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Abstract 

Adhesion is a well-studied phenomenon, mainly for its industrial importance. We 

consider a smart water-based adhesive that is switchable, i.e. the adhesion may be 

turned on and offby an environmental trigger, in this case the pH. 

The interaction investigated is between a weak polyacid hydrogel of poly(methacrylic 

acid) (PMAA) and poly [2-( dimethyl amino )ethyl methacrylate] (PDMAEMA, a weak 

polybase) chemically grafted to planar silicon substrates (brushes) by atom transfer 

radical polymerisation. 

The interaction between PDMAEMA and PMAA is of great interest because it 

represents a situation where a surface adhesive (a polybase in contact with a polyacid) 

can be turned on and off simply by changing the external environment. In particular 

we observe that at pH less than 2, there is no significant interaction between the brush 

and hydrogel, whereas above pH 3, there is strong adhesion comparable to epoxy 

glue. The interaction between the brush and the gel is pressure sensitive so that the 

adhesion energy is a function of the applied load. 

To understand the mechanism involved in the pressure sensitive behaviour we 

performed neutron reflectivity experiments of the brush in contact with the hydrogel 

after known pressures were applied. Comparison of the conformations of brushes of 

different thicknesses but with the same applied pressure shows that the interaction 

between the brush and hydrogel takes place at the interface and is mainly due to 

electrostatic interactions between the carboxylic group of the hydrogel and the amino 

group into the brush. Viscoelastic dissipation in the hydrogel also contributes to the 

total work of adhesion. 
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Introduction 

In this study, we are investigating the adhesion between poly[2-(dimethyl amino)ethyl 

methacrylate] (PDMAEMA, a polybase) chemically grafted to planar silicon 

substrates by atom transfer radical polymerisation, with a hydrogel of 

poly(methacrylic acid) (PMAA). 

Adhesion is a well-studied phenomenon, mainly due to its industrial importance. 

There are several reasons that make adhesion science an interesting field nowadays. 

One is the need to move away from organic solvents on account of their 

environmental unfriendliness, but maintaining the same adhesion properties. Another 

is the desire to improve adhesion with "smart" behaviour, a capability being 

researched by many groups interested in bio-mimetic behaviour [1]. 

I present experiments which describe different form of smart water-based adhesion 

that is both switchable (the adhesion may be turned on and oft) and reversible 

(adhesion on/off cycling is possible). The method is both inexpensive and requires a 

very small amount of material, in contrast with other forms of water-based adhesives, 

which require a high particulate content in order to achieve reasonable adhesion. In 

fact, this adhesion is nearly as strong as epoxy glue, when it is "on" .The only 

requirement is for a pH trigger; the adhesion is sensitive to pH and the adhesion can 

be turned off when the pH is lowered to acidic conditions. 

This in situ switchable adhesion, where the adhesion can be turned on and off 

changing the pH environment, expands the variety of applications for also medical 

purpose because a wide range of biocompatible polymers can be used. Other 

applications include the process of stickingiunsticking labels from different types of 

containers, making the recycling process more efficient. Other applications are in the 

field of microfluidics, controlled wetting, lubrication, and adhesion. 

In the literature, there are examples of tuning the properties of polyelectrolytes by 

changing the environment, such as using mixed polymer brushes that swell and 

collapse in selective solvents [2] by variation of the pH environment [3]. 



There are examples of interactions between electrolyte molecules and polymers with 

the same and oppositely charges in solution, including the study of biomolecules such 

as DNA [4], amino acids [5], interacting surfactants [6]; but, as far we are aware, 

there is only one example of a macroscopic interaction between oppositely charged 

polyelectrolytes. This study was performed by the group of Osada [7] in 1999 by 

bringing a P AMPS gel, [poly (2-acry lamido-2-methy Ipropanesulfonic acid)] into 

contact with a PDMAPPA-Q gel, [quaternized poly(N-[3-(dimethylamino)propyl] 

acry lam ide ]. This was part of a rheological study of the interaction between 

polyelectrolytes. In the case of P AMPS and PDMAPP A-Q, however, the gels would 

not slide over each other, but rather would adhere, and were thus fractured in the 

rheometer. The adhesion between these oppositely charged polyelectrolyte was not 

measured. 

We here describe the interaction between oppositely charged polyelectrolytes in water 

solution, and focus on the interaction between weak polyelectrolytes. In particular, we 

are interested in the interaction between a pH responsive brush polymer grafted on an 

inorganic substrate and an oppositely charged hydrogel. 

A polymer brush is a polymer layer attached with one end to the surface. If the 

grafting density of the polymer on the surface is high enough, the chains start to repel 

each other and they can be stretched away from the surface, making a brush shape 

rather like the bristles on a brush. 

Fig 1 Schematic representation of a polymer brush anchored on substrate. d is the 

distance between to anchoring point and h is the thickness of the polymer layer. 

In our case we are studying pH responsive PDMAEMA weak polyelectrolyte brush 

that may be characterised by a wettability transition and change in conformation as a 

function of the pH environment [6]. 
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Fig 2 A) shows the swelling of a PMAA hydrogel lens at pH 2. B) shows the swelling of 

the hydrogel at pH 10. The comparison of the two pictures shows that the hydrogel is 

more collapsed in acid (pH 2) than when equilibrated in basic solution (pH 10). 

The external media that we are considering is a crosslinked hydrogel, synthesised 

from a weak polyacid, the poly(methacrylic acid) (PMAA). This kind of gel is elastic 

and pliable when hydrated and is capable of large deformations in some pH 

environments. Also, an environmental change from acidic to basic pH induces in the 

gel a physical transition from hydrophobic to hydrophilic behaviour and vice versa 

[8]. 

The interaction between a polymer brush and an external network was already studied 

by 0' Connor and McLeish who introduced the term of molecular Velcro ™ [9] where 

the network plays the role of loops and the polymer brush acts as hooks. Theoretically 

[9] and experimentally [10-12] it has been shown that polystyrene (PS) brushes and 

gels and poly(dimethylsiloxane) (PDMS) brushes and gels can form molecular 

Velcro TM; but it is not possible to separate the two parts, because after being in 

contact, the chains cannot disentangle because it is entropically forbidden, and the 

only way to detach the two parts is by bond breakage. 

The challenge in this project is the development of a new way to measure adhesion 

between oppositely charge polyelectrolytes, to design a new adhesive, to be able to 

work under water with a strength comparable to epoxy resins, which is switchable and 

reversible, so that the adhesion can be tuned on and off and back on again as a 

function of the pH [13]. 



Upon examining the contact between brush and hydrogel at different pH, we 

recognize a pH region where the brush and gel do not interact with each other, and a 

region where they interact strongly under which condition it is difficult to remove the 

gel from the brush without any damage to either or both components as was shown by 

Gong in 1999 [7]. 

As a second step we investigated whether the process is switchable or whether it was 

forming a type of molecular Velcro TM [9], i.e. impossible to disentangle without bond 

breakage. We discovered that after changing the pH, the brush and gel would come 

apart without damaging either of the components. 

The experimentally observed phenomena are: 

• 

• 

at pH less than 2, there is no significant interaction between the brush and 

hydrogel, whereas above pH 3, there is a strong adhesion which is comparable 

to that of an epoxy with a silanated glass [14] ; 

the adhesive interaction between the brush and gel above pH 3 can be reversed 

if immersed in a solution at pH 1 [13]. 

We also discovered that the interaction between the brush and hydrogel is pressure 

sensitive and that the work of adhesion is a function of the applied load. 

We studied the mechanism involved in the adhesion between the brush and the 

hydrogel. Looking at the structure of the topology of the two polymers, brush and 

network, we figured out two that the main mechanisms of interaction, are either a 

surface and/or an interdigitation effect. 

• Interfacial (surface) effect 

The applied force produces an increase in the contact area between the brush and 

hydrogel, creating more surface available for electrostatic or hydrogen bond 

interactions between the ammo and carboxylic groups of the polybase and 

polyacid respectively. 

• Interdigitation effect 

The Velcro TM [9] effect could be another mechanism involved where an increasing 

in applied load generates an interdigitation of the brush into the hydrogel. 

The experimental data suggest that the dominant mechanism of interaction between 

the brush and the hydrogel is the interfacial effect which is likely to be between the 



ammo group of the brush side chains and the carboxylic groups of the PMAA 

hydrogel; there is no clear evidence of any interpenetration mechanism of the brush 

chains into the hydrogel. The contribution of hydrogen bonding is negligible in 

comparison to the electrostatic interaction. In general, the amount of charged groups 

is a function of the number degree of polymerisation and in the case of the brush it is 

proportional to the thickness of the polymer layer. 

The switchable behaviour of the brush-gel system is triggered by the variation of pH 

in acid condition such as pH 1. In this pH condition, the brush is charged and swollen 

while the hydrogel is collapsed and uncharged. This shows that the driving force, 

generating the switchable behaviour, is the decreased amount of charges on the 

hydrogel which consequently reduces the electrostatic attraction between the brush 

and the hydrogel. 

This thesis is divided into two parts: 

The first part is related to the theoretical background concerning the adhesion theory, 

in Chapter 1. The chemistry and the physics of brushes and hydrogel for neutral 

polymers are described in Chapter 2, and for polyelectrolyte brushes and hydrogels in 

Chapter 3. 

The second part is related to the experimental results. Chapter 4 focuses on the sample 

preparation and on the experimental techniques used in this project. Chapter 5 is 

related to the study of adhesion between the brush and the hydrogel, including the 

phenomenological effect and the mechanism of interaction. Chapter 6 concerns 

experiments where we calculate the real value of adhesion between the brush. 
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1 

Chapter 1 

Adhesion theories 

1.1 Introduction 

The word adhesion comes from the Latin word adhaerere, that is a compound of ad 

(to) + haerere (stick) [1]. This word was used by Lucretius to describe the fact that 

iron sticks to a magnet. The meaning of the word adhesion, in this context, is 

straightforward and indicates the phenomenon that or the state in which two parties 

are attached together. The ASTM D 907 (American Society for Testing And 

Materials) defInition indicates that adhesion is "the state in which two surfaces are 

held together by interfacial forces, which may consist of valence forces, interlocking 

forces or both". The mechanism of adhesion is a multidisciplinary subject that 

involves surface chemistry, physics, rheology, stress analysis and, nowadays, the 

physics and chemistry of polymers. Industries in building, engineering and biomedical 

fIelds are investigating the adhesion of polymers, and besides, industries, such as 

aerospace and automobiles are moving their interest from metals and metal 

components to polymer and epoxy resins because they are cheaper and lighter and 

present good mechanical properties. The "adhesion" between two bodies is strictly 

dependent on the strength of the interface due to physical and chemical properties and 

topology of the surface; the "adherence" takes in account the bulk characteristics [2]. 

The "adherence" can be measured, but the "adhesion" only if the bulk is perfectly 

elastic. The chemical composition, the roughness, the polarity and the surface free 
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energy of the external polymer layer is studied using techniques such as time-of-flight 

secondary ion mass spectroscopy (ToF-SIMS) [3], atomic force microscopy (AFM) 

[4], scanning electron microscopy (SEM) [5], attenuated total reflectance infrared 

spectroscopy (ATR-IR) [5], and optical contact angle measurements [6]. The 

mechanism of adhesion and the adhesion strength of the materials at the interface are 

studied using some direct adhesion techniques such as pull-off tests [7], peel tests [8], 

lap [9] and shear tests [10]. These techniques are destructive because they measure the 

force or energy required to separate the surfaces involving breakage, tear and 

delamination of the surfaces but give information about the limit of material 

applicability but do not reveal any information about the physical chemistry 

characteristics of the surface and interface. The full characterization of the polymer 

adhesion combines the use of direct adhesion measurements and surface techniques. 

The main contributions of adhesion mechanisms are mechanical coupling, molecular 

bonding and thermodynamic adhesion. 

Mechanical coupling is based on interlocking (hook and eye) between the substrate 

and the adhesive, such as glue on wood. Other researchers consider that the key 

parameter is the roughness of the surfaces, which increases the area of contact 

between the substrate and the adhesive [11]. If very high or even porous materials are 

brought into contact, the main mechanism of interaction is interlocking. If the 

materials present low roughness, the area of contact of the surfaces increases 

compared to smooth surfaces, and indeed the adhesion increases. This phenomenon is 

observed when liquid glue, which transforms into a solid by polymerization, 

crosslinking or drying, is applied on a surface. In the case of soft adhesive it is 

important to create a good contact firstly between the surfaces; the roughness plays an 

important role, during the debonding process, especially for soft adhesive, because it 

increases the points of contact and consequently the energy to separate the two 

surfaces. In this case, there is an optimal roughness value that balances good contact 

between the surfaces and the increase of energy to separate them [12]. 

The molecular bonding contribution requires the adhesion between the substrate and 

the adhesive to be due to intermolecular forces such as short-range interactions, 

dipole-dipole and van der Waals forces, and/or chemical interactions, such as covalent 

bonds between the two surfaces. This mechanism requires that the surfaces be in , 

intimate contact but often the presence of defects, cracks and air bubbles decreases the 
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strength of adhesion at the interface [13]. Another contribution is the thermodynamic 

mechanism of adhesion based on equilibrium processes at the interface. The surfaces, 

exposed in different environment, try to arrange the orientation of the molecules into 

the surface to minimize the surface free energy, affecting the strength of adhesion at 

the interface [14]. This is important, for example, in the coatings field. 

A final contribution concerns the rheological mechanisms of adhesion based on 

interdiffusion and consequently interpenetration of the polymer chains across the 

interface improving the strength of adhesion. The process is favourable at 

temperatures higher than the glass transition temperature due to the higher mobility of 

the polymer chains, e.g. the use of block copolymers to heal the interface between 

immiscible polymers [15]. The linking polymer at the interface produces an extra cost 

of energy to separate the surface because the polymer chains would be stretched and 

dissipate energy when the surfaces are separated [16]. The polymer chains at the 

interface have to be long enough to interact with the bulk by entangling with the melt 

for glassy polymers [15], or co-crystallize with at least 2 lamellae [17] or entangle 

with the polymer network in the case of elastomeric materials [18]. 

1.2 Adhesion theories 

The phenomenon of stickiness has been always experienced by humans. The sticky 

resin from pine trees has been used in numerous applications from adding friction to 

violin strings to a binding agent for fragile archaeological items. Going back to 

Palaeolithic times, early man used resin to fashion spears for hunting by gluing stone 

and bone to wooden sticks to make spears [19]. The study of the contact mechanism 

has a more recent origin dating back to 1882 from an article by Hertz [20]. The 

interest in studying the contact mechanism was quite practical. Due to the increase of 

industrial development, understanding the contact of train wheels on the steel rails 

became an important problem [21]. In this particular example, the force to deform the 

contact is much larger than the adhesion forces and the latter is neglected. If, 

however, the bodies in contact are deformable, the adhesion forces become important; 

Johnson, Kendall and Roberts in 1971 studied this phenomenon [22]. They considered 

the case of two spheres in contact interacting via adhesion forces. They showed 

mathematically the dependence of the adhesion energy on the radius of contact, the 
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radius of curvature of the lens, the load applied and the elastic modulus of the lens. 

This article has had a huge impact in the scientific and engineering community. Its 

relevance may even become greater nowadays when scientific studies are leading to a 

more thorough understanding of the behaviour of nanostructures. The adhesive forces 

become much more important as the size of the contact and the stiffness of material 

decrease. 

1.2.1 Role of the interface 

Adhesion, in its fundamental meaning, is defined as the interaction between atoms or 

molecules at the interface. The interaction can have different origins such as van der 

Waals or non-covalent bond forces, chain interpenetration, or chemical bonds across 

the interface [23, 24]. Long distance forces are intrinsic characteristics of the material 

and can be quantified by their surface and interfacial energies. The surface energy is 

the quantity of energy required to create a unit of surface, a, between the interface. If 

the second phase is vacuum or air, this energy is called surface energy; if it is a 

different phase this energy is called interfacial energy. Thermodynamically, the 

surface can have a lower free energy when it is in contact with a second phase than 

when it is by itself in the vacuum [25]. To form this new area the system has to break 

bonds on the surface and create new ones with the other phase. The value of surface 

energy depends of the kind of bonds that have to be broken. On the suggestion of 

Fowkes [26] the surface energy can be expressed as the sum of all bond contributions: 

where t are the dispersion forces, f the polar forces, and .; hydrogen bonding. 

Thermodynamically, the surface energy is defined as 

(aG) y- -
- aA T/ 

where A is the area created and G is the surface Gibbs free energy. 

(1.1) 

(1.2) 
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The surface energy leads to the definition of the work of cohesion and the work of 

adhesion. The work of adhesion is the work done on the system when two different 

bodies, forming an interface of unit area, are separated reversibly to create two new 

interfaces of unit area. 

Mathematically the work of adhesion between two bodies denoted (1) and (2) can be 

described as 

(1.3) 

where YI and Y2 are the surface energies in phases 1 and 2, respectively, and YI ,2 is the 

interfacial energy. 

lfthe two phases are identical, Y1 = Y2 = y, and Yl ,2 = 0, the energy required to separate 

the two components is known as the work of cohesion and it is mathematically 

expressed as 

Wcoh =2y. 
(1.4) 

The most frequently used way to calculate the surface energies of solid surfaces is 

through contact angle measurement [2]. The technique is based on the measurement 

of the angle between a droplet of liquid and a surface. When the droplet is added on 

the surface, different interfaces are created: solid-liquid, liquid-vapour and solid­

vapour, Fig 1.1. 

Ylv 

Fig 1.1 Schematic representation of a drop of (I) liquid in equilibrium with its vapour (v) 

on a solid (s) substrate for contact angle experiments. The surface and interfacial 

energies, Ysv, Y'v, Ysl act in the direction indicated. 
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These force balance of these interfacial energies results in Young' s equation [27] 

Y/v cosO = Ysv - Ys! 
(1.5) 

Where Y!v indicate the liquid-vapour surface tension, Ysv the solid-vapour surface 

tension and Ys! the solid-liquid surface tension. 

To calculate the interfacial interaction between two solid bodies in contact, contact 

mechanism theories have been developed The contact mechanism theories take into 

account the elastic modulus and roughness of the materials, geometry of the surface, 

chemical and physical bonding, and chain interpenetration [2, 28]. 

1.2.2 Hertz theory 

Hertz [20, 21] considered the behaviour of two elastic smooth bodies in contact 

pressed against each other. Assuming that there are no interfacial attraction forces 

between the two surfaces, he demonstrated that the size and the shape of the contact 

depend on the elastic deformation of the two bodies. 

The model considers the interaction between two spheres, radius R I and R2 with 

elastic moduli El and E2, respectively, compressed by a force P. 

-7''-~ -_ 
---) 

/_~r 

Fig 1.2 Representation, taken from Sbull [21], of two spberes in contact of radius RI and 

R2 baving a contact area of radius a. 

The relationships linking the change of contact radius, ao and the displacement b, a 

a function of the radius of curvature R elastic constant of the system and force 

applied Pare: 
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(1.6) 

(1.7) 

1 1 1 
-=-+- and 
R Rl ~' 

(1.8) 

(1.9) 

where VI and V2 are Poisson's ratios for the two spheres in contact. Equation 1.6 is 

known as the Hertz equation and it can be used in the case of a sphere in contact with 

a flat surface by considering the flat surface as a sphere of infmite radius. 

F or the Hertz model, one assumes that the bodies are isotropic, frictionless, that their 

shapes can be approximated to a half sphere and the contact radius, ao, is much 

smaller than the curvature radius of the bodies, R. Adhesive forces are neglected; 

consequently, the contact radius is zero at zero load as indicated in the equation. 

The Hertz theory is not completely consistent with some experimental results. For 

example, Bradley found that two silica spheres in contact with a force P, required a 

force bigger than P to pull them apart [29]. This behaviour was explained through the 

presence of the attractive forces at the interface. Roberts and Kendall [22] , using 

smooth rubber spheres and glass spheres respectively, noted the same effect. In 

particular they found out that, at low load values, the radius of contact between the 

spheres was larger than the one established by the Hertz theory. At high compressive 

load values, the system behaved as predicted by Hertz. At a load close to zero, the 

contact area approached a finite value. This evidence showed that interfacial attractive 

forces appear more evidently as the load is close to zero. These forces may be 

modelled as additional forces acting at the interface. 
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Fig 1.3 Comparison of the radius of contact predicted by Hertz, ao, and by JKR a\. The 

attractive forces at the interface enlarge the area of contact between the two elastic 

solids, making a1 > ao. The image is taken from [22]. 

The presence of extra attractive forces influences the stress distribution at the 

interface. The Hertz theory assumes that the stress distribution at the interface is a 

maximum at the centre of contact and then decreases closer to the edge [30]. 

Johnson et al. [22] calculated the stress distribution, in the presence of adhesive 

forces, by adding to the Hertz stress distribution a non-physical infinite tensile stress 

at the edge. The radius of contact, in the presence of attractive forces, is larger than 

the radius of contact for the Hertz calculation as shown in Fig 1.3. 

1.2.3 JKR theory 

The JKR theory, named after its three discoverers Johnson, Kendall and Roberts, was 

published in 1971 [22]. It describes two smooth elastic spheres of radius Rl and R2 

and elastic moduli El and E2 in contact. The JKR model assumes that the attractive 

forces between the surfaces are short-range interactions and they act only inside the 

contact area. The assumptions for the system are the same as the Hertz model except 

that the attractive forces between the surfaces are taken into consideration. When the 

interfacial attractive forces are considered, the contact radius, Q , is a function of the 

radius of curvature, elastic modulus, force applied and the work of adhesion between 

the two spheres, considering that R = R L and R2 is infInite as for the Hertz model and 

results in 
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(1.10) 

where Wadh is the work of adhesion between the two spheres. The equation is an 

extension of the Hertz model. Assuming Wadh = 0, the equation reverts to: 

3 PR ao=-
K 

(1.11) 

The introduction of the adhesion forces in the interaction between the two surfaces in 

contact influences the variation of the force applied and removed as a function of the 

area of contact as shown in Fig lA, adapted from the thesis due to A. Chiche [31] . 

3.5 

3.0 

2.5 

2.0 

( 2/ rlJ 

ao = 6nWadh R K 1.5 

1.0 

0.5 

0.0 

-1 0 1 2 3 4 5 

3 
F = - nCR 

a 2 

6 7 8 9 

Fig 1.4 Variation of normalized cubed contact radius a
3 

/ a~ as a function of the 

normalized loading/unloading forces F / Fo in the Hertz and JKR models when two 

elastic spheres are brought into contact. For the Hertz model, the force and the cube of 

the contact radius have a linear relationship; when the contact area is zero the force is 

zero too, showing that there are no adhesion forces involved during the loading and 

unloading. In the JKR model, the relationship between the force and the area is not 

linear. When the lens is close to the surface but, F/Fo = 0, a
3 

/ a~ assumes a finite value 

due to the attractive forces between the two surfaces. The same effect is observed during 



10 

the unloading process, the force is zero but the area of contact assumes a finite value due 

to the adhesive forces acting between the surfaces. To separate the two surfaces, the 

force must be negative. The dashed line in the graph is not observed in real systems 

because the lens is separated from the surface before reaching the 0 value of radius. 

When the load applied is negative, the contact radius decreases until a separation of 

the spheres takes place. This separation occurs when the load reaches a critical tensile 

value, called pull off force, Ppull-oJj given by 

(1.12) 

The equation shows that the pull-off force is independent of the elastic moduli of the 

materials. The JKR model predicts that at zero load, the contact radius has a fInite 

value given by 

(1.13) 

These equations are valid assuming that contact radius is smaller than the height of 

the compliant material. If this condition is not valid, for example for a rigid 

hemisphere in contact with a flat compliant layer of thickness h, with h < < a, some 

corrections to the equations have to be applied [32]. 

1.2.4 DMT theory 

In 1975 Derjaguin, Muller and Toporov, (DMT), proposed a new theory [28] for rigid 

spheres. They proposed that long-range attractive forces act outside the contact area 

where the surfaces are not far apart. The attractive forces are modelled using the 

Lennard-Jones potential and the deformation is in agreement with the Hertz model. 

In the DMT model, the contact radius, aDMT , is a function of the radius of curvature, 

elastic modulus, force applied and the work of adhesion according to 



a~DMr) = R (p + 2nWadhR) 
K 
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(1.14) 

If a negative load is applied, the critical force P c(DMT) to pull apart the two surfaces is 

given by 

(1.15) 

As for the JKR model, the pull-off force in the DMT model is independent of the 

elastic moduli. 

The DMT model also predicts a fmite value for the contact radius at zero load, 

( 
2)113 2nWadhR 

ao (DMT) = K 
(1.16) 

A comparison between the respectively pull-off forces in the JKR and DMT models, 

equations 1.12 and equation 1.15 reveals a discrepancy. Both equations are 

independent of the moduli and could be valid in the case of rigid spheres or elastic 

material giving a different value of the pull-off force. This apparent contradiction was 

resolved by Tabor [28], showing that both the JKR and DMT models are both valid 

but describe two different extreme situations. The JKR model can be used in the case 

of a soft lens with large curvature radius, while the DMT model is applicable to a 

solid lens with a small radius. According to Tabor, the transition between JKR and 

DMT can be established by the dimensionless parameter f-l. 

(1.17) 

In the equation Wadh is the work of adhesion and z is the equilibrium distance in the 

Lennard-Jones potential. JKR analysis can be used when the dimensionless parameter 

f-l is greater then 5, and the DMT analysis for f-lless then 0.1. f-l represents the ratio of 

the elastic deformation consequently to the adhesion for the surface forces [21]. 
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Another dimensionless parameter, called the transition parameter A, was introduced 

by Maugis [28] and is related to !-l by 

A = 1. 157!-l. (1.18) 

The Maugis-Dugdale model (MD), built on the Dugdale approximation, assumes that 

the adhesion between the spheres and the surface, outside the contact area, has a 

constant stress over some length regime. The MD model is based on numerical 

calculation and appears to be a general case of the JKR and DMT theories and can be 

applied for all values of A. For A = 0.1, the MD model is closer to the DMT curve, for 

A = 5, it approaches the JKR curve [28]. 

The MYD model, developed by Muller, Yushchenko and DeIjaguin, [28] includes the 

short-range and long-range attraction forces acting inside and outside the contact area 

the adhesion process. 

The graph below shows a comparison of the force, stress, and shape profiles of the 

different adhesion models discussed. 

Hertz JKR DMT MYD/ BHW 

Force between surfaces: 

s~e~s under compreSSiOI I ~ad 

ShaP:e under compreSSiOl load ' 

Shape under zero lor 

Fig 1.4 Force, shape, stress between two elastic spheres in contact, as predicted by the 

different adhesion theories. The figure is taken by Horn, et. al. [30]. 

In the case of the Hertz model, Fig 1.4, column 1, the two spheres are treated as rigid 

bodies frictionless and smooth, without any attractive forces between the surfaces , 
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and they separate at zero load. The stress distribution is compressive which means 

that it is greater at the centre of contact and lower at the edges. 

F or the JKR model, the two spheres have the same characteristics as for the Hertz 

model, but they have attractive forces acting between the two bodies, at least when the 

two bodies are in contact. These forces lead the area of contact to be larger than for 

the Hertz model. The JKR model restricts the interaction force acting only at contact; 

consequently the edge of contact assumes a contact angle of 90°, because any 

interaction between the two bodies acting on lengths greater than zero would deform 

the shape of contact to lead to a contact angle different from 90°, and so the force 

diverges at the edge of contact as shown in Fig 1.4 in the stress distribution for the 

JKR model. To avoid this discontinuity of interaction at the edge of contact, the 

Dugdale cohesive zone is applied at the edge of contact; the Dugdale cohesive zone 

considers that the distance between the lens and the substrate goes gradually from 0, 

at the edge of contact, to a high value. The distance between the surface and the lens 

must be smaller than the interaction length. In this condition, the model presents a 

more realistic situation. 

For the DMT model, the two spheres have attractive forces acting only outside the 

area of contact where the surfaces are still close to each other; inside the area of 

contact, the model assumes a Hertzian shape and no forces affect the surface of 

contact [30]. 

1.3 Fracture propagation at the interface 

The experimental set-up to calculate the work of adhesion between a flat surface and a 

hemispherical lens comprises several key parts including a load control system, which 

controls the rate of the application or removal of the load, and a camera to record the 

change of the contact area or radius as the load is applied. The radius of the lens must 

be known while the elastic modulus may be calculated separately or during the 

performance of the experiments. 

In a general experiment, the flat surface is positioned on a stage and the second 

surface, usually of hemispherical shape, is moved by a motor in contact with the flat 

surface. When the load is applied (loading regime) the work of adhesion and the 
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elastic properties of the lens can be calculated by fitting to the JKR equation because 

the contact radius and any loads applied are known. If the experiment is run until 

equilibrium is reached, the work of adhesion is specifically the thermodynamic work 

of adhesion in the loading regime, W. In this stage, the contact area between the two 

surfaces increases enhancing the load amount. Subsequently, the load is removed and 

the contact area decreases until the lens is detached from the flat surface. 

This process is called fracture or crack propagation because the contact perimeter can 

be viewed as a crack. During the unloading, the adhesion energy can be calculated for 

each point but the thermodynamic work of adhesion, Wul can be calculated only when 

the system reaches equilibrium. Two different values of adhesion energy can be 

measured in the loading and the unloading regime. If Wul > WI, the contact between 

the two surfaces has generated interfacial bonding such as van der Waals forces, 

hydrogen or covalent bonding, or chain interpenetration. To detach the lens and 

propagate the fracture, it is necessary to use larger forces than in the loading process 

[33]. If Wul = WI, the two surfaces have no interaction and the stored energy given to 

the system during the loading is released during the unloading process. The meaning 

of the work of adhesion, in a non-equilibrium state, is the energy cost to open the 

interface, or specifically, the amount of energy to separate two surfaces. It is normally 

indicated by G and it is known as the energy release rate. 

The fracture propagation rate or the crack velocity, v, is defined as the variation of the 

contact radius a as a function of the time, given by 

da 
V=--. 

(1.19) 

dt 

The negative sign indicates that an advancing crack corresponds to a decrease of 

contact radius with the time. In the loading regime, v < 0, which corresponds to an 

increase of the contact radius with time. 

The relation between the crack propagation rate and the energy cost of opening the 

interface can be illustrated by the following example: consider a piece of adhesive 

tape stuck on a piece of paper that has to be removed. If the tape is pulled too fast, the 

crack is forced to propagate faster and opening the paper-adhesive tape interface can 

cost more than ripping the paper. Consequently the paper breaks before the interface 

is open. To avoid this, the tape has to be removed slowly. This example leads to the 
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conclusion that: if the crack propagates at high speed, the system needs more energy. 

Mathematically the relation between G and v is given by an empirical formula [34-

36]; 

(1.20) 

where Go represents the minimum energy to propagate the crack at zero speed; Vo is 

the normalization coefficient of the speed and m is a coefficient usually close to 0.5 if 

the temperature of the material is near its glass transition, T g. In another range of 

temperature it can assume a different value. 

The value of Go cannot be smaller than Wul because Wul is the thermodynamic 

minimum energy cost to open the interface and it may be Wul = Go. Larger values of 

Go can be related to an interaction at the interface such as short distance interactions 

that occurs during the contact. 

1.3.1 Stress distribution 

Another important parameter to consider when two bodies are in contact is the stress 

distribution. In section 1.2.4, the stress distribution has been mentioned only because 

the contact mechanism quantification may not involve any knowledge about the stress 

distribution. 

F or the Hertz model, where no adhesion forces are considered, the stress distribution 

for frictionless contact during compression process, is described by 

OH = _ 3P H (1- (!...)2)1/2 , 
zz 2:ral a 

(1.21) 

where r indicates the radial distance from the axis of symmetry of the contact, PH is 

the load applied, and a is the contact radius. The negative sign, in the contact 

mechanism convention, indicates that the stress is compressive. 
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If adhesive forces are considered, the system develops a tensile stress and the actual 

load is less than the one applied. 

