduced.
RDFS adds an additional layer on top of RDF to integrate some simple
notion of classes, class inheritance, properties and property inheritance.
RDFS lets developers define a particular vocabulary for RDF data and
specify the kinds of objects these attributes can be applied to. Phrasing
the role of RDFS using knowledge engineering terminology: RDFS de-
fines a simple ontology that particular RDF documents may be checked
against to determine consistency.

The RDFS specification defines a number of classes and properties that
have specific semantics. The rdfs: Class and rdfs: Property classes
allow a resource to be typed as a class or property respectively, and
properties can be used to describe these classes and properties. RDF

objects can be defined as instances of one or more classes using the
rdf: type property. The property rdfs: subClassOf essentially states
that one class is a subset of another - allowing schema designers to
build taxonomies of classes for organising their resources - while
the property rdfs: subPropertyOf does the same for properties. Both
rdfs: subClassOf and rdfs: subPropertyOf are transitive and both are
supposed to be cycle-free (i. e., a class can neither be a subclass of itself
nor a subclass of its own subclasses). Constraints on properties can also
be specified using the rdfs: domain and rdfs: range constructs.

The WebOntology Language (OWL) [11] extends the basic fact-stating
ability of RDF and the class- and property-structuring capabilities of
RDFS. OWL is more expressive than RDFS. Besides declaring classes and
organising them in a subsumption hierarchy, with OWL the ontology
engineer can additionally specify classes as logical combinations - in-
tersections, unions, or complements - of other classes, or as enumerations
of specified objects; and besides declaring properties and organising
them in a subproperty hierarchy, the ontology engineer can addition-
ally state that a property is transitive, symmetric, functional, or is the
inverse of another property. Moreover, equivalence statements can be
made on classes and on properties, disjointness statements can be made
on classes, and equality and inequality can be asserted between objects.
Finally, OWL allows declaring restrictions on properties that are local
to a class. A common use of this feature is to define classes where a
particular property is restricted so that all the values for the property
in instances of the class must belong to a certain class or value range.

RDF Schema

Web Ontology
Language
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Figure 9: A UML diagram view of the DOLCE top-level ontology. Source: [66].

2.7.2 Foundational Ontologies

The Descriptive Ontology for Linguistic and Cognitive Engineering
(DOLCE) [66] is the foundational ontology used as a modeling basis for
the ONIX ontology presented in this chapter 6. Afoundational ontology is,
in essence, an axiomatic theory about high-level domain-independent
classes, such as object, attribute, event, spatial and temporal connections,
and so on. DOLCEbelongs to the WonderWeb library of foundational
ontologies+and has been successfully applied in different domains, for
example in biomedicine [64].

Sincefoundational ontologies provide a predefined set of well-founded,
general-purpose, and reusable semantic concepts and their relations,
they constitute a good starting point for building new ontologies. No-
tably, a foundational ontology defines ontology design patterns. Ontol-
ogy patterns capture, in the form of ontology, re-occurring modeling
needs, e. g., location in space and time. These design patterns can be
applied to achieve high quality design and modeling consistency, and
also enhanced interoperability, particularly with ontologies based on
the same foundational ontology. Other examples of foundational on-
tologies include the Suggested Upper Merged Ontology (SUMO) [128]
and Cyc [I07].

DOLCE categorises entities into four classes: Endurants, Perdurants,
Qualities and Abstracts. A crucial distinction in DOLCE is the one be-
tween enduring and perduring entities. Endurants are' entities which

4 http://wonderweb.semanticweb.org/

http://wonderweb.semanticweb.org/
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Figure 10: The Descriptions & Situations (DnS) ontology design pattern, repre-
sented as a UML diagram. Source: [129].

exist in time, e. g., person, house, theory, while perdurants are entities
which happen in time, e. g.a seminar, a party, a football match. The
main relation between endurants and perdurants is that of participa-
tion: an endurant "lives" in time by participating in a perdurant, e. g.a
person "participates" in his or her life. All entities have qualities such
as colour, shape, size, and so on. Spatial locations, a special kind of
physical quality, and temporal qualities encode the spatio-temporal at-
tributes of objects or events. Finally, abstracts do not have spatial or
temporal qualities and they are not qualities themselves. An example of
this are regions, which are used to encode the measurement of qualities
in some metric or conceptual space. Th~UML diagram view of DOLCE is
sketched in Figure 9.

As extensions to DOLCE, and included in the same library of foun-
dational ontologies, there are three ontological design patterns, which
were used extensively in the design of the ontology presented in chap-
ter 6:

DESCRIPTIONS & SITUATIONS A common modeling need in many
domains is to formalize contextual knowledge. The DnS ontology
[65] is, in essence, an ontology of contexts, providing a princi-
pled approach to context reification through a clear separation of
states-oj-affairs and their interpretation based on a non-physical
context, called a "description". DnS thus defines a situation de-
scription template and reification rules for the main classes in

Extensions to
DOLCE
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InformolionEncodingSyslem

conceivesOf

Figure 11: The Ontology of Information Objects (010) pattern, represented as a
UML diagram. Source: [129].

the DOLCE foundational ontology. This is shown in Figure 10.

DnS results to be a theory of ontological contexts because it is
capable of describing various notions of context - physical and
non-physical situations, topics, provisions, plans, assessments,
beliefs, and so on - as first-order entities. For the purposes of
this chapter, we are particularly interested in using context to
model different views on data and computational processes, e. g., in-
put/ output data, intermediate process. DnS builds on DOLCE in the
following way: a DnS:Si tuation is a newly introduced top class; a
DnS:Description is a non-physical endurant that may be satisfied
by a DnS:Si tuation (and is disjoint from it); the setting for the
DnS:Si tuation is an entity in DOLCE (in grey), be it a region, an
endurant or a perdurant.

ONTOLOGY OF INFORMATION OBJECTS DOLCE includes an ontology
design pattern that enables distinguishing between entities in the
real world and entities that live in information systems, called 010
[66].The main entities defined by oro are DID:InformationObj ect
and its respective DID:InformationRealisation. An information
object is a spatio-temporal entity of abstract information as de-
scribed in Shannon's communication theory (e. g., a computer
program), while an information realisation is an entity that real-
izes the information object (e.g., the program binary code stored
in a DVD between some specified sectors). 010 builds on DOLCE

and DnS in the following way: an 010: InformationObject is a
non-physical DOLCE:Endurant that expresses a DnS:Description.
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DnS:defines

proactively
Satisfies

Figure 12: The Ontology of Plans (OaP) pattern, represented as a UML diagram.
Source: [129].

The description satisfies a DnS:Si tuation, namely the situation
that works as the setting for the 010: InformationRealisation
that realizes that 010: Info rmationObj ect. The information object
holds information about some DOLCE:Particula r. In Figure 11,

the Ontology of Information Objects is depicted.

ONTOLOGY OF PLANS The Ontology of Plans (oer) [66] characterises
planning concepts. It is an ontology design pattern intended to
model plans at an abstract level, providing a framework for more
specific ontologies that characterise particular kinds of plans (e.g.,
personal, social, computational), and it forms the basis for model-
ing software component/ service workflows, which will be needed
later. The main entities defined by OaP are OoP:Task, OoP:Plan,
and OoP:PlanExecution, all appropriately grounded on DOLCE

and DnS entities. OaP builds on DOLCE and DnS in the following
way: an OoP:Plan is a special kind of DnS:Description, which
defines roles to be played by DOLCE:Endurantsin an OoP:Task;
the OoP:Task entity sequences an OoP:Activity (a specialisation
of a DOLCE:Perdurant), whose setting is the OoP:Plan. Figure 12

shows the Ontology of Plans.

2.7.3 Core Ontologies

In the design and development of the Ontology of Information Ex-
traction, two core ontologies were used as a modeling basis: the Core
Ontology of MultiMedia (COMM) and the Core Software Ontology (CSO).
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Roughly speaking, COMM covers the data part of ONIX, while CSo covers
the processing part. The ontologies were extended by providing new and
more specialised semantic constructs for the domain of Information
Extraction from multimedia data.

The Core Software Ontology [129] provides generic top-level con-
structs to formally describe software systems. It is included in the Core
Ontology of Software, a set of ontologies that describe concepts of
service-oriented and component-based software. The original purpose
of these ontologies was to support the maintenance of server applica-
tions, but their generality translated into their adoption as a modeling
basis for many other ontologies [103,8, 153]. The Core Ontology of
Software is modularized into three major sub-ontologies - the Core
Software Ontology, Core Ontology of Software Components and the
Core Ontology of Services - and rooted in the upper-level ontologies
overviewed in the previous subsection. For the purposes of the work
presented in this thesis, we are mainly interested in the Core Software
Ontology (cso).
The most fundamental concepts required to model both software

components and Web services are formalised in CSO, including con-
cepts such as software, data, users, access rights and interfaces, that is,
entities that live in the computational domain. In cso, CSO:Softwa re is
characterised as an 010: InformationObj ect and is said to express an
OoP:Plan. The plan that it expresses consists of an arbitrary number of
CSO:ComputationalTasksthatsequenceCSO:ComputationalActivities,
specialising OoP:Task and OoP:Activity, respectively. The ontology
additionally introduces the concept of CSo:ComputationalObj ect, a
specialisation of the concept 010: InformationRealisation. The com-
putational object can be, for example, the realisation of CSo:Softwa re,
whose execution leads to CSO:ComputationalActivities. The other
main concept modeled by cso is that of CSo:Data. Like CSO:Softwa re,
CSO:Data is viewed as a special kind of 010: InformationObj ect, with
the difference that they do not express an OoP:Plan.

The Core Ontology of MultiMedia [8] is an ontology and API that pro-
vides constructs to semantically describe multimedia artifacts available
on the Web. The ontology was originally created to tackle a number of
aspects that make the MPEG-7 standard [71] cumbersome and ineffective.
For example, MPEG-7 does not support machine-processable semantic
annotations of the image subject matter, since the lightweight MPEG-7

proprietary controlled vocabularies used to tag the images are incom-
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Figure 13: The main concepts in the Core Software Ontology (CSO), represented
as a UML diagram. CSO introduces fundamental concepts for model-
ing computational systems, particularly the concepts of software and
data. Source: [l29].

patible with Semantic Web ontologies. COMM, on the other hand, is
modeled using a sound ontological engineering approach, which builds
upon the foundational ontologies reviewed in the previous subsection,
and is formalised in OWL (described earlier). To leverage annotators'
experience with MPEG-7, COMM covers all the MPEG-7 descriptors and
uses the same naming conventions as in that standard.

The ontology formalises the basic concepts of COMM:Digita lData,
COMM:MultimediaDataand COMM:Algorithm,all of which rely on the
Ontology of Information Objects. COMM:Digi ta lData is viewed as a kind
of 010: InformationObj ect used for communication between machines.
Specialising the DnS and ala ontologies, COMM introduces the concept
of COMM:St ructu redDataDescription, a kind of DnS:Description, that
defines meaningful labels for the information in COMM:Digita lData.
Such information is characterised by DOLCE:Abst ractRegions (encom-
passing scalars, matrices, strings, rectangles, polygons, and so on).
Since in DOLCE regions are described by parameters, COMM defines
COMM:St ructu redDataPa rameters, a kind of DOLCE:Parameter, to which
DOLCE:Abst ractRegions assign values.

The COMM:MultimediaData concept is a specialisation of the concept
COMM:Digi ta lData, and it is in turn expected to be specialised to specific
media types, e. g., ImageData or TextData - in fact, this is precisely
what has been done in the design of ONIX. Finally, a COMM:Algorithmis
seen as a method applied to solving computational problems, and as
such it is a specialisation of 010: Method.

The Core Ontology of
Multimedia
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StructuredDotoDescription

Figure 14: The Decomposition pattern in the COMMontology, represented as a
UMLdiagram. Source: [8].

Besides the basic concepts just introduced, three ontology design
patterns are included in the COMMontology. These are:

DECOMPOSITION The decomposition pattern, depicted in Figure 14,

handles the description of a multimedia document's structure.
COMM views a decomposition of a COMM:MultimediaData entity
as a DnS:Situation that satisfies a DnS:Description. For exam-
ple, the situation can be "splitting a text into sentences" and the
description can be the algorithm that performs that. An impor-
tant specialisation of the concept DnS:Role in COMM consists in
the COMM:lnputSegmentRole and COMM:OutputSegmentRolecon-
cepts. Concretely, a COMM:lnputSegmentRoleexpresses that some
COMM:MultimediaData entity plays the role of an input segment
in some situation. The need localise segments within the input
media leads to the definition of a COMM:MaSkRole, to be played
by one or more COMM:Digita lData entities which express one
COMM:LocalisationDesc ripto r (the localisation descriptors are
ontological versions of MPEG-7region locators for defining re-
gions in an image).

CONTENT & MEDIA ANNOTATION This pattern, depicted in Figure 15,
allows expressing the attachment of annotations to COMM:Media
or to COMM:MultimediaData (the media are realised by multime-
dia data). In COMM, a COMM:Annotation is a DnS:Situation that
represents the "state-of-affairs" of the COMM:MultimediaData and
all the metadata attached to them. Metadata are modeled as
COMM:DigitalData that playa COMM:AnnotationRple. There is a
corresponding COMM:AnnotatedMediaRolefor COMM:Media.
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I Information Realisation

Figure 15: The Content & Media Annotation pattern in the COMM ontology, rep-
resented as a UML diagram. Source: [8].

Figure 16: The Semantic Annotation pattern in the COMM ontology, represented
as a UML diagram. Source: [8].

SEMANTIC ANNOTATION The semantic annotation pattern, depicted
in Figure 16, provides support in COMM for associating multi-
media descriptors with domain concepts defined in some do-
main ontology. The range of the association is generically ex-
pressed by a OWL:Thing or a DOLCE:Particula r in the pattern.
The association is done through a COMM:SemanticAnnotation (a
DnS:Description that satisfies the ala: Method applied to gener-
ate it), which specifies that the annotated COMM:MultimediaData
plays an COMM:AnnotatedDataRo le and the referred OWL:Thing a
COMM:SemanticLabelRole.
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OPEN PROBLEMS IN TEXT MINING

In this chapter, I describe in detail a subset of open problems in the field
of text mining which is relevant to the work presented in this thesis. I
refine the main research questions formulated in chapter 1, setting out
a set of subproblems to tackle in Part II.

Iargue that text mining approaches are currently still hard to design,
develop and maintain due to the cost of engineering features, the cost of
obtaining labelled data and three other non-technical problems, which
Idesignate the systemic, communication and replicability problems.

3.1 PROBLEM 1: THE COST OF ENGINEERING FEATURES

Feature engineering is the process of analysing the learning examples
where the classifier made the costliest mistakes and identifying novel
classes of features that could potentially enable a better discrimination
of those examples, in order to reduce the overall classification error. The
repeated application of this method can be termed a feature engineering
cycle.

The outcome of the feature engineering cycle are novel sets of fea-
tures, which are typically derived via a number of hand-crafted atomic
observational tests, e. g., word is capitalized, or word is "speaker", or
word appears in lexicon of city names. A large collection of features for
learning is then formed by making conjunctions of the atomic tests in
certain pre-defined patterns, for example the conjunctions consisting of
all tests at the current sequence position conjoined with all tests at the
position one step ahead, e. g.current word is capitalized and next word
is "plc".

At first glance, it would seem plausible to take the classes of features
reported to work well in the literature and use them all in order to
build the "best" performing text mining system. Unfortunately, this
naive approach does not work for several reasons. First, the systems
that underlie the reported results in the different publications are not
the same. This is because authors rarely make their systems available,

3
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leading the unfortunate reality that each author implements their own
system, which will inevitably differ in some detail from another au-
thor's system. Thus, classes of features that work well in a given system
are many times irrelevant when tried in another system, due to those
unreported differences. To make matters worse, results are usually re-
ported on different corpora. Even when they are reported on the same
corpus, different splits of the corpus for training and testing the sys-
tems may be used". Second, despite the robustness of modern learning
algorithms, simply merging two successful classes of features does not
necessarily mean that better results will be obtained - in some cases,
the accuracy of the system drops slightly with respect to using just
one or the other class of features. Third, introducing redundant and/ or
irrelevant features into a system does come at a cost, as it increases the
running time of the learning algorithm, and it may require running
more input pre-processing tools, which also add to the total running
time of the system.

In spite of the apparent simplicity of the process, the feature engineer-
ing cycle is, in fact, a very time consuming part of building a ML-based
text mining system. Part of the problem stems from the sheer volume
of data and results involved, the quantity of which defies manual orga-
nization and analysis. Moreover, it is a process characterized by many
frustrated attempts to improve classifier accuracy, as the majority of the
features tried tend not to make a difference. When a set of features is
found that does improve accuracy, the improvement tends to be a small
increment. The process ends when a given target accuracy is achieved,
or when time runs out to keep pursuing it.

Therefore, because the cost of the feature engineering cycle is typically
prohibitively high in terms of time and effort, the results of ablation
studies, showing which classes of features have been successfully uti-
lized in which settings, constitute valuable lessons for text mining
practitioners to jumpstart the process of designing and developing new
TC and IE systems.

Feature engineering is, indeed, one of the most promising means of
improving system performance in a variety of statistical natural lan-
guage processing and machine learning tasks. While automatic feature
selection [155], ensemble methods [49], and innovative statistical mod-
els each offer the possibility of significant accuracy gains, their potential
contributions are necessarily constrained by the qualityof the features

t A more detailed discussion on the issues in evaluating IE systems can be found in (106)0
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extracted from the text and images. As experience with machine learn-
ing for solving the document classification and information extraction
tasks accumulates in the field, practitioners have found that feature
engineering is as critical as the choice of machine learning algorithm,
given that feature design does significantly affect the performance of
systems in practice.

A related question, which arises from the fact that statistical feature
selection is a successful technique in document classification, is whether
feature selection can similarly contribute to an improvement in the
accuracy of EE approaches. In chapter 4, I present, as part of the ablation
study, empirical evidence showing that it does not.

A little explored avenue for feature engineering is the fact that mod-
em documents are multimedia in nature. Multimedia documents typ-
ically carry a mixture of text, images, tables and metadata about the
content (e. g., style information), all of which are traditionally not han-
dled by text mining systems. However, valuable features characterising
the document content can often be found in the structure, the lay-
out and the relationships between the different media comprising the
document.

Unfortunately, text mining systems tend to simply strip documents
down to their core single-medium formats, for example by treating the
document as a set or sequence of words plus a separate set or sequence
of images. As a consequence, cross-media features that would otherwise
be valuable to the mining algorithm [112, 26] are unfortunately ignored.
In fact, these traditional simplifying assumptions about document
content pre-processing have been reported not to be adequate for more
demanding real-world applications such as information retrieval from
patient diagnostic reports [51, 174] or jet-engine maintenance reports
[46].

Instead of treating each medium separately, it would thus arguably
be advantageous to exploit potential correlations across the media
elements. This poses the problem of how to effectively model the
relationship between those media objects, in other words, to identify
with novel sets of features via feature engineering. For example, in
news articles, like the one in Figure 17, typically one or more images
are included with the story that illustrate the events. Features such as
their caption or their disposition with respect to the text flow are not
random, but rather choices made by the editor according to conventions

Impact of statistical
feature selection
methods

Features arising from
multimedia nature of
documents

Exploit correlations
across media
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Figure 17: Example of a Web news article.

defined by professional and/ or web communities, whether explicitly
or implicitly.

Following such rationale, in chapter 4 I present an approach to DC that
takes advantage of cross-media correlations in documents, and show
that it outperforms baseline text mining and simple multimedia mining
approaches in terms of the measured accuracy in classifying documents.
In order to achieve that, it is fundamental to identify effective ways to
use cross-media features.

To summarise, my research concerning the cost of engineering fea-
tures addresses the following sub-questions:

• Which classes of features contribute more significantly to the
accuracy obtained in EE approaches?

• How does accuracy vary with the several parameters introduced
by the EE learning model?

• Do statistical feature selection methods have a positive impact in
the EE task as they do in the IC task?



3.2 PROBLEM 2: THE COST OF OBTAINING LABELLED DATA 63

• Can cross-media features help improve the accuracy of classifiers
in the DC task?

The answers to the above questions are given in chapter 4.

3.2 PROBLEM 2: THE COST OF OBTAINING LABELLED DATA

Even though the whole point of constructing automated systems is
to circumvent the need for domain experts to manually analyse docu-
ments, the experts are still needed in the initial stages of development,
or during maintenance, to provide enough training material to enable
the application of machine learning techniques. Concretely, the role
of the expert is to perform semantic annotation on some documents
representative of the domain of interest. For example, a mention of a
gene can be marked in the documents where it appears, as can the men-
tions of relationships between genes, and these marks can be linked to
entity and relation classes in the ontology that models the gene domain,
thereby granting the appropriate semantics to the annotations. From
a machine learning viewpoint, the annotations work as labels for the
examples passed to the learning algorithm.

Unfortunately, experts are rarely available or willing to spend their
time annotating. During the content creation phase, annotating adds a
burden that is very often seen as "a waste of time", and it is therefore
difficult to convince experts to make the extra effort of providing the
semantics of newly created content. For legacy content, typically a
document repository exists before any ontology has been defined for
the domain in question, and so semantic annotations need to be created
at the time the ontology is defined. This suffers from the same problems
as before, aggravated by the fact that potentially a large amount of
semantic annotations need to be produced in a short period of time.

Therefore, in real-world settings, such as the one described in chap-
ter 5, labelled data availability for adopting ML-based text mining
approaches will depend on a number of factors, including willing-
ness and/or capability of domain experts to annotate, the complexity
of the natural language analysis that needs to be performed - and,
closely related, the complexity of the semantic annotation process -, the
methodology employed and tool availability to obtain the labelled data,
and so on. When working with real-world data outside controlled lab
environments where annotation quality can be tightly monitored and

Expensive to obtain
labelled examples

Limited labelled data
availability
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enforced, it is not safe to make assumptions about either the amount
or the quality of labelled data that will be available to the learning
methods.

