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ABSTRACT

The National Institute for Health and Clinical Excellence (NICE) is responsible

for making recommendations about which treatments are available on the NHS.

An important part of the decision making process is to estimate the cost effec-

tiveness of a treatment, measured in cost per QALY gained. If a treatment costs

more than £30000 per QALY the NHS does not consider it to be cost effective.

QALYs are calculated using life years and QALY weights, which represent the

quality of life of a condition. An example of a QALY weight is a utility, which is

a measure of preference for a health condition. A utility is measured on a scale

between 0 and 1, where 0 is the utility of death and 1 is the utility of perfect

health. This thesis uses discrete choice modelling to estimate utilities for health

states defined using the Asthma quality of life questionnaire. A Bayesian ap-

proach is used to estimate the utilities in order to quantify utility. A probit and

logit model are considered for the likelihood where the parameters represent the

decrease in utility associated with increasing levels of the attributes of the asthma

quality of life questionnaire. An MCMC is run using three prior distributions on

the parameters: Gamma(l,lO), Gamma(5,15) and Uniform(O,l). The model is

also extended to include a multiplicative random effect. Bayes factors are used

as a model comparison in the standard model. Results from both the standard

model and random effects model are also compared with maximum likelihood

estimates.
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Chapter 1

Introduction

In health care there are many conditions that need to be treated and for each

condition there may be several possible treatments. Health care providers, such

as the NHS, have limited financial resources and therefore are not able to provide

the best available treatment for every possible condition. Financial resources

need to be allocated in an effective way in order to provide the best treatment

for as many patients as possible.

The National Institute for Health and Clinical Excellence (NICE) is responsi-

ble for making recommendations to the NHS in England and Wales. These rec-

ommendations cover three areas: new and existing medicines, treatments and

procedures; treating and caring for people with specific diseases and conditions;

and how to improve health and prevent disease and illness. In order to determine

recommendations on new and existing treatments, NICE undertakes a Health

Technology appraisal at the request of the Department of Health. The process,

described in NICE (2008), assesses the clinical and cost effectiveness of a health

technology( treatment or drug) and is divided into three phases: scoping, assess-

ment and appraisal. The scope defines the issues of interest and the questions that

should be addressed. Assessment usually consists of two components: a system-

1



atic review and an economic evaluation. The am of the assessment process is to

produce an assessment, taking into account uncertainty, of the clinical and cost

effectiveness of a specific health technology. The appraisal process then considers

the reports and analysis produced in the assessment phase within the context of

additional information supplied by appropriate experts and the general public.

An important part of the assessment process of a Health Technology appraisal

is the economic evaluation. Drummond et al. (2005) describe economic evalua-

tion as the comparative analysis of alternative courses of action in terms of both

their costs and consequences. A type of economic evaluation is cost-effectiveness

analysis (CEA), which compares the cost of a treatment with its effectiveness,

measured in natural units relevant to the condition being investigated (e.g. mil-

limetres of blood pressure reduction). The results are expressed as cost per unit

of effectiveness.

There are several problems associated with the use if CEA, which are described

by Drummond et al. (2005). The primary outcome measure may differ between

interventions being investigated and therefore CEA cannot be used to make com-

parisons. There may also be more than one outcome of interest, which cannot

be accommodated by CEA. For example, outcomes often include life extension,

changes in long term quality of life and side effects. In addition, some outcomes

are more important than others. For example, one treatment could extend life

but cause serious side effects, and another treatment may improve quality of life

but does not extend life. These two treatments cannot be compared using cost-

effectiveness analysis.

This can be explained using an example. Suppose two new treatments are being

considered by the NHS, one restores sight and the other restores mobility. Both

treatments cost £10000 to treat one patient but the NHS can only afford to
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provide funding for one of the treatments. CEA cannot be used to make such

a decision as the outcomes are different and are therefore not comparable. An

alternative method is to account for the change in quality of life each individual

experiences after the two treatments. A quality-adjusted life year (QALY) is a

measure that combines the length of time (in years) with the quality of life expe-

rienced in that time. One QALY is equivalent to one year in perfect health. A

condition worth 0.2 QALYs is equivalent to an individual living in perfect health

for 0.2 years. Suppose an individual is expected to experience an increase in

0.8 QALYS when their sight is restored and and an increase of 0.2 QALYs for

restored mobility. The cost to restore sight can be written as £~~~oo = £12500

per QALY and the cost to restore mobility can be written as £lo~gOO= £50000

per QALY. Using this method the treatment for restoring sight is the most cost

effective. This method is called cost-utility analysis (CUA) and is used by NICE.

CUA compares the cost of an intervention with the health improvement of the

intervention where health improvement is measured in quality-adjusted life years

(QALYs). The results of CUA are expressed as cost per QALY gained. QALYs

can be calculated for any intervention and allows comparisons to be made across

different interventions which usually have different primary outcomes. It is par-

ticularly useful for organisations such as NICE where decisions must be made

about recommending one treatment over another. NICE uses a threshold to de-

termine if a treatment is cost-effective, which is described on the NICE web site.

If the cost of a treatment is more than £20,000 - £30,000 per QALY gained

then it would not be considered cost-effective.

As NICE has to make decisions across different technologies and disease areas,

a reference case has been defined that specifies the methods considered to be

the most appropriate for the appraisal committee's purpose and consistent with

the NHS objective of maximising health gain from limited resources. Assessments

submitted to NICE should include an analysis of results generated using reference
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case methods. The reference case is described by NICE (2008) and Claxton et al.

(2005). Each element of the Health Technology appraisal has a reference case.

For example, the type of economic evaluation should be cost-effectiveness analysis

and the measure of health effects be the QALY.

The expected change in QALY after a treatment should be considered along-

side any sources of potential bias and uncertainty. Claxton et al. (2005) and

NICE (2008) discuss the importance of quantifying uncertainty associated with

a health technology when assessing clinical and cost effectiveness. NICE (2008)

identify three sources of uncertainty. These are structural uncertainty from the

assumptions made when constructing the model, the differences between col-

lected data, such as different costs and estimated utilities, and parameter pre-

cision(uncertainty around the mean health and cost inputs in the model). It

is important to identify potential selection bias in the inputs to the model and

for the model to quantify uncertainty associated with a technology. This un-

certainty can be described as the probability that a different decision would be

reached if the true cost effectiveness of each technology could be determined be-

fore making the decision. Methods of presenting uncertainty in cost-effectiveness

are to include confidence intervals and cost-effectiveness acceptability curves. The

expected mean cost and outcome should also be presented, along with the prob-

ability that the treatment is effective at the threshold of £20,000 - £30,000

per QALY gained and the error probability that the treatment is not cost ef-

fective. For models with few parameters analysis of the effect of the best and

worst possible scenarios can be investigated. However this method is not useful

is representing the combined effects of multiple sources of uncertainty when the

number of parameters increase.
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1.1 Outline of thesis

Conventional methods of eliciting utilities, such as the Time trade-off and Stan-

dard Gamble methods, involve questions which some respondents find difficult to

answer. An alternative method is to collect discrete choice data which involves

an individual choosing a preferred option from a set of health states. Utilities are

required for every health state defined by a classification system. Discrete choice

data is collected using a subset of health states. A model is then fitted to the

data which allows the utility to be estimated for any health state defined by the

classification system.

This thesis involves inference for health state utilities given discrete choice data

collected using the AQL-5D classification system, which is derived from the

asthma quality of life questionnaire, and also to use Bayesian Inference as a

method of assessing uncertainty in parameter estimates. Chapter 2 and chapter

3 provide a background to the subject. Chapter 2 defines a QALY and classifi-

cation systems, and defines methods of measuring utilities. Chapter 3 describes

discrete choice data, including the process of modelling such data and a number

of possible models. Both chapter 2 and 3 present a review of current relevant

literature. Chapters 4, 5 and 6 present an analysis of the AQL-5D discrete choice

data set. Chapter 4 uses Bayesian methods to investigate uncertainty in the

model parameters. Chapter 5 presents the comparison of the models derived in

chapter 4 using Bayes factors. An extension to the model in chapter 4 to include

a multiplicative random effect is presented in chapter 6. An overall conclusion is

reported in chapter 7.
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Chapter 2

Valuing Health

2.1 Introduction

In an economic evaluation it is important to be able to make comparisons across

different interventions which often have different primary outcomes. Cost-utility

analysis (CVA) is a type of economic evaluation that considers quality of life,

where results are expressed as cost per QALY gained. This chapter first defines

the term QALY and discusses methods of measuring QALYs. The relationship

between QALYs and utilities, which are both measures of preference, is also in-

vestigated. Classification systems are then defined, which are used to describe

different levels of severity of health. A particular example is the AQL-5D classifi-

cation system which is used to collect the data analysed in this thesis. The final

section of this chapter reviews the literature in this area.

2.2 QALYs

We first consider a standard measure for health related quality of life. Often

in health care the increase in both the quality and quantity of life is impor-

tant. Quality-adjusted life years (QALYs) are a measure that combines the
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length of time (in years) and the quality of life experienced over those years.

Drummond et al. (2005) defines the QALY as a measure of health outcome that

simultaneously captures gains from reduced morbidity (quality gains) and reduced

mortality (quantity gains) and combines them into a single measure. Gold et al.

(1996) define the QALY as a measure of health outcome which assigns to each

period of time a weight, ranging from 0 to 1, corresponding to the health related

quality of life during that period, where a weight of 1 corresponds to optimal

health and a weight of 0 corresponds to the health state equivalent to death.

QALYs represent a length of time in years where each year is adjusted by a

QALY weight which represents the quality of life experienced during that year.

One QALY is equivalent to one person experiencing perfect health for a year.

Alternatively one QALY could be divided between several people or years. For

example, five people could each experience one year worth 0.2 QALY weight or

one person could experience two years worth 0.5. Drummond et al. (2005) states

that QALY weight should be based on measures of preference for a health con-

dition, anchored on perfect health and death and be measured on an interval scale.

Brazier et al. (2007) state that for any individual if the prospect of living of

living in a condition for Y years is equivalent to X years in full health where

X < Y, then the number of QALYs experienced is X. The number of QALYs re-

lating to a health outcome is expressed as the value given to a particular outcome

multiplied by the length of time in that state. The outcome of any health inter-

vention is uncertain and therefore the expected value of each possible outcome

is weighted by its probability. The expected outcome of the treatment can be

represented by the sum of the expected value of the possible individual outcomes.

The benefit of a treatment of a treatment is not the same as the outcome of

the treatment as a patient may recover without treatment. The net benefit of
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a treatment is the difference between the expected outcome with and without

treatment.If there is no uncertainty of treatment outcomes and no changes over

time the net benefit is calculated as

(2.1)

where T1 is the number of years survival with treatment, To is the number of tears

survival without treatment, Q1 represents the QALY weight with treatment and

Qo represents the QALY weight without treatment.If uncertainty is introduced

and changes in health can occur between time periods, the net benefit is calculated

as

QALYa = LLP1htQht - LLPOhtQht,
h h

(2.2)

where P1ht and POht represent the probabilities of an individual experiencing

health state h in time period t with and without treatment respectively and Qht

is the value of health state h at time t.The benefit of a treatment in the whole

population is the aggregate value of the net benefits to individual patients. If

the expected benefit of an average patient is obtained then the aggregate benefit

of the population can be derived by multiplying the individual benefit by the

number of patients expected. Therefore the QALY algorithm is a combination of

the value of health states, time, probabilities and the number of patients.

2.3 Methods of measuring preferences

A health state value is a measure of preference for a particular health condition. It

is measured relative to perfect health and death, which are given values of 1 and 0

respectively. Health conditions considered worse than death have negative health

state values. There are several methods of measuring health state values. The

three main methods used are the Time Trade-off, the Standard Gamble and the

Rating Scale. These are described in sections 2.3.1, 2.3.2 and 2.3.3 respectively.
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2.3.1 TIME TRADE-OFF

The Time trade-off (TTO) method was derived by Torrence et al. (1972). In this

method respondents are asked to trade-off between time and quality of life. For a

health state considered better than death a subject is given two alternatives and

asked to choose a preferred option:

1 State j for time t followed by death.

2 Perfect health for a shortened life expectancy x < t followed by death.

The time, x, is varied until the respondent is indifferent between the two alter-

natives. The utility of the health state, j, is then given by :..
t

For a health state, j, considered worse than death, a respondent is given two

alternatives:

1 Health state j for a length of time 10 - x followed by perfect health for x

years.

2 Immediate death.

The time, x, is varied until the respondent is indifferent between the two alter-
-x

natives. The utility is given by (10 _ x) . This allows the utilities of states worse

than death to be unbounded.

2.3.2 STANDARD GAMBLE

The standard gamble (SG) method varies depending whether a health state is

preferred to death or considered worse than death. Drummond et al. (2005)

defines the method of measuring a utility for a health condition, j, preferred

to death. A respondent is offered two alternatives:

10



1 The uncertain outcome of perfect health for t years with probability P and

immediate death with probability 1 - P.

2 Health state j with certainty for t years.

The probability P is varied until the subject is indifferent between the two alter-

natives. The utility of health state j for t years is equal to P.

McCabe et al. (2005) use a method for estimating a utility for a health condition,

i, considered worse than death. The subject is given two alternatives:

1 Immediate death.

2 The uncertain outcome of perfect health with probability P and health

state j with probability 1 - P.

The utility of health state j is calculated using U, = - P.

2.3.3 RATING SCALE

When assigning preferences using the rating scale a subject first ranks health out-

comes from the most preferred to the least preferred. The outcomes are then put

on a scale where the intervals between the positions of each health state corre-

spond to the differences in preference as perceived by the subject. Outcomes that

are almost equally desirable would be placed close together and outcomes that

are very different in desirability would be placed further apart. A rating scale

refers to a scale of numbers, often 0-100. Category scaling and visual analogue

scaling are variations of the rating scale.

11
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endpoints of 100 (best imaginable health state) and 0 (worst imaginable health

state). Each state was regarded as lasting for ten years without change followed

by death.

2.4 QALYs and Utilities

QALYs are used in cost-utility analysis (CUA) where the outcome of interest is

cost per QALY gained. Due to the use of the word utility in CUA it is often

thought that QALYs are also utilities. However, this is not necessarily true. To

understand this a more formal definition of utility is defined using Bayesian de-

cision theory, as described by O'Hagan and Forster (2004).

In health care, a utility is often called a health state utility and the health con-

dition it is measuring a health state. Let S be an individual's health state and

define U(S) as the utility of state S. To measure the utility, U(S), consider two

other states, So and Sl, where state S, is preferable to Sand S is preferable to

So. The utilities of So and Sl are defined as U(So) = Uo and U(Sl) = U1, where

Uo < U1. Consider another state Sp where state Sl occurs with probability p

and state So occurs with probability 1 - p. The utility of Sp is defined to be

(2.3)

The utility U(Sp) increases linearly with p. As the utility of state S is required,

an individual must decide which is preferred of the two states, Sand Sp. There

exists a value q E (0,1) where there is equal preference for both state Sand

state Sp, with p = q. From the definition of U(Sp) the utility of state S can be

written:

U(S) = qU1+ (1 - q)uo. (2.4)

12



Suppose the health state of an individual depends on a decision, d. Define 8(d)

to be the health state after making decision d and define D to be the set of all

possible decisions. The optimal decision d* will maximise utility:

d* = arg[max U{8(d)}].
d€D

(2.5)

The utility after making the optimal decision will be U{ 8 (d*)} .

Suppose the health state, 8, of an individual depends on a random variable X,

where the health state is now denoted by 8(X). Equation (2.4) can be written

as

U{8(X)} = qU1 + (1- q)uo. (2.6)

The random variable X has a probability distribution function f(x) and a sample

space X = {Xl, .... ,Xn}. Suppose the value of X is known to be X = Xi and

8(Xi) is the corresponding health state. Using Equation (2.6), the utility of 8(Xi)

is defined to be

(2.7)

where q(Xi) is the probability that health state 81 occurs when the random vari-

able has a value X = Xi' The state 8 will change to state 8(Xi) if X = Xi, which

has a probability of f(Xi) of happening. The health state 8 in Equation (2.4)

is defined to have an equal preference to health state 8p when p = q. Similarly,

when the random variable X is involved, health state 8 can be considered to

have equal preference to health state 8p where 81 occurs with probability

n

p =L f(Xi)q(Xi)
i=l

(2.8)
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and So occurs with probability

n

1- P =L f(Xi)(1 - q(Xi))
i=l

(2.9)

The utility of S can therefore be written as:

U(S) U(Sp) = PUl + (1 - p)uo
n

= L f(Xi){q(Xi)Ul + (1 - q(Xi))UO}
i=l
n

L f(Xi)U(S(Xi))
i=l

= E{U(S(X))} (2.10)

Therefore if the state S is a function of an unknown variable X the utility is

calculated by taking the expectation of U {S(X)}. This result is known as the

law of expected utility.

The state following a decision can be written as a function of both the deci-

sion d and the unknown variables X: S(d, X). The optimum decision d* will

be the one that maximises utility:

d* = arg[maxE[U{S(d,X)}]]
dfD

(2.11)

Choosing the decision that maximises expected utility is known as Bayes' rule.

A utility is measured using a method involving uncertainty. Health state values

can only be considered utilities if they are elicited using a method with uncer-

tainty. The only standard method to measure health state values that involves

uncertainty is the Standard Gamble. Health state values derived using a method

with no uncertainty are not necessarily utilities. The relationship between health

14



state values and utilities depends on risk attitude. If an individual is risk neutral

then they are equal. However, if an individual is risk averse then their utility is

expected to be greater than their value and if an individual is risk seeking their

utility is expected to be less than their value.

Drummond et al. (2005) suggest that only QALYs derived using preferences mea-

sured using the Standard Gamble can be considered utilities. However, they must

follow certain assumptions, which are also presented by Brazier and Tsuchiya

(2010). These are that the two attributes of quality and quantity must be mu-

tually utility independent, the proportion of remaining life that would be used

as a trade-off for a specified quality improvement is independent of the amount

of remaining life and the single attribute utility function for additional healthy

life years must be linear with time. In this thesis the term utility will refer to

any health state preference, whether or not it satisfies the definition of utility

described previously.

2.5 Classification systems

Given the number and variety of illnesses treated by the NHS, it would not be

possible to assess utility for every health condition of interest. A finite set of

heath conditions needs to be defined so that utilities can be elicited for every

possible condition. In general, the approach used is first to consider a small

list of attributes of a health condition, e.g. pain, mobility. For each attribute,

various levels of severity are defined, e.g. no pain, moderate pain, severe pain. The

combination of levels for each of the attributes then defines a health state. The set

of attributes and levels that defines a health state is called a classification system.

Drummond et al. (2005) describes some examples of health state classification

systems. The EQ-5D, SF-6D and the Health Utilities Index all describe general

health and can be used for any illness. These are described in Section 2.5.1,
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2.5.2 and 2.5.3. Some classification systems are used only for a specific health

condition. An example is the AQLQ which is used for asthma and is described

in Section 2.5.4.

2.5.1 EQ-5D

The EQ-5D (or EuroQol) system, as used by Dolan (1997) and described by

EuroQol (1990) and Brooks and Group (1996), has five attributes: mobility, self-

care, usual activity, pain/discomfort and anxiety/depression. Each attribute can

take one of three levels: no problem (level I), some problems (level 2) and major

problems (level 3). After including two additional heath states, dead and uncon-

scious, the system describes 245 health states. The health state described when

all attributes are at level 1 is perfect health. The worst possible health state

is indicated when all attributes are at level 3. An example of a health state is

12233. This describes the health state where there are no problems walking about,

some problems washing and dressing, some problems performing usual activities

(e.g.work), extreme pain or discomfort and extreme anxiety or depression.

2.5.2 SF-6D

The SF-6D, as discussed by McCabe et al. (2006) and Brazier et al. (2002), is a

classification system composed of six attributes: physical functioning, role limi-

tations, social functioning, pain, mental health and vitality. Each attribute has

between four and six levels, defining 18000 unique health states.

2.5.3 HEALTHUTILITIESINDEX

The Health Utilities Index (HUI), as reviewed by Feeney et al. (1995) and Feeney et al.

(2002) consists of two systems, the HUI2 and the HUI3. The HUI3 has eight at-

tributes: vision, hearing, speech, ambulation, dexterity, emotion, cognition and

16



pain. Each attribute has either 5 or 6 levels. The HUI2 has some additional at-

tributes that are not used in HUI3 that may be used in specific studies. HUI2 has

the attributes sensation, mobility, emotion, cognition, self-care and pain. There

is also an optional attribute fertility. Each attribute has either 3, 4 or 5 levels.

2.5.4 AQLQ

The asthma quality of life questionnaire (AQLQ) is a 32 item questionnaire devel-

oped to measure the functional impairments that are most important for adults

with asthma. The 32 items have 7 levels each and the items cover the domains:

symptoms (12 items), activity limitations (11 items), emotional function (5 items)

and environmental stimuli (4 items). Yang et al. (2006) describe how this has

been reduced to a 5 attribute classification system called AQL-5D. The attributes

are: concern about asthma, short of breath, weather and pollution stimuli, sleep

impact and activity limitations. Each attribute has 5 levels of severity with level

1 indicating no problem and level 5 extreme problems, thus defining 3125 health

states. The AQL-5D has been used to collect the data analysed in this thesis.

Table 2.1 lists the attributes and the levels of the AQL-5D. Each attribute has

the same five levels.

Attributes Levels
1 Feel concerned about having Asthma 1 None of the time
2 Feel short of breath as a result of asthma 2 A little or hardly any of the time
3 Experience asthma as a result of air pollution 3 some of the time
4 Asthma interferes with sleep 4 Most of the time
5 Activities have been limited 5 All of the time

Table 2.1: Attributes and levels of AQL-5D classification system
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2.5.5 COMPARISON OF GENERIC AND CONDITION-SPECIFIC CLASSIFICATION

SYSTEMS

Health state utilities calculated using classification systems that describe general

health are regarded as being applicable to any health condition and patient group.

NICE prefers the use of the EQ-5D to calculate QALYs for use in the economic

evaluation of all interventions being investigated. It is thought that to achieve

comparability between utilities a common classification system must be used. A

reason for NICE preferring the use of the EQ-5D is that it ensures that different

patient groups are being assessed against the same attribute and can be compared.

For some conditions, utilities derived using generic classification systems are

not appropriate. Espallargues et al. (2005), Barton et al. (2004), Walters et al.

