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Abstract 

ABSTRACT 

The challenge for the civil engineering community in the near future will be to realize the 
building of structures in harmony with the concept of sustainable development, through the 
use of high performance materials which have low environmental impact and can be 
produced at reasonable cost. Geopolymers are novel binder materials that could provide a 
route towards this objective. Although research on geopolymer has advanced, most of the 
previous research conducted on geopolymers has dealt with pastes and concentrated on the 
material's chemistry and microstructure. There is little information available concerning the 
engineering and durability properties of geopolymer concrete and none considering the use 
of natural pozzolans for production of geopolymer concrete. 

This investigation has studied the potential of using five natural pozzolans from Iran as 
geopolymer precursors. Most of the raw materials contain zeolites and clay minerals and 
have a high loss on ignition. Therefore, trials were made where samples were calcined at 
700, 800 and 900°C. The solubility of both the raw and calcined materials in an alkaline 
solution was used as an indicator for pozzolanic activity. Improvements in pozzolanic 
properties due to heat treatment and elevated curing temperatures (20, 40, 60, and 80°C) 
were studied by using alkali solubility, XRD and compressive strength tests. It has been 
found that geopolymer binders can be synthesized by activating natural pozzolans and 
condensing them with sodium silicate in a highly alkaline environment. A new model is 
presented which allows the prediction of the alkali activated pozzolan strength from 
information on their crystallinity, chemical compositions and alkali solubility. 

Two types of Iranian natural pozzolans, namely Taftan which can be activated without 
calcination and Shahindej which was calcined were selected for further activation to study 
the effect of the alkaline medium on the strength of the alkali-activated natural pozzolan. 
The effect of the type, form, and concentration (molarities =2.5, 5.0, 7.5, 10.0 M) of the 
alkaline hydroxide, the modulus of sodium silicate (Si02INa20 ratio =2.1, 2.4, 3.1) and 
different curing conditions on the geopolymerisation of the above two natural pozzolans 
were studied. The optimum range and contributions for each factor is suggested based on 
their effect on compressive strength. 

An optimum paste formulation has been developed for concrete mixing together with the 
procedure of addition of the raw materials to the reaction mixture and suitable curing 
methods for producing the geopolymer concrete derived from them. The properties of this 
geopolymer concrete in both the fresh and hardened states have been investigated in terms 
of setting time, workability, air content, compressive strength, splitting tensile strength, 
static modulus of elasticity, ultrasonic pulse velocity, and drying shrinkage. Studies related 
to durability such as gas permeability, chloride ion penetration, and sulphate resistance 
have been undertaken and compared to these for typical OPC concretes. Some problems 
were encountered in applying the standard concrete durability tests. In this study attempts 
have been made to determine the relationships between the different properties of 
geopolymer concrete with its compressive strength and compared to results for ope 
concrete, to help to explain the differences between alkali-activated natural pozzolan 
concrete and ope concrete. In the countries which have large resources of natural 
pozzolan, geopolymer concrete based on alkali activation of these resources can help 
decrease the energy consumption and environmental impacts involved in using traditional 
cement pastes. 



Acknowledgments 

ACKNOWLEDGMENTS 

The author would like to extend her deepest gratitude to Dr. Cyril Lynsdale for his 

invaluable supervision and guidance throughout the progress of this manuscript. I am 

also indebted to my co-supervisor, Professor Neil Milestone for many insightful 

discussions and helpful criticism and advice. Their help and support have allowed me 

to complete my thesis successfully. 

The author wishes to express her gratitude to Dr. N. Hassani the manager of the 

Natural Disasters Research Centre, Iran, for his encouragement and support rendered 

throughout this experimental research programme, which was carried out at the 

concrete technology laboratory of Power and Water University of Technology 

Tehran, Iran. 

A special thank you is also extending to Professor A.A.Ramezanianpour for his 

valuable suggestions. 

Thanks are also due to the technical staff of the concrete technology and chemistry 

laboratory of P. W.U.T. for their helpful assistance during the various stages of the 

project. 

I would like to express my thanks to Dr. Nik Reeves in the Department of Materials, 

Sheffield University in Sheffield, U.K. and the technical staff of the Kansaran 

Binaloud X-ray, Kavoshyar, I.P.P.I., Material and Energy Research Centre laboratories 

in Tehran, Iran for their essential assistance on XRD, XRF, ICP-AES, FTIR, 

SEMlEDX. 

Thanks to all of the friends of the author that have made her stay in England once 

more a memorable and valuable experience. 

Heartfelt gratitude goes to the author's parents for their encouragement and prayers 

back home and her husband and children for their understanding and patience. 

11 



Table of contents 

TABLE OF CONTENTS 

ABSTRACT .................................................................................................................. i 
ACKNOWLEDGMENTS ........................................................................................... ii 
TABLE OF CONTENTS ............................................................................................ iii 
LIST OF TABLES ................................................................... , .................................. vi 
LIST OF FIGURES .................................................................................................. viii 
GLOSSARy ............................................................................................................... xv 
NOTATION ............................................................................................................. xvii 
LIST OF ABBREVIATIONS .................................................................................. xvii 
1. INTRODUCTION ................................................................................................ '" 1 

1.1 Introduction ........................................................................................................ 1 
1.2 Objectives and Scope of Work ........................................................................... 2 
1.3 Thesis Outline .................................................................................................... 4 

2. LITERATURE REVIEW ......................................................................................... 6 
2.1 Introduction ........................................................................................................ 6 
2.2 Geopolymers ...................................................................................................... 6 

2.2.1 Chemical properties of geopolymers .......................................................... 7 
2.2.1.1 Set of reactions for geopolymerization ................................................ 7 
2.2.1.2 Chemical factors affecting geopolymerization structure ................... 12 

2.2.2 Physical properties of geopolymers .......................................................... 12 
2.2.3 Mineralogical properties of geopolymers ................................................. 13 

2.3 Natural pozzolan and an overview of the activation of its reactivity ............... 16 
2.3.1 Pozzolanic activities of natural pozzolan .................................................. 17 
2.3.2 Main Factors affecting pozzolanic activity ............................................... 17 
2.3.3 Methods of activating natural pozzolan .................................................... 18 

2.3.3.1 Thermal activation methods ............................................................... 18 
2.3.3.2 Mechanical activation method ................................................ , .......... 19 
2.3.3.3 Chemical activation method ............................................................... 20 

2.4. Activators ........................................................................................................ 22 
2.4.1 Type of activators ...................................................................................... 22 
2.4.2 Dosage of activators .................................................................................. 23 
2.4.3 Modulus of water glass solution ............................................................... 23 

2.5. Geopolymer concrete ...................................................................................... 24 
2.5.1 Properties of fresh geopolymer concrete ................................................... 24 
2.5.2 Properties of hardened geopolymer concrete ............................................ 26 

2.5.2.1 Alkali activated slag ........................................................................... 27 
2.5.2.2 Alkali activated fly ash ....................................................................... 28 

2.5.3 Durability properties of geopolymer concrete .......................................... 29 
2.6 Summary .......................................................................................................... 30 

3. CHARACTERISTICS OF NATURAL AND CALCINED POZZOLANS USED 
IN THE INVESTIGATION ....................................................................................... 35 

3.1 Introduction ...................................................................................................... 35 
3.2 Shahindej Dacite .............................................................................................. 36 

3.2.1 Mineralogical Composition ....................................................................... 36 
3.2.2 Chemical Composition .............................................................................. 37 
3.2.3 Physical Composition ............................................................................... 38 

3.3 Sahand Dacite ................................................................................................... 39 
3.3.1 Mineralogical Composition ....................................................................... 39 

11l 



Table of contents 

3.3.2 Chemical Composition .............................................................................. 40 
3.3.3 Physical Composition ............................................................................... 40 

3.4 Sirjan Dacite ..................................................................................................... 40 
304.1 Mineralogical Composition ....................................................................... 41 
304.2 Chemical Composition .............................................................................. 41 
304.3 Physical Composition ............................................................................... 42 

3.5 Rafsanjan Dacite .............................................................................................. 42 
3.5.1 Mineralogical Composition ....................................................................... 43 
3.5.2 Chemical Composition .............................................................................. 43 
3.5.3 Physical Composition ............................................................................... 44 

3.6 Taftan Andesite ................................................................................................ 44 
3.6.1 Mineralogical Composition ....................................................................... 44 
3.6.2 Chemical Composition .............................................................................. 45 
3.6.3 Physical Composition ............................................................................... 45 

3.7 Summary .......................................................................................................... 46 
4. THE SELECTION OF POZZOLAN FOR PRODUCING GEOPOL YMER 
BASED ON SIMPLE TESTS .................................................................................... 59 

4.1 Introduction ...................................................................................................... 59 
4.2 Measurement of Pozzolanic Activity of Natural Pozzolans ............................ 59 
4.3 Experimental investigations ............................................................................. 60 
404 Pozzolanic activity of five pozzolans in their natural state and after heat 
treatment ................................................................................................................. 61 

404.1 Shahindej Dacite ....................................................................................... 61 
4.4.2 Sahand Dacite ............................................................................................ 62 
4.4.3 Sirjan Dacite .............................................................................................. 63 
4.4.4 Rafsanjan Dacite ............. '" ....................................................................... 63 
4.4.5 Taftan Andesite ......................................................................................... 64 

4.5 A Simplified Model for the Prediction of Pozzolanic Behaviour .................... 65 
4.5.1 Activity Index ............................................................................................ 66 
4.5.2 Alkali percentage ...................................................................................... 67 
4.5.3 Alkali Solubility Index .............................................................................. 68 
4.504 Loss on Ignition (L.O.I.) ........................................................................... 68 
4.5.5 The activity ratio [(Si02+Ah03+CaO) in solution! (Si02+Ah03+CaO) 
mineral] obtained from ICP tests ....................................................................... 69 
4.5.6 The quartz percentage ............................................................................... 69 

4.6 Correlation for Compressive Strength ............................................................. 70 
4.7 Results and Suggestion .................................................................................... 72 

5. THE EFFECT OF ALKALI ACTIVATOR TYPE AND MINERAL ADDITIVES 
ON ALKALI ACTIVATION .................................................................................... 87 

5.1 Introduction ...................................................................................................... 87 
5.2 Chemical Activators and Materials .................................................................. 87 
5.3 Experimental investigations ............................................................................. 88 
5 A Experimental results ......................................................................................... 91 

504.1 Type of Alkaline Activator ....................................................................... 91 
504.2 Dosage of Alkali Component.. .................................................................. 91 
504.3 Form of Sodium Silicate Activator ........................................................... 94 
50404 Modulus of Water-glass Solution ............................................................. 94 
504.5 Various Ratios of Alkaline Hydroxide to Water-glass ............................. 95 

5.5 XRD Results for Geopolymerised Alkali Activated Natural Pozzolans .......... 96 
5.6 The Effect of Mineral Additives ...................................................................... 97 

IV 



Table of contents 

5.7 Optimum Paste Proportions for Geopolymer Concrete Production ............... 101 
5.8 Summary ........................................................................................................ 101 

6. MIX DESIGN AND PROPERTIES OF FRESH GEOPOL YMER CONCRETE 
.................................................................................................................................. 124 

6.1 Introduction .................................................................................................... 124 
6.2 Mix Design Procedure .................................................................................... 124 

6.2.1 Alkali-Activated Natural Pozzolan Mixes .............................................. 124 
6.2.2 Determination of Water to Binder Ratios ............................................... 124 
6.2.3 Aggregates and Sieve Analysis Results .................................................. 126 

6.2.3.1 Fine Aggregate ................................................................................. 126 
6.2.3.2 Coarse Aggregate ............................................................................. 126 

6.2.4 Aggregate to Binder Content .................................................................. 126 
6.2.5 Designing of Control Mixes .................................................................... 127 
6.2.6 Mix Proportions and Mix Notation ......................................................... 127 

6.3 Mortar and Concrete Mixing Procedure ........................................................ 128 
6.4 Casting and Curing ......................................................................................... 129 
6.5 Workability .................................................................................................... 131 

6.5.1 Workability tests ..................................................................................... 131 
6.5.2 Slump Test .............................................................................................. 131 
6.5.3 Vebe time Test ........................................................................................ 132 
6.5.4 Results and Discussions .......................................................................... 132 

6.6 Setting Time ................................................................................................... 133 
6.6.1 Test Procedure ......................................................................................... 133 
6.6.2 Results and Discussion ............................................................................ 133 

6.7 Air Content ..................................................................................................... 135 
6.7.1 Test Procedure ......................................................................................... 135 
6.7.2 Results and Discussion ............................................................................ 136 

6.8 Summary ........................................................................................................ 136 
7. ENGINEERING PROPERITIES OF GEOPOL YMER CONCRETE ................ 146 

7.1 Introduction .................................................................................................... 146 
7.2 Compressive Strength .................................................................................... 146 

7.2.1 Test Procedure ......................................................................................... 147 
7.2.2 Results and Discussion ............................................................................ 148 

7.3 Splitting Tensile Strength ............................................................................... 149 
7.3.1 Test Procedure ......................................................................................... 149 
7.3.2 Results and Discussion ............................................................................ 150 

7.4 Static Modulus of Elasticity ........................................................................... 151 
7.4.1 Test Procedure ......................................................................................... 151 
7.4.2 Results and Discussion ............................................................................ 152 

7.5 Ultrasonic Pulse Velocity ............................................................................... 153 
7.5.1 Test Procedure ......................................................................................... 153 
7.5.2 Results and Discussion ............................................................................ 154 

7.6 Drying Shrinkage properties .......................................................................... 154 
7.6.1 Test Procedure ......................................................................................... 154 
7.6.2 Results and Discussion ............................................................................ 155 

7.7 Relationship between Engineering Properties ............................................... 156 
7.7.1 Relationship between Compressive and Tensile Strength ...................... 156 
7.7.2 Relationship between Compressive Strength and Modules of Elasticity 158 
7.7.3 Relationship between Compressive Strength and Ultrasonic Pulse Velocity 
.......................................................................................................................... 161 

v 



Table of contents 

7.8 Summary ........................................................................................................ 162 
8. DURABILITY PROPERTIES OF GEOPOLYMER CONCRETE .................... 188 

8.1 Introduction .................................................................................................... 188 
8.2 Oxygen permeability ...................................................................................... 189 

8.2.1 Samples Preparation ................................................................................ 189 
8.2.2 Test Procedure ......................................................................................... 190 
8.2.3 Results and Discussion ............................................................................ 191 

8.3 Chloride permeability ..................................................................................... 192 
8.3.1 Samples Preparation ................................................................................ 193 
8.3.2 Test Procedure ......................................................................................... 193 
8.3.3 Results and Discussions .......................................................................... 195 

8.4 Sulphate Resistance ........................................................................................ 197 
8.4.1 Sample Preparation and Test Method for Sulphate Resistance .............. 199 
8.4.2 Test Procedure ......................................................................................... 199 

8.4.2.1 Compressive Strength ...................................................................... 199 
8.4.2.2 Expansion Test ................................................................................. 200 
8.4.2.3 X-ray Diffraction Test ...................................................................... 200 

8.4.3 Results and Discussions .......................................................................... 200 
8.5 Relationship between Oxygen Permeability and Compressive Strength ....... 202 
8.6 Relationship between Chloride Permeability and Compressive Strength ...... 204 
8.7 Relationship between Chloride Permeability and Oxygen Permeability ....... 205 
8.8 Concluding summary ..................................................................................... 205 

9. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH221 
9.1 Introduction .................................................................................................... 221 
9.2 Activation of Natural Pozzolans for Production of Geopolymer Binder ....... 221 
9.3 Mix Design, Procedure and Curing Temperature .......................................... 222 
9.4 Fresh Properties of AANP Concrete .............................................................. 223 
9.5 Engineering Properties of AANP Concrete ................................................... 223 
9.6 Durability Properties of AANP Concrete ...................................................... 224 
9.7 Evaluation of Carbon footprint and Cost for AANP Concrete ...................... 224 
9.7. 1 Environmental Benefits .............................................................................. 225 
9.7.2 Supply and Cost of activators ..................................................................... 225 
9.8 Application Aspects of AANP Concrete ....................................................... 226 
9.8 Future Research on AANP Concrete ............................................................. 226 

REFERENCES ......................................................................................................... 230 
APPENDIX .............................................................................................................. 252 

LIST OF TABLES 

Table 3 .1-a- Mineral compositions of the pozzolanas conducted by Kansaran 
Binaloud X-ray laboratory in Tehran, Iran ................................................................ 47 
Table 3.l-b - Mineral compositions of the calcined pozzolanas conducted by 
Kansaran Binaloud X-ray laboratory in Tehran, Iran ................................................ 48 
Table 3.2 - The properties of Zeolite and Clay Minerals of the materials used in this 
investigation as described by F.Ezatian (1998) .......................................................... 49 
Table 3.3-a Chemical composition (oxide percent) of the materials used in this 
investigation conducted by Kansaran Binaloud X-ray laboratory in Tehran, Iran 
(2005-2006) ................................................................................................................ 50 

VI 



Table ofconfenfs 

Table 3.3-b Chemical composition (oxide percent) of the calcined materials used in 
this investigation conducted by Kansaran Binaloud X-ray laboratory in Tehran, Iran 
(2005-2006) ................................................................................................................ 50 
Table 3.4 Variability in the Chemical composition (oxide percent) of the materials 

d' h" .. use In t IS InvestIgatIon ............................................................................................ 51 
Table 4.1 ICP results of the filtrates from rapid alkali solubility test measured by the 
Kavoshyar laboratory in Tehran, Iran ........................................................................ 74 
Table 4.2 The measured parameters used for model input in present study .............. 75 
Table 4.3 The replacement of missing parameters used for model input in present 
study ........................................................................................................................... 76 
Table 4.4 Linear and nonlinear regression coefficients and correlation coefficient 
(R2) for pozzolans in natural and calcined form cured at 3 different temperatures ... 77 
Table 5.1 Alkali Activation Solutions (grams per 100ml solution) ......................... 104 
Table 5.2 ICP-AES results for Taftan pozzolan leaching tests (conducted by I.P.P.I. 
laboratory, Tehran, Iran) .......................................................................................... 104 
Table 5.3 Weight percentage concentration observed in EDX (conducted by Material 
and Energy Research Centre laboratory, Tehran, Iran) ............................................ 105 
Table 5.4 Chemical composition of mineral additives used in this investigation 
conducted by Kansaran Binaloud X-ray laboratory in Tehran, Iran ........................ 105 
Table 5.5 Mix proportion, strength, specific strength (SS), specific strength of 
mineral additive effect (SSME) of geopolymer cement .......................................... 106 
Table 5.6 Weight percentage concentration observed in EDX (conducted by Material 
and Energy Research Centre laboratory, Tehran, Iran) (TN=Taftan, TNK=Taftan 
added Kaolinite, TNSH=Taftan added Calcined Shahindej, TNL=Taftan added Burnt 
Lime) ........................................................................................................................ 107 
Table 5.7 - Optimum Paste Proportion for Geopolymer Concrete .......................... 107 
Table 6.1 Grading for the fine and coarse aggregates .............................................. 138 
Table 6.2 Concrete Mix Proportion ......................................................................... 139 
Table 6.3 Fresh concrete properties of the mixes investigated ................................ 140 
Table 6.4 Initial and Final setting time of different mixes (with different activator 
concentration and mix temperature) ......................................................................... 140 
Table 7.1 The pulse velocity and the corresponding compressive strength of different 
mixes ........................................................................................................................ 164 
Table 7.2 Quality Criteria Suggested by Central Water and Power Research Station 
Khadakwasla (India) ................................................................................................ 164 
Table 8.1 The measured parameters used as input for finding nonlinear model to 
predict permeability of alkali activated Taftan pozzolan ......................................... 207 
Table 8.2 Nonlinear regression coefficients and correlation coefficient (R2) for 
predicting permeability of alkali activated Taftan pozzolan .................................... 207 
Table 8.3 Chloride diffusion coefficient and total integral chloride% to 45mm depth 
after 90 days ponding ............................................................................................... 207 
Table 8.4 Summary of X-ray diffraction results show the existence of sulphate 
phases and achieved from the powder prepared from the surface and the middle of 
the samples immersed in sulphate solution .............................................................. 208 
Table 8.4 Summary of X-ray diffraction results show the existence of sulphate 
phases and achieved from the powder prepared from the surface and the middle of 
the samples immersed in sulphate solution (continued) .......................................... 209 
Table 9.1 Mineralogy of investigated pozzolans ..................................................... 228 
Table A7.1 Relation between splitting tensile strength and compressive strength .. 253 

VB 



Table of contents 

Table A7.2 Relation between static modulus of elasticity and cube compressive 
strength ..................................................................................................................... 254 
Table A7.3 Relation between static modulus of elasticity and cylinder compressive 
strength ..................................................................................................................... 255 
Table A 7.4 Relation between static modulus of elasticity and splitting tensile 
strength ..................................................................................................................... 256 
Table A8.1 Relation between oxygen permeability and compressive strength ....... 257 
Table A8.2 Relation between chloride permeability and compressive strength ...... 258 

LIST OF FIGURES 

Figure 2.la Computer molecular graphics of polymeric Mn-(-Si-O-AI-O-)n 
poly( sialate) and Mn-( -Si -0-AI-O-Si -O-)n poly( sialate-siloxo) and related 
frameworks (Devidovits, 1991, 1994) ....................................................................... 33 
Figure 2.1 b Proposed structural model for K-poly(sialate-siloxo) geopolymer 
(Devidovits, 1991, 1994 and Barbosa, 2000) ............................................................. 33 
Figure 2.2 Room temperature setting for concrete for concrete made of geopolymeric 
cement and Portland cements (Devidovits, 1991, 1994) ............................................ 34 
Figure 2.3 Cumulative intrusion volume vs. pore diameter plotted from MIP results. 
The characteristic pore size decreased as the molar % ofKOH was increased (Bell 
and Kriven, 2004) ....................................................................................................... 34 
Figure 3.1 Location ofpozzolans on geology map of Iran (Geology Survey of 
Iran/WWW.GSI.IR) ................................................................................................... 52 
Figure 3.2-a Mineralogical composition of Shahindej dacite (testing was carried out 
in the Department of Engineering Materials, University of Sheffield) ...................... 53 
Figure 3.2-b Mineralogical composition of calcined Shahindej dacite (testing was 
carried out in the Department of Engineering Materials, University of Sheffield) ... 53 
Figure 3.2-c Mineralogical composition of Sahand dacite (testing was carried out in 
the Department of Engineering Materials, University of Sheffield) .......................... 54 
Figure 3.2-d Mineralogical composition of Sirjan dacite (testing was carried out in 
the Department of Engineering Materials, University of Sheffield) .......................... 54 
Figure 3.2-e Mineralogical composition of Rafsanjan dacite (testing was carried out 
in the Department of Engineering Materials, University of Sheffield) ...................... 55 
Figure 3.2-fMineralogical composition of Taftan andesite (testing was carried out in 
the Department of Engineering Materials, University of Sheffield) .......................... 55 
Figure 3.2-g Comparison of X-ray diffraction of five untreated pozzolans conducted 
by Kansaran Binaloud X-ray laboratory in Tehran, Iran ........................................... 56 
Figure 3.3-a The XRD pattern of Shahindej and Sahand pozzolans at various 
calcination temperatures conducted by Kansaran Binaloud X-ray laboratory in 
Tehran, Iran A=Albite; Ca= Calcite; CI=Clinoptilolite; MH=Magnesiohornblende; 
Q=Quartz .................................................................................................................... 57 
Figure 3.3-b The XRD patterns of Sirjan and Rafsanjan pozzolans at various 
calcination temperatures conducted by Kansaran Binaloud X-ray laboratory in 
Tehran, Iran A=Albite; B=Biotite; MH=Magnesiohornblende; M=Montmorillionite; 
Mu=Muscovite ........................................................................................................... 58 
Figure 4.1 Effect of boiling time on alkali solubility of various pozzolans studied in 
this research ................................................................................................................ 78 
Figure 4.2 Effect of boiling time and calcination on alkali solubility for different 
pozzolans studied in this research .............................................................................. 79 

Vlll 



Table of contents 

Figure 4.3 Effect of calcinations temperature on alkali solubility for different 
pozzolans studied in this research .............................................................................. 80 
Figure 4.4 Comparing the compressive strength of different pozzolans in natural 
form or after calcination in various temperatures ...................................................... 81 
Figure 4.5 Comparison of the effect of calcination on compressive strength of 
different alkali activated pozzolans at different curing temperature .......................... 82 
Figure 4.6 Comparing the results of compressive strength of different untreated and 
calcined pozzolans at different curing temperature ................................................... 83 
Figure 4.7 Correlation between observed and predicted compressive strength at 28 
days for untreated and calcined pozzolans resulted from linear model ..................... 84 
Figure 4.8(a) and (b) Correlation between observed and predicted compressive 
strength at 28 days for untreated and calcined pozzolans resulted from nonlinear 
model .......................................................................................................................... 85 
Figure 4.8( c) and (d) Correlation between observed and predicted compressive 
strength at 28 days for untreated and calcined pozzolans resulted from nonlinear 
model .......................................................................................................................... 86 
Figure 5.1 Effect of type and concentration of activators on Taftan geopolymer 
compressive strength for different curing conditions .............................................. 108 
Figure 5.2 FTIR results for leached Taftan pozzolan with different concentration of 
activator conducted by I.P.P.1. FTIR laboratory, Tehran, Iran ................................ 109 
Figure 5.3 Effect of concentration of activators on Shahindej geopolymer 
compressive strength for different curing conditions .............................................. 109 
Figure 5.4 FTIR results for untreated Shahindej pozzolan and alkali activated form of 
it conducted by I.P.P.1. FTIR laboratory, Tehran, Iran ............................................ 110 
Figure 5.5 Effect of sodium silicate form on activation of natural pozzolan ........... 110 
Figure 5.6 Effect of sodium silicate ratio on activation of Taftan pozzolan with 
different content of CaO ........................................................................................... 111 
Figure 5.7 Effect of sodium silicate ratio on activation of untreated and calcined 
Shahindej pozzolan .................................................................................................. 111 
Figure 5.8 X-ray diffraction traces of untreated (ARSH) and calcined (ACSH) 
Shahindej dacite activated with different ratio of sodium silicate (testing was carried 
out in the Department of Engineering Materials, University of Sheffield) .............. 112 
Figure 5.9 Influence of amount of sodium silicate on compressive strength of 
activated pozzolans (samples dimensions were 20x20x20 mm in these experiments) 
.................................................................................................................................. 113 
Figure 5.10 Strength contour for different concentration ofKOH and various ratio of 
KOHlNa2Si03 for Taftan Pozzolan (24 samples were tested) ................................. 114 
Figure 5.11 Strength contour for different concentration ofKOH and various ratio of 
KOHlNa2Si03 for Shahindej Pozzolan (16 samples were tested) ........................... 115 
Figure 5.12(a) Mineralogical composition of Taftan andesite (testing was carried out 
in the Department of Engineering Materials, University of Sheffield) .................... 116 
Figure 5 .12(b) Mineralogical composition of activated Taftan andesite at 90 days 
(testing was carried out in the Department of Engineering Materials, University of 
Sheffield) .................................................................................................................. 116 
Figure 5.13(a) Mineralogical composition ofShahindej dacite (testing was carried 
out in the Department of Engineering Materials, University of Sheffield) .............. 117 
Figure 5.13(b) X-ray diffraction traces of activated utreated Shahindej dacite 
(ARSH) at different ages (28 and 90 days) (testing was carried out in the Department 
of Engineering Materials, University of Sheffield) .................................................. 117 

IX 



Table of contents 

Figure 5. 14(a) Mineralogical composition of calcined Shahindej dacite (testing was 
carried out in the Department of Engineering Materials, University of Sheffield) . 118 
Figure 5.14(b) X-ray diffraction traces of activated calcined Shahindej dacite 
(ACSH) at different ages (28 and 90 days) (testing was carried out in the Department 
of Engineering Materials, University of Sheffield) .................................................. 118 
Figure 5.15 Specific compressive strength of mixes containing kaolinite ............... 119 
Figure 5.16 Specific compressive strength of mixes containing calcined Shahindej 
.................................................................................................................................. 119 
Figure 5.17 Specific compressive strength of mixes containing burnt lime ............ 119 
Figure 5.18-a SEM of activated Taftan pozzolan cured at 25°C carried out in 
Material and Energy Research Centre laboratory, Tehran, Iran-(G) Geopolymer 
Matrix (T) Non reacted Taftan Pozzolan ................................................................. 120 
Figure 5.18-b SEM of activated Taftan pozzolan cured at autoclave condition carried 
out in Material and Energy Research Centre laboratory, Tehran, Iran-(G) 
Geopolymer Matrix (T) Non reacted Taftan Pozzolan ............................................ 120 
Figure 5.19-a SEM of activated Taftan pozzolan mixed with Kaolinite Cured at 25°C 
carried out in Material and Energy Research Centre laboratory, Tehran, Iran-(G) 
Geopolymer Matrix (K) Non reacted Kaolinite ....................................................... 121 
Figure 5.19-b SEM of activated Taftan pozzolan mixed with Kaolinite Cured at 
autoclave condition carried out in Material and Energy Research Centre laboratory, 
Tehran, Iran (G) Geopolymer Matrix (K) Non reacted Kaolinite ............................ 121 
Figure 5.20-a SEM of activated Taftan pozzolan mixed with calcined Shahindej and 
cured at 25°C carried out in Material and Energy Research Centre laboratory, Tehran, 
Iran (G) Geopolymer Matrix (Z) zeolite (SH) Non reacted Shahindej Pozzolan .... 122 
Figure 5.20-b SEM of activated Taftan pozzolan mixed with calcined Shahindej and 
cured at autoclave condition carried out in Material and Energy Research Centre 
laboratory, Tehran Iran(Z) Zeolite ........................................................................... 122 
Figure 5.21-a SEM of activated Taftan pozzolan mixed with burnt lime at 25°C 
carried out in Material and Energy Research Centre laboratory, Tehran, Iran(G) 
Geopolymer Matrix (CSH) Calcium Silicate Hydrate (T) Non reacted Taftan 
Pozzolan ................................................................................................................... 123 
Figure 5.21-b SEM of activated Taftan pozzolan mixed with burnt lime at autoclave 
condition carried out in Material and Energy Research Centre laboratory, Tehran, 
Iran(G) Geopolymer Matrix (CSH) Calcium Silicate Hydrate (Ca-C) Calcium 
Carbonate ................................................................................................................. 123 
Figure 6.1 Grading limits and size distribution curves for the fine and coarse 
aggregates ................................................................................................................. 141 
Figure 6.2 Compressive strength contour of activated untreated Shahindej pozzolan 
versus different amount of water to binder and binder to aggregate ratio (16 samples 
were tested) .............................................................................................................. 142 
Figure 6.3 Slump values for mixes investigated ...................................................... 143 
Figure 6.4 Vebe results for the mixes investigated .................................................. 143 
Figure 6.5 Influence of activator concentration and mix temperature on final setting 
time ........................................................................................................................... 144 
Figure 6.6 Initial and final setting time for different mixes ..................................... 144 
Figure 6.7 Air content values for different mixes investigated ................................ 145 
Figure 7.1 Early-age and long-term compressive strength development for different 
mixes under sealed curing condition (CM1, CM2, and ACSH were cured at 20°C, 
ATAF1 and ATAF2 were cured at 40°C and ARSH was cured at 60°C which were 
the best curing temperature in each case) ................................................................ 165 

x 



Table of contents 

Figure 7.2 Effect of curing conditions on compressive strength development of CMl 
mix ........................................................................................................................... 166 
Figure 7.3 Effect of curing conditions on compressive strength development of CM2 
mix ........................................................................................................................... 167 
Figure 7.4 Effect of different curing condition and curing temperature on 
compressive strength development for activated Taftan pozzolan with water to binder 
ratio equal to 0.4 ....................................................................................................... 168 
Figure 7.5 Effect of different curing condition and curing temperature on 
compressive strength development for ATAFI mix and comparing with CMl mix 
.................................................................................................................................. 169 
Figure 7.6 Effect of different curing condition and curing temperature on 
compressive strength development for activated Taftan pozzolan with water to binder 
ratio equal to 0.5 ....................................................................................................... 170 
Figure 7.7 Effect of different curing condition and curing temperature on 
compressive strength development for ATAF2 mix and comparing with CM2 mix 
.................................................................................................................................. 171 
Figure 7.8 Effect of water to binder ratio on compressive strength development for 
activated Taftan pozzolan cured at 20°C .................................................................. 172 
Figure 7.9 Effect of water to binder ratio on compressive strength development for 
activated Taftan pozzolan cured at 40°C .................................................................. 173 
Figure 7.10 Effect of water to binder ratio on compressive strength development for 
activated Taftan pozzolan cured at 60°C .................................................................. 174 
Figure 7.11 Compressive strength at 28 days versus water to binder ratio(W/B)for 
alkali activated Taftan pozzolan ............................................................................... 175 
Figure 7.12 Long-term indirect tensile strength development for different mixes 
under sealed curing condition (CMl, CM2, and ACSH were cured at 20°C, ATAFI 
and AT AF2 were cured at 40°C and ARSH was cured at 60°C which were the best 
curing temperature in each case) .............................................................................. 175 
Figure 7.13 Effect of different curing condition and curing temperature on indirect 
tensile strength development for ATAFI and ATAF2 mixes .................................. 176 
Figure 7.14 Effect of water to binder ratio on indirect tensile strength development 
for activated Taftan pozzolan cured at different curing condition (sealed and fog) and 
temperatures ............................................................................................................. 177 
Figure 7.15 Long-term static modulus of elasticity development for different mixes 
under sealed curing condition (CMl, CM2, and ACSH were cured at 20°C, ATAFI 
and AT AF2 were cured at 40°C and ARSH was cured at 60°C which were the best 
curing temperature in each case) .............................................................................. 178 
Figure 7.16 Effect of different curing condition and curing temperature on static 
modulus of elasticity development for AT AF 1 and AT AF2 mixes ......................... 179 
Figure 7.17 Ultrasonic pulse velocity for different mixes under sealed curing 
condition (CMl, CM2, and ACSH were cured at 20°C, ATAFI and ATAF2 were 
cured at 40°C and ARSH was cured at 60°C which were the best curing temperature 
for each one) ............................................................................................................. 180 
Figure 7.18 The comparator and concrete prism ..................................................... 181 
Figure 7.19 Effect of length, temperature and condition of curing on drying 
shrinkage development with age for AT AF 1 mix with comparison with OPC ....... 182 
Figure 7.20 Effect of length, temperature and condition of curing on drying 
shrinkage development with age for AT AF2 mix with comparison with oPC ....... 183 
Figure 7.21 Effect of Calcination and length of curing on drying shrinkage 
development with age for Shahindej mixes ............................................................. 184 

Xl 



Table of contents 

Figure 7.22 Relation between the splitting tensile strength and the compressive 
strength of alkali activated natural pozzolans .......................................................... 185 
Figure 7.23 Correlation between cube and cylinder compressive strength ............. 185 
Figure 7.24 Relation between the static modulus of elasticity and the cube 
compressive strength of Alkali activated natural pozzolans .................................... 186 
Figure 7.25 Relation between the static modulus of elasticity and the cylinder 
compressive strength of Alkali activated natural pozzolans .................................... 186 
Figure 7.26 Relationship between compressive strength and UPV ......................... 187 
Figure 8.1 Oxygen permeability apparatus .............................................................. 210 
Figure 8.2 Oxygen permeability development of different mixes under Sealed Curing 
Condition (CMl, CM2, and ACSH were cured at 20°C, ATAFI and ATAF2 were 
cured at 40°C and ARSH was cured at 60°C which were the best curing temperature 
for each one) ............................................................................................................. 211 
Figure 8.3 Effect of curing conditions on oxygen permeability of alkali activated 
Taftan pozzolan ........................................................................................................ 212 
Figure 8.4 Top: Vacuum saturation and Bottom: Rapid chloride permeability test 
apparatus .................................................................................................................. 213 
Figure 8.5 Chloride permeability of various mixes at different ages under Sealed 
Curing Condition (CMl, CM2, and ACSH were cured at 20°C, ATAFI and ATAF2 
were cured at 40°C and ARSH was cured at 60°C which were the best curing 
temperature for each one) ......................................................................................... 214 
Figure 8.6 Effect of curing on chloride permeability for ATAFI and ATAF2 Mixes 
.................................................................................................................................. 215 
Figure 8.7 Chloride [% wt. of concrete] versus depth of samples for different 
material and curing conditions ................................................................................. 216 
Figure 8.8 Compressive strength for ATAFI and AT AF2 Mixes cured at different 
condition and temperature, ARSH, and ACSH in and out of the sulphate solution 217 
Figure 8.9 Expansion at various ages for geopolymer mortar mixes based on alkali 
activated natural pozzolan in sulphate solution ....................................................... 218 
Figure 8.10 Correlation between the percentage of expansion and reduction of 
strength at various ages for geopolymer mortar mixes based on alkali activated 
natural pozzolan in sulphate solution (W IB for mixes is same) ............................... 218 
Figure 8.11 Relation between the oxygen permeability and the compressive strength 
of geopolymer concrete based on alkali activated natural pozzolans ...................... 219 
Figure 8.12 The relationship between the predicted and observed permeability ..... 219 
Figure 8.13 Relation between the chloride permeability and the compressive strength 
of geopolymer concrete based on alkali activated natural pozzolans ...................... 220 
Figure 8.14 Relation between the chloride permeability and the oxygen permeability 
of geopolymer concrete based on alkali activated natural pozzolans ...................... 220 
Figure 9.1 Different calcination and curing temperatures with related compressive 
strengths of investigated pozzolans .......................................................................... 228 
Figure 9.2 Comparison of compressive strength of different investigated AANP 
concrete mixes and OPC concrete control mixes ..................................................... 229 
Figure 9.3 Comparison of the oxygen permeability of different AANP concrete 
mixes and OPC concrete control mixes ................................................................... 229 
Figure A 7.1 Relation between the splitting strength and the compressive strength of 
CMl and CM2 under different curing conditions .................................................... 259 
Figure A 7.2 Relation between the splitting strength and the compressive strength of 
AT AF 1 and AT AF2 under different curing conditions ........................................... 260 

XlI 



Table of contents 

Figure A 7.3 Relation between the splitting tensile strength and the compressive 
strength of activated Taftan Pozzolan ...................................................................... 261 
Figure A7.4 Relation between the splitting tensile strength and the compressive 
strength of ARSH and ACSH mixes ........................................................................ 262 
Figure A 7.5 Relation between the splitting tensile strength and the compressive 
strength of alkali activated Shahindej mixes ............................................................ 262 
Figure A7.6 Relation between the static modulus of elasticity and the cube 
compressive strength of CMl and CM2 under different curing conditions ............. 263 
Figure A 7.7 Relation between the static modulus of elasticity and the cube 
compressive strength of AT AF 1 and AT AF2 under different curing conditions .... 264 
Figure A7.8 Relation between the static modulus of elasticity and the cube 
compressive strength of Alkali activated Taftan pozzolan ...................................... 265 
Figure A7.9 Relation between the static modulus of elasticity and the cube 
compressive strength of ARSH and ACSH Mixes .................................................. 266 
Figure A 7.10 Relation between the static modulus of elasticity and the cube 
compressive strength of alkali activated Shahindej mixes ....................................... 266 
Figure A 7.11 Relation between the static modulus of elasticity and the cylinder 
compressive strength of AT AF 1 and AT AF2 under different curing conditions .... 267 
Figure A7.12 Relation between the static modulus of elasticity and the cylinder 
compressive strength of Alkali activated Taftan Mixes ........................................... 268 
Figure A 7.13 Relation between the static modulus of elasticity and the cylinder 
compressive strength of ARSH and ACSH Mixes .................................................. 269 
Figure A 7.14 Relation between the static modulus of elasticity and the cylinder 
compressive strength of Alkali activated Shahindej Mixes ..................................... 269 
Figure A 7.15 Relation between the static modulus of elasticity and the splitting 
tensile strength of CMl and CM2 under different curing conditions ...................... 270 
Figure A 7.16 Relation between the static modulus of elasticity and the splitting 
tensile strength of ATAFI and ATAF2 under different curing conditions .............. 271 
Figure A 7.17 Relation between the static modulus of elasticity and the splitting 
tensile strength of Alkali activated Taftan Mixes .................................................... 272 
Figure A 7.18 Relation between the static modulus of elasticity and the splitting 
tensile strength of ARSH and ACSH mixes ............................................................ 273 
Figure A 7.19 Relation between the static modulus of elasticity and the splitting 
tensile strength of Alkali activated Shahindej Mixes ............................................... 273 
Figure A 7.20 Relation between the static modulus of elasticity and the splitting 
tensile strength of Alkali activated natural pozzolans ............................................. 274 
Figure A8.l (a) X-ray diffraction traces for ATAFI Mix cured at 20°C sealed 
condition after 3 month exposure in sulphate solution ............................................ 275 
Figure A8.l (b) X-ray diffraction traces for ATAFI Mix cured at 40°C fog condition 
after 3 month exposure in sulphate solution ............................................................ 276 
Figure A8.1 (c) X-ray diffraction traces for ATAF2 Mix cured at 40°C fog condition 
after 3 month exposure in sulphate solution ............................................................ 276 
Figure A8.1 (d) X-ray diffraction traces for ATAFI Mix cured at 40°C sealed 
condition after 3 month exposure in sulphate solution ............................................ 277 
Figure A8.1 (e) X-ray diffraction traces for ATAF2 Mix cured at 40°C sealed 
condition after 3 month exposure in sulphate solution ............................................ 277 
Figure A8.l (t) X-ray diffraction traces for ATAFl Mix cured at 60°C sealed 
condition after 3 month exposure in sulphate solution ............................................ 278 
Figure A8.l (g) X-ray diffraction traces for AT AF2 Mix cured at 60°C sealed 
condition after 3 month exposure in sulphate solution ............................................ 278 

X111 



Table of contents 

Figure A8.1 (h) X-ray diffraction traces for ACSH Mix cured at 20°C sealed 
condition after 3 month exposure in sulphate solution ............................................ 279 
Figure A8.1 (i) X-ray diffraction traces for ARSH Mix cured at 60°C sealed 
condition after 3 month exposure in sulphate solution ............................................ 279 
Figure A8.2 Relation between the oxygen permeability and the compressive strength 
ofCMl, CM2 and OPC concrete generally under different curing conditions ....... 280 
Figure A8.3 Relation between the oxygen permeability and the compressive strength 
of AT AF 1, and AT AF2 mixes under different curing conditions ........................... 281 
Figure A8.4 Relation between the oxygen permeability and the compressive strength 
of geopolymer concrete based on alkali activated Taftan pozzolan ........................ 282 
Figure A8.5 Relation between the oxygen permeability and the compressive strength 
of ARSH and ACSH mixes separately and totally .................................................. 283 
Figure A8.6 Relation between the chloride permeability and the compressive strength 
ofCMl, CM2 and OPC concrete generally under different curing conditions ....... 284 
Figure A8.7 Relation between the chloride permeability and the compressive strength 
of AT AF 1, and AT AF2 mixes under different curing conditions ........................... 285 
Figure A8.8 Relation between the chloride permeability and the compressive strength 
of geopolymeric concrete based on alkali activated Taftan pozzolan ...................... 286 
Figure A8.9 Relation between the chloride permeability and the compressive strength 
of ARSH and ACSH mixes separately and totally .................................................. 287 

XIV 



Glossary 

GLOSSARY 

The following definitions were modified from Wikipedia encyclopedia: 

Monomer: A monomer is a small molecule that may become chemically bonded to 
other monomers to form a polymer (from Greek mono "one" and meros "part"). 

Dimer: A dimer is a chemical entity consisting of two structurally similar subunits 
called monomers, which are held together by either intramolecular forces (covalent 
bonds) or weaker intermolecular forces. 

Trimer: In chemistry a trimer is a reaction product of three identical molecules. 
Trimers are typically encountered as cyclic trimers. Chemical compounds that very 
easily form trimers are cyanic acids as an early intermediate in a polymerisation 
process. 

Oligomer: In chemistry, an oligomer consists of a limited number of monomer units 
(oUgos, is Greek for "a few"), in contrast to a polymer which, at least in principle, 
consists of an unlimited number of monomers 

Polymer: A polymer (from Greek po'li-s for much, many and meros meaning part) is a 
large molecule (macromolecule) composed of repeating structural units typically 
connected by covalent chemical bonds. While polymer in popular usage suggests 
plastic, the term actually refers to a large class of natural and synthetic materials with a 
variety of properties. 

Dacite: A type of igneous, volcanic rock. It is intermediate in composition between 
andesite and rhyolite. Typically it will contain about 65% Si02. Being volcanic the rock 
has a glassy or very fine grained texture. 

Andesite: A type of igneous, volcanic rock, of intermediate composition, with grains 
varying in size or of uniform very fine or glassy texture. The mineral assemblage is 
typically dominated by plagioclase plus pyroxene and/or hornblende. Magnetite, zircon, 
apatite, ilmenite, biotite, and garnet are common accessory minerals. Alkali feldspar 
may be present in minor amounts. Being of intermediate composition the rock contains 
52-65% Si02. 

Classification of andesites may be refined according to the most abundant phenocryst, 
for example: hornblende-phyric andesite, if hornblende is the principal accessory 
mineral. 

Rhyolite is an igneous, volcanic (extrusive) rock, of felsic (silicon-rich) composition 
(typically >690/0 Si02). It may have any texture with grains varying from uniformly 
very fine grained or glassy from aphanitic to porphyritic. The mineral assemblage is 
usually quartz, alkali feldspar and plagioclase (in a ratio > 1:2 - see the QAPF 
diagram). Biotite and hornblende are common accessory minerals. 