However, it is relatively safe to assume that in many real-world tasks
it will be cheap to find unlabelled data. Large databases of text and mul-
timedia documents are generally available for a given domain, where
only a very small portion of them is hand-classified. It is also prudent
to be conservative about the expectation of the semantic annotation
quality. In particular, the assumption should not be made, contrary to
some academic settings, that, when annotating a given document, the
domain expert will make a complete annotation for that document-
some annotations may be Inissed, either intentionally or unintentionally.
This has an impact on the way the information extraction tasks should
be modelled. Concretely, the absence of annotation cannot be modelled
as a negative example for the classifier. Semi-supervised methods pro-
vide an answer to this problem, and for that reason I explore their use
in chapter 5.

If creating semantic annotations for one domain is difficult already,
maintaining and porting them across domains is an even more daunting
task. It is crucial to devise methods to minimize the experts' effort in
providing labelled data during the creation and maintenance phases.
One way to achieve this is through the use of domain adaptation
methods.

Domain adaptation [13] is a fundamental learning problem where
one wishes to use labelled data from one or several source domains to
learn a hypothesis performing well on a different, yet related, domain
for which no labelled data is available. The task of domain adaptation is
particularly relevant to real-world TC problems, because the simplifying
assumption, often made, that documents in the training set are drawn
from the same underlying distribution as documents in the test set
rarely holds in practice. As a consequence, statistical models derived
from training data drawn from the "source" domain typically do not
perform well on test data drawn from the "target" domain. For exam-
ple, [126] report that a text classification model trained on a Yahoo!
directory performed poorly on a Weblog classification problem, since
the distribution of terms differed significantly.

The feature labelling paradigm introduced in section 2.6 is partic-
ularly appealing for the domain adaptation task because it is often
possible for domain experts to tell which features from the source do-
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main are expected to apply robustly also in the target domain. This Feature labelling for
is easier and less time consuming than labelling documents. Unfortu- domain adaptation

nately, approaches to domain adaptation have not considered the use
of the feature labelling paradigm so far. This is what will be explored
in this thesis, in chapter 5.

To summarise, my research concerning the cost of obtaining labelled
data addresses the following sub-questions:

• What is the impact, in a real-world setting, of using semi-supervised
methods for the task of EE, both in system accuracy and training
time?

• Can the accuracy obtained by a feature labelling approach to
domain adaptation be comparable with that of state-of-the-art
approaches that use a more costly instance labelling approach?

The answers to the above questions are given in chapter 5.

3.3 FURTHER PROBLEMS

I have argued so far that designing, developing and maintaining text
mining systems that work on real-world tasks and data is currently
complex and costly. There are further components to that cost beyond
the cost of engineering features and the cost in obtaining labelled data,
which are not tied to technical ML aspects.

The multidisciplinary set of skills required to understand all the
concepts involved, and the sheer number of software subsystems and
components that need to be integrated, translates into an extremely
high cost of entry for novice developers of IE systems. It also means
that maintenance costs are considerable, even for expert developers. I
will call this the systemic problem. Further, there is often ambiguity in
the terminology employed by engineers and researchers who, coming
from areas as diverse as Natural Language Processing, Image Analysis,
Machine Learning and the Semantic Web, work together to develop
IE solutions. I will call this the communication problem. On top of this,
results reported in the scientific literature are hard to replicate, because
IE systems' descriptions are almost invariably incomplete due to the
difficulty in covering all the details in the limited space allocated for
publication. I will call this the replicability problem.
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3.3.1 Problem 3: The Systemic Problem

Besides the functional concerns identified in chapter 2 (i.e., decomposi-
tion, segment analysis, data modelling and semantic annotation), it is
not uncommon for a designer of text mining systems to have to take
into account a few or all of the following non-functional concerns:

Scalability: to be able to handle large amounts of documents or cope
with domains in which a large n~ber of entities and relations
amongst those entities exist.

Expressiveness: to understand which data structures are expressive
enough to hold the models of the data and their intermediate
representations.

Portability: to seek a modular design of the system so that porting it
to other tasks and domains can be done quickly by mere parame-
terisation of functional components.

Data Integration: to merge data outputted by several pre-processors
(e. g., part-of-speech tagger, image texture analyser) working on
multiple documents, and data from external resources (e. g., on-
tologies, knowledge bases, language resources), into a uniform
data representation that supports integrated analysis.

Tools Orchestration: to wrap a number of existing tools and determine
the dependencies amongst them in order to process the data.

Formats Handling: to conform to given file formats for the purposes
of input/ output.

The complexity associated with developing text mining systems
translates into an extremely high cost of entry for novice developers. It
also means that the maintenance costs are very considerable, even for
expert developers. In order to reduce the complexity associated with
developing and maintaining text mining systems, the state-of-the-art is
moving towards the adoption of Service-Oriented Architecture (SOA)
[53] principles. To enable automated discovery and composition, services
need to be declaratively described, and their descriptions published,
so that both users and other services can learn about their capabilities
(see Figure 18). Service discovery plays an important role in speeding
up or automating the construction of text mining systems from their
individual components. And, arguably, service discovery plays an even
more important role in making distributed systems robust to the failure
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Discover Publish

Figure 18: Service discovery in service-oriented architectures. Service reposi-
tories aggregate service descriptions published by their respective
providers, and reply to queries from users or other services.

of any of the subsystems, as equivalent components can be located
automatically and can replace the faulty ones on-the-fly.

The quality of the descriptions (of tasks, subsystems, components,
and inputs/ outputs) essentially determines how well automated discov-
ery and composition will work. The finer-grained the descriptions are,
the richer the queries against the service repository can be. For example,
describing the entity recognition system in our example down to the
level of the learning algorithm parameters would enable discovering,
amongst the available systems, those systems that allow tuning the pre-
cision/recall balance of the system, for example. In addition, the richer
the semantics of the description, the more accurate the queries can
be. For instance, if the system uses a stochastic gradient descent learn-
ing algorithm, and the algorithm is described as having sub-quadratic
average complexity, then, with the right semantics in the Knowledge
Base (KB), it would be possible to automatically infer that the system is
suitable for working over large datasets.

3.3.2 Problem 4: The Communication Problem

The complexity of the domain of unstructured information mining
is not only reflected in the complexity of its systems, but also in the
considerable amount of concepts to master and in the variability with
which those concepts are named and referred to. The simplest form
of the communication problem is a terminology problem: engineers
and researchers coming from different backgrounds, working together
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to develop text mining solutions, are often faced with difficulty in
understanding the terms used by each other. For example, someone
specialised in document categorization tends to simply use the term
"word" when talking about the "feature that indicates the presence of
a word", whereas a researcher in MLwill prefer the term "feature",
and someone with a background in data mining the term "attribute";
researchers in NLPnot familiar with ML-based approaches will use the
term "rules", while researchers in image analysis will use the term
"model" to refer to the same artifact; researchers in NLPtend to talk
about "annotation" and "annotator", whilst researchers in MLtend to
talk about "label" and "oracle"; and so on.

The communication problem is exacerbated by the need to commu-
nicate complex ideas related to the structure of the data and/ or the
system. Therefore, making available an agreed-upon means of refer-
ring to and describing text mining tasks and systems, their inputs
and outputs and their internal constituents (components, subsystems,
auxiliary resources, and so on), can be invaluable as a communication
framework for a team or community to share domain knowledge about
unstructured information mining.

3.3.3 Problem 5: The Replicability Problem

Another important problem addressed in this thesis is that of enhanc-
ing replicability of empirical research - a concern shared recently in
several areas of research, see [135, 146, 157, 106]. As mentioned, results
reported in the scientific literature are hard to replicate, because text
mining systems' descriptions are almost invariably incomplete due to
the difficulty in covering all the details in the limited space allocated
for publication.

There is therefore the need for mechanisms to enable providing
detailed information both about the IE system and about the provenance
[134] of extracted facts. Enabling researchers to accompany published
results with a unambiguous (formal) description of the text mining
methods and systems used in the experimental tasks that they report
about, would expectedly lead to advances in the sharing and evaluation
of systems and resources in the scientific community.
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Part II

TACKLING THE COST OF FEATURE AND
KNOWLEDGE ENGINEERING



FEATURE ENGINEERING FOR TEXT MINING

Identifying the right features for a given text mining problem is a very
time consuming, yet extremely important, task in the development and
maintenance of ML-basedtext mining solutions. This chapter addresses
the first research question in this thesis, recall from chapter 1:

Which classes of features lead to an improved classification
accuracy in the document classification and entity recogni-
tion tasks?

As mentioned in chapter 3, the cost of the feature engineering cy-
cle is usually prohibitively high in terms of time and effort. For that
reason, the results of ablation studies constitute valuable lessons for
text mining practitioners. In this chapter, I begin by providing one
such comprehensive ablation study for the task of Entity Extraction,
deriving conclusions from carefully designed experimental conditions.
The outcome of the feature engineering conducted during the ablation
study consists in successful sets of features for Entity Extraction.

Later in the chapter I also propose a novel class of features for mining
multimedia documents. The method to extract the features exploits
document layout and the relationship between the different media
comprising the document, and it does so in a generic way, making this
class of features extractable from any multimedia document. I show that
it is possible to improve accuracy of text mining systems by processing
not just text but also images and the cross-media correlations between
the elements in a multimedia document.

4.1 SUCCESSFUL FEATURES FOR ENTITY EXTRACTION

In this section I investigate the impact of incorporating diverse classes
of features into boundary classification approaches (recall from subsec-
tion 2.2.2) to the Entity Extraction (EE) task. I also measures the impact
of several other typical model parameters that arise in this kind of
approach. In addition, a comparative study of the impact of feature
selection metrics is presented.

4
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The goal of this ablation study is to determine which features and
learning model parameters are the real contributors to the success of
boundary model EE approaches in the literature, and determine the
sensitiveness of the experimental results to each of the several feature
types and parameters. For that reason, the experiments are run under
the exact same experimental conditions, just varying one feature type
or parameter at a time. Because the focus is on feature engineering, the
adopted learning model is a simple and fixed one, so as to minimize the
influence it might have on the results an? conclusions. Two well-known
corpora are used in this empirical study.

Lessons learned from the study enabled building an entity recogni-
tion system comparable to the state-of-the-art, but which uses a much
simpler learning model than other state-of-the-art systems in the litera-
ture. The system is briefly described in section A.3 and made publicly
available on the Web. Moreover, the successful features that constitute
the outcome of this study were adopted in a real-world use case in the
design of the EE approach presented in chapter 5.

4.1.1 [)atasets

The experiments in this section were performed over two standard
benchmark datasets for EE: the Seminar Announcements (SA) corpus
[62] and the Workshop Call for Papers (WCFP) corpus [87].

The Seminar Announcements corpus consists of a set of 486 emails an-
nouncing seminars collected at Carnegie Mellon University. An excerpt
of such an announcement is shown in Figure 3. The announcements con-
sist of free text and are thus generally unstructured. In some cases the
author provided some kind of structure, which is in any case dependent
on the author and not consistent across documents.

Each seminar announcement is annotated with speaker, location,
stime (start time) and etime (end time). The speaker is the name of
the person giving the seminar, the location is where the seminar will
take place, and the other two are the time when the seminar will
start and end, respectively. Table 2 shows the details about the entity
classes. There can be more than one speaker at a seminar, but in this
dataset only one speaker has been annotated. Unlike speaker, the other
classes always have one possible value per seminar, even if it may each
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CLASS FREQUENCY EXAMPLES

speaker 759 Ralph Hill, Mr. Kurtz, Dr. David Evans

location 645 Student Center Room 207, 7500 Wean Hall

stime 984 4:15,4.30 pm, roam

etime 435 5:30,5.15 pm, t ram

Table 2: Details on the entity classes in the Seminar Announcements corpus.

occur several times in different surface forms throughout the seminar
announcement document.

The Workshop Call for Papers corpus was created for the Interna-
tional Challenge entitled "Evaluating Machine Learning for Information
Extraction" organised by the PASCAL Network of Excellence, The Uni-
versity of Sheffield, ITC-IRST, U. Illinois at Urbana-Champaign, U.
College Dublin and Fair Isaac Corporation. It consists of 1100 workshop
call for papers, 600 of which were annotated. From those, 200 were
reserved to assess the performance of the systems, and were thus never
released by the organisers of the challenge. Most of the text is from the
domain of computer science. Moreover, the training and test sets are
temporally separate. Figure 19 shows an excerpt of a document in the
WCFP corpus.

The WCFP corpus is annotated with 11 entity classes, such as work-
shop name, acronym, homepage, location, date, the deadlines for paper
submission, notification of acceptance and camera-ready version, and
the name, location and date of the conference associated with the work-
shop. Every class contain exactly one entity of its type per document.
Table 3 shows the details about the entity classes. The similarity between
the values for the several date classes, and also between the values for
the workshop vs. conference classes, means that it is only possible to
discriminate between the values by using the context surrounding the
entity mentions.

4.1.2 A Detailed Study

The experimental ablation study presented in this section investigates
several instantiations of the boundary classification model. The study
is important as it intends to clarify the contribution of different classes

Workshop Call for
Papers dataset
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Call for Papers
23rd International Workshop on

Graph-Theoretic Concepts in Computer Science (WG'97)

Berlin, June 18 - 20, 1997

The WGworkshop series looks back on a remarkable tradition.
[ ... ]

IMPORTANTDATES
===============

March 1, 1997
May 1, 1997
May 15, 1997
August 1, 1997

Submission Deadline:
Notification of Acceptance:
Software demos:
Proceedings version:

Figure 19:An excerpt of a workshop call for papers.

CLASS FREQUENCY EXAMPLES

wname 788 AAAI-95 Fall Symposium

wacronym 809 ZobIS 96, RTSS'98

wdate 912 June 8-9 2000, September rst-znd

whomepage 582 http:/ / www.cs.virginia.edu/wecwis2ooo

wlocation 681 Pisa, Italy ; Cottbus ; Cottbus, Germany

wsubmissiondate 906 March 1 ; June 3, 1996

wnotificationdate 581 Friday 27th March 1998

wcamerareadydate 518 Mar. 24,2000

cname 294 15th International Conference
on Conceptual Modelling

cacronym 607 ACL/COLING '98, ECAI-2ooo

chomepage 179 www.acm.org/sigs/sigmn;J./MM99

Table 3: Details on the entity classes in the Workshop Call for Papers corpus.

http://www.cs.virginia.edu/wecwis2ooo
http://www.acm.org/sigs/sigmn;J./MM99
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of features and model parameters to the overall performance of this
approach to EE.

As introduced in subsection 2.2.2, boundary classification models
make use of two independent binary classification tasks: classifying a
boundary in the text as to whether it is the start of an entity mention,
and classifying it as to whether it is the end of an entity mention. Thus,
a learning example describes a boundary in the training corpus. The
boundary becomes the center of a window of tokens to its left and right,
of a given fixed size. The boundaries that start an entity mention labeled
with "tag" are the positive examples for the classifier of start-<tag>,
while all the other boundaries in the corpus become negative examples
for this classifier. Conversely, the positive examples for the classifier of
end-<t~g> are the boundaries that end an entity mention labeled with
that "tag", and all the other examples constitute negative examples.

In the study, the following classes of features and model parameters
are used in the experiments:

EFFECT OF COMBINING CLASSES OF FEATURES Typical external data
resources and processors used in EE include sentence splitters,
tokenisers, parts-of-speech taggers and gazetteers. This experi-
ment will show the effect of combining these resources and their
contribution to the different entity classes. The experiment will
combine four kinds of token-related features: the token string, the
token part-oj-speech, the token orthography, and categories for the
token looked up in a gazetteer. These classes of features are de-
noted by 5, P, 0, and G,respectively. The data resources used for
this experiment are the default ones provided by the NLP tools
chosen (see below).

EFFECT OF QUALITY OF THE FEATURES This experiment takes the
resources of the previous experiment and tries to improve them.
The parts-of-speech are organised in a tree structure where a part-
of-speech tag can have a parent tag, e. g., VBD, VBN and VBZ tags
have a more generic VB parent tag. When a tag is inserted as a
feature, its ancestors up to the root of the tree are also inserted.
This potentially helps the learning machine to generalise better.

The orthographic categories for this experiment were augmented
with specific categories for one and two letter words, words con-
taining special characters and acronyms, inspired by what is done
in the (lP)2 algorithm. Moreover, the orthography is also organ-
ised hierarchically in a similar manner to the parts-of-speech.
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The gazetteer used in this experiment is the gazetteer used in [59].
This gazetteer includes roughly the same categories as the one
used in the previous experiment, but contains many more entries,
particularly related to first and last names. Concretely, it contains
several tenths of thousand entries for first and last name, whereas
the previous gazetteer only contained a few hundred entries for
first name. In contrast, the gazetteer used in this experiment
contains fewer categories for date and time than the previous one.
The classes of features for this experiment are denoted by P' , 0 ' ,
and G' respectively.

EFFECT OF SPACE AND NEWLINE TOKENS The effect of space and
newline tokens is dependent on the nature of the dataset and of
the entity class to extract. This experiment explores three variants
in the way the corpus is preprocessed: removing all space and
newline tokens; removing just space tokens, keeping newline
tokens; and keeping all token types.

EFFECT OF TOKEN WINDOW LENGTH As explained in subsection 2.2.2, .

boundary classification models take tokens in the vicinity of the
boundary to generate features, forming a so-called "window" of
tokens around the boundary. This experiment analyses the impact
of the chosen window length in the performance of the system.

EFFECT OF FEATURE SELECTION [67] have shown that instance selec-
tion is technique able to greatly reduce the complexity of the
learning problem while maintaining accuracy. Inspired by their
work, this experiment addresses a related question. It takes stan-
dard feature selection metrics widely used in text categorisation
and applies them in the context of the boundary classification
approach to EE. In contrast with the text categorisation field where
feature selection has been widely studied, little is known about
the effects of using feature selection in EE. The feature selection
metrics used in this experiment are the ones described in subsec-
tion 2.4.3: cross-entropy, information gain, frequency and a random
baseline metric.

All experiments use a base system and modify it, a single change at
a time, for determining the effect in the results obtained by running an
otherwise identical experiment.

The base system pre-processes the corpus using ~he default AN-
NIE components of General Architecture for Text Engineering (GATE)1,

1 http://www.gate.ac.uk. see chapter 6 for a brief description

http://www.gate.ac.uk.
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namely the default tokeniser, parts-of-speech tagger and gazetteer. In
the base system, no tokens are discarded, not even space tokens. The
features are encoded as described in section 2.5. The default window
length is 5 tokens to each side of the boundary. The SVM implementation
used in all experiments is SVMLight [92], using a linear kernel with
parameters j=2, C=O.075 for the SA corpus and j=10, C=O.05 for the WCFP

corpus, optimised by cross-validation (grid search). Feature selection is
performed on each binary classifier's datasets separately.

At the end of the classification process, the predictions for the start
and end of the entity mentions coming from both classifiers are paired
by (a) recursively enumerating all possible pairs for each document
(b) calculating a score for each possible subset of the superset of pairs,
based OXl the sum of classifier confidence measures for the individual
predictions and (c) selecting the set of pairs that maximizes the confi-
dence score . The pseudo-code for the pairing algorithm can be found
in Appendix B.

Regarding validation, all experiments were run over ten random 50:50
splits of the SA dataset and ten random 75:25 splits of the WCFP dataset.
The assessment of the system performance considers strict matches
only (see section 2.3). The computed precision, recall and f-measure
values were macro-averaged, mainly because the micro-averaged values
were not reported in the literature for some of the systems, making
result comparison only possible with macro-average. All F-measures
report on the ten random split runs.

4.1.3 Results

The results obtained in the ablation study on the several classes of basic
features - token string, orthography, part-of-speech, and gazetteer
lookup - are shown in Table 4 and Table 5, for the SA corpus and the
WCFP corpus, respectively. Note that for the sake of clarity only a few of
the slots for WCFP are shown - those which exhibit higher sensitivity
to changing the features classes.

Table 6 and Table 7 show the results obtained concerning the use
of several classes of more advanced features, as introduced earlier:
hierarchical part-of-speech, enhanced and hierarchical orthography,
and enhanced gazetteers. The reported results consist of the difference

Base system

Pairing open and
close tags

Validation
methodology used
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FEATURE LOCATION ETIME STIME SPEAKER MACRO

0 0 12·3 52.1 0 16.1

G 0 76.5 71.6 7 38.78

P 37 84·7 82.6 42.78 61.77

S 82·3 95·9 94.8 53·7 81.7

POG 72.8 95·4 91.9 70.54 82·7

SG 83.2 94·7 94·5 72.6 86.2

SO 85·9 96.4 94·3 69.1 864

SP 86.2 96.2 94.2 70.9 86·9

spa 86·7 96.2 94.2 72 87·3

SaG 85·7 94·9 94·7 77.8 88·3

SPG 86 95·9 94·5 78.5 88·7

SPOG 86.2 95·9 94·5 78.8 88·9

Table 4: The effect of different classes of basic features on the results for the
Seminar Announcements dataset, measured using F-measure. The best
results for each class are highlighted in bold font.
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Figure 20: The effect of the token window length parameter on the results
averaged over all classes in the Seminar Announcements corpus.
The x axis shows the length of the window in number of tokens to
either side of the boundary, while the y axis shows the F-measure
obtained.
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FEATURE WACRON WLOCAT WDATE WHO ME MACRO

0 29.6 0 0 4.1 6·9

G 0 42.1 59.2 1.3 19.2

P 53.2 38.1 53·3 49-4 41.3

POG 57·3 53·3 66·5 54·7 50.3

SP 69·3 60·3 67-4 58.5 60-4

S 69.6 55·3 69·7 60·5 60.6

SG 67·7 63.6 70.4 60·4 60.8

SOG 70.5 62.6 71.1 60 60·9

SPC) 71.7 58.1 68.5 58.1 61

SPOG 69.6 63.2 71.5 58.2 61.1

SPG 71.6 58.9 70.3 61·3 61.4

SPG 71.6 63·9 70.6 58.4 62.1

Table 5: The effect of different classes of basic features on the results for the
Workshop Call for Papers dataset, measured using F-measure. Results
for the workshop acronym, location, date and homepage classes are
shown.