The equation can be written in this case by considering P, the tensile force to the 

contribution as (P < PH) 

(1.22) 

In the case of JKR model, the stress distribution is given as a summation of the two 

contributions, 

crKR = a H + aadh zz zz zz· 
(1.23) 

The stress distribution in the case of no adhesive forces, adhesive forces and a 

combination of the two is shown in the pictures below. 
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Fig 1.5 Comparison of the stress distribution for two bodies in contact for the Hertz 

model, in the presence of adhesive forces, i.e. tensile stress, and in the JKR model, i.e. 

the sum of the two components. 
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In the case where there are no adhesive forces, the stress distribution is larger in the 

centre of the contact and decreases towards the edge. The presence of adhesive forces 

reduces the stress distribution at the contact area making an infmite stress at the 

interface. 

Silberzan et al. [37] describe the stress distribution for a PDMS surface and lens in 

contact after being soaked in chloroform and dried in modest vacuum conditions at 

60°C. These adhesion experiments, using the JKR equation, show a sharp hysteresis 

between the loading and unloading process. The value of the work of adhesion in the 

loading regime was WI =39 mJ/m2 and the elastic modulus was KI =0.40 MPa. In the 

unloading regime, the work of adhesion was Wul =328 mJ/m2 and the elastic modulus 

was Kul = 1.1 0 MPa. The difference of the values of work of adhesion in the two 

regimes was explained by the formation of hydrogen bonds between the oxidized Si­

OH group at the contact. What is more important to point out is the difference in the 

value of modulus in the loading and unloading processes. This is not a priori obvious 

because the modulus is a bulk property. Silberzan et al considered that the JKR model 

may not be valid for this system because the application of increasing force could 

induce more or a different bonding process at the interface. Consequently, the work of 

adhesion may vary along the interface as a function of the contact radius. To prove 

this they investigated how the stress distribution at the interface varies as a function of 

the contact radius. Fig 1.6 shows the dependence of the adhesion energy in the 

unloading regime along the interface . 
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Fig 1.6 This graph, taken from the paper of Silberzan et al. 1994 [37], shows the 

dependence of the work of adhesion in the unloading regime as a function of the contact 

radius in the case of a PDMS lens and PDMS surface in contact. 
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The relationship between the stress distribution as a function of the contact supposes 

that the yield of the hydrogen bonds reaction at the interface is larger at the maximum 

contact area, which corresponds to the point of application of greatest loads. The 

stress at radius r at the maximum radius of contact Omm is given by 

( )
1/2 ()1/2 

a(r) = 3KWr 1 _ 3Kamax 1-~ 
2n:a ( 2 )112 211R 2 max r amax 

1--
a2 

max 

(1.24) 

where the first term, which is always greater than zero, is the tensile stress and the 

second is the compressive stress from the Hertz theory, and acts against the tensile 

stress. 

To explain the weight of the two contributions to the [mal stress shown, Fig 1.7 shows 

a graph from Silberzan's paper, which shows that the value of adhesion energy in the 

unloading regime is lower at the edge but increases drastically moving to the centre of 

contact where the compressive stress is dominates. 
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Fig 1.7 This graph, taken by [37], shows Wul as a function of stress and contact position. 
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Chapter 2 

Brush and hydrogel 

2. Introduction 

Coating a surface is an important area of technology for industrial purposes because it 

is a means of modifying the physical chemistry characteristics of the surface of a 

material [1-3]. The surface is the outermost layer of a material and is always created 

when a material is fractured with the breaking of chemical bonds. For this reason it is 

often very reactive and is characterized by a high energy which can be reduced by the 

adsorption of atoms or molecules from the ambient environment, or alternatively 

atoms at the surface may be rearranged to allow additional bonding of the surface 

atoms [4]. Polymers are good candidates for surface modification because they can 

form films with a wide variety of functional groups, and they have mechanical 

properties that they can be tailored. The use of polymers as coatings has different 

applications such as in the photolithographic field [5], in the adhesion between 

surfaces [4], lubricants [6], colloidal stabilizers [7], anti fouling coatings [8], in 

electronics [9], protection against erosion, amongst others. 

Traditionally, to coat a surface, the polymer layer is physically attached to the surface 

by spin casting or solution dip-coating. The polymer is bound on the surface through 

non-covalent bonds, such as van der Waals interactions between the polymer layer 

and the surface [4] and the film can easily be desorbed if exposed to harsh conditions. 

Very often there is a temporal decrease in mechanical properties. 

To overcome this problem, the polymer film can be chemically attached to the surface 

through covalent bonds using two methods, namely the "grafting to" method, where 
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the polymer is grown in solution and after attached to the surface, or the "grafting 

from" method, where the polymer is grown directly from the surface [10]. 

These two synthetic routes can be used to produce a polymer brush with defined 

properties. 

A gel, on the other hand, can be considered a polymer with a three-dimensional 

network where the chains are connected through cross link points [11]. The cross­

linker can have a physical nature if the chains are associated together by hydrogen 

bond and van der Waals interactions, or a chemical nature if the polymer chains are 

linked through covalent bonds to molecules with at least two or more reactive groups. 

The linked polymer chains create a molecule with a high molecular weight and the gel 

does not break up in many solvents but it can however absorb good solvents. 

Hydrogels are a particular kind of gel that swell in water, and are wet and soft but 

conserve their solid structure. A hydrogel can be made of polymers often known as 

"smart polymers" or "intelligent polymers" [12, 13], because in response to small 

changes in environmental conditions such as temperature, pH, solvent [14], electric 

fields [15], they exhibit a large changes in chemical and physical properties such as 

changing hydrophilicity and hydrophobicity, and dimensional size. These changes in 

properties are reversed when the stimulus is reversed. 

In this chapter we are focusing on the synthesis of polymer brushes and hydro gels and 

their swelling behaviour in solution. 

2.1 Characteristics of a brush layer 

A polymer brush is a layer of polymer chains attached by one end to a flat surface [16, 

17]. If the grafting density of the polymer, which is a measure of the distance between 

two neighbouring chains, is high enough, the chains start to repel each other and can 

stretch away from the surface [18], resembling the bristles on a brush. 

Polymer brushes are applied as new adhesive materials [19, 20], protein-resistant 

surfaces [21], compatibilizers between surfaces [16], and biomimetic materials for 

drug delivery [22]. 

The behaviour of a polymer chain in solution as opposed to a polymer grafted onto a 

surface can be dramatically different. Whereas, in the frrst case, the polymer chains 



23 

are free to move around, in the second case, they are constrained by the surface. The 

main parameters controlling the conformation of polymer in solution are [11, 17]: the 

quality of the solvent, which influences the monomer-monomer interactions, the chain 

stiffness and the degree of polymerisation N. 

In a good solvent, the interaction between monomer and solvent molecules dominate, 

and the entropy drives the polymer chains to maximize their interaction with the 

solvent. Consequently, the polymer chains form an expanded coil conformation. By 

contrast, in a poor solvent, the entropy drives the chains to minimize their contact 

with solvent molecules, and consequently the polymer assumes the conformation of a 

collapsed globule. In the case of a theta solvent, where the interaction between 

polymer and solvent is equal to the monomer-monomer interaction, the polymer 

chains assume an intermediate conformation between good and poor solvents. This 

also the case for the polymer melts. The radius of gyration, Rg, [11], describes the 

dimensions of a polymer chain in solution as a dependence on the quality of the 

solvent. Table 2.1 summarizes the Rg for a polymer chain in different solvent 

conditions. 

solvent Rg 

Good solvent Rg~ N j
/
5 

Poor solvent R ~Nw g 

Melt/Theta solvent R ~ Nl/2 g 

Table 2.1 Dependence of the radius of gyration on the number of polymerisation index 

for single polymer chains in solution in good, poor and melt/theta solvent conditions. 

The dependence of the radius of gyration of a single chain in solution is a function of 

the degree of polymerisation and is obtained using scaling theory. Rg shows less 

dependence on N (or equivalently molecular weight) under poor solvent conditions 

and an increasing dependence in the case of theta and good solvents. 

The conformation of end-tethered polymer chains [11] is governed by the degree of 

polymerisation N, and by an extra parameter, the grafting density of chains on the 

surface, 0, which is the number of polymer chains grafted per unit area of the 

substrate. 
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d 

Fig. 2.1 Schematic representation of a polymer chain anchored on a surface in a 

"mushroom conformation" (on the left) and in a stretched "brush conformation" (on the 

right). d is the distance between adjacent anchor points and Rg is the radius of gyration 

of the chains. If d > Rg, the chains are far apart and they assume a mushroom 

conformation. If d < Rg, the chains are so close to each other that they start to repel each 

other, stretching in the z direction forming a brush conformation of height h. 

For small grafting densities, where the average distance between the anchor point, d, 

is greater than the radius of gyration (d > Rg), the chains are far from each other and, 

as long as there is no any special interaction with the substrate, the conformation of 

the chain is analogous to a single chain in dilute solution, at least away from the 

substrate. 

Under good solvent conditions, the chains try to maximize contact with the solvent 

molecules keeping chain stretching to a minimum. This behaviour results in the 

formation of a random coil in solution and, in the case of a polymer chain constrained 

by one end to the surface, is called a mushroom conformation. 

As the grafting density of chains increases, the repulsive interaction between 

monomer units becomes large enough that the chains stretch from the surface giving a 

brush conformation of height, h. 

There is a limit of grafting density after which the polymer chains start to interact, 

passing from the mushroom to the brush regime. This threshold value scales as 

a---N6/5 and is calculated using Flory theory [23]. The film is shown to be in a 

mushroom conformation for grafting densities less than this threshold value, 

otherwise a brush conformation results. 

The grafting density of the polymer chain influences the height h of the polymer brush 

as shown by Alexander [24] and de Gennes [25] in their scaling theory. 
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h 

d 

d 

Fig. 2.2 Representation of the Alexander and de Gennes model. The polymer chains are 

stretched from the surface and each grafted chain can be subdivided into blobs of 

diameter d. The height of the brush, i.e. film thickness, is given by h. 

At relatively low grafting density when the brush is in the semi-dilute regime, the 

brush chains are uniformly attached to the surface with a grafting density of o. Each 

chain, with a degree of polymerisation N, is divided in blobs of diameter d, that 

h 
contain a number of monomers Nb lower than N so that - N b = N where h is the 

d 

height of the brush. 

The dimensionless grafting density is given by: 

(2.1) 

where 00 represents the fractional area of substrate that is covered by the grafted 

chains. a is the Kuhn length or the effective monomer size. 

Inside each blob, we have Nb monomers and the distance between two polymer 

segments inside blob is given by 

d - N 3 / 5 - a b , 
(2.2) 
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We are assuming that inside a blob the chains behave like a polymer in a good solvent 

with N~/5 scaling behaviour for their size [26]. 

Ifwe consider that the volume of each blob is cf, (without considering the prefactors), 

the volume fraction of polymer l/>b inside every blob is given by [11] 

(2.3) 

and substituing equation 2.2 into equation 2.3 we have 

3 ( )5/3 
A. :=< ~ d = 02/3 
'Yb d3 a 0 

(2.4) 

Equating the two forms of l/>o and extending it for all blobs, ¢, forming one polymer 

chain we have 

(2.5) 

The thickness of the layer is obtained by equalize the equation 2.4 and 2.5 and 

rearranging them respect to brush thickness 

(2.6) 

From these relations it can be concluded that the size of grafted chains exhibits a 

stronger dependence on N compared to free polymer chains in solution, for which the 

size scales as N 3
/
5

• 

When Rg is larger than the grafting density, the chains tend to overlap forming the 

concentrated brush regime. The free energy of the system is given by the 

contributions of the stretching of the polymer chains and repulsion between the 

chains, 
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(2.7) 

where AGint and AGel are respectively the interaction term due to repulsion energy 

between two neighbouring chains and an elastic term due to loss of entropy for 

stretching the chains. The balance of these two terms determines the thickness of the 

polymer brush at equilibrium. 

Using the Flory theory [26], AGint and AGel can be expressed mathematically as 

(2.8) 

where T is the absolute temperature, and v is the excluded volume constant. The 

excluded volume [27] is defined as the volume effectively occupied by a segment of a 

polymer. It means that two polymer segments cannot be in the same place at the same 

time due to the repulsion forces. 

The derivative of this equation with respect to the thickness of the brush layer in 

solution is given by 

(2.9) 

This equation shows the same dependence as for the semi dilute regime but, in this 

case, the stretching of the chains is driven by the osmotic pressure that expands the 

chains until equilibrium is reached. 

It should be highlighted that this relationship is valid only for a neutral polymer, and 

consequently, it is not valid for charged polyelectrolytes. 

When the brush is in poor solvent conditions, the chains remain in a collapsed state. 

In particular, at low grafting density, the single chains remain apart but, as a 

increases, they interact with each other forming collapsed aggregates of various sizes 

and shapes. The de Gennes [25] theory assumes that all the brush chains are stretched 

at the same height forming a step like-profile. Other theories and experimental results 

confirm that the height of the brush follows this scaling theory, described above, but 

the amount of polymer as a function of the distance from the substrate depends on the 

vertical distance of the polymer chains from the graft surface and assumes a parabolic 

profile [28]. 
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A polymer brush can be deposited on a surface via physisorption ("grafting to" 

method) or via chemisorption [16] ("grafting to" and "grafting from"). We discuss 

each of these in tum. 

2.1.1 Physisorption 

Normally the methods used to physisorb [17] a polymer on a surface are spin-casting 

or solution dip coating. The disadvantage of using these techniques is that the film is 

anchored to the surface using long-range and weak van der Waals interactions, which 

may desorb under harsh conditions. 

For this reason, it is much more beneficial to attach the polymer on the surface using a 

chemical bond. The film is more stable and it can be used for various purposes. 

In the case of physisorption of polymer brushes, a pre-synthesized block copolymer 

[29], in which one of the blocks has a strong interaction with the surface and acts like 

an anchor on the surface for the second block, is attached to the surface. The second 

block interacts more strongly with the solvent than with the surface so it floats in the 

solvent making a polymer brush. Polymer brushes synthesised with this method 

present some limitations to their use because the layer is reversibly attached to the 

surface by long-range and weak van der Waals interactions. The layer cannot reach 

high grafting density due to steric factors during the deposition of the polymer chain 

and the layer has a molecular weight determined by the polymer deposited. There are 

a limited number of chemical groups that may be used to functionalise the brush, 

because the side groups could interact with the surface via electrostatic or 

hydrophobic interactions or they could interact with the polymer forming covalent 

bonds. These factors make the use of these surfaces for most applications difficult. 

2.1.2 Chemisorption 

The chemisorption process involves short ranges interaction and covalent bonds 

between the film and the substrate. 

There are two methods used to graft a polymer to a solid substrate: "grafting to" 

method and "grafting from" method as shown in Fig 2.3. 



Surface "sticky" groups ----I substrate I 

Adsorbing polymer 

End-anchored polymerisation initiators ----I substrate I 
G:~t/ ff/ 

Monomer solution 

End-anchored polymers 
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Fig 2.3 Schematic illustration of the "grafting to" and "grafting from" method for the 

synthesis of a polymer brush. 

In the "grafting to" method, the polymer is grown ex situ with a specific 

functionalized end. Afterwards the polymer is added in contact with the substrate and, 

under appropriate condition, reacts with the surface. 

In the "grafting from" method, the surface is functionalized with initiator molecules 

and then a polymer is grown from the surface. 

There are differences in the properties of the [mal film using the two methods: 

the "grafting to" method produces a film with a low grafting density and a low 

thickness, typically in the order of 3~ 10 nm [30, 31]. The polymer, in order to react 

with the surface, needs to diffuse into the polymer film, and, if the polymer has a 

larger molecular weight, the grafting density is low due to the large entropic barrier 

for packing/extending the chains [32]. The "grafting from" method is an alternative 

route of synthesis of a polymer brush with important advantages. 

Polymer brushes synthesised via "grafting from" methods are covalently attached to 

the surface and the advantages of this method is the larger grafting density [33] of the 

polymer layer in comparison to the "grafting to" method. In the "grafting from" 

method the surface is functionalized with an initiator molecule and then the polymer 

layer is grown from the surface. A more detailed description of the 'grafting from' 

mechanism will be explained in section 2.2.2. 
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2.2 Polymer classification and Synthetic methods 

The word polymer is derived from the Greek words polumeros where 1[OAU (polu), 

meaning "many" and JlEPO<; (meros) meaning "parts". A polymer is a large molecule 

(macromolecule) composed of repeating structural units typically connected by 

covalent chemical bonds. Well-known examples of polymers include plastics and 

proteins. 

One of the ways to classify a polymer is to consider the mechanism of synthesis [34]. 

Condensation polymers are any polymers formed through a condensation reaction; 

small molecules of products, such as water or methanol and hydrochloridic acid, are 

released during the reaction. Examples of condensation polymers include polyamides, 

polyacetals and polyesters. 

Addition polymers are any polymers formed by an addition reaction, where the 

monomers react together via rearrangement of bonds without the release of any small 

molecules. Examples of addition polymers include the reaction of unsaturated 

monomers like ethylene or acetylene, alicyclic compounds like Ny Ion 6 and 

polyethylene oxide. 

Addition polymers can be synthesised using different routes that can be categorized 

by: free radical addition polymerisation and living addition polymerisation, and these 

are described in more detail in sections 2.2.1 and 2.2.2. 

2.2.1 Free radical polymerisation 

The free radical mechanism can be divided into three stages: 

• initiation, 

• chain propagation, and 

• chain termination. 

Initiation is the stage where free radicals, that start the polymerisation, are created. 

The initiator is normally a molecule that under condition of light or heat can be break 

down in radicals. Radicals are unstable species that react easily on account of their 

unfilled bonds. 

h\' 

R-R 2R· 
heat 
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The second stage is the propagation where the initiator radicals react with the 

monomers with the following equilibrium. 

H H 

R . "'_/ + C--C 

/ '" H R1 

The radicals are unstable and they react with a monomer that has a double bond 

formed by a (J' bond and a 1t bond. The free radical uses one electron from the 1t bond 

to form a covalent bond with the carbon atom. The other electron moves to the second 

carbon atom, turning the whole molecule into a radical. The new radical is formed on 

the carbon of the double bond that can better stabilize the radical with substitute 

groups such as a methyl group or phenyl group. During the polymerisation process, 

the growing chains can collide with another species, XY, transferring the radical 

active centre. 

R 

I 
+ 

Xy + y. 

This process is called chain transfer and it is dependent on the strength of the XY 

bond. 

In principle, the reaction should be finished when all the monomer is consumed but 

this outcome is very unlikely. In reality there are some side reactions that contribute 

to the termination of the reactions. Termination typically occurs in two ways: 

combination and disproportionation. 

Combination occurs when two radicals join together and form a single chain. This 

mechanism stops the chain's growing. Termination by combination is shown in the 

diagram 
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R 

I 
R H H 

I I i i H", I 
+ ·C--C-H 

R/ I 
----'l.~ H-C--C--C--C-H 

1 H 1 !, 1, 1 

Disproportionation occurs when a free radical strips a hydrogen atom from an active 

chain forming a single bond in one molecule and a double bond in the other. This 

mechanism as well stops chain growth. Another reason for termination can be the 

reaction of the radical with an impurity. 

Termination by disproportionation is shown in the scheme below 

R 

I 
R 

H", I 
+ ·C--C-H 

R/ I 
1 H 

R 

I 
----:I .... H-C--CH 

I I 2 

H R1 

Polymers synthesised usmg free radical polymerisation are characterized by an 

unpredictable molecular weight and high polydispersity because the kinetics of the 

initiator reaction is much slower than the propagation one. 

2.2.2 Living / controlled polymerisation 

Another way to synthesise polymers is by living or controlled polymerisation [10]. 

This method in comparison to radical polymerisation gives a polymer with the 

possibility of a pre-determined molecular weight, a low polydispersity and a wide 

range of polymer topology. It can be used with a wider range of monomers with 

special functional groups. Fig 2.4 lists these characteristics. 
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Fig.2.4 Summary of polymer architectures and types that can be synthesised using living 

controlled polymerisation. The graph is taken from 

http://www.chem.cmu.edu/groups/maty/about/research/02.htmlretrieved 27-11-2009. 

CRP, control radical polymerisation, has attracted the attention of the both academia 

and industry because materials with a specific set predefmed properties can be 

prepared [35]. The applications are in the fields of coatings, adhesives, electronics, 

and biomaterials. 

Living polymerisations, discovered by Szwarc in 1956 [36], indicates a polymer 

synthesis route where the chain termination step and the chain transfer reaction are 

absent. The living nature of the process can be demonstrated by the re-initiation of the 

chain growth with the addition of further monomers when the fust synthesis is 

finished. Because of this, it is possible to synthesise block copolymer with a defined 

polymerisation index and narrow molecular weight distribution [10]. 

The disadvantage of a pure living polymerisation for growing polymer brushes is the 

restricted number of monomers, the low reaction temperatures, the long time required 

for the reaction, and the extreme sensitivity to impurities and water. Consequently 

(with few exceptions) the reaction has to be conducted in special glassware with 
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rigorous purification, drying of the reagents and the process is very expensive for 

industrial approaches. 

The name living or controlled polymerisation indicates that during the synthesis the 

polymer grows at a more constant rate than for the free radicals method, for example. 

In selected conditions, during the propagation process, there is a low concentration of 

"active" propagating chains and a large number of "dormant" chains that are not able 

to propagate or self-terminate because they are reversible capped to a radical group or 

a metal. The equilibrium between the dormant and active chain is dynamic and the 

more the equilibrium is shifted to the dormant species the more the reaction is 

controlled, because the initiation process becomes more significant in comparison to 

the propagation process. 

Since the development of controlled/living polymerisations, many different 

polymerisation schemes have been introduced for the synthesis of polymer brushes 

[10] such as living anionic polymerisation, living cationic polymerisation, living ring­

opening polymerisation (RaP), ring-opening metathesis polymerisation (ROMP), 

nitroxide-mediated polymerisation (NMP), reversible addition-fragmentation chain 

transfer polymerisation (RAFT), and atom-transfer radical polymerisation (ATRP). 

Many industrially important polymers are synthesized via Rap, which has been used 

in the "grafting from" method with monomers like lactones, lactides, and lactic acid, 

producing potentially important biodegradable polymers. Polymer brushes may also 

be synthesized via ROMP for the creation of polymers with electrical properties. 

NMP, RAFT and A TRP are the three major CRP processes because they are suitable 

for a wider variety of monomers, solvents and can be performed under more 

reasonable reaction conditions like room temperature and with less rigorous 

cleanliness. They are classified like radical polymerisation and they follow similar 

fundamental reaction schemes, based on the reversible end-capping of growing 

polymer radical chains. NMP relies on a nitroxide reversible leaving group, RAFT on 

a dithiol ester, and ATRP on transition metal halide complexes [10, 35, 37]. 

A controlled polymerisation process should respect these features 

First order kinetic behaviour; the concentration of the monomer decreases linearly as 

a function of the time and, if there is no termination reaction, the concentration of the 

propagation species is constant until the completion of the reaction. 

Pre-determinable degree of polymerisation; the number average molecular weight of 
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the polymer should be a linear function of the monomer conversion. This implies that 

the initiation stage is fast enough that all the chains start to grow at the same time and 

there are no transfer chain reactions. 

Narrow molecular weight distribution; this implies that all the chains are grown at the 

same time and there are no termination or chain transfer reactions. 

Long-lived polymer chain; this feature implies that the chains have their active centre 

alive until the completion of the reaction and, if some more monomer is added, the 

reaction should resume, allowing the growth of block copolymers. 

2.3 ATRP 

ATRP is the most widely used "controlled"/living radical reaction due to its flexibility 

and ease of use. The name indicates the similarity in the reaction mechanism between 

ATRP and Kharasch reaction or well known A TRA [35], atom transfer radical 

addition. 

X 

AR + L M+Z n t _--._-- ~R 

~R +~, 

+ LnMt(z+I)X---~""­
~ 

+ L M +(z+I)X 
n t 

+ L M+Z n t 

Fig 2.4 Mechanism of the Kharasch reaction where a metal species, M, catalizes the 

cleavage of the carbon-halogen (C-X) bond generating a radical species that reacts with 

an olefin. 

A TRP has attracted the attention of industry and academia in comparison to other 

eRP's because it requires a simpler set-up, generally inexpensive products, and a low 

concentration of catalysts. Also ATRP is suitable for many types of polymers 
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including acrylates, methacrylate s, styrenes, vinylpyridines, acrylonitrile, and 

acrylamides. The mechanism of the initiation and propagation consists of the 

following stages [38]: 

Initiation (halogen exchange): 

R-X + L M+Z n t _ ...... __ -- R 

R • +~ 
k I 

p .. 

Controlled propagation: 

k act 
Pn--X + L M+Z .. 

n t --...... r---

kdeact 

p • 
n 

P . n +~ 

Termination: 

P . n + P . 
m 

+ 

+ 

Pn+m 

L M +(z+l)X n t 

L M +(z+I)X 
n t 

+ 

In a classical radical polymerisation the propagation step is much faster than the 

initiation step as described in the section 2.2.1, and consequently the polymer has a 

wide polydispersity index, PDI. In the ATRP reaction, the initiator, and afterwards the 

monomer is bound to a halogen species that keeps the species P-X mostly inactive, lie 

in a dormant state. A transition metal, the catalyst, in the lower oxidation state, is 

added under salt and it reacts with a ligand L, forming a stable complex. In the 
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initiation stage, the catalyst is oxidized in the higher oxidation state and forms a 

complex with a co-ordinated halide ligand. This exchange of the halogen between the 

dormant species and the transition metal in the higher state of oxidation results in the 

formation of the propagation radicals R. 

This initiation reaction is the sum of several equilibria and k act indicates the rate of 

formation of the active radical and kdeact indicates the rate of formation of the dormant 

species, kp is the rate of propagation of the polymerisation and kt the rate of 

termination reaction. When the reaction is in progress, the rate of termination reaction 

is diminished due to the fact that the radicals are always trapped in the activator or 

deactivator process and capped with the halogen. This is called the persistent radical 

effect (PRE) [39] and the equilibrium is strongly shifted toward the dormant species 

(kact « kdeact). In this condition, the rate of initiation is much larger then the rate of 

propagation and this is why the polymer chains grow at a more constant rate than in 

traditional radical polymerisation. To reach a polymerisation with a narrow PDI it is 

necessary to increase the efficiency of the initiation stage and reduce the rate of 

termination before the persistent radical effect is established. This can be 

accomplished by adding to the reaction mixture the higher state transition metal 

(complex) that allows us to establish an instantaneous control and reduces the fraction 

of polymer of low molecular weight [38]. 
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Fig 2.5 Representation of the equilibria in an ATRP reaction. The equilibrium reaction 

is the overlap of several reversible equilibria: the homolysis of the bond R-X (KBD), the 

alkyl halide, two redox process, the oxidation of the complex transition metal at the 

higher oxidation (KET), and the reduction of the halide (KEA ) and the heterolytic cleavage 

of the Cu-X bond (Kx). Each single reaction contributes to the global KATRP, and for this 

reason it is important to understand the role of each single component. 

An ATRP system is composed of the monomer, an initiator with a transferable 

halogen, a catalyst (a complex of a ligand with a transition metal). Other important 

factors are the reaction temperature and the solvent. 

Monomer; a wide variety of monomers has been used for growing brushes by ATRP, 

including styrene, methacrylate, methacrylamides, and acrylonitrile. Each monomer, 

for its unique chemical structure, has its intrinsic equilibrium constant between the 

active and the dormant species [38]. The atom transfer equilibrium constant, in the 

absence of side reactions, can be defined 

(2.10) 

The magnitude of this constant, KATRP, establishes the polymerisation rate. If the value 
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of the equilibrium constant is too small, the reaction will not occur or Occur very 

slowly because the equilibrium is completely shifted towards the dormant species. If 

the value of the equilibrium constant is too high, the reaction will be not controlled 

because the high concentration of active species will lead to a rapid termination. 

However, the overall equilibrium is a function not only of the kind of monomer but 

strongly depends on the quantity and reactivity of the catalyst. 

Initiators; in ATRP, the typical initiator molecules are the alkyl halide (R-X). 

The choice of the initiator is important for a controlled reaction because it determines 

the number of growing polymer chains if transfer and termination reactions are 

negligible. The concentration of the initiator can be related to the degree of 

polymerisation DP by [10] 

DP ~ [" [Mo] ] x conversion. 
lnztzator 

(2.11) 

The role of the initiator is to selectivity exchange halide between the growing chain 

and the metal complex. The halides normally used are bromine and chlorine. C-F is 

not used because it has a very strong bond and C-I is not used because it has a weak 

bond and it is not really selective. 

Catalyst; the catalyst [40] is the most important component in the A TRP process since 

it determines the equilibrium of halide exchange between the dormant and the active 

species, and consequently the rate of reaction propagation. The most common catalyst 

is copper for the broad range of monomers that can be used but there are examples of 

ATRP reactions with metals such as Ti, Mo, Re, Fe, Ru, Os, Rh, Co, Ni, and Pd. A 

good catalyst has to satisfy several prerequisites: the metal has to have two accessible 

oxidation states separated by one electron, a good affInity for the halide, and its 

complex with the ligand should be really strong. 

The activity of the catalyst has to be associated not only to the redox potential of the 

metal also the halidophilicity of the transition metal complex. To ensure a better 

control of the reaction, the transition metal complex has to be at least partially soluble 

in the reaction medium in a way that the concentration of the activator Cu1
+ and 

deactivator Cu2+ can be defIned. The equilibrium between Cul+ and Cu2
+ is oxygen 

sensitive and all the products are to be degassed before being mixed. Recently the 
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group of Professor Matyjaszewski developed methods to perform an A TRP reaction 

in the presence of small quantity of oxygen by adding a reducing agent like ascorbic 

acid [41]. 

Solvents; A TRP is a very versatile reaction and it can be performed in bulk, in 

solution, or in heterogeneous systems. The solvent is normally added when the 

growing polymer is not soluble in its own monomer. Particular attention also has to be 

paid to the effect of the solvent on the structure of catalyst. A variety of solvents have 

been used like benzene, toluene, anysole, diphenyl ether, ethyl acetate, acetone, 

dimethyl formamide, ethylene carbonate, alcohol, water, and many others. The use of 

protic media in the A TRP reaction allows the expansion of the range of polymers that 

can be synthesized and at the same time increases the solubility of the catalyst and 

reactions are normally much faster but less controlled. It is necessary to take ill 

account the side reactions involved in the use of protic solvents, for example, III 

homogeneous conditions [42]. 

R-OH 

R-X + 

Fig 2.6 Schematic representation of the side reactions in protic solvents. Solvents like 

alcohol and water lead to disproportionation reactions of the Cu(J) complex; hydrolysis 

of the initiator or domant species R-X; dissociation of halide from the complex Cu(II)L 

and consequently complexation with the polar solvent. 
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The use of a co-solvent, like pyridine, can stabilize the Cu(I) complex, suppressing its 

disproportion in Cu(O) and Cu(II). To suppress the solvolysis (i.e. where the solvent 

participates as a reactant in the reaction) of the deactivator Cu(II)LX, an extra halide 

salt id added to the reaction [43]. 

It has been demonstrated that the use of higher dielectric constant solvents such as 

water, methanol and acetone increases the rate of reaction due to an increase of the 

solubility and activity of the metal/ligand complex [42]. 

Temperature and reaction time; the optimal temperature for an ATRP reaction 

depends on the monomer, the catalyst, and the molecular weight that would be 

achieved. The rate of polymerisation increases with temperature due to an increase of 

the radical propagation rate constant and the atom transfer equilibrium constant, but, 

at the same time, side reactions, like chain transfer, become more important. The 

solubility of the catalyst is favourable at higher temperature but it may cause its 

decomposition. 