Rhyolite can be considered as the extrusive equivalent to the plutonic granite rock but 
due to its high content of silica and low iron and magnesium contents, rhyolite lava is 
highly polymerized and thus viscous. Rhyolite may also occur as breccias or in volcanic 
plugs and dykes. Very rapid cooling of rhyolite lavas produces a glass called obsidian. 
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Slower cooling forms microscopic crystals in those results in textures such as flow 
foliations, spherulitic, nodular, and lithophysal structures. Some rhyolite is highly 
vesicular pumice. Rhyolite eruptions may be highly explosive; resulting in deposits of 
fallout tephra and/or ignimbrites. 
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NOTATION 

AANP = Alkali activated Natural Pozzolan 

A = Alkali percentage in mineral 

BO = Bridging Oxygen 

CO2 = Carbon dioxide 

DC = Direct Current 

Ec = Static Modulus of Elasticity (GPa) 

fe = Compressive Strength (MPa) 

feu = Cubic Compressive Strength (MPa) 

fcyl= Cylinder Compressive Strength (MPa) 

ft = Splitting Tensile Strength (MPa) 

Notation and list o[abbreviations 

Kax=The activity index or the ratio of [(Ah03+CaO+Fe203+MgO)/Si02] in the mineral 

Kalr = The activity ratio [(Si02+Ah03+CaO) in solution! (Si02+Ah03+CaO) mineral] 
LL = Liquid Limit 

L. 0.1 = Loss on Ignition 

Ms = Modulus of water-glass solution which is the ratio of Si02INa20 

NBO = Non Bridging Oxygen 

PL = Plastic Limit 

SL = Shrinkage Limit 

Sol=Alkali solubility index 

SSD = Saturated Surface Dry 

LIST OF ABBREVIATIONS 

AASHTO = American Association of State Highway and Transportation Officials 

ASTM = American Society for Testing and Materials 

BRE = Building Research Establishment 

BS = British Standard 

FTIR = Furrier Transverse Infrared Spectroscopy 

ICP-AES = Inductively Coupled Plasma with Atomic Emission Spectroscopy 

IR = Infrared Spectroscopy 

OPC = Ordinary Portland cement 

RCPT = Rapid Chloride Permeability Test 

SEMlEDX = Scanning electron microscopy I Energy Dispersive X-ray 

XRD = X-ray Diffraction 

XRF = X-ray Fluorescence 
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Chapter 1 Introduction 

1. INTRODUCTION 

1.1 Introduction 

It is expected that in the near future, the civil engineering community will have to 

produce structures in harmony with the concept of sustainable development, through 

the use of high performance materials with low environmental impact that are 

produced at reasonable cost. Geopolymer cement provides one route towards this 

objective. 

Unfortunately, the production of Portland cement, a major component of concrete 

used in construction, releases large amounts of CO2 into the atmosphere. It is 

estimated that the production of 1 tonne of OPC results in the release of 1 tonne of 

CO2, a major contributor to the greenhouse effect and the global warming of the 

planet (Bilodeau and Malhotra, 2003). Given the huge amounts of concrete used 

worldwide (one cubic metre of concrete per person per year), cement production is 

estimated to contribute around 7% of global CO2 emissions. Geopolymer cement, on 

the other hand, uses lesser amounts of calcium-based raw materials, lower 

manufacturing temperature and lower amounts of fuel, resulting in reduced carbon 

dioxide emissions during manufacture (Davidovits, 1994). Geopolymer materials are 

inorganic polymers based on alumina and silica units and are synthesized from a 

wide range of de-hydroxylated alumina-silicate powders including natural pozzolan, 

condensed with sodium silicate in a highly alkaline environment (Xu and Deventer 

2000, 2003). Although the sodium silicate and alkaline hydroxide must be 

manufactured from refined products, geopolymer cement manufacture remains of 

lower environmental impact compared to OPC manufacture (Shi et aI., 2006). In 

addition, materials based on alumina-silicates are naturally abundant worldwide and 

are present in many wastes and by-products, and geopolymer cement may be 

manufactured using existing concrete works; therefore no new expenditure is 

necessary (Davidovits, 1994). The mechanical properties of these novel materials 

produce the competitive properties for geopolymer cement in comparison with 

Portland cement (Davidovits, 1994, Barbosa et aI., 2000, and Hardjito et aI., 2004). It 

is claimed that geopolymer cement will account for about 47% of the world cement 

market in 2015 (Davidovits, 1994). 
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Geopolymer concrete is concrete produced with a geopolymer cement matrix binding 

fine and coarse aggregates. It has also been referred to in the literature as rock

concrete (Davidovits, 2003) since the finished product is almost identical to natural 

rock in appearance. With geopolymer cement it is possible to produce a mixture that 

can be poured, moulded, worked, and which sets faster and harder than normal 

Portland cement concrete (Taylor, 1997). Despite claims that this technology is based 

on a very old principle of construction materials such as that which was used in the 

Great Pyramids, it is only in the last 35 years that it has been rediscovered and 

attention has been drawn to its useful chemical and physical properties. It is evident 

from the literature that factors governing the formation of geopolymers and their 

setting and hardening are not fully understood. In addition there is little knowledge 

about the behaviour of activated natural pozzolans as geopolymer cement. Therefore 

it is worthwhile to study these alkali activated pozzolans as well as the properties of 

concrete constructed with this type of binder. 

1.2 Objectives and Scope of Work 

The use of alkali-activated natural pozzolan as a construction material is not well 

known. Therefore the principal aim of this research is to investigate the intrinsic 

nature of reacted Iranian natural pozzolans with the aim of establishing the optimum 

concentration of alkali solution for producing geopolymer cement from natural 

pozzolan and discover a suitable molar composition, and curing method for 

producing geopolymer cement derived from them. These all lead to the formulation 

of viable paste and concrete mixtures and the characterisation of their properties and 

performance in terms of compressive and tensile strengths, static modulus of 

elasticity, drying shrinkage, gas permeability, chloride ion penetration and sulphate 

resistance with the overall aim of assessing the potential of this type of geopolymer 

cement for the production of structural grade concrete and comparing this AANP 

concrete with typical ope concrete control mixes. 

The research programme has the following main objectives: 

1) To investigate natural pozzolans as raw materials for producing geopolymer 

cement with emphasis on their chemical, physical and mineral characteristics. 

The aims of determining these characteristics are conducive for finding a 
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model to assess the reactivity of the pozzolans before using these materials 

for the production of geopolymer cement and concrete. 

2) To select a method suitable for activating natural pozzolan as a geopolymer 

cement. 

3) To determine AANP paste and concrete mIX design In order to achieve 

acceptable setting time and compressive strength. 

4) To study the properties of AANP concrete in both fresh and hardened states 

and evaluating its durability performance. 

In order to achieve the above aims, the following additional objectives have been 

identified: 

1) Study the effect of alkali type and concentration on compressive strength of 

paste. 

2) Investigate the effect of the silica modulus of sodium silicate on the 

compressive strength of paste. 

3) Determine the influence of selected kaolinite, calcined pozzolan, and lime as 

mineral additives on the compressive strength of geopolymer paste. 

4) Examine the microstructure of reacted geopolymer derived from activated 

natural pozzolan with selected molar compositions cured at different 

temperatures or autoclave. 

5) Suggest an optimum mix design for AANP concrete using the optimum paste 

obtained in previous steps considering the properties of fresh concrete such as 

slump, workability and setting time. 

6) Study the effect of water to binder ratio and concrete age on the compressive 

and tensile strength and static modulus of elasticity of AANP concrete. 

7) Measure drying shrinkage of AANP concrete. 

8) Investigate the oxygen permeability of AANP concrete. 

9) Determine the chloride ion penetration for AANP concrete. 
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10) Evaluate the resistance of the AANP concrete to sulphate attack. 

1.3 Thesis Outline 

The research project IS reported in this thesis in 9 chapters. Following this 

introductory chapter, the other chapters are organised as follows: 

Chapter 2 presents a review of the literature available on the subject of geopolymers 

and their properties, natural pozzolan and the methods of activation, the influence of 

different properties of various activators on producing geopolymers, and the 

properties of geopolymer concrete. 

Chapter 3 deals with the characterization including chemical, physical and 

mineralogical properties of five types of natural pozzolans in raw and calcined forms. 

Chapter 4 is dedicated to study the pozzolanic reactivity of five pozzolans in their 

natural state and after heat treatment at different calcination and curing temperatures. 

This was done based on simple tests including solubility and compressive strength 

and their efficiency in producing geopolymer cement was compared to select two 

natural pozzolans among them to continue the research. Furthermore a model is 

developed to allow prediction of the alkali activated pozzolan strength versus their 

crystallinity, chemical compositions and alkali solubility. 

Chapter 5 deals with chemical activation of these materials to find out the most 

suitable activators in terms of type, dosage, form and ratio. It also assesses the 

usefulness of mineral additives in compensating for the deficiencies of the main 

oxides, such as Si02, Ah03 and CaO in natural pozzolans with the aim of improving 

the strength of geopolymer cement. 

Chapter 6 covers mix design and the properties of fresh concrete made with alkali 

activated natural pozzolan such as workability, setting time and air content. 

Chapter 7 is dedicated to the evaluation of the engineering properties of the AANP 

concrete including compressive strength, splitting tensile strength, static modulus of 

elasticity, ultrasonic pulse velocity and the drying shrinkage behaviour of the 
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different mixes and factors affecting them. It also includes the relationships between 

different properties of this type of concrete and its compressive strength. 

Chapter 8 deals with the properties related to the AANP concrete durability including 

oxygen permeability, rapid chloride permeability, and sulphate resistance. 

Chapter 9 presents the main conclusions and recommendations for future research. 

The list of references is presented at the end of the thesis. 
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2. LITERATURE REVIEW 

2.1 Introduction 

The purpose of this chapter is to review and discuss the available literature on 

geopolymers including the nature of starting materials and properties of alkaline 

solutions for producing geopolymer cements as an environmental concrete binder. 

The published research on the properties of various types of natural pozzolans as raw 

material and the different ways of activating these materials are reviewed here to 

enhance our knowledge in the use of natural pozzolans in production of this new 

construction material. 

2.2 Geopolymers 

The term "geopolymer" describes a family of mineral binders that have a polymeric 

silicon-oxygen-aluminium framework structure, similar to that found in zeolites. 

Geopolymers are often viewed as the amorphous equivalents of zeolites because they 

have approximately the same AI:Si ratio as a comparable zeolite but without the 

crystal structure (Davidovits, 1999). Highly alkaline solutions are used to induce the 

silicon and aluminium ions in the source materials to dissolve and form the 

geopolymer cement. 

The three main steps in the process are similar to those for synthesis of zeolites: 

1) Dissolution of any pozzolanic compound or source of silica and alumina that 

is readily dissolved in alkaline solution, with the formation of mobile 

precursors of alumino-silicate oxides through the complex action of 

hydroxide ions. 

2) Partial orientation of mobile precursors as well as the partial internal 

restructuring of the alkali poly-sialates. 

3) Re-precipitation of the particles from the initial solid phase where the whole 

system hardens to form an inorganic polymeric structure. 

A geopolymerisation process can transform a wide range of alumina-silica wastes or 

natural materials such as fly-ash (coal and lignite), oil fuel ash, rice husk ash, blast 

furnace and steel slag, silica fume, metakaolin, and natural pozzolans into building 
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products (Davidovits, 1994). These materials can provide poly-condense alumina 

silica behaviour just like organic polymers, at temperatures lower than 100oe. 
Geopolymerization involves the chemical reaction of alumina-silicate oxides with 

alkali poly-silicates yielding polymeric Si-O-AI bonds; the amorphous or semi

crystalline three dimensional silico-aluminate structures (Davidovits, 1991). 

Davidovits defined three basic forms to describe building blocks (Figure 2.1): 

a) Poly (sialite) (-Si-O-AL-O-) 

b) Poly (sialate-siloxo) (-Si-O-AI-O-Si-O-) 

c) Poly (sialate-disiloxo) (-Si-O-AI-O-Si-O-Si-O-) 

The distribution and relative amounts of each of the different Al and Si building 

blocks affect the chemical and physical properties of the final product. 

2.2.1 Chemical properties of geopolymers 

It is worthwhile discussing briefly, the chemistry and molecular structure of 

geopolymers. For the chemical designation of geopolymers based on silico

aluminates, poly (sialate) was suggested. The sialate network consists of 

approximately equal number of Si02 and AI04 tetrahedral linked alternately by 

sharing all the oxygen. Positive ions (Na+, K+, Li+, Ca++, Ba++, NH/, H30+) must be 

present in the framework cavities to balance the negative charge of Ab + in IV-fold 

coordination (Davidovits, 1999). 

2.2.1.1 Set of reactions for geopolymerization 

The set of reactions for geopolymerization can be divided into three stages as below 

(Hanzlicek and Steinerov, 2002, Palomo and Lopez de la Fuente, 2003): 

In the first stage, M-O, AI-O-Si, AI-O-AI, and Si-O-Si bonds in raw material should 

be ruptured. This needs a stimulus, for example the variation of the ion force of the 

medium when adding ions with electro-donor properties (alkaline-metals). The result 

is a redistribution of the electronic density over the silicon atoms that favour the Si

O-Si bond breaks. The hydroxylation degree of silicon may increase above 2 or 3 

units forming unstable intermediate complexes that decompose to give place to 

silicic acid Si(OH)4 and Si-O- anions. The presence of cations of alkaline metals 

balances the negative electrical load of these anions, producing Si-O-Na+ bonds. 
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These alkaline silicates are due to ion-exchange reaction with co-valance ions and 

result in Si-O-Ca-OH complexes. Hydroxyl groups affect AI-O-Si bonds in a similar 

way and AI(OH)4-, AI(OH)s-2, AI(OH)6-3 complexes are due to the pH value of the 

alkaline aqueous solution and existence of aluminates in it. 

In the second stage, condensation of un-separated elements causes favourable 

contacts and creates a coagulation structure. Therefore when pH>7 rupture of Si-O

Si bonds are substituted with hydroxyl complexes of Si(OH)4 which stabilize it as a 

dimmer molecule. Here OH- behaves as a catalyst. All of the phenomena, 

combinations and stability of the products in this stage are affected by the amount of 

alkaline in the system. At a specific moment, due to the reduction of the pH in the 

liquid phase, mechanical strength will develop. This is due to the absorption and 

reaction of alkaline, hydro-silicates and hydro-aluminates. If the alkaline acts as a 

catalyst phenomenon in the destructive stage, it will act as a structural conforming 

element in the next stage. Basic factors that influence the chemical reactions in the 

low temperature syntheses are the interlinking of AI02(OH)4 octahedrons and Si04 

tetrahedrons and changes in alumina-silicate structure in the course of the de

hydroxylation. In the complete de-hydroxylation and disintegration of mineral 

material on heating, the Al atom coordination number changes from 6 to 4 or to 5 

(Xu and Deventer, 2000). The possible change in Al coordination could be described 

as: 

(~-l) . 

Finally, these two stages conduct the polymerization of raw material. This requires 

that condensation of the structure and of the particles from the initial solid phase is 

produced (strongly exothermal step), which involves the appearance of a 

cementitious material with a poorly ordered structure but having a high mechanical 

strength (Van Jaarsveld and Van Deventer et al. 2002; Palomo and Lopez de la 

Fuente 2003). The chemical reaction schemes for the dissolution of AI-Si minerals 

and silicates under strong alkaline conditions, condensation and polymerization of 

elements are discussed as follows: 

Based on the above preliminary general description, the details of chemical reaction 

of geopolymerization are as follows. Normally, the possible chemical process for the 

dissolution of AI-Si minerals and silicates under strong alkaline conditions can be 
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expressed as the following reaction schemes (Babushkin et al., 1985; McCormick et 

al., 1989b) (M represents the Na or K). 

AI-Si solid particle +OH- (aq) ~ Al (OH) 4-+-0Si (OH) 3 (2-2) 

monomer monomer 

-OSi(OH)3 + OH- ~ -OSi(OH)20- + H20 (2-3) 

0-

M+ + -OSi (OH) 3 ~ ~-OSi (OH) 3 (2-5) 

monomer monomer 

(2-6) 

monomer monomer 

3M++ -OSi (OH) 0- ~M+-OSi (OH) O-+M (2-7) 

monomer monomer 

monomer monomer dimmer 

monomer monomer 

monomer monomer dimmer 

2Silicate monome{ +2 Silicate dimme{ +2M+ ~M+-cyclic trimmer 

+M+-linear trimer+20H- (2-12) 
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With concentrated silicate anion addition, the tetramer, pentamer, hexamer, octamer, 

nonamer, and their compounds will appear (Hendricks et aI., 1991). The dissolution 

reaction (2-2), for a fixed particle size, is a function of MOH concentration, the 

structure and the surface properties of the minerals. From the 11 reactions given 

above, it can be seen that increasing the concentration of alkaline solution favours all 

reactions (2-2) to (2-8) shifting to the right hand side. Eqs (2-2) - (2-4) are chemical 

hydration reactions, where the OH- anions react with the AI-Si solid surface to form 

AI(OH)4-, -OSi(OH)3, divalent orthosilicic acid and trivalent orthosilicic acid ions. 

Reactions (2-5) to (2-8) are physical electrostatic reactions, where the alkali metal 

cation M+ reacts with AI(OH)4-, -OSi(OH)3, divalent orthosilicic acid and trivalent 

orthosilicic acid ions to balance coulombic electrostatic repellence. Reactions (2-9) 

to (2-12) are cation-anion pair condensation interactions based on Coulombic 

electrostatic attraction. In reactions (2-8) to (2-12), the ~ cations reacts with 

AI(OH)4- and species of orthosilicic acid ions to form ion pairs of M+-AI(OH)4 

monomer and silicate monomer, dimmer and trimmer ions, which reduce the amount 

of free AI(OH)4- and the species of ortosilicic acid ions, therefore shifting reactions 

(2-2)-(2-4) to the right hand side. According to Dent Glasser and Hervey (l984a) 

there is no cation-anion pair reaction directly on AI(OH)4 tetrahedral, which limits 

the dissolution of AI, so that the concentration of Al is always lower than the 

corresponding concentration of Si. Reactions (2-5) to (2-12) suggest that the alkali

metal cation affects extend of the dissolution of an alumina-silicate. As Na + and K+ 

have the same electric charge, their different effects are as result of their different 

ionic sizes. It has been shown that cation-anion pair interaction becomes less 

significant as the cation size increases. The cation with the smaller size favours the 

ion-pair reaction with smaller silicate oligmers, such as silicate monomers, dimmers, 

and trimers. Thus we can expect that Na+ with the smaller size will be more active in 

reactions (2-5) to (2-12) than K+, which should result in a higher extent of dissolution 

of minerals in the NaOH solution. The fact that sodalite structure is stabilized by 

sodium but not by potassium may be the reason why sodalite, in contrast with the 

other minerals, shows a higher extent of dissolution in KOH than in NaOH solution 

(Xu and Deventer, 2000). Experimental data shows that dissolution of Al and Si 

depends strongly on ionic strength and aqueous pH. Si dissolution increases with a 

decrease of ionic strength and an increase of aqueous pH and Al dissolution does just 

the opposite. On the other hand, fundamental factors that mostly influence the 
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formation and stability of the gel as a precursor of new materials as well as the 

preparation of such materials are: 

• The de-hydroxylation of raw material 

• 

• 

• 

Size of particles 

Value of pH of the alkaline aqueous solution 

Mixing (the intensity and time of mass transportation) (Babushkin, 1985; 

McCormick, 1989) 

Therefore, promoted hydrolytic reaction, or alkali-activation of the alumina-silicate 

raw materials, is followed by the polymerization of the dissolved species (including 

the added soluble silicates) to form an alumina-silicate gel (the binding phase) and 

the subsequent solid state transformation of the gel. With the assumption that Al is 

always in the fourth coordination, a simplified hydrolytic reaction on an alumina

silicate can be shown in the scheme below: 

M+-(AI-O-Si) raw+2M+OH--7M+-(Ar-0--M+) + (M+-0--Sir+H20 M=Na or K 

(2-13) 

From the scheme, it is clear that during alkali activation; every bridging oxygen atom 

(BO) of the original alumina-silicate is replaced by two negative charged non 

bridging oxygen atoms (NBO) which are charged compensated by alkalis. Addition 

of alkalis as network modifiers to an (alumina) silicate is known to generate greater 

concentration of NBOs within the structure. The T04 (T=AI or Si) units within the 

silicate network become more isolated within increasing alkali inclusion and thus 

lower the molecular vibration force constant of the T -0 bond. As a result, an infrared 

(IR) band attributable to the T-O-Si asymmetric stretching vibration of the T04 

tetrahedral of an (alumina) silicate glass has been found to shift to the lower energy 

end with increasing alkali content. The extent of the shift is approximately linear to 

the alkali content. With the view that a greater extent of alkali activation of alumina 

silicates should give rise to a product of greater NBO concentrations, it is possible 

that similar trends can also be observed in the geopolymerization of alumina-silicates 

especially at the early stage (Lee and Deventer, 2003). IR spectroscopy provides a 

useful method for the following changes occurring during reaction: the bands at 1080 

and 460 cm- l are Si-O vibrations, while the AI-O vibration band has shifted to 
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800cm-1
• This band is characteristic of tetrahedral coordinated AI. The geopolymer 

IR spectrum is quite different. The Si-O vibration bands have moved to lower 

frequencies (1000 and 440 Cm-I) and in this spectrum the bands due to AI-O 

vibrations are located at 850 and 700 Cm-1 (Palomo et aI, 1997). 

2.2.1.2 Chemical factors affecting geopolymerization structure 

Davidovits et aI. indicate that certain composition criteria have to be met for 

geopolymerization to occur (in Jaarsveld et aI, 1997, Rahier et aI. 1996, 1997, Hos et 

aI., 2002). These include: (1) The molar ratio Si02:M20 must be between 3.0:1 and 

6.6: 1 in the aqueous soluble silicate solution where M is an alkali metal cation, (2) 

The alumino-silicate oxide must contain Al which is readily soluble and (3) The 

overall molar ratio Ah03:Si02 must be between 1: 3.3 and 1 :6.5. 

Therefore the nature of the starting materials (AI-Si minerals) and actual 

concentrations of alkali in solution affect the formation and setting of this gel phase. 

The concentrations of Si are higher than the corresponding AI, which could be 

caused partly not only by the higher content of Si than Al in the minerals, but also by 

the higher intrinsic extent of dissolution of Si than AI. Minerals have a higher extent 

of dissolution with increasing concentrations of alkaline as well (Xu and Deventer, 

2000). 

Previous works show that factors such as the %CaO, the molar Si-AI in the original 

mineral, the extent of dissolution of Si, the molar Sil Al ratio in solution, the hardness 

of the mineral and the use of KOH as an activator have positive effects on the final 

compressive strength of geopolymer cement while %K20 in the original mineral and 

use of NaOH show a negative correlation. Of all the factors mentioned above, the 

type of alkali, %K20 in the mineral and ppm Si in solution are identified as having a 

significant effect on strength (Xu and Deventer, 2000). 

2.2.2 Physical properties of geopolymers 

Inorganic polymers harden in a few hours at 30°C, a few minutes at 85°C and a few 

seconds if subjected to micro waves (Davidovits, 1999). Compressive strengths of 

geopolymer cement rise with time for up to about 28days~ for example, while 
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compressive strengths may be 20MPa after four hours at 20°C (Figure 2.2), 28day 

compressive strengths are in the range 70-100MPa (Davidovits, 1988). 

Physical strength is not only an advantage for the utilization of these products in 

certain building applications but also provides means for physical encapsulation of 

toxic material. Physical properties, such as compressive strength and porosity, can be 

utilized in distinguishing between different matrices (Van J aarsveld et aI., 1997). 

It is found that variation of alkali choice may be used as a means to tailor pore size. 

This could allow geopolymers to be applied to areas such as catalysts and filtration. 

The majority of the intrusion volume occurs from 0.1 to O.Ol~m pore diameter for 

different geopolymers and consistently decreases as the molarity of KOH increases; 

however, this is contrary for NaOH solution. The plot of differential intrusion 

volume versus pore diameter indicates that the pore size distribution may be bimodal. 

Mercury Intrusion Porosimetry (MIP) data show that the inherent pore size of an 

autoclaved geopolymer is between 10-100 nm (Figure 2.3). Using the autoclave 

processing technique effectively rids the sample of large pores (Bell and Kriven, 

2004). 

It is noteworthy that the curing of geopolymers is achieved by one of three routes, at 

ambient temperatures up to (40-80°C), warm pressing (between two sheets at 80°C 

and ~ 18MPa load for 2 hour) or curing in a high pressure autoclave (iso-statically 

pressed at 20MPa while being heated at 80°C for 24h) (Kriven and Bell, 2004). 

In addition, the evolution of geopolymers with temperature will involve three stages 

comprising the loss of constitutional water at about 150°C, transformation in 

nepheline (Na3KAI4Si4016) or silica-under saturated aluminosilicate at about 900°C 

and melting at about 1300°C (Palomo et aI., 1997). 

With respect to density, inorganic polymer density is typically from 1300 to 2100 

kg/m3. 

2.2.3 Mineralogical properties of geopolymers 

Single phase geopolymers such as anorthite (CaAbShOg) or albite (NaAlSbOg) may 

be thought of as porous, alumina-silicate glass or as metastable, amorphous zeolite 
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which due to the insufficiency of water and hence diffusion paths, do not have an 

opportunity to crystallize. The microstructure of fully reacted geopolymers consists 

of amorphous nano-particles separated by nanopores whose features are the order of 

<10nm (I(riven et aI., 2003). The subsequent geopolymeric products are therefore, 

amorphous to semi-crystalline materials, which distinguishes geopolymers from the 

well crystallized zeolite products, and contributes to the superior mechanical strength 

of geopolymers (Xu and Deventer, 2002). The amorphous nature of geopolymers 

makes structural investigations by X-ray powder diffraction inconclusive. Other 

techniques such as Infrared Spectroscopy and Magic Angle Spinning Nuclear 

Magnetic Resonance (MAS-NMR) developed for studies of zeolitic structures, have 

been employed with varying degrees of success (Van laarsveld et aI., 1997). 

When crystalline alumina-silicates partially dissolve in a concentrated alkaline 

medium, an amorphous geopolymeric gel is formed interspersed with un-dissolved 

crystalline particles. Geopolymers invented by Davidovits in the late 1970s (1991, 

1994), are amorphous to semi-crystalline three-dimensional alumina-silicate 

polymers. Geopolymeric reactants could range from kaolinite or metakaolinite to a 

group of materials rich in Si02 and/or Ah03 oxides, e.g., fly ash, slag, construction 

waste, and natural minerals. It should be noted that the geopolymer binders 

(polysialate, polysialate-siloxo, and polysialate-disoloxo) characterised by 

Davidovits were evenly dispersed (Davidovits, 1991) amorphous to semi-crystalline 

products synthesised at a temperature higher than 1000 e and pressure higher than 1 

At. using kaolinite or calcined kaolinite as the sole alumina-silicate source. In 

contrast, most geopolymers synthesised from different starting materials are mixtures 

of crystalline alumina-silicate particles and semi-crystalline and amorphous alumina

silicate gel. Due to the complex composition of such geopolymers and the difficulties 

of separating the crystalline alumina-silicates particles from the semi-crystalline and 

amorphous gel phases, characterization of the structural composition of geopolymers 

has not been conducted. As a mixture of amorphous to semi-crystalline and 

crystalline phases, the mechanical strength of a geopolymer should be the result of 

both the amorphous gel phase as binder and the crystalline alumina-silicate particles 

as filler. Hence, an understanding of the structural composition as well as the gel 

phase of a geopolymer will aid the development of improved geopolymers (Xu and 
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Deventer, 2002). The mechanism of conforming crystalline and amorphous 

geopolymers could be as below: 

1) Crystalline Poly (sialate) (-Si-O-AI-O-)n: With the geopolymeric precursor 

kaolinite Sh0 5, Ah(OH)4, hydrothermal poly-condensation at 150°C and 5-

10Mpa with NaOH, yields well crystallized sodalite based Na-Poly(sialate) 

Na-PS(Sh0 4, Ah0 4, 2Na), 3H20, within 20 seconds, according to the scheme 

as follow: 

150°C, 20 MPa 

Kaolinite + NaOH Sodium-poly-sialate (Na-Ps) 

10-20sec 

The 3-dimentional framework evolves from the poly-condensation of the 

dimmer: cyclo-di-sialate (CDS). For zeolite A, the primary condensation unit 

is tetramer cyclo-tetra-sialate which is formed in the solution prior to 

crystallization. With longer reaction time, 45-60min, only the denser Na-PS is 

formed (Davidovits, 1991). 

2) Amorphous Poly (sialate-siloxo) (Si-O-AI-O-Si-O)n, (Na, K)-PSS, (Ca, K)

PSS and K-PSS: It is known that the mechanism of the formation of 

crystalline zeolitic species with the ratio Sil AI>2 requires the silico-aluminate 

gels to be crystallized in a closed hydrothermal system at temperature to 

about 175°C. In some cases, higher temperatures to 300°C are used. The 

pressure is generally the auto-genus pressure approximately equivalent to the 

saturated vapour pressure (spa) of water at the temperature designated. 

The time required for crystallization varies from a few hours to several days. 

Aging time at room temperature is 24 hours; crystallization time at 100°C 

from 50 to 100 hours (Breck, 1974). For the K20-Ah03-Si02 system, 

crystallization temperatures have a range from 150°C to 230°C. Yet 

geopolymer binders generally do not implement these hydro-thermal 

conditions. One hardening mechanism among others, involves the chemical 

reaction of geopolymeric precursors such as alumina-silicate oxides (Ae+ in 

IV -fold coordination) with alkali poly-silicates yielding polymeric Si-O-AI 

bonds. This will occur at temperatures below 100°C and when the ratio of 

15 



Chapter 2 Literature review 

Si02/Ah03 is from 1.5 to 6.5 (Davidovits, 1991). Poly (sialates) has the 

empirical formula: 

(2-14 ) 

Wherein M is a cation such as potassium, sodium or calcium, and «n» is a 

degree of poly-condensation; «z» is 1, 2, and 3. Poly (sialates) is chain and 

ring polymers with Si4+ and Ae+ in IV-fold coordination with oxygen 

(Davidovits, 1991). 

2.3 Natural pozzolan and an overview of the activation of its reactivity 

The term "pozzolan" comes from the US simplification of "pozzolana" which is 

derived from the location "Pozzuoli, Italy" and is used in UK and EU standards. 

Here the Romans found a reactive silica-based material of volcanic origin which they 

called "Pulvis puteolanus". Today, both the terms "pozzolan" and "pozzolana" are 

used (Shi et aI., 2006). 

Natural pozzolan is one of the oldest construction materials. According to ASTM C 

618 (2003), a pozzolan is defined as a "siliceous or siliceous and aluminous material 

which in itself possesses little or no cementitious value but will, in finely divided 

form and in the presence of moisture, chemically reacts with calcium hydroxide at 

ordinary temperature to form compounds possessing cementitious properties". 

Lorenz (1985) estimated that about 5% of the solid surface of the earth is covered by 

volcanic rocks or effusive deposits (Shi et aI., 2006). 

These rocks can be classified according to their ongm and essential active 

constituents as below (Massazza, 2003): 

• Volcanic, incoherent, rich in unaltered or partially altered glass is produced 

from fusion. (A characteristic feature of these pozzolanas is the high alkali 

content which can exceed 10 percent. Loss on ignition (L.O.!) generally 

ranges between three percent and six percent but it can be higher in some 

altered materials). 

• Volcanic glass which has been transformed, entirely or partially, into zeolite 

compounds including tuffs by the action of ground waters on volcanic glass 

under high temperature. Many factors such as the characteristics of the 
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• 

• 

volcanic glass ground water properties, temperature and pressure, affect the 

zeolitization process. (In these pozzolanas, the L.O.I. value is considered to 

be an index of the intensity of the transformation that the original volcanic 

material underwent owing). 

Sedimentary: rich in opaline diatoms usually formed from the precipitation of 

silica from solution or from the remains of organisms. (A high alumina 

percentage means that the main component of pozzolana, opal, is associated 

with clay minerals. The presence of clay creates some problems since it can 

reduce the workability, increase the water demand and lower the strength of 

mortar and concrete). 

Diagenetic: rich in amorphous silica, resulting from the weathering siliceous 

rocks. (In some countries, pozzolanic materials with very high silica content 

occur. This can be due to the transformation of the original minerals into 

silica gel by the action of hot springs. Silica prevails with proportions 

reaching 90 percent). 

2.3.1 Pozzolanic activities of natural pozzolan 

The pozzolanic activity includes two parameters, the maximal amount of lime that a 

pozzolana can combine with and the rate at which this occurs. These depend on the 

content of dissolved Si02 or Ah03+Si02. Lime absorption, solubility of a pozzolan 

in saturated Ca(OH)2, alkali, acid, or alkali and then acid solution or electrical 

conductivity change of a solution due to the dissolution of a pozzolan may be used 

for evaluation of pozzolanic reactivity of natural pozzolans (Shi et aI., 2006). The 

performance of a hardened paste depends not only on the reaction rate and degree, 

but also on the nature of reaction products (Shi et aI., 2006). Takemoto and 

Uchikawa (1980) also suggested that the quality of natural or artificial pozzolanic 

cement should be evaluated by strength tests. Many standards now use compressive 

or tensile strength of mortars to show the quality ofpozzolans (Shi et aI., 2006). 

2.3.2 Main Factors affecting pozzolanic activity 

The main factors affecting the pozzolanic reaction are (Massazza, 2003): 

• Nature and composition of the active phases and their content in pozzolana. 
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• 

• 

• 

• 

Specific surface 

The lime/pozzolana ratio of the mix 

The water/mix ratio 

The curing time and temperature 

2.3.3 Methods of activating natural pozzolan 

Literature review 

Lime-pozzolan cements have been used for several thousand of years and have an 

excellent reputation for their durability. Pozzolans are widely used as a cement 

replacement in Portland cement concrete because of their advantageous properties 

which include cost reduction, reduction in heat evolution, decreased permeability, 

alkali aggregate expansion control, increased chemical resistance, reduced concrete 

drying shrinkage, and the improvement of the properties of fresh concrete. Therefore 

using pozzolans for producing concrete has the advantages of lower costs and better 

durability; however, they also have a longer setting time and lower early strengths 

compared with pure Portland cement. Different techniques have been tried to 

increase the reactivity of natural pozzolans to overcome these disadvantages. The 

activation methods for increasing the reactivity of natural pozzolan can be classified 

into three categories: thermal, mechanical, and chemical activation. These are 

discussed below and a comparison based on the strength-cost relationship indicates 

that the chemical activation method is the most effective and the cheapest (Shi and 

Day, 1993,2001). 

2.3.3.1 Thermal activation methods 

Thermal activation methods refer to those processes related to heat treatment, and 

can be classified into two categories: calcination of pozzolans and elevated 

temperature curing of pastes containing pozzolans. The thermal activation decreases 

the ultimate strength but is a useful method for high alumina percentage pozzolan 

associated with clay minerals (Shi, 2001, Massazza, 2003). The calcination of clay 

minerals changes their crystalline structures into amorphous structures and increases 

pozzolanic reactivity significantly. The most common example is metakaolin which 

results from the calcination of kaolinite. The optimum calcination temperature is in 

the range of 650-870°C, and higher temperatures than this result in decreased 

reactivity. Therefore the effect of calcination is a combination of two opposite effects 
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depending on the reactivity of the vitreous, zeolitic, and clay phases together with de

activation depending on the specific surface area and soluble fraction decrease and 

the crystalline increase (Shi, 2001). Generally calcination of a zeolite between 600 

and 900°C can improve its pozzolanic reactivity since heating destroys the alumina 

and silica tetrahedral and makes the material more vulnerable to OH- attack (Shi et 

aI., 2006). Raising the temperature is more helpful to the reaction processes with 

higher reaction activation energies than to those with lower reaction activation 

energies. It has been found (Shi and Day 1993a) that the pozzolanic reaction between 

lime and natural pozzolan has much higher apparent reaction activation energy than 

that for the hydration of Portland cement. Thus, the hydration of lime-pozzolan 

mixtures is more susceptible to temperature than that of Portland cement. It is 

therefore essential for lime-pozzolan cement to be cured at elevated temperatures to 

obtain useful strengths within a reasonable period. Different pozzolans show 

different responses to temperature rise. Recently, the thermal activation of lime

pozzolan cements consisting of 80% natural pozzolan and 20% hydrated lime were 

studied in detail (Shi and Day 1993a, 2000a). It was found that the early strength of 

lime-pozzolan pastes is significantly increased as the curing temperature is elevated. 

Statistical analysis indicated that the strength development rate constant increased 

exponentially with curing temperature from 23 to 65°C, but the ultimate strength of 

these pastes decrease linearly with curing temperature (Shi and Day 1993a). Shi and 

Day (1993) have shown that when the curing temperature is 35°C the strength of 

lime-natural pozzolan pastes has the best development (in Shi, 2001). 

2.3.3.2 Mechanical activation method 

Prolonged grinding not only increases the surface area of a material, but also the 

number of active centres which exist at the edges, comers, projections, and places 

where the interatomic distances are abnormal or are embedded with foreign atoms. 

These centres are in a higher energy state than in the normal structure. The more 

active centres there are, the more reactive the pozzolan is (Gregg1961; Dave 1981). 

It has been found that impaction and friction milling of high alumina cement alters 

its crystallinity and notably modifies its hydraulic behaviour (Scian et al. 1991). In a 

study (Day and Shi 1994), it was found that the strength of lime-pozzolan pastes 

consisting of 800/0 natural pozzolan and 20% hydrated lime correlates linearly well 
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with the Blaine fineness of the natural pozzolan. Controversial results are also 

obtained from the prolonged grinding of different pozzolans (Heath and Brandenburg 

1953). Some lime-pozzolan mixtures and Portland pozzolan cements give higher 

strength by the use of prolonged ground pozzolan, but some show an opposite trend. 

Different pozzolans have different quantities and nature of reactive components. It 

cannot be expected that a unique relationship exists between reactivity and surface 

area for all pozzolans. Some pozzolans are very porous and the N2 (Nitrogen) 

adsorption method is usually used to measure the surface area of these pozzolans, 

although the reactants may not be able to enter the small pores inside the pozzolan 

that can be filled by N2. Thus, the products formed in the open pores or channels that 

are inside pozzolans do not contribute to the strength of hardened pastes and it is not 

surprising that no significant correlation exists between the N2 absorption surface 

area of a pozzolan and its lime absorption and the strength of its lime-pozzolan 

mixture. However the prolonged grinding of the natural pozzolan accelerates the 

pozzolanic reaction during the first 3 days. Costa and Massazza (1974) observed that 

the correlation between combined lime (pozzolanic activity) and surface area was 

valid only before seven days, and the activity of pozzolans depended on the reactive 

content (Si02+Ah03). But Mortureux et aI. (1980) found no correlation between the 

fixed Ca(OH)2 and the surface areas for different pozzolans in another research (Shi 

et aI., 2006). 

2.3.3.3 Chemical activation method 

Chemical activation is the most efficient and feasible method for the activation of 

natural pozzolan. The reactivity of an effective pozzolan can be greatly increased, 

particularly at early stages, by acid-treatment (Alexander 1955b). The degree of 

activation depends on the concentration of acid, and reaches a maximum in the 

region of ION in the case of hydrochloric acid. No further activation was produced 

by raising the temperature of the concentrated acid or by increasing the duration of 

the treatment beyond the 10 min period used (Shi, 2001). The experimental results 

indicated that acid treatment processes were more effective than prolonged grinding 

or the addition of NaOH to mixing water. Acid treatment can only increase the 

pozzolanic reactivity of low-Ca pozzolan particularly at early ages while in high-Ca 

pozzolan, Ca is dissolved and its pozzolanic reactivity is reduced (Berry et al. 1988; 
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Hemmings et al. 1989). Note that the acid treatment is not practical because it is too 

expensive and the operation is too dangerous. 

In all cases, pozzolans are activated with alkaline solutions containing alkaline 

hydroxides and alkali silicates. Alexander (1955a) found that the addition of NaOH 

increased the early strength of both lime-pozzolan and Portland-pozzolan cements, 

and the magnitude of the increase was greater for larger additions up to 2% based on 

the mass of lime-pozzolan blends. The long-term results confirmed that the addition 

of small quantities ofNaOH to lime-pozzolan cements greatly increased the later-age 

strength. The beneficial effect was less with greater addition and became negligible 

at the 2% level. On the other hand, the addition of alkali to Portland cement results in 

a reduction of strength after 3 or 7 days, because the hydration chemistry and the 

morphology of the hydration products are changed due to the presence of alkali 

(Johansen 1976; Jawed and Skalny 1978, 1983). 

Shi and Day (Shi and Day 1992a, 1992b; Day and Shi 1994) conducted extensive 

work on the chemical activation of pozzolans. The results indicated that the addition 

of Na2S04 or CaCh can increase the strength of lime-pozzolan pastes significantly. 

The addition of 4% Na2S04 or! % CaCh'2H20 based on the mass of lime-pozzolan 

blends significantly increases the early strength and the ultimate strength of lime

pozzolan mixtures by 50 to 90%. The presence of 4% CaCh'2H20 is not helpful to 

the early strength of lime-pozzolan pastes, especially at low temperatures, but greatly 

improves the ultimate strength, by two or more times compared to the control pastes. 

CaS04·0.5H20 improves the strength of lime-pozzolan cement at 28 days and 

thereafter. NaCI does not have an effect on the strength development of the hardened 

lime-pozzolan cement pastes up to 5% dosage levels and at age of 180 days. The 

further results confirmed that the above findings are not only applicable for natural 

pozzolans, but also for fly ash and blast furnace slag. The addition of 4% Na2S0.t 

significantly amplifies the early strength of the lime-natural pozzolan pastes. CaC12 

pastes display lower strength than the control pastes during early ages, and surpass 

the control and Na2S04 pastes at later ages. The later age strength of the hardened 

cement pastes with CaCh is about 2.2 to 2.6 times higher than that of control pastes, 

while the strength of pastes with Na2S04 is only about 1.5 to 1.7 times higher. The 

use of chemical activators changes hydration products and accelerates pozzolanic 

21 



Chapter 2 Literature review 

reactions, which results in faster strength development rates and higher ultimate 

strength (Shi and Day 2000b; 2001). 

2.4. Activators 

The formation of zeolites and geopolymers require reactive precursor materials 

besides the concentrations of the reagents (especially of OH-) (Palomo et aI, 1992). 

High alkaline solutions are used to induce the silicon and aluminium ions in the 

source materials to dissolve and form the geopolymer paste (Davidovits, 1999). 

Several activators have been reported as suitable for activation of alumino-silicates. 

Theoretically, any alkali or alkali earth cation such as alkali hydroxide (MOH), non

silicate salts of weak acids (M2C03, M2S03, M2S, M3P04 and MF), non-silicate 

strong acid salts (M2S04) and silicate salts (M20.nSi02) can be used as the alkali 

element (M). Of all these activators, NaOH, Na2C03, Na20.nSi02 and Na2S04 are 

the most widely available and economical chemicals. Some potassium compounds 

have also been used in laboratory studies. However, their potential applications will 

be very limited due to their lack of availability and high costs. It has been reported 

that soluble alkali silicates are the most effective activators for most alkali-activated 

cementing materials (Shi et aI., 2006). 

2.4.1 Type of activators 

The type of activator may also play an important role. Although, the limited research 

regarding the activation of the natural alumina silicates has focused on the effect of 

sodium andlor potassium hydroxide combined (or not) with sodium silicate, it seems 

that KOH usually shows better reaction products than NaOH (Xu and Deventer, 

2000, 2003). Minerals have a higher extent of dissolution with increasing 

concentrations of alkaline particularly in the NaOH than KOH solution; despite all 

the minerals demonstrating higher compressive strengths after geopolymerisation in 

the latter. The longer K+ favours the formation of large silicate oligomers (polymer 

consisting of only a few monomer units) with which Al (OHr4 prefers to bind. 

Therefore in KOH solutions, more geopolymer exist which results in better setting 

and stronger compressive strength of the geopolymer than in the case of NaOH 

activation (Xu and Deventer, 2000). 
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When compared to the use of alkali hydroxide only, the addition of soluble silicates 

makes the reaction occur at higher rates and also improves the final binder (Palomo, 

Grutzeck et aI, 1999: Lee and Deventer, 2004; Fernandez-Jimenez and Palomo 

2005). 

2.4.2 Dosage of activators 

The alkali activation dosage may be expressed in many different ways, such as 

activator molarities, oxides or activator weight percentage and oxides molar ratios. 

The optimum dosage differs according to the type of alumina-silicate used and the 

type of activation solution. Palomo et al (1999) suggested that an excess of OH

concentration in the system can lead to a strength decrease of the alkali cement. It is 

possible to say that the molarities of KOH used ranges from 5M to 10M for the 

activation of natural minerals (Xu and Deventer, 2000). Increasing the activator 

concentration beyond a certain alkali content (depending on mineral, activator and 

curing conditions), may not result in further increase in strength, and detrimental 

effects such as efflorescence and brittleness resulting from the effects of high free 

alkali in the product have been reported (Xu and Deventer 2000). 

2.4.3 Modulus of water glass solution 

Addition of extra Na2Si03 is essential because the more long-chain silicate oligomers 

there are; the more geopolymer precursor is formed (Xu and Deventer, 2000). The 

composition of alkali silicate solution can be expressed by two parameters: one is the 

modulus of solution which is the ratio of Si021Na20, and the other is Si02 or M20 

content, or the sum of Si02+M20 (Shi et aI., 2006). Increasing the Si02INa20 ratio 

affects the degree to which, polymerization significant occurs (Xu and Deventer, 

2000). Commercial liquid sodium silicates have a modulus of 1.6 to 3.85. Sodium 

silicate liquids outside of the range have limited stability and are not practical. The 

pH value is the most important characteristic determining stability of high-modulus 

silicate solution, that is, their inclination to the formation of gel or coagulation (Shi et 

aI., 2006). As the formation of silica gel makes a significant contribution to strength 

in geopolymerisation, there is an obvious interaction between modulus and Na20 . 

