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A model of tennis balls impacting obliquely on tennis courts was developed in this study. 
Balls were impacted normally on a force plate to read impact force data, and filmed at high 
speed during oblique impacts. A normal model was created and then extended to cover 
oblique impacts. The experimental data was used to verify the model in each case. 

A study of surface testing methods found that tennis courts are significantly stiffer than 
tennis balls; so much so that they can be considered rigid. A coefficient of friction between 
ball and surface was all that was necessary to define a surface. 

Normal impacts were performed on a force plate for four different ball constructions at 
speeds between 3 and 20 ms- I

. Impact speed had a significant effect on coefficient of 
restitution (ratio of rebound speed to inbound speed) - for example for a pressurised ball, 
from about 0.8 at an impact speed of 3 ms- I to about 0.6 at 20 ms- I

. Pressureless balls 
bounce at a similar speed to pressurised balls at low impact speeds, but slower at high 
impact speeds. Punctured balls bounce slower throughout the range of impact speeds. All 
balls showed a rapid increase in force during the initial part of the impact. 

An iterative model was created to simulate normal impact. A numerical method was used 
to find the effect of deformation shape on the relationship between centre of mass 
movement and ball deformation. A total force during impact was created by combining 
structural stiffness, material damping and impulsive reaction forces. This model worked 
well for all ball types and used quasi-static compression data and a low speed drop test to 
find the parameters. The impulsive force simulated the initial increase in force well. 

A thorough experimental study of oblique impacts was performed by isolating in turn each 
of the key incoming properties of impact. The incoming speed, spin and angle, together 
with the ball and surface construction were individually varied in turn and the effect on 
outgoing characteristics measured using high speed video footage. In most cases there was 
a distinct change in rebound properties when rolling happened. Footage at up to 7000 
frames per second was used to qualitatively explain the effect of deformation shapes on 
energy losses. It was found that impacts with backspin caused more deformation and an 
increased energy loss compared to normal impacts with the same vertical velocity. Impacts 
with topspin had a reduced vertical energy loss. 

The normal model was extended to include the horizontal and rotational forces necessary 
to simulate an oblique impact. A damping compensation factor was included to adjust the 
vertical energy losses at different spin rates. The oblique test data was used to verify the 
model, and there was a very good correlation. 

Keywords: tennis ball, impacts, tennis court, high-speed cinematography, visco-elastic 
modelling 
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Chapter 1 Introduction 

1 Introduction 

1.1 Background of the study 

The following chapters describe a three year study examining the features of tennis ball 

impacts on court surfaces, and creating a model to predict these impacts which could be 

verified by experimental data. This experimental data also provided good insights into the 

behaviour of a ball during impact. 

The origins of the game of tennis can be traced back many hundreds of years. There is 

evidence in Egyptian carvings (dating from as far back as 1500 BC) for a precursor to 

tennis. Most historians however credit the origins of the modern game to 1 i h century 

France, where monks used their hands to hit balls against the monastery walls or over a 

rope strung across a courtyard, giving the game its name jeu de paume, or "game of the 

palm". Gloves were developed to protect the hand and rackets were gradually introduced 

from the 16th century. The game developed into what is now known as Real Tennis, and 

was played indoors. The development of vulcanised rubber in the 19th century led to much 

softer and more elastic balls, and people began to play the game outside on lawn courts. 

The rules of the game were developed during the 1870s and the first tournament took place 

in 1877 at the All England Croquet and Lawn Tennis Club in the London borough of 

Wimbledon. 

The motivation for the research will be investigated more fully in Chapter 2, examining the 

evidence for recent changes in the way the game is played, and the pressure to control the 

sport. 

This study was part-funded by the ITF (International Tennis Federation), who have also 

been closely involved in the work. One major reason for the project was to develop a tool 

which could be used by the ITF in their ongoing attempt to monitor and potentially control 

the effect of technology within the sport. 
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Chapter 1 Introduction 

1.2 Aims and objectives 

The overall aim of the project was to create an analytical model of a tennis ball bouncing 

on a court surface, and to verify the accuracy of the model. 

Specific objectives are as follows, 

1. To gain a solid understanding of the basic physics behind ball impacts. 

2. To measure the static (or quasi-static) properties of tennis balls under compression, 

and to measure the dynamic properties of tennis balls impacting normally on a rigid 

surface by measuring forces and speeds. 

3. To develop a model predicting normal impact, and verify with experimental data. 

4. To perform a review and study of existing surface test methods, identify those 

important to an oblique model. 

5. To measure the dynamic properties of tennis balls impacting obliquely on a rigid 

surface by measuring speeds, spins and angles, and improve understanding of the 

features of oblique impact. 

6. To create a model predicting oblique impact on a tennis court surface, and verify 

against experimental data 

7. To link the model to existing models of racket impact and flight. This would 

facilitate an assessment of the final model. To thus evaluate its effect on the game 

of tennis, and suggest future research. 

Throughout this study, a major secondary aim was to create models which are as easy to 

understand and use as is practically possible, so that they can have a real usefulness. One 

implication of this is that model parameters should be simple to measure so that if a new 

ball or surface was introduced, as few measurements as possible must be taken in order to 

confidently predict its behaviour. 

1.3 The structure of the study 

The final model was constructed in a number of steps, broadly following the sequence of 

the objectives above. This thesis is divided into a series of chapters which follow a logical 

chronological order of how the work was performed. 

2 



Chapter 2 Literature Review 

2 Literature Review 

2.1 Introduction 

Over the years there has been a considerable amount of research published in the area of 

tennis. However, until fairly recently the work has been performed from outside the sport, 

often by academics with a personal interest in tennis. In 1997 the International Tennis 

Federation (lTF), who are based in London and are the governing body of the sport, 

created a Technical Centre whose aim was "to carry out testing and research into all 

mpects of the game, and to provide support to the ITF Technical Commission and other 

ITF Committees on decisions relating to technical issues" (ITF, 2004). 

This chapter will discuss the need and motivation for research into tennis, particularly in 

the present day. It is divided into sections describing the various areas which must be 

understood in order to create a model of ball impacts. These range from the properties of 

the ball (and test methods for finding these properties), the aerodynamics and player data 

which define the scope and boundary conditions for a model, through the properties of the 

surface on which the ball bounces, previous work on the dynamics of ball impacts and 

previous attempts to model a ball (both from tennis and other sports). 

2.2 The motivation for tennis research 

Recent years have seen significant changes in the sport of tennis. In comparison with some 

other sports (for example golf) the level of both understanding and control of the physics 

of the game was relatively low. As the global market for sports has increased dramatically, 

so has the size of the game of tennis in both amateur and professional terms. The industry 

worldwide supplies hundreds of millions of balls annually, and many millions of rackets, 

shoes and other clothing equipment. In today's commercial marketplace, this industry 

provides a huge potential force for change. The International Tennis Federation as world 

governing body of the sport recognised their responsibility to understand and control the 

effects of technology in the game. In the introduction to the first international conference 

hosted by the ITF on tennis science and technology, Coe (2000) described a strategy for 

establishing a balance between technology and tradition. He listed a number of quotes from 

both current (at the time) and past players describing actual and potential problems with 

the speed of the game. After every Wimbledon tournament there are calls for changes to 

the game, most commonly in rule changes limiting the specifications of the racket. Coe 

used the percentage of sets which ended in a tie-break as an index to the changing speed of 

the game over 31 years. He showed that on all surfaces, the men's game has exhibited a 

steady increase in tie-breaks. There is also a clear difference between surfaces, so that the 

faster surfaces produce a significantly higher number of tie-breaks. This is clearly shown 

3 



Chapter 2 Literature Review 

by the Australian Open, where the change from grass to Rebound Ace caused a drop in tie

breaks. The women's game has a somewhat different trend, where three of the four 

surfaces seem to have a drop in the number of tie-breaks (although this downwards trend is 

arguable given the scatter). 

Fisher (1977) described the introduction of a new style of racket designed by Howard Head 

of Prince, which was the first racket to have the now-common oversize head (Head, 1976). 

The increased moment of inertia about the axis of the handle was designed to reduce 

twisting of the racket when hit by a ball, but also increased the size of the centre of 

percussion (or "sweet spot") and moved it to an easier part of the racket head to use. 

• 'Spaghetti' 

o Natural 40lbs 

° Natural 70lbs 

" Synthetic 40lbs 

,----r--r---.---.--r 400 

• • ': • ••• 300 . .,' 
Rebound 

• t 00 ,. Spin 
" • ,," A A~ · 200 (radls) 

• .. ~ • &\ 

1°0 o .... t- " .... 0" 
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~_~--.-~--r--4 0 

-500 ·400 -300 -200 -100 0 
Irrpact Spin (rad/s) 

Figure 2.1 Spin generated by the "Spaghetti" strung racket compared to natural and synthetic 
strings (Goodwill and Haake, 2002) . 

Another racket innovation which had the potential to significantly change the game was 

the "spaghetti" stringing system (Fischer, 1977). This allowed a player to apply 

significantly more spin to the ball than conventional stringing, as shown in data from 

Goodwill and Haake (2002) in Figure 2,1. Balls were fired at a clamped racket at a speed 

of 23 ms-) with effective backspin. The "spaghetti" strung rackets had a clear increase in 

rebound topspin, and this stringing system was banned by the ITF in 1978. 
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Figure 2.2 The trend in ball deformations from 1998 to 2003 (Miller, 2003). 

Miller (2003) looked at the various aspects of the game to see which had the most 

influence on the game. He found that by splitting the tie-break information presented by 
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Chapter 2 Literature Review 

Coe (2000) into two data sets for the times when players predominately used wood and 

then composite rackets, the change in racket technology does not seem to be the 

predominant factor. Miller gave hardness information for balls based on the testing 

performed by the ITF since 1998, where balls were collected from tournaments and the 

marketplace (shown in Figure 2.2). He noted that in this admittedly small timescale, there 

seems to have been a trend for the balls to become harder. This means that deformation 

energy is stored in the strings rather than the ball, and the strings are more efficient -

meaning the ball rebounds faster. 

Arthur (1992) examined the effect of technology on the game, and concluded that rackets 

had a huge effect on the speed of the ball. He commented that simply banning certain kinds 

of rackets was extremely unlikely both practically and legally. Changes in the court size 

and shape or general rule changes (such as reverting to a single serve) would be extremely 

unpopular, leaving the ball as a possible source of change. Arthur suggested that making 

the ball softer, lighter or larger would have the desired effect of slowing it down, although 

he identified problems with each approach. 

Haake et al. (2000) tested the reactions of "good" tennis players by firing simulated serves 

at speeds of up to 160 mph (71.5 ms- 1
). The speeds were measured using a radar gun. It 

was found that the proportion of serves returned into court decreased gradually with speed. 

There was also a critical speed of around 126 mph (56 ms- 1
) where the number of aces 

increased dramatically. Haake et al. also presented data showing that as the serve speed 

increased for a sample of male players at Grand Slam events, the percentage of sets ending 

in tie breaks also increased. A break-down of serve speed by player indicated that male 

players who serve significantly faster than others on a fast surface (grass at Wimbledon) do 

not necessarily serve faster on slower surfaces (Roland Garros and US Open). This 

suggests that players modify their game to play on different courts. 

Magnus and Klaassen (1999) performed a statistical analysis using Wimbledon data from 

1992 to 1995 of the points won on first serve to see if new balls had a benefit to the server. 

Magnus and Klaassen found the new balls did not have a benefit, and also found that the 

softer balls introduced in 1995 did not have a significant effect of reducing the serve

dominance of the game (and hence the speed) as had been intended, and suggested that 

more drastic measures were needed. 

Brody (1986) considered one of the suggestions which had been made to slow the game, 

which was to reduce the size of the service box by moving the service line back towards 

the net. He found that a reduction of about one foot would have a reasonable effect (for 

example, a serve hit at 90 mph on a normal court would then have to be hit at 84 mph to 

have the same "window of opportunity"), but concluded that the idea was unfair as it 

would penalise shorter players more than taller ones. 
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Chapter 2 Literature Review 

Brody and Cross (2000) also addressed the problem of the speed of the game and discussed 

seven possible solutions aimed at reducing the dominance of the serve: 

• Change the surface 

• Limit the racket 

• Eliminate the second serve 

• Change the foot fault rule 

• Change the ball 

• Shorten the service court 

• Raise the net 

Although each of these would have the desired effect, Brody and Cross recognised 

problems with each suggestion and suggested further trials. 

In an attempt to control the speed of the game, the ITF introduced the Type 3 ball in 2000, 

which is typically 6% larger in diameter than a conventional (or Type 2) ball. Its exact 

properties are described in more detail in Appendix A. Haake et al. (2000) provided an 

analysis of the effect of this ball type on the various mechanisms of a shot. They found that 

it rebounded off the racket faster, had the same drag coefficient and the same impact 

characteristics as a conventional ball. The larger diameter will lead to an increased drag 

force, and it was shown that this would slow the ball down approximately 10 ms on a first 

serve, and 16 ms on a second serve - which is about half the difference between comparing 

an acrylic court to a slower clay court. 

Summary 

There has been an obvious concern on the part of the ITF as to the speed of the game. This 

has provoked research both within their organisation and elsewhere into the reasons behind 

this and possible solutions. Evidence for increases in serve speed was demonstrated using 

tie-break data, and a sharp threshold in speed where players would be unable to return 

serves faster than a certain level. A common proposal to slow the ball has been to increase 

its size. This and similar measures clearly illustrate the need for understanding of the 

behaviour of all forms of equipment in the game. 

2.3 Properties of the ball 

Manufacturers and ruling bodies have been testing tennis balls for some considerable time. 

As far back as 1960 (Dunlop Ltd., 1960), balls were tested for compression and bounce 

height as part of the production process - in this case using an automated machine with 

photoelectric cells to sort the balls by bounce height. Stevens machines used for 
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Chapter 2 Literature Review 

compression testing by the L T A (Lawn Tennis Association, the ruling body before the 

ITF) date back to at least 1924 - shortly after this, the deformation test was introduced into 

the rules. The use of the Stevens machine is described in notes of the Wimbledon Lawn 

Tennis Museum by Robinson (1977). 

2.3.a Specifications of the Rules of Tennis 

For a game or tournament to conform to the Rules of Tennis, the ball must be named on 

the official ITF list of approved balls issued by the ITF. Balls named have been tested to 

meet a certain set of specified criteria. Extracts from the Rules of Tennis (ITF, 2000a) 

giving the ball specifications are quoted in Appendix A, including the introduction of two 

new ball types. These are the harder (and therefore faster) Type 1 ball intended for use on 

slow courts, and the larger (and therefore aerodynamically slower) Type 3 ball intended for 

use on fast courts. Also quoted from the Rules is a list of regulations describing how each 

of the approval tests should be performed. 

2.3.b Experimental testing of balls 

Very little work had been performed on the properties of tennis balls before the start of this 

project, although there has been a large amount of recent research. The fact that the core of 

the ball is made from a rubber compound suggests the shell is likely to have non linear and 

viscoelastic properties. The ball undergoes gross deformation and the shell is too thick to 

be approximated by any thin shell theory. 

Quasi-static testing 

65 
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Figure 2.3 The variation of ball rebound height with temperature for a drop test from 100 
inches (reproduced from Rose at al., 2000). 

Rose et al. (2000) measured the properties of pressurised and pressureless tennis balls 

between 0 and 40°C. The tests performed were ball rebound height, ball deformation under 

7 
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quasi-static loading and higher speed coefficient of restitution (up to impact speeds of 45 

ms· I
). It was found that pressurised balls show a large variation in rebound height over the 

temperature range as shown in Figure 2.3, much larger than for pressureless balls . The 

compression test showed little change in forward or return deformation with temperature. 

In dynamic rebound tests at 25, 35 and 45 ms· l
, the COR increased slightly with 

temperature, in a similar manner for both ball types. 

Hendee et al. (1998) performed quasi-static compression tests on traditional and modified 

baseballs (the latter designed to reduce injuries in young players), measuring average 

stiffness and energy loss. The balls were then fired normally onto a force plate using an air 

cannon at speeds between 13.4 and 40.2 ms· l
. For all balls tested, coefficient of restitution 

decreased with increasing velocity. They found no way to correlate this with quasi-static 

test data. Peak force of impact and impulse of impact increased with static ball stiffness 

and mass respectively. 

(a) (b) 

Figure 2.4 X-ray images during compression showing buckling of (a) a pressurised core and 
(b) a pressurised ball , from Ashcroft and Stronge (2003) . 

Ashcroft and Stronge (2003) looked at energy losses in tennis balls. They compressed 

rubber cores of pressurised and pressureless balls which had been punctured to release any 

pressure. Whole balls (i.e. including cloth) were also tested both with and without the 

respective internal pressure. For the punctured cores they found that the force-deflection 

obeyed a linear relationship until a point of critical deflection where the stiffness 

decreased. This critical deflection was about 26 mm for the core of a pressurised ball. They 

used X-ray images to show inversions or buckling in the balls (reproduced in Figure 2.4), 

although the deflection for these images is not stated. When comparing ball types, Ashcroft 

and Stronge noted that the pressurised ball was stiffer than the pressureless ball at all 

deflections, but the opposite was true when both balls were punctured. They conclude that 

the material hysteresis does not account for the significant energy losses during impact. 

Dynamic impacts 

Bernstein (1977) used a microphone to measure the time of a series of impacts of a 

bouncing ball and to calculate the coefficient of restitution as a function of impact number. 

This system was converted to a more sophisticated computer-based device by Smith et al. 
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(1981). In a similar experiment Brody (1990) used a microphone and an oscilloscope 

triggering a timing system to measure the time in between the first and second bounces of a 

tennis ball dropped from 100 inches (2.54 m) in order to produce an inexpensive bound 

height test. 

Cross (1999a) bounced a series of balls off a piezo element mounted on a heavy brass rod. 

Force waveforms were measured and also compared with the results of static force

deflection compression tests. He also found that all the balls remained compressed at the 

end of the contact period, as the deflection value was finite. This was confirmed by 

aligning a laser beam to graze the top of an uncompressed ball at rest on the piezo. The 

beam remained blocked for about 0.5 ms after the impact, approximately 10% of the 

contact time. 

Finally Cross glued a small piezo element to the ball in order to estimate the vibrations. He 

found that with the element located near the bottom of the ball the force waveform was 

similar to the large piezo element, with a time delay of about 0.4 ms. The pulse decreased 

in amplitude and changed in shape as the element moved towards the top of the ball. At the 

top there was only a small visible effect of the compression and expansion, but a small 

amplitude oscillation occurred at about 700 Hz and persisted for approximately 2 ms. 

Cross (1999b, 2000b) repeated his earlier force plate tests using a ball projection machine 

to achieve higher impact speeds, and concentrating on tennis balls. He projected the balls 

using a pair of rotating wheels, and a laser and photodiode together with the force plate 

data to measure the impact speed. A second force plate positioned so that the ball would 

impact upon it unless fired in absolutely perfect alignment was used to measure the 

rebound speed. He found that the force increased rapidly during the first 0.2 ms of the 

impact, and attributed this to compression of the cloth and rubber around the impact point. 

An aluminium ball was then covered in cloth, rubber or both in order to investigate the 

effects of each material. He found that both materials obeyed an exponential force

deflection relationship, and the two stiffnesses could be combined to reproduce the effect 

of having both on the ball. Evidence was also presented of the ball shell buckling inwards, 

providing a lower stiffness after the initial peak. By using a small piezoelectric element set 

into a layer of circuit board, the force was measured centrally and 20 mm away from the 

initial point of contact. The centre force was found to have two peaks with a time period 

between them where the force is low. Cross also compared a pressurised and a pressureless 

ball impacting on the force plate at various speeds up to 15 ms· l . He found the rebound 

speeds were very similar, but that the pressurised ball was softer, leading to a lower peak 

force and a longer contact time. He calculated a dynamic stiffness for the pressurised ball 

of 35 kN/m, which is much higher than the static stiffness of 12.6 kN/m required for the 

approval tests of the rules of tennis. 
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Brown and Cooke (2000) divided the subject into four regimes: the impact of ball and 

racket, the initial unsteady motion, the quasi-steady motion and the impact of ball on court. 

South (1996) estimated that significant large-scale deformation ends about 5 ms after 

impact. At a serve speed of 60 ms- 1 (135 mph), the ball would travel 0.3 m in this time and 

so this vibration will have little effect. 

Capel-Davies and Miller (2003) performed wear tests with three types of balls: pressurised 

balls with either melton or needle cloth, and pressureless balls using melton cloth. They 

calculated that on average balls are used in 45 shots during a game, and chose to subject 

the balls to 50, 100 and 150 impacts to see if the wear had an effect on the approval tests. It 

was found that bounce height was not affected. Mass was reduced, and this was reflected 

in the debris of fibres left in the impact rig. Forward and return deformations were initially 

increased by wear (indicating a reduction in stiffness) after the first 50 tests, but it varied 

by ball as to whether any further changes (all increasing) were statistically significant. 

Capel-Davies and Miller commented that the magnitude of any changes is about 10% of 

the range allowed by the Rules of Tennis. 

Summary 

Tennis ball testing can be divided into two main categories: static (or quasi-static) and 

dynamic. Static testing does not provide a huge amount of useful information, as the 

majority of balls intended for retail are engineered to pass the standard ITF approval tests, 

and thus tend to have similar properties. The same is true for low speed dynamic tests (in 

terms of velocities at least), as the approval specifications include a drop test. The use of a 

force plate has provided some useful information and suggests that there may be a buckling 

element to the impact, lowering the stiffness after an initial period. There is however an 

opportunity for much higher speed impacts, which will be considered later in this chapter. 

2.4 The aerodynamics of tennis balls 

In order to relate any modelling or experimentation of the impact of tennis balls on 

relevant surfaces to the game, it is important to know how the ball reaches the court. There 

is a distance of over 18 metres between the baseline and the service line in the opposing 

half of the court which is a significant distance for aerodynamic effects to alter a ball's 
behaviour. 

Lindemuth (1971) used a series of photocells to capture the position relative to time of a 

series of different balls falling under gravity, and proved that the effect of air resistance 

was significant. He verified the accuracy of a force proportional to the square of the 
velocity. 

10 
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Figure 2.5 Drag and lift coefficients as a function of the w/v ratio, reproduced from Stepanek 

(1988). 

Stepanek (1988) performed the first study of the forces produced by a spinning tennis ball. 

He constructed a device to drop spinning balls into the air flow of a wind tunnel and 

measured the variation of drag and lift coefficient with ball spin rate. The experimental 

data - shown in Figure 2.5 - was fitted by the following regression equations: 

2 

C" ~ 0.508 + (22.503 + 4.19{ : }% r 
-\ 

A Davis Cup player was asked to hit topspin lobs with as much spin as possible, and the 

shots filmed using a STALEX high-speed camera. The highest rotation achieved was 

around 3500 rpm (367 rads-\ 

Cooke (2000) gives an overview of the dynamics of a tennis ball flow through air. The 

physical mechanisms of the fluid flow are not relevant to this project, but Cooke concludes 

that the initial transient state due to ball deformations can be considered negligible. This 
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means that for the scope of aerodynamics necessary to predict impact speeds, the only 

important data are the drag and lift coefficients, as the equations of motion are well 

understood. 
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Figure 2.6 Drag coefficients measured by Chadwick and Haake (2000) for normal balls and 
with shaved and fluffed nap. 

Chadwick and Haake (2000) measured the drag coefficient of pressurised balls with a 

normal napped, a raised "fluffed" nap and a shaved nap. As seen in Figure 2.6, the range of 

drag coefficient from the shaved to fluffed nap was around 10%. For a normal ball , the 

value was around 0.55. They also dropped spinning balls through a wind tunnel and filmed 

the trajectory at 240 frames per second. Manipulating the equations of motion and fitting 

them to the captured trajectory data enabled lift coefficients to be measured as well as drag 

coefficients but it was found that care was needed to reduce potential errors. Drag and lift 

coefficients of about 0.8 and 0.2 respectively were found for a ball dropped with 1600 rpm 

(168 rads- I
) through an air stream moving at 11.6 ms- I . 

(a) (b) 

Figure 2.7 Flow visualisations for a tennis ball with (a) topspin and (b) backspin, from Pallis 
and Mehta (2000) . The air flow is from left to right in each case. 
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Pallis and Mehta (2000) used an 11 inch (28 cm) novelty tennis ball to perform flow 

visualisation studies. With spin applied they produced clear evidence of non-symmetrical 

boundary layer separation leading to a Magnus force, which can be clearly seen by the 

offset wakes in Figure 2.7. Pallis and Mehta also measured the forces on a non-spinning 

ball. They found a value of around 0.6 for all wind speeds between 50 and 150 mph. 

Mehta and Pallis (2001) found drag coefficients between 0.6 and 0.7 for new balls. The CD 

value dropped at high Reynolds number, and this was attributed to the high wind speed 

"laying down" the nap on the ball. They tested used balls, and found that after 6 games CD 

was about 6% higher than for a new ball, but after 9 games it was about 6% lower than for 

a new ball. This suggested that the cloth "fluffs up" on initial use, before becoming worn. 

They also tested a ball which had been used in the US Open and found drag coefficients 

about 0.1 lower than those seen elsewhere. 
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Figure 2.8 Drag coefficient versus spin ratio OJ , from Chadwick (2003), 

v 

Chadwick (2003) used two different wind tunnels and measured lift and drag coefficients. 

Figure 2.8 shows aggregated data for a variety of spins from zero (the static value of 

0.5365) to 7300 rpm (760 rads· I
). An equation fitting this data was found to be 

CD = 0.5365 +[ 1.9980(: r,1881 + 2.8619 r706
' 

with limiting values of CD = 0.5365 and CD = 1.0l2 at zero and infinite spin respectively. 
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v 

Lift data measured at the same time produced the data shown above in Figure 2.9. The fit 

for this data was given by 

It should be noted that for both the lift and drag data, Chadwick used a spin ratio ( : ) 

where OJ was defined as the equatorial velocity (i.e. the spin rate multiplied by the radius) 

rather than the conventional notation of spin rate used throughout this thesis. 
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Figure 2.10 Drag coefficients for eight different non-spinning balls (Goodwill at a/., 2004). 
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Goodwill et ai. (2004) mounted both stationary and spinning balls in a wind tunnel for 

speeds between 20 and 60 ms- I
. Drag coefficients are shown for eight different brands of 

ball in Figure 2.10. Most of the balls had very similar drag coefficients, except for the balls 

"Woven B" and "Needle B". It was not possible to show any significant difference 

between brands however. The drop in drag coefficient as the speed increased was 

attributed to the nap "laying down". 

Figure 2.11 below shows drag and lift coefficients from Goodwill et al. for spinning balls at 

two different wind speeds. Data is shown for new balls and for balls which had been worn 

for varying numbers of impacts on a surface. They found that the drag coefficient 

increased with spin (or spin coefficient S, defined by dividing the circumferential speed by 

the wind tunnel speed) at the two Reynolds numbers tested. The balls subjected to 0 and 60 

impacts showed a steady rise in CD, from 0.65 to 0.69 at the lower wind speed. The more 

heavily worn balls actually show a decreased drag as spin is increased, although the 

amount is within the repeatability of the experiment. It is clear however that CD for new 

balls is around 0.04 higher than for heavily worn balls for most spin rates. At the higher 

wind speed there is a general increasing trend for all balls, and again new balls exhibit a 

higher CD than worn balls. 

As would be expected, the lift coefficient is strongly dependent on spin, although again 

there was no difference with ball construction. There was little difference between new and 

worn balls except for a range 0.05 < S < 0.15 - where increased number of impacts led to a 

lower lift coefficient - and this trend only showed at the lower wind speed. 
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Figure 2.11 Aerodynamic coefficients found by Goodwill et al. (2004) for spinning balls; (a) 
and (b) show drag and lift coefficients respectively at a wind speed of 25 ms·

1
, (c) and (d) show 

drag and lift coefficients respectively at a wind speed of 50 ms·'. The same notation showing the 
number of impacts is used on each graph. 

Summary 

Tennis ball aerodynamics is an area in which there has been a large amount of recent work. 

A number of studies have produced drag coefficients, although lift coefficients are much 

harder to measure. There is a lack of data at high spin rates, which need a combination of a 

fast spinning ball and a wind tunnel which is accurate at low speeds. The data available 

does however make it possible to obtain realistic approximations of the court impact 

conditions, assuming some knowledge of the starting boundary conditions. 

2.5 Player data 

A major aim of this project was to be able to model impacts at a realistic range of speeds 

and spins. There is not a huge amount of data on speeds throughout trajectories and 

particularly on impact - often the only figures that are quoted are "serve speeds" which are 

maximum values measured with a radar gun. 
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Groppel et al. (1983) created an analytical model to predict the effect of angle of swing 

and orientation of the racket head on the spin imparted on a tennis ball. As an experimental 

validation of the model two male varsity players were filmed at 500 frames per second 

hitting balls with topspin and backspin. The six topspin shots had spin ranging from 36 to 

195 rads- I
, and the two backspin shots were hit with 192 and 236 rads- 1 of spin. 

Elliott (1983) used two film cameras running at 200 and 300 frames per second to film 

twelve State ranked tournament players ages 12 years, 15 years and adult. He found that all 

the adult players hit the ball with a considerable amount of spin when asked to give a "hard 

first serve" - values of 11 to 19 rotations per second (70 to 120 rads- I
). 

Elliott et al. (1986) filmed eight elite tennis players serving. For the male players, the ratio 

of the height of the ball at impact on the racket to the player's standing height was an 

average of 1.53. The balls dropped an average of 0.51 m from the top of the toss to the 

point of impact. 

A collaborative project between NASA and Cislunar Aerospace, Inc. (Cislunar Aerospace, 

Inc. 2001) analysed a range of video footage from the 1997 and 1998 US Open 

tournaments, and provides an excellent source of data for professional tennis. Twenty nine 

first serves by Pete Sampras were analysed. The average speed of these serves was 120 

mph. By the time the ball reached the court it had slowed to 87 mph. The impact on the 

court surface slowed the ball to 62 mph, and the drag while travelling from the service line 

to the baseline reduced the speed further to 54 mph. The spin generated by 11 professional 

men was also measured. The range of average spins for each player is shown in Table 2.1 

for a variety of shots. 

Table 2.1 Range of average spins measured by Cislunar (2001). 

Type of shot 
Min and max average spins measured 

rpm (rads- I
) 

Forehand topspin 1333 to 3331 (140 to 349) 
---

Backhand topspin 1250 to 2332 (131 to 244) 

Backhand backspin 2127 to 3124 (223 to 327) 
"---

First serve 1548t03167 (162 to 332) 

Second serve 3370 to 4650 (353 to 487) 

The technology of radar guns is mentioned by Dunlop (2000), who states that the accuracy 

of the guns tested was 1 km/hr (0.28 m/s), with 0.1 km/hr available using averaging 
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algorithms. He suggested the use of radar guns as a simple way to measure the "pace" 

(change in horizontal velocity component) and "bounce" (change in vertical velocity 

component) of a surface. 

Summary 

Somewhat surprisingly, more information is available on the spin a player gives to the ball 

than the speed with which it is hit. This spin is however important, as the values imparted 

by professional tennis players is extremely high - typically between 100 and 400 rads- I for 

groundstrokes. Second serves can exceed these values, and even first serves (when the 

players were asked to hit the ball fast and flat) are of comparable spin rates. This suggests 

that any experimental impacts must include considerable spins to be realistic. Initial speeds 

off the racket are available, and so it is hoped aerodynamic modelling will make it possible 

to find court impact conditions. 

2.6 Surface testing 

Bell et al. (1985) presented a summary of various sports surface test methods. Values are 

quoted for "ball bounce resilience" on turf for different sports, where the vertical height a 

ball bounces to is recorded as a percentage of the drop height. Friction was measured by 

finding the distance a ball rolls along a surface before coming to rest. A rotating drum 

which drops a spinning ball was described as an alternative friction measurement (the 

distance between the first and subsequent bounce point defines the friction). The traction 

(described as applying to footwear "having studs, cleats or spikes to provide extra grip") 

was also discussed along with a variety of test methods using plates with attached studs to 

measure the turf shear resistance. 

2.6.a ITF performance standards 

The three properties chosen as key characteristics of tennis court surfaces by the ITF (ITF, 

1997) and their definitions are listed below: 

• Surface pace - The speed of the court, which includes both speed and angle of 

the ball rebounding off the surface. 

• Friction - As determined by measuring both Slip resistance and Traction. 

• Energy Absorption - The ability ofa surface to absorb energy (or shock). 
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Five more characteristics of a constructional nature are also described: 

• Vertical ball bounce - The measure of the vertical ball bounce off a given 

surface. 

• Permeability - The ability of a surface to allow water to pass through it. 

• Slope - The gradient of a court which is designed to assist drainage of a 

surface. 

• Evenness - The geometrical regularity of a surface. 

• Consistency - The uniformity of the surface over the entire playing area. 

Test methods are given for each of these characteristics. Of the eight, the following are 

most relevant to this project: surface pace, friction, energy absorption and vertical ball 

bounce. 

2.6.b Surface pace rating 

The surface pace rating is intended to define both the speed and angle of the ball after 

rebounding off the surface. A ball is projected at 30 ± 2 ms-' at 16 ± 2° to the horizontal. 

The velocity components before and after impact as defined in Figure 2.12 below are 

measured. 

VIy 

- . - ~ _._---..1 

Figure 2.12 Definition of the velocity components used to calculate Surface Pace Rating (ITF, 
1997). 

The pace rating P is defined as P = 100[1 - Vir - Vjx ] = 100[1 _ L1 Vx ] 
V;y + Vjy L1 Vy 
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Figure 2.13 Typical Surface Pace Ratings for new courts (ITF, 1997). 

As can be seen in the guideline chart reproduced in Figure 2.13 , the pace rating is split into 

three broad categories, which overlap. These are: 

• Category 1 (slow) 0 - 35 

• Category 2 (medium/medium fast) 30-45 

• Category 3 (fast) 40 + 

Although the surface types given as examples are not particularly comprehensive, the 

acrylic and clay court categories include a large proportion of surfaces in use around the 

world. 
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Figure 2.14 (a-d) Velocity and angle ratios plotted against (a-b) incoming speed, and (c-d) 
incoming angle, from Dunlop et a/. (1992). 

Before the ITF Pace test was established, Dunlop et al. (1992) stated that player 

perceptions of "pace" were a combination of horizontal and vertical velocity changes. In 

order to recreate a controlled simulation of a ball landing on an oblique surface, they 

filmed a ball landing on an inclined moving plane - by dropping balls off-centre onto a 

spinning wheel. Photo-diodes were used to ensure that the operator could tell if the ball 

landed in the required area. The landing position determined the angle of impact due to the 

tangent of the wheel circumference. Velocity and angle ratios are shown plotted against 

incoming speed and angle in Figure 2.14. 
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Figure 2.15 The variation of Surface Pace Rating with test position, for a variety of court types 
(Carre et a/., 2002). Also shown is the variation with court position. 

Carre et ai. (2002) performed Surface Pace Rating tests on fifteen different tennis courts 

around the UK, ranging from values of about 18 to 48. They measured the Pace at three 

different locations on the court: by the net (assumed to have little or no wear), in the 

service box (where wear is due to ball-surface interaction) and near the ba eline (where 

player-surface interaction causes wear) . Macadam and grass surfaces had an increase in 

pace both in the service box and at the baseline compared to by the net. An indoor carpet 

had very little change, and two clay courts had opposing behaviour - one was faster at 

either position away from the net, and one was slower. The various acrylic surfaces show 

differing amounts of change, but in almost all cases are between 0 and 10% fa ter away 

from the net. 

Cox (2003) gave a summary of the Surface Pace Rating test including examples of some 

test values. During extremes of (English) weather in a grass court season, Pace Ratings 

from 34 in cool, damp conditions to 49 in hot dry conditions were measured. Similarly, 

clay courts had typical Pace Ratings from high teens to around 25, and acrylic surface 

from 27 up to high forties - although the range 38-45 was most common. Cox also noted 

that acrylic courts have a noticeable change in pace during their early life typically by 5 or 
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6 on a slow court, or 2 to 3 on a faster court. This was attributed to wear of the pronounced 

peaks formed during the application process of the surface, and agrees with the data of 

Carre et ai. above, since the court near the net will be close to its original state. Acrylic 

courts were also noted for their consistency; Cox stated that a contractor can produce 

courts with a variability in Pace Rating of ±3. 

Miller and Capel-Davies (2003) used a variety of surfaces to test the repeatability of SPR 

tests (in a study aimed at validating the performance of the Sestee apparatus). They used 

MDF wood, two thicknesses of writing paper and six grades of emery paper. Mean Pace 

Ratings ranged from 23.9 for the coarsest emery paper to 68.3 for the MDF. The impact 

point was not changed during the tests (10 impacts on each), and in general the pace 

increased with impact number. The two surfaces which showed no change in pace during 

the test were recommended as validation surfaces. There was also a variation in coefficient 

of restitution between surfaces although it is not clear whether this is due to the ball or the 

surface. 

2.B.c Surface friction testing 

Dixon et al. (1999) state that the most important factor associated with "accidental 

injuries" (as opposed to "overuse injuries" caused by surface hardness) on sports surfaces 

is the level of friction, suggesting that for tennis a suitable surface should provide a 

controlled amount of sliding. This limits the maximum value of friction likely to be seen 

on a court. 

Van Gheluwe and Deporte (1992) measured frictional forces and torques produced by 

good quality players hitting an open stance forehand. The players were asked to hit the ball 

while moving on a force plate covered with various playing surfaces. They found the 

friction was more affected by the surface than the choice of shoe. 

As already mentioned, Brody (1984) dragged a weighted ball usmg a sprung force 

measurement. Hamilton (2000) used similar principles to measure the tension needed to 

pull along a sled whose bottom was covered in tennis ball cloth. These provide simple 

ways to measure dynamic coefficient of friction , but are rather user-dependent. 

The ITF describe two tests designed to measure the friction of a surface (rTF, 1997). The 

first of these evaluates the rotational traction by measuring the torque needed to turn a 

rubber disc which has a substantial mass on it. The second uses a pendulum with a rubber 

foot which is released and allowed to impact along the surface. A sprung mechanism 

allows a specific contact length, and the height the pendulum reaches after sliding is 

recorded. These two tests are described in more detail in Chapter 5. 

Haines (2002) developed a pendulum to measure friction between a tennis ball and court 

surface, which was commissioned by the ITF as a possible inexpensive alternative to the 
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Sestee Surface Pace Rating equipment. The theory given by Haines relates the loss of 

energy due to a ball sliding a distance d against a frictional force F. For a weight W (of the 

pendulum arm plus the ball) and the distance from the pivot to the centre of gravity is a, 

then the energy loss in relation to the angle B the arm swings to is given by Wa cos B . This 

energy loss is also equal to the work done by friction, or Fd. Equating these two energy 

losses and relating them to the vertical reaction force R by F = JLR leads to 

WacosB 
JL= 

Rd 

If as Haines states, the variables w, a, Rand d are all constants, this is of the form 

JL = K cos () , allowing a simple calculation to work out the coefficient of friction from the 

angle the pendulum swings to. Again, this test method is examined in more detail in 

Chapter 5. 

Picoscope 

Drive system 
housing unit 

Figure 2.16 The friction rig tested by Teasdale (2003) . 

Teasdale (2003) performed testing using a bespoke friction rig which was designed to 

measure a dynamic coefficient of friction. This is shown in Figure 2.16 and contained a 

constant-speed motor which could be used to accurately pull a friction sled at specified 

speeds. A fibre-reinforced toothed belt pulled the sled along the surface. Three balls were 

secured in the sled and a weight applied to give a normal force. A load cell between the 

sled and rubber belt was used to measure the reaction force on a laptop, via a strain 

indicator box. Teasdale found that the ball mounting arrangement generally allowed six 

possible contact positions on each ball (opposite faces on three mutually perpendicular 

axes), although with hard balls such as hockey balls the contact area was reduced, allowing 

for more positions. In tests across four surfaces, Teasdale found that there was no 
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significant difference between friction coefficients for cushioned and uncushioned 

surfaces. There was a significant difference between coefficients of friction for "smooth" 

and "rough" surfaces - made with acrylic paint and with paint which was mixed with sand. 

He also found that the speed at which the sled was pulled had no consistent effect on 

friction on tennis surfaces for tennis, cricket or hockey balls. On an indoor wooden sports 

hall surface a hockey ball showed an increased friction with increased speed, although 

cricket and tennis balls did not. 

Teasdale also tested friction with different normal loads on the sled. With loads between 

50 and 250 N, he found that tennis and hockey balls did not show any change in frictional 

coefficient. Cricket balls seemed to show a trend of decreasing friction with increasing 

normal load, although the errors are significant. 

2.6.d Surface Impact testing (energy absorption) 

Nigg (1990) performed a critical review of the test procedures commonly used to assess 

the cushioning and frictional properties of sports surfaces. He described six categories of 

cushioning tests: where a dropping mass falls onto a test foot containing sensors (such as 

the Berlin or Stuttgart Artificial Athlete), a dropping mass which itself contains impact 

sensors, drop tests where the sensors are underneath the surface (e.g. with the surface 

placed on a force platform), a drop test using an accelerometer to find stress-strain 

characteristics, and tests where subjects perform typical movements on a surface and either 

forces or surface deformations are measured. The dropping mass tests are of particular 

interest as it is possible they could give surface stiffness information useful in a ball impact 

model. 

The ITF performance standards (ITF, 1997) specify only one test, the Berlin Artificial 

Athlete. This well-established test will be looked at more closely in Chapter 5, but in brief 

consists of a large mass (20 kg) which is dropped 55 mm onto a stiff spring. An 

instrumented shoe between the spring and the surface measures the peak force value seen, 

which is then compared to a control test value measured on a theoretically rigid surface 

such as concrete. 

McMahon and Greene (1979) constructed a model of a runner where the leg was 

represented by a rack-and-pinion spring and damper, which was then assembled in series 

with a spring representing the surface. The stiffness values of various surfaces are quoted 

in Table 2.2. The model was used to predict contact time and step length. Although 

McMahon and Greene do not specify how the stiffness values were obtained, it is useful to 

consider the order of magnitude - the value for concrete or asphalt is around 100 times 

higher than typical values for ball stiffness. 
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Table 2.2 Stiffness values of running surfaces (reproduced from McMahon and Greene, 1979) 

Material Stiffness (kN/m) 

Concrete I asphalt 4376 
------

Packed cinders 2918 

Board tracks 875 

Experimental wooden track 195 

Experimental wooden track 100 

One standardised piece of equipment often used to assess the soil hardness is the Clegg 

Soil Impact Test (Clegg, 1976). This test drops an instrumented mass (0.5 kg or 4.5 kg, 

depending on the hardness of the surface being tested) down a guide tube and gives the 

peak deceleration. This equipment is easy to use but provides only a single measurement -

the maximum value of (upwards) acceleration during impact. Rogers and Waddington 

(1990) listed nine specific measurements which were thought to fully define the impact 

absorption properties of a surface, and included such parameters as times, accelerations, 

peak forces and deformations .. They then went on to design apparatus using the Clegg 

tester and a vibration data analyser for obtaining a full acceleration-time profile. With the 

data downloaded onto computer, any number of useful properties can be calculated. Values 

are given for such features as impact time and rate of change of acceleration but no curves 

are shown. Conclusions drawn were that peak deceleration decreases with an increase in 

soil moisture or compaction. 

A similar system was developed by Bregar and Moyer (1990). After experimenting with a 

computer-based data acquisition input card, they used a Brtiel & Kjrer standalone vibration 

analysis unit to record up to 50 acceleration profiles into non-volatile memory to analyse 

on computer later. A sampling rate of 20 kHz over a maximum time of 62.5 ms was found 

to be sufficient. Masses of 0.5 kg, 2.25 kg and 4.5 kg were tested, all from a drop height of 

45.7 em (18 inches). They found the system worked well but no experimental data is given. 

Martin (1990) presented a theoretical analysis of impacts based on the Gadd severity index 
go 

where G = 1 a25 
dt for acceleration a measured for time t varying from 0 to T. The study 

was based on human safety, where values of G in excess of 1000 are considered to be 

unsafe. Martin found that as the drop height increased, the thickness of the surface became 

a more important factor in the magnitude of G. 
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Walker (1996) also mentioned the integrative severity index but suggests that a more 

useful figure is the tangent modulus of the load-deflection curve. This was measured at the 

point of peak force. He found that the standard weights used commonly in impact testing 

are too low and give results which are too similar across widely different surfaces and 

suggested using loads and areas which match human interaction as closely as possible 

(although the work is aimed at tests to reduce player injuries rather than ball performance). 

Tests on a standard hockey surface showed the effect of underlays of 12 mm and 20 mm 

thickness - as the thickness is increases, so does deflection while the force does not change 

much. Thus the stiffness and therefore perceived hardness reduces. 

Davies and Karim (1995) developed an analytical model to predict the post-impact 

conditions of three kinds of impact test. These three tests were the Clegg impact tester 

using a vertically dropped mass, the Odin hammer which is essentially similar but which 

uses a hinged arm for the mass, and the Falling Weight Deflectometer which is a more 

complicated system, dropping a mass onto a sprung platform. The model was comprised of 

a spring of stiffness k and a dashpot with damping constant c. These two parameters were 

calculated for a contact area of radius r, using the soil properties of shear modulus G, 

Poisson's ratio v and mass density p: 

k= 4Gr 
I-v 

c = 3 4r2fPG 
I-v 

They found that the model worked well for the Odin hammer and FWD, but not as well for 

the Clegg tester. This was attributed to the higher stresses generated during impact which 

would affect the accuracy of some of the basic assumptions of the analysis. 

Henderson et al. (1990) used soil samples in boxes to establish a laboratory method for 

testing soil and turfgrass surfaces. A 9.1 kg missile was dropped from a height of 61 cm. It 

was found that the depth of soil in the box was important as the box and anvil appeared to 

affect the results for most samples; with less than 15 cm of soil, the peak deceleration and 

penetration depth varied with depth of the sample. However, the soils used would seem 

much softer than any tennis surface, as the peak deceleration was in the order of 20 to 50 

gravities. 
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Figure 2.17 Tennis ball rebound resilience against Clegg Impact Value, for all surfaces and 
just for artificial turf (reproduced from Holmes and Bell, 1986). 

Holmes and Bell (1986) dropped a 0.5 kg Clegg Impact Soil Tester on nine natural and one 

artificial turf playing courts (it is not clear whether these were actual courts or prepared 

sample areas). They also performed a 100 inch drop test using tennis balls on each surface. 

They found a strong relationship between Clegg Impact Value and rebound resilience 

(reproduced in Figure 2.17) which appeared to be linear for the natural turf. The artificial 

turf had only a slightly higher bounce despite a much higher Clegg Impact Value, 

suggesting that some asymptotic value had been reached where the surface was essentially 

rigid. The large range of ball bounce resilience seen suggests that some extremely soft 

surfaces were used. They conclude that small differences in hardness on a "hard" court will 

have little effect on rebound resilience. However, on a "soft" court, similar small 

differences in hardness will produce greater variations, contributing to the variability and 

inconsistency often seen on grass courts. Some of the courts tested produced ball bounce 

heights between 20% and 50% of the drop height, suggesting they were extremely soft. 