Additives; use of additive in an ATRP can be important with some monomers. For 

example in the polymerisation of MMA, (methylmethacrylate), catalyzed by RuCh­

(PPh3)3, the addition of a Lewis acid like aluminum, or other metal alkoxides is 

essential for performing a controlled reaction. The addition of a polar solvent, like 

water, in an ATRP, increases the speed of the reaction. 

2.3.1 Kinetics of the ATRP reaction 

UNIVERSITY 
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The advantage of an A TRP polymerisation III comparIson to a normal radical 

polymerisation is that the rate of polymerisation has a fIrst order kinetics behaviour, 

and consequently it is possible to pre-defIne the degree of polymerisation with a 

narrow molecular weight distribution. Matyjaszewski and coworkers [40] calculated 

the rate of ATRP polymerisation, vp , as a function of the CuX/CuX2 ratio. 

Assuming a steady-state kinetics the rate of polymerisation is given by vp 

(2.12) 

where kp is the rate constant for propagation; [R-X] is the concentration of the growing 



42 

ends; [M] is the concentration of the free monomer in the solution; [CuX] and [CuX
2

] 

are the concentrations of CUX and CUX2, respectively. 

The dry thickness of a polymer on the substrate, h, is related to the polymer molecular 

weight, through 

(2.13) 

where a is the grafting density of polymer, p is the density of the polymer, and NA is 

the Avogadro number. Recognizing that Rp ~ dhldt and neglecting the terms that are 

constant during the polymerisation, the equation 2.12 

dh [Cux] 

dt == [CuX
2

]" 

(2.14) 

Equation 2.13 highlights the rate of polymerisation being a function of the ratio of 

Cu(I) and Cu(II) and not of the total amount of catalyst present in the reaction. 

2.4 Hydrogel 

A gel can be considered a polymer with a three-dimensional network where the chains 

are connected through physical or chemical junction points, better defined as cross­

links. The cross-linker can have a physical nature if the chains are associated together 

by hydrogen bonds and van der Waals interactions, or a chemical nature if the 

polymer chains are linked through covalent bonds. A gel can be considered as having 

an infinite structure indicating that the linked polymer chains creates a molecule with 

a high molecular weight [44]. 

In a polymer gel it is possible to distinguish two parts: sol and gel. The sol is 

constituted by a suspension of colloidal particles in a liquid. The effect of 

temperature, for example, is that the colloidal particles start to interact creating 

junction points that end up in a three-dimensional network [45]. This process is called 

gelation and the gel point indicates the threshold [26] between the transition from a 

viscous liquid (sol) to a network with both a liquid and solid-like behaviour (gel). 
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When the solvent and the gel are thermodynamically compatible, the gel starts to 

swell. The liquid inside the gel prevents the gel from collapsing and the network traps 

the liquid, preventing it from flowing away. One common example is gelatin. A few 

grammes of gelatin powder can hold 100g of water. For this characteristic, a swollen 

gel presents intermediate properties between a solid and a liquid, it is soft but with a 

defined three-dimensional structure, and it cannot be dissolved. 

If water is the swelling agent the gel is classified as a hydrogel and many fmd 

applications in biomedical fields for their compatibility with the human body [45]. 

For these unique properties, some of the hydrogels can fmd applications in 

agriculture, cosmetics. 

2.4.1.1 Physical gel (reversible) 

In this type of gel, the polymer chains are linked through non-covalent interactions 

such as dipole-dipole (van der Waals) interactions. Normally these links are thermo­

reversible in that they can be broken at high temperatures but then can be reformed 

again at lower temperatures. 

As a function of the nature of the monomer, the gel can have some microcrystalline 

regions linking more than one chain. These gels are thermoreversible and the network 

breaks if the gel is at a temperature superior to the melting point such gels can be 

reformed at lower temperatures. 

The gel can also microphase separate in certain conditions [11], if the polymer gel is 

made from a block copolymer with a hydrophilic and a hydrophobic part. One 

example is gelation via hydrophobic associations of block copolymers in water. 

2.4.2 Chemical gel (irreversible). 

In this type of gel, the chains are linked through covalent bonds and they form a three­

dimensional network. These gels can be formed from the direct reaction of a linear or 

branched polymer with molecules with di- or multifunctional groups (cross-linking 

agent). Another method involves a copolymerisation reaction where one of the 

monomers is added in a smaller quantity and it has a multifunctional group. Common 
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cross-linkers are poly(ethylene glycol) dimethacrylate (PEGDMA), ethylene glycol 

dimethacrylate (EGDMA) and bisacrylamide. The cross-linking process can involve 

chemical reactions such as radical polymerisation; photo polymerisation in the 

presence of UV light; or radiative cross-linking using electron beams, gamma rays or 

X-rays [44]. The amount of cross-linker determines the properties of the gel. In 

reality, the cross linker is not homogeneously distributed within the gel and it forms 

clusters, the chains can interact through physical entanglements and chain loops, and 

they can have some non-reacted functional groups remaining. These influence the 

swelling properties of the gel. 

The gel can be classified in respect to its size; if the bulk gel is larger than 1 00 ~m 

they are known as macrogels and if smaller than 1 00 ~m, as microgels. An advantage 

of using macrogels is the macroscopic observation of the swelling/deswelling 

transition, but the disadvantage is the very long time to reach the equilibrium. 

2.4.3 Swelling behaviour 

After synthesis, the hydrogel can be brought into contact with the solvent until it 

reaches equilibrium. When the network is thermodynamically compatible with the 

solvents, it starts to expand in a solvated state. The driving force of the swelling 

process is mainly entropic because when the volume increases, the chains assume 

different configurations. This process creates an elastic force due to the stretching of 

the chains. The latter is accomplished by a decrease in entropy, because there are 

fewer configurations for extended chains. Equilibrium is reached when the osmotic 

pressure due to the polymer-solvent interaction balances the elastic contributions due 

to the stretching energy of the cross-linked polymer chains. The total free energy of 

the system can be expressed as [23, 26] 

(2.15) 

where tJ.Gelastic indicates the contribution of elastic retractive forces and tJ.Gmix 

indicates the thermodynamic compatibility of the polymer/solvent system. 
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Equation 2.14 can be differentiated with respect to the number of water molecules (at 

constant temperature and pressure) in the system and can be expressed in terms of 

chemical potentials, 

(2.16) 

where 111 is the chemical potential of the water within the gel and 111,0 is the chemical 

potential of pure water. At equilibrium the variation of the chemical potential of the 

water inside and outside the gel has to be equal to zero, consequently, at equilibrium, 

the elastic and the mixing contributions have to balance each other. 

The thermodynamics of mixing is related to the interaction of the polymer with the 

solvent, but, in the case of three-dimensional networks, the polymer-solvent 

interaction is influenced by the concentration of the cross-linker as well. 

The classical theory of polymers in solution was described by Flory [26] and Huggins 

and is based on a lattice model. 

The mathematical equation for the Al1mix is 

(2.17) 

where V2 is the volume fraction of the polymer gel, X is known as the Flory-Huggins 

interaction parameter which indicates the mostly enthalpic polymer-solvent 

interaction, T is the absolute temperature; and R is the gas constant. 

The thermodynamic swelling is counterbalanced by the elastic contribution of the 

network, which can be expressed by 

A _ RTCPI N;el (V I/3 _ V2) 
11 elastic - V, 2 2' 

o 

(2.18) 

where CPl is the molar volume of the solvent, N/e1 is the number of monomer between 

crosslinker, Vo is the total volume of the relaxed hydrogel. The relaxed state of the 

polymer is defined as the polymer after cross-linking but before swelling or 

deswelling. At equilibrium the two contributions are counter balanced. This can be 

expressed mathematically 
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(2.19) 

and 

RTC{J1N:
el

( 1/3 V2) 1'( () 2] o = ~f.ltot = Vo V 2m - 2 + R In 1- v 2m + V 2m + X V 2m , 

(2.20) 

yielding 

(2.21) 

where V2m indicates the maximum volume fraction of the polymer at equilibrium. The 

term on the left in equation 2.21 indicates the increase of the mixing chemical 

potential due to the interaction solvent/polymer. The term on the right indicates the 

reduction in the chemical potential of the elastic force due to a lowering of the 

number of chain conformations. Equation 2.21 is valid for ideal networks, without 

considering physical entaganglements and unreacted functional groups. To take into 

account these effects, the right hand side can by multiplied by an additional term (1-

2McI M) where M is the molecular weight of the polymer chains prepared in the same 

conditions but in absence of cross linker [46], Me is the molecular weight of monomer 

between crosslinker. If M = 00, the correction term is 1 and the network is ideal. 

2.4.4 Determination of structural characteristics 

The parameters used to describe a hydrogel are [45]: 

Me is the average molecular weight of the polymer chain between adjacent crosslink 

points. p/el is the cross linking density and is inversely proportional to Me, in 

agreement with 

N gel 1 
gel c 

Pc =-v: = -M ' 
o V c 

(2.22) 
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where v is defined as the volume of a unit of mass of material. 

Inserting equation 2.22 into equation 2.21 we can mathematically define the 

crosslinking density as 

The swelling ratio of a gel is defined as 

v 
q=-

Vo 

(2.23) 

(2.24) 

where V is the volume of the swollen gel and Va is the volume in the dry state. The 

maximum swelling ratio q m can be calculated, using [47] 

(2.25) 

The swelling ratio of a polymer network is a function of the quality of the solvent X, 

and the density of the cross linking, VaIN/el-lIp/el. 

2.5 Type of hydrogel 

In this particular section, we focus on the application of the hydrogel. 

The hydrogel can be wet and soft but it conserves its solid structure. Hydrogels can be 

made from "smart polymers" or "intelligent polymers" [12], so-called because in 

response to small changes in environmental conditions such as temperature, pH, 

solvent, electric fields, they are characterized by large changes in chemical and 

physical properties such as hydrophilicity and hydrophobicity, solubility in a 

particular solvent or dimensional size. These changes in properties are reversible 

when the stimulus is reversed [44]. 

Environmental stimuli are listed in Table 2.2 
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Physical Chemical Biochemical 

Temperature pH Enzyme substrate 

Solvents Specific ions Affinity ligands 

Radiation (uv-vis) Chemical agents Other biological agents 

Electric and magnetic field Ionic strength 

Table 2.2 Environmental stimuli affecting physical, chemical and biochemical properties 

of smart polymers. 

These polymers can be in different states, like in solution, adsorbed or grafted on 

substrates, cross-linked in the form of hydrogels. Polymers in solution, under an 

external stimulus, can show a turbidimetric phase that disappears when the stimulus is 

removed. 

2.5.1 pH sensitive bydrogels 

These hydro gels respond to changes III the environmental pH; they contain an 

ionisable side group such as carboxylic acid or an amine group. Examples of these 

polymers are poly(methacrylic acid), poly(acrylic acid), poly[2-

( dimethy lamino )ethy lmethacry late], and poly [2-( diethy lamino )ethy lmethacry late]. If 

the hydrogel has an acid side group, it absorbs water in basic conditions and swells, 

and it releases water in acid conditions assuming a collapsed conformation. This 

variation in physical properties can be visualized in a macroscopic crosslinked 

hydrogel by an increase or decrease in size of the gel. In the case of a polyacid grafted 

on a surface, this transition can be visualized by an increase in hydrophobicity in acid 

pH and hydrophilicity in basic pH. These phenomena can be explained considering 

the chemical structure of the acid side group. In basic conditions the acid group is 

ionized with a negative charge, and to minimise electrostatic repulsions between the 

chains, the chains stretch away from each other, and the ionisable groups absorb water 

to screen the charges. For this reason the gel swells in basic conditions. In acid 

conditions, the acid side groups are not charged anymore, and can release water and 
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the chains can be close to each other assuming a collapsed conformation. More 

information about polyelectrolytes will be given in Chapter 3. 

2.5.2 Temperature sensitive 

Smart polymers can be temperature responsive and they are characterised by a lower 

critical solution temperature (LCST) [12]. Below a critical temperature (Tc) the 

polymer is solution has one phase, but above the Tc the polymer is separated in two 

dehydrated and collapsed phases. With an increase in temperature, the short-range 

interactions such as hydrogen bonds become weaker and the polymer changes its state 

from hydrophilic to hydrophobic, precipitating from the solution. 

2.6 Applications of the hydrogel 

Smart polymers, in the hydrogel state, have been studied for different applications, 

including drug delivery, actuators and flow control [45]. 

Contact lenses are a good example of a hydrogel application, due to their good 

mechanical properties [48], refractive index, and high oxygen permeability. 

Hydrogels can be used as a carrier to release drugs in a controlled way and in specific 

areas of the body. For example hydrogels, based on n-alkyl methacrylate esters, 

acrylic acid, are swollen in basic condition and collapse in acid condition. The drug 

encapsulated inside the gel can be specifically release in the small intestine or in the 

colon where the pH is between 5.0 and 7. An important advantage of polyacid 

hydro gels for drug delivery is that they resist the acidic environment of the stomach. 

Hydrogels have found applications [44] as actuators, because with an appropriate 

energy stimulus, they can convert chemical energy into mechanical work. When a 

conducting hydrogel is in an electric field, a redox reaction leads the hydrogel to 

change conformation and consequently changes in volume are observed. 
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pH and temperature-responsive hydrogels have found application as valves to regulate 

flow control. These valves, via reversible swelling and deswelling, prevent or allow 

the passage of the fluid through the channels. 
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Chapter 3 

Polyelectrolytes 

3.1 Introduction 

An electrolyte is a compound characterized by having an ionisable group, which can 

partially or completely dissociate in water forming a cation or anion and an oppositely 

charged mobile counter-ion [1]. 

Polyelectrolytes are a class of polymers whose repeating units bear an electrolyte 

group. The presence of an ionisable group makes the polymer able to be charged and 

to experience long distance Coulombic interactions. The presence of charges 

influences the behaviour of this polymer leading to unusual solution properties [2, 3]. 

The repulsive force developed by close ionisable groups makes the polymer chains 

stretch and distribute uniformly in the solution as a function of polymer concentration 

[2]. 

The presence of charges and mobile counter-ions may influence the swelling 

behaviour of the brush, because the counter ions can be trapped by the charges on the 

brush chains creating a higher osmotic pressure than in neutral polymer solutions [4]. 

When a polyelectrolyte is dissolved in solution, strong attractive forces occur between 

the ionisable groups and the counter ions. These forces prevent the counter ions from 

diffusing away and make them partially condense close to the polyion, reducing the 

effective charge density. The Bjerrum length [2], 1m, is defmed as the distance at 
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which electrostatic interactions between two charges is equal to their thermal motion 

~ k8T, where kB is the Boltzmann constant and Tthe absolute temperature. 

Mathematically this is expressed as: 

(3.1) 

where e represents the single electronic charge (1.6022xlO·19 C), E and EO the 

dielectric constant of the solvent and the permittivity in free space respectively. 

In pure water, the Bjerrum length, 1;0 has a value of 0.7 nm and consequently two 

charged species, at a distance greater than 0.7 nm, will have substantially reduced 

electrostatic interactions. When ionisable groups are dissolved in solution they are 

surrounded or, better said, screened by a shell of counter-ions which reduce the 

repulsive forces between ionisable groups of the same charge, causing a condensation 

effect [2]. 

The Debye length, f;B, describes the size of the charge compensation cloud and 

indicates the distance where the repulsive forces, between ionisable groups and the 

attractive forces, between ionisable groups and the counter-ions, disappears [5]. 

In the chapter, shall discuss in more detail the condensation effect, the screening 

effect and how these properties influence the swelling of polyelectrolytes. 

3.1.1 Charge condensation on Rod-like Polyions 

The condensation effect of an ionic counter ion on a charged group can be explained 

by considering a rod-like polymer chain of radius ro with a monovalent cation, or an 

anion, at a distance 1;0 and with a linear charge density e/liO. A single monovalent 

anion is placed at a distance r from the polymer chain with r > ro [2]. 
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Fig 3.1 Schematic diagram of a rod-like chain cross-section with radius ro inside a shell 

of thickness Ar and radius r. 

The potential V of the polymer chain, for a single cation in solution, is given by 

(3.2) 

It follows that the electrostatic energy of the anion is 

U i = -eVer) (3.3) 

Considering the free energy associated with the motion of the charges inside the cells, 

it is possible to recognize the existence of critical distances along the chain liQ, and 'B. 
The latter is the distance between the chain and the counter ion and establishes the 

condensation of the counter ion on the charged group or its diffusion into solution. 

Mathematically this value is given by 

e2 

I - - r 
iO - 4 kT - ~B ' 

lrffo 

(3.4) 
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where 1;B is known as the Bjerrum length which is defined such that, if the distance 

between the charges on the rod is liD > 1;B the counter ion can diffuse away with a 

kinetic energy of lkBT into the solution. 
2 

If the distance between the charges on the rod is liD < 1;B the counter ion stays in the 

proximity of the charged group and the phenomena is called counter ion 

condensation. 

The same result has been extended, to a good approximation, considering the more 

complex situation of a polycation with more than one counter ion. 

For 1;0 > 1;B all the counter ions diffuse away into the solution. 

For 1;0 < 1;B a fraction of the counter ions remain in proximity of the rod until the 

effective charge density on the rod amounts to el1;B, the remaining counter-ions 

diffuse away. 

The counter ion can be classified as site-bound if they form a specific ion-pair with 

the charge on the chain, territorially-bound if they are trapped in the electrostatic 

potential around the poly ion, and as free if they do not have any interaction with the 

charged group. 

The other important parameter in counterion condensation is called the Manning 

parameter, ;M' [6-8] defmed as 

(3.5) 

where 1;B is the Bjerrum length and b is the distance between the charges in the chain. 

The charge density along the chain in the absence of counter ion condensation is 

defined as do = elb but if counter-ions are condensed on the charged groups, the 

density is reduced to de = f3do where f3 has a value in the range 0 5 f3 5 1 and 

represents the fraction of free counter ions. 

The Manning parameter [6-8] is related to counter ion condensation through the 

valence charge of the ions [9] 
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(3.6) 

where Zj is the valence of the i-th ion. 

Counter ion condensation is observed for r;M ~ l/Zj, and the threshold condensation 

decreases with the valence charge of the ions. If multivalent counter ions are present 

in the solution, they preferentially condense on the charged group and the monovalent 

ions diffuse away_ This phenomenon is favourable because the majority of individual 

monovalent particles are distributed into solution [10]. 

3.1.2 The Debye-Hiickel theory of charge screening 

Charged groups in solution prefer to be surrounded by shells of counter ions to reduce 

the repulsive force between them [2]. 

The potential created by an isolated charge in a solution is given by 

(3.7) 

In the presence of multiple ions equation 3.7 becomes 

(3.8) 

where r;D represents the Debye screening length [11]. It indicates the length of the 

counter-ion cloud, i.e. the threshold above which the Coulomb force vanishes. 

In the vicinity of the charged group at distance r « r;D, the Coulomb potential is 

active because the charges are not screened, but at distance r > r;D the Coulomb forces 

vanish rapidly with distance. If salt is added into solution the Debye screening length 
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decreases and at high salt concentration, the screening effect can be so strong that the 

polyelectrolyte chains behave as a neutral polymer. 

3.1.3 Conformation of a polyelectrolyte chain in solution 

The conformation of a neutral polymer in a highly dilute solution is described by the 

scaling law [12, 13] as: 

R = aoN 3/5 in good solvent, 

R = aFN 112 in theta solvent. 

In the theta solvent, the interaction between the monomer-monomer is the same as the 

monomer-solvent interaction [14]. 

The conformation of a polyelectrolyte, in a highly diluted solution is R ex N, assuming 

that the charged groups are regularly distributed along the chain at a distance liD with 

lio > t;B. Under these conditions, the distance between the two ends of the polymer 

chain (the end-to-end distance), R, is proportional to the degree of polymerisation and 

in absence of charge screening, the Coulomb forces lead the polymer chains to be 

stretched [15]. 

If the concentration of the polyelectrolyte in solution increases, the screening effect 

starts to show up because of the increased concentration of counter ions and 

consequently R » t;D» lio (~ t;B). 

In this condition, the polymer assumes a coiled conformation that depends on the 

quality of solvent and the concentration of the polymer in solution. 

3.2 Osmotic pressure 

The osmotic pressure is that which inhibits the flow of liquid (usually water) into a 

container across a semi permeable membrane. When large molecules are unable to 

diffuse through the semi permeable membrane, and development of osmotic pressure 

is observed. 

The osmotic pressure of a neutral polymer at low concentrations in the dilute regime 

is governed by 



n = kTcm 
N' 

where c,,/N represents the number density of polymer chains. 
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(3.9) 

The situation changes drastically if the polymer is a polyelectrolyte [2]. Assuming 

that the counter ions are small enough to pass through the semi permeable membrane, 

the attractive force of the polymer charge groups would not allow their passage in the 

other compartment for preserving the electro-neutrality of the solution. Consequently, 

additional osmotic pressure is developed 

n Cm ¢ ---+ C kT - N iO m' 

(3.10) 

where ¢iD is the fraction of charged polymer and em the concentration of polymer in 

solution. The second term, due to presence of the counter ions, is predominant and the 

following may be assumed 

n 
- -=¢iOcm' 
kT 

(3.11) 

If some salt is added to the system, the counter ions start to condense on the charged 

groups and, when CB < liD, the free charged ions can pass to the other compartment, 

until charge neutrality is reached in both sides. At equilibrium, an equal number of 

positive and negative ions can move in both directions. This well-known phenomenon 

is called the Donnan effect [2]. 
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3.3 Chemistry of polyelectrolytes 

As mentioned at the beginning of this chapter, an electrolyte is defmed as any 

compound that when dissolved in water, is dissociated into ions that conduct 

electricity [1]. An example is NaCI, which dissociates into Na+ and cr ions, 

NaCI + Na + CI (3.12) 

Dissociated ions, in solution, are surrounded by water molecules and this process is 

called hydration. The hydrated ions are able to move in the solution more or less 

independently and can conduct electricity. A common example of a non-electrolyte is 

sugar. When dissolved in solution it does not conduct any electricity. 

Electrolytes can be divided in two classes: 

• Strong electrolytes; 

• Weak electrolytes. 

Strong electrolytes are compounds that dissociate completely in solution and, 

consequently, have a high conductivity in solution. All ionic compounds, like salt, are 

strong electrolytes [3, 16]. 

Weak electrolytes are compounds with a solute dissociation on the order of 2% in 

average. An example is the acetic acid that in water is slightly dissociated as 

(3.13) 

When the solute is dissolved in water, it is dissociated into ions and the reaction 3.l2 

is shifted to the right. When the concentration of the ions builds up, the ions start to 

react with each other to form the solute and the reverse reaction occurs. A state of 

dynamic equilibrium arises when the concentration of the ion is large enough and the 

rate of the reverse reaction becomes equal to the rate of forward reaction. 
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In a system under equilibrium, there is a specific relationship between the 

concentration of the reactants and the products, established by the mass-action 

expressIOn. 

If we have a general chemical reaction at equilibrium: 

dD + eE jF + gG (3.14) 

Where D, E, F and G represent the chemical formula and d, e, f and g represent the 

coefficients, the mass action expression is: 

(3.15) 

The concentration of the products at equilibrium divided by the concentration of the 

reactants at the equilibrium, where each concentration is raised to the respective 

stoichiometric coefficient, gives a constant value called equilibrium constant Kc. The 

constant Kc is function only of the temperature. 

The value of Kc is an important parameter and indicates how far the reaction has 

proceeded when equilibrium is reached. 

The value of Kc also indicates if a compound is a strong or a weak polyelectrolyte. In 

general if: 

• Kc is very large, the reaction proceeds to completion. This is the case for 

strong polyelectrolytes. 

• Kc """ 1 at the equilibrium, the concentration of reactants and products are the 

same. 

• Kc is very small, the reactants are nearly completely non-dissociated. This is 

the case for weak polyelectrolyte. 
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3.3.1 Acid and Base 

Acid and base compounds are classified as electrolytes because when they are 

dissolved in water they form ionic species. In the case of acids or bases the reaction 

with water is an ionization reaction and produces species that conduct electricity. HCI 

is an example of a strong acid while acetic acid is a weak acid. 

Different definitions for acids and bases have been given in the history of chemistry. 

The first definition was given by Arrhenius, who defmed an acid as any substance 

that, when dissolved in water, releases H30+ ions, while a base was any substance that 

released OH- ions when dissolves in water. 

+ 
----:l.~ H30 + CI 

when HCI is dissolved in water it releases H+ ions. 

(3.16) 

This definition is restrictive because it is relative to the behaviour of the species in 

aqueous solution. In reality, there are acid-base reactions that occur in solvents other 

than water or even without solvent, for example, the reaction between the HCI and 

NH3 is an acid-base reaction in the gaseous state. 

This classification has been changed to a broader one by Bn:msted-Lowry, taking in 

account this exception. 

In the Bnmsted-Lowry definition, an acid is any species which is a proton donor, and 

base any species which is a proton acceptor. According with this explanation, the 

reaction between the HCI and NH3 in a gas state is an acid-base reaction because HCI 

is donating a proton to the NH3 forming the species NHtCl. 

The Br0nsted-Lowry acid-base definition, however, is still not broad enough. There 

are some other reactions that behave like acid-base reaction but do not involve any 

proton transfer. An example is the reaction between the NH3 and BCb. The acid/base 

concept was broadened by Lewis with the defmition of an acid is any species that can 

accept a pair of electrons forming a covalent bond, and base any species able to 

donate a pair of electrons in the formation of a covalent bond. 
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3.3.2 A Strong and Weak Acids and Bases 

Acids and bases can be classified as weak or strong. Strong acids and strong bases 

become completely ionized in solution, while weak acids and bases are partially 

ionized. A way to compare the strength of acids and bases is to introduce the concept 

of the acid ionization constant and base ionization constant indicated respectively as 

ka and kb. 

If we consider the following ionization reaction, 

HA + A (3.17) 

at equilibrium the concentration in molll of the various species can be related by the 

mass action law 

[H30+] [A-] 
[HA] [H20] 

For dilute solutions, the concentration of water can be considered constant, and 

(3.18) 

(3.19) 

The new constant is called the acid ionization constant, Ka. The same treatment can be 

done for bases in dilute solution and in this case the constant is defined as the base 

ionization constant, Kb. 

Sometimes the value of Ka or Kb is expressed as pKa, where pKa = - logKa and pKb as 

pKb = -logKb. 

From the value of the acid ionization constant an acid can be classified: 

• Ka < 10-3 or pKa > 3 weak acid; 

• Ka = 10-1 to 10-3 or 1 < pKa < 3 moderate acid; and 

• Ka> 10-1 or pKa < 1 strong acid. 
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We can conclude that the smaller the Ka value or the larger the pKa value, the weaker 

the acid. In the case of a base, the smaller the Kb value, the weaker the base. 

Another parameter used to compare the strength of acid and base is the percentage of 

ionization given by 

[ amount of HA ionized] 
percentage of ionization = [ ] x 100 

amount of HA initially 

(3.20) 

and is the ratio between the number molecules ionized and the number of original 

molecules. 

This parameter is a function of the dilution of the solution and the temperature. 

Another parameter used to compare the strength of an acid or base is the pH. 

The pH is defmed as 

where [F] is the concentration of F ions released from the acid. 

(3.21) 

In the case of base, pOH = -log[ OH-] where [OH] is the concentration of OH 

releases from the base when dissolved in water. In general, the pH values are used 

more often than pOH. 

There is a simple relationship that connects the pH with pOH 

(3.22) 

Substituting [F]= 1 O-pH and [0 H]= 1 O-pOH and taking the logarithms of both side the 

relationship becomes 

pH + pOH = 14, (3.23) 
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which is valid at T=25 °e. 

If the pH < 7, the solution is acidic; If the pH = 7, the solution is neutral; If the 

pH> 7, the solution is basic. The pH is related to the IF in that the smaller the pH, the 

larger the concentration of IT ions. 

3.4 Polyelectrolyte brushes 

The swelling behaviour of polyelectrolyte brushes is more complex than with neutral 

brushes. The conformation of the chains can be modified by varying the ionic 

strength, varying the pH, or by applying an external electrical field [17]. 

In the case of a charged brush, the swelling behaviour is essentially a function of the 

electrostatic interaction and the osmotic pressure of the counter ions inside the brush. 

Polyelectrolyte brushes can be divided into strong or weak polyelectrolyte brushes 

and they are governed by different swelling models. In the case of strong 

polyelectrolyte brushes, Pincus [18] presented scaling theories called the osmotic 

brush regime (OB) in salt-free and in good solvent conditions. In this regime, the 

height of the brush, h, is calculated by considering the contribution of the repulsive 

osmotic pressure of the counter ions, tending to swell the chains, and the entropic 

polymer elasticity, tending to decrease the swelling of the chains. The theory has also 

been extended to poor solvent conditions and to the quasi-neutral regime, where the 

excluded volume interaction cannot be neglected. Excluded volume [19] defines the 

space effectively occupied by a macromolecules in dilute solution that cannot be used 

by another part of the same molecule or other molecule. The excluded volume 

depends on the energy of mixing of solvent and polymer, and consequently it a 

function of the quality of the solvent. 

3.4.1 Strong polyelectrolyte brushes 

The Pincus scaling [18] theory for strong polyelectrolyte brushes is somewhat more 

simple than the corresponding theory for weak polyelectrolytes but not trivial. So in 

this section, only the regimes and conclusions will be discussed. Derivations are not 

therefore included. 
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In the case of a strong polyelectrolyte, in good solvent conditions and in the absence 

of salt, the height, h, of the brush is calculated by considering two different situations 

illustrated in the Fig 3.2. 

A) 

B) 

c 

Q 

Q Q Q 

Q 

Fig 3.2. Schematic representation of Pincus's model. A strong polycation brush of height 

h is anchored to a surface. The counter ions inside the container can be at the distance C 

from the surface where C is defined as the height of the counter ions cloud. A) For C> h, 

a fraction of the counter ions is free to move inside the container. B) For C - h, the 

counter ions are trapped by the charge on the brush. 

If h represents the height of the brush and C represents the length of the counter ion 

cloud, then, if C .". h, the counter ions are inside the brush and the system is electro­

neutral. If C > h the counter ions are mainly floating in the solution and the brush 

becomes charged. 

a) In the case C > h, the total free energy density can be expressed as the 

contribution of several factors 

(3.24) 

where Gas is the contribution of the osmotic pressure for the counter ions to be 

a fixed distance C from the surface where the brush chains are attached; G
e 

is 

the electrostatic contribution due to the charged groups and the counter-ions; 

Grep represents the repulsion between monomers due to excluded volume and 

Gs/ is the entropic contribution due to the stretching of the chains. 
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In order to fmd the height of the cloud of the counter ions, it is necessary to 

minimize the free energy with respect to C, which gives [18] 

(3.25) 

where the surface charge density is given by (F aN/, where a represents the 

grafting density, N is the number degree of polymerisation and f is the fraction 

of charged monomers in the brush. 

The height of the polyelectrolyte brush, defmed as the Pincus height [18], 

hPincus, is calculated from the balance of the stretching and electrostatic 

contributions, 

~h =N3a 2r f2 
Pincus a '=' B • 

(3.26) 

An unusual relationship exists between the height of the brush, h, and the 

degree of polymerisation N where h ~ N3
. This means that the brush layer 

expands faster with the growth of the molecular weight and with the increase 

of the grafting density a. The brushes, in this condition, are defined as being 

in the Pincus brush regime where the major driving force of the system is the 

attractive energy between charged monomers and counter-ions. 

b) If C = h the counter-ions are inside the brush and the system can be considered 

electro-neutral and the electrostatic contribution is not considered in the total 

free energy of the system. The contribution of the free energy is given by 

(3.27) 

Two different regimes may be distinguished: the osmotic brush regime and the 

quasi-neutral brush regime. In the first, the maximum contribution to the 
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height is given by the balance of the osmotic energy of the counter-ions inside 

the brush layer and the stretching of the chains. 