That is, if the Na20 content is kept constant, the alkaline activation effect can be 

considered the same, the higher the modulus the more the contribution from silica gel 
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and the higher the strength within a certain range. However, if the sodium silicate 

solid content is kept constant, the higher the modulus the lower the Na20 content and 

smaller the alkaline activation effect but the greater the amount of silica gel. These 

competing effects result in a variable optimum modulus depending on the raw 

material and curing condition. When alkaline activation is insufficient and thus 

becomes the main factor slowing down the activation of aluminosilicate, a lower 

modulus is preferred; otherwise a higher modulus is preferred (Wang et aI, 1994). 

NaOH is added to a sodium silicate solution with a high modulus to produce a 

sodium silicate solution with a lower modulus. However, it can be expected that, for 

a given modulus and concentration, the attenuated silicate solution may have 

different species as compared with the one manufactured directly. Korneev and 

Brykov (2000) proposed a method to produce amorphous hydrated alkali silicate 

with modulus over 1. In this method organic solvents mixed with water are used to 

extract hydrated silicate after the ground silicate is dissolved in a dissolver. This 

method allows direct production of water-glasses of the optimal modulus and 

concentration (Shi et aI., 2006). The dissolution of solid sodium silicate is an 

endothermic reaction and the dissolution rate and solubility of vitreous silicates 

decreases as the modulus increases. The dissolution of alkali silicate glass with a 

modulus greater than 2 is a very complicated incongruent process and is still not well 

understood (Shi et aI., 2006). 

2.5. Geopolymer concrete 

In geopolymer concrete, the geopolymer paste serves to bind not only the coarse and 

fine aggregates but any un-reacted material. Geopolymer concrete can be utilized to 

manufacture pre-cast concrete, structural and non-structural elements, to make 

concrete pavements, immobilize toxic waste, and produce concrete products that are 

resistant to heat and aggressive environments (Hardjito et aI, 2004). 

2.5.1 Properties of fresh geopolymer concrete 

The nature of the fresh geopolymer concrete is that of a stiff paste with high viscosity 

and low workability (Hardjito et aI, 2004a, 2004c). Much literature reports on the 

workability of alkali activated slag binders which states that many factors such as the 

nature of slag and activators, dosage of activator(s), fineness of slag, chemical 

24 



Chapter 2 Literature revie)t' 

admixtures, addition of lime, mineral admixtures and timing for the addition of 

activators have an effect on the rheological properties of alkali activated slag cement 

pastes (AI-Otaibi et aI., 2001, Shi et aI., 2006). During the activation of slag, Collins 

and Sanjayan (1999) and Qing-Hua and Sarkar (1994) found that the workability 

decreased as the content of alkali activator (Na20) was increased. Rapid loss of 

workability was also reported by Douglas et al. (1991) when the reaction happened 

in the presence of sodium silicate. In addition, the state and modulus of the silicate 

can also play an important role in workability. When the modulus is lower than 0.5, 

the workability is low and when the modulus is between 0.5 and 1.0 the workability 

is very high. Where the modulus of sodium silicate is greater than 1, the workability 

of the paste decreases markedly with the increase of the modulus of the silicate 

(Costa et aI., 2007, Shi et aI., 2006). The little information about the workability of 

activated alumina silicate explain that the water content in the mixture plays an 

important role with regard to workability of fresh geopolymer concrete. By keeping 

the molar H20-to-M20 ratio of the mixture constant, the water content may be 

adjusted to produce the desired workability for a specified compressive strength of 

hardened concrete (Hardjito et aI, 2004a, 2004c). 

Although there are plenty of literature reports regarding the setting of activated slag 

binders, there is very little information about the setting of activated alumina silicate 

minerals. A geopolymer mix can be timed to set either fast or slow, by adjusting the 

mixture components. Depending on the synthesis conditions, structural integrity and 

reasonable strength were attained in a short time, sometimes in as little as sixty 

minutes (Van laarsveld et aI., 1997). Using granulated blast furnace slag as the 

source material with the addition of metakaolinite, Cheng and Chiu (2003) found that 

the setting time of the geopolymer paste was affected by curing temperature, type of 

alkaline activator and the composition of source material. They stated that the setting 

time of above geopolymer paste was between 15 to 45 minutes at 60°C. The time 

available between the end of mixing and the start of casting of fresh geopolymer 

concrete may be more relevant in practical applications and measuring the setting 

time at elevated temperatures may not be appropriate. The laboratory experience by 

Hardjito et al. (2003a) showed that the fresh geopolymer concrete could be handled 

for at least 120 minutes after mixing, without any sign of setting and degradation in 

compressive strength. These results depended on the composition of the source 
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material, higher CaO contents giving faster setting. The presence of components 

other than Ah03 and Si02 in the source material may also delay the setting. In 

materials of pure geological origin (say calcined kaolin), the dominant chemical 

contents are only Ah03 and Si02, whereas by-product materials such as fly ash may 

contain other compounds e.g. Fe203. Therefore, it appears that pure geological 

materials may be more reactive with alkaline activators and induce a reduction in 

initial setting time (in Hardjito et aI, 2004). Fly ash based geopolymers showed faster 

initial setting time at higher temperatures with the final setting of these mortars 

occurring 15 to 25 minutes after the initial setting (Costa et aI., 2007). 

2.5.2 Properties of hardened geopolymer concrete 

There are many different views as to which are the main parameters that affect the 

compressive strength and other mechanical properties of geopolymer concrete. 

Palomo et al. (1999) stated that the significant factors affecting the compressive 

strength are the type of alkaline activator, the curing temperature and the curing time 

(in Hardjito et aI, 2004a, 2004c). However, other researchers have reported that the 

important parameters for satisfactory polymerization are the relative amounts of Si, 

AI, K, Na, molar ratio of Si to Al present in solution, the ratio of alumina silicate 

mineral to kaolinite (when kaolinite is added), the type of alkaline activator, the 

water content, and the curing temperature (Xu and Deventer, 2000, Barbosa et aI., 

2000, Rowles et aI., 2003). The presence of silicate ions in the alkaline solution 

substantially improves the mechanical strength and modulus of elasticity values but 

has a slightly adverse effect on the otherwise very strong matrix/aggregate and 

matrix/steel bond (Fernandez-Jimenez et aI, 2006). Experimental results show that 

the H20/M20 molar ratio in the mixture composition significantly affects the 

compressive strength of fly ash based geopolymer concrete, whereas the influence of 

the Na20/Si02 molar ratio is less significant (Hardjito et aI, 2004a, 2004c). An 

increase of the H20/M20 molar ratio and water to geopolymer solids ratio decreases 

the compressive strength of geopolymer (Hardjito et aI, 2004a, 2004c). In addition, 

Van Jaarsveld et al. (2002) found that curing at elevated temperatures for long 

periods of time may weaken the structure of hardened material. The research on fly 

ash-based geopolymer binder, Palomo et al. (1999b) has confirmed that curing 

temperature and curing time significantly influence the compressive strength but this 
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does not seem to be same for different aluminosilicates. Longer curing time and 

higher curing temperature increased the compressive strength in fly ash based 

geopolymer concrete, although the increase in strength may not be as significant for 

curing at more than 60°C and for periods longer than 48 hours (in Hardjito et aI, 

2004a, 2004c). In most cases, 70% of the final compressive strength is developed in 

the first 4 hours of setting. Because the chemical reaction of the geopolymer paste is 

a fast polymerization process, the compressive strength does not vary greatly with 

the age of concrete, after it has been cured for 24h. This observation is in contrast to 

the well-known behaviour of ope concrete, where the hydration process extends 

over a long time period and hence strength increases over time (in Hardjito et aI, 

2004a, 2004c). Another kinetic difference between Portland cement and alkaline 

activated systems is the existence of a relatively low threshold temperature in the 

former, above which thermal curing can have an adverse effect on the mechanical 

development and even on material durability. For an activated ash, on the contrary, a 

suitable choice of reaction time and curing temperature can yield a different reaction 

products without detracting from material durability, because according to Fernandez 

et ai. (2006) increases in the curing temperature go hand-in-hand with decreases in 

the amount of Al incorporated into the final product and a concomitant improvement 

in mechanical properties. Such improvements parallel the formation of a 

homogeneous aluminaosilicate matrix (Fernandez-Jimenez et aI., 2006). 

Different pathways for preparation of a synthetic geopolymer, including the order of 

addition of the raw materials, show different evolutions of compressive strength of 

the materials. The best method is to prepare an alkaline solution (mixing MOH and 

water and stirring for 2 minutes), adding pozzolan to alkaline solution for 15 minutes 

in a mixer, followed by sodium silicate, and mixing for 15 minutes (Palomo et aI, 

1997). 

2.5.2.1 Alkali activated slag 

When alkali-activated slag cement concrete is cured in water, compressive strength 

of the concrete keeps increasing until 365 days. However, if the concrete is cured in a 

sealed condition, the strength stopped increasing at about 90 days. This may be 

attributed to the lack of moisture available for the hydration of slag inside the 

concrete. The concrete exposed to air exhibits the lowest strength all the time and 
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strength retrogression occurs at ages greater than 28 days. The strength reaches a 

maximum after 14 to 28 days of hydration, and then starts to decrease (Shi et al., 

2006). For Portland cement concrete, the effect of inadequate water on strength is 

greater at higher water to cement ratio, lower strength development and in the 

presence of fly ash or slag (Neville, 1995). 

2.5.2.2 Alkali activated fly ash 

Although there are only a few reports regarding the flexural strength and elastic 

modulus of alkali activated fly ash (AAFA), it seems that both show inferior values 

to those of Portland cement. Puertas et al. (2003) reported that the flexural strength 

of alkali activated PFA mortars are 5.79 MPa while OPC based mortars are 7.76 

MPa. They also showed that the elastic modulus of OPC mortars was 5679 MPa, also 

higher than the values for PFA mortars activated with 8M NaOH(4441 MPa). 

Fernandez-Jimenez et al. (2006) found that the addition of soluble silicates in the 

alkaline solution improved the modulus of elasticity in PFA-based geopolymer 

concrete. However, this improvement was not sufficient and the alkali activated PF A 

concrete showed a much lower static modulus of elasticity than expected. The values 

presented for OPC concrete ranged from 30.3 to 32.3GPa while for geopolymer 

concrete they ranged from 10.7 (without silicate) to 18.4 GPa (with silicate). Hardjito 

et aI. (2004) observed better elastic modulus results for a concrete samples made in 

similar conditions: 22.95 to 30.84 GPa. 

Apart from their short setting times compared to conventional concrete, geopolymers 

also attain higher unconfined compressive strengths and shrink much less on setting 

than OPC (for 7 days only 0.2% that of OPC while for 28 days it is 0.5% of OPC). 

(Van Jaarsveld et aI., 1997). One explanation for this behaviour may be found in the 

microstructural characteristic of the new binder which in alkali activation of fly ash 

can form a zeolite-type phase. Zeolite properties and microstructure are widely 

known to be unaffected by the loss of the water incorporated during their synthesis 

because not only water loss is reversible in most zeolites but also they are able to 

absorb water from the humidity in atmosphere (Fernandez-Jimenez et aI, 2006). The 

drying shrinkage strains are extremely small indeed and the ratio of creep strain-to

elastic strain (that is, creep factor) reached a value of 0.30 in approximately 6 \veeks 
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after loading on the i h day with a sustained stress of 40% of the compressive 

strength. Beyond this time the creep factor increased only marginally (Hardjito et aI, 

2004). For normal condition the value of 1.6 is suggested in BS 5400-4:1990 for 

creep factor of OPC concrete, although it depends on environmental conditions, 

maturity of the concrete at the age of loading and composition of it. Kaewmanee and 

Okamura (2001) reached to a value of 1.35 in their works on OPC self compacted 

concrete loading on the i h day with a sustained stress of 40% of the compressive 

strength while Tarek and Sanjayan (2008) have shown that the rate of creep factor 

evolution with time for slag mixes is lower than of OPC mix which is 1.49 at the 

time of cracking. 

2.5.3 Durability properties of geopolymer concrete 

Glukhovsky (1957) hypothesized that the superior durability of ancient plain (un

reinforced) concretes resulted from the coexistence of cements containing calcium 

silicate hydrate (C-S-H) with some form of alkaline alumina-silicate hydrates. The 

latter are essentially impure forms of current day geopolymers. It can be seen that the 

alkali-activated slag cement paste exhibits not only a lower porosity but also a finer 

pore structure than Portland cement paste (Shi et aI., 2006). Therefore, low 

permeability (10-9 cm/s) is another property that favours the use of these materials for 

the immobilization for toxic metals (Devidovits, 2002). Acidic corrosion of hydrated 

cement based materials has attained more importance in the recent decade due to 

fears over the deteriorating effects of acidic media (e.g. acidic rains, acidic ground

waters, etc) on Portland cement-based materials. At the same time, development of 

geopolymer cements (a new class of alkali activated material) with better chemical 

resistance necessitates more detailed investigation. Chemically activated alumina

silicate tested for durability properties and resistance of concrete to chemical attack 

by mineral acids such as sulphuric, nitric, hydrochloric, and organic acids was 

claimed to be far better than that of Portland cement concrete (Allahverdi and 

Skvara, 2001). To evaluate the resistance of geopolymer concrete to sulphate attack, 

it was shown by that after 12 weeks of exposure for specimens soaked in a 5% 

sodium sulphate (Na2S04) solution, there were no significant changes in the 

compressive strength, mass, and the length of test specimens. Davidovits (1999) 

reported that geopolymer materials do not generate any dangerous alkali-aggregate 
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reaction, even in the presence of high alkali content. In addition, Paolomo et al. 

(1999) reported that metakaolin-based geopolymer mortars remained stable and 

showed negligible deterioration in microstructure and strength after being soaked in 

ASTM sea water, sodium sulphate solution (4.4% by mass), and sulphuric acid 

solution (0.001 M) for 9 months (Hardjito et aI, 2004). These materials also have 

good resistance to freeze-thaw cycles as well as a tendency to drastically decrease the 

mobility of most heavy metal ions contained within the geopolymeric structure (Van 

Jaarsveld et aI., 1997). 

2.6 Summary 

The following conclusions can be summarised from the literature: 

1. It is clear from the literatures that certain composition criteria have to be met 

for geopolymerization to occur. These include: (a) The molar ratio Si02:M20 

in the aqueous soluble silicate solution must be between 3.0: 1 and 6.6: 1 

where M is an alkali metal cation, (b) The alumino-silicate oxide must 

contain Al which is readily soluble and (c) The overall molar ratio 

Ah0 3:Si02 of the finished product must be between 1: 3.3 and 1 :6.5. 

2. Previous work show that in the nature of the starting materials (AI-Si 

minerals) factors such as increasing the %CaO, increasing the molar Si-AI 

ratio, or the extent of dissolution of Si and the molar Sil Al ratio in solution 

and the hardness of the mineral have positive effects on the final compressive 

strength of geopolymer cement while %K20 in the original mineral shows a 

negative correlation. Of all the factors mentioned above, %K20 in the mineral 

and ppm Si in solution are identified as having a significant effect on 

strength. 

3. The subsequent geopolymeric products are found to be amorphous to semi

crystalline materials. Thus the amorphous nature of geopolymers makes 

structural investigations by X-ray powder diffraction inconclusive. 

4. Solubility of a pozzolan in an alkali may be used for evaluation of pozzolanic 

reactivity of natural pozzolans. Many standards now use compressive 
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strength of mortars made with specified cement pozzolan to show the quality 

of pozzolans. 

5. Calcination is a useful method for preparing an active pozzolan in samples 

with a high alumina percentage associated with clay minerals. Generally 

calcination of a zeolite between 600 and 900°C can improve its pozzolanic 

reactivity. Thus it seems the pozzolanic reactivity can be improved by 

calcination before reacting them with alkali to produce geopolymer cement. 

6. It was shown in the literature that for lime-natural pozzolan pastes, the 

strength development rate increased exponentially with curing temperature 

from 23 to 65°C but the ultimate strength of these pastes decrease linearly 

with curing temperature and when the curing temperature is 35°C the strength 

has the best development. These curing temperatures were taken in 

consideration with the present investigation and improvement in pozzolanic 

properties due to elevated curing temperature was studied. 

7. The best alkali activator is potassium hydroxide (KOH) used with sodium 

silicate (Na2Si03). The potassium hydroxide favours the formation of large 

silicate oligomers (polymer consisting of only a few monomer units) with 

which AI(OHr4 prefers to bind and adding the sodium silicate is essential 

because the more long-chain silicate oligomers there are; the more 

geopolymer precursor forms. 

8. The literature shows that if the sodium silicate solid content is kept constant, 

the higher the modulus, the lower the Na20 content and smaller the alkaline 

activation effect but the greater the amount of silica gel. These competing 

effects result in a variable optimum modulus depending on the raw material. 

9. The reviewed literature introduces geopolymer concrete as a stiff one with 

high viscosity and low workability generally. The workability of geopolymer 

concrete is said to depend on the modulus of sodium silicate and decreases 

markedly with an increase in the modulus of the sodium silicate. 

10. Alkali-activated cement concrete needs sufficient moisture available for 

reaction and it is really important to affect positively on strength. Other 
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significant factors affecting the compressive strength are the relative amounts 

of Si, AI, K, and Na, the molar ratio of Si to Al in solution, the type of 

alkaline activator, the curing temperature and the curing time. 

11. The reviewed literature indicates that in general, good strength and durability 

can be achieved with concrete produced from alkali activated cements and 

geopolymers based on alkali activated fly ash in comparison with ope 
concretes. In the present work an attempt to achieve these properties for 

geopolymer based on alkali activated natural pozzolan was followed. 
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3. CHARACTERISTICS OF NATURAL AND CALCINED POZZOLANS USED 
IN THE INVESTIGATION 

3.1 Introduction 

As the nature of the starting materials including mineral composition, chemical 

composition and crystal structure affects the formation of the geopolymer gel phase; this 

chapter deals with the mineralogy, chemical composition and physical properties of the 

raw and heated materials used in the present research. Several different types of natural 

pozzolans are quarried in Iran. The volcanic ashes studied were dacite and andesite, 

which have pozzolanic properties in their natural state or after heat treatment. Five 

natural pozzolans, which are currently used to produce Portland pozzolan cement by 

Iranian Cement Factories, have been considered in this work. These are Shahindej and 

Sahand dacite from the North West, Sirjan and Rafsanjan dacites, and Taftan andesite 

from the South East of Iran. All were prepared with a particle size of 100% less than 

75~m, and used to produce Portland pozzolan cement by Ourmia, Ardebil, Kerman (use 

two sources of pozzolanic materials including Sirjan and Rafsanjan dacites) and Khash 

Cement Factories, respectively. Since most of these raw materials contain zeolites and 

clay minerals and have a high loss on ignition, they were heated at 700 and 8000e to 

improve their pozzolanic properties. X-ray differaction (XRD) was carried out in the 

Department of Materials, Sheffield University by the author using a Siemens D500 

machine to study the mineralogical composition of these natural pozzolans. Quantitative 

XRD and X-Ray Fluorescence (XRF) were carried out in the Kansaran Binaloud X-ray 

laboratory in Tehran, Iran to determine the percentage of different minerals in each 

pozzolan as detected from XRD. Spectra were recorded on a Philips PW1800 machine 

and their chemical compositions determined by XRF using a Philips PW 1480 

instrument. Samples in powder form were examined in the Philips diffractometer with 

nickel-filtrated CuKa radiation generated at 40 KV and 30 rnA. The mineralogy, 

chemical composition and physical properties of these five pozzolans in their natural 

state and after calcining were compared in this chapter to determine their pozzolanic 

reactivity. 
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3.2 Shahindej Dacite 

The Urumiyeh-Bazman volcanic belt runs parallel to the Sanandaj-Sirjan zone on the 

NE side of Iran, and owes its existence to widespread and intensive volcanic activity 

which developed on the Iranian plate from the upper Cretaceous to Recent times. The 

Urumiyeh-Bazman volcanic belt is believed to have resulted from the collision of the 

Arabian and central Iranian continental plate margins. Urumiyeh Dokhtar Magmatic Arc 

is a part of this belt composed mainly of tholeitic, calc-alkaline and K-rich alkaline 

intrusive and extrusive rocks and associated volcanics. It is represented by sub-alkaline 

volcanics that vary in composition from basaltic through andesitic to dacite and 

rhyolitic. The material from this site used by the Ourmia Cement Factory in kiln is 

composed mainly of vitric tuff of acidic composition about rhyodacite, which has 

pozzolanic application due to its high amount of acidic vitroclastic glass shards and low 

fraction of fine crystalline particles. These properties were studied by the Iranian 

Cement Guild (Ezatian, 2004) through light microscopic investigation on solid samples. 

3.2.1 Mineralogical Composition 

The quantitative XRD patterns of the Shahindej pozzolan in Table 3 .l-a show it to be a 

mixture of minerals with different percentages, while the mineralogical composition is 

presented on Figure 3.2-a. It has high percentages of zeolites minerals (clinoptilolite), 

and its pozzolanic properties can be changed by heat treatment and also elevated 

temperature curing (Figure 3.3-a). In order to study the effect of thermal treatment on 

the properties of Shahindej pozzolan, it was heated at 700°C and 800°C where the results 

of the variation of mineralogical composition are presented on Table 3.1-b and Figure 

3.3-a. Comparing the quantitative XRD results indicates that when this material is 

calcined at 700°C and 800°C clinoptilolite percentage had decreased and that this 

mineral had converted to mordenite and opal with properties shown briefly in Table 3.2. 

respectively. The comparison of XRD patterns of natural Shahindej dacite heated at 

various temperatures on Figure 3.3-a, shows quartz increasing for Shahindej when 

treated at 700°C and this mostly composed of quartz which does not react in normal 

condition with activators. Continued increase the calcination temperature shows that the 

crystalline phase related to clinoptilolite and the peaks related to calcite have decreased 
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in Shahindej treated at 800°C thus these minerals appeared as a minor phase only. This 

fact and changing of clinoptilolite to opal which reacts intensively with alkaline solution 

(Table 3.2) makes Shahindej treated at 800°C more reactive. Therefore the untreated 

Shahindej and the one treated at 800°C seem to be the states of Shahindej pozzolan 

which have the potential of activation while the latter might have better reactivity 

(Figure 3.3-a, Table 3.1-a, Table 3.1-b). 

3.2.2 Chemical Composition 

The chemical composition of untreated Shahindej pozzolan was analysed by XRF and 

presented on Table 3.3-a. In X-Ray Fluoresence analysis, the quantitative data is only 

collected on the atoms of elements present. Most ceramic and rock materials can be 

approximated to oxygen lattices with cations added for charge balance. Within a fused 

bead environment all cations present will indeed be present as fully oxidised species. As 

a result when calibrations are prepared, the major components in these systems as oxide 

weight percent are calculated. As a rule of thumb in these systems the sum of the major 

component oxides should come to a value close to 100%. The proportion of a particular 

element be required can easily be calculated considering the atomic weights of the 

element and oxygen plus the molecular weight of the oxide. 

Considering the diagram of total alkalis versus Si02 (T AS; Le Bas et aI., 1986), 

Shahindej dacite is an acidic tuff with respect to its chemical composition. Untreated 

Shahindej pozzolan contains Si02 and Ah03 with the Si02 content equal to 70.l3 wt. % 

and Ah0 3 content equal to 11.11 wt. %. It has a high amount of L.O.I. equal to 10.28 

wt. % and higher content of K20 relative to Na20. These features were found to give a 

negative affect on geopolymeric paste strength (Xu and Deventer, 2000). However, the 

high percentage of silica and alumina (Si02+Ah03), which is equal to 81.24 wt. %, were 

found to overcome the above negative effect. CaO content in this pozzolan resulted 

equal to 2.52 wt. %. Whereas in the previous section comparing the XRD results shows 

that the intensity peaks for Shahindej untreated and treated at 800°C seem to prepare the 

potential of activation for Shahindej pozzolan, the chemical composition of Shahindej 

pozzolan treated at 800°C was analysed by XRF as well and presented on Table 3.3-b. 
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For calcined Shahindej pozzolan at 800°C, the loss on ignition decreases to 5.78 wt. % 

and the amount of Si02 increases to 73.44 wt. % which causes the amount of silica and 

alumina (Si02+Ah03) to increase to 85.32 wt. %. Other component has not changed 

significantly. 

3.2.3 Physical Composition 

In order to measuring the specific gravity of pozzolan it is weighed first in air, then 

while immersed in kerosene; the difference in the two weights divided by the specific 

weight of kerosene, according to Archimedes' principle , is the weight of the kerosene 

displaced by the volume of it. The specific gravity of the pozzolan is the ratio of its 

weight in air to the difference between its weight in air and its weight immersed in 

kerosene (ASTM D-854, ASTM D5550). The Shahidej pozzolan was passed through a 

4.75mm (No.4) sieve before testing and the specific gravity of it, as supplied by the 

manufacturer, was measured using a pycnometer according to the mentioned method. 

The measurement was reported to be equal to 2.2. 

Specific surface of Shahindej pozzolan was measured, by the manufacturer, using the 

Blaine air permeability method. This method tends to measure only the external surfaces 

of particles (Ramezanianpour and Cabrera, 1987). The principle of this test is based on 

the relation between the flow of air through the pozzolan bed and the surface area of the 

particles comprising that. The pozzolan bed in the permeability cell is 1 cm thick and 

2.5cm in diameter. Knowing the density of pozzolan the weight required to make a 

pozzolan bed of porosity of 0.475 can be calculated and placed in the permeability cell 

in a standard manner. Air was passed slowly through the pozzolan bed at a constant 

pressure difference and the rate of air flow until the flow meter shows a difference in the 

range of 30-50cm in the outlet tube is measured. The specific surface (Sw) is then 

determined from relationship between the differential pressure and flow rate in steady 

flow conditions. 

The pozzolan was ground for 4 hours and passed through a 751lm sieve before testing. 

The specific surface of Shahindej pozzolan was found equal to 1 062lcm
2
/g (resulted the 
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same as whatever was measured and reported in Evaluation of Pozzolans of Iran by 

Ramezanianpour and Ghazi Moradi, 1992). 

Sodic plagioclase and oligoclase crystalline particles with 25 to 75 micron sizes and 

crushed quartz particles from 10 to 25 micron sizes are observed and reported in the 

sample of Shahindej pozzolan by Iranian Cement Guild (Ezatian, 2004). 

3.3 Sahand Dacite 

Mount Sahand which is located in the south eastern part of Tabriz is 3600m high. Its 

vast cone is made of tuff and ash. Existence of high volume of ash and pumice pieces far 

away from Sahand indicates a vigorous explosion of this mountain occurred 

(Darvishzadeh, 1983).The composition of Sahand lava are rhyolite, dacite, and andesite. 

The activity of this volcano started from early Quaternary, and today it is in a relatively 

calm period. The materials from this volcano are used by Ardebil Cement Factory in kiln 

which is near Mameghaneh Azarshahr. These materials were studied by Iranian Cement 

Guild (Ezatian, 2004) using light microscopy on solid samples and reported to be 

composed mainly oftrachydacite including mostly albite. 

3.3.1 Mineralogical Composition 

The mineral compositions of the Sahand pozzolan were identified by XRD and are 

presented in Figure 3.2-c, while the quantitative XRD patterns of the Sahand dacite used 

in this work are shown in Table 3.1-a. The Sahand dacite has the lowest pozzolanic 

activity due to a lack of amorphous material in its make-up. In fact it is mainly 

composed albite which composes 75% of its mass. However, its reactivity can be 

improved by heat treatment up to 800°C. The results of the variation of mineralogical 

composition percentage for calcined samples are presented in Table 3.1-b, while the 

XRD diffractograms of the untreated and calcined samples at different temperatures are 

presented in Figure 3.3-a. It appears that it is hornblende that becomes disordered at 

8000C as its peaks disappear and Sahand pozzolan calcined at 800°C might have the 

potential for activation. 
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3.3.2 Chemical Composition 

The chemical composition of Sahand dacite was analysed by XRF and the results are 

presented on Table 3.3-a. The main constituents in untreated Sahand pozzolan are Si02 

and Ah03 with Si02 content equal to 64.67 wt. % and Al20 3 content equal to 11.85 wt. 

% and the sum of silica and alumina at 76.52 wt. %, which satisfies the requirements of 

ASTM C-3111 ASTM C-618 for natural pozzolans. Other constituents are F e203, CaO, 

MgO, K20 and Na20. In Sahand dacite the amount of K20 is equal to 4.26 wt. % and 

more than 2.3 wt. % was detected for Na20. The CaO content, which according to Xu 

and Deventer (2000) is positively correlated to the compressive strength, is equal to 6.79 

wt. %. The loss on ignition is 5.15 wt. %. Whereas in the previous section comparing the 

XRD results shows that the reactivity of Sahand can be improved by heating it up to 

800°C, the chemical composition determined by XRF analysis of Sahand pozzolan 

heated to 800°C is presented in Table 3.3-b. For calcined Sahand pozzolan at 800°C, the 

loss on ignition decreases to 2.90 wt. % and the amount of Si02 and Ah03 increases to 

67.4 and 11.87 wt. % respectively, which causes the amount of silica and alumina 

(Si02+AI203) to increase to 79.27 wt. %. The amount of K20 decreases to 3.41 wt. % 

and Na20 is detected at 1.9 wt. %. Other components did not change significantly. 

3.3.3 Physical Composition 

The specific gravity of Sahand pozzolan used in this work was measured usmg a 

pycnometer according to ASTM D-854/ASTM D5550 method and reported by Ardebil 

Cement Factory to be equal to 2.7. 

Specific surface of Sahand pozzolan was measured, by the manufacturer, using the 

Blaine air permeability method. The specific surface of Sahand pozzolan was found to 

be equal to 6331 cm2/g (resulted the same as whatever was measured and reported in 

Evaluation of Pozzolans of Iran by Ramezanianpour and Ghazi Moradi, 1992). 

3.4 Sirjan Dacite 

The Sanandaj-Sirjan zone was first recognized as a separated linear structural element 

by Sticklin (1968). The zone lies between the main Zagros thrust in the S Wand the 
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Urumiyeh-Bazman volcanic belt in the NE. It joins to the Taurus Orogenic belt in 

Turkey. Part of the zone is characterized by Palaeozoic volcanism and Hercynian 

metamorphism. This source is used by Kerman Cement Factory in kiln and is composed 

mainly of glassy pumicite brecciate tuff, with the composition of dacite igneous rock. 

3.4.1 Mineralogical Composition 

XRD shows the mineralogical composition of Sirjan Dacite (Figure 3.2-d); while the 

mineralogical percentages are presented in Table 3.1-a. Sirjan pozzolan has a vitroclastic 

texture with comminute crystalline plagioclase including more than 40% albite. 

Therewith more than 5% of this pozzolan is composed of brown biotite and the rest is 

composed of glassy pumicite particles which sit on a brown glassy texture including 

hematite. The percentage of glass shards is about 30%, which is determined by 

subtracting the sum of the crystalline phase percentages from the sum of the major 

phases should come to a value close to 100%. 

It can be seen that the reactivity of Sirjan dacite cannot be improved by heat treatment as 

the intensity of peaks for the material calcined at 700°C has changed only a little, which 

is due to the conversion to muscovite of 5% biotite and 10% montmorillonite in the main 

phases of Sirjan dacite (Table 3.1-b and Figure 3.3-b). 

3.4.2 Chemical Composition 

The chemical composition of Sirjan pozzolan determined by analysis XRF is presented 

in Table 3.3. The main constituents are Si02 and Ah03 with Si02 content equal to 68.51 

wt. %, Ah0 3 content equal to 11.84 wt. % and the sum of silica and alumina equal to 

80.35%. This satisfies the requirements of ASTM C 3111ASTM C 618 for natural 

pozzolan. Other constituents are Fe203, CaO, MgO, K20 and Na20. In Sirjan dacite the 

amount of K20 is equal to 3.19% and more than 1.62% is detected for Na20. The loss on 

ignition was resulted equal to 6.14%. In the previous section comparing the XRD results 

shows that the intensity peaks for Sirjan were improved slightly by heating it up to 

7000C, thus the chemical composition of Sirjan pozzolan treated at 700°C was analysed 

by XRF as well and presented in Table 3.3-b. For calcined Sirjan pozzolan at 700°C. the 

41 



Chapter 3 Characteristics of natural and calcined pozzolans used in the investigation 

loss on ignition decreased to 2.2 wt. % and the amount of Si02 detected was equal to 

68.36 wt. %. The percentage of Ab03 increased to 13.40 wt. %, which caused the 

amount of silica and alumina (Si02+Ab03) to increase to 81.76 wt. %. The amount of 

K20 decreases to 2.66 wt. % and Na20 increased to 2.78 wt. %. Other components 

including Fe203, CaO, MgO were 4.41,3.90, and 1.2%, respectively. 

3.4.3 Physical Composition 

The specific gravity of Sirjan pozzolan was measured, by the manufacturer, using a 

pycnometer according to ASTM D-854/ASTM D5550 method and reported to be 2.28. 

Specific surface of Sirjan pozzolan was measured using the Blaine air permeability 

method in the Kerman cement factory. The specific surface of Sirjan pozzolan was 

resulted equal to 6348 cm2/gr (the same as whatever was measured by BHRC, Tehran, 

Iran and reported by Maghsoudi, 2001). 

3.5 Rafsanjan Dacite 

Godarkhoon Sorkh is located 40 to 50 km to the south part of Kerman and east of the 

Kaleh Gavi Mountains. This is a vast part of Urumiyeh volcanic belt which stretches 

more than 1000 km from northwest to southeast of Iran. In the upper part of the Pliocene 

deposits in this zone, there is a thick layer of light grey brecciate tuffs which adjacent to 

the river, include 0.5-3 cm of white pumice and red and grey glassy magma particles. 

These brecciate tuffs show are the result of acidic exploding volcanic activity in a dry 

environment. They lie in a NW alignment and form a hill 40 to 50 m high adjacent to the 

contiguous plain. A 2 to 3 m thick layer of grey dacite which includes biotite and 

feldspar in a glassy texture extends over this layer, which has resulted from the 

explosive eruption of lava. Towards the east, pumiced brecciate tuffs and an overlying 

dacite lava are in tum succeeded by loose Quaternary conglomerate. The lower part 

include the outcrop of a 400m long, 150m wide by 40-50m thick forms a strip of 

brecciate tuffs which dips a 10 to 15 degree slope towards the east (Maghsoudi, 2001). 

The brecciate tuff which is composed mainly of glassy brecciate vitric material with 

composition near to about that of dacite, presently used to produce Portland pozzolan 
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cement by the Kerman Cement Factory in kiln. Rafsanjan pozzolan has a vitroclastic 

texture including euhedral crystalline of sodic plagioclase. 

3.5.1 Mineralogical Composition 

The mineral composition of the Rafsanjan pozzolan was identified by qualitative XRD 

(Figure 3 .2-e), where the composition is given in Table 3.I-a. Rafsanjan dacite is an 

acidic tuff and its pattern indicates albite, montmorillonite, hornblend, biotite, calcite, 

quartz and amorphous minerals. It contains 25% of the clay mineral montmorillonite and 

as shown in Figure 3.3b heat treatment increases its pozzolanic reactivity as the clay 

present is dehydroxylated. It has been pointed out that the optimal calcination 

temperature for destruction of Na-montmorillonite is 800°C (Murat and Driouche, 

1988). The effect of calcination on the reactivity of the pozzolan depends on the 

combination of the two reverse effects including activation depending on the reactivity 

of clay phase and deactivation depending on the decrease of soluble fraction and 

increase of crystalline fraction. Therefore, calcinations of Rafsanjan sample at 700°C 

activated montmorillonite, which makes up 25% of mineralogical components, but also 

decreased the amorphous phases from 25% to 10%. Continued to increases in the 

calcination temperature shows that at 800°C Rafsanjan dacite has a slight potential of 

activation (Figure 3.3-b, Table 3.1-a, Table 3.1-b). 

3.5.2 Chemical Composition 

The chemical composition of Rafsanjan pozzolan was analysed by XRF and the results 

are shown in Table 3.3-a. The major inorganic oxides which are Si02 and Ab03 are 

equal to 68.31 wt. % and 12.59 wt. %, respectively. The sum of these major inorganic 

oxides is equal to 80.9% and satisfies the ASTM C 3111ASTM C 618 requirements for 

natural pozzolan to have a good pozzolanic activity. In Rafsanjan dacite the amount of 

K20 is equal to 3.26% and more than 2.4% is detected for Na20 . The Rafsanjan dacite 

has loss on ignition equal to 4.41 percent as presented in Table 3.3-a. Since according to 

the previous section the optimal calcination temperature for calcining Rafsanjan 

pozzolan seems to be 800°C, thus the chemical composition of Rafsanjan pozzolan 

treated at 800°C was analysed by XRF as well and presented in Table 3.3-b. For 
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calcined Rafsanjan pozzolan at 800°C, the loss on ignition decreased to 2.48 wt. % and 

the amount of Si02 increase to 71.53 wt. %. The percentage of Ah03 is detected equals 

12.46 wt. %, which causes the amount of silica and alumina (Si02+Ah03) to increase to 

83.99 wt. %. The amount ofK20 and Na20 is detected equal to 2.53 wt. % and 1.87 wt. 

% respectively. Other components have not changed significantly. 

3.5.3 Physical Composition 

The specific gravity of Rafsanjan pozzolan used in this work determined by the 

pycnometer according to the ASTM D-854/ASTM D5550 method, was measured and 

reported by Kerman Cement Factory to be equal to 2.08. 

Specific surface of Rafsanjan pozzolan was measured, by the manufacturer, using the 

Blaine air permeability method. The specific surface of Rafsanjan pozzolan resulted was 

equal to 4870 cm2/gr (the same as whatever was measured by BHRC, Tehran, Iran and 

reported by Maghsoudi, 2001). 

3.6 Taftan Andesite 

Mount Taftan is a semi-active 4050m high starto-type volcano. It is the highest peak in 

Baluchestan and is located near Khash City. Taftan lavas are andesitic. Various 

sulphuric springs surround this mountain and gas emissions from its highest peak 

provide evidence of an active volcano. It has been reported that molten material came 

out from Taftan in 1970 and 1971 (Darvishzadeh, 1983). The materials used from this 

area by Khash Cement Factory in kiln and mill are composed mainly of vitric tuff of 

acidic composition about andesitic, which has pozzolanic application due to its high 

amount of acidic vitroclastic glass shard and low dissection and fine crystalline particles. 

These properties were obtained by Iranian Cement Guild (Ezatian, 2004) through light 

microscopic investigation on solid samples. 

3.6.1 Mineralogical Composition 

The qualitative XRD is shown in Table 3.I-a, while the mineralogical composition is 

presented in Figure 3.2-f. Optical microscopy by Iranian Cement Guild (Ezatian, 200.+), 
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revealed feldspar (sodic plagioclase), amphibole, quartz, and biotite. The background 

was glassy which due to oxidation was converted in to clayey minerals although this 

section is prepared from powder samples and not quite clear. In fact pumice and glassy 

particles are sometimes seen in samples. 

3.6.2 Chemical Composition 

The chemical composition of Taftan pozzolan was analysed by XRF and is presented on 

Table 3.3-a. It has the lowest amount of L.O.1. equal to 1.85% amongst the five natural 

pozzolans selected in this study and higher content of Na20 relative to K20 which has a 

positive affect on geopolymeric paste strength (Xu and Deventer, 2000). In Taftan 

andesite the amount ofK20 is equal to 2.12 wt. % and less than 3.21 wt. % was detected 

for Na20. Untreated Taftan pozzolan contains Si02 and Ah03 as the major constituents 

(the same as other pozzolans) with the Si02 content equal to 61.67 wt. % and Ah03 

content equal to 15.9 wt. %. The percentage of silica and alumina (Si02+Ah0 3) is equal 

to 77.57%. The study shows that calcining the Taftan pozzolan does not change its 

behaviour. 

3.6.3 Physical Composition 

The specific gravity of Taftan pozzolan, as supplied by the manufacturer, is 2.22. This 

property was measured using a pycnometer and according to ASTM D-854/ ASTM 

D5550 standards. 

The Kash Cement Factory measured the specific surface of Taftan pozzolan using the 

Blaine air permeability method, which gave a value of 3836 cm
2
/g. This is the same as 

the value reported in Evaluation of Pozzolans of Iran by Ramezanianpour and Ghazi 

Moradi (1992). 

Crystalline particles of sodic plagioclase, quartz, amphibole and biotite of 20 to 75 

microns size were observed and reported in samples of Taftan pozzolan by Iranian 

Cement Guild (Ezatian, 2004). 
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3.7 Summary 

1. The properties of five natural pozzolan were discussed in this chapter and the 

variability in composition of these materials, based on published data or from 

cement works themselves, are shown in Table 3.4. 

2. Pozzolans contain sodic zeolites, especially clinoptilolite, such as Shahindej 

dacite, after calcination at 800oe, convert to opal which reacts rapidly with an 

aqueous alkaline solution and seems to be suitable for producing geopolymers. 

3. The hornblende peaks in the XRD of Sahand pozzolan disappeared due to 

calcination and it seems by calcination to temperatures of 800-1000oe would 

result even more than 8000 e provides a more reactive material, although it might 

not be economic. 

4. The effect of calcination on the reactivity of the pozzolans such as Sirjan and 

Rafsanjan which contain more altered minerals such as montmorillonite, depends 

on the combination of two reverse effects including activation depending on the 

reactivity of clay phase and deactivation depending on the decrease of soluble 

fraction and increase of crystalline fraction. It was observed that the reactivity of 

Sirjan dacite cannot be improved by heat treatment and the Rafsanjan treated at 

800ae seems to have a slight potential for activation. 

5. Taftan has the lowest L.O.I., highest soluble calcium content and higher content 

of Na20 relative to K20 which all have positive affects on the geopolymeric 

paste strength according to the literatures, might be the best case to be activated 

in alkaline solution to provide geopolymer cement. 

6. All of these Pozzolans were studied for their alkali solubility and compressive 

strength for selection for geopolymer cement production in the next chapter. 
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Table 3.1-a- Mineral compositions of the pozzolanas conducted by Kansaran 
Binaloud X-ray laboratory in Tehran, Iran 

Main and Minor Minerals 

Feldspars Clays Mafics 
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Shahindej dacite 14% 40% - - - - 11% 32% -

Sahand dacite 75% - - 2% 12% - - 9% -

Sirjan dacite 43% - 10% - - 5% - 7% 33% 

Rafsanjan dacite 20% - 25% - 12% 7% 5% 4% 25% 

Taftan andesite 41% - - - 20% 6% - 6% 25% 

Note: Qualitative Analysis usually involves the identification of a phase or phases in a 
specimen by comparison with "standard" patterns (i.e., data collected or calculated by 
someone else), and relative estimation of proportions of different phases in multi phase 
specimens by comparing peak intensities attributed to the identified phases. 
Quantitative analysis of diffraction data usually refers to the determination of amounts 
of different phases in multi-phase samples. Quantitative analysis may also be thought of 
in terms of the determination of particular characteristics of single phases including 
precise determination of crystal structure or crystallite size and shape. In quantitative 
analysis, an attempt is made to determine structural characteristics and phase proportions 
with quantifiable numerical precisionfrom the experimental data itself. 

47 

'@ ...... 0 
f.-

97 

98 

98 

98 

98 



Chapter 3 Characteristics of natural and calcined pozzolans used in the int'estigatiol1 

Table 3.l-b - Mineral compositions of the calcined pozzolanas conducted by 
Kansaran Binaloud X-ray laboratory in Tehran, Iran 

Main and Amorphous Minor Minerals 
Feldspars Clays Mafics 
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Shahindej dacite 700e 12% 26% 60% 
800e 15% 38% 4% 5% 37% 

Sahand dacite 700e 64% 10% 25% 
800e 63% 3% 15% 18% 

Sirjan dacite 700e 54% 10% 4% 30% 
800e 57% 6% 1% 3% 30% 

Rafsanjan dacite 700e 65% 4% 14% 5% 10% 
800e 47% 5% 12% 2% 8% 25% 

Note: Qualitative Analysis usually involves the identification of a phase or phases in a 
specimen by comparison with "standard" patterns (i.e., data collected or calculated by 
someone else), and relative estimation of proportions of different phases in multi phase 
specimens by comparing peak intensities attributed to the identified phases. 
Quantitative analysis of diffraction data usually refers to the determination of amounts 
of different phases in multi-phase samples. Quantitative analysis may also be thought of 
in terms of the determination of particular characteristics of single phases including 
precise determination of crystal structure or crystallite size and shape. In quantitative 
analysis, an attempt is made to determine structural characteristics and phase proportions 
with quantifiable numerical precision from the experimental data itself 
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Chapter 3 Characteristics of natural and calcined pozzolans used in the investigation 

Table 3.2 - The properties of Zeolite and Clay Minerals of the materials used in this 
investigation as described by F . Ezatian (1998) 

Minerals Description 
Clinoptilolite fOnTIS as a devitrification 
product (the conversion of glass to 
crystalline material) of volcanic glass in 
tuffs. Tuffs are consolidated pyroclastic 
rocks. The devitrification occurs when the 

Tectosilicates Clinoptilolite glass is in contact with saline waters. 
(Zeolite group) KN a2Ca2(Siz9Ah )072.24 H2O Clinoptilolite is one of the more useful 

natural zeolites and has high resistance to 
extreme temperatures and chemically 
neutral basic structure while its pozzolanic 
properties can be changed by heat 
treatment. 
Mordenite is an abundant naturally 
occurring zeolite with relatively low cation 
exchange properties. The degree of 

Tectosilicates Mordenite 
exchange ofNa + of mordenite for other 

(Zeolite group) Na2K2Ca(AhSilO)024.7H20 
cations decreases with increasing polarizing 
ability of the cation and the acid resistance 
of cationic fOnTIS of it increases with 
increasing polarizing ability of the exchange 
cation. 
Kaolinite, illite and serisite are the most 
important minerals resulting from albite 

Tectosilicates Albite 
breaking up. These are economic minerals 
and used to produce glass and ceramics. 