Brody (1992) described a simple method of performing a comparative test of surface 

hardness. He attached two inexpensive resettable accelerometers to a baseball bat and 

dropped the bat from gradually increasing heights until the accelerometers tripped, 

showing that a specific value had been reached (in this case 138 g). The height varied by 

quite a large amount, from 0.08 m on the hardest surface (concrete) to 0.91 m on the softest 

(artificial grass). Without any data such as ball bounce height or impact force 

measurements, these numbers are somewhat difficult to interpret. 
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Dodd (2003) adapted a Clegg Impact Soil Tester in order to understand the influence of 

various parameters of surface stiffness properties. The key variables he chose were contact 

velocity, impact hammer mass, and hammer shape and surface area. Dodd found that the 

original Clegg device had errors of up to 20% in the impact velocity, and so a linear rail 

was used in an attempt to improve the accuracy. He concluded that the kinetic energy of 

impact was the dominant parameter in the loading part of the impact, but that the mass was 

more important during the unloading stage (and hence the hysteresis or energy loss). Dodd 

commented that it was not possible to match both the energy and mass to that of a sports 

ball impact. Dodd also created spring-damper models of athletic and cushioned tennis 

surfaces. The tennis surface was created using two springs, as it exhibited two behaviours -

the stiffness increased due to a bottoming-out effect. The two springs in the model were of 

stiffness 180 N/mm and 2500 N/mm, with the softer spring switching off after the critical 

displacement of 1.6 mm. He suggested that the shape of the impact hammer should match 

that of the real situation in order to recreate the stresses and deformations. 

Summary 

The two surface properties which seem most likely to affect ball impacts are friction and 

stiffness. A form of friction is already commonly measured in terms of SPR, and a 

reasonable amount of data is available on values for various courts and their repeatability. 

A number of tests also attempt to measure the friction directly, although no attempt has 

been made to compare and correlate these to SPR values. Surface stiffness is also often 

measured in the sporting world, and several common test methods exist to find the shock 

absorption (often in terms of a peak force or deceleration). Most of these tests are designed 

to simulate the interaction of a human athlete on a surface, and it is therefore unclear how 

well the results can be applied to ball impacts where both the force and energy is much 

lower. 

2.7 High speed ball impact testing 

Haake (1994) used a modified baseball machine to project golf balls onto greens using 

rotating rubber wheels. The impacts were recorded using stroboscopic photography. He 

created a two-layer model to predict the impacts, where the top layer represented the grass, 

thatch and root layer while the second layer represented the soil underneath. He found that 

the greens could be split into two categories - the first where the ball slips throughout and 

retains backspin, and a second where the ball rolls matching a v = mr relationship. 

Dowell et af. (1987) projected balls at a wide range of angles (12.6° to 72.1 0) at a mean 

velocity of 87 feet per second (26.5 ms· I
). They found the rebound angle was higher than 

the incident angle in all cases. The deviation between the two angles was lowest at either 
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extreme of angle, and increased in between, peaking at an incident angle of about 35°. The 

court used was a Laykol court, and no measure of friction is given. 
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Figure 2.18 Change in velocity against incident angle for three different ball speeds (from 
Hope et al .. 1988). 

Hope et al. (1988) performed a similar but extended study, projecting balls at about 50, 70 

and 100 feet per second (15, 21 and 30 ms- I
). Impact angles ranged from 5 to 90 degrees. 

The change in velocity due to the impact is shown in Figure 2.18. An interesting bimodal 

distribution is shown for each speed, although the situation is rather complicated -

different angles will produce completely different impacts because of the range of vertical 

velocity components seen (and their effects on COR), the slipping/rolling boundary and 

perhaps mechanisms of deformation. No attempt was made to explain the results. 

As briefly mentioned earlier, Haake et al. (2000) performed a comparison test between 

normal pressurised and 6% oversized balls on both acrylic and clay surfaces. They found 

that in every case there was no difference between the rebound speeds of the two ball 

types. There was a suggestion that the oversized ball bounced with a steeper angle, but no 

indication of uncertainty is given and so the significance of the data is unclear. 

Goodwill (2002) projected balls normally at a rigid surface between 4 and 30 ms- I
. He used 

four ball types (pressurised, pressureless, punctured and oversized) and found that they all 

had a similar coefficient of restitution of 0.8 at the lowest speed. As the impact speed 

increased, the COR dropped and differences between the balls became apparent. He found 

that the oversized ball rebounded slightly faster than the pressurised ball, and the 

pressureless ball slightly slower. The punctured ball rebounded significantly slower at all 

speeds. Goodwill then repeated these tests, impacting the balls on a force plate. At low 

impact speeds, the three non-punctured balls exhibited similar force-time characteristics, 
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with the punctured ball having a lower peak force and longer contact time. As the speed 

increased, all balls showed a very similar initial peak in the force. The pressurised and 

oversized balls remained similar throughout. The pressureless and punctured balls behaved 

in a more similar manner, both having a longer contact time and showing a late increase in 

force. Goodwill attributed this to these two non-pressurised balls "flipping back" to their 

original shape after compression. 

Miller and Messner (2003) tested the normal impact performance of balls at speeds from 

20 to 40 ms- I
, using an air cannon to fire the balls at a concrete block. Averaged over all 

balls, the coefficient of restitution dropped from about 0.75 at 7 ms- I (to be expected, since 

the balls passed approval testing before use) to 0.40 at 40 ms- I
. Pressureless balls bounce 

slower than pressurised balls at 20 ms- 1
, but the difference is negligible at 40 ms- I

. Data is 

shown for two manufacturers' balls which have the same rebound speed at 20 and 40 ms- 1
, 

but have a different rebound speed in between. Miller and Messner comment that this 

difference is not statistically significant, but highlights how the differences between balls 

may depend on the speed. 

Kirk (2003) performed a series of impact tests on four different acrylic surfaces in an 

attempt to understand the physical processes. He used acrylic paint to create surfaces on a 

rigid sheet of Perspex and on a cushioned substrate made from two sheets of thin plywood 

with a 6 mm rubber cushioning layer in between, giving what he termed "Smooth Hard" 

and "Smooth Cushioned" surfaces. Another two samples (using the same base materials) 

were made using the same paint mixed with 450 microns sized sand, giving "Rough Hard" 

and "Rough Cushioned" surfaces. He fired a ball using an air cannon - therefore without 

spin - at speeds between 12 and 50 ms-1
, and nominal angles of 12°, 20°, 32° and 40° to 

the horizontal. High speed video was used to film the impacts at 1500 frames per second. 

The main finding was that there were no differences between the hard and cushioned 

surfaces, for a given paint (and therefore friction). The friction did have a significant effect 

however. He also found that there was a critical angle where the impact changed between 

two phases, what he termed "under slipping" and "rolling". 

Kirk also attempted to find a way to estimate how the moment of inertia of a tennis ball 

changes as it deforms. By combining the MOl of a truncated sphere with that of a circular 

disc (assumed to be the shape the portion in contact with the ground assumes), he 

calculated a reduction of about 8% compared to the undeformed ball. One major flaw in 

these calculations is that Kirk assumed the ball was a spherical shell made from a single 

homogenous material. Because the outer layer of cloth has a much lower mass density than 

the rubber layer inside it, the actual moment of inertia will be significantly lower. 

Johnson (1983) used elastic theory to explain the counter-intuitive behaviour of a 

superball. These balls, made from a solid rubber material with high coefficients of 
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restitution and friction, can be projected onto a surface with backspin so that they rebound 

both in the opposite direction and with a reversal of spin direction. The reason for this 

behaviour is based in the way the contact area is divided into two areas, a central circular 

area with no slip (where the tangential force is below a limiting value), and a surrounding 

annular area containing "micro-slip". Cross (2002, 2003) developed this idea and 

attempted to measure the horizontal friction force (shown in Figure 2.19), which the micro

slip theory states will reverse in some cases. He bounced various balls on a piezoelectric 

force plate (measuring the vertical force) mounted on a wooden block, which was allowed 

to move in the horizontal direction on rollers. He also attached a piezo disc on the front of 

the wooden block to measure the horizontal force. 
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Figure 2.19 Vertical reaction force (N) and horizontal friction force (F) measured by Cross 
(2002) at two different impact angles for a tennis ball on a rough surface. 

On a smooth surface the frictional force always acted against the direction of motion, 

suggesting a sliding motion throughout. When sandpaper was used to create a high friction 

surface, a reversal of the friction force was observed. Cross described this as a horizontal 

vibration of the ball, and remarked that the ball "bites" rather than rolling. 

Summary 

A relatively small amount of useful data is available on dynamic impacts, particularly of an 

oblique nature. Several studies are described which measured rebound speeds and angles, 

but did not attempt to explain the behaviour or physical processes of impacts. Kirk (2003) 

performed tests which suggested that a rubber underlay intended to reduce impact forces to 

players does not affect the way a ball bounces. He also found that whether a ball slipped or 

rolled throughout impact affects its behaviour, which meant that the range of incoming 

conditions chosen for this study should encompass both forms of impact. 

2.8 Models of ball impacts 

2.B.a Newtonian models 

Two classic and commonly referenced studies of Newtonian studies of ball impacts are 

discussed, which have both been used by many authors as the starting point for their work. 
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The model equations have not been reproduced in any detail as they form the basis of 

Chapter 3 and will be discussed there. 

Daish (1972) provides a comprehensive study of the mechanics behind the bounce of a 

ball, although one of his basic assumptions is that the ball is a rigid sphere. He suggests 

two main cases, where in the first the ball slides throughout impact and the second involves 

rolling. This second case will occur if the friction is sufficiently great. Equations are 

developed which give the limiting value of friction for rolling, but these are based on the 

assumption that the ball is a solid sphere and therefore will not necessarily apply to tennis. 

Brody (1984) gave a theoretical analysis of generic ball impacts, including the effect of 

coefficients of restitution and friction. Although particular examples used were based on 

tennis shots, the analysis is quite comprehensive. Brody divided the impacts into two cases, 

where the ball slips throughout and where the ball begins to roll before the end of the 

impact. He observed that for a fairly slow court with friction of 0.6, the impact angle 

would have to be above 21 degrees for rolling to occur. He stated that this is unlikely as the 

vertical velocity component needed for this would suggest a shot hit 3.2 m high, although 

he does not take into account the effect of spin on either the trajectory (increasing the angle 

of impact) or the starting conditions for the impact (if the ball lands with topspin, less must 

be applied to reach the point of rolling). Brody also gave a range of values of coefficient of 

friction for tennis balls on various surfaces (ranging from wood at 0.25 to a synthetic 

carpet at 0.61) using half a ball containing a weight, dragged along the ground by a force 

meter. 

2.B.b Analytical models 

M 
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Figure 2.20 The spring-damper model used by Ujihashi (1994), including the spring and 
damper parameters. 

A number of authors have constructed mechanical models of sports balls, particularly in 

the field of golf. These are reproduced as examples, although the exact nature of golf 

models is not reproduced in any detail. Ujihashi (2004) constructed a normal impact model 

consisting of two springs and a dashpot damper, as shown in Figure 2.20. This model 

matched the peak force well as well as the loading part of the force-time curve, but was not 

so accurate for the unloading portion. 
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Figure 2.21 Spring damper models from Lieberman and Johnson (1994) for (a) solid and two
piece golf balls, and (b) wound balls. 

Johnson and Lieberman (1994) gave a similar model to that of Ujihashi which they found 

matched experimental force-time data well for normal impacts of solid and two-piece golf 

balls, but was not adequate for wound balls. A more complicated arrangement was 

constructed which matched published results well. Lieberman and Johnson (1994) added a 

torsional component in order to model oblique impacts. Previously determined normal 

parameters were combined with "guessed values" for torsional parameters. Graphs of 

forces and accelerations of the various masses are given, but are not compared to any 

experimental data. 

Johnson et at. (1973) studied the impact and flight of a football. They assumed the shape 

under deformation was a truncated sphere of the same radius as the original shape. The 

first approximation model assumed a constant internal pressure, but they later allowed the 

pressure (expressed as a gauge pressure P above atmospheric pressure P A) to vary 

adiabatically such that (p + PA ) Vl.4 = const . This increased pressure over a contact area of 

radius r led to a pressure reaction force of nr2 P . Percival (1976) continued the work of 

Johnson et al. and introduced an impulsive force. This impulse is produced by the 

momentum change as material is brought to rest by striking the ground, and distributed 

around the edge of the contact area where the momentum change takes place. Percival 

found that this model gave a much better value of maximum contact area than that of 

Johnson et al. The values of rebound velocity and contact predicted are rather poor, but 

there is no other energy loss in the model such as material hysteresis or damping. 
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Figure 2.22 Spring-damper model of the ball, strings and racket by Leigh and Lu (1992). 

Leigh and Lu (1992) created a model simulating the impact of a tennis ball on a racket 

which contained discrete components for the ball, the strings and the racket. The strings 

were represented by a spring, and the ball and racket each by a spring and damper in 

parallel. The three components were then assembled in series as shown in Figure 2.22. The 

spring and damper forces (Fbe and Fbd respectively) were defined in terms of the ball 

deformation 8b by 

and 

The constants defining the ball stiffness were given as kb = 18.44 kN/m and n" = 23860 

kN/m3
, and those defining the ball damping as cb = 6.66 Ns/m. Model results were given 

for ball-racket impacts, but are not relevant to this study. 

In some work using flexible beam theory to analyse the racket during impact, Cross 

(2000a) modelled a tennis ball as a spring element. He assumed the spring had a constant 

stiffness on loading and an unloading stiffness which varies with deflection. The force F at 

a deflection Y is given by 

(loading) 

and (unloading) 

and the parameter p can be defined to give an energy loss to match experimental values. 

Later in this work Cross gave values of k\ = 3 x 104 Nm- I and p = 2.55. 

35 



Chapter 2 

45 1 

40 

F 35 z 
~ 
~ 30 
(l) 
c: 
~ 25 
CIJ 

o 5 10 15 20 25 

Incoming speed (m's) 

(a) 

u 
c: 
(l) 

U 
iE~ 

Literature Review 

20 

15 

~ ~ 10 U fJ) 

OlZ 
c:~ 

'0. 
E 
CIl o 

5 

a -'---"-~--, 

o 5 10 15 20 25 

Incoming speed (m's) 

(b) 

Figure 2.23 The variation of (a) tennis ball stiffness (including static stiffness) and (b) tennis 
ball damping coefficient against incoming speed, from Dignall and Haake (2000). 

Dignall and Haake (2000) used a linear spring and dashpot damper in parallel to model a 

ball impact. By using contact times and rebound velocities for normal tests, they found 

linear relationships between impact speed and both stiffness and damping coefficients, as 

shown in Figure 2.23. This data was used to create an oblique model by adding a friction 

force, and this model matched one set of experimental data given. 

Hubbard and Stronge (2001) used thin-wall shell theory to analyse the impact of a table

tennis ball. They divided the impact into three possible periods; where the shell flattened 

against the surface, where there was a buckling of the cap inside the shell, and at large 

deflections where there was an inverted buckling into a set of three or four lobes. High 

speed video showed signs of the first two of these stages. Strain energy equations were 

used which, because of the thin wall nature, cannot be applied accurately to tennis balls. 

Hubbard and Stronge also included the changing pressure in their equations, observing that 

the volume of the ball reduces by twice the volume of the cap which inverts during the 

buckling stage. This pressure has a small effect at low speeds, but becomes more important 

as the speed is increased. Model predictions have reasonably accurate contact times, but 

show far too Iowan energy loss, indicating the need for an alternative dissipative term. 
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Figure 2.24 The "momentum-flux viscoelastic model" of Goodwill (2002) . 

Goodwill (2002) described a model which was used to predict impacts of balls on rackets. 

It consisted of a spring, and two sources of energy dissipation, a damper and a momentum 

flux component. The spring stiffness was adjusted to a higher value kSHELL of 80 kN/m for 

the first 0.2 ms to simulate the large initial rise in force. After that a power law was used to 

find the stiffness k 8 as a function of deflection, in the form k B = k B(o) + AKX~ . The damping 

coefficient C8 was also non-constant and was a function of contact diameter d CONT. The 

ratio of the mass of ball still above the surface compared to the total mass was used to 

estimate the velocity of the ball shell as opposed to the centre of mass, leading to the 

equation C8 = 1n8 Ac (dCONT t xB • The momentum flux term described the impulsive force 
m. 

caused by material being brought to rest on the surface. This was calculated using the 

change in contact area over previous timesteps in the iteration, giving the mass of material 

change between the part of the spherical shell moving downwards and the part at rest on 

the surface. The four parameters of the model were found by an iterative process matching 

contact time and coefficient of restitution as closely as possible. These parameters are 

reproduced in Table 2.3. 

Table 2.3 Model parameters reproduced from Goodwill (2002). 

Ball type k8(o) (kN/m) AK (kN/m2) a A 

Pre urised 21 1600 1.65 3.5 

Pressureles 23 12500 1.70 4.0 

Over ized 21 3600 1.30 3.2 

Punctured 16 60000 2.00 5.8 
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Haake el af. (2003) extended the normal spring-damper model of Goodwill in order to 

apply it to oblique impacts. A non-linear spring and damper were used to represent the 

stiffness and energy loss in the ball. The spin on the ball (either applied or generated by 

frictional moments) caused non-symmetrical impulsive forces at the front and rear of the 

truncated sphere. This impulsive force was simply applied as single forces at the extreme 

front and back of the contact area. A comparison is given of horizontal and vertical 

displacements during impact compared to those measured experimentally and the model 

matches well, but no mention is given of rebound speeds, spins or angles. 

Summary 

Work in other sports suggests that some form of spring-damper modelling would give a 

reasonable solution for tennis ball impacts, and indeed there have been models created of 

varying complexity for tennis. All the existing tennis models have limitations however, 

most noticeably in the empirical nature of the coefficients used to define them. There 

would seem to be an opportunity to create a model more closely related to the physical 

nature of the impact, which would perhaps lend itself more accurately to an oblique 

extension of the model. 

2.9 Overall literature summary 

This literature review has shown that there is a definite need for research and 

understanding in the sport of tennis. A number of references have been quoted describing 

fears for the future of the game; a huge number more could have been reproduced. 

Although many ball impact models have been created, none have successfully predicted 

the oblique impact of tennis balls. The Newtonian physics approach provides some good 

insights, but cannot match some of the quirks of normal tennis ball impacts, let alone 

oblique ones. 

Not much data has been published on oblique impacts in general. It will be necessary to 

perform a series of oblique impact tests to find how the ball behaves under different 

circumstances (and of course providing valuable validation data for any model). Before 

this however, normal tests are necessary to provide a basic understanding of the dynamic 

behaviour of a ball. 

Although there is not a vast array of data giving player performance statistics, there is 

enough information to determine how players typically hit the ball for various shots. An 

example of this is that the ball is rarely (if ever) hit completely flat, even on the fastest of 

first serves. 

Aerodynamic knowledge has advanced greatly in recent years, providing good drag and lift 

coefficient data which enables trajectory simulations to be used. These can not only 
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provide information about how the ball reaches the surface (i.e. boundary conditions for a 

model), but also practical data about how to interpret the model predictions. For example, 

if ball B rebounds 10% faster than ball A but with 5% less topspin, how do the balls 

compare in the way they reach the opposing player? 

There are a substantial number of accepted test methods for determining surface properties, 

not all of which will be relevant to the impact model created here. Surface friction and 

impact absorption tests must be evaluated to find their importance. 
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3 Fundamentals of Newtonian impact and modelling 

3.1 Introduction 

Before creating any sort of model, it is important to look at the basic physics behind what 

is happening. Consideration of the nature of the forces, deformations and so on are 

important to gain the understanding which is essential for a realistic model. This chapter 

discusses the mechanisms of impact and also looks at some of the mathematics behind 

impact. This leads to a rigid surface model which is based on some simple assumptions but 

can be used to provide some useful insights. Mechanisms of energy loss are discussed, 

together with deformations and their effect on the structural properties. 

3.2 Normal impact on a rigid surface 

Consider first a compressible hollow ball landing normally on a rigid surface. At the start 

of the impact it will have a maximum speed V;n. The impact will create a contact force 

opposing the motion - applied at the bottom of the ball - which will cause the structure to 

deform. Energy is stored in the material of the ball in the form of strain energy as a result 

of the deformation, which will be a combination of compression, bending and shear. In 

general the contained volume of the ball will decrease and thus the pressure of the air or 

other gas inside will increase (even if the ball is of the permanent pressure type, there is 

still a contained volume, initially at atmospheric pressure), although the actual deformed 

shape varies depending on a number of factors. This increase in gas pressure also stores 

energy. 

The downwards speed of the ball centre of mass decreases due to the contact force, until it 

becomes zero. The bottom portion of the ball "spreads out" while momentum causes the 

rest to continue moving down. There will still be a restoring force upwards and so the ball 

continues to accelerate upwards until it leaves contact. At the end of the contact period the 

ball may still be in a compressed state. Regardless of this, the momentum of the rubber 

shell due to the expansion phase of the impact is likely to result in vibrational effects. 

Although Brown et al. (2000) found that this oscillation died out within 5 ms, it is another 

transfer of energy into a dissipated form. 

If - as in the real world is always the case - the energy returned does not equal the energy 

stored, then the outgoing velocity will not be as high as the incoming velocity. In 

considering a general compressible ball, it is possible for permanent plastic deformation to 

occur as a mechanism for energy loss, but this obviously is not an important factor for the 

particular example of a tennis ball. What is important is the rubber used to construct the 

ball. When a material is tested for force-deflection properties, it can be described by two 
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stages, loading and unloading. If on unloading the force is less for a particular deflection 

than on loading, there will be an energy loss. 

Force Force 

unloading 

deflection deflection 

Figure 3.1 Force-deflection curves showing low and high energy losses, represented by the 
shaded areas. 

Example force-deflection curves for small and large energy losses are shown in Figure 3.1 , 

where the shaded area represents the difference between energy stored and returned. The 

area under the loading part of the curve is the energy stored, and the area under the 

unloading part the energy returned. The energy loss will come from a number of sources. 

The most intuitive is in the properties of the materials making up the ball, i.e. the rubber 

and the cloth. The cloth is a much softer material than the rubber and will not store much 

energy, but it is also poor at returning this energy. The rubber wall will undergo some 

compression and expansion but because of the nature of the relatively thin-walled spherical 

shell the majority of the ball deformation is from a different mechanism, as shown below. 

Figure 3.2 A cross-sectional view of the bottom of a ball during impact, showing the nature of 
the bending deflections. 

Consider the cross-section shown in Figure 3.2. The dominant factor in the deformation is 

bending of the rubber wall around the edge of the contact area. Bending and return gives 

an energy absorption and loss in the same way as linear compression and expansion. There 

will be some dissipation of energy in the form of heat within both the rubber and the air. 

It is theoretically possible for the stored energy to be totally returned to the ball, but even 

so for there to be a loss in speed. This could happen if significant vibrations are set up by 

the impact, so kinetic energy is transferred to oscillation. The vibration will be damped 

down fairly quickly without affecting the velocity of the centre of mass of the ball , by a 
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combination of the air compression-expansion and rubber bending-return as discussed 

above. This means that this damping then becomes a form of energy loss, dissipating the 

stored energy rather than converting it back to kinetic energy and increased speed. 

3.2.a Deformation shapes 

Figure 3.3 Possible ball deformation shapes, showing a sliced ball in each case; 
uncompressed, with a flattened bottom and buckled. 

As the ball compresses during the impact, its shape must change from spherical. One 

simple possible shape would be an ellipsoid with a circular cross-section through any 

horizontal slice. This has the advantage (for analysis purposes) of being symmetrical but 

provides a point load at all times, which is unrealistic. The next most simple case is a 

truncated sphere where the portion below ground level i cut off, giving a flat contact area. 

This is shown in the central part of Figure 3.3. The problem here is that the volume of 

material in the shell is not conserved unless the spherical part changes radius (if the area is 

not in compression). Another possible case is the buckled third shape in Figure 3.3 , where 

the portion below ground level is mirrored. This will give an annular contact area and a 

central circular area not in contact. Evidence for this shape can be seen by pressing half a 

baJl by hand on to a rigid surface - the bottom section clearly "flips up" if the deformation 

is large enough. 

Any deformation of the ball from its original spherical shell will alter both its centre of 

rna s position relative to the undeforrned top section, and its moment of inertia. This is 

important for two reasons. Firstly, nearly all analytical models use the centre of mass 

position to define displacements and apply loads. Any measurements relating to the 
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physical shape (whether they are measurements such as ball stiffness relative to 

displacement, or in the opposite direction comparing shapes predicted by the model with 

reality) need to be translated from centre of mass displacement variables. econdly, the 

deformed shape is likely to have a significant effect on oblique impacts, where the position 

of the forces is important in terms of rotational moments. 

3.3 Oblique impact on a rigid surface 

Figure 3.4 Forces acting on a cross-sectioned ball during an oblique impact. 

The normal impact described above can be extended to oblique impact cases with the 

addition of a horizontal co-ordinate axis, and also spin. Consider the ball shown in Figure 

3.4. One assumption commonly made is that the vertical properties of the ball are the same 

as for a normal impact having the same component of velocity perpendicular to the 

surface. This means that the vertical components of force, di placement etc can be 

considered independent of the horizontal ones (apart from obvious links such as normal 

and frictional force) . In fact, under this assumption the vertical velocity, displacement and 

force components will be identical to those of a normal impact with the same incoming 

speed. 

The vertical deformation produces a restoring reaction force R acting vertically upward . 

For any non-normal impact, unless the contact time is instantaneously short, the bottom of 

the ball will slide along the surface, producing a retarding frictiona l force F. This frictional 

force will reduce the horizontal velocity component, and al 0 provide a po itive moment 

which will increase the topspin on the ball. 
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Low friction. higher horizontal speed 

High friction. lower horizontal speed 

Figure 3.5 Higher friction leading to lower speed, for the same vertical velocity . 

The main difference between slow and fast courts has been hypothesised to be the 

coefficient of friction. If the friction increases, there will be a greater horizontal impulse, 

and therefore a greater reduction in the horizontal velocity component as shown in Figure 

3.5. This will mean a lower speed and a steeper outgoing angle, assuming there is no 

change in the vertical velocity component. It is thought that the horizontal speed is the 

most important factor in the perceived pace of a court, as it directly affects the time taken 

for the ball to reach the player. The higher friction will of course lead to a higher moment 

and therefore more spin after the impact, altering the trajectory. 

3.4 Slipping and rolling 

First, consider the case of a snooker ball (a highly rigid sphere) struck at the bottom of the 

ball to give it backspin. As it travels along the table, the ball is initially sliding rather than 

the typical rolling motion which might be expected. This sliding means that there is 

relative motion between the bottom of the ball and the cloth on the table, which provides a 

frictional force opposing the motion. This frictional force slows the ball' s horizontal speed 

and also gives a rotational moment, reducing the backspin. At some point the backspin will 

be completely taken off the ball , and so the ball will start to gather topspin. Low values of 

topspin still give relative motion of the ball and the cloth, and it will still be in the slipping 

state. The horizontal speed will continue to reduce and the topspin increase because of the 

friction, until they "match" in the relationship V = {J)r. Depending on the amount of 

backspin applied and the friction between ball and surface this whole proce s can take 

place extremely quickly. 

Now consider a tennis ball landing obliquely with no spin. The frictional sliding force will 

gradually slow the ball and also add topspin. Depending on a number of factors such as 

angle of impact and coefficient of friction, the ball may start to roll along the surface 

before it leaves contact - it is of course perfectly possible for it to end the contact still in 

the slipping state. This rolling is characterised by the tangential velocity of the bottom of 
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the ball being zero. Because of the frictional force experienced whilst sliding, the 

horizontal speed Vx decreases with time and spin OJ increases until the condition Vx = wr 

is reached. After rolling occurs, the frictional force reduces to very close to zero. This can 

have a significant effect on the outgoing speed. Consider two impacts having the same 

profile of vertical force over time. If one slides throughout, the horizontal force will be 

proportional to this throughout the contact period. If the other begins to roll say halfway 

through, it will only have a horizontal force for the first half of the time, as the force drops 

to zero when rolling occurs. This will have a significant reduction on the horizontal 

impulse and thus the change in horizontal velocity, suggesting that the more time a ball 

spends rolling, the steeper it will bounce. 

The examples above consider the cases where topspin is added until rolling occurs. It is 

theoretically possible for a ball to land with greater topspin than is needed for rolling. If 

this happens, the peripheral velocity of a point on the bottom of the ball will be in a 

direction opposing the horizontal velocity component, and the friction will be in an 

opposite direction to that previously discussed. However, it is seems very unlikely that this 

situation will occur, as the spins needed are large. For example, an impact at 30 ms·' at 16° 

to the horizontal has a horizontal speed of 28.8 ms· l
. For a radius of 33 mm this gives an 

incoming rolling spin of over 870 rads·'. Topspin slipping would require the player to 

impart a spin rate higher than this very high value. 

3.5 Simple rigid body impact model 

Consider a ball impacting obliquely on a rigid surface. It is possible to gain insights into its 

behaviour using rigid body theory. This relies on the assumption that the deformation of 

the ball is negligible, and so will not be valid if the vertical velocity component is large. 

The model is based on standard impulse equations in the horizontal, vertical and rotational 

directions: 

x direction: 

y direction: f Rdt = m!1 Vy 

Rotation: J Mdt = J -Frdt = I!1w 

3.S.a Pace rating 

The ITF Pace Rating is defined as (ITF, 1997): 

Pace rating = 100(1- !1Vx J 
!1Vy 
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Using [3.1] and [3.2], and assuming F = IlR throughout the impact (thus J Fdt = 11 J Rdt ), 

this simplifies to 

Pace rating = 100(1- 11) 

3.S.b Slipping/rolling limiting angle for non-spinning impacts 

V 
Defining e = -~ and using the relationship Vy. = -Vm sin 8 (where 8 is defined as the 

V m 
y", 

angle of velocity to the horizontal as shown in Figure 3.4), equation [3.2] gives 

J Rdt = m(Vyou, - Vy,,, ) = m Vm sin 8(1 + e) 

Equating [3.1] and [3.2] by the expression F=-IlR gives JFdt =-11 JRdt. Thus 

Substituting in from [3.5] gives 

Vx - Vn cos 8 = -V 11 sin 8(1 + e) 
our n 

[3.5] 

[3.6] 

[3.7] 

For rolling spin, Vx = OJr. Consider the case where the rolling condition is reached just at 

the end of the impact - it cannot happen earlier because of the assumption F = - IlR . This 

gives Vx = OJ Jutr and therefore 
flUI ( 

OJ out r = Vin [cos 8 - 11 sin 8(1 + e)] 

Equating [3.3] and [3.5] by the expression F = -pR thus JMdt = Ilr J Rdt , 

I!3.OJ = IlmrVin sin 8(1 + e) 

[3.8] 

[3.9] 

assummg OJin = 0 (an impact with no incoming spin) and using the moment of inertia 

approximation for a thin-walled sphere I = ~ mr2 , 
3 

[3.10] 

Substituting [3.8] into [3.1 0] gives, 

~ mVm [cos 8 - 11 sin 8(1 + e )]= J1mVin sin 8(1 + e) 
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cos e - f.1 sin e(I + e) = ~ f.1 sin e(I + e) 
2 

cos e - ~ f.1 sin e(I + e) = 0 
2 

Which rearranges to, 

[3.11 ] 

Equation [3.11] gives the limiting angle for impacts where the ball will slide throughout 

compared to those where there will be an element of rolling. This is important as the 

absence of friction in the rolling phase will have an effect on the outgoing velocity. 

3.5.c Limiting angle for impacts with incoming spin 

The equations above can be adapted for the more general case where the incoming spin is 

non-zero. Following on from [3.9], if mm :t 0, 

sub [3.8] in: Vin [cos e - f.1 sin B(I + e )]- rm in = % f.1Vm sin B(I + e) 

If the speed and the angle are known, it is possible to rearrange to find the incoming spin 

which would promote rolling: 

[3.12] 

3.5.d Examples 

Typical quoted values for the pace rating of a common acrylic surface are between 30 and 

40 (ITF, 1997). The middle of this range corresponds to a frictional value of f.1 = 0.65. The 

assumption was made that an extreme velocity was not used, so that a typical drop test 

COR could be used, i.e. e = 0.75. With these numbers, equation [3.11] gives a boundary 

angle of 19.40 to the horizontal. Any angle higher (Le. steeper) than this will result in an 

impact containing some rolling. 
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Another condition worth investigating is that specified for the ITF pace rating tests, which 

is supposedly representative of a real shot. Firing a ball at 30 ms- I at 160 to the horizontal 

is fairly close to the angle of 19.40 calculated above. Using these values together with 

f.1 = 0.65 and e = 0.75 as before (a realistic COR, as this geometry gives a vertical 

incoming velocity of 8.3 ms- I
, not much higher than a 100 inch drop test), equation [3.12] 

gives the minimum topspin needed for rolling to occur as 160 rads- I
. This is certainly a 

figure which can be achieved by professional players. 

Looking at equation [3.11], it is clear that increasing the value of f.1 will lower the 

boundary angle. Rearranging gives f.1 = 2( ). For the pace rating conditions and 
5tanB1+e 

e = 0.75, this gives a limiting friction of 0.80, suggesting that any surface with a pace 

rating of 20 or less will result in rolling. 

3.6 Deformable surfaces 

The descriptions above are based on an assumption that the surface is completely rigid. For 

many cases this many be an accurate assumption, but consideration must be given to the 

possibility of a surface which deforms. 

In its simplest form surface deformation may affect the COR of a normal impact. The 

interaction between ball and ground is likely to affect the forces acting. Intuition may 

suggest that a softer surface leads to more energy loss, but this is not necessarily the case. 

The energy losses within the ball are due to its deformation; therefore a less stiff surface 

will reduce these losses by producing smaller ball deformations. This will of course store 

energy in the surface by deforming it rather than the ball - if it is an elastic enough 

material and returns a high enough proportion of the energy, the ball could rebound faster 

than on a rigid surface. It is important however that the time constant of the surface is not 

too dissimilar to that of the ball, or the recovery phase will take place after the ball has left. 

Oblique impacts add a further complication. Previous work on impacts involving stiffer 

balls such as golf (Haake, 1994) and cricket (Carre et al., 1999) balls has found that the 

ground is deformed and pushed ahead of the ball. This forms a "ramp" up which the ball 

rolls, changing the angle of the velocity and also the forces acting. The ball will then 

rebound steeper than expected. 

The important factor when the surface is deformable is the relative stiffness of the ball and 

surface. In the sport of golf, the ball is significantly stiffer than the surface - particularly 

when the weather is less than perfect and the turf is wet. Cricket research has found that the 

stiffness of the ball and surface are of the same order of magnitude. Compressing a tennis 

ball by hand and walking on a court (which is of course imposing a much larger force) 

suggests that for the majority of courts, the surface is significantly stiffer than the ball. 
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Whether this allows a rigid surface assumption in a model requires a more scientific 

approach to data collection, which will be investigated in a later chapter. 

3.7 Developing the rigid body model 

3.7.a Finding velocities from the model 

Previous steps have concentrated on using the relationships between the forces to work out 

slipping and rolling boundaries. The equations developed can be used to immediately find 

the outgoing conditions if an initial case of sliding throughout impact is considered. The 

V 
COR e is defined by e = -~ , giving Vy if e is known. During sliding the relationship 

V 0.' 
Y", 

between friction and reaction force is F = - j.1R . 

but fFdt = -j.1 fRdt 

= -mj.1l::.Vy 

= mj.1Vy", (1 + e) 

therefore 

Similarly, M = Fr = -j.1rR . 

3j.1VYm (1 + e) 
(j) out = (j) in - --'-"'---

2r 

(assuming 1= 3. mr2) 
3 

To progress any further it is necessary to make an hypothesis about the force profile. A 

sensible assumption is that the reaction force R is a half sine wave given by the equation 

R = a sin(bt ). The coefficient a will thus be the peak force exerted on the ball. The other 

main feature of the waveform is the contact time T c, giving b = ~ . 
1'c. 

From the impulse equation, 

f=lC' ( ) Rdt = m V - V 
=0 YOUI Ym 

= -m Vy,.(l + e) 
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But fRdt = -~cos(bt) 
m 

thus 2a = -m V (1 + e) OJ y", 

glvmg 
- mb Vy,,, (1 + e) m;rVy", (1 + e) 

a = = -----'-"'----
2 2Te 

[3.13 ] 

At a general time t, integrating the impulse equation allows the calculation of the vertical 

velocity Vy 

- : [cos(bt )-1] = m(Vy - Vy", ) 

Vy = Vy - ~[cos(bt )-1] 
'" mb 

Because F = - JlR , a similar integration in the horizontal direction gives 

Rotationally: 

v = Vx + JlG [cos(bt )-1] 
x HI mb 

M = -Fr = JlrR 

fMdt = ]/),.01 

Jlr f Rdt = ]/),.01 

- :r [cos(bt) -1] = ]/),.OJ = ~ mr2 (OJ - OJ,J 

01 = mm - 3JlG [cos(bt )-1] 
2mrb 

At the time tr where rolling starts, the condition Vx = rOJ is satisfied. Therefore 

Vx + JlG [cos(bt r) -1] = OJmr - 3JlG [cos(bl ) -1] 
'" mb 2mb r 

rmm - Vx = 5 JKl [cos(bl r) -1] 
'" 2mb 

cos(bl
r

) = 1 + 2mb (rm - V ) 
5JlG m Xm 

[3.14 ] 

[3.15] 

[3.16] 

[3.17] 

The expressions derived here can be used to define a rigid body model which allows both 

sliding and rolling. If the equation for Ir is solvable and thus rolling occurs, the horizontal 
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speed and spin rate will remain the same for the range t r < t < T('. This is defined by the 

range 

2mb ( ) - 2 < -- rw - V < 0 5 f.1G In x,,, 
[3.18] 

The upper boundary of the expression above (i.e. rWtn - Vton = 0) defines an impact where 

the incoming spin matches that required for rolling. The lower boundary (rOJ m - Vr,,, = 2 ) 

describes an impact which just starts to roll at the end of contact, and by substituting in an 

expression for bla from [3.1], equation [3.18] can be used to give limiting conditions in 

terms of incoming conditions as in the more general example earlier in the chapter. 

Substituting the expression for cos(btJ back into the equations for Vx and OJ leads to the 

values below which are valid for any impact which ends in rolling. 

3V
X 

+ 2rOJ tn V =-....:;;"'---
x 5 [3.19] 

3V
X 

+ 2rwtn 
w=-....:::"'---

5r 

This model allows the investigation of the effect of incoming conditions. It is not on its 

own a solution to the modelling problem, as there are too many assumptions involved. The 

expressions developed here give outgoing conditions for velocity and spin both for impacts 

which slide throughout and for those which end in rolling. They are summarised in Table 

3.1 below. 

Table 3.1 Rigid body model equations for velocity and spin of impacts which are wholly 
sliding, or which contain some rolling. 

Variable 
General value at time t Final value if Final value if 

(assuming sliding) sliding throughout rolling occurs 

Vx Vx + f.1G [cos(bt) - 1] VXon + jLVyon (1 + e) 3Vx", + 2rOJm 
on mb 5 

Vy V -~[cos(bt)-I] 
Yon mb -eV 

Yon 

f-------- -

W Win - ;::b [cos(bt) - 1] min -
3,uVy.,.{1 +e) 3Vx", + 2rmm 

2r 5r 
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3.7.b Applying model predictions to Surlace Pace Rating 

The definition of Surface Pace Rating is given in [3.4]. Looking at the equations in Table 

3.1, if rolling occurs then the final value of the rebound velocities in both the horizontal 

and vertical directions will not depend on the coefficient of friction. In other words, 

increasing the friction will decrease the Pace Rating until rolling occurs, then any further 

increases in friction will not change the Pace. This limiting Pace value can be estimated 

using the equations above. 

(
V -V J SP R = 1 00 1 _ x,. x"',, 

V -V 
YIIII1 YI/I 

V -(3Vx", + 2rwtn J 
Xm 5 

= 100 1 - ------''-------~ 
-eV -V 

Y'II y", 

[ 
~(v -2rm)] 5 XIII In 

= 100 1-~-----:--
-Vy", (l+e) 

For the specific case (as in the Surface Pace tests) where the incoming spin is zero: 

SPR=100[1- 2Vx
", J 

-5V
Ym 

(1 +e) 

-V 
and as the incoming angle is defined by tan () = ~ and applying the specific geometry 

V 
XIII 

defined by the test specifications, 

SPR = 100(1----:---:-
2--J 

5 (1 + e) tan 16° 

For a typical COR of 0.75, this gives SPR = 20.3, suggesting that a Surface Pace value 

lower than this should never be measured. 

3.7.c Speed, spin and angle throughout impact 

The equations in Table 3.1 can be used to see how changing the incoming conditions 

affects an impact. This gives an indication as to the importance of whether a ball slides or 

rolls. A range of conditions were used based on the pace rating test of a 30 ms·) impact at 

16° to the horizontal, without spin. A coefficient of friction of j..l = 0.55 was assumed. 
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Figure 3.6 Force, speed and spin plotted during impact for a rigid body model. 

Figure 3.6 shows force, speed and spin graphs through the impact. In order to plot these 

variables during contact, a contact time must be used. The value chosen was 4.5 ms, 

leading to a peak force of288 N. 

3.8 Rigid body model predictions - outgoing speeds, spins and angles 

The equations in Table 3.1 were also used to investigate the importance of the different 

parameters of the model. The speed, spin and angle were varied in tum while keeping the 

other variables constant, based on an impact at 30 ms·) at 16° to the horizontal on a surface 

with coefficient of friction f..J = 0.55. 

3.8.a The effect of speed 

The first case considered is an impact with constant incoming angle and spin, looking at 

the effect of a variation in speed. If there is no incoming spin the initial speed will have no 

effect on whether the ball slides or rolls at the end of the impact. In this case, the outgoing 

speed and spin are both simple increasing functions of incoming speed, and the angle 

remains constant. In a real-life situation, increasing ball speed will change the COR and 

therefore have an effect on all the outgoing variables, but it is useful to remove this factor 

when assessing the effect of speed. 
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A more interesting situation is when the ball possesses a fixed value of incoming topspin. 

This will lead to a certain incoming speed which defines a boundary between wholly 

slipping impacts and those containing rolling, and this speed will depend on the value of 

spm. 
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Figure 3.7 Rigid body model predictions showing the effect of changing the speed on an 
impact at 16° to the horizontal with JL = 0.55. 

These two cases are shown in Figure 3.7 for speeds between 12 and 42 ms'! at an angle of 

16°. Results were calculated for zero spin and also with 200 and 300 rads'! of incoming 

topspin. With these amounts of topspin there is a "boundary speed" of about 22 and 33 

ms'! respectively; above this speed the ball will always slide but below it the incoming 

topspin is enough to give rolling. The outgoing speed increases almost linearly, and there is 

very little difference between those impacts with spin and those without. As the speed 

increases, it will dominate the term 3Vxm + 2rOJm if the incoming spin remains constant. 

Figure 3.7 (b) shows the slight difference between sliding and rolling. For both situations 

the outgoing spin is a linear function of incoming speed and spin as can be seen from the 

equations in Table 3.1, but the gradients are different. 

A graph of angle against speed is shown in Figure 3.7 (c). This shows a much clearer 

division between sliding and rolling. If the ball slides throughout, the angle must be the 

same whatever the incoming spin, as OJin does not feature in the equations. This angle is 
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constant because all terms are functions of V and V ,and hence proportional to the 
Xm YIII 

incoming speed - in a more physical sense, the forces remain the same throughout. When 

rolling occurs, the outgoing horizontal speed is a function of OJin - as the speed decreases 

the spin becomes more dominant and more time is spent rolling, therefore the angle 

decreases (as more time rolling means less horizontal impulse and therefore a larger 

horizontal velocity component). 

3.B.b The effect of spin 
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Figure 3.8 The effect of applied spin on outgoing (a) speed, (b) spin and (c) angle for a rigid 
body model of a ball impacting at 30 ms·1 at 16°. 

The speed and angle will not change as long as the incoming spin remains within the range 

which gives sliding throughout. Equation [3.19] shows that the horizontal speed increases 

as a linear function of spin as the spin increases past the minimum value needed for rolling, 

therefore the absolute speed will also increase. The angle will decrease as the horizontal 

speed remains constant in all cases. Outgoing spin will increase linearly, but only 2/5 of 

each extra incoming unit of spin will be retained, whereas for wholly slipping impacts 

every unit of incoming spin adds to outgoing spin. 

The result of these trends is shown schematically in Figure 3.8. This shows the model 

predictions for impacts at 30 ms') at 16° to the horizontal, with spin up to 600 rads') of 

topspin. Here the spin boundary for rolling to start is about 250 rads') of topspin. As 
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expected, spins below this give a constant speed and angle, and each extra unit of incoming 

spin is converted to outgoing spin. Above 250 rads·), the horizontal speed increases, and 

therefore the absolute speed. The vertical speed remains constant and so the angle 

decreases. The outgoing spin is still a linear function of incoming spin, but the decreased 

"conversion" of spin can be seen in the lower gradient in Figure 3 .8 (b). 

3.B.c The effect of angle 
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Figure 3.9 The effect of applied angle on outgoing (a) speed, (b) spin, (c) angle and (d) angle 
ratio, for a rigid body model of a ball impacting at 30 ms·1

. 

Figure 3.9 shows how the impact is affected by a range of angles between 10 and 40 

degrees. The equation tan e = t ) derived earlier gives a minimum angle for rolling 
5p 1 +e 

to occur as 22.6°, and this can be clearly seen as discontinuities in the outgoing speed and 

spin graphs. The outgoing angle is affected less. This set of data is more difficult to predict 

from an intuitive viewpoint, because changing the incoming angle alters the ratio of 

horizontal and vertical speeds. A constant vertical COR will have a varying effect on the 

outcome depending on the size of Vy,,, relative to Vx,,,' The outgoing angle is barely 

affected by the slipping or rolling condition, but the speed and spin trends change 

dramatically. As the incoming angle increases from its minimum value, the outgoing speed 

decreases until rolling occurs. The trend then reverses, and for further increases in angle 
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the speed increases. Similarly the outgoing spin increases with the angle until rolling, then 

decreases with higher angles. 

3.B.d The effect of friction 

A range of coefficients of friction between 0 and 1 were applied, although the other 

incoming conditions were changed slightly to have an incoming spin of 300 rads· l 
- chosen 

so that the slip/roll boundary would be approximately in the middle of the range of 

frictions used. 
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Figure 3.10 The effect of coefficient of friction on (a) outgoing speed, (b) outgoing spin and (c) 
outgoing angle, on a rigid body model of an impact at 16° with 300 rads·1 of topspin. 

The effect of friction on outgoing conditions is shown in Figure 3.10. There are clear 

differences between slipping and rolling, but this is possibly the most intuitive parameter. 

In the slipping phase, as the friction is increased the speed drops, the spin increases as does 

the angle - the vertical velocity component stays constant and the horizontal velocity 

component reduces therefore the angle increases. Once rolling occurs, increasing the 

frictional coefficient further has no impact other than affect the time during the impact at 

which rolling happens. 
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3.9 Summary and conclusions 

Consideration of a fairly crude rigid body model gives useful insight into the limits of 

surface and shot parameters which give an impact sliding throughout its duration. For 

example, the minimum topspin required for rolling for a 30 ms- I at 16°to the horizontal on 

a surface with coefficient of friction of 0.65 is only 160 rads- I
. This suggests that rolling is 

likely to occur in a game, especially on slower surfaces, although this incoming velocity is 

not necessarily representative of a real shot. It is necessary to look more closely into the 

speeds and angles at which the ball lands on the court, which is the subject of the next 

chapter. 