In this first case, the so-called osmotic brush regime (OB), the minimization 

of the osmotic and stretching contribution leads to 

a(Gos + Gst ) = 0 
ah 

Naj1l2 
:::::::> h ".. ----.:,...,..,.-osmotic 1/2 

Z 

(3.28) 

where a the Kuhn length and z is the valence of the ion; where the height of 

the brush is a function of N, the degree of polymerisation, and does not depend 

on the grafting density. 

Another situation whereby C;:: h is known as the quasi-neutral brush regime, 

where the brushes have a high grafting density which in turn causes a degree 

of counterions condensation. The height of the brush hq-neutral [20], is due to 

the balance between the free energy of the excluded volume interactions with 

the chain stretching energy 

_a_< G_r....!ep_+_G_st_) = 0 
ah ( )

113 

:::::::> hq-neutral ".. Na v: 
where v is the excluded volume. 

(3.29) 

In this quasi neutral regime, the height of the brush has the same dependence 

on N, v and a as a neutral brush. 

Pincus theory can be expanded to the case of theta and poor solvents [21]. The 

dependence of the height of a polyelectrolyte brush is summarised in the table 3.1 
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Solvent quality Neutral brush PE brush 

good h~N---;;m h~N(OB) 

h~N3a(PB) 

h~Nd/3 (QNB) 

theta h~N---;;ra h~Nd/2 

poor h~Na h~Na 

Table 3.1 summary of the scaling behaviour of a polymer brush, where (OB) states for 

osmotic brush, (PB) for Pincus brush, (QNB) for quasi neutral brush. 

The Pincus theory, described above, assumes that no salt is added to the system. In 

general the addition of salt into the system increases the concentration of ions inside 

the brush, in the species of counter-ions and salts ions. The addition of salt results in 

more screened charges that results in a decrease in osmotic pressure that leads the 

brush to de-swell as a function of the concentration of salt in solution. Adding salt to 

the system changes the profile of a polymer brush from a truncated Gaussian (in the 

salt free limit), to a truncated parabolic shape, typical for a neutral brush in good 

solvent conditions [4]. 

3.5 Weak Polyelectrolyte 

The swelling of weak polyelectrolyte brushes is more complex than in the case of 

strong polyelectrolytes because the number of charges can be varied by external 

factors like pH and salt concentration and the charges are in dynamic equilibrium with 

the solution. This means the charges are not fixed but they associate and dissociate 

with the chain continuously, as mentioned in section 3.3. 

The behaviour of a weak polyelectrolyte in a salt solution can be explained in two 

different regimes: low salt concentration and high salt concentration. 

At low salt concentration, the polymer is more charged and the Coulombic forces lead 

the chain to stretch. In this osmotic regime, the layer thickness hosmotic of the brush is a 

function of the salt concentration 
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h -1/3 1/3 
osmotic := No ns • (3.30) 

Raising the salt concentration leads to the dissociation of further charges, and 

consequently an increase in the height of the brush. 

In the case of high salt concentration, the behaviour of a weak polyelectrolyte is 

similar to a strong polyelectrolyte. Charges are screened by the ionic particles and the 

brush layer is collapsed. When the pH of the solution is higher than the pKa, the brush 

layer behaves like a strong polyelectrolyte. If changing pH makes the brush more 

charged, the thickness of the brush layer increases at any salt concentration. 

3.5.1 Polyelectrolyte bydrogels 

The most important characteristic of a hydrogel is its ability to change volume, 

shrinking and swelling under stimuli such as a pH change, change in ionic strength, or 

the presence of an electric field. Low concentration of monomer, low crosslink 

density and the presence of charges make this volume transition more pronounced. 

In the case of a polyelectrolyte hydrogel in pure water, for each charged group of the 

polymer there IS a counter-ion to keep the system electro-neutral. 

Thermodynamically, it is favourable that the counter-ions move into the solution to 

increase the entropy of the entire system but generally few do so because this 

compromises electro-neutrality of the polymer. The swelling of the hydrogel is 

dominated by the osmotic pressure due to the counter-ions inside the network and the 

equilibrium swelling of the hydrogel is reached by the balance between the elastic 

energy of the network, that decreases, and the osmotic pressure of the ions, which 

increases [22]. This model is valid in the case of both strong and weak polyelectrolyte 

hydrogels in salt-free condition. 

The swelling behaviour of a hydrogel in salt solution has been described by Flory and 

is governed by the Donnan effect [23] such that the network behaves as a membrane. 

The increase in osmotic pressure creates tension inside the network such that it 

behaves like a series of single chains each with an applied force [24]. Mathematically 

the free energy of the system is defined as 
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(3.31) 

where ~Gion indicates the free energy charge contribution to the system, in the form 

of dissociation of the electrolyte group and Coulombic interaction in the system 

between the free ions inside the network and the dissociated groups in the network. 

I1Gelastic is free energy contribution due to the elastic retractive forces acting along the 

chains and ~Gmixing is the free energy contribution due to the interaction of the 

polymer chains in contact with the solvent. The repulsive interactions between the 

charged groups in the polymer chains are neglected because they are assumed to be 

far apart. ~Gion is mathematically expressed as [25] 

(3.32) 

Where ~GdiS is the free energy associated with the dissociation of the charged groups 

and I1Gcoul is the free energy associated with the Coulombic interaction into the 

system. 

The equation can be rewritten in terms of chemical potential 

(3.33) 

where /--ll and ~l 0 are the chemical potential inside and outside the gel respectively and 

their difference is zero at equilibrium. In the case of a polyelectrolyte hydrogel the 

solvent inside the network contains ions so we indicate it with ~. We can substitute 

the potential as ~ =!-It and so it is required that !-It - !-lt0 = ~ -!-lt0 and therefore the 

equation can be rewritten as [23] 

(3.34) 

Each contribution at the total free energy of the system is given by 
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and (3.35) 

(Af1t)ion = -CPIRT"'ini' 
i 

where CPl is the molar volume of solvent in polymer networks, and "'i n; and "'i ni are 
i i 

the concentration of all ionic solutes in the solution and inside the network 

respectively. 

The contribution of the elasticity of the chains to the total free energy of the system is 

mathematically expressed as 

(/J./-I)./amc = RTtp[ Nt (V~13 - i ) (3.36) 

and v 2 is the volume fraction of polymer in a swollen network, N:e1 is the average 

number of monomers between crosslinks in a polymer network, and Vo is the total 

volume for a relaxed polymer network; this expression is also valid for neutral 

networks as it contains no charge dependence as shown in equation 2.18. 

The changing in chemical potential from the mixing is 

(3.37) 

where v 2 is the volume fraction of polymer, X is the Flory-Huggins parameter which 

characterises segment-solvent interactions. 

Substitution of these definitions into equation 3.34 in a equilibrium system, (denoted 

by a subscript m), gives 

(3.38) 
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where 

(3.39) 

and n+, n_, n:, n:, are the concentrations of positive and negative ions inside and 

outside the network. 

If a salt My + Yy _ of concentration ns is added to the solution it will dissociate forming 

v + M Z+ cations and y-Yz- anions; y + and y- are the stoichiometric coefficients in the 

reaction of dissociation of the salt. 

For Donnan equilibrium, the concentration of solute in the gel and in the external 

solution has to be the same, i.e. 

(3.40) 

where nneutraland n:eutra1 represent the concentration of non-dissociated salt inside and 

outside the network. 

If we consider that weak polyacid network then it dissociates in solution in agreement 

with 

(3.41) 

n+, the concentration of cations inside the network, is given by the product of the 

concentration of the salt inside the solution and the stoichiometric coefficient for the 

cation, 

n + = y +nneutral (3.42) 

The concentration of anions inside the network is given by 
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(3.43) 

where a is the degree of dissociation of the charged group in the polymer chains and 

a nHA represents the concentration of the ions on the polymer chains. 

The expression 3.42 can be combined with 3.43 to give 

() 
nHA - n HA n+ + n_ = v+ + v_ nneutral + a-- = vnneutral + a--, z_ z_ 

(3.44) 

where v is the sum of the stoichiometric coefficients of the dissociation of the salts. 

The concentration of ions outside the network is given by 

* * n + = v +nneutral (3.45) 

and 

(3.46) 

Adding equations 3.45 and 3.46 together follows 

* * ( )* -* n+ + n_ = v + + v_ nneutral = vnneutra1 · (3.47) 

Introducing the expression 3.44 and 3.47 into the equation 3.39 gives 

~... *... [anHA -( .)] RT f (n i - nj ) = RT(n+ + n_ - n+ - n_) = RT --z--v nneutraJ - nneutral , 
(3.48) 

which we can then combine with equation (3.38) to obtain 
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RT[ Ngel ( )] (349) anHA - * 2 c 1/3 V 2m • 
- - v (nneutral - nneutral )= - In(1- V 2m ) + V 2m + XV 2m + CP1-- V 2m - -- • 

Z_ CP1 Vo 2 

To solve this equation we need to apply some approximations. We first consider that 

the gel has a very small amount of crosslinker and consequently a higher amount of 

swelling at the equilibrium so v~~» v 2m and we can omit the term v2m 12 and the 

term in the expansion of In (1- v 2m ). The concentration of salt dissolved in solution 

is small in comparison with the dissociation of the charged groups in the polymer 

chains n:utra1 «an2/z and we can neglect v(nneutral - n:utra1 ) where a is the degree 

of dissociation of the polymer network and n2 can be defmed as v 2m IV monomer where 

Vmonomer is the molar volume of the monomer. This approximation leads the equation 

of the swelling of the hydrogel at equilibrium qm and is equal to qm = l/v2m given by 

(3.50) 

This equation shows that the degree of dissociation has a strong dependence on qm 

[23] 

(3.51) 



77 

1. Lewis, R. and W. Evans, Chemistry. Palgrave Foundations, 2006. 
2. Strobl, G., The Physics of Polymers. Springer, 2007. 
3. O'Shaughnessy, B. and Q. Yang, Manning-Oosawa counterion condensation. 

Phys. Rev. Lett., 2005. 94: p. 048302. 
4. Galaev, 1. and B. Mattiasson, Smart polymers Applications in Biotechnology 

and Biomedicine. CRC Press, 2008. 
5. Hinderberger, D., Polyelectrolytes and their counterions studied by EPR 

spectroscopy. PhD Dissertation, 2004, Mainz, Germany. 
6. Manning, G.S., Limiting laws and counterion condensation in polyelectrolyte 

solutions I. Colligative properties. J. Chern. Phys., 1969.51: p. 924-933. 
7. Manning, G.S., Limiting laws and counterion condensation in polyelectrolyte 

solutions II. Self-diffusion of the small ions. J. Chern. Phys., 1969.51: p. 934-
938. 

8. Manning, G.S., Limiting laws and counterion condensation in polyelectrolyte 
solutions. III An analysis based on the Mayer ionic solution theory. J. Chern. 
Phys., 1969. 51: p. 3249-3252. 

9. Oosawa, F., Polyelectrolytes. Marcel Dekker, NY, 1971. 
10. Hinderberger, D., et ai., Electrostatic site attachment of divalent counterions 

to rodlike Ruthenium (II) Coordination polymers characterized by EP R 
spectroscopy. Angew. Chern. Int. Ed., 2004. 43: p. 4616-4621. 

11. Debye, P. and E. Huckel, On the theory of electrolytes. I. Freezing point 
depression and related phenomena. Phys. Z., 1923. 24: p. 185-206. 

12. de Gennes, P.G., Conformations of polymers attached to an interface. 
Macromolecules, 1980.13: p. 1069-1075. 

13. de Gennes, P.-G., Scaling Concepts in Polymer Physics. 1979, Ithaca: Cornell 
University Press. 

14. Jones, R.A.L., Soft condensed matter. Oxford University Press, 2004. 
15. Volk, N., et aI., Conformation and phase diagrams offlexible polyelectrolytes. 

Adv. Polym. Sci., 2004. 166: p. 29-65. 
16. Mansky, P., et ai., Controlling polymer-surface interactions with random 

copolymer brushes. Science, 1997.275: p. 1458-1460. 
17. Barbey, R., et aI., Polymer brush via surface-initiated controlled radical 

polymerization, synthesis, Characterization, properties, and application. 
Chern. Rev., 2009.109: p. 5437-5527. 

18. Pincus, P., Colloid stabilization with grafted polyelectrolytes. 
Macromolecules, 1991. 24: p. 2912-2919. 

19. Rubinstein, M. and R.H. Colby, Polymer Physics. 2003, Oxford: Oxford 
University Press. 

20. Borisov, O.V., T.M. Birshtein, and E.B. Zhulina, Collapse of grafted 
polyelectrolyte layer. J. Physique II, 1991. 1: p. 521-526. 

21. Ross, R.S. and P.A. Pincus, The polyelectrolyte brush: poor solvent. 
Macromolecules, 1992.25: p. 2177-2183. 

22. Flory, P.J. and J. Rehner, Jr., Effect of deformation on the swelling capacity of 
rubber. J. Chern. Phys., 1944. 12: p. 412-414. 

23. Flory, P.J., Principles of Polymer Chemistry. 1953, Ithaca: Cornell University 
Press. 

24. Skouri, R., et aI., Swelling and elastic properties of polyelectrolyte gels. 
Macromolecules, 1995.28: p. 197-210. 

25. Riska, J. and T. Tanaka, Swelling of ionic gels-quantitative performance on 
the Donnan theory. Macromolecules, 1984. 17: p. 2916-2921. 



Chapter 4 .................................................................................................................... 78 

Experimental techniques ........................................................................................... 78 

4.1 Introduction ................................................................................................... 78 

4.2 Sample preparation ...................................................................................... 78 

4.2.1 A TRP initiator deposition on a silicon wafer .......................................... 79 

4.2.2 Brush synthesis ........................................................................................ 80 

4.2.3 PDMAEMA brush synthesis ................................................................... 81 

4.3 Synthesis of thin polymer gel films .............................................................. 82 

4.3.1 Synthesis of the BPMA photo cross-linker. ............................................. 82 

4.3.2 Synthesis ofpoly(DMAEMA-ran-BPMA) ............................................. 83 

4.3.3 Synthesis of poly(HEMA-ran-BPMA) .................................................... 85 

4.3.4 Synthesis of the poly(methacrylic) acid hydrogel ................................... 86 

4.4 Adhesion experiments ................................................................................... 88 

4.4.1 JKR set-up ................................................................................................ 89 

4.4.2 Pull-off experiments ................................................................................. 91 

4.5 Neutron reflectivity measurement: theory, analysis and instrumention. 92 

4.5.1 Theoretical background ........................................................................... 94 

4.5.2 Instrumentation ...................................................................................... 102 

4.5.3 Beamlines and set-up ............................................................................. 1 04 

4.5.4 Experimental set-up ............................................................................... 105 

4.5.5 Analysis .................................................................................................. 107 



78 

Chapter 4 

Experimental techniques 

4.1 Introduction 

Material preparation and experimental techniques are presented in this chapter. The 

chapter is divided into two main parts: material preparation, which concerns the 

synthesis of the brush, the thin hydrogel film, and the polyacid hydrogel; and the 

experimental techniques, used to characterize the individual components and the 

adhesion of the hydrogel in contact with the brush/hydrogel thin film. 

4.2 Sample preparation 

ATRP (atom transfer radical polymerisation), presented in the previous chapter, has 

been used for the synthesis of the poly[2-( dimethyl amino ) ethyl methacrylate] 

(PDMAEMA) brush on silicon wafers and for the synthesis of the random copolymer 

of 2-(dimethylamino)ethyl methacrylate and benzophenone methacrylate, 

poly(DMAEMA-ran-BPMA); and the random copolymer of 2-(hydroxyethyl 

methacrylate) and benzophenone methacrylate, poly(HEMA-ran-BPMA) polymers. 

The latter are spin coated on the functionalized silicon wafers and then photo-cross­

linked using a UV lamp (Omnicure 1000, 18 W/cm2
). 
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The polymer brush synthesis by the "grafting from" method constitutes the initiator 

deposition on the silicon wafer and the growth of the brush on the surface. 

The poly(methacrylic acid) (PMAA) hydrogel was synthesised by free radical 

polymerisation. 

4.2.1 ATRP initiator deposition on a silicon wafer 

The silicon wafers, purchased from Prolog Semicor and used as substrates, have the 

following characteristics: diameter 50 mm, type dopant p-type boron, orientation 

(100) ± 1 degree, thickness 4000 ± 50 ~m. 

The deposition of the initiator layer takes place on a clean hydrophilic surface. For 

this purpose, the silicon wafers are firstly washed with acetone and toluene. 

Afterwards, the wafers are exposed for 1 hour to a UV ozone lamp to render the 

surface hydrophilic. 

The initiator is (11-(2-bromo-2-methyl)propionyloxy)undecyl trichlorosilane [1] and 

is deposited on the hydrophilic silicon surface by the mechanism shown in Fig 4.1 

-OH CI -OH 
-OH 

-OH + 
-OH 

-OH 

I 
CI-r~o7c.0 CI 

Br 

Toluene =~----""Si, /'- r 1_07c.0 -0.---- ~ ~ 
-OH 

Br 

Fig 4.1 Mechanism of the initiator deposition on a hydrophilic silicon wafer. 

F or performing the deposition, the silicon wafer is placed into a glass vial onto which 

a lid is tightly sealed. A solution of 1.5 ~l ml-1 trichlorosilane, in dry toluene is added 

into the vial and left in the freezer for 6 hours. After the time of reaction, the silicon 

wafer is removed from the vial and washed with copious toluene and successively 

dried under nitrogen. 
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4.2.2 Brush synthesis 

The PDMAEMA brush is synthesised using the ATRP reaction by the "grafting from~' 

method. The final brush has a controlled degree of polymerisation and low 

polydispersity as a consequence of the linear rate of polymerisation. The ATRP 

reaction includes the use of an initiator with a transferable halogen that, in the grafting 

from method, is deposited on the silicon surface; a catalyst, composed of an activator 

metal ~ with two states of oxidation separated by one electron; a ligand, able to 

complex the metal; the solvent; and the monomer. In this case, the metal M2
+ is added 

in the reaction solution to directly establish an equilibrium between the dormant 

species, the inactive polymer, and the active species, the living polymer form, and 

also to reduce the fraction of low molecular weight generated by the termination 

reaction. The reaction was performed in a tightly sealed 200 ml flask and degassed 

under nitrogen for 20 min. The reagents are added into the flask in the following 

order: firstly the species in the solid state, such as catalysts and ligand, and after the 

liquid products such as the solvent and the monomer. 

The solid species, inside the flask, are stirred and degassed for 10 min. Each liquid 

species is purged for at least 20 min under nitrogen using a spurger and then is added 

into the flask using a syringe previously purged as well. The monomer is the last 

product added because, in the absence of oxygen, it can start to homopolymerise. The 

solution is then left for one hour at room temperature in a nitrogen environment to 

allow equilibrium formation between the catalyst and the ligand. Afterwards the 

reaction solution is added to an airtight glass cell, containing the silicon wafer 

functionalized with the initiator layer. The cell was first degassed for 1 hour and then 

left to equilibrate at the reaction temperature in a thermal bath. The cell, filled with 

the solution, is then replaced inside the bath at the right temperature for the reaction 

time. In an A TRP reaction preparation, the purging process is key and has to be done 

carefully at all stages. 
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4.2.3 PDMAEMA brush synthesis 

For the preparation of the PDMAEMA brush [2], we used the reagents and quantities 

shown in Table 1 

Reagents Quantities 

CuCI (s) 0.0208 g 0.210 mmol 

CuBr2 (s) 0.00137 g 0.0062 mmol 

BPY (s) 0.075 g 0.4802 mmol 

Acetone (I) 5.3 ml 0.0722 mol 

Water (I) 0.5 ml 0.0278 mol 

DMAEMA(l) 3.6ml 0.0213 mol 

Table 4.1 Reagents used for the synthesis of PDMAEMA brush; Solid and liquid 

compounds are identified by (s) and (I) respectively. 

The copper chloride, CuCI, (Aldrich, 99%), is purified before use. It is stirred 

overnight in glacial acetic acid, filtered and washed with ethanol and diethyl ether a 

few times and then dried under vacuum. The copper bromide, CuBr2, (Aldrich, 97%), 

the 2,21-Bipyridine, (BPY), (Aldrich, 99%), the solvent and DMAEMA (Aldrich, 

98%) are used as received. The reaction is performed at 35°C, which yields a growth 

rate of 0.27 Almin. Fig 4.2 illustrates the reaction process, 

° 
-o-si.1 Lo -0'-..., ~Br 
-o~ ~II 

CuBr 
CuCI2 
BPY 

Y° I Acetone I 0 

+ ° 
/"'-.... /N, water -0___.. ~ 

, ~, .. -O-Si 0 
---I. -0"'--- II 

Fig 4.2 Synthetic pathway for the preparation of the PDMAEMA brush [3]. 

N 
/"-
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4.3 Synthesis of thin polymer gel films. 

Poly(DMAEMA-ran-BPMA) and poly(HEMA-ran-BPMA) are synthesised using an 

ATRP reaction. BPMA is a photo-cross-linker agent which, under UV exposure, 

reacts with the alkyl halide group of the living polymer. In our case, the alkyl halide is 

the (11-(2-bromo-2-methyl)propionyloxy)undecyl trichlorosilane initiator, that is 

deposited on the silicon wafer using the procedure explained in section 4.2.1. The 

poly(DMAEMA-ran-BPMA) is dissolved in CHCh at a concentration of 6.4 mg mr' 
and then spin coated on the modified silicon wafer at a speed of 2000 rpm. The 

resultant film is cured for 7.5 min by exposing to UV light and is then washed with 

copious CHCh. 

The poly(HEMA-ran-BPMA) IS dissolved in methanol at a concentration of 

6.4 mg/ml and spin coated on a initiator-coated silicon wafer under the same 

conditions as the poly(DMAEMA-ran-BPMA). After curing, the polymer layer, 

washed with copious methanol and dried under nitrogen, has a final thickness of 

30oA. 

The photo-cross-linker and the poly(DMAEMA-ran-BPMA) are synthesised using 

the procedure described by Huang et al [4]. 

4.3.1 Synthesis of the BPMA photo cross-linker 

For the synthesis of BPMA [4] we used the reagents and quantities, tabulated in Table 

4.2: 

Reagents Quantities 

4-hydroxybenzophenone(s) 20 g 0.1009 mol 

triethy lamine(1) 20ml 0.1426 mol 

Dichloromethane(l) (DCM) 200ml 3.1202 mol 

Methacry loy I chloride(1) 11.7 ml 0.1209 mol 

Table 4.2 Reagents used for the synthesis of the PBMA photo cross-linker: (s) and (I) 

indicate solid and liquid compounds respectively. 

The reagents were used as supplied. 
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In a flask, the 4-hydroxybenzophenone (Fluka, 99%) and the triethylamine (Aldrich, 

99%) are dissolved in DCM. The methacryloyl chloride (Fluka, 97%) is added drop 

by drop at O°C at the concentration of 230/0 v/v in DCM to the solution which is then 

left overnight to stir at room temperature. The [mal mixture is washed with water, a 

saturated solution of NaHC03 and NaCI to eliminate any residue of the starting 

materials. The DCM solution is dehydrated with MgS04, filtered and then evaporated. 

The final product is purified by crystallization from n-hexane, dried in vacuum and 

then characterized by IH NMR (300 MHz) in CDCh where D is the chemical shift 

associated with each peak. The single peak at D = 2.11 ppm is due to the 3 equivalent 

protons in the CH2=C(CH3) part of molecules while the single peak at D = 5.84 ppm is 

associate to the 2 equivalent protons in the CH2=C(CH3) part of the molecule. The 

multiple peaks between D (7.29-7.92) ppm are due to the 9 protons in the phenyl part 

of the molecule. 

4.3.2 Synthesis of poly(DMAEMA-ran-BPMA) 

The random copolymer, poly(DMAEMA-ran-BPMA), IS synthesised usmg the 

procedure of Huang et al [4]. The reagents used for this synthesis and their quantities 

are listed in Table 4. 3 

Reagents Quantities 

CuCI (s) 0.016 g 0.1616 mmol 

CuCh (s) 0.004 g 0.0297 mmol 

BPMA (s) 0.19 g 0.7089 mmol 

HMTETA(1) 44 ~l 0.1617 mmol 

Acetone (1) 2ml 0.0272 mol 

DMAEMA(1) 4.7ml 0.0278 mol 

EBriBu (1) 12 ~l 0.0818 mmol 

Table 4.3 Reagents used for the synthesis of poly (DMAEMA-ran-BPMA), indicated 

with (s) for solid and (I) for liquid compounds. 
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CuCI is purified as described in section 4.2.3 and CuCh, DMAEMA, the ligand 

1,1,4,7,10,10-hexamethyltriethylenetetramine (HMTETA), (Aldrich, 97%), and the 

initiator ethyl 2-bromoisobutyrate (EBriBu), (Fluka, 970/0), are used as received. 

BPMA is synthesised as described in section 4.3.1. For the preparation of the reaction 

solution, the addition of the reagents follows the general method; solid CuCI, CuCh 

and BPMA are added fIrst and following this, in sequence, HMTET A, acetone and 

DMAEMA are added. The initiator EBriBu is the fmal compound to be added. The 

reaction is performed under stirring for 24 h at 50°C. The polymer is dissolved in 

acetone and then the solution is passed through a neutral alumina column to remove 

the Cu. The final polymer was obtained by precipitation in n-hexane and dried in 

vacuum. The ratio of DMAEMA to BPMA in the random copolymer was determined 

using I H NMR in CDCb by dividing the area due to the single peak at a chemical 

shift b = 4.15 ppm, associated to the two protons of the CO-O-CH2- part of the 

PDMAEMA, by the area of the multiple peak at b between 7.29 and 7.92 due to the 9 

protons associated with the phenyl groups of the BPMA. The molecular weight 

distribution of the poly(DMEAMA-ran-BPMA) copolymer was examined using a 

PL-GPC50 integrated GPC system from Polymer Laboratories. The copolymer was 

characterized at 30°C using the following GPC set-up: THF eluent containing 2 % v/v 

triethylamine at a flow rate of 1.0 mL min-I; two 5 ~m (30 cm) mixed C columns 

(sensitive for value of Mw between 200-2,000,000 g mor l
); a WellChrom K-2301 

refractive index detector operating at 950 ± 30 nm. Molecular weights were 

determined using PL Cirrus GPC online software (version 2.0). A series of 10 near­

mono disperse linear poly(methyl methacrylate) calibration standards (Mp from 1,280 

to 330,000 g mor l
) were purchased from Polymer Labs. The copolymer 

poly(DMEAMA-ran-BPMA) has Mn (average number molecular weight) of 67,300 g 

mor l and a Mw (weight average molecular weight) of 82,800 g mor l and a PDI 

(polydispersity index) of 1.23. The reaction scheme for the synthesis of 

poly(DMEAMA-ran-BPMA) is shown in Fig 4.3. 
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Fig 4.3 Synthetic pathway for the preparation of the poly(DMAEMA-ran-BPMA). 

4.3.3 Synthesis of poly(HEMA-ran-BPMA) 
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The random copolymer, poly(HEMA-ran-BPMA), IS synthesised usmg a 

modification of the procedure of Huang et al [4, 5]. The reagents and the quantities 

are listed in Table 4.4 

Reagents Quantities 

CuCI (s) 0.048 g 0.0485 mmol 

CuCh (s) 0.012 g 0.0892 mmol 

BPMA (s) 1.14 g 0.0042 mol 

HMTETA(\) 132 ~l 0.0485 mmol 

Methanol (I) 30m! 0.7406 mol 

HEMA (\) 10.168 ml 0.0488 mol 

EBriBu (\) 36 ~l 0.2453 mmol 

Table 4.4 Reagents used for the synthesis poly(HEMA-ran-BPMA) indicating with (s) 

solid and (I) liquid compounds. 

CuCI is purified as explained in section 4.2.3 and CuCh, the ligand 1,1,4,7,10,10-

hexamethyltriethylenetetramine (HMTETA), (Aldrich, 97%), and the initiator ethyl 2-

bromoisobutyrate (EBriBu), (Fluka, 97%), are used as received. The monomer 

HEMA is passed through a neutral alumina column before use. The BPMA is 
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synthesised as described in section 4.3.1. For preparing the reaction solution, the 

addition of the reagents follows the general method. The solid CuCI, CuCb and 

BPMA are added at the beginning, thereafter the liquids HMTETA, acetone and 

HEMA, and finally the initiatior EBriBu are introduced. The reaction is performed 

under stirring for 48 h at 50°C. The polymer is dissolved in methanol and then to 

remove the Cu, the solution is passed through a silica gel column. The fmal polymer 

was obtained by precipitation in diethyl ether, and dried in vacuum. The ratio of 

HEMA to BPMA in the random copolymer was determined using IH NMR in 

CD30D by dividing the area due to single peak at chemical shift £5 = 2.49 ppm, 

associated to the two protons of the CO-O-CH2- part of the PHEMA, by the area of 

the multiple peak at £5 between 5.70-6.50 due to the 9 protons associated with the 

phenyl groups of the BPMA. 

The reaction scheme is shown in Fig 4.4 

a 

CuCI 
CuCI2 

"META 
EBriBu .. 

a 

Fig 4.4 Synthetic pathway for the preparation of the poly(HEMA-ran-BPMA). 

4.3.4 Synthesis of the poly(methacrylic) acid hydrogel 

The poly(methacrylic) acid hydrogel, PMAA [6], is synthesised via a free radical 

mechanism. The reaction IS performed m water usmg 2,2'-azobis(2-

methylpropionamide) dihydrochloride (AMPA) (Aldrich, 98%), as initiator and N,N'­

methylene bisacrylamide (MBA) (Aldrich, 98%), as cross-linking agent. MAA, 

(Aldrich, 98%), is distilled under vacuum before use. 
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The quantities used are listed in Table 4.5. 

Reagents Quantities 

Water(l) 144 ml 8 mol 

MAA(I) 67.7248 ml 0.7985 mol 

AMPA(s) 1.2913 g 4.7614 mmol 

MBA(s) 0.9792 g 6.3514 mmol 

Table 4.5 Reagents used for the synthesis of PMAA hydrogel indicated with (s) for solid 

and (I) for liquid compounds. 

The reaction solution is prepared by mixing MAA with MBA and water with AMP A. 

When the two solutions are completely dissolved, they are stirred together for 20 min 

under nitrogen. After the compounds are dissolved, the solution is transferred to an 

airtight glass mould and degassed for 1 hour. The reaction is performed for 45 min in 

a preheated oven at 90 °C. After the reaction is completed, the hydrogels are placed in 

water and then washed in acid and then under basic conditions to remove any residual 

starting materials, and finally equilibrated to the required pH. 

The PMAA hydrogels are synthesised in two different shapes depending upon the 

experiments to be performed. For the adhesion experiments, discussed in section 4.4, 

the hydrogels need to have a hemispherical shape. For this reason, they are 

synthesised from a glass mould containing 12 hemispherical holes with a radius of 

3mm. 

Fig 4.5 Scheme of the mould used to prepare the hemispherical gel shape gels. The 

aqueous solution of monomer MAA, the crosslinker MBA and the initiator AMP A is 

added inside the mould. The synthesized hydrogel lenses have a hemispherical shape. 
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For the neutron reflectivity experiments, the hydrogels are required to have a flat 

sheet shape. The synthesis is performed on a glass Petri dish of 7 cm radius, and 

afterwards the gel is divided into disks of 3.5 cm diameter using a metallic cutter. The 

glass moulds are placed inside a glass bottle sealed with a rubber septum. Fig 4.6 

illustrates the reagents for the reaction. 

MBA MAA AMPA 

Fig 4.6 Chemical formula of the reagents for the preparation of the PMAA hydrogel. 