(1999) and Haywood et al. (2008) compare classification systems for the estima-

tion of utilities for specific conditions. Espallargues et al. (2005) estimated health

utilities for age related macular degeneration (ARMD) associated with visual im-

pairments using the EQ-5D, the SF-6D and the HUI3. They conclude that the

EQ-5D and the SF-6D were not relevant to the condition but the HUI3 was more

appropriate due to the inclusion of an attribute for vision. Barton et al. (2004)

also compared the EQ-5D, SF-6D and the HUI3. Utilities were derived for hear-

ing impaired adults both before and after being given a hearing aid. It was found

that the mean change in utility was significantly higher when using the HUI3

system than for either the EQ-5D or the SF-6D. The estimated cost-effectiveness

would therefore depend on the classification system used. Walters etal. (1999)

compare the EQ-5D, SF-6D, SF-MPQ and the FAI classification systems for esti-

mating utilities for venous leg ulcers. The SF-MPQ, which defines the intensity of

pain, is described by Melzack (1987), and the FAI, originally designed for stroke

patients, is described further by Holbrook and Skilbeck (1983). The classification

system recommended by Walters et al. (1999) depends on the length of follow-up
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and sample size. Haywood et al. (2008) compares the EQ-5D with two condi-

tion specific classification systems for deriving utilities for women with urinary

incontinence. The two condition-specific systems are the symptom severity index

(SSI), described by Black et al. (1996), and the urinary incontinence quality of

life instrument (I-QoL), described by Wagner et al. (1996). The I-QoL is the only

classification system recommended for use in this case.

As the use of general classification systems to calculate utilities is not necessarily

an accurate method for some conditions, the use of condition-specific measures

(CSMs) is often preferred in economic evaluation. However, if the CSMs are not

preference- based measures they cannot be used to calculate QALYs. In these

cases the CSM value is mapped onto values derived from a general classifica-

tion system using regression techniques. This is designed to be a more accu-

rate method of estimating utilities for specific conditions than using a generic

classification system. Tsuchiya et al. (2002) describes several models for map-

ping such values. Brazier et al. (2008) reviews 28 studies which use functions

to map between non-preference based condition-specific outcomes and generic

preference-based measures. An example of a study reviewed is Longworth et al.

(2005), which investigates the relationship between angina-specific outcomes and

utilities derived for angina patients using the EQ-5D. Brazier et al. (2008) found

that the goodness of fit and prediction of the mapping functions was variable and

so it is not possible to generalise across classification systems. The models were

also limited in their ability to predict means for subgroups.

An alternative to mapping is to estimate utilities using a condition-specific classi-

fication system. Brazier and Tsuchiya (2010) investigate the problems associated

with comparing utilities across different interventions where each uses a differ-

ent classification systems. It is suggested that utilities can be compared when

derived from different classification systems provided that they meet some con-
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ditions. These conditions are that the same method of eliciting utilities is used,

perfect health and death are always used as anchors and the respondents used are

selected from the same population group. However, there are also several issues

that may affect achieving comparability, which are as follows:

1 A condition-specific classification system does not allow for important side-

effects which would be covered using a generic classification system.

2 Patients and non-patients might have different interpretations of attributes.

3 The upper anchor used is regarded as the best health state as defined by

the classification system and therefore different classification systems have a

different definition for the best health state.

4 Respondents tend to focus on problems described in the health state they

are valuing and this results in exaggerating the importance of the problems

associated with the condition being valued compared to other conditions.

5 The achievement of comparability between classification systems requires the

assumption that the impact of different attributes on utilities are additive even

if the attributes are not included in the classification system. If an intervention

changes an attribute level in a classification system the estimated change in

utility may be incorrect due to interactions between attributes included in the

classification system and attributes not included. Brazier and Tsuchiya (2010)

suggest that such interactions may be larger for condition-specific classification

systems since they focus on a narrower range of health states.

Brazier and Tsuchiya (2010) recommend the use of condition-specific classifica-

tion systems as a supplement to generic classification systems rather than an

alternative.
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2.6 Inference for health state utilities given elicited preferences

For the remainder of this thesis we refer to health states to mean a health state

as defined by a particular classification system. In an economic evaluation of a

treatment of a health condition, estimated mean utilities are required for each

health state of the condition. These mean utilities are then used to calculate

QALYs. To achieve this aim, a survey is conducted to elicit utilities for a subset

of the health states in the classifications system from a sample of the population.

A model is then fitted to the data which can be used to estimate the utility of

any health state defined for that condition.

2.6.1 MODELLING MULTI-ATTRIBUTE HEALTH STATE UTILITIES

Basu et al. (2009) develop a model to predict the utilities of health states defined

by several attributes, using utilities of the component single attribute health

states. Three methods are reviewed to estimate these multi-attribute utilities;

these are the additive model, the multiplicative model and the minimum model.

To explain these first let 551 and 552 to be two single attribute health states and

let JS be the corresponding two attribute health state where JS = (551,552).

Define U(SSl) to be the utility of health state 551 and U(SS2) to be the utility

of health state 552. The expected utility of the health state JS using each of

the three models is shown as follows.

Additive Model

In the additive model the two utilities are added together and the utility of perfect

health, 1, is subtracted.

E[U(JS)] = U(SSl) + U(SS2) -1. (2.12)

21



For example, if U(SSl) = 0.8 and U(SS2) = 0.7 then E[U(JS)] = 0.5. This

shows the utility decreases if both attributes are present in a health state.

Multiplicative Model

The estimated utility using the multiplicative model is

E[U(JS)] = U(SSl) x U(SS2). (2.13)

For example, if U(SSl) = 0.8 and U(SS2) = 0.7 then E[U(JS)] = 0.56.

Minimum Model

E[U(JS)] = min{U(SSl), U(SS2)}. (2.14)

For example, if U(SSl) = 0.8 and U(SS2) = 0.7 then E[U(JS)] = 0.7.

Basu et al. (2009) reference the work in Keeney and Raiffa (1976) and Keeney and Raiffa

(1993) about a model using both additive and multiplicative interaction terms.

Letting U(JS), SSl, SS2, U(SSl) and U(SS2) be as previously defined, the

above model is

U(JS) = kl.U(SSl) + k2.U(SS2) = k.kl.k2.U(SSl).U(SS2). (2.15)

The weights k, kl and k2 can be estimated from elicited utilities of a multi-

attribute health state or directly from respondents, although it is unclear how

the second method is carried out. Basu et al. (2009) use the model in equation

(2.15) as a starting point to suggest a model which combines elements of the

additive, multiplicative and minimum models. The model is presented in terms

of utility loss rather than utility. A utility of U for any health state indicates a
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loss of 1 - U utility units from perfect health, which has a utility of 1. Define

L(SSI) be the loss of utility for health state SSI and L(SS2) be the loss of

utility for health state SS2. The expected loss of utility for health state JS is

E[L(JS)] = ao+almax{L(SSI), L(SS2)}+a2min{L(SSI), L(SS2)}+a3L(SSI)L(SS2),

(2.16)

where the parameters ao, al, a2 and a3 are weights. The additive, multiplica-

tive and minimum models are special cases of this model depending on the values

given to the parameters. The expected utility is then given by E[U(JS)] =
1- E[L(JS)].

Dale et al. (2008) investigate which of the additive, multiplicative and minimum

models, are the most appropriate to estimate multi-attribute health states for

prostate cancer. It was concluded that all three models gave biased predictions.

If it is not possible to elicit utilities directly for multi-attribute states then the

minimum model is recommended. Stewart et al. (2005) also investigate the use of

both the additive and multiplicative models in estimating multi-attribute health

states for prostate cancer in order to develop a decision model of outcomes for

prostate cancer treatment. Plante et al. (1987) construct a decision tree to de-

termine the preferred treatment option for stage 3 squamous cell carcinoma. The

decision tree is based on quality adjusted weeks of survival. The life expectancy

of the population used in the the trial is estimated in weeks using life tables and

is adjusted by QALYs to estimate the quality adjusted weeks of survival. QALYs

were assigned to four treatment options based on categorical scaling and pub-

lished values for other major diseases. In cases where more than one treatment

is used, QALYs are estimated using the multiplicative model.

Sutherland et a1. (1982) investigate the attitudes to duration of survival in dif-

ferent hypothetical health states. Preferences were assessed using two methods:
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a preference questionnaire and a certainty equivalence method. In the question-

naire respondents were asked if a defined period of time in a certain health state

was preferred to death. The certainty equivalence method involves respondents

choosing between a period of guaranteed survival in a given health state and a

gamble between surviving for a longer period of time in the same health state

or dying immediately. It was found that attitudes toward duration of survival

depended on the quality of the health state.

2.6.2 MODELLING HEALTH STATE CLASSIFICATION SYSTEM DATA

This section reviews the literature for each of the main classification systems and

the estimation of multi attribute utilities using single attribute utilities.

The EQ-5D is first described by EuroQol (1990). Some of the first studies con-

ducted using this system are presented by Nord (1991) and Brooks et al. (1991)

which fit models to VAS scores collected for a subset of EQ-5D health states in

order to predict utilities for any health state in the system. Dolan (1997) present

a good example of a model used to analyse an EQ-5D data. From the 243 possible

health states that the EQ-5D system defines, a subset of 42 health states were

selected. The health states included as many combinations of levels across the

attributes as possible. Each respondent was asked to value 13 of the 42 health

states using the Time Trade-off method. The model for the utility is:

(2.17)

where Uij is the utility of health state Xij for individual i, cS is the intercept, x;;
is the vector of explanatory variables defining the health state, h is a known vec-

tor of functions of x and () is the vector of corresponding unknown parameters.

In addition to variables representing each attribute level, the vector x includes
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variables representing the change in level of an attribute, interactions between

attributes, and variables that count the number of times a health state contains

an attribute at either level 1 or level 3.

Dolan et al. (1996a) also reports the results using the same study as in Dolan

(1997) and investigate differences between subgroups in the population. The re-

sults showed that valuations for severe health states appeared to be affected by

age and sex and it is suggested that small samples used in other studies may be

concealing real differences that exist between groups in the population.

Dolan and Roberts (2002) also use the same data set as used in Dolan (1997)

to fit a model estimating the difference in utility between the worst health state

defined by the EQ-5D and all other health states in the system. The differences

are explained in terms of the change in level of each attribute. It was found that

the new model is more accurate at predicting the utilities of states that have been

directly observed than the original model in Dolan (1997).

Hoeymans et al. (2005) fit a similar model to Dolan (1997) using the EQ-6D

classification system, which is the EQ-5D with an additional attribute called cog-

nitive functioning. A model was constructed for each attribute separately where

the values were explained by variables such as age and sex. It was also assumed

that there was a higher correlation between certain attributes.

2.6.3 BAYESIAN MODELS

Kharroubi et al. (2005) and Kharroubi et al. (2007) developed a nonparametric

Bayesian model for estimating utilities of health states in the SF-6D descriptive

system. A subset of 249 of the 18000 possible states were used in the study. A

total of 836 respondents were asked to value 6 of these health states. Preferences
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were elicited using the standard gamble method described in Section 2.4. The

proposed model is:

(2.18)

where Uij is the utility that is elicited from respondent i for health state x ij,

g( X ij) is the population mean utility for health state Xij, 'Yi is a random effect

for respondent i and Cij is the independent N(O,0'2) error.

When the health state is perfect health, g(Xij) = 1. The random effect term

is multiplicative, allowing the elicited utilities for poorer health states to have

greater variability than utilities for better health states and accounts for respon-

dents attitudes to poorer health states. When 'Yi = 1 the respondent's utilities

are in agreement with the population average and E(Uij) = g(Xij). If 'Yi < 1 the

respondent is less worried by the prospect of poor health and would have utilities

greater than the population mean. If 'Yi > 1 the respondent is more worried

about poor health than the population average and would tend to have utilities

greater than the population mean utility. The respondents with the largest value

of 'Yi are more likely to value states as worse than death.

The utility function was modelled using Bayesian hierarchical modelling. There

are L different health states defined by the classification system and therefore L

unknown utilities g( x ij)' The prior distribution specifies that the utilities have

an L-dimensional multivariate normal distribution. The Bayesian hierarchical

prior structure incorporates two prior beliefs about the function g. The first prior

belief is that poorer health states should have lower utility and that 9 should be

a decreasing function of the dimensions of the health state. This is represented by

where h(.) = (hl(')' h2(')' '" hp(.))T is a vector of p functions of the health state
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X and 0 = (01, O2, ... , Op). The choice for h(x) is h(x) = (1, Xl, X2, X3, X4, X5, x6)T

representing a prior belief that utility will be approximately linear and additive in

the different dimensions, where Xl, X2, ... , X6 are variables representing the levels

of each of the six attributes in the SF-6D classification system.

The second prior belief about function 9 is that if x and a:' describe simi-

lar health states they should have similar utilities. This implies that there is

expected to be high correlation between g( z ) and g( x'). The correlation should

decrease as the distance between x and x I increases. The covariance is defined as

(2.19)

where, Xd is the level of attribute d for health state x, x~ is the level of attribute

d for health state x', and bd is a roughness parameter for attribute d. For this

model, bd = (id ~51)2 , where id is the number of levels in attribute d.

The prior distribution for the random respondent effect, (Xi is assumed to be

an independently log Normal distribution, fN(O, T2). The parameters v2, T2, 'Y,

o and (52 are all given weak prior distributions, written

An MCMC was run with 3000 iterations to compute posterior inferences about

the population mean utility. It was concluded that the model used represents

certain important characteristics of the data more accurately than previously

proposed models. These characteristics include individual response effects, re-

peated measurements from each individual, the skew distribution of individual

valuations of a given health state, and the nonparametric relationship between

health state and utility.
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2.6.4 MEASURING UTILITY OF DEATH AND UTILITY SCALE

Utilities are defined on a scale relative to the utilities of perfect health and death.

Perfect health usually has a utility of 1 and death has a utility of o. Health

states considered worse than death have negative utilities.

Dolan (1997) consider the utility scale by discussing how to interpret the in-

tercept, <5, in Equation (2.17). When the dummy variables in Xij are all zero,

the estimate of h(Xij)Tf) is for the health state perfect health. The utility Uij is

defined to be 1 when the health state is perfect health. The intercept, <5, is there-

fore interpreted as the estimated value for 1 minus the estimated mean utility for

perfect health. The mean utility for perfect health is therefore 1 - <5. Estimated

utilities are then divided by 1 - <5 to ensure that utilities are on a scale where the

utility of perfect health is 1. Dolan (1997) suggested that <5 could alternatively

represent the additional change in utility for any health state with at least one

attribute at level 2, and therefore represent any move away from perfect health.

When predicted and actual values were compared, the method in which <5 was

treated this way performed much better than when all estimates were divided by

1 - <5. The model possibly should not have included the intercept, <5, ensuring

that full health always has an estimated utility of 1. The estimated value of the

parameter <5 suggests that more interaction terms should be used in the model.

2.6.5 COMPARING METHODS OF PREFERENCE

Spencer (2003) investigates whether the inferences about people's preferences to-

wards health states vary if the TTO procedure used to elicit preferences is varied.

Respondents were asked to answer two sets of TTO questions regarding the health

states in a EQ-5D classification system. Some levels were changed to ensure that

health states considered worse than death were not included in the study.
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Respondents were asked four conventional TTO questions, involving health states

from the EQ-5D classification system: 12221, 21211, 21222 and 22232. These

health states are referred to by the letters W, X, Y and Z respectively. The

conventional TTO method is the method described in Section 2 for health states

considered better than death, where the length of time, t, of being in a particular

health state is 10 years.

When using the unconventional TTO method, respondents are asked to imagine

living in a given health state, 81, for two years followed by death, or prolong-

ing life in a lower quality of life, health state 82. A respondent is given two

alternatives:

1 Health state 81 for two years, followed by death.

2 Health state 82 for a time Xl where Xl > 2.

The time Xl is increased until the respondent is indifferent between the two

alternatives. The utility of health state 81 is elicited using conventional TTO

methods and given a utility of U(8l) = l~. The utility of health state 82 is then

given by

U(82) = 2 x X •
10 X Xl

Each respondent was asked two unconventional questions. The first involved

eliciting a utility for health state Z by comparing it to health state Y, where

(2.20)

81 = Y and 82 = Z. The second unconventional TTO question involved com-

paring health state Y with health state X, where 81 = X and 82 = Y.

Each of the two health states Y and Z has a conventional and an unconven-

tional TTO value. Define the conventional TTO values of health states Y and

Z to be U and U and define the unconventional TTO values of health statesy z,
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Y and Z to be Vy and Vz' The null hypothesis tested is that

and

A Wilcoxon signed rank test was used to test the null hypothesis that the conven-

tional and unconventional elicited utilities are equal. The alternative hypothesis

was that there is a systematic difference between responses.

The test showed that the unconventional values for Y were significantly lower

than the conventional values. The differences between the unconventional and

conventional values for Z were found to be not statistically significant. As only

one test detected a statistical difference the conclusion of the study was that

there was no evidence to reject procedural invariance. As only one of the two

tests detected a statistical difference, a more appropriate conclusion may have

been to reject the null hypothesis.

Salomon and Murray (2004) present a new methodological approach that allows

estimation of a set of health states through multiple measurement techniques. The

techniques used were the visual analogue scale, standard gamble, time trade-off

and person trade-off. The health state classification system used included the

5 attributes used in the EQ-5D system and an additional attribute, cognition.

Each attribute in the system has five levels of severity. Twelve health states

were selected from the classification system and respondents were asked to state

preferences using the four methods. Each measurement technique produced re-

sponses from individuals for health states on a scale particular to the method

used. Responses from each of the four methods are transformed onto a utility

scale between 0 and 1 where death has a utility of 0 and perfect health has a
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utility of 1.

A model was fitted that related the utility to the measurement type used. Max-

imum likelihood methods were used to estimate the parameters. The re-scaled

responses from each method were assumed to have a truncated normal distribu-

tion, constrained between 0 and 1 with parameters specific to state and method.

As the variance between responses varied across methods and was strongly related

to the mean value of each state, the variance was modelled as a linear function of

the mean allowing the slope and intercept to differ for each measurement method.

Dolan et al. (1996b) discuss the issue that utilities elicited using the SG method

and those elicited using the TTO do not give the same value for a given respon-

dent. The study compares four sets of utilities for a set of EQ-5D health states.

The two methods of eliciting utilities were the SG and TTO. Each method had

two variants, one where specially designed boards and cards were used as an aid to

decision making by respondents and the other involved the use of a self-completed

book. Comparison of methods has also been reported by Torrence (1976), where

the SG, TTO and category scaling methods were analysed for their feasibility,

reliability, validity and compatibility. Read et al. (1984) compare the SG, TTO

and category scaling for assessing preferences among hypothetical outcomes of

coronary artery bypass surgery.

Several articles compare classification systems for measuring health related qual-

ity of life. McDonough et al. (2005) compare utilities elicited using the EQ-5D,

HUl and SF-36 for people diagnosed with intervertebral disc herniation, spinal

stenosis or degenerative spondylolisthesis. Utilities were elicited using the TTO

method for the EQ-5D system, using SG and VAS for the HUl, and using SG for

the SF-36. Summary statistics were estimated for each classification system and

comparisons between distributions for each pair of systems were made using the
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Wilcoxon signed rank tests. Stavem et al. (2005) compare utilities derived us-

ing the classification systems 15D (www.15d-instrument.net) with those derived

using the EQ-5D and SF-6D for patients with HIV/ AIDS. Brazier et al. (1993)

compare the EQ-5D with the SF-36.

2.7 Summary

This chapter reviewed QALYs which are used as a measure of valuing health

care where utilities are used as a measure of preference for each health state.

Methods of measuring utilities such as the Standard Gamble and Time Trade-off

are defined. A health state classification system is often used to define a finite

set of health states. These can be disease-specific or generic. There is some

debate in the literature about which method is most appropriate as estimated

utilities are not always consistent. The preferred method appears to depend on

the condition being investigated. Models fitted in the literature involve estimating

utilities using either classification system or estimating multi-attribute utilities

from single attribute utilities.
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Chapter 3

Discrete Choice data

3.1 Introduction

Conventional methods of eliciting utilities such as the TTO and SG were re-

viewed in chapter 2. These methods involve questions that some respondents

find difficult to answer. The Standard Gamble needs the respondent to under-

stand probability and in the Time Trade-off method an individual might find it

difficult to imagine living for a finite number of years. Both methods also require

a person being certain of their indifference between the two alternatives for a

given P or t. There are also concerns, discussed in Brazier et al. (2006), that

observed utilities are related to factors other than the respondent's preference for

the health states. These factors include risk aversion for the Standard Gamble,

and time preference and aversion to losses for the Time Trade-off. This chapter

reviews discrete choice experiments, which are used to collect discrete choice data

and is regarded as an easier method of collected preferences than the standard

methods reviewed. The process of modelling such data is explained along with

properties and identifiability issues often associated with these types of models.

Three models are defined: the logit, probit and mixed logit. Finally a review of

relevant literature is undertaken.
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3.2 Discrete choice experiments

A discrete choice experiment (DeE) involves respondents choosing which of a list

of alternatives they prefer. First, a set of alternatives is defined. Then a subset of

alternatives is selected and assigned into groups. Each respondent is asked which

alternative in a group they prefer. This is carried out for several groups. This

type of data is called discrete choice data.

A discrete choice experiment can involve respondents choosing which of two al-

ternatives they prefer. Such assessments are called pairwise comparisons and are

carried out for several pairs of alternatives.

3.3 Modelling discrete choices

We wish to obtain the population mean utility for every alternative in a defined

set of alternatives. The population mean utility can be inferred using certain

modelling assumptions, which are discussed in this section.

Let x be a vector of dummy variables that defines an alternative. For example,

if a set of possible alternatives is defined using 3 attributes where each attribute

has 3 levels of severity, x would be a vector of 6 variables, x = (x 1, X2, ..... , X6) .

For a = 1,2,3 and b = 1,2 each element of x is defined as

{
1 if attribute a is at level b + 1 or higher

X2(a-l)+b = o if attribute a is at level 1
(3.1)

Suppose an individual i considers the alternatives in the set B = {Xil' Xi2, .... , XiJ}.

Define Uij to be the utility individual i has for alternatives x ij. The relationship
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between Uij and Xij, which is used in McFadden (1974), can be expressed as

(3.2)

where g(Xij) is a function of Xij with unknown parameters and represents the

population mean utility for alternative Xij. In this thesis, we consider population

mean utility functions of the form g( x ij) = 1 - ()T X ij, where () is a vector of

unknown parameters. The error term, Cij, represents the individual's variation

in preference from the population mean utility.

In a discrete choice experiment an individual i selects the preferred alternative

in set B. The probability that individual i chooses alternative Xij is equivalent

to the probability that the utility individual i has for alternative Xij is greater

than the utility individual i has for all the other alternatives in set B. Define

PB ( X ij) to be the probability that individual i will choose alternative x ij from

the set B. The probability can be written as

Given the value of g( xij), Vj, the probability PB( Xij) will depend on the distri-

bution of the error terms cil, ci2, ....CiK. The distribution assumed determines the

model that is used, though choosing the distribution is not straightforward. The

errors could be assumed to have a normal distribution, and for discrete choice

data this is called a probit model. The errors are also often assumed to have

a type 1 extreme value distribution, which is a logit model. Logit models and

probit models are discussed further in Sections 3.5 and 3.6.
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3.4 Identifiability in discrete choice models

The likelihoods for models such as the logit and probit are derived from equa-

tion (3.3). As we do not observe Uij directly, there are limitations on how the

population mean utility and the error can be specified as not all parameters are

identifiable. These methods are described by Train (2003).