FEATURE LOCATION ETIME STIME SPEAKER MACRO

0'-0 54.2 76,9 33.8 41.3 51.5

P'-P 8-4 3·3 2.1 3·9 4·4

G'-G 0 -16.2 -25.2 61.8 5

SP' -SP -0·4 0·3 -0·7 -0·3 -0·3

SO'- 1.1 -1.5 -1 0·9 -0.2
SO

SP'O'G -1·3 -1.8 -0.8 -2·5 -1.6
-SPOG

SPOG'- 0.8 1 0.2 6.82 2.2
SPOG

Table 6: The effect of adding classes of advanced features on the results for
the Seminar Announcements dataset, measuring the difference in F-
measures obtained. Selected differences for each class are highlighted
in bold font.
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FEATURE WACRON WLOCAT WDATE WHOME MACRO

0'-0 22.1. 40 54·3 52.6 33·4

P' -P -1 -1.6 -0·9 1 -0.2

G'-G 0 -3 -39·9 -1.3 -7·4

SP' - SP 0·5 -0·3 0·9 0·3 0·4

50'-50 1 2·5 .0 -1 0·5

SP'O'G - 0·7 2.2 -0·9 -1.4 0·5
SPOG

SPOG'- 1.1 -1 2·9 -3'9 0.2
SPOG

Table 7: The effect of adding classes of advanced features on the results for
the Workshop Call for Papers dataset, measuring the difference in F-
measures obtained. Selected differences for each class are highlighted
in bold font.

SETUP LOCATION ETIME STIME SPEAKER MACRO

A 82·9 96.1 93 72.3 86.1

B 85.8 97·4 94.1 79·4 89.2

C 86,3 95·9 94.6 78.8 88·9

Table 8: The impact of space and newline tokens on the results for the Semi-
nar Announcements dataset. Configurations: A. removed spaces and
new lines, B. removed spaces only, C. nothing removed.

SETUP WLOCAT WDATE WHO ME WNAME MACRO

A 63·9 72.2 60·7 55·7 62.6

B 71.·8 74·4 57.6 65·9 65

C 63.2 71.5 58.2 59·9 61.1

Table 9: The impact of space and newline tokens on the results for the Work-
shop Call for Papers dataset. Configurations: A. re{lloved spaces and
new lines, B. removed spaces only, C. nothing removed.
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Figure 21: The effect of the token window length parameter on the results
averaged over all classes in the Workshop Call for Papers corpus.
The x axis shows the length of the window in number of tokens to
either side of the boundary, while the 1J axis shows the F-measure
obtained.
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Figure 22: The effect of feature selection on the results averaged over all classes
in the Seminar Announcements corpus. The x axis shows the per-
centage of features selected, while the 1J axis shows the F-measure
obtained.
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Figure 23: The effect of feature selection on the results averaged over all classes
in the Workshop Call for Papers corpus. The x axis shows the per-
centage of features selected, while the -y axis shows the F-measure
obtained.

in the F-measure obtained between a given configuration of feature
classes and their respective enhanced counterparts.

The results obtained in the experiments that measure the effect of
newline and space tokens are presented in Table 8 and Table 9, for the
SA corpus and the WCFP corpus, respectively.

Figure 20 and Figure 21 show the results obtained in the experiments
that measure the effect of varying the token window length parameter,
as discussed earlier.

Finally, the results obtained in the experiments that measure the im-

pact of feature ranking metrics in this approach to the Entity Extraction
task are shown in Figure 22 and Figure 23.

4.1.4 Discussion

4.1.5 Analysis of the Results

It can be observed that, for the SA corpus, in general the more classes
of basic features are used, the better the results, confirming the rule of
thumb "the more features the better", which can be explained by SVMs'

robustness to noisy and redundant data. The inclusion of gazetteer
lookups boosts particularly the results of speaker, but for location,
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the addition of gazetteer seems to always have a slightly negative effect.
Remarkably, stime and etime achieve very good results with nothing
else but the plain token string features.

The results on the basic features' configurations for the WCFP corpus
show that the rule of thumb "the more features the better" also seems
to apply, although not as clearly as in the experiments for the SA corpus.
The additional classes of features on top of the plain token string seem
be less discriminative than in SA experiments, because using token string
alone achieves impressively good results, not too far from the best feature
classes combination (SPG). It can also be observed that the workshop
location and date classes score highest whenever the gazetteer is used.
In contrast, the workshop homepage class seems to obtain slightly
worse results whenever parts-of-speech or gazetteer lookups are added.

On both datasets, the improvements on the speaker, workshop loca-
tion and workshop date classes through the use of a gazetteer are as
expected. The exception is the location class in the SA dataset. This may
be explained by the fact that most seminar locations consist of room
names / numbers rather than city/country names.

Regarding the use of enhanced features, clearly, 0' and P' perform
much better in isolation than their counterparts 0 and P. However, when
used together with other classes of features their discriminative value
does not actually contribute much. Overall, it can be concluded that the
use of 0' and P' does not constitute a clear improvement, since the results
differ on the two datasets.

It can be noted that gazetteers Gand G' perform very differently. On
slots related to date and time, e. g., etime, stime, wdate, Gperforms
better, while on slots related to people's names, namely speaker, G' per-
forms better. This is easily explained by considering the characteristics
of the gazetteers, as described in subsection 4.1.2.

In both datasets a clear improvement was achieved by removing
space tokens only. For these datasets and, in fact, most datasets, spaces
yield little discriminative value. Treating spaces as separate tokens can
thus adversely influence the ability of the learning machine to generalise. On

the other hand, the presence of newline tokens seems to have significant
positive influence on the results for both datasets.

There seems to be an optimal token window length for each entity
class in each dataset. Evidently, the token window should be large
enough in order to capture useful patterns in the text. But it is somewhat
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surprising to learn that for windows that are "too large" there is a
constant small drop in the F-measure obtained. This can be seen as
a sign of over-fitting. There are even some classes, for instance the
workshop homepage or the conference acronym, that reveal a significant
drop in F-measure as the window length increases. In contrast with
comments about the previous experiments, this goes against the rule
of thumb lithe more features the better". Roughly, the optimal average
window length seems to be around 1= 9 to each side of the boundary, for
both datasets.

Concerning the use of feature ranking in this task, it can be observed
that the behaviour of the several metrics is similar in both datasets:
in general, cross-entropy does not improve much over the random
baseline. Information gain and frequency metrics are able to effectively
reduce the number of features used to between 5% and 10% of the
total features, with little harm to the overall results. For a few ranges
of the percentage of selected features parameter there was a slight
improvement over the F-measure obtained by the system configuration
that does not employ feature selection. However, it can be concluded
that the use offeature ranking methods does not provide a clear improvement
in any of the datasets.

4.1.6 Analysis of the Errors

In order to understand what is happening "under the hood" and
beyond the statistics of the previous section, an analysis of the kind of
errors that the EE system makes was conducted. The following types of
common errors, illustrated with examples below, were identified:

PARTIAL MATCHES In this type of error, the system recognises the
entity mention correctly, but its predicted boundaries differ from
the ones provided by the human annotators. For example:

<location>Student Center Room 207 (CMU)</location>

vs.

<Locat.ione-Student Center Room 207</location> (CMU)

This error is quite acceptable, and actually only considered an er-
ror due to the matching scheme adopted (strict). Many evaluation
methods in the literature would count it as a true positive.
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TWO-FOR-ONE This kind of error sees the system propose two different
entity mentions for a single class. However, the assumption in
both datasets is that only one entity per document exists. For
instance:

fluids, <stime>4:30 p.m.</stime>, Coffee at <stime>4:15</stime>

vs.

fluids, <stime>4:30 p.m.</stime>, Coffee at 4:15

A simple solution to this class of errors would involve a post-
processing procedure to remove proposed entity mentions accord-
ing to domain-specific contraints. A more complex solution would
involve taking into account such constraints during learning.

MISS THE OBVIOUS Here, the system is able to match an entity men-
tion for a given entity but not another mention for the same entity
in the same document. For instance:

<speakerc-Dr, Hill</speaker> is an expert [...] speak
with Ralph Hill

vs.

-cspeakere-Dr, Hill</speaker> is an expert [...] speak
with <speakers-Ralph Hill<speaker>

This happens due to not being possible to capture in the model
infrequent contexts. A simple solution to this class of error would
involve using string similarity to match entity mentions similar
to the one recognised by the system. This would probably only
work for simple named entities though.

FALSE FALSE NEGATIVE There are missing annotations in the gold
standard, causing the scorer to flag a false negative that should
actually not exist. For example:

Lecture Demonstration by -espeakere-Ravi Kiran</speaker>

is correct but missing in file cmu.andrew.org .che. chegsa-242_0
of the SA corpus. For the purpose of comparison with results
in the literature, these errors should not be corrected, limiting
the maximum achievable accuracy obtained by systems on these
corpora.

Dealing with most of the above types of errors is outside the scope
of this chapter, which focuses on feature engineering with as little as
possible influence from the algorithmic side of EE systems.
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ENTITY CLASS T-REX ELIE GATE-SVM CRF

location 84·9 85·9 81.3 85·3

stime 93.1 90.2 94.8 99·:1

etime 93.6 94.6 92.7 96.0

speaker 85·9 84·9 69 76.3

macro- 89·4 88·9 84·5 88.7
avg

Table 10: Comparing the T-Rex Entity Extraction system with other state-of-the-
art systems on the Seminar Announcements dataset. Macro-averaged
F-measures over all classes are presented.

4.1.7 Validation

Drawing from the lessons learned from the empirical ablation study,
the T -Rex EE system (see Appendix C) was designed and compared
with the state-of-the-art, namely with the approaches by Finn[59], Li
et al.h ro] and Sutton and McCallum[159], which were reviewed in
section 2.5. For the SA dataset, the base system used in the experiments
was modified to remove space tokens in preprocessing and use the
gazetteer used by Finn[59]. For the WCFP dataset, the base system used
in the experiments was modified to remove space tokens in preprocess-
ing. For both datasets the token window length was adjusted to 1= 9.
No feature ranking method was adopted.

Care was taken to ensure the experiments were reproduced exactly
as the original authors described them - see concerns about the compa-
rability of experiments in IE in [106]. Therefore, for the SA dataset, we
used the same random 50:50 splits repeated ten times and the exactly
the same gazetteer as used by Finn in their experiments. For the WCFP

dataset, we used the same standard classes of features and the same 4-
fold cross-validation splits imposed by Ireson et al.[87] for evaluation of
the system that participated in the PASCAL international competition.

Table 10 compares T-Rex with other state-of-the-art systems on the
SA dataset, while Table 11 does the same for the WCFP dataset. On the
SA dataset, T-Rex achieves an improvement over the previously best-
reported results for the other two systems. Note that speaker is usually
considered the most difficult class to extract in this dataset.
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ENTITY CLASS T-REX ELIE GATE-SVM

wname 58.1 55·5 60.6

wacronym 66.6 68·3 69·7

wdate 78.2 70.9 76.8

whomepage 63.8 62.8 68·5

wlocation 67 55·5 66·9

wsubrnission 77·4 70.5 79·3

wnotification 78.9 71.9 80·9

wcamera 72.8 68·7 75·9

cname 62·3 66·5 66

cacronym 60.6 69·:1 66.1

chomepage 29·7 43·3 33.1

macro-avg 65 63·9 67.6

Table 11: Comparing the T-Rex Entity Extraction system with other state-of-the-
art systems on the Workshop Call for Papers dataset. Macro-averaged
F-measures over all classes are presented.

T-Rex also compares well against the other two SVM-based systems
on the WCFP corpus, obtaining better results than those obtained by
ELIE. Most importantly, note that T-Rex is considerably simpler than
ELIE in the sense that it does not require a multi-level classification
approach in order to achieve better results on the two corpora, and also
simpler than GATE-SVM because it uses a standard SVM implemen-
tation and does not use feature weighing according to distance to the
boundary as GATE-SVM does.

4.2 EXPLOITING CROSS-MEDIA CORRELATIONS

In this section", I propose a novel way to derive features for the Docu-
ment Classification (DC) task, and empirically measure its effectiveness.
The new model exploits document layout and the relationship between
the different media comprising the document. To support the design
and development of approaches to the problem akin to the one adopted

2 Joint work with J. Magalhiies, who, given his expertise in image processing, handled the
generation of features from the images in the multimedia documents, for the experiments.
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in this section, I also introduce a multimedia categorisation framework
that accounts for exploiting features from across the different media
present in a multimedia document.

The experimental results reported in this section show that, by pre-
serving not just text and images but also the cross-media correlations
between text elements and the images in a multimedia document, it
is possible to improve system accuracy, with respect to traditional ap-
proaches that ignore cross-media correlations. Plus, an advantage of
the proposed approach is that it makes almost no assumptions about
the way multimedia content is modelled, and is thus widely applicable.

4.2.1 Image Analysis

Recently, given the increasing abundance of multimedia content, there
has been interest in exploiting not just the text but the several media
present in a document, in particular images, with the aim of improving
classification. From a ML viewpoint, this translates into not just deriving
features from text, such as those studied previously in this chapter, but
also into using image analysis methods to derive features from the
images.

Image Analysis (lA) is the field of computer science that deals with
the quantitative and/or qualitative characterisation of two-dimensional
and three-dimensional digital images, through methods mainly based
on pattern recognition and signal processing. The analysis involves
exploiting several types of low-level image features, which capture
different aspects or dimensions of an image. The MPEG-7 standard,
introduced in chapter 2, acts as a guideline for low-level audio and
visual feature extraction, and, for the case of images, provides sets of
visual colour, texture, and shape descriptors. These are briefly reviewed
in what follows:

COLOUR DESCRIPTORS Colour is a useful and well-studied feature in
many image analysis tasks. MPEG-7 divides colour descriptors into
several categories [71] and, in practice, four descriptors are com-
monly used: the colour histogram, colour moments, the colour
coherence vector, and the colour correlogram. Colour histograms
and moments, as the names suggest, capture t~e global colour
distribution in an image through histograms and low-order mo-
ments (e. g., mean, variance), respectively. The colour coherence
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vector [133] is an extension of colour histograms, which further
divides pixels falling in each colour histogram bin into coher-
ent pixels and non-coherent pixels. The colour correlogram [84]
characterises how the spatial correlation of pairs of colours is
changing with distance: a correlogram is a square matrix in which
entry (i, j) specifies the probability of finding a pixel of colour Cj

at a fixed distance from a given pixel of colour ci'

TEXTURE DESCRIPTORS Texture can be thought of as local arrange-
ments of image signals in the spatial domain, or, alternatively,
in the frequency domain (which can be "accessed" via spectral
transforms). Studies in psychophysical research (e.g., [141]) have
long suggested that the brain performs a multi-channel frequency
and orientation analysis of the visual image formed on the retina,
and this has motivated computer vision researchers to apply
multi-channel filtering approaches to texture analysis. In this line
of work, Tamura et al. [161] identified the following properties
as playing an important role in describing texture: uniformity,
density, coarseness, roughness, regularity, linearity, directionality,
direction, frequency, and phase. The Tamura features for image
analysis attempt to quantify intuitive information such as rough-
ness, presence of orientation, and picture quality in terms of
factors like sharpness of edges and period of repeating patterns.
Gabor filters [47] are another important visual primitive in the
same line of work, which have been widely applied in tasks like
invariant object recognition and edge detection. Two-dimensional
Gabor filters are defined as a series of multi-scale and multi-
orientation cosine modulated Gaussian kernels, and the Gabor
texture representation of images is derived by convolving the im-
age with the Gabor filters (using Fast Fourier Transform). Gabor
features enable the detection of spatially local patterns such as
oriented lines, edges and blobs. MPEG-7 provides three texture
descriptors, two of which are based on the Gabor features.

SHAPE DESCRIPTORS The shape of objects plays a critical role in im-
age analysis. Ideally, shape features should be invariant to scaling,
rotation, and translation of the object. Unfortunately, this inher-
ent complexity in representing shapes is responsible for shape
features to be less developed than their colour and texture coun-
terparts. MPEG-7 does support region-based and contour-based
shape descriptors [71]. However, the quality of shape feature ex-
traction processes is often insufficient for their incorporation into

Tamura and Gabor
features
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higher-level tasks, and for that reason they will not be considered
in the work presented in this section. A recent survey of shape
feature extraction techniques can be found in [120].

In [111], Ma and Zhang present a detailed comparison of a number of
commonly used colour and texture features, using a large and diverse
collection of image data. The investigated colour features include colour
histograms, colour moments, colour coherence vectors and colour cor-
relogram, with respect to different colour spaces and quantizations.
Texture features used in the comparison included Tamura features, edge
histograms and Gabor texture features. The choice of image features in
subsection 4.2-4 was influenced by this study.

4.2.2 Proposed Approach

In this section, a novel approach to exploiting cross-media correlations
from multimedia documents is presented. Reiterating, the goal is to im-
prove unstructured multimedia information mining systems' accuracy
in classifying multimedia documents.

The approach should make weak assumptions about the way multi-
media content is expected to be modelled, so as to enable its application
on a wide range of problem domains. The hypothesis explored here is
that a minimal set of assumptions suffices to obtain significant improve-
ments. To test this hypothesis, document classification experiment over
a large collection of news stories collected from the Web is conducted.

To support the proposed method, a framework that processes the
content in a series of steps is introduced, as follows:

"DOCUMENT-GRAPH" REPRESENTATION Format-specific parsers con-
vert a multimedia document into a canonical graph representa-
tion.

Multi-step approach

COMPUTATION OF CROSS-MEDIA CORRELATIONS A simple, yet in-
formative, structural analysis algorithm to detect correlations
between the different media elements.

INFERENCE Given a set of training document-graphs, a model is esti-
mated for each category. The learned model may then be used on
new documents to infer their category.
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4.2.3 Multimedia Document Representation

The "document-graph" represents a multimedia document using text
nodes, image nodes and cross-media edges. Formally, each document
is defined as

where its elements are:

• a set Tn = {Tn,1 , ••• , Tn,ITI}of (non-nested) text data nodes, where
each node contains a meaningful text block and the corresponding
feature vectors derived from its content;

• a set In = {In,l, ... , In,III}of image data nodes, where each node
contains an image and the corresponding feature vectors derived
from its visual characteristics; and

• a function Xn : I x T -+ 9l of cross-media edges, where each edge
quantifies the relation between a text node and an image node.
They contain a correlation value that expresses the likelihood that
both referred nodes concern the same information.

This data representation model captures the essential information
to perform cross-media classification and is independent of the way
multimedia documents are modelled when stored in their original
formats.

4.2-4 Multimedia Document Processing

The first step in the creation of the document-graph consists in pars-
ing the documents. Although I developed parsers for several for-
mats, namely OpenDocument, Portable Document Format (PDF) and
Hypertext Mark-up Language (HTML), here I discuss processing of the
latter format only, noting that, for our purposes, the principles are
identical regardless of format.

A set of heuristics are used to perform web content cleaning [109],
that is, to filter out irrelevant content from the web pages, e.g., ad-
vertisements and navigational links in Web pages. The extraction of
the relevant parts of the documents starts by converting the document
from HTML into a well-formed XHTML. The following rules strip the
document of unwanted content:

Types of graph nodes
and edges
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MAIN BODY IDENTIFICATION The pre-processor parses the XML tree
to locate the tree branch containing the main body of the content.
This involves hand-crafting simple corpus-specific patterns over
the XML tree.

NOISY STRUCTURES REMOVAL Content such as videos, comments,
navigational links, adverts, and so on, remaining in the main
body section, is removed, again using corpus-specific patterns.

NOISY IMAGES REMOVAL Some images in the corpus are too small
to be processed or are just stylistic images (e.g., an icon). Images
with less than 200 pixels are ignored and images with a URL
pointing to a specific location (e.g., location where all formatting
images are stored) are ignored as well.

This process generates a clean document that serves as the basis for
the creation of the document-graph, by extracting the text and image
nodes and their relations, as will be detailed in the next sections.

Text nodes are generated by analysing the layout structure of the doc-
ument, parsing the textual content to extract sentences and processing
text data with standard text processing techniques, as follows:

FORMATTING-BASED ANALYSIS Style and layout information define
the structure of a document. In the case of XHTML, I use stan-
dard formatting tags to guide the extraction of the text, section
titles (tags <h1>, <h2> and <title», alternative text for an image
«img a1t - text=" ... "» and image captions (via corpus-specific
patterns). This creates the text nodes for titles, captions and "alt-
text".

TEXT BODY ANALYSIS Textual cues like punctuation provide further
information to segment the text. This step creates text nodes corre-
sponding to sentences in the document, keeping the information
about their sequence (in the form of "next-sentence" edges).

TEXT PROCESSING Standard text processing techniques [170] are ap-
plied: stop words and infrequent words are removed from the text
corpus, to avoid over-fitting. After this, I apply the Porter stemmer
[137] to reduce words to their morphological root. The resulting
text nodes contain a histogram of the vocabulary V of terms, i.e.,
the vector Tn,s= {tl,'''' tlVI} represents node s of document
n, where each component is the frequency of the corresponding
term.
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For each image in the document, an image node is created in the
document-graph. Information about the image sequence is kept in
the form of "next-image" edges between image nodes, and informa-
tion about immediately adjacent text nodes in the form of "previous-
sentence" and "next-sentence" edges. For the case of XHTML, this is
done via the analysis of the DOM tree, e.g. an image node is created
for each <img> element.

The contents of the image node i of document n are represented as
the feature vector

where each component corresponds to the following configuration
of the visual features introduced in subsection 4.2.1:

• Colour features: images are split into 9 equal tiles and an HSV
histogram per colour channel with 256bins is computed.

• Gabor texture features: are computed with a bank of filters in 8
directions and 6 scales for the entire image. I consider the mean
and the variance of the output of each filter.

• Tamura texture features: images are split into 9 equal tiles and
the three Tamura texture features are computed (contrast, direc-
tionality and coarseness).