4.4 Adhesion experiments 

To measure the strength of interaction between the polybase or the neutral polymer 

film in contact with the polyacid hydrogel in aqueous solution, we used a modified 

JKR set-up. To perform these experiments, the thin films are synthesised on 5 cm 

diameter silicon wafers and the hydrogel lenses are cast from a glass mould in a 

hemispherical shape with a diameter of 3 mm. This interaction is quantified using the 

JKR equation, where the work of adhesion is a function of the radius of the lens, the 

elastic modulus, the force applied and the radius of contact between the hydrogel and 

the silicon wafer. The variation of the contact radius is the main measured parameter. 

These experiments are performed on a modified JKR set up formed using a light 

source, a camera and a liquid cell, as shown in Fig 4.7. The variation of the contact 

radius in solution is monitored using a camera and a light source placed either side of 

the gel. This geometry allows a good contrast between the gel and the water, which 

have a similar refractive index. 

Further adhesion experiments have been performed in the laboratory of Prof. 

Stanislav Gorb in the Evolutionary Biomaterials Group, Max-Planck-Institut fur 

Metallforschung, Stuttgart. These further experiments consist of the quantification of 

the total energy necessary to detach the PMAA gel lens from the polymer coated 
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silicon wafer under aqueous conditions. The experimental set-up will be discussed in 

section 4A.2. 

4.4.1 JKR set-up 

The main set-up consists of a light source, a high resolution Watec CCD camera, 

(W AT -902 B model), and a liquid cell in which the adhesion experiments are 

performed. This set-up has been used for measuring the adhesion between the brush 

and the hydrogel and also for monitoring switchable adhesion as the pH is lowered 

to I.The light and the camera are positioned in front of each other either side of the 

gel so that the variation in contact radius of the gel can be observed. 

liquid cell 
camera 

Fig 4.7 Photograph of the set up used to measure the variation of contact diameter 

between the hydrogel and the polymeric silicon wafer in different pH solutions. 

The software Capture Studio Professional vA.05 is used to collect pictures with the 

maximum frequency of one frame per second and videos with a frequency of 25 

frames per second. The adhesion experiments are performed inside a 300 ml volume 

glass beaker, placed on a magnetic stirrer. 
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Fig 4.8 Photograph and schematic representation of the liquid cell where the adhesion 

experiments are performed. The liquid cell has a diamter of 8 cm and a height of 25 em. 

The silicon wafer holder is composed of a PTFE ring pressed against the glass wall of 

a container at 15 cm from the top. The wafer is placed inside the ring in a way that the 

centre of the silicon disk corresponds to the centre of the beaker. The container is 

filled with solution of known pH and the wafer is left to equilibrate for at least 

2 hours. 

Afterwards, three hydrogel lenses are positioned on a 3 x 3 cm square glass slide, 

fonning a triangle where the total centre of mass of the gels corresponds to the centre 

of the glass slide (Fig 4.9). 

Aqueous solution Glass slide Gel lens 

Glass container Brush on silicon wafer 

A B 

Fig 4.9 Diagram of the liquid cell used to study the adhesion for the brush-gel system. 

(A) View from the side and (B) view from above. 

Using a PTFE frame as a guide, the three lenses, supported by the glass slide, are 

placed in contact with the silicon wafer in a such way that the glass slide is in the 
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centre of the beaker. To increase the contact between the hydrogel and the brush, 

known masses are placed on the top of the glass slide (Fig 4.10). 

Fig 4.10 Representation of a single hydrogel lens in contact with the brush/thin film 

layers under water. To increase the interaction between the brush and the hydrogel, 

known loads are applied to the hydrogel. 

The loads are cylindrical PTFE shape with the same diameter of 2.S cm but different 

heights from 0.3 cm to 3.9 cm. The loads are added under water and the real force 

applied (i.e. to correct for buoyancy), is of the order of20-2S0 rnN, as measured using 

a dynamometer when the loads are suspended in a water solution. Each load is added 

on the centre of the glass slide through a Perspex stick connected to the load using the 

hook - eye system, where the eye is on the top of the load. The load is located on the 

centre of the glass slide using a passage in the lid of the beaker. This ensures that the 

load is always in the same place and it yields equally distributed forces on the three 

gels. The load is applied for IS min before being removed using the same stick. 

The variation of the gel contact radius is monitored with the camera at each stage of 

the experiment: at the beginning, before the load is applied; then after it is removed. 

This set-up has been used for measuring the adhesion between the brush and the 

hydrogel and also for monitoring switchable adhesion as the pH is lowered to 1. 

4.4.2 Pull-off experiments 

The set-up for the pull off experiments is similar to that described for the JKR work of 

adhesion experiments. The liquid cell, in which the experiments are performed, is 

situated between the light and a high resolution camera (Leica M12S) and the gel is 

observed from the side. The liquid cell consists of a 300 ml glass square container 

where the silicon disk is placed to equilibrate under known pH solution. The disk is 

placed onto a glass cell of 7 cm diameter and screwed at the side via two glass clamps 
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to ensure that the wafer is stable during the hydrogel pull-off process. The hydrogel 

lens is brought in contact to the disk and pulled off by a micromalipulator (World 

Precision Instruments Model DC300 lR) connected to a 100 g force transducer 

(World Precision Instruments). The micrometer is set to a velocity of 20 ~mJs in both 

the loading and unloading stages. The hydrogel is mechanically attached to the force 

tester using a Perspex support to avoid any use of glue that can pollute the samples. 

The experimental procedure consists of clamping the disk in the glass support and 

leaving the solution to equilibrate for two hours; after which the hemispherical gel is 

clamped on the Perspex support and brought into contact with the wafer until the 

required force, 20 mN, is reached. The gel and the wafer are left in contact for 15 min 

and then the gel is pulled until it is detached from the surface. These experiments have 

been performed using different hydrogel cross-linker densities; both brush and 

polymer gel films. 

4.5 Neutron reflectivity measurement: theory, analysis and 

instrumention. 

Neutron reflectometry (NR) is a technique that provides detailed information in the 

order of molecular dimensions about the structure of the surface, interface and 

composition of thin films. It can be used to provide information on the thickness, the 

density and roughness of any layer. Being a non-destructive technique, NR allows the 

investigation of the behaviour of layers in complex environments such as in liquid 

cells, cryostats and pressure cells. It is suitable for biological membranes, polymers, 

proteins, surfactants and is often used as a complementary technique to X-ray 

reflectivity and ellipsometry, which are more restrictive in their applicability [7]. 

Important neutron properties are listed in Table 4.6. 

Properties Value 

Mass 1.67 10-27 kg 

Charge 0 

Spin 112 

Table 4.6 List of the principle properties of a neutron. 
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Neutrons have a half life of 1000 seconds as a free particle before decaying into a 

proton and electron. They scatter via an interaction with the nucleus of the target 

particle. In a collision process, the elastic scattering occurs when the kinetic energy 

before the scattering event is the same as that after it, inelastic scattering occurs if the 

energy is not conserved before and after the scattering event. 

As well as treating the neutrons like particles, they should be also be considered as 

waves obeying the de Broglie law ~ = mv, h is the Planck's constant, A is the 
A 

wavelength, m is the mass of the particle moving at a velocity v. In a complex system 

with more scattering centres, the scattering is coherent if the phase of the reemitted 

signal is correlated to the incident wave, and incoherent if they are not correlated. The 

process of scattering can be described in quantum mechanics by considering neutron 

and nucleus wavelength [8]. The wavelength of the neutron is larger than the nucleus 

that acts as the "scatter point". 

y 

circular, scattered wave 

x 

Planar, incident wave 

Fig 4.11 Schematic representation of a scattering event. 

The scattering between the neutron and the nucleus is a spherically symmetric process 

and mathematically, the wave function of the scattered neutron at distance r from the 

nucleus is described by 



'Pse = - b exp(ikr) , 
r 
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(4.1) 

where k is the wavevector of the incident neutron, b is the scattering length and 

represents the amplitude of the scattered wave function [9]. The amplitude of the 

scattered wave depends on the strength of the interaction between the neutron and the 

nucleus. 

The scattering process of a neutron with a single nucleus is related to the cross section 

of the nucleus, a, which is the apparent area that the nucleus presents to the neutrons. 

The scattering length and the cross section are related by 

(4.2) 

In the case of neutrons, the scattering strength is not related to atomic number, unlike 

for X rays, but to the scattering length b, that changes apparently randomly across the 

periodic Table and between isotopes, with several advantages [10]. Firstly isotopes of 

the same element have different b and they can be used to label part of molecules or 

different layers. Secondly, light atoms, like hydrogen, can be identified by selective 

deuteration, and neighbouring elements in the periodic table can be distinguished 

because they have different b. 

4.5.1 Theoretical background 

Neutron reflection can be treated in the same way as light reflection but for neutrons 

"the refractive index" is based on the scattering lengths. When the neutron beam 

interacts with a surface, part of the beam is reflected and part refracted as a function 

of the scattering length of the medium and surface. The refracted radiation can 

interfere in a constructive and destructive manner as a function of the wavelength of 

the incident beam, incident angle, thickness of the layer and refractive index of the 

neutron in agreement with Bragg's law, 
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mA = 2dnsin8, (4.3) 

where m is an integer number with m > 1, A is the neutron wavelength, d is the film 

thickness, 8 is the grazing angle, and n is the refractive index of the medium. 

In general the refractive index of the material is defined as 

n=l-D+i{3, (4.4) 

where D represents the effect of the scattering and {3 the effect of absorption of the 

incident beam due to the incoherent scattering. {3 is normally two orders of magnitude 

smaller than D and in most cases it is negligible. D is defined by 

(4.5) 

where p represents the density of the component i, with atomic mass A and scattering 

length b. The term N A 'L ~i represents the scattering length density Nb for the 
. A. 
I I 

component i. It is defined as the ratio of the coherent scattering length and the specific 

volume. 

In the case of a molecule of density p with scattering length bi and atomic mass Ai for 

component atom i, we have 

(4.6) 

Substituting equation 4.6 into equation 4.4, the refractive index is expressed as a 

function of the scattering length density, neglecting the absorption effect, 

A2Nb 
n=l---

2n 

(4.7) 
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The neutron refractive index for most materials is usually slightly less than one 

because 0 is normally in the order of 10-6
. Some materials, especially those rich in 

hydrogen (with hi < 0) have values of n > 1. A common example is polyethylene. 

Incident beam Reflected beam 

n2 

Refracted beam 

Fig 4.12 Diagram illustrating a beam of incident angle 8. that interacts between two 

media of refractive index n. and n2. Reflection and refraction occur respectively at _ 

angles 01 and O2 • 

Considering an interface separated by two media with refractive index nl and n2 and a 

neutron beam that hits the surface at an angle Ol, 

the refracted angle O2 is related to the refractive index of the two media and to the 

incident angle in accordance with Snell's law 

(4.8) 

This equation gives a real value of angle of refraction if n2 > 1 so that coslh < COSOI 

and consequently lh > 01• 

If n2 < 1 then cos lh > cos OJ, and lh < Ol; Snell's law gives a real solution only until a 

critical value of the incident angle Oe is reached and the incident beam is all reflected 

at the surface and only an evanescent wave propagates into medium 2. 

The value of this critical angle can be approximated as 

(4.9) 

quation 4.9 shows that the value of critical angle is a function of wavelength of the 

incident radiation and the scattering length density of the medium through which it 

passes. 
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The amount of radiation scattered, when the incident beam hits the surface, is 

quantified as the difference in the wavevector between the scattered and the incident 

vector [11]. 

Fig 4.13 Diagram illustrating the incident vector Kz at an angle 8 1 that interacts with 

media of refractive indexes nl and n2. Kz,; represents the projection of the reflected 

vector from the medium n2 and Kc,; is the total external reflection vector. 

In a medium i where, the reflected and incident angles are equal, the [mal wave vector 

or final momentum transfer is perpendicular to the surface and is given by 

(4.10) 

where kc,i represent the critical value for kz,i below which the total reflection occurs. 

When total reflection occurs kz,I= O. 

In vacuum the wavevector normal to the surface is equal to, 

k 
2n. L) 

Z o = - smul , A 
(4.11) 

and the momentum transfer is given by 

*-Q 4nn. L) 
fl z O = --smul' , A 

(4.12) 

In what follows we shall ignore the n prefactor and refer to Qz,o simply as the 

momentum transfer, in keeping with common practice in the neutron science 

community. These equations show that the condition of total reflection can be reached 

by fixing the value of incident angle f} and changing the value of wavelength A, or by 

varying the wavelength A and keeping f} fixed. 
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A general neutron reflectivity curve for an interface between two media is shown in 

Fig 4.14 

10-6 

1 O---a '----'-------,;:-s---'---------=~-~____=_' 
0.1 0.2 0.3 

Q (A-1) 

Fig 4.14 Simulated reflectivity as a function of the momentum transfer Q for a smooth 

silicon wafer of roughness 0 A in contact with D20. 

The reflectivity is the ratio of the number of reflected neutrons and the total number 

of neutrons incident on the sample and is generally a function of Q. For 81 < 8c the 

reflectivity has a plateau due to total reflection of the incident radiation, for constant 

A. For values of 81 > 8c, the reflectivity decreases because part of the radiation is 

refracted inside the second medium. The Fresnel equations define the propagation of 

the radiation inside media with different refractive indices. 

The reflectance or the reflection coefficient of an interface between two media i and 

i + 1 is defined by 

k . - k ·1 r = Z,I Z,I+ 

i,i+l k k ' 
z,i + z,i+l 

(4.13) 

where k:; indicates the z component of the wavevector for the component i and i + 1. 

In the case of a polymer layer in air or in vacuum, i = 0 for air and i = 1 for polymer 

layer, the reflectance is 
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(4.14) 

The reflectivity R is defined as 

(4.15) 

where the asterisk denotes the complex conjugate. 

Substituting the equation 4.14 into 4.15 and expressing R as a function of wave vector, 

then in the case of a sharp interface in contact with air or vacuum, R is given by 

(4.16) 

In the limit kz,o » kc, 1, 

R (k )oc(~)4 
F z,O k 

Z,o 

(4.17) 

Therefore, for a sharp interface, RF (kz,O)4 = constant at high values of kz,o. This is 

known as Porod's law, which is illustrated in the graph shown in Fig 4.15. 
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Fig 4.15 The trend of R Q4 as a function of Q for a SiJD20 system; the neutrons are 

travelling through the silicon so in this case kz,o would refer to the neutron wavevector in 

silicon and kz,} that for D20. 

The reflectivity of a single polymer film depends on the scattering length density of 

the polymer and its substrate, the thickness of the layer and the roughness of the layer. 

The influence of these parameters is illustrated in Fig 4.16, Fig 4.17 and Fig 4.18. 

- SLD 2x1 0-6 A-2 
- SLD 3x1 0-6 A-2 
- SLD 4x10-6 A-2 

1 0-8 L--~---'O,-L.1-~----;;-'0 ."2 -~---='O .3 

Q (A-1) 

Fig 4.16 Simulated reflectivity for a dry smooth polymer layer of 100 A covering a 

silicon wafer, when the scattering length density (SLD) of the polymer is varied. Here 

the neutrons are propagate through air and are reflected at the silicon wafer. 
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The reflectivity, of a 100 A layer deposited on a silicon wafer in a dry state, changes 

as a function of the scattering length density of the polymer layer because a greater 

difference in scattering length densities between the polymer fIlm and silicon wafer 

causes an increase in fringe amplitude. In this simulation, the value of the roughness 

is taken as to 0 A and the SLDair =0 A-2 and SLDsi = 2.07 x 10-6 A-2
. 

The thickness of polymer fIlm is an important parameter, and can also affect the 

fringe amplitude as we show in Fig 4.17. 

>, 
:!::: 
> 
U 
(J) 10-4 

;;::: 
(J) 

cr: 

10-6 

- Thickness 20 A 
- Thickness 100 A 
- Thickness 200 A 

1 0-8 '---~---::-~-~---::--'-::--~-----=-' 
0.1 Q (;"-1) 0.2 0.3 

Fig 4.17 Simulated reflectivity as a function of Q for a dry smooth polymer layer 

covering a silicon wafer, when the thickness of the polymer layer is varied. 

Fig 4.17 shows the calculated reflectivity of a deuterated polymer fIlm deposited on a 

silicon wafer in a dry state. The polymer fIlm is assumed to have no roughness and 

SLDpolymer = 4 X 10-6A-2
• Changing the fIlm thickness causes a variation in the fringe 

wavelength. In particular a thicker layer has a shorter wavelength then a thinner one. 

The difference in Q, ~Q, between two successive minima is related to the thickness of 

the layer by, 

d = 2n . 
~Q 

(4.18) 
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- roughness 0 A 
- roughness 5 A 
- roughess 30 A 

10--{) 

1 0-8 '--_~---::--'-:-_~--::-'-::-_~--"J 
0.1 A 0.2 0.3 

Q ( -1) 

Fig 4.18 Simulated reflectivity as a function of Q for a deuterated dry smooth polymer 

layer covering a silicon wafer, for different values of polymer film roughness. 

Fig 4.l8 illustrates a dry 100 A polymer layer with SLD = 4 x 10-6A-2 on silicon 

wafer. The increase in roughness of the polymer layer results in a decrease in 

reflectivity as well as a decrease in the amplitude of the fringe. 

4.5.2 Instrumentation 

In a reflectometer, it is possible to identify 4 main parts: source, neutron optics, 

sample holder (goniometer), and detectors. 

The neutron source is in general of two types [9]: reactor and pulsed sources. In the 

reactor source, the neutrons are produced by the fission reaction of 235U nuclei and 

they have a range of energy of the order of MeV. To slow down their energy, the 

neutrons are lead inside a moderator filled with liquid H2, but other moderators are 

also used. The neutrons interact with the nuclei through inelastic scattering and they 

equilibrate with a thermal energy equal to the temperature of the moderator. For 

example, a moderator at the temperature of 290 K slows down the neutrons to a mean 

energy value of25 meV and a corresponding neutron wavelength of l.8 A. In the case 

the moderator is filled with liquid H2, at its temperature of 20 K, the neutrons have a 

wavelength of 5.3 A. 
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In a pulsed source, a beam of protons is accelerated at high energy using a particle 

accelerator and synchrotron, and then fIred to a target made of a heavy metal such as 

tantalum at a frequency of 50 Hz. The neutrons are produced by a spallation process, 

which is the emission of neutrons and light nuclear fragments from the violent impact 

of the protons with the heavy metal nucleus. These neutrons then pass through a 

moderator that slows them down so that they have a range of wavelengths suitable for 

the scattering experiments. 

To produce the wavelength range required for the experiments, neutrons are selected 

using fIlters and choppers and the flux is drastically reduced in this stage. 

The neutrons interact with the sample which can be either dry or inside a liquid cell or 

cryostat. The scattered neutrons are collected and analysed inside a detector which 

records neutron counts as a function of time. The incident beam is analysed through 

the use of a detector placed just before the sample, as a reference to normalize the 

signal that is reflected by the sample. In the time of flight spectrometer, the intensity 

is measured as a function of the time taken to reach the detector with the chopper 

triggering the start of the time pulse. The de Broglie equation relates the wavelength 

of the neutrons with their velocity 

h 
V=-. 

(4.19) 
Am 

Neutrons of greater velocity therefore have a shorter wavelength than those at a lower 

velocity. The velocity is a function of the energy that the neutrons gained in the 

previous stages. The velocity can be expressed as LIAt where L is the known chopper­

detector distance. Rearranging equation (4.19) the time, t, taken from the neutron to 

traverse a distance L, can be expressed as a function of A, 

m 
t=-LA. 

h 

(4.20) 
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4.5.3 Beamlines and set-up 

The neutron reflectivity experiments presented in this thesis were performed at the 

Laboratoire Leon Brillouin (LLB) at Sac1ay in France and at the Rutherford-Appleton 

Laboratory, ISIS Chilton, Didcot, in the United Kindom. 

The LLB has a neutron reactor source (Orphee reactor), and the experiments have 

been performed using the EROS time of flight neutron reflectometer, that is presented 

schematically in Fig 4.19. 

, - c.:!'J~1 - - -

a: ,,~ (!J:,n : 

c: ~:::. 

I .- ;.;,,' _. ":. 
1 

r---

", :' d: , ; 1- ,-: ----J ; 
co D" --- [ i' - ~--: I 

I 

Fig 4.19 Schematic representation of the Eros spectrometer in Sa clay, taken from 

http://www-lIb.cea.frlspectros/pdfleros-lIb.pdf retrieved on 13-12-09. 

The neutron beam, coming from the moderator, is passed through a chopper to make 

the range of neutron wavelengths narrow and is then conveyed to a vacuum collimator 

of 3.9 m. Inside the collimator, the supermirror reflects efficiently low energy (high 

wavelength) neutrons. In this way fast unmoderated neutrons will be removed from 

the beam. The narrow neutron beam passes through slits for further collimation and 

then hits the sample. The sample is placed on a goniometer which can be adjusted to 

align the sample for the reflectivity measurements. The sample interface has to be at 

the right value of height and angle to ensure the specular reflection of the beam where 

the incident angle and the reflected angle are the same. In this particular 

r flectometer, the beam has a range of wavelength between 3 and 25 A and angular 
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range from 0.1 0 to 60
, an energy in the range of 0.021 and 1.41 zJ and it can 

illuminate an area of 2 cm2
, depending on the incident angle. 

In ISIS, pulsed neutrons are produced by spallation process between protons and a 

heavy metal target. The final collimated neutron beam, a "white beam", has a range of 

wavelength that is measured with a time-of-flight detector. The experiments are 

performed at a fixed angle and the wavelengths are selected by the chopper. The 

experiments were performed at the CRISP [12] station that covers a range of 

wavelength between 1 and 7 A, the beam has an energy in the range of 1.07-26.29 zJ, 

and can illuminate an angle dependent area of2 cm2
• 

4.5.4 Experimental set-up. 

We have performed different series of experiments with the goal of understanding 

both the conformation of the PDMAEMA brush and gel film on silicon substrates in 

water, and the conformation of the polybase brush in contact with the PMAA 

hydrogel when different pressures are applied. 

The purpose of the experiments with the brush in contact with the hydrogel is to 

emulate as closely as possible the same type of experiments performed with the JKR 

equipment but observing, in this case, the behaviour of the poly base film instead of 

the polyacid hydrogel. 

All the experiments are performed in an inverted (upside-down) geometry with the 

interface film/water face down and the neutron beam incident through the sample 

before being incident on the interface, Fig 4.20. 



Incident beam 

Trough containing solution at 
different pH 
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Grafted polymer 

Fig 4.20 Schematic diagram of the liquid cell used to perform the neutron reflectivity 

experiments. 

Each sample is clamped through a rubber ring on a Perspex ™ cell. We use Perspex ™ 

because it is a transparent material, which allows us to check the presence of air 

bubbles on the surface. The polymer/aqueous solution interface requires a large 

difference in scattering length density to maximize the scattering of the neutrons and 

increase the signal resolution. For this purpose we take advantage of the difference in 

scattering length density between H and D, which have essentially the same chemical 

behaviour. To study the conformation of the brush in different pH environments, D20 

is used for contrast with the hydrogenated polymer on the Si surface. When the 

brushes are in a collapsed conformation at the interface, the neutrons scatter more 

than when the brushes are in a swollen state. In the latter situation, D20 can diffuse 

into the hydrogenated polymer and the SLD difference decreases at the interface. The 

experiments are performed starting from a neutral pH solution and, afterwards, in a 

more acidic pH down to pH 2. After each experiment the Si wafer was removed from 

the cell, washed, clamped again and equilibrated in the new pH solution for at least 

2 hours before performing the next experiment. We checked for equilibration of the 

samples, by verifying that the neutron reflectivity data did not change with time. 

Another set of experiments was performed to study the effect of pressure when the 

PDMAEMA brushes are in contact with the PMAA hydrogel in pH solution. These 

experiments were performed in an inverted geometry and the brush sample is clamped 

via a rubber ring to a Perspex cell and the hydrogel is placed inside that cell on a 

support connected on its base to an inflatable membrane. The membrane is connected 

to a pressure scale in the range of 0-500 mBar that measures the force applied at the 

interface between the hydrogel and the polymer-coated silicon wafer. The pressure is 
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increased using a bicycle pump and after reaching the desired value, it is held constant 

by closing the air inlet valve for 15 min, after which the pressure was removed. We 

release the pressure because we are not interested in the conformation of the brush 

during the application of the pressure but rather after the pressure is applied. Despite 

the inverse geometry, the interaction is strong enough that the gel remains attached to 

the brush layer. Several pressures were applied with lower pressures applied before 

higher values were subsequently applied. 

To maximize the scattering of the neutrons at the brush / hydrogel interface, the 

brushes are deuterated, while the hydrogel and the water are hydrogenated. This 

system does not give any total reflection plateau because the neutron pass through the 

silicon, which have SLD 2.07 x 10-6 A-2, to the polymer-water mixture, with a SLD of 

a value less than that of the silicon. Although the polymer is deuterated and hydrated 

so has in total a neutron refractive index higher than the silicon. In agreement to 

Snell's law, the refracted angle is always bigger than the grazing one and the 

condition of total reflection is not reached. For this reason reflectivity data cannot be 

normalized to a total reflection edge and so require normalization to a sample set with 

such an edge, like siliconID20. 

4.5.5 Analysis 

The variation of reflectivity R(Q) derives from the variation of scattering length 

density at the interface as a function of the distance from the surface. In this project, 

we study the behaviour of the brush in solution at different pH values and in contact 

with the hydrogel at different applied pressure. The conformation of the brush is 

obtained by fitting the neutron reflectivity data using the slab fit program written by 

Dr Devinderjit S. Sivia (Rutherford Applenton Laboratory) [13]. Slab fit is an 

ab initio program and that searches for a scattering length density profile as a function 

of the distance from the surface in agreement with the reflectivity data. The density 

profile is obtained by considering the total polymer film as the sum of uniform layers 

of material (i.e. slabs) with a constant Gaussian roughness for all the internal layers, 

and a separate outer and innermost interfacial roughness. The initial parameters are 

the surface and interfacial roughness, the thickness of the dry layer, and the total 

thickness of the layer in solution with a tolerance of 10 %. For the first iteration, the 
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program considers the total film as a single layer and it gives the density profile curve 

that comes from the fitting of the neutron reflectivity curve. The quality of the fitting 

of the neutron reflectivity curve is established by the i parameter, which needs to be 

minimized. If this condition is not satisfactory (usually X 2 < 1), the program considers 

the film to be the sum of two uniform layers with the same total thickness as for the 

single layer and it varies the thickness of the two slabs with a tolerance of 10 % to 

improve the fitting quality. If this condition is still not satisfactory, the number of 

layers is increased up to a maximum of 20 in order to reduce the number of 

parameters. The interlayer roughness ensures that the volume fraction profile is 

smooth. It is constant between layers in order to reduce the number of integral fitting 

parameters. The increase of the number of slabs corresponds to an increase in the 

number of interfaces inside the polymer layer. The brush density profile also has to 

have mass conserved. This means that the integral of the brush volume fraction with 

respect to depth of the layer has to be equal to the thickness of the dry film. If this 

condition is not valid the fit is discarded. This procedure ensures the best quality fit 

and a more realistic profile. The profile that best describes the brush conformation, is 

chosen from the high quality fits that are mass conserved and is taken as the one 

generally with the fewest slabs. 
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Chapter 5 

Network-brush interaction 

5.1 Introduction 

Tuning the interactions between surfaces is an important area of research with 

technological benefits. Polyelectrolytes are good candidates for this kind of study for 

their remarkable behaviour [1]. By altering environmental pH, IOmc strength, 

temperature, electric and magnetic fields, polyelectrolytes can undergo 

conformational transitions, which, if controlled, enable a wide range of applications in 

such fields of nanotechnology as microfluidics, targeted drug delivery and controlled 

wetting and adhesion [2, 3]. 

In our case we are interested in the interaction between a responsive brush polymer 

grafted on an inorganic substrate and an external medium. In particular, the class of 

polymer brush that we are studying is a pH responsive polyelectrolyte that can change 

its conformation as a function of pH and is also characterised by a wettability 

transition as a function of the pH [4]. 

The external media that we are considering is a crosslinked polyelectrolyte hydrogel. 

This kind of gel is elastic and pliable when hydrated and is capable of large 

deformations in some pH environments. Also, an environmental change from basic to 

acidic pH induces a physical transition from hydrophobic to hydrophilic behaviour 

and vice versa in the gel [5]. 
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In the present study we investigate the interaction between poly[2-( dimethyl 

amino)ethyl methacrylate] (PDMAEMA) brushes, chemically grafted to planar silicon 

substrates by atom transfer radical polymerisation, with a hydrogel of 

poly(methacrylic acid) (PMAA) [6]. The polyacid and polybase have similar but 

opposite behaviour regarding pH responsiveness. In particular, the polyacid hydrogel 

is in a collapsed state at pH value lower than 5 and in a swollen state at a pH value 

above 5. The polybase brush, made by the PDMAEMA polymer [7], is stretched at a 

value of pH below 6 and collapsed at a pH value above 6. 

- . . 
• • 

• + + + + - + 
+ ++ + + + + + + + + + 

+ + + 

Collapsed brush and swollen network Swollen brush and collapsed network 

A) B) 

Fig 5.1 Schematic representation of the brush layer in contact with the hydrogel. The 

brush and the hydrogel adopt opposite conformations in extreme pH environments. In 

neutral/basic condition, Fig 5.1 A), the brushes assume a collapsed conformation and 

they are partially charged, while, in the same pH range, the polyacid network mainly is 

cbarged. In acid conditions, B), the brush is mainly charged and adopts a stretched 

conformation. Here the hydrogel is collapsed and is likely to be uncharged or at least 

weakly charged. 

Upon exammmg the contact between brush and hydrogel at different pH, we 

recognize a pH region where the brush and gel do not interact with each other, and a 

region where they interact strongly and it is difficult to remove the gel from the brush 

without any damage to either or both components. 

As a second step we investigated whether the process is switchable, that is whetever 

after changing the pH, the brush and gel would come apart without damaging either of 

the components. 



112 

The experimentally observed phenomena that we shall describe in this chapter are: 

• at pH less than 2, there is no significant interaction between the brush and 

hydrogel, whereas above pH 3, there is a strong adhesion which is comparable 

to that of an epoxy with a silanated glass [8] ; 

• the adhesive interaction between the brush and gel above pH 3 can be reversed 

if immersed in a solution at pH 1 [6]. 

The silicon wafer covered by a polymer brush film is left to equilibrate for 2 hours in 

a glass container filled with a known pH solution. Afterwards, three PMAA hydrogel 

lenses, with a radius of curvature of 3.5 mm, held by a glass slide, are brought into 

contact with the brush surface. To increase the interaction between the brush and the 

gel, a known load is added on the top of the glass slide, as shown in Fig 5.9. A lamp 

and a camera are placed on the gel side and we record the variation of contact radius, 

Q. The load is left in contact for 15 min in order to allow equilibration and then 

removed from the top of the glass slide. 

The quantification of the work of adhesion, in the unloading regime, is obtained from 

the JKR equation [9], 

w = --'...-( P_-_Ka_
3 

I_R-,--f 
adh 6:rcKa3 

(5.1) 

where Wadh is the work of adhesion, R is radius of the lens, P is the load applied and K 

is the elastic constant of the system. 

We performed the experiments by applying different loads on the gel-brush system 

and then quantified the work of adhesion in the unloading regime, after removing the 

load from the top of the glass. The interaction between the brush and the gel has a 

"pressure effect" that the adhesion energy increases as larger loads are applied and 

removed. This suggests that probably more than one mechanism is involved in the 

adhesion process. We therefore hypothesize that the interaction between the brush and 

hydrogel could be pressure sensitive due to interfacial (e.g. electrostatic) or 

interdigitation effects. We consider these in turn. 

• Interfacial (surface) effect 

The force applied produces an increase in the contact area between the brush and 

hydrogel, creating more surface available for electrostatic or hydrogen bond 
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interactions between the affilno and carboxylic groups of the polybase and 

polyacid respectively. 

• Interdigitation effect 

The Ve1cro™ [10] effect could be another mechanism involved where the 

increase in the applied load generates an interdigitation of the brush into the 

hydrogel. 