A refinement of the rigid body model was presented, based on the primary assumption of a 

sinusoidal shape to the force-time profile. This allows a prediction of how speeds and spins 

change during the impact period. From this model it appears that the slipping/rolling 

condition is extremely important, as trends in outgoing variables can change when the ball 

starts to roll. 
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4 The aerodynamics of a tennis shot 

4.1 Introduction 

The overall aim of this project is to model the impact of a tennis ball on a court surface. In 

order to know correct boundary conditions it is essential to know how the ball arrives on 

the surface. It would be extremely difficult to experimentally measure the shot of a top 

professional player in a tournament environment as it lands on the court, and so a trajectory 

model was used to predict the impact conditions given known initial speeds and spins. 

There is a reasonable amount of available data on ball speeds (particularly for services 

which have been regularly measured in recent years using radar guns), including average 

and maximum values. Although there is limited data as to the conditions at the point of 

impact on the court, a trajectory model based on initial speeds as the ball leaves the racket 

will give us a good approximation. 

4.2 Aerodynamic forces 

v 

mg 

Figure 4.1 The forces acting on a spinning tennis ball during flight. 

The equations of motion for an object travelling through a viscous fluid such as air are 

well-known. Consider the ball shown in Figure 4.1 travelling at speed V and backspin OJ at 

an angle B above the horizontal (using these directions as positive backspin causes a lift 

force upwards). Air resistance will provide a retarding drag force FD on a ball governed by 

Ff) = ~ pV 2C vA where p is the density of the air, v the ball speed, A its cross-sectional. 
2 

area and CD the non-dimensional drag coefficient. A similar expression gives the lift force 

FL as a function of lift coefficient CL: FL = ~ pV 2C LA . The challenge is to find values for 

the lift and drag coefficients, as both may vary with such factors as the speed and spin rate 

of the ball. 

In order to find the trajectories, the forces are resolved to give components in terms of x 

and y eo-ordinates. 
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Thus Vx = V cos(} 

and VY = V sin(} 

m d;x = -Ff) cos(} - FL sin(} 

dV 
m--Y = -mg - FJ) sinB + FJ cos(} 

dt . 
[4.1 ] 

The equations of motion above cannot be solved analytically, but a good solution can be 

found by advancing by a small time step Ltt. 

[4.2] 

[4.3] 

4.3 Measurements of lift and drag coefficients 

Published data for the measurements of lift and drag coefficients of a tennis ball are 

discussed in detail in Chapter 2. In summary, the two coefficients depend on the speed 

through the air to a fairly small degree and much more significantly, the rate of spin of the 

ball. Due to the high spin rates needed, the data produced by Chadwick (2003) was used 

for most of the simulations in this section, which was found by mounting balls on a shaft 

spinning at an extremely high speed in a wind tunnel. He found empirical expressions for 

both coefficients which were independent of Reynolds number and thus purely a function 

of peripheral velocity OJ and wind speed v, given by 

and [4.4] 

4.4 The effect of air resistance on a drop test 

If an object drops under the influence of gravity and there are no other forces acting on it, 

the coefficient of restitution e (defined as the ratio of the rebound speed to the impact 

speed) is simply related to the drop height hi and the rebound height h2 by the following 

expreSSlon: 

60 



Chapter 4 The aerodynamics of a tennis shot 

This would give the following acceptable range according to the ITF 100 inch drop test 

(which states the bound must lie between 53 and 58 inches): 

emi• = ~ 1~0 ~ 0.73 

and em" = ~ 150~ ~ 0.76 

However, the ball will be slowed both before and after bouncing by air resistance, and so 

for a given bounce height, the actual COR will be higher than calculated by the simple 

relationship above. A simple way to look at this is that for the ball to bounce to a certain 

height, if energy is lost to air resistance then less energy must be lost in the impact on the 

ground, hence a higher COR. 

If the ball has cross-sectional area A and drag coefficient Cd, and the density of air is p, the 

equation of motion of the ball is shown below for conditions before and after impact (with 

the sign convention of positive being vertically upwards): 

.. lpCA· 2 my=- d y -mg 
2 

(y < 0) [4.5] 

.. IpCA' 2 my=-- d y -mg 
2 

(y> 0) [4.6] 

Equations [4.5] and [4.6] were solved using a time step iteration. For a ball with mass 57 

grams, diameter 67 mm and constant drag coefficient Cd = 0.53 as found by Chadwick 

and Haake (2000), this gives an impact velocity of 6.88 ms-1 compared to 7.06 ms-1 

neglecting drag. For a given rebound height, the COR can be varied and the iteration run 

until the height is achieved. The minimum and maximum COR values for the 53 and 58 

inch limits using this method are 0.76 and 0.79, 4% higher than without considering drag 

(rebound speeds of 5.12 ms-
1 

and 5.46 ms- I
). This is not a huge error in itself but is 

significant - put into perspective, it is a similar figure to the difference between the 

minimum and maximum allowable COR values stipulated in the rules of tennis. 
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4.5 Applying aerodynamic theory to real shots 

4.5.a The effect of spin on trajectories 
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Figure 4.2 The effect of spin; the trajectory of a 70 mph groundstroke is shown for the shot hit 
flat and with 100 rads-1 of both backspin and topspin. 

Trajectories were calculated for a ball struck from the baseline at 30 ms· 1 (70 mph), 5 

degrees above horizontal. The initial height was 1.2 m. Figure 4.2 shows the trajectories 

for the shot hit without any spin, and with 100 rads- 1 of both backspin (denoted as -100) 

and topspin (l00). These are not necessarily realistic cases as a player will adjust the speed 

or angle to keep the ball reasonably close to the net, but they do show the effect spin can 

have on a shot. The value of spin used here is not actually a particularly large one; Cislunar 

(1997) measured average values for each of a range of professional men as 140 to 340 

rads· 1 of topspin and 223 to 327 rads· 1 of backspin. Applying 100 rads- 1 of topspin makes 

the ball land a little over two metres shorter than the shot without spin, and the same 

amount of backspin produces a shot which lands right on the baseline (just over 2.5 m 

further than the ball without spin). Of course, in game situations, a player is likely to use 

backspin when hitting the ball with considerably less power. The spin creates a lift force 

opposing gravity which allows the ball to travel further than it would without spin. This 

means the player can clear the net with a shot of lower speed which, combined with the 

shallower impact angle from the backspin trajectory, produces a lower bounce (making it 

hard for the opponent to return the ball with much pace). 
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4.5.b Using the trajectory model to find impact conditions 
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Figure 4.3 Trajectories for balls hit with the same speed but different spins, landing in the 
same position on the court. Each trajectory is labelled with the relevant topspin value for spin. 

This set of calculations investigated the initial angles needed for a range of shots with a 

given speed to land in the same position on the court. Cislunar (2000) quote a typical speed 

for a professional ground stroke as being 70 mph. The impact position chosen was midway 

between the service line and the baseline, giving a reasonably deep shot. This gives the 

boundary condition y = 0 m when x = 21.03 m. The trajectory model was used to find the 

angle at which various 70 mph shots must be hit to land in the same place as the spin 

imparted on the ball varies. These shots are shown in Figure 4.3 which clearly 

demonstrates the effect that spin can have. Table 4.1 shows the initial angle as well as the 

impacting speed and angle for each spin. The data shows that the impact speed does not 

change greatly, but the spin has a big difference on the angle at which the ball reaches the 

court surface. Shots with 100 rads·) of backspin are hit almost flat and land at 12.2° to the 

horizontal, whereas shots with 300 rads·) of topspin are about 7° steeper both after being 

hit and landing. 
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Table 4.1 Impact speeds and angles for 70 mph shots with various spins landing at the same 
spot, midway between the service line and baseline. 

Topspin Launch angle Impact angle Impact speed 

(rads· l
) (degrees) (degrees) (ms· l ) 

-100 3.4 12.2 20.8 
i 

-- ---------+---~"-.- -----

0 4.9 13.8 21.2 

100 6.7 15.9 20.8 

200 8.4 18.2 20.1 

300 10.0 20.3 19.3 

The impact conditions were used to calculate minimum spins needed for the ball to roll. 

The rigid body model developed in Chapter 3 gave the spin boundary which for a constant 

speed of 21 ms· l is a function of angle and coefficient of friction. This spin boundary is 

shown in Table 4.2 below for three different frictional values J.1 = 0.5, J.1 = 0.6 and 

J.1 = 0.7 . This corresponds to "pace ratings" of 50,40 and 30 respectively, covering a wide 

range of courts. The shaded cells are those conditions where the spin is greater than that 

calculated as the slip/roll boundary. Even on the fastest of these surfaces, which is the most 

likely to retain slipping throughout, around 200 rads· 1 or above of topspin will produce an 

impact which is rolling when it leaves the surface. When J.1 = 0.7 (by no means an 

excessively high frictional value, clay courts commonly measure up to J.1 = 0.8), less than 

100 rads· l is needed, meaning in practical terms that any topspin shot worthy of the name 

will cause the ball to roll. 

Combining an aerodynamic model such as this with impact models discussed in a previous 

chapter makes this calculation much more realistic. The different trajectories can be 

incorporated, rather than ignoring the way that spin provided to the ball changes the way it 

lands. 
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Table 4.2 Rigid body model predictions for minimum spins needed for rolling to occur, using 
the impact angles found from trajectory modelling. Shaded cells are those for which the impact 
spin is greater than the minimum for rolling. 

Impact 
Calculated minimum spin needed for rolling 

Impact angle (rads·1 topspin) topspin 

(rads· l
) 

(degrees) 
/-l = 0.5 /-l = 0.6 /-l = 0.7 

-100 12.2 327 268 210 

0 13 .8 286 219 153 

100 15.9 230 154 77 

200 18.2 170 84 -3 

300 20.3 113 17 -80 

4.S.c Maximum impact speed on the court 

The extreme case of a "normal" shot is the serve. It is possible for such shots as a smash to 

happen with similarly high speeds, but these are much less common - every point starts 

with a serve! At the time of writing the fastest serve recorded was 149 mph (66.2 ms· l
) by 

Greg Rusedski at Indian Wells in 1998. There is no record of spins achieved by Rusedski 

but NASA and Cislunar Aerospace, Inc. (Cislunar Aerospace, Inc. 1997-2000) give 

estimates of first serve spin rates ranging between 162 and 332 rads· l
. This is the range of 

average values for 11 professional men, and therefore a mid-range value of 250 rads·1 was 

chosen as a typical value. Rusedski is 1.93 m tall, which using the ratio of 1.53 for impact 

height to standing height suggested by Elliott et al. (1986), gives an illitial starting height 

for the ball of2.95 m. 

The window of a legal serve is formed by the boundaries of the net (giving the lowest 

angle) and the service line (giving the highest angle possible). Using the centre net height 

of three feet, this gives y = 0.91 at x = 11.885 for the first condition, and y = 0 at 

x = 18.285 for the second (in metres) . 

The initial conditions of speed and height were used to find the two angles giving 

trajectories passing through these points. For the ball to land on the service line it must be 

hit at 8.8 degrees below horizontal. A shot with the same speed and spin just clearing the 

net would need to be hit at an angle of 7.7 degrees below the horizontal. The ball would 

land 4.64 m into the service box, which is 72% of the way along its length. The second of 

these shots can be considered an extreme case of the vertical component of velocity. It 
lands with a speed normal to the court of -9.84 ms· l . 
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This model also shows the value of spin. Even for a player of this above-average height, a 

flat serve would have to be hit incredibly accurately to reach 149 mph whilst still landing 

in the service box. In fact the serve landing on the service line has a height of 1.16 m when 

it passes the net. This means that the range of starting angles which will provide a legal 

serve form a "window" for the player to hit which is only 25 cm high. 

4.6 Summary 

There has not been a particularly large amount of work in the area of tennis ball 

aerodynamics, but recent research has provided good consistent measurements of the drag 

coefficient. A constant value of Co = 0.53 was found by Chadwick and Haake (2000) for 

non-spinning balls. There has been much less work with spinning balls, as this is much 

more experimentally difficult. Stepanek (1988) gave an empirical formula for CL as a 

function of the ball peripheral velocity. Chadwick (2003) found similar functions for both 

CD and CL, which give a value of CD = 0.54 when there is no spin. Goodwill et al. (2004) 

measured both CD and CL for different spin rates and obtained similar results, although 

they found the values depended on Reynolds number. 

Air resistance is often ignored when calculating the impact speed of a ball dropped under 

the influence of gravity. The square root of the ratio of the bound height to the drop height 

is commonly used to calculate a COR, but for the range of an approval drop test, this gives 

a COR value about 4% lower than if drag is applied. 

A trajectory model was used to illustrate the large effect which spin has on the flight of a 

ball. For the same speed and angle of a 70 mph shot, a moderate spin rate of 100 rads· 1 

affects the landing position by several metres (in either direction, if topspin or backspin is 

used). 

The model was also used to investigate the impact conditions for good length 

groundstrokes. With a constant incoming speed, the outgoing speed did not change 

significantly, but a range of spins from 100 rads· 1 of backspin to 300 rads· 1 of topspin 

produced an impact angle of between 12 and 20 degrees to the horizontal. Using these 

angles to improve the realism of previous calculations for the spins needed to cause the 

ball the roll provides interesting results. Even on fairly fast (i.e. low friction) surfaces, it is 

easily feasible for a professional player to hit a shot with enough spin to roll off the court. 

On slow surfaces such as clay, any shot with topspin will cause the ball to roll. 

The current record for the fastest serve recorded (149 mph) gives a good limit to the 

absolute limit of vertical velocity component likely to be experienced in normal play. This 

was calculated to be 9.8 ms·1 for flat serves (i.e. without spin). 
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5 Surface testing 

5.1 Introduction 

The game of tennis is unusual for the variety of surfaces on which it can be played. It is 

commonly known and accepted that the surface properties play an important part in the 

game, and affect the behaviour of both players and equipment, as well as the tactics needed 

for success. This is demonstrated by the fact that many professional players are well 

known for their ability on one particular surface, and this defines their style of play. 

Indeed, the differences can be so extreme that there will be a huge difference between 

results in those times of the year traditionally associated with, for example, grass (or other 

fast surfaces) and clay court tournaments. 

The challenge therefore is to identify and measure in an objective way those properties 

which can seem so self-evident to the spectator or player. It was also important to 

distinguish between the properties which affect the player and those which affect the ball, 

as their relative importance may well change dramatically. 

5.2 Summary of existing ITF performance characteristics 

The three performance characteristics which were identified by the ITF (1997) as being 

key factors in a tennis court surfaces are listed below with their quoted definitions: 

• Surface Pace - The "speed" of the court, which includes both speed and angle of 
the ball rebounding off the surface . 

• Friction - As determined by measuring both Slip resistance and Traction. 

• Energy Absorption - The ability of a surface to absorb energy (or shock). 

The first of these, surface pace, seems to sum up the intuitive perception of a court. As a 

first definition, players are most likely to describe a court as "fast" (e.g. grass) or "slow" 

(e.g. clay). The ITF came up with a mathematical formula for pace called Surface Pace 

Rating, based on the velocity changes which happen when a standard ball bounces on the 

court, which will be discussed later in the chapter. It has also been suggested that the 

change in horizontal velocity - effectively how soon the ball reaches the racket - is how a 

player measures the pace of a surface. The player is most likely to intuitively measure pace 

by the time he or she has to play a shot, but it is found that they also associate the pace 

with the angle at which the ball reaches them - for example, a "fast, skiddy, low-bouncing" 

surface as opposed to a "slow, high-bouncing" one. Some of this is due to the friction - a 

court with a high coefficient of friction will reduce the horizontal velocity much more than 

a low friction surface, but may produce the same vertical rebound velocity, increasing the 

angle of the trajectory. It must also be recognised however that the angle and height is 
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affected in other ways. For example, on a slow surface such as clay, players will hit the 

ball differently - slower and with more spin. Brody (1988) suggests that the difference 

between fast and slow surfaces should in theory only make 0.05 seconds difference to the 

time the receiver has, but that this is not representative of reality. In practise, the whole 

game is slowed down because if the ball reaches a player at a slower speed, it also leaves 

his racket at a slower speed for the same racket swing speed. 

The friction measurements defined above as performance characteristics must be used 

carefully when the impact of ball on surface is considered, as the two methods are both 

aimed at measuring the friction between a shoe and the court. Slip resistance uses a 

swinging pendulum to slide a rubber foot along a court surface specimen for a certain 

distance, and finds the energy lost to friction by measuring the maximum height obtained 

after contact. The traction test measures the minimum force to cause rotational movement 

of a weighted circular disc, by gradually increasing the applied torque. This measurement 

is somewhat user-dependent. 

Energy (or shock) absorption is primarily concerned with the effect of the surface on the 

biomechanics of the player. Although tennis courts need to be relatively "hard" in order to 

produce a bounce of a ball which enables the game to be played successfully, the shock 

transmitted to the player is particularly important in terms of comfort and injuries 

produced. The difference in forces produced by a running human and a bouncing tennis 

ball suggest that test methods aimed at measuring impact properties relevant to the player 

may not be useful when considering the ball. 

Five other characteristics are also listed as important measurements: vertical ball bounce, 

permeability, slope, evenness and consistency. Of these five, the only one relevant to the 

problem of modelling ball impacts is the vertical ball bounce. It is however of potentially 

crucial importance, and will be discussed later in this chapter. 

5.3 Surface Pace Rating 

S.3.a Test method 

At the time of writing, the concept of surface pace was of great interest in the world of 

tennis. A proposal was under development to bring into place a court surface classification 

scheme (lTF, 2000b). Under this scheme accredited laboratories would test a court and 

measure its pace, with the separate test equipment compared regularly. The test 

specification details how the surface sample should be fixed, and also the properties of the 

balls to be used. For the vast majority of tests, including surface classification, three 

special test balls should be used which satisfy a more stringent set of criteria than listed 

under the Rules of Tennis. These are reproduced from ITF (1997) and detailed in Table 
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5.1. If for some reason other balls (e.g. as played in a tournament) are to be used, four balls 

are used and the three most consistent values taken. 

Table 5.1 Test ball specifications. 

Nominal value 
Range for approval Range for test 

tests balls 

Ball mass 57.6 g ± 0.9 g ± 0.3 g 

Ball diameter 67.5 nun ± 1.6 nun ± 0.40 rnm 

Forward 6.48 ± 0.89 rnm ± 0.32 mm 
deformation 

100 inch rebound 1.41 m ± 0.064 m ± 0.010 m 
height 

Figure 5.1 The equipment used to measure surface pace rating . 

The tandard piece of equipment used is hown in Figure 5.1. A ball i fired in from the 

left at 30 ± 2 ms-
I
, at 16 ± 2° to the horizontal. Although the method of projection is not 

pecified in the te t, the most common way of projecting the ball i using a com pres d air 

cannon. This gives good positional accuracy and meets the requirement f imparting Ie 

than three revolutions per second of spin - in fact the pin is extremely clo e to z roo The 

ball pa se through the smaller unit, impacts on the surface and then pa se through the 

econd unit. ach of the two sections contains an array of infra-red beams at both the entry 
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and exit. These beams are spaced closely enough together so that the timings of their being 

broken can be used together with the assumption of a spherical target object to give 

positional data with very good accuracy. The manufacturers of the system claim that the 

Sestee test apparatus measures the velocities to an accuracy of ± 0.01 m/s and the angle 

within ± 0.10 (Wassing, 2004). Any speed measurements assume that the ball is travelling 

in a plane perpendicular to the array of infra-red beams. In practise the ball trajectory must 

be very close to this in order to pass through the four openings in the apparatus. 

The three categories of SPR are defined as listed below. These categories overlap, allowing 

some leeway in the description of a court. Repeatability of the measurement is claimed to 

be ± 1. 

• Category 1 (slow) 

• Category 2 (medium/medium fast) 

• Category 3 (fast) 

0-35 

30 -45 

40 + 

One of the aims of the categorisation was to enable the "targeting" of balls to surfaces -

initially on a professional basis only. A stiffer, faster-bouncing ball is intended for use on 

courts classified as slow and a larger, aerodynamically slower ball is intended for use on 

courts described as fast. The traditional ball will be used on medium/medium fast surfaces. 

It should be stressed that the law change allowing the two new ball types was on a two year 

experimental basis. It was not originally aimed at recreation players, as these do not need 

to concern themselves as to whether their game corresponds to official regulations. 

However, the larger ball would also be a useful tool to those learning the sport, as it gives 

more time to play shots due to the slower speed through the air. 

5.3.b Surface Pace results 

In order to evaluate the various testing methods described in this chapter, a variety of 

surfaces were used to compare friction readings from each apparatus in a series of 

laboratory tests. The method used was to attempt to correlate each one with the Surface 

Pace Rating, which is an established test and widely used. The surfaces used ranged in 

Pace from 9 to 66 and included a variety of court surface samples as well as some 

extremes that would never be played on (for example a glazed ceramic tile was used to try 

and create an extremely fast surface). A good proportion of the surfaces were acrylic 

based, and this is reflected in the many values of pace between 30 and 50 - although the 

typical range for acrylic surfaces has been quoted as 30-40 (lTF, 1997). This predominance 

of medium speed surfaces can be seen in Figure 5.2 which shows the Pace values. The 

surface types are detailed in Table 5.2 below together with the Pace values. 
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The rigid body model developed in Chapter 3 suggested that the lowest possible Surface 

Pace is around 20, but three values are seen lower than this. One reason for this seeming 

di crepancy comes from surface deformation. The three surfaces with extremely low SPR 

al ue were all relatively soft rubber. The ball impact is likely to cause significant 

deformation, and the ball will effectively roll up the far side of a dip, increasing the 

rebound angle and thus decreasing the SPR. A similar effect happens on a clay court, 

where the ball ploughs" the material in front of it and leaves a permanent deformation. 
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Figure 5.2 Surface Pace Ratings for a range of surface samples used to evaluate various 
friction tests , ranging from 9 to 65. 
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Table 5.2 Surface Pace Ratings for a range of surface samples used to evaluate various 
friction tests, together with the generic surface type in each case. 

Refno. Surface reference I 
SPR 

1 Rubber shockpad 9.1 

2 Reformed rubber 12.4 

3 Textured rubber 17.5 
--

4 Acrylic 35.1 
~" "--~ 

5 Acrylic 36.3 

6 Acrylic 37.5 

7 Acrylic 37.7 

8 Concrete sample I 40.2 

9 Acrylic 40.3 

10 Acrylic 43.3 

11 Concrete sample II 44.0 

12 Acrylic 45.7 

13 Rubber surface 47.9 

14 Acrylic 48.6 

15 Rubber surface 49.1 

16 Textile carpet tile 51.4 

17 Rubber surface 52.1 

18 Rubber surface 53.3 

19 Acrylic 56.0 

20 Thin plastic sheet 62.5 
21 Polished wood 65.0 
22 Glazed ceramic tile 65.5 

5.4 Surface friction testing 

It has already been suggested that friction is an alternative measure of pace, and initial 

oblique testing indicated that it is of crucial importance. A number of different 

experimental methods for determining friction are discussed below. It is worth noting that 

all of these tests take place at a much lower speed than is experienced during an impact -

typically in the order of one or two metres per second compared to a dynamic impact 

which could produce horizontal velocity components of twenty or thirty metres per second. 
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5.4. a Friction sled 

Figure 5.3 A sled used to measure friction between tennis ball cloth and a surface. 

The simplest way to measure the friction between a ball and a court surface is to drag a 

fric tion sled - an example type used in a surface testing project by Hamilton (2000) is 

hown in Figure 5.3. A small sled is pulled horizontally by a wire which is taken round 

several pulleys so that masses can be hung to provide tension. The bottom of the sled can 

be covered with tennis ball cloth as in this case, or fastened to intact balls - for example 

u ed with a simple sled with a sprung force measurement by Brody (1984). The force 

applied to the sled is gradually increased until movement is seen. This can be done by 

using a linear force measurement, or by gradually increasing a suspended mass. Dividing 

the measured pulling force by the weight on the sled gives the static friction coefficient. 

It is po sible with this apparatus to attempt to measure the dynamic friction . Before the 

force is enough to overcome static friction , if the sled is given a mall initial movement it 

will lide slowly but continually. This is however a rather user-dependent method and 

gives no idea of how the friction varies with speed, 0 i not a practical method to gain an 

accurate mea ure of friction. 

5.4.b Pendulum tests 

Slip resistance 

An alternative way to measure friction is by using a swinging p ndulum, which are 

a ailable in a variety of forms . A foot i r leased and allowed to rotate und r gravity. 

nergy is dissipated when the foot contacts the surface, and the energy los i u ually 

measured by finding the angle the arm swing to post-impact. There mu t be me 

c mpiiance in the foot to allow contact to occur over a long enough liding length t give 

meaningful results, but this makes it difficult to try and analyse the force equation and 

ex tract a proper coefficient of friction. 
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Figure 5.4 The TRRL pendulum used to measure friction . 

The lTF lip Resistance test uses a pendulum shown in Figure 5.4, which wa originally 

d igned for testing frictional properties of road surfaces by the Road Re earch 

Laboratory, part of the UK Government (it is also a tandard test method of the UK Health 

& afety Executive for measuring floor slipperiness). With this device, the height of the 

fo t i adjusted to gjve a specific required sliding length of 125 mm by ensuring that it 

contact the ground at either end of a calibration plate. hi te t i primarily aimed at 

measuring the linear friction between a player's hoe and the court and 0 u e a rubber 

ample. here are therefore doubts a to how relevant the re ults would be to the impact of 

tenni ball. 
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Haines pendulum 

Figure 5.5 The Haines pendulum for measuring friction, which uses a clamped ball. 

An obviou improvement of the previous pendulum is to use either a ample of ball cloth 

or a ball it elf. Haines (2002) developed a pendulum (Figure 5.5) commi ioned by th 

IT , which contains a captive ball and was designed to be an inexpensive alternativ to the 

r ther expensive urface pace rating equipment. The mounting for the ball i prung in 

rder to try to reproduce imilar compressional force to those seen when a ball land on a 

c urt - otherwi e there would be no way to allow a rea onable lide length with ut cau ing 

large ball deformation and high forces. Before use the clearance i adju ted 0 that th 

maximum c mpre ion produce a reali tic level £ r n rmal fi rce. The equipment a id 

e i e cloth wear by allowing the ball to be rotat d or replaced fairly ea ily. 

Th p ndulum i calibrated by allowing it to swing freely without a ball pre ent. he angl 

t which it move a captive pointer gives a measure of th energy 10 in the y tern. Then 

wh n a ball i u ed the relative angle can be used to calculate th energy I 

75 



Chapter 5 Surface testing 

5.4.c Rotating friction 

• 

Figure 5.6 Apparatus used to measure rotational friction. 

igure 5.6 how the equipment specified by the ITF to mea ure the rotational frictional 

prop rties of a surface. Again this test is concerned with the behaviour of players and so a 

rubber layer is mounted on the te t surface. A torque wrench is u ed to gradually increase 

the applied load on a weighted plate until rotational movement occurs. U ing this apparatus 

I xtremely user-dependent and repeatability is poor. Because of the rubber test urface, 

thi te t was thought to have no advantage over a linear te t when con idering the 

interaction of tennis balls and a court, and so it wa not con idered any further. 

5.4.d Tortus 

Figure 5.7 The Tortus friction tester. 

igure 5.7 how the T rtus automated fricti n te ter. It i primarily de igned for 

m a uring the friction of floor for afety purpo e (Mastrad Ltd 2004), and as uch 

tt mpt to replicate the interaction between a hoe and a urface. A con tant vertical I ad 
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is applied and the machine moves along via a motor, measuring the horizontal frictional 

force . An average frictional value is given at the end of the motion. 

Figure 5.8 The underside of a Tortus, showing the rubber slider. 

The main drawback of this machine as it is sold is that a rubber tip is fitted. This can be 

seen in Figure 5.8 - the photograph shows the underneath of the machine, with the foot and 

rubber tip sticking out. A small piece of cloth off a tennis ball was glued onto an alternate 

foot to see what effect this had, and a number of surfaces tested with both materials. 
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Figure 5.9 Tortus frictional values for both rubber and tennis ball cloth sliders. 

Figure 5.9 shows the friction values for both slider material types. On three of the surfaces 

tested, the two materials gave similar coefficients of friction , but on the others there were 

large differences between 30% and 60%. Generally the rubber and polymeric surfaces gave 

the largest discrepancy, suggesting some sort of material interaction with the rubber slider. 
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5.4.e Surface testing results 

The surface samples used for the Surface Pace tests in section 5.3 were also used in an 

evaluation of the various friction tests described above. The surfaces came in a variety of 

forms, as not all were designed for playing tennis on. Some of the test methods need larger 

samples than others, and so it was not possible to perform all tests on all samples. The real 

tennis surfaces were however all large enough for each test. 
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Figure 5.10 Correlations between various test methods and Surface Pace: (a) rotational 
traction, (b) Slip resistance pendulum, (c) Tortus with rubber slider, (d) Tortus with tennis ball 
cloth slider and (e) Haines pendulum. (f) shows the Haines friction against SPR friction. The 
surface marked with an arrow in (c) and (d) is a textile carpet. 

The first graph in Figure 5.10 shows the rotational traction device. It is immediately 

obvious that if there is any slight trend, it is in the opposite direction to that which might be 

expected - as surface pace goes up, friction goes down and therefore the torque needed to 
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tum the disc should reduce also. The slip resistance pendulum also produces no useful 

results - it is impossible to predict a meaningful trend. 

The two tests which show more useful friction measurements are the Tortus and Haines 

pendulum. Both exhibit definite trends of decreasing friction with increasing surface pace. 

Replacing the rubber slider on the Tortus with a piece tennis ball cloth has a definite 

improvement on the results, which is reflected in the R2 values of 0.22 and 0.63 with the 

rubber and cloth respectively. The largest error can be attributed to a physical cause. The 

data points marked with an arrow on both graphs is for a carpet surface. It seems likely that 

the relatively small tip digs into the carpet, producing a tractional component to the 

reaction force. 

The Haines pendulum shows an even better linear correlation (with R2 = 0.89). The value 

produced does not relate directly to the coefficient of friction obtained by rearranging the 

SPR formula (Jl = 1- SPR), as can be seen in Figure 5.10 (t). The dashed line on the 
100 

figure represents a I: I relationship. This suggests that the theory used in obtaining friction 

from the Haines values is incorrect, which is not a particular concern as this test is 

primarily designed as a comparative value as a rough guide to the playing performance. It 

is for example popular with court manufacturers who want to check the speed of a newly 

installed surface. 

5.5 Surface stiffness testing 

The third of the ITF's "key" properties IS shock absorption. This is effectively a 

measurement of the surface stiffness. The higher the stiffness of the surface, the higher the 

shock, or force, transmitted. Of course, in practical terms a surface will not have a constant 

stiffness. This is particularly true of any surface which consists of one layer whose 

deflection reaches a significant proportion of the original thickness - the stiffness will 

increase dramatically as that layer is compressed. It is important to note that shock 

absorption as such is not a measure of energy return or efficiency, as a surface could be 

soft and therefore provide a softer reaction force, yet elastic enough to return a large 

amount of the stored energy. 

There are a number of existing techniques for measuring the properties of material 

samples. However, one of the aims of the project was to gain the ability to characterise and 

model existing courts. This meant that there would be many cases where laboratory-based 

testing of samples would not be possible. The most practical way to gain data about the 

stiffness of an installed surface is using impact testing. 
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S.S.a Berlin Athlete 

Figure 5.11 The Berlin Artificial Athlete, used to test shock absorption properties of a surface. 

The Berlin Artificial Athlete (shown in Figure 5.11) is an established and internationally 

accepted test method for shock absorption commonly used on athletic running tracks as 

well as a number of other sports surfaces. It is a biomechanical test which attempts to 

imulate the impact loading of a player running on a surface. It doe this by dropping a 20 

kg mass from a height of 55 mm onto a strong spring (stiffness 2000 kN/m). The spring 

transmits the load to the surface, where the peak force is measured by a force transducer. 

This peak force Fs is compared to the reference peak force seen dropping on a concrete 

ample Fe (which is used at the start of each test session as a calibration value) and 

expressed as a reduction percentage: 

Energy absorption (%) = 100 ( 1- Fs J 
Fe· 

[5.2] 

This test is of limited use when considering the interaction of tennis ball and urface 

ecau e of the size of the mass used. Neglecting re istance a rna allow d to drop from a 

height of 55 mm will achieve a speed of 1.04 ms-I
, providing an impact energy of 10.8 J. A 

typical tennis ball landing at 7 ms-
I 

will have an energy of only 1.4 J, an ord r of 

magnitude lower. The peak forces seen have an even larger di crepancy. A ball dropped 

fr m 100 inches onto a force plate provides a peak impact fore of around 250 N, wherea 

an acrylic surface with little or no cushioning will usually gen rate a force measur d by the 

erlin Athlete of at least 5000 N. Although it is possible to use the Berlin Athlete data t 

fmd the relative hardness of surfaces, it would be dangerou to draw too many conclu ions 
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about the stiffness given the differences. The test method seems to reduce the differences 

between surfaces which are quantitatively thought to be very dissimilar. 

m = 20 kg 

x 

kB = 2000 kN/m 

Figure 5.12 Two-spring model of the Berlin Artificial Athlete 

If the rather large assumption is made that the surface acts as a linear spring with constant 

stiffness, it is possible to make an estimation of this surface stiffness. Consider two springs 

in series with a rigid ground as shown in Figure 5.12. The upper spring represents the 

Artificial Athlete and has a stiffness of k8 = 2000 kN/m, while the lower spring represents 

the surface, of stiffness ks. The resultant stiffness of an equivalent spring kres is given by 

111 
-= +-
kre.\. 2xl06 k.\. 

[5 .3] 

For an impact of a 20 kg mass on an undamped spring of stiffness kres the equation of 

motion is given by mx + kx = O. This has a solution of the form x = a sin(bt) , where 

b = J k;s. The equations for velocity and displacement are x = ab cos(bt) and 

x = -ab 2 cos(bt) respectively. Using the incoming boundary condition that x = V
IIl 

when 

t = 0 leads to an expression for the maximum force Fmax: 

[5.4] 

The maximum force is returned directly from the Artificial Athlete. If [5.4] is rearranged to 

give kres then substituted into [5.3], the surface stiffness can be found if the drop height of 

55 mm is used to calculate an impact speed Yin. 

( 
2 J-' k = mV;n _ 1 

s F 2 2xl06 
max 

Peak forces and force reductions relative to a measured force on concrete of 6110 N were 

measured (averaged over two tests of five drops each) by Hamilton (2000) and are 

81 



Chapter 5 Surface testing 

reproduced in Table 5.3 below. Also shown is a constant surface stiffness calculated using 

the equation above. This is not necessarily representative of the stiffness "seen" by a 

bouncing tennis ball because of the linear assumption, but it does give an indication of the 

very high stiffnesses of many of these surfaces. Even the artificial grass surface, which was 

deeper pile than usually used on tennis courts, produced a peak force of over 5000 N, 

which is an order of magnitude higher than the forces generated by a ball impact. This 

indicates that the results from this test cannot be used with any confidence in predicting 

ball behaviour. 

Interesting data from this testing concerns the natural grass surfaces. The new grass area 

has a noticeably lower peak force than the area which had been played on and worn. This 

is thought to be mainly due to the compression of the ground by continual player impacts, 

as the mere presence of grass is unlikely to have such a softening effect. 

A further issue with this test is that it provides only a peak force, giving no measure of the 

efficiency of a surface - whether it will return the energy supplied. This is a crucial factor 

when looking at the bounce of a ball, unless of course the surface is so hard it cannot store 

any energy! 
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Table 5.3 Berlin Artificial Athlete results for a range of surfaces, shown as peak forces, 
percentage force reduction and calculated surface stiffness. 

Calculated surface 
Surface Peak force (N) Force Reduction (%) 

stiffness ks (kN/m) 

Artificial grass 4186 31.5 1362 

New grass 
4464 26.9 1708 

(natural) 

Shock pad 4922 19.4 2545 

Textile carpet 5035 17.6 2830 

Wood 5090 16.7 2986 

Worn grass 
5219 14.6 3398 

(natural) 
--

Sand-filled 
5561 9.0 5011 artificial grass 

----~--~- ---

Polymeric 5844 4.4 7492 

Acrylic 6030 1.3 10537 

The values given here are around twice as high as those given by McMahon and Greene 

(1979). They quote values of 4376 kN/m for concrete and asphalt and 2918 for packed 

cinders, and although there some discrepancy with the results presented here, both methods 

give stiffnesses of the same order of magnitude. 

5.5.b Brody baseball bat test 

An example of more basic impact testing was performed by Brody (1992), who described 

two simple tests to determine the surface hardness with a view to its cushioning. Both 

involved the acceleration of a dropped object. The first did so by measuring the 

acceleration or some function of acceleration of a body dropped from a fixed height. The 

second involved finding the maximum height from which a body can be dropped so as not 

to exceed a nominal fixed value of deceleration (for example 100g). Brody did this by 

attaching two inexpensive resettable accelerometers to a baseball bat and increased the 

drop height until the accelerometers indicated the nominal deceleration value had been 
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reached (in this case 138g). The heights ranged from 0.08 m on concrete, through severa] 

readings around 0.2 m for tennis court surfaces to 0.8 m for natural turf. 

S.S.c Clegg Impact tester 

Figure 5.13 The Clegg Soil Impact Tester, showing the 0.5 kg mass and handset as well as 
the guide tube 

The legg Soil Impact Tester is a commercially available instrument which con ist of an 

accelerometer firmly attached to a 0.5 kg mass (a 4.5 kg mass is also available and is 

normally used for testing road surfaces). This mass is dropped down a guide tube which 

en ure an impact at a constant speed and provides a consistent norma] impact with the 

ground. Under norma] operation a handset is used which provides the peak value of the 

acceleration (measured in arbitrary units called Impact Values) produced by the impact on 

the ground . Both the mass and handset can be seen in Figure 5.13. The peak acceleration i 

generally u ed as a comparative value for the hardne of the ground (and a such i a 

imilar method to Brody's baseball bat test described above) but by it elf i of limit d 

alue to the modelling of impacts. 

S.S.d Adapting the Clegg - data acquisition hardware 

Th legg can be u ed to provide much more informati n by the addition of data ampling 

equipment. The drop hammer consi t imply of an acc lerometer attached t the rna 

and the ignal can be used to capture the whole acceleration-tim trac rath r th n u ing 

the hand et to give just the maximum acceleration. 

he analogue to digital converter used was the AD -100 manufactur d by Pic 

T chnology. It allow sampling of two channels at 12-bit re olution with a variabl input 

range between ±50 mV and ±20 V. It connect to a parall I printer p rt thu enabling u 

with a laptop computer for fi Id te ting. Maximum ampling rate i about 100 kHz. 
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Because the ADC-lOO does not have a suitably high input impedance (quoted as 1 MQ), it 

was necessary to use a charge amplifier to preserve the signal. A commercial charge 

amplifier was considered, but because the accelerometer signal was already high enough 

and it was not necessary to use the amplifier with different accelerometers, a simple charge 

amplifier was constructed. This was configured to give a unity gain, effectively passing 

through the charge generated by the accelerometer to preserve the voltage, whilst having 

an input impedance in the order of 1012 ohms. 

5.5.e Adapting the Clegg - data acquisition software 

Rather than use the oscilloscope style software provided with the ADC-IOO which is 

functional but rather cumbersome, a specific application was developed in Microsoft 

Visual Basic. The aim was to speed up the experimental process and allow as many 

samples as possible to be gathered in a short space of time. This is important as it is often 

necessary to test different areas of a tennis court, and it is vital to make a number of 

measurements in each position. Consideration was also given to the fact that at some point 

in the future testing might be required after or even during games, so the procedure should 

be as quick and non-intrusive as possible. At the time of writing, the equipment had been 

used on several different projects, including testing on a number of professional cricket 

pitches immediately after the end of first-class matches. Here speed is essential, as the 

groundsman wishes to start work on the pitch as soon as possible. This testing was used as 

an example of what might be required on tennis courts in the future. 
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Figure 5.14 Flowchart of software requirements for sampling the signal from the Clegg Soil 
Impact Tester 

A flowchart is shown in Figure 5.14 of the main software requirements. In order to start the 

sample, a manual trigger was needed. Because of the interface driver the program was 

based on, the sampling was limited to a data set of 32768 points. At a sampling frequency 

of 30 kHz this means a sample length of just over one second, or one and a half seconds for 

a frequency of 20 kHz. After testing, this was found to be more than long enough to 

capture the trace. After completing the data acquisition, the voltage trace is displayed on 

screen, allowing the operator to visually check the quality of the data. If no obvious 

problems can be seen, the voltage data is converted to an acceleration. This is done by 

knowing the sensitivity (Le. calibration) of the accelerometer, which was provided by the 

manufacturer. The acceleration data is then integrated to give the velocity over time, 

knowing the impact speed, and integrated again to find displacement. Any or all of this 

data is then exported either to a text file on the computer, or directly into a spreadsheet. 
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Clegg impact tester 

~ Battery powered charge amplifier 

\ Portabl. """p"", 

Figure 5.15 Schematic form of complete apparatus used to sample the accelerometer signal. 

5.5.' Calibration 

Based on the capacitance of the accelerometer as provided by the manufacturer, the 

calibration factor from signal in mV to acceleration in gravities was 0.047. As this would 

be crucial in the signal processing (any errors would magnify as the data was integrated 

into velocity and displacement), it was verified experimentally. 

The guide tube was raised on wooden blocks as shown in Figure 5.16 below, so that the 

hammer could be seen as it landed on the surface. High speed video was used to film the 

impact at 600 frames per second. The positions of markers drawn on the impact hammer 

were manually digitised to find displacement co-ordinates, and their rate of change used to 

give velocity values. These could then be compared to the captured and processed 

acceleration data to verify the calibration. 

Examples of the displacement and velocity from a height of 0.3 m are shown in Figure 

5.17 (a) and (b) below respectively. Also on the graphs are the same variables found using 

the sampled accelerometer signal for the same impact. It can be seen that the agreement is 

excellent, and therefore the sampled accelerometer signal is reliable. This procedure was 

repeated for heights of 0.4 and 0.5 m to ensure the calibration was consistent. 
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Figure 5.16 Filming the impact of the Clegg drop hammer to find the incoming velocity. The 
guide tube was raised on wooden blocks to allow the impact to be filmed. 
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Figure 5.17 (a-c) (a) Force-time, (b) displacement-time , and (c) velocity-time for a drop of 
the Clegg hammer. Data from both high speed video footage (discrete data points) and from 
accelerometer signals (lines) is plotted. 

An ther important part of the data anaJysis procedur i knowing the inc ming vel city. 

Any err r in thi value will not only offset the entire velocity-time profile, it will al 
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ignificantly affect the displacement data. Approximating the impact speed Vm from the 

drop height h is possible (although it is impossible to predict the effects of air resistance), 

but it was decided to check the speeds experimentally from various drop heights. The 

guide tube was again raised on wooden blocks as shown in Figure 5.16, and high peed 

ideo u ed to film five drops at each of three heights. The reference positions for dropping 

th hammer conventionally from 0.3 m, 0.4 m and 0.5 m were used, but the blocks added 

9 mm to the heights (larger blocks were used than for the impact filmed and shown in 

Figure 5.17 which had an impact speed of 2.3 ms-I
). The resulting measured speed are 

h wn in Table 5.4. At all heights the standard deviation is under 0.1 ms-I
. 

Table 5.4 Measured impact speeds for the Clegg impact hammer dropped at various heights 
(values in ms·' ) 

I 0.369 m 0.469 m 0.569m 

Drop I 2.56 2.98 3.25 

Drop 2 2.54 2.90 3.13 

Drop 3 2.43 2.93 3.08 

Drop 4 2.57 2.92 3.27 

Drop 5 2.71 2.96 3.26 

Average V in 2.56 2.94 3.20 
-

Standard deviation 0.09 0.03 0.08 
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Figure 5.18 (a-b) The effect of a one standard deviation error in the velocity has on the 
integrated (a) ,velocity and (b) displacement curves for a Clegg drop at 0.3 m (nominal impact 
speed 2.3 ms· ). 

igure 5.18 shows the difference by adding and ubtracting 0.09 m from the impact 

el city for the drop in Figure 5.17. The change in p ed simply a t a an ffset t th 

vel city curve but as the data i integrated through the impact the "error' make a larger 
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and larger difference to the displacement graph. This one standard deviation error would 

probably not be acceptable if accurate displacement values were needed (for example for a 

surface stiffness measurement for a model). The most likely cause for the differences in 

impact speed is a combination of error in the analysis stage (both human error and the 

fairly small number of data points available) and the clearance between the mass and the 

guide tube. This clearance must be large enough to stop air resistance being too great as the 

mass gets close to the ground, but this allows irregularities in its motion. The mass is 

released by holding the data cable and lining up various markers, which obviously will not 

give exactly the same release position and angle every time. 

5.5.g Clegg test results 
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Figure 5.19 (a-d) Data from a Clegg impact on a textile carpet surface. Force, velocity and 
displacement against time, with force against displacement. 

An example set of results is shown in Figure 5.19. This drop was from a height of 0.1 m on 

a textile carpet surface. The peak force is around 500 N, and the impact lasts around 3.75 

ms. The incoming velocity is 1.2 ms- I
, and the outgoing velocity 0.6 ms- J• A maximum 

surface deformation of 1.75 mm can be seen. The deformation stays below zero after the 

end of the impact, which means that the bottom of the hammer is still below the original 
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ground level. This could mean that either the surface undergoes permanent deformation, or 

more likely simply recovers slower than the hammer is rebounding. 

The extremely small deflection and peak force of 500 N seen here (bearing in mind the 

very low drop height of just ten centimetres) again suggests that stiffnesses measured by 

this test method will be so high as to be able to be considered as rigid. 
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Figure 5.20 A comparison of force-deflection curves found by dropping the Clegg hammer 
from varying heights on a textile carpet. 

Figure 5.20 shows force-deflection curves for drops on the same textile carpet surface from 

a range of heights from 0.1 to 0.25 m. It is an interesting result that the four curves follow 

the same loading path. This suggests that the stiffness (the gradient of the force-deflection 

curve) is a function of deflection, and does not directly change with impact speed - itself a 

function of drop height. A larger impact speed will of course lead to a larger deflection and 

increase the average stiffness throughout the impact, effectively progressing further up the 

loading curve. 
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Figure 5.21 Force-deflection curves for drops from 0.1 m on rubber and artificial grass, 
surfaces with low and high energy losses. 
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Two obviously different surfaces are compared in Figure 5.21. This shows drops from 

heights of 0.1 m on rubber and artificial grass. Neither surface is representative of tennis 

courts but both provide reasonable deflection. The rubber (considerably softer than any 

shockpad used under a court) was a 25 mm thick sample and provided quite an elastic 

impact, as seen by the relatively small enclosed area in the force-deflection curve. A 

contrasting example is the artificial grass sample also shown. There is almost no force 

provided at all after the point of maximum deflection when the hammer returns upwards. 

One problem with the Clegg test is that it is not designed for particularly hard surfaces, and 

on any realistic surface it must be dropped from a low height to avoid clipping the signal. 

There is a version available designed for harder surfaces with a 4.5 kg mass, but this will 

of course produce forces and deformations even further away from those produced by a 

ball impact. 