The above features were obtained using standard algorithms from
the Open Computer Vision library 3. Cross-media edges store the
likelihood that images and text nodes in the graph concern the same
information. The rationale is as follows. When a message or idea is
conveyed through the different media in a multimedia document, each
text paragraph and image offers support to different parts or aspects of
the message. Because a full text typically expresses several ideas, the
problem resides in trying to understand which media elements refer to
the same information. In this work, I propose a method to do this in
an unsupervised way and making very general assumptions about the
document model. Namely, I make the rather generic assumption that it
is possible to obtain the sequence of text and images, and that images
may have associated text like captions.

The sequence information in the document-graph provides proximity
information that can be used to infer layout-based cross-media associa-

3 http://sourceforge.net/projects/ opencvlibrary /

Obtaining the image
nodes

Assumptions made

http://sourceforge.net/projects/
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tions. This is achieved by superposing a window over the text nodes
centred on a given image node.

Formally, the layout distance between an image Ii and a text block
Ts is defined as

f (I· T ) = 1_ NodeDist(Ii, Ts)
L t, S MaxWindowSize + l'

where Nodefristfh. Ts) is the number of nodes between an image node
Ii and a text node Ts (for simplicity, I dropped the index n correspond-
ing to the document), and MaxWindowSize is the maximum window
size covering the text nodes around the considered image node. In the
experiments reported below, I set the window length to be equal to the
document size, thereby computing the correlation between all sentences
in the document and the given image.

Cross-reference information is another way of establishing the rela-
tion between a sentence and an image. They complement layout-based
correlations, capturing those sentences that refer to an image not placed
nearby (in terms of the document layout). To detect these associations,
techniques for measuring text similarity can determine the level of
relatedness between a sentence Ts and an image Ii through its text
caption Ti,e and its alternative text Ti,a (for simplicity, I dropped the
index n corresponding to the document).

Formally, the correlation between a sentence and an image is mea-
sured as the cosine distance between the sentence Ts and the image's
associated text Ti = Ti,e + Ti,a, given by

By merging the two methods above for detecting cross-media associ-
ations between an image node and a text node, it is possile to quantify
the degree of correlation between elements in the two media. Formally,
the weight of a cross-media edge in the document-graph is given by
the average of the two quantities defined above:

. -Xli. T) _ fL(Ii,Ts)+fT(Ti,Ts)
1't,S - t, 5 - 2 .
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4.2.5 Multimedia Document Categorization

Our aim is now to infer the category of a given multimedia document
given the cross-media document-graph, To complete this task I follow
a probabilistic approach:

where ~l corresponds to the model for the document category Cl from
the set e = {Cl,' .. , cd of L categories. In this setting, I define a collec-
tion 2) = {d1, ... , dN} of N multimedia documents, split into a training
set in order to learn the category models, and a test set for evaluation.
To simplify the exposition, I shall assume multimedia documents have
only one image and extend the method to the general case a posteriori.
In this probabilistic setting, a document dn is represented by the vector

which includes all text content (the sum over all T nodes), an image
feature vector, and the cross-media correlation 'Y1,s which weighs sen-
tences according to their relevance to image In,l' The probabilistic
framework of Equation 4.6 was formally implemented as

-+
10 p{clldn) = log p{cll +' (d .)A .g =t (-) LP n,l I--'l,l

p{clldn) P Cl i

where cl indicates the non-presence of the category Cl, dn,i is the ith

dimension of the document vector ~,and ~l,i is the ith dimension of
the linear model for category Cl. The latter is given by

The interpretation of this equation is straightforward: the dimension
~l,i is close to zero if the ith dimension of d is irrelevant for the
category, positive if it is frequent, and negative if it is rare. This way,
when evaluating unseen samples each dimension will have a low or
high contribution to the detection of the category. Finally, to recover the
more general case where documents have more than one image, I simply
average the output of p(cll~, ~ll for each image in the document.

Cross-media
document vector

Inference

Model estimation
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The decision function for the proposed multimedia document classi-
fier is simply

with a caveat: a confidence threshold is utilised to filter the prediction
output of the classifier above - if the prediction confidence is below 0.5,
the prediction is discarded.

4.2.6 Experiments

To evaluate the proposed framework, I conducted a categorization
experiment on BBC Web news articles that were obtained via a RSS

feed. The experiment uses news articles that were obtained between the
znd of May 2008 and the 4th of June 2008. The category of each news
article is obtained via the news category assigned by BBC journalists.
On the BBCwebsite, news are organised according to category, and it
is possible to extract the category from the article's Uniform Resource
Locator (URL). There are a total of 44 categories, which are listed in
Table 12.All results were assessed in both a information retrieval setting,
using traditional IR measures.

I collected a total of 6,732 news articles, randomly split into 10
random sets of 4,577 training documents and 2,155 test documents for
cross-validation. Each news article belongs to just one category and
most articles have at least one image. It is worth reiterating that this
dataset is different from other news datasets such as Reuters-Rf'Vr
[108]. The latter contains plain text documents only, while the BBCWeb
news dataset used here consists of multimedia documents with images
and structure.

Documents are first transformed into the document-graph and their
cross-media correlations are computed according to Equation 4.5. Cate-
gory models are learned from the training documents vectors, Equa-
tion 4.7, and computed according to Equation 4.9. Once the system
is trained, I followed the typical evaluation methodology for docu-
ment retrieval by category: for each category I ranked the test docu-
ments according to equation Equation 4.8 and evaluated the rank with
precision-recall curves, average precision, precision after 10 retrieved
documents and precision after 30 retrieved documents. The means
across all queries are computed from the results per query: mean av-
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Figure 24: Retrieval results for the individual media, multimedia and cross-
media configurations.

erage precision, mean precision at 10 and mean precision at 30. This
procedure was carried out for (i) only text data, (ii) only image data,
(iii) a simple concatenation of text and image features (multimedia),
and (iv) text, image and cross-media correlation features.

4.2.7 Results and Discussion

Table 12 presents the detailed results comparing multimedia retrieval
by category in the four settings. Table 13 summarizes the information in
the aforementioned table, by taking the mean values over the categories.
Taking into account the cross-media correlations yields better results
with respect to the other configurations, for all the three measures
considered. Figure 24 presents the same results in a bar chart for easier
comparison.

Not surprisingly, image results are always much lower than the
other settings. This observation is justified by the fact that some cate-
gories cannot be actually discriminated from just images. For example,
there is virtually little difference among the pictures of the categories
"/England", "/England/London", "/Scotland", "/Northern_Ireland",
"/England/Manchester", and" /Wales". Thus, images only contain
information to discriminate between categories like" /sports" and
"/uk_politics", i.e., broader categories.

Another interesting observation is that the simple concatenation of
text and image features generally does not perform much better than
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Category TP FP FN Pre Roc FI pre@lO Pre@)o AvgPre
/sci/tech 9 7 8 0.56 0·53 0·54 0.6 0·3 0·47
/sci 8 4 9 0.67 0·47 0·55 0·7 0·33 0·49
/world 183 12 6, 0·94 0·75 0.83 1 1 0.89
Iworld/middle_east 28 1 12 0·97 0·7 0.81 1 1 0.86

I sportl football 156 16 9 0.91 0·95 0·93 1 1 0.96

Isport 269 '4 12 0·95 0.96 0·95 1 1 0.98

luk 30 2 72 0·94 0.29 0""" 1 0·77 0·55
/northem_ireland 56 0 45 1 0·55 0.71 1 1 0.84

Iworld/south_asia 19 2 12 0·9 0.61 0·73 0·9 0.66 0·69
/ entertainment 37 1 60 0·97 0·38 0·55 1 0·93 0.76

/world/asia-pacific 23 8 9 0·74 0.72 0·73 0·9 0·74 0·75
I sportl cricket 23 2 2 0.92 0.92 0.92 0·9 0·77 0·96
Iwales '4 7 53 0.67 0.21 0.)2 0·9 0.48 0.48
Ibusiness '42 '4 35 0.91 0.8 0.85 1 0·97 0.88

lengland 65 28 81 0·7 0·45 0·55 1 0·97 0.63

Iworld/europe 20 1 33 0·95 0.38 0·54 1 0·77 0·57
Isportlolympics 6 1 8 0.86 0·43 0·57 0.8 0·4 0.61

I sport/ rugby_wUon 21 0 9 1 0·7 0.82 0·9 0·73 0·93
I uk_politics 24 11 35 0·69 0.41 0.5

'
0.6 0·7 0·55

Iworldlamericas 11 1 32 0.92 0.26 0.41 1 0.6 0·49
leducation 16 1 '9 0·94 0.46 0.62 1 0·77 0.72

I worldl africa 27 2 12 0·93 0.69 0·79 0·9 0·94 0.87
Iscotland 39 3 64 0·93 0.38 0·54 1 0·97 0.65
I englandllondon 16 2 '4 0·89 0·53 0.66 1 0.56 0·59
Imagazine 0 0 6 0 0 0 0 0 0

I sport/ footballl internationals 3 2 '5 0.6 0.17 0.26 0.6 0.27 0·5
lhealth 18 1 23 0·95 0·44 0.6 1 0.82 0.71

I sportl motorsport 11 0 0 1 1 1 1 0·37 1

Isport/motorsport/formula one 8 4 0 0.67 1 0.8 0·7 0.23 0·78
I england/manchester 0 0 9 0 0 0 0 0 0.02

/rechnologv 8 2 '9 0.8 0·3 0·44 0.8 0·37 0.48

/ sportl footballl eng_div_I 2 0 3 1 0·4 0·57 0·4 0.17 0.65

I sportl cricket I england 2 4 9 0·33 0.18 0.23 0·5 0.23 0·44
Isport/football/europe 0 2 9 0 0 0 0 0·07 0.05
I sportl rugby .jeague 1 0 5 0 0.17 0 0.1 0.06 0.28

Isport/football/eng_prem 4 1 7 0.8 0.36 0·5 0·4 0.2 0.48

I sportl tennis 13 0 2 1 0.87 0·93 1 0·45 0.87

Isport/other_sports 7 1 3 0.88 0·7 0·78 0.8 0·3 0.84

/ sportl other_sportsl Cycling_ 4 0 0 1 1 1 0·4 0.13 1

Isportlathletics 0 0 2 0 0 0 0 0 0.01

I sport/ cricketl counties 0 1 3 0 0 0 0.2 0·07 0.16

I sportl motorsportl motorbikes 3 0 0 1 1 1 0·3 0.1 1

I sport/boxing 3 1 3 0·75 0·5 0.6 0.6 0.3
'

0.66

I sportl other_sports/horseJacirlg_ 0 0 2 0 0 0 0 0.03 0.04

(rotals) '329 159 826 0.72 0·49 0.56 0·70 0.51 0.62

Table 12: Detailed retrieval results for the cross-media configuration: mean
precision at 10, mean precision at 30 and mean average precision.
Note that FP < FN since low confidence predictions are discarded,
in other words, the classifier may not output a prediction for every
document.

text alone, and can actually result in lower precision, as is the case with
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Table 13: Summarized retrieval results for the individual media, multimedia
and cross-mediaconfigurations:mean precision at ID, mean precision
at 30 and mean average precision.

MP@10 MP@30 MAP
Images 7.27 5.70 4.68
Text 70.90 51.07 61.66

Multimedia 70.23 51.22 61.68
Cross-Media 73.18 52.02 62.30

measuring precision at ten. This does not happen with the proposed
cross-media correlations method, which can be interpreted as a feature-
weighing scheme that boosts the importance of text related to the
image for learning the models. The precision-recall graph on Figure 25
provides another view on how the cross-media approach performs. It
is interesting to see that cross-media is much better at the beginning of
the rank (recall < 10%), which is where most users look at [93]. Also,
at the mid-range of the rank, it can be seen that cross-media is better
than just text and the concatenation of text and images. Moreover, it
is very encouraging to see how image data contribute to the cross-
media results, despite the fact that image-only results are so low when
compared to the other results. This strengthens the hypothesis and
gives evidence that cross-media correlation is an important aspect to
take into account when building classification models for multimedia
documents.

4.3 RELATED WORK

Several systematic studies comparing different systems and classes of
features for the Entity Extraction task can be found in the literature.
In fields related to EE, such as Relation Extraction, Word Sense Dis-
ambiguation and Semantic Role Labeling, other similar comparative
studies exist. In this section, the studies that are the most relevant to
the work presented in this chapter are reviewed.

Borthwick et a1. [24] present a study that combines orthography, lexi-
cal, and dictionary-based features into a maximum entropy approach
to person name recognition. It was one of the first purely statistical
systems to make use of features from different knowledge sources.
Zhang and Johnson [173] investigate the impact of various local lin-
guistic features for named entity recognition on the CoNLL-2oo3 [52]
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Figure 25: Precision-recall graphs for the individual media, multimedia and
cross-media configurations.

datasets. The authors showed that system accuracy could be signifi-
cantly improved by using some relative simple token-based features
that are available for many languages. They concluded that although
more sophisticated linguistic features will also be helpful, they provide
much less improvement than might be expected. This is in line with
the conclusions drawn in this chapter from the results presented in
subsection 4.1.3.

The task of entity recognition from research papers was tackled
by Peng and McCallum [136]using Conditional Random Fields. The
work consists of an empirical exploration of several factors, including
variations on Gaussian, Laplace and hyperbolic-Lt priors for improved
regularisation, and several classes of features. The authors motivate
the need for this study by arguing that "while the basic theory of
CRFs is becoming well-understood, best-practices for applying them
to real-world data require additional exploration", which is a similar
motivation for the work presented in this chapter and also for the work
presented in chapter 5.

Rosenfeld et al. [143]describes a systematic comparison of feature-
rich probabilistic classifiers for NER tasks. The authors motivate their
work by stating: "[... ] performance of a feature-rich classifier strongly
depends upon the feature sets it uses. Since systems developed by dif-
ferent researchers are bound to use different feature sets, the differences
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in performance of complete systems cannot reliably teach us about the
qualities of the underlying algorithms. [... ]". This is in many ways the
converse of the motivation for the work in this chapter, cf. chapter 3 -
in their work, Rosenfeld et al. make features invariant and compare the
models. They compare the performances of three models: MEMM, CRF,

both reviewed in subsection 2.2.2, and the Regularised Risk Minimiza-
tion (RRM) model [173], within the same platform and using exactly the
same set of features. They also study the effects of different training
sizes, different choice of parameters, and different classes of features on
the performance of the systems. The experiments indicate that CRF out-
performs MEMM for all datasets and classes of features, which expected
since CRF is a better model of sequence labeling, but, surprisingly, the
RRM model performs at the same level or even better than CRF, despite
being a local model like MEMM, and being significantly simpler to build
than both CRF and MEMM. Likewise, the system in subsection 4·1.7 is
simpler than the systems it was compared against, but, in spite of that,
obtained competitive results.

In the closely related field of Relation Extraction (RE), Jiang and
Zhai [90] systematically explored a large space of features for the RE

task by evaluating the effectiveness of different feature subspaces. The
authors make an argument similar to that of chapter 3, that "there has
not been any systematic exploration of the feature space for relation
extraction, and the choices of features in existing work are somewhat
arbitrary.". And, analogously to the experimental results presented in
subsection 4.1.3, their results show that using basic unit features only
is generally sufficient to achieve state-of-the-art performance, while
over-inclusion of complex features may decrease system accuracy. A
combination of features from different levels of complexity, coupled
with task-oriented feature pruning, yields the best accuracy in their
case.

Similar work is described in Fayruzov et al. [54], in the biomedical
domain. The authors study the effect of various lexical and syntactic
features in the protein interaction extraction task. Again, they argue in
a similar fashion that "most approaches for protein interaction mining
from biomedical texts use both lexical and syntactic features. However,
the individual impact of these two kinds of features on the effectiveness
of the mining process has not yet been thoroughly studied". A SVM-

based system is employed to evaluate the different features on five
benchmark datasets. The results of the study indicated that using a
method that exploits a very rich feature set is not significantly better

Comparison of
learning models

Feature engineering
studies for Relation
Extraction



Feature engineering
studies in other
relatedfields

Approaches based on
structural extraction

Approaches to
combining classifiers

102 FEATURE ENGINEERING FOR TEXT MINING

than - in fact, it does not even consistently outperform - a stripped-
down version of the same method, which uses basic features only. This
is similar to the conclusions arrived at in subsection 4.14.

The paper by GuoDong et al. [75] presents a study on incorporat-
ing diverse lexical, syntactic and semantic knowledge in feature-based
relation extraction using SVM. Like what was done in section subsec-
tion 4.1.7, their study enabled the design of a system that incorporated
diverse features and outperformed previously best-reported systems
on the ACE [2] relation extraction tasks. Related work in the same vein
is that of Buyko et al. [30] and Kambhatla [95]

Finally, feature engineering has also been object of attention in other
fields. For example, Wang et al. [168] explore the effect of various
features in the Semantic Role Labeling task, while Mohammad and
Pedersen [123] study the effect of combining several lexical and syntac-
tic features in the Word Sense Disambiguation task.

Several approaches to extract structural information from PDF, HfML

and other structured multimedia document types can be found in the
literature, see [101] for an overview. The approaches by [7][43][144] are
based on templates that characterize each part of the document. These
templates are either extracted manually or semi-automatically.

Rosenfeld et al. [144] devised a learning algorithm to extract infor-
mation (author, title, date, etc.) that relies on a general procedure for
structural extraction. Their proposed technique enables the automatic
extraction of entities from the document based on their visual char-
acteristics and relative position in the document layout. They ignore
text content and only use features such as fonts, physical positioning
and other graphical characteristics to provide additional context to the
information. Like the latter, the approach here presented is based on a
set of heuristics that extract and preserve all structure information. But,
in contrast to these approaches, I implement an additional cross-media
analysis step aimed at discovering associations between images and
paragraphs in the text.

Another problem that I tackle in this chapter is how to build a sin-
gle classifier from the low-level features originating from the different
single-medium elements of the multimedia document. Previous ap-
proaches use co-training [20] or ensemble algorithms [94] that train
different classifiers on single-medium feature vectors and combine the
classifiers through a voting scheme to produce a single classifier with
better accuracy. More recent approaches concatenate the single-medium
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feature vectors into a single cross-media vector, see [113]. Although I
also concatenate single-medium features into a single feature vector, the
proposed approach differs from the previous ones because I construct
the cross-media feature vector by also taking into account the confi-
dence that a given text-image pair are associated, in the form of weights
affecting the text tokens that participate in the identified relation.

The idea of using features from text and images has also been applied
to tasks other than classification. For example, [10] use a generative
hierarchical model for clustering image collections which integrates se-
mantic information provided by associated text and visual information
provided by image features. The data is modeled as being generated by
a fixed hierarchy of nodes, with leafs of the hierarchy corresponding
to clusters. The work in [)3] combines textual and visual statistics in a
single index vector for content-based search of a web image database.
Textual statistics are captured in vector form using Latent Semantic
Indexing (LSI) based on text in the containing HTML document, while
visual statistics are captured in vector form using colour and orienta-
tion histograms. The authors show that the combined approach allows
improved performance in conducting content-based search. In addi-
tion to text and image features, this work makes use of cross-media
correlations.

Other related classification tasks include classifying images with the
help of text. For example, [56] develop an image annotation model on
a dataset of pictures naturally embedded into news articles and show
that using captions as a proxy for annotation keywords can remove
the overhead of manual annotation, and also demonstrate that the
news article associated with the picture can be used to boost image
annotation performance. The task here presented is the inverse, that is,
I classify documents with the help of images.

4.4 CONCLUSIONS

I presented a thorough study that measured the impact in system
accuracy of the several classes of features and model parameters used
in the boundary classification approach to the Entity Extraction task.
The study, presented in detail in subsection 4.1.2, is a valuable guide
to other researchers in itself, contributing to a clarification of what
constitute successful features for EE. But identifying these successful
features and parameters also enabled the design of a system competitive

Tasks other than
classification

Classifying images
using multimedia
features
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with the state-of-the-art in this chapter. The system was described in
subsection 4.1.7. Despite being significantly simpler than the systems
against which it was compared, the new system was shown to be very
competitive.

As explained in chapter 3, the focus of the study is on the feature
engineering aspect of EE research, adopting a simple formulation of
the learning model and a simple learning algorithm - in chapter 5,
a study that uses more advanced algorithms for EE is presented. The
study was motivated by the need to run the several systems under the
same experimental conditions, since reported results in the literature
are seldom comparable. To help the reader understand what is involved
in ensuring invariant experimental conditions, in section 2.3 a number
of concepts were introduced: gold standard, F-measure, micro- and
macro-averaging, cross-validation methods, leniency in what constitutes
an entity match, and a few other relevant concepts.

In subsection 4.1.2, the details about the conducted experiments
were given. Experiments were designed for measuring the effect of
combining classes of features, the effect of enhancing them, the effect of
space and newline tokens, the effect of the length of the token window
and the effect of using feature ranking metrics. The systems ran over
two standard datasets for EE, which were described in subsection 4.1.1.

The experimental results were presented in subsection 4.1.3.

According to the discussion and an analysis of the errors made by
the system, presented in subsection 4.1.4, the study reveals that slightly
different combinations of feature types provide the best results on each
of the datasets, but that, in general, the use of very simple features is
surprisingly enough to account for most of the accuracy obtained. It
also shows that the use of rich data resources, such as gazetteers, greatly
contributes to the best observed results and it is more likely to explain
the differences in the results reported by several systems in the literature
than the design decisions relative to the learning model. Further, the
high regularities in the document formatting of the SA corpus determine
that newline tokens should be used, while the difficulty in generalising
patterns over the WCFP corpus means that spaces should particularly be
avoided. The various entity classes related to dates and times in WCFP

benefit from a gazetteer that discriminates well in those categories,
while a class like speaker boosts the results on SA when a gazetteer
that contains substantial data about person names is used.
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The results obtained for feature selection show that even the simple
frequency metric can greatly reduce the number of features with no
significant loss in terms of accuracy. However, in contrast with the
application of feature selection to the TC task, where the use of some
of the metrics is known to consistently improve accuracy, there was no
observed significant improvement in the accuracy by any of the metrics
in the EE task.