3.4.1 IDENTIFIABILITY OF ADDITIVE CONSTANTS

The utility individual i has for alternative Xij is given by equation (3.2). Utility

is measured relative to the utilities of two fixed alternatives. Therefore, the utility

scale is determined by the utilities given to the two fixed alternatives. Suppose for

individual i, Un < Ui2 < ... < UiJ. If each utility, Ui], is transformed onto a new

scale by adding a constant 6 to each utility, then Uil +6 < Ui2+8 < ... < UiJ +6.

On the transformed scale, the ordering of the utilities is the same and individual

i would make exactly the same choices in a discrete choice experiment. We write

individual i's utilities on this transformed scale as

(3.4)

The probability, PB ( X iJ ), of choosing alternative x ij from the set of alternatives

B = {XiI, ... xid, for the utility defined in equation (3.4) is

PB(Xij) = P[g(Xik) + 6 + cik < g(Xij) + 6+ Cij for all k i- j]

P[g(Xik) + Cik < g(Xij) + Cij for all k i- j], (3.5)

which is the same as the probability without the constant, 6, in equation (3.3).

The constant in equation (3.4) cannot be estimated as any value will give the

same probability, PB(Xij).
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Constants can be included in the model if they are specified in a way that creates

differences in utility over alternatives. Train (2003) states that to include addi-

tive constants in a model one constant must be normalised to zero and all other

constants estimated relative to the normalised constant. Train (2003) explains

normalising constants by describing an example of including a covariate in the

model. Consider the case where the utility an individual has for an alternative

varies over age. Define Yi to be a variable representing the age (in years) of

individual i. The utilities, UiI and Ui2, that individual i has for alternatives x il

and Xi2 are

(3.6)

where ,8i and ,8J capture the effects that a change in age has on the utility of

alternatives x iI and x i2. Utility is assumed to increase with age, so ,8i > 0

and ,BJ > 0, and age is assumed to have a different effect on the utility of each

alternative, so that ,Bi =I=,BJ. The probability PB(Xil) of individual i preferring

health state x il to health state x i2 is

P[g(Xi2) + Yi,Bi + Ci2 < g(Xil) + Yi,Bf + cid

P[cil - Ci2 > g(Xi2) - g(Xil) + Yi(,8i - ,BU], (3.7)

It is not possible to identify values for both ,8t and ,8i; the likelihood will be

unchanged for any value of ,Bi and ,BJ. One parameter is therefore normalised

to zero, by subtracting Yi,Bi from each of the utilities in the equation 3.6. The
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utilities are now

(3.8)

where f3 2 = f3 ~ - f3 ~ and is interpreted as the differential effect of age on the

utility of the two alternatives x il and x i2. The value of f3 2 can be positive or

negative.

It would not be possible to include a socio-demographic variable such as Yi/3f

for every possible alternative in a discrete choice experiment, as data is usually

only collected for a subset of alternatives. To estimate an age parameter for

every alternative, a model could include interactions between the age variables

and dummy variable defining the alternative. Train (2003) states that when so-

ciodemographic variables are interacted with the attributes of the alternatives,

coefficients do not need to be normalised. The sociodemographic variables affect

the differences in utility through their interaction with the attributes of the al-

ternatives. This method would not always be appropriate as not all data sets

would be designed to include interactions. A more suitable method could be to

assume age has an equal affect on every alternative or to include it as the mean

of a multiplicative random effect.

3.4.2 IDENTIFIABILITY OF ERROR VARIANCES

Discrete choice data is modelled by assuming a distribution for the errors, Cij' It

is important to consider properties that errors can have as these determine the

utility scale. Multiplying a utility by a positive constant will change the variance

of the error distribution. Utilities are defined on a fixed scale and multiplicative
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constants can be used to normalise the utility scale by fixing the variance. This

section discusses how to normalise the utility scale for independent and identical

errors, heteroscedastic errors and correlated errors. These methods are reviewed

by 'Train (2003).

Independent Errors

Suppose the utility individual i has for alternative Xij is described by equation

(3.2), where the error term, Cij, is assumed to be independently and identically

distri buted with variance Var (cij) = (J2 .

Suppose for individual i, Ui1 < Ui2 < .... < UiJ. If each utility Uij,j = 1, ..., J is

transformed onto a different scale by multiplying by a positive constant, A, then

AUi1 < AUi2 < ... < AUiJ. The utilities on the transformed scale are written as

(3.9)

where the error, ACij, has variance Var(ACij) = A2Var(Cij) = A2(J2. The

probability Ps (x ij), of choosing alternative x ij from the set of alternatives

B = {x il, ... X iJ }, for the utility defined in equation (3.9) is

P[Ag(Xik) + ACik < Ag(Xij) + ACij for all k 1= j]

P[g(Xik) + Cik < g(Xij) + Cij for all k 1= jj, (3.10)

which is the same as equation (3.5). The models in equations (3.2) and (3.9) are

therefore equivalent. It is not possible to identify a value of A; the likelihood

is the same for any value of A. For example, suppose g(Xil) = 1, g(Xi2) = 2

and a2 = 1. The likelihood would be the same as the model where g(Xil = 10,

g( x i2) = 20 and (J2 = 100. Therefore, we cannot estimate unique joint estimates

of (g(.), (J2) To be able to estimate unique utilities either the value of (J2 or the
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scale of g(.) must be fixed. The standard way to normalise the scale of utility is

to set the variance of the error term to 1. If ,\= _!_, the utility is written as
0"

Uij _ g(Xij) + Eij-_-- -,
0" 0" 0"

j = 1, ..., J (3.11)

where Var (Cij) = --;Var(Cij) = 0": = 1. As the variance of the error terms is
0" 0" 0"

1, there is only one possible scale of utilities.

Heteroscedastic errors

Normalisation of the utility scale is more complicated if the errors are not inde-

pendent and identically distributed. Train (2003) discusses heteroscedastic errors,

which involves the variance of the error terms being different for different seg-

ments of the population. Suppose the errors, Cij, are assumed to have different

variances for male and female individuals. The model for utility is written as

(3.12)

where Var(E~) = O"J, Var(cij) = O"~ and Var(E{j) i= Var(Eij). If we were to

normalise as before, with the variances of the transformed errors set to 1 in each

case, then the utilities for males and females would be on different scales. To fit

a model including both male and female data, the overall utility scale must be

the same. This can be set by normalising the variance of the error for females,

and estimating the variance of the male errors relative to female errors.

2
Let K = (J~, which represents the variance of male utilities relative to female

O"f
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utilities. Equation (3.12) can be written as

Uij g(Xij) + cf;, V female i

Uij g(x·) c~
__ 1.]_ + __!L V male z,

VK VK VK'

(3.13)

where

In equation (3.13) the utilities for male and females are now measured on the

same scale by changing the variance of the males to be the same as females.

Dividing the utilities of males VK does not affect their choices. To complete the

model, the variance of the female errors must be normalised to 1. The utility is

Uij g(Xij) I V female--+!P" z
0'1 0'1 lJ

o; g(Xij) +!P~ V male i,
VKO'I VKO'I lJ

(3.14)

cl m
wh I _ <..oij m _ Cij I ()

ere !Pij - 0'1' !Pij - V(K)O'I and Var(!Pij) = Var!pr;; = 1.

Correlated Errors

If errors are correlated over alternatives, normalising the variance of one alter-

native does not normalise the utility scale. The scale of utility differences must
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be considered instead. Train (2003) considers an example where there are four

alternatives. The utility of the four alternatives is given by

(3.15)

The error vector Ci = C{Cil, .. , Ci4} has mean zero and covariance matrix

0= (3.16)

Equation (3.15) can be written in terms of utility differences,

(3.17)

where o., = Uij -Uil, g(xijd = g(Xij) - g(Xil) and Cijl = Cij -Cil. The vector

of error differences fijI = {fi21,fi31,Ei4t} has mean zero and covariance matrix

0'11 + 0'22 - 20'12 0'11 + 0'23 - 0'12 - 0'13 0'11 + 0'24 - 0'12 - 0'14

n= 0'11 + 0'33 - 20'13 0'11 + 0'34 - 0'13 - 0'14

0'11 + 0'44 - 20'14

(3.18)

A method to set the utility scale is to normalise the variance of one of the error

difference. Setting the variance of an error difference sets the scale of utility

differences and therefore sets the utility scale. To set the utility scale, sup-

pose the variance of one error difference is normalised to, Var(Ci21) = 1. Let

m = 0'11 + 0'22 - 20'12. After normalising the covariance matrix is
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1 0"11 + 0"23 - 0"12 - 0"13 0"11 + 0"24 - 0"12 - 0"14

m m

n*= 0"11 + 0"34 - 0"13 - 0"14

m

The utility is now defined as

(3.19)

where the new error, ETj has covariance n*.

3.4.3 PROPERTY OF INDEPENDENCE FROM IRRELEVANT ALTERNATIVES

Consider the set of alternatives B = {x iI, ... , X iJ } . Let x ia and x ib be two

alternatives in the set B. Define PB( Xia) and PB( Xib) to be the probability

of choosing alternatives x ia and x ib from the set B respectively. The prop-

erty of independence from irrelevant alternatives concerns the ratio of the two

probabilities, PB(Xia) and PB(Xib):

PB(Xia)

PB(Xib) .
(3.20)

The property is discussed by Train (2003) and Luce (1959) and states that the

ratio of the two probabilities, PB(Xia) and PB(Xib) depends on the two alterna-

tives x ia and x ib and is independent of all other alternatives in set B. Some

discrete choice models, such as the logit model satisfy this property whilst models

such as the probit and mixed logit do not.
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3.5 Logit Model

We now consider choices for the error distribution, starting with the type 1 ex-

treme value distribution, which gives rise to the logit model. If a random variable

X has a type 1 extreme value distribution the p.d.f, is given by

1 (-x+f.1) [ (-x+f.1)]fx(x) = -;;.exp er exp - exp er ' -00 < x < 00 (3.21)

where f.1 is the location parameter and er is the scale parameter. The pdf fx(x)

has mean E(X) = f.1+ 0.5722er and variance Var(X) = ~7r2er2. We require the

errors to have a mean 0 (so that g( x ij) is interpreted as the population mean

utility) and therefore f.1= -0.5722er.

The cdf is given by

(3.22)

Figure (3.1) presents the probability distribution functions for the normal distri-

bution and the type 1 extreme value distribution, where both distributions have a

mean 0 and variance 1. The type 1 extreme value distribution has a positive skew.

The type 1 extreme value distribution is often assumed for the errors because it

presents a convenient form for the choice probability, i.e the logit model.
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Figure 3.1: Probability distribution functions of Normal and type 1 Extreme

value distributions

Suppose an individual i considers a set of possible alternatives B = {Xil' Xi2, .... , XiJ}'

The probability of choosing alternative Xij in equation (3.3) can be written as

The probability can be calculated using

(3.24)
J

= J IIP(cik < g(xij) + Cij - g(Xik)lcij)!(cij)dcij,
k-lj

The derivation of this probability for the logit model is shown by McFadden

(1974). If Cik and cij are assumed to have independent and identical type 1

extreme value distributions with scale parameter (T and location parameter f-l =
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-0.57220" then

f( ) 1 (-Cij - 0.57220") [ (-Cij - 0.57220")]Ci' = - exp exp - exp
J 0" 0" 0" (3.25)

and

The probability PB(Xij) is therefore

Oi)=+oo

/ {IIJ [ (-g(Xd - ci' + g(Xik) - 0.57220")]exp - exp ---=---,---,,-,J _ _..::.J_::......:....____:. _

k~O 0"
oi)=-oo -r-J

1 (-Cij - 0.57220") [ (-Cij - 0.57220")] }x - exp exp - exp dCij
0" 0" 0"

Oi)=+oo

/ {IIJ [ (-g(Xd - CiO + g(Xik) - 0.57220")]exp - exp ---=---,---,,-,J _ _..::.J_::......:....___;_ _
0"

oi)=-oo k=l
(3.27)

1 (-Cij - 0.57220") }X - exp de, °0" 0" J

Oi
1
/'=+00 { [ (-CiO

- 0.57220") LJ
(9(Xik) - 9(XiO

))]exp - exp J exp J
0" 0"

~=-oo k=l

1 (-Cij - 0.57220") }x - exp dCij.
0" 0"

J (9(xok)-9(Xii)
The probability, PB( Xij), can be derived using substitution. If a =Lexp ~

k=l
d (-Cij - 0.57220") than z = exp 0" en

46



oJ - exp( -az)dz
00

1
a

=

(3.28)

Equation (3.28) is called the logit model.

3.5.1 NORMALISING THE UTILITY SCALE

Section 3.4.2 discusses generally how a utility scale can be normalised. This

now needs to be applied to the logit model. The probability in equation (3.28)

is for an undefined utility scale so different values of each parameter can give

the same probability. The utilities are measured relative to the utilities of two

fixed alternatives, the best possible alternative and another alternative considered

worse than most alternatives. Suppose the utility of the lower alternative is given

a value D and the utility of the best alternative is given a value C. The mean

utility g(Xij) can be written as g(Xij) = C - f(Xij) where f(Xij) is the mean

decrease in utility from the best alternative. If individual i chooses alternative

X ij from the set of alternative B, which includes the lower of the two alternatives,
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then the following condition must be satisfied,

(3.29)

The probability in equation (3.24) can now be written to include this condition

as

J

PB(Xij) = J IT P(cik < g(xij)+cij-g(xik)!cij)I(cij > -g(xij)+D!cij)!(Cij)dcij,
k#j

(3.30)

where I(cij > -g(Xij) + D!cij) = 1 if Cij > -g(Xij) +D and 0 otherwise. The

probability is then calculated using

It can be shown that the probability, PB( Xij), is now equal to

(3.32)

x 1- exp
exp (9(~ij))

(
9(XiJ) - D - 0.57220')--___;_------'-- exp

l:J (9(Xik)) 0'exp --
0'

k=l

48



3.5.2 RANDOM EFFECTS IN LOGIT MODELS

In a logit model, the errors are assumed to be independently and identically dis-

tributed. However, individuals' utilities can vary with unobserved variables or

randomly. Consider two similar alternatives, Xia and Xib that are defined using

5 attributes. Suppose alternative Xia is at level 3 for each of the five attributes,

and alternative x ib is at level 3 for four attributes and level 4 for one attribute.

If the utility individual i has for alternative x ia is less than the population mean

utility for alternative x ia , then we would expect that the utility individual i has

for alternative x ib is also less than the population mean utility for alternative

x ib- Consequently, we would judge the errors associated with the two alterna-

tives, Xia and Xib, to be correlated, and the errors to not be independent and

identically distributed.

To account for the correlation, a random effect can included in the model. A

random effect can be additive or multiplicative. Train (2003) discusses the mul-

tiplicative random effect. Define Cti to be a multiplicative random effect. The

utility is then defined as

(3.33)

where the random effect, Cti, represents the mean deviation of individual i's util-

ities from the population mean utilities.

In a logit model the random effect can be dependent on a covariate, for ex-

ample age. Let Cti = PYi, where Yi is the age of individual i. Equation (3.33)

can now be written as
(3.34)
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Other specifications can be considered for the random effect, such as Cl:i =
PYi +rpy; , where P is positive and ip is negative. As age increases, utility increases

but at a decreasing rate.

Logit models can include parameters for each individual that vary over observed

variables such as age. However, parameters that vary with respect to unobserved

variables or randomly cannot be included in a logit model. Suppose the random

effect is Cl:i = PYi + /-ti, where /-ti is a random variable. Substituting into Equation

(3.33) gives

(3.35)

which can be written as

(3.36)

where Cl,j = /-tig( x ij) + Cij' The new error, cl,j, cannot be independently and

identically distributed. The random variable, /-ti, will be in the utility of each

alternative for individual i and therefore the errors are correlated over individual

i. The variance of the error, Cl,j is

As the variance of iij depends on x ij and /-ti, there is a different variance for each

alternative and individual. Therefore the errors are not identically distributed.

As the errors, iij are not independent and have different variances, a logit model

is not suitable for the utiltiy defined in equation (3.35).
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3.5.3 THE LOGIT MODEL AND INDEPENDENCE FROM IRRELEVANT

ALTERNATIVES

The logit model satisfies the property of independence from irrelevant alterna-

tives. This is demonstrated in Train (2003) and can be described as follows. Let

Xia and Xib be two alternatives in the set B. Define PB(Xia) and PB(Xib) as

the probability of choosing alternative Xia and alternative Xib from the set B

respectively. The ratio of the logit probabilities is

PB(Xia)
PB(Xib)

exp(g(Xia))
J
L: exp(g(xij))
j=1

exp(g(Xib))
J
L: exp(g(xij))
j=1

exp(g(Xia))
exp(g(xib))

(3.37)

The ratio of the two probabilities only depends on alternatives Xia and Xib·

Therefore the relative odds of choosing alternative X ia over alternative X ib is

independent of any other alternatives in set B.

3.6 Probit Model

The utility individual i has for alternative Xij is described by Equation (3.2).

Define Ci = {Eil' ... , EiJ} to be the vector of errors for individual i corresponding

to each alternative in the set B = {XiI, ... , XiJ}. In the probit model the distri-

bution of e, is assumed to be e, '" N(O, ni), where ni is the covariance matrix
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for individual i. Define Aij to be the set of error terms that result in individual

i choosing alternative x ij :

(3.38)

The probability, PB( Xij), of choosing alternative Xij from the set B = {XiI, .. XiJ}

is

PB(Xij) = J r.p(Ei)dEi,
ciEAij

(3.39)

where

It is easier to show this probability for a set with two alternatives. If an individual

i has a set of possible alternatives B = {XiI, Xi2}, then from equation (3.3) the

probability of choosing one of the pair of alternatives, PB(Xil), can be written

as

(3.40)

If the errors Eil and Ei2 are assumed to be independent and identically distributed

with normal distributions,

(3.41)

then the difference E = Ei2 - Eil also has a normal distribution, E '" N(O, 20"2).

Therefore, the probability PB(Xil) is given by

P (x. ) = <p (9(Xil) - 9(Xi2))
B tl J'ia2' (3.42)

where <P is the standard normal cdf. Equation (3.42) is called the probit model.
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To normalise the utility scale suppose Xi2 is the lower alternative with fixed

utility D then the probability is written as

(3.43)

If Cil is assumed to have a normal distribution, Cil rv N(O, (]"2), the probability,

PB ( x id is given by

PB(xid = <I> (9(Xi~ - D) ,

where <I> is the standard normal cdf.

(3.44)

3.6.1 PROPERTIES OF PROBIT MODEL

Probit models allow individuals' utilities to be correlated. A limitation of the

probit model is that a Normal distribution is required for all unobserved compo-

nents of utility. The method of normalising the utility scale for correlated errors

is described in Train (2003) and discussed in Section 3.4.

Pro bit models can include random coefficients which are normally distributed.

Train (2003) considers an example where utility is assumed to be linear in pa-

rameters and the parameters vary randomly over individuals. The utility, Uij, is

defined as

(3.45)

where 8i is the vector of parameters for individual i. Suppose the parameter

vector, 8 i s is normally distributed with mean b and covariance W: 8i rv

N(b, W). The utility in equation(3.45) can be written as

Uij = bT Xij + jtij, (3.46)
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- T
where flij = 0 i X ij + Cij and 0 i = 0 i - b is the deviation of individual i from

the population mean utility.

Train (2003) describes the covariance of flij using an example with two alter-

natives. The utilities of alternatives x il and x i2 are

(3.47)

where Oi '" N( b, O'B) and Cij '" N(O, O'c), j = 1,2. The utilities can be written

as

(3.48)

The distribution of the vector J-ti = {flil, fli2} is J-ti '" N(O, 0), where

(3.49)

To set the scale of utility, let O'c = 1, so 0 becomes

(3.50)
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3.6.2 THE PROBIT MODEL AND INDEPENDENCE FROM IRRELEVANT

ALTERNATIVES

A probit model does not satisfy the property of independence from irrelevant

alternatives. This ratio of the probabilities of choosing alternatives X ia and x ib

is given by

PB(Xia)
PB(Xib)

(3.51)J 'P(Ci)dci'
ciEAib

where Aia = {Ci s.t. g(Xia)+Cia > g(Xik)+Cik Vj =1= k}, Aib = {Ci s.t. g(Xib)+

Cib > g( Xik) + Cik Vj =1= k} and

Equation (3.51) cannot be simplified. Therefore the ratio of probabilities of the

two alternatives depends on all the other alternatives and the probit model does

not satisfy the property of independence from irrelevant alternatives.

3.7 Mixed logit model

Suppose the mean utility, g( Xij), in equation (3.2) is defined as g( Xij) = (FXij,

where the alternative x ij is defined using dummy variables and () is the vector

of corresponding parameters. The utility is then defined as

(3.52)

In a mixed logit model the errors, Cij, are assumed to have an independent and

identically type 1 extreme value distribution and parameters () are allowed to

vary over individual. Define ()i to be the set of parameters for individual i,

where ()i is allowed to have any distribution with mean b and covariance W.
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The utility using a mixed logit model is written as

Uij = (}iXij + Cij' (3.53)

Define PB ( X ij I () i) to be the probability of choosing alternative X ij from the set

of alternatives B = {x iI, ... , X iJ }, evaluated at the set of parameters ()i. Define

! (()i) to be the pdf of (). The probability, PB ( X ij) , is calculated using the mixed

logit model by
I

PB(Xij) = J PB(Xijl(}i)!((}i)d(}i,

i=I

(3.54)

where

The probability in equation (3.54) is a weighted average of the logit function

evaluated at different values of ()i, where the weights are given by the pdf! (() i) .

For a set of pairwise choices B = {XiI, Xi2} the probability PB( XiI) is calculated

using the mixed logit model by

(3.55)

where

3.7.1 THE MIXED LOCIT MODEL AND INDEPENDENCE FROM IRRELEVANT

ALTERNATIVES

A mixed logit model does not satisfy the property of independence from irrelevant

alternatives. This can be shown by considering the ratio of the probabilities of
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choosing alternatives x ia and x ib :

PB(Xia)
PB(Xib)

J Jexp(9(Xia)) f(8)d8

2: exp(g(xij))
j=1

(3.56)J Jexp(g( Xib)) f( 8)d8 .

2: exp(g(Xij))
)=1

The denominators of the two probabilities in Equation (3.56) do not cancel. The

ratio of probabilities of the two alternatives depends on all the other alternatives.