5.6 Vertical ball bounce 

The vertical bounce is another important test. It is widely used to ensure that the properties 

of a ball fall within a specified range, but can also be used to find the bounce properties of 

a court surface. Although in many situations the coefficient of restitution is the variable of 

interest, in practical terms it is usually easier to measure the rebound height a ball bounces 

to. This can be done using a standard video camera, whereas finding ball speeds requires 

high speed cameras (with the time consuming data processing this involves) or 

alternatively some sort of timing gates, which are expensive. Another method suggested is 

measuring the time between the first and second bounces, which can be achieved with a 

microphone (Brody, 1990). 

Hamilton (2000) used a set of test balls to test the bounce properties of various surfaces. 

The bounce heights were measured using a video camera, with care taken to eliminate 

parallax errors. The results are shown in Table 5.5 as Relative Percentage Rebound values, 

expressed as a comparison to the measured heights on the concrete surface. COR values 

are also given, taking into account the effect of drag on the ball velocities before and after 

impact. 

All the surfaces tested which might realistically be used as a tennis playing surface have 

RPR values within 1 % of concrete. In each case, COR values were within one standard 

deviation of that for concrete, showing they could not be distinguished. 
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Table 5.5 Relative Percentage Rebound and COR values for a variety of surfaces 
(reproduced from Hamilton, 2000). 

I Surface MeanRPR (%) Mean COR 

Artificial grass (no sand) 71.3 0.651 

Textile carpet 90.9 0.736 

Carpet tile 96.6 0.758 

Ceramic tile 97.1 0.760 

I Concrete 100 0.772 

Polymeric 100.3 0.773 

Sand-filled artificial grass 100.7 0.775 

Acrylic 100.7 0.775 

Shock pad 102.2 0.780 

Wood 103.3 0.784 

5.7 Discussion 

There are a number of established test methods which are used within tennis, and some of 

these are more relevant than others to this project. Many of them are more suited to player 

comfort and safety than ball bounce performance. All the data presented which measures 

surface stiffness properties suggests that even the most cushioned surface amongst those 

designed for playing tennis on is at least an order of magnitude stiffer than the ball, as they 

are designed to deform and give cushioning under the weight of a player. Further evidence 

for this is given by the ball bounce tests, where there is no significant difference between 

any of the tennis surfaces and the bounce on concrete (and indeed the very large slab of 

marble used by the ITF as a "rigid surface"). 

One consideration which should be noted is the effect of environmental conditions. The 

majority of the tests in this chapter were conducted in a controlled laboratory, where 

temperature and humidity were fixed. It is possible that both of these factors will have 

some influence on ball impact behaviour. Temperature is unlikely to affect the surface 

significantly, but will have more of an effect on the ball by altering the rubber material 

properties. Changing humidity may change the interaction of ball and surface by altering 

the coefficient of friction (since nylon can absorb significant quantities of water). 
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5.8 Summary 

Work in previous chapters has identified the most important features of the bounce of a 

ball to be the coefficient of friction between the surface and the ball, and the coefficient of 

restitution (which depends on the properties of both the ball and the surface). The 

remaining surface properties are concerned more with either the interaction of the player 

and the surface or the constructional nature of the court. 

There are a number of ways to measure the friction. Statically a weighted sled is quick and 

easy to use. The dynamic friction is harder to measure. Currently used tests utilising a 

pendulum or rotating disk concentrate on the friction between the ground and a test 

sample, usually rubber. This can of course be replaced by tennis ball cloth but this is not 

ideal because of effects of wear and cloth compression. A better method is to use a captive 

ball as in the Haines pendulum. Here the ball can quickly be replaced, or rotated to use an 

unworn part of the nap. 

Coefficient of restitution depends on the ratio of energy returned to energy stored. For the 

speeds encountered, the kinetic energy of a ball is insufficient to generate enough 

deflection to store much energy in the surface. This suggests that for a tennis ball-surface 

impact, the surface is so much stiffer than the ball that it can be considered as rigid; both 

the Berlin Artificial Athlete and Clegg Impact Tester suggested the surface was at least one 

order of magnitude stiffer than the ball. This is born out by the rebound drop tests on 

various surfaces, where the tennis surfaces all had a bound height within 1 % of the 

reference concrete value. 
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6 Quasi-static ball testing 

6.1 Introduction 

The overall aim of this study is to model the interaction of a tennis ball and a court surface. 

The previous chapter showed that for the vast majority of surfaces, the relative stiffnesses 

of ball and court mean that the court can be considered to be a rigid surface, contributing 

only a coefficient of friction. It is therefore important to get good measures of the stiffness 

and damping properties of the ball. 

A feature of the modelling approach used was the way the ball properties were measured, 

and it is important to differentiate between material and structural properties. When using 

an approach such as Finite Element Analysis, properties must be defined for all the 

materials involved, and the problem definition converts these into a structure. An analytical 

model takes a more macroscopic view, and defines the stiffness and other properties of the 

structure itself. More simplistically, a whole tennis ball is tested rather than the component 

parts. 

The aim of this chapter is to determine how the ball properties can be measured using 

quasi-static compression tests, so that these properties can be used in future chapters to 

develop a model of how the ball interacts with the court surface. Balls were measured at 

different compression speeds, to see how strain rate affected stiffness, and different types 

of balls tested to see the effect of construction. Holes were drilled in the balls to release the 

internal pressure, and the tests repeated to see the contribution of structural and pressure 

forces. 

6.2 The effect of strain rate on ball compression 

The most important property of the ball structure is the stiffness. Since the mam 

component of a tennis ball is rubber, it would be reasonable to expect the stiffness to vary 

with both deformation and strain rate (i.e. impact speed). An investigation was therefore 

carried out to see how strain rate affected stiffness. 

The ITF perform deformation tests as part of their ball approval process. In these tests, a 

ball is compressed on each of three mutually perpendicular axes in tum. The test (shown as 

a schematic in Figure 6.1) involves applying a load of 80 N, and holding this load for five 

seconds before reading the deflection (known as the "forward deformation"). The ball is 

then compressed to a deflection of an inch (25.4 mm), before being unloaded. A second 

deflection value is taken at a load of 80 N on the unloading cycle (known as the "return 

deformation") but before this reading the load is held for ten seconds. These time delays 

are included in an attempt to remove any strain-rate dependant properties, and give as close 
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as possible to a truly static stiffness measurement. There is also a requirement for both the 

forward and return deformations to be within 0.030 inches of each other across the three 

perpendicular axes, to ensure the ball is sufficiently homogeneous. 

Force (N) 

forward 
deformation 

return 
deformation 

Deformation (mm) 

25.4 

Figure 6.1 A schematic of the ITF compression test, required as part of the ball approval 
process. 

In order to assess the visco-elastic effects, an Instron 5500 testing machine was used to 

compress a standard pressurised tennis ball to a maximum deflection of just over an inch, 

at various strain rates from 10 to 1000 mm/minute. This range included 200 mm/min, the 

rate used by the ITF for their deformation tests. 
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Figure 6.2 Force versus deflection for a tennis ball compressed at various strain rates from 10 
to 1000 mm/min. Only the loading part of each curve is shown. . 

Figure 6.2 shows the force-deflection curves for the different strain rates. It can clearly be 

seen that for all rates above 10 mm/min - which is an extremely slow compression, taking 

several minutes to complete the test - the force (and thus the stiffness) is exactly the same 

at all deflections; so much so that it is impossible to separate and label the individual traces 

on the graph. The fastest rate of 1000 mm/min is equivalent to 16.7 mm/s and so is 

obviously far below that of a dynamic impact, but the fact that the stiffness barely changes 

over two orders of magnitude is encouraging for the use of quasi-static data in an impact. It 

is worth noting that a large deformation rate does not necessarily mean a large strain rate, 

since the speeds quoted are for the ball structure rather than a simple material sample. 

6.3 The effect of ball construction and pressure 

Knowing that strain rate was not important for the range available to the test machine, a 

rate of 200 mm/min was chosen to test several ball types. Pressurised and pressureless 

balls were compressed, and for the pressurised balls, both new and used balls were tested 

to see the effect of a few impacts on static compression. The new balls were given a full 

pre-compression cycle (three compressions to an inch on each of three perpendicular axes), 

and the used balls had been used for a set of oblique impact tests (described later in 

Chapter 9). These impact tests were recent enough that the pressure in the balls would not 

have dropped significantly from when the can was first opened, but would not have 

provided the same number of impacts as a full match. Figure 6.3 shows the new and old 

balls, and it is possible to see worn areas on the older ball, where the cloth has been 
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disturbed and the inked markings affected. All the balls had passed the ITF approval tests 

(the new balls the same day as the compression testing, and the used balls before their 

impact tests), ensuring they were representative samples. 

Figure 6.3 Photograph showing a comparison of new and used balls, as used in the 
compression tests. 

Figure 6.4 Photograph showing the hole drilled in a tennis ball to test structural stiffness 
without internal pressure. 

A reasonably large hole (about 10 mrn) was then drilled in all the balls as shown in Figure 

6.4, and the compression tests repeated. Ashcroft (2003) used a small tube to keep the hole 

open during compression (to ensure the ball did not become airtight and artificially 

increase stiffness due to pressure), but careful examination of the ball during compression 

showed that the hole remained open. This hole meant that only one compression axis could 

be used. 
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Figure 6.5 Force-deformation compression data for (a) new and (b) used pressurised balls. 
Three balls were tested in each case. 

Figure 6.5 shows a comparison of the force-deformation data for the new and used 

pressurised balls. In each case three balls are shown on the graph, and it is clear there is no 

difference between the new and used balls. This data should not be used to infer too much 

about the effect of real gameplay on ball properties, as the typical lifespan of a ball in a 

professional match is likely to be of the order of 45 shots (Capel-Davies and Miller, 2003). 

However it is useful to have evidence that balls can be tested for stiffness after being used 

for a series of impact tests, without worrying about the effect of the impacts on the ball 

properties. 
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Figure 6.6 Comparison of force-deformation curves for (new) pressurised and pressureless 
balls; three of each type were tested. 

Figure 6.6 shows deformation curves for pressurised and pressureless balls (new balls in 

each case). It can be seen that for most of the loading phase, the curves are very similar. At 

a deflection above about 20 mm, the pressurised ball seems to become slightly stiffer. This 

fits empirical experience that pressureless balls behave in a similar manner to pressurised 
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ones for low impact speeds (such as drop tests) but may bounce differently at higher 

speeds (to be discussed in a later chapter). There is also a difference on the unloading part 

of the cycle - the pressureless balls seem to have a lower force, suggesting a slightly 

increased energy loss. 
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Figure 6.7 Force-deformation graphs for three each of (a) new pressurised, (b) drilled 
pressurised, (c) new pressureless and (d) drilled pressureless balls. 

Figure 6.7 shows the effect of releasing the pressure on the ball stiffness. As would be 

expected, both balls are noticeably softer when there is no contained volume and the 

stiffness is provided purely by the structure of the ball. The softening effect is much less 

pronounced for the pressureless ball, which relies on a thicker wall and stiffer rubber for its 

strength rather than the internal air pressure. 

There was no evidence of a sharp change in the stiffness due to buckling of the shell at any 

point, although the gradient of the pressureless graphs decreases slightly above about 10-

15mm deformation. 
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Figure 6.8 Energy stored and returned during compression, for new balls and those drilled to 
remove the effects of internal pressure. 

In order to investigate the energies stored within the balls, the force-deflection curves were 

integrated using the trapezium rule. This data is shown in Figure 6.8. It is clear that 

pressurised and pressureless balls store similar amounts of energy on compression, 

although more is lost in the pressureless balls in hysteresis on restoration. Both balls store 

less energy without internal pressure, but the difference is much less for the pressureless 

balls. 

6.4 Modelling the deformation 

6.4.a Original balls 

Polynomials were fitted to the loading curves of the various ball types, to find the stiffness 

at various loading levels. Of particular interest was the initial stiffness at zero compression. 

It can be seen from Figure 6.6 that the effect of the cloth makes it difficult to find the 

stiffness at zero deflection. The low stiffness for the very first part of the compression 

could give a misleading gradient to any fitted curve, as it was really the deflection due to 

the cloth, which is compressed before the rubber shell. The method used was to 

differentiate the trendline fitted, and use its gradient at a deflection value of two 

millimetres. This also minimised errors due to uncertainty in the starting deformation as 

the gradient changed rapidly at low deflections if a high order polynomial was used. The 

mea ured stiffnesses are shown in Table 6.1. 
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Table 6.1 Measured stiffness at low deflection for four ball types. 

Stiffness at 3 mm deflection 
Ball Type 

(kN/m) 

Pressurised 21.1 

Pressureless 22.5 

Oversized 18.7 

Punctured 13.6 

These results suggest that the pressurised and pressureless balls have a similar initial 

stiffness, although the pressureless ball is slightly stiffer. This is to be expected, as it is 

made to be harder to compensate for the lack of air pressure. The balls behave in a similar 

way at a drop test, which is a low speed dynamic test. Even at the speeds seen here the 

pressureless ball will lose effective stiffness from the lack of pressure, and so it must be 

structurally stronger. As expected, the punctured ball is much softer that the other three. A 

surprised is that the oversized ball has a much lower stiffness than the pressurised and 

pressureless balls., suggesting that the pressure compensates strongly during dynamic 

impacts for any weakness introduced by the thinner walls used to make it larger. 

6.4.b Drilled balls - loading 

The force-deformation curves for the drilled balls lend themselves well to simple 

approximations, which are ideal for use in an impact model. In anticipation of a model 

based on using a point mass as a centre of mass deflection, the ball deformations were 

halved. Whatever shape the ball deforms to during compression, if the deformation is 

symmetrical then the centre of mass remains on the axis of symmetry and thus its 

deflection is always half the value of the ball deformation. 
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Figure 6.9 (a-d) Fitting (a) linear, and (b) quadratic curves to the loading part of the force
deformation data for a drilled pressurised ball; fitting (c) linear and (d) quadratic curves to the 
data for a drilled pressureless ball. In each case the solid line is experimental data and the 
dashed line is the fitted trendline. 

Figure 6.9 (a-b) shows just the loading part of the curve for a pressurised ball, with both 

linear and quadratic fits. The linear fit is a reasonably good first approximation, and shows 

that the stiffness is fairly constant over a wide range of deflection, at 16.5 N/mm. A 

quadratic fit is even more accurate, giving a stiffness (found from differentiating the 

trendline equation) which decreases from 20.3 Nlmm at zero deflection to 13.5 Nlmm at a 

deflection of 12.7 mm (equivalent to a ball deformation of an inch). The equation relating 

force F to centre of mass deflection x is given (for deflections in metres) by 

F = -26511x2 + 20266x - 5.696 [6.1 ] 

Figure 6.9 (c-d) shows the same fits to the loading curve for a pressureless ball. In this case 

the linear fit is even more accurate, giving a stiffness of 24.6 N/mm. The equation for the 

quadratic fit is given in equation [6.2]. Differentiated, it gives a stiffness of 27.7 Nlmm at 

zero deformation and a lowered stiffness of 22.5 N/mm at a deformation of an inch - 37% 

and 66% higher stiffness than for the pressurised ball at the respective deformations. 

F = -203309x2 + 27685x -18.129 [6.2] 
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6.4.c Drilled balls - unloading 

T a be useful in an impact model, the hysteresis energy loss due to unloading must be 

simulated as well as the loading force. The method chosen was to choose a "shape factor" 

function which could be multiplied to the loading curve to give a reduced unloading curve. 

This must have a value of 1 at maximum deflection (and must never be greater than unity 

or this would lead to the unloading force being greater than the loading force). The first 

function tried used an exponential of the displacement unloaded as a proportion of the 

maximum displacement, i.e. xmax - x , leading to 
xmax 

_k(I __ X ) 

F F. Xm" = I()adln~·e [6.3] 

This did not lead to the correct shape (although the numerical energy loss could be 

x -x 
reproduced) and therefore the relationship was altered to use max , leading to 

Xmax 

-k~l- x 

F = F;()adm~.e x".u, [6.4] 
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Figure 6.10 Modelling the unloading curve of a pressurised ball. showing shape factors from 
the two unloading equations defined in equations [6.3] and [6.4]. 
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Figure 6.11 Modelling the unloading curve of a pressureless ball, showing shape factors from 
the two unloading equations defined in equations [6.3] and [6.4]. 

Figure 6.10 shows the loading curves produced by the two shape factor equations defined 

in [6.4] and [6.5]. It can clearly be seen that the second definition gives a much better fit. 

The same is shown in Figure 6.11 for a pressureless ball. 

Unloading curves for different maximum deflections 
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Figure 6.12 (a) The effect of shape factor on modelled unloading curves from various 
maximum loads, and (b) similar data reproduced from Ashcroft and Stronge (2003). 

Figure 6.12 (a) shows unloading curves given the shape factor defined above when the ball 

is loaded to various values before being unloaded (using the linear loading approximation 

for simplicity). The unloading curves follow the trend of tending to the unloading curve of 

that for the highest load. This compares well to the experimental data reproduced from 

Ashcroft and Stronge (2003) in Figure 6.12 (b). The values of load against deflection do 

not match up for two reasons. The first of these is that the data of Ashcroft and Stronge 

uses actual ball deformation rather than centre of mass. The second is that the data plotted 
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in Figure 6.12 (a) assumes no cloth effects, whereas the data of Ashcroft and Stronge 

would need to be offset by 1 to 2 mm for a proper comparison. 

6.5 Discussion 

The definition of the ITF compression test calls for the machine to be zeroed when a 

preload of 80 N is measured. Such a preload is necessary to account for the variation in 

size between balls, and a relatively high load as this is needed because of the large initial 

deflections that occur due to the cloth deformation. This was reflected in the force

deflection curves seen here. A true zero is not only hard to define experimentally when 

setting up the apparatus, but gives initial deflections such as those shown by Ashcroft and 

Stronge in Figure 6.12 (b). This is why a deflection of 2 mm was used to define the "zero 

compression stiffness" in section 6.4.a. 

The stiffnesses measured were in the order of 20 kN/m. The surface stiffness quoted by 

McMahon and Greene (1979) for asphalt or concrete was over 4000 kN/m. Values from 

3000 kN/m and upwards were found using Berlin Artificial Athlete data in Chapter 5. All 

of this data suggests that a tennis ball has a stiffness two orders of magnitude lower than 

the court surface. 

As in the previous chapter dealing with the experimental measurement of surface 

properties, the testing here was all performed in a controlled environment - actually in the 

same temperature and humidity controlled laboratory used by the ITF for ball approval 

testing. As mentioned in Chapter 2, Rose et at. (2000) found that static ball properties were 

not affected by temperature, and so this does not seem an important factor for the 

deformation testing discussed here. 

6.6 Summary 

In this chapter, the (quasi-) static properties of a tennis ball were examined. As would be 

expected given that all balls are manufactured to satisfy a standard set of tests, pressurised 

and pressureless balls behave the same in terms of stiffness and energy loss. When the 

internal pressure of these two types of balls is released however (to enable the pressure in 

the ball to be included in the model), they have very different stiffnesses - about 50% 

higher for the pressureless ball for a linear fit, which is a good first approximation in both 

cases. Quadratic approximations were found for the relationship between centre of mass 

deflection and force for both ball types, which could be useful modelling information if the 

volume and pressure were to be taken into account. A shape factor function was found 

which modelled the unloading shapes well. 

Balls still containing pressure (since "punctured" balls still increase in pressure under 

compression, unlike the drilled balls), were also modelled by fitting polynomials to the 
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force-deflection curves. This allowed a "zero-compression" stiffness to be found by taking 

a tangent to the curve, although to take into account effects of cloth compression this was 

calculated at a nominal small deflection of 2 mm. 

Compression tests were also performed at a variety of strain rates in an attempt to see how 

much difference this made to the stiffness. Somewhat surprisingly, all the deformation 

rates above 10 mm/min gave identical force-deflection curves (and even that very slow rate 

was very close to the others). This suggested that data taken at a relatively modest 

deformation rate can be useful in modelling, although dynamic experimentation is 

necessary to test this hypothesis. 
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7 Normal impact tests 

7.1 Introduction 

The rules of tennis give specific limits as to the bounce height of a ball when dropped onto 

a rigid surface from 100 inches. Normal impacts can also be used to investigate the 

interaction of ball and surface, finding the energy loss by measuring the coefficient of 

restitution (the ratio of rebound speed to impact speed). Because the ball is made of rubber, 

which is a non-linear viscoelastic material, it is to be expected that the energy loss will 

vary with strain rate (i.e. speed of impact). One of the main aims of this particular set of 

experiments was therefore to investigate how the properties of a ball change with speed. 

Several different ball types were bounced on a force plate at speeds from 3 to 20 ms· 1 and 

the sampled force used to improve understanding of various dynamic properties of the ball, 

particularly stiffness. 

7.2 Experimental apparatus 

7.2.a Balls used 

Four ball types were chosen to illustrate a range of properties and provide an insight into 

the important parameters of construction. The first ball used was a standard pressurised 

ball, by far the most widely used type. The next was a pressureless ball. These contain air 

at atmospheric pressure but are made with a thicker rubber shell to compensate for the loss 

in stiffness which would provided by the air pressure. A modified pressurised ball with the 

pressure released by puncturing the rubber with a fine needle was thought to be a useful 

combination of the two. The final choice was a prototype oversize ball. The balls were 6% 

larger in diameter than standard balls, but contained the same internal pressure. The rubber 

walls were slightly reduced in thickness to keep the mass the same. The pressure of the two 

pressurised balls was measured after the tests. Ball properties are summarised in Table 7.1. 

Although the tests described in this chapter (and the oblique impacts discussed later) were 

not performed in a controlled environment like the surface tests and quasi-station 

deformations, all the tests took place at a time of year that meant the temperature was 

between 20 and 25 degrees Centigrade. The data presented by Rose et al. (2000) suggested 

that for high speed dynamic impacts, a much wider temperature range than this had no 

significant effect on ball rebounds. 
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Table 7.1 An overview of the four different types of balls used. 

Ball type 
Gauge 

Shell thickness 
pressure 

0.069 MPa 
Pressurised 3mm 

(10 p.s.i.) 

Pressureless 
0 

4mm 
(Atmosphere) 

Oversize 0.069 MPa 
2.8 mm 

pressurised (10 p.s.i.) 

Punctured 0 
3mm 

pressurised (Atmosphere) 

7.2.b Ball release and projection 

Figure 7.1 The equipment used to accurately release balls without spin 

Balls were projected normally onto a piezoelectric force plate at speed between 4 and 20 

ms· l
• At the lower speeds - up to about 7 ms· 1 

- the balls were dropped u ing a prung 

trapdoor (shown in Figure 7.1). This gave good accuracy of the impact po ition and 

consistent speeds. It was designed to avoid imparting spin by using a pring to accelerat 

the trapdoor away from the ball faster than gravity. At the higher speed th y were fir d 

horizontally from a modified Bola machine (Figure 7.2) which projects ball betw en two 

spinning solid rubber wheels and is sold as a cricket bowling machine. By etting b th 

wheels at the same rotational speed, it was possible to ensure the balls were projected with 
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a low spin rate (which could be verified from the video footage) . There was a range 

between 7 and 13 ms-I where it was not practical to drop the ball using the trapdoor 

because of the extreme height which would be needed (not to mention the problem of 

achieving accuracy of impact), but was too slow to use the Bola effectively mounted 

horizontally because of problems achieving an accurate trajectory. 

I I 

Figure 7.2 The Bola machine used to project the balls. 

7.2.c Ball speed measurement 

At all speeds the impacts were filmed using a Kodak MotionCorder high speed video 

system, at 400 frames per second. As well as providing data which could be analysed for 

position and thus velocity (discussed in more detail later), this gave visual feedback as to 

the position of impact, and verified that there was little or no spin. At the higher speeds of 

13 ms-I and above, the incoming and outgoing ball speeds were measured using light beam 

timing gates. Because these gates were designed for high velocity use they could not be 

used at the lower speeds (when the ball was dropped) and so the video data was manually 

analysed to find positional co-ordinates. Video data from several of the high speed impacts 

was used to ensure that values from this method agreed with those from the timing gate. 
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7.2.d Piezoelectric force plate 

(a) (b) 

Figure 7.3 The piezoelectric force plate shown (a) as constructed and (b) in a protective 
aluminium mounting for high speed impacts. 

The force plate was a bespoke piece of hardware manufactured by Cross and used in a 

number of experiments (Cross, 1999b, 2000b). It is shown in Figure 7.3 (a) and consists of 

an array of four square ceramic piezoelectric elements, on a steel base plate. This system 

was then fitted into the aluminium mounting seen in Figure 7.3 (b), which protected the 

wires from high speed impacts. It also improved the accuracy by reducing the target area 

and making it obvious when a ball impacted off-centre, as the ball would rebound 

sideways after striking an edge. This was useful as a badly off-centre impact would result 

in a significantly different calibration of the piezoelectric elements. 

Circuit board ----. 

Insulating plastic 

Piezoelectric 
element 

Steel base ~ 

Figure 7.4 Exploded schematic of the force plate construction. 

The four piezoelectric elements were aligned in the correct polarity, and attached to the 

steel base using conductive silver paste as shown djagrammatically in Figure 7.4. The fir t 

of the two connection wires was simply screwed to the base. The top surface were th n 
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connected in parallel to the second signal wire using a carefully applied low temperature 

soldering iron. A square piece of circuit board was then attached on top. This evened out 

the impact force so that it was spread equally between the four elements, and also shielded 

the piezoelectric elements from any electrostatic charge generated by the ball (which was 

found to be a problem initially). 

A lOx oscilloscope probe was used to connect the signal wires to a Picotech ADC-IOO 

analogue-to-digital converter which sampled the force at a frequency of 60 kHz (giving 

typically 250 to 300 data points per impact). Because the four piezoelectric elements would 

never be perfectly matched, the impact and rebound speeds were used to calibrate the 

combined signal for each impact. This was done by integrating the force signal S over the 

duration of the impact (multiplied by the calibration c to give the force F = cS), and 

equating this total impulse to the momentum change of the ball as fFdt = fCSdt = mtlV . 

The maximum deviation seen was under 10% of the typical calibration. 

7.2.e Analysis of video data 

This section describes an example of the process used to extract velocity information from 

the video footage. On triggering, the camera stores a number of frames in memory but 

these cannot be then saved directly in a digital format. The frames of interest are instead 

played back at a low speed (typically two frames per second) and either captured directly 

to computer, or more likely with experimental fieldwork are recorded onto an analogue 

video tape. This enables remote recording of a large amount of data but with an inevitable 

loss in quality involved with converting the information from digital to analogue, and back 

to digital when the video is acquired by a computer back in the lab. 

Individual frames were acquired by a desktop computer and saved using a standard video 

capture card. After experimenting with automated tracking, manual digitisation was 

decided on as the best method of finding the ball position. A custom program was written 

to plot the position of the ball by overlaying a resizable circle. This effectively uses the 

whole circumference, which improves the accuracy compared to other methods (e.g. 

involving mathematically finding the centre from three points on the circumference). It 

was also found to be a more efficient tracking method in terms of time. 
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Vertical position Vertical position 

y = a,x' + b,x + C, 

y = a,x' + b,x + c, 

from linear fit 

y ..................... . 
g ., 

(b) '--___ ---'--_----=----=,--___ ___+ 

T, + T, Time T, 

Figure 7.5 (a) possible errors in velocity using a linear fit to displacement data, and (b) using 
quadratic fits with contact time data to minimise these errors 

There was a concern that for the slower impacting balls, gravity would have a significant 

effect on the speeds even during the short filming period. If a linear trendline is fitted to the 

displacement-time data but there is actually an acceleration downwards, this will 

underestimate both the speed before and after impact, as shown in exaggerated form in 

Figure 7.5 (a). The true tangent to the displacement curve will be steeper at the start and 

end of impact than a linear trendline fitted to all the data. To compensate for this error a 

quadratic trendline was used. If the vertical position of the ground was known, this would 

be a trivial task, but it was difficult to pick this out accurately from the video footage. 

Because the impact position was off-centre, any out of plane movement of the ball's 

trajectory moved the contact as seen by the camera. The oblique viewing angle also meant 

that it was not particularly accurate to simply use the frame with the highest deformation to 

ensure the ball was in contact since as the contact area widens, the lowest part of the ball 

seen by the camera moves. 

The method adopted was to use the measured force data. This allows a reasonably accurate 

contact time to be determined. Consider Figure 7.5 (b). Let the quadratics (matched to the 

displacement-time data by a least-squares regression) for velocity before and after impact 

have equations YI = a/ + bit + ci and Y2 = a2/
2 + b2t + c2 respectively. If TI is the time of 

the start of contact and T c the length of contact, the value of T I can be found such that Yl at 

I = r; is equal to Y2 at t = r; + 7;.. - i.e. the ground level at the start of the impact matches 

that at the end of the impact. If these equations are equated, we find 

aiT/ +bl 7; +C\ =a2(7; +r:.Y +b2(Y; +TJ+c2 

=a2(~2 +2~~. +~.2)+b2(~ +I:,)+c2 

thus (al-a2)~2 +(bl -b2 -2a2~J~ +(c\-c2 -a2~.2 -b2~')=O [7.1] 

Since Tc and the coefficients a, band c are known, [7.1] is simply a quadratic in TI . 

Solving this and substituting TI and ~ + Tc back into the initial equations giving Y before 

and after impact gives the required speeds. 
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7.3 Sample force data 
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Figure 7.6 (a-c) (a) Force-time, (b) COM displacement-time and (c) force-displacement data, 
for a standard pressurised ball dropped from 100 inches. 

Figure 7.6 (a) shows a typical force-time curve for a pressurised ball dropped from 2.54 m 

(l00 inches). As the sampling was manually triggered at a random time between the ball 

being released and it impacting, a time offset was applied to the data to ensure the impact 

data started at time t = O. There is a distinct shoulder about 0.25 ms after the start of the 

contact, but apart from this the curve is similar to a half sine wave. 

If the force is divided by the mass to give acceleration and integrated, velocity can be 

calculated. Because the data was sampled at a reasonably high frequency and is fairly 

smooth, a simple trapezoidal integration rule was considered sufficiently accurate. The 

offset used here was the boundary condition of measured velocity Vin at time t = O. A 

further integration gives displacement. Figure 7.6 (b) shows this displacement against time, 

which was given the boundary condition of zero displacement at t = O. It should be 

remembered that this is displacement of the ball centre of mass, not the absolute 

deformation relative to the original sphere. This graph suggests that the ball is still slightly 

deformed after 4.5 ms, when it leaves contact with the surface of the force plate. There is a 

maximum centre of mass displacement of about 8.6 mm. 
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Figure 7.6 (c) plots the force-displacement curve for the structure. The negative 

displacement is shown here as a positive compression. The effective initial stiffness can be 

clearly seen to be higher than that later in the compression cycle. The secondary stiffness is 

almost constant as shown by the nearly linear force-compression relationship, suggesting 

that it does not change significantly throughout the loading. On unloading there is an 

enclosed area representing the hysteresis energy loss. This area is not particularly large, 

indicating qualitatively that the ball bounces fairly well, with a large proportion of its 

initial energy. 

7.4 Comparison of force plate and video data 

In order to verify the data from the force plate, an impact was filmed using a different high 

speed video system, at a higher frame rate. The frame rate of 400 Hz used previously was 

adequate for finding speeds before and after impact, but would only give two or three 

frames during contact. A Kodak 4540 system gave a frame rate of 9000 per second, 

providing typically 40 frames during a 4.5 ms contact period. 
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Figure 7.7 Comparison of high speed video measurements and integrated force plate data for 
ball COM deflection during normal impact. 

Figure 7.7 shows the comparison between the ball centre of mass deflection calculated 

from the force signal and measured using high speed video. The video positional data was 

adjusted to take into account the effect of assumed deformations as discussed later in 

Chapter 8. It can be seen that there is very good agreement, suggesting that the assumption 

of deformation shape is a reasonable one and that the force plate data is accurate. 
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7.5 Results - velocities 

:: ~~-~~-~~------;---;~ -l 
_ 10 1 
CII • 0 

o 

Q·D i· I 
, I 

~ 
I 8 
CII 

'0 
§ 6 
.8 
Q) 

a::: 4[ ... 

• 
•• 

.... ... .... .. ......... ........ .. .................... Pressurised , 
o Oversize 

It~ 
2 .... . ................ . . .............. ITF 100 inch drop .................... 0 Pressureless 

test limits 
• Punctured 

O~i----~--~----T----+----T---~----~--~----~-----r----

(I) 

ri 
o 
() 

o 2 4 6 8 1 0 12 14 16 18 20 22 
Incoming speed (m's) 

ITF 100 inch drop 

. /.. test limits 

08 ············}:~~r.. 

0.7 • 

0.6 

. ' 
o 

o 

• 
o 

• 

• Pressurised 

o Oversize 

o Pressureless 

• Punctured 

d. • 
b 

:. 

:: -I-I--..---,r----i-----~--;---_.__--r__-_,,--__i__--.-.i_.------
o 2 4 6 8 10 12 14 16 18 20 

Incoming speed (m's) 
22 

Figure 7.8 Rebound speed against incoming speed and COR against incoming speed, for 
four different ball types impacting normally at speeds between 4 and 20 ms" 

Figure 7.8 shows how rebound speed varies with impact speeds, for the four ball types -

shown as both absolute speeds and COR values. At low impact speeds, the balls all behave 

in a similar manner, and even the punctured ball is fairly close to the other types in terms 

of rebound speed, although the difference is accentuated by looking at COR. This is 

because the small difference in absolute speed makes the graph points difficult to 

distinguish until they are normalised using COR. 
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It is to be expected that "off the shelf' balls will have very similar rebounds at low speeds. 

This is of course because balls are manufactured to achieve the specified bounce height 

range of the approval tests, which happens at a speed of just below 7 ms· l
. The 

construction of the normal and oversized pressurised balls does not seem to be different 

enough to cause significantly different rebounds even at the higher speeds. It is worth 

noting that the COR values at the 100 inch height lie in the 0.76-0.79 range found by 

taking aerodynamic drag into account, rather than the 0.73-0.76 range as would be 

expected using a simple energy conservation relationship. 

As the speed is increased, the two pressurised balls maintain similar rebounds, but the 

pressureless ball has a lower COR. Pressureless balls compensate for the lack of internal 

pressure by having a thicker (and therefore stiffer) rubber shell, typically 4 mm compared 

to 3 mm for a conventional pressurised ball. As a ball is compressed, there are force 

components due to both the resistance of the structure to deformation and the internal 

pressure. Both of these are non-linear functions of deflection and so two balls with 

different wall thicknesses and internal pressures cannot have the same overall stiffness 

over a wide range of deflection. The permanent pressure balls undergo more deformation 

at higher speeds, and it is the deformation which provides most of the energy loss. 

The deflated ball shares characteristics of the previous two balls. The pressure was released 

using a fine needle to puncture the rubber shell in various places around its circumference. 

The holes were small enough that unless a particularly large force was applied, the ball 

would retain the air and therefore there would be an increase in pressure as the volume was 

decreased. In this way the ball was similar to a permanent pressure ball. However, there 

was no extra structural stiffness from a thicker shell and so the deformations (and thus 

energy losses) will be larger than all other ball types at every impact speed. The difference 

in the COR compared to the pressurised balls does however increase with higher speeds, 

where the low stiffness allows extreme deformations. 
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7.6 Results - forces 
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Figure 7.9 (a-h) Force-time and force-displacement graphs for the various ball types at 
different speeds: (a,b) 5.8 ms-\ (c,d) 13.5 ms-1, (e,f) 16.5 ms-1 and (g,h) 20 ms-1 . 
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The force profiles of impacts at various speeds are shown in Figure 7.9. At low speeds, the 

pressurised and pressureless balls cannot be distinguished, suggesting that the increased 

wall stiffness balances the lower pressure. The punctured ball has a lower maximum force 

and longer contact time, both of which suggest a lower stiffness as would be expected. 

As the speed is increased to 13 ms· l
, there is an immediate difference in the shapes of the 

curves. All three balls still have the same initial "shoulder" or peak in force. The maximum 

force is not too dissimilar for the different ball constructions, although the pressureless and 

punctured balls have a maximum force 7% and 12% lower respectively than the 

pressurised ball. The significant difference is at the tail end of the unloading part of the 

curve. The punctured ball shows a large and sudden extra peak. This can be seen on high 

speed video as the bottom of the ball "slapping back down" on the surface. The same 

feature can be seen on the pressureless force curve, although it is much less pronounced 

and occurs earlier. The pressureless ball retains a similar overall contact time to the 

press uri sed ball. 

At 16 ms·(, the pressureless ball has a noticeably lower maXImum force than the 

pressurised ball. Again all three balls have a similar initial rise in force. The punctured ball 

has a similar late increase in force. Again the pressureless ball has a smaller peak, but the 

time is later, as though it is behaving more like the punctured ball. 

At the highest speed of 20 ms·(, the force curves are beginning to be dominated by the 

large initial rise in the force. At this speed this peak is around two thirds of the maximum 

force seen. Yet again it is similar for all the balls, suggesting it is not a function of the 

pressure. The late secondary peak in the force now happens at a similar time and has a 

similar magnitude for the pressureless and punctured balls, suggesting the pressure is 

becoming more important than the wall thickness and stiffness. As the speed increases, the 

force curves also become much less smooth, implying vibration and irregular deformation. 

Figure 7.9 also shows that the COM displacement is not affected as much as might be 

expected by ball construction. There is only around 1 mm difference in maximum 

displacement between pressurised and punctured balls at three of the four speeds. 

Somewhat surprisingly, the oversized ball has similar or greater displacement than the 

punctured ball at all speeds. 

The same data is also shown in Figure 7.10, plotted with all the speeds for a particular ball 

on each graph. This emphasises the difference incoming speed makes to the shape of the 

impact force curve. 
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Figure 7.10 Force-time and force-displacement graphs per ball, plotting different speeds on 
the same graphs. In each case the data is for about 2.9 ms-\ 5.8m s-\ 13.5 m S-I , 16.5m S-1 and 
20 ms-1 in order of increasing peak force. 
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7.7 Discussion 

It is clear from both the force-time and force-displacement graphs that there is an initial 

peak in the reaction force, which depending on impact speed can be the most noticeable 

feature of the impact. This effect does not seem to depend significantly on ball 

construction, but its value as a proportion of the overall maximum force increases with 

impact velocity. The force-displacement graphs show this peak as an initial peak stiffness. 

Various explanations have been suggested as to the reason for this initial peak. Thomson 

(1999) and Cross (1999b) both noted the dip after the initial peak in the force - which is 

much more noticeable on the force-displacement curves than the force-time ones) and 

suggested that it was due to a sudden change in stiffness of the ball. Cross (1 999b ) 

constructed a force platform which contained a small (13 mm) central piezo element above 

a much larger one, so that the contact force over a small area could be measured as well as 

the total force. By bouncing a ball directly on the smaller piezo as well as at a central 

impact point 20 mm away, he was able to produce centre and off-centre forces as shown in 

Figure 7.11. 

He attributed the drop in stiffness after an initial sharp rise to internal buckling of the ball 

core (i.e. bending rather than compression) causing instability and reducing the effective 

structural stiffness. Dignall (1999) created a finite element model of the ball which also 

showed this same buckling. 

(a) 
Total force 

(b) centre 

(c) off-centre 

o 2 4 6 8 

t (ms) 

Figure 7.11 Experimentally measured impact force showing the total force and centre and off
centre measurements (reproduced from Cross, 1999). 

An alternative mechanism for this initial peak in force is an impUlsive force or "momentum 

flux", which has been used by several authors in ball impact models - described in more 
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detail in Chapter 2. This assumes the ball is split into two sections, one of which is the 

undeformed part of the ball above the surface, and the other which is either a flat area 

which does not move and stays in contact, or which buckles upwards. As the ball 

deformation increases, the material just above contact suddenly loses all its velocity, 

generating an impulsive reaction force. 

One point which is worth noting is that this impulsive force mechanism proposes an 

alternative reason for the "inner and outer" forces noted by Cross. At the very start of the 

impact, the impulsive force will be a point force. As the ball deforms more and more, the 

sections of material coming to rest are gradually increasing circular slices until the 

deformation reaches the shell thickness. After this, the contact area for new material 

coming to rest and applying a force will be annular, at a gradually increasing radius, which 

will cause the measurable force in the central portion to drop - although there will still of 

course be a central force due to air pressure and other forces. 

Another interesting feature of the initial peak in force is that there is a dip immediately 

after it. This becomes more prominent with increasing force and is more noticeable on the 

force-deflection curve than the force-time one. The most likely cause for this seems to be 

some element of buckling in the shell, momentarily reducing the effective stiffness. 

7.8 Summary 

This work confirmed the belief that incoming speed strongly affects the properties of a 

tennis ball; a significant change in COR can be seen by changing the impact speed (from 

about 0.8 at an impact speed of 3 ms· 1 to about 0.6 at 20 ms· I
). 

Ball construction also plays an important part in behaviour. All types of commercial balls 

have similar properties at low speeds because of the quasi-static nature of the approval 

tests (although the punctured ball is softer), but at higher speeds there are much more 

noticeable differences. The permanent pressure ball has a significantly lower COR than 

either of the two pressurised balls. The punctured ball bounces even slower, as would be 

expected. 

All balls exhibit a sharp early rise in force giving a "shoulder" in the force-time curve. The 

value of this initial force becomes an increasing proportion of the overall maximum force 

as the impact speed is increased. The punctured and (to a lesser extent) pressureless balls 

also show an extra force in peak just before the end of the impact at higher speeds. 
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8 Normal impact model 

8.1 Introduction 

The previous chapter shows that when different balls are considered, even a normal impact 

is more complicated than might be expected. But although it was considered important to 

gain a full understanding of the impact, it was not thought necessary to create a model 

which simulated every last detail. The interest lay in predicting how a tennis ball would act 

in a game situation. 

An important consideration was to create a model whose input conditions could be easily 

measured. The ideal situation given an unidentified tennis ball (perhaps a new design) 

would be to perform as few tests as simply and quickly as possible. Therefore a vital 

property of a model was the ease with which enough variables could be measured to allow 

prediction of its behaviour through a full range of conditions. 

This chapter progresses through three models of varying complexity, before presenting one 

which satisfies the necessary criteria. 

8.2 Calculating the centre of mass and moment of inertia for a deformed 

ball 

B.2.a Overview 

All the models presented here are based on simplifying the ball to a point mass, which 

means that the defining variables (displacement, velocity and acceleration or force) are 

calculated in terms of the centre of mass. It is useful - and in many cases vital - to be able 

to calculate the physical shape of the ball, either to simply find the external deformation or 

to derive more complex attributes such as circumferential contact area. 

Several possible assumptions have already been mentioned for the deformed shape of the 

ball. None of these make it easy to analytically calculate the altered moment of inertia or 

centre of mass position of the new structure, and in all realistic cases it is impossible. 

Solutions were therefore found in software using the Monte Carlo method (written in 

Visual Basic). This involves discretising the ball into a large number n of point masses, by 

randomly generating coordinates until n have been found within the assumed physical 

volume of the deformed ball. The densities of the point masses in the rubber and cloth 

sections respectively can be calculated using the number of points in each part and the 

relative masses of the two materials (e.g. a 57g ball is typically 46g rubber and IIg cloth). 

When a sufficient number of random points has been generated, the average centre of mass 

position YCOM can be calculated using 
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1 n 

Y COM = M ~y,m, [8.1] 

Once the centre of mass position i known, the deformed moment of inertia I can also be 

calculated: 

" 2 

1 = Lm,r, [8.2] 
,=1 

where ri is the radius about the spin axis. 

8 .. -----------------------------------
(a) (b) 

Figure 8.1 Assumed shapes for deformed ball with deflection d for (a) truncated and (b) 

buckled balls. 

The centre of mass position and moment of inertia were calculated for two assumed ball 

deflections, where the majority of the ball remained an undeformed sphere in both cases. In 

the flrst shape, referred to a truncated, the ball deflection 0 is created by simply flattening 

the rubber and cloth. In the second case, referred to as buckled, the material of the rubber 

and cloth is made to buckJe inwards by reflecting it along an axis of ymmetry. This will 

move the centre of mass position more and reduce the moment of inertia further a the 

material which would be below the surface for an undeformed baJl is di placed 

approximately twice the distance as for a truncated ball. The two assumed shape are 

shown in Figure 8.1 relative to an undeformed ball. 
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B.2.b Results 
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Figure 8.2 Example software output showing how centre of mass displacement and moment 
of inertia were calculated for deformed balls (with truncated and buckled shape assumptions). 

The software was used to calculate values for centre of mass displacement and moment of 

inertia for a tennis ball of mass 57 grams (made up of 46 grams of rubber and 11 grams of 

cloth). The outside diameter of the ball was 66 mm, with the rubber and cloth layers each 

being 3 mm thick. 99 999 random points were used to defme the ball structure. An 

example of the output is shown in Figure 8.2. Each coloured dot represents a randomly 

chosen point sirting within a slice 1 rnm either side ofthe central axis. 

4 

E 3.5 

.s 3 

o 

• Buckled 

o Truncated 

2 4 6 8 10 12 
Ball deflection 0 (1T111) 

~ 3.4 
N 

E 

f 3.2 j 
o 3.0 
~ 

-; 2.8 

~ 2.6
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12 

Figure 8.3 Displacement of centre of mass position and changed moment of inertia of a 
deformed pressurised tennis ball, plotted against ball deflection . 

The effect of ball deflection on the centre of mass position and moment of in rtia of the 

ball are shown in Figure 8.3. As this method relies on randomly generat d point the 

results will always be an approximation and thus a trendline wa plotted (in all ca e a 

quadratic). As would be expected, both variables are changed mor by the buckled 
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assumption than the truncated one - about 1.5 times for the centre of mass and about twice 

for the moment of inertia. 

Most analytical models are based on applying forces and measuring deflections based on 

the centre of mass position, so the data in Figure 8.3 must be changed slightly to reflect 

that. A further alteration is that the centre of mass deflection as defined in a model is not 

the same as the variable in Figure 8.3, which is the displacement of the COM relative to 

the centre of an undeformed sphere. The useful distance is defined as the "COM 

movement" and is the ball deflection minus the COM displacement. Of interest is the 

ability to calculate the physical ball deformation knowing the COM movement - which is 

useful for geometry-based measurements - and the moment of inertia. Both these are 

shown in Figure 8.4. 

~ 3.4 ,---~~-
E 
~ 3.2 

~ 3.0 
..... i 2.8 ... 
. ~ 2.6 -o 2.4 
"E 

o Truncated -- ~ 2.2 
o 

---------.-----.- --.----- .. - --:--- • Buckled 

o :::iE 2.0 +--~--T--~-+-~--+-'----+----'-----i 
o 246 8 10 o 2 4 6 8 10 

COM movement (mm) COM movement (mm) 

Figure 8.4 Ball deformation and moment of inertia as functions of centre of mass movement, 
for two assumed ball deformation shapes. 

Quadratic expressions were again fitted to the data in Figure 8.4. The equations for each fit 

(in SI units) are shown in Table 8.1. 

Table 8.1 Ball deformation and moment of inertia as functions of centre of mass movement 
for two ball deformation shapes for a pressurised ball. ' 

Ball deformation type 
Ball deformation 0 and moment of inertia I as functions 

of COM movement x (all variables in meters) 

8 = 27.203x2 + 0.9645x 
Truncated 

1= 3.2428 x 1 0-5 
- 0.030558x2 - 3.4082 x 10-5 X 

-----~-<-

8 = 74.830x2 + 0.841x 
Buckled 

1= 3.2295xI0-5 -0.093891x2 +1.1426xI0-4 x 
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The results above are of course only valid for a pressurised ball type. A pressureless ball 

will have different properties due to the altered distribution of material - it has the same 

cloth layer but a thicker rubber of lower density. 