The contribution to the state-of-the-art in this chapter consisted of a
novel class of features for the task of classifying multimedia documents.
The main advantage of the proposed approach is that it makes almost no
assumptions about the way multimedia content is modelled, and is thus
widely applicable. I introduced the proposed multimedia document
categorization framework, which exploits document layout and the
relationship between the different media comprising the document,
and described how the cross-media correlation nodes can be computed.
I showed that, by preserving not just text and images but also the
cross-media correlations between text elements and the images in a
multimedia document, it is possible to improve system accuracy, with
respect to traditional approaches that ignore cross-media correlations.

The main contributions in this chapter can thus be summarized as
follows:

1. Through a thorough feature engineering cycle, I designed a EE

system competitive with the state-of-the-art, which, despite be-
ing significantly simpler than the systems against which it was
compared, achieved comparable or better accuracy.

2. I introduced a canonical document representation graph that inte-
grates data coming from heterogeneous formats and media. This
representation is designed such that it is able to accommodate,
for every supported document format, just enough information
to allow the inference algorithm(s) to run.

3. I proposed a novel method for detecting cross-media associations
and quantifying the level of image and text block correlation.

4. I reported on experimental results on a Web news dataset, which
show that the proposed cross-media approach, by exploiting
features from more than one media, yields an improvement over
the results obtained by the corresponding single-medium tasks.
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OVERCOMING THE SCARCENESS OF LABELLED
DATA

Annotating data is a task that adds a burden to the development
and maintenance of ML-based text mining solutions, and is very often
perceived as "low priority" or even" a waste of time" by domain experts.
It introduces the analogous of the "the chicken or the egg" dilemma in
this domain, i.e., poor models will hardly convince experts of the value
of ML-based text mining solutions, but the models will not improve
without the invaluable support of those very same experts.

In this chapter, I propose two novel methods to overcome the scarce-
ness of labelled data and turn the development and maintenance of
ML-based text mining less demanding a process for domain experts.
The chapter addresses the second research question in this thesis, recall
from chapter 1:

How to reduce the amount of labelled examples needed to
train machine learning-based document classification and
information extraction systems, both when creating them as
well as maintaining them?

I begin by presenting an experimental study designed to take ad-
vantage of unlabelled data often plentifully available for the EE task.
The method used in the study is borrowed from the TC task (see sec-
tion 5.3). Unfortunately, while there are plenty of studies on the use
semi-supervised learning techniques in the TC task, little is documented
in the literature concerning their use in the EE task. Moreover, equally
difficult to find are studies on real-world use cases, such as the one pre-
sented in this chapter, where I investigate the impact of using weaker
supervision requirements in the task of recognizing entities from highly
technical documents in the jet engine manufacturing domain. An in-
teresting question is thus whether the application of semi-supervised
learning in EE and for this domain leads to comparable accuracy to
standard techniques while using less labelled examples.

The caveat with using semi-supervised learning in general is that,
in order to make it possible for domain experts to spend less time in
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labelling the training data, text mining practitioners and system de-
signers need to spend a greater amount of effort in studying successful
features and models, because, as we saw in section 2.6, semi-supervised
approaches make certain assumptions about the data. For the exper-
iments conducted for the tasks presented in this chapter, the solid
feature engineering groundwork is already laid by the lessons learned
in chapter 4.

Later in the chapter I propose two novel methods that use feature
labelling, as opposed to instance labelling, in adapting an existing
model to a related domain. Recall from section 2.6 that the feature
labelling paradigm is particularly appealing for the domain adaptation
task because it is often possible for domain experts to tell which features
from the source domain are expected to apply robustly also in the
target domain, and doing so is considerably less time consuming than
labelling instances.

5.1 SEMI-SUPERVISED ENTITY EXTRACTION ON A REAL-WORLD USE-

CASE

In this section, I present a comparison between several machine learning
approaches to extracting knowledge from reports about jet engines. The
problem is approached as an EE task similar to that of chapter 4, but
here the focus is on studying the effect of the learning algorithm rather
than the features used. The goal is to understand the impact of the
chosen learning algorithm in the EE system's accuracy and training
time.

Furthermore, the work here presented reports on a complete IE work-
flow applied to a real-world problem. The workflow consists of: a
design stage, in which the target knowledge to extract is identified;
several interviewing sessions with domain experts in order to obtain
labelled data; the implementation of a suitable IE system; validation of
the first results; and refining the system accuracy through several itera-
tions. As such, t~s chapter illustrates well the difficulty in obtaining
labelled data when working in real-world settings.

I show that the application of a semi-supervised approach provides
an increase in accuracy in this domain, and that the application of a
large-scale approach considerably reduces training time while keeping
accuracy comparable to the standard supervised approach. I conclude
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that both are good choices for this class of application scenarios, offering
a trade-off between computational requirements and accuracy.

5.1.1 The Use Case

As discussed in chapter I, in large organisations data regarding activi-
ties and tasks are routinely stored in an unstructured manner, in the
form of images and natural language used in e-mails, word-processed
documents, spreadsheets and presentations. A aerospace manufacturer
in the UK, for example, periodically strips jet engines for maintenance
and checks for potential issues, each time creating a so-called strip report
which describes the analysis of the technical issues eventually found
on the stripped engine. Over time, large unstructured data repositories
are formed that enclose valuable knowledge for the organisation.

Throughout the life cycle of a product such as a jet engine, the
manufacturer is interested in validating the level of performance of the
product, identifying design shortfalls and understanding, evaluating
and, where required, taking corrective action to address the potential
problems. The main need in this scenario is to be able to access historical
data contained in the aforementioned repositories in order to find
solutions that have been applied to previous design issues. The issues
identified on one product are also a valuable source of lessons for the
design phase of subsequent products and the operational phase of other
existing products. A challenging research issue is thus to consider how
the knowledge is spread across numerous sources, and how it can be
captured and retrieved in an efficient manner.

Unfortunately, traditional IR techniques not only tend to underper-
form on the kinds of domain-specific queries that are typically issued
against these unstructured repositories, but they are also often inade-
quate. Keyword-based search does not work particularly well because
relevant data tend to be distributed geographically, and, consequently,
organisational and language (terminology) differences magnify the
barriers to retrieval. For example, some of the terminology employed
to describe certain components and phenomena varies across the orga-
nization's several engineering sites around the globe, and, even within
the same team, the use of abbreviations, misspellings and the adoption
of slightly different alternative names poses challenges for retrieval.

Real-world
motivating scenario

Unstructured
information
repositories

The needfor IE
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Furthermore, the inadequacy of standard IR stems mainly from the
fact that most systems return documents in response to a query, but
engineers are usually looking for knowledge on a particular issue
which crosses document boundaries. Discovering that knowledge is an
expensive, error-prone, inefficient and time consuming manual process,
aggravated by the need to repeat large portions of it for every new issue
that arises. For example, upon the observation of an uncommon type
of damage to the leading edge of the engine blades, an engineer may
want to know if there is a correlation between the observed damage
and the engine model. Currently, she needs to try several queries using
the possible terms (that come to mind) to express that particular type of
damage and model, inevitably forgetting or not knowing about some of
those terms, and obtaining in return documents that need to be further
browsed for obtaining a confirmation of the answer.

The ability to query unstructured repositories as if they were struc-
tured would thus effect significant improvements to the way teams
work in scenarios such as these, which are becoming commonplace as
organisations more and more regard knowledge as their most valuable
asset.

5.1.2 Learning Algorithms

The experiments in this chapter keep the choice of features constant
and vary only the learning algorithm in the EE system setup. Compared
are a standard SVM implementation (as representative of supervised
approaches), a graph label propagation algorithm (as representative of
semi-supervised approaches) and a stochastic gradient descent variant
of SVM (as representative of what I call "large-scale" approaches'). The
classical SVM formulation was already presented in section 2.4. In
what follows, I briefly describe the label propagation and the stochastic
gradient descent algorithms.

The label propagation algorithm is a simple and effective semi-
supervised algorithm that belongs to the family of graph-based ap-
proaches. Graph-based semi-supervised methods define a graph where
the nodes are both the labelled and unlabelled examples in the dataset,
and edges (may be weighted) reflect the similarity of examples. Graph
methods are non-parametric, discriminative, and transductive in nature.

1 By "large-scale" approaches I mean the family of sub linear complexity learning algo-
rithms, designed to work over large amounts of data.
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In the label propagation approach, known labels are used to prop-
agate information through the graph in order to label all nodes. The
goal is to learn a labelling function satisfying two constraints at the
same time: 1) it should be close to the given labels on the labelled
nodes, and 2) it should be smooth on the whole graph. The geometry
of the data is thus captured by an empirical graph G = (V, E) where
nodes V = {1,... , n} represent the training data and edges E represent
similarities between them. Similarities are given by a weight or kernel
matrix K such that Kij is non-zero iff (i, j) E E.

Algorithm 1. Graph label propagation algorithm
Compute kernel matrix K
Compute the diagonal degree matrix 0 by Du +-- Lj Kij
Initialize yO +-- ('Yo, ... , 'Yt, 0, ... ,0)
Iterate
1. y(t+ 1) +-- 0-1 Kyt
2. y(t+ 1) +-- Yt
until convergence to y( 00)

Label point Xi by the sign of 'Yioo)

Starting with nodes 1,2,..., llabelled with their known label (lor -1)
and nodes 1+ 1, ..., n labelled with 0, each node starts to propagate its
label to its neighbours, and the process is repeated until convergence.
An algorithm of this kind has been proposed by [176], which I repro-
duce above. There, estimated labels on both labelled and unlabelled
data are denoted by Y= (Yt,Vu). Estimated labels may be allowed to
differ from the actual labels.

The algorithm is a particular form of the power iteration eigenvec-
tor algorithm, where Y is the stationary vector of the matrix K. The
algorithm requires on the order of O(kn2) time, for a sparse graph
where each data point has k neighbours, which can be prohibitive when
working over large amounts of data.

Even though the label propagation algorithm intrinsically works in a
transductive setting, it is possible to easily obtain an inductive learner
from the transductive learner [34]. Assuming that labels 'Y1,·.. , 'Yn
have already been computed by the algorithm above, the label of a new
point X is given by:

Label Propagation

Complexity

Obtaining an
inductive classifier
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a simple inductive formula whose computational requirements scale
linearly with the number of samples already seen. It is interesting to
note that, if K(Xi,Xj) is the k-nearest neighbour function, the algorithm
reduces to k-nearest neighbour classification.

Stochastic (or "on-line") gradient descent is an optimization method
for minimizing an objective function, in which the true gradient, instead
of considering all examples, is approximated by a gradient at a single
examplejrsB]. By contrast, the classical SVM algorithm of section 2.4
can be seen as optimizing a cost function which can be expressed as
an average over all the training examples. Essentially, the loss function
measures how well the learning system performs on each example.
Computing such an average takes a time at least proportional to the
number of examples.

Stochastic gradient descent instead updates the learning model via
the loss function measured for a single example. The complexity of
stochastic learning descent-based algorithms is thus O(n). This works
because the averaged effect of these updates is identical when learning
from a large amount of examples. Although the convergence is much
more noisy, the sub linear computing cost for the gradient is a huge
advantage for large-scale problems.

Recall from section 2-4 that in the SVM primal formulation we seek
to minimize

A 1 n
-21Ifll~+ - L.max(O, 1 -1Hf(xd)·

ni=l

The stochastic gradient descent approach minimizes the empirical
risk by selecting a random instance at each iteration and updating fin
the following way:

where TJt is the.learning rate, A is the regularization constant and 1 is
the loss function. The representer theorem [44J gives us the necessary
tools to move from the above function update to a vector update, by
expressing the update in terms of the !Xi variables of the dual, yielding
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For the classical case of SVMs using "hinge" loss, as presented in
section 2-4, the update function is finally

5.1.3 LJataset

I gathered samples consisting of 70 "strip reports", containing 661,117

tokens in total. The reports are written by jet engine engineers using
Microsoft Word. Processing this type of documents requires conversion
into an open xxn-based file format, the Open Document Format (OOF)
format. This, unfortunately, introduces some noise in the data, since
the conversion is not completely reliable. Fortunately, token sequences
are preserved, essential for the EE task.

The oOP data is in turn represented into a canonical data format
defined by the Runes data processing framework I have created (see Ap-
pendix A), in order to make it compatible with the NLP pre-processing
toolset (tokeniser, part-of-speech tagger, etc.), wrapped as a set of plug-
ins in the same framework.

5.1.4 Labelling Data

Labelled data for this task consists of annotations of token sequences
(of arbitrary size) from the documents. The annotations associate the
token sequences to one or more entity types defined in some ontology.
The multimedia annotation tool Aktivelvledia" was extended to support
working with oOP documents. In AktiveMedia, users can annotate by

2 http://sourceforge.net/ projects/ aktivemedia/

Jet engine reports

Pre-processing

Annotation tool
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selecting text or a region of an image and assign a given concept or
relation from the ontology to their selection.

An ontology of the problem domain was defined together with the
domain experts. The so-called "jet engine domain ontology" contains
roughly 400 concepts characterizing the problem domain, organized in
a hierarchical fashion and featuring some relations between concepts.
The list of classes to use for our EE classification task correspond to the
concepts in this ontology.

With the goal of producing a lasting metadata resource associated
with the strip reports corpus, which may potentially be re-used in the
future in the context of other tasks, I conducted two annotation efforts.
In the first annotation effort, I asked non-experts to mark the text against
the full ontology. However, in doing so I faced two major problems:
the annotators lacked the required expertise to fully comprehend the
highly specialised contents of the documents; and the sheer size of the
ontology made it very hard to keep in mind all possible concepts when
analysing a piece of text.

Given the lack of confidence in the metadata resource produced
during the first annotation effort, a second iteration addressed both
issues by involving expert users in the process and by restricting the
ontology to a subset of the concepts, determined in a series of meetings
with the experts. As a result, a total of 34 concepts were deemed as the
most useful for this task.

In an analysis carried out after the second annotation effort, I verified
that some of these concepts did not actually provide enough support
in the corpus so as to enable learning. For that reason, any ontology
concept with less than 10 occurrences in the corpus was removed. A
more compact list of 15 ontology concepts became the final list of classes
for evaluation purposes. The list is shown in Table 14.

Tube
Groove
Ring

HP Compressor
IP Turbine

Observed Damage
Date

Engine
Engine Module

Engine Serial Number
Module Serial Number

HPTurbine
LP Turbine

Document Title
Customer Number

Table 14: The list of ontology concepts used in the evaluation.
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The metadata obtained from the annotation sessions amounted to a
total of 2498 annotations. Of these, 259 were detected and discarded as
invalid by the system, as they span parts of tokens only. The adopted
token-level model (as opposed to a, e. g., character-level model) does not
support such kind of annotations. On manual inspection, the majority
of those annotations were due to mistakes made during the annotation
process; concretely, they resulted from dragging the mouse over the
text but not covering the whole of the token as intended while using
AktiveMedia.

5.1.5 Dataset Generation

I take the approach commonly found in the literature of decomposing
the multi-class classification problem in this EE task into multiple in-
dependent binary classification problems using a one-vs-all approach.
Thus I generate one dataset per class.

The generation of examples (nodes in the graph) for the semi-supervised
algorithm differs from the other two in that only tokens within the win-
dow around a positive example are labelled as negative, while all other
tokens are kept unlabelled. This results in model with less assumptions
- concretely, in this model tokens that have mistakenly not been labelled
are not considered to be negative examples, which intuitively seems
better.

The dataset used to run the experiments for the graph-based semi-
supervised learning algorithm therefore contains only a few thousand
labelled examples out of the several hundred thousand unlabelled ones,
whereas the datasets used to run the experiments for the supervised
and large-scale learning algorithms follows the traditional EE problem
formalisation as described in chapter 4, and therefore contain the full
several hundred thousand instances as labelled ones. Another notable
difference between the algorithms' datasets is that the graph-based
algorithm runs in a transductive setting, and thus needs to have access
to the (unlabelled) test data together with the training data in order to
run.

I follow the feature generation procedure described in chapter 4. For
each token I consider a window of size 5 to each side, to capture its
context. In the experiments here reported I used the token string itself,
plus the token stem, the part-of-speech tag, and the orthography of the

Semantic annotations
acquired

One-vs-all approach

Generation of dataset
instances

Features
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token as features. The NLP tools employed come from the OpenNLP
projects.

5.1.6 Learning Approach

I designed three system configurations, which vary only in the learning
algorithm employed, for comparison purposes:

SUPERVISED LEARNING: using the widely used off-the-shelf libsvm4

support vector machine toolkit, selecting the linear kernel and set-
ting the penalty parameter of the error term C to 10 (determined
via cross-validation).

SEMI-SUPERVISED LEARNING: using my implementation of the graph
label propagation algorithm described in [I77]. I set the number
of neighbours k to 5.

LARGE-SCALE LEARNING : using my own port to Java of the stochastic
gradient descent SVM learner originally written by Leon Bottou>,
using the default parameters - 5 iterations, a lambda of 10-4,
and the hinge loss function. The lambda parameter was chosen
through cross-validation.

Due to the high dimensionality of the feature space, I use the linear
kernel K(Xi, Xj) = xlXj in all the configurations.

The rationale is to understand whether it is possible to achieve gains,
either in terms of accuracy or speed, or both, by using alternative
learning algorithms.

5.1.7 Experimental Setup

All experiments were performed adopting a 5-fold cross validation
over the 70 strip reports, therefore selecting 56 reports for training and
leaving 14 reports for testing on each fold. Moreover, all experiments
were conducted on a 2Ghz laptop with 1Gb of RAM running Java SDK
1.5. The running times reported for comparison pertain to this setting.

For the training phase, I report the total time to learn the models
only, on all classes and all documents, that is, not considering the time

3 http://opennlp.sourceforge.net/
4 http://www.csie.ntu.edu.tw/"cjlin/libsvm/
5 http://leon.bottou.org/projects/sgd

http://opennlp.sourceforge.net/
http://leon.bottou.org/projects/sgd
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taken by any other pre- or post-processing steps, in order to emphasize
on the comparison of learning algorithm performance.

For the testing phase, I instead report the average time taken by the
whole process to run over one document, including all processing steps,
in order to give an idea of how fast the system runs when invoked to
extract information from a document.

5.1.8 Results

I measured the accuracy of the system using standard measures for
information extraction, namely precision, recall and F-measure. Recall
their definitions from section 2.3. As in chapter 4, for this task a true
positive occurs strictly when there is a perfect match between the
predicted tokens and the solution tokens, otherwise a false positive is
counted. All the quantities presented for the total are micro-averaged.

In the supervised configuration, the learning algorithm trained in 4m
58s, and the system tested in a total of 924.14S over the 5 folds, which
means it took 13.2S on average per document. Table 15 presents the
detailed results per entity type.

I Entity Type Precision Recall F 1

Engine Module 0.78 0.71 0·74
Engine Serial Number 0·79 0.63 0.70
Customer Number 0.72 0.67 0.69
Module Serial Number 0.81 0.71 0.76
Date 0.69 0.69 0.69
Document Title 0.70 0.58 0.63
Observed Damage 0.81 0.58 0.68
HP Compressor 0.71 0·54 0.61
IP Turbine 0·93 0.62 0·74
LPTurbine 0.68 0.80 0·74
Tube 0.71 0.68 0.69
HPTurbine 0.64 0.67 0.65
Ring 0·47 0·74 0·57
Groove 0.71 0.38 0·5
Engine 0.25 0.08 0.12
Total 0·75 0.65 0.70

Table 15: Detailed results per class for the supervised configuration.

In the semi-supervised configuration, the system run in a total of zh
11m. The system was tested in a transductive setting, thus it does not
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make sense to speak of training and testing phases in this case. This
does not affect the conclusions. Table 16 presents the detailed results
per entity type.

I Entity Type Precision Recall F 1

Engine Module 0.80 0·74 0·77
Engine Serial Number 0.80 0.63 0.71
Customer Number 0.72 0.70 0.71
Module Serial Number 0.81 0.81 0.81
Date p.86 0.67 0·75
Document Title 0.80 0.52 0.63
Observed Damage 0·73 0.66 0·69
HP Compressor 0.62 0·59 0.61

IP Turbine 0·89 0·57 0·69
LP Turbine 0·75 0.67 0.71
Tube 0.81 0.61 0.70
HPTurbine 0.52 0.88 0.65
Ring 0.40 0.82 0·54
Groove 0·55 0.50 0.52
Engine 0.60 0.21 0.32
Total 0·77 0.66 0.72

Table 16: Detailed results per class for the graph-based semi-supervised config-
uration.

In the large-scale configuration, the learning algorithm trained in
28-4s, and the system tested in a total of 160.16s over the 5 folds, which
means it took 2.28s on average per document. Table 17 presents the
detailed results per entity type.

5.1.9 Discussion

It is interesting to observe that all three configurations obtain compara-
ble F-measure values.

The semi-supervised configuration, using the graph-based label prop-
agation algorithm, shows a slight improvement over the standard su-
pervised configuration, which uses SVM. This empirically observed
improvement is presumably due to the fact that the semi-supervised al-
gorithm makes use of the cluster assumption on the unlabelled test data,
and confirms the merits of the semi-supervised approach as reported
in other works using artificial datasets [176] or real-world datasets
but different tasks, such as document classification [167] or relation
extraction [}6]. However, the graph-based semi-supervised algorithm
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I Entity Type I Precision I Recall I F 1 I
Engine Module 0.78 0·75 0.76
Engine Serial Number 0·77 0.64 0.70
Customer Number 0.70 0·55 0.62
Module Serial Number 0.82 0.67 0·74
Date 0.68 0.65 0.66
Document Title 0·75 0·45 0.56
Observed Damage 0·79 0·55 0.65
HP Compressor 0.67 0.50 0·57
IP Turbine 0·95 0.56 0·7
LPTurbine 0.66 0·77 0.71
Tube 0.67 0.65 0.66
HPTurbine 0.58 0.58 0.58
Ring 0.38 0.58 0.46
Groove 0.60 0.23 0·33
Engine 1 0.08 0.15
Total 0·75 0.62 0.68

Table 17: Detailed results per class for the large-scale configuration.

presents two disadvantages with respect to the other two: it works in
a transductive setting, therefore requiring the test data to be available
together with the training data, which may not be possible in all ap-
plication scenarios; and its running time exceeds by far the one of the
standard configuration.