Therefore the relative odds of choosing alternative x ia over alternative x ib is

not independent of the other alternatives in the set B.

3.8 Discrete choice experiments in health care

This section reviews examples of where discrete choice experiments have been

used to estimate utilities in health care. Ryan et al. (2001) and Ryan (2004) are

examples of articles which review the use of discrete choice data in health care.

Discrete choice experiments were introduced into Health Economics to consider

other factors of health care in addition to the QALY. These factors include wait-

ing time, location of treatment, type of care and type of staff providing care.

Discrete choice experiments allow trade-offs between such differences in health

care. Discrete choice experiments are based on the assumption that health care

interventions or services can be described by their characteristics (or attributes)

and that an individual's valuation depends on the levels of these characteristics.

Ryan and Farrar (2000) describes the process of conducting a discrete choice ex-

periment, which consists of five stages. Initially the characteristics describing the

health intervention or service are identified. A number of possible levels are then

defined for each characteristic. Each possible health care scenario can then be
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listed by combining each possible characteristic level. A discrete choice experi-

ment involves collecting preferences on a subset of these scenarios. A respondent

is presented with a set of possible scenarios and asked to choice the preferred

option. This is carried out for several groups. This type of data is called discrete

choice data. A model is then fitted to the data in order to estimate a value of

every possible scenario. Models used are often the logit or probit model. The

interpretation of the resulting estimate of each scenario is determined by the pur-

pose of the discrete choice experiment. This thesis is considering using discrete

choice data to estimate utilities for use in deriving QALYs. Therefore model ex-

amples presented in this section can be used for this purpose.

Salomon (2003), using the EQ-5D data in Dolan (1997) discusses the analysis

of ordinal rank data. The model proposed is

(3.57)

where g(Xij) is the population mean utility for health state Xij and is given by

the function g(Xij) = x~/J The vector Xij consists of dummy variables repre-

senting the levels of each of the five attributes in the EQ-5D classification system

defining the health state, and () is the vector of unknown parameters. A logit

model was used to analyse the data.

The model in Equation (3.57) does not produce utilities on the required scale

where full health has a utility of 1 and death has a utility of O. Possible methods

for scaling the utilities were discussed. The model in Equation (3.57) can be

written as

(3.58)
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where A is the normalising constant and <5 is the value of the best possible health

state. The likelihood function will be the same for all values of a and <5 where

a, <5 t O. The best health state is always full health and as <5 corresponds to the

utility of the best possible health state the value of <5 is always <5 = 1.

Three alternatives for A were considered. The first alternative proposed was

to transform the scale such that the worst possible health state defined by the

EQ-5D classification system has a utility equal to the mean observed TTO value

for that state, denoted TT033333' The modelled value of the worst state equals

the sum of all the parameter estimates, 2:{}. Therefore

AL{}+ 1= TT033333, (3.59)

and A is:

A = TT0333:3 - 1.
2:0

(3.60)

The second alternative for A defines a scale where the utility of the worst state

is O. In this case

(3.61)

and A is

(3.62)

In the final alternative for A, the model in Equation (3.58) is written as

(3.63)
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where D is a dummy variable representing the health state death, and is equal

to 1 if the health state is death and is equal to ° otherwise. If the utility of death

is given a value of ° for all individuals then,

)"D + 1 = 0, (3.64)

and)" is
-1

)..=15· (3.65)

A similar model is used by McCabe et al. (2006) where a rank model is fitted to

rank data collected using both the HUI2 and SF-6D classification systems. The

estimated utilities are then re-scaled using equation (3.65) to be defined on a

scale where death has a utility of ° and perfect health has a utility of 1. The

utilities estimated using rank data are compared with utilities derived using the

Standard Gamble method.

Lancsar et al. (2003) discuss a study that involves four discrete choice exper-

iments. (DCEs) undertaken within a multi-centre, randomised cross-over, con-

trolled trial of three preventive asthma medications. The trial had a two period

double blind crossover design for two drugs, Montelukast and Formoterol, and a

follow-up period on a third, Fluticasone. Patients completed four DCE question-

naires. The first was completed on entry to the trial before the patients received

any trial medication. The other three were completed after each of the three

treatment phases. A classification system with 10 attributes was used. Each

attribute had between 2 and 4 levels, defining 131,072 possible scenarios. There

were 16 versions of the DCE questionnaire, each including 28 scenarios. A total

of 58 patients were randomised to complete one questionnaire at each of the four

times specified.

For each of the 28 scenarios in the survey assigned to them, patients choose
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which treatment option they would prefer from the following set of options:

1 Medication they had been taking for the previous 6 weeks,

2 Medication described in the scenario, or

3 No preventive medication.

The model specified in Lancsar et al. (2003) is for the DCE questionnaire com-

pleted at the first visit. It is assumed that individual i has a utility, Uij for state

Xij shown by

Uij = g( Xij) + fij, (3.66)

where

X is a vector of attributes describing the asthma medications containing either

values describing the current medication (for j=T}, the design variables for the

scenario being valued (for j=2) or zeros when no medication is preferred (for

j=3). The vector Z contains characteristic variables on individual subjects. A

logit model is fitted to the data. If the data from all four DCEs were included in

the analysis, Lancsar et al. (2003) concluded it may not be reasonable to assume

that the fij are independent and instead may have a complex correlation struc-

ture.

? analyses the same data as Lancsar et al. (2003) using a mixed logit model,

which allows the parameters to vary over individuals. The utility individual i

has for alternative j in scenario s is given by

(3.67)
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where Xisj is a vector of attributes describing the asthma medications for sce-

nario s and containing either values describing the current medication (for j=1),

the design variables for the scenario being valued (for j=2) or zeros when no

medication is specified (for j=3)

Farrar et al. (2000) investigates the use of discrete choice models (DCM) to elicit

the views of planners of health care, providers of health care and consumers in

the area of priority setting. Priority setting involves choosing between compet-

ing demands on the health care budget. The hospital trust used had an aim to,

gain as much benefit as possible from the choice of clinical service developments

and wanted the measure of benefit used to reflect the preferences of consultants

working at the hospital

A classification system was developed which had five dimensions: the level of

evidence of clinical effectiveness; the size of health gain; the developments contri-

bution to professional development; the developments contribution to education,

training and research; and the strategy area, which is whether the proposed devel-

opment represents a local and/or national priority. Each dimension was assigned

a number of levels. The total number of possible scenarios defined by the dimen-

sions and levels is 216. Sixteen scenarios were identified which could be used in

a DCE questionnaire and allow benefit or utility scores to be estimated for all

possible scenarios or clinical service developments. The 16 scenarios were paired

into 8 choices determined on the basis that each choice included clear trade-offs

between dimensions of benefit. The 216 consultants working within the hospital

trust were asked to complete a questionnaire. As multiple observations were ob-

tained from each individual the random effects probit model was used to analyse

the data.

The model used is similar to the models described previously in this section
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except that utility differences are used. The model is written in the form

(3.68)

where VIjk is the change in utility from development Xij to development Xik.

and h( Xijk) = OT (Xij - Xik). It is unclear what E and et represent. They are

defined as the unobservable error terms where corr[E, et] = p and p takes account

of any correlation between observations from anyone individual. It might be

assumed that E was the error term and et was the random effect. However as the

model represents the difference in utilities the random effect would cancel out,

and the error term is independent and cannot be correlated with another error.

The two terms could represent the utility of the two utilities before the difference

is taken.

Burr et al. (2007) use a discrete choice experiment to estimate the utilities for

health outcomes resulting from glaucoma. A classification system with 6 dimen-

sions was developed. These dimensions were: central and near vision; lighting and

glare; mobility; activities of daily living; eye discomfort and other effects. Each

dimension had four levels of severity, ranging from no difficulty, given a value of

0, to severe difficulty, given a value of 3. The classification system defined 4096

health states. Thirty two health states were selected and then the mirror image of

each found by changing the levels in each health state, i.e. 0 =} 1, 1 =} 2, 2 =} 3

and 3 =} o. For example health state 0123 becomes health state 1230. Each

of the two health states are then used as a pairwise comparison. There are then

thirty two pairwise comparisons used in a questionnaire sent out to glaucoma

patients. A conditional logistic regression model is used to analyse the response

data. A Wald test was used to test for evidence of a significant difference between

levels for each dimension. If there is no difference, the levels were combined and

the model re-estimated.
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3.9 Bayesian Inference for discrete choice data

Albert and Chib (1993) develop Bayesian methods for modeling categorical re-

sponse data using data augmentation. The method is described using the probit

model as an example. The probit regression model for binary outcomes has an

underlying normal structure on the latent variables. In data augmentation, val-

ues of the latent variables are simulated from truncated normal distributions. If

the latent data are known, the posterior distribution of the parameters can be

derived. New values of latent data can then be sampled from the posterior dis-

tributions.

Suppose that YI, "'YN are observed independent binary random variables where

ti, i = 1, ...N has a Bernoulli distribution with probability of success Pi. Define

the binary regression model as

Pi = H( xf 0), (3.69)

where 0 is a k x 1 vector of unknown parameters, and x [ = (x il, ... , X iN) is

a vector of known continuous or discrete covariates. The function H is a known

cdf linking the probabilities Pi with the linear structure x [ O. Define 1['( 0) to

be the prior distribution of parameter O. The posterior distribution is given by

N
1['(0) IlH(x[O)Yi(l- H(X[O))l-Yi

i=l (3.70)
NJ 1['(0) IlH(x[O)Yi(l- H(X[O))l-YidO
i=l

To describe the method of data augmentation, Albert and Chib (1993) let H =
CP,leading to a probit model. Suppose ZI, ..., ZN are latent variables where each
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Zi are independent N (x T fJ, 1). Define Yi to be a dummy variable where

{
I if z, > 0

Yi = 0 otherwise
(3.71)

Each Yi is an independent Bernoulli random variables with Pi = P(Yi = 1) =

<'P(xTfJ). The joint posterior of fJ and Z = (Z1' ... , ZN) given the data Y =

(Y1, ... , YN) is given by

1r(IJ, Zly) = C1r(IJ) {g{I(Zi > O)I(Yi = 1) + rz, S; O)I(Yi = 0))

(3.72)

where <'P(;xTfJ, 1) is the N(xTfJ, 1) cdf, J(XfA) is the indicator function that

is equal to 1 if the random variable X is contained in the set A, and C is a

proportionality constant. The posterior density of fJ given Z is given by

N

7r(fJ/y, Z) = C7r(fJ) II<'P(Zi; xTfJ, 1).
i=1

(3.73)

The posterior distribution of each Z i given fJ is independent with

/
T { truncated at the left by 0 if Yi = 1Z, y, fJ '" N (X i fJ, 1)

truncated at the right by 0 if Yi = 0
(3.74)

Albert and Chib (1993) then discuss how it is possible to generalise the posterior

distribution, 7r( fJ /Y, Z), by applying suitable mixtures of normal distributions.

This generalisation allows investigation into the sensitivity of the fitted probabil-

ities to the choice of link function. The probit link can be generalised by choosing

the link pdf to be the family of t distributions.
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Let the Zi be independently distributed from t distributions with location x; 0,
scale parameter 1 and degrees of freedom u . Introducing, an additional variable,

Ai, the distribution of Z, is now written as the following scale mixture of a normal

distribution: Z, cv N(X;O,Ail) and Ai cv Gamma(vj2,2jv), where the gamma

pdf is proportional to A~/2-1exp( -vAd2).

Let A = (AI, ... , AN) be the vector of scale parameters and suppose the pa-

rameter 0 has a uniform prior distribution. The posterior for Z, A, 0 and t/

is

7f(Z, A,0, vlY)

g{ffi X {I(Zi > O)J(Y; = 1) + J(Zi " O)J(Y; = 0))

(-A ) v I (-VA')}x exp T(Zi - X;O)2 c(v)A;- exp T ' (3.75)

where c(v) = [r(~)(~)(V/2)rl and 7f(v) is the prior distribution on t/ . The fully

conditional distribution of Z, are independent with

{
truncated at the left by 0 if Yi = 1

truncated at the right by 0 if Yi = 0
(3.76)

The conditional distributions of 0, A and v are given by

(3.77)
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where iJ Z.A = (XWX)-lXWZ and W = diag(Ai),

(
11+1 2 )

(Aly, Z, 0,11) '" Gamma -2-' 11+ (Zi - xTO)2 , (3.78)

and (III Z, 0, A) is distributed with a pdf proportional to

(3.79)

To implement the Gibbs sampler, Albert and Chib (1993) started with 0 equal

to the least squares estimate under the probit model and set Ai = 1 Vi. Pa-

rameter values are then sampled in the following order: Equations (3.76), (3.77),

(3.78) and (3.79).

Halekoh et al. (2004) uses discrete choice experiments to assess the choices made

by an animal. The model used is similar to those used to model discrete choices

between health states. The example used in Halekoh et al. (2004) involves pigs

and rooting material. Two categories of rooting material were used, containing

three different rooting materials. For each category the rooting materials were

each placed in one arm of a three arm maze. Two pigs were lead to the centre

of the maze and after one and a half minutes the position of the pigs determined

their choice. If both pigs were in one arm of the maze, the rooting material in

that arm was given as their choice. If both pigs remained in the centre of the

maze, they had no preference. It was not possible to conduct the experiment

where the rooting material could be presented independently from the orienta-

tion of the maze arms. As the effect of the orientation of the maze arms could

not be excluded, three combinations of the orientation of the maze arms and the

rooting materials were tested with different pigs. Twelve pairs of pigs had their

choices recorded on four occasions for the same option of maze arm and material
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combination.

A multinomial logistic random intercepts model was fitted to the data. If pair

of pigs i (i = 1, .... 12), chooses one of k (k = 1,2,3,4) options on occasion

t (t = 1,2,3,4), let Yit be the random variable describing the choice of ani-

mal i at time t, i.e. Yit = k if option k is chosen. Option k is equal to 1, 2,

or 3 if one of the rooting materials are chosen, and equal to 4 if no choice is made.

The probability of animal i choosing option k on occasion t is given by

I 2exp /-titk
P(Yit = k (7 ,tik, Xitk) = Oitk = -K=-':""':_--

I:i=l exp /-titk
(3.80)

where

(3.81)

(3.82)

The parameter v~k is row k of the design matrix Vc for combination c of the

options of rooting materials and maze arms. There are three options for Vc:

The parameters 0 = (6{,6s, 6r) represented the orientation effect.

The tik are random intercepts allowing for animal specific choice probabilities

and are assumed to be independently normally distributed: tikl(72 '" N(O, (72).

The vector of random intercepts for animal i is denoted by ti = (til, .., ti4) .

The components of the parameter vector f3 and the variance (72 were given

non-informative prior distributions. Each parameter in f3 was given a N(O, 106)
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prior distribution and the standard deviation (J had a uniform prior distribution,

U(O, 100). Assuming independence between the prior distributions, the posterior

distribution is given by

12 4 4

f((3, (J2, El, ..... E12/Y) <X II II II eftikkcp(Eik/(J)f((3)f((J2)
i=l k=l t=l

(3.83)

The vector Y = (Yitk) denoted all the responses where Yitk = 1 if animal i chooses

option k on occasion y.

The posterior distribution of the choice probabilities can be used to describe

a future choice of a new animal, which is assumed to be sampled from the same

population as the animals used in the experiment. The vector of choice probabil-

ities for some new animal i* is denoted by e( 'l/J, Xt), where 'l/J = ((3, (J2, Ei') and

X, contains the vectors x~.tk containing variables relating to eh choice k made

by animal i* at time t. The choice probabilities for the new animal are then

predicted by the mean:

The probabilities e(Xt) can be interpreted as the choice probabilities for new

responses Yi.k .

Discrete choice experiments are used extensively in both transport and envi-

ronmental research. A search of articles using Bayesian approaches in discrete

choice experiments are limited. However, Lemp et al. (2010) provides an exam-

ple where Bayesian methods are used. The continuous cross-nested logit model

is introduced and an application of the model to work-tour departure times was
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estimated using Bayesian techniques.

3.10 Summary

In this chapter we have reviewed discrete choice experiments and explained how

the resulting discrete choice data can be modelled to estimate health state util-

ities. Three models are reviewed: logit, probit and mixed logit, and properties

of each model are discussed, including identifiability of additive constants and

identifiability of error variances. To include constants in discrete choice mod-

els, one constant must be normalised to zero and all other constants estimated

relative to the normalised constant. A multiplicative constant will increase the

utility scale and the variance of the errors. To identify values for a multiplicative

constant the utility scale must be normalised. The standard way to do this is to

fix the value of the error variance term to 1. However, it can also be achieved

by fixing the utilities of perfect health and death. The property of independence

of alternatives is also defined. The logit model satisfies this property whilst the

probit and mixed logit do not.

70



Chapter 4

Analysis of AQL-5D data

4.1 Introduction

The AQL-5D classification system defines health states specific to asthma. There

are five attributes in the classification system where each attribute has five levels

of severity. It is described further in Section 2.5.4. This chapter concerns the

use of discrete choice data to estimate utilities defined the AQL-5D classification

system. Logit and probit models are fitted to the data, first using maximum

likelihood. A Bayesian approach is then considered for both the logit and probit

models. Posterior distributions are generated for the parameters in the two model

using MCMC sampling given the three priors: Gamma(l,lO), Gamma(5,15) and

Uniform(O,l).

4.2 Data

The data used are pairwise choice data from an existing study designed to show

how rank and discrete choice data can be used to generate utilities for health

states defined by the AQL-5D classification system. Brazier et al. (2006) present

an analysis of these data, where a probit model is fitted to the data. In this chap-
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ter uncertainty in the utility estimates is investigated by considering a Bayesian

approach, which are compared to estimates derived using maximum likelihood.

A sample of 307 people (40% response rate) in South Yorkshire were interviewed

to elicit preferences for a sample of AQL-5D health states. A balanced design was

used to select 98 of the possible 3124 health states. The total score of the levels

of each attribute was calculated for each health state and this score was used to

stratify the 98 health states into severity groups. Health states from each group

were randomly allocated into 14 blocks, so that each block contained 7 health

states. Each respondent interviewed was allocated one block.

In the interview the first task was to rank 10 health states in order of prefer-

ence. The health states considered were perfect health, immediate death, the

worst health state defined by the AQL-5D classification system and the 7 health

states in the block allocated to the respondent. The next task was to elicit Time

Trade-off values for 8 health states; these were the 7 health states in the respon-

dent's block and the worst AQL-5D health state.

Following the interview each respondent that consented was sent a discrete choice

experiment questionnaire. An application in SAS developed by Huber and Zwerina

(1996) was used to select the health states for the discrete choice experiment. The

application obtains an optimal statistical design based on level balance, orthogo-

nality, minimal overlap and utility balance. The SAS program selected 24 pairwise

comparisons from the AQL-5D classification system. Each pairwise comparison

was randomly allocated to one of four versions of the questionnaire, so that each

questionnaire contained 6 of the selected pairwise comparisons. Two additional

pairwise comparisons were included in each questionnaire, comparing immediate

death with an AQL-5D health state. Health states in the AQL-5D that could be

regarded as worse than death by some respondents were chosen to be compared
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to immediate death.

In addition to the pairwise comparisons, each questionnaire was used to ask

questions about the respondent's background, general health, previous experi-

ence of asthma, whether or not they currently have asthma, and their description

of asthma using the AQL-5D classification system. Each respondent was sent one

questionnaire.

Of the 307 people interviewed, 168 returned a completed questionnaire, gener-

ating 1336 observed pairwise comparisons. Table 4.1 summarises characteristics

of the people in the sample. Table 4.2 summarises the numbers of respondents

with asthma at the time of completing the questionnaire and the numbers with

experience of asthma respectively.

Number Percentage

Sex Male 72 43%

Female 96 57%

Age 18-25 6 3.6%

26-35 22 13.1%

36-45 28 16.7%

46-55 38 22.6%

55-65 39 23.2%

over 65 35 20.8%

Table 4.1: Number and percentage of respondents by age and sex
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Number Percentage

Current Asthma Yes 35 21%

No 131 78%

Unknown 2 1%

Current or Previous Asthma Yes 44 26%

No 110 66%

Unknown 14 8%

Table 4.2: Number and percentage of respondents with experience of Asthma

The design used for this discrete choice experiment is described by Huber and Zwerina

(1996). Some other articles where discrete choice design is reviewed are Kessels et al.

(2004), Kessels et al. (2006), Kuhfeld et al. (1994) and Viney et al. (2005).

4.3 Modelling discrete choices

We wish to obtain the population mean utility for every health state defined by

the AQL-5D classification system. A parametric model is fitted to the data with

the parameters defining the population mean utility of any health state in the

AQL-5D classification system.

In Chapter 3, x is defined to be a vector of dummy variables that defines an

alternative. In this chapter, let x = (Xl, X2, ..... , x2d be a vector of 21 dummy

variables that defines either a health state in the AQL-5D classification system

or the health state death. For a = 1, ...5 and b = 1, ...4 each element of x is

defined as

1 if attribute a is at level b + 1 or higher

o if attribute a is at level 1
(4.1)
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The element X2I is zero unless x represents the health state death, in which case

{
Ok = 1, ...20,

Xk =
1 k = 21.

(4.2)

Define B = {XiI, Xi2} to be a pair of health states defined by the AQL-5D clas-

sification system that are assessed by individual i. Define Uij to be the utility

individual i has for health state x ij. The relationship between Uij and x ij as

presented in equation (3.2) is Uij = g( Xij) +Cij. In the discrete choice experiment

each individual assesses eight comparisons, two of which include the health state

death. By definition, all individuals have a utility of zero for the health state

death. For these comparisons assume x i2 is the health state death. Therefore

g(Xi2) = 0 and Ci2 = o.

In a discrete choice experiment an individual i selects the preferred health state

in set B. The probability that individual i chooses health state x il is equivalent

to the probability that the utility individual i has for health state z il is greater

than the utility individual i has for health state x i2. Define Ps (x ir) to be the

probability that individual i will prefer health state x i1 to health state x i2·

Using equation (3.3) the probability can be written as

(4.3)

If Xi2 is the health state death

(4.4)

A linear model is assumed for the mean health state utility and g(Xij),j = 1,2, is

defined to be 9 (x .) = 1 - a: T_ () The vector () contains 21 unknown parameters~J ~J .

() = (01, ... 020,021f. Each of the first 20 parameters represent the decrease in
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utility associated with the increase of an attribute by one level. The parameter

(}21 represents the decrease in utility from perfect health to death. If x i2 is the

health state death, x ~() = 1 and Ui2 = O. Therefore (}21 = 1.

Two models are considered for the data, the logit and probit models.