14 

~ 12 
E .s 10 
c 
.2 8 co 
§ 6 
,g 
Q) 4 "C 

'iii 
2 CD 

0 

0 

:. : 
ff : 

"" 0 
... :,0": 

fI ~" " 

/~ ~ . ~/ 
" ~ ef 

~6-"" 
....... , /~-;' "., ...• Buckled 

... ~~ .... ~...... 0 Truncated' 

2 4 6 8 10 
COM movement (mm) COM movement (mm) 

Figure 8.5 Physical ball deformation and moment of inertia predictions as functions of centre 
of mass displacement for a pressureless ball. 

Figure 8.5 shows how the assumed deformation shapes affected the ball deformation and 

moment of inertia for a pressureless ball. The thicker shell had very little effect on the 

predicted ball deformation (especially for the truncated shape), but there was an effect on 

the moment of inertia. This is not a factor on the normal model presented in this chapter, 

but may be important for an oblique model in the way it changes rotational acceleration 

and therefore spin. The equations for the trendlines shown are in Table 8.2. 

Table 8.2 Ball deformation and moment of inertia as functions of centre of mass movement, 
for two ball deformation shapes for a pressureless ball. 

Ball deformation type 
Ball deformation 8 and moment of inertia I as functions 

of COM movement x (all variables in meters) 

8 = 28.031x2 + 0.9634x 
Truncated 

1= 3.1541 x 10-5 
- 0.03264x2 

- 3.9665 x 1 0-6 
X 

---- ------- - -_. 

8 = 77.847x 2 +0.878x 

Buckled 

I =3.15xlO-5 -0.0912x2 +2.51xlO-5 x 

127 



Chapter 8 

B.2.c Discussion 
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Figure 8.6 Comparing the deformation and centre of mass predictions for pressurised and 
pressureless ball types. 

A comparison between the two ball types for just the truncated assumption is show in 

Figure 8.6. This demonstrates that the ball construction has no significant effect on the 

relationship between centre of mass displacement and external deformation, and therefore 

the same relationship could be used for all ball types - although this may not be the case if 

a different ball was used with a significant change in size or wall thickness. 
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Figure 8.7 (a-b) (a) Measured ball deformation and integrated COM displacement (Goodwill , 
2002), compared to (b) the predicted values. 

Goodwill (2002) filmed normal impacts usmg rugh speed video. He mea ured th 

maximum ball deformation seen on the video, and used force plate data imilar to hapter 

7 to calculate the maximum centre of mass displacement by integration. This data i shown 

in Figure 8.7 (a). The two trendlines shown (found for all ball types combin d) were 

plotted against each other and shown with the data predicted here for c ntre f rna 

displacements in Figure 8.7 (b). There is very good agreement for the truncated 
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assumption, suggesting that this is a good relationship. It should be noted that the Goodwill 

curve shown is a small selection data which was mostly collected at a much higher impact 

velocity, and so the errors at the low velocities will be increased. More importantly, his 

data deals only in maximum values of measured deformation and COM displacement and 

are thus for a single instantaneous deformation shape - it will not necessarily be accurate 

throughout the course of an impact. The discrepancy between the predictions and 

Goodwill's measured values are a possible indication that the actual deformation shape is 

different from that assumed, although the fit is good. The frame rate used for the filming in 

the previous chapter was not high enough to monitor deformation shapes, although this 

issue is addressed while analysing the oblique impacts in Chapter 9. 

8.3 One degree-of-freedom spring-damper model 

B.3.a Model overview 

The simplest model and that which is considered first is shown in Figure 8.8. The ball is 

replaced by a point mass m, and has stiffness k and damping c. The deflection of the mass 

IS x. 

m 

x 

k c 

Figure B.B Schematic normal spring-damper model. 

The equation of motion for this one degree-of-freedom system is 

mx+cx+kx=O 

Given the boundary condition of x = 0 at time t = 0 , the solution to this equation is 

x = ae - hI sin (j)1 

Differentiating gives 

x = ae - hI [(j) cos Wi - b sin (j)t] 

and .. - bl L(b 2 2) . 2b J x = ae ~ - W sm (j)t - W cos Wi 
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1r 
The boundary condition x = a at t = Tc where Tc is the contact time gives OJ = - . 

T(' 

Equating [8.3] to the incoming and outgoing velocities gives two more boundary 
conditions: 

and . V -bl" x", = = GOJe 
I;;J(· out 

thus 

and b = __ 1 In(VOU( J = __ 1 In(VoU( J 
Tc Gill Tc Vm 

Although the constants c and k are not necessary for the mathematical modelling, they are 
useful to give some physical understanding. As for an undamped model, 

[8.4] 

Substituting both x and x back into [8.3] leads to the expression 

2m I (VOU( J c=2mb=--, n--
Tc Vm 

[8.5] 

Thus, the constants a, band c can be very quickly calculated if the incoming and outgoing 

velocities and the contact time are known. 

B.3.b Finding model constants from experimental data 

The data described in the previous chapter was used to investigate the model constants k 

and c, and how they vary with impact speed. The information needed to calculate k and c 

for each impact is simply the contact time and the COR. It is possible to estimate the 

contact time using high speed video but a filming rate of 10000 Hz would be necessary for 

a maximum possible 0.1 ms accuracy, and this still leaves the problem of visually 

interpreting the start and end of contact - it is extremely difficult to decide where contact 

begins even to within several frames. A much easier method is to use normal impact force 

data. 

Nonnal impacts of a standard pressurised ball between 4 and 20 ms- 1 were filmed using 

high-speed video. The contact times and speeds before and after impact were measured. 

This provided enough information to calculate k and c for each impact. The variation of 

these coefficients is shown in Figure 8.9, which suggests that both closely follow a linear 

relationship with impact speed. Also included is the statically measured stiffness. This was 

considered to be the stiffness at zero speed, and was measured using a quasi-static force-
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deflection test. The initial loading tangent was used, and doubled since the ball centre of 

mass deflection would be half that measured by the loading rig (as discussed in Chapter 6). 
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Figure 8.9 The variation of k and c for normal spring-damper model 

The trendlines in Figure 8.9 can be used to give equations defining k and c as functions of 

impact speed, and are given below (in SI units so that damping is measured in N/m): 

k =21028+922 V:n [8.6] 

c = 0.637 V:n + 2.41 [8.7] 

B.3.c Model results 

The equations defining k and c were used to give appropriate spring and damper 

coefficients to model a drop test from 100 inches. With an assumed impact speed of 6.8 

ms- I
, this gives k = 27543 N/m and c = 6.75 Ns/m. Force, velocity and displacement 

graphs are shown in Figure 8.10. For this single degree of freedom model, the equations of 

motion have an exact analytical solution. 
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The model predictions are shown in Figure 8.10. It is immediately clear that there are two 

features which are physically unrealistic. The first of these is the initial starting force. At 

time t = 0, there is zero model compression and therefore no stiffness force, but there is 

also maximum velocity, which leads to a damping force which is instantaneous as the 

impact begins. The second is that the force becomes negative for the final 0.3 ms. This is 

again due to the damper, which produces a downwards force due to the upwards velocity at 

the end of contact. This is obviously unrealistic, as the ball cannot be subjected to a tensile 

force from the ground. 

B.3.d Comparison with experimental data 

In order to check the model, data from a pressurised ball drop-test was used (see previous 

chapter for experimental details). The model spring and damper coefficients were not taken 

directly from the data, but from the trendline equations in [8.6] and [8.7]. 
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Figure 8.11 Comparison of model force-time predictions with experimental data at speeds 
between 6.8 and 20 ms-1

. 

8.3.e Comparison of stiffness and damping for different ball types 

Data from the quasi-static data in Chapter 6 was used to find the "zero speed" stiffness for 

each ball type, and a combination of contact times and rebound speeds used to find the 

damping coefficients over a velocity range of 0 to 20 ms- I
. Figure 8.12 shows how the 

incoming speed affects the stiffness k and the damping c for (a) a pressureless ball, (b) a 

punctured ball, and (c) an oversize ball. Equations for the trendlines are shown in Table 

8.3, 

The data for all balls is shown in comparison in Figure 8.12 (d). It is interesting to consider 

the stiffness of the pressureless ball, remembering that it is an equivalent stiffness of the 

structure, taking into account both the rubber properties and the internal pressure. Statically 

it is the stiffest of all the balls because of the thicker rubber wall, but at an impact speed of 

20 ms- I its stiffness is only slightly higher than that of the punctured ball. This suggests 

that at lower velocities when the deflections are small, the rubber shell is the most 

important factor. When the velocity is increased, the much larger ball deformation (and 

large reduction in volume) means that overall structural stiffness is dominated by the air 

pressure, to such an extent that the pressureless ball has a stiffness closer to the punctured 

ball than either of the pressurised ones. The punctured ball retains a surprisingly high 

stiffness, but has significantly higher damping than the other balls. 
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One feature worthy of note is that using the contact time gives a stiffness for the 

pressureless ball at 20 ms- I which obviously does not follow the trend set by the other 

speeds (and in fact this data point was not used to find the trendline shown in Figure 8.12. 

This is caused by the late extra peak in the force, which extends the force-time curve later 

than would otherwise be the case. The same peak does not seem to affect the punctured 

ball stiffnesses, perhaps because it is evident at almost all impact speeds. Features of this 

nature mean that it would be impossible to extrapolate the data and predict the behaviour 

of the balls at higher velocities, as unknown irregularities in the force behaviour could 

change the behaviour significantly. 

Table 8.3 Spring-damper model parameter equations for the four ball types. 

Ball type k (N/m) c (Ns/m) l 
Pressurised k = 21028 + 922 ~n c = 0.637 Vm + 2.41 

Pressureless k = 22289 + 542 ~n c=0.579 ~n+3.12 

Oversized k = 17459+886 V:n c=0.543 V:1l +2.71 
r---

Punctured k = 12483+988 V c=0.873 ~n+1.19 m 
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Figure 8.12 Variation of stiffness and damping with incoming speed for (a) pressureless, (b) 
punctured and (c) oversized balls, as well as (d) combined on a single graph together with 
pressurised data, 
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B.3.' Model discussion 

The Kelvin-Voigt model presented consists of a single spring and damper, whose values 

were constant for a particular impact but depended on the contact time of the impact and 

coefficient of restitution. Linear relationships were found between the spring and damper 

coefficients and the incoming velocity. It would seem dangerous however to extrapolate 

this linear regime to higher speeds, where the nature of the impact becomes more 

complicated - effects such as the initial shoulder in the force and the buckling of the shell 

are more significant. 

It was found that pressureless balls have a similar stiffness to pressurised ones at low 

impact velocity, but significantly lower at high velocity. Punctured balls have the lowest 

stiffness at all velocities tested, but this was similar to the pressureless balls at the highest 

velocity tested. All the balls had similar damping coefficients at low velocity, but the 

punctured ball had significantly higher damping at high velocity than the pressurised and 

pressureless balls, which remained very similar at all speeds. 

When forces and deformations during impact are considered, the model soon becomes 

inadequate. It is able to produce a high initial force at the start of the impact, but this is no 

more than a mathematical coincidence due to the peak incoming velocity producing a large 

damping force. This damper also produces a negative force at the end of the impact, which 

is another flaw in the model. A more significant problem is that all the model parameters 

are derived from experimental data which requires substantial (and complex) testing 

throughout the range of velocities at which the model could hope to be applied. 

8.4 Impulsive force model 

8.4.a Model overview 

It is clear that the model previously presented gives results which are superficially similar 

to actual ball impacts, but lacks the sophistication required to give accurate representations 

of reality. A different model was therefore created in an attempt to include all the 

important physical features. 

The forces on the ball are listed below and each one will be discussed in detail. The 

deformation shape chosen was that of a truncated ball as discussed in section 8.2. 

• Structural stiffness force 

• Damping force 

• Impulsive reaction force 
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B.4.b Structural stiffness force 

Compression of the ball structure produces a structural force, whose properties depend on 

the rubber composition, its thickness and the internal pressure of the ball. Goodwill (2002) 

used a structural spring stiffness whose value kB was a power law function of an initial 

stiffness kB(o) and ball COM deformation x raised to a power a: 

[8.8] 

The values Goodwill found for the constants are reproduced in Table 8.4 below for the four 

ball types. These values were found using a rather complicated iterative process involving 

contact times measured experimentally at a range of speeds up to 30 ms- I
. 

Table 8.4 Spring stiffness parameters reproduced from Goodwill (2002). 

Ball type kB(o) (kN/m) AK (kN/m2) a 

Pressurised 21 16000 l.65 
-~ 

Pressureless 23 12500 1.70 
---

Oversized 21 3600 1.30 

Punctured 16 60000 2.00 

A slightly different method of calculating stiffness was adopted as one of the aims of this 

project was to create a model using as few experimental measurements as possible. The 

form of the equation used was chosen so that only one parameter needed to be found. 

Static stiffnesses at close to zero deflection were found in Chapter 6, and so the model 

stiffness should match these. The equation chosen was, 

[8.9] 

The value of ko was in each case the experimentally measured static stiffness at zero 

deflection, leaving just A to be determined. Initially A was chosen to match the static force

deflection curve as close as possible, but it was found that this gave a model which had too 

long a contact time and too Iowa peak force at all velocities - suggesting it was not stiff 

enough. Thus a higher value of A was found which matched the peak force and contact 

time for a single impact - that at 6.8 ms- I for a 100 inch drop test. 
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Table 8.5 Spring stiffness parameters. 

Ball type ko (N/m) A 

Pressurised 21000 50 

Pres ureless 22500 25 

Oversized 18700 45 

Punctured 13600 50 

Table 8.S gives the values of ko and A that were found for the four ball types. The 

pressurised and pressureless balls have static stiffness values very close to those found by 

Goodwill, but both the oversized and punctured balls have a lower stiffness. 

The model structural force given by the parameters in Table 8.5 are compared in Figure 

8.13. It can be seen that at a low deflection, the pressurised and pressureless balls have a 

very similar stiffness, with the oversized ball also quite close. All four balls increase 

stiffness as the COM deflection increases - at values above 10 mm, the oversized ball 

becomes stiffer than the pressureles one. The pressureless ball stiffness seems to be 

approaching similar values to that of the punctured ball at high deflections. 
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Figure 8.13 Comparison of force-deflection data for model parameters of different ball types. 

When used in the model this structural stiffness was changed slightly to include the ffi ct 

of the cloth. When a ball is bounced on a force plate, there is an initial period wh r th 

cloth compresses for very little force. This can be seen in the experimental data in hapter 

7, in the force-time plots as an initial very gentle rise in the force and in the 5 r e

deflection plots as an initial compression before the force suddenly peaks. Thi wa 

modelled by allowing an initial period of 0.2 ms where the stiffnes wa et to zero. 
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B.4.c Impulsive force 

The experimental data presented in Chapter 7 suggested that ball impacts produce a sharp 

initial rise in force which is strongly dependent on impact speed, but not on ball 

construction. The idea of an impulsive reaction force or "momentum flux" has been used 

by various authors. Percival (1976) used the idea of elements impacting on the surface to 

add an impulsive force to a model of a football. Hubbard and Stronge (2001) included a 

similar force in a model of a table-tennis ball impact. Goodwill (2002) used the idea of an 

impulsive force to create a model of a normal impact between a ball and a rigid surface 

which was then applied to the interaction with a racket stringbed, but the data used was 

rather empirical and difficult to relate to the physical situation . 

...... ·· .. ·, ...... ··>R: ............ · ...... · 
" A', .,' V I" ", . , . . . . . . 

Figure 8.14 The geometry and forces caused by impulsive reaction on a truncated ball. 

Consider a ball during a normal impact. Figure 8.14 (a) shows an undeformed ball, and 

Figure 8,14 (b) the assumed shape with a deformation y. At this point the ball can be 

considered as two parts - the flat disc or cap which is in contact with the surface, and the 

remaining spherical part above the surface, which is all moving down (all at the same 

speed). At this particular instant in time there will be a ring or annulus of cloth and of 

rubber that comes to rest on the surface. This instantaneous velocity change provides an 

impulsive reaction force , Calculation of this force is simplified by the assumption that the 

small elements of mass change from a downwards velocity to being at rest. 
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Figure 8.15 The geometry of the contact area cross-section, showing an integration element. 

Figure 8.15 shows a horizontal cross-section of the rubber and cloth in the ball at a position 

just above the flattened contact cap. Note the rubber annulus is wider than the cloth, due to 

the geometry. 

The area of the small shaded element 8A shown in Figure 8.15 is given by: 

8A = r8r8B 

The force is equal to the rate of change of momentum, or change in momentum per unit 
time. Because the mass element comes to an instantaneous rest, this rate change of 
momentum is equal to the mass of the element hitting the surface per unit time multiplied 
by the speed. The mass rate is given by the area multiplied by the density, multipl ied by 
the speed. 

This integral applies in turn for both the cloth and the rubber. If the inner and outer limit 

of radius are r i and r o, this gives: 

ro 2Jr 

F = p J JrV/ d6tlr 
" 0 

= p7rVy 2 ~02 _ r j

2
) [8.1 ] 
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Figure 8.16 Calculating inner and outer radii for the contact areas during impact. 

In order to calculate the integral limits ri and r a, consider the geometry shown in Figure 

8.16, where the rubber and cloth layers have thickness lR and tc respectively. The contact 

plane used to calculate the radii is at a distance h above the undeformed base of the ball. 

The outer radius for the rubber contact area will be the same as the inner radius for the 

cloth contact area, r2. The inner radius for the rubber contact area is r, and the outer radius 

for the cloth contact area r3· 

For small deflections, the cross-sectional contact area will be circular rather than annular. 

For h less than 3 mm, both r, and r2 will be zero. Between 3 and 6 mm, r, will be zero. 

This larger circular area (created at higher incoming velocities) will lead to an initial peak 

in force as shown in all tennis ball impact measurements. Above 6 mm, the integral area 

will be of an annulus as shown in Figure 8.15 . This leads to the term ~o 2 
- r/ ) being 

constant (since cross-sectional areas of parallel slices of a spherical shell are constant), and 

the force simply being proportional to the square of velocity. The values for the three radii 

are shown in Table 8.6. 

Table 8.6 Summary of the contact area radius equations. 

Deflection r, r2 r3 

O< h < 3mm 0 0 

3 mm < h < 6mm 0 ~R2_ (R _ h)2 
~(R -t )2 - (R _h)2 

h > 6mm ~(R-tR - tC )2 - (R _h)2 
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It is important to note that the velocity used is that of the ball shell rather than the centre of 

mass. This difference was noted by both Hubbard and Stronge (2001) and Goodwill 

(2002). The physical ball velocity was defined by multiplying the centre of mass velocity 

by a scale factor which was the ratio of the total ball mass divided by the mass of the ball 

above the surface. This does not have a particularly large effect on the impulsive force 

however, as during the early phase where the impulsive force is highest there is little 

difference between the physical and centre of mass velocities. 

B.4.d Damping force 

The "damping force" represents viscoelastic energy losses in the rubber of the ball. The 

assumption was made that the energy lost would be due to bending around the edge of the 

contact area and compression of the circular area .. A damping coefficient c was therefore 

defined as being proportional to the contact area - but only the contact area of the rubber 

section, as there will be almost no energy loss in bending the cloth layer. If the area of 

material instantaneously coming into contact is an annulus of inner radius ri and outer 

radius ro as used to calculate the impulsive force, the average contact diameter d is given 

by 

(r +r ) 
d=2 I (J = .+ . 2 r, ro 

Since the contact area is proportional to the square of the diameter, the damping coefficient 

was defined using a constant Co to give 

This model parameter could not be measured directly from the ball, and therefore a value 

of COR had to be used to calculate it. Again the 100 inch drop test was used, and a 

damping coefficient chosen to match a rebound value for each ball type. 

Goodwill (2002) found a similar relationship relating contact diameter dCONT to ball 

deformation 8BALL using high speed video, which is reproduced in [8.11]. This relationship 

was valid only for the compression phase of the impact, as there was too much scatter in 

the data for the rebound phase. A significant factor in this is the high impact speeds used 

by Goodwill - up to 30 ms·
l
. These speeds will cause much more irregular deformation 

shapes, exaggerating both the oscillations and late force peak shown in the force data in 

Chapter 7. 

dCON1' = -1.66 xl 0-
5 
8HAU.

4 
+ 1.27 x 1 0

4 
8HA1.1.

3 
- 4.13 x 102 8

HA
U.

2 + 7.68
H

:1/.I. 

[8.11 ] 
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This gives the diameter of the contact area between the ball and surface, but not necessarily 

of the diameter of the disc or annulus where the bending causing damping is actually 

taking place. A comparison of the contact diameter calculated using this equation and 

compared to that used in the model is shown in Figure 8.17, demonstrating a very close 

relationship. The model data here is for an impact at 20 ms- I
. 
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Figure 8.17 Contact diameter used for the damping force, as used in the model and 
compared to the experimental values of Goodwill (2002). 

The values found for the parameter Co are shown in Table 8.7. The results are difficult to 

interpret in isolation; what seems important is the relationship between stiffness and 

damping - for example, the oversized ball has the lowest damping coefficient but also 

lower stiffness than the pressurised ball, which combine to give the same COR. 

Table 8.7 Model damping parameters for the various ball types. 

Ball type Co (Ns/m3) 

Press uri sed 4000 

Pressureless 3800 

Oversized 3500 

Punctured 4500 
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8.4.e Solving the model 

Calculate 
structural force 

Iterate through acceleration, 
velocity and displacement 

Figure 8.18 Flowchart of the model iteration process. 

Normal impact model 

The model solving process is summarised in a flowchart in Figure 8.18. A spreadsheet was 

used to progress the model in an iterative way, using formulae of the form xn+1 = Xn +vn8t. 

Amongst the initial parameters were the total mass of the ball and the amount of this made 

up by rubber and cloth - to calculate the density of each as used in the impulsive force 

component as well as various geometry calculations such as the mass of the ball still 

moving towards the surface. Boundary conditions such as initial displacement of zero and 

initial centre of mass velocity being that of ball impact speed were also used, but the only 

other parameters needed were the coefficients for the various force equations. 

The structural force could be calculated directly from the centre of mass displacement x, 

but the other two force components needed this displacement to be converted to a physical 
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ball deformation as they were calculated using the ball geometry. These three forces, the 

variables used to calculate them and the defining functions are summarised in Table 8.8. 

The forces were then combined and the model advanced by a timestep &. 

Table B.B Summary of model force components. 

Governing 
Force component Defining function Parameters needed 

variables 

Centre of mass k = koeAX 

Structural stiffness 
displacement x ko, and A 

Fs =kBx 

'. 2" 

Impulsive reaction 
Physical ball F = p J Jr V/ dttir Cloth and rubber 
deformation r, 0 

density p 2 ( 2 2 ) = pnVy ro - ri 

Damping 
Physical ball 

FJ) = Co (r, +ro)2 V Co deformation 

8.4.f Model results 
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Figure 8.19 Experimental and model predicted rebound velocities. 

I 

22 

The model was used to calculate predictions for rebound speed for variou ball type and 

the results are shown in Figure 8.19. The match between experimental and model data i 

extremely good, and clearly differentiates between the different ball con tructi n . Th 
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pressurised and oversized model data are shown as separate lines, but they cannot be 

distinguished. 

Force data for a pressurised ball is show in Figure 8.20 below, for speeds between 5.8 and 

20 ms· l
. The initial peak force is predicted well by the impulsive force portion of the 

model. One difference between the experimental data and model predictions is the drop in 

stiffness immediately after the initial peak, which may be caused by buckling of the ball. 

This effect is seen to a greater extent as the impact speed increases. 

Model and experimental forces are also shown for punctured, pressureless and oversized 

balls in Figure 8.21, Figure 8.22 and Figure 8.23 respectively. Again the force matches up 

well although it fails to predict the late second peak seen to some degree with the 

pressureless ball and particularly with the punctured ball (and thought to be due to 

buckling caused by the lack of internal pressure in these two ball types). 

400 1000 

5.8 m/s 13.4 mls 
800 

300 
~ 

~ 600 z 
-; 200 Q) 

u 
~ 0 400 
0 
u.. u.. 

100 200 

a , 
0 

0 2 3 4 5 0 2 3 4 5 

Time(ms) Time(ms) 

1000 1000 
16.4 m/s 20 m/s 

800 800 

g 600 ~ 600 
ell Q) 
<.> u 
0 o 400 I 
u.. u.. 

200 200 

0 ~ 

0 2 3 4 5 
0 2 3 4 5 

Time(ms) Time (ms) 

Figure 8.20 Comparison of model predictions (solid lines) and experimental values (dashed 
lines) of force-time data for the normal impact of a pressurised ball at various speeds from 5.8 
to 20 ms·1

. 
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Figure 8.21 Comparison of model predictions and experimental values of force-time data for 
the normal impact of a pressureless ball at various speeds from 5.9 to 20.1 ms·1
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Figure 8.22 Comparison of model predictions and experimental values of force-time data for 
the normal impact of a punctured ball at various speeds from 5.7 to 20.3 ms·1. 
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Figure 8.23 Comparison of model predictions and experimental values of force-time data for 
the normal impact of a oversized bali at various speeds from 5.8 to 19.9 ms·1

. 

8.5 Discussion 

The second model presented is a far superior representation of a tennis ball impact. Not 

only does it give a much more accurate depiction of the forces on the ball, it does so in a 

way which attempts to recognise and predict the various physical processes involved. The 

forms of the various equations used in the model were carefully chosen to be as "real" as 

possible, rather than abstract coefficients (which are often found by circular use of the data 

to be predicted). The only experimental data used to find the model parameters was static 

properties and force data from a single dynamic impact at fairly low speed (6.8 ms·1 from a 

100 inch drop test). It must be recognised that if a radically different design of ball was 

introduced whose behaviour changed unpredictably compared to the various current balls, 

it is possible that this model might not model the various forces adequately to be accurate 

over a range of velocities. For example, a single value at 6.8 ms· 1 is used to find the 

damping, and so a ball made from (for example) a different material may not obey the 

same damping laws at different speeds. 
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as well as the velocity change being at its highest. As the "momentum flux" decreases, the 

force reduces and reach zero at the point where the centre of mass downwards velocity 

becomes zero. As the centre of mass moves back upwards, there can be no more impulsive 

force as the mass elements are leaving the surface and cannot impart a tensile force. 

Goodwill (2002) produced a similar initial force peak by introducing an artificially 

increased stiffness during the first part of the impact. This method has the obvious 

disadvantage that it is impossible to measure this increased stiffness experimentally. 

8.6 Summary 

A method is described for calculating the centre of mass displacement and changed 

moment of inertia of a deformed tennis ball. These variables were calculated for the two 

deformation shapes thought most likely, and best fit polynomials used to derive functions 

estimating their values. 

A spring-damper model was created whose input conditions could be measured in a simple 

way. Over a range of velocities which is more than adequate for the normal component of 

any realistic tennis shot, the spring and damper coefficients k and c both follow linear 

trends. The mathematics of the governing equations of the model mean that these 

coefficients can be found from a rebound test where the COR (Le. the incoming and 

outgoing speeds) and the contact time are measured. Thus a minimum of two tests is 

needed, perhaps a drop test and an impact at the highest speed expected to be of interest. A 

static compression test gives a further value of stiffness equivalent to zero impact speed. 

More tests throughout the velocity range will obviously improve the quality of the fit of the 

stiffness and damping with speed. 

A physically meaningful model was created which was based on measurable parameters. 

Quasi-static test data was used to define the structural stiffness of a ball as well as the 

energy loss due to hysteresis unloading. A truncated deformation hypothesis enabled 

calculation of the centre of mass position and the moment of inertia (although this is not 

needed for a normal model). This also led to relationships defining the change in internal 

pressure of the ball and therefore the pressure force during an impact. The final force on 

the ball was the damping force, which was based on the contact area to simulate the energy 

lost in bending of the rubber shell wall. A summary of the model parameters for the 

various ball types is given in Table 8.9 below. 
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Table 8.9 Model parameters for the various ball types. 

Ball type ko (N/m) A (m- l
) Co (Ns/m3) 

Pressurised 21000 50 4000 
~-

Pressureless 22500 25 3800 

Oversized 18700 45 3500 

Punctured 13600 50 4500 
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9 Oblique impact tests 

9.1 Introduction 

The previous chapter provided a normal impact model which satisfied a number of 

requirements, and suggested that the normal behaviour of a tennis ball could be predicted. 

The aim of the work described in this chapter was therefore to examine the experimental 

characteristics of oblique impacts on a rigid surface. This would not only provide data to 

verify any oblique impact models created, but would also give insight into the physics of 

how a ball bounces. 

For a given tennis ball, there are three fundamental properties which define its motion at a 

particular instant: the speed and the angle (which could be grouped as the velocity) and the 

spin. The first set of experiments was performed to find and understand the effect of each 

property. One of the speed, angle and spin was varied in turn whilst keeping the other two 

constant. One of the main aims was to see if there was a noticeable difference between 

slipping and rolling impacts. 

Two further sets of experiments were then performed to understand the effects of ball 

construction and court friction. Two alternative ball types (punctured pressurised and 

pressureless) were used together with surfaces of extreme friction (the slowest acrylic 

available, and a highly polished wooden surface). 

Finally, the effect of incoming angle on ball deformation was investigated by firing balls to 

impact with the same vertical velocity component, but different angles (and therefore 

different absolute speeds). 
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9.2 Experimental setup 

9.2.a General setup 

____ Bola projection 
.-- machine 

Surface 
sample 

Oblique impact tests 

~ Massive 
concrete block 

~ High speed video camera 

Figure 9.1 Experimental set-up for high speed filming of oblique impacts. 

The equipment used is shown in Figure 9.1. In each et of tests three tandard pr uri d 

balls were used after pre-compression, for one impact per ball under each f th c nditi n . 

The surface was firmly fixed to a large concrete block to all w no p ibilit f 

deformation and subsequent energy loss. 

In all cases except fo r the final set of tests, the balls were projected u ing a Bola rna hin 

consisting of two spinning wheels as for the previou exp rimental w rk n n nnal 

impacts. The wheels were orientated in the vertical plane and c uld bind p ndentl 

controlled, so a difference in their speed provided either top pin or back pin r quir d. A 

high speed video camera (running at 240 to 400 fTan1es per econd tI r m t t t , nd 7000 

frames per second for others) was used to film the impact , and the r ult anal d using 

an in-house piece of software. 
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Figure 9.2 The three surfaces used for the oblique testing: (a) slow acrylic surface (with sand 
included in the paint) , (b) medium acrylic surface and (c) fast wooden surface. 

The various parameters are summarised below in Table 9.1. For the first et of te t the 

same ball type and surface was used throughout. Each of the spin, speed and angle was 

varied in tum while keeping the other two properties constant. For the second et of te t 

two different surfaces were chosen to give as wide a range of friction a po ible. The 

were a deliberately high-friction acrylic surface, and a highly polished moth wooden 

board to give low friction - shown in Figure 9.2 (a) and (c) respectively. Th a rylic w 

made by painting directly onto a Perspex sheet and mixing quantiti of and int th 

acrylic paint. 

The range of all three impact variables was deliberately cho n to encompa and t nd 

the range produce by players. This would ensure that the different phy ical ituati n uch 

as slipping and rolling would be reproduced and their effect hop fully xagg r t d. 

Literature previously mentioned suggests that players u uaJly hit the b 11 with an av rag ~ 

spin of 100 to 200 rads-' , suggesting that some shots will contain ignificantly high r pm 

rates. The decision was made to use the maximum po sible range of pin pr vided b th 

Bola, which can provide up to around 600 rads-I of either topspin r back pin. 

Realistic speed and angle values were more difficult to achieve. xperimental practi aliti 

made it impossible to achieve the shallow angles required to match th e e n in a mat h. 
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Rather than project the ball more slowly to give a low vertical velocity, the decision was 

made to keep the speed high to give realistic deformation shapes. 

The third set of tests involved different ball constructions. Commercial pressureless balls 

were chosen as an off-the-shelf type. Standard pressurised balls (as previously used) were 

punctured with a fine needle, so that the ball still retained a fixed pressure of one 

atmosphere. 
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Table 9.1 Summary of the various parameters for oblique impact tests. The parameter of 
interest in each test is shaded . 

Surface Ball type Vin (m/S) 
Bin (degrees 

(j)in (fads-I) 
to horiz) 

30 24 -600 to 600 
Varying spin, 

speed & Medium Pressurised 25 to 60 24 0 

angle 
30 24 to 52 0 

Fast 

(,u=0.3) 

Changing Medium 
Pressurised 30 24 -600 to 600 

surface (,u = 0.55) 

Slow 

(,u=0.61) 

Pressurised 

Changing 
Medium Pressureless 30 24 -600 to 600 

ball type 

Punctured 

9.2.b Ball markings 

Figure 9.3 A new unmarked ball (left) and one after a series of impact tests (right) , The 
markings can still be seen, but the wear on the ball is apparent. 

The balls were marked with black ink so that the relative angular po iti n f the b 11 in 

each frame could be determined. A line was drawn around the eam and regular mark 

drawn on the felt to intersect. As well as increasing the vi ibility having m t f th 
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marking located on the indented seam minimised any chance of the ink affecting the 

frictional properties of the ball, however small these would be. Markings on the cloth itself 

were seen to wear off much faster than those on the seam. The ball shown in Figure 9.3 

shows how the markings have worn off somewhat after a series of impacts. The markings 

on the right-hand side of the ball as pictured clearly do not show the same level of contrast 

as those on the left-hand side. The two intersections marked (a) and (c) could still be used, 

but (b) has become too faint to be seen accurately without re-marking - this point would 

not be chosen during analysis. Figure 9.3 also shows how the cloth is quickly affected by a 

relatively small number of impacts. It was found from experimentation that the cloth wear 

was caused by the friction with the Bola wheels rather than interaction with the surface, but 

there is no way to impart spin on the ball without producing such wear. 

9.2.c 240/400 fps filming 

When changing the spin, speed and angle for the first set of tests, the discrete positions 

achievable in each range gave a total of 39, 21 and 18 impacts respectively. The surface 

used was a non-cushioned acrylic sample which was firmly fixed to a massive concrete 

slab. This sample was chosen to give a realistic tennis surface but one which could be 

considered rigid, to prevent surface deformation. If deformation did occur, its extent and 

therefore its effect on the impact would change with speed and angle, making it harder to 

interpret the results. An independent Surface Pace Rating (defined as 100(1- ~VX J by the 
~VI' 

ITF as discussed in Chapter 3) test on a sample of the same acrylic material gave a value of 

45, which according to simple rigid body theory is equivalent to a frictional value of 

II = 0.55. This is the highest value in the suggested range for the ITF "'MediumlMedium-

Fast" surface category, covering values from 30-45. The "Fast" category is suggested as 

values from 40 upwards. This overlap means that this particular surface could be placed in 

either category. 

Table 9.2 Nominal incoming speed, angle and spin values for the three parts of the first set of 
experiments. 

, 
Incoming speed Yin : Incoming angle Bin Incoming spin {Om 

(ms- I ) (degrees to horiz.) (rads- I
) 

Varying spin 30 24 -600 to 600 
_. .... __ . ... _------ .. _._---------_ .. _- '--- -_._--- -- ------ - .------ -. 

Varying speed 25 to 60 24 0 
i .--- -- --~----. _. -- ----------- -----. -------- -- .. - .- - ._- _.- - .-

j Varying angle 30 24 to 52 0 
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Table 9.2 shows the intended values for incoming speed, angle and spin for the different 

experiments. In practice the two "static" variables could not be kept totally constant, and 

their variations and the effect this had on the results is discussed in each section. 

Experiments varying spin 
and speed - angle stays 

constant 

Filmed at 400 fps 

Angle varies => wider vertical 
field of view needed 

Filmed at 240 fps 

Figure 9.4 Different frame aspect ratios needed for different impact angles. 

The impacts were filmed using a Kodak Motioncorder high speed video system running at 

400 frames per second for the changing spin and changing speed experiment and 240 

frames per second for the changing angle experiment. This difference was becau e the 

higher angles used in the latter experiment meant a much wider vertical field of view wa 

needed, and the design of the camera meant that it could then capture at a lower maximum 

frame rate (see Figure 9.4). Impacts where the ball did not land clo e to the centre of th 

video frame were immediately rejected and repeated in order to keep the angle a accurate 

as possible, although once the Bola had been set up for each set of impact it wa ery 

consistent. 

9.2.d 7000 fps filming 

The remaining tests were perfonned using a Phantom v4 camera (which wa not a ail bl 

for all the testing) at 7000 frames per second. This meant it was po ible t mea ur the 

deformation over a large number of frames (typically 30-35) during an impact, and the 

deformation shapes. 
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9.3 Experimental analysis 
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Figure 9.5 An example calibration grid, with the positional coordinate data after being 
manually sampled by clicking on intersection points. 

Figure 9.5 shows the calibration grid which was used - in this case for the different ball 

constructions (filmed at 7000 fps). The grid was carefully placed in line with the plane of 

motion of the ball to ensure accuracy. Repeated testing ensured that the ball remained 

extremely close to this plane. Points marked at the intersection of the gridlines were used 

to convert positional data measured in pixels on the computer to displacement in 

millimetres. This also compensated for any angular rotation of the camera, which can be 

seen here in the gradient of the lines (again the raw positional data as shown is measured 

downwards from the top of the image, which is why the skew in the grid points seems to 

be the opposite direction to the video frame). As long a foca l length lens as possible was 

used to put a reasonable distance between the camera and impact position, which virtually 

eliminated lens distortion effects. This is apparent in Figure 9.5, which shows no 

noticeable pincushion or barrel distortion. To verify this, pixel-to-physical calibration 

ratios were calculated for each row and column of points in turn. For the column , this 

gave 18 calibration values, with a standard deviation of less than 0.3% of the average, and 

all values within 0.52% of the average. For the rows, this gave 7 values, with a standard 

deviation of 0.13% of the average, and all values within 0.24% of the average. 

Figure 9.6 Two sample frames from oblique impacts filmed at 7000 fps , for (a) the first 
impact, and (b) the last impact of a specific ball , showing the wear effects on the markers 
used to measure speeds and spins. 
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Two example frames from the video footage for the first and last impact of one of the balls 

are shown in Figure 9.6. The effect of cloth wear on the markings can clearly be seen as a 

blurring effect, but it is also apparent that good accuracy could be maintained if "sharp" 

intersections of markings were chosen - i.e. points (a) or (c) in Figure 9.3 rather than (b). 

The position and angle of the ball were found in the analysis software by fitting a circle to 

the outline of the ball. This was found to be more accurate and consistent than alternative 

methods such as clicking three points on the ball circumference and mathematically 

calculating the centre co-ordinates. Unless the lighting is very good (and extremely 

consistent across the whole field of view), it is difficult to always mark these points 

accurately. The circle was resized to fit the size of the ball, and meant that it was possible 

to get good positional data in situations where the lighting was not perfect. The angular 

position was then found by clicking a particular point, usually the intersection of the 

markings drawn on the ball. This point was chosen to be at as high a radius as possible 

looking at the two-dimensional picture, so as to minimise angular error. The images could 

also be used to verify by eye that there was only spin about a single axis, i.e. purely topspin 

or backspin with no element of sidespin. 
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Figure 9.7 Examples of (a) raw positional data and (b) raw angular data, for an impact with 
backspin filmed at 400 frames per second. 

On almost all impacts filmed at 240 or 400 frames per second, positional and angle data 

was found for four frames before and four frames after impact. Those where the ball was in 

contact with the surface were not used. Figure 9.7 (a) shows an example of positional data, 

with each dot representing the position of the ball every 2.5 ms. It should be noted that the 

data is exported from the software such that a positive vertical position is measured 

downwards. The height of the ball above the ground was not important - the frame rate 

was not high enough to provide any useful information during contact, so only data for 

speeds and spins before and after impact were measured. The velocity components were 

calculated using the horizontal and vertical positions relative to time rather than to each 

other, assuming a linear fit - which will of course be a good assumption given the fairly 

high speeds and the short space of time used. The angular data is plotted against time in 

160 



Chapter 9 Oblique impact tests 

Figure 9.7 (b). The reference points used to find the angle were not necessarily the same 

before and after impact, so the relative vertical position of the two parts of the graph is 

meaningless. The gradient of the linear trendline gives the spin - in this case 18.1 rads- l of 

backspin before impact and 386.3 rads- l of topspin after impact (the time is shown in 

milliseconds hence the gradient must be multiplied by 1000 to give spin rates per second) . 
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Figure 9.8 (a) positional, and (b) angular displacement data for an oblique impact filmed at 
7000 fps. 

An example of positional and angular data for an impact filmed at the higher frame rate of 

7000 frames per second is shown in Figure 9.8. Because the resolution of this camera is not 

as high (256x 128 pixels compared to 640x320 pixels for the Motioncorder), the positions 

in all frames were measured to keep errors as low as possible. The effect of the lower 

resolution can be seen in slightly larger scatter in the data compared to Figure 9.7. The 

displacement data is offset so that the origin of the graph corresponds to what visually 

appeared to be that start of contact with the surface, although this is difficult to determine 

absolutely. Linear trendlines are shown on the graphs for the periods before and after 

contact, which were used to calculate the positional and angular velocities - in this case a 

small amount of backspin before the impact, and a much larger amount of topspin after. 
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9.4 Results - The effect of changing spin (constant speed and angle) 
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Figure 9.9 Variation of (a) incoming speed and (b) incoming angle with incoming spin, for 
impacts nominally at 30 ms·1 at 240 to the horizontal. 

The spins used ranged from approximately 600 rads· 1 backspin to 600 rads· 1 topspin. The 

intention was to project the balls with a constant speed and at a constant angle. However, 

this was impossible to achieve and there was a systematic error caused by the changing 

spin. Even over a fairly short distance the lift force caused by these fairly large spin rates 

wi ll affect the trajectory, and the differing speeds of the two wheels of the Bola also skew 

the angle. Figure 9.9 (a) shows that the incoming speed changes with incoming spin, 

giving a range of about ±2 ms·1 either side of the intended value of 30 ms· l • This suggests 

that the relative speed of the wheels is not perfectly calibrated to provide consistent speeds 

as the spin is varied by large amounts. An aerodynamic model was used to assess the effect 

of different applied spins on ball trajectories. According to this model , 600 rads·1 of top or 

back spin (applied to a ball fired at 30 ms· 1 at 24 degrees to the horizontal from a start 

height of one metre) made the ball land approximately 8 cm earlier or later respectively, 

but barely changed the speed. This suggests that the speed variation seen was due to the 

equipment. 

igure 9.9 (b) shows there was scatter in the angle, although the variation was not as great 

as for the speed. The angles for those impacts with incoming backspin were on average 

were an average of 24 ± 1.5 0 and appear randomly scattered. When incoming topspin wa 

applied there was a slight trend for increasing spin to produce a lower incoming angle, 

which varied from about 25.5 0 with no spin to 240 with 700 rads·1 of topspin. 
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9.4.a Speed results 
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Figure 9.10 (a) outgoing speed and (b) absolute COR against incoming spin . 

Figure 9.10 (a) shows how the outgoing speed varies with incoming spin. There is some 

evidence of a trend, but this is much more informative when the speed is normalised by 

dividing by the incoming speed, thus removing the systematic bias produced by the Bola 

projection machine. Figure 9.10 (b) shows that the speed ratio VOIII / Vin or "absolute COR" 

is fairly constant for impacts with incoming backspin, and then increases in a roughly 

linear fashion when topspin is applied. This is because as the incoming topspin increases, 

the ball reaches rolling conditions at an earlier stage of the impact. After rolling starts, the 

vertical reaction force no longer produces a horizontal frictional force . Therefore more 

topspin means a smaller horizontal impulse and a lower horizontal rebound velocity - and 

hence lower absolute speed. 
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Figure 9.11 Vertical COR against incoming spin . The 100 inch drop test limits are also shown. 

V 
The vertical COR ey (defined by ey = - ;.0' ) is shown against incoming spin in Figure 

y,. 

9. 11. This graph clearly shows that the COR significantly changes with inc ming 

backspin. This explains the slightly increased rebound speed at larger incoming backspin 

which was displayed in Figure 9.10 (b) - horizontal velocity components will dominate 

and hence the change is not very big. There is a slight downward trend of vertical R 
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when more topspin is applied, but this can be attributed to the bias in the incoming speed, 

as shown in Figure 9.9 (a) . As shown in Chapter 7, the COR would be expected to decrease 

as the incoming speed increased. At the vertical velocity component seen here, the COR 

for a purely normal impact would be around 0.7, suggesting that impacts with 200 rads· 1 of 

applied backspin match this most closely. 

9.4.b Spin results 
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Figure 9.12 (a) Outgoing spin against incoming spin, and (b) rolling spin ratio against 
incoming spin. 

Figure 9.12 (a) shows how the outgoing spin varies with incoming spin. There is an 

increasing trend which seems to fit a gentle curve. An alternative measure which can be 

used is the rolling spin ratio, calculated by dividing the actual rebound topspin by the 

topspin necessary to meet the definition of rolling based on the rebound speed given by 

OJ = Vir. This is shown in Figure 9.12 (b) and is calculated using both horizontal speed Vx 

and absolute speed Vr . There is a clear discontinuity between the balls impacting with 

backspin and those with topspin. The graph suggests that all the impacts given incoming 

topspin have entered the rolling phase by the end of the impact. The actual outgoing spin 

continues to increase as the incoming spin increases past that needed for rolling, becau e of 

the greater outgoing speed. 

Although it is difficult to tell accurately because of the absence of data between ± 100 

rads· 1 topspin, it would appear that the incoming spin required for the ball to start rolling 

by the end of the impact is somewhere between zero and 200 rads·1 of topspin. 
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Figure 9.13 Change in horizontal speed divided by change in vertical speed, against incoming 
spin. 

If the assumption is made that the frictional force F is proportional throughout impact to 

the reaction force R, and F = J.-lR , then it is possible to get an experimental measure of the 

friction: 

[9.1 ] 

The relationship D.Vx / D.Vy is plotted against incoming spin in Figure 9.13 . It is clear that 

this expression gives a consistent measure of friction for all the impacts with backspin. 

There is again a clear discontinuity at about zero incoming spin. The graph suggests that as 

the ball is given more incoming topspin, the ball rolls rather than slips for an increasing 

proportion of the contact time. This means that the change in horizontal velocity is 

reduced, and so the expression in [9.1] decreases. The graph does show however that as 

long as the ball slides throughout impact, D. Vx / D. Vy is a fairly consistent figure (if the ball 

rolls the expression F = J.-lR no longer holds, so D.Vx / D.Vy no longer represents a measure 

of frict ion). The value of friction predicted by this data is J.-l = 0.55 , which correspond to a 

Pace Rating of 45 and matches almost exactly that measured by an SPR test, despite the 

impact angle being considerably higher than the 16° used in that test 
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9.4.c Angle results 
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Figure 9.14 Outgoing (a) angle, and (b) angle ratio against incoming spin . 