The large-scale configuration, on the other hand, which uses a stochas-
tic gradient descent algorithm, shows very little loss in accuracy with
respect to the standard configuration, but runs an order of magni-
tude faster than the latter. Again, this also empirically confirms the
conclusions obtained in previous related work on the document classi-
fication task, namely that the stochastic gradient descent approach can
be competitive with standard SVMswhen the size of the training set is
large. This makes it very attractive for application scenarios in which a
on-the-fly analysis of the document is required.

Further, I decided to further investigate on what kind of errors the
system was making. For that, I replaced the learning algorithm with
a rote learner, that is, a learning algorithm that simply memorizes
every positive instance of a class that it is presented with, producing a
classifier that simply looks up the input feature vector in its "memory"
in order to determine the instance class. I used the rote learner to both
train and test on the whole corpus. The average results obtained were
0.79 precision, 1.0 recall, and 0.88 F-measure.

Error analysis
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Surprisingly, the results obtained with the rote learner were far below
the expected value of 100% precision. The low precision value may
have at least two explanations: one might be due to human annotators
failure in spotting and marking up some mentions of entities even
when they have identical contexts to other rightly annotated mentions,
which turns true positives into false positives, decreasing precision; a
second explanation might be that the window size is not enough to
discriminate between the training examples, which would also affect
false positives. In an attempt to quantify which of the cases were most
frequent, I checked a sample of 30 false positives, and verified that 73%
of those turned out to be incorrectly assigned as false positives, that
is, the system annotated correctly but there was an annotation by the
human annotator missing.

Given the 79%upper limit on the precision value, the results obtained
by the EE system under the three configurations do not appear to be
so low as on first impression. These findings hint at the difficulty in
producing high quality semantic annotations in such highly specialised
technical domains. Moreover, due to the high cost of the domain experts'
time, it was unfortunately not possible to measure the inter-annotator
agreement, because every human annotator was given a different set of
documents to annotate.

5.2 ADAPTING TO DIFFERENT DOMAINS THROUGH FEATURE LABEL-

ING

In this section", a novel approach to domain adaptation for text cate-
gorization is presented, which merely requires that the source domain
data are weakly annotated in the form of labelled features. The main
advantage of the approach resides in the fact that labelling words is
less expensive than labelling documents. Two methods are proposed,
the first of which seeks to minimize the divergence between the dis-
tributions of the source domain, which contains labelled features, and
the target domain, which contains only unlabelled data. The second
method augments the labelled features set in an unsupervised way,
via the discovery of a shared latent concept space between source and
target.

6 Joint work with C. Kadar, who performed the software modifications to MALLET and
carried out the experiments.
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The approach proposed here outperforms standard supervised and
semi-supervised methods, as will be shown, and obtains results compet-
itive to those reported by state-of-the-art domain adaptation methods,
while requiring considerably less supervision.

5.2.1 Proposed Approach

Rather than requiring documents in the source and target domains
to be examined and labelled, the proposed approach to the domain
adaptation problem leverages a small set of words that domain experts
indicate to be positively correlated with each class - the labelled features.
It is founded on the general GE method introduced in section 2.6.

Concretely, the label regularization technique introduced in [114] is
employed. With label regularization, the constraints are expectations
of model marginal distributions on the expected output labels. As
such, estimated label marginal distributions 9x;y = pry) are used and
constraints of the form G(x, y) = f (y) are considered. Model divergence
from these constraints can be computed by using, for example, KL-
divergence [too]:

G(8;U) = -D(p(y)IIEu[f(y)p(ylx;8)]).

In order to use GE for domain adaptation, criteria are derived that
encourage agreement between the source and target expectations. Let S
be source domain data and 'J be target domain data, both unlabelled.
The model divergence for the task of domain adaptation is computed
by:

G(8;S, 'J) = - L. 0 (P(ylxi > O)IIPe(ylxi > 0)), (5.1)

iEF(Su'J')

where F is a function that returns the set of features in the input data,
P(ylxi > 0) = tt f(y)f(Xi > 0) is an indicator of the presence of feature
i in X times an indicator vector with 1 at the index corresponding to label
y and zero elsewhere, and Ci = Lx f(Xi > 0) is a normalizing constant;
Pe denotes the predicted label distribution on the set of instances that

Label regularization

GE criteria for
domain adaptation
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contain feature i and P are reference distributions derived from the
labelled features.

Choice of regularizer

These reference distributions are estimated using the method pro-
posed by [148]: let there be n classes associated with a given feature
out of L total classes; then each associated class will have probability
qmaj/n and each non-associated class has probability (1 - qmaj )/(l-
n), where qmaj is set by the domain experts to indicate the correlation
between the feature and the class.

To encourage the model to have non-zero values on parameters for
unlabelled features that co-occur often with a labelled feature, the
Gaussian prior on parameters is selected as regulariser, since it prefers
parameter settings with many small values over settings with a few
large values. The combined objective function is finally:

ef
C) = - L 0 (P(ylxi > O)IIVe(ylxi > 0)) - L 2~2' (5.2)

iEF(Su'T) j

First method

consisting of a GE term for each for each labelled feature i, and a
zero-mean (T2-variance Gaussian prior on parameters.

Two methods are now presented, which follow the proposed feature
labelling approach to text categorization and the GE formulation above.
As per Equation 5.1, both methods are multi-class and semi-supervised
(in that they make use of the unlabelled target domain data). The first
method, which we will designate as TransferLF, directly uses the input
labelled features to derive the reference distributions P (in the way
described earlier). Then, given the latter and unlabelled source and
target domain datasets, it estimates the classification model parameters
by using an optimization algorithm, taking Equation 5.2 as the objective
function.

The second method, which we will designate as TransferzLDALF, is
similar to the first one, but additionally aims at augmenting the set
of input labelled features with new labelled features derived from the
target domain data. To discover and label new features the idea is to
find a shared latent concept space that captures the relation between
the two domains and bridges source and target features. This can be
achieved in an unsupervised manner by using latent topic models such
as Latent Dirichlet Allocation (LDA) [17]; however, we are interested
in encouraging the recovery of topics that are more relevant to the
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domain expert's modelling goals, as expressed by the labelled features
provided, than the topics which would otherwise be recovered in an
unsupervised way. Weak supervision in LDA was recently introduced
in works such as [5, 73].With this goal in mind, the approach in [5] is
adopted and adapted to the purposes of this method: it is possible to
add supervision to LDA in the form of so-called z-labels, i.e., knowledge
that the topic assignment for a given word position is within a subset
of topics. Thus, in addition to their role in GE, we use the input labelled
features as z-labels, in order to obtain feature clusters (containing both
source and target features) where each cluster respects to one topic
from the set of topics found in the labelled features. It is then possible
to augment the original labelled features set with the k most proba-
ble target domain features present in each cluster, in hope that the
additional GE constraints lead to improved performance.

The algorithm for inducing a text categorization classifier for both
methods is shown below. The first two steps only apply to TransJerzL-
DALF.

Algorithm 2 TransferLF and TransferzLDALF
Input: labelled features L, unlabelled source S and target 'J domain
data
Output: induced classifier e
TransJerzLDALF only:
(1) 'c..c1:lA = labelled features from weakly-supervised LDA using input
c. S and 'J
(2) Augment C with k target domain features per topic from 'c..c1:lA

TransJerLF and TransJerzLDALF:
(3) Compute reference distributions P(ylxi > 0) from ,C
(4) Estimate model parameters by running optimization algorithm
according to Equation 5.2
(5) return induced classifier e

5.2.2 Datasets

The first of the datasets chosen for an empirical analysis of the proposed
approach to text categorization is K. Lang's original zo-newsgroups?
dataset [104]. It contains approximately 20,000 documents that corre-
spond to English-language posts to 20 different newsgroups. There are
roughly 1000 documents in each category. The topic hierarchy for this

7 http://www.cs.umass.edu/ -rnccallum/ code-data.html

Second method

Twenty-Newsgroups
corpus

http://www.cs.umass.edu/
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dataset contains four major groups: sci (scientific), rec (recreative), talk
(discussion) and comp (computers), with 3 to 5 topics under each group.

The second dataset used in the experiments is the SRAA 1 corpus.
It contains messages about simulated auto racing, simulated aviation,
real autos and real aviation from 4 discussion groups. The first 4,000
documents from each of the classes in this dataset were used.

5.2.3 Evaluation Methodology

For the purposes of evaluating domain adaptation, documents were
gathered such that they were drawn from related topics, having differ-
ent distributions. For example, the newsgroups rec.autos and rec.motorcycles
are both related to cars, whereas the newsgroups rec.sport.baseball and
rec.sport.hockey both describe games. Plus, moving to the first level of
the 20-newsgroups taxonomy, broader categories may also be built:
recreative, talk, computers and scientific.

The SRAA data set is split in a similar manner into four categories:
auto, aviation, real, simulated. Table 18 summarizes the characteristics
of the datasets used in the experiments, indicating the source vs. target
splits, the initial number of labelled features, and the KL-divergence
[100] measuring the distribution gap between the domains''.

Minimal preprocessing was applied on the data: lowercasing the
input and removing a list of English stopwords. Each document is
represented as a vector of words and their frequency in the corpus.

The results are presented using accuracy as the evaluation metric (see
section 2.3). In all comparisons, care was taken to reproduce the original
authors' experimental setting with rigour.

5.2.4 Labelling Data

Human domain expertise is replaced in the experiments by an oracle-
labeller - an experimental setup also adopted in, e.g., [50]. Making use
of the true instance labels, the oracle computes the mutual information
of the features within each class, and, if above a given threshold, labels
the feature with the class under which it occurs most often, and also
with any other class under which it occurs at least half as often.

8 It may be noted that the obtained KL-divergence values are considerably larger than if
they were to be split randomly, which would yield values close to zero.
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Dataset Source Data Target Data KL divergence

Cars vs Games
ree.autos ree.motoreycles

0.5679ree.sport.baseball ree.sport.hockey

Cars vs. Hardware
ree.autos ree.motoreycles

04136eomp.sys.ibm.pe.hardware eomp.sys.mae.hardware

ree.autos ree.motorcycles
Cars vs Games vs ree.sport.baseball ree.sport.hockey

0·4579Hardware vs OS eomp.sys.ibm.pe.hardware eomp.sys.mae.hardware
eomp.windows.x comp.os.ms-windows.misc

ree.autos ree.motorcycles

Cars vs Games vs ree.sport.baseball ree.sport.hockey

Hardware vs OS vs eomp.sys.ibm.pe.hardware eomp.sys.mae.hardware
0.3701eomp.windows.x eomp.os.ms-windows.misePolitics vs Religion talk.politics.mideast talk.polities.mise

soe.religion.christian talk.religion.mise

eomp.graphies
eomp.sys.ibm.pe.hardware
eomp.sys.mae.hardware

Comp vsSci eomp.os.ms-windows.mise eomp.windows.x 0·3897seLerypt sci.med
sci.eleetronics sci.spaee

ree.autos ree.sport.baseball

Ree vs Talk
ree.motoreycles ree.sport.hockey 0.5101talk.politics.guns talk.politics.mideast
talk.polities.mise talk.religion.mise

eomp.graphies comp.os.ms-windows.misceomp.sys.ibm.pe.hardware
Comp vs Ree eomp.sys.mae.hardware eomp.windows.x

0.4741ree.autosree.motoreycles ree.sport.baseballree.sport.hoekey

eomp.graphics eomp.sys.ibm.pc.hardwareeomp.sys.mae.hardware eomp.sys.mae.hardwareComp vsTaik compowindows.x talk. politics. guns 0.2848
talk.politics.mideast talk.polities.misetalk.religion.mise

Auto vs Aviation ree.autos.simulators ree.autos.mise 0.8152ree.aviation.simulators rec.aviation.student

Real vs Simulated ree.autos.mise rec.aviation.student 0.6532rec.autos.simulators rec.aviation.simulators

Table 18: Characteristics of the datasets used for evaluating the proposed ap-
proach.

In the experiments, the mean of the mutual information scores of the
top 1DOLmost predictive features is used as threshold, where L is the
number of classes; and qmaj = 0.9 as the majority of the probability
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mass to be distributed among classes associated to a labelled feature.
The oracle is very conservative in practice - refer to Table 20 for the
actual number of labelled features for each source domain.

5.2.5 Optimiser and LDA implementations

The MALLE'f9 toolkit was utilized to solve the optimization problem
using L-BFGS, a quasi-Newton optimization method that estimates the
model parameters.

Finally, zLDA 10 was chosen as an implementation of the semi-supervised
LDA method. The original labelled features are used as seeds for their
latent topics and run the algorithm in its standard setup, as reported in
[5]: IX= .5, f3 = .1, 2000 samples. Table 19 shows an example concerning
the Cars vs Hardware experiment. The oracle identified and labelled 17
and 40 features, respectively. They all come from the source domains:
rec.autos and comp.sys.pc.ibm.hardware, respectively. With these as input,
zLDA identifies new associated features that are specific to the target
(e.g. bike for rec.motorcycles and apple for comp.sys.mac.hardware).

Class initial seed words top 18 words in topic

article writes car cars wheel miles writes article car good bike time
Cars toyota honda driving engine oil back people cars make year thing

engines ford rear year auto autos engine ride years road work front

advance windows disk system drives
computer dx software bus mode os ibm

system drive problem computermemory machine monitor dos
Hardware hardware board chip card cards ram work mac card mail apple software

mb pc interface vlb mhz cache ide cpu mb good time pc problems disk
controller port modem motherboard board bit

gateway scsi video isa bios floppy

Table 19: Initial labelled features and discovered zLDA features for Cars vs
Hardware.

5.2.6 Results and Discussion

Table 20 presents the results obtained from running the experiments
on the several configurations shown in Table 18. The results presented
compare against two classifiers which are induced from the source

9 http://www.mallet.cs.umass.edu
10 http://pages.cs.wisc.edu/ -andrzeje/software.htrnl

http://www.mallet.cs.umass.edu
http://pages.cs.wisc.edu/
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domain data only: a standard supervised maximum entropy classifier
as a baseline, and the proposed TransferLF method prevented from
looking at the target domain data.

# source # source
TransferLF

#zLDA TransferLF
Dataset labelled MaxEnt labelled TransferLF labelled withzLDA

instances features on source features features

Cars vs Games 2000 90.3 52 84·7 96•1 29 92.8
Cars vs. Hardware 2000 90.7 57 88.2 94.2 32 88.7

Cars vs Games vs
4000 76·0 109 72.3 80·9 60 78.8Hardware vs OS

Cars vs Games vs
Hardware vs OS vs 6000 67.1 167 63.0 69 81 70•2
Politics vs Religion

Comp vs Sci 4000 71.8 59 76·1 78,4 30 82.2

Rec vs Talk 3874 77·9 60 74·3 74·5 29 92•8
Comp vsRec 5000 87·9 70 86.1 91.3 32 86·7
Compvs Talk 5000 93·3 67 91 94.1 33 94.0

Auto vs Aviation 8000 77.2 II 48 78·0 86·9 29 91.6
Real vs Simulated 8000 63·9 II 54 60-4 59·7 30 77·7

Table 20: Classification accuracies and the amount of labelled information (ei-
ther instances or features) used in different sets of experiments. Note
that for the TransJerzLDALF method, the reported results correspond
to selecting a fixed number of 18 features per topic (cf. learning
curves), but the features outputted by zLDA can overlap and thus the
size of the feature set used is smaller when merged.

The results show that the feature labelling approach to domain adap-
tation invariably outperforms the baseline non-domain-adaptation max-
imum entropy approach, while, in addition, greatly reduces the super-
vision requirements - compare the number of labelled features against
the number of labelled instances used to induce the classifiers. The
experiments show that this can be observed not only in the binary
classification case, but also in the multi-class classification case.

The results also suggest that the semi-supervised nature of the pro-
posed methods is a differentiating factor, since TransferLF using source
domain data only consistently underperforms.

Table 21 and Table 22 compare the proposed approach with semi-
supervised and latent semantic analysis-based techniques for domain
adaptation in the literature. Transductive Support Vector Machines
(TSVM) [91] are used as the baseline semi-supervised text classification
approach. Refer to section 5.3 for a brief description of MMDl35] and
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TPLSA[169]. It can be observed that the performance of the proposed
methods is comparable with that of TSVM, which, again, is remarkable
given that only a few labelled features are required to achieve that.
The state-of-the-art MMD and TPLSA approaches still obtain higher
accuracy in general, which is not surprising given that their supervision
requirements are much greater, but it is still very interesting to see
how the results obtained by the feature labelling approach remain
competitive. This is important, since in many application domains the
reduction of the annotation effort is an enabling factor, at the expense
of a only few accuracy points.

Finally, Figure 26, Figure 27 and Figure 28 show the learning curves
obtained by varying the number of labelled features input to the Trans-
JerzLDALF method. From these curves it is possible to obtain a deeper
insight into the supervision requirements of the proposed approach. It
is possible to conclude that as little as 5 features per topic are enough to
achieve performances close to the plateau of the curve, as seen in some
of the experiments, and that, on average, around 18 features per topic
are enough to achieve top accuracy for the majority of the experiments.

TransferLF
Dataset TSVM MMD TransferLF withzLDA

features

Cars vs Games 87·4 94·5 96.1 92.8
Cars vs Hardware 92.5 94.6 94.2 88·7

Cars vs Games vs
75-4 82·4 80·9 78·8Hardware vs 05

Table 21: Performance comparison with [35].

TransferLF
Dataset TSVM TPLSA TransferLF withzLDA

features

Comp vs Sci 81.7 gS·9 78.4 82.2
Rec vs Talk 96 97·7 74·5 92.8
Compvs Rec 90.2 95.1 91.3 86,7
Comp vs Talk go·3 97·7 94.1 94.0

Auto vs Aviation 89.8 94·7 86·9 91.6

Real vs Simulated 87 88·9 59·7 77·7

Table 22: Performance comparison with [169].
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Figure 26: Learning curves for the first dataset generated from 2o-newsgroups.
From left to right descending: Cars vs Games, Cars vs Hardware, Cars
vs Games vs Hardware vs OS, and Cars vs Games vs Hardware vs OS vs
Politics vs Religion.

5.3 RELATED WORK

In the first part of this chapter, I applied EE technology to a real-world
problem. Several previous projects have successfully applied IE in areas
such as sale products indexing+", job advertisement collection'< and
scientific article collection from the Internet, among several others. For
example, the information extraction task in the case of sale products
indexing consists in identifying the description, price and seller of the
product (among other features) within the textual information found
in potential product web pages. The approaches behind these systems
consist of a mixture of manually-built extraction rules and machine-
learning based techniques. The EE work presented in this chapter uses
only the latter.

The experiments in section 5.1 compare a semi-supervised learning
approach, namely a graph label propagation algorithm, with a standard
supervised SVM approach. Semi-supervised learning methods have re-
cently gained much attention in the machine learning literature. They
have been applied to related tasks such as document classificationjrez]
and relation extractionlje], where it has been shown that the use of
unlabelled data can improve the accuracy of the learning system. Our

11 http://froogle.google.com
12 http://www.flipdog.com

Applications to
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Figure 27: Learning curves for the second dataset generated from 20-

newsgroups. From left to right descending: Comp vs Sci, Ree vs
Talk, Comp vs Ree, and Comp vs Talk.
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Figure 28: Learning curves for the dataset generated from SRAA. From left to
right: Auto vs Aviation and Real vs Simulated.

work empirically shows that the same is true for the EE task, a conclu-
sion that was missing in the literature, to the best of my knowledge.

Also included in section 5.1 is a comparison against a large-scale
approach, namely using a stochastic gradient descent variant of SVM.

For large data sets, on-line gradient descent can be much faster than
batch gradient descent, as we have seen. Several related works in the
field of document classification have shown the effectiveness of this
family of methods, e. g.[154][22]. Again, the work presented here work
empirically shows that this is also true for the EE task.

In the second half of this chapter, the focus turned to the problem of
domain adaptation. This problem has been roughly approached in two
ways in the literature: the supervised case and the semi-supervised case.
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In the former, there are available labelled documents from the source
domain, and also a small amount of labelled documents from the target
domain. The goal is to take advantage of both labelled datasets to
obtain a model that performs well on the target domain. For example,
[86,58] work under this setting. The semi-supervised case differs in
that no labelled documents in target exist, therefore the goal is to take
advantage of an unannotated target corpus, see, e.g., [18,9°, 169,35].
The variant addressed in this chapter was the semi-supervised problem.

The problem of domain adaptation can be seen as that of finding
a shared latent concept space that captures the relation between the
two domains [13]. Therefore, several recent approaches sought an ap-
propriate feature representation that is able to encode such shared
concept space. [86] uses standard machine learning methods to train
classifiers over data projected from both source and target domains
into a high-dimensional feature space, via a simple heuristic nonlinear
mapping function.

In [131], the authors approach the problem from dimensionality
reduction viewpoint. The method finds a low-dimensional latent feature
space where the distributions between the source domain data and the
target domain data are as close to each other as possible, and project
onto this latent feature space the data from both domains. Standard
learning algorithms can then be applied over the new space.

A probabilistic approach in the same vein can be found in [169],
where the authors propose an extension to the traditional Probabilistic
Latent Semantic Analysis (PLSA) algorithm [83]. The proposed algo-
rithm is able to integrate the labelled source data and the unlabelled
target data under a joint probabilistic model which aims at exploiting
the common latent topics between two domains, and thus transfer
knowledge across them through a topic-bridge to aid text classification
in the target domain.

Other relevant approaches following the same underlying principle
include the feature extraction method described in [132], the method
based on latent semantic association presented in [74] and the linear
transformation method in l35] that takes into account the empirical loss
on the source domain and the embedded distribution gap between the
source and target domains.