4.3.1 LOGIT MODEL

As shown in Section 3.5, if the errors Cij are assumed to have a type 1 extreme

value distribution then the probability associated with choosing a health state is

given by the logit model. The mean of the errors is defined to be zero and therefore

the location parameter is J1 = -0.57220', where 0' is the scale parameter of the

distribution. The pdf is given by equation (3.25). Using equation (3.25) and

equation (3.28), it can be shown that the probability that individual i prefers

health state x il to health state x i2 is

(
9(Xi1))exp --

0'
(4.5)

Some comparisons include the health state death. If x i2 is the health state death,

then the probability of choosing health state x il is

(4.6)

Each respondent in the study assesses 8 pairwise comparisons. Define Bij =
{Xijl, Xij2} to be the set containing the yth pair of health states to be compared

by individual i. The sets compared by individual i can be written as Bi, =
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made by individual i is between health state x ijl and x ij2, define

, _ { 1 if individual i prefers Xijl to Xij2,
nij -

o otherwise.
(4.7)

For comparisons that include the health state death, assume x ij2 is the health

state death. Define AI = {mij,i = 1, ...,I,j = 1, ... ,8} with

mij = {O if health state Xij2 is death,

1 otherwise.
(4.8)

and N = {nij, i = 1, ..., I, j = 1, ...8}. The likelihood function for the individuals'

choices is

[ 8

P(Ni8, (72, AI) = II II
i=1 j=1

[ ( (

9(Xijl) - 0.5722(7))] nij x mij
x 1- exp -exp

(7

[ ( (

9(Xijl) _ 0.5722(7))] (1 - nij) x m
ij
}

x exp -exp ,
(7

(4.9)
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with 9(Xijk) = 1- eT Xijk. The log likelihood is

(1 ) 1 [ (9(XijI)) + (9(Xij2))]- - mi . og exp exp
J 0- 0-

[ ( (
9(XijI) - 0.57220-))]+ (nij x mij) x log 1 - exp - exp 0-

( (
9(XijI) - 0.57220-)) }+(1 - nij) x mij x - exp 0- .

4.3.2 PROBIT MODEL

If an individual i has a set of possible health states B = {x iI, X i2}, then from

equation (4.4) the probability of choosing one of the pair of alternatives, PB( XiI)'

can be written as

(4.10)

If the errors Eil and Ei2 are assumed to be independent and identically distributed

with normal distributions,

(4.11)

then the difference E = Ei2 - Eil also has a normal distribution, E rv N(O, 20-2).

Therefore, the probability PB( xid is given by

(4.12)
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where <I> is the standard normal cdf. Equation (4.12) is called the probit model.

If Xi2 is the health state death then the probability is written as

(4.13)

If Cil is assumed to have a normal distribution, Cil tV N(O, (]"2), the probability,

PB ( x id is given by

(4.14)

where <I> is the standard normal cdf.

To fit the probit model, values need to be inferred for (J. If an individual i

has 8 pairs of health states to compare, Bij = {Xijl, Xij2}, j = 1, .... , 8, and

nij, mij, M and N are as defined in section 4.3.1, the likelihood of the individ-

uals' choices is

[ (
( ) ( )

)]
(1 - niJ') x (1 - mij)

x 1_ <I> 9 Xijl - 9 Xij2

.Ji2

x H9(~jl)) t x mij x [1- <I> (g(~j,)) r-nij) x mil

(4.15)
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again with g( Xijk) = 1 - (FXijk. The log likelihood is

I 8

log P(NI8, <72, M) ~8f; {n;j log'" (9(Xijl~(Xij2))

[ (9(Xil))]+ (nij x mij) x log <I> -(1-

4.4 Maximum Likelihood Results

4.4.1 LOGIT MODEL

The logit model described in section 3.5 is fitted to the AQL-5D data using

maximum likelihood.

Attribute Concern Breath Weather Sleep Activities
Level2 0.0012 0.0045 8.9261 x 10 6 6.5952 x 10 7 0.0316
Level3 8.697 x 10-1S 1.9007 X 107 0.0221 0.0565 0.0268
Level4 0.1350 0.1248 0.0795 0.0223 0.2421
Level5 0.0334 5.0461 x 107 0.0256 0.0287 0.0003
Scale 0.2419

Table 4.3: Maximum Likelihood estimates for a logit model (rounded to 4 d.p)

Table 4.3 shows the parameter estimates after fitting the logit model to the AQL-

5D data using maximum likelihood. Each parameter estimate represents the in-

cremental decrease in mean utility when an attribute increases by one level of

severity. For example, the estimated mean decrease in utility when changing

80



from the attribute Activities at level 1 (not at all limited in any activity done) to

level4 (very limited in every activity done) is 0.0316+0.0268+0.2421 = 0.30205.

As the level of the attribute increases the size of the parameter estimate does not

necessarily increase. Several parameter estimates have very small values and are

o when rounded to four decimal places. For example, the decrease in mean utility

when the attribute Weather increases from level 1 to level 2 is 8.9261X 10-6. This

implies that the health state (1,1,2,1,1) is almost identical to perfect health in

mean utility. For most attributes the largest decrease in mean utility is a change

from level 3 to level 4. Arguably, for each attribute, the description of level 3

is nearer to level 2 than level 4 and the description of level 4 is nearer to level

5 than level 3. The largest decrease in mean utility is a change from level 3 to

level 4 for the attribute Activities. This decreases the mean utility by 0.2421.

The attribute Concern accounts for a larger decrease in mean utility than the

attribute Breath, which would probably not be expected.

If all attributes in a health state are at level 5 the health state is regarded as

the worst health state described by the AQL-5D classification system. It is im-

portant to find the estimated mean utility of the worst health state. This shows

the complete range of the mean utilities and whether any health states are con-

sidered worse than death. The decrease in mean utility from perfect health to

the worst health state is the sum of all the parameter estimates and is equal to

0.8347. The mean utility of the worst health state is therefore 0.1653 and so is

considered to be better than death.

4.4.2 PROBIT MODEL

The probit model is fitted to the AQL-5D data using maximum likelihood estima-

tion. Table 4.4 shows the parameter estimates after fitting the probit model. The

decrease in mean utility from perfect health to the worst health state is 0.8641.
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The mean utility of the worst health state is therefore 0.1359, which is smaller

than in the logit model.

Attribute Concern Breath 'Weather Sleep Activities
Leve12 0.0045 0.0001 0.0001 0.0093 0.0446
Leve13 0.0007 0.0189 0.0449 0.0561 0.0341
Leve14 0.1084 0.1153 0.0514 0.0172 0.1902
Level 5 0.0223 0.0002 0.0546 0.0431 0.0483
Scale 0.2307

Table 4.4: Maximum Likelihood estimates for a probit model (rounded to 4 d.p)

Mean utilities are calculated for 48 health states in the AQL-5D classification

system, using the parameter estimates from both the logit model and the probit

model. Figure 4.1 presents a graph of the mean utilities calculated using estimates

from both models, plotted in decreasing order of the utility from the logit model.

The health states tend to have larger estimated utilities in the logit model.
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Figure 4.1: Mean utilities for 48 health states using maximum likelihood estimates

for the probit and logit models
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4.5 Bayesian inference for health state utilities

Using a classical approach parameter estimates, such as those estimated using

maximum likelihood, are used to calculate one estimated utility for every health

state in the AQL-5D classification system. The estimated utilities can then be

used to represent QALYs in an economic evaluation. A Bayesian approach consid-

ers the uncertainty present in each utility measurement. A posterior distribution

is derived for each parameter and therefore a posterior distribution can also be

derived for the utility of each health state. This represents the range of possible

values for the utility of each health state. When uncertainty is considered in an

economic evaluation we can then consider a number of possible QALYs for each

health state rather than just one.

Bayesian inference derives a probability distribution of the set of unknown pa-

rameter 1T". It can also incorporate prior beliefs about the parameter 1T". The

prior distribution, P( 1T"), is the probability distribution of parameter 1T" before

the data N are observed. The posterior distribution, which is the probability

distribution of the parameter 1T" after the data are observed, is calculated using

P( IN) = P(NI1T")P(1T")
1T" P(N). (4.16)

4.5.1 PRIOR DISTRIBUTION

Prior distributions are needed for the set of parameters 1T" = (8,0") where 8 =
{01, .... 02d and a are defined in section 4.3. We first consider 8. As defined

previously 021 = 1. The parameters 01, ... 020 each represent the decrease in

utility associated with the increase of an attribute by one level. As no health

states can have a utility greater than the utility of perfect health, the parameter

values must be positive. Consequently we first consider independent gamma prior
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distributions for the elements of (J. The pdf of the gamma distribution is given

by

1(0 ) - j3et Oet-l -se . - 1 20
i - (ex_ I)! e , ~ - , ... , (4.17)

where ex is the shape parameter and j3 is the rate parameter. The mean of the

gamma distribution is ~ and the variance is ;2. Several values of ex and j3

are considered. A single parameter value is not likely to be greater than 1 as a

change in the level of one attribute would not be expected to produce a change in

utility greater than the change from perfect health to death. Therefore Gamma

distributions with mass concentrated in the range (0,1) are considered.

o

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.2: Gamma(l,lO) Prior Figure 4.3: Gamma(5,15) Prior

Two gamma prior distributions are considered, a Gamma(1,10) distribution and

a Gamma(5,15) distribution. Figure 4.2 shows the probability distribution of the

Gamma(l,lO) distribution, which has scale parameter ex= 1 and rate parameter

j3 = 10. This prior assumes that the parameters are more likely to be closer to 0

and have a small probability of having a value greater than 0.4. Figure 4.3 shows

the probability distribution of the Gamma(5,15) distribution, which has scale

parameter ex= 5 and rate parameter j3 = 15. This prior distribution assumes
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that the parameter values are unlikely to be close to 0 and have a large probability

of being between 0.2 and 0.4. A uniform prior distribution over the range (0,1) is

also used. This prior distribution assumes that the parameter values are equally

likely to be any value between 0 and 1. The parameter (J is related to the variance

of the distribution assumed for the errors, Cij, in equation (3.2). When fitting

a model, the variance of the errors is required to be as small as possible. To

explain this, consider an example where the errors are assumed to have a normal

distribution C '" N(O, (J2) with variance (J2 = 1. The distribution of the errors

is given by figure 4.4. Most of the distribution is between f-l - 2(J = -2 and

f-l + 2(J = f-l + 2. Suppose the population mean utility of an AQL-5D health

state is g( x ij) = 0.8. This error distribution would imply that the utilities for

this health state can vary between -1.4 and 2.8. This is unrealistic for two

reasons. This means the utility scale for that health state is four times the size

of the scale between death and perfect health, and no health state can have a

utility greater than 1. Alternatively suppose the variance is small, for example,

(J2 = 0.052 = 0.0025. The utility of any given health state will vary by between

-0.01 and +0.01. Therefore, as with the parameters (J, (J is assumed to be less

than 1. We start by trying the same prior as used for the parameters (J and will

then consider other priors.
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4.5.2 POSTERIOR INFERENCE USING MCMC

Given the likelihood and prior distributions considered in this chapter, the pos-

terior distributions cannot be derived analytically. Therefore MCMC sampling

is used to simulate values from the posterior distribution. The posterior distri-

butions of the 21 unknown parameters in the probit and logit models for the

AQL-5D data can be inferred using simulation. MCMC simulation samples vec-

tors of parameter values, 7r = (7r1' 7r2, ... , 7r21). For notational ease we write

it, = ()i i = 1, ...20 and 7r21 = (5. The sequence of vectors 7r 1, 7r2, .... is a

Markov Chain. The stationary distribution of the Markov chain is the required

posterior distribution.

Let the state of the Markov chain at time t be 7r(t) = (7ri
t
), , 7r~~). To up-

date this vector to the state at time t+ 1, 7r(t+1) = (7rit+1), ,7r~i+1)), a new

value is generated for each of the 21 parameters. The process of updating the

vector 7r(t) to the new vector 7r(t+1) is referred to as one iteration of the MCMC.
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If 1T' -i is defined as the vector of all elements of 1T' except 7ri,

(4.18)

1T' ~~ can be defined as the state of 1T' -i after updating the element 7ri-1 at time

t + 1,

(t) _ ((HI) (t+1) (t) (t))
1T'_i - 7r1 , ..·,7ri-1 ,7ri+1,..·7r21. (4.19)

The method of MCMC used is the Metropolis-Hastings algorithm. This is de-

scribed as follows. To start the MCMC a vector of starting values is needed,

1T'1 = (7rl,1....7rl,21). At each step within an iteration of the MCMC, a candidate

value, 7r, is sampled from the proposal distribution Qi(7r!7rY)), where 7rY)is the

current value of the parameter 7ri. We have already noted that each parame-

ter must be positive and so this must be considered when choosing the proposal

distribution. A lognormally distributed variable must be positive and so this

distribution is considered as the proposal distribution,

( ! (t)) _ 1 [ 1 (lOg7r -log7r;t)) 2]qi 7r7ri - exp -- - ,
7rvy'2i 2 v

(4.20)

where v is the standard deviation of log(7r). A value of v is chosen for each

parameter to allow between 40% and 60% of samples generated to be accepted.

After each candidate value is sampled the acceptance probability is calculated,

which is used to decide whether to accept the candidate value for a parameter. If

the current state of the Markov chain is (1T' ~~, 7rY)),the acceptance probability

for a candidate value 7r is
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(4.21)

where f(7r) and f(7rt.i) are the prior distributions for the candidate value and cur-

rent value of parameter it, respectively, and f(N17I" ~;, 7r) and f(N17I" ~;, 7rY)) are

the corresponding likelihoods. To decide whether to accept the candidate value

7r, a random number, u . is generated from the uniform distribution U[O,l]. If
tt < a(7I"(t) 7r(t) 7r) then 7r(t+l) = 7r. otherwise 7r(t+I) = 7r(t)-'1.' 'l , Z , 'l, z •

The iterations are continued until the Markov chain converges to the station-

ary distribution. If this occurs at time T then (7r?+I), ... 7r?+n)) will be a sample

from the posterior distribution for parameter 7ri. The sample is used to calcu-

late the posterior mean, E[7riIN], and 95% posterior intervals for each parameter.

To assess convergence the parameter values are plotted against the iteration num-

ber. A second sample can also be selected from the MCMC output, (7r;T+n+1), ... 7r;T+2n)).

If the distribution has converged to the stationary distribution, the mean and 95%

posterior intervals of the second sample should be similar to those calculated using

the first sample.

4.5.3 RESIDUALS

Residuals are used to examine the adequacy of a model in predicting individual

data points. Outliers can affect parameter estimates, increase the estimates of

variance parameters and often indicate a deficiency in the model.

There are 32 sets of pairwise choices in the AQL-5D data. Each set can be written

as B, = {x jl, x j2}. Suppose there are K vectors of parameters sampled from the

MCMC, 71" k, k = 1, ....K. A Bayesian residual is defined in Johnson and Albert

88



(1999) as
nj

rj,k = N. - Pj,k, j = 1, ...32, k = 1, ... ,K,
J

(4.22)

where N, is the number of individuals assessing set Bj, nj is the number of

individuals preferring health state x j1 to health state x j2, and Pj,k is the fitted

proportion of individuals preferring health state x ij1 to health state x ij2. The

fitted proportion, Pj,k is calculated using each parameter vector 7T' k . For the

logit model the fitted proportion is

(~)exp (7
(4.23)

If X j2 is the health state death, then Pj,k is

P ( ( (
XJ1lh - 0.5722(7)))j,k = 1 - exp - exp .(7 (4.24)

Similar equations can be derived for the probit model. The mean of the fitted

probabilities is also calculated for each pairwise comparison by

(4.25)

Each Bayesian residual, rj,k is plotted against the mean of the fitted probabilities

for each pairwise comparison, Pj. The plot will show the distribution of the

Bayesian residuals for each pairwise comparison. Johnson and Albert (1999) state

that residual distributions located far from a residual value of 0 are considered

to be possible outliers. It is not clear how this distance is determined; however in

an example presented by Johnson and Albert (1999), the residual distributions

that are considered outliers have a median of either greater than 0.4 or less than

-0.4.
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4.6 MCMC results

MCMC is used to simulate from the posterior distributions of each of the pa-

rameters in () for three different choices of prior distributions: Gamma(l,lO),

Gamma(5,15) and Uniform(O,l). A sample of 10000 iterations was generated

from the MCMC for each model. The Markov Chain for both the logit and pro-

bit models appears to reach the stationary distribution for all three priors within

the first 10000 iterations. A further sample of 10000 iterations was then generated

from the MCMC. A summary of the second sample is shown in this section.

4.6.1 LOGIT MODEL: COMPARING POSTERIOR INFERENCES WITH MLE

Individual Parameters

Table 4.5 shows the mean and the 95% posterior intervals of the model parame-

ters, for the three prior distributions. The posterior means derived from all three

priors are different to the maximum likelihood estimates of each parameter.

Consider the results using the Gamma(1,10) prior. Parameters with very small

maximum likelihood estimates have larger posterior means. An example is the

parameter Concern at level2. The maximum likelihood estimate is 0.0013 but the

posterior mean is 0.0216. However the 95% posterior interval is (0.0008,0.0638)

which includes the maximum likelihood estimate. Parameters with larger maxi-

mum likelihood estimates tend to have smaller posterior means using a Gamma(l,lO)

prior. The parameter with the largest posterior mean is the same as the parame-

ter with the largest maximum likelihood estimate: the attribute Activities at level

4. The maximum likelihood estimate of this parameter is 0.2420 and the poste-

rior mean is 0.1927. The posterior interval is (0.1236,0.2556) which includes the

maximum likelihood estimate.

90



Attribute I Level I Gamma(l,lO)
Prior

T Gamma(5,15) Uniform(O,l)

Concern 2 0.0216(0.0008,0.0638 ) 0.0354 (0.0124,0.0681 ) 0.0200 (0.0006,0.0589 )
3 0.0175(0.0006,0.0558 ) 0.0349(0.0128,0.0644 ) 0.0177 (0.0005 ,0.0547 )
4 0.1049(0.0526,0.1580 ) 0.0633(0.0310,0.0984 ) 0.1008 (0.0440 ,0.1502 ))
5 0.0344(0.0023,0.0816 ) 0.0548(0.0256,0.0882 ) 0.0384 (0.0031 ,0.0894 )

Breath 2 0.0174(0.0006,0.0527 ) 0.0323(0.0115,0.0630 ) 0.0165(0.0006,0.0484 )
3 0.0182(0.0007,0.0560 ) 0.0348(0.0128,0.0641 ) 0.0189 (0.0007 ,0.0572 )
4 0.0903(0.0425,0.1347 ) 0.0598(0.0292,0.0934 ) 0.0920 (0.0445 ,0.1359 )
5 0.0177(0.0004,0.0584 ) 0.0366(0.0148,0.0693 ) 0.0185 (0.0006 ,0.0562 )

Weather 2 0.0081(0.0002,0.028) 0.0216(0.0071,0.0409 ) 0.008(0.0002 ,0.029)
3 0.0274(0.0012,0.0702 ) 0.0352(0.0138,0.0607 ) 0.0262 (0.0008 ,0.0676 )
4 0.0579(0.0087,0.1085 ) 0.0447(0.0190,0.0756 ) 0.0592 (0.0118 ,0.1084 )
5 0.0343 (0.0014,0.0938 ) 0.0445(0.0177,0.0798 ) 0.0353 (0.0018 ,0.0907 )

Sleep 2 0.0149(0.0005,0.0496 ) 0.0277(0.0099,0.0522 ) 0.0147 (0.0005 ,0.0452 )
3 0.0330(0.0026,0.0771 ) 0.0336(0.0127,0.0599 ) 0.0337 (0.0023 ,0.0797 )
4 0.0296(0.0015,0.0765 ) 0.0352(0.0141,0.0649 ) 0.0315 (0.0018 ,0.0790 )
5 0.0287(0.0014,0.0722 ) 0.0354(0.0132,0.0645 ) 0.0280 (0.0012 ,0.0707 )

Activities 2 0.0314 (0.0017,0.0820 ) 0.0436(0.0162,0.0782 ) 0.0303 (0.0013 ,0.0786 )
3 0.0391(0.0020,0.1000 ) 0.0625(0.0273,0.1048 ) 0.0421 (0.0025 ,0.0950 )
4 0.1927 (0.1236,0.2556 ) 0.1169(0.0670,0.1683 ) 0.1919 (0.1210 ,0.2579 )
5 0.0296(0.0011,0.0821 ) 0.0545(0.0224,0.0930 ) 0.0307 (0.0015 ,0.0806 )

Scale Parameter 0.2366(0.2151,0.2626 ) 0.2264(0.2048,0.2488 ) 0.2386 (0.2167 ,0.2625 )

Table 4.5: Mean and 95% posterior intervals for logit model by prior distribution

Health State Utilities

Using the 10000 sample vectors of parameters, 810001, ... , 820000, utilities are

calculated for the 48 health states used in the sample survey. The utilities using

the sample vector of parameters 8m are calculated by

gm(Xjk) = 1 - XJk8m, j = 1, ...24, k = 1,2, m = 10001, ...20000. (4.26)

Figures 4.5, 4.6 and 4.7 present the mean and 95% posterior intervals of the

48 health states using the prior distributions Uniform(O,l), Gamma(l,lO) and

Gamma(5,15) respectively. The mean utilities for each of the 48 health states
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calculated using the logit maximum likelihood estimates are also plotted. The

utilities are plotted in decreasing order of the utility calculated using the maxi-

mum likelihood estimates. When a Uniform(O,l) or Cammat Ll O) prior is used,

the posterior means of each health state are less than the utilities calculated using

the maximum likelihood estimates. However the maximum likelihood estimates

are included in the 95% posterior intervals. Most of the utilities calculated using

the maximum likelihood estimates are not included in the 95% posterior intervals

for the Gamma(5,15) prior.
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48 health states assuming a

Gamma(5,15) prior
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4.6.2 LOGIT MODEL: COMPARING PRIORS

Individual Parameters

Table 4.5 also shows the posterior mean and 95% posterior intervals of the

parameters for each prior distribution. The posterior mean and 95% proba-

bility intervals for most parameters are similar for the both Uniform(O,l) and

Gamma(l,lO) prior. The posterior mean and 95% posterior intervals are signif-

icantly changed using the Gamma(5,15) prior distribution. When the posterior

means in the Gamma(l,lO) and Uniform(O,l) models are small the posterior

means in the Gamma(5,15) model are increased. When the posterior means in

the Gamma(l,lO) and Uniform(O,l) models are larger the posterior means in the

Gamma(5,15) are decreased. These observations are also shown by the posterior

distributions of each parameter which are presented in Appendix B. Posterior

distributions are plotted for each parameter given the three prior distributions.