(Albite group) NaAISi30 g Melting them at 1100 to 1300°C and adding 
kaolin and quartz to it, makes a dense white 
material called 2orcelain. 
Opal tends to convert to calcedonic crystals, 

Tectosilicates Opal( amorphous) that reacts intensively with alkaline aqueous 
(Silica group) Sio.nH20 and is soluble in strong and hot alkaline 

solutions. 
Reaction relationships between muscovite 

Phyllosilicates 
and potassium feldspars can be observed at 

Muscovite-Illite more than 700°C. Muscovite is resistant to 
(Muscovite-Illite 

KAI2Si3AI01o(OH)2 weathering and due to absorbing water; 
group) breaks down to illite, montmorillonite and 

kaolinite clays re~ectively. 
Montmorillonite clays are mainly result of 
the erosion of basic igneous rocks 

Phyllosilicates Montmorillonite containing Mg and Ca. It may form 
(Montmorillonite NaO.3(AIMg)2Si40 1o(OH)2 kaolinite due to the presence of water and 

group) generate chlorite or illite. 
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Chapter 3 Characteristics of natural and calcined pozzolans lIsed in the im'esligalioll 

Table 3.3-a Chemical composition (oxide percent) of the materials used in this investigation 
conducted by Kansaran Binaloud X-ray laboratory in Tehran, Iran (2005-2006) 

Material LOI Si02 Ah0 3 Fe203 CaO MgO Ti02 K20 Na20 

Shahindej dacite 10.28 70.13 11.11 1.27 2.52 0.92 0.14 2.25 1.01 

Sahand dacite 5.15 64.67 11.85 3.03 6.79 1.11 0,537 4.26 2.3 

Sirjan dacite 6.14 68.51 11.84 3.73 2.90 1.43 0.366 3.19 1.62 

Rafsanjan dacite 4.41 68.31 12.59 2.70 3.88 1.37 0.263 3.26 2.40 

Taftan andesite 1.85 61.67 15.90 4.32 7.99 2.04 0.438 2.12 3.21 

Total 

99.63 

99.70 

99.73 

99.18 

99.54 

Table 3.3-b Chemical composition (oxide percent) ofthe calcined materials used in this 
investigation conducted by Kansaran Binaloud X-ray laboratory in Tehran, Iran (2005-2006) 

Material LOI Si02 AI20 3 Fe203 CaO MgO Ti02 K20 Na20 Total 

Shahindej dacite-800°C 5.78 73.44 11.88 1.30 2.55 0.98 0.147 2.30 1.10 99.48 

Sahand dacite-800°C 2.90 67.40 11.87 3.10 6.87 1.18 0.564 3.41 1.90 99.19 

Sirjan dacite-700°C 2.20 68.36 13.40 4.41 3,90 1.20 0.508 2.66 2.78 99.42 

Rafsanjan dacite-800°C 2.48 71.53 12.46 2.76 3.93 1.46 0.276 2.53 l.87 99.3 
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Table 3.4 Variability in the Chemical composition (oxide percent) of the materials used in this investigation 

Material LOI Si02 AI20 3 Fe203 CaO MgO Ti02 K20 Na20 Consideration & References 
Shahindej 12.1 62.2 12.82 4.24 5.01 - - 1.52 - Ourmia Cement Company, 2004 
dacite 10.62 71.43 8.29 1.49 3.72 1.04 0.23 1.88 1.03 Conducted by Kansaran Binaloud 

X-ray laboratory, 2004 
10.28 70.13 11.11 1.27 2.52 0.92 0.14 2.25 1.01 Conducted by Kansaran Binaloud 

X-ray laboratory, 2005 
I Sahand - 62.7 18.25 3.57 2.65 1.05 - 0.41 0.19 Ardebil Cement Company, 2004 
. dacite 5.15 64.67 11.85 3.03 6.79 1.11 0.537 4.26 2.3 Conducted by Kansaran Binaloud X-

ray laboratory, 2005 
Sirjan 9.8 60.9 14.0 3.77 5.3 0.39 - 1.88 2.4 Ghadrooni Dam Project report, 2005 
dacite 5.2 63.6 17.72 3.68 5.6 0.8 - 2.4 0.22 Maghsoudi, 2001 

3.24 62.92 19.55 4.16 3.52 0.2 - 3.1 3.5 Kerman Cement Company, 2004 
6.14 68.51 1l.84 3.73 2.9 1.43 0.366 3.191 1.62 Conducted by Kansaran Binaloud X-

ray laboratory, 2005 
Rafsanjan 1.9 74.4 13.6 l.6 0.84 1.2 - 6.2 0.14 Maghsoudi, 2001 
dacite 4.41 68.31 12.59 2.7 3.88 1.37 0.263 3.26 2.4 Conducted by Kansaran Binaloud X-

ray laboratory, 2005 
Taftan 2.2 60.1 18 6.8 7.2 1.6 - - - A.Ghazi Moradi, 1992 
andesite 2.66 61.17 18.77 4.68 6.98 - - - - Khash Cement Company, 2004 

l.64 58.35 12.98 4.86 15.01 1.69 0.58 l.61 2.7 Conducted by Kansaran Binaloud 
X-ray laboratory, 2004 

l.85 61.67 15.9 4.32 7.99 2.04 0.438 2.12 3.21 Conducted by Kansaran Binaloud X-
ray laboratory, 2005 

-
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Chapter 3 Characteristics of natural and calcined pozzolans used in the investigation 
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Figure 3.2-a Mineralogical composition of Shahindej dacite (testing was carried out in 
the Department of Engineering Materials, University of Sheffield) 
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Figure 3.2-b Mineralogical composition of calcined Shahindej dacite (testing was carried 
out in the Department of Engineering Materials, University of Sheffield) 
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Chapter 3 Characteristics of natural and calcined pozzolans used in the investigation 
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Figure 3.2-e Mineralogical composition of Rafsanjan dacite (testing was carried out in 
the Department of Engineering Materials, University of Sheffield) 

STOE Powder Diffraction System 

1400 

1200 

1000 

:?: 
:!! 800 

~ 
~ 
"£ 
D « 600 

MH 

400 A 

2uO 

A 

FH 

A 

A 
MH 

A Q A A 

18-Feb-09 

Raw Taftan 

A=Albite 
FH=Ferrohornblende 
MH=Magnesiohornblende 
Q=Quartz 
B=Biotite 

{Range 1 

Figure 3.2-fMineralogical composition of Taftan andesite (testing was carried out in the 
Department of Engineering Materials, University of Sheffield) 

55 



8000 

7000 

6000 

5000 

4000 

3000 

2000 

1000 

o 

Biot ite Horn bien de 

Biotite 
Montmorillonite 

Hb mblende 

Montmorillonjt~ 

10 20 

- Shabindej dacite 

- RafSanjan dacite 

Albite 

Ibite 

Taftan andes ite 
Hornblende Albite 

Calcite 
Rafsanjan dacite 

Albite 
Sirjan dacite 

Sahand dcite 

Albile 

30 40 50 60 70 

- Sahand dacite - Sirjan dacite 

- Taftan Andesite 

Figure 3.2-g Comparison of X-ray diffraction of five untreated pozzolans conducted by Kansaran Binaloud X-ray laboratory in Tehran, Iran 

56 



Chapter 3 Characteristics o{natural and calcined pozzolans used in the investigation 

3000 

2500 

2000 

1500 

1000 

500 

o 

7000 

6000 

5000 

4000 

3000 

2000 

1000 

0 
0 

o 

The XRD patterns of ShabIDdej pozzolan at various 

dehydroxiIation temperature 

0 

~ L 0 
...... .IL 

CI CI .A, c~i .J. ~~a ..... Q j 

- lll1treated 
Q 

llca ~? 
- 700C 

S~ - 800C 

20 40 60 80 

The XRD patterns of Sahand pozzolan at various 

dehydroxilation temperatures 

A 

- Untreated 

- 70OC 

- 80OC 

10 20 30 40 50 60 70 

Figure 3.3-a The XRD pattern of Shahindej and Sahand pozzolans at various calcination 
temperatures conducted by Kansaran Binaloud X-ray laboratory in Tehran, Iran 
A=Albite; Ca= Calcite; Cl=Clinoptilolite; MH=Magnesiohornblende; Q=Quartz 

57 



Chapter 3 Characteristics of natural and calcined pozzolans used in the investigation 

4000 

3500 

3000 

2500 

2000 

1500 

1000 

500 

o 

3000 

2500 

2000 

1500 

1000 

500 

o 

o 

o 

The XRD patterns of Sirjan pozzolan at various 

dehydroxilationte~rahrre 

A A 
Mu 1l . ..J 

:Y UJ\ J J •• 1 l JI 

A 

lYJ u i f\ A - untreated 
~"'.od .... A ... 

Q AB - 70OC 

~l .hi J.
M ~ ~ . - 80OC 

20 40 60 80 

The XRD patterns of Rafsanjan pozzolan at various 

de hydroxylation temperature 

f 

MH 
. , .... 

~1H ·t ---. ~ .J. J. I lJ1 ~ 

M~ 
AA 

~.'11 ~ 1~.AJ ..10. - untreated 

-- 700C 

MM~ ~1~ MH A .l ,. 
_L 

- 800C 

20 40 60 80 

Figure 3.3-b The XRD patterns of Sirjan and Rafsanjan pozzolans at various calcination 
temperatures conducted by Kansaran Binaloud X-ray laboratory in Tehran, Iran 

A=Albite; B=Biotite; !v1H=Magnesiohornblende; M=Montmorillionite; Mu=Muscovite 

58 



Chapter 4 The selection ofpozzolan for producing geopolymer based on simple tests 

4. THE SELECTION OF POZZOLAN FOR PRODUCING GEOPOL YMER 
BASED ON SIMPLE TESTS 

4.1 Introduction 

The main objective of this chapter is to study the pozzolanic reactivity of five pozzolans 

both in their natural state and after calcination at different temperatures, comparing their 

efficiency in producing geopolymer cement with respect to their minerals, crystallinity 

and chemical compositions which were studied in the previous chapter. The solubility of 

both the untreated and calcined materials in alkaline solution was taken as an indicator 

for pozzolanic activity. The improvement in pozzolanic properties following heat 

treatment and elevating curing temperature was studied using alkali solubility and 

compressive strength tests. A model is developed to allow prediction of the alkali 

activated pozzolan strength versus their crystallinity, chemical compositions and alkali 

solubility. Finally, in order to maintain continuance of the research, Taftan and 

Shahindej natural pozzolans were selected based on engineering judgement from x-ray 

diffraction and fluorescence results, simple tests including solubility and compressive 

strength. 

4.2 Measurement of Pozzolanic Activity of Natural Pozzolans 

The assessment of pozzolanic activity is essential for estimating the performance of a 

material as pozzolan and many studies have been carried out to find a general test 

method which, besides being valid for every type of pozzolan, is acceptable for accuracy 

and quickness. A number of methods have been suggested for estimating pozzolanic 

activity. These can be subdivided into chemical and physical tests. In chemical tests, the 

amount of combined lime in a lime-pozzolan solution or the amount of silica or silica 

and alumina soluble in an acid or alkali, have been used as an index of pozzolanic 

activity. In physical tests, unconfined compressive strength has been used for assessing 

pozzolanic activity (Shi, 2001). Both the American Standards (ASTM) and British 

Standards (BS) define indices based on the ratio between the compressive strength of a 

specified cement pozzolan mortar and a control mortar with plain cement. 
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Chapter 4 The selection ofpozzolan for producing geopolymer based on simple tests 

In the present research, the solubility of a natural pozzolan in boiling 0.5M NaOH \\"hich 

Milestone (1978) reported as a rapid chemical test for evaluating pozzolanic reactivity, 

was used for assessing pozzolanic activity. Compressive strengths have also been used 

to determine pozzolanic activity. The general procedure is to make samples of a certain 

size from different alkali activated pozzolans pastes with same alkali concentration, and 

then test the samples in compression after 28 days. Variations in the type and 

concentration of alkali influence the strength significantly, and therefore must be 

specified to enable comparison of results. 

4.3 Experimental investigations 

In the rapid chemical test, for measuring solubility of different natural pozzolans 

described in Report No. C.D. 2273 of Department of Scientific and Industrial Research 

of New Zealand (Milestone, 1978), 0.15g of the material, which has been dried at 

105°C, is accurately weighed into a 300ml nickel beaker. 200 ml of boiling O.SM NaOH 

is poured in to the beaker and the resulting suspension brought back to boiling as quickly 

as possible. After boiling for different times, the suspension is cooled quickly with cold 

water and filtered. The residue is well washed with cold water and the residue dried at 

105°C overnight. The weight of undissolved material is determined by reweighing. The 

alkali solubility is the percentage of material dissolved. Then Silica, aluminium, and 

calcium were determined by ICP tests in the filtrate of samples and the results are 

presented in Table 4.1. 

In order to determine the compressive strength of pozzolanic materials, 4ml of 7.5M 

KOH solution was added to 15g pozzolan powders and blended for 5 min before the 

addition of 0.5 ml of sodium silicate solution with a solid content equal to 2.1 %. Each of 

the subsequent slurries was mixed for 5 min and transferred to PVC moulds measuring 

20x20x20 mm. Samples were removed from the mould after 24 hrs and cured at 20, 40, 

60, and 80°C for 27 days after which the compressive strength of these samples was 

measured. Three samples of each condition were tested with average compressive 

strength values reported as the results. 
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Chapter 4 The selection ofpozzolan for producing geopolvmer based on simple tests 

4.4 Pozzolanic activity of five pozzolans in their natural state and after heat 
treatment 

All 5 pozzolans contain Si02 and Ah03 with the Si02 content varying from 61.67 \\1.% 

in Taftan andesite to 70.13 wt.% in the Shahindej dacite. The Ah03 content varies from 

11.11 wt.% in Shahindej dacite to 15.90 wt.% in Taftan andesite while the CaO content 

varies from 2.52 wt. % in Shahindej to 7.99 wt.% in Taftan andesite (Table 3.3a). 

The XRD patterns for the pozzolans in Table 3.1 shows that all of them to be mixture of 

minerals with various degrees of crystallisation. All of these pozzolans contain albite as 

main mineral phase varying from 14 wt.% in Shahindej dacite to 75 wt.% in Sahand 

dacite. Four of them, Shahindej, Sahand, Sirjan, and Rafsanjan, contain both zeolites and 

clay minerals and three, Sirjan, Rafsanjan and Taftan, contain about 30% amorphous 

material. 

The nature of the starting materials including chemical composition, mineral 

composition and crystal structure affects their pozzolanic activity and the formation of 

the geopolymer gel phase. Two types of heat treatment can be used; those which involve 

calcination of the pozzolans and those where elevated temperature curing of pozzolan 

pastes is used. Often the two processes must be combined. The pozzolanic activity of 

pozzolans in their natural state and after heat treatment has been assessed by 

measurement of rapid alkali solubility and 28 days compressive strength and, as can be 

observed in Table 4.1, calcination significantly increases the solubility of all pozzolans, 

except Taftan. 

4.4.1 Shahindej Dacite 

Shahindej dacite, in spite of having high L.O.I. and higher content of K20 relative to 

Na20 which can have a negative affect on geopolymeric paste strength, the extent of 

dissolution of Si and the molar Sil Al ratio of the dissolved material in solution has a 

significant effect on compressive strength (Table 4.1). 

The solubility of Shahindej dacite in untreated and calcined forms was measured after 3, 

5, and 7 minutes boiling in 0.5M NaOH in order to determine the ideal time for boiling. 
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The results of alkali solubility versus boiling time for the Shahindej dacite are shown in 

Figures 4.1 and 4.2 for both the untreated and calcined forms. Three minutes was 

selected for this pozzolan when untreated and calcined at 800°C and five minutes for 

calcination at 700°C and 900°C as the optimum boiling time, since for longer boiling 

times, the dissolution of this pozzolan is reduced. The alkali solubility results of the 

untreated and calcined forms of Shahindej pozzolan show solubility increases due to 

calcining up to 700°C (Figures 4.2, 4.3 and Table 4.1). 

When compared with the parameters which indicate the pozzolanic actIvIty, the 

compressive strength of the geopolymeric paste prepared with dacite tuff calcined at 

700°C attains the highest value equal to 42.5MPa at the usual curing temperature of 

40°C (Figure 4.4). This is thought to be due to activation of the zeolite which converts 

from clinoptilolite to mordenite at 700°C. Continued calcination up to 800°C; converts 

mordenite to opal which reacts strongly with alkaline solutions giving a compressive 

strength of 68.5MPa when cured at 20°C, 37.6MPa at 40°C and 60.4MPa at 80°C 

curing. Untreated Shahindej dacite gives a strength of the geopolymeric paste that varies 
, 

from 22MPa at 40°C to 81.5MPa at 80°C (Figure 4.4). Thus Shahindej pozzolan in an 

untreated form and cured at 60°C or calcined at 800°C and cured at 20°C might be 

useful for producing structural concrete (Figures 4.4, 4.5). 

4.4.2 Sahand Dacite 

Sahand dacite has the lowest pozzolanic activity due to the lack of amorphous material 

in its mineralogy components. The solubility of Sahand dacite in untreated and calcined 

forms was measured after 3, 5, and 7 minutes boiling in O.5M NaOH as well to 

determine the ideal time for boiling. The results of alkali solubility versus boiling time 

for the untreated and calcined Sahand dacite are shown in Figures 4.1 and 4.2. 

respectively. Five minutes was selected as the optimum boiling time for this pozzolan 

since for longer times of boiling the dissolution of this pozzolan is reduced. However, as 

it is obvious from the measurements of the alkali solubility and the results of the 

compressive strengths, its reactivity can be improved by heat treatment up to 900°C. By 

calcining this pozzolan, the solubility was increased from 45% to 67% for calcined 
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sample at 9000 e (Figure 4.3). Therefore, the solubility of the Sahand dacite can be 

improved significantly by calcining which increases its compressive strength from 5MPa 

to 19.3MPa for the sample calcined at SOO°C which curing at 40°C (Figure 4.4). 

Calcined samples at 9000 e show higher compressive strengths of up to 32.9MPa when 

cured at sooe and might be used to produce precast concretes (Figures 4.4, 4.5). 

4.4.3 Sirjan Dacite 

The solubility of Sirjan dacite in untreated and calcined forms was measured in O.5M 

NaOH solution at three different boiling times (3, 5, and 7 minutes) to determine the 

ideal time of boiling. The results of alkali solubility versus boiling time for the untreated 

and calcined Sirjan dacite are shown in Figures 4.1 and 4.2, respectively. Three minutes 

was selected as the optimum boiling time for this pozzolan, since for longer times of 

boiling the dissolution of this pozzolan is reduced. Sirjan dacite reactivity is not 

improved by calcining. Calcination decreases alkali solubility, the maximum solubility 

corresponding to the untreated sample at 63.75%. Increasing the calcination temperature 

from 7000 e to 9000 e increases the alkali solubility from 39.1S% to 52.36% which is 

still less than the solubility of untreated form (Figures 4.2, 4.3). 

Although the geopolymeric paste prepared with the untreated form of Sirjan pozzolan 

shows moderate compressive strength when cured at 60°C, XRD results (Table 3.1), 

confirm that calcination has not had any significant effect on Sirjan dacite reactivity. 

This is mirrored in the compressive strength results which are maximum for the 

untreated form and equal to 13MPa at 40°C curing and 29MPa at 60°C curing (Figures 

4.4,4.5). 

4.4.4 Rafsanjan Dacite 

The solubility of Rafsanjan dacite in untreated and calcined forms was measured after 3, 

5, and 7 minutes boiling in O.5M NaOH in order to determine the ideal time of boiling. 

The results of alkali solubility versus boiling time for the untreated and calcined states 

are shown in Figures 4.1 and 4.2, respectively. Three minutes was selected as the 

optimum boiling time for this pozzolan to avoid dissolution of non-pozzolanic material. 
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As it is apparent from these curves the solubility reduces after 3 minutes boiling, but it 

increases further due to the dissolution of secondary conformed minerals. Increasing the 

temperature of calcination from 700°C to 800°C increases the percentage of amorphous 

phase from 10% to 25% the same as in the raw sample and shows the same solubility. 

Thereafter, solubility decreases with increasing the temperature up to 900°C (Figures 

4.2,4.3). 

The calcined form of Rafsanjan dacite at 700°C is less reactive than the raw samples 

with a drop of compressive strength from 22.3MPa to 2.5Mpa at 60°C curing 

temperature (Figures 4.4, 4.5). It can be observed in Figure 4.4 that increasing the 

temperature of calcination up to 800°C increases the compressive strength which 

increased from 26.5Mpa at 40°C curing temperature to 42.4MPa at 80°C curmg 

temperature, while calcination has no significant effect on improving reactivity at 60°C 

curing temperature (Figures 4.4, 4.5). 

4.4.5 Taftan Andesite 

Results of alkali solubility versus boiling time for the Taftan andesite are shown m 

Figure 4.2 for the untreated and for the calcinated forms. The optimum boiling time for 

Taftan pozzolan is 3 minutes and as it is apparent from these curves, the solubility 

reduces after 3 minutes boiling but it increases further due to the dissolution of 

secondary conformed minerals. Calcination has no significant effect on the properties of 

Taftan andesite and its solubility remains approximately constant, varying from 56.7% 

for the untreated sample to 57.1% for sample calcined at 700°C (Figures 4.2, 4.3). 

Taftan andesite has a higher pozzolanic activity than the others in its untreated form 

which makes it more economical to use and it has lower environmental impact. The 

untreated Taftan andesite produces a paste with moderate to high compressive strength 

ranging from 25.8MPa with 40°C curing to 53.1MPa at 60°C. Increasing the curing 

temperature above 60°C does not change its compressive strength significantly (Figures 

.. 4.4, 4.5). It can be seen from Figure 4.6 that the most suitable pozzolan for continuing 

this research is the Taftan andesite which gives high compressive strength without any 

requirement for calcining. 
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4.5 A Simplified Model for the Prediction of Pozzolanic Behaviour 

The correlation between type, main and soluble chemical composition, and quantity of 

glassy and quartzite phases of pozzolans with compressive strength is reviewed in this 

section. A simplified linear model based on above properties has been proposed for 

assessment of pozzolanic reactivity of pozzolans in natural and calcined forms in terms 

of compressive strength of pozzolanic based geopolymeric cement paste and developed 

as a nonlinear model. The model using a least squares technique is fitted for alkali 

activated natural pozzolan for 28 days of curing period. The pozzolanic behaviour of 

calcined and untreated natural pozzolans can be evaluated directly using the compressive 

strength development with time of the alkali activated paste. By being able to assess the 

pozzolanic behaviour indirectly by means of rapid alkali solubility, the test period can be 

reduced so development of a predictive model can save both resources and time. The 

pozzolanic behaviour depends upon the type, chemical compositions such as alkali 

percentage, solubility, L.O.!, and quantity of glassy and quartzite phases, both for the 

calcined and untreated natural pozzolans. 

In the mathematical model developed for predicting the strength of alkali activated 

natural pozzolan using chemical, physical and mineralogical factors, the following 

parameters are considered: the activity index [(Ab03+CaO+Fel03+MgO)/SiOl], used 

for the first time by Smith (1967) sited in Bao-min (2004), as the gelatinization 

coefficient of pozzolans; alkali (NalO+KlO) percentage derived from X-Ray 

Fluoresence analysis of the untreated and calcined pozzolans; L.O.I.; alkali solubility 

index; the ratio of [(SiOl+Ab03+CaO) in solutionl(SiOl+Alz03+CaO) mineral] obtained 

from ICP measurements, which Lian Huizehen (2001) sited in Bao-min (2004), defined 

as the activity ratio of pozzolans (this parameter not only reflects the chemical reactivity 

properties of pozzolans, but also relates to many physical properties such as degree of 

fineness and content of crystal); and the percentage of quartz in the calcined or untreated 

pozzolan powder. All of these parameters are presented in Table 4.2 where missing 

points were obtained by mean of nearby points and replaced in Table 4.3. As a first step 

the best curve fit to relate the strength for each parameter was found. 
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Analysis of the experimental results shows that the gel strength decreases linearly with 

the alkali percentage of each material and increases linearly with the alkali solubility 

index. The relation of the strength to activity index [(AI203+CaO+Fe203+MgO)/Si02], 

L.O.I., the ratio of [(Si02+Ah03+CaO) in solution/ (Si02+Ah03+CaO) mineral] 

resulting from the ICP tests and the quartz percentage was not found to be linearly 

related. 

The linear model has been proposed for assessment of pozzolanic reactivity of pozzolans 

in natural and calcined form in terms of compressive strength of pozzolanic based 

geopolymeric cement paste. Alkali percentages of each material and alkali solubility 

index are two parameters that related linearly with the gel strength. In addition to these, 

eliminating one of the result points, activity index [(Ah03+CaO+Fe203+MgO)/Si02] 

might be related linearly to strength as well. Therefore considering these three 

parameters a linear model is proposed which shows that the predicted and observed 

values are correlated 75%. In the linear model different temperatures of curing are 

considered as a variable which has interactive effect on linear equations between each 

parameter and the compressive strength of pozzolanic based geopolymeric cement paste. 

This model was developed in to a non-linear model considering the other three 

parameters including L.O.I., the ratio of [(Si02+Ah03+CaO) m solution! 

(Si02+Ah03+CaO) mineral] from ICP tests and the quartz percentage to obtain better 

correlation between the predicted and observed values of compressive strength of 

pozzolanic based geopolymeric cement paste. 

The correlation between compressive strength and each parameter is presented in section 

4.5.l to section 4.5.6. 

4.5.1 Activity Index 

According to the activity index [(Ah03+CaO+Fe203+MgO)/Si02] the compressive 

strength can be assessed with respect to the following relations at different curing 

temperatures. 
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I ) Considering linear regression, ignoring the Taftan result 

At 40°C: Y40 = 82.7-222.58Kax (R=0.777, R2 =0.604, Sig =0.005) (4-1a) 

At 60°C: Y60 = 99.43-264.32Kax (R=0.838, R2 =0.702, Sig =0.001) (4-1b) 

At 80°C: Y80 = 145.51-405.64Kax (R=0.759, R2 =0.576, Sig =0.007) (4-1c) 

II ) Considering nonlinear regression 

At 40°C: Y40 = 192.73-1 005. 99Kax+1358.41Ka/ (R=0.816, R2 =0.665, Sig =0.007) (4-1e) 

At 60°C: Y60 = 263.3-1443.22Kax+2064.93Kax2 (R=0.885, R2 =0.783, Sig =0.001) (4-1f) 

At 80°C: Y80 = 357.49-1921.36Kax+2639.98Ka/ (R=0.800, R2 =0.640, Sig =0.01) (4-1g) 

Where Y=Compressive Strength (MPa) and Kax=Activity Index 

In this case the number of measurements is at least (N= 11). Therefore the degree of 

freedom would be (N-2=9) and (N-3=8) for linear and nonlinear regression and R should 

more than 0.602 and 0.632, respectively which has occurred for all of the above 

equations. On the other hand, R2 shows that this parameter justifies the variation more 

than 57.6% alone. The amount of statistical significance indicates that the curve fit is 

correct with more than 99% confidence as well. 

4.5.2 Alkali percentage 

The second parameter IS the alkali percentage (Na20+K20)% found by X-Ray 

Fluoresence analysis of pozzolans which decreases the compressive strength linearly. 

The relation is given by the following at the different curing temperatures: 

At 40°C: Y40 = 65.66-9.79A (R=0.791, R2 =0.625, Sig = 0.002) (4-2a) 

At 60°C: Y60 = 72.9-9.98A (R=0.63, R2 =0.397, Sig = 0.028) (4-2b) 

At 80°C: Y80 = 109.6-16.71A (R=0.708, R2 =0.501, Sig = 0.01) (4-2c) 

Where Y=Compressive Strength (MPa) and A=alkali percentage in pozzolanic 

materials. 

The number of measurements is (N=12), therefore the degree of freedom would be (N-2 

= 10) and R should be more than 0.576 which is quite satisfied. R2 shows that this 

parameter justifies the variation more than 40% alone. The amount of statistical 
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significance indicates that the regression assumption is correct with more than 97.2% 

alone. 

4.5.3 Alkali Solubility Index 

The influence of solubility on strength shows that these two can be related linearly. 

Considering different curing temperature: 

At 40°C 

At 60°C 

At 80°C 

Y40= 0.82S01-29.73 

Y6o=I.07S01-37.94 

Yso=I.57S01-60.99 

(R=0.539, R2 =0.291, Sig = 0.017) (4-3a) 

(R=0.544, R2 =0.296, Sig = 0.016) (4-3b) 

(R=0.644, R2 =0.415, Sig = 0.003) (4-3c) 

Where Y=Compressive strength (MPa) and Sol=Alkali solubility index 

With respect to the number of test results which is (N= 19) degree of freedom would be 

(N-2=17) and therefore R should be more than 0.456 which is satisfied for all of the 

above equations. Square of R for all the equations shows that this parameter justifies the 

variation more than 29% alone. The amount of statistical significance indicates that the 

regression assumption is correct with more than 98.3% confidence as well. 

4.5.4 Loss on Ignition (L.O.I.) 

The influence of L.O.I. on strength shows that these two are related as follows. 

Considering different curing temperature: 

At 40°C: Y40= 40.33(2.72) L.O.!. (L.O.I.y3.S1 (untreated Shahindej result was eliminated.) 

(R=0.704, R2 =0.495, Sig =0.055) (4-4a) 

Y6o=55.84(1.72)L.O.1. (L.O.I.)-2.42 (R=0.626, R2 =0.392, Sig =0.063) (4-4b) 

Yso=65.49(2.02)L.o.1. (L.O.I.)-3.0 (R=0.712, R2 =0.507, Sig =0.054) (4-4c) 

Where Y=Compressive strength (MPa) and L.O.I. =loss on ignition 

In this case the number of measurements is at least (N=11). Therefore the degree of 

freedom would be (N-3=8) and R should more than 0.632 which has occurred for all of 

the above equations. On the other hand R2 shows that this parameter justifies the 
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variation more than 39.0% alone. The amount of statistical significance indicates that the 

curve fit is correct with more than 93.7% confidence. 

4.5.5 The activity ratio [(Si02+Ah03+CaO) in solution/ (Si02+Ah0 3+CaO) 
mineral] obtained from ICP tests 

The relation between the activity ratio [(Si02+Ah03+CaO) III solution/ 

(Si02+Ah03+CaO) mineral] resulting from ICP test data and the compressive strength 

are found as follows at different curing temperatures: 

At 40°C:Y40 = (0.03+1866.1Kalr-8.77xl06Kalr2rl (R=0.768, R2 =0.590, Sig =0.003) (4-5a) 

At 60°C:Y6o=(-0.04+3505.97KaIr-17.65xl06KaIr2rl (R=0.807, R2 =0.651, Sig =0.0) (4-5b) 

At 80°C:Yso=(-1.15+60050.58KaIr-6.25xlOsKaIr2 r 1 (R=0.774, R2 =0.599,Sig =0.003)(4-5c) 

Where Y = Compressive Strength (MPa) and Kalr =the activity ratio [(Si02+Ah03+CaO) 

in solution/ (Si02+AI20 3+CaO) mineral] resulted from leaching tests 

The number of results is (N=10) therefore the degree of freedom is (N-3=7) and R 

should be more than 0.666 which has occurred for all of the above equations. R2 shows 

that this parameter justifies the variation more than 59.0% alone and the amount of 

statistical significance shows that the curve fit is correct with more than 99.7% 

confidence as well. 

4.5.6 The quartz percentage 

The last parameter that seems to affect the strength is the percentage of quartz that exists 

in calcined or untreated pozzolan powder since the rupture of its bonding occurs at more 

than 2000°C (Ezatian, 1998) and presence of it can reinforce the synthesized gel. 

Considering different curing temperature: 

At 40°C: Y40= 10.51eo.o2Q (R=0.721, R2 =0.519, Sig =0.085) (4-6a) 

At 80°C: Yso=12.86 eO.04Q 

(untreated Taftan result was eliminated.) 

(R=0.590, R2 =0.348, Sig =0.11) (4-6b) 

(700°C treated Shahindej result was eliminated.) 

(R=0.656, R2 =0.430, Sig =0.091) (4-6c) 
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Where Y=Compressive strength (Mpa) and Q=the percentage of quartz 

The number of results is at least (N=12) therefore the degree of freedom would be (N-

2=10) and R should be more than 0.576 which has occurred for all of the equations. R2 

shows that this parameter at least justifies the variation more than 34.8% separately and 

the amount of statistical significance shows that the regression assumption is correct 

with more than 89% confidence. 

4.6 Correlation for Compressive Strength 

At first a simplified linear model is proposed to predict compressive strength which 

incorporates activity index, alkali percentage derived from X-Ray Fluoresence analysis 

of the untreated and calcined pozzolans and alkali solubility index. Different linear 

models were tried combining these three parameters with curing temperatures as a 

variable, as inputs using the least squares technique. It is found that Eq. (4-7) fits the 

above model. The coefficients ofEq. (4-7) are given in Table 4.4. 

Y=bo+b 1Sol+b2 (1.77-0.01 T1.05r1+b3 (1.77-0.01 T1.05r1 Sol+b4A+b5 (0.166-0.001 T106r lA 

+b6 K ax+b7(-437.84+ 1O.36T-0.12T2)+bg(-437.84+ 10.36T-0.12T2)Kax (4-7) 

Where Y=Compressive strength (MPa), Sol=Alkali solubility index, A=Alkali 

percentage, Kax=Activity index, T=Curing temperature (OC) and bo-bs are the 

coefficients determined by the least square technique. 

Figure 4.7 shows typical results of the variation between predicted and observed 

compressive strength of pozzolans as determined by the above linear analysis. The 

predicted and observed values are compared in terms of correlation coefficient (R
2
). 

Dropping the variables including Sol, A, and Kax one by one and separately reduces the 

correlation coefficient from 0.745 to 0.660, 0.706, and 0.614, respectively. 

The above simplified linear model has been further developed to a nonlinear form for 

predicting compressive strength and incorporating three further parameters including 

loss on ignition, the ratio of dissolution of the main elements, and quartz percentages. 

The model is developed for 28 days compressive strength of alkali activated pozzolans 

pastes with the same type and concentrations of alkali at three different curing 
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temperatures. Different models were tried with combinations of input parameters for the 

above six models using a least squares technique. It is found that following equations fit 

well for the above model. The coefficients ofEq. (4.8) are given in Table 4.4. 

Non-linear analysis was completed using each relationship data after replacing missing 

ones and considering curve fits to each parameter with compressive strength to define 

the primer coefficients. Then considering nonlinear regression the following models was 

found out and confirmed with back substituting: 

At 40°C: Y40=bo+b1Sol+b2A+b3.(192.73-1 005.99Kax + 135S.41Kax 2)+b42.72L01(LOly3Bl 

+bseO.02Q+b6/ (0.03+ lS66.1SKalr-S. 77xl 06Kalr2) (4-Sa) 

(4-Sb) 

At SO°C: Y BO= bo+b1Sol+b2A+ b3.(357.49-1921.36Kax+2639.9SKax
2) +b42.02L01(LOI) -3.0 

+bse°.04Q+b6/ (-1.15+60050.5SKalr-6.25xl OBKalr2) (4-Sc) 

Where Y=Compressive strength (MPa), Kax=Activity index, A=Alkali percentage, and 

Sol=Alkali Solubility Index, LOI=loss on ignition, Q=Quartz percentage and Kalr= the 

ratio of solving main elements measured from leaching test results and bo-b6 are the 

coefficients determined by the least square technique. While dropping the variables 

including Sol, A, and Kax, LOI, Q, and Kalr one by one and separately reduces the 

correlation coefficient 15%, 1 %, 15%,2%,2%, and 10%, respectively. 

F-ratios based upon the ratio of the model mean squares divided by the mean squared 

error which estimates the variance of the deviations around the model, are equal to , 
9.816, 252.899 and 172.657 for Eq. 4-2a to 4-2c, respectively. Theses amounts for the 

first and third equations are between standard F-ratio which is more than 9.35 for P=O.l 

and less than 199.4 for P=0.005 corresponding to model while the other seems to 

significant more for P less than 0.005 and error degree of freedom (D.F. for model and 

error are equal to 7 and 2, respectively). Thus the model is significant. 
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Figure 4.8 shows typical results of the variation between predicted and observed 

compressive strength of pozzolans as determined from the above analysis. The predicted 

and observed values are compared in terms of correlation coefficient (R2
). 

Models show that the most important factors are activity index, the percentage of alkali 

and the alkali solubility index. 

4.7 Results and Suggestion 

Pozzolans in their natural state and after calcination can be activated and condensed with 

sodium silicate in an alkaline environment to synthesize a high performance 

cementitious construction material with a low environmental impact. 

The effects that the chemical and phase compositions of natural pozzolans have on the 

compressive strength of geopolymers made from them have been investigated in this 

study. It is the properties of the main mineral phases which govern the behaviour of the 

pozzolans. 

By correlating the parameters which give rise to the relationship of pozzolanic activity 

with compressive strength, a pozzolan containing the sodium zeolite clinoptilolite, such 

as Shahindej dacite which has high soluble silicates (Table 3.1-a, 3.3-a, 4.1) can be used 

to prepare a moderate to high compressive strength binder by both elevated temperature 

curing and calcination. 

Calcination seems to impart disorder in hornblende in Sahand pozzolan as its XRD 

peaks disappear (Figure 3.2-a). The compressive strength of the geopolymer obtained 

when Sahand pozzolan which contained no amorphous phase and only a small amount 

of soluble silicate was used. 

For the pozzolans which contain more altered minerals such as montmorillonite resulting 

from the alteration of basic igneous rocks (Ezatian, 1998), as in Sirjan and Rafsanjan, 

calcination is effective in improving the reactivity of altered minerals, but it also 

deactivates the amorphous phase and increases the crystalline fraction. Calcination 

improves the properties of this type of pozzolan. The Sirjan pozzolan which contains 
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less altered minerals, shows better reactivity at 60°C curing temperature but is not 

suitable after calcination, while calcination has no significant effect on improving 

reactivity of the Rafsanjan pozzolan at 60°C curing temperature. 

The highest reactivity obtained was shown for Taftan which has the minimum L.O.I. and 

highest soluble calcium content which was shown to be an important factor in the 

original mineral according to Xu and Deventer (2000) (Tables 3.3, 4.l). The overall 

molar ratio of soluble Si02:Ah03 is equal to 4.65 and as found out by Rahier and Hos et 

al. (1996, 2002) is in the range where it is highly unlikely that all of the silica and 

alumina actually takes part in the synthesis reaction. 

With respect to the above results, Taftan and Shahindej Pozzolan were selected for 

geopolymer cement production and a pilot study was carried on sets of trial mixes of 

paste, mortar and concrete. 

For assessing the pozzolanic reactivity of pozzolans in both natural and calcined forms 

in terms of compressive strength of the pozzolanic based geopolymer binder, the 

relationship between compressive strength of alkali activated pozzolans and relevant 

parameters to its reactivity which include the alkali solubility, alkali content and activity 

index (Sol, A, Kax) were modelled by a linear power equation and included the effect of 

curing temperatures. This model was improved by using a non-linear model and 

considering three further parameters including loss on ignition, the ratio of 

(Si02+Ah03+CaO) in solution to (Si02+Ah03+CaO) mineral (obtained from ICP 

measurements) and quartz percentage (L.O.I., Kalr and Q). A good correlation (R2> 0.9) 

between predicted and observed values was achieved for this non-linear model. 
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Table 4.1 ICP results of the filtrates from rapid alkali solubility test measured by the 
Kavoshyar laboratory in Tehran, Iran 

Si Al Ca 
Sample SiiAI 

(ppm) (ppm) (ppm) 

Shahindej 49 4 5 12.2 

Shahindej dacite-700°C 158 20 3 7.9 

Sahand 13 2 4 6.5 

Sahand dacite-700°C 33 2 3 16.5 

Sirjan 13 1 5 13 

Sirjan dacite-700°C 109 8 3 13.6 

Rafsanjan 25 2 4 12.5 

Rafsanjan dacite-700°C 138 2 2 69 

Taftan 14 3 7 4.67 

Taftan andesite-700°C 18 2 3 9.0 

Note: In the above ICP results of the filtrates from rapid alkali solubility test, the 

quantity detected for Taftan samples seems to be low which may be due to quick 

repercipitation of the sample. The ratios of element which seems to be more accurate are 

more important in diagnosis of suitability of the pozzolan for producting geopolymer. 
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Table 4.2 The measured parameters used for model input in present study 

Material Kax A(%) Sol(%) LOI(%) Kalr Q(%) 
S-40 S-60 S-80 

(MPa) (MPa) (MPa) 

I Shahindej dacite-raw 0.23 3.26 67.5 10.28 6.92E-05 32 21.92 47.48 81.55 

Shahindej dacite-700°C 71.74 2.16E-04 60 42.47 35.32 26.74 

Shahindej dacite-800°C 0.227533 3.4 67.49 5.78 37 37.56 37.56 60.43 

Shahindej dacite-900°C 61.88 0 6.82 28.88 

Sahand dacite-raw 0.35225 6.56 44.86 5.15 2.28E-05 9 5 7.5 7.88 

Sahand dacite-700°C 53.51 4.56E-05 25 2.63 8.22 7.13 

Sahand dacite-800°C 0.341543 5.31 54.95 2.9 18 19.34 19.34 21.63 

Sahand dacite-900°C 67.02 18.98 13.56 32.88 

Sirjan dacite-raw 0.290469 4.81 63.75 6.14 2.28E-05 7 12.74 28.88 16.94 

Sirjan dacite-700°C 0.335138 5.44 39.13 2.2 1.40E-04 4 8.83 2.79 0 

Sirjan dacite-800°C 48.65 3 8.47 8.47 13.14 

Sirjan dacite-900°C 52.36 0 2 8.94 

Rafsanjan dacite-raw 0.300688 5.66 62.5 4.41 3.66E-05 4 10.09 22.27 20.8 

Rafsanjan dacite-700°C 39.8 l.67E-04 5 2.4 2.55 2.57 
Rafsanjan dacite-800°C 0.288131 4.4 61.43 2.48 8 26.52 26.52 42.36 

Rafsanjan dacite-900°C 52.18 10.73 10.19 14.28 

Taftan andesite-raw 0.490514 5.33 56.7 l.85 2.81E-05 6 25.74 53.03 50.08 
Taftan andesite-700°C 57.12 2.69E-05 17.84 55.25 63.54 
Taftan andesite-900°C 55.43 47.48 48 28.55 

The terms are defined in the table of notation and in section 4.5 of the text. 
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Table 4.3 The replacement of missing parameters used for model input in present study 

Material Kax A(%) Sol(%) LOI(%) Kalr Q(%) 
S40 S60 S80 

(MPa) (MPa) (MPa) 

Shahindej dacite-raw 0.23 3.26 67.5 10.28 6.92E-05 32 21.92 47.48 81.55 

Shahindej dacite-700°C 0.228766 3.33 71.74 8.03 2.l6E-04 60 42.47 35.32 26.74 

Shahindej dacite-800°C 0.227533 3.4 67.49 5.78 37 37.56 37.56 60.43 

Shahindej dacite-900°C 61.88 1 6.82 28.88 

Sahand dacite-raw 0.35225 6.56 44.86 5.15 2.28E-05 9 5 7.5 7.88 

Sahand dacite-700°C 0.346897 5.94 53.51 4.02 4.56E-05 25 2.63 8.22 7.13 

Sahand dacite-800°C 0.341543 5.31 54.95 2.9 18 19.34 19.34 21.63 

Sahand dacite-900°C 67.02 18.98 13.56 32.88 

Sirjan dacite-raw 0.290469 4.81 63.75 6.14 2.28E-05 7 12.74 28.88 16.94 

Sirjan dacite-700°C 0.335138 5.44 39.13 2.2 1.40E-04 4 8.83 2.79 1 

Sirjan dacite-800°C 48.65 3 8.47 8.47 13.14 

Sirjan dacite-900°C 52.36 1 2 8.94 

Rafsanjan dacite-raw 0.300688 5.66 62.5 4.41 3.66E-05 4 10.09 22.27 20.8 

Rafsanjan dacite-700°C 0.294409 5.03 39.8 3.45 1.67E-04 5 2.4 2.55 2.57 

Rafsanjan dacite-800°C 0.288131 4.4 61.43 2.48 8 26.52 26.52 42.36 

Rafsan j an dacite-900°C 52.18 10.73 10.19 14.28 
Taftan andesite-raw 0.490514 5.33 56.7 1.85 2.81E-05 6 25.74 53.03 50.08 

Taftan andesite-700°C 57.12 2.69E-05 17.84 55.25 63.54 
Taftan andesite-900°C 55.43 47.48 48 28.55 

- -

76 



Chapter 4 The selection ofpozzolan for producing geopolymer based on simple tests 

Table 4.4 Linear and nonlinear regression coefficients and correlation coefficient (R2) 
for pozzolans in natural and calcined fonn cured at 3 different temperatures 

Nonlinear 
Coefficients Linear mode 

Cured at 40°C cured at 60°C Cured at 80°C 

bo -55.47 -23.117 -57.629 -86.491 

b l 0.334 0.063 0.872 0.711 

b2 28.188 2.000 1.934 7.667 

b3 0.362 1.006 0.795 0.652 

b4 -6.244 -0.279 17.687 33.885 

bs 0.309 -1.310 -4.991 -1.659 

b6 222.53 0.591 0.165 0.269 

b7 -0.154 - - -

bs 0.628 - - -

Correlation 0.745 0.933 0.997 0.997 
coefficient (R2) 
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Ti~ of boiling (minutes) 

Figure 4.1 Effect of boiling time on alkali solubility of various pozzolans studied in this research 
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5. THE EFFECT OF ALKALI ACTIVATOR TYPE AND MINERAL ADDITIVES ON 
ALKALI ACTIVATION 

5.1 Introduction 

The aim of this chapter is to study the effect of alkaline activator type, the form on 

which it is added, the dosage of alkali, and the SiOiNa20 ratio (silica modulus, Ms) 

when using water-glass solution at different curing conditions on the geopolymerisation 

of natural pozzolans. Taftan andesite was selected as the most reactive natural pozzolan 

in Iran and activation of natural and calcined pozzolan for production of geopolymer 

binder was verified by the use of Taftan andesite and Shahindej dacite as a solid 

precursors. The optimum range and features for each factor are suggested based on their 

effect on compressive strength. The concentration of dissolving silicon, aluminium and 

calcium in alkaline solution, the formation of gel phase and the factors affecting these 

have been studied using leaching tests, ICP-AES, FTIR, and SEMlEDX. 