The domain adaptation approach presented in this chapter may also
be considered to belong to the above family of approaches in that a
shared latent space between the domains is modelled, but with two

Variants to the
domain adaptation
problem

Latent concept space
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major differences. First, it requires only labelled features instead of
labelled instances. Second, the modelling of the latent space is not
unsupervised, but partially supervised instead - by taking advantage
of the availability of labelled features.

5.4 CONCLUSIONS

In this chapter, I presented a study and proposed two novel methods
to overcome the scarceness of labelled data. I began by presenting
a successful application of IE technology to a real-world problem in
the aerospace engineering domain. I argued that the use of a semi-
supervised approach could yield better results under a metadata con-
strained setting such as this, a hypothesis which I had not seen validated
in the literature for the EE task. Even though obtaining labelled data in
this domain is hard due to the high cost of domain experts' time, the ap-
plication of the machine learning-based technology was still successful,
yielding results comparable to the state-of-the-art in other domains.

Next, I presented a novel approach to domain adaptation for text cat-
egorization that aims at reducing the effort in porting existing statistical
models induced from corpora in one domain to other related domains.
The approach is based on a new paradigm of labelling words (as op-
posed to labelling whole documents), which is less time consuming
and more natural to domain experts, as argued in chapter 3.

I proposed two domain adaptation methods under this approach,
in subsection 5.2.1. The first method seeks to minimize the divergence
between the distributions of the source domain, which contains labelled
features, and the target domain, which contains only unlabelled data.
The second method is similar to the first one, but can additionally make
use of the labelled features to guide the discovery of a latent concept
space, which is then used to augment the original labelled features set.

The contributions in this chapter are fourfold:

1. I presented a novel approach to domain adaptation for text cate-
gorization that relies on labelled words instead of labelled doc-
uments, with the aim of overcoming the scarceness of labelled
data;

2. I proposed two different methods in order to analyse the merits
of the approach to domain adaptation;
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3. I empirically showed that results competitive with the the state-of-
the-art can be achieved with the use of semi-supervised methods
in the EE task and with a low number of labelled features in the
re task; and

4. I empirically showed that the feature labelling approach, despite
only using a weak form of supervision, outperforms standard
supervised and semi-supervised methods, and obtains results
competitive with those previously reported by state-of-the-art
methods that require the classic, more expensive, form of super-
vision - that of labelling documents.
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A FORMALISATION OF MULTIMEDIA MINING

In this chapter, I propose a novel formalism for declaratively specify-
ing unstructured multimedia information mining tasks, methods and
systems, with the aim of tackling the systemic, communication and
replicability problems introduced in section 2.7. The chapter addresses
the second research question in this thesis, recall from chapter 1:

How to effectively represent knowledge about text mining
systems and the data that they manipulate?

The proposed formalism is based on ontology [72], and extends
existing state-of-the-art formalisms for describing software and mul-
timedia content. It enables representing DC and IE tasks, the methods
that support them and the systems that implement them. It also en-
ables representing natural language processing and machine learning
subsystems, which modern DC and IE systems are typically composed
of.

The key benefits offered by the proposed formalism are threefold.
Firstly, it provides an agreed-upon means of referring to and describ-
ing IE tasks and systems, their inputs and outputs and their internal
constituents (components, subsystems, auxiliary resources, and so on)
- tackling the communication problem. Secondly, the practice of se-
mantically describing IE systems enables cutting system development
and maintenance costs down by promoting the reuse of components
and supporting discovering the optimal ones for a given task, both at
design time and at runtime - tackling the systemic problem. Lastly,
it enables researchers to accompany published results with an unam-
biguous (formal) description of the IE methods and systems used in the
experimental tasks that they report about - tackling the replicability
problem.

The formalisation is accomplished by taking an information extrac-
tion stance on the problem, though the resulting formalism is not strictly
restricted to information extraction. Rather, it is more general, since,
for example, it is able to formally describe document classification just
as well. However, I will refer to "information extraction II throughout

6
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this chapter for simplicity, as an alternative term to the far too verbose
"unstructured multimedia information mining" expression.

6.1 REQUIREMENTS

How to approach the problem of enabling formal descriptions of IE

systems? In other words, going back and re-analysing what was written
in the previous section, which requirements should be drawn for the
design and development of the Ontology of Information Extraction?

The identified requirements are given below:

COVERAGE Naturally, the ontology should be able to describe at least
the parts of a system that correspond to the functional concerns
identified earlier. Concretely, it should be able to represent the
subsystems, and their respective components, related to decompo-
sition, segment analysis, data modeling and semantic annotation.

MULTIMEDIA The proposed ontology should be able to describe IE

systems that work with multimedia data. In particular, it should
support text and images, and be designed in such a way that it
can be extended to other types of media as well.

SEMANTIC INTEROPERABILITY An ontology of IE, much like any
other ontology, must ensure that the intended meaning of the
captured semantics can be shared among different systems. Rea-
soning processes about concepts and relations in different envi-
ronments can only be guaranteed to yield identical results if the
semantics is sufficiently explicitly described.

SYNTACTIC INTEROPERABILITY The semantics of the IE system de-
scriptions are only shareable among different systems if there is
some agreed-upon syntax inwhich to convey it.

SEPARATION OF CONCERNS Domain knowledge should be kept sep-
arate from knowledge about the IE system, as they can and should
evolve separately. Moreover, as mentioned, the design and devel-
opment of IE systems addresses at least four functional concerns.
These should also be kept separate, if possible, in the design of
ONIX.

MODULARITY Modularity is a key engineering principle which arises
whenever dealing with large systems, be it software systems or
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Figure 29: Positioning the Ontology of Information Extraction (ONIX) in the
framework of existing foundational and core ontologies. ONIX ex-
tends the Core Software Ontology (CSO) and the Core Ontology of
MultiMedia (COMM).

ontologies. Since ONIX can become rather large, its design should
be made modular from its inception.

EXTENSIBILITY It is expected that ONIX will be eventually extended
and adapted to even more specific domains and applications.
As ontology development methodologies show, ontologies are
inherently incomplete, and for that reason extensibility is a key
and pervasive requirement in ontology engineering [68].

6.2 PROPOSED ONTOLOGY

The design of the Ontology of Information Extraction (ONIX) leverages
the richness and well-foundedness of the set of DOLCE ontologies - the
Descriptions & Situations (DnS), the Ontology of Information Objects
(010) and the Ontology of Plans (OaP) -, as well as of the Core Ontology
of MultiMedia (COMM) and the Core Software Ontology (CSO). The
relationship between ONIX and these other ontologies is depicted in
Figure 29.

The ontology is organized into several patterns, addressing the differ-
ent functional concerns identified in section 2.7, and described below
with the aid of UML diagrams.
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OIO:expresses

Figure 30: Ontology pattern in ONIX, represented as a UML diagram, for de-
scribing core top-level Information Extraction concepts.

6.2.1 Information Extraction Tasks and Systems

Let us start by characterising core information extraction concepts by
answering the following questions:

What is an Information Extraction (IE) task/system/method?

What is a Knowledge Base (KB) statement?

The core concepts will be defined in terms of the OnS pattern, which
will be providing context primitives to an interplay of COMM and cso
concepts. This is depicted in Figure 30.

A IESystem is a (SO:Softwa re that expresses a OoP:Plan, namely that
of a IEMethod.A IETask is a (SO:(omputationalTask defined by the
method. A statement in a knowledge base, KBStatement, is a DnS:Role,
namely the (OMM:SemanticLabelRole, played by 010: Info rmationObj ect.
In other words, the statement is an information object expressing a fact
that provides a semantic label to some media segment - the segment
which contributed to that fact being extracted or derived. A IEMethod
is a DnS:Description of a situation. In the IE domain, the situation it
describes is a (OMM:SemanticAnnotation. This provides a DnS:setting
where the statements and the (SO:(omputationalActivi ty sequenced
by the IETask (not shown in the figure) exist.

Additionally, the IEMethoddefines the IESubsystemRole, the mean-
ing of which will become clear in what follows.
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Figure 31: Ontology pattern in ON1X, represented as a UML diagram, for describ-
ing one of the possible types of lE subsystems: Natural Language
Processing (NLP) tools.

6.2.2 InJormation Extraction Subsystems

Information extraction systems are complex systems composed of many
subsystems, as discussed earlier. Thus, the ontology should also capture
concepts related to these subsystems. Progressing down the level of
detail in the characterisation of IE systems involves answering the
following questions:

What is an IE subsystem?

What kinds of rs subsystems are there?

This is depicted in Figure 31 for natural language processing (NLP) tools,
arguably the most commonly used kind of IE subsystem.

A NLPToolis a software that OIO:expresses a NLPAlgorithm, which
DnS:defines a NLPTask. Following COMM patterns of decomposition
and annotation, NLP tools can be specialised into segmentation and tag-
ging tools. Examples of the former include the sentence splitter, the chun-
ker and the tokeniser, while examples of the latter include tools such as
the part-oj-speech tagger or the orthography tagger. Both NLPTaggingTools
and NLPSegmentationTools play the IESubsystemRole (defined above)
in the setting of a COMM:SemanticAnnotation. A NLPSegmentationTool
expresses a NLPSegmentationALqor i thm defining a NLPSegmentationTask
and the COMM:MaskRole,which is played by some COMM:DigitalData
in the setting of a TextSegmentation situation satisfied by the algo-
rithm. Conversely, a NLPTaggingTool expresses a NLPTaggingAlgorithm
which defines a NLPTaggingTask and the COMM:AnnotationRole,played
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by some (OMM:Digita lData in the setting of a TextTagging situation.
The TextSegmentation and TextTagging situations are specialisations
of the (OMM:SegmentDecomposition and (OMM:Annotation situations,
respectively (see Figure 32).

Many other tools may form part of an IE system. Of particular rel-
evance are image analysis (lA) tools, which, together with NLP tools,
enable handling multimedia documents. Their characterisation follows
a similar pattern to that of Figure 31. Thus, an IATool is a software that
OIO:expresses a IAAlgorithm which-uns.de+mes an IATask. Analo-
gously to text, there are at least two main kinds of image analysis tools,
the IADecompositionToo l, e. g., a region of interest classifier, and the
IAAnnotationTool, e. g., an edge detector. Like NLP tools, both playa
IESubsystemRole in the setting of a (OMM:SemanticAnnotation.

6.2.3 Text Decomposition

The subsystems of an IE system are typically regarded as blackboxes.
Unfortunately, this lack of detail makes it impossible to choose be-
tween them for the purposes of automated discovery and composition.
Hence, the ontology would benefit from semantic constructs to declar-
atively specify the data resources and internal processes used by the
subsystems. This is achieved by specialising a number of generic COMM

constructs to the IE domain. Let us start by characterising text decompo-
sition, by answering the following questions:

What is a text segment (e. g., document, sentence, phrase,
token)?

What is the relationship between the NLP subsystem and
text segments?

Refer to Figure 32. Text is a type of (OMM:Media that realizes TextData
(a specialisation of (OMM:MultimediaData). A NLPAlgorithm defines a
TextSegmentRole, which TextData can play in the setting of some situa-
tion. In the case of the TextSegmentation situation depicted, TextData
also plays the rnputrextsote and OutputTextRole roles defined by
the NLPSegmentationAlgorithm. Inother words, the segmentation algo-
rithm can, for example, take a document and split it into sentences (sen-
tence splitter), or it can take a sentence and split it into tokens (sentence-
level tokeniser), or it can take a document and split it into tokens
(document-level tokeniser), and so on. Two other types of outputs are
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COMM:Structure TextLocotorDescri tor

l'
ITextSequenceDescriptorI

Figure 32: Ontology pattern in ONIX, represented as a UML diagram, for charac-
terising text segmentation. This can be seen as a specialisation of the
COMM decomposition pattern to the Information Extraction domain.

tor

DnS:defines-

I COMM:StructuredDataParameter I

Lf
~I TextRegionParameter

L;,.
L DocumentRegionPorometer

I
I SentenceRegionPorometer

I NounPhraseRegionParameter

I TokenRegionPorometer

DnS:valuedBy

DnS:valuedBy

DnS:valuedBy

Figure 3): Specialising COMM locators in ONIX, represented as a UML diagram,
for text data.

defined by a segmentation algorithm: the OutputTextMaskRole and the
OutputTextSequenceRole. The former is played by a (OMM:DigitalData
object that expresses a TextLocatorDescriptor and is about some
TextRegion, e. g.a descriptor about a sentence that provides a means of
locating it in the document. The latter is played by a (OMM:Digi ta lData
object that expresses a TextSequenceDesc riptor, e. g.a descriptor about
the order in which tokens appear in the document",

1 In practice, this descriptor is often expressed implicitly in the native programming
language. For example, returning a List<Token> object in Java implicitly encodes the
sequence information, since Lists are ordered collections.
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Figure 33 shows the TextlocatorDescriptor and the TextRegion.
The former is a specialisation of COMM:localisationDescriptor for text
data. This descriptor enables specifying regions in the TextData manip-
ulated by the algorithm. It defines a number of TextRegionParameters
valued by their respective TextRegions. This is by no means an exhaus-
tive list of possible subclasses, but merely illustrative of a pattern that
suits a number of different concrete implementations and can easily be
extended.

For the decomposition of image data, the constructs introduced in
COMM are sufficient for the purposes of ONIX, and thus do not need to
be extended.

6.2.4 Text Tagging

Text analysis and tagging tools are similar to text segmentation tools.
Hence, just the differences are outlined with respect to the semantic
constructs depicted in Figure 32. In this case, the characterisation is
guided by the following questions:

What is a text tag?

What is the relationship between the NLP subsystem and
text tags?

In a TextTagging situation satisfying a NlPTaggingAlgorithm, the
latter can take as input and return as output TextData that play different
TextSegmentRoles. For instance, a part-of-speech tagger tags tokens,
while a sentiment classifier may tag sentences. A tagging algorithm
defines an InputTextRole and an OutputTextTagRole. The latter is
played by a structured COMM:DigitalData object that OIO:expresses a
TextTagDescriptor (a subclass of COMM:St ructu redDataDescription).
This COMM:DigitalData object is OIO:about a DOlCE:Particular.

As with the decomposition pattern, there was no need to extend the
constructs introduced in COMM for the tagging of image data.

6.2.5 Models for Classificationand Extraction

Information extraction systems internally contain one or several models
that guide the process of classification of! extraction from the multime-
dia artifacts that are passed as input. In particular, machine learning-
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Figure 34: Ontology pattern in ONIX, represented as a UML diagram, for charac-
terising building and applying data models.

based IE systems contain algorithms that are able to learn these models
automatically by looking at training data, that is, multimedia segments
with sample annotations of what to classify/ extract. Then, with these
acquired models of the data IE systems are able to classify previously
unseen data automatically, in other words, to predict the correct anno-
tations for new multimedia segments that are presented to them. This
leads to the following questions which will help characterise what was
just described:

What is a model of the data?

What is a learning algorithm/ task?

What is a classification algorithm/task?

The ONIX ontology pattern that addresses this concern is depicted
in Figure 34. There are two situations to describe in this pattern:
Mode1Building and Mode1Application. A Learner is a (SO:Software
that expresses a LearningA19orithm, which defines a LearningTas k
and satisfies the Mode1Building situation. Conversely, a Classifier
is a (SO:Software that expresses a Classi ficationA 19orithm, which
defines a Classi ficationTask and satisfies the Mode1Application situ-
ation.

For the purposes of information extraction from multimedia docu-
ments, a LearningA1gorithm takes (OMM:Mu1timediaDataas input and
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outputs a DataMode1 (expressed by some COMM:Digita1Data).Typically,
data models are either automatically induced via machine learning
methods, resulting in Statistica1Mode1s and/or Ru1eSetMode1s, or
are manually crafted by domain experts in the form of a set of rules,
resulting in Ru1eSetMode1s. Learning algorithms tend to be highly con-
figurable, and in ONIX this is captured by defining a number of roles
for well-known basic functions in the machine learning literature (here
semantically described by a CSO:Method).The Kerne1Ro1e is played
by a similarity metric or kernel function, e. g.cosine similarity, radial
kernel. The OptimizerRo1e is played by an optimisation method, e. g.,
interior point method, quasi-Newton method. The Regu1arizerRo1e
is played by a regularisation function used to keep model complexity
low and prevent over-fitting, e. g., lasso, ridge. The LossRo1e is played
by a loss function that defines the penalty of miss-prediction, e. g., log
loss, hinge loss. The FeatureSensorRo1e is played by a function that
extracts features from the data, while the TargetSensorRo1e is played
by a function that determines the class which the data belongs to by
consulting some oracle, e. g., manually annotated data.

A ClassificationA1gorithm takes as input COMM:MultimediaData
and a DataMode1, and outputs COMM:Digi ta tnata that expresses a struc-
tured description of the classified object, a Classi fiedObj ectDescriptor.

6.2.6 Semantic Annotation

Recall that semantic annotation can be described in simple terms as
the process of associating a semantic class defined in some domain
ontology with the metadata about some media or media segment.
Semantic annotation in the context of information extraction is thus no
different from semantic annotation in any other domain - the semantic
annotation pattern defined in COMM is both simple and generic, and
for that reason it can be adopted as is for the purposes of ONIX.

6.3 DISCUSSION

Let us check how the requirements outlined in section 6.1 are satisfied
by the proposed Ontology of Information Extraction.

By carefully choosing to model ONIX on top of COMM, we ensure
that ONIX supports multimedia data. We have shown how to specialise
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the core COMM constructs to support text, while COMM itself already
provided the necessary constructs to support images. ONIX can easily
be extended to accommodate more types of media in the same way.

All the ontologies chosen as a basis for ONIX - DOLCE, COMM and
cso - provide a rich axiomatisation of each pattern using first order
logic. Moreover, through the semantic annotation pattern, our ontology
can be linked to any Web-based domain ontology. These reasons fulfill
the semantic and syntactic interoperability requirements, respectively.

The use of ontology patterns ensures a clear separation of concerns.
Moreover, the concerns identified at the beginning of this chapter were
all addressed, thus satisfying the coverage requirement. The IE system
and subsystem patterns define the core concepts. The text segmentation
pattern, the text tagging pattern, the data modeling pattern and the
semantic annotation pattern, discussed in sections 6.2.3,6.2.4,6.2.5, and
6.2.6, respectively, each address the homonymous concerns identified.

The modularity requirement is satisfied, since these patterns form
modules in the core of the architecture of the IE ontology. The extensi-
bility requirement is fulfilled in several ways. Concretely, ONIX allows
accommodating further media types, as mentioned above, but it is also
straightforward to define new types of IE subsystems, new types of
segment roles and regions and new types of learning and classification
algorithms. The modularity and extensibility of ONIX are in great part
due to the patterns being grounded in the DnS pattern, which enables
adding further contextual knowledge in such a way that it will not
change the patterns (mainly by defining new roles or parameters), so
that legacy descriptions remain valid.

Let us now revisit the motivating examples of chapter 2 and check
how the systems designed to support them can be formally described
with ONIX.

The developers of the cross-media DC system have decided to use a
sentence splitter and a named entity recognizer to split each document
into sentences and to tag occurrences of people and location names.
Further, a colour analysis tool is used to process the images in the docu-
ment. Pairs of sentences and images per document are then passed to a
classifier, whose output is interpreted in order to generates statements
of the type about_topic(document, topic) as output to the KB. Figure 35
illustrates how to semantically describe this system.

Fulfillment of the
requirements
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Figure 35:A UML diagram illustrating part of the semantic description, us-
ing ONlX, of a cross-media document classification system. Note
that all the DnS:plays, DnS:defines and some DnS:setting and
OIO:expresses labels were omitted for clarity, and, due to space
limitations, the outputs of the colour analyser and the named entity
tagger were also omitted.

The system defines four subsystem roles, played by a colour his-
togram analyser (an lA tagging tool), a sentence splitter (a NLP seg-
mentation tool), a named entity tagger (a NLP tagging tool) and an
image/sentences pair classifier (a classifier). The image analyser takes
the ImageData from the multimedia document as input and outputs a
colour histogram for the image(s). The input to both the sentence splitter
and the named entity tagger is the text from the whole document (hence
playing a DocumentRole),whereas the output of the sentence splitter is
the text from a sentence (hence playing a SentenceRole). The sentence
text also plays the Classi fierlnputDataRole defined by the classifier.
The classifier loads a previously learned document classification model
as input (via the InputDataModelRole). The generated KB statements
express the ClassifiedObjectDescriptor outputted by the classifier.
Finally, the multimedia document plays the COMM:AnnotatedDataRole
and the KB statement plays the COMM:SemanticLabelRolein this par-
ticular COMM:SemanticAnnotation setting, which DnS:satisfies the IE

method 010: expressed by the system.
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The system that implements the entity recognition task features a
similar description. It defines six subsystem roles, played by a sen-
tence splitter, a tokeniser, an orthography tagger, a part-of-speech
tagger, a named entity tagger, and a classifier of tokens. The part-
of-speech tagger works over input sentences, therefore it takes as input
TextData that plays a SentenceRole, and outputs COMM:DigitalData
that playa OutputTextTagRole and express a TextTagDescriptor. The
orthography tagger can be described in the same way, with the ex-
ception that it works over input tokens, and so its input consists
of text that plays a TokenRole. The tokens, which are the candidate
entity mentions, also play the ClassifierlnputDataRole defined by
the classifier. Like in the previous example, the classifier loads a
previously learned entity recognition model as input, and the gen-
erated KB statements, which are of the form instance_of(entity_mention,
class), express a Cla 5 5 if iedObj ectDes cripto r. Annotated tokens playa
COMM:AnnotatedDataRole, the KB statement a COMM:SemanticLabelRole,
and, finally, the metadata that allows locating the annotated tokens in
the text consist of COMM:DigitalDatathat play OutputTextMaskRoles
and express TextLocatorDescriptors.