Figure 9.14 shows the outgoing angle against the incoming spin - both as an absolute value 

and a ratio compared to the incoming angle, which brings the data for backspin and topspin 

closer together. It can be seen that the highest angle is obtained at roughly zero incoming 

spin, and the angle decreases as either topspin or backspin is applied. This is the result of 

two separate physical processes, explained by the force-time schematics in Figure 9.15 . 
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Figure 9.15 Schematic profiles for reaction and friction forces. 

irstly, consider the right-hand side of Figure 9.15 - the balls impacting with t pspin. A 

has been shown, for all these impacts the ball starts off slipping but is rolling by the time it 

leaves the surface. As the incoming spin increases, a greater proportion of the contact time 

i spent rolling, During the slipping period, F =).JR but when rolling ccur F drop to 

very close to zero. Therefore with more topspin the horizontal impulse given by the 
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integral J Fdt decreases. As shown in Figure 9.11, the COR and hence the change in 

vertical velocity stays almost constant. Given these two factors the rebound angle will 

reduce. 

Now consider impacts with backspin, as shown on the left-hand side of Figure 9.15. As 

more backspin is applied, the vertical COR reduces (as shown in the COR against 

incoming spin in Figure 9.11). Because the friction and hence 6.Vx /6.Vy remains constant, 

!:l Vx as well as 6. Vy will be reduced. Because of the signs of the incoming components, this 

gives a reduced Vy,,,,, but an increased Vx".,' This is illustrated by rearranging the frictional 

relationship as in equation [9.2] below. If /-l stays the same (which is to be expected, since 

it is a physical property of the surface) and e decreases, Vx"., will increase since Vv," is 

negative. 

v -v 
Your Ym 

= 
-Vy", (1 +e) 

Vx"., = Vx", + Vy",/-l (1 + e) [9.2] 

The angle will therefore be increased as backspin increases (and is quite sensitive to 

changes in components) although the speed will not change significantly because of the 

increase in one component and decrease in the other. This is shown by the results in Figure 

9.10. As a numerical example of this effect, consider an impact with V = 27 and 
XIII 

Vy,. == -12. If 6.Vx / !:lVy remains constant at 0.55, an impact with COR of 0.75 would 

rebound with Vx,,", = 15.45 and Vy,,", == 9, whereas an impact with COR of 0.70 would 

rebound with Vx",,, == 15.78 and VYo., == 8.4. These are fairly small changes in the velocity 

components (and in fact the COR changes by far more than this over the range of backspin 

tested), but change the angle from 30.2° to 28.0°. 
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Figure 9.16 Calculated slide length for oblique impacts with various spins, shown as (a) an 
absolute value, and (b) divided by the incoming speed , 

Figure 9.16 shows the slide length - the horizontal distance between the start and end of 

the contact. This was found by extrapolating a straight line from the positional data to an 

interception with the ground level. It is clear that the slide length increases as the spin 

moves away from zero. However, if the ratio of slide length to incoming horizontal speed 

is used, the value is fairly constant. This suggests that the slide length depends only on 

horizontal speed, and is not affected by spin - and is an indication that the contact time 

does not significantly change with spin. 

9.5 Results - the effect of changing speed (constant angle and spin) 
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Figure 9.17 The variation of (a) incoming angle V'n, and (b) incoming spin li>tn, with incoming 
speed. 

As with the changing spin experiment, there was an element of scatter in the incoming 

angle and spin, the two properties intended to be constant. Figure 9.17 shows the change in 

(a incoming angle and (b) incoming spin as the velocity was increased. The angle has a 

clear reduction with increasing incoming speed as is to be expected - for motion b tween a 

fixed start and end point, a higher speed will lead to a straighter trajectory and therefore a 

shallower angle. This change in angle is not particularly high however dropping fr m 

about 240 at 25 ms-
I 

to about 220 at 60 ms-
I
. The spin is randomly scattered, averaging 
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around 60 rads- I of backspin. Ideally the balls would have been projected without spin 

(zero incoming spin would mean that speed should not affect slipping/ro lling conditions), 

but this was not as important as the main criterion of keeping the spin constant, which was 

achieved. 

9.S.a Speed results 
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Figure 9.19 COR against incoming vertical speed, compared to COR for normal impacts. 

he relationship between incoming and outgoing speed is shown in Figure 9.18. As would 

be expected, there is a strong dependence, which is linear. Figure 9.19 shows the vertical 

OR plotted against the vertical incoming speed. The COR drops from about 0.8 to 0.6 

over the velocity range. Also included on this figure is the COR measured from purely 

nonnal impacts. For the same incoming vertical velocity component (including 7 ms-I 

where the approval tests are performed), the oblique impacts have a higher OR in each 

case. 
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Figure 9.20 Change in horizontal speed divided by change in vertical speed, against incoming 
speed. 

Figure 9.20 plots the expression tlVx / tlVy against incoming speed. Although there is an 

amount of scatter, the relation is fairly steady, suggesting a frictional measurement of 

about 0.56. This ties in extremely well with the measured SPR of 45 , which gives 

tlV / tlV = 0.55. This constant value of tlVx / tlVy suggests that the impacts all slide 
x y 

throughout - or that any periods of rolling are short and do not affect the outgoing 

conditions. 

9. S.b Spin results 

700 
~ 600 (J) 

U 
ro 500 .!;:. 

l 400 
~ 
'S 300 
0 

.!; 200 
a. 
III 
a. 100 0 
~ 

0 

(a) . ____ 1. ___ L __ .L __ .L __ ... L .. .!... ~ __ 
• : I : . : . . : : • 

, J J J. L __ ; _ , _ 

.. '. J--:- ~:: -.. ~f :::::;:~:::: j:. ·:::f ··--··i --.--
... t:·:::t::::j::':'·}'j' ~ . --~ '~u~.~.~~ ~~l 

: : : : ~ '" v~ 
.:-- .. ~ -- -- ~-- -- -- ~ '. • I· 

I I I '~-/Y 7'""' /,, -,rr-r 
: : : ,_ • • , -.J 

20 30 40 50 60 
hcoming speed V ln (mls) 

.8. 100 
(J) 

Cl 

£ 80 e 
Q) 

g> 60 
'E 
Q) 

~ 40 
a.. 

20 

20 

. : 

t : • 0 : ~ 
i 

•• 0 

• using horizontal speed .. . -t- .... +-- .. -;--.. --
o using absolute speed l : (b) 

30 40 50 60 
Incoming speed V ln (mls) 

Figure 9.21 (a) Topspin out, and (b) Topspin out as a percentage of rolling spin, against 
incoming speed. 

The outgoing spin is plotted against incoming speed in Figure 9.21 (a). This graph simply 

shows the spin increasing with speed as would be expected (a higher speed leads to a larger 

reaction force, hence a larger frictional force and rotational moment), but in Figure 9.21 (b) 

the spin is plotted as a percentage of rolling spin, calculated from the outgoing speed u ing 

OJ = ~ as before. At the lowest impact speed it seems the ball may be rolling (or at lea t 
r 

close to rolling) by the end of impact, but as the speed increases we move further away 

from the rolling condition and the ball slips throughout impact. A possible reason for thi 
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can be seen by considering the equation below defining the minimum angle for rolling Blnin 

in terms of coefficient of friction J.1 and vertical coefficient of restitution e: 

2 
tan (Jmin = ( ) 

5J.11+e 
[9.3] 

Equation [9.3] gives the theoretical limiting angle for which an impact with no incoming 

spin will just start to roll at the end of contact. Figure 9.19 showed that the value of e 
dropped from around 0.8 to 0.6 as the incoming vertical speed increased from 10 to 20 

ms· l . For a value of f.1 = 0.55, this would raise the angle boundary from 22° to 24.4°. 

Figure 9.17 (a) shows that the observed incoming angle decreased from 24.5° to 22.5°. 

According to this theory, as the incoming speed increases from 10 to 20 ms· l
, the impact 

changes from slipping/rolling to purely slipping. It is impossible to see this from the data in 

Figure 9.21 (a), but Figure 9.21 (b) does suggest that the lowest speed impacts may be 

rolling if the horizontal speed is used to calculate rolling spin. The fact that the proportion 

of rolling spin drops as soon as the incoming speed increases suggests that even for these 

impacts, rolling is only just attained by the end of the impact. This means that the 

horizontal impulse is barely affected by the rolling, as the reaction force will be very low 

for the short period when rolling happens. Therefore i1Vx / i1Vy is probably a good 

measure of friction throughout this set oftests. This expression is shown in Figure 9.20 and 

gives a fairly consistent value averaging to about 0.56, albeit with a degree of scatter. 

9.5.c Angle results 
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Figure 9.22 (a) outgoing angle Bout, and (b) angle ratio Bout / Bin against incoming speed V'n. 

igure 9.22 (a) shows how the outgoing angle decreases as the incoming speed increases. 

his effect is increased slightly by the bias in incoming angle, which also reduces a the 

speed increases. However, Figure 9.22 (b) plots the angle ratio (8
nUl 

/B
in

) and the trend i 

sti Il obvious . The reason for this is the reduction in vertical COR which happens due to the 

increased vertical incoming speed. As previously discussed in section 9.4.c, this decrea es 
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the outgoing vertical speed and increases the outgoing horizontal speed, lowering the 

angle. 

9.6 Results· the effect of changing angle (constant speed and spin) 

This experiment was much more difficult to set up than the two with varying speeds and 

spins - in both of the earlier sets of tests the Bola could be more or less left in one position 

and the desired variable changed by settings on the machine. Changing the angle meant 

moving the relative position of the Bola and the target, and consequent fine-tuning to keep 

the impact in the correct place. Therefore only six separate angles were used, with three 

impacts at each angle. 
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Figure 9.23 The effect of incoming angle on (a) incoming speed and (b) incoming spin o 

The variation of incoming speed and spin (ideally both constant) with angle is shown in 

Figure 9.23 (a) and (b) respectively. The speed is fairly consistent, as is the spin. Both vary 

at the lowest angle, suggesting the bottom wheel of the Bola was spinning too fast. As the 

angle was changed by simply rotating the whole device, it seems likely that this spin 

difference was simply an experimental setup error. 
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9.6.a Speed results 
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Figure 9.24 (a) Outgoing speed vs . incoming angle, (b) COR vs. incoming angle, and (c) COR 
against incoming vertical speed (including normal impacts for comparison) . 

The effect of incoming angle on outgoing speed is shown in Figure 9.24 (a), and the 

vertical COR in Figure 9.24 (b). The rebound speed increases with steeper angles apart 

from the very lowest angle, which is significantly faster than the one above it. Although 

the vertical COR decreases with increasing angle (and therefore incoming vertical speed) 

as would be expected, Figure 9.24 (c) shows that it remains higher than for normal impact 

having the same vertical velocity. The difference widens significantly as the angle 

becomes steeper. 

Using a value of J.l = 0.55 (as measured by the SPR friction tests) and a typical COR valu 

of e = 0.75, the theoretical equation [9.3] developed in Chapter 3 gives a minimum angle 

of 22.6°, above which rolling will occur. It is possible therefore that this explains the 

discontinuity in the speed in Figure 9.24 (a), and suggests that all the impacts apart from 

those ringed contain some rolling. As the angle to the horizontal increases, the incoming 

vertical velocity will also increase and the horizontal velocity will decrease. The former 

will increase the reaction force and hence the frictional moment and rate of pin 

application. The latter will decrease the spin needed for rolling to occur as defined by 

(J) = ~ . Both bring about the onset of rolling earlier in the impact. 
r 
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9.6.b Spin results 
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Figure 9.25 (a) Topspin out, and (b) percentage rolling spin, against incoming angle. 

Figure 9,25 (a) shows outgoing topspin plotted against incoming angle. The outgoing spin 

drops significantly with increasing angle of impact, from about 600 rads- I at 250
, to about 

300 rads- I at 52°. This might seem surprising given the statement above that all angles 

above the lowest one will end in rolling, but of course both the incoming and the outgoing 

horizontal speed reduce by almost half as the angle increases. This is taken into account in 

Figure 9.25 (b) which plots the percentage rolling spin, which is much closer to being 

constant. It should be noted that the lower outgoing spin for the impacts ringed (whether 

absolute value or percentage of rolling spin) should not be taken as absolute evidence of 

the angle needed for rolling to occur, as the impacts at the lower angle impacted with 

significantly more backspin (100 rads-I compared to an average of 40 rads-I for other 

angles), This difference does not totally account for the lower values of outgoing spin 

ringed in Figure 9,25 (a), but does explain the sharp discrepancy. 

9.6.c Angle results 
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Figure 9.26 (a) Outgoing angle, and (b) angle ratio, against incoming angle. 

The outgoing angle is shown plotted against the incoming angle in Figure 9.26 (a), A 

steeper incoming angle leads to a steeper outgoing angle, but it is difficult to draw many 
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further conclusions. Figure 9 .26 (b) shows the angle ratio (Bout / Bin) and the trend appears 

to be that as the angle is increased this ratio decreases, thus an increase in incoming angle 

leads to a smaller increase in outgoing angle . The effect of an impact which slips 

throughout can be clearly seen in that the angle ratio is highest at the limiting incoming 

angle for rolling, and drops either side. 

9.7 Results - the effect of ball construction 
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Figure 9.27 Variation of (a) incoming speed and (b) incoming angle with incoming spin, for 
impacts nominally at 30 ms-1 at 24° to the horizontal for three different ball types. 

There was again a variation of impact speed and angle with spin when the first set of tests 

was repeated with different ball types, as can be seen in Figure 9.27. The speed showed the 

same trend of increasing from the set value when either topspin or backspin was applied, 

and the same happened with all three balls. The angle remained roughly clustered around 

24° (albeit with a fair degree of scatter) apart from the impacts with large amounts of 

incoming backspin, which had a noticeably higher angle. 

Figure 9.28 (a) below shows a comparison of outgoing ball speed for the three ball types. 

omewhat surprisingly, there is no significant effect of construction on ball rebound pe d. 

is is largely because the speed is dominated by the horizontal component, which do 

not change much, as shown in Figure 9.28 (b). The main difference can be seen in th 

ertical ve locity component, which is shown in Figure 9.28 (c), and normali ed to R in 

igure 9.28 (d). The pressurised balls have a COR that is consistently 0.05 higher than the 

pressureless balls across the spin range, which similarly have a COR 0.05 hi gher than the 

punctured balls. Also noticeable is that the COR drops as more backspin is applied for all 

balls. The pressurised balls seem to have a fairly consistent COR with top pin, but the 

other two construction types both drop. These speed results sugge t that all ball w uld 

reach the player at the same time (since horizontal speed is the dominant fact r Ib.it t 

different height, but of course that assumes they have been hit at the same peed - and the 

peed of the ball off the racket is likely to follow the same trends as the OR data. 
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Figure 9.28 (a-d) The effect of ball construction on rebound speeds. (a) absolute speed, (b) 
horizontal speed, (c) vertical speed and (d) COR are shown. 
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Figure 9.29 Outgoing spin against incoming spin. for three ball types, expressed as (a) an 
absolute value, and (b) a percentage of the calculated rolling spin. 

igure 9.29 shows the outgoing spin, expressed as both an absolute value and c 

proportion of the absolute rolling spin. In both cases there is no 

b tween the ball constructions. Increased topspin before impact led to increa e t p pin 

after impact. The rolling spin percentage seems to level off, sugg sting that riling i 

occurring with incoming topspin, but this is not conclusive. 
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Figure 9.30 Change in horizontal velocity divided by change in vertical velocity, against 
incoming spin, for three ball types. 

The expression ~VX is shown in Figure 9.30. As found previously, this gives a reasonably 
~Vy 

consistent value (showing no difference between ball types) when the ball is sliding 

throughout impact, suggesting here a friction value of about 0.50 to 0.55 . It decreases as 

topspin applies, suggesting that the limiting value for rolling for all ball types is about zero 

incoming spin. There is also an increase with large amounts of applied backspin. 
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Figure 9.31 Outgoing (a) angle and (b) angle ratio against incoming spin, for three ball types. 

The outgoing angle for each ball type is shown in Figure 9.31 (a). It is difficult to pick ut 

any strong trend between balls, but the results become clearer when the angle i normali ed 

by dividing by the incoming angle to give an angle ratio Soul/Sin as in Figure 9.31 (b). It i 

clear that the punctured ball always has a lower angle ratio than the other two ball he 

pressurised and pressureless balls have a similar angle ratio for those impact with 

incoming backspin, but the pressurised ball bounces higher when there i inc mm 

topspi n, 
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9.8 Results - the effect of surface type 
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impacts nominally at 30 ms" at 24 0 to the horizontal for three different surfaces. 

Figure 9.32 shows how the impact speed and angle varied with different value of applied 

spin. The same trends are seen for each surface, although the values are not exactly the 

arne - because all the tests were performed on each surface in turn and so the individual 

wheel speeds could not be totally consistent between surfaces. 
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Figure 9.33 (a) Experimental and (b) stylistic data for outgoing speed versus spin; (c-d) 
outgoing spin expressed as absolute and relative to rolling values. 

he effect of surface type on outgoing speed is shown in Figure 9.33 (a) . A would b 

expected the choice of surface (and therefore surface friction) has a significant f~ t n 

peed. With no spin or backspin, the low, medium and high friction urfac pr du 
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consistent speeds of about 24, 20 and 17 ms- I
. These differences become much less 

apparent as the balls are projected with topspin. As each ball type reaches the spin needed 

for rolling, they join the same speed trendline - shown stylistically in Figure 9.33 (b). This 

is born out by the spin data in Figure 9.33 (c-d). The slow and medium surfaces have 

similar outgoing spins, consistently above those for the fast surface apart from those 

impacts with high incoming topspin. Plotting the data as a rolling spin percentage shows 

more evidence for the slipping/rolling boundary in each case. The data suggests that the 

slipping rolling boundaries are between 0 and 100 rads- 1 of backspin for the slow surface, 

around 200 rads- I of topspin for the medium surface and around 600 rads- I of topspin for 

the fast surface (which just reaches 100% rolling spin at the maximum applied incoming 

spin). 
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Figure 9.34 COR against incoming spin, for oblique impact on three different surfaces. 

The vertical outgoing velocity - expressed as COR - is fairly consistent across surfaces 

(Figure 9.34). Each surface shows the same trend of having a peak COR at zero incoming 

spin, and significantly lower value when top or backspin is applied. At some spins the fast 

surface seems to give a slightly lower COR but it is difficult to say if this is statistically 

significant. 
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Figure 9.35 C~ange in horizontal velocity divided by change in vertical velocity, for oblique 
impact on three different surfaces. 
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ince the expression ~ Vx can be approximated to the friction (as discussion earlier) the 
~Vy 

different surfaces would be expected to produce different values. In all three cases ( ee 

Figure 9.35), applying less backspin (i.e. more topspin) produces a slowly decreasing value 

of the expression until the spin boundary for rolling is reached. 

40 ,-----~~~--~~====~ 
(a) . i . -M edium 

C 35 ·····t····· ~ ·····:·· ···-!-····:····· x Fast 
;; ,p;' :0 0 : o'l, 0 Slow 

<::>0 30 .. o .. re ............... "'; ....... : .. : : 
S! .. : : _ : 
g> 25 ")(: .... , . . ~ )O(.:x," .. ~ 0 

til xX x : >M . >s« : -'<>I< : • 
.~ 20 X lL : . .:..~, : ~ ... ~ 
o '<>" 

-S 15 . ..:. Ie' .... o~ ..... , .... 
o 

·800 ·600 -400 ·200 0 200 400 600 800 
hcoming topspin , CIlln (rad/s) 

1.6 Tr==:=!=::;;:::~-:-~--~~----, 

: ~a~iuml· ··!····~······t ..... : ...... ~~~ . .,..= 1.4 -;; 
<1:>0 1.2 
. 2 
~ 1.0 
S! 
Cl 
~ 0.8 

o Slow :.: 
L-Cr-~O ' . • . 

~ . oi. • .. ~ . ~ ... \ ~ ,.. : • : 
o 4!.~. : : d' • 

- f i · '". - -,' . r )( ~¥. : 

X xx~x : ~ xx~ x x%< 0 
: x ~ .. l:' 

0.6 +----+---i--+---.,--.--+--.---I 
·800 ·600 ·400 ·200 0 200 400 600 800 

Incoming topspin , CIlln (rad/s) 

Figure 9.36 (a) Outgoing angle and (b) angle ratio for impacts on three different surfaces. 

The effect of surface friction on angle is difficult to analyse until the angle is normalised 

by dividing by the incoming angle (Figure 9.36), For low to moderate amounts of top and 

backspin, the fast surface always leads to the most shallow angles, and the slow surface to 

the steepest. This does not however mean that the ball will necessarily bounce through any 

higher but that for a fairly similar value of COR (and hence vertical speed), the surface 

wi ll have different horizontal speeds. This can be seen in the velocity plots in Figure 9.37. 

The different spins for each surface are not distinguished. 
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Figure 9.37 Vertical against horizontal outgoing velocities for oblique impacts on different 
surfaces, depicting typical velocity vectors for each surface type. 
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9.9 Deformation tests 

9.9.a Introduction 

Results presented in this chapter suggest that horizontal and vertical velocity components 

cannot be totally separated. Many authors have assumed that a model can be created by 

assuming a normal model with the correct velocity component, and adding a horizontal 

frictional term. Data here found that oblique impacts had a different COR than would be 

found by taking the incoming vertical velocity and applying that to a normal test. An 

experiment was therefore performed to try to identify the physical mechanism behind this 

COR difference. 

9.9.b Experimental setup 

The impact speed of a standard 100 inch drop test (6.8 ms· l
) was chosen as the target 

velocity component. The balls were fired from an air cannon as spin was not required , and 

this method achieves a higher accuracy than using rotating wheels. This accuracy was 

particularly important as the impact was filmed extremely close up (a sample frame i 

shown in Figure 9.38) in order to be able to measure deformations, meaning that fewer 

frames were available before and after impact to calculate velocities. The errors in the 

velocities will therefore be higher than for previous experiments. 

Figure 9.38 Sample frame from the deformation testing. 

The geometry of the air cannon position relative to the surface sample was used t 

calculate a required horizontal speed in order to achieve the same vertical peed of .8 

ms· l
. Light gates were positioned in front of the surface and the air cannon pre ure 

adjusted until the horizontal speed measured by the gates was as required. The imp ct 

were filmed at 7000 frames per second using the Phantom camera previously de cribed. 
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9.9.c Results - speeds 

1.2 -- .~-.. --.--~--------~--.. ~ 
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ncoming angle (0) 

Figure 9.39 COR data for impacts at various angles with the same normal velocity 
component. 

The COR for each impact is shown in Figure 9.39, together with the effect one standard 

deviation either way on the measured velocity makes to the COR. This shows that there 

seems to be a sudden decrease in COR as the angle is raised above 20 degrees, although 

the errors are large. These errors were calculated by finding the standard deviation of the 

incoming and outgoing speeds for each impact, and finding the maximum possible change 

on the COR (e.g. adding one outgoing SD to the outgoing speed and subtracting the 

corresponding incoming SD from the incoming speed would give the max COR). This is a 

reflection on the problems with measuring speed from a relatively small number of data 

points over a short time period. It can be seen that the steeper the angle, the smaller the 

error - because the speed reduces and thus the ball remains in the field of view longer. 

9.9.d Results - deformation shapes 

Examples of the deformed shapes of the ball are shown in Table 9.3. For each angle a 

single frame is reproduced at the point of maximum deflection. It is immediately clear that 

for this vertical impact velocity, all the impacts keep roughly the same deformation shape, 

and the part of the ball seen above the surface stays close to a truncated sphere. This 

spherical shape is not perfect, as a small amount of bulging can be seen outside the circular 

line drawn. This will lead to an error in any assumption of mass distribution, moving the 

centre of mass and changing the moment of inertia slightly. This error will however be 

acceptably small, as the images shown are at maximum deflection and therefore the "worst 

case" frames, and even in these images the bulging shown is not a large feature. 
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Table 9.3 Comparison of deflection shapes for oblique impacts at various angles. 

Impact angle to horizontal 
(degrees) 

14 

17 

21 

26 

(normal impact) 
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9.9.e Results - positional data 
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Figure 9.40 (a-d) Vertical displacement against time for three balls at each angle. 

Vertical positional data is shown in Figure 9.40 (a-d). It can be seen that there is a degree 

of scatter in the data, but it is not consistent in terms of which ball deforms more. The size 

of the ball on the video footage means that the analysis error is as low as possible. 
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Figure 9.41 Comparison of vertical displacements for oblique impacts - one ball shown 
at various angles with the same vertical velocity component, plotted against (a) horizontal 
displacement, and (b) time. 
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The "middle" ball from each graph in Figure 9.40 was used to compare the positional data 

at each angle as shown in Figure 9.4l. The ball projected at the steepest angle of 26 

degrees has a deformation of a little under two millimetres more than all the other impacts, 

which were reasonably simjlar. Tills is particularly noticeable when the vertical 

displacement is plotted relative to time as in Figure 9.4l. 

To investigate this further, the equation developed in Chapter 3 was used to estimate the 

minimum angle needed for rolling to occur. It was found that the steepest angle of 27° was 

the only one where the impact angle exceeded the reqillred minimum angle for rolling. It is 

unclear if this is relevant however, as the rolling will only happen towards the end of the 

impact period. 

9.10 Discussion 

9.10.a The effect of impact conditions on "friction" measurements 

Throughout this chapter, the relationsillp ~VX / ~Vy has been used as an experimental 

measure of the friction between ball and surface during impact. A combined set of data 

from the first part ofthis chapter (balls on a single surface varying spin, speed and angle in 

turn) was used to look at this calculated variable over a variety of impact conditions. 
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Figure 9.42 Change in horizontal velocity divided by change in vertical velocity, plotted 
against calculated rolling spin . The data is split into the three sets where the spin, speed and 
angle were varied in turn. 

Figure 9.42 shows ~VX / ~Vy plotted against calculated rolling spin. hi a cl ar 

difference between those impacts which were sliding throughout (wh r the fri ti n 

measurement" is fairly consistent) and those which contained om r lling. 
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Figure 9.43 Change in horizontal velocity divided by change in vertical velocity, plotted 
against incoming horizontal velocity. 

Figure 9.43 shows the same data plotted against incoming horizontal velocity. Tn this graph 

the same shape of symbol is used for each impact series (varying spin, speed or angle) but 

a solid shape is used for those impacts where the outgoing spin is below 80% of calculated 

rolling spin (using absolute speed), and an outline shape for those with pin above thi 

value. This arbitrary value was chosen as the rolling spin boundary is not exact and cano t 

be calculated with absolute confidence using either horizontal or ab olute pe d. Thi 

graph again shows that for those impacts which slide throughout, the mea urement 

i1Vx / i1Vy is a good consistent value, and also does not appear to change with pe d. 

It is also worth noting that although the data shown here seem to be ov r a fairly mall 

range of horizontal speeds, the important parameter in terms of mea uring the fri ti n i 

the relative velocity between the bottom of the ball and the surface. hi will ary from 

extremely high (for impacts beginning with backspin) to almost zero (for imp ct nding at 

rolling spin) during the contact period. The fact that a con i tent valu f Vr / Vy i 

produced for all the cases shown where sliding dominate sugg st that it i n t p d

dependent. 

9.10.b The effect of deformation shape on energy loss 

Data in this chapter has repeatedly suggested that oblique impact 

COR than normal impacts with the same vertical velocity c mp nent. In an 

understand this, the deformations during an oblique impact wer 1 

Consider Figure 9.34, showing the COR agajnst pin for urface f thr diffl r nt fri ti n. 

The nominal vertical velocity for 30 ms·) at 24° is 12.2 m . 1. At thi rmal 

impact would have a COR of about 0.7. The incoming pin giving thi am R 
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for oblique impacts are about 400 rads·1 of backspin for the medium and slow surfaces and 

200-300 rads· 1 of backspin for the fast surface. 
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Figure 9.44 Angular displacement against time, for an oblique impact with 400 rads" of 
incoming backspin. 

An example of angular displacement versus time is shown in Figure 9.44 for an impact on 

the medium friction surface with 403 rads· 1 of incoming backspin, which had a vertical 

COR of 0.70. The rotational data is normalised to give zero displacement at the start of 

impact. It is immediately apparent that the curve is roughly symmetrical, with low pin 

rates in the period 1 to 3 ms where the forces are highest. When the video footage is 

watched, it is clear that the incoming spin rate affects ball deformation. Balls with 

incoming topspin keep a much more spherical shape than those with backspin, and there i 

very little deformation of the top half of the ball. In contrast, those with large amounts of 

incoming backspin experience a buckling of the top portion of the ball , together with 

vibrational oscillations after impact. Both of these processes will result in energy loss. It i 

also apparent that the highest buckling of the top portion of the ball occurs when one part 

of the structure remains at the same angular position, and that the buckling 0 curs al ng 

the same direction as the motion. A comparison of deformation shapes can be e n in 

able 9.4 and Table 9.5 , which show alternate frames for impacts with 600 rad ·1 f 

backspin and 720 rads·
1 

of incoming topspin respectively. Although there is b 11 

deformation in the impact with applied topspin, it is much less than that for the impact with 

applied backspin, which is reflected in the energy losses seen in the OR data. 
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Table 9.4 Deformation shapes for a ball impacting at 27 degrees to the horizontal with 600 
rads·1 of backspin. 
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Table 9.5 Deformation shapes for a ball impacting at 23 degrees to the horizontal with 720 
rads·1 of topspin . 
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9.11 Summary 

In this chapter, a series of experimental oblique impacts was presented which attempted to 

isolate each in turn of the many factors affecting ball-surface interaction, specifically: 

• Ball speed before impact 

• Ball angle before impact 

• Ball spin before impact 

• Ball construction 

• Court surface friction 

The impacts were filmed at a mixture of 240, 400 and 7000 frames per second, and the 

footage used to measure velocities and spin rates before and after impact. 

9.11.a The effect of spin 

It is clear from Figure 9 .12 (b) that for the conditions used in this experiment, there is an 

incoming spin which caused rolling to occur. This change from slipping throughout to just 

rolling at the end of the impact happened to occur at around zero incoming spin, but this is 

merely a function of the angle chosen and the friction between the ball and the surface. On 

a slower surface with higher friction, balls would need to start with backspin to maintain 

slipping throughout impact. Figure 9.10 suggests that the speed stays fairly constant for a 

range of spins if the slipping condition applies. As more and more time is spent rolling the 

cumulative effect of the frictional force reduces and the ball speeds up. When large 

amounts of backspin are applied, the vertical COR drops. When there is a small amount of 

spin or the ball rolls (including large topspin) the COR is almost constant. When the ball 

slips throughout impact, the expression i\Vx / i\Vy is almost constant and seems a good 

measure of the friction between ball and surface. The highest (steepest) outgoing angle 

occurred for the impacts which were on the boundary of slipping and rolling, which was 

with almost no incoming spin. As spin was applied as either topspin or backspin, the angle 

decreased. This was a result of two different physical mechanisms. 

9.11.b The effect of speed 

For most of the range of speeds, the ball slipped throughout impact. Even at the lowest 

speed where it may be rolling as it leaves the surface, it seems likely that rolling has only 

just occurred before the end of the contact period. This means that the drop in frictional 

force will have very little effect. The vertical COR dropped significantly with incoming 

speed, but remains higher than for normal impacts with the same vertical velocity 

component. 
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9.11.c The effect of angle 

Again there is only one set of impacts which appear to contain rolling, but in this case there 

is a noticeable effect on the outgoing conditions. The lowest speed and highest spin are 

achieved for those conditions which are the boundary between sliding throughout and 

rolling. Moving the angle either way increases the speed and lowers the spin. 

9.11.d The effect of ball construction 

Ball construction does not have as great an effect on ball speed as might be expected, as 

speed is dominated by the horizontal component. The COR does vary significantly, and 

therefore the rebound angle changes. This means that the ball would reach the opposing 

player at the same time, but at a different height - if it was hit at the same speed. The 

different balls will of course come off the racket at different speeds however. There was no 

significant difference in spin generated by the different ball types. 

9.11.e The effect of surface friction 

As might be expected, the surface friction has a large effect on ball rebound speed. This 

difference is reduced as incoming topspin is applied, as the different surfaces approach the 

same trendline of speed versus spin. The slow, medium and fast surfaces seem to achieve 

rolling with applied spins of zero, 200 and 600 rads- I of topspin respectively. There is no 

significant COR difference across the surfaces, meaning the balls will bounce to similar 

heights, but there is a large difference in horizontal component and therefore both time to 

reach the opponent and angle of trajectory. 

9.11.' The effect of ball deformation shapes 

The video footage from the main sets of tests suggested that ball deformation was an 

important factor in energy loss, and that ball deformation depends on the spin rate 

throughout the impact - and therefore incoming spin and surface friction. A separate 

experiment found that the vertical deformation stayed constant for balls fired at different 

angles with the same vertical velocity component (7 ms- I
, the same as a normal 100 inch 

drop test), apart from the steepest angle tested. This angle was the only angle where the 

ball rolled by the end of the impact (according to simple theory). This experiment also 

found that the visible part of the ball retains the same shape above the surface and appears 

to be a truncated sphere. This contrasts with the video footage of impacts with higher 

vertical velocity components (12 to 15 ms- I
), where the ball most definitely changes shape. 

For these impacts with higher vertical speed, the spin throughout impact seems to be the 

key to a changing COR due to its effect on ball deformation shapes and therefore energy 

loss - when the applied spin means that the angular rotation stays low through the impact 

period where the forces are highest, there is more deflection and thus more energy loss. 

Momentum causes the part of the ball shell at the rear (if a line is drawn along the velocity 
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vector) to deform or buckle inwards to varying degrees. When there is topspin applied, this 

does not happen as this momentum is taken round the shape of the ball by the angular 

rotation. 
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10 Oblique impact model 

10.1 Introduction 

The normal model previously presented proved to simulate ball impacts very well, and 

gave good predictions of the force data throughout the impact period as well as just 

outgoing conditions. This suggested that it was a good representation of the physics of the 

impact and could be extended to a second dimension. In this chapter further properties of 

horizontal displacement, velocity and force are introduced, as well as the rotation variables 

needed to predict spin. The model was created as a standalone program as it became too 

complex to be calculated easily in a spreadsheet. A variety of experimental data was used 

to validate the model predictions. 

10.2 Model Overview 

A number of authors have proposed normal models which give reasonable representations 

of normal impacts, but oblique spinning models are considerably more complicated. One 

aspect in particular which has never been modelled analytically is the generation of spin, 

and how the ball deformation affects this. 

As in the normal model, the forces on the ball are made up of a combination of structural 

stiffness, damping and impUlsive reaction forces. The first two of these can be directly 

transferred into an oblique model, but the impulsive force is more complicated. Each of 

these forces is discussed in more detail below. 

One of the first assumptions to be made in the oblique model was that the vertical 

displacements, velocities and forces (apart from the impulsive force) acted in the same way 

as for a normal model with the same components. The experimental data in Chapter 9 

suggested that this is not strictly the case, but the deformation shapes are far too complex 

to be easily modelled. 

Throughout this chapter, three ball construction types were considered. The oversized ball. 

although it behaved somewhat differently in terms of force data throughout impact, had 

rebound characteristics so close to a conventional pressurised ball that it was not 

considered further, and the decision made not to include it in the oblique model. The only 

difference between the oversized and normal pressurised ball was the force data, which 

could not be measured for oblique impacts. 
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10.2.a Ball geometry and deformation shapes 

v 

Figure 10.1 Defining the geometry and model space of the ball during oblique impact. 

A tennis ball part-way through an oblique impact is show in Figure 10.1. A single variable 

x was used to define the position in the normal impact model of chapter 8, but the axes are 

changed when a second degree of freedom is introduced. The variable x is now u ed to 

denote horizontal movement, and y the vertical displacement of the centre of mas . The 

ball has velocity V acting at an angle B to the horizontal. Forces acting on the ball are a 

normal reaction force R and a horizontal frictional force F, which will be di cu d in m r 

detai l. 

The geometry of a deformed tennis ball was discussed in detail in Chapter 8. To 

ummarise, the shape that the ball assumes when it is compressed is an important fa t r in 

creating an accurate model. The model is defined in terms of a centre f m 

displacement, but this must be related to physical ball defonnation in order to calculate 

both the damping and impulsive forces. It is also important when the model i extended t 

imulate oblique impacts. Spin on the ball is generated by forces which do n tact thr ugh 

the centre of mass, and therefore the moment arm (defined as the perpendicUlar di t n 

between the centre of mass and the line of action of the force cau ing the m ment i 

important. After calculating a rotational torque, the moment of inertia of a de rm d ball 

mu t also be taken into account to find the rotational acceleration. 

In ummary, the work in Chapter 8 considered two deformation a sumpti n : bu kl d 

where the ball deformation is inverted inside the original shape) and truncat d 

flat circular contact area is formed). The decision was made to u e the trunc t d hap , 

thi was felt to be more representative for the relatively minor deformati n ~ un in 
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oblique impacts (where the normal component of impact speed is often less then 10 ms·
I
). 

It was found that the ball construction had negligible effect on the relationship between 

centre of mass position y and physical ball deformation 8. It should be noted that this 

position y is relative to its original position, not to the centre of the displaced ball. The 

relationship used for the truncated ball assumption (for all three ball types considered) is 

given by (for units in metres): 

0= 27.2031 +0.9645y [10.1 ] 

The reason that the ball construction does not affect this relationship is that a large 

proportion of the centre of mass displacement is given by the deformation of the bottom of 

the ball, and the ball construction only affects the movement of the centre of mass relative 

to the centre of an undeformed ball (or another way of looking at it, relative to the top of 

the ball). But when considering the moment of inertia, the governing equation is a function 

of mass (and therefore density) and the square of the distance from centre of mass. A 

pressureless ball with a thicker rubber shell will have a slightly lower moment of inertia 

than a conventional pressurised ball due to the mass being shifted towards the centre. The 

external diameter of the rubber shell remains the same, but the internal diameter moves 

inwards, lowering both the average radius and the density. The difference between I for 

pressurised and pressureless balls was found to stay roughly the same as deformation 

increased. giving pressureless balls on average a value about 2.5% lower. The functions 

defining the moments of inertia are given in Table 10.1 (again, for SI units). 

Table 10.1 Ball moment of inertia as a function of centre of mass movement, for different ball 

construction types. 

r Ball deformation type Moment of inertia I as function of COM movement y 
I 

Pressurised / punctured 1= 3.2428*10-5 -0.030558/ -3.4082*10-5 y 

Pressureless 1= 3.1541 *10-5 -0.032638y2 -3.9665*10-6 Y 
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x 

Figure 10.2 Ball geometry showing the moment arm for a frictional force on a deformed ball 
during oblique impact. 

When calculating spin, the moment arm distance is critical. Although a number of previou 

geometry calculations have been rather complicated, the moment arm is simply the 

difference between the radius and the centre of mass displacement variable y as used in the 

model - there is no need to calculate physical ball shapes. This is illustrated in Figure 10.2, 

which is defined by a centre of mass displacement y. In order to calculate the external ball 

deformation would need some knowledge of the displacement of the centre of rna 

relative to the undeformed ball, but the moment arm is just the distance from the centre of 

mass to the surface - which is R-y on the figure above. 

10.2.b Structural force 

he structural force is modelled as a spring whose stiffness varies with ball deflection. or 

a vertical centre of mass displacement y the governing equation giving the stiffne k i 

given in [10.2] below. The spring stiffness parameters ko and A were found in the normal 

model discussed in Chapter 8, and are given in Table 10.2. 

[1 .2 

196 



Chapter 10 Oblique impact model 

Table 10.2 Spring stiffness model parameters for the various ball types. 

I Ball type ko (N/m) A 

Pressurised 21000 50 
r- --_. 

Pressureless 22500 25 
t---------------- ---- -

I 

Punctured I 13600 50 
, 

10.2.c Damping force 

As the ball compresses, energy is lost in the bending of the rubber wall. This is represented 

by a damper component. The damping coefficient is a function of ball deformation, and 

was chosen to be proportional to the contact cross-sectional area. For the rubber contact 

area of internal and external radii ri and ro respectively, the damping force FD is 

proportional to the constant Co and ball shell velocity Vas given by 

[10.3] 

The damping coefficient Co for each ball type is shown in Table 10.3. 

Table 10.3 Model damping parameters for the various ball types. 

Ball type Co (Ns/m3) 

Pressurised 4000 

Pressureless 3800 
--- --

Punctured 4500 

10.2.d Impulsive force 

As in the normal model, an impulsive reaction force is caused by the instantaneous 

velocity change of material as it comes to rest on the surface. However, the situation is 

complicated by the spin on the ball - even a ball projected without spin will generate spin 

during an impact due to the frictional force and the rotational moment this produces. Spin 

on the ball means that the velocity is not constant across the cross section which is in 

contact with the ground at any particular instant. For example, topspin will increase the 

downwards velocity at the front of the ball and decrease it at the back, with a variation in 

between. 
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v 

Figure 10.3 Impulsive reaction forces on a spinning ball during an oblique impact, and the 
resultant velocities (due to spin) causing these forces. 

A cross-section through the centre of the ball is shown in Figure 10.3. The ball lands with 

an oblique velocity V and topspin (J). There is also a velocity component due to the spin 

which is shown as Vs relative to the velocity of the ball centre. When V and Vs are 

combined, the resultant velocity VR is different at the front and back, leading to differing 

reaction forces FR. At a different position around the contact annulus the effective radius 

about the spin axis will change, affecting the value of Vs. There will therefore b a 

distribution of velocity and force throughout the contact area. If the topspin i high enough 

there may be parts of the ball (towards the rear) where the resultant velocity is upward , 

and therefore no impulsive force. There can of course be no force in the opp ite directi n 

due to this upwards velocity. 
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A' 

Horizontal direction 
of motion 

---t.~ 8 --- --- 8' 

(a) 

Rubber Cloth 

A 

(b) 

Figure 10.4 Cross-sections of the ball during an oblique impact, showing (a) a horizontal slice 
of the contact area, and (b) the geometry of the velocity. 

For the small element shown in Figure lOA (a) - which i at a vertical di tan e h I w th 

ball centre - the velocity due to spin Vs will be the spin rat m mullipli d y the radiu R 

about the spin axis. This will be given by 

R = .Ja2 + h2 

= .Jr2 sin2 B+h2 

Thus v: = mR 

= m.J r2 sin2 B + h2 
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where vertical height h is a function of ball deformation. The impulsive force is caused by 

the vertical component of the spin velocity, i.e. Vs cosa. Because the combination of 

rotational and translational velocities results in a non-symmetrical velocity profile around 

the contact area of the ball, there will be a net horizontal impulsive force, but thi wa 

found to be extremely small and was neglected. 

Thus the resultant vertical velocity for the element shown (for a given vertical peed due t 

the motion Vy ) is given by 

~Iy = Vy +Vs 

= Vy + OJ cosa.Jr2 sin 2 B + h2 

Resultant upwards velocity 

~ 
' (3 
o 
Q) 
> 
e 
Q) 
N 

'0 
Q) 
c 

:.:::i 

Figure 10.5 Velocity profiles across the ball cross-section . 

A program was written to calculate the velocity acro th cr ti n ~ r i ua li ati n 

purposes. An example is shown in Figure to.5 for a lic taken 11.7 mm th ' 

surface. Both the cloth and rubber layers are hown giving fI r mil 

radius and external radius of 16.6 and 25.2 mm re pectiv I . h wnward 'P d at th ' 

time instant chosen was 4 ms-
I
, and the top pin 400 rad , 1. V rti al lin th ' 

boundary of zero velocity; to the right of these lin th it d wnward and t th 

left it is upwards. In either case a darker colour indicat a higher . B" au " r th ' 

axis of spin, the velocity is purely a function of the p iti n t ward th fr nt r n 'k r 
the ball. 
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As in the normal model, the impulsive force is given by calculating the rate of change of 

momentum. This momentum change per unit time for the small element shown is equal to 

the mass of the element hitting the surface per unit time multiplied by the speed. The mass 

rate is given by the area 8A multiplied by the density p, multiplied by the speed VHJ • This 

gives an impulsive force 8F for the element, 

8F=p8A~?2 , 

Integrating for the total contact area (which must be done separately for the cloth and the 

rubber), 

~, 2rr 

F = P f f rV!?, 2dBdr 
r, 0 

Because VR is a complex function of Rand e, this integral is impossible to solve 
J 

analytically. A numerical solution was therefore written in software, as described later in 

this chapter. 

10.2.e Frictional force 

The various mechanisms of impact create a vertical reaction force. The model assumes that 

this reaction creates a frictional force opposing the relative motion between the bottom of 

the ball and the surface. In most cases this will be opposing the horizontal motion of the 

ball, although it is theoretically possible for a ball to bounce with such a high amount of 

topspin that there is "topspin slip". 

The coefficient of friction between tennis ball cloth and the surface being used in the 

model was then used to give a frictional force. This is applied until rolling occurs, which is 

defined as the state where the tangential velocity at the bottom of the ball matches the 

horizontal speed. This is a slightly simplistic definition, as there will be a distribution of 

horizontal velocity components across the contact area. Cross (2002) looked at the 

interaction of ball and surface during impact and concluded that the ball did not simply 

roll, but "gripped" the surface, causing horizontal vibrations. A physically realistic 

simulation would allow certain parts of the ball on the contact area to move while others 

were stationary. This will cause horizontal deformation of the ball shell and is beyond the 

scope of this model. 

10.2.' Rotational moments and spin generation 

The frictional force described above will create a rotational moment about the ball centre 

of mass, which acts along the interface between the ball cloth and the surface. Using the 

moment arm discussed earlier, a torque T can be calculated. Taking into account the 
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relationship between deformation and moment of inertia I , thi s gives a rotational 

acceleration and therefore a change of spin rate OJ using T = I dOJ . 
dt 

Because a non-symmetrical velocity profile is created by the addition of spm th 

impulsive force will also create a moment about the centre of mass. Although thi s is mall , 

it was calculated and included in the total moment. 

10.3 Model software 

The complexities introduced by applying the impulsive force equations to an bliqu 

impact meant that it was no longer possible to solve it in a simple manner u lllg a 

spreadsheet. A stand-alone piece of software was therefore written in Vi ual Ba ic. 

The structural and damping forces were simple calculations, but the impul ive forc wa 

worked out numerically for each timestep. The contact area was plit into a numb r f 

elements (the radius was split into ten, and the angle one hundred, giving a tota l of a 

thousand elements). The area of each element was calculated as a proportion of th ttl 

contact area. 

Apart from the calculations, the model solution method was approached in th 

as for the normal model. Initial boundary conditions of speed pin and ang\ ar ent r d, 

either as absolute values or as horizontal and vertical component. he th r param t r 

are defmed on a "per ball" basis, and so the user must simply select the bal1 t p - thi th n 

selects the various coefficients as discussed in section 10.2. 
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Figure 10.6 Software model - a screenshot of the result of an oblique impact prediction. 
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A screenshot showing the model results after calculation is shown in Figure 10.6. This 

gives a quick overview of the results and allows the various forces to be compared. Tru 

fairly simple case gives forces as would be expected from a normal model. The tructural 

force is an approximate half sinusoidal, as would be produced by a simple spring. The 

damping is also a smooth curve wruch always acts opposing the velocity and so ha half 

the period. The impulsive force rises quickly to give the total force curve its di tinctiv 

shape. It also drops fairly quickly, and reaches zero about halfway through the impact. Th 

horizontal frictional force is a simple scaled multiple of the total force, as there is slipping 

throughout and therefore straightforward frictional interaction. 