Using a Uniform(O,l) and Gamma(l,lO) prior distribution produces similar pos-

terior distributions. Most of these posterior distributions have a large probability

of parameter values being close to zero. Using a Gamma(5,15) prior distribution

produces a posterior which does not allow a parameter value close to zero. Pa-

rameters that represent a change from level 3 to level 4, such as parameter 3 and

parameter 7, have posterior distributions further from zero. The posterior distri-

butions of parameter 3 and parameter 7 have a smaller mode for a Gamma(5,15)

prior than when either a Uniform(O,l) or Gamma(l,lO) prior is used.
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Health State Utilities

Figure 4.8 presents the posterior means and 95% posterior intervals for each

of the 48 health states used in the sample survey, given a Uniform(O,l) prior

and a Gamma(l,1O) prior. The utilities are plotted in decreasing order of the

posterior mean from the uniform(O,l) prior. Figures 4.9 and 4.10 compare the

posterior means and 95% posterior intervals from the Gamma(5,15) prior, with

those from the uniform(O,l) and Gamma(1,10) priors. The mean utilities using a

Uniform(O,l) and a Gamma(1,10) prior are very similar. The mean utilities using

a Gamma(5,15) prior are usually smaller than those from the uniform(O,l) and

Gamma(1,10) priors.

Figure 4.11 presents the posterior distributions of the worst health state de-

fined by the AQL-5D classification system, for each of the three priors. The

maximum likelihood estimate of the health state is also presented. Using a

Uniform(O,l) prior the posterior distribution has mean 0.1450 and 95% pos-

terior interval (0.0963,0.1926). Using a Gamma(1,10) prior, the posterior dis-

tribution has mean 0.1504 and 95% posterior interval (0.1019,0.1991). Using a

Gamma(5,15) prior, the posterior distribution has mean 0.0920 and 95% poste-

rior interval (0.0458,0.1379). The posterior distributions are very similar when a

Gamma(1,10) or Uniform(O,l) prior is used. When a Gamma(5,15) prior is used,

the mode is decreased and the distribution is closer to zero.
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Figure 4.11: Posterior Distributions of worst health state

Residuals

Figures 4.12, 4.13 and 4.14, on page 98, present the Bayesian residuals using

the Uniform(O,l) prior, Gamma(1,10) prior and Gamma(5,15) prior respectively.

Using my observation of the example presented in Johnson and Albert (1999)

where the outliers have a median or either greater than 0.4 or less than -0.4, I

have concluded that there are no outliers in the residual plots for the three prior

distributions.
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4.6.3 COMPARING LOGIT AND PROBIT LIKELIHOODS

Figures 4.15, 4.16 and 4.17, on page 100 compare the mean utilities and 95%

posterior intervals calculated from the logit and probit models for the three prior
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distributions: Uniform(O,l), Gamma(l,lO) and Gamma(5,15). The models look

most similar when a Gamma(5,15) prior is used.
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4.7 Comparison with TTO model

Yang et al. (2006) presents an analysis of TTO data collected for health states

defined using the AQL-5D classification system. Each respondent in the study

valued 8 health states including the worst possible health defined by the AQL-5D

classification system. Several models were considered of the form

(4.27)

where Yij is the TTO score for health state i valued by respondent i, x is a vec-

tor of binary dummy variables defining the health state, Z is a vector of personal

characteristics such as sex, age and asthma condition, and r is a vector of inter-

actions between attributes. Yang et al. (2006) determined the most appropriate

model to be represented by the parameter estimates in table 4.6. There are no

demographic or interaction variables considered in the model. Each parameter

estimate represents the incremental decrease in utility when an attribute increases

by one level. This is the same as in the discrete choice models. Some attribute

levels ere combined due to some inconsistent parameter estimates in earlier mod-

els. Comparison with the probit and logit maximum likelihood results shows a

smaller range between the largest and smallest estimates and unlike the discrete

choice models there are no parameter estimates of zero. The largest decrease in

mean utility is a change from level 3 to level 4 for the attribute activities. This

is the same as the logit and probit models. However the decrease is larger in the

logit and probit models. The utility of the worst possible health state defined

by the model in Yang et al. (2006) is -0.0566. Assuming that the health state

death has a utility of 0 this implies the worst health state is worst than death.

However, it is not clear in Yang et al. (2006) how the utility of death is defined.
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Attribute Concern Breath Weather Sleep Activities
Leve12 0.027 0.030 0.0103 0.041 0.011
Leve13 0.046 - 0.028 0.056 0.065
Leve14 0.064 - 0.058 0.073 0.177
Leve15 0.064 0.106 0.113 0.090 -

.Table 4.6: TTO model parameter estimates

4.8 Conclusion

When a Gamma(l,lO) prior distribution is used the mean utilities and posterior

distributions of the parameters are similar to those when a uniform(O,l) prior

is used. When a Gamma(5,15) prior distribution is used, the results change. If

the prior distribution does not favour larger values the posterior distribution is

robust to the prior. Other prior distributions could be investigated. For most

parameters where the value would be expected to be quite small, a prior that

favours smaller values would be appropriate. However, some parameters might

be expected to reduce utility more than other parameters and a prior that favours

larger values might be more appropriate.

Further MCMC analyses were performed where different priors were considered

for the scale parameter, (J, while keeping the priors on the parameter (J con-

stant. In all analyses the posterior distribution of the scale parameter and the

95% posterior interval of the utilities did not change when changing the prior on

the scale parameter.

The utilities calculated using the maximum likelihood estimates tend to be greater

than the posterior means of the utilities for all three priors. This suggests a skewed

distribution. The posterior intervals present an estimate of the uncertainty in the

distribution of utilities. The posterior intervals of the 48 health states, assuming

either a Gamma(l,1O) or a Uniform(O,l) prior, are between approximately 0.1
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and 0.2 for both the logit and probit models. This is presented in figures 4.15

and 4.16. Considering the utilities are between 0 and 1, this is fairly small. The

posterior interval appears to be smaller when using a Gamma(5,15) prior, as pre-

sented in figure 4.17. The uncertainty in the posterior distribution of the utilities

is the same for both logit and probit models.

When preference is given to smaller values in the prior distribution the results

do not change from when all parameter values are equally likely. Results change

when preference is given to larger parameter values in the prior and smaller values

are less likely.

The use of Bayesian inference allows the assessment of uncertainty of each pa-

rameter in the model. For a given health state the uncertainty in the utility can

be derived by combining the posterior distributions of each parameter relevant

to the health state. When investigating the cost-effectiveness analysis of a treat-

ment, a distribution of possible changes in QALY can be derived. As described

in chapter 1, NICE requires the reporting of the probability that the treatment

is cost-effective at the threshold of £20, 000 - £30, 000 per QALY and the prob-

ability that the treatment is not effective. The distribution of possible changes

in QALY and the uncertainty in cost can be combined to produce a distribution

from which the required probabilities can be derived.
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Chapter 5

Comparing Models using Bayes

Factors

5.1 Introduction

In chapter 4, we fitted several Bayesian models to the AQL-5D discrete choice

data. The results showed some differences between the models but did not deter-

mine which model was the most suitable for the data. Here we consider the use

of Bayes factors for model comparison.

The logit and probit models are compared for each of the three prior distributions

used in chapter 4. To understand and interpret the values of these Bayes factors,

the logit and probit models are both compared to a benchmark model. In the

benchmark model the attributes are assumed to be irrelevant to the choices made

in each comparison and the preferred health state in each pair is chosen randomly.

We also investigate a hypothesis that respondents do not consider all five at-

tributes when choosing a preferred health state. Five new models are fitted where

each attribute has been removed from the data set. Bayes factors are calculated
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comparing each of these models with the full model containing all five attributes.

The value of each Bayes factor shows the importance of each attribute on the full

model.

5.2 Definition of Bayes factors

Kass and Raftery (1995) review the use of Bayes factors, which can be used as

a method of model comparison. Kass and Raftery (1995) reference two articles,

Jeffreys (1935) and Jeffreys (1961) which developed the Bayesian approach to

hypothesis testing. Statistical models are introduced to represent the proba-

bility of the data for each of the two hypotheses and Bayes theorem is then

used to calculate the posterior probability that one of the hypotheses is correct.

Kass and Raftery (1995) describe Bayes factors as a way of evaluating evidence

in favour of a null hypothesis.

Let MI and M2 be the two models being compared. Define 01 to be the set

of parameters for model MI and O2 to be the set of parameters for model M2.

The marginal likelihood of the data y given the model Mk, P( y IMk), k = 1,2

is calculated using

(5.1)

where P( 0 kl1vh) is the prior density of the set of parameters, Ok, for model Mk,

P(yIOk, Mk) is the likelihood of the data y given the vector of parameters Ok

and 8k is the set of all possible vectors 0 k. Define P(Md and P(M2) to be the

prior probabilities of model MI and M2, and define P( M, I y) and P( M21y) to be

the posterior probabilities given data y. The ratio of the posterior probabilities
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for model M, and model Jv12 is

x (5.2)

The Bayes factor, B21, is the ratio of the marginal likelihood for model M2 to

the marginal likelihood for model lVII, and is given by

(5.3)

The Bayes factor, B21, is a value which represents the evidence provided by the

data in favour of model Af2 as opposed to model MI. If the Bayes factor is

greater than 1, then the data favour model M2, and if the Bayes factor is less

than 1 the data favour model MI. The value of the Bayes factor determines

the strength of evidence in favour of model M2• Jeffreys (1961) suggested a set

of categories to interpret the value of a Bayes factor, which are also reviewed

by Gelman et al. (2004), Robert (2001) and Kass and Raftery (1995). They are

summarised as follows. If the Bayes factor, B2l, is above 100, there is decisive

evidence against model M«. If B21 is between 10 and 100 there is strong evidence

and if B21 is between 3 and 10 there is substantial evidence against model MI.

Kass and Raftery (1995) suggest that interpretation of Bayes factors may depend

on the context and use Evett (1991) as an example, where it is argued that for

forensic evidence alone to be decisive in a criminal trial the posterior odds, in

favour of guilt against innocence, would be required to be at least 1000.

5.3 Calculation of Bayes factors

Kass and Raftery (1995) and Robert (2001) discuss several methods to calculate

Bayes factors. In this chapter, importance sampling is used to calculate Bayes

factors. Robert (2001) reviewed importance sampling and considers the method

to be well adapted to the computation of predictive distributions such as the
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marginal likelihood in equation (5.1). We now describe the method, following the

description in Robert (2001). A probability p(y) can be calculated using Monte

Carlo integration,

p(y) = J p(yjO)p(O)dO, (5.4)

where p(O) is the density of a random variable 0 and p(yjO) is the conditional

probability of y given O. If a random sample of parameters 01, .... ,0 N is generated

from p( 0), p(y) can be estimated using

(5.5)

It can be observed that equation (5.4) is the expectation w.r.t 0 of a function

p(yIO) where 0 has density p(O).

Equation (5.4) can be estimated using a sample 01, ... , ON even if the sample

has not been generated from p(O). In importance sampling, a sample of param-

eters Ob ... , ON are generated from a density h(O), called the importance density,

and the probability p(y) in equation (5.4) is estimated by

N
~) 1 ~ ( j )p(On))p(y = N ~ p(y On h(On) . (5.6)

The sample 01, ... , ON is a weighted sample where each parameter Oi has weighting

~~::~. It can be observed that equation (5.6) is a valid estimate of equation (5.4)

by writing

J [ p(O)]p(x) = p(yIO) h(O) h(O)dO, (5.7)

i.e, p(y) can be expressed as the expectation of p(yIO) ~i:~,where 0 has density

h(O) .

Importance sampling can be used to estimate the likelihood P( y IMk) in equation
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(5.1). Geweke (1989) states the following assumptions that are required.

1 The product of the prior density, P( (JkjMk), and the likelihood, P( y j (Jk s Mk),

is proportional to a proper probability density function defined on E>

2 {(Ji}~l is a sequence of i.i.d random vectors, the common distribution

having a probability density function h( (Jk)

3 The support of h( (Jk) includes E>

4 P( y jMk) exists and is finite

If a sample of parameter vectors (Jil), ..., (JiN) is generated from the importance

distribution h((Jk), equation (5.1) is estimated by

(5.8)

The choice of distribution for h( (Jk) determines the equation for the estimator

P( y jMk). If h( (Jk) is equal to the prior distribution, h( (Jk) = P( (Jin) jMk), then

(5.9)

Robert (2001) states that the estimator in equation (5.9) is often inefficient if

the data is informative because most simulated values of (Jin) will be outside the

modal region of the likelihood. A more efficient method is to let h( (Jk) be equal

to the posterior distribution, h( (Jk) = P( (Jkj y, Mk)' Then

A ~ ( (n) P( (Jin)jMk) ) (5 10)P(yj}vh) = Z:: P(yj(Jk ,Mk) (n) ,). .
n=l P((Jk jy, Mk
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However, since

(5.11)

we cannot evaluate P( Okn) Iy, Mk), without already knowing the value of P( y IMk),

the probability we are trying to estimate. Using the fact that the integral of the

prior density over the parameter space is J P(OkIMk)d(h = 1, to calculate the

marginal likelihood in equation (5.1), we first re-write it as

(5.12)

We now consider importance sampling to estimate both numerator and denomi-

nator simultaneously. If a sample of vectors Okl), ... , OkN) is generated from the

importance distribution h( 0 k), equation (5.12) is estimated by

(5.13)

When the importance distribution used to generate each sample is the posterior

distribution, P(Okn)IMk), we have
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n=l (5.15)

n~,(P(YI9~1,Mk) )

N

Suppose N vectors of parameters are sampled from their respective posterior

distributions for both model M, and model M2• Using equations (5.3) and

(5.15), the Bayes factor comparing model M; and model M2 is calculated using

N

(5.16)

N

We can obtain the parameter samples using MCMC, as described in section 4.5.2.
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5.3.1 BENCHMARK MODEL

Bayes factors can be used to compare the probit and logit models. If M1 is the

logit model and M2 is the probit model, the value of the Bayes factor in equation

(5.16) represents the level of evidence in favour of the probit model. To under-

stand the value of the Bayes factor and appreciate the strength of the evidence it

represents, it is useful to define a benchmark model, which we consider to be the

simplest possible model for the data. Bayes factors can then be calculated com-

paring the probit and logit models with the benchmark model. The improvement

of the probit model over the logit model, represented by a Bayes factor value can

be compared with the improvement of the logit model and the probit model over

the benchmark model.

The benchmark model assumes that the level of each attribute is irrelevant to

the choice made in each health state comparison. In pairwise choice data, an

individual chooses the preferred health state from a set B = {x j1, x j2}. Each

individual is making a decision based on the preferred combination of attribute

levels that define each health state. If an individual has no preference between

each level of the attributes then the two health states in the comparison have an

equal chance of being chosen. The choice can then be considered random. Define

P( x j1) to be the probability that an individual prefers health state x j1 to health

state x j2. If model M1 assumes that choices are random then PB( x j1) = 0.5

for all pairwise comparisons and the marginal likelihood is calculated by

J

P(xIM1) = II(0.5tj•
j=l

(5.17)
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where N, is the number of individuals comparing health state x j1 and health

state x iz . If model M1 is the benchmark model, the Bayes factor, B21, is

N

(5.18)

5.4 Initial Results

MCMC simulations are run for the logit and probit models using the three

prior distributions: Gamma(1,10), Gamma(5,15) and Uniform(O,l). Section 5.4.1

presents Bayes factors comparing the logit model with the benchmark model, sec-

tion 5.4.2 presents Bayes factors comparing the probit model with the benchmark

model and section 5.4.3 presents Bayes factors comparing the logit and probit

models. When using notation, let lvh represent the logit model, M» represent

the probit model and MB represent the benchmark model. Define P(Nllvh),

P(NIMp) and P(N!MB) to be the probability of the data, N, given each of the

respective models. A sample of 210000 iterations are generated using MCMC for

each model. The first 10000 are discarded as burn-in and the remaining 200000

are summarised in this section.

5.4.1 COMPARING THE LOGIT MODEL WITH THE BENCHMARK MODEL

This section presents the Bayes factors supporting evidence in favour of the logit

model against the benchmark model for each of the three prior distributions:

Gamma(l,lO), Gamma(5,15) and Uniform(O,l). Bayes Factors are calculated

using equation (5.18) where model M2 is the logit model with each of the three

prior distributions. The Bayes factors are presented in table 5.1.
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Prior Distribution Number of Iterations

50000 100000 150000 200000

Gamma(1,10) 1.4867 x 10109 1.2000 X 10109 8.6429 X 10108 8.4935 X 10108

Gamma(5,15) 1.5124 x 10103 5.4430 X 10102 7.8604 X 10102 7.8810 X 10102

Uniform(O,l) 5.7160 x 10108 5.9451 X 10108 5.2381 X 10108 4.7956 X 10108

Table 5.1: P(NIMd/ P(NIMB)

Using the guidelines reviewed in section 5.2 the Bayes factors show decisive evi-

dence in favour of the logit model. Considering the size of the Bayes factors for

all three priors the three logit models are significantly better than the benchmark

model. The model using the Gamma(5,15) is the least favoured out of the three

prior distributions but this is only by a small amount relative to the size of the

Bayes factors. The Bayes factors remain fairly constant over iterations.

5.4.2 COMPARING THE PROBIT MODEL WITH THE BENCHMARK MODEL

This section presents the Bayes factors supporting evidence in favour of the pro-

bit model against the benchmark model for each of the three prior distributions:

Gamma(1,10), Gamma(5,15) and Uniform(O,l). Bayes factors are calculated us-

ing equation (5.18) where model M2 is the probit model with each of the three

prior distributions. The Bayes factors are presented in table 5.2.

Prior Distribution Number of Iterations

50000 100000 150000 200000

Gamma(l,lO) 1.1550 x 10117 9.3886 X 10116 1.1806 X 1Oll7 9.8616 X 10116

Gamma(5,15) 1.4828 x 1Oll3 8.9092 X 101l2 1.0095 X 101l2 1.1757 X 10112

Uniform(O,l) 6.1936 x 10116 9.3633 X 10116 1.1514 X 1Oll7 1.0273 X 10117

Table 5.2: P(NIMp)/ P(NIMB)
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The Bayes factors show decisive evidence in favour of the probit model. As with

the Bayes factors in section 5.4.1 for the logit models, the size of the Bayes factors

for all three priors suggests the three probit models are significantly better than

the benchmark model. Again, as with the logit model, the probit model assuming

a Gamma(5,15) is the least favoured out of the three prior distributions but this

is only by a small amount relative to the size of the Bayes factors. The Bayes

factors remain fairly constant over iterations.

5.4.3 COMPARING THE LOG IT MODEL WITH THE PROBIT MODEL

This section presents Bayes factors to evaluate evidence in favour of the probit

Model over the logit model. The Bayes factors using three prior distributions:

Gamma(l,lO), Gamma(5,15) and Uniform(O,l), are presented in table 5.3. Bayes

factors are calculated using equation (5.16) where M, is the logit model and

model M2 is the probit model.

Prior Distribution Number of Iterations

50000 100000 150000 200000

Gamma(l,lO) 7.7688 x 107 7.8241 X 107 1.3660 X 108 1.1611 X 108

Gamma(5,15) 9.8040 x 109 1.6368 X 1010 1.2843 X 109 1.4918 X 109

Uniform(O,l) 1.0836 x 108 1.5749 X 108 2.1982 X 108 2.1422 X 108

Table 5.3: P(NIMp)/P(NIMB)

The Bayes factors presented in table 5.3 show the probit model is a better fit

for the data than the logit model. Using the rules defined in Section 5.2 there is

decisive evidence in favour of the probit model. The Bayes factors are a lot larger

than the threshold value for decisive evidence that it suggests that the probit

model is a much better fitting model for the data than the logit model.
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5.4.4 DISCUSSION

Bayes factors showing evidence in favour of both the logit and probit models

when compared with the benchmark model are very high which suggests that

the respondents 'answering the DeE questions are not selected health states ran-

domly and therefore either a logit model or a probit model is a more appropriate

representation of the AQL-5D health state utilities. The Bayes factors in favour

of the probit model against the logit model are fairly large. Relative to the values

of the Bayes factors comparing the probit and logit models with the benchmark

model, they are of a reasonable size. However, it is still surprising that there

is a difference between the two models. The assumed error distributions, the

normal distribution and the type 1 extreme value distribution are very similar.

The results in chapter 4 also show no difference between the two models. Fig-

ures 4.14,4.15 and 4.16 show the mean and posterior intervals for the probit and

logit models using each of the three prior distributions. These graphs show little

difference between the models.

To understand the differences between the models, values of the likelihoods were

calculated for the logit and probit models using both the maximum likelihood es-

timates and samples of parameters generated using MCMC. The logit and probit

likelihood equations defined in section 4.3 are then separated into two subsets.

The likelihoods are now written in the form

(5.19)

where PI (N I() , 0'2, M) is the likelihood for pairwise comparisons that do not

include the health state death and P2 (N I(), 0'2, M) is the likelihood for pairwise

comparisons that include the health state death. Values of PI and P2 are cal-

culated for the logit and probit models using maximum likelihood estimates and
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samples of parameter values generated using MCMC. When comparing the val-

ues of Pl for the logit and probit models there was little difference. However the

value of the probit model for P2 was significantly larger than that for the logit.

After further investigation it was found that this larger difference was due to data

collected for the comparison between death and the health state (5,2,1,1,1).

For comparisons including the health state death, the probit model is still sym-

metrical but the logit model has a distribution which is has a positive skew and

the probability of preferring a health state x il to death is given by

(5.20)

For most of the health states compared with death this skewness does not effect

the likelihood values. However, the unusual choice of the health state (5,2,1,1,1)

to be used as a comparison with death may have an effect on the difference

between the likelihoods. To understand the reason for this difference between the

probit and logit likelihoods it is useful to draw the probability distributions for

the health state (5,2,1,1,1) using both the logit and probit models.
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Figure 5.1: Probability distributions of health state (5,2,1,1,1)

Figure 5.1 presents the distributions of the utility of health state (5,2,1,1,1)

using the logit and probit models. In the AQL-5D discrete choice experiment

questionnaire one comparison is between death and the health state (5,2,1,1,1)

and out of 42 respondents evaluating this comparison one prefers death. The

probability an individual prefers death to health state (5,2,1,1,1) is equal to

the probability that the utility of health state (5,2,1,1,1) is less than the utility

of death. It can be observed from figure 5.1 that the logit model has a positive

skew and the probit model is symmetrical. The utility that the individual who

preferred death has for the other health state in the comparison, (5,2,1,1,1),

will be in the tail of the distributions. An example of such a utility is labelled

as Utility A in the graph in figure 5.1. The density to the left of this line is

significantly larger for the probit model than the logit model, which accounts for

the difference in likelihood between the logit and probit and therefore the unex-

pectedly high Bayes factor.