The work presented in this chapter just scratches the surface on
what is possible to represent about IE systems. The focus was on those
semantic constructs and ontology patterns that are generic enough
to constitute the core of IE. To support other concerns, the ontology
would need to be extended. For example, knowledge fusion, i.e., when
a KB statement is not directly warranted by the media segment but
rather receives a indirect contribution from the segment towards its
existence and validity (e.g., via merging of several extracted facts), is
an important concern that would deserve its own pattern.

The potential uses of the proposed Ontology of Information Extrac-
tion go beyond the main motivation in this chapter, that of supporting
automated discovery and composition of IE components and services.
For example, the formalism enables providing detailed information
about the provenance [134] of extracted facts, which in some systems
is stored as metadata. Another possible use of the formalism would
be to contribute to an enhanced replicability of empirical research (a
concern shared recently in several areas, see [135, 146, 157, 106]),by
allowing researchers to accompany published results with an unam-
biguous (formal) description of the IE methods and systems used in the
experimental tasks that they report about.

Other potential uses
of the ontology



General Architecture
for Text Engineering

Unstructured
Information
Management
Architecture

148 A FORMALISATION OF MULTIMEDIA MINING

6,4 RELATED WORK

There are several research areas that are relevant to the work presented
in this chapter.

Research on the software engineering aspects of natural language
systems has led to the current availability of feature-rich software frame-
works to support building and maintaining them. Two frameworks
representative of the state-of-the-art are GATEand UlMA.

The GATE[21] is arguably the most widely used academic framework
and graphical development environment for NLPtools and applications.
It has been extended over the years to include support for ontolo-
gies, multimedia data, and machine learning. GATEuses native data
structures (the current implementation is in Java) to represent data,
and features a plugin-based architecture in which components can be
described using so-called CREOLE (XML)descriptor files.

The Unstructured Information Management Architecture (UIMA)[57]
is an open-source platform for integrating components that analyse
unstructured sources such as multimedia documents. Unlike GATE,
UIMAadopts a declarative data layer for interoperability. uIMA-based
systems define type systems - similar to ontologies with extremely
limited semantic commitments, e. g., only supporting single-inheritance
type/subtype hierarchies - to specify the kinds of information that
they manipulate [69].

Unfortunately, despite offering a great deal of functionality, current
frameworks tend to lock developers by not offering any mechanisms
to ease the integration of functionality that is required but not already
provided. xML-based plugin descriptor files, document annotations
stored in native data structures and limited type systems, are just a
few examples of framework-specific design decisions that present the
following problems:

SCOPE Design decisions tend to mimic the native programming lan-
guage. For example, component descriptors often merely expose
00 class fields as design time and runtime parameters in some
configuration file. It is thus impossible to create descriptions that
fall outside the scope of what the native programming language
can represent. For instance, it would prove difficult to represent
that the component input is any "multimedia document that con-
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tains exactly one image and no audio or video", since modern 00

programming languages are less expressive than e. g., OWL.

SEMANTICS Framework-specific types and concepts lack formal se-
mantics. Appropriate within the context of the framework only, it
is impossible to guarantee that these types can be reused in the
context of any other framework, because even if names match syn-
tactically, they are unlikely to match semantically - they mean
different things in different frameworks.

WEB INTEROPERABILITY Most framework-specific component/service
descriptors are not compatible with existing Web and Semantic
Web standards, which limits the interoperability with publically
available services on the Web.

Due to the above problems, new directions in software engineer-
ing have recently been explored to combat the increasing complexity
and rapid pace of change in modern systems development. Among
these new paradigms is Semantic Web Enabled Software Engineering
(SWESE), which tries to apply Semantic Web technologies (such as
ontologies and reasoners) in mainstream software engineering [78]. It
hopes to provide stronger logical foundations and precise semantics to
software models and other development artifacts. The work presented
in this chapter can be regarded as a contribution to this goal, as it pro-
vides a Semantic Web-based formalism with application to the domain
of IE systems engineering.

In recent years, several researchers have reported on the use of on-
tologies as a means to enable interoperability between text mining, NLP

or linguistic tools and resources. Declerck et al. [48] argue the need for
a language infrastructure that enables sharing NLP tools and language
resources, and suggest that Semantic Web technologies are the most
suitable to achieve that goal.

Similarly, Hayashi et al. [81] describe the need for a global language
infrastructure, an open and web-based software platform to which lan-
guage resources can be easily plugged, and on which language services
can be efficiently composed, disseminated and consumed. They argue
that such infrastructure should be ontology-based, and introduce the
idea of a language service ontology [80]. The top-level of the language ser-
vice ontology contains concepts such as LanguageProcessingResource,
LanguageDataResource, and LanguageService. Further, they propose
sub-ontologies to handle linguistic annotation and lexicon modeling.
The linguistic annotation sub-ontology is incorporated with the pur-
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pose of specifying the input/output data of NLP tools as well as
for defining the content of corpora, and includes concepts such as
LinguisticExpression, LinguisticMeaning and LinguisticAnnotation.
The lexicon modeling sub-ontology specialises the top-level concept
LanguageDataResou rce with concepts such as Corpus and Lexicon.
Compared to ONIX, the language service ontology is more geared to-
wards linguistics and language resources, while ONIX is tailored to the
domain of IE. Moreover, ONIX views data as multimedia artifacts instead
of as language resources, and is also agnostic about whether processing
resources are language related, making it more generally applicable.

A framework for describing and discovering NLP processing resources
is proposed by Klein and Potter [97]. The overall motivation of the au-
thors is similar to the one presented in this chapter: interoperability and
discoverability of NLP components and services, with a view to seam-
less composition (be it manual or automated). Their proposed ontology
of NLP services is based on the OWL-S semantic service description
ontology [29], which serves the same purpose as cso in ONIX. The
top-level class in their ontology is NL-Resource, representing a natural
language resource, which subsumes two subclasses, NL-StaticResource
and NL-ProcessingResource. A NL-StaticResource describes things
like corpora, probability models, lexicons and grammars, while a
NL-ProcessingResource describes things like tagging and parsing tools.
The Document class contains a hasAnnotation property, which enables
representing the several layers of annotation generated by the pro-
cessing resources over the input document. The class NL-Analyzer spe-
cialises NL-ProcessingResou rce by restricting its haslnput and hasOutput
properties to those resources that are textual in nature.

By being grounded on DOLCE, CSO and COMM, ONIX offers several
advantages over the ontology proposed by Klein and Potter. First, the
DnS ontology pattern makes it possible and, in fact, almost ensures that
that the design and extensions to ONIX are performed in a sound way,
analogous to the use of the dependency inversion principle in software
engineering, i.e., by adding descriptions of situations that interlink the
respective "involved parties" (classes) but avoid having to modify them.
For that reason, in ONIX documents do not "have" annotations, but
instead annotated documents are COMM:MultimediaDatathat play an
COMM:AnnotatedDataRole in the context of a COMM:SemanticAnnotation
situation that satisfies the particular 010: Method that generates the
annotations. This is intuitively more sensible, since annotations are
not intrinsic properties of documents - in fact, in any other domain
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asserting that the class Documentfeatures a hasAnnotation property
would not make sense. Second, the use of COMM enables inheriting a
number of semantic constructs for describing multimedia data, hence
broadening the scope of ONlX beyond a mere formalisation of NLP

components and text documents. Finally, ONlX additionally enables
representing machine learning methods and algorithms based on CSO

constructs, which constitute an important class of components in the
domain of IE.

Halpin [76] proposes the use of Semantic Web ontologies, and in
particular the ontology by Klein and Potter, to describe natural lan-
guage systems together with the performance and accuracy obtained
by a given configuration of components. The author argues that stor-
ing metadata about how well NLP components perform in different
situations can contribute to guiding the composition of components
for assembling effective systems according to task and input, and lead
to advances in the sharing and evaluation of NLP resources in the sci-
entific community. This view is aligned with what was mentioned in
section 6.3 concerning replicability of IE experiments.

In fact, in line of the above, a primitive version of Hayashi et al.'s
vision is already up and running in the form of the Language Grid [88],
an infrastructure for coordinating distributed language services on the
Web. On the Language Grid, services that provide the functionality of
a single language resource are called atomic services, while services
composed of atomic services are called composite and described in
W5-BPEL [25]. For example, a composite service can be composed of
a machine translator, a morphological analyser and a technical term
dictionary in order to translate sentences in a specialised domain. In-
strumental to enabling discoverability and interoperability of services
is the language service ontology of [80], upon which the interfaces of
all services on the Language Grid are designed.

6.5 CONCLUSIONS

The contribution in this chapter consisted of a well-founded, modular,
extensible and multimedia-aware formalism for describing Information
Extraction systems, called the Ontology of Information Extraction. The
ontology provides the top-level semantic constructs required to describe
the backbone of any IE system: the subsystems, tasks and methods that
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address the basic concerns of decomposition, segment analysis, data
modeling and semantic annotation (cf. section 2.7).

The advantages of using the proposed ontology include enhanced
interoperability among systems through an agreed-upon means of
referring to and describing IE concepts; and supporting faster and
optimal engineering decisions both at design time and at runtime,
through automated discovery and composition, contributing to reduced
system development and maintenance costs. Additionally, the ontology
can be used to record detailed information about the provenance of
extracted facts, and it could contribute to improved replicability of IE

experiments.

The DC and EE tasks were used as starting point for illustrating the
problem addressed. The systems I implemented to test the hypotheses
in chapter 4 and chapter 5 were used to identify concrete requirements
for the design of the ontology (cf. section 6.1): coverage, multime-
dia awareness, semantic and syntactic interoperability, separation of
concerns, modularity, and extensibility. An explanation of how the re-
quirements were met was given in section 6.3, together with an example
of how the proposed ontology is used to formally describe systems that
perform these tasks.

In the design of the ontology, existing foundational and core Semantic
Web ontologies, reviewed in section 2.7, were reused and extended by
specialising concepts defined in those ontologies to the domain of
Information Extraction. The Ontology of Information Extraction is, to
the best of my knowledge, the first specialised ontology for semantically
describing this domain.

The work presented in this chapter just scratches the surface on what
is possible to represent about unstructured information mining systems.
The focus was on those semantic constructs and ontology patterns that
are generic enough to constitute the core of unstructured information
mining. To support further concerns, other ontologies will be created
that extend the proposed core ontology.
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The research presented in this thesis comprised the design and evalua-
tion of machine learning and ontology models to tackle important and
current research questions concerning two related tasks in text mining:
document classification and information extraction. Throughout the
previous chapters a variety of approaches, methods and experimental
evidence were provided, all of which contributed to getting us closer
to the overall goal we set out to achieve, that of reducing the cost of
creating and maintaining DC and IE systems.

The first problem tackled in this thesis was the cost of engineering
features, a problem which was described detailedly in section 3.1. I
started by measuring the impact (in system accuracy) of the several
classes of features and model parameters typically employed in ML-

based approaches to the Entity Extraction task. Initially identifying
these successful features and parameters was necessary to guide the
design of the several systems that I implemented to gather the empir-
ical evidence presented in the rest of the thesis. The study was also
motivated by the need to run the several systems under the same
experimental conditions, since reported results in the literature are,
unfortunately, not often comparable. It is also a valuable guide to other
researchers in itself, contributing to a clarification of what constitute
successful classes of features for EE.

The design of a first simple system according to the lessons learned
via the aforementioned studied warranted some interesting results. One
of the main conclusions was that, in general, the use of very simple
features is surprisingly enough to account for most of the EE accuracy
obtained, and that the use of rich data resources, such as gazetteers,
greatly contributes to the best observed results and it is more likely
to explain the differences in the results reported by several systems in
the literature than the design decisions relative to the learning model.
In effect, despite being significantly simpler than the systems against
which it was compared, the system was shown to be very competitive.
Further, we concluded that feature selection does not contribute to
improving the accuracy in the EE task, in contrast with the application

7
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of feature selection to the TC task, where the use of some of the metrics
is known to consistently improve accuracy. The results showed, however,
that even the simple frequency metric can greatly reduce the number
of features with no significant loss in terms of accuracy. Knowing that
accuracy is not affected enables us to build simpler models in terms of
number and classes of features.

Next, attention was turned to extending feature classes to include
features that exploit the multimedia nature of modern documents, a
little explored avenue in the literature. My contribution to the state-
of-the-art here consisted of a novel class of successful features for
the task of classifying multimedia documents. To collect the features
from corpora, I proposed a novel method for detecting cross-media
associations and quantifying the level of image and text correlation.
I showed that, by preserving not just text and images but also the
cross-media correlations between text elements and the images in a
multimedia document, it is possible to improve system accuracy. Plus,
the proposed approach has a significant characteristic: it makes almost
no assumptions about the way multimedia content is modelled, making
it widely applicable to virtually any multimedia document.

Seeking novel approaches to overcoming the scarceness of labelled
data (the second problem addressed in this thesis, introduced in sec-
tion 3.2), I began by presenting a successful application of IE technology
to a real-world problem in the aerospace engineering domain charac-
terized by very costly labelled data (annotations of jet engine reports)
on the one hand, and the existence of complex patterns, which would
be also costly to enunciate and maintain without the aid of some auto-
mated approach. In order to alleviate the need for labelled data and at
the same time take advantage of the high volume of unlabelled data
available, semi-supervised ML methods were employed, yielding results
comparable to the state-of-the-art in other text mining tasks. This study
prepared the ground for the main contribution in this thesis, and filled
a gap in the literature, since little has been reported on the application
of semi-supervised methods to real-world EE problems.

Motivated by problems characterized by limited availability of la-
belled data, such as the one above, I then devised a novel approach
to domain adaptation for text categorization that aims at reducing the
effort in porting existing statistical models induced from corpora in
one domain to other related domains, thus greatly alleviating super-
vision requirements for tasks of this kind. Key to the approach is a
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new paradigm of labelling words (as opposed to labelling whole doc-
uments), was shown in the literature to be less time consuming and
more natural to domain experts. I proposed a method to minimize the
divergence between the distributions of the labelled source domain and
the unlabelled target domain. Further, I extended the method to make
use of the labelled features to guide the discovery of a latent concept
space, which is then used to augment the original labelled features set.
The results showed that, despite the use of a weak form of supervision,
we are able to outperform standard supervised and semi-supervised
methods and match the results obtained by the more expensive forms
of supervising. Lowering the supervision requirements in this manner
constitutes, in my opinion, a significant step towards a more general
applicability of ML-based text mining approaches.

Finally, I focused on the issue of the interoperability of systems and
comparability of results, still a major contributor to the high cost of
creating and maintaining IE technology, as explained in section 3.3.
My contribution consisted of a formalism for declaratively specifying
unstructured multimedia information mining systems, their subsystems
and components, in the form of ontology. The ontology can be used
to create unambiguous descriptions of systems or to record detailed
information about the provenance of extracted facts, thus leading to
improved interoperability and replicability of experiments.

Although document classification and information extraction are no
longer young research areas, there are still many open questions and
research opportunities. These include:

NOVEL CLASSES OF FEATURES In chapter 4, I augmented the classes
of features typically used for DC to include features that capture
correlations between multimedia elements in a multimedia doc-
ument, with minimal assumptions made about the content. The
results were encouraging and hint at the new opportunities to,
in an analogous manner, identify classes of features that take
into account generic properties of classes of documents. Since
identifying successful features for a given text mining problem
is a very time consuming task, a desirable future scenario for
anyone involved in creating and maintaining this kind of systems
would be to have at their disposal catalogued knowledge that
maps document characteristics to successful features classes. Such
knowledge would ideally be readily available to plug-in routinely
into new or existing solutions.
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NOVEL MACHINE LEARNING METHODS This is the focus of most of
the work reported in the literature, at the time of writing: to ex-
plore the application of new algorithms arising from advances in
ML theory (although there have been also cases in which IE prac-
tice precedes more solid theoretical analysis). I expect, however
that we are reaching a plateau in what respects the value of the
contributions if pursuing this direction, and that any significant
contribution yet to come in the short to medium term is going to
be less revolutionary than the other topics in this list.

NOVEL PARADIGMS FOR ACQUIRING LABELLED DATA Inchapter 5,
a new paradigm was employed that constitutes a significant depar-
ture from the well-established instance labelling paradigm, with
very promising results. It is my expectation that new paradigms
for annotating data will revolutionise the way we approach IE

and yield significant gains both in terms of accuracy and general
portability of IE to a variety of domains. I would like to briefly
mention tagging, as performed by web users, as an example of
one such paradigm. It can be regarded as a weak form of annota-
tion, and could have a defining role in shaping a bootstrapping
process whereby existing tags on the Web enable tagging other
Web content automatically, and this new tagged content can in
turn be used to tag more content, in a self-sustaining cycle. This
is one of my favourite possible avenues for future work.

NOVEL FORMALISMS FOR REPRESENTING IE-RELATED ARTEFACTS

The work presented in chapter 6 provides a minimal base upon
which to build more extensive and specific representation for-
malisms able to represent unstructured information mining sys-
tems. There is ample room to do so, given the breadth of IE

domains and solutions out there, and for that reason I expect the
proposed ontology (or an analogous one) to assume a central role
in an explosion of metadata describing IE, to happen in the short
to medium-term.

I expect advances in research will address these questions. I hope
that machine learning-based Information Extraction becomes, in the
long-term, a cost-effective class of solutions for practical applications in
any domain.
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OPEN-SOURCE SOFTWARE AUTHORED

A.l THE RUNES FRAMEWORK

Runes is a framework that handles, on behalf of the designer/im-
plementer, several important aspects related to the representation of
multimedia resources for unstructured information mining purposes:

• it adresses scalability by automating the selection of an optimal
underlying data structure for holding the data at any time during
processing;

• it provides support for expressive data models up to the level of
hypergraphs;

• it enhances portability by featuring a plugin framework and
encouraging developers to think in terms of small modular pro-
cessing units;

• it integrates data by providing unique identifiers to stored data
and merging those that are identical;

• it orchestrates execution of external tools by running a dependen-
cies resolution algorithm that determines which should run and
in which order; and

• it supports processing several data formats and media thanks to
the provided plugins that accompany the framework

Runes can be downloaded from the Sourceforge project page:
http://runes.sourceforge.net/

A.2 THE ALEPH LIBRARY

Aleph is both a multi-platform machine learning framework aimed at
simplicity and performance, and a library of selected state-of-the-art
algorithms.

Aleph features:

A
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• semi-supervised algorithms: graph label propagation, discrete
regularization, etc.

• large-scale linear algorithms: logistic linear regression, stochastic
gradient descent linear SVM, etc.

• wrappers to well-known tools: libsvm, SVMlight, etc.

• graph-based algorithms: random walks, absorbing random walks,
etc.

• feature selection statistics: infogain, cross entropy, chi-squared,
etc.

• convenience validation utilities: several splitting methods, several
scoring functions

• fast vector and matrix implementations: based on matrix toolkits
for java, but with a few optimizations on top of it

• fast on-the-fly operations over datasets, instances and features:
based on the concept of views over those first-class objects in the
framework

Aleph can be downloaded from the Sourceforge project page:
http://aleph-ml.sourceforge.net/

A.3 THE T-REX SYSTEMS

Trainable Relation Extraction (T-Rex) is a highly configurable machine
learning-based Information Extraction from Text framework, which
includes tools for document classification, entity extraction and relation
extraction.

T-Rex can be downloaded from the Sourceforge project page:
http://t-rex.sourceforge.net/

http://aleph-ml.sourceforge.net/
http://t-rex.sourceforge.net/


PAIRING START AND END OF BOUNDARY
PREDICTIONS

The boundary classification model for EE requires start and end bound-
ary predictions to be re-conciliated as a post-processing stage. Here I
describe, in the form of pseudo-code, the algorithm to pair start and
end boundary predictions.

Algorithm 3 Pseudo-code for the algorithm to pair start and end bound-
ary predictions
P +- set of predictions from model
A +- new entity annotation set
C +- pruneCandidates(identifyCandidates(P))
While C is not empty, do
1. c +- next candidate from C
2. R+- determineConflictRegion(c, Cl
3. B +- determineBestConfiguration(R)
4. A +-AuB
5. C +- C\ R
Annotate text using A

Algorithm 4 Pseudo-code for the function identify Candidates
C +- new entity annotation set
for each entity type t, do
1.n+- next start boundary prediction
2. if nexists, then
2.1. e +- next end boundary prediction before n
2.2. while e exists, do
2.2.1. s +- n
2.2.2. n +- next start boundary prediction
2.2.3. do
2.2.3.1. c +- new candidate of type t spanning text (s, e)
2.2.3.2. C +- C U {cl
2.2.3·3. e +- next end boundary prediction before n
2.2.3. while e exists
return C

161
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Algorithm 5 Pseudo-code for the function pruneCandidates
C +- candidate entity annotation set (passed as argument)
P +- new entity annotation set
A +- candidates sorted by start boundary position in document
for each candidate c E C, do
1. accept +- TRUE
2. R +- candidates inside text region spanned by c
3. for each candidate r E R, do
3.1. if score(c) < score(r) then accept +- FALSE
4. if accept = TRUE then P +- P U{c}'
return P

Algorithm 6 Pseudo-code for the function determineConflictRegion
s +- annotation (passed as argument) R +- new set of entity annotations
L +- new stack of entity annotations
R+-RU{s}
L +- push(L,s)
while L is not empty
1. a+- pop(L) 2. °+- candidates overlapping text region spanned by a
3. for each candidate 0 E 0, do
3.1. if 0 ~ R then
3.1.1. R +- R U {oJ
3.1.2. L +- push(L,o)
return R

Algorithm 7 Pseudo-code for the function
determineBestConfiguration
R +- set of entity annotations (passed as argument)
m +- new entity annotation configuration (max)
L +- new stack of entity annotations configurations
L +- push(L, m)
while L is not empty
1. c +- pop(L)
2. for each r E R
2.1. if overlaps(r,c) then
2.1.1. a +- non-overlapping configuration from (c, r)
2.1.2. if a ~ L then push(L, a)
2.2. else m +- mU {r}
3. L +- L \ {cl
4. if confidenceScore(m) < confidenceScore(c) then m +- c
return m
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