In addition, the concept that mineral additives can affect the properties of geopolymer 

cement is introduced. Taftan andesite was selected as the solid precursor and the effect 

of adding mineral additives including kaolinite, other calcined pozzolans such as 

Shahindej pozzolan, and lime on the strength of geopolymer cement was investigated. 

Scanning electron microscopy (SEM) / energy dispersive X-ray (EDX) was used to 

determine the composition of gel phase and to compare it to the gel that was produced 

from alkali-activated Taftan pozzolan without addition of mineral additives. 

At the end of this chapter, the optimum proportions of activator, precursor and additive, 

based on the above investigations aspects, are proposed. 

5.2 Chemical Activators and Materials 

According to Massazza (2003) activated natural pozzolans have the advantages of lower 

costs and better concrete durability than OPC in aggressive environments. However, 

their use leads to a longer setting times and lower early strengths compared to pure 

Portland cement. Different techniques have been tried to increase the reactivity of 

natural pozzolans to overcome these disadvantages, including chemical activation, 
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which is suggested in the literature to be the most effective and cheapest method. Thus, 

alkali activation of selected materials to produce a geopolymer is considered to continue 

the research in the direction of chemical activation. 

In this investigation the following materials were used as chemical activators to activate 

the natural pozzolans selected in previous chapter with or without mineral additives: 

Potassium or sodium hydroxide (KOHlNaOH) pellets, supplied by MERK International 

Ltd. These were dissolved to produce the alkaline solutions for geopolymeric paste 

production. 

Sodium silicate, which was provided by Iran Silicate Industrial Company in the form of 

granules, powder (with Si02INa20=2.l) and solution (water glass). The chemical 

composition of the solution provided by the manufacture was: 

a) 12.6% of sodium oxide (Na20), 26.5% of silicon oxide (Si02) and 60.9% of water; pH=13 

b) 11% of sodium oxide (Na20), 26.5% of silicon oxide (Si02) and 62.5% of water; pH=12.2 

c) 8.5% of sodium oxide (Na20), 26.5% of silicon oxide (Si02) and 65% of water; pH=ll.4 

The paste was prepared by adding the hydroxide solutions (No. 1 to 8 in Table 5.1) to 

the natural pozzolans and mixing for 15 min. The mixing was continued with the 

addition of sodium silicate solutions (No.9 to 11). 

5.3 Experimental investigations 

In order to determine the compressive strengths and follow the effect of different 

activators on alkali activation of natural pozzolans, KOH or NaOH were added with 

stirring to deionised water to provide the alkaline hydroxide solution and cooled. The 

samples for alkali activation were prepared by adding alkaline hydroxide solution to 

pozzolan followed by adding sodium silicate solution. The ratio of alkaline hydroxides 

(m!)1 alkali silicates Na2Si03 (m!) and total dry mix (g)/total solution (m!) were 7.7 and 

3.2, respectively. At first to study the effect of alkaline activator type and dosage. 

different molarities of alkaline hydroxide equal to 2.5, 5, 7.5, 10 are considered \vhile 

the properties of sodium silicate solution used corresponded to type (c) in previous 
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section. In the next stage to find the effect of silica modulus of sodium silicate solution. 

different types of this solution were used while the molarity of alkaline hydroxide \\as 

constant and equal to 7.5molar, found the optimum concentration of alkaline hydroxide 

for activating natural pozzolans. The mixture was then blended using a Hobart Canada 

N-50-1425rpm blender. The resulting paste was transferred to polyvinyl chloride (PVC) 

50mm cubic moulds and left at room temperature for 24 hr covered by a plastic sheet. 

After being removed from the mould, three samples for each formulation were cured in 

an autoclave at 2MPa pressure and 150°C for 3hr. The rest were wrapped and insulated 

in a special plastic bag (which had been tested and proved adequate to prevent 

evaporation) and left in the oven to further setting and hardening for 27 days at 40°C and 

60°C temperatures. At 28 days, the compressive strength according to ASTM C39 of 

three samples for each formulation was measured. 

The optimum concentration of KOH solution which generated geopolymers with highest 

compressive strength has been determined and was presented in section 5.4.2. The 

composition of components dissolved by each concentration of activator in a leach test, 

were determined by inductively coupled plasma with atomic emission spectroscopy 

(lCP-AES) carried out at the I.P.P.I. laboratory, Tehran, Iran. For the leaching tests, a 

specified mass of natural pozzolan (2.5g) was mixed with 25cc of the appropriate KOH 

(hydroxide pellets 5012 MERK added to deionised water and stirred) solution with 

molarities equal to 2.5, 5, 7.5, lOin a polypropylene beaker at room temperature for 5 

hours using a magnetic stirrer. The solution and residue were separated by centrifuging 

for 25 minutes at 6000 rpm. After centrifuging, the clear liquid solution was diluted and 

neutralized to pH<1 with HCI and analyzed using lY -124 Sequential 10bin-Yvon ICP

AES to determine the concentration of Si, AI, and Ca that had been transferred into the 

solution so as to generate a gel phase. 

In order to investigate the extent of development of alkali-activation of the pozzolans as 

precipitation reactions, the resultant filter cake from leaching was washed with 200 ml 

distilled water in two stages broken up, scattered on a watch glass and dried for 48 hrs at 

600C. Pellets were prepared by the common method (0.5mg of dried solid residue 
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ground to fine powder and 150mg of KBr) dried in an oven at 60°C over night and 

pressed in to a disc before scanning. The powder was analyzed by a Bruker 

Equinox55FTIR spectrometer with an aperture selected at 8cm-1 and a total of 64 scans 

in each spectrometer in the I.P.P.1. laboratory in Tehran, Iran. 

In order to study the effect of mineral additives as compensation for the lack of mineral 

elements (Si, Al and Ca), three additives, kaolin, calcined Shahindej pozzolan, and lime 

were chosen as the mineral additives and added to Taftan pozzolan before activating, to 

observe how they affected the compressive strength and the composition of the gel phase 

and its structure; kaolin SL-KAD has a particle size of 66% less than 2Jlm and 0.1 % 

greater than 45 Jlm,; Shahindej pozzolan from NW of Iran, (particle size of 100% less 

than 75Jlm) used to produce Portland pozzolan cement by Ourmia Cement Factory was 

calcined at 800°C for 12hr; and burnt lime with the same particle size were used. 

Chemical compositions of the mineral additives were analysed by X-ray Fluorescence 

(XRF) analysis at the Kansaran Binaloud X-ray laboratory in Tehran, Iran using a 

Philips PW 1480 instrument and are shown in Table 5.4. 

In order to determine the compressive strength and follow the effect of adding different 

minerals to natural pozzolans, The samples for alkali activation were prepared by mixing 

Taftan natural pozzolan with or without the mineral additives above at different ratios 

(the mineral additives were dry mixed with Taftan pozzolan at specified mass ratios for 

5 minutes) before the addition of the potassium hydroxide solution to the pozzolan 

followed by the sodium silicate solution and pursued the same as the first paragraph of 

this section unless the samples were cured at room temperature (25°C). 

To investigate the microstructure of pastes, samples were cut by a diamond wheel saw 

from the epoxy-impregnated cubes, polished and carbon-coated for examination by 

scanning electron microscopy and microanalysis (SEM and ED X) using a Cambridge 

2000EX scanning electron microscope equipped with EDX analysis system at the 

Material and Energy Research Centre laboratory, Tehran, Iran. 
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5.4 Experimental results 

5.4.1 Type of Alkaline Activator 

From Figure 5.1 it can be seen that activation with KOH always achieved higher 

compressive strength at ambient temperature curing conditions, especially at 60°C, 

compared to NaOH activation. According to Xu and Deventer (2000) as Na+ and K+ 

have the same electrical charge; their different effects must be the result of their 

different ionic sizes. The smaller size cation, Na + favours an ion-pair reaction with 

smaller silicate oligomers. The use of K+ is expected to result in the formation of large 

silicate oligomers which is favourable from the strength point of view due to the greater 

condensation of the resulting gel phase. Consequently, aluminosilicates demonstrate 

higher compressive strength after geopolymerisation in KOH than NaOH. However, 

from the cost view point, the use of NaOH rather than KOH may be more desirable, 

especially under conditions of accelerated curing. Figure 5.1 shows that the same 

compressive strength (44.0Mpa) has been achieved using 5Molar NaOH compared to 

7.5Molar KOH in autoclave curing. 

5.4.2 Dosage of Alkali Component 

The compressive strength of geopolymer cements made from Taftan pozzolan activated 

with either KOH or NaOH at concentrations of 2.5, 5, 7.5, 10M are shown in Figure 5.1. 

KOH concentrations in the range of 5-7.5M were found to generate geopolymers with 

the highest compressive strengths. The results of the ICP-AES tests are shown in Table 

5.2. At 7.5M KOH, the optimum concentration for strength development, 274.4 and 

68.22 ppm Si and AI, are dissolved respectively. Increasing the alkali concentration to 

10M did not have a significant effect on the levels of Si and Al leached. 

With lower activator concentrations (i.e. less than 5M KOH) there is significantly lower 

dissolution of natural pozzolan (see Table 5.2) resulting in the formation of a gel phase 

with lower binding strength. However, the higher viscosity of the alkaline hydroxide 

solution at concentration greater than 7.5M means that the resultant geopolymer pastes 

need a longer time and/or a higher temperature for the excess water to evaporate from 
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the system before forming a monolithic geopolymer, in which full strength is gained due 

to the development of the 3-D network of aluminosilicate. Thus, the alkali content 

reaches a certain value (which depends on mineral type, activator type and curing 

condition), beyond which there is no further significant increase in strength, and 

according to Xu and Deventer (2000) detrimental features such as efflorescence and 

brittleness may arise due to the increased free alkali content in the product. Therefore, 

trying to increase the strength by increasing the alkali dosage is not recommended, from 

both economic and properties points of view. 

Some additional tests and elemental analyse were carried out on alkali activated Taftan 

pozzolan to understand the gel conformation and its composition. Figure 5.2 depicts the 

FTIR spectra recorded for Taftan powders before and after leaching in 2.5, 5.0, 7.5M 
-1 

KOH. Before leaching there were two main peaks at 1032 and 1089 cm with several 
-1 

smaller peaks. After leaching, the band centred at 1032cm is shifted towards a lower 

wave number with increasing alkali concentration showing that as the silicate and/or 

aluminosilicate structures in the natural pozzolan are significantly depolymerised based 

on electrostatic reactions. 

According to Lee and Deventer (2003), during alkali activation every bridging oxygen 

atom (BO) on the surface of the original aluminosilicate is replaced by two negatively 

charged non-bridging oxygen atoms (NBO), which are charge compensated by alkalis. 

As a result, the infrared (lR) band attributable to the T -O-Si asymmetric stretching 

vibration of the TO tetrahedral of an alumino silicate in glass has been found to shift to 
4 

lower energy with increasing alkali content. The shift observed for Taftan pozzolan in 

Figure 5.2 would suggest that on leaching, all the polymerised alumina-silicate has 

dissolved leaving layered silicates with a number of siloxyl groups since this 

corresponds to stretching vibration which is corroborated by the wave number equal to 

995cm-1 and its structure is exclusively formed by Si-O-AI bridges. 

Generally, the mid IR of these pozzolans contains a number of peaks from 800 to 1200 

and the surfaces display a substantially higher degree of AI-Si disorder with bands 
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becoming broader. This phenomenon suggests that the disordering of the primary 

structure of aluminosilicate and conforming de-polymers during the treatment could 

result in some type of AI-Si precipitates forming on the surfaces of un-reactive Taftan 

pozzolan particles. 

-1 
All samples display a new absorbance in the region of 1404-1471cm which increases 

after leaching (Figure 5.2). This absorbance could be due to a vibration of carbonate 

salts formed on the surface of the residues (Lee and Deventer, 2003) and with the band 
-1 

around 870cm it might imply that some type of hydrated carbonates and K+ related 

aluminates are precipitated on the surfaces of the residues produced during leaching. 

The standard molar oxide ratio of Si02/Ah03 in geopolymer composition were 

suggested by Davidovits et al. (1994) to be between 3.3 and 6.5 for finished product (in 

Jaarsveld et aI, 1997, Rahier et al. 1996, 1997, Hos et al., 2002). This seems to be 

optimized for simplicity and potential to approach full reactivity while a variety of 

composition may be chosen for the fully reacted mixture (lviven et al., 2003). In this 

work, the "standard" geopolymer composition given by Rahier et al. (1996), Barbosa et 

al. (2000) and Hos et al. (2002) was followed and scanning electron microscopy 

(SEM)/energy dispersive X-ray (EDX) was used to determine the chemical composition 

of the gels made from Taftan pozzolan activated with KOH at concentrations of 5 and 

7.5, which were found to generate the geopolymers with a higher compressive strength 

and optimum leaching in the previous tests, in order to compare to the standard to 

confirm that certain composition criteria have been met for geopolymerization to occur. 

Table 5.3 lists the SEMlEDX results for the mean compositions of the gel phases of 

three samples of Taftan pozzolan. It is found from Table 5.3 that for Taftan activated 

with 5M and 7.5M KOH Sealed at 40°C, and Taftan activated with 7.5M KOH and 

cured in an autoclave at 2MPa, respectively, the mean ratios of weight percentage 

concentration for Si02 to Ah0 3 are 5.3, 4.7, and 5.3. Thus in all of the three samples. the 

standard composition criteria have been met for geopolymerization to occur. 
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Activation of Shahindej pozzolan with 5, 7.5, 10 and 15M KOH gives the compressive 

strengths shown in Figure 5.3 at two different curing temperatures with the highest 

strength of 32.2MPa at 40°C and 56.2MPa at 60°. 

Figure 5.4 depicts the P AS-FT -IR spectra recorded for Shahindej powders before and 

after leaching in 7.5M KOH. The spectrum before treatment contained one main peak at 
-1 

1055 cm which display AI-O-Si and Si-O-Si stretching bands. After leaching, the 

vibration band for untreated Shahindej pozzolan with its maximum at 1060cm-
I 

is shifted 

to a lower wave number. Therefore, the original silicate and/or alumina-silicate 

structures in the natural pozzolan have been significantly depolymerised based on 

electrostatic reactions. 

5.4.3 Form of Sodium Silicate Activator 

There are three forms of sodium silicate, granular, powder and solution. The present 

work confirms that higher strengths are obtained when sodium silicate is added as a 

solution (strengths of 20.7 and 43.0MPa corresponding to 40 and 60°C curing 

temperatures respectively) than when it is added in solid state by powder forms 

(strengths of 15.3 and 41.7MPa corresponding to 40 and 60°C curing temperatures, Fig. 

5.5). The addition of solid alkali silicate not only results in lower strength but also 

produces much greater strength fluctuation, which can be attributed to lower solubility in 

the mix and availability of alkali for reaction. The solid alkali silicate might absorb 

moisture during storage which will inhibit its activating action. Another interesting point 

is that using hydrous water-glass / sodium meta-silicate containing chemically bound 

water in the solid form produces low strength IIMPa (Fig. 5.5) under normal curing 

conditions equal. 

5.4.4 Modulus of Water-glass Solution 

The most important property of sodium silicates is the molar ratio of Si02 to Na20. 

Silicates are commercially produced in the Si02:Na20 ratio range of 1.5 to 3.2. In 

general, high ratio silicates (i.e. 3.2) are most suitable for chemical bonding since it is 

the siliceous portion of the silicate that reacts with cations. Due to the importance of 
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maintaining a high alkali concentration, it has been recommended that lower ratio 

silicates, e.g. (2.0), are used for activation of pozzolans (McDonald and Thompson, 

2004). 

In the present work, three industrial sodium silicate solutions with Si02INa20 ratios of 

2.1, 2.4 and 3.1 were used to form geopolymers with two samples of Taftan pozzolans 

which contained 8% and 15% CaO (Table 3.4). It was found that the pozzolan with 

higher CaO content gives rise to higher strengths (maximum 28days compressive 

strength of 43.0MPa) with a Si02INa20 ratio of 3.l. However, for the natural pozzolan 

with the lower content of CaO it is the amount of alkali that is more important for 

activation (Figure 5.6). 

Figure 5.7 shows that for pozzolans containing sodic zeolites such as Shahindej dacite 

that are not thermally treated and which exhibit high soluble silicate, lower Si02 to Na20 

ratios give higher strengths (at 28days the compressive strength is 39.0MPa with 

Si02INa20 equal to 2.1) but when calcined the reverse is true (at 28days, the 

compressive strength of 33.4MPa was obtained with the Si02INa20 ratio of 3.1). 

However, beyond 40 days the best compressive strengths were obtained with higher 

amounts of silicate in the system so at 90days the compressive strengths were 49.7MPa 

and 39.8Mpa respectively, both with a Si02INa20 ratio equal to 3.l. 

The study of geopolymers produced based on untreated and calcined Shahindej pozzolan 

with different amounts of water-glass ratio using X-ray diffraction and comparing the 

results, confirms the above results as is presented in Figure 5.8. It can be observed that 

for calcined Shahindej when the water-glass with the Si02 to Na20 ratio of 3.1 is used, 

the intensity of peaks is less and more activation is occurred while this happens for 

untreated Shahindej when the water-glass with the Si02 to Na20 ratio of 2.1 is used. 

5.4.5 Various Ratios of Alkaline Hydroxide to Water-glass 

To study the effect of different contents of sodium silicate on improving the compressive 

strength, mixes were prepared with different volume range of sodium silicate solution 

from 0.15 to 1.0cc while the concentration of potassium hydroxide and \\ater content 
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were keeping constant and the compressive strength was measured. This was repeated 

for different concentration of alkaline hydroxide (KOH). The effect of Na2Si03 on the 

development of compressive strength (Figure 5.9) shows that the optimum amount of 

Na2Si03 for achieving strength in a range suited for structural concrete is 0.25cc to 

0.5cc. The ratios of the alkaline hydroxide (KOH) to sodium silicate in the above mixes 

were calculated and the strength contours versus different molarities of KOH and 

various ratio of KOHlNa2Si03 are shown in Figure 5.10 and 5.11. The islands of ideal 

compositions show that the minimum ratio ofKOH to Na2Si03 volume corresponding to 

the optimum concentration ofKOH for achieving high compressive strengths are 7.1 and 

7.7 for Taftan and Shahindej pozzolan, respectively. The reason for conforming three 

islands of ideal compositions in Figure 5.11 might be that different molarities of KOH 

against various ratio of KOHlNa2Si03 provide various circumstances for different 

relative amounts of Si02 and Ah03 of the Shahindej pozzolan to be solved. This 

phenomena affects on the chemical reaction of alumina-silicate oxides with alkali 

yielding polymeric Si-O-AI bonds with different dimensional silico-aluminate structures 

such as Poly(sialite) (-Si-O-AL-O-), Poly(sialate-siloxo) (-Si-O-AI-O-Si-O-), or 

Poly(sialate-disiloxo) (-Si-O-AI-O-Si-O-Si-O-) with different Al and Si building blocks, 

which affect the chemical and physical properties of the final product. Considering the 

price of KOH and Na2Si03, the minimum ratio was found to be the most adequate from 

the economical point of view. 

5.5 XRD Results for Geopolymerised Alkali Activated Natural Pozzolans 

The study of geopolymers using X-ray diffraction as mentioned by laarsveld and 

Deventer (1997) is made difficult by the fact that a large part of the structure is 

amorphous to X-rays. Nuclear Magnetic Resonance (MAS-NMR) spectroscopy provides 

some insight into the molecular framework (Lee and Deventer, 2003) but as this was 

expensive and inaccessible, so X-ray diffraction analysis was carried out to monitor the 

progress of activation of natural pozzolan. X-ray diffraction chart traces for 

geopolymerisation of alkali activated natural pozzolan pastes at age of 28 and 90 days 

are shown in Figures 5.12 to 5.14. 
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X-ray diffraction of alkali-activated Taftan pozzolan during the aging process indicates 

that the intensity of peaks related to albite, a major feldspar phase at 20::;28::;30 have 

decreased up to 50% with respect to those for untreated Taftan pozzolan after 90 days 

and the peaks related to quartz and the crystalline phase related to hornblende have 

decreased so these minerals appeared as a minor phase only (Figures 5.12(a) and (b)). 

Figure 5.13 shows that for alkali activated untreated Shahindej cured at 60°C, the 

reduction of the intensity of peaks related to clinoptilolite shows that the maximum 

reaction depends on this mineral. While the intensity of peaks related to quartz and albite 

decline slightly after 90 days. It seems this type of pozzolan takes time to react, although 

comparing Figures 5.13(a) and 5.13(b), shows that the rate of the reaction is quicker at 

early ages. 

X -ray diffraction of calcined Shahindej cured at 20°C shows that the intensity of peaks 

related to quartz have decreased by 10% while the peaks related to albite declines by 

about 30% after 90 days and the reduction of the peaks related to clinoptilolite and 

calcite bring these minerals to appear as a minor phase (Figures 5.14(a) and (b)). 

Thus the above results indicate that as the material ages, the reactions of silica, alumina 

and alkali produce the geopolymerisation reaction resulting in reduction in the 

crystalline phases and increase in the amorphous. 

5.6 The Effect of Mineral Additives 

The aluminosilicate used for the production of a geopolymer cement must contain Al 

which is readily soluble with an overall molar ratio of Ab03:Si02 lying between 1 :3.3 

and 1:6.5 (Jaarsveld et aI, 1997, Rahier et al. 1996, 1997, Hos et aI., 2002). However, 

these ratios are not critical and are for the most part only an indicator of approximate 

composition. The reason for this is that while these compositional ratios are based on 

chemical analysis, but it is highly unlikely that all of the silica or alumina actually take 

part in the synthesis reaction (Jaarsveld .and Deventer 1996). Often the rate of 

dissolution of Al from natural aluminosilicates is insufficient to produce a gel of desired 

composition (Xu and Deventer, 2000). Kaolinite is a relatively inexpensive 
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aluminosilicate which might be used as a secondary source of soluble Si and Al when 

added to natural pozzolans to synthesize geopolymers. Consequently, when an optimum 

amount of kaolinite is added to natural aluminosilicates activated by alkaline solutions, a 

desired gel composition can be produced with a longer setting time. However, if 

kaolinite on its own is used without the presence of other natural minerals, a weak 

structure is formed. 

Additionally, the calcium content is also an important factor affecting the setting time 

and final strength in concrete, and there are indications that it may also affect the 

properties of geopolymers (Xu and Deventer, 2000). Therefore by adding an optimum 

amount of CaO content to a natural aluminosilicate may also increase the strength of an 

alkali-activated natural pozzolan. 

Natural pozzolans are geological deposits with a wide range of chemical compositions 

which vary from batch to batch but they are usually high in available SiOz. Deficiencies 

in the SiOz, Ah03 and CaO content in a natural pozzolan might be compensated for by 

adding mineral additives, such as kaolinite or lime enabling them to be used as a 

geopolymer cement. 

In the present section, to determine the effect of active mineral additives on compressive 

strength in geopolymer cements and to describe the behaviour of their reaction, the 

method of specific strength determination (SS) devised by Pu (1999) was carried out. 

Specific compressive strength can be defined as the contribution 1 wt% of a natural 

pozzolan makes to the strength of a geopolymer cement at 28 days. It equals the real 28 

days compressive strength divided by the percentage of the natural pozzolan, namely 

Tafian, in this research. The results are given in Table 5.5 and Figures 5.15 to 5.17 for 

the different mineral additives. At 28 days of age, the specific strength increased when 

mineral additives were used compared to activation of pure natural pozzolan as a 

geopolymer cement at room temperature. It can be seen that for each mineral additive 

there is an optimum addition although it does depend on temperature. Specific strength 

is also increased with an increase of aluminium or calcium containing additives up to 
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that optimum amount after which increasing the amount of mineral additive has no 

significant effect on the increase of the specific strength. 

The strength of a geopolymer cement containing active mineral additives can be 

considered to consist of two parts. The main contributor to strength for this type of 

cement is the polymerised Al and Si network obtained from the reaction between active 

silica and alumina oxides in the main pozzolan. Addition of the active mineral additives 

provides additional aluminium or silicon to enhance the three dimensional amorphous 

and/or semi-crystalline polymer structures with alkali metal cations compensating the 

negative charges caused by Al substitution. The secondary part of strength is contributed 

by formation of semi-crystalline tobermorites (C-S-H) or calcium aluminosilicate 

hydrates (Pu, 1999). In this research, kaolinite and calcined Shahindej pozzolan have 

been used as mineral additives to provide additional aluminium and silicon sources. The 

maximum strength which resulted when 20% kaolinite was used giving 45.6 and 

19.3MPa for autoclave and sealed curing at 25°C, respectively. Similar results were 

obtained by adding 16.7% calcined Shahindej pozzolan as an additive where 45.6 and 

25.3MPa were obtained for autoclave and sealed curing at 25°C, respectively. Using 

burnt lime the maximum strength resulted when 3.40/0 lime was used giving 27.8 and 

19.6MPa for autoclave and sealed curing at 25°C, respectively (Table 5.5). 

Figures 5.18, 5.19, 5.20, and 5.21 show some of the microstructural characteristics as 

seen by SEM of the binder obtained resulting from the alkaline activation of a natural 

pozzolan with and without addition of different minerals, and cured at both 25°C and 

autoclave conditions. The samples studied have quite different microstructures. 

Autoclaving samples has made the structure micro-crystalline, dense and this resulted in 

higher strength. EDX results were measured for three points within the gel and the 

average is shown in Table 5.6. It can be observed that in all of the samples, the standard 

composition criteria have been met for geopolymerization to occur. In Table 5.6, the 

increase of the Si02 content in the autoclaved samples can be explained by an increased 

dissolution of the pozzolan upon autoclaving. The percentage of reacted pozzolans can 

be found by dividing the weight percentage of silicon concentration observed in the 
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binders (Table 5.6) by the total amount of the silicon content in the Taftan pozzolan and 

the mineral additives, considering the optimum percent of mixture, in each case (Table 

5.4 and 5.5). It should be mentioned that the reacted pozzolan in different formulation 

gives rise to the geopolymer gel, zeolites and calcium silicate hydrate in the different 

cases. 

When Taftan pozzolan was activated after mixing with kaolinite as an aluminum source, 

this produced an impermeable sticky gel. Autoclave curing at 2MPa pressure and 150°C 

for 3hrs resulted in a more uniform microstructure for the gel produced (Figure 5 .19-b). 

The average molar ratios for the reaction product when the sample was cured at 25°C, 

were Si02/ Ah03=3.l and K20/ Ah03= 1.1 while for autoclave curing, the K20/ Ah0 3 

ratio decreased to 0.59. The aluminium oxide content was increased in the finished 

product compared to that of Taftan pozzolan activated without adding kaolinite (Table 

5.6). 

The binder obtained from the activation of Taftan pozzolan and calcined Shahindej is 

more porous than when mixed with kaolinite but it still has a uniform texture (Figures 

5.l9-a and 5.20-a). Using the Taftan and calcined Shahindej mix to produce 

geopolymers seems to show the best gel. When autoclave cured this shows a uniform 

micro crystalline texture. Thus autoclave curing seems to produce a zeolitic form that 

consists of a potassium aluminosilicate (Figure 5.20-b and Table 5.6). The average 

molar ratios found in this reaction product when cured at 25°C, were Si02/Ah03=4.58 

and K20/Ah03=1.31 while for autoclave curing, the Si02/Ab03 ratio increased to 4.96. 

The silica content was increased in the finished product compared to when Taftan 

pozzolan was activated without adding calcined Shahindej (Table 5.6). 

The type of additive mineral used affects the development of reactions. When Ca(OH)2 

was used as an additive, the materials obtained following activation showed the co

existence of a geopolymer formed from natural pozzolan particles which had reacted 

with the alkali forming a potassium aluminosilicate gel together with a calcium silicate 

hydrate and particles of calcium carbonate likely to form from the carbonation process 

when calcium hydroxide reacts with carbon dioxide, C02, from atmosphere. This has 
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increased the compressive strength of the product immediately (Figure 5.21). The 

average molar ratios for this product cured at 25°C were Si02/AI20 3=3.77 and 

K20IAb03=0.82 while for autoclave curing, the Si02/Ah03 ratio increased to 4.33. 

Taftan pozzolan has variation in chemical composition from batch to batch. Batches 

with low content of CaO were used in this work when lime was added as mineral 

additives and compared to the same batch was activated without adding lime. The 

calcium oxide content in the finished product had increased compared to when Taftan 

pozzolan was activated without adding burnt lime (Table 5.6). 

Compared to the above materials, the gel obtained from the activation of natural 

pozzolan without a mineral additive has higher gel porosity (Figures 5.18 to 5.21). This 

formation at lower curing temperature produces more uniform gel although when the 

product was cured at a higher curing temperature the compressive strength was 

increased (Figure 5.18). 

5.7 Optimum Paste Proportions for Geopolymer Concrete Production 

Considering the above discussion on the optimum concentration of KOH, ratios of 

alkaline hydroxide to water glass and suitable modulus of water glass solution for 

activation for each type of pozzolan the details of the different paste proportions for 

production of geopolymer concrete are presented in Table 5.7. 

5.8 Summary 

From the results obtained in this chapter, several factors for achieving optimum strength 

of alkali-activated natural pozzolan concrete have been determined which are 

summarized as follows 

1) A combination of potassium hydroxide with a sodium silicate solution provides the 

best activator. KOH solutions between 5 - 7.5 M dissolve the greatest amount of 

material from the precursor and also give the highest values for compressive strength. 

The alkaline hydroxide first breaks up the AI-Si bonds and dissolves Al ions which 

catalyses the polymerisation and formation of the gel from hydrated alkaline alumina-
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silicates created by adding soluble sodium silicate. These follow the pattern reported 

by Xu and Van Deventer, (2000, 2003). 

2) For natural pozzolans with low CaO content and for pozzolans containing sodic 

zeolites that are not thermally treated, such as Shahindej dacite with its high soluble 

silicate, the optimum water glass modulus (Si02 lNa20 ratio) is 2.1 but increases to 

3.1 for natural pozzolans with high CaO or which have been calcined. 

3) The optimum dosage of activator and the optimum ratios of alkaline hydroxide to 

sodium silicate were determined by examining the islands of ideal compositions 

determined from a new method which draws the strength contours versus different 

molarities of alkaline hydroxide and various ratio of alkaline hydroxide to alkaline 

silicate. It would be worthwhile to extend the model found in chapter 4 to include the 

properties of activators in future works. 

4) The optimum curing temperature to achieve the highest strength for alkali-activated 

Taftan pozzolan was 60°C. However, 40°C was found to be adequate for achieving 

strength in a range suited for structural concrete (Figure 5.1). 

5) Comparable strengths to those obtained at 60°C curing can be obtained by 

autoclaving alkali-activated Taftan pozzolan at 2.5MPa and 150°C for three hrs 

(Figure 5.1). 

6) As described in section 4.4.1, Natural Shahindej pozzolan must be cured at 60°C to 

produce structural concrete (Figure 5.3) but when calcined at 800°C can be cured at 

20°C. 

7) Mineral additives including kaolinite and other calcined pozzolans such as Shahindej 

and slaked lime when added to Taftan pozzolan as a solid precursor gives 

approximately the same strength as when the pozzolan is activated without mineral 

additives, although it seems that the gel obtained is more impermeable (Figures 5.18-

band5.19-b). 
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8) In the present research, since the pozzolans selected seem to satisfy the compositional 

ratios based on chemical analysis, the use of additive mineral is not necessary. It 

seems the deficiency of main oxides such as Si02, Ab03 and CaO in natural 

pozzolans can be compensated for by adding mineral additives to increase the level of 

oxides in the final product before activation (Table 5.6). 
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Table 5.1 Alkali Activation Solutions (grams per 100ml solution) 

No. Notation K20 Na20 Si02 
Total 
Solid 

1 2.5MNaOH / 7.75 / 10 
2 5MNaOH / 15.5 / 20 
3 7.5MNaOH / 23.25 / 30 
4 10M NaOH / 3l.0 / 40 
5 2.5MKOH 11.75 / / 14 
6 5MKOH 23.5 / / 28 
7 7.5MKOH 32.25 / / 42 
8 10MKOH 47 / / 56 
9 WG(Si02INa20 ratio of 2.1) / 12.33 26.626 38.959 
10 WG(Si02INa20 ratio of 2.4) / 10.83 25.992 36.822 
11 WG(Si02INa20 ratio of 3.1) / 8.54 26.474 35.014 

Table 5.2 ICP-AES results for Taftan pozzolan leaching tests (conducted by I.P.P.I. 
laboratory, Tehran, Iran) 

(KOH) (Si)ppm (AI) ppm (Ca) ppm 

2.5M 29.75 Not detectable 28 

5.0M 147.99 Not detectable 98.25 

7.5M 274.4 68.22 74.98 

10M 235.2 69.36 51.43 
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Table 5.3 Weight percentage concentration observed in EDX (conducted by Material 
and Energy Research Centre laboratory, Tehran, Iran) 

Compositions Taftan 5M KOH Taftan7.5M KOH Taftan7.5M KOH 

Sealed at 40°C Sealed at 40°C Autoclaved at 2MPa 

Si02 52.090 50.071 51.87 

Ah0 3 9.921 10.770 9.85 

K20 13.507 16.810 12.856 

CaO 19.984 18.038 20.926 

Fe203 4.497 4.309 5.281 

MgO 

Ti02 

Table 5.4 Chemical composition of mineral additives used in this investigation 
conducted by Kansaran Binaloud X-ray laboratory in Tehran, Iran 

Material LOI Si02 AI20 3 Fe203 CaO MgO Ti02 K20 Na20 

Kaolin 13.84 52.2 30.90 0.45 0.26 0.24 0.125 0.90 0.45 

Calcined Shahindej 
5.78 73.44 11.88 1.3 2.55 0.98 0.147 2.3 1.1 

pozzolan 

Burnt Lime 10 90 
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Table 5.5 Mix proportion, strength, specific strength (SS), specific strength of 
mineral additive effect (SSME) of geopolymer cement 

Mix Proportion (%) Mix 1 Mix 2 Mix 3 Mix 4 Mix5 Mix 6 
Taftan Pozzolan 100 85.7 83.3 80 73.33 60 

Kaolinite 0 14.3 16.7 20 26.67 40 

W/B 0.31 0.31 0.31 0.31 0.31 0.31 
Autoclave 

compressive 44.03 23.85 24.21 45.61 22.9 22.36 Curing 

strength(MPa) 28 days 19.48 18.61 19.04 19.26 16.81 10.49 25°C Curing 
Autoclave 

SS of pozzolan in the 0.44 0.27 0.29 0.57 0.31 0.37 Curing 

cement (MPa) 0.195 0.22 0.23 0.24 0.23 0.17 25°C Curing 
Autoclave 

SS of mineral effect (MPa) 0 -0.17 -0.15 0.13 -0.13 0 Curing 

(SSME) 0 0.025 0.035 0.045 0.035 0 25°C Curing 

Mix Proportion (%) Mix 7 Mix 8 Mix 9 Mix 10 

Taftan Pozzolan 100 85.7 83.3 0 

Calcined Shahindej 
Pozzolan 0 14.3 16.7 100 

W/B 0.31 0.31 0.31 0.31 
Autoclave 

compressive 44.03 37.22 45.56 0 Curing 

strength(MPa) 28 days 19.48 15.53 25.28 16.07 25°C Curing 
Autoclave 

SS of pozzolan in the 0.44 0.43 0.55 0 Curing 

cement (MPa) 0.195 0.18 0.3 25°C Curing 
Autoclave 

SS of mineral effect (MPa) 0 -0.01 0.11 Curing 

(SSM E) 0 -0.015 0.105 25°C Curing 

Mix Proportion (%) Mix 11 Mix 12 Mix 13 Mix 14 

Taftan Pozzolan 100 98.3 96.66 93 

Burnt lime 0 1.7 3.4 7 

WIB 0.31 0.31 0.31 0.31 
Autoclave 

compressive 44.03 16.33 27.8 14.98 Curing 

strength(MPa) 28 days 19.48 10.84 19.6 17.19 25°C Curing 
Autoclave 

SS of pozzolan in the 0.44 0.17 0.29 0.16 Curing 

cement (MPa) 0.195 0.l1 0.2 0.18 25°C Curing 
Autoclave 

SS of mineral effect (MPa) 0 -0.27 -0.15 -0.28 Curing 

(SSME) 0 -0.085 0.005 -0.015 25°C Curing 
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Table 5.6 Weight percentage concentration observed in EDX (conducted by Material and Energy Research Centre laboratory, Tehran, Iran) 
(TN=Taftan, TNK=Taftan added Kaolinite, TNSH=Taftan added Calcined Shahindej, TNL=Taftan added Burnt Lime) 

Compositions 
TN TN-Au TNK TNK-Au TNSH TNSH-Au TNL TNL-Au 

Si02 48.803 55.814 44.807 52.275 52.09 56.829 55.88 58.197 

Ah0 3 12.41 15.304 14.264 16.876 11.362 11.447 14.81 13.441 

CaO 7.233 8.743 19.327 14.231 15.042 12.254 10.055 10.646 

Fe203 4.108 3.881 2.981 3.466 3.109 3.215 3.38 3.591 

MgO 1.062 0.795 0.821 0.838 0.916 0.968 0.899 0.777 

Na20. 2.523 2.682 2.083 1.829 2.274 2.060 2.452 1.897 

K20 13.36 12.211 15.463 10.006 14.885 12.751 12.105 10.967 

Ti02 0.5 0.57 0.254 0.479 0.322 0.475 0.42 0.484 

Densities(gr/cm3
) 1.88 1.91 l.92 l.76 l.96 1.66 2.18 1.75 

Pozzolan reacted (%) 79.1 90.5 75 87.5 82.5 90 93.7 97.6 

Table 5.7 - Optimum Paste Proportion for Geopolymer Concrete 

Raw 
KOH 

Composition of the Sodium Silicate 
Materials KOHlNa2Si03 SfW Solution (%) 

Concentration 
(pozzolan) Ratio Na20% Si02% Water% 

Taftan 7.1 3.33 7.5M 2.1 12.6 26.5 65 

Shahindej 
7.7 2.63 

7.5M 
2.1 12.6 26.5 65 

Calcined 
7.7 2.63 3.1 8.5 26.5 65 

I 
Shahindej 7.5M 

107 



Chapter 5 The e([ect of alkali activator type and mineral additives on alkali activation 

Effect of type of activator and its concentration on Taftan Pozzolan 

activation (sealed and cured at40C) 
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Figure 5.2 FTIR results for leached Taftan pozzolan with different concentration of 
activator conducted by LP.P.L FTIR laboratory, Tehran, Iran 
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conducted by I.P.P.I. FTIR laboratory, Tehran, Iran 
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carried out in the Department of Engineering Materials, University of Sheffield) 
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Figure 5.18-a SEM of activated Taftan pozzolan cured at 25°C carried out in Material 
and Energy Research Centre laboratory, Tehran, Iran-(G) Geopolymer Matrix 

(T) Non reacted Taftan Pozzolan 

Figure 5.18-b SEM of activated Taftan pozzolan cured at autoclave condition carried out 
in Material and Energy Research Centre laboratory, Tehran, Iran-(G) Geopolymer Matrix 

(T) Non reacted Taftan Pozzolan 
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Figure 5.19-a SEM of activated Taftan pozzolan mixed with Kaolinite Cured at 25°C carried out 
in Material and Energy Research Centre laboratory, Tehran, Iran-(G) Geopolymer Matrix 

(K) Non reacted Kaolinite 

Figure 5.19-b SEM of activated Taftan pozzolan mixed with Kaolinite Cured at autoclave 
condition carried out in Material and Energy Research Centre laboratory, Tehran, Iran 

(G) Geopolymer Matrix (K) Non reacted Kaolinite 
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Figure 5.20-a SEM of activated Taftan pozzolan mixed with calcined Shahindej and cured at 
25°C carried out in Material and Energy Research Centre laboratory, Tehran, Iran 

(G) Geopolymer Matrix (Z) zeolite (SH) Non reacted Shahindej Pozzolan 

Figure 5.20-b SEM of activated Taftan pozzolan mixed with calcined Shahindej and cured at 
autoclave condition carried out in Material and Energy Research Centre laboratory Tehran, 

Iran(Z) Zeolite 
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Figure 5.21 -a SEM of activated Taftan pozzolan mixed with burnt lime at 25°C carried out in 
Material and Energy Research Centre laboratory, Tehran, Iran(G) Geopolymer Matrix 

(CSH) Calcium Silicate Hydrate (T) Non reacted Taftan Pozzolan 

Figure 5.21-b SEM of activated Taftan pozzolan mixed with burnt lime at autoclave condition 
carried out in Material and Energy Research Centre laboratory, Tehran, Iran(G) Geopolymer 

Matrix (CSH) Calcium Silicate Hydrate (Ca-C) Calcium Carbonate 
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6. MIX DESIGN AND PROPERTIES OF FRESH GEOPOLYMER CONCRETE 

6.1 Introduction 

In this chapter, the different mix designs including the selection of ingredients, 

blending proportions, mixing procedures and curing regimes used, are presented. 

Another aim of this chapter is to study the fresh geopolymer concrete properties 

influenced by the incorporation of natural pozzolan and the addition of alkali 

activators. Fresh geopolymer concrete based on activated natural pozzolan is a 

freshly mixed material that can be moulded into any shape. The inherent properties 

and relative quantities of activators of natural pozzolan, in addition to the amount of 

water mixed in, control the properties of the wet state as well as the hardened state of 

the concrete. This chapter reports on the workability of the geopolymer concrete 

mixes based on their slump and vebe time (rod normally VB) results. The setting 

time results for the mixes are presented, followed by the air content of the concrete. 

6.2 Mix Design Procedure 

The widespread use and complex structural application of concrete require design of 

mixes possessing high strength and durability. Mix proportioning is based on 

determining the quantities of the ingredients, when mixed together and cured 

properly will produce workable concrete that achieves the desired strength and 

durability when hardened. Therefore different variables including desired workability 

measured by slump, water to binder ratio, binder content and aggregate proportions 

should be considered in the mix design procedure. 

6.2.1 Alkali-Activated Natural Pozzolan Mixes 

The mixture calculations were made based on the optimum amount of activator 

needed to activate the pozzolan which resulted from sections 5.4, 5.6, and 5.7. The 

water in the activator is also taken as part of the total mix water. 

6.2.2 Determination of Water to Binder Ratios 

Soil concept approaches are used to determine the amount of water required in no 

slump concrete mix design such as roller compacted concrete by determining the 
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optimum moisture amount to achieve maXImum density (Hansen and Rinehart, 

1992). In this investigation in view of the low workability of geopolymer concrete, 

the Atterberg consistency limits for cohesive soils were utilized to determine the 

minimum water to binder ratios for making mixtures with these natural materials. In 

soil mechanics these limits are used to define the behaviours of a cohesive soil as its 

moisture content is changed. The values are influenced by grain size and the amount 

and character of the clay minerals present. When dry, a cohesive soil behaves as a 

solid (no workability) but as water is added it first turns to a semi-solid, then to a 

plastic, and finally to a liquid (workable) state. The moisture contents at the 

boundaries between these states are referred to as the shrinkage limit (SL), the plastic 

limit (PL) and the liquid limit (LL), respectively (Bell, 2000). 

The consistency of cohesive soils depends on the interaction between the particles. 

Any decrease in moisture content results in a decrease in cation layer thickness and 

an increase in the net attractive forces between particles. For a soil to exist in the 

plastic state, the magnitude of the net inter particle forces must be such that the 

particles are free to slide relative to each other but with cohesion between them being 

maintained (Bell, 2000). 

The plasticity index defines the range of water content for which the soil behaves 

like a plastic material and the amount of water content, which causes the soil to 

change from a plastic to semi-solid, is called the plastic limit. A falling cone test was 

used to determine the liquid and plastic limits of both pozzolans and the beginning 

point for water to binder ratio for concrete mixtures should be considered at least 

equal to the summation of the plastic limit and aggregate water absorption which are 

as below for different pozzolans: 

Taftan Pozzolan: 21.0% + 0.9% = 21.9% 

Shahindej Pozzolan: 38.9% + 0.9% = 39.8% 

Using the values obtained from the above method, and considering the workability of 

mixtures, several trial batches were made to achieve the target strength with a 

cohesive, workable mix. It was found that for pozzolans containing zeolites and 

clayey minerals such as Shahindej the above water to binder ratio is the optimum 

amount to give high compressive strength. 
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6.2.3 Aggregates and Sieve Analysis Results 

6.2.3.1 Fine Aggregate 

The fine aggregate used was obtained from deposits from the Karaj River in 

northwest of Iran. A sieve analysis was carried out on representative samples in 

accordance with BS EN 12620:2002. The analysis showed that the sand needed some 

modification to fall in zone F. Therefore it was sieved through the specified sieves 

and particles between each two sieves were stored separately. Then suitable 

proportions of sand were selected and remixed to give a curve which fell within zone 

F as specified by BS EN 12620:2002. The final sieve analysis is given in table 6.1. 

The sand has a water absorption coefficient of 0.6 percent and a bulk specific 

gravity, saturated surface dry (SSD) of 2.62, both determined in accordance with BS 

812: Part 2. 

6.2.3.2 Coarse Aggregate 

The coarse aggregate used for this study was clean and well graded gravel with a 

maximum size of 14 mm. Gravel was obtained from the same location as the fine 

aggregate. A sieve analysis test showed that the coarse aggregate conformed to the 

limits set out in BS EN 12620:2002 and the results are given in Table 6.1. The bulk 

specific gravity (SSD) of this gravel was 2.6 and its water absorption was 0.9 

percent. 

6.2.4 Aggregate to Binder Content 

In the RRL method (Road Note 4 Method, Neville, 1995), the aggregate to cement 

ratios for ope concrete are worked out on the basis of type of aggregate, maximum 

size of aggregate and different levels of workability. This method leads to very high 

cement contents and thus is becoming obsolete, but it can be used as a starting point. 