To investigate the Bayes factor further, probabilities for each of the cornpar-
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isons in the data set were calculated using a sample of parameter values. The

probability of a respondent preferring health state (5,2,1,1,1) to death is sig-

nificantly larger when using the probit model compared to the logit model. For

all other comparisons the probability is approximately equal. This difference in

probability for one comparison between the logit and probit models explains the

large Bayes factor in favour of the probit model. To investigate this further,

the data set could be changed to either exclude the comparison between death

and the health state (5,2,1,1,1) or change the number of respondents preferring

death to O. The Bayes factors can then be calculated again and compared to the

initial values. An alternative is to assume a negative error for the utility equation

so utility, UiI, of health state x il is then defined as

(5.21)

This would not change the likelihood in the probit model. The logit likelihood

will change for comparisons including death but will remain unchanged for other

comparisons. The probability distribution for the comparisons involving death

for the extreme value error would be skewed in the opposite direction which could

affect the value of the Bayes factors. An investigation into the value of the Bayes

factors when changes are made to the data set and negative errors are assumed

is presented in Section 5.5.

5.5 Re-analysis of AQL-5D data

This section presents Bayes factor results when some changes are made to the

probit and logit models. Bayes factors are again calculated comparing the logit

and probit models with the benchmark model and comparing the probit with the

logit model for each of the three prior distribution: Gamma(l,lO), Gamma(5,15)

and Uniform(O,l). For each new set of models samples of 210000 iterations are
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generated using MCMC. The first 10000 iterations are discarded as burn-in and

the remaining 200000 are used to calculate Bayes factors. Section 5.5.1 presents

Bayes factors using a data set with the comparisons between death and health

state (5,2,1,1,1) removed, section 5.5.2 presents Bayes factors when the number

of respondents choosing death in the comparison between health state (5,2,1,1,1)

is changed from 1 to 0 and section 5.5.3 presents Bayes factors when a negative

error is assumed.

5.5.1 BAYES FACTORS WHEN ONE DEATH COMPARISON REMOVED FROM

DATA SET

This section presents the Bayes factor results when the comparison between death

and health state (5,2,1,1,1) is removed from the initial AQL-5D discrete choice

data set.

Comparing the logit model with the benchmark model

Bayes factors supporting evidence in favour of the logit model against the bench-

mark model for each of the three prior distributions: Gamma(1,10), Gamma(5,15)

and Uniform(O,l) are presented in table 5.4.

Prior Distribution Number of Iterations

50000 100000 150000 200000

Gamma(l,lO) 1.6442 x 10108 1.4832 X 10108 2.0279 X 10108 2.6327 X 10108

Gamma(5,15) 1.6643 x 10103 2.5608 X 10103 3.3599 X 10103, 4.3028 X 10103

Uniform(O,l) 1.8745 x 10109 1.1146 X 10109 1.0764 X 10109 8.3417 X 10108

Table 5.4: P(NIMd/ P(NIMB)
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The Bayes factors show decisive evidence in favour of the logit model over the

random model. The Bayes factor values are very similar to those calculated using

the initial data shown in table 5.1.

Comparing the pro bit model with the benchmark model

Bayes factors supporting evidence in favour of the probit model against the bench-

mark model for each of the three prior distributions: Gamma(l,lO), Gamma(5,15)

and Uniform(O,l) are presented in table 5.5.

Prior Distribution Number of Iterations

50000 100000 150000 200000

Gamma(1,10) 1.3787 x 10109 1.3002 X 10109 1.7837 X 10108 4.5778 X 10107

Gamma(5,15) 3.8093 x 10103 6.0118 X 10103 8.6671 X 10103 9.1358 X 10103

Uniform(O,l) 6.2877 x 10108 7.1776 X 10108 4.5398 X 10108 2.5119 X 10108

Table 5.5: P(NIMp)/P(NIMB)

The Bayes factors show decisive evidence in favour of the probit model over the

benchmark model. The Bayes factor values are very different to those calculated

using the initial data shown in table 5.2. Using a Gamma(1,10) prior, the values

have reduced by a factor of 108, the model with a Gamma(5,15) prior is reduced

by 1010 and the model with a Uniform(O,l) prior is reduced by a factor of 10
8

Comparing the probit model with the logit model

Bayes factors to evaluate evidence in favour of the probit model over the logit

model using three prior distributions: Gamma(l,lO), Gamma(5,15) and Uni-

form(O,l), are presented in table 5.6. Bayes factors are calculated using equation
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5.16 where M, is the logit model and model M2 is the probit model.

Prior Distribution Number of Iterations

50000 100000 150000 200000

Gamma(1,10) 8.3852 8.7658 0.8796 0.1739

Gamma(5,15) 2.2889 2.3476 2.5796 2.1232

Uniform(O,l) 0.3354 0.6439 0.4218 3.0112

Table 5.6: P(NjMp)j P(NjMd

The Bayes factors presented in table 5.6 show that the probit model is similar

to the logit model for the three prior distributions and there is no evidence to

suggest that the probit model is a better fit to the data than the logit model.

When a Gamma(1,10) prior is used, for the first 100000 iterations of the MCMC

the Bayes factor shows a preference for the probit model but for the second

100000 iterations there is a preference for the logit model. Using a Gamma(5,15)

prior the Bayes factors remain fairly constant over the iterations, showing a slight

preference for the probit model. A uniform prior shows a slight preference for the

logit model until the final set of 50000 iterations which changes the preference to

the probit model. These results show no substantial difference between the logit

and probit models when using the data set where the comparison between death

and the health state (5,2,1,1,1) is removed.

5.5.2 BAYES FACTORS WHEN ONE DEATH COMPARISON ALTERED·

In the original data set out of the 42 people that compared the health states

(5,2,1,1,1) and death, one preferred death and 41 preferred health state (5,2,1,1,1).

This section presents the results when the data set is changed to 0 respondents

preferring death to health state (5,2,1,1,1).
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Comparing the logit model with the benchmark model

Bayes factors supporting evidence in favour of the logit model against the bench-

mark model for each of the three prior distributions: Gamma(l,lO), Gamma(5,15)

and Uniform(O,l) are presented in table 5.7.

Prior Distribution Number of Iterations

50000 100000 150000 200000

Gamma(1,10) 4.3728 x 10121 6.0722 X 10121 6.3994 X 10121 3.8794 X 10121

Gamma(5,15) 4.8910 x 10116 6.0928 X 10116 6.7113 X 10116 8.0730 X 10116

Uniform(O,l) 7.8064 x 10121 5.0632 X 10120 6.4374 x 10120 8.2416 X 10120

Table 5.7: P(NjMd/P(NjMB)

The Bayes factors show decisive evidence in favour of the logit model over the

benchmark model. The Bayes factor values are larger than those calculated using

the initial data in table 5.1 and for those where the comparison between death

and health state (5, 2, 1, 1, 1) is removed, in table 5.4.

Comparing the probit model with the benchmark model

Bayes factors supporting evidence in favour of the probit model against the bench-

mark model for each of the three prior distributions: Gamma(l,lO), Gamma(5,15)

and Uniform(O,l) are presented in table 5.8.
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Prior Distribution Number of Iterations

50000 100000 150000 200000

Gamma(1,1O) 8.2386 x 10121 4.3574 x 10121 3.5328 X 10121 3.7907 X 10121

Gamma(5,15) 2.3595 x 10116 4.0827 X 10116 5.7959 X 10116 7.2835 X 10116

Uniform(0,1) 2.1493 x 10121 3.1621 X 10121 2.7776 X 10121 2.0021 X 10121

Table 5.8: P(NIMp)j P(NIMB)

The Bayes factors show decisive evidence in favour of the probit model over the

random model. The Bayes factor values are similar to those comparing the logit

model and the benchmark model in this section, presented in table 5.7. The

Bayes factors in 5.8 are larger than those calculated using both the initial data

in table 5.2 and for those where the comparison between death and health state

(5,2,1,1,1) is removed, in table 5.4. The largest difference is between the table

5.8 and table 5.5.

Comparing the probit model with the logit model

Bayes factors to evaluate evidence in favour of the probit model over the logit

model using the three prior distributions: Gamma(1,1O), Gamma(5,15) and Uni-

form(0,1), are presented in table 5.9. Bayes factors are calculated using equation

(5.16) where M, is the logit model and model M2 is the probit model.
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Prior Distribution Number of Iterations

50000 100000 150000 200000

Gamma(l,lO) 1.8840 0.7176 0.5521 0.9771

Gamma(5,15) 0.4824 0.6701 0.8636 0.9022

Uniform(O,l) 0.2753 6.2453 4.3149 2.4293

Table 5.9: P(NjMp)/ P(NjML)

As with the Bayes factors in table 5.6, table 5.9 show there is no evidence of a

difference between the logit and probit models for any of the three priors used.

5.5.3 BAYES FACTORS AFTER ASSUMING NEGATIVE ERROR

This section presents the Bayes factor results when the error term in the utility

model is assumed to be negative. The reasons for considering this approach are

explained in the discussion in section 5.4.4. The utility, Uij, of health state Xij

is defined to be

(5.22)

Comparing the logit model with the benchmark model

Bayes factors supporting evidence in favour of the logit model against the bench-

mark model for each of the three prior distributions: Gamma(l,lO), Gamma(5,15)

and Uniform(O,l) are presented in table 5.10.
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Prior Distribution Number of Iterations

50000 100000 150000 200000

Gamma(1,10) 3.1992 x 10119 3.6891 X 10119 4.5210 X 10119 5.8477 X 10119

Gamma(5,15) 3.1652 x 10115 5.5059 X 10115 7.3905 X 10115 8.1985 X 10115

Uniform(O,l) l. 7520 X 10120 l.6864 X 10120 l.5467 X 10120 l.9730 X 10119

Table 5.10: P(NIMd/ P(NIMB)

The Bayes factors show decisive evidence in favour of the logit model over the

random model for all three prior distributions. The Bayes factor values are larger

than those calculated using the initial data in table 5.1 and for those where the

comparison between death and health state (5,2,1,1,1) is removed, in table 5.4.

However, they are a little smaller than those calculated in table 5.7, where one

comparison is altered.

Comparing the probit model with the benchmark model

The normal distribution is symmetric and therefore when a negative error is

assumed the likelihood for the probit model will be identical to when a positive

error is assumed. The Bayes factors will be the same as table 5.2 in section 5.4.

Comparing the probit model with the logit model

Bayes factors to evaluate evidence in favour of the probit model over the logit

model using the three prior distributions: Gamma(1,10), Gamma(5,15) and Uni-

form(0,1), are presented in table 5.11. Bayes factors are calculated using equation

5.16 where AIl is the logit model and model M2 is the probit model.
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Prior Distribution Number of Iterations

50000 100000 150000 200000

Gamma(l,lO) 0.0123 0.0047 0.0021 0.0020

Gamma(5,15) 0.0012 0.0003 0.0003 0.0004

Uniform(O,l) 0.0019 0.0003 0.0005 0.0041

Table 5.11: P(N/Mp)jP(N/Md

The Bayes factors in 5.11 show a preference for the logit model over the probit

model for all three prior distributions. This is the opposite to the results using

the initial data in table 5.3. However the Bayes factors in table 5.3 show more

evidence in favour of the probit model than the Bayes factors in table 5.11 do in

favour of the logit model.

'"

, ',

0.6 0.8 1.0 1.2 1.4

Figure 5.2: Probability distributions of health state (5,2,1,1,1)

Figure 5.2 presents the distributions of the health state (5,2,1,1,1) using both

the logit and probit models and assuming a negative error. As with figure 5.1,
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utility A represents the utility the individual who prefers death has for health

state (5,2,1,1,1). In figure 5.2, the density to the left of utility A is greater for

the logit than the probit model although the difference does not appear to be as

great as the difference in figure 5.1.

5.6 Bayes Factors comparing models with reduced models

In section 5.4 Bayes factors are calculated using the original data set where each

model has variables related to each of the five attributes in the classification

system. This section considers five reduced models for the original data set,

where each model has the variables for one attribute removed. In the full model

the utility individual i has for health state Xij is given by

(5.23)

where 8 is a vector of 21 unknown parameters, 8 = (01, O2, .... , (21). Each of the

first 20 parameters represent the decrease in utility associated with the increase

of an attribute by one level. The parameter 021 represents the decrease in utility

from perfect health to the health state death. There are four parameters asso-

ciated with each attribute. For example, parameters 01, O2, 03, 04 are associated

with incrementally increasing the level of the attribute concern about asthma.

The model where the attribute concern about asthma is removed is defined as

in equation (5.23) where Oi = 0 Vi = 1, ... ,4. Similar models are created when

removing each of the other four attributes.

Bayes factors are then calculated to compare each of the reduced models with

the full model in section 5.4. The reduced models are fitted for the logit model

using both the Gamma(1,10) and the Uniform(O,l) prior distributions. This ap-

proach can be used to test for individual attribute effects in the full model and
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each Bayes factor value represents the importance of a particular attribute to the

model.

5.6.1 GAMMA(1,10) PRIOR AND LOGIT LIKELIHOOD

Table 5.12 shows the Bayes factors comparing the full model to each of the reduced

models for the logit likelihood and Gamma(1,10) prior distribution. Bayes factors

are calculated using equation 5.16 where M1 is the reduced model and model M2

is the full model.

Attribute Removed Number of Iterations

50000 100000 150000 200000

Concern 2.0595 x 107 1.0674 X 108 1.3038 X 108 1.3698 X 108

Breath 1.2171 x 109 4.5624 X 1010 5.0117 X 1010 4.6769 X 1010

Weather 8.2599 x 108 7.8981 X 108 7.5869 X 108 7.0386 X 108

Sleep 7.7900 x 105 1.2512 X 106 1.7995 X 106 2.6108 X 106

Activities 3.6834 x 1037 7.6792 X 1037 1.4863 X 1038 1.6600 X 1038

Table 5.12: Bayes Factors comparing logit and Reduced logit model using

gamma(1,10) prior

The Bayes factors show a preference for the full model over all the reduced mod-

els. The size of the Bayes factors show substantial evidence in favour of the full

model. The largest Bayes factor values are calculated when comparing the full

model to the model with the attribute activity limitations removed. This shows

the greatest change in the model is when this attribute is removed and results

in the largest effect on the utilities for the health states in the AQL-5D classifi-

cation system. The Bayes factors when removing the other attributes are fairly

similar in comparison and suggests these all have a similar effect on the full util-

ity model. The Bayes factors remain fairly constant over the number of iterations.
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The effect of each attribute is also shown by the parameter estimates for the

logit model in chapter 4. The largest parameter estimate is associated with a

change from level 3 to level 4 for the attribute activity limitations. The sum of

the four parameters associated with an attribute has the largest value for the

attribute activity limitations. The results agree with the Bayes factors, showing

that the attribute activity limitations has the most value in the utility model.

5.6.2 UNIFORM(O,l) PRIOR ANDLOGITLIKELIHOOD

Table 5.13 shows the Bayes factors comparing the full model to each of the reduced

models for the logit likelihood and Uniform(O,l) prior distribution. Bayes factors

are calculated using equation 5.16 where M, is the reduced model and model M2

is the full model.

Attribute Removed Number of Iterations

50000 100000 150000 200000

Concern 1.5780 x 108 7.5206 X 107 8.2646 X 107 1.4373 X 108

Breath 1.6446 x 1010 1.5675 X 1010 2.1299 X 1010 2.8052 X 1010

Weather 3.1849 x 108 1.6085 X 108 2.7547 X 108 3.1942 X 108

Sleep 3.2608 x 108 9.2856 X 107 7.5922 X 107 7.1068 X 107

Activities 9.4654 x 1038 6.1237 X 1039 5.8273 X 1039 3.0656 X 1040

Table 5.13: Bayes Factors comparing logit and Reduced logit model with Uni-

form(O,l) prior

The results in table 5.13 show a similar pattern to the Bayes factors for the

Gamma(1,10) prior distribution in table 5.12. The largest Bayes factors are when

the full model is compared to the model with the attribute activity limitations

removed. All other Bayes factors are similar in comparison. The Bayes factors
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remain fairly constant over the number of iterations and are slightly larger than

those for the Gamma(1,1O) prior, but not significantly.

5.7 Conclusion

The Bayes factors show that both the logit model and probit model are suitable

for the AQL-5D discrete choice data when compared with the benchmark model.

The inclusion of an unusual observation in the comparison between death and the

health state (5,2,1,1,1) resulted in an unexpected large Bayes factor in favour

of the probit model when compared with the logit model. When the observation

is removed the Bayes factors were as expected, showing no difference between

the two models. This problem showed that the evidence a single Bayes factor

presents should only be considered when used in comparison with other Bayes

factors.

Each attribute in the AQL-5D classification system helps explain the data and is

important in defining utilities. The attribute activity limitations has been shown

to have the greatest impact on the utility.
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Chapter 6

Random effects Model

6.1 Introduction

In this chapter we consider including a random effect in the logit model for

defining utility of AQL-5D health states. A review of different random effects

models is undertaken, followed by a definition of a random effects logit model

and how this relates to the mixed logit model. Results are presented using both

maximum likelihood estimation and Bayesian methods. Several starting values

are used in both methods and an investigation into differences in the results is

undertaken.

6.2 Motivation of Random effects model

In chapters 4 and 5 the utility individual i has for health state Xij is defined as

(6.1)

where g(Xij) is a function of Xij with unknown parameters and represents the

population mean utility. The error, Cij, represents the individual's variation in
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preference from the population mean utility. Each error is assumed to be inde-

pendently and identically distributed.

The assumption of independence is questionable. Consider two similar health

states, x ia and x ib , that are defined using the AQL-5D classification system.

Suppose x ia describes the health state where concern about asthma is experi-

enced some of the time, shortness of breath as a result of asthma is experienced

some of the time, asthma symptoms as a result of pollution are experienced some

of the time, asthma interferes with sleep some of the time and there is moderate

limitation in every activity done. In numerical form this is written as (3,3,3,3,3).

Suppose health state Xib is the same as Xia for the first four attributes but for

the fifth there is extreme limitations in every activity done. In numerical form

this is written (3,3,3,3,4). If the utility individual i has for health state x ia is

less than the population mean utility for health state x ia s then we might expect

that the utility individual i has for health state x ib is also less than the popu-

lation mean utility. Consequently, we would judge the errors associated with the

two health states, x ia and x ib : to be correlated, and regard the assumption of

independent and identically distributed errors to be not valid.

Correlation can be accounted for in the model by including a random effect.

In this chapter two random effects models are reviewed, the additive model and

the multiplicative model. The logit model is fitted to the AQL-5D data set de-

scribed in chapter 4, where the utility is defined using a multiplicative random

effect. The model is then fitted using both maximum likelihood and Bayesian

inference.
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6.3 Types of random effects models

A random effect can be additive or multiplicative. If an additive random effect

is considered, the utility in equation (6.1) is now written as

Uij = g(Xij) + CtiI{xij f= death or perfect health} + Eij, j = 1, ....J, (6.2)

where Cti is the random effect for individual i, and I{x ij f= death or perfect health} =

o if x ij = death or perfect health and 1 otherwise. The random effect is fixed

for each individual i and represents the mean deviation of individual i's util-

ities from the population mean utilities. The error, Eij, represents additional

departures from the mean utility and these can now be considered to be inde-

pendent and identically distributed. If the health state Xij is perfect health

then Uij = l. Therefore g(Xij) = 1 and Eij = O. If the health state Xij

is death then Uij = O. Therefore g( x ij) = 0 and Eij = O. The condition

I{x ij f= death or perfect health} ensures that the random effects are not in-

eluded for the utility of either death or perfect health. Figure 6.1 shows a graphi-

cal representation of an additive random effects model. Line A presents the mean

of 48 health states plotted in decreasing order. Line B presents the utilities of

an individual with random effects Cti = -0.1. The error, Eij, represents the

additional departures of individual i's utilities from line B.
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Figure 6.1: Ordered utility of 48

health states using an additive

random effects model where line

Figure 6.2: Ordered utility of 48

health states using a multiplica-

tive random effects model where

A is the mean utility and line B

is the utility of an individual with

random effect a = -0.1

line A is the mean utility and line

B is the utility of an individual

with random effect a = 1.3

The variability in respondents' utilities for a health state close to death might be

expected to be greater than the variability in respondent's utilities for a health

state closer to perfect health. A health state utility cannot be greater than 1,

which decreases the variability of the utility of a health state close to perfect

health. The utility of death is O. A health state can have a utility of less than

0, so the utility of any health state close to death has greater variability than

the utility of a health state close to perfect health. It might be considered un-

likely that an individual's utility for a health state similar to perfect health is

significantly less than 1. A health state close to death would not be expected to

have a utility close to 0 for every individual. One individual might consider all

the health states in a classification system significantly better than death, and

136



therefore every health state has a utility close to 1. Another individual might

consider some health states to be worse than death. An additive random effect

assumes that the variability in respondents utilities is the same for each health

state, which might not be considered a reasonable assumption for health state

utilities. Therefore an additive random effect is not appropriate and another type

of random effect should be considered.

An example of a random effect that allows different levels of variation is a mul-

tiplicative random effect. Let (Xi be the multiplicative random effect associated

with individual i. Define

d
ij
= {o if health state Xij is death or perfect health, (6.3)

1 otherwise.

A mUltiplicative random effects model, as defined in Kharroubi et al. (2005), is

(6.4)

If (Xi < 1, individual i's utility is greater than the population mean utility. If

(Xi > 1, individual i 's utility is less than the population mean utility. Respondents

with the largest values of (Xi are the most likely to value a health state as worse

than death. The error e.. represents additional departures from the mean utility
, !J' .

for individual i. An example of a multiplicative random effect is presented in

Figure 6.2. Line A represents the population mean utilities of 48 health states

in decreasing order. Line B represents the utilities for individual i where the

random effect is (Xi = 1.3. The health states in line B that are close to perfect

health are very similar to the population mean. As the health states get closer

to the health state death, the difference between the population mean utility and

individual i's utility increases.
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6.3.1 RELATIONSHIP OF MULTIPLICATIVE RANDOM EFFECTS MODEL WITH

MIXED LOG IT MODEL

Suppose a multiplicative random effects is assumed and the utility, Uij, of health

state x ij is defined as

(6.5)

where ai is the random effect for individual i. As defined in equation (3.53), the

utility using a mixed logit model is written as

(6.6)

where (Ji is the vector of parameters for individual i. Equation (6.5) can be

written as equation (6.6) by letting (Ji = ai(J. However, equation (6.6) can only

be written as equation (6.5) if values of ai and (J are found where (Ji = ai(J.