The actual mechanism could be a mixture of both interfacial and interdigitation 

effects whose contributions may vary over a range of applied pressures. 

To study the pressure sensitive effect between the brush and the hydrogel, we 

performed some experiments using the JKR set-up and neutron reflectometry. 

Experimental evidence, explained in this chapter, suggests a larger contribution of the 

surface effect due to electrostatic and/or polar bonds between proton donor and proton 

acceptor over the interdigitation mechanism of the brush chains inside the hydrogel. 

We discuss in the following order: 

• the behaviour of weak polybase brush and PMAA hydrogels in different pH 

environments; 

• the study and quantification of the adhesion between polybase brushes and 

polyacid hydro gels; and 

• the investigation of the mechanism of the interaction. 

5.2 Behaviour of the polyacid hydrogel 

The polyacid hydrogel is synthesised as explained in chapter 4 in section 4.3.4 and 

has carboxylic acid as the reactive side group (Fig 5.2). 

0 0 

II II - + 

R-C-OH H2O - R-c-o + H30 + -
0 0 

II - - II - + H2O 
R -C-OH + OH - R-c-o 

Fig 5.2 Acid/base reaction of the carboxylic acid in water, in acid and in basic conditions 

The carboxylic group is a weak acid whose equilibrium between changed and 

uncharged forms is a function of pH. In acid conditions, the carboxylic group is 

protonated and the chains are in a "collapsed state" due to the absence of repulsive 
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forces between the charges. In basic conditions, the carboxylic group becomes more 

charged as the pH increases; the chains are in a "swollen state" because they absorb 

water to screen the electrostatic repulsion between the charged groups with the 

counterions. The swelling behaviour of the polyacid hydrogel is influenced by 

different parameters such as the pH, the percentage of crosslinker and the ionic 

strength [5]. 

In order to quantify the pH dependent swelling of the hydrogels, we performed 

swelling experiments of a PMAA hydrogel disk, 2 cm in diameter and 5 mm thick, 

which was allowed to equilibrate at different pH between 2 and 11. The swelling is 

monitored by the change of hydrogel weight, as a function of pH. 

10 ~--------------------------------------------~ 

. 24 hours 

8 • at the equilibrium • • 

6 

WpH/Wdrv 

4 • • • • • 
2 

• 
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0 2 4 6 8 10 12 

pH 

Fig 5.3 The swelling of the gel in pH solution from 2 to 11. When the equilibrium is 

reached, the PMAA hydrogel shows a sharp transition at pH 5.8 between the collapsed 

and the swollen state, which is the pH swelling transition. 

In acid conditions, the carboxylic groups are mainly uncharged and the swelling of the 

hydrogel is not drastically influenced by the pH environment; above pH 5.8 the gel 

starts to swell in increasing amounts with increasing pH. At a pH of 5.8 the swelling 

transition is observed [4] , which characterizes the sharp transition between 

hydrophobic to more hydrophilic behaviour of the PMAA hydrogel. This 

phenomenon may be explained considering the reaction of the carboxylic group with 
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the OH- ions (Fig 5.2), producing COO- ions, which create repulsive forces between 

the chains. 

One also has to be aware that the pH is also influenced by side reactions of 

atmospheric CO2, dissolved into the water as H2C03 (carbonic acid), which is an acid 

that reacts with NaOH contributing to lower the pH as shown in Fig 5.4. 

CO2 + H2O ""'" 
H 2C03 

--
H2C03 + OH 

""'" 
HC03 + H2O 

)-

CO;- + H2O 
- -

HC03 
+ OH ""'" 

Fig 5.4 Reaction of the CO2 dissolved in water and in air in basic environments. 

The swelling of the hydrogel depends on parameters such as the cross linker 

concentration and the ionic strength. At low cross linker density the polymer chains 

can elastically stretch more than at high cross linker density. In the case of PMAA it 

has been shown that the crosslink density influences the degree of swelling at high pH 

more than in acid pH, but it does not affect the transition pH from collapsed to 

swollen, although it does effect the sharpness of the transition [11]. 

The swelling of the hydrogel depends on the ionic strength of the solution as well, 

because the salt concentration increases the electrostatic screening of the carboxylic 

group leading to a monotonic decrease of the swelling. In the case of PMAA, it has 

been shown by Ostroha [11] that below the pH transition, at pH = 5, for low 

concentration, the does not effect the swelling. Close to the pH transition, at pH 5.6, 

the swelling increases with a salt concentration and then decreases. This trend shows 

that at pH values greater than that of the swelling transition, the electrostatic repulsion 

between the charged carboxylic groups is more important than the screening of the 

charges by the salts. 

5.3 Behaviour of the polybase brush 

The PDMAEMA brush, covering the silicon wafers, was synthesised as described in 

the previous chapter in section 4.2.2. The amino group, located on the polymer brush 

side chains, is charged in acid conditions and uncharged in basic conditions [12]. 
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e e 
R-NH2 + H2O "" R-NH3 + OH "' 

R-NH 2 + e e 
H30 "" R-NH3 + H2O "' 

Fig 5.5 Acid/base reaction of the amino group in water, in acid condition and in basic 

conditions. 

This pH transition IS macroscopically represented by the hydrophilic to less 

hydrophilic behaviour of the silicon wafer covered by the PDMAEMA brush in acid 

and basic conditions; in acid condition the brush assumes a swollen conformation 

because of the effect of the charge repulsion between the polymer side chains. In 

basic conditions, the amino group is uncharged and the brush chains are closer to each 

other, assuming a less swollen conformation. The swelling of the PDMAEMA brush 

was studied in known pH solution using AFM in contact mode in a liquid cell. 

Dry pH=S.B pH=2 

A) B) C) 

pH Vertical distance (A) 

dry 230 

5.8 414 

2 660 

Fig 5.6 Section images of a PDMAEMA brush on a silicon wafer A) in the dry state, B) 

at pH=5.8, and C) at pH 2. The brush surface is scratched using a blade to allow the 

measurement of the height of the brush relative to the substrate. The red marks are the 

points where the difference in height between the brush and the silicon wafer is 

calculated. 
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The threshold between swollen and collapsed states depends primarily on the grafting 

density of the brush that in our case is 0.8 nm-1
• This value is calculated using the 

fonnula a = hpNA where h is the thickness of the brush layer, p is the density, NA is 
Mw 

the Avogadro's number and Mw is the molecular weight of the polymer. To calculate 

the molecular weight, we added a known amount of the external initiator (ethyl 2-

bromoisobutyrate) inside the reaction solution where the silicon wafer covered with 

the initiator layer is placed to react. We assume that the rate of growth of the brush on 

the silicon wafer is the same as for the external initiator. The polymer formed was 

then washed with acetone for the GPC analysis. 

2 

1.8 
• 

1.6 • • 
1.4 

1.2 

HpH/Hdry 1 • • 
0.8 

0.6 

0.4 

0.2 

0 
0 1 2 3 4 5 6 7 8 9 

pH 

Fig 5.7 The graph shows the swelling of the PDMAEMA brush as a function of pH. The 

swelling of the brush is calculated as the ratio between the thickness of the polymer 

layer at the known pH solution, HpH divided by the dry thickness, Hdry. 

AFM measurements were performed to measure the thickness of the brush in different 

pH environment (Fig 5.6) and the swelling is calculated as the ratio of the swollen 

thickness to that in the dry state (Fig 5.7). The PDMAEMA brush is less swollen in 

basic pH such as pH 5.8 and 8 but it is swollen is acid pH. In acid pH such as pH 1 it 

is possible to observe a slightly deswelling of the brush layer possibly due to 

screening of the charges on the brush by the counter ions. 
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5.4 Thermodynamic work of adhesion 

In sections 5.2, we described the behaviour of the brush and the gel by themselves. In 

this section we shall explain how we quantified the adhesion when the PMAA 

hydrogel is brought into contact with the PDMAEMA brush. 

The work of adhesion has been calculated using a modified JKR set-up described in 

section 4.4.1. The polybase brushes are equilibrated for two hours in a known pH 

solution and then three polyacid hemispherical hydrogels, held in place by a glass 

slide, were added on the brush-coated silicon wafer. The hydrogel is pressed against 

the brush by adding known loads on the top of the glass and the variation of the 

contact radius is recorded at the beginning, during and after the loading stage. 

Specifically, we observe the variation of the contact diameter (2a) of the gel with the 

brush under different loads. We first measure the contact radius when the gel is placed 

in contact with the brush without any pressure applied. When the load is applied, the 

contact diameter between the gel and the brush increases, but this decreases again 

after the load is removed. If the value of the contact diameter after the load is 

removed is larger than that before the load was applied, we conclude that there is 

adhesion between the brush and gel. If the value of the contact diameter is the same as 

at the beginning, there is no adhesion between the brush and the hydrogel. 

Upon examining the contact between brush and hydrogel as a function of pH, we 

observed a region of pH where the brush and gel do not interact, and a region where 

they interact strongly, which make it very difficult to remove the gel from the brush 

without damaging the brush or the gel. Fig 5.8 shows the results of a kinetic 

experiment with the PMAA gel in contact with the brush before, during, and after the 

application of a load under different pH conditions. 
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Fig 5.8 A) The variation of the contact radius when the gel is brought into contact with 

the brush surface and no load is applied (Po stage, left), when the load PI is added on the 

top of the glass, when the load PI is removed (Po stage again, right). B) The variation of 

the contact diameter in the three situations is shown in the gel pictures. The experiments 

are performed when the brush and the hydrogel are allowed to equilibrate at pH 2.4, 

3.4,5.8. In B) we show the results for pH 3.4. 

If the gel and the brush are equilibrated at pH 2 they do not adhere, i.e. the value of 

the contact diameter after the load is removed is the same as that before it was 

applied, showing no adhesion between the brush and the hydrogel. If they are 

equilibrated at pH 5.8 they adhere very strongly, marked by a large increase in contact 

diameter after the load is removed than before it was applied; the only way to separate 

the two components is to tear the brush off the surface, or to rupture the gel. If they 

are equilibrated at pH 3.4 the fmal value of contact diameter, after the unloading, is 

larger than at the beginning but smaller than at pH 5.8. If the two components initially 

in contact at pH 5.8 (strong adhesion) are equilibrated at pH I the gel detaches from 

the brush without damaging either and the system may be used again. 
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Fig 5.9 Kinetics of the brush and the hydrogel when the pH is lowered. Contact diameter 

is shown in red and pH in blue. The brush and hydrogel are first equilibrated at pH 3.4; 

the change in contact diameter is recorded when the brush and hydrogel are brought in 

contact (a), when the load is applied (b), and successively removed (c). After removing 

the load, the value of the contact diameter is greater than at the beginning of the 

experiment but lower than when the load is applied and it is constant after 24 hours. 

When the pH is reduced from pH 3.4 (c) to pH 2.4 (d), no significant change in the 

contact diameter is recorded. Then the pH is lowered from pH 2.4 to pH 1 (e), and we 

observe a decrease in the contact diameter until it becomes comparable to the value of 

the contact diameter at the beginning. In this situation the brush and the hydrogel can 

be taken apart without damaging either of the two parts. 

Fig 5.9 shows the results of a kinetics experiment of the PMAA gel in contact with 

the brush after equilibration at pH 3.4. After the load is removed (c), the value of the 

contact diameter is greater than at the beginning of the experiment (a). Lowering the 

pH at 2.4 (d) does not change the contact diameter, after 24 hours, even though we 

know that they do not adhere when applied together at this pH. Detachment of the gel 

from the brush does however occur at a pH of ~ 1 (e). In this condition, the brush and 

the gel can be taken apart without ripping them off and, if they are equilibrated in 

water, they may be shown to adhere again. To explain the detachment of the gel from 

the brush at pH 1, we can consider the behaviour of the brush and gel separately in 

acid pH. The experiments of the swelling of the hydrogel and brush show that the 

PMAA hydrogel is collapsed in acid pH because the carboxylic group is mainly 
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uncharged and the PDMAEMA brush is swollen in acid pH, due to the repulsion 

between the charged polymer chains and the osmotic pressure of the counter-ions. At 

pH 1, the brush polymer layer is slightly collapsed due to the screening of the charges 

for the high concentration of the counter ions as shown in Fig 5.7. This suggests that 

the detachment of the gel from the brush at pH 1 may be due to fewer charged groups 

available in the interaction between the hydrogel and the brush. 

To conclude; these kinetics experiments show that the phenomenological effect of the 

interaction between polybase brush and polyacid gel is a function of the pH at which 

they are equilibrated. Below pH 2 there is no strong interaction between the brush and 

the gel, but above pH 3.4 the brush and the gel interact really strongly and this 

interaction increases as the pH increases and the only way to separate the two parts is 

to rip them off. If after the contact, the system is immersed in a solution of acid pH 

such as pH 1, the brush and the gel can separate without any damage of the two parts, 

making the adhesion switchable. The brush and the gel sample can be re-equilibrated 

in solution above pH 2 and they adhere again. 

5.5 Quantitative studies of the adhesion 

The degree of adhesion in the unloading stage can be measured using the JKR 

equation, provided we know the contact diameter, the radius of the (gel) lens and the 

elastic constant of the system. The value of the contact radius in the unloading stage is 

recorded by a camera while the radius of curvature of the lens is calculated by fitting 

an image of the gel to the equation for a semi-circle x 2 + y2 = R2 where x and y are 

the coordinates of each point and R is its radius (Fig 5.10). 
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Fig 5.10 Photograph of the gel. The coordinates (in pixels) are fitted to the equation for a 

semi-circle using Lab view software in order to obtain the radius of the gel. A known 

reference ( 3 mm PTFE cylinder) is used for calibration. 

The modulus of the gel is a bulk property which depends on its degree of swelling. 

For this reason, for each pH value studied, the modulus of the hydrogel is calculated 

by performing the same experiment as for the brush substrate; the hydrogel is brought 

into contact with an uncoated silicon substrate and the variation of contact diameter a 

is measured as the applied load P increases. The adhesion between the hydrogel with 

radius of curvature R and the silicon wafer is negligible and the Hertz equation 

(PR = Ka3
) may used to estimate K in the loading regime (Fig 5.11). 
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Fig 5.11 Variation of PR as a function of a3 in solutions of pH 2.4, 3.4 and 5.8. The 

modulus K is calculated from the gradient of the linear fits to the data. 

The work of adhesion between the brush and the hydrogel is calculated in the 

unloading regime; when the load is removed, the hydrogel releases parts of the elastic 

energy, gained from the applied load. Using the JKR equation (equation 5.1), the 

thermodynamic work of adhesion between the brush and hydrogel is estimated as a 

function of the pH and the stress applied (related to the load applied). In each case the 

brushes have a thickness of 200 A. The PMAA hydrogel is equilibrated in the relevant 

pH solution before being used for the experiments. 
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Fig 5.12 Work of adhesion, G, is measured from the JKR equation as a function of 

surface stress, a, and at pH values of 2.4, 3.4, and 5.8 after loads of 32 and 62 mN were 

applied for 15 minutes. The dry brush thickness is here ~20 nm, except for the smallest 

stress (applied at pH 5.8), where the brush is ~16 nm thick. 

These experiments show (Fig 5.12) that if a load of 32 mN (the smaller stress point 

measured at each pH) is applied to the gellbrush system, the calculated adhesion 

energy increases from 15.9 mJ/m2 at pH 2 to 170 mJ/m2 at pH 3 and 226 mJ/m2 at pH 

7. If a load of 62 mN (the larger stress datum measured at each pH) is applied, the 

adhesion energy increases from 15.2 mJ/m2 at pH = 2 to 442 mJ/m2 at pH = 7, varying 

by a factor of 30. The interaction between the brush and gel at pH 7 and 3 increases 

with larger loads, although at pH 2 there is no dependence on the applied load because 

there is no adhesion under that condition. The load dependence means that the 

adhesion is pressure sensitive; the energy of adhesion increases with load until it is 

expected to saturate. The data in Fig 5.12 are plotted as work of adhesion as a 

function of the stress at the maximum contact radius Omax given by [13] 
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This equation is the sum of the tensile stress applied at the edge of the hydrogel and 

compressive stress applied at the centre of the hydrogel and it has been explained in 

the chapter 1 in section 1.3.1. 

This pressure sensitive behaviour involved the work of adhesion is not constant along 

the contact area but rather decreases from its centre toward its edges as it has been 

shown by Silberzan [13]. It is possible therefore that a different mechanism from the 

interfacial interaction could be involved when a load is applied to the system. 

We hypothesize that the pressure sensitive interaction between brush and hydrogel is 

due to either a surface and/or an interdigitation effect. 

• Interfacial (surface) effect 

The applied force produces an increase in the contact area between the brush and 

hydrogel, creating more surface available for electrostatic or hydrogen bonds 

between the amino and carboxylic groups of the polybase and polyacid 

respectively. 

• Interdigitation effect 

The Velcro™ [10] effect could be another mechanism involved where the 

increasing of the applied load generates an interdigitation of the brush into the 

hydrogel. 

The actual mechanism could be a mixture of both an interfacial and interdigitation 

contribution. We therefore performed some experiments to understand if there is any 

dominant mechanism in the interaction between the brush and the hydrogel, and we 

discuss this in the remainder of this chapter. 
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5.5.1 Kinetics of the gel release 

In Fig 5.13 we compare the kinetics of detachment of the brush/hydrogel system 

equilibrated at pH 3.4, when loads of different magnitude are applied. 
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Fig. 5.13 Kinetics experiments were performed to compare the release time of the 

hydrogel from the surface when a load of 32 mN is applied and when a load of 62 mN 

are applied on the glass top. 

Fig 5.13 shows the variation of contact radius for a geVbrush equilibrated at pH 3.4 

when a load of 32 mN and 62 mN are applied to the system. The applied load 

influences the detachment of the gel from the brush; when a load of 32 mN load is 

applied, the release time is around 7 hours but, for the 62 mN load, it becomes of the 

order of days. This behaviour points out that the pressure sensitive effect may 

influence the gel release time but it does not suggest any preferable mechanism 

involved. The increase in the release time with the larger load could be due, to the 

larger contact area between the brush and the hydrogel which influences the diffusion 

of the Hel at the interface, or to an increase in interdigitation of the brush into the gel 

when the larger load is applied. 



127 

5.5.2 Conformation of the brush in contact with the hydrogel 

To observe the behaviour of the brush in contact with the hydrogel we performed 

neutron reflectivity experiments in which the applied pressure at the interface 

brush/hydrogel is controlled with the aid of the cell described in section 4.5.4. 

The idea is to mimic the experimental conditions for the JKR set-up observing, in this 

case, the behaviour of the brush instead of the hydrogel. In particular, the neutron 

experiments are performed with a deuterated polymer brush in H20 and in contact 

with hydrogenated PMAA hydrogel in H20 solution, with an increase in applied 

pressure from 3 kPa and 15 kPa to 35 kPa. 

The neutron reflectivity data were analysed using the slab-fit program described in 

section 4.5.5. Typical data and fits for the 111 A thick PDMAEMA brush are shown 

in Fig 5.14. The resultant volume fraction depth profiles are shown in Fig 5.15. The 

neutron data do not exhibit any silicon critical edge because the neutrons are passing 

from a higher refractive index (silicon) into a lower refractive index medium (water 

swollen polymer) as discussed in section 4.5.4. 
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Fig. 5.14 Neutron reflectivity data for the 111 A PDMAEMA brush in water solution 

and in contact with the PMAA hydrogel when increasing pressures are applied and 

released. The data are shown in the Porod form, RQ4 where Q is the neutron momentum 

transfer on reflection and R is the reflectivity. Each data set are shifted down by 

increasing factors of 10. The data for the brush without the gel is not shifted. 



128 

The sample cell contains the PDMAEMA brush in solution at pH 5.8 and the 

PDMAEMA brush in contact with the PMAA hydrogel after that a known pressure is 

applied for 15 min. It is important to highlight that the neutron data are collected after 

each applied pressure is released; we observe how the gel brought into contact with 

the brush at an applied pressure modifies the conformation of the brush. 
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Fig 5.15 The volume fraction profiles of 111 A PDMAEMA brush as a function of the 

distance from the silicon wafer in water solution and in contact with the PMAA 

hydrogel when different pressures are applied. 

From Fig 5.15 we can see that for all of the different experiments the brush volume 

fraction starts, ¢ = 0.45 at the distance z = 0 A. The volume of if; = 0.45 does not 

actually mean that there is 45% brush by volume at z = O. As we demonstrate below, 

the volume fraction is related to the scattering length density Nb(component) of the 

studied components by the following equations: 

(5.3) 

with 
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(5.4) 

where Nb(z=O)=Nbsilicon. The value of ¢ = 0.45 gives a scattering length density of 

2.07 x 10-6 A-2, which is that of silicon. The volume fraction at z = 0 therefore refers 

to the silicon substrate. 

The conformation of the brush in water solution shows, close to the silicon, a volume 

fraction of 0.45 that rises first, and decays abruptly later in the direction of the 

bruSh!H20 interface. When the hydrogel is brought into contact with the brush and 

3 kPa is applied, the conformation of the brush does not change drastically; a slightly 

increased volume fraction closer to the silicon (from 0.45 to 0.49) can be observed but 

with the same sharp behaviour in the direction of brush/H20 interface. We believe 

that this abrupt decay corresponds to the brush/hydrogel interface, because this sharp 

interface exists in all of the data sets. In reality it is not possible to have all the 

information about the position of each component for a ternary system. To understand 

this, we know that the total volume fraction of all the components in the system 

studied must be unity 

¢D
2

0 + ¢brush + ¢ Hydrogel = 1, and also that (5.5) 

(5.6) 

We have therefore three unknowns (the three volume fractions) and only two 

equations, so there can be no unique solution. 

The brush conformation is consistent at all applied pressures, suggesting that the 

slight change in conformation close to the silicon is probably dominated by the effect 

of the applied pressure more than for the presence of the hydrogel; the applied 

pressure pushes the brush close to the silicon wafer while at the interface 

brush/hydrogel the pressure does not produce any change in conformation. From these 

experiments, we can say that the brush and hydrogel may interact at their interface but 

this does not exclude any interpenetration because we cannot establish the position of 

the hydrogel. 
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We performed another set of experiments where the hydrogenated PMAA hydrogel is 

brought into contact with a 200 A thick deuterated PDMAEMA brush. These 

experiments were perfonned because we expect that the interdigitation mechanism of 

the brush chains into the hydrogel would favour longer brush chains. The experiments 

are performed using the same procedure as for the 111 A brush. Each set of 

experiments is recorded after the pressure is released. 
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Fig 5.16 A) Neutron reflectivity data for the 200 A PDMAEMA brush in water and in 

contact with the PMAA hydrogel when different pressures are applied and released. The 
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data are shown in the Porod form, RQ4where Q is the neutron momentum transfer on 

reflection and R is the reflectivity value. Each set of data are shifted down by increasing 

factors of 10 for clarity. The data for the sample with no gel are not shifted. B) Volume 

fraction profiles of the polymer as a function of the distance from the silicon wafer for a 

200 A PDMAEMA brush in water and in contact with the PMAA hydrogel when 

different pressures are applied. 

From Fig 5.16 B), we observe that the conformation of the brush equilibrated in H20 

is collapsed at the interface brush/silicon (z = 0) with a volume fraction of 0.78 and 

then it decreases monotonically in the direction of the water. The brush conformation 

changes dramatically when the hydrogel is brought into contact with the brush and the 

pressure is applied because it shows a sharp interface at the furthest extremity of the 

brush from the silicon wafer. We believe this sharp interface corresponds to that 

between the brush and hydrogel because the trend is consistent with all the rest from 

the same set (Fig 5.16 B) and the same effect is observed for the 111 A thick brush 

(Fig 5.15). This change in conformation of the brush when the hydrogel is brought 

into contact does not directly confmn to the presence of interpenetration but it could 

suggest a possible contribution. To have a better idea of the role of the sharp interface 

in the direction of the hydrogeVwater system we compare the conformation of the 

PDMAEMA brush at different thickness. The thickness is an important parameter 

because interpenetration is expected to be more likely to have place as the thickness 

of the brush increases. At the same time, a thicker brush has a larger molecular weight 

(for the same grafting density) which implies a larger number of amino groups 

interacting with the carboxylic groups of the PMAA hydrogel. We therefore compare 

in Fig 5.17 the volume fraction profile of Ill, 147 and 200 A thick PDMAEMA 

brushes equilibrated at pH 5.8, in contact with the PMAA hydrogel after 15-20 kPa 

pressure is applied and released. 
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Fig 5.17 The conformation of brushes of thickness Ill, 147 and 200 A in contact with 

the hydrogel, in water environment, after a pressure of 15 kPa was applied for 15 min 

before being released. 

The 111 A thick brush, close to the silicon, has a volume fraction of 50% due to the 

water and 50% due to the polymer, and shows a sharp interface close to the hydrogel. 

The 147 A thick brush assumes a more collapsed conformation close to the silicon 

wafer, with 30% water and 70% polymer, and a sharp interface close to the hydrogel; 

a similar trend is observed for the 200 A thick brush. The sharp interface, in the 

direction of the hydrogel, presents the same volume fraction value of 50% of polymer 

and 50% of water for all the analyzed thicknesses. This is important because it shows 

that the concentration of polymer and consequently the degree of ionization at the 

interface is the same and is independent of the brush thickness. This consideration 

supports the claim that the sharp interface corresponds to the brush/hydrogel interface. 

We emphasize again that we cannot prove the location of the hydrogel at the 

extremity of the brush, but we believe this to be a reasonable conclusion from the 

data. A similar effect is reported by Kusumo [14], studying the absorption of bovine 

serum albumin (BSA), as a function of the PDMAEMA brush grafting density. They 

describe a linear increase in the concentration of BSA adsorbed as a function of the 

increasing of the grafting density of the PDMAEMA at the surface. They observed the 

average number of DMAEMA monomers per BSA bond remains constant as the 
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concentration of monomer at the surface increases; in our case the concentration of 

PDMAEMA at the interface with the hydrogel remains the same when the brush 

thickness changes. 

Looking in greater detail at the conformations of 111 and 147 A thick brush, we can 

observe that the only difference is in the value of the volume fraction closer to the 

silicon wafer. 

The swelling of the 147 A thick brush is similar to the 111 A thick brush and it only 

extends up to 300 A. The main difference in the two conformations is in the volume 

fraction of the collapsed polymer closer to the silicon wafer, 50% for the 111 A thick 

brush and 75% for the 147 A thick brush. In the case of200 A thick brush, the volume 

fraction closer to the silicon is similar to 147 A thick brush and the main difference is 

in the amount of swelling of the polymer which extends to 422 A. The height h of the 

brush is calculated the using [15] 

00 

f z l/>(z) dz 
(5.7) 

h=2---"o~---
00 

f l/>(z) dz 
o 

The collapsed layer, close to the substrate, is not expected to play any role in the 

adhesion process because it is considered too far from the interface. For the 200 A 

thick brush, the volume fraction of the polymer close to the substrate is similar to that 

of the 147 A thick brush, but the amount of polymer swollen is much larger, as shown 

in Fig 5.17, suggesting that the brush with the larger thickness presents a larger 

number of amino groups available to form long-range interactions with the carboxylic 

groups of the hydrogel. 

In conclusion the neutron reflectivity experiments of the brush in contact with the 

hydrogel when the pressure is applied and released suggest that the main mechanism 

of interaction between the brush and hydrogel is due to the electrostatic interaction 

between the amino group of the brush and the carboxylic group of the hydrogel at the 

interface. From the resulting volume fraction-depth profiles, there is no evidence of 

any interpenetration of the brush chains into the hydrogel, because each set of data 

shows a sharp profile close to where we expected the hydrogel to be located. The 

comparison of the brush profile at different brush thickness shows that the 
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composition of the polymer at the interface is the same and is independent of the 

brush thickness. The amount of polymer swollen is larger for thicker brushes 

suggesting a larger contribution of long-range interactions between the amino group 

of the brush chains and the carboxylic group of the PMAA hydrogel as the thickness 

of the brush increases. 

5.5.3 Thermodynamic work of adhesion between PDMAEMA brush of 

different thickness. 

The neutron reflectivity experiments suggest that the dominant mechanism of 

interaction between the brush and the hydrogel is an interfacial effect. The brush and 

the hydrogel are both polyelectrolytes and they can interact electrostatically between 

the amino group of the brush and the carboxylic group of the hydrogel, or through 

hydrogen bonds. The comparison of brush thicknesses of 111, 147 and 200 A, in the 

same range of applied and released pressure and in contact with the PMAA hydrogel, 

shows that the amount of polymer at the hydrogellbrush interface is the same, 50% 

polymer and 50% water, and is independent of the brush thickness. At the same time, 

an increase in brush thickness, from 147 A to 200 A, leads to a larger amount of 

swollen polymer, suggesting an increase in long-range interactions with the hydrogel. 

We performed adhesion experiments to understand if the thermodynamic work of 

adhesion between the brush and the hydrogel is a function of the brush thickness. The 

experiments are performed using the same experimental procedure as that described 

above; we compare the thermodynamic work of adhesion for a 200 and 90 A thick 

brush in contact with the hydrogel. 



5.00E+02 r------------------------, 

;:;' 4.00E+02 
E 

....... ,., 
E 
"-" 3.00E+02 
c 
o 
III 
Q) 

€ 2.00E+02 
III ... 
o 
~ 

~ 1.00E+02 
~ 

• 

• 

• • PDMAEMA brush 200 $.. 

• PDMAEMA brush 90 $.. 

• • • 
• • 

o .OOE+OO -t----,...-----r------r---r----..---.....----~ 

o 5 10 15 20 25 30 35 

stress (kPa) 

135 

Fig 5.18 Themodynamic work of adhesion of the brusWhydrogel system for a 200 A 

thick brush and the 90 A thick brush. 

The thermodynamic work of adhesion between the brush and the hydrogel is a clear 

function of the brush thickness. In the case of the thinner brush, 90 A, the 

thermodynamic work of adhesion is almost half than the thicker brush, 200 A, and is 

less dependent on the applied pressure. This difference in the thermodynamic work of 

adhesion could suggest a mechanism of interpenetration of the brush chains into the 

hydrogel as the brush thickness increases. As discussed in section 5.5.2, the volume 

fraction profiles of the brush, in the same range of thickness, (Fig 5.17), allows us to 

discard this mechanism of interaction. This difference in the thermodynamic work of 

adhesion as a function of the brush thickness could be justified by considering that a 

thicker brush has a larger number of available amino groups that can interact with the 

carboxylic groups of the PMAA hydrogel than the brush of smaller thickness. This is 

in agreement with the conclusions that we drew from the volume fraction profiles of 

the brush over the same thickness range. 

5.5.4 Replacing PDMAEMA brush with a PDMAEMA gel film 

For a better understanding of the role of the interpenetration mechanism of the brush 

chains into the hydrogel, we performed some experiments with the JKR set-up by 
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substituting the PDMAEMA brush with a PDMAEMA gel thin film [16, 17] ill 

contact with the PMAA hydrogel, Fig 5.19. 

" -­... 'AU ,.' -

Fig 5.19 Difference in the three dimensional topology of a brush with a gel film. The gel 

film does not have any free chains that interpenetrate the gel. 

The idea behind these experiments is to compare the value of adhesion energy 

between two substrates coated with the same PDMAEMA but with the polymer 

having a different three-dimensional structure. The brushes, with extended chains in 

the z direction, are likely to interpenetrate the hydrogel. The gel film is photo­

crosslinked with the PBMA on an initiator coated silicon surface and will respond to 

changes in pH but, in contrast with the brush, it has a very low probability of 

significant interpenetration due to the small quantity of free dangling ends. The 

synthesis and the deposition of the PDMAEMA gel film have been described in 

detailed in section 4.3. 

Fig 5.20 shows a plot of thermodynamic work of adhesion calculated in the unloading 

regime as a function of the stress for a PMAA hydrogel in contact the 110 A thick 

PDMAEMA gel film, and in contact with a 90 A thick PDMAEMA brush. 