The values of aggregate to cement ratio are suggested for angular rounded or 

irregular coarse aggregate and for different levels of workability ranging from low to 

high. Therefore for irregular coarse aggregate and very low workability, this ratio 

suggested values of aggregate to cement ratio are 4.7, 5.7, and 7.3 while for low 

workability it is 3.8, 4.6, and 6 for the water to binder ratios equal to 0.4, 0.45, and 

0.55, respectively. Thus, using the BRE method and specific gravity to arrive at 
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correct mix design calculations, the resulted aggregate to binder content compared to 

the above ratio to be verified. 

The untreated Shahindej pozzolan was found to be sensitive to the ratio of binder to 

aggregate. Hence, this parameter and water to binder ratio were considered together 

to find the optimum for these two in a model that may be suitable to use for this type 

ofpozzolan and is shown in Figure 6.2. To do this, different samples were made with 

different aggregate to binder ratios while the other factors were kept constant and the 

compressive strength was measured at 28 days. This was repeated for samples with 

different water to binder ratios and the whole results were plotted to find the ideal 

islands of these two ratios. As can be observed in Figure 6.2 at higher binder to 

aggregate ratio in spite of normal cases the compressive strength reduces which 

seems to be related to main mineral phases in untreated Shahindej pozzolan. 

6.2.5 Designing of Control Mixes 

The control mixes were designed using the BRE method (Neville, 1995) targeting a 

40 MPa 28 days compressive strength and a slump 60 mm. With respect to the values 

obtained from this method several batches were carried out to achieve the target 

strength with a workable mix. To compare the mixes on equal W IB ratio, OPC 

control mixes were used with the cement content and the W/C ratio the same as the 

binder content and the W/B ratio in Taftan geopolymer concrete. For untreated and 

calcined Shahindej pozzolan the binder content was 25kglm3 more and the W IB ratio 

was 3% less than the corresponding amounts in OPC control mix. These are the least 

to achieve strength in a range suited for structural concrete with Shahindej pozzolan. 

6.2.6 Mix Proportions and Mix Notation 

The proportioning of the concrete mixture was based on the BRE method targeting a 

40 MPa (28 days) compressive strength and a slump of 60 mm considering the 

earlier approaches for determining the minimum water to binder ratio (i.e. the 

optimum amount for Shahindej pozzolan with zeolite minerals) and the optimum 

aggregate to binder ratio was found for activated Shahindej pozzolan mix. Hence, the 

water to binder ratio selected according to the workability and the above method 

might not be less than the pozzolan plastic limit plus aggregate water absorption 
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which was discussed in section 6.2.2, and would be expected to result the highest 

compressive strength especially in cohesive pozzolans. The amount of cement was 

substituted with the same quantity of natural pozzolan plus the solids in water glass 

and the amount of water was ignored since there was already water in the alkali 

solutions. In other words, the calculated amount of water was considered to make 

alkali solutions. Then the mixture calculations were made to calculate the required 

amount of activator by weight, which would provide the chosen dosage in Table 5.7. 

The BRE method was used only to decide what is a common ratio of binder, sand 

and coarse aggregates, it was not expected that the actual 28 days compressive 

strength or the slump would be in accordance with the values designed. The details 

of the different mixes are presented in Table 6.2 and the notations for the mixes are 

as follows: 

CM1: PC control mix with w/c=0.45 

CM2: PC control mix with w/c=O.55 

ATAF1: Activated Taftan pozzolan mix with w/b=0.45 

ATAF2: Activated Taftan pozzolan mix with w/b=O.55 

ARSH: Activated Raw Shahindej pozzolan mix with w/b=0.42 

ACSH: Activated Calcined Shahindej pozzolan mix with w/b=0.42 

6.3 Mortar and Concrete Mixing Procedure 

In the initial investigation, the study also concentrated on the mixing procedure, in 

terms of the order of the addition of the raw materials to the reaction mixture, in a 

small pilot study on whatever was reported by Palomo et al. (1992). Two different 

. pathways for obtaining the geopolymers were considered while compressive strength 

of the products so obtained was studied. This was found that the compressive 

strengths are higher in geopolymers made by adding alkaline hydroxide solution to 

natural pozzolan first followed by a sodium silicate solution, instead of adding 

alkaline and sodium silicate as a mixed solution to natural pozzolan. Compressive 

strength increased about 33% in Taftan pozzolan due to the former mix procedure 

with rises from 44.4 to 59.08MPa considering other parameters similarly. It seems 
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that by adding alkaline hydroxide solution first, the AI-Si bonds are broken up, thus 

causing a higher degree of the AI-Si disorder. Then gel fonnation in hydrated 

alkaline alumina-silicates is generated by sodium silicate. However, adding alkaline 

and sodium silicate as a mixed solution creates two opposite reactions. Therefore the 

mixing of the geopolymer mortar was carried out in a Hobart Canada N-SO-142Srpm 

mixer (2 litre capacity) using the procedure below: 

1. The alkaline hydroxide solution was made by dissolving KOH pellets in the 

mixing water, using a magnetic stirrer and left to cool down. Then it was 

added to natural pozzolan in the Hobart mixer. 

11. Mixing proceeded for the next 10 minutes at low speed. 

111. The mixer was stopped to scrape the mixture off the sides of the bowl and 

turned on again for another S minutes at medium speed. 

IV. Then the sodium silicate solution was added to the above mixture and the 

mixing continued for another 10 minutes. 

v. Sand was added to the slurry and the mixing continued for the next S minutes 

at low speed before the mixtures were cast into the moulds in three layers. 

The mixing of the geopolymeric concrete was carried out in two phases of mixing. 

The paste was prepared in a Hobart mixer (2 litre capacity) as above (i to iv steps) 

and added to a horizontal pan mixer (20 litre capacity) which contained the 

aggregates. The reason for choosing two sequences of mixing was preventing the 

direct contact of alkaline solutions with aggregates. It seems adding alkaline 

solutions directly to the aggregates causes a surface layer of alkaline around them 

which makes they bind to paste weakly. All the samples were made using the same 

procedure. 

6.4 Casting and Curing 

The concrete samples were cast in different sizes as required by the tests. The 

mixtures were cast into the pre-oiled moulds in three layers and vibrated by means of 

a vibrating table to remove any entrapped air. It was observed that a geopolymer 

concrete stick hard to the mould and oiling of the moulds is very important to allow 

release of the samples. 
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Taftan specimens were de-moulded 24 hours after casting and cured in two curing 

regimes and at three different temperatures: 

1) Sealed curing: Three series of specimens were sealed wrapped in a special 

plastic covering which was tested to be impermeable and stored in a 

controlled room kept at three different temperature equal to 20± 2, 40± 2 and 

60± 2° C. 

2) Fog curing: Three series of the specimens were cured in the fog chamber set 

at three different temperatures equal to 20±2, 40±2 and 60±2°C and 

compressive and splitting tensile strength were measured. One series was fog 

cured at 40±2°C for other measurements. 

Shahindej specimens were all cured in sealed curing conditions. This is because the 

zeolites minerals in this pozzolan have inherently high water absorption and are 

sensitive to shrinkage. Thus, in the sealed curing condition the water in the system 

participates in the chemical reactions and there would not be more water available to 

cause expansion and shrinkage of these minerals, while curing in fog condition 

causes absorption of excess water after the chemical reaction is finished and loss of 

this free absorbed water, causes micro cracks and high reduction of the strength. 

Thus Shahindej pozzolan in a natural state would be suitable for concrete works in 

which curing at more than 60°C without pressure is practical. Otherwise warm 

condition with pressure improves the performance. In pre-cast concrete works curing 

at 80°C and 18MPa uniaxial pressure between two Mylar sheets would produce a 

good material. It was found in section 4.4.1 that untreated Shahindej pozzolan 

needed at least 60°C curing to provide moderate to high strength and the optimum 

temperature for curing calcined Shahindej was found to be 20°C. Therefore ARSH 

concrete mixes were cured at 60°C and ACSH mixes were cured at 20°C. 

After the high temperature curing regime, the speCImens were kept in air until 

testing. Fog cured samples were put in the air 24 hours before testing and sealed 

cured samples an hour, to gain the ambient temperature and humidity. 
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6.5 Workability 

Workability generally defines the ease of handling, placing and compaction of a 

concrete. A workable concrete is one that requires minimum amount of energy to 

produce a consolidated composite with low air content, thus achieving its 

characteristic hardened properties. 

6.5.1 Workability tests 

Workability of concrete is a complex property and numerous attempts have been 

made to quantitatively measure this important property. Some of the tests for 

measuring the parameters of workability are: 

• Slump test 

• 

• 

• 

• 

• 

Compacting factor test 

Vebe time test 

Flow table test 

Two point test G.H. Tattersall of Sheffield University (Tattersall, 1991, 1976 

in Day, 1999) 

Viscometer and rheometer which are modem determinations of workability 

These are chosen based on the type of concrete, its application, and the location of 

the casting. In this research Slump and Vebe time were measured for all of the 

concrete mixes. 

6.5.2 Slump Test 

The Slump test is the most commonly used method for measuring consistency of 

concrete. It does not measure all factors contributing to workability. However, it is 

used conventionally as a control test and gives an indication of the uniformity of 

concrete from batch to batch. Repeated batches of the same mix, brought to the same 

slump, will have the same water content and water binder ratio, provided the weights 

of aggregate and binder are uniform and aggregate grading is within acceptable 

limits. 

The apparatus for conducting the slump test essentially consists of a metallic mould 

in the form of a frustum of a cone having bottom diameter, top diameter and height 

equal to 20, 10, and 30 cm respectively. The mould is placed on a smooth, horizontal 
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and rigid surface. The mould is then filled in four layers and each layer is tamped 25 

times by the tamping rod. The mould is removed from the concrete by raising it 

slowly and carefully in vertical direction. This allows the concrete to subside and the 

subsidence shows the slump of concrete. Hence, slump was measured for all mixes in 

accordance with BS EN 12350-2:2000 and the results of the slump tests are 

presented in Table 6.3 and Figure 6.3. 

6.5.3 Vebe time Test 

Vebe test is a good indirect laboratory measurement of the workability of concrete. 

This test consists of a vibrating table, a metal pot, a sheet metal cone, and a standard 

iron rod. Slump test as described earlier is performed, placing the slump cone inside 

the sheet metal cylindrical pot of the consistometer. The glass disc attached to the 

swivel arm is turned and placed on the top of the concrete in the pot. The electrical 

vibrator is then switched on and simultaneously a stop watch started. The vibration is 

continued until such time as the conical shape of the concrete disappears and the 

concrete assumes a cylindrical shape. This can be judged by observing the glass disc 

from the top. Immediately when the concrete fully assumes a cylindrical shape, the 

stop watch is switched off. The time in seconds required for the shape of concrete to 

change is known as the vebe time. This was measured for all mixes in accordance 

with BS 1881: 1670 and the results of these tests are presented in Table 6.3 and 

Figure 6.4. 

6.5.4 Results and Discussions 

The results of the slump tests and vebe time tests are presented in Table 6.3, and 

Figures 6.3 and 6.4. The results show low workability concrete for OPC control 

mixes while the CMl having the lower slump than CM2 which has a higher w/c 

ratio. The fresh geopolymer is usually classified as "sticky" when compared to 

normal OPC mixes (Roy and Silsbee 1992; Hardjito et al. 2002), specially if the 

reaction happens in the presence of soluble silicates (Fernandez-Jimenez et al. 2006). 

The slump results also show low workability for this type of concrete and the vebe 

time for the geopolymer concrete based on activation of natural pozzolans is much 

more than for OPC concretes because they are inherently highly plastic and sticky 
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concretes. In this type of concrete increasing the wlb ratio and calcination the 

pozzolan both increase the slump and cause more workable geopolymer concrete. 

6.6 Setting Time 

In actual construction dealing with cement paste, mortar or concrete, certain amount 

of time is required for mixing, transporting and placing. During this time cement 

paste, mortar or concrete should be in a plastic condition. The setting times refer to 

the time interval for which these products remain in plastic condition or change from 

a fluid to a rigid state. An arbitrary division has been made for setting time as initial 

and final setting time. The initial setting is regarded as the time in which paste or 

concrete remains plastic or workable. While, the final setting time corresponds to the 

time required for the matrix to reach the stage where it has completely lost its 

plasticity and has started to attain its mechanical strength. During the time between 

the initial and final set, the matrix is stiff and cannot be reshaped. 

6.6.1 Test Procedure 

The mixing procedure followed the steps described in section 6.3. The mortar was 

placed in a special shaped mould immediately after mixing. The setting time was 

determined using the Vicat apparatus in accordance to BS EN 196-3:1995. The 

apparatus consists of a steel needle which acts under a prescribed weight of 300 ± 1 g 

to penetrate the mortar. The penetration was repeated every 10 min and during the 

interval the sample was kept in a chamber under a controlled temperature (the same 

as the curing temperatures used i.e. 20, 40, 600 e for Taftan; 600 e and 200 e for 

untreated and calcined Shahindej, respectively) and 90% relative humidity. 

The initial setting time was recorded when the sample was sufficiently stiff that the 

needle penetrated no deeper than 4 ± 1 mm from the bottom. The final set occurred 

when the special needle penetrated the mortar to a depth of only 0.5 mm. 

6.6.2 Results and Discussion 

The results of the initial and final setting times for the various mixes are listed in 

Table 6.4 and plotted in Figures 6.5 and 6.6. 
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As expected, the initial setting time was shorter for higher temperature curing. The 

setting characteristic of mixes shows that setting is generally fast, and on average it 

took about 8 to 15 minutes from start to end of setting of the mortar with optimum 

concentration of activator except for untreated Shahindej pozzolan (Table 6.3 and 

Figure 6.6). The different pozzolans investigated behaved differently in affecting the 

initial and final setting time of geopolymer concretes which depend on the properties 

of the main mineral phases. Shahindej pozzolan has inherently higher silicate content 

compared to Taftan pozzolan and its higher Si02 concentration may be responsible 

for the delay in its setting as is observed in the results. It took about 120 minutes 

from start to end of setting for untreated Shahindej pozzolan. The amount of Si02 

detected for calcined Shahindej was similar to what was determined for untreated 

Shahindej pozzolan, but the source of silicate related to opal which reacts rapidly 

with an aqueous alkaline solution, thus it took 13 minutes from start to end of setting 

for calcined Shahindej pozzolan (Table 6.3 and Figure 6.6). 

Blended systems of OPC and natural pozzolan generally present a prolonged setting 

time when compared to a control Portland cement. Turanli et al. (2004) studied the 

replacement of 35, 45, and 55% of OPC for Turkish volcanic tuff and reported that 

the blended cements showed quiet different setting times according to pozzolan 

content. Considering W IC for normal consistency, the blended cement containing 

55% natural pozzolan exhibited shorter initial and final setting times equal to 105 

and 157(min) when compared with reference Portland cement. While for the blended 

cement containing 35% pozzolan, the reverse is true and these are equal to 190 and 

315(min), respectively. 

The BS EN 197-1 :2000 prescribes a minimal initial setting time of Portland cement: 

if the designed 28 days compressive strength is 32.5 MPa, the initial setting time 

cannot be less than 75 min; if it is 42.5 MPa not less than 60 min; and if it is 52.5 

MPa not less than 45 min. In comparison with OPC concrete, most of the 

geopolymer concrete mixes seems not to show an acceptable initial setting time 

according to the BS EN 197-1:2000. 

As the concentration of alkaline hydroxide increases, the setting time of the mortars 

always decreased. When the dosage of activator increased from 2.5 to 5 Molar, it 

slightly decreased the initial and final setting time, but the further increase of 
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activator dosage from 5 to 7.5 Molar markedly decreased the initial and final setting 

times (Table 6.4 and Figure 6.5). 

6.7 Air Content 

The exact air content in concrete is extremely important as it affects the various 

properties of concrete including workability, strength and the resistance of concrete 

in severe environmental conditions. If the air content is found to be very low, it 

causes insufficient workability while the presence of high air content or voids, 

greatly reduces the strength of concrete. 

There are mainly three methods for measuring air content of fresh concrete: 

• Gravimetric Method 

• Volumetric Method 

• Pressure Method 

In this investigation the pressure method was used because it is the best method for 

finding the air content of fresh concrete due to its superiority and ease of operation 

over other methods. 

6.7.1 Test Procedure 

The air content was determined in accordance with BS EN 12350-7:2000. According 

to the pressure method the vessel was filled with concrete, compacted in three layers 

in a standard manner and stuck off level. A cover was then clamped in position and 

water added until it spilled from the tube of the cover and then pressure was applied 

by means of a pump. The pressure is then transmitted to the air entrained in the 

concrete, which contracts accordingly. Then the water level falls. The pressure is 

then increased to a predetermined value as indicated by a small pressure gauge 

mounted on the cover. For this type of concrete, the glass gauge tube is so calibrated 

that the percentage of air by volume is indicated directly. The results reported the 

volume of air as a percentage of volume of concrete. 
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6.7.2 Results and Discussion 

The air content of the various mixes is listed in Table 6.3 and plotted in Figure 6.7. 

The air content of different activated pozzolans is compared to control mixes. It is 

evident from the results that increasing the waterlbinder ratio is associated with the 

reduction of the air content. This could be due to a reduction in the viscosity of the 

concrete. Although the vebe result of AT AF2 did not suffer from air entrapment as 

much as expected. Also for different pozzolans the more viscous they are, the higher 

was the air content. 

6.8 Summary 

The main conclusions drawn from this chapter are summarized as follows: 

1) In pozzolans containing zeolites and clayey minerals, such as Shahindej, the 

optimum amount of water to binder ratio for achieving the highest 

compressive strength, is the summation of its plastic limit and aggregate 

water absorption (Figure 6.2). 

2) In alkali activated pozzolan concrete, the procedure for adding the reaction 

mixtures to the pozzolan materials and aggregates is important for achieving 

high compressive strength. Highest strength occurs if alkaline hydroxide 

solution is added and mixed with natural pozzolan first, then followed by 

adding the sodium silicate solution. 

3) Geopolymer concrete based on activation of natural pozzolan has low 

workability and the vebe time for this type of concrete is much longer than 

for ope concretes due to the sticky nature of geopolymer concrete. 

4) Geoploymer paste sets rapidly; usually there is about 15 minutes between the 

beginning and end of setting. The initial and final setting time of alkali 

activated pozzolan concrete depends on the properties of the main mineral 

phases. In natural pozzolans, the higher the amount of silicate concentration 

the longer the setting time, unless the silicate source consists of minerals such 

as opal which reacts rapidly with an aqueous alkaline solution. 
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5) The setting time of alkali activated natural pozzolan decreases when the 

dosage of alkaline hydroxide increases. 

6) The relationship between paste setting time and mix temperature shows that 

as the mix temperature increases the setting time of the paste decreases. 

7) Increasing the water to binder ratio is associated with a reduction in air 

content. 
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Table 6.1 Grading for the fine and coarse aggregates 

Sieve size 

4.75 mm 

2.36 mm 

1.18 mm 

600 microns 

300 microns 

150 microns 

Sieve size 

20mm 

14mm 

10mm 

5mm 

2.36mm 

Fine aggregate 

Coarse aggregate 

138 

% Passed 

99 

90 

85 

77.5 

37.5 

%Passed 

100 

95 

67.5 

5 



Table 6.2 Concrete Mix Proportion 

Mix No. Natural Pozzolan OPC Alkaline Hydroxide Water Glass Water Total Water Total Binder Fine Agg. Coarse Agg. W/B% 
(kg/m3) (kg/m3) (kg/m3) (cc/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) 

CMl 403 180 181.3 403 577.82 1227.88 0.45 

CM2 357 195 196.35 357 702 1119.65 0.55 

ATAFI 391 66.27 34.18 157.78 180 403 578.17 1228.8 0.45 

ATAF2 344 71.82 36.9 171 195 357 702 1121 0.55 

ARSH 417.43 66.91 31.83 159.31 180 428.57 498.8 1282.63 0.42 

ACSH 417.43 66.91 31.83 159.31 180 428.57 498.8 1282.63 0.42 
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Table 6.3 Fresh concrete properties of the mixes investigated 

Concrete Slump Vebe Air Setting time (min) 

Mix No. (mm) Consistometer Content 
Initial Final 

(seconds) (Oft» 

CMl 60.0 3.0 2.3 180 270 

CM2 65.0 2.0 1.65 - -

ATAFl 10.0 25.0 2.2 60 75 

ATAF2 71.0 12.0 1.5 - -

ARSH 25.0 27.0 2.8 60 180 

ACSH 35.0 22.0 2.5 37 50 

Table 6.4 Initial and Final setting time of different mixes (with different activator 
concentrations and mix temperatures) 

Activator Setting time (min) 

Mix Mix No. Concentration 

Temperature 
Initial Final 

(Molar) 

20 eMl - 180 270 

2.5 375 405 

20 ATAF 5.0 310 330 

7.5 60 75 

2.5 244 264 

40 ATAF 5.0 233 248 

7.5 48 60 

2.5 92 100 

60 ATAF 5.0 90 99 

7.5 15 23 

2.5 112 375 

60 ARSH 5.0 95 270 

7.5 60 180 

2.5 295 330 

20 ACSH 5.0 155 180 

7.5 37 50 
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Slump values for the mixes investigated 
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Air content values for different mixes 

3 

2.5 

~ 

'Cf?- 2 
'-'" ....... 
~ 
Q.) ....... 1.5 ~ 
0 

U 
.!:: 1 --< 

0.5 

0 

CM1 CM2 ATAF1 ATAF2 ARSH ACSH 

Concrete Mixes 

Figure 6.7 Air content values for different mixes investigated 

145 



Chapter 7 Engineeringproperties ofgeopolymer concrete 

7. ENGINEERING PROPERITIES OF GEOPOL YMER CONCRETE 

7.1 Introduction 

In the design of concrete structures, engmeers use, or assume a number of 

mechanical or engineering properties of hardened concrete. This chapter reports the 

results of experimental research on the engineering properties of geopolymer 

concrete made with alkali activated natural pozzolans. Experimental work was 

conducted to determine mechanical strength such as compressive and tensile 

strength; modulus of elasticity; ultrasonic pulse velocity and drying shrinkage of 

different concrete mixtures. The mixtures were made from alkali activated Taftan 

Pozzolan with different water to binder ratios and curing conditions and from 

Shahindej Pozzolan with and without calcining. The influence of material 

composition, water to binder ratio and curing conditions as well as correlations 

between the engineering properties are presented. 

The results show that mortars and concretes made with alkali activated natural 

pozzolan develop moderate to high mechanical strength and modulus of elasticity 

and shrink much less than ordinary Portland cement (OPC) concrete with same 

workability. 

7.2 Compressive Strength 

The compressive strength of concrete is one of the major criteria adopted to evaluate 

the quality of concrete for different applications, and structural design of concrete is 

usually based on its value. Strength of concrete, as already discussed in chapter 6, is 

its resistance to stress and it may be measured in a number of ways, amongst which, 

uniaxial compressive strength is probably the most important. The mechanics of 

failure is a complex phenomenon. It can be assumed that the concrete in resisting 

failure generates both cohesion and internal friction. The cohesion and internal 

friction developed by concrete in resisting failure are related mostly to the water to 

binder ratio and curing temperature. In other words, based on the original water to 

binder ratio rule, for a given binder and acceptable aggregates, the strength that may 

be developed by workable mixture of binder, aggregate and water (under the same 

mixing, curing and testing conditions) is influenced by: 

• Ratio of binder to aggregate 
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• 

• 

• 

Grading, surface texture, shape, strength and stiffness of aggregate particles 

Maximum size of aggregate 

Curing temperature 

In the above list, the water to binder ratio primarily affects the strength, whereas the 

other factors indirectly affect the strength of concrete by affecting the water to binder 

ratio (Shetty, 1982). 

This section gives the details of the investigation carried out to evaluate the 

compressive strength of activated Taftan, calcined and uncalcined Shahindej 

pozzzolan and the influence of water to binder ratio and curing condition on 

compressive strength development. 

7.2.1 Test Procedure 

In order to determine the compressive strength of geopolymer concrete, each mixture 

was prepared as 100xl00xl00 mm cubes and the compressive strength for these 

samples was tested according to BS EN 12390-3:2000. Details of casting and curing 

are described in section 6.4. Three samples for each formulation were tested at 1, 7, 

14, 28, 90, 180 and 365 days, and the average compressive strength values reported 

as the results. 

The compressive strength was calculated from the formula below: 

Where: 

fc=P/A (7-1) 

f c is compressive strength in N/mm2 ( MPa ) 

P is maximum load applied to the cube in N 

A is the area of concrete surface in mm2 

The crushing machine used for measuring the compressive strength was fixed at a 

constant rate of load increase of 2.5 kN/s. 
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7.2.2 Results and Discussion 

The results of the compressive strength tests on concrete using activated natural 

pozzolan and control Portland cement mixes are presented in Figures 7.1 to 7.10. In 

Figures 7.3 to 7.10 errors of a similar magnitude to those in Figure 7.2 are expected. 

The results of the compressive strength versus age, for the different mixes are 

presented in Figure 7.1; the upper graph shows results up to 28 days to highlight the 

increase in strength at early ages and the lower graph shows the long term strength 

development up to 365 days. In all cases, the strengths of the concretes increased 

with age. The rate of strength gain is high at early ages and gradually decreases at 

longer ages. Geopolymer concrete mixes mostly showed lower strengths than OPC 

control mixes at early ages, but they reached the same and even higher strengths than 

OPC mixes after long-term aging with the compressive strength of ATAFI 

geopolymer concrete mix is 39.7MPa after 28 days and being higher than the 

comparable OPC control mix (29.2MPa). The results of long-term compressive 

strength tests show that all the geopolymer concrete mixes have higher compressive 

strengths than the OPC control mixes after 365 days with the exception of the ARSH 

mix. ATAFI and ACSH have the highest compressive strength equal to 43.5MPa, 

while ATAF2 reaches 39.1MPa more than that for the CM2 control mix. In the 

ARSH mix the compressive strength after 365 days was 30.2MPa. 

Figures 7.2 and 7.3 show the early age and long term compressive strength for the 

control concrete mixes CMl and CM2 which indicate higher compressive strength 

due to fog curing conditions at early age but the results show higher strength for 

sealed curing condition in long-term. This seems to show that sealing is done well 

and no loss of water occurred during the maturity of concrete. 

It is well known that the lack of curing greatly reduces the strength development of 

concrete. Figure 7.4 to 7.7 clearly show the effect of different curing temperatures in 

sealed and fog curing conditions. Generally, the sealed condition gave the best 

results in the long term, the similar to these for OPC control concrete, although the 

difference between the two conditions is not significant. 
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The results suggest that the optimum temperature for curing alkali-activated Taftan 

pozzolan is 60°C at early ages but curing at 40°C under sealed conditions gave the 

highest strength results in the long-term (Figures 7.4 to 7.7). It was found in section 

4.4.1 that untreated Shahindej pozzolan needed at least 60°C curing to satisfy 

moderate to high strength and the optimum temperature for curing calcined 

Shahindej was found to be 20°C. Therefore ARSH concrete mixes were cured at 

60°C and ACSH mixes were cured at 20°C. 

The water to binder ratio has been found to affect the strength of geopolymer 

concrete mixes as much as OPC concrete mixes while the minimum amount of water 

needed in the system to complete the chemical reactions is more important than in 

OPC concrete mixes (Figures 7.8 to 7.10). The effect of water content is illustrated in 

Figure 7.11 by plotting the 28 day compressive strength versus the water-to

geopolymer solids ratio by mass. The test data shown in Figure 7.11 demonstrate that 

the compressive strength of geopolymer concrete decreased as the ratio of water-to 

geopolymer solids by mass increased giving rise to more free water in the 

geopolymer concrete leading to a more porous microstructure. The trends of these 

test results are similar to those observed by Hardjito et al (2004c) and Barbosa et al 

(2000) for their tests on geopolymer concretes. The results shown in Figure 7.11 also 

confirm that an increase in the curing temperature increased the concrete 

compressive strength. 

7.3 Splitting Tensile Strength 

Concrete is generally known to be weak in tension. There are three types of tests for 

tensile strength: direct tension test, flexure test, and splitting tension test. In this 

section the tensile strength is determined by the splitting cylinder test which is most 

commonly used as indirect measure of tensile strength. The result will be discussed 

in this section. Results show that the tensile strength is related to the mix material 

composition and proportion of ingredients and it is greatly affected by curing 

conditions as well. 

7.3.1 Test Procedure 

The splitting tensile strength of all mixes was measured using 100mm <l> x 200mm 

length cylinders. The samples were prepared and splitting tensile tests performed as 
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described in BS EN 12390-6:2000. The specimens were tested in duplicate sets at 7, 

14, 28, 90, 180 days and the average results are reported. 

The splitting tensile strength was calculated from the following formula: 

Where: 

f t=2P/JILD (7-2) 

f t is splitting tensile strength in N/mm2 
( MPa ) 

P is failure load applied to the cylinder in N 

L is the length of concrete specimen in mm 

D is the diameter of concrete specimen in mm 

7.3.2 Results and Discussion 

The results of the indirect tensile strength tests up to 180 days are shown in Figures 

7.12 to 7.14. 

The trend in tensile strength is similar to that obtained for compressive strength, 

increasing with time. Figure 7.12 illustrates there was a difference in the 

development in tensile strength of different mixes. As far as the geopolymer concrete 

mixes based on activated natural pozzolan are concerned, higher strengths were 

observed at longer ages in comparison with control OPC mixes. At early age, the 

geopolymer concrete mixes showed lower tensile strength results than the OPC 

control mix, while the ATAFI mix gave 3.57MPa after 28 days, higher than the 

corresponding OPC control mix at 2.67MPa. The results show that the long term 

tensile strengths of activated Taftan geopolymer concrete mixes are higher than those 

of OPC control mixes, 3.69 and 3.0MPa after 365 days compared to CMl and CM2 

at 2.81 and 1.99, respectively. For ACSH and ARSH mixes, the tensile strength after 

365 days is 1.96 and 1.3MPa, respectively. 

The tensile strength of this type of concrete is more sensitive to improper curing than 

its compressive strength, the same as in OPC concrete. This may be due to an inferior 

gel formation as a result of improper curing. Figure 7.13 illustrates the effect of 

curing conditions and temperatures on tensile strength of concrete made from 

activated natural pozzlans. The optimum temperature of curing was 40°C, the same 

as that found for compressive strength. 
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Figure 7.14 also shows that a higher water to binder ratio resulted in lower tensile 

strength, the same as for ope mixes. 

7.4 Static Modulus of Elasticity 

Knowledge of the elastic modulus of concrete is essential in the determination of the 

deflection of concrete structures. As a general rule the higher the modulus of 

elasticity, the better the quality of the concrete. The modulus of elasticity is usually 

divided in two: static and dynamic. The static modulus of elasticity gives the strain 

response to an applied stress of known intensity. The dynamic modulus is determined 

by means of vibration methods with only a negligible stress being applied. The value 

of dynamic modulus of elasticity computed from an ultrasonic pulse velocity method 

is somewhat higher than those determined by the static method. This is because the 

modulus of elasticity as determined by dynamic modulus is unaffected by creep 

(Shetty, 1982). 

The static modulus of elasticity is a property of concrete that expresses the ratio, 

within the elastic limit, between a certain range of unit stress and the corresponding 

strain or unit elongation. In this section only the static modulus of elasticity will be 

studied and an attempt is made to provide information on the elastic properties of 

alkali activated natural pozzolans from tests carried out under uniaxial compression 

conditions. 

7.4.1 Test Procedure 

The static modulus of elasticity was determined according to BS1881-121:1983 

standard by subjecting 100mm <l> x 200mm cylinder specimens to uni-axial 

compression and measuring the deformation by means of dial gauges fixed between 

certain gauge lengths. Dial gauge reading divided by gauge length gives the strain 

while load applied divided by area of cross section gives the stress. A series of 

readings were taken and the stress-strain relationship was established. The modulus 

of elasticity found from actual loading is called static modulus of elasticity. 

As specified by the standard, the maximum stress applied was 113 of the ultimate 

compressive strength. The minimum stress used to avoid any movement from the 
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cylinder was 0.5MPa. All the samples were subjected to three loading cycles. The 

static modulus of elasticity in compression (Ee) is given by the formula: 

E =llu=Cia-Cib 

C lls ca-cb 
(7-3) 

Where: 

Cia is the upper loading stress (1/3 of the ultimate strength) 

Cib is the basic stress (0.5MPa) 

C a is the mean strain under upper loading stress 

C b is the mean strain under basic stress 

7.4.2 Results and Discussion 

Results of the static modulus of elasticity tests are shown in Figures 7.15 and 7.16. In 

a similar way to the compressive strength results, the static modulus of elasticity 

increased with age. This improvement was rapid such that in the first 28 days as the 

most of the modulus value was generally achieved. During the first 14 days the 

mixes made with activated natural pozzolans have mostly shown lower values of 

static modulus of elasticity than oPC concrete mixes, except for the ATAFI mix. 

The static modulus of elasticity for ATAFl, ATAF2, ACSH, and ARSH mixes after 

14 days was 33.96, 14.03, 15.81, and 8.57GPa, respectively with that for the CMl 

mix was 26.55GPa. Long term results show that the static elastic modulus of some of 

alkali activated natural pozzolans such as ATAFI and ACSH are around 5% to 20% 

more than ope mixes. However, the ARSH mix shows much lower value of static 

modulus of elasticity than OPC concrete mixes. The long term static modulus of 

elasticity of ATAFl, ATAF2, ACSH, and ARSH mixes were 32.7, 26.8, 33.6, 

10.7GPa in comparison with OPC concrete mixes for which the value was 29GPa. 

The elastic modulus was affected by the curing temperatures and conditions. At early 

ages the static modulus of elasticity increased with increasing the curing temperature 

up to a limit which seems to be related to the water to binder ratio (Figure 7.16). For 

ATAFI with a water to binder ratio of 0.45, the elastic modulus increased with 

increasing curing temperature up to 40°C but decreased when the curing temperature 

rose to 60°C. For ATAF2 mixes where the water to binder ratio was 0.55. the 

temperature where the highest static modulus of elasticity was obtained rose to 60°C. 
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However, over the long term the results drop to the same value as the mix cured at 

40°C. Fernandez-Jimenez, Palomo et al. (2006) show the static modulus of elasticity 

of alkali activated fly ash concrete samples frequently reduces slightly with curing 

temperature increases from 25°C to 40°C. 

7.5 Ultrasonic Pulse Velocity 

The velocity of ultrasonic pulses travelling in a material depends on the density and 

elastic properties of that material. Ultrasonic pulse velocity method consists of 

measuring the time of travel for an ultrasonic pulse, passing through the concrete. 

The pulse generator consists of an electronic circuit for generating pulses and a 

transducer for transforming these electronic pulses into mechanical energy. This 

method can be used to determine the setting characteristics, strength, and modulus of 

elasticity of concrete, as well as durability of concrete including detection and 

measurement of cracks and deterioration. The measurement of pulse velocity is 

affected by a number of factors regardless of the properties of the concrete including 

smoothness of contact surface under test to maintain good acoustical contact between 

the surface of concrete and the face of each transducer, temperature of concrete for 

preventing the reduction of pulse velocity at temperature more than 30°C, and 

moisture condition of concrete. 

7.5.1 Test Procedure 

A PUNDIT instrument was used to measure the ultrasonic pulse velocity in 

accordance with BS 1881: part 203: 1986. The measurement was conducted on 

100mm square by 500mm long prism. Duplicate sets of samples were tested at 28, 

90, and 180 days. 

For measuring the ultrasonic pulse velocity, a pulse of longitudinal vibration is 

produced by a 50mm diameter 54 kHz electro acoustical transducer and picked up by 

another transducer after travelling a known path length (500mm). The pulse velocity 

is given by: 

V=L/T (8-4) 

Where V=ultrasonic pulse velocity (km/sec) 
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L -path length or distance travelled by pulse (mm) 

T=transit time (I-lsec) 

7.5.2 Results and Discussion 

Figure 7.17 shows the results for the ultrasonic pulse velocity test for all mixes. 

ACSH and ATAF1 achieved the highest values followed by ATAF2 which has a 

higher wlb and the lowest ARSH despite its low density. All of the geopolymer 

concrete mixes showed lower ultrasonic pulse velocities than the OPC concrete 

mixes, even with the same or higher compressive strength. The results are tabulated 

in Table 7.1. Comparing the results with Table 7.2, which gives the pulse velocity 

rating as suggested by Central Water and Power Research Station, Khadakwasla 

(India), indicates that a lower velocity corresponds to the same compressive strength. 

It seems that in geopolymer concrete, despite its lower density the velocity of 

ultrasonic pulses is lower than in OPC concrete. 

7.6 Drying Shrinkage properties 

Volume change is one of the most detrimental properties of concrete, which affects 

the long-term strength and durability as it causes unsightly and damaging cracks in 

concrete. It is the loss of water held in gel capillary pores that causes the change in 

the volume. Many internal and external factors can affect the drying shrinkage of 

hardened cement pastes. The internal factors include the nature of the pozzolan, 

nature of the activator, dosage of activator, water to binder ratio and degree of 

polymerization. The external factors include curing temperature, additives, relative 

humidity, and the rate and time of drying. The relative humidity of the atmosphere, 

waterlbinder ratio, and aggregate properties including its grading and modulus of 

elasticity and curing condition prior to drying are important factors which influence 

the magnitude of drying shrinkage. This section presents the test carried out and the 

results obtained for geopolymer concrete mixes. The results are discussed and 

conclusions derived from the results. 

7.6.1 Test Procedure 

In the present work, the changes in length of 75 x 75 x 280 mm concrete prisms were 

measured by conventional mechanical equipment. Predrilled metal studs \yere fixed 
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to either end of the concrete specimen with adhesive at a preset spacing with the aid 

of a standard calibration bar. The distance between each of two pins located into the 

stud holes was measured to an accuracy of about 0.0025 mm at fixed times. One end 

of the reference rod was designed as the top and it was kept uppermost during all 

measurements. The prisms were placed in the apparatus with the marked end 

uppermost and were rotated slowly around the contact surfaces to measure the 

changes in length. For each mix two specimens were cast and cured for 3 and 7 days. 

The prisms were then left in a room controlled at 20ce and 70% humidity and 

chemical shrinkage was measured using the length comparator in accordance with 

BS 812: Part 120: 1989. The comparator and a concrete prism are shown in Figure 

7.18. 

7.6.2 Results and Discussion 

The shrinkage/time curves are shown in Figures 7.19 to 7.21. From this investigation 

the following observations can be made: 

1) The graphs show that while the amount of shrinkage increased with time, the 

rate of shrinkage decreased rapidly with time. The rate of shrinkage in Taftan 

pozzolan mixture was similar to but not as rapid as the rate of development of 

compressive strength and the amount of shrinkage seems to be constant after 

60 days. However, in Shahindej pozzolan, the rate of shrinkage was more 

rapid than the development of strength and it became constant value after 14 

days. 

2) In ope concrete, one of the important factors which influenced the 

magnitude of shrinkage was the water to cement ratio of concrete which 

usually increased with an increases of this ratio. The total water to binder 

ratio also has a significant effect on the shrinkage properties of geopolymer 

concretes but seems to be contrary to the behaviour of ope concrete, where 

lower drying shrinkage resulted from higher water to binder ratios. It may be 

that the lower waterlbinder ratios reduces the efficiency of the cross linking 

(Figure 2.1 b) as it must occur within in a restricted space. so it may be 

incomplete. Hence shrinkage is more than occurs for a higher water to binder 

ratio as further efficient cross linking is made before water removal. The 
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maximum amount of final drying shrinkage for the ATAF2 mix (514xl0-6) 

was 43% of that for ATAFI (1185xl0-6
) at 180 days. 

3) The results show that for a given water to binder ratio, the drying shrinkage at 

all ages varies with different curing regimes and temperatures. In concrete 

made from alkali activated natural pozzolan, the higher the curing 

temperature, the lower the amount of drying shrinkage measured. This is 

possibly because further cross links are made as a result of water removal by 

the higher temperature and follows the pattern reported by Wallah and 

Rangan (2006). The lowest amount of drying shrinkage for different curing 

temperatures correspond to ATAFI and ATAF2 mixes for which values of 

239xlO-6 and 161xlO-6 respectively were achieved for mixes cured at 60°C. 

Fog curing showed higher amounts of drying shrinkage. This phenomenon 

may be related to more water being retained in the pores causing a looser 

microstructure giving rise to higher shrinkage. Similar finding are reported by 

Zuhua et al. (2009) for calcined kaolin-based geopolymer. 

4) The curing period affects the amount of drying shrinkage as well. In the 

specimens cured for a period of three days, it seems the chemical reactions 

are incomplete, thus there is little water in the gel pores available for 

shrinkage while for samples cured at 7 days or more, more water is available 

to cause more shrinkage. 

7.7 Relationship between Engineering Properties 

Statistical correlations that were obtained between the different results of properties 

measured In the laboratory are presented in this section. The relationships are 

empirical III nature and have certain limitations because a number of factors 

including the mineral and chemical properties of natural pozzolan, water to binder 

ratio, age and curing, affect these relationships. However, the relationships contribute 

to an understanding of the development of the properties. 

7.7.1 Relationship between Compressive and Tensile Strength 

Compressive and tensile strength of concrete are closely related, but the tensile 

strength increases with age at a lower rate than the compressive strength. Thus they 
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are not related proportionally. Most of the empirical formulae combining both tensile 

and compressive strength are in the following form: 

ft=k(fc)ll (7-5) 

Wherek and n are coefficients in which n varies between 0.5 and 0.75 (Neville. 

1995) 

In general, the relationship between the compressive strength and the tensile strength 

seems to be determined by the effect of various factors on properties of concrete. It is 

known that not only the curing age and conditions but also the characteristics of the 

concrete mixture, such as the composition of the pozzolan, the properties of 

activators, water to binder ratio, and the type of aggregate affect the tensile 

compressive relationship to varying degrees. 

A relationship between compressive strength and splitting tensile strength would be 

expected. These results show that as compressive strength increases, the tensile 

strength also increases, see Figures A7.1 to A7.5. Using power regression analysis 

carried out between the compressive strength and the splitting tensile strength of 

each of the 6 mixes for different curing regimes and temperatures. The regression 

equation and the correlation coefficient are given in Table A 7.1. 

It can be seen that in nearly all mixes the splitting tensile strength is highly correlated 

with the compressive strength. However due to the variation in the source mineral, 

water to binder ratio and curing conditions, activated calcined Shahindej and 

activated Taftan pozzolan with higher water binder ratio which cured at 60°C have 

higher correlation coefficient, respectively. Referring to equation 7-5 and the data in 

Table A 7.1, the values of n range from 0.1 to 0.7 and those of k from 0.2 to 1.4 for 

OPC mixes. In comparison in alkali activated natural pozzolans, the values of n 

range from 0.2 to 1.5 and those of k from 0.03 to 1.5. The results of splitting tensile 

strength versus compressive strength for different mixes made from activated natural 

pozzolans are shown in Figure 7.22. It can be seen that two different trend lines can 

be identified. Comparing the data points to what was presented in Figures A7.2 and 

A7.4 shows that the Group I data points correspond to activated Taftan pozzolan 

cured at 20°C and 40°C in sealed and fog and at 60°C in fog curing conditions while 

Group II data points correspond to activated Taftan mixes cured at 60°C in sealed 

curing condition and activated Shahindej pozzolan mixes in both untreated and 
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calcined states. Whereas the tensile strength is highly dependant on the bond between 

aggregates and the paste, the heat curing may not necessarily enhance the interface of 

aggregate/gel to the same order as enhancing the strength of the gel itself. The 

weakness of Group II mixes in splitting tensile strength seems to be related to the 

high temperature of curing in the absence of water since water in the sealed curing 

condition cannot be replenished to enhance the paste bonding properties especially at 

the interface of the paste and the aggregates. The low tensile strength is also 

observed when the pozzolan contains sodic zeolites with high loss on ignition and 

soluble silicon, such as Shahindej is used, which suggests resulting in poor bonding 

with aggregates. This follows the pattern reported by Fernandez-Jimenez et al (2006) 

about the presence of silicate ions in the alkaline solution substantially which has 

negative effect on the very strong matrix/aggregate bond. Power regression analysis 

showed that the formulae appropriate for two groups of geopolymer concretes based 

on activated natural pozzolans are as follows: 

AANP Concrete Group I: ft = 0.05(fc) 1.l9 

AANP Concrete Group II: ft = 0.02(fc) 1.l9 

R2=0.776 

R2=0.639 

(7-6) 

(7-7) 

Comparing the correlation between the splitting tensile strength and the compressive 

strength for geopolymer concrete based on activated natural pozzolans to that of 

normal OPC shows that more tensile strength with natural pozzolan (Group I) for the 

same compressive strength when it is more than 22.5MPa (Figure 7.22). 

7.7.2 Relationship between Compressive Strength and Modules of Elasticity 

At the same stress/strength ratio, stronger OPC concrete has higher strain. On the 

other hand stronger concrete has higher modulus of elasticity. This implies that 

stronger the concrete the stronger is the gel and hence there is less strain for a given 

load which gives higher modulus of elasticity. The modulus of elasticity of OPC 

concrete increases approximately with the square root of the strength. The basic form 

of equation is generally suggested by BS8110: part 2: 1985 and ACI 318-83 to 

adequately describe the relationship between static modulus of elasticity and 

compressive strength as follows: 

Es=k (fc) n (7-8) 
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Where k and n are coefficients is suggested in the above standards due to concrete 

density and the shape for the sample used to determine the compressive strength 

(cube or cylinder). 

In this investigation the static modulus of elasticity values for concrete mixes have 

been plotted against their respective cube and cylinder compressive strength values 

to explore the opportunity for an analogous geopolymer concrete formula to the 

relationships suggested by BS8110: part 2: 1985 and ACI 318-83 for calculating the 

static modulus of elasticity versus compressive strength. 