Various other outgoing parameters can also be seen in the bottom-right hand corner of 

Figure 10.6, such as the contact time, slide length and COR. Also shown is the Apparent 

SPR", which is calculated using the standard SPR equation ~VX . It can be seen that for 
~Vy 

this case where there is no rolling, this is 45, equal to 100(1 - J1). 

tIt EKport data 

Data to include--

Time P 

FDlce data 

T otalfDlce p 

S tn.lCtur alforce r 
Impubive fDlce r 

ElCpOI\ 

M velocity r 
y velocity r 
spi-l r 

Damping fDlce 

Frictional (honz) 

Cancel 

r 
r 

Figure 10.7 Software model - a screenshot showing the data exporting options. 

Any of the data produced such as forces, di placement and vel citie can 

exported for further analysis - for example, the two graph di cu ed b I w w r pr du ed 

by copying the data into Microsoft Excel a een in Figure 10.7. 
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Figure 10.8 Model forces for an oblique impact at 30 ms-1 at 24.5° to the horizontal , with 400 
rads-1 of topspin. All forces except the frictional force are vertical. 

A more interesting situation happens during an impact with incoming top pin, a hown 

in Figure 10,8. In this case two differences can be seen. The large top pin through ut th 

impact creates an impulsive force which remains for much longer than for impact with 

backspin. In fact, in this case it remains significant well into the second half f th imp t, 

after the ball centre of mass is moving upwards. Thi is becau e orne p rti n f th fr nt 

half of the ball still have a resultant downwards velocity due to the high t p pin. 

impulsive force is a numerical summation of the force produced by a larg num 

elements - so there may still be elements hjtting the surface when th ba ll a wh 

moving upwards (this will in fact often be the ca e unle the ball imp t with 

considerable backspin, as most impacts have achieved orne am unt f t p pin th 

midway point). 

The second difference is a reversal of the frictional fore . Aft. r ab ut 2. m th 

force is positive, which indicates that the ball has nough t p pin that th 

between ball and surface is in the opposite direction t n rmal. The intuiti 

of the situation might suggest that the spin on the ball h uld re ch that n 

m ti n 

and the friction would " switch on and off', keeping the v I cit and pin in t p. II w r, 

thi s does not take into account the ball defomlati n . What happen i th t durin ) th 

middle part of the impact, the ball gains a large am unt f pin du t the r u d m m nt 

of inertia while the spin required for rolling incr a f th 

the deformed shape). Then as the ball regain it hape, th 

original value, and the rolling spin boundary drop 
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of the overspin. Figure 10.9 shows how the spin increases until overspin occurs and the 

friction reverses direction. 
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Figure 10.9 Frictional force and spin on the ball during an oblique impact at 30 ms" at 24.5° 
to the horizontal, with 400 rads·1 of topspin. 

10.4 Comparison with experimental data 

The various sets of data presented in Chapter 9 were used to validate the model. In each 

case two of the three incoming variables (speed, spin and angle) were kept nominally 

constant while the other was varied. In practice the two "constant" variables showed some 

variability. This variability would be significant enough to affect the rebound 

characteristics, and so the variation was included in the model boundary conditions. which 

are described for each set of tests. 

Three different surfaces were used. In each case the additional model parameter needed to 

extend from a normal to an oblique model was coefficient of friction. This was obtained by 

using a combination of experimental measurements from SPR tests and also the use of a 

Haines pendulum. The friction values (given later in this chapter) from these two tests 

matched well. 

10.4.a Varying spin tests 

These tests measured the rebound conditions for a pressurised ball projected at a nominal 

speed of 30 ms- I and 240 to the horizontal, with spin ranging from 600 rads- I of backspin to 

600 rads- I of topspin. As the spin changed, the impact speed and angle - which was 

intended to be constant - changed enough to affect the rebound properties. It was therefore 

important to include this variation in input boundary conditions to the model. 
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Figure 10.10 (a-b) Model input parameters used at various spins: (a) speed and (b) angle. 

Figure 10.10 shows how the impact speed and angle changed with spin, and the nominal 

value used as a model input parameter at each spin rate. 
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Figure 10.11 (a-d) Comparison of experimental data and model predictions for rebound 
characteristics of pressurised balls impacting at a nominal speed of 30 ms-1 and a nominal 
angle of 24°, with varying spins. 

igure 10.11 shows the model predictions. The rebound speed predictions are exc 11 nt r 

the full range of input spins. The predicted outgoing spin is a good match fI r m t ca e 

but becomes too high for large incoming topspin. The rebound angle i accur te fi r 

impacts with incoming backspin, but 2 to 3 degrees lower than the experimental valu fi r 

impacts with incoming topspin. This discrepancy is most likely due to the large t p pin 
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throughout these impacts, and the effect this has. As discussed in Chapter 9, this spin alters 

the deformation shapes, which is impossible to predict in this kind of model. In summary 

it is hypothesised that the impacts with topspin cause much less buckling deformation in 

the wall of the ball by keeping a more circular shape, thus reducing energy losses. The 

effect of this can be seen in Figure 10.11 (d), where those impacts with incoming topspin 

have a noticeably higher coefficient of restitution than those with backspin. As the model 

assumes the spin and the horizontal speed have no effect in the vertical direction, the only 

change in COR is due to the change in incoming speed. 

10.4.b Varying speed tests 
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Figure 10.12 (a-b) Model input parameters used at various speeds: (a) angle and (b) spin. 

The second set of data used to validate the model was a series of impacts with varying 

speed. As this speed increased, the impact angle changed systematically and thi i 

reflected in the incoming speeds used in the model as shown in Figure 10.12 (a). he 

impact spin was fairly randomly scattered but consistent, and so an average value of 0 

rads'( of backspin was used. 
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Figure 10.13 (a-c) Comparison of experimental data and model predictions for rebound 
characteristics of pressurised balls impacting with varying speeds at a nominal angle of 24°, 
with a nominal value of zero spin . 

The rebound speed, spin and angle are shown in Figure 10.13 (a), (b) and (c) respectively. 

The speed is an excellent match throughout. The model predicts slightly too high spin a 

the impact speed increases, although the scatter in the experimental data also increa e . 

The angle is consistently 2 to 3 degrees lower than that seen experimentally, suggesting an 

energy loss that is not reproduced in the model. 

10.4.c Varying angle tests 
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Figure 10.14 (a-b) Model input parameters used at various angles: (a) angle and (b) spin. 
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Figure 10.14 shows how changes in the angle affected the impact speed and spm. In 

comparison to the other tests, the speed was fairly consistent (because no change m 

settings of the Bola projection device were needed, just a physical rotation) with a 

maximum change of 1 ms· l
. The incoming spin was also fairly consistent apart from the 

values at the shallowest angle, which was noticeably different. 
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Figure 10.15 (a-c) Comparison of experimental data and model predictions for rebound 
characteristics of pressurised balls impacting at a nominal speed of 30 ms·1 and a nominal value 
of zero spin, at varying angles. 

The model predictions are shown in Figure 10.15. As the angle increases abov 

degrees, the predictions for rebound speed diverge from the experimental value 

oblique tests increase rebound speed as the angle increases, wherea the m d I r duc and 

tends to a rebound speed of about 17 ms·!. At the extremes of angle thi i aim t 5 m · 1 

too low. The rebound spin and angle predictions match the experimental value quit w 11. 

10.4.d Testing on different surfaces 

The next model verification was for the oblique impact tests on three diffi r nt ud c . 

Tiction tests on these surfaces gave values of I-i as shown in Table 10.4 bel w. 
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Table 10.4 Coefficients of friction for the three different surfaces used. 
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Figure 10.16 (a-b) Model input parameters used to predict three different surfaces at different 
spins, showing how (a) impact speed and (b) impact angle varied from the nominally constant 

values. 

Figure 10.16 shows how the nominally constant impact speed and angll vaded with 

applied spin, and how the model input parameters were adjusted to reflect thi . Although 

there was a degree of scatter, the speed was judged to have the same average valu £ r th 

tests on each surface. There was a slight difference in the angle data, wh re th ball 

projected onto the medium speed surface were consistently lower than the oth r tw 

surfaces (apart from for the highest amount of applied back pin). 
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Figure 10.17 (a-c) Experimental values and model predictions for (a) rebound speed, (b) 
rebound spin and (c) rebound angle for oblique impacts on three different surfaces. In each 
case the discrete points are experimental data and the lines are model predictions. 

Figure 10.17 shows the model predictions. The speed and spin valu 

correlations to the experimental data for all three surface typ 

e trml g 

dirfi r ntiatin I 

between them. The predicted angle is very accurate on the medium and fa turf: , ut 

gives a value several degrees too low for those impacts on the 1 w urfa with I w alu . 

of incoming spin (topspin or back pin). 

10.4.e Testing with different balls 
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Figure 10.18 Model input parameters used to predict the impact of thr dlff r nt II 
constructions at different spins, showing how (a) impact speed and (b) impact angl v n d from 
the nominally constant values. 
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The parameters for the normal model in Chapter 8 were used to predict the impact of three 

different ball types. The incoming data is shown in Figure 10.18, and is aggregated for all 

ball types (pressurised, pressureless and punctured) as the incoming conditions were not 

affected by the ball construction. 
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Figure 10.19 (a-c) Model predictions for (a) rebound speed, (b) rebound spin and (c) rebound 
angle for impacts of three ball types at a nominal speed of 30 ms-1 and a nominal angle of 24°. 
In each case the discrete points are experimental data and the lines are model predictions. 

Model rebound predictions are shown in Figure 10.19. Th r i n ignificant dir~ r n 

between the predicted behaviour of the different ball types for the p d nd pin ut. 

this follows the same trends as the experimental result . Th pr 

balls have very similar rebound characteristics throughout. h 

slightly lower speed when topspin is applied; it is n t po ible t 

experimentally as no impacts happened with enough inc ming t p pin and lh r i ' t 

much scatter in the data to attach significance to the value at I w in 

punctured ball predicted spin is very slightly lower than the ther tw 

impacts. Again this seems to be the case with the experim ntal d t 

be certain. The clearest difference between the ball type n n th re 

pressurised ball bounces slightly steeper than the pr ur ni Ii 

steeper than the punctured ball. This i as would be xp eted wh n n id ' rin ) th . n rm 1 

COR values. The experimental data show the am tr nd, aJb it p rhap · 2 t 

higher in each case. 
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10.5 Discussion 

F or most conditions the model gives very good predictions of rebound speed and spin. The 

rebound angle is less accurate and in a number of cases is several degrees too low, but this 

is a notoriously hard variable to predict. One source of error investigated was the analytical 

method used to find the moment of inertia of the deformed ball. If this gave a significantly 

inaccurate value for moment of inertia, the horizontal impulse would be changed by 

enough to affect the rebound angle for impacts with rolling - since rolling occurs when the 

spin reaches the rolling spin value vir, effectively "switching off' the frictional force or 

even reversing it. However, the outgoing spins were fairy accurate for the impacts in the 

first set of data where rolling definitely did not occur, suggesting the moment of inertia 

predictions were a reasonably good approximation. 

The images in the previous chapter showing deformation shapes show that the ball 

structure does not exactly remain in the shame assumed. Although this does not have a 

huge effect on moment of inertia, there will also be an error in the relationship between 

ball deformation and centre of mass deflection - caused by both the slight bulging in the 

upper half of the ball and also the shape in the knuckle where the shell bends round on 

meeting the surface, which will not be the sharp angular cut-off assumed. 

The increased angle in the experimental data also explains why the model predicts slightly 

too high a spin for the rolling impacts. The reduced vertical forces will lead to a lower 

frictional force. This produces a slightly increased horizontal velocity component and 

therefore a higher spin, as spin is "bound" to horizontal speed when rolling occurs. 

The deformation shapes discussed in Chapter 9 seem to provide the most likely mechanism 

for energy loss, which means that impacts generating significant topspin reduce the 

deformation of the part of the ball away from the surface, decreasing the energy loss. This 

is seen in the rebound angle data, where the increased vertical velocity component raises 

the angle. It is interesting that the highest friction surface showed the largest deviation 

between experiment and model data. It seems likely that the extra spin caused by the 

higher friction causes the ball deformations to be reduced, and thus the energy losses arc 

lower. 

10.6 Adding a spin-related damping term 

10.8.8 Introduction 

It is clear that a major difference between the model and the experimental data lies in the 

vertical COR seen. If the degrees of freedom of the model are kept separate, there is no 

way that the COR can change in the way seen repeatedly in experiments. The decision was 

therefore made to introduce an empirical term which would affect the COR. Figure 10.11 

shows that relative to an impact with zero applied spin, there is a definite tendency for the 
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COR to decrease as the ball impacts with more backspin, and to increase as topspin is 

applied (the COR only increases slightly, but the impact speed also increases, so the trend 

is larger than it appears as the COR would be expected to decrease). The point between the 

two trends seems to be about 100 to 200 rads'! of applied backspin, which happens to be 

roughly the impact where the average of the incoming and rebound spins is zero. This 

suggests that the spin does have a direct influence on energy loss, although the exact nature 

is rather complicated. 

An adjustment was made to the damping coefficient so that it would change proportionally 

to the spin rate - an increased backspin leads to an increased damping coefficient and thus 

reduced COR, and vice versa. This still gave a damping force proportional to the ball 

velocity V by the equation FIJ = Co (r, + r,))2 V, but the damping coefficient was now 

changed to the form 

Values for the spin-compensation damping are shown in Table 10.5. These were found by 

running the model and considering the COR values for the two impacts with extreme cases 

for incoming topspin and backspin on the "varying angles" test. It was not possible to 

predict or measure the values of Cs due to the complicated nature of the physical processes 

involved - it would require a much more complicated model taking into account the 

different material properties for each ball. The most likely explanation for the difference 

between Cs for different balls is that the pressurised ball keeps its shape much more at low 

spins, and therefore the extra deformation due to spin has more of an effect. 

Table 10.5 Model damping parameters for the various ball types. 

Ball type Cs (Ns2/m3) 

Pressurised -4 

Pressureless -2 

Punctured -1.5 

10.B.b Model results 

The same sets of data as used in section 10.4 were used to compare the new model with 

experiment. Unfortunately it was not possible to show both model predictions on the same 

graphs for comparison purposes without the data becoming unclear, so in each case only 

the adjusted model is shown. 

214 



Chapter 10 Oblique impact model 

. . , . 
~ .. ~ ..... ~.--.-.;-- _. t --- -~- ---~-.- - -

, , I , (a) -
, : : : 

12 +-~--~--,--'---r--T--;--~ 

-800 -600 -400 -200 a 200 400 600 800 
Topspin in, Win (rad/s) 

35 ~~--~-c---;--~-;--~-' 

, X , (c) 
~ : : : 

, ---~--- -X~ --i---- -+------
, XX , : ~ : X ' 

800 

:f 
o 200 
c: 
'0. 

'" 

-- r-·"·--,· 

, , 

(b) 
~ O +-~~~--+-~--_.--~~--~ 

I- -800 -600 -400 -200 o 200 400 600 800 
I -200 I , ' 

Topspin in , Win (rad/s) 

0.80 .--~--~----~--~---------, 
(d) : 

0.75 -:-~ -~ 

gs 0.70 

l : X : : ' : () , . 
~ 0.65 ----X : --:- X--~-- - i------~~ .:: ... 25 

~ 
-. -t--- --~- ----:--.-- - (X~~~ -

~ 0.60 _:::~----i-::-:li. ' . V, • • ' ..... V,,,, 

Ol 
c: 
to 

-g 20 
"''0' : : 

. ' .... 1;---- 0.55 1- -~ 
o 
n 
Ql 

..... .. ' 

.,. .. '/ '7 7" I 7~ -'??T 7 J : ,; COR = V, .. ' V,. 

~ 15 ~~---+--~--r-~---r--+-~ 
0.50 +---T---r----'~_,--_.--_r_~--_I 

-800 -600 -400 -200 0 200 400 600 800 
Topspin in, Win (rad/s) 

-BOO -600 -400 -200 0 200 400 600 800 
Topspin in, Win (rad/s) 

Figure 10.20 (a-d) Model predictions and experimental values for (a) rebound speed, (b) 
rebound topspin, (c) rebound angle, and (d) vertical COR for impacts with varying spin. 

40 ~====~~-,--:, --:, --;, ~ 

135 !. .-~-" v~l------~- -- -~-- --- ~ v. ::: 
~ 30 I" ))} ; 7 ,).' ;; ; ._--. -j_.. -;- _h~ -- .. 

> :' :: 
~ 25 ----r·-- -: ---, -- .-
8. 
~ 20 
.b 

~ 15 -t -- r---··:-------t------'· (a) -
o 10 +---+---+---:-"""""":':---+---i-' ---+--1 

800 
~ 700 
~ 
~ 600 
~ 

~ 500 
0 

~ 400 
:; 

300 0 
c: 
'0. 200 
'" a. 

100 0 
I-

a 

--

-- ~ -- ; -- ~ 
-:- .. ;-.-, . 

+._-- + .... -~ • I~ .. 

v. ' • . 

20 60 20 30 40 50 30 40 50 
ncoming speed V ln (mls) Incoming speed V ln (mls) 

36 .------~----~~~--~--~~ 

Ii) 34 -x- -+ --or. . / o:.i (c) 
~ 32 --~-- - V" ~ 
~ 30 - ~.~ .. " ""n,~~~,,~-r-r- t. ... 
"0 

~ 28 : -- f*" {--: 
.... 0 26 

:; 24 
o 
.9! 22 
Cl 

--- .. ;_· ...... ·-1- .. ··· -i··· , 
, , I I . -! -.- -- .. ~-- -.. ---~ ... -- --: _.-
, , , 

~ 20 

20 30 40 50 60 
Incoming speed V ln (mls) 

60 

Figure 10.21 (a-c) Comparison of experimental data and model predictions for rebound 
characteristics of pressurised balls impacting with varying speeds at a nominal angle of 24°, 
with a nominal value of zero spin , 
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Figure 10.20 shows how the new model predicts rebounds with varying impact spin. The 

rebound speed and spin are virtually exactly the same as the previous model. The rebound 

angle is however much closer, and this is reflected in the COR data. Figure 10.2 1 how 

the model predictions for the "varying speed" test. Again the change to the model does not 

affect the speed, but it does correct the rebound angles, now matching experimental va lues 

extremely well. The rebound spin is still too high . 
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Figure 10.22 (a-c) Comparison of experimental data and model predictions for rebound 
characteristics of pressurised balls impacting at a nominal speed of 30 ms·' and a nominal value 
of zero spin, at varying angles. 

igure 10.22 shows the model predictions for the tests with varying angle. Again th d 

results are not significantly changed by the alteration to the model, and the rebound p d 

remains much too low for the angles above 30 degrees . The rebound pin and angl ar 

reasonably accurate. 
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Figure 10.23 shows the adjusted model predictions for impacts on different surfaces. The 

model values are much closer to experiment in each case, although the rebound angle is 

slightly under-predicted on the slow surface. 

Model predictions for the three different ball types are shown in Figure 10.24. As in all 

cases, the rebound speeds are not changed much by the model alteration. The rebound 

angles are now much closer to experimental values however. Rebound spins for the 

punctured and pressureless ball are too high for those impacts with incoming topspin. 

10.6.c Discussion 

Most of the model predictions are much improved by the change to the damping 

coefficient, and under realistic conditions likely to be seen during play the results are very 

good. The tests at high impact angles however are still somewhat inaccurate, although it 

should be noted that even an angle of 24° as used in the experimental oblique impacts is 

steeper than the majority occurring in a game. 
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Figure 10.25 Comparing vertical COR values for normal impacts at (a) different speeds and 
(b) different angles. The results in (b) are plotted against vertical impact velocity. 

Figure 10.25 shows how vertical COR differs between normal and oblique impacts, and 

demonstrates the difficulty posed by modelling steep angles .. Figure 10.25 (a) shows 

impacts with nominally zero incoming spin at a range of angles, and the oblique impacts 

have a noticeably higher COR. In Figure 10.25 (b), data is shown for impacts at a range of 

incoming angles (but the same absolute speed and zero spin). There is a significant 

difference here - oblique impacts at high angles (and therefore high vertical velocity 

component) increase the COR by a large amount, and the difference between normal and 

oblique impacts becomes much greater as the angle increases. 

10.7 Sensitivity Analysis 

It is instructive to know the sensitivity of the model to each of its defining parameters. 

which gives an idea of their relative importance and also the necessity for accurate 

measurement. The static stiffness ko, the stiffness exponential coefficient A and the 
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damping coefficient Co were all investigated by changing their values by 10 and 20% (for a 

pressurised ball on the medium speed surface). The "changing spin" set of te t wa u d 

as this showed results where there was a clear different between slipping and rolling 

impacts, and definite trends in the outgoing data. 

fJ) 28 ] ~ 1000 -.-

I 
fJ) (b) :0 26 

o I ~ 800 
~ 0 
0 

24 j > ·i 600 -0 22 
Ql 00 

.~ 
c 

Q) 
20 0 0 '0.. 400 a. 0 • fJ) 

fJ) 

Ol Ol 16L c c '0 200 '0 
16 (a) Ol 0 Ol -s -s 

0 14 0 0 
·800 -600 -400 -200 0 200 400 600 800 -800 -600 -400 -200 0 200 400 600 800 

ncomng topspin . illin (rad/s) ncomng topspin . ill,n (rad /s) 

36 , 

... 34 (c) 20% higher ko 

'-i 32 
0 .1 ' 0 • "'" 30 0 

~ 28 • & 
c 

'. \ '" 26 
Ol 

.!; 24 
0 0 0 0 

.E' 22 0 
:::l 

original rrodel o 20 
18 I 

-800 -600 -400 -200 0 200 400 600 800 

ncomng topspin . <Ojn (rad/s) 

Figure 10.26 (a-c) (a) Rebound speed, (b) rebound spin and (c) rebound angle showing the 
original model, and with 10% and 20% higher static stiffness ko values. 

Model predictions are shown in Figure 10.26, Figure 10.27 and Figur I .2 . 
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10.8 Summary 

The normal model presented in Chapter 8 was extended to cover the horizontal direction 

and the spin on the ball. The geometry of the impulsive force makes the oblique situation 

much more complicated to evaluate, but this is a vital component of the total force and 

gives the force-time curve its distinctive shape. A spreadsheet could no longer be used to 

create a quick and simple model and therefore a software solution was written. This model 

generally gives very good predictions of rebound speed and spin. The predicted rebound 

angle is in a number of cases two to three degrees lower than that found experimentally, 

which is due to the vertical COR being higher for oblique impacts than the equivalent 

normal impacts matching the vertical velocity component. This COR discrepancy is 

thought to be caused by the spin generated during an oblique impact, and the effect this has 

on deformation shapes and energy losses. 

To compensate for this discrepancy, a simple compensation term was introduced to adjust 

the damping for instantaneous spin rate. This improved the quality of the model 

predictions, but does require more experimentation to find the extra parameter, which 

cannot be measured statically. 

The effect of the errors in the model predictions will be discussed in the next chapter, to 

see how important the errors would be over the course of a ball's trajectory, to see whether 

the damping compensation term is necessary. 

The one set of tests where the adjusted model did not closely match experimental values 

was where the angle was increased. At steep angles (where the changes in shape due to 

deformation will be more severe), the rebound speed in particular is much too low. These 

are however incoming conditions where it is unlikely a model is required, as they will not 

be seen in any realistic shot and such steep angles will not occur at significant speeds 

except for the particular example of a smash. This case is not one where predicting the 

rebound conditions is likely to be important. 
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11 Tennis GUT 

11.1 Introduction 

The surface impact model presented in this thesis covers one part of the ball's interaction 

with its surroundings during a game of tennis. Before it reaches the court surface, the ball 

has undergone an impact with a racket and a three-dimensional trajectory under the effects 

of gravity and aerodynamic forces. There is then of course a further trajectory after the ball 

bounces before it reaches the opposing player. 

When working on a single part of the whole tennis "process", it is easy to lose sight of the 

effect of (often small) changes in a ball's behaviour. This is particularly true in assessing 

model accuracy - for example, how much effect does a 5% error in predicted speed on 

rebound have on how the ball behaves through the rest of the shot? 

A piece of software was developed to streamline the modelling process by tying together 

the currently most advanced models in the three main areas: ball-racket impact, 

aerodynamic trajectory and ball-surface impact. The primary focus was ease of use, so that 

small changes in one variable (such as racket or ball mass) could be propagated through 

the models in turn to see their effects. 

11.2 Racket impact model 

11.2.8 Introduction 

Of all the components of the sport of tennis, the two which have changed most 

dramatically in recent decades are the player and the racket. Improvements in diet, training 

techniques and a huge change in the marketplace rewards for professional sport have led to 

modem players being significantly taller, heavier, stronger and faster than ever before. 

The most revolutionary change in rackets came when Prince introduced the first oversize 

racket (Head, 1976). The oversized head means that the "sweet spot" of the racket is much 

larger, giving a greater margin for error. Modern rackets are incredibly stiff and light, 

allowing increased swing speeds. A combination of these factors means that shots (in 

particular the serve) are increasingly being hit with such power and accuracy that it is 

physically impossible for the receiver to return the ball. (refs about serve speed?). 

As governing body for the sport, the ITF has recognised its responsibility to understand the 

effects of players and equipment on how the game is played at both a professional and 

recreational level (Coe, 2000; Miller, 2003). Amongst much other research, they built a 

serve impact simulation machine (Kotze and Mitchell, 2002) capable of producing impact 

speeds of up to 50 ms- I at specified racket positions. 

222 



Chapter 11 Tennis GUT - modelling the game 

11.2.b Model description 

d 

y 

• x 

Figure 11.1 The model used to simulate ball impact on a freely suspended racket. 

The racket model used here is based on that given by Goodwill and Haake (2003) and is 

more fully described in that publication. A freely suspended racket was chosen, as this is 

the most valid way of representing a player's grip (Brody, 1987). The model defines a 

system consisting of three discrete components: the ball, the stringbed and the racket 

frame, as shown in Figure 11.1. 

The ball is modelled as a point mass connected to the stringbed by a spring (ks) and 

dashpot damper (Co) in parallel. Both of these parameters depend on ball deformation and 

therefore change during the course of an impact. Their values were empirically found by 

Goodwill (2002). The stringbed was similarly represented by a parallel spring (ks) and 

damper (Cs) , whose values were obtained from experimental data. The stiffness ks was 

found by applying a quasi-static load to a racket stringbed via a rigid 55 mm diameter disc. 

The damper Cs was given a value of 2 Nsm- I in order to provide a energy los of 5% 

corresponding to the experimental results of Cross (2000). 

Actual racket 2D approximation 1 D approximation 

~---.- ::::::::::::::::::::::::::::::: .... 
(F) I --+ __ 

Figure 11.2 (a) One-dimensional representation of the racket, with (b) the assumed 
loading shape. 

The racket model was represented by a simplified one-dimensional hape a h wn in 

·igure l1.2(a). A two-dimensional approximation was first created to repre ent the v ryin 

mass distribution, which provided the same mass and balance point as the racket. ru wa 
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then simplified to give a one-dimensional model with the same mass distribution along the 

longitudinal axis. Cross (1999) formed a similar model and applied the stringbed force as a 

point load, but Goodwill (2002) found that model accuracy was improved by assuming the 

stringbed applies a distributed force to the racket frame, as illustrated in Figure 11.2 (b). 

The beam can then be split into N segments, each of mass mn, position along the beam x 

and length s, where each segment has displacement Yn and is acted on by a force Fn. giving 

equation [11.1] which can be numerically solved. Model verification and further detail can 

be found in Goodwill and Haake (2003). 

[1 1.1] 

11.3 Aerodynamic model 

The aerodynamic model used has been described in Chapter 4. In summary, lift and drag 

coefficients were taken from the results of Goodwill et al. (2004), who mounted both non

spinning and spinning tennis balls in a wind tunnel. CD and CL were measured for varying 

values of spin coefficient S (defined as circumferential velocity V divided by wind speed 

U). They tested at wind speeds of 25 and 50 ms'(, and found that CD and CI. changed a 

small amount for these different Reynolds numbers. For values of S below 0.2 - where lift 

and drag were measured for both wind speeds - interpolated values were used between the 

trendlines for the two wind speeds, and for values of S above 0.2 those measured at 25 ms'( 

were used. It was assumed that the spin rate stayed constant throughout the trajectory. 

11.4 Surface impact model 

The surface impact model is described in detail in Chapter 10. In summary, it uses a 

minimal number of parameters to measure the ball properties, and a single frictional 

coefficient to define the surface. A structural stiffness force, a damping force and an 

impulsive reaction force are combined to give an overall force acting on the ball centre of 

mass. Assumptions about the deformed shape of the ball are used to relate centre of mass 

position to external ball deformation, and to calculate the rotation effect produced by the 

friction force. 
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11.5 Putting the models together 

11 .5.a User interface and parameter specifications 

Ball Type 
' ..... IXJ .... -....... 

Stringt>.d properties 

r 

_. 
Figure 11 .3 The interface to the racket properties. 

cw................ J 

.... , .... I 

As already stated, the main aim was ease of use of the software. The int rfac t th ra 

model was taken from Goodwill (2002) who constructed a standalone program fI r thi 

part. Figure 11.3 shows the ball and racket properties screen where the rei 

can be viewed and defined. 

The aerodynamic model required much less user input. A it would b diffi ult t 

lift and drag coefficients numerically at run-time these were coded into th ftw r r 

the selection of balls tested. Future work may provide functionality t take d ta tr ight 

from automated wind tunnel tests, but this was not judged practical r nary. 

11.5.b Output data 

R_ ..... v __ 

III rr;J v __ 
1i1U ---.. -.- 12 IS . 

V-.l_ II SlI r .... 
I- I - "--I -. r -..... . 

Figure 11.4 Trajectory output and numerical data from the model. 

The combined trajectory of the hot (including 

several ways. The most visual repr entati n i 

rotated to see the path of the ball from any vi wp 

An overhead view can al 0 be us d t e th 

trajectory. 
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11.6 Model results 

11.6.a Example data 

As an example shot, a serve was recreated. A racket was swung virtually with a racket 

head speed of 36 ms·!, and an instantaneous rotational speed of 46 rads·!. The ball speed 

predicted by the racket model is 44.2 ms· 1 (99.5 mph). An interesting side note is that the 

model can predict speeds generated if the racket was infinitely stiff - in this case 45.0 ms·! 

(101.2 mph), which shows that modern stiff rackets are extremely efficient and not far off 

the theoretical limit. More difference would be noticed if the shot was hit towards either 

the tip or throat of the racket head. 

Elliott et at. (1986) found that on average, a player will hit a serve from a vertical position 

of 1.53 times their height. For a player who is 1.9 m tall, this would give a starting height 

of approximately 2.9 m. UC Davis (2001) measured the spin on professional serves to 

average 2000 to 3000 rpm. A spin of2500 rpm (262 rads·!) was chosen for this example. 

A goal seek within the software found that the angle required for the ball to land on the 

baseline was 2.09 degrees below the horizontal and it impacted at 28.91 ms· 1 (65 mph) at 

an angle of 17.47 degrees to the horizontal. 

3 -~-------------.------~--------------- _____ _ 

Base line 

Service line 

o 5 10 15 
Horizontal distance along court (m) 

20 25 

Figure 11.5 Predicted trajectory for a serve hit at 99 mph with spin of 262 rads· 1 

The surface chosen was a standard uncushioned acrylic, which was measured to have a 

coefficient of friction of 0.57. The surface impact model predicted a rebound of 20.6 ms· 1 

(46.3 mph) at 18.9 degrees to the horizontal, with a spin of 593 rads· l . After applying the 

trajectory model again, the speed at the baseline was calculated to be 17.4 ms· 1 (39.1 mph) 

and the ball was just still rising - the velocity vector was 2.5 degrees above horizontal. The 

total time taken was 0.827 seconds, and the complete trajectory is shown in Figure 11.5 

11.6.b Using the GUT model to assess the oblique model 

The software was then used to compare the two oblique impact models described in 

Chapter 10. The main reason for this was to visualise the effect of any di ffcrences bctween 
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the model predictions and the experimental values measured. An error of 5% would seem 

reasonable, but how much difference would this make to the way the ball actually 

behaves? 

The data chosen was from the "varying spins" set of experiments. An impact was 

deliberately chosen that was probably the worst prediction from the initial oblique model , 

which was the impact with 400 rads- I of incoming topspin. Both oblique models matched 

the experimental rebound speed of 21 ms- I
. Similarly, both had the same rebound spin 

value, of 700 rads- I of topspin. The experimental value here was somewhat lower, at about 

600 rads- I
. The main difference was in the rebound angle, where the experimental value 

was 27 degrees. The first model predicted an angle of 23.6°, and the second model 26.5° . 

Both of these angles are too low; the addition of too much topspin will emphasise the low 

trajectory. 

2.5 

2.0 

.s 1.5 
~ 
.~ 1.0 
I 

0.5 

0.0 

0 

- From experimental rebound 

- Oblique roodel w ith spin 
compensated damping 

- From first oblique roodel 

5 10 

Net Service line 

15 
Horizontal distance along court (m) 

Base line I 

20 25 

Figure 11.6 Comparing trajectories from two model predictions to that from experimental 
rebound properties. 

The speed, spins and angles were used to predict the trajectory using experim ntal nd 

model rebound characteristics for the impact which was assumed to be 18 metre al ng th 

court (close to the service line). The results are shown in Figure 11.6. All three traject ri e 

are plotted up to the time interval where the experimental trajectory reach d th ba lin . 

In each case the horizontal position is almost exactly the ame. At thi pint th 

experimental rebound characteristics predict a bounce height of 2.16 m. According t th 

first oblique model the ball has a height of only 1.77 m. This di cr pancy f m 

significant. The model with the spin-compensated damping has a height of 2.08 m. hi i 

8 cm below the experimental position of the ball meaning th addition f thi damping 

term has reduced the error to about a fifth. 

For all other data sets (except those with high impact angle) tw n 
model predictions and experimental rebound characteri tic wa mu h mall r. A 

maximum error of 8 cm in the position of the ball after trav \ling u h a larg di tan was 

judged to be acceptable. It is also worth noting that the nominal imp t c n 

throughout were deliberately used as the "worst-ca ' cenari likel t n. M st 
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impacts produced by real shots would have a considerably lower vertical velocity. Thi 

would reduce the effect of deformations on energy loss, making the impact ea ier to 

predict. Slower speeds would also produce more accurate trajectories, as even the same 

proportional errors would leave experimental and prediction ball positions closer together. 

11.S.c Comparing pressurised and pressureless balls 

An analysis was performed to see the effect of a pressureless ball on an overall hot. The 

racket swing speed used in 11.6.a produced a slightly slower ball speed of 43.4 - I 

(compared to 44.2 S-I for the pressurised ball). 

2.0 I 
1.5 

.s 
:E 1.0 
.21 
Q) 

J: 
0.5 

11 12 13 14 15 

--Pressurised ball Base line 

- - - - Pressureless ball 

Service line' 

'" 

16 17 18 19 20 21 22 23 24 
Horizontal distance along court (m) 

Figure 11.7 Comparing the trajectories for pressurised and pressureless balls hit with the 
same racket conditions. 

Figure 11.7 shows the trajectory for the pressureless ball compared to that for a pre uri d 

ball. The two balls behave in a very similar manner, and the pressur Ie ball r a h lh 

baseline only 3 cm lower than the pressurised ball. This difference i extr mel unlik I t 

be noticed by a player. 

11.S.d The effect of an oversized ball 

The software was also used to analyse the effect of an over ized ball. he rv 

angle described in 11.6.a was used to calculate the trajectory (b fI r and 

the court) of a normal ball. An oversized ball of 6.5% larg r diam t r 7 . 

to 66 mm) was simulated with the same launch conditi n . A g al k wa th 

vary the angle so that the oversized ball landed on the ervic lin . hi w uld 

realistic simulation of a real serve as a player would adju t th w h hit th n b. II 

(after some experience) to achieve the same re ult . 
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2.0 ,-
--Conventional sized ball Base line 

1.5 :r ::: :.: =.: ..... 
~ 1.0 J - --- --- ..... . 

f l~ 0.5 . 

0.0 -l-

- - - - Oversized ball, sarre initial angle as conventional 
. . . . .. Oversized ball, sarre irrpact point as conventional 
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Horizontal distance along court (m) 

Figure 11.8 Trajectories showing the effect of an oversized ball (at two initial angles) 
compared to a conventional pressurised ball . Final positions are shown at the time where the 
normal ball reaches the baseline. 

The three trajectories are shown in Figure 11.8; all were plotted to show the fini hing 

positions relative to the time the normal ball reached the baseline. Hitting the ov r ized 

ball the same way as the normal ball clearly makes the trajectory dip more, producing a 

shorter and steeper impact. If the angle is adjusted to ensure the ball land on the ervi 

line, the baJJ is hit higher (2.38 degrees below horizontal compared to 3.09 degree) but the 

extra drag brings its flight down. Interestingly, the normal and oversized balls follow fairl 

similar trajectories after impact, although the oversized ball is slower and starts t dip' 

soon after the time shown landing well short of the normal ball for its second boun . 

The normal ball reaches the baseline after about 780 ms, and the oversized ball after ab ut 

820 ms. This time difference is significant, and would be noticed by the recei ing pIa r a 

a "slower" shot. 

11.7 Summary 

Although not within the initial remit of the study, a piece of software wa aid 

the use of the oblique impact model, particularly in predicting the effect of a wh I 

from one player to the opponent. This software was used to a se th effect f rr r in 

rebound predictions on the ball trajectory after bouncing and particularl th r ult wh n 

the ball reached the other end of the court. 

It is hoped that the software presented here could be of u e to the I f 
assessing the effect of technology on the sport of tennis, and perhap it uld pr u ful 

to the tennis industry in general as a predictive tool for comparing p t ntial n w pr du L. 
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12 Conclusions 

12.1 Introduction 

This chapter provides a summary of the important findings of the study, describing the 

steps taken to produce an experimentally verified model of oblique ball impacts. 

Summaries for each stage of the project are given, providing static and dynamic ball 

properties, model construction and verification. Overall conclusions of the study are also 

described, together with suggestions for possible related work in the future to progress the 

research. 

12.2 Summary of study 

12.2.a Quasi-static ball testing 

Balls were compressed at various quasi-static loading rates. It was found that for the 

loading rates possible in a laboratory, compression strain rate does not have an affect on 

ball stiffness. Various ball constructions behave in a very similar manner in a static 

compression test (but of course they have been designed to behave in such a way). If holes 

are drilled in balls so that the effect of internal pressure is totally removed, the effect of the 

rubber shell can be seen. Pressureless balls are considerably stiffer, since they rely on the 

structure to create the stiffness under compression. Pressurised balls rely on a combination 

of shell stiffness and the rise in internal pressure. Both ball types exhibit a stiffness when 

drilled which is close to constant. 

12.2.b Surface testing 

The important properties of a surface in relation to ball impacts were identified as friction, 

impact absorption and ball bound. A number of established tests exist to quantify each of 

these properties and these tests were examined. It was found that most of the commonly 

used friction tests use a rubber surface to simulate the interaction with a player's shoe, and 

this did not correlate particularly well with the friction found using the cloth on a tennis 

ball. The Surface Pace Rating is an accepted measure of the "speed" of a court, and theory 

suggests it is a linear function of the coefficient of friction. One simple test which 

correlated well with the SPR (which requires expensive equipment to measure) is the 

Haines Pendulum. 

Impact absorption tests rely in general on impacting an instrumented mass on a surface. 

either directly or via a spring. Again this test is designed to quantify human interaction 

with the surface, and so the energies involved are orders of magnitude higher than that 

produced by a tennis ball. A number of tests were considered and it was found that for the 

vast majority of tennis court surfaces, the surface is so much stiffer than the ball that it may 
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be considered rigid. This was born out by the ball rebound tests, which showed no 

significant differences between tennis court surfaces. 

12.2.c Normal impacts 

Experimental tests 

Balls were projected at a force plate at speeds up to 20 ms·
1
, and the impact and rebound 

speeds measured with a combination of high speed video and light gates. Four ball types 

were tested, and for each one the COR dropped with increasing impact velocity. At speeds 

up to 7 ms·1, the three "off the shelf' balls had very similar rebound speeds. Above this, the 

pressureless ball rebounded consistently slower than the pressurised and oversized balls, 

which were very similar. The punctured ball rebounded slower throughout the tests. 

The force data showed that the pressurised and oversized balls behave in a similar manner 

throughout the range of speeds. The punctured ball has almost identical characteristics to 

the pressurised ball at low speeds, but at higher speeds it behaves more like a punctured 

ball. 

Impact modelling 

A one degree-of-freedom model was created to simulate the normal impacts. It consisted of 

three components: a structural stiffness, a material damping term and an impulsive reaction 

force term. The relevant parameters for each of these three components were found via a 

combination of quasi-static compression tests and a minimal number of simple dynamic 

tests just measuring speeds (one drop test and one higher speed test). 

A feature of the model was that it attempted to relate the force components to the physical 

nature of the impact, and so for example the impulsive force component was described and 

calculated in an intuitive way rather than an abstract calculation. 

The model predicted rebound speeds for the four ball types extremely well and matched 

the various features of the force data. This gives an insight into a ball's behaviour and the 

contribution of the various parts of its construction (for example, the relative importance of 

the rubber shell and the internal pressure at various speeds). The impulsive force was 

found to be the main contribution to the sharp increase in force seen early in all ball 

impacts, particularly at higher speeds. 

12.2.d Oblique impacts 

Experimental tests 

A number of tests were performed in an attempt to isolate the various impact variables and 

to assess the importance of each one. In particular, the speed, spin, angle, ball type and 

surface type were investigated. It was found that whether or not the ball rolled during 
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impact had an important affect on the way it rebounded. Sharp changes in the rebound 

characteristics were observed either side of the limiting rolling conditions, in a very similar 

way to those predicted by simple Newtonian rigid body models. 

One significant observation was that the energy loss was affected by the nature of the 

impact. A good example of this was the impacts with the same speed and angle, but 

varying spins. The vertical velocity component on rebound was affected by the incoming 

spin. On examining the high speed video data, this was found to be caused by the 

deformation shapes. Although the overall deformation was similar in all cases, incoming 

topspin reduced the deformations in the part of the ball above the surface, reducing energy 

loss and increasing COR. The opposite effect was seen with incoming backspin. The 

impacts which most closely matched the normal COR were those where the average spin 

throughout impact was close to zero, and so the rotation of the ball was minimised during 

the middle of the impact where the forces were greatest. 

Impact modelling 

The normal impact model was extended to a three degree-of-freedom situation with the 

addition of horizontal and rotational components. The initial model assumed that the 

vertical component was independent of the other two. The impulse force component was 

found to be a complex function of both translational and rotational velocity, and a stand

alone software solution was programmed to solve the problem. 

This initial model was found predict the rebound speeds and spins reasonably well, but the 

angle was consistently too low. This was because of the effect of ball spin on the vertical 

COR. A simple damping compensation term was incorporated into the model such that the 

damping was instantaneously reduced for topspin and increased for backspin. This reduced 

the prediction errors to an acceptable level. 

12.2.e Tennis GUT 

When the surface impact model was complete, it was linked to a racket impact model and a 

trajectory model to give a "Grand Unified Theory" piece of software. This enables the 

effect of a single property to be tracked throughout a shot (for example, how would a new 

racket string imparting 50% more spin on the ball affect the way it reached the opposing 

player on various different speeds of court?). It is hoped that a development of this 

software could be a useful tool in assessing the impact (or potential impact) of 

technological changes on the sport. 
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12.3 Conclusions 

• Almost all tennis court surfaces are stiff enough in relation to the ball that they do 

not contribute to energy losses during ball-surface impact. This means that for 

modelling purposes in the majority of cases, a tennis court can be considered to be 

a rigid surface. 

• When balls impact normally on a surface, the coefficient of restitution decreases 

with increasing impact speed. At all speeds, normal and oversized pressurised balls 

rebound with similar speeds. As speeds increase above those of a drop test (7 ms'\ 

pressureless balls rebound slower than these two pressurised types. Punctured balls 

rebound significantly slower than all three other ball types at all speeds. 

• All balls create a sharp initial rise in impact force. The magnitude of this initial 

peak varies with impact speed. At high speed there is a short reduction in force as 

the shell buckles inwards. 

• A viscoelastic model was able to predict the force-time properties of normal impact 

at all speeds tested (up to 20 ms· l
) using parameters which were simple to measure. 

Features of the impact such as the initial peak in force were created by a 

combination of structural stiffness, damping and impulsive reaction forces. 

• Oblique impact tests showed smaller (but distinguishable) differences between the 

behaviour of different balls. The trends of the balls' behaviour matched that 

predicted by Newtonian rigid body models. In particular, the difference between 

slipping and rolling behaviour was observed and was noteworthy. 

• An oblique model with the main addition of a coefficient of friction simulates a 

variety of impacts well. Only when the impact angle is significantly higher than the 

vast majority of "real" impacts is the accuracy reduced. An empirical coefficient to 

compensate for the effects of spin rate on energy loss was included which 

significantly improved the results. 
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12.4 Future research 

This project has provided a relatively simple normal model which gives good results and 

whose governing parameters are easy to measure. A series of experimental tests gave a 

good insight into the oblique rebound characteristics of tennis balls, and a model created 

which predicted these well in most cases. There are several areas in which it would be 

interesting to continue the research. 

surface modelling 

This study concluded that for the vast majority of tennis courts, treating it as a rigid surface 

is a good approximation - even including those with shockpads designed to reduce player 

impact forces. It is recognised however that there are potential uses for simulating the 

impact on softer surfaces, or particularly the specific case of clay where the surface 

undergoes permanent deformation which affects the impact. To include such surfaces in 

the model was not deemed feasible (in part due to the large amount of extra experimental 

data necessary), but this is an area which could be explored in the future. 

Environmental conditions 

It has been noted several times that environmental conditions (particularly temperature, 

humidity and air pressure) will have an effect on the ball impact. Although it was beyond 

the scope of this study, looking at the influence of each of these properties would be 

important to gain a fuller knowledge of the behaviour of a ball in all conditions. 

Further oblique experimental study 

In order to gain more understanding of the nature of an oblique impact, further knowledge 

of the forces and their interactions is necessary. Although the experimental arrangements 

are not straightforward, accurate measurements of the horizontal frictional forces would be 

extremely useful. It seems likely that there is some form of grip-slip interaction between 

the ball and the surface, although it is not obvious how this would be recreated in a model. 

Further ultra-high-speed video footage would be useful to try to analyse deformation 

shapes and their effect on changing COR with different spin. An improved ball projection 

method which enables independent variables to be kept more consistent would also prove 

useful. 

Increased model complexity 

Throughout this study, one of the major underlying aims was to keep the model simple. 

Not only does this make it easy to understand and use, it makes it much faster to solve. 

There was also important placed on the value of model parameters which were easy to 

find. However, the nature of the spring-damper model used means that it is impossible to 
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predict some forms of behaviour - a tennis ball simply is not a trivial assembly of two or 

three component parts. 

To improve the accuracy of the model would require substantial extra work and 

complexity (such as dealing with horizontal deformations). At some point the question 

must be asked as to whether this is the correct approach. In striving to create a physically 

representative model, it may be necessary to turn to other approaches such as finite 

element analysis. This has the benefit of creating a model which actually looks and 

behaves like a real tennis ball, but brings with it the downsides of vastly increased model 

solution times and the potential for "black box syndrome" - where the user tends to accept 

the forces, shapes and other such predictions as absolute truth. 

Software development 

The Tennis GUT software described in Chapter 11 was not a particularly important 

original objective of the project, but as the study progressed it proved to be an intriguing 

idea - particularly as there was a considerable amount of parallel research being 

undertaken in the fields of racket modelling and tennis aerodynamics. It is both instructive 

and practically useful to know how impact conditions propagate through an entire shot. 