All the experiments have been performed in water solution at pH 5.8. 
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Fig 5.20 Thermodynamic work of adhesion of a brush/hydrogel system and hydrogeUgel 

film system. The brush and the gel films have similar thicknesses. 

The thermodynamic work of adhesion in the case of the PDMAEMA brush and gel 

film with similar thicknesses, 90 and 110 A respectively, has the same order of 

magnitude. The brush is rather thin for studying the interpenetration effect but, in any 

case, we see from the neutron reflectivity experiments no dramatic change in the 

conformation of the brush as a function of the thickness is observed. The comparison 

of the thermodynamic work of adhesion for the brush and the gel film surface in the 

same range of thickness suggests that the interpenetration mechanism is unlikely to 

happen and confirms that the surface effect is the main mechanism of interaction. 

5.6 Conclusion 

In this chapter, we studied the interaction between oppositely charged 

polyelectrolytes. In particular we focus on the interaction between a weak base brush, 

PDMAEMA, grafted from a silicon surface and a weak polyacid hydrogel, 

synthesised from the MAA monomer. The brush and gel are both pH responsive. The 

weak poly base brush is positively charged in acid pH and uncharged in base pH while 

the weak polyacid hydrogel is charged in basic conditions and uncharged in acid pH. 

The amount of charges on both polymers causes the swelling of the polymer chains 

because the polymers uptake water to minimize the repulsion forces between the 
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charges. To quantify the adhesion between the brush and the hydrogel we synthesised 

the hydrogel in a hemispherical shape and we performed kinetics experiments using a 

modified JKR set-up. Using the camera and the light we can observe and collect the 

changing of contact diameter of the hydrogel at the beginning, when the hydrogel is 

added on the brush surface, when the load is applied and when it is removed. We 

performed these experiments at pH 2, 3.4 and 5.8. We observe that the interaction 

between the brush and the hydrogel is a function of the pH. If the gel and the brush 

are equilibrated at pH 2 they do not adhere, i.e. the value of the contact diameter after 

the load is removed is the same as that before it was applied, showing no adhesion 

between the brush and the hydrogel. If they are equilibrated above pH 3, they adhere 

very strongly, marked by a large increase in contact diameter after the load is 

removed than before it was applied; the only way to separate the two components is to 

tear the brush off the surface, or to rupture the gel. If they are equilibrated at pH 3.4 

the final value of contact diameter, after the unloading, is larger than at the beginning 

but smaller than at pH 5.8. 

At the same time, we demonstrate that the adhesion is switchable and triggered by the 

pH; If the two components initially in contact at pH 5.8 (strong adhesion) are 

equilibrated at pH 1 the gel detaches from the brush without damaging either and the 

system may be used again. 

To quantify the adhesion between the brush and the hydrogel we used the JKR 

equation where the thermodynamic work of adhesion is a function of the radius of 

curvature of the hydrogel lens, the applied load, the bulk modulus of the lens and the 

area of contact between the brush and the hydrogel after that the load is removed 

(unloading stage). We performed the experiments by applying different loads and we 

observe that the interaction between the brush and the gel has a "pressure effect" in 

that adhesion energy increases as larger loads are applied and removed. This suggests 

that probably more than one mechanism is involved in the adhesion process. We 

therefore hypothesize that the interaction between the brush and hydrogel could be 

pressure sensitive due to interfacial (e.g. electrostatic) or for interdigitation effects or 

the actual mechanism could be a mixture of both interfacial and interdigitation effects 

whose contributions may vary over a range of applied pressures. 

We performed some other experiments and the interfacial (surface) mechanism seems 

to be the dominant mechanism in the interaction between the brush and the hydrogel. 
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The neutron reflectivity experiments of the brush in contact with the hydrogel when 

the pressure is applied and released allow observation of the behaviour of the brush 

under the same condition as we performed the JKR adhesion experiments. From the 

neutron reflectivity profile, there is no evidence of any interpenetration of the brush 

chains into the hydrogel, because for each increased value of applied pressure, the 

data show a sharp profile close to where we expect the hydrogel to be located. The 

comparison of the brush profile at different brush thickness (111, 147 and 200 A) 

shows that the composition of the polymer at the interface is the same and is 

independent of the brush thickness. The amount of polymer swollen is larger for 

thicker brushes suggesting a large contribution of long-range interaction between the 

amino group of the brush chains and the carboxylic group of the PMAA hydrogel as 

the thickness of the brush increases. To confIrm this behaviour, we performed 

adhesion experiments to understand if the thermodynamic work of adhesion between 

the brush and the hydrogel is a function of the brush thickness. The comparison of the 

thermodynamic work of adhesion for a 200 and 90 A thick brush in contact with the 

hydrogel show the thicker brush has a large value of the thermodynamic work of 

adhesion. This result is in agreement with the volume fraction profile of the brush 

because a thicker brush has a larger number of available amino groups that can 

interact with the carboxylic groups of the PMAA hydrogel than the brush of smaller 

thickness. Finally, to exclude any interpenetration of the brush chains into the 

hydrogel, we performed some experiments with the JKR set-up by substituting the 

PDMAEMA brush system with a PDMAEMA gel thin film in contact with the 

PMAA hydrogel in the same range of thickness. A comparison of the thermodynamic 

work of adhesion between the systems containing PDMAEMA brush and gel films 

does not show any dependence on the topology of the polymer suggesting that the 

interpenetration mechanism it is unlikely to happen and confirms that the surface 

effect is the main mechanism of interaction. 
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Chapter 6 

Total work of adhesion 

6.1 Introduction 

Adhesion is a well-studied phenomenon, mainly due to its industrial importance. In 

our research we are studying a smart water-based adhesive that is switchable, i.e. the 

adhesion may be turned on and off by a change in pH. 

In the previous chapter, we discussed the phenomenological effect of when an 

oppositely charged polyelectrolyte brush and hydrogel are brought into in contact. 

The investigated interaction is between poly[2-(dimethyl amino)ethyl methacrylate] 

(PDMAEMA, the weak poly base ) brushes chemically grafted to planar silicon 

substrates by atom transfer radical polymerization, and a weak polyacid hydrogel of 

poly(methacrylic acid) (PMAA). We identified that below pH 2, the brush and the 

hydrogel do not adhere but, above pH 3, the brush and the hydrogel interact strongly 

and they can be separated only by ripping them apart, damaging one or both of the 

two components [1]. 

The interaction between brush and gel is switchable if the system, after the two 

components are brought into contact, is equilibrated in acid pH, such as pH 1, when 

the brush and the gel are released without any damage. 

We also discovered that the interaction between the brush and hydrogel is pressure 

sensitive [2] and that the work of adhesion is a function of the applied load. 
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The experimental data, described in the previous chapter, suggest that the dominant 

mechanism of interaction between the brush and the hydrogel is an interfacial effect 

between the amino group of the brush side chains and the carboxylic groups of the 

pMAA hydrogel; there is no clear evidence of any interpenetration mechanism of the 

brush chains into the hydrogeL The brush volume fraction profiles, obtained by 

neutron reflectivity experiments show that, at the hydrogellbrush interface the brush 

has the same composition of polymer and water independently of the brush 

thicknesses, 50% polymer and 50% water. On the other hand, the amount of swollen 

polymer is a function of the brush thickness. In particular, in fig 5.17, we have 

compared the behaviour of 111, 147 and 200 A thick brushes in contact with the 

hydrogel in water solution after a known load has been applied and released. The 

brush chains at 111 and 147 A thickness are stretched reaching a value of 286-306 A, 

while at 200 A thick brush the chains are extended to 422 A [4]. The JKR 

experiments show a dependence of the thermodynamic work of adhesion as a function 

of increasing brush thickness, due to the long-range interaction between the charged 

and uncharged amino groups in the brush chains and the charged and uncharged 

carboxylic groups in the hydrogeL 

In the previous chapter we described experiments using a modified JKR apparatus 

where observed changes in the contact diameter of the hydrogel in contact with the 

brush surface, using a camera and a light source placed beside the geL To increase the 

interaction between the brush and the hydrogel some known loads were applied on the 

top of the gel for 15 min and then they were removed quickly. During the unloading 

stage, the hydrogel would release part of the energy gained during the application of 

the load. Using the JKR equation, we calculate the thermodynamic work of adhesion 

in the unloading regime taking into account the value of contact radius after the load 

was removed; we also deduce the radius of curvature and the elastic modulus of the 

lens. 

In this chapter, we introduce a similar kind of experiment but in this case we want to 

calculate the energy necessary to separate the hydrogel from the brush after a known 

force has been applied to increase their contact. This energy is especially important 

for industrial application because it gives a real idea of the strength of the adhesion 

between the brush and the hydrogel. 
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In the literature the work closest to our study is the measurement of the work of 

adhesion of two oppositely charged hard spheres of mica and silica in air [5]. These 

experiments were performed at the contact between the two spheres where a 

maximum force of 200 mN, corresponded to a contact radius of 65 /lm. In this 

condition, the pull-off force in the unloading stage was equal to 73 mN, and the work 

of adhesion, calculated using the JKR model, was equal to 1000 mJ/m2
, while the 

work of adhesion calculated by integrating the force-distance curve was equal to 

6000 mJ/m2
• This difference may be explained by considering that the silica and mica 

interaction is due to the contribution van der Waals and electrostatic forces. Barthel 

[6] showed that the contribution of each component on the total work of adhesion can 

be isolated if they are different by at least an order of magnitude. This principle, when 

applied to the mica/silica system, showed that the JKR model takes into account the 

short range contribution while the pull-off force and force-distance integral takes into 

account both short and long range forces. 

In our case, we cannot use the JKR equation to calculate the contribution of the short 

range interaction in the hydrogel/brush system because the hydrogel is a soft material, 

and it dissipates energy when it is pulled off from the surface and the JKR 

mathematical model is only valid for pure elastic bodies. For this reason, the work of 

adhesion of the hydrogel-brush system has been calculated as the integral of force­

displacement curves, which takes into account all of the contributions that participate 

in the adhesion between the two surfaces, such as viscoelastic dissipation in the 

hydrogel, and long and short range interactions. The contribution of the different 

effects was analysed by changing the thickness of the brush surface; the three­

dimensional structure of the film on the surface; the kind of polymer in contact with 

the hydrogel; and the amount of crosslinker in the hydrogel. 

6.2 Content of the chapter 

Our experiments show that there is a dependence of the brush thickness on the work 

of adhesion obtained for the same pH and percentage of crosslinker in the hydrogel. 

For different brush thicknesses, the relative contributions to the adhesion from 

charges, and hydrogen bonds vary as shown in the previous chapter. For this reason 

we performed experiments to isolate, as much as possible, the contribution of each 
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parameter to the total work of adhesion. This strategy included changing the topology 

of the polymer on the silicon surface from a brush to a crosslinked polymer film, 

which we shall refer to as a gel film, and varying the crosslinker density of the 

hydrogel. Another important parameter that contributes to the energy to separate the 

hydrogel from the brush is the viscoelastic dissipation of the hydrogel. Viscoelasticity 

concerns the behaviour of a polymer when subject to a deformation and implies a 

mixture of liquid like viscous properties with a solid like elastic behaviour; in general, 

the material loses energy when a mechanical stress is applied and released [7]. The 

latter is a key parameter in the total work of adhesion, because the stronger the 

interaction at the interface between the hydrogel and brush, the larger the contribution 

of the viscoelastic dissipation of the hydrogel. This is because the polymer network, 

strongly bonded to the brush surface, can be highly stretched. 

To study the contribution of changes on the total work of adhesion in the brush­

hydrogel system, we performed pull-off experiments between the PDMAEMA gel 

film of different thicknesses with a more crosslinked PMAA hydrogel to increase the 

mechanical strength of the network [7] and consequently minimize the contributions 

of viscoelastic dissipation of the hydrogel and the interpenetration effect. The 

contribution of the interpenetration effect on the total work of adhesion is studied by 

neutron reflectivity experiments by comparing the conformation of the brush as a 

function of thickness under the same condition of pH, hydrogel crosslinking and load 

applied at the interface. The neutron reflectivity results show no conclusive evidence 

of interpenetration, but do not exclude a contribution especially at larger brush 

thicknesses; so to eliminate any possibility of interpenetration, we studied the 

contribution of the electrostatic charge on the PDMAEMA gel film instead of the 

brush. 

The brushes, with extended chains in the z direction, i.e. perpendicular to the surface, 

are, in principle, able to penetrate into hydrogel. The gel film [8], on the other hand, is 

photo-crosslinked on a modified silicon surface and can respond to changes in pH but, 

in contrast to the brush, there is a very low possibility that free chains can 

interpenetrate the gel. 

These experiments show that an increased electrostatic contribution contributes 

significantly to the brush-hydrogel total work of adhesion with the increasing ~arg~ 

thickness. 
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The contribution of hydrogen bonding in the PDMAEMA brush-hydrogel system is 

studied by substituting the PDMAEMA brush with a PHEMA (poly[2-(hydroxyethyl 

methacrylate)]) gel film [9] photo-crosslinked on an initiator modified silicon surface. 

PHEMA has a similar chemical structure to PDMAEMA and is soluble in water. It is 

characterized by an alcohol functional group that makes the PHEMA a much weaker 

polyacid than the PMAA . PHEMA can chemically interact with a PMAA hydrogel 

through hydrogen bonding. The experiments show a small contribution of hydrogen 

bonding to the total work of adhesion. 

As we pointed out earlier in this chapter we are mainly considering pull-off 

experiments where the thickness of the PDMAEMA brush, PDMAEMA gel film, and 

the crosslink percentage of the PMAA hydrogel are all varied. 

The kind of surfaces, brush or gel film, the thicknesses of the polymer layer and the 

crosslinker densities of the hydrogel are listed in Table 6.1. 
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sample system %crosslinker (w/w) Monomer/crosslinker 

PMAA045 PMAA hydrogel 0.45 123 

PMAA069 PMAA hydrogel 0.69 81 

PMAA093 PMAA hydrogel 0.93 60 

PMAA3 PMAA hydrogel 3 18 

sample system Thickness (A) 

PDB28 PDMAEMA brush 28 

PDB132 PDMAEMA brush 132 

PDB165 PDMAEMA brush 165 

PDB311 PDMAEMA brush 311 

PDG23 PDMAEMA gel film 23 

PDGl19 PDMAEMA gel film 119 

PDG340 PDMAEMA gel film 340 

PHEMA40 PHEMA gel film 40 

Table 6.1 PMAA045, PMAA093, PMAA069, PMAA3 refer to a PMAA hydrogel 

synthesised with respectively 0.45%, 0.93%), 0.69%, and 3% (w/w) crosslinker by weight 

in the toto/solution. Those quantities of crosslinker means that the gels have an average 

number of monomers per crosslinker as shown in the fourth column. PDB28, PDBI32, 

PDBI65, and PDB311 are PDMAEMA brushes with respective thickness of28, 132, 165, 

and 311 A. PDG28, PDGI19, and PDG340 are the PDMAEMA gel films with respective 

thickness of28, 119,340 A. PHEMA40 is the PHEMA gel film of 40 A thickness. 

6.3 Interaction of the PDMAEMA brush with the PMAA hydrogel. 

In the previous chapter we described experiments whereby the PDMAEMA brush and 

the PMAA hydrogel adhere strongly at neutral pH conditions, but if the system is 

equilibrated in acid conditions, such as pH 1, the brush and hydrogel come apart 

without any damage. In this section, we shall focus on the contribution of the different 

parameters to the total adhesion of the brush-hydrogel system in water at pH 5.8. The 

total work of adhesion is measured using a mechanical tester as described in section 



147 

4.4.2. This set-up constitutes three parts: a light source, a camera and a liquid cell as 

shown in Fig 6.1 . 

--Micromanipulator 

- -- gel 

water 

A) 
B) 

Fig 6.1 A)The pull-off set-up with the camera on the right, the light on the left and the 

liquid cell in the centre. The liquid cell contains the silicon wafer covered with a polymer 

film. Behind the liquid cell, the micromanipulator with the force tester brings the gel 

into contact and pull-off from the surface. B) Schematic representation of the liquid cell 

for the pull-off experiments. The hydrogel is connected by a sample holder to the 

micromanipulator that brings the gel into contact with and pulls off from the polymer­

coated silicon wafer. 

The liquid cell, where the experiments are performed, is situated between the light 

and a high resolution camera, and the gel is observed from the side. The silicon disk is 

fixed onto a glass cell of 7 cm diameter with two glass clamps. The hydrogel lens, 

mechanically attached to the force tester using a Perspex support, is brought into 

contact with the silicon disk and pulled off by a micromanipulator connected to a 

100 g force transducer. The micromanipulator is set to a speed of 20 ~m/s in both the 

loading and the unloading stage. The experimental procedure consists of clamping the 

disk onto the glass support and leaving the solution to equilibrate for two hours, after 

which a hemispherical gel is clamped onto the Perspex support and brought into 

contact with the wafer until the chosen force is reached. The gel and the wafer are left 

in contact for 15 min and then the gel is pulled upwards until it is detached from the 

surface. 



148 

The micromanipulator machine, connected to a computer, measures the variation of 

force as a function of time. In Fig 6.2 we show typical data. 
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Fig 6.2 Typical data from the pull-off apparatus, showing the variation of the applied 

force on the hydrogel-brush system as a function of time. (a) The gel is close to the 

surface but is not in contact; this part gives the background of the experiment. 

Afterwards, (b) the gel is brought into contact with the surface at 14 ,...mJs until a final 

forces of 20 mN is applied. This force is kept constant for 15 mins (c) and then the gel is 

retracted with a velocity of 14 ,...mJs until (d) it is ripped off. 

The graph, shown in Fig 6.2, can be divided into 4 parts: 

a) the background, when the gel is close to the surface but not in contact; 

b) the loading regime, when the gel is brought into contact with the surface; 

c) equilibration, when the gel is kept for 15 min in contact with the surface under a 

constant applied force; and 

d) the unloading regime, where the gel is pulled until it is detached from the surface. 

For each sample surface, these experiments are performed with three different 

hydrogel lens where the values of total work of adhesion have been averaged to a 

final result and the error bars are presented as the standard deviation of these three 

measurements; any possible systematic uncertainties are not therefore included. The 

work of adhesion has been calculated in the unloading regime by integrating the 
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variation of the force with respect to displacement, calculated by multiplying the time 

for the velocity of pull-off. The camera and the light, placed on either side of the 

liquid cell are used to monitor the variation of contact diameter of the lens with the 

brush. These pull-off experiments have been performed using different hydrogel 

crosslink densities and different kinds of polymer brush or gel films. 

We first describe experiments measuring pull-off forces for the PMAA hydrogel 

synthesised using 0.45% crosslinker, (PMAA045), with PDMAEMA brushes in the 

thickness range of28 A to 311 A, PDB28, PDB132, PDB165, and PDB311. 
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Fig 6.3 The dependence of the work of adhesion as a function of the PDMAEMA brush 

thickness. The PMAA was synthesised with 0.45 % of crosslinker (PMAA045), the same 

hydrogel as that used for the experiments described in the previous chapter. 

The graph in Fig 6.3, shows a strong dependence of the work of adhesion of 

PMAA045 with the PDMAEMA brushes as a function of the brush thickness, of 

which two different regions can be recognized. In the region PDB28-140, the value of 

the work of adhesion is a third of the value in the region from PDB 165 which allows 

us to conclude that two different kinds of mechanism are involved in the detachment 

process. In the unloading process, in the range PDB28-140, the failure of the hydrogel 

takes place at the interface between the hydrogel and the brush and the mechanism is 

adhesive. In the range from PDB 165 to PDB311, the fracture is cohesive with the 

hydrogel breaking. Here, the chemical bonds in the hydrogel are weaker than the 

interface between the hydrogel and the brush and so the hydrogel is broken before the 
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interface is separated. The work of adhesion at the interface, calculated in this range 

of thickness, is greater than the total work of adhesion measured here because the 

hydrogel breaks before it can be separated from the interface, but it gives an idea how 

strong the brush-hydrogel interface is at larger brush thicknesses. 

We observe adhesive and cohesive mechanisms in situ by a camera just before the 

hydrogel is pulled off and by a microscope, where we analyse under dry conditions, 

the surface at the location where the gel was in contact. 

I PDB28 

IPDB132 

I PDB165 I 

I PDB311 I 
• 

1 mm 

~ 
Fig 6.4 Photographs showing (a) the hydrogel in contact with the surface, just before 

being separated, for different brush thicknesses. These images are collected in situ by a 

camera. The neck, visible for PDB165 and PDB311, shows the cohesive mechanism of 

failure into the hydrogel. This neck is absent for PDB28 and PDB132, and so the 

mechanism of failure is adhesive at the hydrogel-brush interface. The microscope 

pictures (b) show the spot of the surface from where the hydrogel was removed. These 

spots highlight the cohesive mechanism for PDB165 and PDB311 because there are 
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pieces of gel remaining on the surface. By the same reasoning the mechanism is adhesive 

for PDB28 and PDB132 A because there is no remaining hydrogel on the surface. 

The microscope pictures Fig 6.4 (b) of the brush surface, after the gel has been pulled 

off, show pieces of gel on the surfaces (PDBI65 and PDB311) that are actually 

visible by eye as well. This means that the chemical bonds in the hydrogel are weaker 

than the interface brush-gel, and so the failure is cohesive. The interface hydrogel­

brush is so strong that the hydrogel, before breakage, is visibly deformed [10] due to 

the stretching of the chains inside the hydrogel. The gel (Fig 6.4 (a)) is more 

deformed when it is in contact with the PDB340 surface than when it is in contact 

with the PDB165 surface. Some differences can also be observed in the microscope 

images of the fracture of the gel on the PDBI65 and PDB340 surfaces such as the 

amount of hydrogel remaining on the surface where there is much more gel remaining 

on the PDB340 surface than on the PDBI65 surface. 

The hydrogel is detached from the interface with PDB28 and PDBI32 apparently 

without any large viscoelastic dissipation; any strong lens deformation such as that for 

the thicker brush was not observed. In addition, the microscope images of the surface 

PDB28 and PDBI32 do not show any remains of the hydrogel, Fig 6.4, making the 

mechanism adhesive. There is not a great difference in the work of adhesion between 

the hydrogel and PDB28 and PDBI32; which suggests that probably only the 

interfacial layer is involved in the adhesion process. 

From Fig 6.3 we can observe that the threshold between the adhesive and cohesive 

failure is narrow and is of the order of 30 A, switching from one to the other in the 

range of 132 and 165 A brush thickness. We do not have an explanation for the 

sharpness of this jump from adhesive to cohesive failure but from the neutron 

reflectivity experiments, bringing the PMAA hydrogel into contact with the 

PDMAEMA brush for different thicknesses, we can offer speculative suggestions, 

also these are discussed below. 
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Fig 6.5 The conformation of brushes of thickness 111, 147 and 200 A in contact with the 

hydrogel, in water environment, after a pressure of 150 mN was applied for 15 min and 

then released. 

Fig 6.5 shows the confonnation of brushes of Ill, 147 and 200 A thickness, indicated 

as PDBll1, PDB147 and PDB200; the ordinates represent the volume fraction of the 

polymer, as a function of the distance from the silicon wafer at z = O. We have 

already explained this confonnation in section 5.5.2, observing that the applied 

pressure pushes the polyelectrolyte brush film close to the silicon wafer. We shall 

analyze the confonnation from a different point of view, by correlating the brush 

conformation to the work of adhesion, which should help understand the jump in the 

total work of adhesion between 132 and 165 A. 

The confonnation of the brushes PDBlll, PDB147 and PDB200 show a sharp 

interface in the direction of the hydrogel with a consistent composition of 50% water 

and 50% polymer showing that the concentration of polymer and consequently the 

degree of ionization at the interface is the same and is independent of the brush 

thickness. The brush composition at the hydrogcl/brush interface might explain the 

results for PDB28 and PDB132, which does not show any large difference in energy 

of adhesion: this SlH!Qests tlmt only the interface of the hvdrogel with the pol:'mcr -_. ., 

bru h la .'cr i in 1· d in thc adh sion Droc~ss in this ramIe of thiclu'1\: '-- . ~ 
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The amount of swelling of the PDB147 is similar to the PDBll1, i.e. the brush 

extends to between 280 and 310 A from the silicon surface, while for the PDB200 the 

film extends to 420 A [4]. In the case of PDB200, the amount of polymer swollen is 

much larger, and consequently the brush presents more amino groups available to 

form long-range interactions with the carboxylic groups into the hydrogel. The 

addition of these long-range forces to the interaction at the brush/hydrogel interface 

might explain the threshold and the change of mechanism of failure from adhesive to 

cohesive in the range of 132-165 A brush thickness. 

6.4 Contributions to the brush-hydrogel interaction 

The adhesion experiments, in the unloading regime, show a strong dependence of thc 

work of adhesion on the brush thickness. We suppose that the main parameters, 

responsible for the large adhesion energy, are: 

• viscoelastic dissipation of the hydrogel; 

• the electrostatic effect; and 

• hydrogen bonding. 

Each parameter is discussed separately to understa..lJ.d its contribution to the total work 

of adhesion in the unloading regime. In this chapter, we dismiss the contribution of 

the intcfocnctration of the bnlsh chains the hvdroe:el because. from the neutron 
.A. .. '-"' -

reflectivity experiments, shown in section 5.5.2, we have no conclusive evidence of 

t;.~.1 CG~t~'ihirtinn oi tbe viscoelastic dissipation of the hydrogel 
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(Fig 6.4). When the hydrogel is pulled from the brush surface, the polymer chains 

inside the hydrogel can be highly stretched, losing more energy before being 

separated from the brush surface. The contribution of viscoelastic dissipation of the 

hydrogel is a function of the strength of the brush/hydrogel interface. We demonstrate 

here that the hydrogel dissipates more energy as the brush thickness increases because 

the hydrogel-brush interface is stronger than that for thinner brushes and the rupture 

may not take place at the hydrogel-brush interface but within the hydrogel. 

In Fig 6.6 we compare the behaviour of the PMAA045 in contact with PDB311 and 

PDB132. This graph shows the variation of contact diameter and pull-off force, as a 

[unction of time, in the unloading stage, after the hydrogel had been kept in contact 

with the brush surface for 15 min at constant force to ensure equilibration. 
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Fig 6.6 Variation of contact diameter and pull-off force as a function of time in the 

unloading stage for brushes of thickness 132 and 311 A in contact with the PMAA 

hydrogel with 0.45 % of crosslinker (PMAA045). 

In the case of the PDB311 , the pull-off force increases monotonically until it reaches 

a maximum of 85 rnN and then the force drops to zero. At the same time the contact 

diameter is reduced from 1.3 to 0.95 mm and then remains constant for 20 s before 

decreasing quickly until it reaches zero, when the gel detaches from the surface. In the 

particular case of PDB31l , the hydrogel is detached from the surface cohesively 

because the chemical bonds of the hydrogel are weaker than the hydrogel bru h 

interface' evidence of this mechanism is shown in Fig 6.4. 
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In the case of PDB 132, the same trend is observed as for the PDB311; the force 

increases monotonically until a maximum of 35 mN is reached and then it decreases 

quickly to zero. The contact diameter decreases from 1.2 to 1 mm, is constant for lOs 

and then decreases until the gel is detached from the surface in an adhesive 

mechanism. It is important to notice that for both thicknesses, the contact diameter is 

constant while the force increases monotonically; this trend shows that the hydrogel is 

deformed without affecting the interface, and releases energy ( eventually by heat) by 

stretching the chains inside the hydrogel as viscoelastic dissipation. The dissipation 

energy is larger in the case of PDB311, where the contact diameter is constant for 20 

s, than for the PDB 132, where the contact diameter is constant for lOs. When the 

pull-off energy becomes too large, the hydrogel-brush interface fails with a different 

mechanism, which depends on the brush thickness. In the case of the PDB132, the 

hydrogel-brush interface starts to be tom off and eventually separated. In the case of 

the PDB311, the hydrogel-brush interface is not modified but the hydrogel itself 

ruptures. 

The energy dissipation of the hydrogel contributes to the total work of adhesion but its 

contribution is larger for the PDB311, because the brush-hydrogel interface is 

stronger than for the interface with PDB132; this suggests that other parameters 

contribute to the total work of adhesion, causing the adhesive and cohesive 

mechanism of detachment of the PMAA hydrogel with the brushes of different 

thickness. 

To estimate the contribution of the viscoelastic dissipation in the hydrogel to the total 

work of adhesion, we performed adhesion experiments by using identical brush 

samples but changing the crosslink percentage of the PMAA hydrogel. 

In order to analyse our data concerning the effect of the viscoelastic dissipation, we 

need the modulus of the hydrogel, which is calculated by measuring the variation of 

the contact diameter when known loads are applied. These experiments have been 

perfonned on a silicon surface in the loading feginle and the experimental POii"its are 

fitted using the Hertz equation [11]. The moduli are of the order of lVlPa and are listed 

in Table 6.2. 
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Hydrogel Elastic Modulus (MPa) 

PMAA3 5.58 

PMAA093 0.25 

PMAA069 0.18 

PMAA045 0.17 

Table 6.2 Elastic moduli of the PMAA hydrogels of different crosslinking densities. 

The contribution of the dissipation energy can be demonstrated by comparing the 

trend of the contact diameter as a function of the pull-off force in the unloading stage 

for the 311 A thick PDMAEMA brush bought into contact with PMAA045 or 

PMAA3. 
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Fig 6.7 Comparison of the variation of the force and contact diameter (C.D.) as a 

function of the time for the 311 A thick PDMAEMA brush in contact with the PMAA3 

and PMAA045 hydrogels. 

As can be seen in Fig 6.7, the PMAA3 does not establish a constant contact diameter 

as the force increases monotonically, unlike the PMAA045. This demonstrates that 

the contribution of the viscoelastic dissipation to the total work of adhesion is lower at 

large hydrogel crosslinking because its material strength is increasing. We also 
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investigated different PMAA crosslinking densities to understand if this parameter 

also influences the mechanism of detachment of the hydrogel from the brush. 

Fig 6.8 shows the total work of adhesion for the PDB311 in contact with PMAA 

hydrogel at 0.45, 0.69, 0.93 and 3% crosslinking percentage. The amount of 

crosslinker influences the swelling of the hydrogel as well such that the hydrogel with 

the greater percentage of crosslinker has the lowest radius of curvature and radius of 

contact between brush and gel for the same applied force in comparison with the other 

crosslinking densities studied. 
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Fig 6.8 Dependence of the work of adhesion as a function of the amount of PMAA 

crosslinker for the interaction with a 311 A thick PDMAEMA brush. 

Fig 6.8 shows some dependence between the total work of adhesion and the amount 

of crosslinker but a difference in the mechanism of detachment can be observed as , 

the crosslinking density changes as shown in Fig 6.9. 



158 

I PMAA3 

I PMAA093 

I PMAA069 

I PMAA045 

Fig 6.9 Gels of different crosslin king densities just before being detached from the 

PDB311. These images are collected in situ by a camera. The neck shows the cohesive 

mechanism of failure of the chemical bonds of the hydrogel for PMAA093 PMAA069 

and PMAA045, while it is absent for PMAA3 in which case the mechanism of rupture is 

adhesive at the hydrogel-brush interface. 

The mechanism of failure is adhesive for the PMAA3 and cohesive for the 

PMAA093-PMAA045. This means the value of the total work of adhesion for the 

PMAA093, PMAA069, and PMAA045 is underestimated because the chemical bonds 

in the hydrogel fail before the gel-brush interface. We discuss below a few possible 

explanations for these different mechanisms of detachment as a function of the 

crosslinking percentage. 