6.4 Logit Model

If the errors in equation 6.4 are assumed to have a type 1 extreme value distri-

bution then the probability associated with choosing a health state is given by

the logit model. As described in chapter 4, each respondent in the AQLQ study

assesses 8 pairwise comparisons. Let B, = {XijI, Xij2} be the set containing the

/h pair of health states to be compared by individual i. Define

{
1 if individual i prefers

nij = 0 if individual i prefers
to Xij2

to Xiji
(6.7)

Some sets will include the health state death. For these sets it is assumed that

Xij2 is the health state death. Define M = {mij, i = 1, ...I,j = 1, ...Jd with

mij = {1 if Xij2 is the health state death
o if Xij2 is not the health state death

(6.8)
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and N = {n··1) , i = 1... I, J 1 ... Ji} . The likelihood function for the

individuals' choices is

I s,
P(NIO,a2

, M) = II II
i=l j=l

x [1 _ exp ( _ exp (_h...:.._(X_:iJ'--'.d'--'-_a_O._5_72_2_a)) ] nij x mij

(6.9)

where h(Xijk) = 1 - a;nii(1- g(Xijk)), k = 1,2, and g(Xijk) is assumed to be

the linear model described in chapter 4 where g(Xijk) = 1- X?;kO.

6.5 Maximum Likelihood Results

This section presents values for 0, (J and summary statistics of the elements of

Q estimated using maximum likelihood. The results are derived using numerical

methods, implemented using the nlm command in R, which minimises a function

using a Newton-type algorithm. The results after a maximum likelihood estima-
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tion can be influenced by the length of time the maximisation algorithm is run

and also the starting values. Starting values are initial guess of the parameter

values but if the starting values are too far from the true parameter values then

the derived maximum could be a local maximum instead of a global maximum.

It is therefore important to run the maximum likelihood algorithm using several

different starting values.

Maximum likelihood values are derived for the parameters (J, a and a us-

ing several different sets of starting values. The results are presented in table

?? of the appendix, by starting values for (J and a. The maximum likelihood

are very variable and depend on the starting values used. For all starting values,

the largest parameter estimate is for the attribute sleep at level 5. However the

parameter estimate ranges between 0.0054 and 2.9750. The starting value for

a appears to have the greatest effect on the results. Small starting values for a

result in a small estimated mean and variance of a and larger estimates of (J

and a. Larger starting values for ex result in a larger mean and variance of the

random effect estimates and smaller estimates of (J and a.

6.6 Bayesian Inference

We now consider Bayesian inference for the model in equation (6.3). Prior dis-

tributions are required for (J, the scale parameter a and the vector a of 168

random effects of the 168 individuals in the study.

6.6.1 PRIOR DISTRIBUTIONS

Each parameter Oi, i = 1, ...20 represents the decrease in utility associated with

the level of an attribute. As no health state can have a utility greater than 1,

a convenient prior distribution for each parameter 0i is the gamma distribution
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with suitable shape and rate values. The same prior distribution is also consid-

ered for the scale parameter, as explained in chapter 4.

The random effects are always positive and therefore the prior distribution as-

sumed must ensure OOi ~ O. For computational convenience a lognormal prior

distribution is therefore assumed for each random effect, log(ai) '" N(J-l, T). Ini-

tially, the parameter J-l is assumed to be J-l = 0. Therefore the random effects have

a median of 1. The variance, T, is unknown and therefore a prior distribution is

assumed. A computationally convenient prior is the inverse gamma distribution,

which has pdf

f( ) ba -a-1 (-b)
T = (a _ I)! T exp --:;- ,

where a is the shape parameter and b is the scale parameter.

(6.10)

Prior distributions are considered where T is less than 1 as it is assumed that the

random effects would not deviate significantly from 1. Three prior distributions

are compared: the Inverse-Gamma(lO,O.Ol), Inverse-Gamma(l,O.Ol) and Inverse-

Gamma(5,O.5). These are presented graphically in figures (6.3), (6.4) and (6.5).

Table 6.2 presents the 5% and 95% percentiles of each prior distribution for T.

For each of these two values of the T parameter the 5% and 95% percentiles

of the corresponding random effects distribution are also presented. This shows

that the range of possible values for the random effects does not vary significantly

from 1.
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Figure 6.3: Inverse-

Gamma(lO,O.Ol) prior
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Figure 6.5: Inverse-

Gamma(5,O.5) prior
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Shape Scale 70.05 70.95 LtO.05 ( 70.05) LtO.95 (70.05) LtO.05 (70.95) LtO.95 (70.95)

10 0.01 0.006 0.0018 0.999 1.001 0.997 1.003

1 0.01 0.0033 0.195 0.995 1.005 0.726 1.378

5 0.5 0.055 0.254 0.914 1.095 0.658 1.519

Table 6.2: 5th and 95th percentiles of each Inverse-Gamma prior distribution on

7 and the corresponding 5th and 95th percentiles for the distribution of Lt

6.6.2 POSTERIOR INFERENCE

Posterior distributions are required for the parameters 01, ... ,020 and (J in the logit

model and can be inferred by simulating from the joint distribution f(Ol, ... ,020, (J, 0,7).

MCMC simulation samples vectors of values 1t' = (Ol, ... ,020,(J,O,7). The se-

quence of vectors 1t' 1, 1t' 2, ... is a Markov Chain. The stationary distribution of

the Markov chain is the required posterior distribution.

Let the state of the Markov chain at time t be

.....(t) = (O(t) ott) (J(t) ott) 7(t))
" 1,""20""

(6.11)

To update this vector to the state at time t + 1,

.....(t+1) = (O(t+l) ()(t+1) (J(t+1) 0 (t+1) 7(Hl))
" l' ... , 20' , , ,

(6.12)

a new value is generated for each of the parameters. The process of updating the

parameters at time t rr (t) to the parameters at time t + 1, 1t' (t), is called an, ,
iteration.

Gibbs sampling is used to simulate values from the conditional posterior dis-

tributions of each parameter. The 168 random effects parameters are updated
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as a vector, a, to decrease the time taken to run the program. For this model,

one iteration of the Gibbs sampler has 22 steps. Given data N, to update the

parameter vector at time t, to the vector at time t+l,

Sample e~t+1) from f(e1Je~t), ... ,e~~,0'(t),Ctit), ... ,Ct;~8,T(t),N)

Sample Ll2(t+1) f f(Ll JLl(t+1) Ll(t) Ll(t) (t) (t) (t) N)o rom U2U1 'U3 '''''U20,Ct1 , ... ,Ct168,7 ,

Sample a(t+1) from f(aJeit+1), , e~~+l), 7(t), N)

Sample 7(t+1) from f(7Jeit+1), ,e~~+1),a(t+1),N).

(6.13)

The only conditional distribution that can be derived analytically is for the vari-

ance parameter 7. The conditional posterior distribution for the parameter 7,

f( 7J8, 0', a, N), can be written as f( 7Ja), as the value of parameter 7, given

a, is conditionally independent of 8, 0' and N. The conditional posterior dis-

tribution, f( 7Ja), is derived using

f(7Ja) ex f(aJ7)f(7). (6.14)

If Cti has a lognormal distribution with parameters J1 and 7, then 'Pi = IOg(Cti)

has a normal distribution with mean J1 and variance 7. Equation (6.14) can be

written as

f(7Ja) = f(7J<P) ex f(<pJ7)f(7). (6.15)
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If 'Pi has a normal distribution and T has an inverse-gamma distribution, then

the conditional posterior distribution of T is

f(Tlc,o)cxII
I

1 exp(_!('Pi-f-t)2)
i=1 (27rT)I/2 2 T

1
(6.16)

Therefore the conditional posterior distribution, TI ip , has an Inverse-Gamma

distribution with the following parameters,

Inv - Gamma

I

2)'Pi - f-t)2
b + ..:..i=_I _

2
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where I is the number of respondents. After substitution of 'Pi and I, the

conditional distribution, TI a, has the distribution

Inv - Gamma a + 84, b+ ...:...i=_:1'----- _
2

168

L)log(ai) - j.t)2

The conditional distributions of the other parameters can be simulated from using

the Metropolis-Hastings algorithm, as defined in chapter 4. Each parameter (},

(J and a must be positive. A suitable proposal distribution is the log-normal

distribution. The proposal distributions for each of the parameters are written

as
.(010 .) = 1 ex [_! (logO -lOgOt.i)2]

qz t,! Ovv'W P 2 v ' (6.17)

( I ) - 1 [ 1 (log (J - log (Jt'i) 2]qi (J o u - ~ exp --2 '
(JVy 2(J V

(6.18)

1--=--~[-1-(-lOg-Q-~lO-gO-t'i~)2~](-6-1-9)
ulIy.ouexp -2 v .•
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6.7 MCMC Results

The posterior distribution can be affected by prior distribution, data and the

starting values. The three prior distributions considered are described in section

6.6.1. Two starting values are used for each prior distribution and the results

compared to investigate the effect of starting values on the results. The two sets

of starting values and their corresponding results are presented in tables 6.3 and

6.5. The first set of starting values has a mean random effect close to 1, a small

random effect variance and relatively large values of f} and (J. The second set

of starting values have a larger mean and variance for the random effects and

smaller values for f).

6.7.1 STARTING VALUES 1

An MCMC simulation was run with 120000 iterations. The first 20000 were

discarded as burn-in. The starting values for the parameters f} and (J are pre-

sented in table 6.3 and the distribution of starting values for the random effects

is summarized in table 6.4. The starting value for the variance of the random

effects, T, depends on the prior distribution used. For the prior distributions

Inverse-Gamma(lO,O.01), Inverse-Gamma(I,O.OI) and Inverse-Gamma(5,0.5) the

starting values for Tare 0.001, 0.01 and 0.1 respectively.

Attribute Concern Breath Weather Sleep Activities

Level 2 0.0493 0.0306 3.7357 x 10-10 0.0931 0.0309

Level3 0.0098 0.1011 0.0007 0.0005 0.0508

Level4 0.0510 0.0003 0.0015 0.0450 0.0490

Level 5 0.0080 0.0006 0.0629 0.1819 0.0029

Scale 0.2341

Table 6.3: Starting values for MCMC
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Mean Variance Minimum Maximum Median

1.0786 0.0765 0.4428 1.8679 1.0600

Table 6.4: Summary of distribution of starting values for random effects

The posterior distribution of the variance of the random effects is compared for

each of three prior distributions: Inverse Gamma(lO,O.Ol), Inverse Gamma(l,O.Ol)

and Inverse Gamma(5,0.5). Figure 6.6 presents the three posteriors using val-

ues of the variance selected between iteration 20001 and 70000 of the MCMC.

Figure 6.7 presents the three posteriors using values of the variance selected be-

tween iteration 70001 and 100000 of the MCMC. The posterior distributions

using Inverse-Gamma(lO,O.Ol) and Inverse-Gamma(5,0.5) are the most similar in

both graphs. The posterior using the prior distribution Inverse-Gamma(l,O.Ol) is

further away from zero and appears to have a mean of approximately 5. The pos-

terior distributions using an Inverse-Gamma(10,0.01) and Inverse-Gamma(5,0.5)

priors have a mean of between 2 and 3. The posterior distributions are similar

over both sets of 50000 iterations.
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The posterior distributions of the variance of the random effects are also compared

with the prior distribution. Figure 6.8,6.9 and 6.10 present the prior and posterior

distribution of the variance parameter for each of the prior distribution Inverse

Gamma(lO,O.Ol), Inverse Gamma(l,O.Ol) and Inverse Gamma(5,0.5) respectively.

Values selecting using iterations between 70001 and 120000 are used to plot the

posterior distributions. The prior distributions are all distributed very close to

zero. The three posterior distributions are distributed significantly further away

from zero than the prior distributions. This implies the likelihood has the greatest

influence on the posterior distribution.
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Convergence was assessed by plotting the value of the parameters at each itera-

tion and calculating the acceptance rate. The iteration plots all show convergence

and the acceptance rates are between 20% and 40% showing that the sampler is

moving around the posterior distribution efficiently. The iteration plots also show

consistency over both sets of 50000 iterations for all three prior distributions.

Using the last 50000 sample vectors of ()1, .... () 50000 and Q 1, .... Q 50000, utilities

are calculated for the 48 health states in the sample survey. The mean and 95%

posterior intervals are then derived for each health state. Figures 6.11, 6.12 and

6.13 present the mean and 95% posterior interval of the 48 health states using

the Inverse-Gamma(10,0.01), Inverse-Gamma(l,O.Ol) and Inverse-Gamma(5,0.5)

prior distributions for the variance of the random effects. The mean utilities

using an Inverse-Gamma(l,O.Ol) and Inverse-Gamma(lO,O.Ol) prior are similar.

However, when using an Inverse-Gamma(5,0.5) prior the mean utilities and upper

posterior limit are larger.
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6.7.2 STARTING VALUES 2

A second MCMC was run with 120000 iterations. The first 20000 were dis-

carded as burn-in. The starting values for each the parameters () and a are

shown in table 6.5 and the distribution of starting values for the random ef-

fects is summarised in table 6.6. The starting values for 7 are 0.001, 0.01

and 0.1 for the Inverse-Gamma(lO,O.Ol), Inverse-Gamma(l,O.Ol) and Inverse-

Gamma(5,0.5) prior distributions respectively. For the prior distributions Inverse-

Gamma(lO,O.Ol), Inverse-Gamma(l,O.Ol) and Inverse-Gamma(5,0.5) the starting

values for the variance 7 are 0.001, 0.01 and 0.1 respectively.

Attribute Concern Breath Weather Sleep Activities

Level2 0.0033 6.5465 x 10-5 1.8880 X 10-151 0.0031 0.0023

Level 3 0.0003 0.0022 0.0001 2.9981 x 10-5 0.0022

Level4 0.0012 1.0167 x 10-11 0.0013 1.4474 x 10-6 0.0014

Level 5 7.9263 x 10-40 0.0012 0.0027 0.0027 0.0014

Scale 0.1018

Table 6.5: Starting values for MCMC

Mean Variance Minimum Maximum Median

27.7781 587.3725 2.3727 x 10-8 157.7109 30.7537

Table 6.6: Summary of distribution of starting values for random effects

Figure 6.14 presents the three posteriors using values of the variance selected be-

tween iteration 20001 and 70000 of the MCMC. The posteriors show differences

Over the prior distribution. The posterior distribution derived using an Inverse-

~ Gamma(10,0.01) prior is distributed between approximately 10 and 30. The

posterior using an Inverse-Gamma(l,O.lO) prior is distributed further away, be-
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tween approximately 20 and 55. The posterior using an Inverse-Gamma(5,0.5)

prior is bimodal and is distributed between approximately 5 and 30. Figure

6.15 presents the three posteriors using values of the variance selected between

iteration 70001 and 100000 of the MCMC. For the Inverse-Gamma(10,0.01) and

Inverse-Gamma(l,O.Ol) prior distributions, the posterior distributions are similar

to those derived using the previous 50000 iterations in figure 6.14. The posterior

distributions derived using an Inverse-Gamma(5,0.5) prior distribution now has

a smaller variance, a larger mode and has become unimodal. Comparing the

posterior distributions using each of the two starting values shows that the poste-

rior distributions are distributed substantially further away from zero when using

starting values 2 for the three prior distributions. For example, the posterior

derived from an Inverse-Gamma(10,0.01) is distributed between approximately 1

and 4 for starting values 1 and is distributed between approximately 10 and 35

for starting values 2.
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As for starting values 1, the posterior distributions of the variance of the random

effects are also compared with the prior distribution. Figure 6.16, 6.17 and 6.18

present the prior and posterior distribution of the variance parameter for the

prior distributions Inverse Gamma(lO,O.OI), Inverse Gamma(I,O.OI) and Inverse

Gamma(5,0.5) respectively. Values selecting using iterations between 70001 and

120000 are used to plot the posterior distributions. The posterior distributions

using starting values 2 show a greater change from the prior distributions than the

posterior distributions for starting values 1, presented in figures 6.8, 6.9, and 6.10.
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Convergence was assessed by plotting the value of the parameters at each itera-

tion and calculating the acceptance rate. The iteration plots all show convergence

and the acceptance rates are between 20% and 40% showing that the sampler is

moving around the posterior distribution efficiently. The iteration plots also show

consistency over both sets of 50000 iterations for all three prior distributions.

The mean utilities and 95% posterior intervals are calculated for the 48 health

states in the sample using the results from the three prior distributions. Figures

6.7.2,6.7.2 and 6.7.2 present the mean and 95% posterior interval of the 48 health

states using the Inverse-Gamma(lO,O.OI), Inverse-Gamma(I,O.OI) and Inverse-

Gamma(5,0.5) prior distributions for the variance of the random effects. The

mean utilities are similar using Inverse-Gamma(lO,O.OI) and Inverse-Gamma(5,0.5)

prior distributions. The mean utilities using an Inverse-Gamma(I,O.OI) prior dis-

tribution are larger. The upper posterior limits are all very close to 1. The

posterior interval for an Inverse-Gamma(5,0.5) prior has the largest range.
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6.8 Conclusion

This chapter considers both maximum likelihood estimation and Bayesian infer-

ence for a random effects model using the AQL-5D data. Several starting values

are considered for the maximum likelihood estimation. The maximum likelihood

results depend on the starting values of the random effects, a. Small initial

values of a result in small estimates of the mean and variance of a and larger

estimates of 8 and a . Larger initial values of a result in a larger mean and

variance of a and relatively smaller estimates of 0 and a . This suggests that

o and a are not identifiable and several combinations of values for 0 and a

produce the same likelihood value.
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Using a Bayesian approach, a Gamma(1,10) prior distribution is assumed for

the elements of () and (J, and a Log-Normal(O, T) prior distribution is assumed

for the elements of Q. Three prior distributions are investigated for T: Inverse-

Gamma(10,0.01), Inverse-Gamma(1,0.01) and Inverse-Gamma(5,0.5). An MCMC

is run using each of the three prior distributions for two sets of starting values.

The first set of starting values has a mean random effect close to 1, a small ran-

dom effect variance and relatively large values of () and (J. The second set of

starting values have a larger mean and variance for the random effects and small

values for (). The choice of prior has some influence on the posterior distribution.

However, the starting values for Q has a substantial effect on the posterior dis-

tribution for T. The larger the variance of the starting values for Q the further

away from zero the distribution of T is located. This suggests that, as in the

maximum likelihood results, the parameters () and Q are not identifiable and

several combinations of values for () and Q give the same likelihood value.

The random effects model is therefore not appropriate for the AQL-5D discrete

choice data when fitting by either maximum likelihood estimation or Bayesian

inference.
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Chapter 7

Conclusion

The National Institute for Health and Clinical Excellence (NICE) is responsible

for making recommendations about which drugs and treatments should be avail-

able on the NHS. As part of the decision making process, an economic evaluation

is performed, which is measured in cost per QALY gained. The number of QALYs

gained is calculated using the number of life years gained and a measure of pref-

erence, called a utility, for health states experienced during the years gained.

This thesis considers Bayesian inference to estimate utilities using discrete choice

data. The health states are defined using the AQL-5D classification system which

is an asthma specific system and defines 3125 health states. The AQL-5D data

analysed in this thesis consists of four sets of eight pairwise comparisons. A

total of 168 people valued one set of comparisons. Several models were fitted

to the data in order to estimate the utility of any health state defined by the

classification system. These models were either standard fixed effect models or

multiplicative random effects models.

~ In the standard model three prior distributions were considered for the parame-

ters. When using either a Gamma(l,lO) prior or a Uniform(O,l) prior distribution

161



the mean and posterior intervals for each parameter are similar using both mod-

els. However, the use of a Gamma(5,5) prior distribution changes these results.

Therefore when preference is given to smaller values in the prior distribution the

results do not change from when all parameter values are equally likely. Re-

sults change when preference is given to larger parameter values in the prior and

smaller values are less likely. This suggests that if a prior does not favour larger

values the posterior distribution is robust to the prior distribution. In these mod-

els the same prior distribution is assumed for each parameter. However, as the

amount each parameter decreases is expected to vary between the parameters, it

might be useful to investigate the use of different priors for each parameter.

Bayes factors are used to compare the logit and probit models for each prior

and to compare the logit and probit with the benchmark model. The Bayes fac-

tors show that both the logit model and probit model are suitable for the AQL-5D

discrete choice data when compared with the benchmark model. The inclusion

of an unusual observation in the comparison between death and the health state

(5,2,1,1,1) resulted in an unexpected large Bayes factor in favour of the probit

model when compared with the logit model. When the observation is removed

the Bayes factors were as expected, showing no difference between the two mod-

els. This problem showed that the evidence a single Bayes factor presents should

only be considered when used in comparison with other Bayes factors.

Bayes factors are also used to compare the logit models with five reduced models,

where one five attributes in the classification system is removed ..from the data

in each model. Each attribute in the AQL-5D classification system helps explain

the data and is important in defining utilities. The attribute activity limitations

has been shown to have the greatest impact on the utility.

In the random effects model a Gamma(l,lO) was assumed for the parameters
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representing a decrease in utility, (J and the scale parameter, (J. The ran-

dom effects are assumed to have a lognormal distribution with a fixed mean

equal to 1. Three prior distributions were considered for the variance of the

random effects: Inverse-Gamma(lO,O.Ol), Inverse-Gamma(l,O.Ol) and Inverse-

Gamma(5,O.5). Two MCMC simulations were run with different starting values.

The first set of starting values has a mean random effect close to 1, a small ran-

dom effect variance and relatively large values of (J and (J. The second set of

starting values have a larger mean and variance for the random effects and small

values for (J. The choice of prior has some influence on the posterior distribu-

tion. However, the starting values for the random effects, 0:, has a substantial

effect on the posterior distribution for the variance T. The larger the variance

of the starting values for 0: the further away from zero the distribution of T is

located. This suggests that the parameters (J and 0: are not identifiable and

several combinations of values for (J and 0: give the same likelihood value.

This thesis shows that the standard model is an appropriate model to use for

the AQL-5D discrete choice data set. An improvement to the model is to con-

sider different combinations of priors for the parameters. Bayes factors are useful

to compare the standard logit and probit models when used in comparison with

a benchmark model, and also to investigate the importance of each attribute in

describing the utility. The multiplicative random effects model cannot be used

for the AQL-5D data as the parameters are not identifiable and therefore the

posterior distributions are influenced by the starting values of the random effects

model. Some possible improvements could be considered. In the current model

the mean of the random effects is assumed constant. An alternative model could

allow this mean value to vary and a suitable prior distribution could be assumed.

It is also a possibility that this method of assigning a random effect is never suit-

able for the logit model. The mixed logit model could be fitted which is defined

in section 3.54. This model is an extension of the logit model but whereas in the
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logit model the parameters are assumed to be constant, in the mixed logit the

vector of parameters, ()i is assumed to have a particular distribution. The rela-

tionship between the mixed logit and the multiplicative random effects model is

described in section 6.3.1. Priors could therefore be assumed for the parameters

of the distribution assumed in the mixed logit model and the results compared

with the multiplicative random effects model. In addition to these alternative, as

the data or classification might not be suitable for a random effects model, the

use of this model could be applied to data collected using a different classification

system.
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7.1 Logit Model Posterior Distributions for all Prior distributions
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7.2 Probit Model Posterior Distributions for all Prior distributions
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