There is potential for the software to be developed into a much more complete and user

friendly package, with a number of potential uses. 

12.5 Concluding remarks 

It is hoped that the work presented in this study gives a useful insight into understanding 

the physical processes of impact, as well as one possible approach to modelling and 

predicting their effects. The experimental results will also be useful for verifying existing 

and future models. With further development and application (particularly of the software 

user interface), there is great opportunity for controlling and improving the sport of tennis. 
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Appendix A Ball specifications from The Rules of Tennis 

A Ball specifications from The Rules of Tennis 

Extracts from the Rules of Tennis are listed below (lTF, 2000a). 

The ball shall be more than 1.975 ounces (56.0 gram~) and less than 2.095 
ounces (59.4 grams) in weight. 

The ball shall be more than 2.575 inches (6.541 cm) and less than 2.700 inches 
(6.858 cm) in diameter. 

The ball shall have a bound of more than 53 inches (J 34.62 cm) and less than 58 
inches (147.32 cm) when dropped 100 inches (25-1.00 em) upon a flat, rigid 
surface e.g. concrete. The ball shall have a forward deformation of more than 
.220 of an inch (.559 cm) and less than .290 of an inch (737 cm) and return 
deformation of more than .315 of an inch (.800 cm) and less than .425 of an inch 
(J.080 em) at 18 lb. (8.165 kg) load. The two deformation figures shall be the 
averages of three individual readings along three axes of the ball and no two 
individual readings shall differ by more than .030 of an inch (076 cm) in each 
case. 

An additional section was added to the rules in 2000 describing two new types of balls. 

From r l January 2000 until 31 s1 December 2001 two further types of tennis ball 

may be used on an experimental basis. 

The first type is identical to those described in paragraphs a. to c. above except 
that the ball shall have a forward deformation of more than .195 inches (.495 
cm) and less than .235 inches (597 cm) and return deformation of more than 
.295 inches (749 cm) and less than .380 inches (.965 cm). This type of ball shall 
be described as Type 1 and may be used in either a pressurised or non
pressurised form. 

Another type is identical to those described in paragraphs a. to c. above except 

that the size shall be more than 2.750 inches (6.985 cm) and less than 2.875 

inches (7.302 cm) in diameter as determined by ring gauges and detailed in 

Appendix J section (iv). This type of ball shall be described as Type 3 and may be 

used in either a pressurised or non-pressurised form. 

All other type of ball defined by Rule 3 shall be described as ball Type 2. 

For the purpose of tournaments played under this experiment: 

1. Ball Type 1 (jast) should only be used for play on court surface types which 
have been classified as Category 1 (slow pace) (see Appendix J). 

2. Ball Type 2 (medium) should only be used for play on court surface types 
which have been classified as Category 2 (medium/medium-fast pace) (see 
Appendix I). 

3. Ball Type 3 (slow) should only be used for play on court surface types which 
have been classified as Category 3 (jast pace) (see Appendix I). 

For non-professional play any ball type may be used on any surface type. 
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Appendix A Ball specifications from The Rules of Tennis 

The Rules of Tennis give a list of regulations describing how each of the approval tests 

should be performed. Extracts from these are listed below. 

Tests should be made at a temperature of approximately 20° Centigrade and 
relative humidity of 60%. 

The limits given are for tests cunducted in an atmo~pheric pressure resulting in a 

barometric reading of approximately 30 inches (76 cm). Other standards may be 

fixed for localities with differing average temperature, humidity and pressure. 

Metal ring-gauges are used to test the ball diameter. Two circular openings have 

the minimum and maximum diameters specified for the particular ball type. The 

inner surface of the gauge has a convex profile with a radius of one-sixteenth of 

an inch (.159 em). The ball should not drop through the smaller opening by its 

own weight and should drop through the larger opening by its own weight. 

Before carrying out any of the tests, a ball should be pre-compressed by 
approximately one inch (2.54 cm) on each of three mutually perpendicular axes. 
This should be carried out three times on each axis, and the tests completed 
within two hours of pre -compression. 
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Appendix B Normal impact model - force-deflection results 

B Normal impact model - force-deflection results 

B.1 Introduction 

Supplemental data is presented to complement that given in Chapter 8. Force-deflection 

graphs comparing model predictions to experimental data are shown for normal impacts 

between approximately 6 and 20 ms- 1
, for the four ball types considered in that chapter. 

B.2 Model results 

B.2.a Pressurised ball 
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Figure B.1 Comparison of experimental data (dashed lines) and model data (solid lines) for 
force against centre of mass displacement, for a pressurised ball impacting normally between 

O -1 
5.8 and 2 ms . 
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Appendix B Normal impact model - force-deflection results 

B.2.b Pressureless ball 

400 

300 

~ 
Q) 200 
<.J ... 
0 
u. 

100 

0 
0 

1000 

800 

g 600 
Q) 
() 

(; 400 
u. 

200 

.. 

5.9 m/s 

2 4 6 8 
Centre of mass displacement (mm) 

16.9 m/s 

10 

o 2 4 6 8 10 12 14 16 18 20 
Centre of mass displacement (mm) 

1000 
.13.4 m/'l 

800 

~ 600 
\ 

Q) 

I u ... 400 0 

~ 
u. 

200 

0 '------''' 

0 2 4 6 8 10 12 14 16 18 20 
Centre of mass displacement (mm) 

1000 ,-------~---~-----__, 

800 

g 600 
Q) 
u 
(; 400 
u. 

200 

20.1 m/s 

o 2 4 6 8 10 12 14 16 18 20 
Centre of mass displacement (1lYTl) 

Figure B.2 Comparison of experimental data (dashed lines) and model data (solid lines) for 
force against centre of mass displacement. for a pressureless ball impacting normally between 

-1 
5.9 and 20.1 ms . 
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Appendix B Normal impact model - force-deflection results 

B.2.c Oversized ball 
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Figure B.3 Comparison of experimental data (dashed lines) and model data (solid lines) for 
force against centre of mass displacement, for an oversized ball impacting normally between 

·1 
5.8 and 19.9 ms . 
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Appendix B Normal impact model - force-deflection results 

B.2.d Punctured ball 
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Figure B.4 Comparison of experimental data (dashed lines) and model data (solid lines) for 
force against centre of mass displacement, for a punctured ball impacting normally between 5.9 

·1 and 20.1 ms . 
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Appendix C Oblique impact data 

C Oblique impact data 

C.1 Introduction 

This section presents some of the raw data from the various oblique tests, which may prove 

useful in the future. Table C. I shows a summary of the nominal impact conditions 

describing each test. For conciseness, relevant SI units are used throughout, where no units 

are quoted. 

Table C.1 Summary of the various parameters for oblique impact tests. The parameter of 
interest in each test is shaded . 

Surface Ball type V in (m/s) 
Bin (degrees 

CtJin (fads -\) 
to horiz) 

30 24 -600 to 600 
Varying spin, 

speed & Medium Pressurised 25 to 60 24 0 

angle 
30 24 to 52 0 

Fast 

(.u = 0.3) 

Changing Medium 
Press uri sed 30 24 -600 t 600 

surface (.u=0.55) 

Slow 

(.u=0.61) 

Pressurised 

Changing 
Medium Pressureless 30 24 -600 to 600 

ball type 

Punctured 
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Spin ref Ball: 
83 1 

2 
3 

82.5 1 
2 
3 

B2 1 
2 
3 

81.5 1 
2 
3 

81 1 
2 
3 

80.5 1 
2 
3 

0 1 
2 
3 

TD.5 1 
2 
3 

Tl 1 
2 
3 

Tl.5 1 
2 
3 

T2 1 
2 
3 

T2.s 1 
2 
3 

T3 1 
2 
3 

III 
Vx Vy Vr angle Topspin 

28.19 -12.64 3).89 24.15 -61800 
28.50 -12.78 31.23 24.15 -621.70 
28.34 -12.23 3).87 23.35 -620 50 
28.34 -12.54 3).99 23.88 -646.aJ 
28.59 -1223 31.10 23.17 -577.3) 
?9 95 -1258 32.48 2278 -558.3) 
27.10 -12.31 ?9.77 24.43 ·484.50 
27.02 -12 16 ?9.63 24.22 -400.10 
27.88 -12.85 30.70 24.76 -535.70 
26.76 -11.66 29.19 23.55 -moo 
27.69 -12.28 30.?9 23.92 -390.aJ 
26.33 -12.39 29.10 25.20 -284.10 
26.56 ·12.00 ?9.14 24.32 -28270 
26 20 -11.24 28.51 23.22 -340.50 
26 13 -11.62 28.59 23.97 ·350.aJ 
26.03 -lUI 28.42 23.67 -411.50 
2617 -12.00 28.79 24.64 -320.00 
2610 -12.39 28.89 25.40 -400.40 
25.79 -11.10 28.07 23.30 -12480 
25.20 -10.64 27.35 22.89 -00.40 
25.61 -11.03 27.89 23.?9 -145.70 
25.63 -11.77 28.20 24.67 133.40 
25.71 -12.70 28.67 26.?9 104.00 
25.09 -11.62 27.65 24.84 126.50 
25.72 -11.58 28.21 24.24 100.3) 
26.02 -11.85 28.59 24.48 239.30 
25.48 -12.16 28.23 25.51 278.60 
26.17 -12.08 28.B2 2477 345.40 
27.57 -12.31 30.19 24.07 330.00 
26.71 -12.70 ?9.58 25.42 255.30 
27.94 -12.37 30.55 23.89 396.20 
26.95 -12.23 ?9.59 24.42 48130 
26 64 -12.62 ?9 48 25 35 492.00 
29.19 -13.16 32.02 24.27 685.80 
?9.19 -12.47 31.74 23.13 57700 
28.34 -1254 30.'iJ3 2388 540.10 
?966 -13.16 32.45 23.93 637.80 
29.66 -13.48 32.57 24.44 710.20 
?9.42 -13 32 32.30 24.35 539.00 

Out <- rolling spin -> 

Vx Vy Vr angle Topspin ASpin from Vx from Vr 
1600 767 1855 2440 4540 6642 5175 5683 
1744 7.77 19.09 2403 2520 6469 5312 5816 
1705 7.?9 18.55 23.16 3700 6575 5205 566 1 
17.35 7.00 19.06 2448 4540 692 531.2 583.7 
17.96 7.28 19.38 22.06 13.10 5004 5472 5004 
19 05 7.67 20.53 2192 2500 584 2 581.4 6268 
15.72 8.18 17.72 27.48 139.00 624.4 481.4 542.7 
16.59 8.12 18.46 2607 116.00 597 505.2 562.4 
16.46 8.29 18.43 26.72 100.70 644.4 502.5 562.6 
15.52 7.'iJ3 17.45 27.25 19100 520.8 475.3 5346 
16.29 8.06 18.18 26.33 169 00 559.6 4%3 553.7 
15.62 8.03 17.56 27.20 173.00 458 476.6 535.9 
15.44 B.16 17.46 27.ffi 259.00 5425 472.9 534.9 
14.82 7.71 16.71 27.49 197.40 537.9 451.4 500.9 
15.75 7.00 17.62 2663 184.30 534.9 4OO.B 537.B 
15.16 7.74 17.02 27.05 183.00 595.4 464.3 521.4 
15.39 8.10 17.39 27.75 169.70 489.7 4689 529B 
15.12 8.32 17.25 28.82 114.00 515.3 4614 5266 
15.7B 7.91 17.65 26.63 374.00 4'iJ3.7 483.3 540.7 
15.02 B.13 1708 28.42 ?97.00 396.3 457.6 520.3 
15.42 8.27 17.50 28.20 368.20 513.9 470.8 534.2 
14.06 9.04 16.72 32.74 50670 373.3 430.8 5121 
14.'iJ3 9.09 17.53 31.23 50200 300 456.6 5340 
14.34 8.64 16.74 31.07 400.50 372 437.7 511.1 
15.22 8.92 17.64 3).37 555.20 374.9 466.2 540.4 
15.05 8.ffi 17.47 30.47 541.80 302.5 458.5 532.0 
151B B.63 17.46 29.61 548.30 269.7 463.3 532.9 
16.60 9.17 lB.96 28.91 585.30 239.9 503.5 580.8 
17.17 9.31 19.53 28.45 603.50 275.6 523.1 595.0 
17.10 9.62 19.62 ?9.36 572.10 316.B 521.9 598.8 
19.13 9.60 21.40 26 66 612.80 216.6 585.B 655.5 
1903 B.84 20.'iJ3 2492 628.30 147 579.7 639.3 
1B.40 9.65 20.77 2767 610.30 l1B.3 561.6 634.1 
21.Bl 10.05 24.01 24.75 694.20 B.4 667.B 735.4 
20.21 8.83 2205 23.59 753.30 176.3 6156 6718 
20.92 9.48 22.97 24 37 684.00 143.9 638.6 701.1 
2199 9.37 23.00 23.08 746.60 108.8 673.5 732.1 
21.76 945 23.72 23.47 63810 -721 662.7 722.5 
22.15 9.37 24.05 22.93 664.40 125.4 676.0 734.0 

'.ofVx ~. ofVr 
roll spin roll spin ... Vx A Vy A Vx:A Vy 

8.8 8.0 -11.3 20.3 0.56 
47 U -11.1 20.6 054 
7 1 6.5 -11.3 19.5 058 
8.5 7.8 -110 20.4 054 
2-4 22 -10.6 19.5 054 
4.5 4.1 -10.9 20.2 054 

29.1 258 -11.4 20.5 0.56 
231 20.8 -10.4 20.3 051 
21.6 193 -11.4 21.1 0.54 
40.4 35.9 -112 19.7 0.57 
34.1 30.5 -11.4 20.3 0.56 
36.5 32.4 -10.7 20.4 0.52 
549 48.6 -11.1 20.2 0.55 
431 38.B -11.4 19.0 0.60 
38.3 34.3 -10.4 19.5 0.53 
39.6 35.3 -10.9 19.2 0.57 
36.2 320 -10.8 20.1 054 
249 21.B -110 20.7 053 
77.6 69.3 -100 19.0 0.53 
651 57.3 -10.2 lB.8 054 
7B.2 68.9 -10.2 19.3 053 
1176 00.9 -11.6 20.8 0.56 
109.9 94.0 -10.7 21.8 0.49 
113.9 97.5 -10.7 20.3 0.53 
119.1 102.7 -10.5 20.5 0.51 
118.2 101.8 -11.0 20.7 0.53 
llB4 102.9 -10.3 20.8 0.50 
115.1 100.8 -9.6 212 0.45 
115.9 101.9 -10.4 21.6 0.48 
109 6 95.5 -9.6 22.3 0.43 
104 6 93.5 -8.B 22.0 0.40 
108.4 00.3 -7.9 21.1 038 
108.7 96.2 -8.2 22.3 0.37 
103.9 94.4 -7.4 23.2 0.32 
122.4 112.1 -90 21.3 0.42 
107.1 976 -7.4 22.0 0.34 
110.8 102.0 -7.7 22.5 0.34 
96.3 88.3 -7.9 22.9 0.34 
003 00.5 -7.3 22.7 0.32 

horlz COR vert COR 
0.5995 0.607 
0.6120 .. 0600 
0.aJ17 .. 0596 
0.6120 0.63J 
0.6284 .. 0.595 
063iO .. 0.610 
0.5800 0.664 
0.6138 .. 0.668 
0.59)5 .. 0.645 
0.5799 0.685 
0.5884 .. 0.657 
0.5931 • 0.648 
0.5813 0.600 
0.5656 .. 0.6!Ii 
0.6028 .. 0.600 
0.5824 0.678 
0.5001 .. 0.675 
05792 .. 0.671 
0.6120 0.713 
05962 .. 0.764 
0.6022 .. 0.750 
0.5487 0.768 
0.5831 .. 0.716 
0.5716 

.. 
0.744 

0.5918 0.770 
0.57ffi 

.. 
0.748 

05958 · 0.710 
0.6343 0.759 
0.6230 

.. 
0.756 

0.6400 · 0.757 
0.6846 0.776 
07063 .. 

0.723 
0.6007 .. 

0.764 
0.7470 0.764 
06923 · 0.708 
0.7382 · 0.756 
0.7415 0.712 
0.7337 

.. 
0.701 

07527 
.. 

0.703 

,,"COR 
OaJl 
0611 
0601 
0.615 
0623 
0632 
0595 
0.623 
0.600 
0.598 
0.600 
0.603 
0.599 
0.5ffi 
0.616 
0599 
0.604 
0597 
0.629 
0.625 
0.628 
0.593 
0.611 
0.603 
0.625 
0.611 
0.61B 
0.658 
0.647 
0.663 
0.700 
0.709 
0.705 
0.750 
0.695 
0.741 
0737 
0.728 
0745 

e-'9in 
1011 
0.995 
0992 
1025 
0.952 
0963 
1.125 
1076 
1.079 
1.157 
1.101 
1079 
1.146 
ff84 
f.l11 
1.143 
1.126 
1135 
1.143 
1242 
1.211 
1.327 
1.188 
1.251 
1.253 
1.245 
1.161 
1.167 
1.182 
1.155 
1.116 
1.021 
1092 
1020 
1.020 
1021 
0.964 
0960 
0942 
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Sj!eed .ef 
(mph, B.11I !:i 

60 1 
2 
3 

70 1 
2 
3 

80 1 
2 
3 

90 1 
2 
3 

100 1 
2 
3 

110 1 
2 
3 

120 1 
2 
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In Out 
Vx Vy V. angle Topspin Vx Vy Vr angle Topspin 

22.40 -1028 24.65 24.64 -92.10 11.94 7.96 14.35 33 67 35950 
22.70 -10 18 24.00 24.14 -69~ 12.55 7.51 1463 30.00 335.10 
21.67 -9.53 23.67 2315 -28.00 12.25 7.53 14.38 31.58 385.20 
26.49 -11.71 28.96 23.85 -39.50 15.52 873 17.81 29.35 406.90 
26.87 -11 51 29.23 23.20 -11.20 15.57 8.93 17.95 29.83 418.70 
26 74 -12.05 29.33 24.26 -63.20 15.36 873 1766 29.60 40900 
32.ffi -14 21 35.07 23.90 -67.50 19.12 9.95 21.56 27.48 462.40 
31.17 -13.23 33.86 23.00 -66.90 1718 10.24 20.52 29.93 413.60 
31.01 -13.07 33.65 22.85 -29.00 18.48 9.87 20.95 28.12 434.50 
38.14 -16.33 41.49 23.18 -37.20 22.68 11.95 25.64 27.79 485.00 
38.43 -17.63 42.28 24.64 -95.~ 22.60 11.11 2518 26.19 52180 
38.04 -16.03 41.28 22.85 -84.80 22.52 11.57 25.32 27.20 454.60 
43.52 -IB.35 47.23 22.86 -70.40 25.99 11.86 28.57 24.52 499.50 
43.02 -18.65 46.00 23.44 -81.10 26.04 12.83 29.03 26.24 539.50 
43.12 -17.95 46.70 22.60 -8.40 25.00 12.66 2873 26.13 548.70 
49.09 -21.37 53.54 23.52 -74.40 28.99 13.84 32.13 25.52 543.20 
49.19 -21.77 53.79 23.B7 -71.00 29.01 13.00 32.16 2556 569.50 
49.29 -21.67 53.84 2373 -76.80 28.79 13.84 31.95 25.67 635.50 
54.17 -2219 56.77 22.Bl -B7.~ 32.99 16.02 36.67 25.69 511.50 
54.17 -22.99 56.84 22.99 -49.60 33.08 13.92 35.89 22.62 567.00 
54.38 -21.69 56.54 21.75 -64.90 33.68 14.42 36.64 23.17 643.20 

< - .olling spin -> '. of Vx ". of V. lab,. 
ASpin from Vx from V. roll spin .011 spin deha Vx deha Vy ho.iz COR yen COR ails COR 80Lt."8\n/AVX.AVy 
451.6 365.8 439.5 96.3 81.8 10.5 18.2 0.5331 0.774 0.582 1.367 0.574 
404.4 382.4 445.6 87.6 75.2 10.1 17.7 0.5530 0.7::6 0..588 1.280 0.574 
414 373.8 4::6.8 103.0 87.B 94 17.1 0.5653 0790 0..607 1.330 0552 

446.4 475.4 545.4 85.6 74.6 11.0. 20.4 0.5861 0745 0.615 1.230 0.536 
429.9 474.2 546.6 003 76.6 11.3 20.4 05795 0.775 0.614 12ffi 0.553 
473 468.8 539.2 87.4 76.0 11.4 20.8 0.5743 0724 0..602 1.220 0.548 

529.9 585.7 660.2 78.9 70.0 129 24.2 0.5965 0.700 0..615 1.150 0.536 
400.5 541.7 625.0 76.4 66.2 13.4 23.5 O.57ffi 0..774 0.605 1.301 0.570 
464,3 564.1 639.6 77.0 67.9 12.5 22.9 0.5960 0.756 0.623 1.231 0.546 
522.2 694.6 785.2 69.8 61.8 15.5 28.3 0.5947 0..732 0.618 1.199 0.547 
617.1 600.3 767.0 75.8 68.0 15.8 28.7 0.5aOO o.~ 0.596 1.()53 0.551 
539.4 687.4 772.B 66.1 56.8 15.5 27.6 0.5920 0.722 0.613 1.100 0.562 
569.9 796.0 875.0 621 571 17.5 30.2 0.5973 0..646 0605 1.073 0.500 
620.6 793.0 884.1 68.0 61.0 17.0 31.5 0.6053 0.688 0.619 1.120 0.539 
557.1 787.4 877.1 691 62.6 17.3 30.6 0.5962 0.705 0..615 1.156 0.566 
617.6 888.0 963.9 61.2 55.2 20.1 35.2 o.~ 0.648 0.600 I.IES 0.571 
640.5 883.7 979.6 64.4 58.1 20.2 35.6 0.5699 0.638 0.598 1.071 0.566 
712.3 878.9 975.2 72.3 65.2 20.5 35.5 0..5842 0.639 0.593 1.062 0.577 
596.B 1010.5 1123.3 SO.6 45.5 21.2 ::6.B 0.6091 0.703 0.624 1.135 0.546 
617.4 1007.7 1093.3 56.3 51.9 21.1 36.9 0.6107 0.606 0.610 0.992 0.571 
708.1 1028.2 l11B.4 62.6 57.5 201 361 0.6195 0.665 0.626 UEG 0573 
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Ang .ef Ball ;; 
anglel 1 

2 
3 

angle2 1 
2 
3 

angle3 1 
2 
3 

angle4 1 
2 
3 

angle5 1 
2 
3 

angle6 1 
2 
3 

In 
Vx Vy V. angle Topspin 

20.37 -26.04 33 00 51 96 -43.70 
20.81 -26.51 33.70 51.86 -13 3J 
20.75 -26.82 33.92 52.27 -1.80 
24.59 -23.14 33.76 43.27 -7460 
24.72 -23.60 34.17 4367 -39 ro 
24.00 -23.35 33.53 44.15 -43.10 
26.63 -19.6733.11 :E.44 -56.3J 
26.96 -19.81 33.45 :E.3J -29.10. 
26.43 -19.49 32.84 :E.40 -8.90 
29.16 -17.27 33.89 3J.65 -3.10 
28.79 -17.23 33.55 3J.89 -48 90 
28.18 -1657 3269 3J45 -48 00 
29 47 -14.68 32.92 26.48 -25 10 
3J.23 -14.78 33.65 26.00 -24.40 
3J.18 -14.91 33.66 26.28 -35 40 
31 65 -14 37 34.76 24.41 -13310 
31.74 -14.02 34.69 23.83 -102.40 
31.08 -1308 3172 22.82 -100.70 

Out <- .olling spin -> 

Vx Vy V. angle Topspin ASpin hom Vx hom V. 
10.22 18.81 21.41 61.49 292.60 333.3 313.0 655.7 
9.83 19.10 21.48 62.77 296.00 3)9.3 299.3 654.2 
10.59 19.00 21.80 60.93 289.ro 291.7 m.4 665.6 
12.00 17.55 21.3J 55.44 386.60 461.2 370.1 652.5 
1248 17.69 21.65 54.80 378.00 417.9 380.2 659.6 
12.20 16.83 20.78 54.05 416.50 459.6 372.5 634.5 
1354 14.96 20.17 47.86 458.ro 515.2 414.5 617.8 
1341 15.28 20.33 4813 476.3J 505.4 400.5 619.4 
13.68 '4.52-'9.95 46.70 459.80 468 7 417.6 600.9 
15.09 13.65 20.35 42.13 552.ro 556 462.2 623.2 
15.31 12.60 19.83 39.47 540.00 588.9 466.2 603.9 
1503 12.46 19.53 39 66 56940 617.4 458.9 596 1 
1582 12.00 1990 37.35 587.ro 613 484 7 609.6 
15.98 11.61 19.75 35.98 617.50 641.9 486.8 601.6 
15.95 11.58 19.71 35.97 596.10 631.5 487.0 601.7 
1820 10.45 20 99 29.85 51820 651.3 557.5 642.8 
18.88 10.18 21.44 28.33 499.50 601.9 574.9 653.2 
1785 10.31 20.61 3J.02 502.70 609.4 544.8 629.2 

·'ofVx ·'ofV. fabsJ 
.01l501n .011 spin oIelta Vx delta Vy horlz COR 

93.5 44.6 10.2 44.8 0.5015 
98.9 45.2 110. 45.6 0..4722 
89.7 43.6 10..2 45.9 0..5104 
104.5 59.3 12.5 40.7 0..4915 
99.4 57.3 12.2 41.3 0..5050 
111.8 65.6 11.9 40.2 0..5072 
110..7 74.3 13.1 34.6 0..5082 
116.6 76.9 13.6 35.1 0..4974 
110..1 75.5 12.B 34.0. 0..5176 
119.6 88.7 14.1 3J.9 0..5176 
115.8 89.4 135 29.8 0..5315 
124.1 955 13.2 29.0 0..5334 
1213 96.4 13.6 26.8 0..5370. 
126.8 102.6 14.2 26.4 0..5287 
122.4 99.1 14.2 26.5 0..5286 
92.9 806 13.4 24.8 0..5752 
86.9 76.5 12.9 24.2 0.5948 
92.3 79.9 13.2 23.4 0.5742 

+ve Vyin venCOR akCOR 
26.04 Dm 0648 
26.51 0..721 0..637 
26.82 0..711 0..643 
23.14 0..758 0..631 
23.60 0..750 0.634 
2335 0..720 0.620 
19.67 0..761 0600 
19.81 Dm 0.600 
19.49 0..745 0.607 
17.27 0..790 0.600 
17.23 0..732 0..591 
1657 0..752 0597 
14.68 0..823 0605 
14.78 0..785 0..587 
14.91 o..m 0..586 
1437 D.n7 0..604 
14.02 0..726 0.618 
13.00 0.788 0.611 

8od'~n I AVx,IJ.Vy 
1184 0.226 
1210. 0..241 
1.166 0..221 
1.281 D.3J7 
1.255 0.296 
1.224 0..295 
1.313 0..378 
1.342 O.:Bi 
1.283 0.375 
1.375 0..455 
1.278 0..452 
1302 0453 
1.411 0.510 
1.381 0.540 
I.E 0.537 
1223 0.542 
1.189 0.532 
1.315 0..566 

on 
N 
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surf bel type spin 

medium 

me' 
m 

m 

m 

me' 
m, 

m 
m, 

m, 
m 
m, 

m, 

m 
m, 

me 

me' 
me' 
mediul 

medium 

~ 

Yx'n Yyrn Yin I4n a., YXN 

27.94 -14.25 31.36 -603.7 27.02 16.61 

2915 -14.54 32.58 -759.6 26.5 1 15.71 

29.67 -14.41 32.99 -588.5 25.89 15.58 

3J.50 -15.33 34.14 -557.3 2669 17.24 

3J.18 -14.55 33.51 -568.3 25.74 16.53 

3J.26 -14.79 33.68 -599.4 26.05 16.86 

29.58 -13.09 32.35 -402.9 23.86 18.85 

29.34 -12.82 32.02 -361.6 23.60 19.02 

29.32 -12.57 31.~ -378.6 23.20 17.84 

28.16 -12.51 30.81 -lB.l 23.96 17.71 

27.58 -12.11 30.12 -36.7 23.71 16.67 

27.25 -12.15 29.84 -34.4 24.03 16.73 

28.15 -12.28 30.71 349.7 23.56 17.83 

28.00 -12.78 30.78 266.6 24.54 17.83 

27.55 -12.57 3J.28 281.9 24.52 17.39 

30.36 -13.09 33.06 444.9 23.32 22.$ 

30.03 -12.52 32.54 548.3 22.63 21.15 

30.75 -13.01 33.39 515.7 22.93 22.58 

30.55 -13.62 33.45 537.9 24.03 23.84 

31.41 -12.99 33.99 722.7 22.46 22.87 

31.19 -13.11 33.83 541.0 22.80 23.14 

28.80 -14.83 32.39 -547.2 27.25 16.~ 

29.27 -14.64 32.73 -51B.5 26.57 16.87 

29.85 -14.82 33.33 -541.6 26.40 16.63 

28.Bl -14.B4 32.41 -523.6 27.25 16.69 

29.72 -15.09 33.33 -549.4 26.91 16.74 

29.61 -14.76 33.08 -550.2 26.49 16.7B 

27.63 -13.29 30.66 -304.5 25.69 17.66 

28.96 -13.42 31.92 -2899 24.87 17.77 

28.57 -13.40 31.56 -276.0 25.13 17.81 

28.85 -12.93 31.62 -41.9 24.15 18.3J 

2B.26 -11.97 30.69 -58.0 22.95 17.47 

2B.61 -12.91 31.39 -40.7 24.29 17.70 

29.49 -12.68 32.11 250.0 23.27 19.14 

29.49 -12.41 32.00 313.1 22.82 19.18 

29.47 -12.65 32.07 289.3 23.23 18.42 

29.46 -12.73 32.10 321.3 23.36 20.93 

30.10 -12.71 32.67 397.7 22.89 21.59 

28.97 -13.20 31.83 354.3 24.50 20.60 

30.68 -12.66 33.19 473.3 22.43 21.25 

30.37 -13.75 33.34 416.5 24.36 21.40 

29.27 -13.16 32.09 354.9 24.21 21.54 

Yyod Yout ll.W 9o..c COR COR:obs 

9.53 19.15 llE.8 29.85 0.67 0.61 

9.48 18.35 149.0 31.10 0.65 0.56 

10.11 18.57 131.4 32.$ 0.70 0.56 

945 19.66 160.7 28.74 0.62 0.58 

9.55 19.09 177.4 3J.o1 0.66 0.57 

9.34 19.28 152.6 28.99 0.63 0.57 

9.21 20se 2242 26.05 0.70 0.65 

8.79 20.95 210.9 24.00 0.69 0.65 

9.29 2012 183.3 27.50 0.74 0.63 

9.se 20.33 386.3 29.39 o.Ell 0.66 

963 19.25 396.1 30.00 0.79 0.64 

9.74 19.35 387.3 3021 O.Ell 0.65 

10.26 20.57 ~.4 29.91 0.84 0.67 

9.82 20.36 6ElJ.3 28.85 0.77 0.66 

9.96 20.04 568.8 29.78 0.79 0.66 

9.62 24.89 694.3 22.74 0.74 0.75 

10.53 23.63 671.1 26.46 0.84 0.73 

10.25 24.80 ~.6 24.42 0.79 0.74 

9.64 25.71 686.6 22.01 0.71 0.77 

9.92 24.93 749.3 23.45 0.76 0.73 

9.87 25.15 71E.8 23.10 0.75 0.74 

8.15 lB.76 189.8 25.73 0.55 0.58 

8.14 lB.73 193.7 25.76 0.56 0.57 

7.92 lB.42 172.7 25.47 0.53 0.55 

B.06 18.53 200.0 25.78 0.54 0.57 

B.74 18.88 245.5 27.56 0.58 0.57 

B.30 lB.72 237.7 26.32 0.56 0.57 

8.00 19.39 264.0 24.36 0.60 0.63 

7.73 19.38 226.4 23.51 0.58 0.61 

8.65 19.Ell 291.1 25.89 0.65 0.63 

8.51 20.18 457.8 24.94 0.66 0.64 

B.56 19.45 447.5 26.10 0.72 0.63 

9.01 19.86 327.7 26.97 0.70 0.63 

B.15 20.81 470.3 23.07 0.64 0.65 

B.55 21.00 497.8 24.03 0.69 0.66 

B.53 2O.3J 456.3 24.84 0.67 0.63 

7.61 22.27 533.8 19.98 0.60 0.69 

7.10 22.72 559.3 18.20 0.56 0.70 

B.02 22.11 545.7 21.28 0.61 0.69 

7.87 22.66 626.6 20.33 0.62 0.68 

7.94 22.83 465.0 20.36 0.58 0.68 

8.09 23.01 486.5 20.59 0.62 on 

p. SPR 

0.48 52.4 
0.56 44.1 
0.57 42.5 
0.53 46.5 

0.57 43.4 
0.56 44.5 

0.48 51.9 
0.48 52.2 

0.53 47.5 

0.46 53.5 

0.50 49.8 
0.48 51.9 
0.46 54.2 
045 55.0 

0.45 54.9 
0.33 67.4 
0.39 61.5 

0.35 64.9 
0.29 71.1 
0.37 62.7 
0.35 65.0 

0.52 48.2 
0.54 45.6 
0.58 41.9 
0.53 47.0 
0.55 45.5 
0.56 44.4 

0.47 532 
0.53 47.1 
0.49 51.2 
0.49 50.8 
0.53 47.4 
0.50 50.2 
0.50 50.3 
0.49 50.8 
0.52 47.8 
0.42 58.1 
0.43 57.0 
0.39 60.6 
0.46 54.1 
0.41 58.6 
0.36 63.7 

% roll 

21.2 
31.3 
27.8 
31.8 
35.4 
29.9 
39.2 
36.6 
33.9 
72.0 
78.4 
76.4 
109.3 
125.9 
107.9 
99.8 
104.7 
100.9 
95.1 
103.1 
100.8 
37.1 
37.9 
34.3 
39.5 
48.4 
46.7 
49.3 
42.0 
53.9 
82.6 
84.5 
61.1 
811 
85.7 
81.8 
84.1 
85.5 
87.4 
97.3 
71.7 
74.5 

e....19.-
1.10 
1.17 
1.27 
1.00 
1.17 
1.11 
1.09 
1.05 
1.19 
1.23 
1.27 
1.26 
1.27 
118 
1.21 
O.se 
1.17 
1.1E 
0.92 
1.04 
1.01 
0.94 
0.97 
0.$ 
0.95 
1.02 
0.99 
0.95 
0.95 
1.03 
1.03 
1.14 
1.11 
0.99 
1.05 
1.07 
0.86 
0.80 
0.87 
0.91 
0.84 
0.85 

N 
V) 

N 
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surf baltype spin Vxin Vyrn Vin Won ~ VXOl.6. VyOI.6. 

medium L -3 30.39 -14.83 33.81 -716.4 26.02 15.44 9.51 
"C medium L -3 3139 -16.33 35.38 -516.1 27.48 15.56 9.61 
C 
CG medium L -3 30.88 -14.52 34.13 -575.5 25.17 15.59 9 11 

"C medium L -2 29.36 -15.78 33.33 -584.1 28.25 17.09 9.52 
CD 
fI) medium L -2 31.15 -15.59 34.84 -537. 6 26.59 16.53 9.67 
. .: 
~ 
fI) 

medium L -2 30.04 -15.70 33.89 -624.0 27.59 15.83 936 
medium L ·1 30.22 -13.21 32.98 -341.1 23.62 18.12 8.55 

fI) 
CD medium L -1 29.64 -13.05 32.39 -333.1 23.77 17.27 8.80 
l-
e. medium L -1 29.98 -12.87 32.62 -362.1 23.23 18.ffi 9.08 

CD 
(.) 

-2 
medium L 0 27.68 -12.17 30.23 -24.8 23.73 16.50 9.02 
medium L 0 27.74 -12.18 30.30 -12.3 23.71 17.40 8.58 
medium L 0 27.17 -11.99 29.70 1.5 23.81 17.03 8.95 

~ 
fI) 

E 
~ 

medium L 1 28.80 -13.72 31.90 395.1 25.48 18.79 9.11 
medium L 1 30.10 -13.29 32.91 365.9 23.82 19.51 9.38 
medium L 1 28.24 -12.65 30.94 454.6 24.13 19.08 9.55 .-

"C medium L 2 27.96 -14.01 31.27 575.2 26.62 22.50 9.44 
CD 
E (JJ 

(JJ 

~ 

medium L 2 30.49 -13.88 33.50 580.3 24.47 22.81 8.66 
L 2 32.11 -14.62 35.28 625.0 24.48 23.70 9.94 medium 

Q) 
fI) I-< 

~ - (JJ 

CG (JJ 

.c Q) 
I-< 

medium L 3 30.85 -1273 33.37 468.4 22.43 23.37 936 
medium L 3 30.21 -14.83 33.66 592.8 26.15 24.02 8.86 
medium L 3 29.66 -14.54 33.03 455.7 26.11 24.74 9.46 

C) 0.. 
C (JJ .- Q) 

C) .... 
0 

0 C t::: 
CG Q) 

.~ ..c '"0 
"0 0 .....4 c 
Q) Q) a. U! ... 
a. 0 
« 0 Z 

Vout ~ Bot. COR CORabl 

18.14 228.3 31.61 0.64 0.54 
18.29 186.9 31.71 059 0.52 
18.05 198.6 3:1.32 0.63 053 
19.56 239.2 29.13 0.60 0.59 
19.15 264.0 30.33 0.62 0.55 
18.40 262.8 31160 060 0.54 
20.04 323.0 25.26 0.65 0.61 
19.38 281.3 27.00 0.67 0.60 
20.21 274.3 26.69 0.71 0.62 
18.80 434.6 28.66 0.74 0.62 
19.40 395.5 26.24 0.70 0.64-
19.24 405.1 27.71 0.75 0.65 
20.89 551.1 25.86 0.66 0·65 
21.65 556.1 25.69 0.71 0.66 
21.33 524.5 26.60 0.76 0.69 
24.40 657.5 22.77 0.67 0.78 
24.40 603.5 20.78 0.62 0.73 
25.70 672.1 22.75 0.68 0.73 
25.17 749.7 2182 073 0.75 
25.61 660.0 20.26 0.60 0.76 
26.49 629.9 20.93 0.65 0.80 

Jl. SPR 

0.61 38.6 
0.61 39.0 . 
0.65 35.3 

_.0.49 51.5 
0.58 42.1 
0.57 43.3 
0.56 44.4 
0.57 43.4 
0.54 45.7 
0.53 47.2 
0.50 50.2 
0.48 51.6 
0.44 56.2 
0.-47 53.3 
0.-41 58.7 
0.23 76.7 
0.34 65.9 
0.34 65.8 - . 

0.34 66.1 
0.26 73.9 
n2f1 79 ~ 

% roll 

48.8 
39.7 
42.0 
46.2 
52.7 
54.8 
58.8 
53.8 
50.1 
86.9 
75.0 
78.5 
~.8 

94.1 
00.7 
~.4 

87.3 
93.6 
105.9 
00.7 
R40 

Bot. I &.n 
1.22 
1.15 
1.20 
1.03 
1.14 
1.11 
1.07 
1.14 
1.15 
1.21 
1.11 
1.16 
1.02 
1.08 
1.10 
0.86 
0.85 . 
0.93 
0.97 
0.77 
080 

-

~ 
V) 

N 
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surf baI type spin Vx'" Vy'n Vin ll.\n ~ VXOd 

fast P -3 28.97 -15.17 32.70 -634.9 27.63 19.87 

fast p -3 31.51 -14.96 34.88 -633.8 25.40 23.05 

fast P -3 31.05 -14.50 34.27 -087.4 25.04 22.78 

fast P -2 30.34 -14.27 33.53 -521.6 25.18 23.27 

fast P -2 31.12 -14.14 34.18 -595.9 24.44 21.74 

fast P -2 29.28 -13.87 32.40 -588.5 25.35 21.17 

fast P -1 2812 -13.00 31.01 -355.0 24.95 21.57 

fast P -1 28.18 -14.00 31.46 -328.0 26.42 22.56 

fast P -1 2778 -13.02 30.68 -328.4 25.10 22.15 

fast P 0 26.05 -13.03 29.13 -33.9 26.57 21.98 

fast P 0 2722 -13.20 30.26 -59.2 25.87 21.92 

fast P 0 26.84 -12.80 29.73 -0.3 25.50 21.64 

fast p 1 27.58 -12.61 30.33 317.4 24.56 22.16 

fast P 1 26.51 -13.04 29.54 348.3 26.19 22.28 

fast P 1 26.62 -13.86 30.01 424.2 27.51 21.87 

fast P 2 27.97 -14.29 31.41 468.6 27.06 2356 

fast P 2 28.28 -13.04 31.14 475.6 24.75 22.80 

fast P 2 28.88 -13.60 31.92 470.1 25.22 25.00 

fast P 3 29.36 -14.22 32.62 599.4 25.84 23.99 

fast P 3 29.70 -13.92 32.80 561.2 25.11 24.48 

fast P 3 29.18 -13.80 32.28 518.8 25.31 23.78 

slow P -3 29.69 -14.36 32.97 -652.6 25.81 1514 

slow P -3 30.05 -14.72 33.-46 -690.8 26.09 15.85 

slow P -3 28.77 -14.87 32.38 -731.2 27.33 14.87 

29.17 -13.31 15.94 
slow P -2 32.06 -611.3 24.53 

slow P -2 29.95 -14.76 33.39 -597.0 26.24 14.94 

slow p -2 29.98 -14.52 33.31 -577.9 25.84 14.41 

slow P -1 27.61 -12.68 30.39 -372.5 24.67 14.05 

slow P -1 28.43 -13.15 31.33 -306.9 24.82 14.45 

slow P -1 27.45 -13. 27 30.49 -381.1 25.80 13.65 

slow P 0 27.01 -12.97 29.97 -36.4 25.64 14.03 

slow P 0 26.37 -12.85 29.33 -22.5 25.99 13.25 

slow P 1 27.35 -12.80 30.19 304.4 25.09 17.34 

slow P 1 26.56 -12.99 29.57 290.5 26.06 16.83 

slow P 1 27.99 -13.09 30.90 272.6 25.06 17.14 

slow P 2 28.24 -14.06 31.54 474.5 26.46 20.92 

slow P 2 28.34 -13.13 31.23 487.6 24.86 20.22 

slow P 2 27.71 -13.06 30.64 477.2 25.22 20.45 

slow p 3 28.55 -13.73 31.68 501.0 25.69 22.03 

slow p 3 28.09 -13.87 31.33 493.6 26.28 21.60 

slow P 3 28.68 -14.86 32.30 756.2 27.39 21.74 

Vyod Vout ll.W e.... COR COR~ 

9.04 21.83 -28.1 24.46 0.60 0.67 

9.51 24.94 -118.5 22.43 0.64 0.71 

8.79 2441 -195.8 21.11 0.61 0.71 

9.43 25.11 -177.2 22.06 0.66 0.75 

8.10 23.20 27.0 20.42 0.57 0.68 

8.92 22.97 -69.6 22.86 0.64 0.71 

9.01 23.38 -6.7 22.66 0.69 0.75 

9.44 24.46 63.4 22.71 0.67 0.78 

9.55 24.12 -31.2 23.32 0.73 0.79 

9.40 23.91 212.3 23.15 0.72 0.82 

9.74 23.99 210.7 23.97 0.74 0.79 

9.55 23.66 207.8 23.81 0.75 0.80 

9.81 24.23 39).6 23.88 0.78 0.80 

9.83 24.35 374.6 23.80 0.75 0.82 

10.21 24.14 354.2 25.03 0.74 0.80 

9.99 25.59 561.8 22.98 0.70 0.81 

8.99 24.51 626.6 21.51 0.69 0.79 

9.45 26.72 589.5 20.70 0.69 0.84 

9.17 25.68 599.3 20.93 0.65 0.79 

10.35 26.58 645.4 22.91 0.74 0.81 

10.20 25.87 671.0 23.21 0.74 0.80 

8.68 17.-45 125.0 29.84 0.60 0.53 

8.94 18.20 110.9 29.-42 0.61 0.54 

9.19 17.48 195.1 31.73 0.62 0.54 

8.79 18.20 156.2 28.87 0.66 0.57 

9.19 17.54 226.4 31.60 0.62 0.53 

9.00 16.99 280.4 31.98 0.62 0.51 

9.20 16.80 251.7 33.22 0.73 0.55 

9.20 17.13 230.6 32.50 0.70 0.55 

9.50 16.63 305.3 34.84 on 0.55 

10.11 17.29 464.1 35.76 0.78 0.58 

9.89 16.54 421.5 36.74 0.77 0.56 

10.37 20.21 503.8 30.87 0.81 0.67 

10.50 19.83 579.4 31.96 0.81 0.67 

10.30 20.00 543.9 31.00 0.79 0.65 

9.88 23.13 644.2 25.29 0.70 0.73 

9.91 22.52 625.7 26.09 0.75 on 
9.26 22.45 626.2 24.36 0.71 0.73 

10.29 24.31 638.6 25.03 0.75 0.77 

9.75 23.70 598.9 24.30 0.70 0.76 

9.95 23.91 716.0 24.60 0.67 0.74 

It SPR 

0.38 62.4 
0.35 65.4 
0.::6 64.5 
0.30 70.1 

0.42 57.8 
0.::6 64.4 

0.30 70.3 

0.24 76.0 
0.25 75.0 

0.18 81.9 

0.23 76.9 

0.23 76.8 
0.24 75.8 
0.18 81.5 

0.20 80.3 .. 

0.18 81.8 
0.25 75.1 
0.17 83.2 
0.23 77.0 
0.21 78.5 
0.23 77.5 
0.63 36.9 

0.60 40.0 
0.58 42.2 -
0.60 40.1 
0.63 37.3 

0.66 33.8 
0.62 38.0 
0.63 37.5 
0.61 39.4 
0.56 43.7 
0.58 42.3 
0.43 56.8 
0.41 58.5 
0.46 53.6 
0.31 69.4 
0.35 64.8 
0.33 67.5 
0.27 72.9 
0.27 72.5 
0.28 72.0 

% roll 

-4.7 
-17.0 
-28.4 
-25.1 
4.1 

-10.8 
-1.0 
9.3 
-4.6 
31.9 
31.7 
31.7 
58.2 
55.5 
53.4 
78.7 
90.7 
77.8 
82.4 
87.0 
93.1 
27.2 
23.1 
43.3 
32.3 
SO.O 
64.2 
59.1 
52.7 
73.8 
109.1 
105.0 
95.9 

113.6 
104.7 
101.6 
102.1 
101.0 
95.7 
91.5 
108.7 

.. 

.. 
.. 

- . 

e..../9", 

0.89 
0.88 
0.84 
0.88 
0.84 
0.9) 
0.91 
0.86 
0.93 
0.87 
0.93 
0.93 
0.97 
0.91 
0.91 
0.85 
0.87 
0.82 
0.81 
0.91 
0.92 
1.16 
1.13 
1.16 
1.18 
1.20 
1.24 
1.35 
1.31 
1.35 
1.39 
1.41 
1.23 
1.23 
1.24 
0.96 
1.05 
0.97 
0.97 
0.92 
0.90 
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