One explanation could be related to the local force applied on the edge of the 

hydrogel. The PMAA045, PMAA069 and PMAA093 all have a lower modulus than 

that of PMAA3 and so the lenses are softer and more deformable, and consequently 

the force applied at the edge of the lens is locally larger for the lower crosslinking 

percentage hydrogel leading to a breakage inside the hydrogel instead of at the 

hydrogel-brush interface. In the case of the PMAA3, the lens is stiffer and ela tic and 
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the local force at the edge is not too high, leading to a breakage at the hydrogel-brush 

interface. The stiffness of the PMAA3 causes a much lower value (around 40% lower) 

of area of contact in comparison to the other studied hydrogel when the same force is 

applied. We have demonstrated that the main mechanism of interaction between the 

hydrogel/brush is the interfacial effect and the work of adhesion increases as the area 

of contact arises. In the case of PMAA3, the smaller area of contact in comparison to 

the other hydrogels studied means the system needs less energy, i.e. a smaller total 

work of adhesion, to separate the hydrogel from the brush. 

Fig 6.8 shows that the total work of adhesion is greater at PMAA093 than at 

PMAA045, probably because the PMAA093 has a larger modulus and the hydrogel 

strength is greater than in the case of PMAA045. Consequently the 

PDB3111PMAA093 system needs to spend more energy than the PDB311IPMAA045 

before the network is broken during the pull-off process. To conclude, the viscoelastic 

energy dissipation of the hydrogel plays an important role in the total work of 

adhesion between the hydrogel and the PDMAEMA brush, unlike for the systems 

shown in Fig 6.6 where the contact diameter and pull-off force change as a function of 

time for the 132 A and 311 A thick PDMAEMA brushes in contact with PMAA045. 

For these two samples, (PMAA045 / PDB311 and PMAA045 / PDB 132), the contact 

diameter is constant while the pull-off force increases monotonically; the pull-off 

force reaches a maximum and then drops to zero while the contact diameter of the 

hydrogel decreases until it reaches zero. The constant contact diameter is due to the 

viscoelastic dissipation of the hydrogel, which stretches the chains inside the network. 

This contribution is higher in the case of the PDB311 than for the POB 132, because 

for thicker brushes there may be an increasing contribution of other parameters to the 

total work of adhesion such as electrostatic and hydrogen bonding, raising the 

strength of the hydrogel-brush interface. We perfonl1ed somE other experiments 

keeping the same brush samples and changing the crosslinking densities on the 

PMAA hydrogel. These exnenments show that the crosslin.king percentage intluences 
"' 1 

the mechanism of detachment of the hydrogel from the brush. At 3% crosslinker the 

l:lilure mechanislll is adhesive and at 0,93, 0,69 and 0.45%) crosslin~i(er; the 

mechanism is cohesive. 
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6.4.2 Electrostatic effect 

The brush and hydrogel are weak poly electrolytes and consequently both electrostatic 

and hydrogen bond interactions should play an important role in the adhesion process. 

We have already shown that viscoelastic dissipation of the hydrogel contributes 

significantly to the total work of adhesion for thicker brushes. In this case the 

dissipation energy is larger, probably because there is a large amount of polymer 

chains that contribute through long-range forces to the adhesion with the hydrogel in 

comparison to the thinner brush. The volume fraction depth profile measured by 

neutron reflectivity, (Fig 6.5), shows the conformation of the brush for different brush 

thicknesses. The difference in conformation between the PDB 111 and PDB 147 lies in 

the brush volume fraction close to the silicon wafer: 50% for the PDBll1 and 75% 

for the PDB147. The two conformations show the same value of volume fraction, 

close to the hydrogel, 0.45, and a similar extension of ..... JOO A from the substrate. The 

PDB200 has the same volume fraction as for the PDBI47, with ¢ = 0.70, close to the 

silicon wafer and the same volume fraction as for the PDBll1 and PDBI47, 0.45, in 

the vicinity of the hydrogel, but it shows a greater thickness of swelling, 400 A. A 

polymer brush with a greater swelling thickness but with the same volume fraction 

profile suggests that a larger number of monomers are available to bind with the 

hydrogel via long-range interactions. To study the electrostatic contribution, we need 

to isolate it from any other parameters such as the viscoelastic dissipation of the 

hydrogel, and any possible interpenetration effect of the brush into the hydrogel. 

For this reason, we performed adhesion experiments using the PDMAEMA gel film 

instead of the PDMAEMA brush in contact with the PMAA3. The brush and gel film 

are based on the same monomer but they have different topologies. The gel film is a 

random copolymer of DMAEMA and BPMA monomers. The BPMA, in a 

concentration of 5% respect to the amount of DMAEMA, is a photocrosslinking agent 

that allows the PDMAEMA to be chemically attached to a modified silicon wafer. 

Due to its structure, the free chains of the PDMAEMA gel film have less chance to 

interpenetrate the hydrogel, unlike the brush. The adhesion experiments have been 

performed for the same thicknesses as the brush, 28, 119 and 340 A, denoted as 

PDG28, PDG119 and PDG340. 

In the Fig 6.10 we show the work of adhesion as a function of the thickness for the 

PDMAEMA gel film. These experiments were performed following the same 
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procedure as for the brush. The gel films were equilibrated for two hours and then 

pMAA3 was brought into contact for 15 min, with a force of 20 mN applied, and then 

detached. The total work of adhesion is calculated by integrating the force­

displacement curve in the unloading process. 
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Fig 6.10 Work of adhesion as a function of the gel film thickness. The PMAA gel is 

synthesized with 30/0 crosslinker by weight (PMAA3). 

The total work of adhesion is a function of the gel film thickness. The energy to 

separate the gel film / hydrogel interface is greater for the PDG28 than the PDG 119 

with that for the PDG340 in between these values. The higher charge density as a 

function of the gel film thickness could justify an increase of the work of adhesion for 

the hydrogel with the PDG 119 than with PDG28, but we cannot explain why it 

decreases again for the PDG340. In the case of the gel film, we could expect a slightly 

greater dependence of thickness in comparison with PDMAEMA brush in the range 

of thickness corresponding to adhesive failure (Fig 6.8), because the topology of the 

two surfaces is different. We do not have any information about the conformation of 

the gel film but, from the AFM experiments, (Table 6.3), we know that the gel film 

swells 30 % more than the brush under the same pH conditions and range of 

thickness. This suggests that the gel film has probably more charged groups than the 

brush and consequently a different conformation. Because we have observed an 

electrostatic effect on the gel film (Fig 5.10) with PMAA3, we can conclude that the 

same effect is important for the brush film, since the two polymers are the same. 
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To summanse, to estimate the role of the charge effect on the hydrogel-brush 

interaction, we performed adhesion experiments between PDMAEMA gel films of 

different thicknesses in contact with the PMAA3. We chose this system to minimize 

the contribution of the dissipation energy. The results show a dependence of the work 

of adhesion as a function of thickness for the PDG28 and PDG 119 samples but for 

PDG340 the work of adhesion is less than that ofPDG119. 

We performed another set of experiments using the same gel film surface PDG28, 

PDG 119 and PDG340 but in this case bringing into contact the PMAA045. This 

hydrogel crosslinking percentage is the same as that used for the experiments on the 

PDMAEMA brush. 

Fig 6.11 shows the work of adhesion as a function of thickness for the PDMAEMA 

gel film in contact with PMAA045. The graph shows that PDG28 has a larger total 

work of adhesion than the PDG 119 and PDG340, which have similar works of 

adhesion. 
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Fig 6.11 Variation of the work of adhesion as a function of the gel film thickness in 

contact with PMAA045. The microscope images, below each point, show that, for 

PDG119 and PDG340, the gel film is ripped otT during the unloading stage of the 

hydrogel. The same etTect is not recorded for the PDG28 where the failure is at the 

hydrogel-gel film interface. 

We analyzed the film surface with optical microscopy after the gel film was in contact 

with the hydrogel PMAA045 to have some information about the mechani m of 
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failure. The ffilcroscopy lffiages, shown in Fig 6.11, reveal that, in the case of 

PDG 119 and PDG 340, the gel film itself is ruptured and detached from the silicon 

wafer. This is confirmed by performing the same experiments again using the same 

gel on the same spot. The work of adhesion for the second trial dropped to zero as 

expected for a silicon surface. The same result is not observed for the PDG28 where 

the value of total work of adhesion for the first and second trials was comparable. The 

hydrogel-gel film interface seems to be stronger than the silicon-gel film interface for 

the PDG 119 and PDG340, but this is not the case for the PDG28. The graph in Fig 

6.12 allow us to compare the work of adhesion of the brush and gel films in contact 

with PMAA045 as a function of polymer layer thickness. 
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Fig 6.12 Dependence of the work of adhesion as a function of the thickness of the brush 

and gel films. In each case the polymer films were in contact with PMAA045. In the 

range of 20 A brush thickness, the brush and the gel film have comparable adhesion 

energies but for 119 and 340 A gel film thicknesses, the measured work of adhesion is 

smaller than the interfacial works of adhesion because the gel film-silicon interface 

debonds before the gel film-hydrogel interface can rupture. 

Fig 6.12 shows that the work of adhesion for the thinner brush and gel films (23 and 

28 A thick respectively), is comparable, while at thicknesses greater than 100 A the 

gel film work of adhesion is smaller than that of the brush' we observe that the 

mechanism of rupture is different for the brush and the gel film. For the bru h, the 
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mechanism is cohesive and the chemical bonds inside the hydrogel are weaker than 

the interface hydrogel-brush. In the case of the gel film, the silicon-gel film interface 

is weaker than the hydrogel-gel film interface. To understand the behaviour of the gel 

film at the interface, we performed an AFM study to compare the swelling and the 

roughness of the brush and gel film in water. These AFM experiments give a 

qualitative idea about the swelling of the two surfaces, which is related to the 

conformation of the brush and gel film polymer and to the amount of polymer per unit 

surface area. Any swelling difference is due to the way that brush and the gel film are 

synthesized. The brush is synthesized by the "grafting from" method that gives a high 

grafting density and the gel film by the "grafting to" method that gives a less dense 

polymer surface. 

PDMAEMA brush PDMAEMA gel film 

Swelling (HH201 H dry) 1.23 1.60 

Roughness (RRMS) 10.64 A 8.70A 

Table 6.3 Swelling and roughness of the brush and gel films measured by AFM in 

aqueous solution at pH = 6. The swelling of the polymer layer is calculated as the ratio of 

the height of swollen water thickness divided by the dry thickness. The dry thicknesses 

ofthe brush and gel films are 207 and 277 A respectively. 

The swelling of the two surfaces was studied by AFM in aqueous solution. The 

surface of the polymer films was scratched using a blade and the thickness measured 

(the height of the scratch) under dry conditions. Then pure water was added and the 

thickness measured again in equilibrium. The value of swelling, indicated in Table 

6.3, is the ratio of the film thickness in water over the thickness in dry conditions. The 

same procedure is used for both the brush and the gel film samples. The thickness in 

the dry condition is 277 A for the brush and 207 A for the gel film. The gel film, 

under the same pH condition, swells 30% more than the brush, confirming that the gel 

film has a smaller amount of polymer per unit surface area. This is because the gel 

film is chemically anchored on the surface through the photocrosslinker monomers at 

a weight fraction of 5%, while, for the brush, each chain is covalently bound to the 

surface and consequently the brush layer is more strongly attached onto the silicon 

surface than the gel film. This difference could explain why for the brush the failure is 

at the interface hydrogel-brush or inside the hydrogel, unlike for the gel film where 
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the failure is at the gel film-silicon or at the hydrogel-gel film interface. When the 

hydrogel is pulled-off, the gel film chains, not as strongly attached to the surface as 

the brush, can be stretched more than the brush and it costs more energy to break the 

hydrogel-gel film interface than the silicon-gel film interface because more energy 

can be dissipated in the film than the brush. The same effect is not observed for the 

PDG28. Due to the sample preparation the gel film PDG28 has a larger fraction of 

crosslinks to the surface than the PDG 119 and PDG340 sample. The gel film is made 

of a random copolymer of DMAEMA and BPMA. When the spin coated film is 

exposed to the UV lamp [9], the photo-crosslinker reacts with the initiator layer on the 

silicon wafer and with other monomers to form the network. If the film is thinner (as 

when prepared from a dilute solution), the ratio of initiator molecules to BPMA is 

higher than for a thicker film, made from a more concentrated solution. Consequently 

the thinner film is highly covalent bound with the surface and so remains attached to 

the silicon in the pull-off process. 

The comparison of the roughness for the gel film and brush in the same conditions of 

pH does not show any appreciable difference, demonstrating that this parameter is not 

responsible for any difference in the mechanism of adhesion between the two 

processes. 

To summarize, the analysis shows that the total work of adhesion of the PDMAEMA 

gel film has a different behaviour as a function of thickness with respect to that of the 

brush. The work of adhesion is greater for PDG28 and then decreases and assumes a 

constant value for PDG 119 and PDG340. The comparison of the work of adhesion for 

the brush and the gel film shows that for a thickness of 28 A the brush and gel films 

have comparable works of adhesion but for thicknesses of 119 A and 340 A, the gel 

film has a smaller work of adhesion than for the brush of comparable thickness. The 

microscope images (Fig 6.11) of the gel film after being in contact with the 

PMAA045 show that the polymer gel film is tom off when the hydrogel lens is 

removed. This can be explain the low value of the total energy of adhesion for the gel 

film with the silicon substrate in comparison with the PDMAEMA brush, especially 

at greater thicknesses. A different mechanism of failure is observed when the gel 

films are added in contact with the PMAA3. Under these experimental conditions, the 

gel film is stable and does not rupture at the silicon interface but experience adhesive 

failure at the interface with the hydrogel. To demonstrate this we performed the pull-
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off experiments with the same gel on the same spot twice; these experiments showed 

that there is no significant difference in the work of adhesion between the two trials of 

PMAA synthesized with 3% crosslinker. This different mechanism of failure as a 

function of the percentage of crosslinker is likely to be due to the local force applied 

at the edges of the hydrogel. The PMAA3 is stiffer than the PMAA045 and , 

consequently, the local force at the edges of the hydrogel, during the pull off process 

is lower than that for the PMAA045 , initiating the crack at the hydrogel-gel film 

interface. 

6.4.3 Hydrogen bonding 

To estimate the contribution of hydrogen bonds we performed pull-off experiments, 

bringing the PHEMA gel film into contact with PMAA hydrogel of different 

crosslinking densities. PHEMA is a water-soluble polymer with a similar chemical 

structure to the PDMAEMA. The PHEMA interacts with the PMAA hydrogel 

forming mainly hydrogen bonds [12]. In Fig 6.13, we show the variation of the total 

work of adhesion for a 40 A thick PHEMA gel film as a function of the hydrogel 

crosslinking density. 
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Fig 6.13 Work of adhesion for the PHEMA gel film (40 A thickness) as a function of the 

percentage of crosslinker in the PMAA hydrogel. 



167 

From the mechanical measurements, the work of adhesion is in the order of 70 mJ/m2 

[13] when the PHEMA40, is in contact with PMAA3, while it increases by a factor of 

between 40 and 50 when the hydrogel is brought into contact with the PMAA093 and 

PMAA045. In the case of PMAA045 and PMAA093 , the modulus of the gel 

decreases and the hydrogel has a larger radius of curvature and therefore area of 

contact with the surface. Consequently, the gel film and the hydrogel have more 

points of contact than for the PMAA3 to interact via hydrogen bonds which use a 

large amount of energy to separate the hydrogel from the PHEMA40 surface. In this 

condition, contribution of the dissipation energy is larger for less crosslinked PMAA 

gels, explaining the greater work of adhesion for PHEMA in contact with PMAA045 

and PMAA093. To conclude, hydrogen bonding seems not to play any major role in 

the adhesion between the PHEMA and consequently the PDMAEMA brushes and the 

hydrogel if viscoelastic dissipation is not significant. This is exemplified by the total 

work of adhesion being significantly greater for less crosslinked PMAA gels than the 

most crosslinked gel (PMAA3) studied. 

6.5 Conclusion 

In this chapter we described pull-off experiments of the PMAA hydrogel from 

PDMAEMA brush of different thicknesses. This kind of experiment is important for 

industrial purposes because it gives an idea of the real energy spent to separate the 

brush from the gel. 

The experiments show a brush thickness dependence of the total work of adhesion to 

detach the hydrogel from the brush. In particular it is possible to recognize two 

regions. In the thickness range of 28-132 A, the total work of adhesion assumes a 

value of between 7000 and 10000 mJ/m2 and the mechanism of detachment is 

adhesive, with the failure at the hydrogel-brush interface. In the region thickness of 

165-311 A the total work of adhesion reaches a value of between 25000 and 30000 

mJ/m2, three times more than in the region where the adhesive failure is observed and 

the detachment has a cohesive mechanism; the failure is with the hydrogel. This 

means that the chemical bonds inside the hydrogel are weaker than the hydrogel-brush 
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interface. To understand this different mechanism of detachment and total work of 

adhesion, we hypothesised that the main parameters, responsible could be: 

• viscoelastic dissipation of the hydrogel; 

• an electrostatic (charge) effect; and 

• hydrogen bonding. 

The strategy used was to isolate, as well as possible, each effect to estimate each 

contribution to the total work of adhesion of the PMAA hydrogel and PDMAEMA 

brush system. 

To estimate the viscoelastic dissipation energy of the hydrogel, we studied the change 

of contact diameter of the PMAA as a function of the crosslinker percentage in 

contact with the PDB 132 and PDB311 as a function of the pull-off force. The 

comparison shows that the viscoelastic dissipation contributes more for the PDB311 

than for the PDB132. In the case of the PDB311 the contact diameter is constant for 

20 s while for the PDMA132 the contact diameter is constant for lOs; in both cases, 

the pull off force increases monotonically, stretching the chains of the network while 

the contact diameter is constant. 

This means that increasing viscoelastic dissipation is a consequence of the larger 

strength of the hydrogel-brush interface at PDB311 than PDB132, due to other 

contributions such as electrostatic andlor hydrogen bonding. 

To study the electrostatic interaction between the brush and the hydrogel as a function 

of the thickness we performed pull-off experiments by bringing into contact the 

PMAA3, the most crosslinked gel, with a PDMAEMA gel film. The reasoning behind 

these experiments is to quantity the electrostatic forces by inhibiting the effect of 

viscoelastic dissipation of the hydrogel and the interpenetration effect of the brush 

into the hydrogel. The total work of adhesion of the PMAA3 in contact with the 

PDMAEMA gel film at different thickness increases with the gel film thickness and 

then decreases slightly. This suggests that electrostatic forces are an important 

parameter in the hydrogel-brush interaction. To quantify the hydrogen bonding 

interaction between the brush and the hydrogel we performed pull-off experiments 

with PMAA hydrogel and PHEMA gel film. This polymer is weak polyacid much 

weaker than the PMAA hydrogel, soluble in water and with a similar structure to the 

PDMAEMA. PHEMA can interact with the PMAA only through hydrogen bonding. 

These experiments show that there is hydrogen bonding between the hydrogel and the 
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brush but their contribution to the total work of adhesion is small in comparison to the 

electrostatic interaction between the PDMAEMA brush and the hydrogel. 
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Summary and future work 

In this project, we studied the adhesion between a weak base brush, PDMAEMA, 

grafted from a silicon surface and a weak polyacid hydrogel, synthesised from MAA 

monomer. The brush and gel are both pH responsive but to different pH triggers. The 

weak polybase brush is positively charged in acid pH and uncharged in base pH while 

the weak polyacid hydrogel is charged in basic condition and uncharged in acid pH. 

The amount of charges influences the swelling of the polymer chains because the 

polymers uptake water to minimize the repulsion forces between the charges. 

To quantify the adhesion between the brush and the hydrogel we performed kinetics 

experiments using a modified JKR set up. The hydrogel was synthesised in a 

hemispherical shape with 3.5 mm radius of curvature. The experimental procedure 

consists of leaving the brush sample to equilibrate for two hours inside the liquid cell, 

filled with the pH solution that we want to study. Using the camera and with gel 

illuminated from the other side by a light source we can observe and collect the 

variation of contact diameter of the hydrogel at the beginning, when the hydrogel is 

added on the brush surface, when the load is applied and when it is removed. We 

performed these experiments at pH 2,3.4 and 5.8. We observe that: 

the interaction between the brush and the hydrogel is dependent on the pH 

If the gel and the brush are equilibrated at pH 2 they do not adhere, i.e. the value of 

the contact diameter after the load is removed is the same as that before it was 

applied, showing no adhesion between the brush and the hydrogel. If they are 

equilibrated above pH 3 they adhere very strongly, marked by a large increase in 

contact diameter after the load is removed compared to before it was applied; the only 

way to separate the two components is to tear the brush off the surface, or to rupture 

the gel. If they are equilibrated at pH 3.4 the final value of contact diameter, after the 

unloading, is larger than at the beginning but smaller than at pH 5.8. 

We observed that 

the adhesion is switchable and triggered by the pH; 
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If the two components initially in contact at pH 5.8 (strong adhesion) are equilibrated 

at pH 1 the gel detaches from the brush without damaging either and the system may 

be used again. 

To quantify the adhesion between the brush and the hydrogel we used the JKR 

equation where the thermodynamic work of adhesion is a function of the radius of 

curvature of the hydrogel lens, the applied load, the bulk modulus of the lens and the 

area of contact between the brush and the hydrogel after that the load is removed 

(unloading stage). We performed the experiments by applying different loads and we 

observed that the interaction between the brush and the gel is pressure sensitive; the 

adhesion energy increases as larger loads are applied and removed. This suggests that 

probably more than one mechanism is involved in the adhesion process. We therefore 

hypothesize that the interaction between the brush and hydrogel may be pressure 

sensitive due to interfacial (e.g. electrostatic) or interdigitation effects. 

• Interfacial (surface) effect 

The force applied produces an increase in the contact area between the brush and 

hydrogel, creating more surface available for electrostatic or hydrogen bond 

interactions between the ammo and carboxylic groups of the polybase and 

polyacid respectively. 

• Interdigitation effect 

The Velcro™ effect could be another mechanism involved where the increase in 

the applied load generates an interdigitation of the brush into the hydrogel. 

The actual mechanism could be a mixture of both interfacial and interdigitation 

effects whose contributions may vary over a range of applied pressures. 

We conclude 

the interfacial (surface) mechanism is the dominant mechanism in the interaction 

between the brush and the hydrogel. 

The neutron reflectivity experiments of the brush in contact with the hydrogel when 

the pressure is applied and released allow an observation of the behaviour of the brush 

under the same conditions as those for the JKR adhesion experiments. From volume 

fraction-depth profiles, obtained using neutron reflectivity, there is no evidence of any 

interpenetration of the brush chains into the hydrogel, because for each increase in 

applied pressure, the data show a sharp interface close to where we expect the 

hydrogel to be located. The comparison of the brush profile at different brush 
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thickness, (111, 147 and 200 A), show that the composition of the polymer at the 

interface with the hydrogel is the same and is independent of the brush thickness. The 

amount of polymer swollen is larger for thicker brushes suggesting a large 

contribution of long-range interactions between the amino group of the brush chains 

and the carboxylic group of the PMAA hydrogel as the thickness of the brush 

increases. To confirm this behaviour, we performed adhesion experiments to 

understand if the thermodynamic work of adhesion between the brush and the 

hydrogel is a function of the brush thickness. The comparison of the thermodynamic 

work of adhesion for a 200 and 90 A thick brush in contact with the hydrogel shows 

the brush with higher thickness has a large value of thermodynamic work of adhesion. 

This result is in agreement with the volume fraction profile of the brush because a 

thicker brush has a larger number of available amino to interact with the carboxylic 

groups of the PMAA hydrogel than the brush of smaller thickness. Finally, to exclude 

any interpenetration of the brush chains into the hydrogel, we performed some 

experiments with the JKR set up by substituting the PDMAEMA brush system with a 

PDMAEMA gel thin film in contact with the PMAA hydrogel in the same range of 

thickness. A comparison of the thermodynamic work of adhesion between the brush 

and a gel film made by the same polymer but with comparable thickness does not 

show that the adhesion has any dependence on the topology of the polymer. 

The interpenetration mechanism it is unlikely to happen and confirms that the surface 

effect is the main mechanism of interaction. 

To have a better idea about the applicability of this switchable glue, we performed 

some experiments to measure the energy to separate the PMAA hydrogel from the 

PDMAEMA brush after a known force was applied. 

The set-up is similar to the one describe above but in this case a micromanipulator is 

used to bring the gel into contact with the brush and then to separate them. 

These experiments show that 

there is a brush thickness dependence of the total work of adhesion to detach the 

hydrogel from the brush. 

In particular it is possible to recognize two regions characterized by two different 

mechanism of detachment. In the thickness range of 28-132 A, the mechanism of 

detachment is adhesive, with the failure at the hydrogel-brush interface and the energy 

is in the order of 10000 mJ/m2. In the brush thickness region of 165-311 A the 
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detachment has a cohesive mechanism; the failure is with the hydrogel and the energy 

is in the order of 30000 mJ/m
2

• This means that the chemical bonds inside the 

hydrogel are weaker than the hydrogel-brush interface. To understand this different 

mechanism of detachment and total work of adhesion, we hypothesised that the main 

parameters responsible could be: 

• viscoelastic dissipation of the hydrogel; 

• an electrostatic (charge) effect; and 

• hydrogen bonding. 

The strategy used was to isolate, as well as possible, each effect to estimate each 

contribution to the total work of adhesion of the PMAA hydrogel and PDMAEMA 

brush system. 

To estimate the viscoelastic dissipation energy of the hydrogel, we studied the change 

of contact diameter and pull-off force of the PMAA in contact with the PD B 132 and 

PDB311 as a function of the crosslinker percentage of the hydrogel. 

The comparison shows that 

the viscoelastic dissipation contributes more for the at large value of 165-300 A brush 

thickness thanfor a thinner one, 28-132 A. 

In the case of the PDB311 the contact diameter is constant for 20 s while for the 

PDMA132 the contact diameter is constant for 10 s; in both cases, the pull off force 

increases monotonically, stretching the chains of the network while the contact 

diameter remains constant. 

This means that increasing viscoelastic dissipation is a consequence of the larger 

strength of the hydrogel-brush interface at PDB311 than PDB132, due to other 

contributions such as electrostatic and/or hydrogen bonding. 

To study the electrostatic interaction between the brush and the hydrogel as a function 

of the thickness, we performed pull-off experiments by bringing into contact the 

PMAA3, the most crosslinked gel, with a PDMAEMA gel film. The reasoning behind 

these experiments is to quantity the electrostatic forces by inhibiting the effect of 

viscoelastic dissipation of the hydrogel and the interpenetration effect of the brush 

into the hydrogel. The total work of adhesion of the PMAA3 in contact with the 

PDMAEMA gel film at different thickness increases with the gel film thickness and 

then decreases slightly. This suggests that 

electrostatic forces are an important parameter in the hydrogel-brush interaction. 
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To quantify the hydrogen bonding interaction between the brush and the hydrogel we 

performed pull off experiments with PMAA hydrogel and PHEMA gel film. which 

can interact with the PMAA only through hydrogen bonding. These experiments 

show that there is 

hydrogen bonding between the hydrogel and the brush but their contribution to the 

total work of adhesion is small in comparison to the electrostatic interaction between 

the PDMAEMA brush and the hydrogel. 

Future work should include a systematic study of the adhesion of the brush and 

hydrogel in both basic conditions and as a function of ionic strength. In the case of the 

pH this might include the use of buffer to keep the pH of the solution constant. The 

buffer, and the addition of salt could screen charges in the brush and hydrogel, 

changing the adhesion and the mechanism of interaction between the brush and the 

hydrogel. 

Other studies could concern the switching behaviour of the brush/gel system in basic 

pH. 

We have performed these experiments qualitatively and we observed the switching in 

basic condition; but in these pH environments, other effects can be involved because 

the hydrogel swells, increasing the stress into the gel-brush interface and favouring 

the rupture. 

The same kind of experiments in acid and basic condition could be performed by 

changing the grafting density of the PDMAEMA brush by mixing the initiator, 

deposited on the surface with a non active one and then performing the adhesion and 

switching experiments quantitatively. The grafting density of the polymer can also be 

changed by mixing the PDMAEMA with PHEMA polymers. Qualitatively these 

experiments show that the pH of switching is dependent on the amount of 

PDMAEMA grafted on the surface but we do not have any quantitatively information. 

Other experiments could regard the use of the pull-off set-up to understand more 

about the adhesion between the brush and the hydrogel. Some other experiments 

could be performed using a hard sphere of silicon in contact with the PD MAEMA 

brush. Silicon spheres are covered in a thin oxide layer which shows acid behaviour. 

This would avoid any contribution of viscoelastic dissipation and interpenetration and 

would help to calculate the dependence of the adhesion between the brush and gel as a 
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function of the brush thickness. The same experiments could be performed on brushes 

with different grafting density, pH conditions and ionic strength. 


	522341_0001
	522341_0002
	522341_0003
	522341_0004
	522341_0005
	522341_0006
	522341_0007
	522341_0008
	522341_0009
	522341_0010
	522341_0011
	522341_0012
	522341_0013
	522341_0014
	522341_0015
	522341_0016
	522341_0017
	522341_0018
	522341_0019
	522341_0020
	522341_0021
	522341_0022
	522341_0023
	522341_0024
	522341_0025
	522341_0026
	522341_0027
	522341_0028
	522341_0029
	522341_0030
	522341_0031
	522341_0032
	522341_0033
	522341_0034
	522341_0035
	522341_0036
	522341_0037
	522341_0038
	522341_0039
	522341_0040
	522341_0041
	522341_0042
	522341_0043
	522341_0044
	522341_0045
	522341_0046
	522341_0047
	522341_0048
	522341_0049
	522341_0050
	522341_0051
	522341_0052
	522341_0053
	522341_0054
	522341_0055
	522341_0056
	522341_0057
	522341_0058
	522341_0059
	522341_0060
	522341_0061
	522341_0062
	522341_0063
	522341_0064
	522341_0065
	522341_0066
	522341_0067
	522341_0068
	522341_0069
	522341_0070
	522341_0071
	522341_0072
	522341_0073
	522341_0074
	522341_0075
	522341_0076
	522341_0077
	522341_0078
	522341_0079
	522341_0080
	522341_0081
	522341_0082
	522341_0083
	522341_0084
	522341_0085
	522341_0086
	522341_0087
	522341_0088
	522341_0089
	522341_0090
	522341_0091
	522341_0092
	522341_0093
	522341_0094
	522341_0095
	522341_0096
	522341_0097
	522341_0098
	522341_0099
	522341_0100
	522341_0101
	522341_0102
	522341_0103
	522341_0104
	522341_0105
	522341_0106
	522341_0107
	522341_0108
	522341_0109
	522341_0110
	522341_0111
	522341_0112
	522341_0113
	522341_0114
	522341_0115
	522341_0116
	522341_0117
	522341_0118
	522341_0119
	522341_0120
	522341_0121
	522341_0122
	522341_0123
	522341_0124
	522341_0125
	522341_0126
	522341_0127
	522341_0128
	522341_0129
	522341_0130
	522341_0131
	522341_0132
	522341_0133
	522341_0134
	522341_0135
	522341_0136
	522341_0137
	522341_0138
	522341_0139
	522341_0140
	522341_0141
	522341_0142
	522341_0143
	522341_0144
	522341_0145
	522341_0146
	522341_0147
	522341_0148
	522341_0149
	522341_0150
	522341_0151
	522341_0152
	522341_0153
	522341_0154
	522341_0155
	522341_0156
	522341_0157
	522341_0158
	522341_0159
	522341_0160
	522341_0161
	522341_0162
	522341_0163
	522341_0164
	522341_0165
	522341_0166
	522341_0167
	522341_0168
	522341_0169
	522341_0170
	522341_0171
	522341_0172
	522341_0173
	522341_0174
	522341_0175
	522341_0176
	522341_0177
	522341_0178
	522341_0179
	522341_0180
	522341_0181
	522341_0182
	522341_0183
	522341_0184
	522341_0185
	522341_0186
	522341_0187
	522341_0188
	522341_0189
	522341_0190
	522341_0191
	522341_0192
	522341_0193
	522341_0194
	522341_0195
	522341_0196
	522341_0197