The static modulus of elasticity values of concrete mixes in this research have been 

plotted against their respective cubic and cylinder compressive strength values, as 

shown in Figures A7.6 to A7.14. Figures A7.15 to A7.19 present the relationship 

between the static modulus of elasticity and the splitting tensile strength of all 

concrete mixes. Power regression analysis was then carried out between the static 

modulus of elasticity values and the compressive strength and afterward the splitting 

tensile strength of each of the 6 mixes for different curing regimes and temperatures. 

For the concrete mixes used in this investigation separate equations relating to the 

static elastic modulus and strength were found. The regression equations and the 

correlation coefficients relating the static modulus of elasticity and the cubic and 

cylinder compressive strength and the splitting tensile strength are given in Tables 

A7.2, A7.3 and A7.4, respectively. 

It can be seen that for geopolymer concrete based on activated natural pozzolans, in 

80% of mixes, the static modulus of elasticity is highly correlated with the cubic 

compressive strength and in nearly all mixes the static modulus of elasticity is highly 

correlated with the cylinder compressive strength. It can be observed that in the 

former correlation activated calcined Shahindej, activated Taftan pozzolan with 

lower water binder ratio cured at 40°C fog condition and activated untreated 

Shahindej pozzolan have higher correlation coefficient, respectively. In the latter 

case activated calcined Shahindej, and activated Taftan pozzolan mix cured at 60°C 

sealed condition, have higher correlation coefficient. 

Referring to equation 7-8 and with respect to Table A7.2 for cubic compressive 

strength the major values of n range from 0.3 to 0.4 and those of k from 7.5 to 10 for 
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OPC mixes compared to the values of n ranging from 0.5 to 2.0 and those of k from 

0.1 to 2.4 for alkali activated natural pozzolans. The results of static modulus of 

elasticity versus cube compressive strength for different mixes made from activated 

natural pozzolans are shown in Figure 7.24 and power regression analysis showed 

that the formulae reached for geopolymer concrete based on activated natural 

pozzolans are probably as follows: 

Es= (fcu) 0.9 (7-9) 

This implies that at the same cube compressive strength, OPC concrete has higher 

static modulus of elasticity especially for lower amount of compressive strength 

which occurs at early age. 

Considering Table A7.3 for cylinder compressive strength the values ofn range from 

0.5 to 1.7 and those of k from 0.07 to 3.6 for alkali activated natural pozzolans, and 

drawing the results of static modulus of elasticity versus cylinder compressive 

strength for different mixes made from activated natural pozzolans in Figure 7.25 

with power regression analysis, the formulae reached for geopolymer concrete based 

on activated natural pozzolans would be as follows: 

Es= 1.6(fcyl) 0.82 (7-10) 

It can be observed that the correlation between cube and cylinder compressIve 

strengths shown in Figure 7.23 is high and cylinders show lower compreSSIVe 

strength as is expected. Comparing equation (Eq. 7-10) with the formulae suggested 

by ACI 318-83 standard for conventional concrete implies that when the compressive 

strength is more than 28MPa, the mixes made with activated natural pozzolans have 

shown higher values of static modulus of elasticity than OPC concrete mixes (Figure 

7.25). 

In this investigation for predicting the static modulus of elasticity from splitting 

tensile strength of concretes based on alkali activated natural pozzolans from the 

equation 7-11, the values ofn range from 0.3 to 2.5 and those ofk from 1.8 to 20.6: 

Es=k (fD n (7-11) 
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With respect to Table A7.4 and Figure A7.20, the formulae relating modulus of 

elasticity, Es (GPa) versus splitting tensile strength, ft (MPa) reached for geopolymer 

concrete based on activated natural pozzolans is proposed: 

Es= 12.5 (ft) 0.7 R2=0.584 (7 -12) 

Hence, the above formulae and comparing the correlation between the static modulus 

of elasticity and the splitting tensile strength for geopolymer concrete based on 

activated natural pozzolans to that of normal OPC concrete in Figure A 7.20 shows 

that higher splitting tensile strength is expected for alkali activated natural pozzolan 

concrete than OPC concrete, having the same static modulus of elasticity. 

7.7.3 Relationship between Compressive Strength and Ultrasonic Pulse Velocity 

A high pulse velocity in concrete is generally indicative of concrete with high 

compressive strength and good quality. Table 7.2 gives the pulse velocity rating as 

suggested by Central Water and Power Research Station, Khadakwasla (India) 

corresponding to different ranges of compressive strength (Shetty, 1982). In this 

investigation, an attempt has been made to formulate an equation that describes the 

relationship between UPV and strength of this type of concrete. Therefore, the values 

of ultrasonic pulse velocity against compressive strength were plotted in Figure 7.26. 

The relationship between pulse velocity, V (kmlsec), and compressive strength, fc 

(MPa) fitted equations as follows: 

OPC concrete: V=0.29 fc 0.776 (7-13) 

AANP concrete: V=0.44 fcO.616 (7-14) 

The equations obtained have good correlation for both concretes and ultrasonic pulse 

velocity in the geopolymer concrete despite its inherent property of lower density 

relative to OPC concrete having the same compressive strength. Therefore pulse 

velocity techniques can be successfully used for the estimation of strength of the 

geopolymer concrete mixes made with alkali activated natural pozzolans. 
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7.8 Summary 

The main results drawn from the investigation of the engmeenng properties of 

geopolymer concrete made from activating natural pozzolans (i.e. alkali activated 

natural pozzolan or AANP) are summarized as follows: 

1) Geopolymer concrete from activated natural pozzolans generally have lower 

strengths than ope mixes at early ages, but they reach the same or even 

higher strengths than ope mixes after long-term curing. 

2) The optimum temperature for curing alkali-activated natural pozzolans III 

concrete is different for the different pozzolans and seems mostly related to 

the main mineral phases in the natural pozzolan. Each pozzolan shows a 

different response to a temperature rise and raising the temperature is more 

helpful to the reaction processes in pozzolans such as Taftan and uncalcined 

Shahindej, which contain feldspars and zeolites as the main mineral phases, 

which seem to need higher activation energy to react. For Shahindej, which 

contains zeolite minerals such as clinoptilolite, it was shown that when it was 

calcined the resulting pozzolan could be activated at room temperature. 

3) The strength of geopolymer concrete decreases with the ratio of water to 

geopolymer solids by mass increases. This allows more entrapment of water 

within the geopolymer paste and makes a looser microstructure in this type of 

concrete. 

4) During the first 14 days, activated natural pozzolan concrete mixes generally 

have lower values of static modulus of elasticity than ope concrete mixes. 

However, the long term results show that the static elastic modulus of alkali 

activated natural pozzolans concrete is generally around 5 to 20% higher than 

for ope mixes. 

5) The elastic modulus of AANP concrete is affected by the cunng 

temperatures. At early ages the static modulus of elasticity increased with 

increasing curing temperature to a limit which seems to be related to the 

water to binder ratio. If water is lost due to evaporation when curing at higher 

162 



Chapter 7 Engineeringproperties ofgeopolymer concrete 

temperature before the full strength is gained, the static modulus of elasticity 

decreases. 

6) It seems that the ultrasonic pulse velocity in the geopolymer concrete is lower 

than in ope concrete of the same compressive strength. 

7) The AANP concrete mixes exhibit lower drying shrinkage in comparison 

with the ope mixes of the same water to binder and cement to aggregate 

ratios. 

8) In sealed cunng conditions, the higher the water to binder ratio for 

geopolymer concrete, the lower is the amount of drying shrinkage. This is 

possibly because for the lower waterlbinder ratios, the cross linking is not as 

efficient as it must occur in a restricted space and may well not be completed. 

9) In concrete made with alkali activated natural pozzolan, the higher the curing 

temperature, the lower the amount of drying shrinkage resulted, which is 

possibly because further cross linking is made as a result of water removal by 

the higher temperature and follows the pattern reported by Wallah and 

Rangan (2006). 

10) Fog curing shows higher amount of drying shrinkage. This phenomenon may 

be related to the retention of water by the geopolymer matrix giving rise to a 

looser microstructure in this type of concrete. This may cause more shrinkage 

and follows that found by Zuhua et al. (2009). 
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Table 7.1 The pulse velocity and the corresponding compressive strength of different mixes 

Mixes Age(days) V elocity(km/ sec) Compressive 
strength(MPa) 

28 3.95 29.8 
CM 1 cured at 20°C Sealed 90 5.0 39.23 

180 4.95 39 
28 3.5 24.78 

CM2 cured at 20°C Sealed 90 4.7 36.78 
180 4.6 36 
28 3.39 39.7 

AT AF 1 cured at 40°C Sealed 90 4.0 35.6 
180 4.5 40.97 
28 3.03 21.36 

AT AF2 cured at 40°C Sealed 90 4.2 38.72 
180 4.2 38.06 
28 3.0 24 

ARSH cured at 60°C Sealed 90 3.8 33.15 
180 3.5 30.2 
28 3.0 24.54 

ACSH cured at 20°C Sealed 90 4.5 40.26 
180 4.5 40.56 

Table 7.2 Quality criteria suggested by Central Water and Power Research Station 
Khadakwasla (India) 

Velocity (km/sec) 

4.0 and above 
3.5 to 4.0 
3.0 to 3.5 

3.0 and below 

Classification (Quality) 

Very good 
Good 

Medium 
Poor· 
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Early-age Compressive Strength for Different Mixes 
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Figure 7 _1 Early-age and long-term compressive strength development for different 
mixes under sealed curing condition (CM1, CM2, and ACSH were cured at 20°C, 
ATAF1 and ATAF2 were cured at 40°C and ARSH was cured at 60°C which were 

the best curing temperature in each case) 
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Early-age compressive strength of OPC (W/C=O.55) 
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Early-age compressive strength of activated Taftan Pozzolan (W/B=OA) 
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Early-age Compressive Strength of activated Taftan Pozzolan (W 1B=O.45) 
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Early-age cmpressive strength of activated Taftan Pozzolan (W 1B=O. 5) 

40 

35 
,-... 
~ 

0-
30 § 

....... .. on 
25 ' , 

~ 
Q) -'.' .l:i 

C/) 
20 Q) • 20Sealed 

.~ 
m 
m 15 Q) 

.. __ __ ..... , .... --. --- . .. - 20Fog 
I-< 
0.. 
8 10 0 
u 

• 40Sealed 
.. -. .. - 40Fog 

5 • 60Sealed 

0 
--- . --- 60Fog 

0 5 10 )5 
rtge 

20 25 30 

Long-term compressive strength of activated Taftan Pozzolan(WIB=O.5) 

40 
,-... 
~ 

35 P.. 
:2 
'-"' 

30 ..s:: ....... 
on 
~ 25 Q) 

.l:i 
C/) 

20 Q) 

> .-m 15 m 
Q) 
I-< 
0.. 10 8 
0 

5 u 

t . - - -' - -- -. 
-~ 

, -- '. , . 

.:It " ~ ;-/ 
, 

~ 

t ./ 

Tl ~~ : : : ;' . --' -' -' -' -' -' -' -' -' -' -' -' -' - ------- - -~:- - --. • 20Sealed 
-- -... -- 20Fog 

~U- - - -- ,, · - - • 40Sealed 

11 ---.--- 40Fog 
, ~ • 60Sealed 

0 
--- .-.. 60Fog 

I I I 

o 100 200 300 400 

Age 

Figure 7.6 Effect of different curing condition and curing temperature on compressive 
strength development for activated Taftan pozzolan with water to binder ratio equal to 0.5 

170 



Chapter 7 Engineering properties ofgeopolymer concrete 

Early-age compressive strength of activated Taftan Pozzolan (W!B=O.55) 
40 

i:: :====:.-=- =--=-=--=-=- =- -:_. =--=-=--=-=- =- -=. =--=- =--=-=--=-=. =--=- =- -=- ~--=-= .. =-=~:-:- =--=- = .. =- =--=~==~-------------, 
-B ~ ----4.~ 20Sealed 
gf25 " - -- -. 

~ 20 :'i ~- -----~;: --, ----.-------.------------, --------- -- -----11- :--.- -- - ~~:::led 
~ 17 /'_ '.-~ - ----- -
t: I / / 

- --. -- - 40Fog 

__ -e- ---. -. --. -----. ----------. ----~ ---;.-- 60Sealed 

o V ~--
U 5 _~ /,., 

oV 
I 

- --. - -- 60Fog 

e OPC-20Sealed 

- - -e- -. OPC-20Fog 

o 5 10 15 20 25 30 
Age 

Long-term compressive strength of alkali activated Taftan Pozzolan(W/B=O.55) 

45 

~ 40 ro 
0-

~ 35 
'--' 

-B 
30 b.O 

= Q) 

.b 25 
ifJ 
Q) 

20 ;;. 
-..... 
rn 
rn 

15 Q) 
I-< 
0.. 
S 10 
0 
u 5 

0 

- -:t. , ' 
~/ 

• ~· .7 
, 

" -- . -------_._----------_.--_._- . 

i . ~ -- , -. - ~ , .. : : : : ~ . - --/ . .. 
~ .... /_. -.e--.- --- · ---- -·- ---- ·· ------- e 

-t~· - · -· -

.J 
.",. 

~ 

o 100 200 A ge 
300 

• 20Sealed 

- - -e--- 20Fog 

• 40Sealed 

.. -.--- 40Fog 

• 60Sealed 

--- . --- 60Fog 

e o PC-20Sealed 

- - -e - -- OPC-20Fog 

400 

Figure 7.7 Effect of different curing condition and curing temperature on 
compressive strength development for ATAF2 mix and comparing with CM2 mix 

171 



Chapter7 Engineering properties ofgeopolymer concrete 

Long-Term compressive strength for activated Taftan cured at 20Sealed 

35 

~ 30 
~ 

p., 

6 25 
~ ..... 

OJJ 
::: 20 Cl) 

l: 
VJ 

Cl) 

15 > 
·Vi 
VJ 
Cl) 

b..10 
E 
0 u 

5 

0 

40 

,..-, 35 
~ 

0... 

6 30 
...c ..... 
co 

0 50 100 150 200 

Age (days) 

250 300 350 400 

-+- WIB=().4 

~WIB=().45 

---*- W lB=(). 5 

--*- WIB=().55 

Long-Term compressive strength for activated Taftan cured at 20Fog 

..... 

/ 
K 25 ~ 

~ ~ 
~ Cl) 

.b 
(/) 

20 Cl) 

~ ~ >-.-VJ 15 VJ 

~V Q) 

-+- WIB=OA I-< 
0... 
S 10 

~ ~ WIB=().45 0 
u 

5 ---*- W lB=(). 5 

0 --*- WIB=(). 55 

0 50 100 150 200 250 300 350 400 

Age (days) 

Figure 7.8 Effect of water to binder ratio on compressive strength development for 
activated Taftan pozzolan cured at 20°C 

172 



Chapter 7 Engineering properties ofgeopolymer concrete 

...---

50 

45 

~ 40 
~ 
22' 35 
;....0 

~ 30 
Q) 

~ 25 

~ 20 .-Vl 

~ 15 
I-< 

810 
o u 5 

o 

45 

40 
,.-., 
rn 

0.. 35 
~ 
~ 
to 30 
I:l 
Q) 

ti 25 C/) 

Q) 

.2: 20 
Vl 
Vl 
Q) 15 I-< 
0.. 

8 10 
u 

5 

0 

Long-Tenn compressive strength for activated Taftan cured at 40Sealed 

,........ 

-----...... 

.. ---[ ~ 
I ~/ 

i W 1I 

~ 

o 50 100 150 

I I 

200 250 300 

Age (days) 

--

350 400 

~W/B=O.4 

~ W/B=O.45 

--.- W/B=O.5 

~W/B=O.55 

Long-Tenn Compressive strength for activated Taftan pozzolan cured at 40Fog 

... 

~ 
rN ~ 
!/\~ 

........ 

..... 
" y \. ... 

'" 
I~ 

~ W/B=O.4 ri 
~W/B=O.45 

-t- W/B=O.5 

~W/B=0.55 
I I 

0 50 100 150 200 250 300 350 400 

Age (days) 

Figure 7.9 Effect of water to binder ratio on compressive strength development for 
activated Taftan pozzolan cured at 40°C 

173 



Chapter 7 Engineering properties ofgeopolvmer concrete 

50 

~ 45 
CI::I 

0.. 40 ::E 
'-' 

.£ 35 
OJ) 
;:::l 

30 Q) 

.b 
r/) 25 

Q) 

.2: 20 en 
en 
Q) 

15 ;... 
0.-
S 10 0 
U 

5 

0 

60 

~ 

~ 50 
~ 
'-' 

.£ 
b1) 40 
$:I 
Q) 

.b 
r/) 30 
Q) 

.2: 
en 

~ 20 ;... 
0.-
S 
o 10 u 

o 

Long-Term compressive strength for activated Taftan cured at 60Sealed 

.... , 
/ ~ 
f ~ .... 

-I- f---.. ><--
'W~ 
~ 

o 50 100 150 200 

Age (days) 

----

250 300 350 400 

~WIB=O.4 

--- WIB=O.45 

--.- WIB=O.5 

---*- WIB=O.55 

Long-Term compressive strength for activated Taftan cured at 60Fog 

- r------
"" 

-

__ .J ~ 
1/ 

~ I~ 
~ 

~ WIB=O.4 ., 
--- WIB=O.45 

--.- WIB=O.5 

---*- W/B=O.55 
I I 

o 50 100 150 200 250 300 350 400 

Age (days) 

Figure 7.10 Effect of water to binder ratio on compressive strength development for 
activated Taftan pozzolan cured at 60°C 

174 



Chapter 7 

55 

50 
r--., 

C<:l 45 0... 

6 
40 il 

b.O 
::: 35 (\) 
Jj 
if.! 30 (\) 

> ...... 
25 CJ'J 

CJ'J 
(\) 
l-< 

20 0.. 
S 
0 15 U 

10 

5 

Engineering properties ofgeopolymer concrete 

• 20Sealed 
+----------. __ ---------~"------~ .. .•. .. 20Fog 

• 40Sealed 

--t-----------~~""__.~---~ ... • ... 40Fog 

• 60Sealed 
... • . .. 60Fog 

0.35 0.4 0.45 0.5 0.55 0.6 

Water to binder ratio (W/B) 

Figure 7.11 Compressive strength at 28 days versus water to binder ratio(W/B)for 
alkali activated Taftan pozzolan 

Long-Tenn Splitting Tensile Strength of Different Mixes 

4 
..... 

~3.S 

/ --0.... 

~ .. ....................... .. -'---' 3 ~ 

t-~ 
, ..... . 

OJ:) 
~ , 
~ 2.S -

~ --- .... .. .:'.-:: ~ . 
• CMl(OPC Mix-

r:/J 
W/C=O.4S) C1,) 

2 .--< 

~' II- . ,.' 
-.- ...•... CM2(OPC Mix-.-en 

~ 
, '-.- ----- W /C=O.SS) C1,) 

f--. 1.S 

~~--~ -~ • ATAF 1 (Activated 
OJ:) 

.S 
1 

Taftan-W IB=O.4S) 
t:: 

,~;;: ~ 
... • ... ATAF2(Activated .--0.. Taftan-W 1B=O.S5) 

r:/J O. S 
;/ ARSH 

0 • ACSH 

0 SO 100 A (da ) ISO L1JD 
ge ys 

Figure 7.12 Long-term indirect tensile strength development for different mixes 
under sealed curing condition (CM1, CM2, and ACSH were cured at 20°C ATAFI 
and AT AF2 were cured at 40°C and ARSH was cured at 60°C which were the best 

curing temperature in each case) 

175 



Chapter 7 Engineering properties ofgeopoiymer concrete 

Long-Tern Indirect Tensile strength of ATAFI Mix 

4 
~ 

p.. 3.5 ::;s 
'--" 

..c: 3 ..... 
.. . - ,~~ ---- --: : -- --: : ~ ~ : ~ ~ -- ~ ~ -- , . --------- ---'----. 

" , " . 
01) 

~ 2.5 <l) 

.t: 
r:/) 

<l) 2 - • 20Sealed 
..... 
en 

= 1.5 <l) 

E-< 

---. --- 20F og 

• 40Sealed ..... 
u 1 <l) 

.~ 
--- . --- 40Fog 

"d 
~ 0.5 >-< • 60Sealed 

0 
--- . --- 60Fog 

0 50 100 Age (days) 150 200 

Long-Term Indirect Tensile Strength of ATAF2 Mix 

3.5 
~ ro -0.... 3 
6 ~ ____ ,_. _-- ------ -./ -------.- ----------------------u 
~ 

bn 2.5 
~ ~ , ', ... - -/- -... ----. ----- - , - - - -----. --' . -----. -. ~ : -- --:' , . Q) 

.t: 
2 • 20Sealed r:/) 
:~ ------

~ :' A - -_. _ -------.--- - ---- . .. - --- . -- - 20Fog 'en 1.5 s::::: 'Jr- ~ ~ Q) • 40Sealed 
E-< 

" . .... 
..... 1 ====-- -- -. -- - 40Fog u : ;: ~ Q) 

-!::I :' J~ "" "d • 60Sealed 0.5 ,.s 
V --- . --- 60Fog 

0 

0 50 100 150 200 

Age (days) 

Figure 7.13 Effect of different curing condition and curing temperature on indirect 
tensile strength development for ATAF1 and ATAF2 mixes 

176 



Chapter 7 

,.-... 3 
<'3 

0... 

62.5 
...c: ...... 
Cl) 

2 1= 

~ 
C/) 

Q) 1.5 
VJ 

1= 
Q) 

~ 
...... 
<..) 

Q) 

~ 0.5 
..5 

0 

0 

,.-... 4 <'3 
0... 

::;E 3.5 '---' 

-t: 3 Cl) 

1= 
Q) 2.5 .t: 

C/) 

Q) 2 
. ~ 

VJ 

1.5 1= 
Q) 

~ 
1 ...... 

<..) 
Q) ..... 0.5 

'"0 

..5 0 

o 

1.8 
,.-... 

<'3 

1.6 0... 

~ 
'---' 1.4 ...<:: ....-
Cl) 

1.2 1= 
Q) 

.t: 
1 C/) 

Q) 

VJ 0.8 . 

1= 
Q) 

0.6 ~ 
...... 
<..) 

0.4 Q) ..... 
'"0 

0.2 ..5 

0 

o 

Engineering properties ofgeopolymer concrete 

Mixes cured at 20Sealed 

• W/B=O.45 

. ..•.. . W/B=O.55 

50 100 150 200 
Age (days) 

Mixes cured at 40Sealed 

..... 

/ 
i 
I 
.~ .. ' 
, 

• 

50 

... 
.. , ... , ....... .. 

• W/B=0.45 

. .. • ... W/B=0.55 

100 

Age (days) 

150 200 

Mixes cured at 60Sealed 

...... 

• T '· .. ---------.tt .• ..... .......... • 

• W/B=0.4: 

... • ... W/B=O.5: 
-, 

50 Age (R-2ys) 150 200 

<'3 

0... 3.5 
~ 
:;- 3 
...... 
~ 2.5 
Q) 

~ 2 
Q) 

.;;; 1.5 
1= 

~ 1 
....-
~ 0.5 .... 

-g 0 

~ 3.5 
e.. 3 

~ 2.5 

VJ 1.5 
1= 
Q) 

~ 1 
<..) 

~ 0.5 

o 

,.-... 3.5 <'3 
0... 

~ 3 '---' 

-t: 
2.5 Cl) 

1= 
Q) ..... 

2 ...-
c:/) 

Q) - 1.5 VJ 

1= 
Q) 

~ 1 ...... 
u 
Q) 0.5 .... 

'"0 
1= 

0 

Mixes clITed at 20Fog 

~ ....... ---. 
r 
/ .,. 

. ' 

t .' - .. , . ' .' ~WIB=O.45 , 

• .. .•... WIB=O.55 

o 50 100 150 200 

Age (days) 

Mixes clITed at 40Fog 

.~ ... 
.. , • ... . . ' ., .... , ... . . . .. . ... • 

~W/B=O.45 
r-

...•... W/B=O.55 

o 50 100 150 200 

Age (days) 

Mixes cured at 60Fog 

....... 
~( . ... ..... ....... ~ 

: I 
I: -+- W/B=O.45 

...... WIB=O.55 
I 

o 50 100 150 200 
Age (days) 

Figure 7.14 Effect of water to binder ratio on indirect tensile strength development for acti vated 
Taftan pozzolan cured at different curing condition (sealed and fog) and temperatures 

177 



Chapter 7 Engineering properties ofgeopolymer concrete 

Static Modulus of Elasticity for Different Mixes 

40 ~------------------------------------~ 

~ 35 
0 
25 ..... 30 u 
'.c rn 

CIi 25 
~ 
4-< 
0 
rn 20 
~ -~ 15 '"0 
0 
~ 10 u .... ...... 
CIi ...... 5 r:/) 

0 

o 

I. 
./ . , .. 

/"-- ···~.",::",· : : ::: : ··, ··, : :::t 
~ -z,." . . ", . . ::" 

/, ..•.. 

I 

50 

• 

100 
Age (days) 

150 

• CMl(OPC Mix
W/C=O.45) 

.. '.',. CM2(OPC Mix-
W/C=O.55) 

~.~ ATAFl(Activated 
Taftan-W 1B=O.45) 

. " . ". ATAF2(Activated 
Taftan-WIB=O.55) 

-+- ARSH 

• ACSH 

Figure 7.15 Long-term static modulus of elasticity development for different mixes 
under sealed curing condition (CMl, CM2, and ACSH were cured at 20°C, ATAF1 
and AT AF2 were cured at 40°C and ARSH was cured at 60°C which were the best 

curing temperature in each case) 

178 



Chapter 7 Engineering properties ofgeopolymer concrete 

ATAFI MIx 

40 
,-... 
ro 
0- 35 0 
0 .- 30 u 
',c 
rn 
ro ...... 25 ~ 

4-< 
0 

20 il,) --~ 
rn 
;:::l ...... 
;:::l 15 "d • 20Sealed 0 
~ 10 • 40Sealed u 
',c 
.s 5 -.. x-· - 40Fog 
C/'J 

0 • 60Sealed 

0 50 100 150 200 
Age (days) 

ATAF2 Mix 
35 

,--.. 
ro 

p.,. 30 C) __ • oX · -". _'" _ .. •. 
'--' - '" --
;>. ··-· · · x 

.';:: 25 -
u / ===----...... ....... --r.n -ro .----. .- 20 ~ .,r----4-; 
0 
il,) 15 r.n 

rf "3 ~ 

"0 • 20Sealed 
0 
~ 10 

f/~ u • 40Sealed 
...... ....... 

5 ro 

W 
- - -x .. - 40Fog ....... 

r:/) 

• 60Sealed 
0 

0 50 100 150 200 

Age (days) 

Figure 7.16 Effect of different curing condition and curing temperature on static 
modulus of elasticity development for ATAF1 and ATAF2 mixes 

179 



Chapter 7 Engineering properties o[geopolymer concrete 

5.5 ,-----------------------..., 

5 

4.5 ---u 
<U 
rn ---E 4 ...::.::: 

'--' 

> 
~ 

~ 
3.5 

3 

2.5 --+---..... 

28 90 

Age(days) 

180 

OCMl 

I CM2 

DATAFI 

DATAF2 

I ARSH 

OACSH 

Figure 7.17 Ultrasonic pulse velocity for different mixes under sealed curing condition 
(CMl , CM2, and ACSH were cured at 20°C, ATAF1 and ATAF2 were cured at 40°C and 

ARSH was cured at 60°C which were the best curing temperature for each one) 

180 



Chapter 7 Engineering properties ofgeopolymer concrete 

Figure 7.18 The comparator and concrete prism 
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8. DURABILITY PROPERTIES OF GEOPOL YMER CONCRETE 

8.1 Introduction 

When we talk about concrete as an important versatile construction material, used in 

a wide variety of applications, it is very important to consider its durability since this 

has an indirect effect on economy, serviceability and maintenance. Determination of 

long-term performance of concrete led to interest being focused on the parameters 

which control the durability and methods of testing which could meaningfully 

quantify these parameters. A realization grew long ago that the cube crushing 

strength, for long the sole indicator of quality, is insufficient in ensuring long-term 

durability for concrete as a material and the serviceability of a structure made from it. 

The lack of durability may be caused by external environmental reasons or internal 

causes within the concrete itself. It is pertinent to discuss the permeability 

characteristic of concrete, as it has much bearing on durability. Aggressive 

chemicals, attack concrete in solution form. The penetration of aggressive liquids 

will depend upon the degree of permeability of concrete. Hence, some types of attack 

on concrete structures, such as carbonation, water leaching; sulphate attack and 

corrosion of the reinforcement are governed by the permeability of the matrix. The 

durability of structures made of reinforced concrete is dependent on the mechanisms 

of movement of aggressive fluids within the micro-structure of concrete. Pore 

structure has long been recognized as strongly related to many, if not all, aspects of 

durability. The concrete acts as a protection barrier for the reinforcing bars against 

potentially damaging matter such as acids, chlorides, and C02. Thus it is felt that 

some form of permeability test might be devised which would have the necessary 

features and can provide information about the resistance to the ingress of aggressive 

chemicals through the porous system. The concrete might suffer from chemical 

internal sources and their interactions as in the presence of contaminants or harmful 

materials in the concrete ingredients. Deterioration may also occurs due to the 

presence of an aggressive chemical environment that contains materials such as 

chlorides and sulphates that attack the concrete, causes volume changes in it. This 

chapter presents the results of oxygen permeability, chloride permeability, and 

sulphate resistance tests carried out to study the possibility of external element 

penetration and volume changes in the AANP concrete leading to studying the 

durability of this type of geopolymeric concrete. 
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8.2 Oxygen permeability 

Oxygen permeability method to measure permeability of pastes, mortars or concrete 

employs the use of oxygen (Cabrera and Lynsdale 1988; Cabrera and Claisse 1999: 

Basheer 2001; Khan and Lynsdale 2002). This method is intended to be suitable for 

concretes with a specific permeability coefficient k to oxygen within the range of 

10-
14 

to 10-19 m2 and has the advantage of being capable of examining the 

permeability of samples collected "in situ". The samples are usually smaller than 

water permeability measurement samples and therefore, the flow equilibrium 

condition is quicker and rapidly achieved, reducing the time for testing which makes 

oxygen permeability method easier to perform than water permeability measurement 

(Cabrera and Lynsdale 1988). The influence of sample size on permeating fluid can 

be seen in the equation derived from D' Arcy's law of flow, which is used to 

calculate the intrinsic permeability of the sample. 

8.2.1 Samples Preparation 

To study the permeability of concrete by gas permeability measurement, a procedure 

for removing the pore moisture before the actual measurement of this property, 

normally called preconditioning, is an unavoidable necessity. The moisture content 

of the sample, affects oxygen permeability considerably since due to surface tension 

can not be pushed out by oxygen. In OPC concrete mixes, incomplete drying results 

in residual water being present in the pore system, which will block the passage of 

gas through the specimen and thus lower permeability values, are obtained. On the 

other hand, drying at high temperatures may result in shrinkage cracking and 

modification of pore structure, leading to incorrect permeability values obtained. 

Therefore, the results are specific to the drying regime used prior to testing. It seems 

that in geopolymer concrete especially those subjected to high temperature curing the 

phenomena of shrinkage cracking due to drying at high temperatures is not as 

important as for OPC concrete. This is because the water removed from geopolymer 

concrete is not combined or bound water, since it does not participate in the reaction. 

The water is just a medium which promotes the geopolymerisation and it must be 

eliminated once the reaction is over and it has been found that the higher the curing 

temperature the lower the amount of drying shrinkage. Another parameter that 

affects the oxygen flow is the inlet pressure employed (P2) and high inlet pressure 
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may cause less flow due to more scattering and conflict of air bubbles with each 

other and tube wall (Klingenberg effect) so the intrinsic permeability varies with 

different pressures. 

Cylinders of 150 mm of diameter by 50 mm height were cast for oxygen 

permeability and cured in the manner mentioned in section 6.4. Gas permeability on 

samples pre-dried at different temperatures (20, 40, 50, 80, and 105°C) is reported in 

the literature for OPC concretes (Lynsdale, 1989; Carcasses et aI., 2002). In this 

investigation, to reduce the shrinkage effect, the samples were dried at 50°C±5°C 

until constant weight was reached and kept in vacuum desiccators at 20°C±2°C until 

testing. Oxygen permeability was performed on three samples of each concrete mix 

at 7,28, 90 days with different curing conditions. 

8.2.2 Test Procedure 

The apparatus used for the test is schematically shown in Figure 8.1. The sample is 

placed in a rubber sleeve, while kept inside a stainless steel capped cell. Two discs 

with a smooth face must face the sample. These have the function of distributing 

(lower disc) and collecting (upper disc) the oxygen from the outer part to the centre 

of the sample. The rubber tube is inserted in the cell such that it is deflated by the 

valve that exists through the hole in the side of the cell. The cover is placed on the 

cell and fixed using six hand screws. The oxygen supply is connected to the pressure 

control valve. By connecting the output of the cell situated on the upper face to the 

distribution block, leaving the three valves closed and inflating the rubber tube, 

oxygen is forced to flow vertically through the sample. A bubble flow meter records 

the flow rate (V) after the steady state is achieved (approximately 20 minutes after 

the beginning of the test). 

The following equation, derived from D' Arcy's law of flow, is used to calculate the 

intrinsic permeability of the sample: 

k = 2P2Vlx2.02xl0-
16 

(8-1) 
A(~2 - P22) 

Where: 

k is the intrinsic permeability (m2
) 

I is the length of the specimen (m) 
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A is the cross-sectional area of specimen (m2
) 

V is the flow rate (cm3/s). 

PI is the absolute applied pressure (bar) 

P2 is the pressure at which the flow rate is measured, usually 1 bar. 

For oxygen at a temperature of 20°C the dynamic viscosity may be taken at 2.02xI0-5 

N.s.m-2 and the coefficient 2.02 x 10-16 does the transformation of the units and 

provides the final results in m2
. 

The result of oxygen permeability values is calculated at five absolute inlet pressure 

stages reading for each mix and at each age by plotting a regression line for flow rate 

versus (P I
2-pl) to determine the average permeability. This helps to demonstrate the 

extent of deviation of the results from linearity and detect any outlying result due to 

abnormal behaviour of the apparatus. A systematic deviation from linearity with the 

points lying on a smooth convex curve is normal. The deviation from linearity of the 

curve is mainly due to the inaccuracy in the assumption that the flow of oxygen 

through concrete is laminar. 

8.2.3 Results and Discussion 

The results of oxygen permeability for the different mixes are presented in Figure 

8.2. It can be clearly seen that permeability decreases with age, especially at early 

ages. The permeability of ARSH and ACSH Mixes decreases at a faster rate between 

7 and 28 days but is slower after 28 days. AT AF2 shows higher permeability at 28 

and 90 days in comparison with the AT AF 1 mixes which may be related to lower 

water to binder ratio in the latter which produce less capillary pores. It is also 

observed from the results that calcining Shahindej pozzolan will reduce the 

permeability of the mix at 90 days. The oxygen permeability of the AT AF2 and 

ARSH mixes are equal to 5xl0-17m2 at 90 days while ACSH and ATAFI mixes show 

permeability equal to 1.5xl0-17 and 2xl0-17m2
, respectively. In general, the alkali 

activated natural pozzolan specimens show lower permeability in comparison with 

the normal OPC concrete at 90 days although at 7 days the permeability is higher. 

This behaviour follows what was seen for the compressive strength of activated 

pozzolan cement concretes. 
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Figure 8.2 shows that oxygen permeability reduces as the water to binder ratio is 

reduced. This effect is greater at early ages for alkali activated Taftan pozzolan. It is 

also clear from the results that the difference in oxygen permeability of alkali 

activated Taftan mixes with water to binder ratios between 0.55 and 0.45 is higher 

than the comparable OPC mixes. This fact means that by increasing the water to 

binder ratio, there is more free water in the geopolymer concrete which makes looser 

microstructure with higher permeability in this type of concrete rather than OPC 

concrete. 

The effect of curing on oxygen permeability for the alkali activated Taftan pozzolan 

mixes is shown in Figure 8.3. It is very clear that permeability of these mixes 

decreases sweeping toward 40°C sealed curing condition and curing at higher 

temperature decreases the permeability of alkali activated natural pozzolan 

geopolymer concrete. This is possibly because the water in the geopolymer structure 

is just a medium which promotes the geopolymerisation with further cross linking 

made as a result of water removal by the higher temperature. This results in pore 

space blockage. 

8.3 Chloride permeability 

Concrete is very widely used in the construction of harbours, docks, breakwaters, and 

other structures that are exposed to the action of seawater. The discussion on 

durability of concrete in seawater is a matter of much importance. Concrete in 

seawater may suffer due to attack of dissolved chemicals on the products of 

hydration, crystallization of salts within the concrete under condition of alternate 

wetting and drying, frost action, mechanical attrition, impact of by waves and 

corrosion of reinforcements embedded in it. It is well known that a high 

concentration of chloride salts in solution deteriorates reinforced concretes. One of 

the most common causes of concrete deterioration is corrosion of the embedded 

reinforcing steel which occurs when chloride ions penetrate concrete. This type of 

deterioration is prevalent not only in structures near to saline sources such as marine 

structures but also in road bridges exposed to cyclic de-icing salt applications. A 

common method of preventing such deterioration is to prevent chlorides from 

penetrating the structure to the level of the reinforcing steel bar by using 

impenetrable concrete. There is much literature suggesting the use of pozzolanic 
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material improves the durability of reinforced concrete against sea water by 

preventing the leaching of calcium hydroxide and calcium sulphate, both of which 

are soluble in sea water. Massazza (1985) concluded that pozzolanic or slag cements 

(>60% slag) are more durable due to reduced permeability than pure Portland 

cements, and noted that lime-pozzolana mortar used by the Romans in sea works are 

still in good condition. 

This section discusses the usefulness of the rapid ASTM C 1202-97 RCPT (Rapid 

Chloride Permeability Test) and long term Bulk Diffusion Test (NordTest NTBuild 

443) methods for assessing the chloride permeability characteristics of geopolymer 

concrete based on alkali activated natural pozzolans. The disadvantages of the RCPT 

method are discussed generally and for this type of concrete, and the results are 

compared with the long term Bulk Diffusion Test method. The influence of type, 

age, water to binder ratio, curing conditions and temperatures were studied. 

8.3.1 Samples Preparation 

Specimens were cast for all the concrete mixes with different water to binder ratios 

in the form of 15cm cubes using metal moulds. The cast specimens after de

moulding, were cured according to section 6.4 for different curing conditions and 

temperatures for 7, 28 and 90 days. These cubes were then cut into 10cm diameter by 

15cm thick cores. From these cores, 2.5cm thickness was removed from each side 

and then the remaining section was cut into two equal parts which provide two 5cm 

thick by 10cm diameter specimens for each mix proportion and curing condition. 

In order to assure full saturation of the samples before testing their ability to resist 

chloride ion penetration in accordance to the ASTM C1202-97 (RCPT) test, the 

samples were dried to a constant weight in an oven kept at 50°C±5°C before being 

vacuum saturated with de-ionised water and in the apparatus shown in Figure 8.4. 

8.3.2 Test Procedure 

Capillary absorption, hydrostatic pressure, and diffusion are the means by which 

chloride ions can penetrate concrete. The most familiar method is diffusion, the 

movement of chloride ions under a concentration gradient. For this to occur. the 

concrete must have a continuous liquid phase within the pores and there must be a 
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chloride ion concentration gradient. There are various methods for assessing chloride 

penetration of concrete depending on mechanisms of chloride ion transportation. In 

the ASTM C1202 (AASHTO T277) in the test referred to as RCPT, a water

saturated, 5cm thick, 10cm diameter concrete specimen is subjected to 60V applied 

DC voltage for 6 hours using the apparatus shown in Figure 8.4. In one reservoir is a 

3.0% NaCI solution and in the other reservoir is a 0.3M NaOH solution. The total 

charge passed is determined and this is used to rate the concrete according to the 

following criteria: 

Total integral chloride to 41 mm 

Chloride Ion Penetrability Charge Passed (coulombs) depth after 90-days ponding test 

High 
Moderate 

Low 
Very Low 
Negligible 

>4000 
2000-4000 
1000-2000 

100-1000 
<100 

>1.3 
0.8-1.3 

0.55-0.8 
0.35-0.55 

<0.35 

The speCImens were subjected to 20V applied DC voltage for 6 hours III this 

investigation because of the alkaline activators which give rise to existing conductive 

pore solutions in this type of concrete. Here, the pore solution chemistry of 

geopolymer concrete in tum can have a very significant effect on the conductivity of 

pore solution or the RCPT results for concrete and will bias the results upwards, 

causing when the specimens are subjected to a higher applied DC voltage. It should 

be mentioned that for voltage more than this amount, the current exceeded 500mA 

and the test was terminated quickly in order not to damage the system due to heating 

which would lead to a further increase in the charge passed. Thus the test is non

standard in terms of ASTM C1202. 

In the bulk diffusion test (NordTest NTBuild 443) which has been developed to 

overcome some of the deficiencies of the salt ponding test (AASHTO T259) to 

measure diffusion, the test specimen is saturated to prevent any initial sorption 

effects when the chloride solution is introduced and the sides and bottom face of the 

prepared samples are sealed. The only face left uncovered is the one exposed to a 

2.8M NaCI solution. The samples are left this way for 90 days before evaluation. At 

the end of this time the samples are removed and to evaluate the sample, the profile 

of the concrete is determined by mounting the sample in a lathe with a diamond 

tipped bit. The sample is level so that the axis of advance of the bit is perpendicular 
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to the surface of the sample. A pass is made at each depth to grind the concrete 

sample to dust, which is then collected. This is repeated at greater and greater depths, 

at depth increments on the order of 5mm. The chloride content of the powder is then 

determined according to AASHTO T260. The error function solution of Fick's 

Second Law is then fitted to the curve and a diffusion value and surface chloride 

concentration is determined. Therefore the experimental data are fitted to the 

equation (8-2) which is the linearized form of the solution to Fick's second law: 

Lnc= In(m1-JnDt)-x2/(4Dt) (8-2) 

Where c=concentration of chloride per mass of sample at distance x and time t (%), 

m= total amount of diffusing chloride, D= diffusion coefficient (m2/s) 

Linear regression of Inc versus x2 yields slope -1/( 4Dt) and intercept In(m1-JnDt) 

from which the diffusion coefficient(D) and the total amount of diffusing chloride(m) 

can be obtained. 

8.3.3 Results and Discussions 

There are a number of criticisms of the RCPT technique, although this test has been 

adopted as a standard. The main criticisms are: 

• The high voltage applied leads to an increase in temperature, especially for 

low quality concretes, which further increases the charge passed. 

• The measurements are made before steady-state migration is achieved. 

• The current passed is related to all ions in the pore solution not just chloride 

IOns. 

With respect to above points for low quality concretes, which further increases the 

charge passed (Malek and Roy, 1996), and as the temperature rise is related to the 

product of the current and the voltage, they heat more. The lower the quality of 

concrete, the greater the current at a given voltage and thus the greater heat energy 

produced. This heating leads to a further increase in the charge passed, more than 

what would be experienced if the temperature remained constant. Thus, poor quality 

concrete looks even worse than it would be otherwise. 

Another difficulty with the RCPT test is that it depends on the conductivity of the 

concrete being in some way related to the chloride ion penetrability. Actually, the 

rapid chloride ion permeability test is essentially a measurement of electrical 
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conductivity, which depends on both the pore structure and chemistry of pore 

solution (Shi, 2004). For a given specimen size and applied voltage, the recorded 

initial current can be regarded as a representative of electrical conductivity of the 

specimen. For different concrete mixtures, electrical conductivity can be significantly 

affected by the change in pore solution composition (Shi et aI., 2006). Thus, any 

conducting material such as a conductive pore solution present in the concrete 

sample will bias the results, causing them to be too high. These conductors all 

influence the results so that a higher coulomb value than would otherwise be 

recorded is determined. The method still could serve as a quality control test and can 

qualify a mix, but not necessarily disqualify it (Ozyildirim, 1994). If an acceptably 

low rating is achieved, it is known that the concrete is not worse than that, at least 

within the precision of the least method. 

With due attention to above mentioned issues, voltages low enough to avoid heating 

the samples while high enough to ensure sufficiently short test duration equal to 6 

hours was considered. Thus different voltages were checked and finally the voltage 

applied was 20V DC, which allowed control of the current and temperature rise to a 

value acceptable and similar to the values reached by OPC concrete specimens when 

subjected to 60V DC for 6 hours. 

The results of the rapid chloride permeability test (RCPT) for different mixes at 

various ages are illustrated in Figure 8.5. These results show that in the activated 

natural pozzolan geopolymer mixes a higher charge is passed than OPC mixes at all 

ages. It should be mentioned that OPC concrete specimens were subjected to 60V 

DC as in the standard ASTM C1202. The measurements for all samples were made 

when the steady-state migration was achieved after 6 hours, thus the comparison of 

the results could be independent of the voltage applied. This clearly demonstrates 

that the incorporation of alkali solution for activation natural pozzolans leads to an 

increase in RCPT values. The ATAF1, ATAF2 mixes show the lowest RCPT value 

equal to 2704 and 2750 coulombs for 6 hours at 90 days while ARSH and ACSH 

mixes show the highest values equal to 3027 and 3007 coulombs, respectively. 

Chloride permeability reduces with age with a higher rate of reduction at early age. 

At later ages the effect of chemical progress on the permeability seems to cause a 
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change in the porosity of the geopolymer concrete microstructure and this leads to 

the reduction of chloride permeability results. 

For all the ages investigated, ATAF2 mixes show higher chloride permeability than 

ATAFI mixes. Thus, the same as in OPC concrete mixes, chloride permeability 

increases as the water to binder ratio increases. 

The effect of curing on the alkali activated Taftan pozzolan mixes with different 

water to binder ratio (ATAFI and ATAF2) is demonstrated in Figure 8.6. For both 

mixes, the specimens cured at 40°C sealed conditions show the lowest chloride 

permeability. This may be due to the temperature being optimum for activation of 

natural pozzolan. 

The results of long-term chloride absorption including the experimental cr 
concentration profiles determined at 90 days are shown in Figure 8.7 and have been 

adjusted to a particular solution of Fick's second law of diffusion chloride to obtain 

the corresponding diffusion coefficients and the total amount of diffusing chloride. 

The diffusion coefficient and total integral chloride contents after 90 days ponding 

are presented in Table 8.3. Comparing the total integral chloride penetration to 

41mm depth after 90-days ponding test to AASHTO standard shows moderate 

chloride ion penetrability. While relatively high chloride diffusion coefficient for 

geopolymeric concrete mixes compared to OPC concrete was achieved. The amount 

of cr present in each concrete specimen depends on the nature of concrete: the less 

porous concrete (ATAFI cured at 40°C sealed) absorbs less cr with equality of other 

test conditions (Table 8.3). The percentage of chloride penetration was lower in 

concrete mixes with lower water to binder ratio showing that this ratio affects the 

chloride penetration. This reduction is due to the formation of tighter pore structure 

which is one of the main parameters that affect chloride penetration. 

8.4 Sulphate Resistance 

Sulphate attack is known to produce significant degradation in concrete structures 

and refers to the deterioration of concrete resulting from chemical reactions 

occurring when concrete is exposed to a solution containing a sufficiently high 

concentration of dissolved sulphates. This is particularly prevalent in arid regions 

where naturally occurring sulphate minerals are present in water and ground water. It 
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was established that deterioration of concrete due to sulphate attack is generally 

attributed to reaction of Portland cement hydration products with sulphate ions to 

form expansive reaction products after hardening, which produces internal stress and 

a subsequent disruption of the concrete. The reaction between these substances, 

particularly aluminates, in the presence of sulphate and water produce ettringite and 

gypsum and causes expansion of OPC concrete. The expansion leading to 

deterioration usually starts at edges and comers and is followed by progressive 

cracking with an irregular pattern. The lower the permeability of concrete, the higher 

the resistance of concrete to sulphate attack. Thus, the factors reducing the 

permeability of concrete have a beneficial effect on reducing the vulnerability of 

concrete to sulphate attack. 

Hakkinen (1986, 1987) evaluated the sulphate resistance of both alkali activated slag 

cement and Portland cement. The Portland cement samples were destroyed in 10% 

Na2S04 solution after two years and in 10% MgS04 solution after one year, while the 

alkali activated slag cement samples survived well. 

It seems that the majority of pozzolans improve the sulphate resistance of 

geopolymer mixes based on alkali activated natural pozzolans in comparison with 

ordinary Portland cement concrete. The simplest explanation for this is the lack of 

the C3A content, as would be the case were OPC present in the mix. In this type of 

concrete the aluminates, that are also prone to attack in OPC concrete by 

monosulfate, are held in stable alumina silicate hydrates which are more resistant to 

sulphate solutions. Secondly, in comparison with OPC there is much less calcium 

present in natural pozzolan and Slag to provide gypsum precipitation. In addition to 

the properties of natural pozzolans, the properties of activators and the curing regime 

can affect the sulphate attack resistance of the alkali activated concrete mixture. The 

use of non-silicate alkaline activators increased the sulphate corrosion resistance of 

the alkali-activated slag cement in the MgS04 solution (Shi et aI., 2006). While 

steam curing of the specimens made with water-glass with a modulus from 1 to 3 

decreased the sulphate corrosion resistance compared to the specimens cured under 

normal conditions (Shi et aI., 2006). 

The resistance to sulphate attack of geopolymer concrete formed by alkali activation 

of natural pozzolan is assessed and discussed in the next section. 
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8.4.1 Sample Preparation and Test Method for Sulphate Resistance 

During this study, experiments were carried out on mixes made from 3 different 

pozzolans including Taftan, as well as both untreated and calcined Shahindej 

pozzolans. A comparison is made between specimens which were immersed in a 

sulphate solution and those were cured in their previous curing conditions in sealed 

or fog form. The specimens were cast in the form of 100mm cubes as described in 

section 6.2.6 for measuring the change of compressive strength and in the fonn of 

25x25x285mm mortar prisms in order to measure the expansion. After de-moulding 

the samples were cured according to section 6.4 using different curing conditions and 

temperatures. Then the specimens were immersed in a solution consisting of 2.5% 

Na2S04 and 2.5% MgS04 by weight of water for 7 days. The containers were left in 

a room controlled at 20°C for 6 months. The solutions in containers were replaced 

every two weeks for the first 3 months and then at 4 months interior. 

8.4.2 Test Procedure 

The methods for testing sulphate attack, are classified into three groups: the changes 

in the strength of the specimens, the changes in the length of the specimens, and 

chemical analysis. The second measurement was done according to ASTM C 1 0 12-

95a standard and the chemical elements were detected from X-Ray Diffraction 

(XRD) recorded. 

8.4.2.1 Compressive Strength 

In order to assess the variation in compressive strength between specimens subjected 

to sulphate attack and those cured nonnally in sealed or fog conditions, 100mm 

concrete cubes with curing conditions according to sections 6.4 were cast. The 

compressive strength of both samples in and out of the sulphate solution were 

measured periodically over 6 months to find the difference in the strength of cubes 

put in the sulphate solution and those left to cure in previous curing conditions 

according to sections 6.4. For anyone mix and age, two cubes were tested. 
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8.4.2.2 Expansion Test 

In this test the rates of expansion of 25x25x285mm mortar prisms were measured. 

The test procedure is similar to that described in section 7.6.1. For each mix two 

specimens were immersed in the solution. 

8.4.2.3 X-ray Diffraction Test 

X-ray diffraction was used to identify the crystalline products present in mortars after 

immersing samples in sUlphate solution up to 90 days. A thin layer was carefully 

removed away from the sample surface by grinding and its x-ray diffraction result 

compared to the result achieved for the powder prepared from the middle of the 

sample. This resulted in finding the difference in phases between the centre and edge 

of the sample after immersion in sulphate. 

8.4.3 Results and Discussions 

Results of the tests carried out to show the effects of added chemicals on the 

compressive strength of this type of concrete when it is present inside the sulphate 

solution which are presented in Figure 8.8. It seems that migration of alkalis from 

geopolymer mixes into sulphate solution and the interaction between sulphate 

solution and this type of concrete makes the completion of chemical reaction slower 

in the specimens cured at higher temperature and sealed conditions. In addition to 

migration of alkalis from geopolymers into the solution, the XRD results show there 

was also diffusion of magnesium in the surface layer of geopolymers, which 

improved their strength according to Bakharev (2005). The strength of all sulphate 

cured concrete are less than the samples cured outside of the solution initially with 

except in Taftan samples cure at 200e sealed condition. The trend of compressive 

strength development is to increase, except in AT AF2 cured at 400e fog condition 

and ARSH concrete mixes. The results can be confirmed by the prevIOUS 

investigations carried out on alkali activated cements (Shi et ai., 2006). 

The results of expansion tests are shown in Figure 8.9, as expansion versus time. The 

highest absolute expansion is recorded for ARSH mortar prism which was the most 

affected by sulphate solution and the lowest amount is recorded for AT AF cured at 

40 0 e and sealed condition. The latter was only slightly expanded when exposed to 
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sulphate solution for up to 6 months. The percentages of expansion of samples that 

have been immersed in sulphate solution versus their strength reductions are 

presented in Figure 8.10. The results show that these two parameters are highly 

correlated exponentially. It can be observed that the maximum percentage of 

expansion which occurred for ARSH mixes was 0.086 percent which is less than 

0.1 % which British Standard suggests for OPC concretes. 

For comparison of crystalline compounds, samples from surfaces and middles of 

cubes were analysed. The chemical composition of the reaction products are shown 

in Figures A8.1 (a) to A8.1 (i) and are summarized in Table 8.4. It can be seen that 

the peaks for the crystals of reaction products in the surface of alkali activated 

natural pozzolan mortar specimens, reduce to a lower level for the same compounds 

detected for samples prepared from the middle of cubes, after 3 month in sulphate 

solution. It is seen that the main crystalline compounds present in the surface and 

middle part of specimens consist of albite (NaAIShOg) and quartz (Si02) with the 

crystalline phases of hornblende for activated Taftan samples and clinoptilolite for 

activated Shahindej samples. While the crystalline products conformed due to the 

ponding of the samples in sulphates solutions in the surface of specimens with higher 

intensities than what is found in the middle of specimens, consisted mostly of sodium 

aluminium sulphate [Na3AI(S04)3] and/or langbeinite [K2Mg2(S04)3] which may 

cause expansion in this type of concrete. Comparison of the X-ray traces of samples 

taken from the surface and middle of specimen shows that for activated calcined 

Shahindej samples the penetration of sulphate is inconsiderable and for activated raw 

Shahindej the peaks are only related to sodium aluminium sulphate. For ATAF1 mix 

cured at 40°C some hydrated sulphate salts such as leonite [K2Mg(S04)2, 4H20] were 

detected on the surface of samples. Although the intensity of sulphate crystalline 

compound peaks in the middle of the specimens is lower than what was found for the 

surface of the specimens, the results show that in this type of concrete sulphate could 

penetrate in the concrete. This can be confirmed since that the trace of sulphate 

combination in the core of all samples except ACSH was observed. Therefore further 

study is needed to find out the resistance of this type of concrete to sulphate attack. 
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8.5 Relationship between Oxygen Permeability and Compressive Strength 

It is always desirable to be able to predict the long term permeability of concrete 

from cube compressive strength, which is the first tool used by civil engineers to 

judge concrete quality. However, the developments in concrete technology indicate 

that the durability of concrete should be assessed separately; Lynsdale (1989) has 

found that permeability is not only a function of strength but also porosity and pore 

size distribution. 

Figures A8.2 to A8.5 present the relationship between the oxygen permeability and 

the compressive strength for all concrete mixes. Power regression analysis was then 

carried out between the compressive strength and oxygen permeability for each mix 

with different water to binder ratio and curing conditions and temperatures. The 

consequent regression curves for alkali activated Taftan pozzolan and AANP mixes 

are shown in Figures A8.4 and 8.11. The regression equation and the correlation 

coefficients are given in Table A8.I. It can be seen that in all mixes the oxygen 

permeability is highly correlated with the compressive strength. 

A general relationship between oxygen permeability and compressive strength of 

concretes has been found by Costa et al. (1992), which is independent of the type of 

cement, water to cement ratio and curing time. The relationships follow the equation: 

Where: 

Y=AX-B 

Y is coefficient of permeability (m2) 

X is compressive strength (MPa) 

A and B are constants 

(8-3) 

Using the above formula (equation 8-3) and with respect to Table A8.I, the values of 

A ranges from 4.4xIO-1S to 5.5xIO-13 and that of B from 1.0 to 2.35 for ope mixes 

comparative to the values of A ranges from 5.46xIO-1S to 2.6IxIO-
12 

and that of B 

from 1.3 to 3.35 for alkali activated natural pozzolans eliminating two scattered 

points. The results of oxygen permeability versus cube compressive strength for 

different mixes made from activated natural pozzolans were shown in Figure 8.11 

and power regression analysis showed that the formulae for geopolymer concrete is 

as follows: Y=3.37xIO-14X-1.98 R2=0.887 (8-4) 
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It can be observed that the above coefficients are compatible to the amounts 

suggested by Costa et al. (1992) in the Proc. 9th Intemat. Congress Chern. Cement 

(i.e. A=2.576x10-13 and B=2.62). 

The relationship between the oxygen permeability and compressive strength of alkali 

activated natural pozzolan concrete is compared to OPC concrete in Figure 8.11. It 

can be seen that for the same compressible strength, lower permeability is found in 

for AANP concrete. 

Capillary pores are formed as consequence of excess mixing water. The water to 

cement ratio, therefore, affects this kind of porosity as well as the activating process. 

As a consequence, low permeability concrete may be indirectly achieved by placing 

maximum limits on the water content ratio. In this way the starting point for the 

durability requirements for concrete in the European pre-standard ENV 206 is to 

limit the maximum water to cement ratio. Therefore a general relationship can be 

found between oxygen permeability dependent of compressive strength and water to 

binder ratio to consider the effect of porosity. The correlation between air 

permeability and each of the above two parameter for alkali activated Taftan 

Pozzolan is presented as follows: 

K=9.81x10-14(fcr2
.39 (R2 =0.878, Sig. =0.005) 

K= [5.46(W/B)-2.24] X10-16 (~=0.819, Sig. =0.013) (8-6) 

(8-5) 

Where K= coefficient of permeability (m2
), fc=compressive strength (MPa) and 

W/B=water to binder ratio 

The number of measurements is N=8 and N=6 respectively. Therefore the degree of 

freedom would be (N-2=6 and 4) and R should more than 0.707 and 0.811 which has 

occurred for the above equations. On the other hand, R2 shows that values up to 

82.0% are justified. The statistical significance level indicates that the regression 

assumption is correct. 

After finding two simplified power and linear models, which were proposed for 

prediction air permeability incorporating compressive strength and water to binder 

ratio respectively, a non-linear model was tried with the combination of the t\\"O 

models input parameters using the least squares technique. It was found that Eq. (8-
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7) fits well for the above model. The coefficients for Eq. (8-7) are given in Table 8.2. 

Therefore considering non-linear regression, the following model was found and 

confirmed by back substituting: 

K= bo+bl (W/B) + b2 (fcr2.39 (8-7) 

Where K= coefficient of permeability (m2), fc=compressive strength (MPa) and 

W IB=water to binder ratio 

Fig. 8.12 shows the relationship with good agreement between the predicted and 

observed permeability. The correlation of the best fit, R2, is higher than 0.95, again 

demonstrating the good accuracy of the statistical model. 

8.6 Relationship between Chloride Permeability and Compressive Strength 

The results of chloride permeability against compressive strength for the mixes 

investigated are plotted in Figure A8.6 to A8.9. An attempt has been made to arrive 

at a possible correlation between chloride permeability and compressive strength. 

Generally the trend is that an increase in the compressive strength is accompanied by 

a decrease in the chloride permeability values. The regression equation and the 

correlation coefficients are given in Table A8.2. It can be seen that in all mixes the 

chloride permeability is highly correlated with the compressive strength. 

Considering exponential correlation with below formula: 

Y=Ae-Bx (8-8) 

Where Y = charge passed (coulombs) 

X=cubic compressive strength (MPa) 

A and B are constants 

With respect to Table A8.2, for OPC mixes the values of A range from 6.4x10
3 

to 

7.1x103 and that ofB from 0.02 to 0.03. On the other hand for alkali activated natural 

pozzolans the values of A range from 9.8x103 to 2.0x105 and ofB from 0.03 to 0.12. 

The results of chloride permeability versus cube compressive strength for different 

mixes made from activated natural pozzolans are shown in Figure 8.13. Exponential 

regression analysis showed that the formulae found for activated natural pozzolan 

geopolymer concrete seems to be as follows: 

Y=10731e-o.o4x R2=0.795 (8-9) 
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Comparing charge passes through geopolymer concrete and normal concrete in 

Figure 8.13 shows that up to compressive strength equal to 33MPa, the charge passed 

through AANP concrete is more than OPC concrete but reverse happens for 

compressive strength more than it. The reason for this might be that increasing the 

compressive strength shows that most of the alkaline ion struggled in the reaction so 

the conductivity of the paste was reduced. 

8.7 Relationship between Chloride Permeability and Oxygen Permeability 

Generally the trend is that an increase in the oxygen permeability is accompanied by 

an increase in the chloride permeability values. The regression equation and the 

correlation coefficients are given in Figure 8.14. It can be seen that the chloride 

permeability is highly correlated with the oxygen permeability. The relationship for 

geopolymer concrete based on activated natural pozzolans seems to follow the 

equation: 

(8-10) 

Where: 

Y is charge passed (coulombs) 

X is coefficient of permeability (m2
) 

A and B are constants and equal to 2108.8 and 0.36 respectively. 

8.8 Concluding summary 

The main results drawn from the present investigation on the durability properties of 

the alkali activated natural pozzolan concrete are summarised as follows: 

1) In general, the alkali activated natural pozzolan concrete has lower 

permeability in comparison with the normal OPC concrete at 90 days, 

although permeability is higher at 7 days. The same pattern of behaviour 

occurs for compressive strength. 

2) Oxygen permeability reduces in alkali activated natural pozzolan concretes as 

the water to binder ratio reduces. This effect is greater in the geopolymer 

concrete than in OPC mixes, since there is more free water which makes 

looser microstructure with higher permeability in this type of concrete. 

compared with OPC concrete. 
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3) Curing at higher temperature decreases the permeability of alkali activated 

natural pozzolan geopolymer concrete. This is possibly because the water in 

the geopolymer structure is just a medium which promotes the 

geopolymerisation with further cross linking made as a result of water 

removal at higher temperature. This results in pore space blockage, stronger 

structure with more binding and lower shrinkage (as found earlier in Chapter 

7 for mixes at elevated temperature). 

4) The rapid chloride permeability test gives misleadingly high results for alkali 

activated geopolymer concrete. This is probably due to the very high alkali 

ion concentration in the pore solution promoting higher electrical 

conductivity though the geopolymer concrete. This effect seems to reduce 

with age due to a change in the porosity of the geopolymer concrete 

microstructure. 

5) The voltage which allowed control of the current and temperature rise to a 

value acceptable and similar to the values reached by OPC concrete 

specimens when subjected to 60V DC, was 20V DC in geopolymer concrete. 

6) As for OPC concrete mixes, chloride permeability of geopolymer concrete 

investigated increases as the water to binder ratio increases. 

7) The long-term chloride ponding results indicate that chloride ion penetrability 

of geopolymer concrete is moderate to high. Chloride penetration was lower 

in concrete mixes with lower water to binder ratio. This reduction may be due 

to the formation of tighter pore structure which is one of the main parameters 

that affect chloride penetration. 

8) Based on 6 months results, this investigation suggests that alkali activated 

geopolymer concrete is much more resistant to sulfate attack than OPC 

concrete. However, longer periods of exposure to aggressive solutions IS 

needed to confirm the superior sulfate resistance of AANP concrete. 
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Table 8.1 The measured parameters used as input for finding nonlinear model to 
predict permeability of alkali activated Taftan pozzolan 

Curing temperature W/B fc(MPa) K(m2
) 

20S 0.45 19.22 1.1E-16 
20S 0.55 11.21 2.58E-16 
40S 0.45 39.7 1E-17 
40S 0.55 21.36 9.18E-17 
40E 0.45 28.72 1.45E-17 
40E 0.55 25.64 7.5E-17 
60S 0.45 34.38 4E-17 
60S 0.55 27.25 6.14E-17 

Table 8.2 Nonlinear regression coefficients and correlation coefficient (R2) 
for predicting permeability of alkali activated Taftan pozzolan 

Coefficients 

bo 

Correlation coefficient CR2) 

Nonlinear 
model 

-8.58x10-17 

2.24x10-16 

7.34x10-14 

0.952 

Table 8.3 Chloride diffusion coefficient and total integral chloride% to 45mm depth after 
90 days ponding 

Curing 
Ponding diffusion Total Chloride Ion 

Mix coefficient integral 
Conditions DCm2/s;x10-11

) chloride % 
Penetrability 

ATAF1 20Sealed 10.5 1.0 Moderate 

ATAF1 40Fog 10.8 1.1 Moderate 

ATAF1 40Sealed 13.4 0.8 Moderate 

ATAFI 60Sealed 16.7 1.1 Moderate 

ATAF2 20Sealed 17.3 1.13 Moderate 

ATAF2 40Fog 10.8 1.11 Moderate 

ATAF2 40Sealed 8.6 1.03 Moderate 

ATAF2 60Sealed 5.9 0.63 Low 

ARSH 60Sealed 5.0 0.7 Low 

ACSH 20Sealed 7.5 1.0 Moderate 
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Table 8.4 Summary of X-ray diffraction results show the existence of sulphate phases and achieved from the powder prepared from the 
surface and the middle of the samples immersed in sulphate solution 

Water to Binder Ratio Curing Condition and Position of 
Sulphate Phases Mineral Name of Sulphate Mix 

(W/B) Temperature Sampling 
Phases 

Na3AI(S04)3 Sodium Aluminium Sulphate 
ATAFI 0.45 Sealed curing at 20°C Surface 

KzMgz(S04)3 Langbeinite 

Na3AI(S04)3 Sodium Aluminium Sulphate 
ATAFI 0.45 Sealed curing at 20°C Middle 

KzMgz(S04)3 Langbeinite 

Na3AI(S04)3 Sodium Aluminium Sulphate 

Surface 
KzMgz(S04)3 Langbeinite 

ATAFI 0.45 Fog curing at 40°C 
(MgAI)5(SiAI)sOzo(OH)2,8H2O Palyigorskite 

K2Mg(S04)z,4H2O Leonite 

Na3AI(S04)3 Sodium Aluminium Sulphate 
ATAFI 0.45 Fog curing at 40°C Middle 

K2Mg2(S04)3 Langbeinite 

Na3AI(S04)3 Sodium Aluminium Sulphate 
ATAF2 0.55 Fog curing at 40°C Surface K2Mg2(S04)3 Langbeinite 

K2Mg(S04)2,6H2O Picromerite 

Na3Al(S04) 
Sodium Aluminium Sulphate 
Langbeinite 

ATAF2 0.55 Fog curing at 40°C Middle K2Mg2(S04)3 
Picromerite 

K2Mg(S04)z,6HzO 

208 



Table 8.4 Summary of X-ray diffraction results show the existence of sulphate phases and achieved from the powder prepared from the 
surface and the middle of the samples immersed in sulphate solution (continue) 

Mix 
Water to Binder Ratio Curing Condition and Position of 

(W/B) Temperature Sampling 
Sulphate Phases Mineral Name of Sulphate 

Phases 
Na3Al(S04)3 Sodium Aluminium Sulphate 

ATAFI 0.45 Sealed curing at 40°C Surface K2Mg2(S04)3 Langbeinite 
(MgAl)s(SiAl)g02o(OHh,8H2O Palyigorskite 

K2Mg(S04)2,4H2O Leonite 

ATAFI 0.45 Sealed curing at 40°C Middle Na3Al(S04)3 Sodium Aluminium Sulphate 
K2MgiS04)3 Langbeinite 

ATAF2 0.55 Sealed curing at 40°C Surface Na3Al(S04h Sodium Aluminium Sulphate 
K2Mgz(S04)3 Langbeinite 

ATAF2 0.55 Sealed curing at 40°C Middle Na3Al(S04)3 Sodium Aluminium Sulphate 
K2Mg2(S04)3 Langbeinite 

ATAFl 0.45 Sealed curing at 60°C Surface Na3Al(S04)3 Sodium Aluminium Sulphate 
K2Mgz(S04)3 Langbeinite 

ATAFI 0.45 Sealed curing at 60°C Middle Na3Al(S04h Sodium Aluminium Sulphate 
K2MglS04)3 Langbeinite 

ATAF2 0.55 Sealed curing at 60°C Surface Na3Al(S04)3 Sodium Aluminium Sulphate 
K2Mgz(S04)3 Langbeinite 

ATAF2 0.55 Sealed curing at 600e Middle Na3Al(S04)3 Sodium Aluminium Sulphate 
K2Mgz(S04)3 Langbeinite 

ACSH 0.42 Sealed curing at 20°C Surface Na3Al(S04)3 Sodium Aluminium Sulphate 
K2Mg2(S04)3 Langbeinite 

ACSH 0.42 Sealed curing at 200e Middle Na3Al(S04)3 Sodium Aluminium Sulphate 

ARSH 0.42 Sealed curing at 60°C Surface Na3Al(S04)3 Sodium Aluminium Sulphak 
K2Mg2(S04)3 Langbeinite 

ARSH 0.42 Sealed curing at 60°C Middle Na3Al(S04)3 Sodium Aluminium Sulphate 

~-~ 
_._-
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Figure 8.1 Oxygen permeability apparatus 
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Different Mixes 

60 ,------------,----------------------------, 

,-, 50 +-- -\-------1 
Ng 
~ 
' ........ 
~ 40 +---',---+------1 

.0 . ...... ..-

• CM1(OPC Mix-W/C=O.45) 
000.000 CM2(OPC Mix-W/C=O.55) 

• ATAF 1 (Activated Taftan-WIB=O.45) 
00 ox· 0 0 ATAF2(Activated Taftan-WIB=O.55) 

/K ARSH 

• ACSH 

:B 
~ 30 T---~~------------------~ 
<l) 

§ 
<l) 

Po. 
~ 20 T-~~~~~~~---------------~ 
<l) 

co 
>-. 
~ 

o 10 +--~~--~~--------------------=~----~ 
...... - .. 

o 20 40 Age(days) 60 80 100 

Figure 8.2 Oxygen permeability development for different mixes under sealed curing 
conditions (CM1, CM2, and ACSH were cured at 20°C, ATAFI and ATAF2 were cured at 
40°C and ARSH was cured at 60°C which were the best curing temperature in each case) 
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ATAFI Mix under different curing conditions 
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Figure 8.3 Effect of curing conditions on oxygen permeability of alkali activated 
Taftan pozzolan 
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Figure 8.4 Top: Vacuum saturation and Bottom: Rapid chloride permeability test apparatu 
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Different Mixes 
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9. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

9.1 Introduction 

The objectives of this research were to study the intrinsic nature of different types of 

Iranian natural pozzolans, to determine the activators and methods which could be 

used to produce a geopolymer concrete based on alkali activated natural pozzolan 

(AANP) and to optimise mix design. The mechanical behaviour and durability of 

these types of geopolymer concrete were investigated and compared with normal 

OPC concrete mixes cast by the author and also reported in the literature. 

This chapter presents the main conclusions regarding pozzolanic activity, activator 

properties, engmeenng properties, and durability and suggests some 

recommendations for future research. 

9.2 Activation of Natural Pozzolans for Production of Geopolymer Binder 

The primary aim of this study has been to investigate the characteristics of five 

pozzolans from Iran (Table 9.1), both in their natural state and after calcination at 

different temperatures, as sources for the preparation of geopolymer binders. 

Elevated temperature curing of pastes containing the pozzolans was considered. This 

study used alkali solubility and compressive strength as the indicators for pozzolanic 

activity, and showed that the highest reactivity and best behaviour resulted for 

pozzolanas such as Taftan with low L.O.I. and a high soluble calcium content which 

can be activated directly from raw material without calcination. For pozzolans 

containing sodic zeolites, such as Shahindej, on calcination at 800°C, its clinoptilolite 

minerals convert to amorphous opaline materials which react readily with aqueous 

alkali making it suitable for producing geopolymers at room temperature (Figure 

9.1). 

The most important finding of this work has been that geopolymer binders can be 

synthesized by activating natural pozzolans, condensed with sodium silicate in a 

highly alkaline environment. A new model is presented which allows prediction of 

the alkali activated pozzolan strength versus their alkali solubility, chemical 

composition and crystallinity. 
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In section 4.5, a model has been proposed for assessing the pozzolanic reactivity of 

pozzolans in both natural and calcined forms in terms of compressive strength of the 

pozzolanic based geopolymer binder to save both resources and time. The correlation 

between compressive strength and relevant parameters includes the alkali solubility, 

alkali content, activity index, loss on ignition, the ratio of (Si02+Ah03+CaO) in 

solution to (Si02+Ah03+CaO) mineral (obtained from ICP measurements) and 

quartz percentage was investigated one by one. A linear model was tried combining 

the first three parameters as inputs in order to find compressive strength using the 

least squares technique with the effect of curing temperatures in section 4.6. This 

model was improved with a nonlinear model which considered three further 

parameters including L.O.I., the ratio of [(Si02+Ah03+CaO) solution! 

(Si02+Ah03+CaO) mineral] from ICP tests and the quartz percentage thus obtaining 

better correlation (R>O.93) between the predicted and observed values of 

compressive strength ofpozzolanic based geopolymer binder. 

This investigation has shown that the most efficient activator for activating natural 

pozzolans is a combination of potassium hydroxide and sodium silicate solution. The 

optimum dosage of activators is determined by a new method which draws the 

strength contours versus different molarities of alkaline hydroxide and various ratios 

of alkaline hydroxide to alkaline silicate allowing the islands of ideal compositions to 

be defined. The results show that for pozzolans containing high soluble silicate with 

low alkalinity, a sodium silicate with lower Si02 to Na20 ratios gives higher 

strengths but when a calcined or a natural form with higher alkalinity is used the 

reverse is true. Using mineral additives including kaolinite, other calcined pozzolans 

such as Shahindej pozzolan, and lime when added to Taftan pozzolan as solid 

precursor is found to give approximately the same strength, although it seems that 

the gel obtained is more impermeable than when the pozzolan is activated without 

mineral additives. 

9.3 Mix Design, Procedure and Curing Temperature 

This research has successfully used geopolymer binders made from alkali-activated 

natural pozzolan to produce concrete instead of using an OPC cement paste. To 

produce the best paste and ongoing mix designs, the effect of water content was 
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studied and it was found that the minimum water to binder ratio for concrete 

mixtures made with activated natural pozzolans should be at least equal to the sum of 

plastic limits which is determined by falling cone test and aggregate water 

absorption. This amount would prepare a low workability concrete that achieves the 

maximum strength when hardened. The proportioning of the concrete mixture was 

based on the BRE method of mix design considering the approaches for determining 

the minimum water to binder. Then, the amount of cement was substituted with the 

same quantity of natural pozzolan plus the solids in water-glass with the water in the 

activator also taken as part of the total mix water. 

To achieve the best results in geopolymer concrete, mixing should be done in three 

stages by adding the hydroxide alkaline solution to the natural pozzolan first, 

followed by an alkaline silicate solution, and then adding the mixed paste to 

aggregates. 

This type of binder usually needs higher than room temperature for curing to be 

activated since pozzolans such as Taftan, which contain feldspars as main mineral 

phases, seems to need a higher activation energy to be activated with alkali. For 

Shahindej it was shown that when pozzolans which contain zeolite minerals such as 

clinoptilolite are calcined they can be activated at room temperature. 

9.4 Fresh Properties of AANP Concrete 

In this type of concrete, which can be classified as 'sticky' concrete, calcination of 

Shahindej pozzolan increases the slump and results in a more workable geopolymer 

concrete. Pozzolans with higher silicate content and aluminate may delay the setting 

time of alkali activated natural pozzolan which decreases when the curing 

temperature and dosage of alkaline hydroxide increases. 

9.S Engineering Properties of AANP Concrete 

Geopolymeric concrete mixes based on activated natural pozzolans mostly have 

shown lower strength and modulus of elasticity than ope mixes at early ages, but 

they reach the same and even higher strength and modulus of elasticity than ope 
mixes after long-term curing (Figure 9.2). It is concluded that concrete made with an 

alkali activated natural pozzolan develops moderate to high mechanical strength and 
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modulus of elasticity and shrinks much less than ordinary OPC. All of the 

geopolymer concrete mixes show lower ultrasonic pulse velocity than OPC concrete 

mixes even though they have higher compressive strengths despite lower densities. 

In this investigation, an attempt has been made to formulate the equations to describe 

the relationship between splitting tensile strength, static modulus of elasticity and 

UPV of AANP concrete and its compressive strength in section 7.7. It is shown that 

the relationships provide some idea of prediction of the properties while justifies the 

variation of these parameters more than 78, 68, and 78 percent respectively. 

9.6 Durability Properties of AANP Concrete 

This type of concrete has shown that oxygen permeability lies in the same ranges as 

OPC concrete. The Rapid Chloride Permeability Test (ASTM C1202) was not found 

to be applicable for geopolymer concrete because of the conductive pore solution 

that exists due to the presence of alkaline activators in the pore solution. A reduced 

voltage was used and the results of long term chloride absorption shows that the 

resistance of alkali activated natural pozzolan concrete when subjected to chloride 

attack was moderate. 

On exposure to sulphate solution, while the compressive strength development does 

not show significant reduction in most samples, XRD traces show sulphate 

compounds were observed in the core of AANP concrete and thus further study is 

needed to confirm the resistance of AANP concrete to sulphate attack for longer 

periods of time. In section 8.5 a general relationship was found to predict the oxygen 

permeability of AANP concrete from its compressive strength (Figure 9.3). For alkali 

activated Taftan mixes this relationship is improved by considering the effect of 

water to binder ratio. The correlation of the model is higher than 0.95 which shows a 

good agreement between the experimental and calculated air permeability 

coefficients. 

9.7 Evaluation of Carbon footprint and Cost for AANP Concrete 

Two potential advantages of concrete made with alkali activated natural pozzolans 

compared with other binders are its carbon footprint and cost. Increased pressure to 

improve sustainability within the concrete industry makes these factors very 

important. The relation between CO2 footprint and cost of AANP concrete and its 
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compositions in comparison with Portland-based cements is roughly quantified in 

this section. 

9.7. 1 Environmental Benefits 

De-carbonation of lime and calcination of cement clinker release CO2 as a reaction 

product in OPC concrete while the use of an alkaline hydroxide or silicate activating 

solution rather than water for cement hydration does reintroduce some CO2. 

Production of these activators needs temperature similar to de-carbonation of lime in 

OPC manufacture. The C02 emission of AANP concrete can be quantified in terms 

of its compositions. Referring to Table 6.2, 110kg of activator is needed to be mixed 

with 400kg pozzolan to produce 1m3 of AANP concrete which has the CO2 emission 

equal to 27.5% of the same amount of OPC, when pozzolan used in natural state (It 

is estimated that the production of 1 tone of OPC results in the release of 1 tone of 

CO2). If the calcined form is used, the CO2 emission of AANP concrete would be the 

summation of CO2 emission due to producing the required activators and the amount 

related to calcination procedure. Since the temperature required for calcination these 

materials, is half of that needed to de-carbonate lime, the C02 emission for 

calcinations of these materials can be considered 50% of equal OPC production. 

Therefore, in this case the CO2 emission of AANP concrete increases to 77.5% of the 

amount emitted by the same weight ofOPC. Hence the AANP concrete manufacture 

is liable to reduce CO2 emission from 22.5% to 72.5% compared to OPC production. 

9.7.2 Supply and Cost of activators 

Referring to Table 6.2, 66kg of potassium hydroxide and 46kg (considering density 

equal to 1.35 kglm3
) of water-glass as activator is needed to be mixed with 400kg 

pozzolan to produce 1m3 of AANP concrete. Although, these activators have 

different prices in different markets, the cost of industrial potassium hydroxide (25kg 

KOH Flake UNSD made in KOREA costs £52) and water-glass [25 lbs (11.35 kg) 

water-glass solution is sold by Sheffield Pottery in U.K. for 12$] is considered equal 

to £2.1 and £0.73 per kg, respectively. Hence calculating as a rule of thumb the 

activators required for activating 400kg pozzolans cost £173 and considering 25kg of 

pozzolan to be comparable to the price of OPC in 25kg bags, the price of required 

activators would be £ 11 per 25kg. 
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9.8 Application Aspects of AANP Concrete 

Geopolymer concrete made from alkali activated natural pozzolan is a new type of 

concrete which needs a very good control on site to be used as a comparable 

alternative to OPC concrete. However its drawbacks, such as loss of workability, 

quick setting time and the health and safety implications of working with strong 

alkali solutions can easily be adapted in applications such as pre-cast concrete and 

mass concretes as in dam construction where roller compacted AANP concrete may 

be a viable construction method. This type of concrete, especially in countries with 

greater resources of natural pozzolan, can help decrease energy consumption and 

environmental impacts. 

9.8 Future Research on AANP Concrete 

In view of the experience gained from this study the following suggestions for future 

study in the activation of natural pozzolan to produce geopolymer concrete as 

construction material are: 

1. Standardise the mix design methods for alkali activated natural pozzolans as a 

binder according to the classification of the materials presented in section 2.3 

and specify the optimum proportions of activator, precursor and additive and 

properties. 

2. Study blending of natural pozzolans as raw materials, which vary in their 

chemical compositions, with other raw minerals to compensate for the 

deficiency of oxides such as Si02, Ah03 and CaO to overcome some of the 

problems related to workability and setting time. 

3. Study the compatibility between geopolymer mortars / concretes with 

admixtures and the effect of superplasticizers which can perform a very 

effective role in producing concrete by using activated natural pozzolan with 

high silica content. 

4. Investigate further mixes with different water to binder ratios to find out the 

effect of this parameter on drying shrinkage of geopolymer concrete. 
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5. Conduct extensive investigation on the chemical reaction between binder, 

water and aggregate to understand the heat produced due to the chemical 

reaction, microstructure of hardened paste and interaction of the binder with 

aggregates considering different procedures of mixing and various curing 

conditions. 

6. Although the curing of AANP concrete seems to be an exothermic reaction 

and has better properties at higher curing temperature, it seems not to create 

high heat due to its chemical reaction, so it would be useful to do further 

investigation on this phenomenon by measuring the heat of reaction of this 

type concrete. 

7. Study the potential use of alkali activated natural pozzolan mortars and 

concretes in the pre-cast concrete industry with respect to possibility of using 

high temperatures or autoclaving curing conditions and considering the 

restriction factors. 

8. Although different tests were done in this research to find out whether 

sulphate attacks this type of concrete or not, further study is needed to 

confirm the resistance of AANP concrete to sulphate attack for longer periods 

of time. 

9. Extensively study the durability properties of geopolymer mortars and 

concretes based on alkali activation of natural pozzolan to find its 

vulnerability to chemical attack including presence of reactive aggregates and 

carbonation, together with the investigation the use of additives. 
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Material 

Minerals 

Table 9.1 Mineralogy of investigated pozzolans 
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strengths of investigated pozzolans 
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Appendix 

Table A 7.1 Relation between splitting tensile strength and compressive strength 

Mix-Curing Correlation Coefficient 
Equation of power regression 

CMI-20Sealed 0.927 
Y=0.23X069 

CMI-20Fog 0.937 
Y=1.23Xo.2 

CM2-20Sealed 0.999 
Y=0.44X°.45 

CM2-20Fog 0.987 
Y=1.43Xo.1 

AT AF 1-20Sealed 0.924 
Y=0.07 X 1.12 

ATAFI-20Fog 0.913 
Y=0.03XU4 

ATAFI-40Sealed 0.848 
Y=0.15Xo.88 

ATAFI-40Fog 0.868 
Y=0.26Xo.73 

AT AF 1-60Sealed 0.964 
Y=0.06XO.94 

ATAFl-60Fog 0.942 
Y=0.57X°.45 

ATAF2-20Sealed 0.947 
Y=0.13Xo 71 

ATAF2-20Fog 0.963 
Y=0.07X1.l

6 

AT AF2-40Sealed 0.922 
Y=0.03XI.29 

ATAF2-40Fog 0.841 
Y=0.05X1.l

2 

AT AF2-60Sealed 0.981 
Y =0. 15Xo.66 

ATAF2-60Fog 0.976 
Y=1.52Xo. 19 

Y=0.13Xo.85 

ATAF 0.511 

Y=0.04XO.96 

ARSH-60Sealed 0.900 

Y=0.08X0 83 

ACSH-20Sealed 0.983 

ASH 0.874 Y=0.06X0 9 

Alkali activated 0.502 Y=0.IXo 9 

natural Eozzolans 

X is cube compressive strength (MPa) and Y is splitting tensile strength (MPa) 
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Appendix 

Table A 7.2 Relation between static modulus of elasticity and cube compressive strength 

Mix-Curing Correlation Coefficient 
Equation of power regression 

CMl-20Sealed 0.909 
Y=7.41X°.37 

CMl-20Fog 0.998 
Y=0.78X 

CM2-20Sealed 0.931 
Y=9.91Xo.28 

CM2-20Fog 0.980 
Y=8.16X°.34 

ATAFl-20Sealed 0.847 
Y=0.10X1.73 

AT AF 1-40Sealed 0.846 
Y=2.42Xo.7O 

ATAFl-40Fog 0.942 
Y=0.27X2.06 

AT AF 1-60Sealed 0.786 
Y=0.08X1.59 

ATAF2-20Sealed 0.835 
Y=1.14Xo.74 

AT AF2-40Sealed 0.797 
Y=1.89Xo.69 

ATAF2-40Fog 0.912 
Y=0.43X1.l8 

AT AF2-60Sealed 0.134 
Y=5.i3Xo.45 

ATAF 0.686 
Y=0.54X1.09 

ARSH -60Sealed 0.918 
Y=1.99Xo.52 

ACSH-20Sealed 0.991 
Y=1.50Xo.86 , 

ASH 0.673 Y=1.53Xo.73 

Alkali activated 0.682 Y=XO. 9 

natural pozzolans 

X is cube compressive strength (MPa) and Y is static modulus of elasticity (GPa) 
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Table A 7.3 Relation between static modulus of elasticity and cylinder 
compressive strength 

Mix-Curing Correlation Coefficient Equation of power regression 

ATAFl-20Sealed 0.944 Y=0.16X l.
72 

AT AF 1-40Sealed 0.846 
Y=3.58Xo.63 

ATAFl-40Fog 0.905 
Y=0.32X1.39 

AT AF 1-60Sealed 0.938 
Y =0. 07X 1.73 

AT AF2-20Sealed 0.836 
Y=1.24Xo.77 

AT AF2-40Sealed 0.792 
Y=2.75Xo.62 

ATAF2-40Fog 0.949 
Y=1.21Xo.95 

AT AF2-60Sealed 0.958 
Y=3.29Xo.66 

ATAF 0.691 Y=1.03Xo.97 

ARSH -60Sealed 0.921 Y=2.62Xo.47 

ACSH-20Sealed 
0.992 Y=2.48Xo.76 

ASH 0.686 Y =2.28Xo.66 

Alkali activated 0.696 Y=1.61Xo.82 

natural pozzolans 

X is cylinder compressive strength (MPa) and Y is static modulus of elasticity (GPa) 
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Table A 7.4 Relation between static modulus of elasticity and splitting tensile strength 

Mix-Curing Correlation Coefficient Equation of power regression 

CMI-20Sealed 0.750 
Y=15.54Xu.66 

CMl-20Fog 0.933 
Y=I.64X2

.
86 

CM2-20Sealed 0.916 
Y=19.2X°.44 

CM2-20Fog 0.998 
Y=3.65X 

ATAFI-20Sealed 0.849 
Y=6.88X1.47 

AT AF 1-40Sealed 0.562 
Y=14.1Xo.6 

ATAFI-40Fog 0.855 
Y=I.76X2.49 

AT AF 1-60Sealed 0.599 
Y=12.73Xo.96 

AT AF2-20Sealed 0.732 
Y=9.17X 

AT AF2-40Sealed 0.733 
Y=10.53Xo.7 

ATAF2-40Fog 0.445 
Y=12.42Xo.7 

AT AF2-60Sealed 0.105 
Y=20.62Xo.41 

ATAF 0.630 
Y=10.89Xo.84 

Y=10.66X°.33 
ARSH-60Sealed 0.808 

Y=20.39Xo.97 

ACSH-20Sealed 0.941 

ASH 0.665 Y=16.03Xo.81 

X is splitting tensile strength (MPa) and Y is static modulus of elasticity (GPa) 
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Appendix 

Table A8.1 Relation between oxygen permeability and compressive strength 

Mix-Curing Correlation Coefficient Equation of power regression 

CMI-20Sealed 0.980 Y =5403 2X-2.35 

CM2-20Sealed 0.996 
Y=444.82X-O.97 

OPC 0.83 
Y=1923.2X-1.4 

ATAFI-20Sealed 0.996 
Y =6493 .2X-2

.
13 

AT AF 1-40Sealed 0.981 
Y=261162X-3

.
35 

ATAFI-40Fog 0.999 
Y=2xl0 11X-7.56 

AT AF 1-60Sealed 0.904 
Y=3xl010X-6.45 

AT AF2-20Sealed 0.996 
Y=1876X-1.79 

AT AF2-40Sealed 0.97 
Y=545.66X-1.29 

ATAF2-40Fog 0.966 
Y=41127X-2

.
73 

AT AF2-60Sealed 0.999 
Y =1 03488X-2

.
95 

ATAF 0.872 
Y=4307.3X-2

.
06 

ARSH-60Sealed 1.0 
Y=1160.7X-1.56 

Y=2971X-1.96 

ACSH-20Sealed 0.943 

ASH 0.94 Y=2097.9X-1.8 

Alkali activated 0.887 Y=3365.5X-1.98 

natural pozzolans 

x = Cubic compressive strength of concrete (MPa); Y = Oxygen permeability x 10-
17 

(m
2
) 
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Appendix 

Table A8.2 Relation between chloride permeability and compressive strength 

Mix-Curing Correlation Coefficient Equation of power regression 

CMI-20Sealed 0.990 
Y=7183.6e-o.o3x 

CM2-20Sealed 0.892 
Y=6382.3e-o.02X 

OPC 0.937 
Y =6611.4e -O.02X 

ATAFI-20Sealed 0.999 
Y=13161e-o.o5x 

ATAFI-40Sealed 0.952 
Y=12350e-o.o4x 

ATAFI-40Fog 0.837 
Y=30526e-o.09X 

ATAFI-60Sealed 0.995 
Y=20138ge-O.12X 

ATAF2-20Sealed 0.998 
Y = 12898e -O.05X 

AT AF2-40Sealed 0.744 
Y=74207e-o.03X 

ATAF2-40Fog 0.919 
Y=9817.2e-o.o3x 

AT AF2-60Sealed 0.953 
Y=57767e-O.1X 

ATAF 0.741 
Y=10597e-o.o4x 

ARSH -60Sealed 0.999 
Y=12707e-o.o4x 

ACSH-20Sealed 0.991 
Y=10424e-o.o3x 

ASH 0.969 Y=11141e-o.o4x 

Alkali activated 0.795 Y=10731e-o.o4x 

natural J2ozzolans 

x = Cubic compressive strength of concrete (MPa); Y = Chloride permeability (coulombs) 
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Figure A 7.1 Relation between the splitting strength and the compressive strength of 
CM 1 and CM2 under different curing conditions 
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Appendix 

Activated Untreated and Calcined Shahindej Pozzolan 
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Figure A 7.6 Relation between the static modulus of elasticity and the cube 
compressive strength of CM1 and CM2 under different curing conditions 
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ATAFI Mix 
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Figure A 7.7 Relation between the static modulus of elasticity and the cube 
compressive strength of ATAFI and ATAF2 under different curing conditions 
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Figure A 7.8 Relation between the static modulus of elasticity and the cube 
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